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PREFACE

Principle of Computer Hardware is aimed at students taking
an introductory course in electronics, computer science, or
information technology. The approach is one of breadth
before depth and we cover a wide range of topics under the
general umbrella of computer hardware.

I have written Principles of Computer Hardware to achieve
two goals. The first is to teach students the basic concepts on
which the stored-program digital computer is founded.
These include the representation and manipulation of infor-
mation in binary form, the structure or architecture of a com-
puter, the flow of information within a computer, and the
exchange of information between its various peripherals. We
answer the questions, ‘How does a computer work’, and ‘How
is it organized?’ The second goal is to provide students with a
foundation for further study. In particular, the elementary
treatment of gates and Boolean algebra provides a basis for
a second-level course in digital design, and the introduction
to the CPU and assembly-language programming provides a
basis for advanced courses on computer architecture/organi-
zation or microprocessor systems design.

This book is written for those with no previous knowledge
of computer architecture. The only background information
needed by the reader is an understanding of elementary alge-
bra. Because students following a course in computer science
or computer technology will also be studying a high-level
language, we assume that the reader is familiar with the con-
cepts underlying a high-level language.

When writing this book, I set myself three objectives. By
adopting an informal style, I hope to increase the enthusiasm
of students who may be put off by the formal approach of
more traditional books. I have also tried to give students an
insight into computer hardware by explaining why things are
as they are, instead of presenting them with information to be
learned and accepted without question. I have included sub-
jects that would seem out of place in an elementary first-level

course. Topics like advanced computer arithmetic, timing
diagrams, and reliability have been included to show how the
computer hardware of the real world often differs from that
of the first-level course in which only the basics are taught.
I've also broadened the range of topics normally found in
first-level courses in computer hardware and provided sec-
tions introducing operating systems and local area networks,
as these two topics are so intimately related to the hardware of
the computer. Finally, I have discovered that stating a formula
or a theory is not enough—many students like to see an
actual application of the formula. Wherever possible I have
provided examples.

Like most introductory books on computer architecture,
I have chosen a specific microprocessor as a vehicle to illustrate
some of the important concepts in computer architecture. The
ideal computer architecture is rich in features and yet easy to
understand without exposing the student to a steep learning
curve. Some microprocessors have very complicated architec-
tures that confront the students with too much fine detail early
in their course. We use Motorola’s 68K microprocessor because
it is easy to understand and incorporates many of the most
important features of a high-performance architecture. This
book isn’t designed to provide a practical assembly language
programming course. It is intended only to illustrate the oper-
ation of a central processing unit by means of a typical assem-
bly language. We also take a brieflook at other microprocessors
to show the range of computer architectures available.

You will see the words computer, CPU, processor, micro-
processor, and microcomputer in this and other texts. The part
of a computer that actually executes a program is called a
CPU (central processing unit) or more simply a processor.
A microprocessor is a CPU fabricated on a single chip of sili-
con. A computer that is constructed around a microprocessor
can be called a microcomputer. To a certain extent, these terms
are frequently used interchangeably.
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CHAPTER MAP

2 Logic elements and
Boolean algebra
Digital computers are

constructed from millions of very
simple logic elements called

gates. In this chapter we
introduce the fundamental gates
and demonstrate how they can
be combined to create circuits
that carry out the basic functions
required in a computer.

3 Sequential logic

We can classify logic circuits into
two groups: the combinational
circuit we described in Chapter 2
and the sequential circuit which
forms the subject of this chapter.
A sequential circuit includes
memory elements and its current
behavior is governed by its past
inputs. Typical sequential circuits
are counters and registers.

4 Computer arithmetic

In Chapter 4 we demonstrate
how numbers are represented in
binary form and look at binary
arithmetic. We also demonstrate
how the properties of binary
numbers are exploited to create
codes that compress data or even
detect and correct errors.

INTRODUCTION

In this chapter we set the scene for the rest of the book. We define what we mean by computer
hardware, explain just why we teach computer hardware to computer science students, provide a
very brief history of computing, and look at the role of the computer.

1.1 What is computer hardware?

To begin with I feel we ought to define the terms hardware
and software. I could give a deeply philosophical definition,
but perhaps an empirical one is more helpful. If any part of a
computer system clatters on the floor when dropped, it’s
hardware. If it doesn’t, it’s software. This is a good working
definition, but it’s incomplete because it implies that hardware
and software are unrelated entities. As we will discover, soft-
ware and hardware are often intimately related. Moreover, the
operation of much of today’s hardware is controlled by
firmware (software embedded in the structure of the hardware).

A computer’s hardware includes all the physical compon-
ents that make up the computer system. These components

range from the CPU to the memory and input/output
devices. The programs that control the operation of the com-
puter are its software. When a program is inside a computer
its physical existence lies in the state of electronic switches,
the magnetization of tiny particles on magnetic disk, or
bumps on the surface of a CD or DVD. We can’t point to a
program in a computer any more than we can point to
a thought in the brain.

Two terms closely related to hardware are architecture and
organization. A computer’s architecture is an abstract view of
the computer, which describes what it can do. A computer’s
architecture is the assembly language programmer’s view of
the machine. You could say that architecture has a similar
meaning to functional specification. The architecture is an

HARDWARE, ARCHITECTURE, AND ORGANIZATION

Hardware means all the parts of the computer that are not
software. It includes the processor, its memory, the buses that
connect devices together, and the peripherals.

Architecture describes the internal organization of a
computer in an abstract way; that is, it defines the capabilities
of the computer and its programming model. You can have

two computers that have been constructed in different ways
with different technologies but with the same architecture.

Organization describes how a computer is implemented.
Organization is concerned with a computer’s functional
components and their interrelationship. Organization is about
buses, timing, and circuits.
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abstraction of the computer. A computer’s organization
describes how the architecture is implemented; that is, it
defines the hardware used to implement the architecture.
Let’s look at a simple example that distinguishes between
architecture and organization. A computer with a 32-bit
architecture performs operations on numbers that are 32 bits
wide. You could build two versions of this computer. One is
a high-performance device that adds two 32-bit numbers in a
single operation. The other is a low-cost processor that gets
a 32-bit number by bringing two 16-bit numbers from mem-
ory one after the other. Both computers end up with the same
result, but one takes longer to get there. They have the same
architecture but different organizations.

Although hardware and software are different entities,
there is often a trade-off between them. Some operations can
be carried out either by a special-purpose hardware system or
by means of a program stored in the memory of a general-
purpose computer. The fastest way to execute a given task is
to build a circuit dedicated exclusively to the task. Writing a
program to perform the same task on an existing computer
may be much cheaper, but the task will take longer, as the
computer’s hardware wasn’t optimized to suit the task.

Developments in computer technology in the late 1990s
further blurred the distinction between hardware and soft-
ware. Digital circuits are composed of gates that are wired
together. From the mid-1980s onward manufacturers were
producing large arrays of gates that could be interconnected
electronically to create a particular circuit. As technology
progressed it became possible to reconfigure the connections
between gates while the circuit was operating. We now have
the technology to create computers that can repair errors,
restructure themselves as the state of the art advances, or even
evolve.

1.2 Why do we teach computer
hardware?

A generation ago, school children in the UK had to learn
Latin in order to enter a university. Clearly, at some point it
was thought that Latin was a vital prerequisite for everyone
going to university. When did they realize that students could
still benefit from a university education without a prior
knowledge of Latin? Three decades ago students taking a
degree in electronics had to study electrodynamics, the dance
of electrons in magnetic fields, a subject so frightening that
older students passed on its horrors to the younger ones in
hushed tones. Today, electrodynamics is taught only to stu-
dents on specialist courses.

We can watch a television program without understanding
how a cathode ray tube operates, or fly in a Jumbo jet without
ever knowing the meaning of thermodynamics. Why then

should the lives of computer scientists and programmers be
made miserable by forcing them to learn what goes on inside
a computer?

If topics in the past have fallen out of the curriculum with no
obviously devastating effect on the education of students, what
about today’s curriculum? Do we still need to teach computer
science students about the internal operation of the computer?

Computer architecture is the oldest component of the
computer curriculum. The very first courses on computer
science were concerned with the design and construction of
computers. At that time programming was in its infancy and
compilers, operating systems, and databases did not exist.
In the 1940s, working with computers meant building com-
puters. By the 1960s computer science had emerged as a
discipline. With the introduction of courses in program-
ming, numerical methods, operating systems, compilers, and
databases, the then curriculum reflected the world of the
mainframe.

In the 1970s computer architecture was still, to a considerable
extent, an offshoot of electronics. Texts were more concerned
with the circuits in a computer than with the fundamental prin-
ciples of computer architecture as now encapsulated by the
expression instruction set architecture (ISA).

Computer architecture experienced a renaissance in the
1980s. The advent of the low-cost microprocessor-based sys-
tems and the single-board computer meant that computer
science students could study and even get hands-on experi-
ence of microprocessors. They could build simple systems,
test them, interface them to peripherals such as LEDs and
switches, and write programs in machine code. Bill Gates
himself is a product of this era.

Assembly language programming courses once mirrored
high-level language programming courses—students were
taught algorithms such as sorting and searching in assembly
language, as if assembly language were no more than the poor
person’s C. Such an approach to computer architecture is
now untenable. If assembly language is taught at all today, it is
used as a vehicle to illustrate instruction sets, addressing
modes, and other aspects of a processor’s architecture.

In the late 1980s and early 1990s computer architecture
underwent another change. The rise of the RISC micro-
processor turned the focus of attention from complex
instruction set computers to the new high-performance,
highly pipelined, 32-bit processors. Moreover, the increase in
the performance of microprocessors made it harder and
harder for classes to give students the hands-on experience
they had a few years earlier. In the 1970s a student could con-
struct a computer with readily available components and
simple electronic construction techniques. By the 1990s clock
rates rose to well over 100 MHz and buses were 32 bits wide
making it difficult for students to construct microprocessor-
based systems as they did in the 1980s. High clock rates
require special construction techniques and complex chips



have hundreds of connections rather than the 40- or 64-pin
packages of the 8086/68K era.

In the 1990s computer architecture was largely concerned
with the instruction set architecture, pipelining, hazards,
superscalar processors, and cache memories. Topics such as
microprocessor systems design at the chip level and micro-
processor interfacing had largely vanished from the CS cur-
riculum. These topics belonged to the CEng and EE curricula.

In the 1990s a lot was happening in computer science; for
example, the introduction of new subject areas such as
object-oriented programming, communications and net-
works, and the Internet/ WWW. The growth of the computer
market, particularly for those versed in the new Internet-
based skills, caused students to look at their computing
curricula in a rather pragmatic way. Many CS students will
join companies using the new technologies, but very few of
them indeed will ever design chips or become involved with
cutting-edge work in computer architecture. At my own uni-
versity, the demand for courses in Internet-based computing
has risen and fewer students have elected to take computer
architecture when it is offered as an elective.

1.2.1 Should computer architecture
remain in the CS curriculum?

Developments in computer science have put pressure on
course designers to remove old material to make room for the
new. The fraction of students that will ever be directly
involved in computer design is declining. Universities pro-
vide programs in multimedia-based computing and visual-
ization at both undergraduate and postgraduate levels.
Students on such programs do not see the point of studying
computer architecture.

Some have suggested that computer architecture is a prime
candidate for pruning. It is easy to argue that computer archi-
tecture is as irrelevant to computer science as, say, Latin is to
the study of contemporary English literature. If a student
never writes an assembly language program or designs an
instruction set, or interfaces a memory to a processor, why
should we burden them with a course in computer architec-
ture? Does the surgeon study metallurgy in order to under-
stand how a scalpel operates?

It’s easy to say that an automobile driver does not have to
understand the internal combustion engine to drive an auto-
mobile. However, it is patently obvious that a driver who
understands mechanics can drive in such a way as to enhance
the life of the engine and to improve its performance. The
same is true of computer architecture; understanding com-
puter systems can improve the performance of software if the
software is written to exploit the underlying hardware.

The digital computer lies at the heart of computer science.
Without it, computer science would be little more than a branch
of theoretical mathematics. The very idea of a computer science

1.2 Why do we teach computer hardware? 3

program that did not provide students with an insight into the
computer would be strange in a university that purports to edu-
cate students rather than to merely train them.

Those supporting the continued teaching of computer
architecture employ several traditional arguments. First,
education is not the same as training and CS students are not
simply being shown how to use commercial computer pack-
ages. A course leading to a degree in computer science should
also cover the history and the theoretical basis for the subject.
Without an appreciation of computer architecture, the com-
puter scientist cannot understand how computers have
developed and what they are capable of.

However, there are concrete reasons why computer archi-
tecture is still relevant in today’s world. Indeed, I would
maintain that computer architecture is as relevant to the
needs of the average CS student today as it was in the past.
Suppose a graduate enters the industry and is asked to select
the most cost-effective computer for use throughout a large
organization. Understanding how the elements of a com-
puter contribute to its overall performance is vital—is it
better to spend $50 on doubling the size of the cache or $100
on increasing the clock speed by 500 MHz?

Computer architecture cannot be divorced entirely from
software. The majority of processors are found not in PCs or
workstations but in embedded" applications. Those designing
multiprocessors and real-time systems have to understand
fundamental architectural concepts and limitations of com-
mercially available processors. Someone developing an auto-
mobile electronic ignition system may write their code in C,
but might have to debug the system using a logic analyzer that
displays the relationship between interrupt requests from
engine sensors and the machine-level code.

There are two other important reasons for teaching com-
puter architecture. The first reason is that computer architec-
ture incorporates a wealth of important concepts that appear
in other areas of the CS curriculum. This point is probably
least appreciated by computer scientists who took a course in
architecture a long time ago and did little more than learn
about bytes, gates, and assembly language. The second reason
is that computer architecture covers more than the CPU; it is
concerned with the entire computer system. Because so many
computer users now have to work with the whole system
(e.g. by configuring hard disks, by specifying graphics cards,
by selecting a SCSI or FireWire interface), a course covering
the architecture of computer systems is more a necessity than
a luxury.

Some computer architecture courses cover the architecture
and organization of the processor but make relatively little

! An embedded computer is part of a product (digital camera, cell
phone, washing machine) that is not normally regarded as a computing
device. The end user does not know about the computer and does not
have to program it.
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reference to buses, memory systems, and high-performance
peripherals such as graphics processors. Yet, if you scan the
pages of journals devoted to personal/workstation comput-
ing, you will rapidly discover that much attention is focused
on aspects of the computer system other than the CPU itself.
Computer technology was once driven by the paperless-
office revolution with its demand for low-cost mass storage,
sufficient processing power to rapidly recompose large docu-
ments, and low-cost printers. Today, computer technology is
being driven by the multimedia revolution with its insatiable
demand for pure processing power, high bandwidths, low
latencies, and massive storage capacities.

These trends have led to important developments in com-
puter architecture such as special hardware support for mul-
timedia applications. The demands of multimedia are being
felt in areas other than computer architecture. Hard disks
must provide a continuous stream of data because people can
tolerate a degraded picture much better than a picture with
even the shortest discontinuities. Such demands require
efficient track-seeking algorithms, data buffering, and high-
speed, real-time error correction and detection algorithms.
Similarly, today’s high data densities require frequent recal-
ibration of tracking mechanisms due to thermal effects. Disk
drives now include SMART technologies from the Al world
that are able to predict disk failure before it occurs. These
developments have as much right to be included in the archi-
tecture curriculum as developments in the CPU.

1.2.2 Supporting the CS curriculum

It is in the realm of software that you can most easily build a
case for the teaching of assembly language. During a student’s
career, they will encounter abstract concepts in areas ranging
from programming languages to operating systems to real-
time programming to Al The foundation of many of these
concepts lies in assembly language programming and computer
architecture. Computer architecture provides bottom-up
support for the top-down methodology taught in high-level
languages. Consider some of the areas where computer
architecture can add value to the CS curriculum.

The operating system Computer architecture provides a
firm basis for students taking operating system courses. In
computer architecture students learn about the hardware
that the operating system controls and the interaction
between hardware and software; for example, in cache sys-
tems. Consider the following two examples of the way in
which the underlying architecture provides support for
operating system facilities.

Some processors operate in either a privileged or a user
mode. The operating system runs in the privileged or pro-
tected mode and all applications run in the user mode. This
mechanism creates a secure environment in which the effects
of an error in an application program can be prevented from

crashing the operating system or other applications. Covering
these topics in an architecture course makes the student
aware of the support the processor provides for the operating
system and enables those teaching operating system courses
to concentrate more on operating system facilities than on
the mechanics of the hardware.

High-level languages make it difficult to access peripherals
directly. By using an assembly language we can teach students
how to write device drivers that directly control interfaces.
Many real interfaces are still programmed at machine level by
accessing registers within them. Understanding computer
architecture and assembly language can facilitate the design
of high-performance interfaces.

Programming and data structures Students encounter the
notion of data types and the effect of strong and weak data
typing when they study high-level languages. Because
computer architecture deals with information in its most
primitive form, students rapidly become familiar with the
advantages and disadvantages of weak typing. They learn the
power that you have over the hardware by being able to apply
almost any operations to binary data. Equally, they learn
the pitfalls of weak typing as they discover the dangers of
inappropriate operations on data.

Computer architecture is concerned with both the type of
operations that act on data and the various ways in which the
location of an operand can be accessed in memory. Computer
addressing modes and the various means of accessing data
naturally lead on to the notion of pointers. Students learn
about how pointers function at machine level and the sup-
port offered for pointers by various architectures. This aspect
is particularly important if the student is to become a C
programmer.

An understanding of procedure call and parameter passing
mechanisms is vital to anyone studying processor perform-
ance. Programming in assembly language readily demon-
strates the passing of parameters by value and by reference.
Similarly, assembly language programming helps you to
understand concepts such as the use of local variables and
re-entrant programming.

Students sometimes find the concept of recursion difficult.
You can use an assembly language to demonstrate how recur-
sion operates by tracing through the execution of a program.
The student can actually observe how the stack grows as
procedures are called.

Computer science fundamentals Computer architecture is
awash with concepts that are fundamental to computer science
generally and which do not appear in other parts of the
undergraduate curriculum. A course in computer architecture
can provide a suitable forum for incorporating fundamental
principles in the CS curriculum. For example, a first course in
computer architecture introduces the student to bits and
binary encoding techniques. A few years ago much time
would have been spent on special-purpose codes for BCD



arithmetic. Today, the professor is more likely to introduce
error-correcting codes (important in data communications
systems and secure storage mechanisms) and data-compression
codes (used by everyone who has ever zipped a file or used a
JPEG-encoded image).

1.3 An overview of the book

It’s difficult to know just what should be included in an intro-
ductory course on computer architecture, organization, and
hardware—and what should be excluded. Any topic can be
expanded to an arbitrary extent; if we begin with gates and
Boolean algebra, do we go on to semiconductor devices and
then semiconductor physics? In this book, we cover the mater-
ial specified by typical computer curricula. However, I have
included a wider range of material because the area of influ-
ence encompassed by the digital computer has expanded
greatly in recent years. The major subject areas dealt with in
this book are outlined below.

Computer arithmetic Our system of arithmetic using the
base 10 has evolved over thousands of years. The computer car-
ries out its internal operations on numbers represented in the
base two. This anomaly isn’t due to some magic power inher-
ent in binary arithmetic but simply because it would be uneco-
nomic to design a computer to operate in denary (base 10)
arithmetic. At this point I must make a comment. Time and
time again, I read in the popular press that the behavior of
digital computers and their characteristics are due to the fact
that they operate on bits using binary arithmetic whereas we
humans operate on digits using decimal arithmetic. That idea
is nonsense. Because there is a simple relationship between
binary and decimal numbers, the fact that computers represent
information in binary form is a mere detail of engineering. It’s
the architecture and organization of a computer that makes it
behave in such a different way to the brain.

Basic logic elements and Boolean algebra Today’s techno-
logy determines what a computer can do. We introduce the
basic logic elements, or gates, from which a computer is made
up and show how these can be put together to create more
complex units such as arithmetic units. The behavior of these
gates determines both the way in which the computer carries
out arithmetic operations and the way in which the func-
tional parts of a computer interact to execute a program. We
need to understand gates in order to appreciate why the com-
puter has developed in the way it has. The operation of cir-
cuits containing gates can be described in terms of a formal
notation called Boolean algebra. An introduction to Boolean
algebra is provided because it enables designers to build cir-
cuits with the least number of gates.

As well as gates, computers require devices called flip-flops,
which can store a single binary digit. The flip-flop is the
basic component of many memory units. We provide an
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introduction to flip-flops and their application to sequential
circuits such as counters, timers, and sequencers.

Computer architecture and assembly language The prim-
itive instructions that directly control the operation of a com-
puter are called machine-code instructions and are composed
of sequences of binary values stored in memory. As program-
ming in machine code is exceedingly tedious, an aid to
machine code programming called assembly language has
been devised. Assembly language is shorthand permitting the
programmer to write machine-code instructions in a simple
abbreviated form of plain language. High-level languages
(Java, C, Pascal, BASIC) are sometimes translated into a series
of assembly-language instructions by a compiler as an inter-
mediate step on the way to pure machine code. This interme-
diate step serves as a debugging tool for programmers who
wish to examine the operation of the compiler and the output
it produces. Computer architecture is the assembly language
programmer’s view of a computer.

Programmers writing in assembly language require a

detailed knowledge of the architecture of their machines,
unlike the corresponding programmers operating in high-
level languages. At this point I must say that we introduce
assembly language to explain the operation of the central pro-
cessing unit. Apart from certain special exceptions, programs
should be written in a high-level language whenever possible.
Computer organization This topic is concerned with how a
computer is arranged in terms of its building blocks (i.e. the
logic and sequential circuits made from gates and flip-flops).
We introduce the architecture of a simple hypothetical com-
puter and show how it can be organized in terms of func-
tional units. That is, we show how the computer goes about
reading an instruction from memory, decoding it, and then
executing it.
Input/output It’s no good having a computer unless it can
take in new information (programs and data) and output the
results of its calculations. In this section we show how
information is moved into and out of the computer. The
operation of three basic input/output devices is described:
the keyboard, the display, and the printer.

We also examine the way in which analog signals can be
converted into digital form, processed digitally by a com-
puter, and then converted back into analog form. Until the
mid-1990s it was uneconomical to process rapidly changing
analog signals (e.g. speech, music, video) digitally. The advent
of high-speed low-cost digital systems has opened up a new
field of computing called digital signal processing (DSP). We
introduce DSP and outline some of the basic principles.
Memory devices A computer needs memory to hold pro-
grams, data, and any other information it may require at
some point in the future. We look at the immediate access
store and the secondary store (sometimes called backing
store). An immediate access store provides a computer with
the data it requires in approximately the same time as it takes
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the computer to execute one of its machine-level operations.
The secondary store is very much slower and it takes thou-
sands of times longer to access data from a secondary store
than from an immediate access store. However, secondary
storage is used because it is immensely cheaper than an
immediate access store and it is also non-volatile (i.e. the data
isn’t lost when you switch the computer off). The most pop-
ular form of secondary store is the disk drive, which relies on
magnetizing a moving magnetic material to store data.
Optical storage technology in the form of the CD and DVD
became popular in the 1990s because it combines the rela-
tively fast access time of the disk with the large capacity and
low cost of the tape drive.

Operating systems and the computer An operating system
coordinates all the functional parts of the computer and pro-
vides an interface for the user. We can’t cover the operating
system in detail here. However, because the operating system
is intimately bound up with the computer’s hardware, we do
cover two of its aspects—multiprogramming and memory
management. Multiprogramming is the ability of a computer
to appear to run two or more programs simultaneously.
Memory management permits several programs to operate
as though each alone occupied the computer’s memory and
enables a computer with a small, high-speed random access
memory and a large, low-speed serial access memory (i.e.
hard disk) to appear as if it had a single large high-speed ran-
dom access memory.

Computer communications Computers are networked when
they are connected together. Networking computers has
many advantages, not least of which is the ability to share
peripherals such as printers and scanners. Today we have two
types of network—the local area network (LAN), which
interconnects computers within a building, and the wide area
network, which interconnects computers over much greater
distances (e.g. the Internet). Consequently, we have devoted a
section to showing how computers communicate with each
other. Three aspects of computer communications are exam-
ined. The first is the profocols or rules that govern the way in
which information is exchanged between systems in an
orderly fashion. The second is the way in which digital
information in a computer is encoded in a form suitable for
transmission over a serial channel, the various types of
channel, the characteristics of the physical channel, and how
data is reconstituted at the receiver. The third provides a
brief overview of both local area and wide area networks.

1.4 History of computing

The computer may be a marvel of our age, but it has had a long
and rich history. Writing a short introduction to computer
history is difficult because there is so much to cover. Here we
provide some of the milestones in the computer’s development.

1.4.1 Navigation and mathematics

The development of navigation in the eighteenth century was
probably the most important driving force behind auto-
mated computation. It’s easy to tell how far north or south of
the equator you are—you measure the height of the sun
above the horizon at midday and then use the elevation to
work out your latitude. Unfortunately, calculating your lon-
gitude relative to the prime meridian through Greenwich in
England is very much more difficult. Longitude is determined
by comparing your local time (obtained by observing the
angle of the sun) with the time at Greenwich.

The mathematics of navigation uses trigonometry, which
is concerned with the relationship between the sides and
angles of a triangle. In turn, trigonometry requires an accur-
ate knowledge of the sine, cosine, and tangent of an angle.
Those who originally devised tables of sines and other math-
ematical functions (e.g. square roots and logarithms) had to
do a lot of calculation by hand. If x is expressed in radians
(where 27 radians = 360°) and x <1, the expression for
sin(x) can be written as an infinite series of the form

. _ x3 x5 x7 " x2n+l
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Although the calculation of sin(x) requires the summation
of an infinite number of terms, we can obtain a reasonably
accurate approximation to sin(x) by adding just a handful of
terms together because x" tends towards zero as n increases
for x <<1.

An important feature of the formula for sin(x) is that it
involves nothing more than the repetition of fundamental
arithmetic operations (addition, subtraction, multiplication,
and division). The first term in the series is x itself. The sec-
ond term is —x%/3!, which is derived from the first term by
multiplying it by —x? and dividing it by 1 X 2 X 3. Each new
term is formed by multiplying the previous term by —x* and
dividing it by 2n(2n + 1), where n is number of the term. It
would eventually occur to people that this process could be
mechanized.

1.4.2 The era of mechanical computers

During the seventeenth century major advances were made in
watch making; for example, in 1656 Christiaan Huygens
designed the first pendulum clock. The art of watch making
helped develop the gear wheels required by the first mechanical
calculators. In 1642 the French scientist Blaise Pascal designed
a simple mechanical adder and subtracter using gear wheels
with 10 positions marked on them. One complete rotation of
a gear wheel caused the next wheel on its left to move one posi-
tion (a bit like the odometer used to record an automobile’s
mileage). Pascal’s most significant contribution was the use of
aratchet device that detected a carry (i.e. a rotation of a wheel



from 9 to 0) and nudged the next wheel on the left one digit.
In other words, if two wheels show 58 and the right-hand
wheel is rotated two positions forward, it moves to the 0 posi-
tion and advances the 5 to 6 to get 60. Pascal’s calculator, the
Pascaline, could perform addition only.

In fact, Wilhelm Schickard, rather than Pascal, is now
generally credited with the invention of the first mechanical
calculator. His device, created in 1623, was more advanced
than Pascal’s because it could also perform partial multiplica-
tion. Schickard died in a plague and his invention didn’t
receive the recognition it merited. Such near simultaneous
developments in computer hardware have been a significant
feature of the history of computer hardware.

Within a few decades, mechanical computing devices
advanced to the stage where they could perform addition,
subtraction, multiplication, and division—all the operations
required by armies of clerks to calculate the trigonometric
functions we mentioned earlier.

The industrial revolution and early
control mechanisms

If navigation provided a requirement for mechanized com-
puting, other developments provided important steps along
the path to the computer. By about 1800 the industrial
revolution in Europe was well under way. Weaving was one
of the first industrial processes to be mechanized. A weaving
loom passes a shuttle pulling a horizontal thread to and fro
between vertical threads held in a frame. By changing the
color of the thread pulled by the shuttle and selecting whether
the shuttle passes in front of or behind the vertical threads,
you can weave a particular pattern. Controlling the loom
manually is tedious and time consuming. In 1801 Joseph
Jacquard designed a loom that could automatically weave a
predetermined pattern. The information necessary to control
the loom was stored in the form of holes cut in cards—the
presence or absence of a hole at a certain point controlled the
behavior of the loom. Information was read by rods that
pressed against the card and either went through a hole or
were stopped by the card. Some complex patterns required as
many as 10 000 cards strung together in the form of a tape.

Babbage and the computer

Two of the most significant advances in computing were
made by Charles Babbage, a UK mathematician born in 1792:
his difference engine and his analytical engine. Like other
mathematicians of his time, Babbage had to perform all
calculations by hand and sometimes he had to laboriously
correct errors in published mathematical tables. Living in the
age of steam, it was quite natural that Babbage asked himself
whether mechanical means could be applied to arithmetic
calculations.

The difference engine was a complex array of intercon-
nected gears and linkages that performed addition and
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Number Number First Second
squared difference difference

1

2 3

3 9 5 2

4 16 7 2

5 25 9 2

6 36 11 2

7 49 13 2

Table 1.1 The use of finite differences to calculate squares.

subtraction rather like Pascal’s mechanical adder. Its purpose
was to mechanize the calculation of polynomial functions
and automatically print the result. It was a calculator rather
than a computer because it could carry out only a set of
predetermined operations.

Babbage’s difference engine employed finite differences to
calculate polynomial functions. Trigonometric functions can
be expressed as polynomials in the form agx + ax' +
a,x* + - - - The difference engine can evaluate such expres-
sions automatically. Table 1.1 demonstrates how you can use
the method of finite differences to create a table of squares
without having to use multiplication. The first column con-
tains the natural integers 1, 2, 3,...The second column
contains the squares of these integers (i.e. 1,4,9, . . .). Column
3 contains the first difference between successive pairs of
numbers in column 2; for example, the first valueis4 —1 = 3,
the second value is 9 — 4 = 5, and so on. The final column is
the second difference between successive pairs of first differ-
ences. As you can see, the second difference is always 2.

Suppose we want to calculate the value of 82 using finite
differences. We simply use Table 1.1 in reverse by starting
with the second difference and working back to the result. If
the second difference is 2, the next first difference (after 72) is
13 + 2 = 15. Therefore, the value of 8 is the value of 72 plus
the first difference; that is, 49 + 15 = 64. We have generated
82 without using multiplication. This technique can be
extended to evaluate many other mathematical functions.

Babbage’s difference engine project was cancelled in 1842
because of increasing costs. He did design a simpler differ-
ence engine using 31-digit numbers to handle seventh-order
differences, but no one was interested in financing it. In 1853
George Scheutz in Sweden constructed a working difference
engine using 15-digit arithmetic and fourth-order differ-
ences. Incidentally, in 1991 a team at the Science Museum in
London used modern construction techniques to build
Babbage’s difference engine. It worked.

Charles Babbage went on to design the analytical engine,
which was to be capable of performing any mathematical
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operation automatically. This truly remarkable and entirely
mechanical device was nothing less than a general-purpose
computer that could be programmed. The analytical engine
included many of the elements associated with a modern elec-
tronic computer—an arithmetic processing unit that carries
out all the calculations, a memory that stores data, and input
and output devices. Unfortunately, the sheer scale of the ana-
lytical engine rendered its construction, at that time, impos-
sible. However, it is not unreasonable to call Babbage the
father of the computer because his machine incorporated
many of the intellectual concepts at the heart of the computer.

Babbage envisaged that his analytical engine would be
controlled by punched cards similar to those used to control
the operation of the Jacquard loom. Two types of punched
card were required. Operation cards specified the sequence of
operations to be carried out by the analytical engine and vari-
able cards specified the locations in the store of inputs and
outputs.

One of Babbage’s collaborators was Ada Gordon?, a math-
ematician who became interested in the analytical engine when
she translated a paper on it from French to English. When
Babbage discovered the paper he asked her to expand the
paper. She added about 40 pages of notes about the machine
and provided examples of how the proposed analytical engine
could be used to solve mathematical problems. Gordon
worked closely with Babbage and it’s been reported that she
even suggested the use of the binary system to store data. She
noticed that certain groups of operations are carried out over
and over again during the course of a calculation and pro-
posed that a conditional instruction be used to force the ana-
Iytical engine to perform the same sequence of operations
many times. This action is the same as the repeat or loop func-
tion found in most of today’s high-level languages.

Gordon devised algorithms to perform the calculation of
Bernoulli numbers, making her one of the founders of numer-
ical computation. Some regard Gordon as the world’s first
computer programmer, who was constructing algorithms a
century before programming became a recognized discipline—
and long before any real computers were constructed.

Mechanical computing devices continued to be used in
compiling mathematical tables and performing the arithmetic
operations used by everyone from engineers to accountants
until about the 1960s. The practical high-speed computer had
to await the development of the electronics industry.

1.4.3 Enabling technology—
the telegraph

Many of the technological developments required to con-
struct a practical computer took place at the end of the
nineteenth century. The most important of these events was
the invention of the telegraph. We now provide a short history
of the development of telecommunications.

One of the first effective communication systems was the
optical semaphore, which passed visual signals from tower to
tower across Europe. Claude Chappe in France developed a
system with two arms, each of which could be in one of seven
positions. The Chappe telegraph could send a message across
France in about half an hour (good weather permitting). The
telegraph was used for commercial purposes, but it also
helped Napoleon to control his army.

King Maximilian had seen how the French visual sema-
phore system had helped Napoleon’s military campaigns and
in 1809 he asked the Bavarian Academy of Sciences to devise
a scheme for high-speed communication over long distances.
Samuil T. von Sémmering suggested a crude telegraph using
35 conductors, one for each character. Sommering’s tele-
graph transmits electricity from a battery down one of these
35 wires where, at the receiver, the current is passed through
a tube of acidified water. Passing a current through the water
breaks it down into oxygen and hydrogen. To use the
Sémmering telegraph you detected the bubbles that appeared
in one of the 35 glass tubes and then wrote down the cor-
responding character. Sommering’s telegraph was ingenious
but too slow to be practical.

In 1819 Hans C. Oersted made one of the greatest discover-
ies of all time when he found that an electric current creates a
magnetic field round a conductor. This breakthrough allowed
you to create a magnetic field at will. In 1828 Cooke exploited
Oersted’s discovery when he invented a telegraph that used
the magnetic field round a wire to deflect a compass needle.

The growth of the railway networks in the early nineteenth
century spurred the development of the telegraph because you
had to warn stations down the line that a train was arriving. By
1840 a 40-mile stretch between Slough and Paddington in
London had been linked using the telegraph of Charles
Wheatstone and William Cooke. The Wheatstone and Cooke
telegraph used five compass needles that normally hung in a
vertical position. The needles could be deflected by coils to
point to the appropriate letter. You could transmit one of
20 letters (J, C, Q, U, X, and Z were omitted).

The first long-distance data links

We take wires and cables for granted. In the early nineteenth
century, plastics hadn’t been invented and the only material
available for insulation waterproofing was a type of pitch
called asphaltum. In 1843 a form of rubber called gutta
percha was discovered. The Atlantic Telegraph Company cre-
ated an insulated cable for underwater use containing a single
copper conductor made of seven twisted strands, surrounded
by gutta percha insulation and protected by a ring of 18 iron
wires coated with hemp and tar.

* Ada Gordon married William King in 1835. King inherited the title
Earl of Lovelace and Gordon became Countess of Lovelace. Gordon is
often considered the founder of scientific computing.



Submarine cable telegraphy began with a cable crossing
the English Channel to France in 1850. The cable failed after
only a few messages had been exchanged and a more success-
ful attempt was made the following year. Transatlantic cable
laying from Ireland began in 1857 but was abandoned when
the strain of the cable descending to the ocean bottom caused
it to snap under its own weight. The Atlantic Telegraph
Company tried again in 1858. Again, the cable broke after
only 3 miles but the two cable-laying ships managed to splice
the two ends. The cable eventually reached Newfoundland in
August 1858 after suffering several more breaks and storm
damage.

It soon became clear that this cable wasn’t going to be a
commercial success. The receiver used the magnetic field from
the current in the cable to deflect a magnetized needle.
Unfortunately, after crossing the Atlantic the signal was too
weak to be detected reliably. The original voltage used to drive
a current down the cable was approximately 600 V. So, they
raised the voltage to about 2000 V to drive more current along
the cable and improve the detection process. Unfortunately,
such a high voltage burned through the primitive insulation,
shorted the cable, and destroyed the first transatlantic tele-
graph link after about 700 messages had been transmitted in
3 months.

In England, the Telegraph Construction and Maintenance
Company developed a new 2300-mile-long cable weighing
9000 tons, which was three times the diameter of the failed
1858 cable. Laying this cable required the largest ship in the
world, the Great Eastern. After a failed attempt in 1865 a
transatlantic link was finally established in 1866. It cost $100
in gold to transmit 20 words across the first transatlantic
cable at a time when a laborer earned $20/month.

Telegraph distortion and the theory of
transmission lines

The telegraph hadn’t been in use for very long before people
discovered that it suffered from a problem called telegraph
distortion. As the length of cables increased it became appar-
ent that a sharply rising pulse at the transmitter end of a cable
was received at the far end as a highly distorted pulse with
long rise and fall times. This distortion meant that the 1866
transatlantic telegraph cable could transmit only eight words
per minute. The problem was eventually handed to William
Thomson at the University of Glasgow.

Thomson, who later became Lord Kelvin, was one of the
nineteenth century’s greatest scientists. He published more
than 600 papers, developed the second law of thermodynam-
ics, and created the absolute temperature scale. In 1855
Thomson presented a paper to the Royal Society analyzing
the effect of pulse distortion, which became the cornerstone
of what is now called transmission line theory. The transmis-
sion line effect reduces the speed at which signals can change
state. The cause of the problems investigated by Thomson
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lies in the physical properties of electrical conductors
and insulators. Thomson’s theories enabled engineers to
construct data links with much lower levels of distortion.

Thomson contributed to computing by providing the the-
ory that describes the flow of pulses in circuits, which enabled
the development of the telegraph and telephone networks. In
turn, the switching circuits used to route messages through
networks were used to construct the first electromechanical
computers.

Developments in communications networks

Although the first telegraph systems operated from point to
point, the introduction of the telephone led to the develop-
ment of switching centers. First-generation switching centers
employed a telephone operator who manually plugged a sub-
scriber’s line into a line connected to the next switching center
in the link. By the end of the nineteenth century, the infra-
structure of computer networks was already in place.

In 1897 an undertaker called Almon Strowger was annoyed
to find that he was not getting the trade he expected because
the local telephone operator was connecting prospective
clients to Strowger’s competitor. So, Strowger cut out the
human factor by inventing the automatic telephone exchange
that used electromechanical devices to route calls between
exchanges. When you dial a number using a rotary dial, a
series of pulses are sent down the line to a rotary switch. If
you dial, for example, 5, the five pulses move a switch five
steps clockwise to connect you to line number five, which
routes your call to the next switching center. Consequently,
when you phoned someone using Strowger’s technology the
number you dialed determined the route your call took
though the system.

By the time the telegraph was well established, radio was
being developed. James Clerk Maxwell predicted radio waves
in 1864 following his study of light and electromagnetic
waves. Heinrich Hertz demonstrated the existence of radio
waves in 1887 and Guglielmo Marconi is credited with being
the first to use radio to span the Atlantic in 1901.

The light bulb was invented by Thomas A. Edison in 1879.
Investigations into its properties led Ambrose Fleming to
discover the diode in 1904. A diode is a light bulb surrounded
by a wire mesh that allows electricity to flow only one way
between the filament (the cathode) and the mesh (the anode).
The flow of electrons from the cathode gave us the term
‘cathode ray tube’. In 1906 Lee de Forest modified Fleming’s
diode by placing a wire mesh between the cathode and anode.
By changing the voltage on this mesh, it was possible to
change the flow of current between the cathode and anode.
This device, called a triode, could amplify signals. Without
the vacuum tube to amplify weak signals, modern electronics
would have been impossible. The term electronics refers to
circuits with amplifying or active devices such as tubes or tran-
sistors. The first primitive computers using electromechanical
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devices did not use vacuum tubes and, therefore, these
computers were not electronic computers.

The telegraph, telephone, and vacuum tube were all steps
on the path to the development of the computer and, later,
computer networks. As each of these practical steps was
taken, there was a corresponding development in the accom-
panying theory (in the case of radio, the theory came before
the discovery).

Typewriters, punched cards, and tabulators

Another important part of computer history is the humble
keyboard, which is still the prime input device of most
personal computers. As early as 1711 Henry Mill, an
Englishman, described a mechanical means of printing text
on paper a character at a time. In 1829 the American William
Burt was granted the first US patent for a typewriter,
although his machine was not practical. It wasn’t until 1867
that three Americans, Christopher Sholes, Carlos Glidden,
and Samuel Soule, invented their Type-Writer, the forerun-
ner of the modern typewriter. One of the problems encoun-
tered by Sholes was the tendency of his machine to jam when
digraphs such as ‘th’ and ‘er’ were typed. Hitting the ‘ and ‘b’
keys at almost the same time caused the letters ‘" and ‘h’ to
strike the paper simultaneously and jam. His solution was to
arrange the letters on the keyboard to avoid the letters of
digraphs being located side by side. This layout has continued
until today and is now described by the sequence of the first
six letters on the left of the top row—QWERTY. Because the
same digraphs do not occur in different languages, the layout
of a French keyboard is different to that of an English key-
board. It is reported that Sholes made it easy to type ‘“Type-
Writer’ by putting all these characters on the same row.

Another enabling technology that played a key role in the
development of the computer was the tabulating machine, a
development of the mechanical calculator that processes data
on punched cards. One of the largest data processing opera-
tions carried out in the USA during the nineteenth century
was the US census. A census involves taking the original data,
sorting and collating it, and tabulating the results.

In 1879 Herman Hollerith became involved in the evaluation
of the 1880 US Census data. He devised an electric tabulating
system that could process data stored on cards punched by
clerks from the raw census data. Hollerith’s electric tabulating
machine could read cards, process the information on the cards,
and then sort them. The tabulator helped lay the foundations of
the data processing industry.

Three threads converged to make the computer possible:
Babbage’s calculating machines, which performed arithmetic
calculations; communications technology, which laid the
foundations for electronics and even networking; and the
tabulator because it and the punched card media provided a
means of controlling machines, inputting data into them,
and storing information.

1.4.4 The first electromechanical
computers

The forerunner of today’s digital computers used electro-
mechanical components called relays, rather than electronic
circuits such as vacuum tubes and transistors. A relay is con-
structed from a coil of wire wound round an iron cylinder.
When a current flows through the coil, it generates a mag-
netic field that causes the iron to act like a magnet. A flat
springy strip of iron is located close to the iron cylinder.
When the cylinder is magnetized, the iron strip is attracted,
which, in turn, opens or closes a switch. Relays can perform
any operation that can be carried out by the logic gates mak-
ing up today’s computers. You cannot construct fast com-
puters from relays because they are far too slow, bulky, and
unreliable. However, the relay did provide a technology that
bridged the gap between the mechanical calculator and the
modern electronic digital computer.

One of the first electromechanical computers was built by
Konrad Zuse in Germany. Zuse’s Z2 and Z3 computers were
used in the early 1940s to design aircraft in Germany. The
heavy bombing at the end of the Second World War
destroyed Zuse’s computers and his contribution to the
development of the computer was ignored for many years.
He is mentioned here to demonstrate that the notion of a
practical computer occurred to different people in different
places. The Z3 was completed in 1941 and was the World’s
first functioning programmable mechanical computer.
Zuse’s Z4 computer was finished in 1945, was later taken to
Switzerland, and was used at the Federal Polytechnical
Institute in Zurich until 1955.

As Zuse was working on his computer in Germany, Howard
Aiken at Harvard University constructed his Harvard Mark I
computer in 1944 with both financial and practical support
from IBM. Aiken was familiar with Babbage’s work and his
electromechanical computer, which he first envisaged in 1937,
operated in a similar way to Babbage’s proposed analytical
engine. The original name for the Mark I was the Automatic
Sequence Controlled Calculator, which, perhaps, better
describes its nature.

Aiken’s machine was a programmable calculator that was
used by the US Navy until the end of the Second World
War. Just like Babbage’s machine, the Mark I used decimal
counter wheels to implement its main memory consisting of
72 words of 23 digits plus a sign. The program was stored on
a paper tape (similar to Babbage’s punched cards), although
operations and addresses (i.e. data) were stored on the same
tape. Input and output operations used punched cards or an
electric typewriter. Because the Harvard Mark I treated data
and instructions separately, the term Harvard architecture is
now applied to any computer with separate paths for data
and instructions. The Harvard Mark I didn’t support condi-
tional operations and therefore is not strictly a computer.



However, it was later modified to permit multiple paper tape
readers with a conditional transfer of control between
the readers.

1.4.5 The first mainframes

Relays have moving parts and can’t operate at very high
speeds. It took the invention of the vacuum tube by John A.
Fleming and Lee de Forest to make possible the design of
high-speed electronic computers. John V. Atanasoff is now
credited with the partial construction of the first completely
electronic computer. Atanasoff worked with Clifford Berry at
Iowa State College on their computer from 1937 to 1942.
Their machine used a 50-bit binary representation of num-
bers and was called the ABC (Atanasoff-Berry Computer). It
was designed to solve linear equations and wasn’t a general
purpose computer. Atanasoff and Berry abandoned their
computer when they were assigned to other duties because of
the war.

ENIAC

The first electronic general purpose digital computer was
John W. Mauchly’s ENIAC (Electronic Numerical Integrator
and Calculator), completed in 1945 at the University of
Pennsylvania. ENIAC was intended for use at the Army
Ordnance Department to create firing tables that relate the
range of a field gun to its angle of elevation, wind conditions,
and so on. For many years, ENIAC was regarded as the first
electronic computer, although credit was later given to
Atanasoff and Berry because Mauchly had visited Atanasoff
and read his report on the ABC machine.

ENIAC used 17 480 vacuum tubes and weighed about 30 t.
ENIAC was a decimal machine capable of storing 20 10-digit
decimal numbers. IBM card readers and punches imple-
mented input and output operations. ENIAC was pro-
grammed by means of a plug board that looked like an old
pre-automatic telephone switchboard; that is, a program was
set up manually by means of wires. In addition to these wires,
the ENIAC operator had to manually set up to 6000 muti-
position mechanical switches. Programming ENIAC was
very time consuming and tedious.

ENIAC did not support dynamic conditional operations
(e.g. IF ... THEN). An operation could be repeated a fixed
number of times by hard wiring the loop counter to an
appropriate value. Because the ability to make a decision
depending on the value of a data element is vital to the
operation of all computers, ENIAC was not a computer in
today’s sense of the word. It was an electronic calculator.

John von Neumann, EDVAC and IAS

The first US computer to use the stored program concept was
EDVAC (Electronic Discrete Variable Automatic Computer).
EDVAC was designed by some of the same team that designed
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the ENIAC at the Moore School of Engineering at the
University of Pennsylvania.

John von Neumann, one of the leading mathematicians of
his age, participated in EDVAC’s design. He wrote a docu-
ment entitled ‘First draft of a report on the EDVAC’, which
compiled the results of various design meetings. Before von
Neumann, computer programs were stored either mechan-
ically or in separate memories from the data used by the pro-
gram. Von Neumann introduced the concept of the stored
program—an idea so commonplace today that we take it for
granted. In a stored program von Neumann machine both the
program that specifies what operations are to be carried out
and the data used by the program are stored in the same
memory. The stored program computer consists of a memory
containing instructions coded in binary form. The control
part of the computer reads an instruction from memory,
carries it out, then reads the next instruction, and so on.
Although EDVAC is generally regarded as the first stored pro-
gram computer, this is not strictly true because data and
instructions did not have a common format and were not
interchangeable.

EDVAC promoted the design of memory systems. The
capacity of EDVAC’s mercury delay line memory was 1024
words of 44 bits. A mercury delay line operates by converting
data into pulses of ultrasonic sound that continuously retic-
ulate in a long column of mercury in a tube.

EDVAC was not a great commercial success. Its construc-
tion was largely completed by April 1949, but it didn’t run its
first applications program until October 1951. Because of its
adoption of the stored program concept, EDVAC became a
topic in the first lecture course given on computers. These
lectures took place before EDVAC was actually constructed.

Another important early computer was IAS constructed by
von Neumann and his colleagues at the Institute for
Advanced Studies in Princeton. IAS is remarkably similar to
modern computers. Main memory was 1K words and a mag-
netic drum was used to provide 16K words of secondary stor-
age. The magnetic drum was the forerunner of today’s disk
drive. Instead of recording data on the flat platter found in a
hard drive, data was stored on the surface of a rotating drum.

In the late 1940s the Whirlwind computer was produced
at MIT for the US Air Force. This was the first computer
intended for real-time information processing. It employed
ferrite-core memory (the standard form of mainframe mem-
ory until the semiconductor integrated circuit came along in
the late 1960s). A ferrite core is a tiny bead of a magnetic mar-
tial that can be magnetized clockwise or counterclockwise to
store a one or a zero. Ferrite core memory is no longer widely
used today, although the term remains in expressions such as
core dump, which means a printout of the contents of a region
of memory.

One of the most important centers of early computer
development in the 1940s was Manchester University in
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England. In 1948 Tom Kilburn created a prototype computer
called the Manchester Baby. This was a demonstration
machine that tested the concept of the stored program com-
puter and the Williams store, which stored data on the surface
of a cathode ray tube. Some regard the Manchester Baby as
the world’s first true stored program computer.

IBM's place in computer history

No history of the computer can neglect the giant of the com-
puter world, IBM, which has had such an impact on the
computer industry. Although IBM grew out of the Computing—
Tabulating—Recording (C-T-R) Company founded in 1911,
its origin dates back to the 1880s. The C~T-R Company was
the result of a merger between the International Time
Recording (ITR) Company, the Computing Scale Company
of America, and Herman Hollerith’s Tabulating Machine
Company (founded in 1896). In 1914 Thomas J. Watson,
Senior, left the National Cash Register Company to join the
C-T-R company and soon became President. In 1917, a
Canadian unit of the C-T-R company called International
Business Machines Co. Ltd was set up. Because this name was
so well suited to the C-T-R company’s role, they adopted it
for the whole organization in 1924. IBM bought Electromatic
Typewriters in 1933 and the first IBM electric typewriter was
marketed 2 years later.

IBM’s first contact with computers was via its relationship
with Aiken at Harvard University. In 1948 Watson Senior at
IBM gave the order to construct the Selective Sequence
Control Computer. Although this was not a stored program
computer, it was IBM’s first step from the punched card
tabulator to the computer.

Thomas. J. Watson, Junior, was responsible for building the
Type 701 EDPM (Electronic Data Processing Machine) in
1953 to convince his father that computers were not a threat
to IBM’s conventional business. The 700 series was successful
and dominated the mainframe market for a decade. In 1956
IBM launched a successor, the 704, which was the world’s first
supercomputer. The 704 was largely designed by Gene
Amdahl who later founded his own supercomputer company
in the 1990s.

IBM’s most important mainframe was the System/360,
which was first delivered in 1965. The importance of the
32-bit System/360 is that it was a member of a series of com-
puters, each with the same architecture (i.e. programming
model) but with different performance; for example, the
System/360 model 91 was 300 times faster than the model 20.
IBM developed a common operating system, OS/360, for their
series. Other manufactures built their own computers that
were compatible with System/360 and thereby began the slow
process towards standardization in the computer industry.

In 1960 the Series/360 model 85 became the first computer
to implement cache memory. Cache memory keeps a copy of
frequently used data in very high-speed memory to reduce

the number of accesses to the slower main store. Cache
memory has become one of the most important features of
today’s high performance systems.

In August 1980 IBM became the first major manufacturer
to market a PC. IBM had been working on a PC since about
1979 when it was becoming obvious that IBM’s market would
eventually start to come under threat from the PC manufac-
turers such as Apple and Commodore. IBM not only sold
mainframes and personal computers—by the end of 1970s
IBM had introduced the floppy disk, computerized super-
market checkouts, and the first automatic teller machines.

1.4.6 The birth of transistors, ICs, and
microprocessors

Since the 1940s computer hardware has become smaller and
faster. The power-hungry and unreliable vacuum tube was
replaced by the smaller, reliable transistor in the 1950s. The
transistor plays the same role as a thermionic tube; the only
real difference is that a transistor switches a current flowing
through a crystal rather than a beam of electrons flowing
through a vacuum. The transistor was invented by William
Shockley, John Bardeen, and Walter Brattain at AT&T’s Bell
Lab in 1948.

If you can put one transistor on a slice of silicon, you can
put two or more transistors on the same piece of silicon. The
idea occurred to Jack St Clair Kilby at Texas Instruments
in 1958. Kilby built a working model and filed a patent
early in 1959. In January of 1959, Robert Noyce at Fairchild
Semiconductor was also thinking of the integrated circuit. He
too applied for a patent and it was granted in 1961. Today,
both Noyce and Kilby are regarded as the joint inventors
of the IC.

The minicomputer era

The microprocessor was not directly derived from the main-
frame computer. Between the mainframe and the micro-
processor lies the minicomputer, a cut-down version of the
mainframe, which appeared in the 1960s. By the 1960s many
departments of computer science could afford their own
minicomputers and a whole generation of students learned
computer science from PDP-11s and NOVAs in the 1960s and
1970s. Some of these minicomputers were used in real-time
applications (i.e. applications in which the computer has to
respond to changes in its inputs within a specified time).
One of the first minicomputers was Digital Equipment
Corporation’s PDP-5, introduced in 1964. This was followed
by the PDP-8, in 1966 and the very successful PDP-11, in
1969. Even the PDP-11 would be regarded as a very basic
machine by today’s standards. Digital Equipment built on
their success with the PDP-11 series and introduced their
VAX architecture in 1978 with the VAX-11/780, which
dominated the minicomputer world in the 1980s. The VAX
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EARLY MICROPROCESSOR SPINOFFS

The first two major microprocessors were the 8080 and
the 6800 from Intel and Motorola, respectively. Other
microprocessor manufacturers emerged when engineers
left Intel and Motorola to start their own companies.
Federico Faggin, one of the founders of Intel, left the
company and founded Zilog in 1974. Zilog made the
780, which was compatible with Intel’'s 8080 at the

machine-code level. The Z80 has a superset of the 8080's
instructions.

A group of engineers left Motorola to form MOS
Technologies in 1975.They created the 6502 microprocessor,
which was similar to the 6800 but not software compatible
with it. The 6502 was the first low-cost microprocessor and
was adopted by Apple and several other early PCs.

range was replaced by the 64-bit Alpha architecture (a high-
performance microprocessor) in 1991. The Digital Equipment
Corporation, renamed Digital, was taken over by Compaq
in 1998.

Microprocessor and the PC

Credit for creating the world’s first microprocessor, the 4040,
goes to Ted Hoff and Fagin at Intel. Three engineers from
Japan worked with Hoff to implement a calculator’s digital
logic circuits in silicon. Hoff developed a general purpose
computer that could be programmed to carry out calculator
functions. Towards the end of 1969 the structure of a pro-
grammable calculator had emerged. The 4004 used about
2300 transistors and is considered the first general purpose
programmable microprocessor, even though it was only a
4-bit device.

The 4004 was rapidly followed by the 8-bit 8008 micro-
processor, which was originally intended for a CRT applica-
tion. By using some of the production techniques developed
for the 4004, Intel was able to manufacture the 8008 as early
as March 1972. The 8008 was soon replaced by a better
version, the first really popular general purpose 8-bit micro-
processor, the 8080 (in production in early 1974). Shortly
after the 8080 went into production, Motorola created its
own competitor, the 8-bit 6800.

Six months after the 8008 was introduced, the first ready-
made computer based on the 8008, the Micral, was designed
and built in France. The term microcomputer was coined to
refer to the Micral, although the Micral was not successful in
the USA. In January 1975 Popular Electronics magazine pub-
lished an article on microcomputer design by Ed Roberts
who had a small company called MITS. Roberts’ computer
was called Altair and was constructed from a kit.

Although the Altair was intended for hobbyists, it had a
significant impact and sold 2000 kits in its first year. In March
1976, Steve Wozniak and Steve Jobs designed a 6502-based
computer, which they called the Apple 1. A year later in 1977
they created the Apple II with 16 kbytes of ROM, 4 kbytes of
RAM, and a color display and keyboard. Although unsoph-
isticated, this was the first practical PC.

As microprocessor technology improved, it became pos-
sible to put more and more transistors on larger and larger
chips of silicon. Microprocessors of the early 1980s were not

only more powerful than their predecessors in terms of the
speed at which they could execute instructions, they were also
more sophisticated in terms of the facilities they offered. Intel
took the core of their 8080 microprocessor and converted it
from an 8-bit into a 16-bit machine, the 8086. Motorola did
not extend their 8-bit 6800 to create a 16-bit processor.
Instead, they started again and did not attempt to achieve
either object or source code compatibility with earlier
processors. By beginning with a clean slate, Motorola was
able to create a 32-bit microprocessor with an exceptionally
clean architecture in 1979.

Several PC manufacturers adopted the 68K; Apple used it
in the Macintosh and it was incorporated in the Atari and
Amiga computers. All three of these computers were regarded
as technically competent and had many very enthusiastic
followers. The Macintosh was sold as a relatively high-priced
black box with the computer, software, and peripherals from a
single source. This approach could not compete with the IBM
PC, launched in 1981, with an open system architecture that
allowed the user to purchase hardware and software from the
supplier with the best price. The Atari and Amiga computers
suffered because they had the air of the games machine.
Although the Commodore Amiga in 1985 had many of the
hallmarks of a modern multimedia machine, it was derided
as a games machine because few then grasped the importance
of advanced graphics and high-quality sound.

The 68K developed into the 68020, 68030, 68040, and
68060. Versions were developed for the embedded processor
market and Motorola played no further role in the PC market
until Apple adopted Motorola’s PowerPC processor. The
PowerPC came from IBM and was not a descendent of the
68K family.

Many fell in love with the Apple Mac. It was a sophisticated
and powerful PC, but not a great commercial success. Apple’s
commercial failure demonstrates that those in the semi-
conductor industry must realize that commercial factors
are every bit as important as architectural excellence and
performance. Apple failed because their processor, from
hardware to operating system, was proprietary. Apple didn’t
publish detailed hardware specifications or license their BIOS
and operating system. IBM adopted open standards and
anyone could build a copy of the IBM PC. Hundreds of
manufacturers started producing parts of PCs and an entire
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industry sprang up. You could buy a basic system from one
place, a hard disk from another, and a graphics card from yet
another supplier. By publishing standards for the PC’s bus,
anyone could create a peripheral for the PC. What IBM lost in
the form of increased competition, they more than made up
for in the rapidly expanding market. IBM’s open standard
provided an incentive for software writers to generate soft-
ware for the PC market.

The sheer volume of PCs and their interfaces (plus the
software base) pushed PC prices down and down. The Apple
was perceived as over-priced. Even though Apple adopted
the PowerPC, it was too late and Apple’s role in the PC world
was marginalized. However by 2005, cut-throat competition
from PC manufacturers was forcing IBM to abandon its PC
business, whereas Apple was flourishing in a niche market
that rewarded style.

A major change in direction in computer architecture took
place in the 1980s when the RISC or Reduced Instruction Set
Computer first appeared. Some observers expected the RISC to
sweep away all CISC processors like the 8086 and 68K families.

It was the work carried out by David Paterson at the
University of Berkley in the early 1980s that brought the RISC
philosophy to a wider audience. Paterson was also respons-
ible for coining the term ‘RISC’ in 1980. The Berkeley RISC
was constructed at a university (like many of the first main-
frames such as EDSAC) and required only a very tiny fraction
of the resources consumed by these early mainframes. Indeed,
the Berkeley RISC is hardly more than an extended graduate
project. It took about a year to design and fabricate the RISC1
in silicon. By 1983 the Berkeley RISC II had been produced
and that proved to be both a testing ground for RISC ideas
and the start of a new industry. Many of the principles of
RISC design were later incorporated in Intel’s processors.

1.4.7 Mass computing and the rise of
the Internet

The Internet and digital multimedia have driven the evolu-
tion of the PC. The Internet provides interconnectivity and
the digital revolution has extended into sound and vision.
The cassette-based personal stereo system has been displaced
by the minidisk and the MP3 players with solid state memory.
The DVD with its ability to store an entire movie on a single
disk first became available in 1996 and by 1998 over one
million DVD players had been sold in the USA. The digital
video camera that once belonged to the world of the profes-
sional filmmaker is now available to anyone with a modest
income.

All these applications have had a profound effect on the
computer world. Digital video requires vast amounts of stor-
age. Within 5 years, low-cost hard disk capacities grew from
about 1 Gbyte to 400 Gbytes or more. The DVD uses very
sophisticated signal processing techniques that require very

high-performance hardware to process the signals in real-
time. The MP3 player requires a high-speed data link to
download music from the Internet.

The demand for increasing reality in video games and real-
time image processing has spurred development in special-
purpose video subsystems. Video processing requires the
ability to render images, which means drawing vast numbers
of polygons on the screen and filling them with a uniform
color. The more polygons used to compose an image, the
more accurate the rendition of the image.

The effect of the multimedia revolution had led to the com-
moditization of the PC, which is now just another commodity
like a television or a stereo player. Equally, the growth of multi-
media has forced the development of higher speed processors,
low-cost high-density memory systems, multimedia-aware
operating systems, data communications, and new processor
architectures.

The Internet revolution

Just as the computer itself was the result of a number of inde-
pendent developments (the need for automated calculation,
the theoretical development of computer science, the
enabling technologies of communications and electronics,
the keyboard and data processing industries), the Internet
was the fruit of a number of separate developments.

The principal ingredients of the Internet are communica-
tions, protocols, and hypertext. Communications systems
have been developed throughout human history as we have
already pointed out when discussing the enabling technology
behind the computer. The USA’s Department of Defense cre-
ated a scientific organization, ARPA (Advanced Research
Projects Agency) in 1958 at the height of the Cold War. ARPA
had some of the characteristics of the Manhattan project,
which had preceded it during the Second World War. A large
group of talented scientists was assembled to work on a pro-
ject of national importance. From its early days ARPA con-
centrated on computer technology and communications
systems; moreover, ARPA was moved into the academic area
which meant that it had a rather different ethos from that of
the commercial world because academics cooperate and
share information.

One of the reasons why ARPA concentrated on networking
was the fear that a future war involving nuclear weapons
would begin with an attack on communications centers lim-
iting the capacity to respond in a coordinated manner. By
networking computers and ensuring that a message can take
many paths through the network to get from its source to its
destination, the network can be made robust and able to cope
with the loss of some of its links of switching centers.

In 1969 ARPA began to construct a testbed for networking,
a system that linked four nodes: University of California at
Los Angeles, SRI (in Stanford), University of California at
Santa Barbara, and University of Utah. Data was sent in the



form of individual packets or frames rather than as complete
end-to-end messages. In 1972 ARPA was renamed DARPA
(Defense Advances Research Projects Agency).

In 1973 the TCP/IP (transmission control protocol/Internet
protocol) was developed at Stanford; this is the set of rules that
govern the routing of a packet through a computer network.
Another important step on the way to the Internet was Robert
Metcalfe’s development of the Ethernet, which enabled com-
puters to communicate with each other over a local area net-
work based on a low-cost cable. The Ethernet made it possible
to link computers in a university together and the ARPANET
allowed the universities to be linked together. Ethernet was,
however, based on techniques developed during the construc-
tion of the University of Hawaii’s radio-based packet-switching
ALOHAnet, another ARPA-funded project.

Up to 1983 ARPANET users had to use a numeric IP
address to access other users on the Internet. In 1983 the
University of Wisconsin created the Domain Name System
(DNS), which routed packets to a domain name rather than
an IP address.

The World’s largest community of physicists is at CERN in
Geneva. In 1990 Tim Berners-Lee implemented a hypertext-
based system to provide information to other the members of
the high-energy physics community. This system was
released by CERN in 1993 as the World-Wide Web (WWW).
In the same year, Marc Andreessen at the University of Illinois
developed a graphical user interface to the WWW, a browser
called Mosaic. All that the Internet and the WWW had to do
now was to grow.

1.5 The digital computer

Before beginning the discussion of computer hardware
proper, we need to say what a computer is and to define a few
terms. If ever an award were to be given to those guilty of mis-
information in the field of computer science, it would go to
the creators of HAL in 2001, R2D2 in Star Wars, K9 in Doctor
Who, and Data in Star Trek. These fictional machines have
generated the popular myth that a computer is a reasonably
close approximation to a human brain, which stores an infinite
volume of data.

The reality is a little more mundane. A computer is a
machine that takes in information from the outside world,
processes it according to some predetermined set of opera-
tions, and delivers the processed information. This definition
of a computer is remarkably unhelpful, because it attempts to
define the word computer in terms of the equally complex
words information, operation, and process. Perhaps a better
approach is to provide examples of what computers do by
looking at the role of computers in data processing, numerical
computation (popularly called number crunching), work-
stations, automatic control systems, and electronic systems.
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1.5.1 The PC and workstation

The 1980s witnessed two significant changes in computing—
the introduction of the PC and the workstation. PCs bring
computing power to people in offices and in their own
homes. Although primitive PCs have been around since the
mid 1970s, the IBM PC and Apple Macintosh transformed
the PC from an enthusiast’s toy into a useful tool. Software
such as word processors, databases, and spreadsheets revolu-
tionized the office environment, just as computer-aided
design packages revolutionized the industrial design envir-
onment. Today’s engineer can design a circuit and simulate
its behavior using one software package and then create a lay-
out for a printed circuit board (PCB) with another package.
Indeed, the output from the PCB design package may be
suitable for feeding directly into the machine that actually
makes the PCBs.
In the third edition of this book in 1999 I said

Probably the most important application of the personal computer
is in word processing. . . Today’s personal computers have immensely
sophisticated word processing packages that create a professional-
looking result and even include spelling and grammar checkers to
remove embarrassing mistakes. When powerful personal computers
are coupled to laser printers, anyone can use desktop publishing
packages capable of creating manuscripts that were once the
province of the professional publisher.

Now, all that’s taken for granted. Today’s PCs can take video
from your camcorder, edit it, add special effects, and then burn
it to a DVD that can be played on any home entertainment
system.

Although everyone is familiar with the PC, the concept of
the workstation is less widely understood. A workstation can
be best thought of as a high-performance PC that employs
state-of-the-art technology and is normally used in industry.
Workstations have been produced by manufacturers such as
Apollo, Sun, HP, Digital, Silicon Graphics, and Xerox. They
share many of the characteristics of PCs and are used by
engineers or designers. When writing the third edition, I
stated that the biggest difference between workstations and
PCs was in graphics and displays. This difference has all but
vanished with the introduction of high-speed graphics cards
and large LCD displays into the PC world.

1.5.2 The computer as a data processor

The early years of computing were dominated by the main-
frame, which was largely used as a data processor. Figure 1.1
describes a computer designed to deal with the payroll of a
large factory. We will call the whole thing a computer, in
contrast with those who would say that the CPU (central
processing unit) is the computer and all the other devices
are peripherals. Inside the computer’s immediate access
memory is a program, a collection of primitive machine-code
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operations, whose purpose is to calculate an employee’s pay
based on the number of hours worked, the basic rate of pay,
and the overtime rate. Of course, this program would also
deal with tax and any other deductions.

Because the computer’s immediate access memory is relat-
ively expensive, only enough is provided to hold the program
and the data it is currently processing. The mass of informa-
tion on the employees is normally held in secondary store as
a disk file. Whenever the CPU requires information about a
particular employee, the appropriate data is copied from the
disk and placed in the immediate access store. The time taken
to perform this operation is a small fraction of a second but is
many times slower than reading from the immediate access
store. However, the cost of storing information on disk is very
low indeed and this compensates for its relative slowness.

The tape transport stores data more cheaply than the disk
(tape is called tertiary storage). Data on the disks is copied
onto tape periodically and the tapes stored in the basement
for security reasons. Every so often the system is said to crash
and everything grinds to a halt. The last tape dump can be
reloaded and the system assumes the state it was in a short
time before the crash. Incidentally, the term crash had the
original meaning of a failure resulting from a read/write head
in a disk drive crashing into the rotating surface of a disk and
physically damaging the magnetic coating on its surface.

The terminals (i.e. keyboard and display) allow operators
to enter data directly into the system. This information could
be the number of hours an employee has worked in the cur-
rent week. The terminal can also be used to ask specific ques-
tions, such as ‘How much tax did Mr XYZ pay in November?’
To be a little more precise, the keyboard doesn’t actually ask
questions but it allows the programmer to execute a program

Figure 1.1 The computer as a
data processor.

containing the relevant question. The keyboard can be used
to modify the program itself so that new facilities may be
added as the system grows. Computers found in data process-
ing are often characterized by their large secondary stores and
their extensive use of printers and terminals.

1.5.3 The computer as a numeric
processor

Numeric processing or number crunching refers to computer
applications involving a very large volume of mathematical
operations—sometimes billions of operations per job.
Computers used in numeric processing applications are fre-
quently characterized by powerful and very expensive CPUs,
very high-speed memories, and relatively modest quantities
of input/output devices and secondary storage. Some super-
computers are constructed from large arrays of microproces-
sors operating in parallel.

Most of the applications of numeric processing are best
described as scientific. For example, consider the application
of computers to the modeling of the processes governing the
weather. The atmosphere is a continuous, three-dimensional
medium composed of molecules of different gases. The sci-
entist can’t easily deal with a continuous medium, but can
make the problem more tractable by considering the atmo-
sphere to be composed of a very large number of cubes. Each
of these cubes is considered to have a uniform temperature,
density, and pressure. That is, the gas making up a cube shows
no variation whatsoever in its physical properties. Variations
exist only between adjacent cubes. A cube has six faces and
the scientist can create a model of how the cube interacts with
each of its six immediate neighbors.



The scientist may start by assuming that all cubes are
identical (there is no initial interaction between cubes) and
then consider what happens when a source of energy, the sun,
is applied to the model. The effect of each cube on its neigh-
bor is calculated and the whole process is repeated cyclically
(iteration). In order to get accurate results, the size of the
cubes should be small, otherwise the assumption that the
properties of the air in the cube are uniform will not be valid.
Moreover, the number of iterations needed to get the results
to converge to a steady-state value is often very large.
Consequently, this type of problem often requires very long
runs on immensely powerful computers, or supercomputers
as they are sometimes called. The pressure to solve complex
scientific problems has been one of the major driving forces
behind the development of computer architecture.

Numeric processing also pops up in some real-time
applications of computers. Here, the term real-time indicates
that the results of a computation are required within a given
time. Consider the application of computers to air-traffic
control. A rotating radar antenna sends out a radio signal that
is echoed back from a target. Because radio waves travel at a
fixed speed (the speed of light), radar can be used to measure
the bearing and distance (range) of each aircraft. At time t,
target i at position P; , returns an echo giving its range r; , and
bearing b;,. Unfortunately, because of the nature of radar
receivers, a random error is added to the value of each echo
from a target.

The computer obtains data from the radar receiver for n
targets, updated p times a minute. From this raw data that
is corrupted by noise, the computer computes the position of
each aircraft and its track and warns air traffic control of
possible conflicts. All this requires considerable high-speed
numerical computation.

Supercomputers are also used by the security services to
crack codes and to monitor telecommunications traffic for
certain words and phrases.

1.5.4 The computer in automatic control

The majority of computers are found neither in data process-
ing nor in numeric processing activities. The advent of the
microprocessor put the computer at the heart of many auto-
matic control systems. When used as a control element, the
computer is embedded in a larger system and is invisible to the
observer. By invisible we mean that you may not be aware of
the existence of the computer. Consider a computer in a
pump in a gas station that receives cash in a slot and delivers
ameasured amount of fuel. The user doesn’t care whether the
pump is controlled by a microprocessor or by a clockwork
mechanism, as long as it functions correctly.

A good example of a computer in automatic control is an
aircraft’s automatic landing system, illustrated in Fig. 1.2. The
aircraft’s position (height, distance from touch down, and
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Figure 1.2 The computer as a control element in a flight
control system.

distance off the runway centerline) and speed are determined
by radio techniques in conjunction with a ground-based
instrument-landing system. Information about the aircraft’s
position is fed to the three computers, which, individually,
determine the error in the aircraft’s course. The error is
the difference between the aircraft’s measured position and the
position it should be in. The output from the computer is the
signals required to move the aircraft’s control surfaces
(ailerons, elevator, and rudder) and adjust the engine’s thrust.
In this case the computer’s program is held in ROM, a mem-
ory that can be read from but not written to. Once the
program to land the aircraft has been developed, it requires
only occasional modification.

The automatic-landing system requires three computers,
each working on the same calculation with the same inputs.
The outputs of the computers are fed to a majority logic
circuit called a voting network. If all three inputs to the major-
ity logic circuit are the same, its output is identical to its
inputs. If one computer fails, the circuit selects its output to
be the same as that produced by the two good computers.
This arrangement is called triple modular redundancy and
makes the system highly reliable.

Another example of the computer as a controller can be
found in the automobile. Car manufacturers want to increase
the efficiency and performance of the internal combustion
engine and reduce the emission of harmful combustion
products. Figure 1.3 illustrates the structure of a computer-
ized fuel injection system that improves the performance of
an engine. The temperature and pressure of the air, the angle
of the crankshaft, and several other variables have to be meas-
ured thousands of times a second. These input parameters
are used to calculate how much fuel should be injected into
each cylinder.

The glass cockpit provides another example of the computer
as a controller. Until the mid 1980s the flight instrumentation
of commercial aircraft was almost entirely electromechanical.
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Figure 1.3 The computerized fuel injection system.

Today the mechanical devices that display height, speed,
engine performance, and the altitude of the aircraft are being
replaced by electronic displays controlled by microcomputers.
These displays are based on the cathode ray tube or LED,
hence the expression ‘glass cockpit. Electronic displays are
easier to read and more reliable than their mechanical coun-
terparts, but they provide only the information required by
the flight crew at any instant.

Figure 1.4 illustrates an aircraft display that combines a
radar image of clouds together with navigational informa-
tion. In this example the pilot can see that the aircraft is
routed from radio beacon WCO to BKP to BED and will miss
the area of storm activity. Interestingly enough, this type of
indicator has been accused of deskilling pilots, because they
no longer have to create their own mental image of the posi-
tion of their aircraft with respect to the World from much
cruder instruments.

In the 1970s the USA planned a military navigation system
based on satellite technology called GPS (global positioning
system), which became fully operational in the 1990s. The
civilian use of this military technology turned out to be
one of the most important and unexpected growth areas in

Battery
Ignition timing map

Boost

pressure Engine

rpm

the late 1990s. GPS provides another interesting application
of the computer as a component in an electronic system. The
principles governing GPS are very simple. A satellite in
medium Earth orbit at 20200 km contains a very accurate
atomic clock and it broadcasts both the time and its position.

Suppose you pick up the radio signal from one of these
Navstar satellites, decode it, and compare the reported time
with your watch. You may notice that the time from the satel-
lite is inaccurate. That doesn’t mean that the US military has
wasted its tax dollars on faulty atomic clocks, but that the sig-
nal has been traveling through space before it reaches you.
Because the speed of light is 300 000 km/s, you know that the
satellite must 20 000 km away. Every point that is 20 000 km
from the satellite falls on the surface of a sphere whose center
is the satellite.

If you perform the same operation with a second satellite,
you know that you are on the surface of another sphere.
These two spheres must intersect. Three-dimensional geo-
metry tells us that the points at which two spheres merge is
a ring. If you receive signals from three satellites, the three
spheres intersect at just two points. One of these points is
normally located under the surface of the Earth and can be
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Figure 1.4 Computer-controlled displays in the glass cockpit.
This figure illustrates the primary navigation display (or
horizontal situation indicator) that the pilot uses to determine
the direction in which the aircraft is traveling (in this case
231°—approximately south-west). In addition to the heading,
the display indicates the position and density of cloud and the
location of radio beacons. The three arcs indicate range from the
aircraft (30, 60, 90 nautical miles).

disregarded. You can therefore work out your exact position
on the surface of the Earth. This scheme relies on you having
access to the exact time (i.e. your own atomic clock).
However, by receiving signals from a fourth satellite you can
calculate the time as well as your position.

Several companies produce small low-cost GPS receivers
that receive signals from the 24 Navstar satellites, decode the
timing signals and the ephemeris (i.e. satellite position), and
calculate the position in terms of latitude and longitude. By
embedding a microprocessor in the system, you can process
the position data in any way you want. For example, by com-
paring successive positions you can work out your speed and
direction. If you enter the coordinates of a place you wish to
go to, the processor can continually give you a bearing to
head, a distance to your destination, and an estimated time of
arrival.

By adding a liquid crystal display and a map stored in a
read-only memory to a GPS receiver, you can make a hand-
held device that shows where you are with respect to towns,
roads, and rivers. By 2000 you could buy a device for about
$100 that showed exactly where you were on the surface of
the Earth to an accuracy of a few meters.

The combination of a GPS unit plus a microprocessor plus
a display system became a major growth area from about
2000 because there are so many applications. Apart from its
obvious applications to sailing and aviation, GPS can be
included in automobiles (the road maps are stored on CD
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ROMs). GPS can even be integrated into expensive systems
that aren’t intended to move—unless they are stolen. If the
system moves, the GPS detects the new position and reports
it to the police.

1.6 The stored program
computer—an overview

Before discussing the stored program computer, consider first
the human being. It’s natural to compare today’s wonder, the
computer, with the human just as the Victorians did with
their technology. They coined expressions like, ‘He has a
screw loose’, or ‘He’s run out of steam), in an endeavor to
describe humans in terms of their mechanical technology.

Figure 1.5 shows how a human can be viewed as a system
with inputs, a processing device, and outputs. The inputs are
sight (eyes), smell (nose), taste (tongue), touch (skin), sound
(ear), and position (muscle tension). The brain processes
information from its sensors and stores new information.
The storage aspect of the brain is important because it mod-
ifies the brain’s operation by a process we call learning.
Because the brain learns from new stimuli, it doesn’t always
exhibit the same response to a given stimulus. Once a child
has been burned by a flame the child reacts differently the
next time they encounter fire.

The brain’s ability to both store and process information is
shared by the digital computer. Computers can’t yet mimic
the operation of the brain and simplistic comparisons
between the computer and the brain are misleading at best
and mischievous at worst. A branch of computer science is
devoted to the study of computers that do indeed share some
of the brain’s properties and attempt to mimic the human
brain. Such computers are called neural nets.

The output from the brain is used to generate speech or to
control the muscles needed to move the body.

Figure 1.6 shows how a computer can be compared with a
human. A computer can have all the inputs a human has plus
inputs for things we can’t detect. By means of photoelectric
devices and radio receivers, a computer can sense ultraviolet
light, infrared, X-rays, and radio waves. The computer’s out-
put is also more versatile than that of humans. Computers
can produce mechanical movement (by means of motors)
and generate light (TV displays), sound (loudspeakers), or
even heat (by passing a current through a resistor).

The computer’s counterpart of the brain is its central pro-
cessing unit plus its storage unit (memory). Like the brain, the
computer processes its various inputs and produces an output.

We don’t intend to write a treatise on the differences
between the brain and the computer, but we should make a
comment here to avoid some of the misconceptions about
digital computers. It is probable that the brain’s processing
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Figure 1.6 The organization of a computer.

brain. In particular, the digital computer
is serially organized and performs a
single instruction at a time, whereas the
brain has a highly parallel organization
and is able to carry out many activities at
the same time.

Somewhere in every computer’s
memory is a block of information that
we call a program. The word program has
the same meaning as it does in the
expression program of studies, or program
of music. A computer program is a collec-
tion of instructions defining the actions
to be carried out by the computer
sequentially. The classic analogy with a
computer program is a recipe in a cook-
ery book. The recipe is a sequence of
commands that must be obeyed one by
one in the correct order. Our analogy
between the computer program and the
recipe is particularly appropriate because
the cookery instructions involve opera-
tions on ingredients, just as the com-
puter carries out operations on data
stored in memory.

Figure 1.7 describes how a digital
computer can be divided into two parts:
a central processing unit (CPU) and a
memory system. The CPU reads the pro-
gram from memory and executes the
operations specified by the program.
The word execute means carry out; for
example, the instruction add A to B
causes the addition of a quantity called
A to a quantity called B to be carried out.
The actual nature of these instructions
does not matter here. What is important
is that the most complex actions carried
out by a computer can be broken down
into a number of more primitive opera-
tions. But then again, the most sublime
thoughts of Einstein or Beethoven can
be reduced to a large number of impulses
transmitted across the synapses of the
cells in their brains.

The memory system stores two types
of information; the program and the

data acted on or created by the program. It isn’t necessary to

store both the program and data in the same memory. Most

and memory functions are closely interrelated, whereasin the =~ computers store programs and data in a single memory
computer they are distinct. Some scientists believe that a  system and are called von Neumann machines.

major breakthrough in computing will come only when A computer is little more than a black box that moves
computer architecture takes on more of the features of the information from one point to another and processes the
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Figure 1.7 Structure of the general purpose digital computer.

information as it goes along. When we say information we
mean the data and the instructions held inside the computer.
Figure 1.7 shows two information-carrying paths connecting
the CPU to its memory. The lower path with the single
arrowhead from the memory to the CPU (heavily shaded in
Fig. 1.7) indicates the route taken by the computer’s program.
The CPU reads the sequence of commands that make up a
program one by one from its memory.

The upper path (lightly shaded in Fig. 1.7) with arrows at
both its ends transfers data between the CPU and memory.
The program controls the flow of information along the data
path. This data path is bidirectional, because data can flow in
two directions. During a write cycle data generated by the
program flows from the CPU to the memory where it is
stored for later use. During a read cycle the CPU requests the
retrieval of a data item from memory, which is transferred
from the memory to the CPU.

Suppose the instruction x = y + z is stored in memory.
The CPU must first fetch the instruction from memory and
bring it to the CPU. Once the CPU has analyzed or decoded
the instruction it has to get the values of y and z from memory.
The CPU adds these values and sends the result, x, back to
memory for storage.

Figure 1.8 demonstrates how the instructions making up a
program and data coexist in the same memory. In this case
the memory has seven locations, numbered from 0 to 7.
Memory is normally regarded as an array of storage locations
(boxes or pigeonholes). Each of these boxes has a unique
location or address containing data. For example, in the
simple memory of Fig. 1.8, address 5 contains the number 7.
One difference between computers and people is that we
number m items from 1 to m, whereas the computer numbers
them from 0 to m — 1. This is because the computer regards 0
(zero) as a valid identifier. Unfortunately, people often
confuse 0 the identifier with 0 meaning nothing.

Information in a computer’s memory is accessed by pro-
viding the memory with the address (i.e. location) of the
desired data. Only one memory location is addressed at a
time. If we wish to search through memory for a particular
item because we don’t know its address, we have to read the
items one at a time until we find the desired item. It appears
that the human memory works in a very different way.
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Figure 1.8 The program and data in memory.

Throughout this book square brackets denote ‘the contents of’
so that in this figure, [4] is read as the contents of memory
location number 4 and is equal to 2.

Information is accessed from our memories by applying a key
to all locations within the memory (brain). This key is related
to the data being accessed (in some way) and is not related to
its location within the brain. Any memory locations contain-
ing information that associates with the key respond to the
access. In other words, the brain carries out a parallel search
of its memory for the information it requires.

Accessing many memory locations in parallel permits
more than one location to respond to the access and is there-
fore very efficient. Suppose someone says ‘chip’ to you. The
word chip is the key that is fed to all parts of your memory for
matching. Your brain might produce responses of chip (silicon),
chip (potato), chip (on shoulder), and chip (gambling).

The program in Fig. 1.8 occupies consecutive memory
locations 0-3 and the data locations 4—6. The first instruc-
tion, get [4], means fetch the contents of memory location num-
ber 4 from the memory. We employ square brackets to denote
the contents of the address they enclose, so that in this
case [4] = 2. The next instruction, at address 1, is add it to [5]
and means add the number brought by the previous instruction
to the contents of location 5. Thus, the computer adds 2 and
7 to get 9. The third instruction, put result in [6], tells
the computer to put the result (i.e. 9) in location 6. The 1 that
was in location 6 before this instruction was obeyed is
replaced by 9. The final instruction in location 3 tells the
computer to stop.

We can summarize the operation of a digital computer by
means of alittle piece of pseudocode (pseudocode is a method
of writing down an algorithm in a language that is a cross
between a computer language such as C, Pascal, or Java and
plain English). We shall meet pseudocode again.

DO
BEGIN
Read an instruction from memory
Execute the instruction
END
REPEAT FOREVER
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1.7 The PC—a naming of
parts

The final part of this chapter looks at the computer
with which most readers will be familiar, the
PC. As we have not yet covered many of the ele-
ments of a computer, all we can do here is provide
an overview and to name some of the parts of a
typical computer system to help provide a context
for following chapters.

Figure 1.9 shows a typical single-board computer
(SBC). As its name suggests, the SBC consists of
one printed circuit board containing the micro-
processor, memory, peripherals, and everything
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else it needs to function. Such a board can be embedded in
systems ranging from automobile engines to cell phones. The
principal characteristic of the SBC is its lack of expandability
or flexibility. Once you’ve made it, the system can’t be
expanded.

The PC is very different from the single-board computer
because each user has their own requirements; some need
lots of memory and fast video processing and some need
several peripherals such as printers and scanners.

One way of providing flexibility is to design a system with
slots into which you can plug accessories. This allows you to
buy a basic system with functionality that is common to all
computers with that board and then you can add specific
enhancements such as a video card or a sound card.

Figure 1.10 shows a PC motherboard. The motherboard
contains the CPU and all the electronics necessary to connect
the CPU to memory and to provide basic input/output such
as a keyboard and mouse interface and an interface to floppy
and hard disk drives (including CD and DVD drives).

The motherboard in Fig. 1.10 has four areas of expandabil-
ity. Program and data memory can be plugged into slots
allowing the user to implement enough memory for their
application (and their purse). You can also plug a video card
into a special graphics slot, allowing you to use a basic system
for applications such as data processing or an expensive state-
of-the-art graphics card for a high-performance games
machine with fast 3D graphics.

The CPU itself fits into a rectangular slot and is not per-
manently installed on the motherboard. If you want a faster
processor, you can buy one and plug it in your motherboard.
This strategy helps prevent the computer becoming out of
date too soon.

The motherboard has built-in interfaces that are common
to nearly all systems. A typical motherboard has interfaces to
a keyboard and mouse, a floppy disk drive, and up to four
hard disks or CD ROMs. Over the last few years, special-
purpose functions have migrated from plug-in cards to the
motherboard. For example, the USB serial interface, the local
area network, and the audio system have been integrated on
some of the high-performance motherboards.

The motherboard in Fig. 1.10 has five PCI connectors.
These connectors allow you to plug cards into the mother-
board. Each connector is wired to a bus, a set of parallel
conductors that carry information between the cards and
the CPU and memory. One of the advantages of a PC is its
expandability because you can plug such a wide variety of
cards into its bus. There are modems and cards that capture
and process images from camcorders. There are cards that
contain TV receivers. There are cards that interface a PC to
industrial machines in a factory.

In this book we will be looking at all these aspects of a
computer.
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SUMMARY

We began this chapter with a discussion of the role of computer
architecture in computer science education. Computer
architecture provides the foundation of computing; it helps you
to get the best out of computers and it aids in an understanding
of a wide range of topics throughout computing.

We provided a brief history of computing. We can't do justice
to this topic in a few pages. What we have attempted to do is to
demonstrate that computing has had a long history and is the
result of the merging of the telegraph industry, the card-based
data processing industry, and the calculator industry.

In this chapter we have considered how the computer can be
looked at as a component or, more traditionally, as part of a
large system. Besides acting in the obvious role as a computer
system, computers are now built into a wide range of everyday
items from toys to automobile ignition systems. In particular,
we have introduced some of the topics that make up a
first-level course in computer architecture or computer
organization.

We have introduced the notion of the von Neumann
computer, which stored instructions and data in the same
memory. The von Neumann computer reads instructions from
memory, one by one and then executes them in turn.

The final part of this chapter provided an overview of the
computer system with which most students will be
familiar—the PC. This computer has a motherboard into which
you can plug a Pentium microprocessor, memory, and
peripherals. You can create a computer that suits your own
price—performance ratio.

As we progress through this book, we are going to examine
how the computer is organized and how it is able to step
through instructions in memory and execute them. We will also
show how the computer communicates with the world outside
the CPU and its memory.

PROBLEMS

Unlike the problems at the end of other chapters, these
problems are more philosophical and require further
background reading if they are to be answered well.

1.1 I have always claimed you cannot name the inventor of the
computer because what we now call a computer emerged after
a long series of incremental steps. Am | correct?

1.2 If you have to name one person as inventor of the
computer, who would you choose? And why?

1.3 What is the difference between computer architecture and
computer organization?

1.4 ARolls—Royce is not a Volkswagen Beetle. Is the difference a
matter of architecture or organization?

1.5 List 10 applications of microprocessors you can think of
and classify them into the groups we described (e.g. computer
as a component). Your examples should cover as wide a range
of applications as possible.
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1.6 Do you think that a digital computer could ever be capable
of feelings, free will, original thought, and self-awareness in a
similar fashion to humans? If not, why not?

1.7 Some of the current high-performance civil aircraft such as
the A320 AirBus have fly-by-wire control systems. In a
conventional aircraft, the pilot moves a yoke that provides
control inputs that are fed to the flying control surfaces and
engines by mechanical linkages or hydraulic means. In the A320
the pilot moves the type of joystick normally associated with
computer games. The pilot’s commands from the joystick (called
a sidestick) are fed to a computer and the computer interprets
them and carries them out in the fashion it determines is most
appropriate. For example, if the pilot tries to increase the speed
to a level at which the airframe might be overstressed, the
computer will refuse to obey the command. Some pilots and
some members of the public are unhappy about this
arrangement. Are their fears rational?

1.8 The computer has often been referred to as a high-speed
moron. Is this statement fair?

1.9 Computers use binary arithmetic (i.e. all numbers are
composed of 1s and Os) to carry out their operations. Humans
normally use decimal arithmetic (0-9) and have symbolic
means of representing information (e.g. the Latin alphabet or
the Chinese characters). Does this imply a fundamental
difference between people and computers?

1.10 Shortly after the introduction of the computer, someone
said that two computers could undertake all the computing in
the World. At that time the best computers were no more
powerful than today's pocket calculators. The commentator
assumed that computers would be used to solve a few scientific
problems and little else. As the cost and size of computers has
been reduced, the role of computers has increased. Is there a
limit to the applications of computers? Do you anticipate any
radically new applications of computers?

1.11 A microprocessor manufacturer, at the release of their new
super chip, was asked the question, ‘What can your
microprocessor do?’ He said it was now possible to put it in
washing machines so that the user could tell the machine what
to do verbally, rather than by adjusting the settings manually.

At the same time we live in a world in which many of its
inhabitants go short of the very basic necessities of life: water,
food, shelter, and elementary health care. Does the computer
make a positive contribution to the future well-being of the
World's inhabitants? Is the answer the same if we ask about the
computer’s short-term effects or its long-term effects?

1.12 The workstation makes it possible to design and to test
(by simulation) everything from other computers to large
mechanical structures. Coupled with computer communications
networks and computer-aided manufacturing, it could be
argued that many people in technologically advanced societies
will be able to work entirely from home. Indeed, all their
shopping and banking activities can also be performed from
home. Do you think that this step will be advantageous or
disadvantageous? What will be the effects on society of a
population that can, largely, work from home?

1.13 Ina von Neumann machine, programs and data share the
same memory. The operation ‘get [4]' reads the contents of
memory location number 4 and you can then operate on the
number you've just read from this location. However, the
contents of this location may not be a number. It may be an
instruction itself. Consequently, a program in a von Neumann
machine can modify itself. Can you think of any implications
this statement has for computing?

1.14 When discussing the performance of computers we
introduced the benchmark, a synthetic program whose
execution time provides a figure of merit for the performance of
a computer. If you glance at any popular computer magazine,
you'll find computers compared in terms of benchmarks.
Furthermore, there are several different benchmarks. A computer
that performs better than others when executing one
benchmark might not do so well when executing a different
benchmark. What are the flaws in benchmarks as a test of
performance and why do you think that some benchmarks favor
one computer more than another?

1.15 The von Neumann digital computer offers just one
computing paradigm. Other paradigms are provided by analog
computers and neural networks. What are the differences
between these paradigms and are there others?
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Gates, circuits, and
combinational logic

3 Sequential logic

We can classify logic circuits into
two groups: the combinational
circuit we described in Chapter 2
and the sequential circuit which
forms the subject of this chapter.

A sequential circuit includes
memory elements and its current
behavior is governed by its past
inputs. Typical sequential circuits

4 Computer arithmetic
In Chapter 4 we demonstrate
how numbers are represented in
binary form and look at binary
arithmetic. We also demonstrate
how the properties of binary
numbers are exploited to create
codes that compress data or
even detect and correct errors.

5 The instruction set
architecture

In Chapter 5 we introduce the
computer’s instruction set
architecture (ISA), which defines
the machine-level programmer’s
view of the computer. The ISA
describe the type of operations a
computer carries out. We are
interested in three aspects of the

ISA: the nature of the
instructions, the resources used
by the instructions (registers and
memory), and the ways in which
the instructions access data
(addressing modes).

are counters and registers.

INTRODUCTION

We begin our study of the digital computer by investigating the elements from which it is
constructed. These circuit elements are gates and flip-flops and are also known as combinational
and sequential logic elements, respectively. A combinational logic element is a circuit whose
output depends only on its current inputs, whereas the output from a sequential element
depends on its past history (i.e. a sequential element remembers its previous inputs) as well as
its current input. We describe combinational logic in this chapter and devote the next chapter to
sequential logic.

Before we introduce the gate, we highlight the difference between digital and analog systems
and explain why computers are constructed from digital logic circuits. After describing the
properties of several basic gates we demonstrate how a few gates can be connected together to
carry out useful functions in the same way that bricks can be put together to build a house or a
school. We include a Windows-based simulator that lets you construct complex circuits and then
examine their behavior on a PC.

The behavior of digital circuits can be described in terms of a formal notation called Boolean
algebra.We include an introduction to Boolean algebra because it allows you to analyze circuits
containing gates and sometimes enables circuits to be constructed in a simpler form. Boolean
algebra leads on to Karnaugh maps, a graphical technique for the simplification and manipulation
of Boolean equations.

The last circuit element we introduce is the tri-state gate, which allows you to connect lots of
separate digital circuits together by means of a common highway called a bus. A digital computer
is composed of nothing more than digital circuits, buses, and sequential logic elements.

By the end of this chapter, you should be able to design a wide range of circuits that can
perform operations as diverse as selecting between one of several signals to implementing simple
arithmetic operations.

Real circuits can fail. The final part of this chapter takes a brief look at how you test digital
circuits.
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2.1 Analog and digital systems

Before we can appreciate the meaning and implications of
digital systems, it’s necessary to look at the nature of analog
systems. The term analog is derived from the noun analogy
and means a quantity that is related to, or resembles, or
corresponds to, another quantity; for example, the length of
a column of mercury in a thermometer is an analog of the
temperature because the length of the mercury is propor-
tional to the temperature. Analog electronic circuits repres-
ent physical quantities in terms of voltages or currents.

An analog variable can have any value between its max-
imum and minimum limits. If a variable X is represented by a
voltage in the range —10 V to +10 V, X may assume any one
of an infinite number of values within this range. We can say
that X is continuous in value and can change its value by an
arbitrarily small amount. Fig. 2.1 plots a variable X as a con-
tinuous function of time; that is, X doesn’t jump instanta-
neously from one value to another. In Fig. 2.1, a fragment of
the graph of X is magnified to reveal fluctuations that you
can’t see on the main graph. No matter how much you
magnify this graph, the line will remain continuous and
unbroken.

A X0

Magnification

The design of analog circuits such as audio amplifiers is a
demanding process, because analog signals must be processed
without changing their shape. Changing the shape of an
analog signal results in its degradation or distortion.

Information inside a computer is represented in digital
form. A digital variable is discrete in both value and in time, as
Fig. 2.2 demonstrates. The digital variable Y must take one of
four possible values. Moreover, Y changes from one discrete
value to another instantaneously. In practice, no physical (i.e.
real) variable can change instantaneously and a real signal
must pass through intermediate values as it changes from one
discrete state to another.

All variables and constants in a digital system must take a
value chosen from a set of values called an alphabet. In
decimal arithmetic the alphabet is composed of the symbols 0,
1,2,...9 and in Morse code the alphabet is composed of the
four symbols dot, dash, short space, and long space. Other
digital systems are Braille, semaphore, and the days of the week.

A major advantage of representing information in digital
form is that digital systems are resistant to error. A digital
symbol can be distorted, but as long as the level of distortion
is not sufficient for the symbol to be confused with a different
symbol, the original symbol can always be recognized and
reconstituted. For example, if you write the letter K by hand,
most readers will be able to recognize
it as a K unless it is so badly formed
that it looks like another letter such as
anRor C.

Digital computers use an alphabet
composed of two symbols called 0 and
1 (sometimes called false and true, or
low and high, or off and on). A digital
system with two symbols is called a
binary system. The physical repres-

Time-varying
analog signal

Figure 2.1 Characteristics of an analog variable.

A (1)

A digital signal must have one of a fixed
number of values and change from one

/ value to another instantaneously
3 —

> entation of these symbols can be made
Time as unlike each other as possible to give
the maximum discrimination between
the two digital values. Computers
once stored binary information on
paper tape—a hole represented one
binary value and no hole represented
the other. When reading paper tape
the computer has only to distinguish
between a hole and no-hole. Suppose
we decided to replace this binary
computer by a decimal computer.

Imagine that paper tape were to be
used to store the 10 digits 0-9. A
number on the tape would consist of
no-hole or a hole in one of nine sizes

Figure 2.2 Characteristics of an ideal digital variable.

—> (10 symbols in all). How does this
Time computer distinguish between a size
six hole and a size five or a size seven
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NOTES ON LOGIC VALUES

1. Every logic input or output must assume one of two
discrete states. You cannot have a state that is neither
1 nor 0.

. Each logic input or output can exist in only one state at any
one time.

. Each logic state has an inverse or complement that is the
opposite of its current state. The complement of a true or
one state is a false or zero state, and vice versa.

. Alogic value can be a constant or a variable. If it is a
constant, it always remains in that state. If it is a variable, it
may be switched between the states 0 and 1.A Boolean
variable is also called a literal.

. Avariable is often named by the action it causes to take
place. The following logical variables are all self-evident:
START, STOP, RESET, COUNT, and ADD.

6. The signal level (i.e. high or low) that causes a variable to
carry out a function is arbitrary. If a high voltage causes the
action, the variable is called active-high. If a low voltage
causes the action, the variable is called active-low. Thus, if
an active-high signal is labeled START, a high level will
initiate the action. If the signal is active-low and labeled
START, a low level will trigger the action.

. By convention, a system of logic that treats a low level as a
0 or false state and a high-level as a 1 or true state is called
positive logic. Most of this chapter uses positive logic.

. The term asserted is used to indicate that a signal is placed
in the level that causes its activity to take place. If we say
that START is asserted, we mean that it is placed in a high
state to cause the action determined by START. Similarly, if
we say that LOAD is asserted, we mean that it is placed in a
low state to trigger the action.

LOGIC VALUES AND SIGNAL LEVELS

In a system using a 5 V power supply you might think that a
bit is represented by exactly O V or 5 V. Unfortunately, we
can't construct such precise electronic devices cheaply. We can
construct devices that use two ranges of voltage to represent
the binary values 0 and 1. For example, one logic family
represents a O state by a signal in the range 0-0.4V and a

1 state by a signal in the range 2.8-5 V.

This diagram
e illustrates the ranges
}gf:t range %ftaPUt range  of voltage used to
logical 1 logical 1 represent O and 1
24V states. Digjtal
component
24V manufacturers make
Forbidden Several promises to
zone users. First, they
08V guarantee that the
Input range output of a gate in a
for a 04V logical O state shall be
logical 0 %rJtaPUt "ME€ i the range 0-0.4V
oy logical 0 and that the output of

agate in a logical 1
state shall be in the range 2.8-5.0V. Similarly, they

An adder (represented by the circle with a‘+') is placed
between the two gates so that the input voltage to the second
gate is given by Vi, = Vi, + Vs, that is, a voltage called
Vioise is @added to the output from gate 1.1n a real circuit there
is, of course, no such adder. The adder is fictitious and
demonstrates how the output voltage may be modified by the
addition of noise or interference. All electronic circuits are
subject to such interference; for example, the effect of noise
on aweak TV signal is to create snow on the screen.

Note that the range of input signals that are recognized as
representing a 1 state (i.e. 2.4-5V) is greater than the
range of output signals produced by a gate in a 1 state (i.e.
2.8-5 V). By making the input range greater than the output
range, the designer compensates for the effect of noise or
unwanted signals. Suppose a noise spike of —0.2 V is added to
a logical 1 output of 2.8V to give a total input signal of 2.6 V.
This signal, when presented to the input circuit of a gate, is
greater than 2.4 V and is still guaranteed to be recognized
as a logical 1.The difference between the input and output
ranges for a given logic value known as the gate’s guaranteed
noise immunity.

guarantee that the input circuit of a gate shall

recognize a voltage in the range 0-0.8V as a logical

0 and a voltage in the range 2.4-5.0V as a logical 1.
Here, two gates are wired together so that the

—_—

Logic element 1 Logic element 2

output of gate 1 becomes the input of gate 2. The
signal at the output of gate 1 is written V,,, and
the input to gate 2 is written V.

Output from
element 1

Input to
element 2
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hole? Such a system would require extremely precise
electronics.

A single binary digit is known as a bit (BInary digiT) and is
the smallest unit of information possible; that is, a bit can’t be
subdivided into smaller units. Ideally, if a computer runs off,
say, 3 'V, a low level would be represented by 0.0 V and a high
level by 3.0 V.

2.2 Fundamental gates

The digital computer consists of nothing more than the inter-
connection of three types of primitive elements called AND,
OR, and NOT gates. Other gates called NAND, NOR, and
EOR gates can be derived from these gates. We shall see that
all digital circuits, may be designed from the appropriate
interconnection of NAND (or NOR) gates alone. In other
words, the most complex digital computer can be reduced
to a mass of NAND gates. This statement doesn’t devalue
the computer any more than saying that the human brain is
just a lot of neurons joined in a particularly complex way
devalues the brain.

We don’t use gates to build computers because we like
them or because Boolean algebra is great fun. We use gates
because they provide a way of mass producing cheap and
reliable digital computers.

2.2.1 The AND gate

The AND gate is a circuit with two or more inputs and a sin-
gle output. The output of an AND gate is true if and only if
each of its inputs is also in a true state. Conversely, if one or
more of the inputs to the AND gate is false, the output will
also be false. Figure 2.3 provides the circuit symbol for both a
two-input AND gate and a three-input AND gate. Note that
the shape of the gate indicates its AND function (this will
become clearer when we introduce the OR gate).

An AND gate is visualized in terms of an electric circuit or
a highway as illustrated in Fig. 2.4. Electric current (or traffic)
flows along the circuit (road) only if switches (bridges) A and
B are closed. The logical symbol for the AND operator is a
dot, so that A AND B can be written A - B. As in normal alge-
bra, the dot is often omitted and A - B can be written AB. The
logical AND operator behaves like the multiplier operator in
conventional algebra; for example, the expression (A + B)-
(C+D)=A-C+A-D+B-C+B-D in both Boolean
and conventional algebra.

A | A—
C=AB B — C=AB.C
B — C—

(a) Two-input AND gate (b) Three-input AND gate

Figure 2.3 The AND gate.

WHAT IS A GATE?

The word gate conveys the idea of a two-state device—open
or shut. A gate may be thought of as a black box with one or
more input terminals and an output terminal. The gate
processes the digital signals at its input terminals to produce a
digital signal at its output terminal. The particular type of the
gate determines the actual processing involved. The output C
of a gate with two input terminals A and B can be expressed in
conventional algebra as C = F(A,B), where A, B, and Care two-
valued variables and Fis a logical function.

The output of a gate is a function only of its inputs. When
we introduce the sequential circuit, we will discover that the
sequential circuit’s output depends on its previous output as
well as its current inputs. We can demonstrate the concept of

a gate by means of an example from the analog world.
Consider the algebraic expression y = F(x) = 2x°* + x + 1.If
we think of x as the input to a black box and y its output, the
block diagram demonstrates how y is generated by a sequence
of operations on x.The operations performed on the input are
those of addition, multiplication, and squaring. Variable x
enters the 'squarer’ and comes out as 2. The output from the
squarer enters a multiplier (along with the constant 2) and
comes out as 2x%, and so on. By applying all the operations to
input x, we end up with output 2x* + x + 1.The boxes
carrying out these operations are entirely analogous to gates
in the digital world—except that gates don't do anything as
complicated as addition or multiplication.

The input signal x is

acted on by four functional
units to create a signal
y=2x2+x+ 1.

Squarer | 2 [Multiplier| 2x2
()2 1 x
I A4
)'(”P“t | | Adder
+

2x%+x | Adder | 2x2+x+1 , Output
+

]

1
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CIRCUIT CONVENTIONS

Because we write from left to right, many logic circuits are also
read from left to right; that is, information flows from left to
right with the inputs of gates on the left and the outputs on
the right.

Because a circuit often contains many signal paths, some of
these paths may have to cross over each other when the
diagram is drawn on two-dimensional paper. We need a means
of distinguishing between wires that join and wires that
simply cross each other (rather like highways that merge and
highways that fly over each other). The standard procedure is
to regard two lines that simply cross as not being connected as
the diagram illustrates. The connection of two lines is denoted
by a dot at their intersection.

The voltage at any point along a conductor is constant and
therefore the logical state is the same everywhere on the line.
If a line is connected to the input of several gates, the input to
each gate is the same. In this diagram, the value of Xand P
must be the same because the two lines are connected.

These two lines are connected

These two lines are not connected
and cross over at this point

A corollary of the statement that the same logic state exists
everywhere on a conductor is that a line must not be
connected to the output of more than one circuit—otherwise
the state of the line will be undefined if the outputs differ. At
the end of this chapter we will introduce gates with special
tri-state outputs that can be connected together without
causing havoc.

The circuit is completed onl
if switch A and switch B is closed

e

A
Switch A Switch B

Figure 2.4 The representation of an AND gate.

A useful way of describing the relationship between the
inputs of a gate and its output is the truth table. In a truth
table the value of each output is tabulated for every possible
combination of the inputs. Because the inputs are two valued
(i.e. binary with states 0 and 1), a circuit with n inputs has 2"
lines in its truth table. The order in which the 2" possible
inputs are taken is not important but by convention the order
corresponds to the natural binary sequence (we discuss
binary numbers in Chapter 4). Table 2.1 describes the natural
binary sequences for values of n from 1 to 4.

Table 2.2 illustrates the truth table for a two-input AND
gate, although there’s no reason why we can’t have any num-
ber of inputs to an AND gate. Some real gates have three or
four inputs and some have 10 or more inputs. However, it
doesn’t matter how many inputs an AND gate has. Only one
line in the truth table will contain a 1 entry because all inputs
must be true for the output to be true.

When we introduce computer arithmetic, computer archi-
tecture, and assembly language programming, we will see
that computers don’t operate on bits in isolation. Computers
process entire groups of bits at a time. These groups are called
words and are typically 8, 16, 32, or 64 bits wide. The AND

Table 2.1 The 2" possible values of an n-bit variable

forn=1to 4.
Inputs Output
A B F=A-B
0 0 0 4—— | False because one or
0 1 0 :—7 more inputs is false
1 0 0
1 1 1 4—— |True because both

inputs are true

Table 2.2 Truth table for the AND gate.
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operation, when applied to words, is called a logical operation
to distinguish it from an arithmetic operation such as addi-
tion, subtraction, or multiplication. When two words take
part in a logical operation such as an AND, the operation
takes place between the individual pairs of bits; for example
bit a; of word A is ANDed with bit b; of word B to produce bit
¢; of word C. Consider the effect of ANDing of the following
two 8-bit words A = 11011100 and B = 01100101.x

1101110 0<«—wordA
0110010 1<«—wordB
0100010 0«4—C=AB

In this example the result C = A - B is given by 01000100.
Why should anyone want to AND together two words? If you
AND bit x with 1, the result is x (because Table 2.2 demon-
strates that 1.0 = 0 and 1.1 = 1). If you AND bit x with 0 the
result is O (because the output of an AND gate is true only if
both inputs are true). Consequently, a logical AND is used to
mask certain bits in a word by forcing them to zero. For
example, if we wish to clear the leftmost four bits of an 8-bit
word to zero, ANDing the word with 00001111 will do the
trick. The following example demonstrates the effect of an
AND operation with a 00001111 mask.

1 <«— source word
1 <€4— mask
1 <«— result

101
111
101

2.2.2 The OR gate

The output of an OR gate is true if any one (or more than
one) of its inputs is true. Notice the difference between AND
and OR operations. The output of an AND is true only if all
inputs are true whereas the output of an OR is true if at least
one input is true. The circuit symbol for a two-input and a
three-input OR gate is given in Fig. 2.5. The logical symbol
for an OR operation is an addition sign, so that the logical
operation A OR B is written as A + B. The logical OR opera-
tor is the same as the conventional addition symbol because
the OR operator behaves like the addition operator in algebra
(the reasons for this will become clear when we introduce
Boolean algebra). Table 2.3 provides the truth table for a two-
input OR gate.

The behavior of an OR gate can be represented by the
switching circuit of Fig. 2.6. A path exists from input to out-
put if either of the two switches is closed.

A A
C=A+B B D=A+B+C
B C

(a) Two-input OR gate. (b) Three-input OR gate.

Figure 2.5 The OR gate.

Inputs Output

A B F=A+B «— False because

0 0 0 no input is true

0 1 1

1 (1) 1 \ True because at least
\ one input is true

Table 2.3 Truth table for the OR gate.

Switch A

A

The circuit is
complete if either
switch A or B

is closed

B

Switch B/

Figure 2.6 The representation of an OR gate.

The use of the term OR here is rather different from the
English usage of or. The Boolean OR means (either A or B) or
(both A and B), whereas the English usage often means A or
B but not (A and B). For example, consider the contrasting
use of the word or in the two phrases: ‘Would you like tea
or coffee?” and ‘Reduced fees are charged to members who
are registered students or under 25> We shall see that the
more common English use of the word or corresponds to
the Boolean function known as the EXCLUSIVE OR, an
important function that is frequently abbreviated to EOR
or XOR.

A computer can also perform a logical OR on words as the
following example illustrates.

10011100 «— wordA
00100101 <« wordB
10111101 <4 C=A+B

The logical OR operation is used to set one or more bits in
aword to alogical 1. The term set means make a logical one,
just as clear means reset to a logical zero. For example, the
least-significant bit of a word is set by ORing it with 00 . . . 01.
By applying both AND and OR operations to a word we can
selectively clear or set its bits. Suppose we have an 8-bit binary
word and we wish to clear bits 6 and 7 and set bits 4 and 5. If
the bits of the word are d, to d,, we can write:

d, d, d d, dy d, d, d,
0 1 1 1 1 1 1

0 d d, d d, d d
0 1 1 0 0 0 0
0

1 1 dy d, d, d,

Source word
AND mask

First result
OR mask

0
0
0
0

Final result



2.2.3 The NOT gate

The NOT gate is also called an inverter or a complementer and
is a two-terminal device with a single input and a single out-
put. If the input of an inverter is X, its output is NOT X which
is written X or X'. Figure 2.7 illustrates the symbol for an
inverter and Table 2.4 provides its truth table. Some teachers
vocalize X as ‘not X’ and others as ‘X not’. The inverter is the
simplest of gates because the output is the opposite of
the input. If the input s 1 the output is 0 and vice versa. By the
way, the triangle in Fig. 2.7 doesn’t represent an inverter.
The small circle at the output of the inverter indicates the
inversion operation. We shall see that this circle indicates
logical inversion wherever it appears in a circuit.

We can visualize the operation of the NOT gate in terms of
the relay illustrated in Fig. 2.8. A relay is an electromechanical
switch (i.e. a device that is partially electronic and partially
mechanical) consisting of an iron core around which a coil of
wire is wrapped. When a current flows through a coil, it gen-
erates a magnetic field that causes the iron core to act as a
magnet. Situated close to the iron core is a pair of contacts,
the lower of which is mounted on a springy strip of iron. If
switch A is open, no current flows through the coil and the
iron core remains unmagnetized. The relay’s contacts are

A A

The output is
the logical
complement of
the input

Figure 2.7 The NOT gate or inverter.

Input Output
A F=A
0 1

1

Table 2.4 Truth table for the inverter.

Contacts

(switch A)———,
A \
Iron strip  Output

el A
—-Battery \
—|_ Coil

S~

Iron core

A A A A A

Figure 2.8 The operation of a relay.
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normally closed so that they form a switch that is closed when
switch A is open.

If switch A is closed, a current flows through the coil to
generate a magnetic field that magnetizes the iron core. The
contact on the iron strip is pulled toward the core, opening
the contacts and breaking the circuit. In other words, closing
switch A opens the relay’s switch and vice versa. The system in
Fig. 2.8 behaves like a NOT gate. The relay is used by a com-
puter to control external devices and is described further
when we deal with input and output devices.

Like both the AND and OR operations, the NOT function
can also be applied to words:

0 OO<—word_A
1 11

11 111
00 000 <4+— B=A

2.2.4 The NAND and NOR gates

The two most widely used gates in real circuits are the NAND
and NOR gates. These aren’t fundamental gates because the
NAND gate is derived from an AND gate followed by an
inverter (Not AND) and the NOR gate is derived from an OR
gate followed by an inverter (Not OR), respectively. The circuit
symbols for the NAND and NOR gates are given in Fig. 2.9.
The little circle at the output of a NAND gate represents the
symbol for inversion or complementation. It is this circle that
converts the AND gate to a NAND gate and an OR gate to a
NOR gate. Later, when we introduce the concept of mixed
logic, we will discover that this circle can be applied to the
inputs of gates as well as to their outputs.

Table 2.5 gives the truth table for the NAND and the NOR
gates. As you can see, the output columns in the NAND and
NOR tables are just the complements of the outputs in the
corresponding AND and OR tables.

We can get a better feeling for the effect that different gates
have on two inputs, A and B, by putting all the gates together
in a single table (Table 2.6). We have also included the
EXCLUSIVE OR (i.e. EOR) and its complement the
EXCLUSIVE NOR (i.e. EXNOR) in Table 2.6 for reference.
The EOR gate is derived from AND, OR, and NOT gates and
is described in more detail later in this chapter. It should be
noted here that A-B is not the same as A-B, just as A+B is
not the same as A+B.

A— —

A.B

- B4 C=AB
B =A. B =A.
AND gate followed by an inverter NAND gate
A A+B — A —
B C=A+B B C=A+B
OR gate followed by an inverter NOR gate

Figure 2.9 Circuit symbols for the NAND and NOR gates.
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2.2.5 Positive, negative, and mixed logic

At this point we introduce the concepts of positive logic,
negative logic, and mixed logic. Some readers may find that
this section interrupts their progress toward a better under-
standing of the gate and may therefore skip ahead to the next
section.

Up to now we have blurred the distinction between two
unconnected concepts. The first concept is the relationship
between low/high voltages in a digital circuit, 0 and 1 logical
levels, and true/false logic values. The second concept is the
logic function; for example, AND, OR, and NOT. So far, we
have used positive logic in which a high-level signal represents
alogical one state and this state is called true.

Table 2.7 provides three views of the AND function. The
leftmost column provides the logical truth table in which the
output is true only if all inputs are true (we have used T and F
to avoid reference to signal levels). The middle column
describes the AND function in positive logic form in which
the output is true (i.e. 1) only if all inputs are true (i.e. 1).

The right hand column in Table 2.7 uses negative logic in
which 0 is true and 1 is false. The output A - B is true (i.e. 0)
only when both inputs are true (i.e. 0).

As far as digital circuits are concerned, there’s no funda-
mental difference between logical 1s and Os and it’s as sensible
to choose a logical 0 level as the true state as it is to choose a
logical 1 state. Indeed, many of the signals in real digital
systems are active-low which means that their function is
carried out by a low-level signal.

Suppose we regard the low level as true and use negative
logic, Table 2.7 shows that we have an AND gate whose out-
put is low if and only if each input is low. It should also be
apparent that an AND gate in negative logic functions as an
OR gate in positive logic. Similarly, a negative logic OR gate
functions as an AND gate in positive logic. In other words, the
same gate is an AND gate in negative logic and an OR gate in
positive logic. Figure 2.10 demonstrates the relationship
between positive and negative logic gates.

For years engineers used the symbol for a positive logic
AND gate in circuits using active-low signals with the result
that the reader was confused and could only understand the

Logical form Positive logic Negative logic

A B A-B A B A-B A B A-B
FF F 00 0 11 1
FT F 01 0 10 1
TF F 10 0 01 1
TT T 11 1 00 0

Table 2.7 Truth table for AND gate in positive and negative
logic forms.

D
yd

Cis high if A or B is high

7

Cislow if A and B is low

A B NAND A B NOR
C=A-B C=A+B
A—] c A c

0 0 1 0 0 1 B—| B

0 1 1 0 1 0

1 0 1 1 0 0

1 1 0 1 1 0 C is high if A and B is high Cislow if Aor B is low
Table 2.5 Truth table for the NAND and NOR gates. Figure 2.10 Positive and negative logic.
Inputs Output
A B ANDA-B ORA+B NANDAB NORA + B EORA@®B EXNORAD B
0 0 0 0 1 1 0 1
0 1 0 1 1 0 1 0
10 0 1 1 0 1 0
11 1 1 0 0 0 1

Table 2.6 Truth table for six gates.
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GATES AS TRANSMISSION ELEMENTS

We can provide more of an insight into what gates do by
treating them as transmission elements that control the flow
of information within a computer.

We are going to take three two-input gates (i.e. AND, OR,
EOR) and see what happens when we apply a variable to one
input and a control signal to the other input. The figure
illustrates three pairs of gates. Each pair demonstrates the
situation in which the control input C is set to a logical 0 and a

(a) AND gate

X 0 X
C=0 C=1

Control input C=0 (a) AND gate

Gate disabled (output low)

B

Gate enabled (output=X)

logical 1 state. The other input is a variable X and we wish to
determine the effect the gate has on the transmission of X
through it.

Figures (a) and (b) demonstrate the behavior of an AND
gate.When C = 0, an AND gate is disabled and its output is
forced into a logical zero state. When C = 1, the AND gate is
enabled and its X input is transmitted to the output
unchanged. We can think of an AND gate as a simple switch
that allows or inhibits the passage of
a logical signal. Similarly, in Fig (c)
and (d) an OR gate is enabled by
C=0anddisabledby C = 1.
However, when the OR gate is
disabled, its output is forced into a
logical one state.

The EOR gate in Fig (e) and (f) is a

Control input C=1

(c) OR gate

X X X
Cc=0 C=1

Control input C=0 (d) OR gate

Gate enabled (output=X)

D—

Gate disabled (output high)

more interesting device. When its
control input is 0, it transmits the
other input unchanged. But when

C =1, it transmits the complement
of X.The EOR gate can best be
regarded as a programmable inverter.
Later we shall make good use of this
property of an EOR gate.

Control input C=1

(e) EOR gate

X X X
Cc=0 C=1

Control input C=0 (f) EOR gate

Gate acts as pass-through element (output=X)

E -

Gate acts as inverter (output=X)

The reason we've introduced the
concept of a gate as a transmission
element is that digital computers can
be viewed as a complex network
through which information flows and
this information is operated on by
gates as it flows round the system.

Control input C=1

circuit by mentally transforming the positive logic gate into
its negative logic equivalent. In mixed logic both positive
logic and negative logic gates are used together in the same
circuit. The choice of whether to use positive or negative logic
is determined only by the desire to improve the clarity of a
diagram or explanation.

Why do we have to worry about positive and negative
logic? If we stick to positive logic, life would be much simpler.
True, but life is never that simple. Many real electronic sys-
tems are activated by low-level signals and that makes it sens-
ible to adopt negative logic conventions. Let’s look at an
example. Consider a circuit that is activated by a low-level
signal only when input A is a low level and input B is a low
level. Figure 2.11 demonstrates the circuit required to imple-
ment this function. Note that the bubble at the input to the
circuit indicates that it is activated by a low level.

In Fig. 2.11(a) we employ positive logic and draw an OR
gate because the output of an OR gate is 0 only when both its
inputs are 0. There’s nothing wrong with this circuit, but it’s

A
Circuit
B

(a) Positive logic system
The circuit is activated when
A'is low and B is low

A—d
Circuit
B—o

(b) Negative logic system
The circuit is activated when
Ais low and B is low

Figure 2.11 Mixed logic.

confusing. When you see a gate with an OR shape you think
of an OR function. However, in this case, the gate is actually
performing an AND operation on low-level signals.

What we need is a means of preserving the AND shape and
indicating we are using negative logic signals. Figure 2.11(b)
does just that. By placing inverter circles at the AND gate’s
inputs and output we immediately see that the output of the
gate is low if and only if both of its inputs are low.
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A —(

S —

C

Active-low output

Figure 2.12 Using mixed logic.

There is no physical difference between the circuits of
Figs. 2.11(a) and 2.11(b). They are both ways of representing
the same thing. However, the meaning of the circuit in
Fig. 2.11(b) is clearer.

Consider another example of mixed logic in which we use
both negative and positive logic concepts. Suppose a circuit is
activated by a low-level signal if input A is low and input B
high, or input D is high, or input C is low. Figure 2.12 shows
how we might draw such a circuit. For most of this book we
will continue to use positive logic.

2.3 Applications of gates

We now look at four simple circuits to demonstrate that a few
gates can be connected together in such a way as to create a
circuit whose function and importance may readily be appre-
ciated by the reader. Following this informal introduction to
circuits we introduce Digital Works, a Windows-based pro-
gram that lets you construct and simulate circuits containing
gates on a PC. We then return to gates and provide a more
formal section on the analysis of logic circuits by means of
Boolean algebra.

Circuits are constructed by connecting gates together. The
output from one gate can be connected (i.e. wired) to the
input of one or more other gates. However, two outputs can-
not be connected together.

Example 1 Consider the circuit of Fig. 2.13 that uses three
two-input AND gates labeled G1, G2, and G3, and a three-
input OR gate labeled G4. This circuit has three inputs A, B,
and C, and an output F. What does it do?

We can tackle this problem in several ways. One approach
is to create a truth table that tabulates the output F for all the
eight possible combinations of the three inputs A, B, and C.
Table 2.8 corresponds to the circuit of Fig. 2.13 and includes
columns for the outputs of the three AND gates as well as the
output of the OR gate, F.

The three intermediate signals P, Q, and R are defined by
P=A-B,Q=B-C,and R = A-C. Figure 2.13 tells us that
we can write down the output function, F, as the logical OR of
the three intermediate signals P, Q, and R; that is,
F=P+Q+R

We can substitute the expressions for P, Q, and R to get
F=A-B+ B-C+ A-C. This is a Boolean equation, but it

[ )2 o)+
N | —Z//

F is the output

P, Q,andR are
A, B, and C are intermediate
inputs variables

Figure 2.13 The use of gates—Example 1.

Inputs Intermediate values Output

A B C P=AB Q=BC R=AC F=P+Q+R
0 0O 0 0 0 0

0 0 1 0 0 0 0
010 0 0 0 0

0 11 0 1 0 1
100 0 0 0 0

T 0 1 0 0 1 1

T 10 1 0 0 1

T 11 1 1 1 1

Table 2.8 Truth table for Fig. 2.13.

doesn’t help us a lot at this point. However, by visually
inspecting the truth table for F we can see that the output is
true if two or more of the inputs A, B, and C, are true. That is,
this circuit implements a majority logic function whose out-
put takes the same value as the majority of inputs. We have
already seen how such a circuit is used in an automatic land-
ing system in an aircraft by choosing the output from three
independent computers to be the best (i.e. majority) of three
inputs. Using just four basic gates, we’ve constructed a circuit
that does something useful.

Example 2 The circuit of Fig. 2.14 has three inputs, one out-
put, and three intermediate values (we’ve also included a
mixed logic version of this circuit on the right hand side of
Fig. 2.14). By inspecting the truth table for this circuit
(Table 2.9) we can see that when the input X is 0, the output,
E is equal to Y. Similarly, when X is 1, the output is equal to Z.
The circuit of Fig. 2.14 behaves like an electronic switch, con-
necting the output to one of two inputs, Y or Z, depending on
the state of a control input X.

The circuit of Fig. 2.14 is a two-input multiplexer that can
be represented by the arrangement of Fig. 2.15. Because the
word multiplexer appears so often in electronics, it is
frequently abbreviated to MUX.
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Figure 2.14 The use of gates—

Mixed logic version

X X
Inputs Intermediate values Output
X Y Z P=X Q=PY R=XZ F=QR
0 0O 1 1 1 0
0 0 1 1 1 1 0
010 1 0 1 1
0 11 1 0 1 1
1T 0 0 0 1 1 0
T 0 1 0 1 0 1
T 10 0 1 1 0
T 11 0 1 0 1

Table 2.9 Truth table for Fig. 2.14.

Input Y ————¥|
N ——— Output F
Electronic

Input Z P switch

Control input X
select Y or Z

Figure 2.15 The logical representation of Figure 2.14.

We can derive an expression for F in terms of inputs X, Y, and
Z in two ways. From the circuit diagram of Fig. 2.14, we can
get an equation for F by writing the output of each gate in
terms of its inputs.

F=QR
Q=YP
P=X
Therefore Q = Y X by substituting for P
R=X-Z
Therefore F = YXX-Z

When we introduce Boolean algebra we will see how this
type of expression can be simplified. Another way of obtain-
ing a Boolean expression is to use the truth table. Each time a
logical one appears in the output column, we can write down

Example 2.

the set of inputs that cause the output to be true. In Table 2.9
the output is true when

1)X=0,Y=1,2=0 (X-Y-Z)
2)X=0Y=1,2=1 (X-Y-Z)
B)X=1,Y=0,2=1 (X-Y-2)
4 X=1,Y=1,2=1 (X-Y-2)

There are four possible combinations of inputs that make the
output true. Therefore, the output can be expressed as the
logical sum of the four cases (1)—(4) above; that is,

F=XYZ+XYZ+XYZ+XYZ

This function is true if any of the conditions (1)—(4) are
true. A function represented in this way is called a sum-of-
products (S-of-P) expression because it is the logical OR (i.e.
sum) of a group of terms each composed of several of vari-
ables ANDed together (i.e. products). A sum-of-products
expression represents one of the two standard ways of writing
down a Boolean expression.

An alternative way of writing a Boolean equation is called
a product-of-sums (P-of-S) expression and consists of several
terms ANDed together. The terms are made up of variables
ORed together. A typical product-of-sums expression has
the form

=(A+B+C):(A+B+C)(A+B+C)

Later we shall examine ways of converting sum-of-products
expressions into product-of sums expressions and vice versa.

Each of the terms (1)—(4) in Example 2, is called a minterm.
A minterm is an AND (product) term that includes each of
the variables in either its true or complemented form. For
example, in the case above X - Y - Z is a minterm, but if we had
had the term X - Y that would not be a minterm, because X - Y
includes only two of the three variables. When an equation is
expressed as a sum of minterms, it is said to be in its canonical
form. Canonical is just a fancy word that means standard.

As the output of the circuit in Fig. 2.14 must be the same
whether it is derived from the truth table or from the logic
diagram, the two equations we have derived for F must be
equivalent, with the result that

YXXZ=XYZ+XYZ+XYZ+XYZ
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This equation demonstrates that a given Boolean function
can be expressed in more than one way.

The multiplexer of Fig. 2.14 may seem a very long way from
computers and programming. However, multiplexers are
found somewhere in every computer because computers oper-
ate by modifying the flow of data within a system. A multi-
plexer allows one of two data streams to flow through a switch
that is electronically controlled. Let’s look at a highly simplified
example. The power of a digital computer (or a human brain)
lies in its ability to make decisions. Decision taking in a com-
puter corresponds to the conditional branch; for example,

IF Day = Weekday
THEN update stock
ELSE print stock list

We can’t go into the details of how such a construct is imple-
mented here. What we would like to do is to demonstrate that
something as simple as a multiplexer can implement some-
thing as sophisticated as a conditional branch. Consider
the system of Fig. 2.16. Two numbers P and Q are fed to a
comparator where they are compared. If they are the same,
the output of the comparator is 1 (otherwise it’s 0). The same
output is used as the control input to a multiplexer that
selects between two values X and Y. In practice, such a system
would be rather more complex (because P, Q, X, and Y are all
multi-bit values), but the basic principles are the same.

Example 3 Figure 2.17 describes a simple circuit with three
gates: an OR gate,an AND gate, and a NAND gate. This circuit

Implementing

IFP=Q
p THEN Y
ELSE X

Output

[

Comparator|-CONtrol | Myltiplexer

J | Pt |
The output from

the comparator is Yy X
trueif P=Q

Figure 2.16 Application of the multiplexer.

G1 [
B G3 F

G2

Figure 2.17 The use of gates—Example 3.

The output from
the multiplexer is

Y if the control input is
true, otherwise X

has two inputs, two intermediate values, and one output.
Table 2.10 provides its truth table.

The circuit of Fig. 2.17 represents one of the most
important circuits in digital electronics, the exclusive or (also
called EOR or XOR). The exclusive or corresponds to the
normal English use of the word or (i.e. one or the other but
not both). The output of an EOR gate output is true if one of
the inputs is true but not if both inputs are true.

An EOR circuit always has two inputs (remember that
AND and OR gates can have any number of inputs). Because
the EOR function is so widely used, the EOR gate has its own
special circuit symbol (Fig. 2.18) and the EOR operator its
own special logical symbol ‘@’; for example, we can write

F=AEORB=A®B

The EOR is not a fundamental gate because it is constructed
from basic gates.

Because the EOR gate is so important, we will discuss it a
little further. Table 2.10 demonstrates that F is true when
A =0and B =1, or when A = 1 and B = 0. Consequently,
the output F = A-B + A-B. From the circuit in Fig. 2.17 we
can write

F=P-Q
P=A+B
Q=AB

Therefore F = (A + B)-A-B

As these two equations (i.e. F = A-B + A-B
and F = (A + B)-A-B are equivalent, we can
therefore also build an EOR function in the
manner depicted in Fig. 2.19.

It’s perfectly possible to build an EOR with
four NAND gates (Fig. 2.20). We leave it as an
exercise for the reader to verify that Fig. 2.20 does
indeed represent an EOR gate. To demonstrate
that two different circuits have the same func-
tion, all you need do is to construct a truth table
for each circuit. If the outputs are the same for
each and every possible input, the circuits are

equivalent.
Inputs Intermediate values Output
A B P=A+B Q=AB F=P-Q
0 0 0 1 0
0 1 1 1 1
1T 0 1 1 1
11 1 0 0

Table 2.10 Truth table for the circuit of Fig. 2.17.



The EOR is a remarkably versatile logic element that pops
up in many places in digital electronics. The output of an
EOR is true if its inputs are different and false if they are the
same. As we’ve already stated, unlike the AND, OR, NAND
and NOR gates the EOR gate can have only two inputs. The
EOR gate’s ability to detect whether its inputs are the same

A
C=A®B
B

Figure 2.18 Circuit symbol for an EOR gate.

ll>°§
[>°K

Figure 2.19 An alternative circuit for an EOR gate.

D1

Figure 2.20 An EOR circuit constructed with NAND gates only.

F=A®B

Word 1
lBit m—1] [Bit 1]Bit O]
a pair of bits
A\
)
\ \
7.
| Word 2
[Bit m—1] [Bit 1] it o]
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allows us to build an equality tester that indicates whether or
not two words are identical (Fig. 2.21).

In Fig. 2.21 two m-bit words (Word 1 and Word 2) are fed
to a bank of m EOR gates. Bit i from Word 1 is compared with
bit 7 from Word 2 in the ith EOR gate. If these two bits are the
same, the output of this EOR gate is zero.

If the two words in Fig. 2.21 are equal, the outputs of all
EORs are zero and we need to detect this condition in order
to declare that Word 1 and Word 2 are identical. An AND gate
will give a 1 output when all its inputs are 1. However, in this
case, we have to detect the situation in which all inputs are 0.
We can therefore connect all m outputs from the m EOR gates
to an m-input NOR gate (because the output of a NOR gate
is 1 if all inputs are 0).

If you look at Fig. 2.21 you can see that the outputs from
the EOR gates aren’t connected to a NOR gate but to an
m-input AND gate with inverting inputs. The little bubbles at
the AND gate’s inputs indicate inversion and are equivalent to
NOT gates. When all inputs to the AND gate are active-low,
the AND gate’s output will go active-high (exactly what we
want). In mixed logic we can regard an AND gate with active-
low inputs and an active-high output as a NOR gate.

Remember that we required an equality detector (i.e. com-
parator) in Fig. 2.21 (Example 2) to control a multiplexer.
We've just built one.

Example 4 The next example of an important circuit con-
structed from a few gates is the prioritizer whose circuit is
given in Fig. 2.22. As this is a rather more complex circuit
than the previous three examples, we’ll explain what it does
first. A prioritizer deals with competing requests for attention
and grants service to just one of those requesting attention.
The prioritizer is a device with #n inputs and » outputs. Each
of the inputs is assigned a priority from 0 to n—1 (assume
that the highest priority is input n—1, and the lowest is 0).

Each EOR gate compares

) F (high if Word 1 = Word 2)

m-input AND gate
with active-low inputs

Figure 2.21 The application of
EOR gates in an equality tester.
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Xo
X1

G2 Ya
7

G3 Y2
X L

) 7

Figure 2.22 Example 4—the priority circuit.

Ya

If two or more inputs are asserted simultaneously, only the
output corresponding to the input with the highest priority
is asserted. Computers use this type of circuit to deal with
simultaneous requests for service from several peripherals
(e.g. disk drives, the keyboard, the mouse, and the modem).

Consider the five-input prioritizer circuit in Fig. 2.22. The
prioritizer’s five inputs x, to x, are connected to the outputs
of five devices that can make a request for attention (input x,
has the highest priority). That is, device i can put a logical
1 on input x; to request attention at priority level i. If several
inputs are set to 1 at the same time, the prioritizer sets only
one of its outputs to 1, all the other outputs remain at 0.
For example, if the input is x,,X3,X,,X;,X, = 00110, the output
YoV3Y2Y1Yo = 00100, because the highest level of input is x,.
Table 2.11 provides a truth table for this prioritizer.

If you examine the circuit of Fig. 2.22, you can see that out-
puty, is equal to input x, because there is a direct connection.
If x, is 0, then y, is 0; and if x, is 1 then y, is 1. The value of x,
is fed to the input of the AND gates G3, G2, and GI in the
lower priority stages via an inverter. If x, is 1, the logical level
at the inputs of the AND gates is 0, which disables them and
forces their outputs to 0. If x, is 0, the value fed back to the
AND gates is 1 and therefore they are not disabled by x,.
Similarly, when x; is 1, gates G3, G2 and GI are disabled,
and so on.

Example 5 Our final example looks at two different circuits
that do the same thing. This is a typical exam question.

(a) Using AND, OR, and NOT gates only, draw circuits to
generate P and Q from inputs X, Y, and Z, where
P=X+Y)Y®PZandQ=Y-Z+ X-Y-Z.

(b) By means of a truth table establish a relationship between
Pand Q.

Outputs
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X
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Y2
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=) a2 s a0 O O 0O 0O 0O 0O O 0O 0O o0 o o o o o

- 4 49 0O 0000 =2 24 4 39 0000 2 2 3 30000 2 5 2 20 0 O O
- 2 00 2 2 OO0 2 2 OO0 2 2 00 2 2 00 - 4 00 2 2 00 = - OO
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O O O 0O 0O 0O OO O OO0 OO0 O0O0O0OO0OO0OO0OO0OO0OO0OO0Oo0OoOoOOoOOoOOoOOoO = o

Table 2.11 Truth table for the priority circuit of Fig. 2.22.

(c) Compare the circuit diagrams of P and Q in terms of speed
and cost of implementation.

(a) The circuit diagram forP = (X + NYPZ)is given by
Fig. 2.23 and the circuit diagram for Q = Y-Z + X-Y-Z
is give by Fig. 2.24.

(b) The truth table for functions P and Q is given in
Table 2.12 from which it can be seen that P = Q.

(c) We can compare the two circuits in terms of speed
and cost.
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Different combinations of gates may be used to implement
the same function. This isn't the place to go into the detailed
design of logic circuits, but it is interesting to see how the
designer might go about selecting one particular
implementation in preference to another. Some of the basic
criteria by which circuits are judged are listed below. In general,
the design of logic circuits is often affected by other factors
than those described here.

Speed The speed of a circuit (i.e. how long it takes the output
to respond to a change at an input) is approximately governed
by the maximum number of gates through which a change of
state must propagate (i.e. pass). The output of a typical gate
might take 5 ns to change following a logic change at its input
(5ns =5 X 107%s).Figs 2.17 and 2.19 both implement an
EOR function. In Fig. 2.17 there are only two gates in series,
whereas in Fig. 2.19 there are three gates in series. Therefore
the implementation of an EOR function in Fig. 2.17 is 50%
faster. All real gates don't have the same propagation delay,
because some gates respond more rapidly than others.
Number of interconnections It costs money to wire gates
together. Even if a printed circuit is used, somebody has to
design it and the more interconnections used the more it will
cost. Increasing the number of interconnections in a circuit
also increases the probability of failure due to a faulty
connection. One parameter of circuit design that takes

COMPARING DIFFERENT DIGITAL CIRCUITS WITH THE SAME FUNCTION

account of the number of interconnections is the total number
of inputs to gates. In Fig. 2.17 there are six inputs, whereas in
Fig. 2.19 there are eight inputs.

Number of packages Simple gates of the types we describe
here are available in 14-pin packages (two pins of which are
needed for the power supply). As it costs virtually nothing to
add extra gates to the silicon chip, only the number of pins
(i.e. external connections to the chip) limits the total number
of gates in a physical package. Thus, an inverter requires two
pins, so that six inverters are provided on the chip. Similarly, a
two-input AND/NAND/OR/NOR gate needs three pins, so
four of these gates are put on the chip. Because each of these
circuits uses three different types of gate, both circuits

require three 14 pin integrated circuits. Even so, the circuit of
Fig. 2.17 is better than that of Fig. 2.19 because there are
more unused gates left in the ICs, freeing them for use by
other parts of the computer system. Note that the circuit of
Fig. 2.20 uses only one package because all gates are the
same type.

You should appreciate that this is an introductory text and
what we have said is appropriate only to logic circuits
constructed from basic logic elements. Computer-aided design
techniques are used to handle more complex systems with
hundreds of gates. Indeed, complex circuits are largely
constructed from programmable digital elements.

_ YZ+YZ

YZ
Figure 2.23 Circuit diagram for P.

Y
Y >o
Z
—Q
{>07 XYZ+ Yz

X XYZ Figure 2.24 Circuit diagram for Q.

Propagation delay The maximum delay in the circuit for
P is four gates in series in the Y path (i.e. NOT gate, AND gate,
OR gate, AND gate). The maximum delay in the circuit for
Q is three gates in series in both Y and Z paths (i.e. NOT gate,
AND gate, OR gate). Therefore the circuit for Q is 33% faster
than that for P.

Cost Total number of gates needed to implement P is 7.
Total number of gates needed to implement Q is 5. Total
inputs in the circuit for P is 12. Total inputs in the circuit for
Q is 9. Clearly, the circuit for Q is better than that for P both
in terms of the number of gates and the number of inputs to
the gates.
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X Y ZI X+Y Y®Z P=(X+Y)(Y®Z) YZI XYZI Q=YZI+XYZ
0 0 o0 1 0 0 0 0 0

0 0 1 1 1 1 1 0 1

0o 1 0 0 1 0 0 0 0

o 1 1 0 0 0 0 0 0

17 0 0 1 0 0 0 0 0

1 0 1 1 1 1 1 0 1

1 1 0 1 1 1 0 1 1

T 1 1 0 0 0 0 0

Table 2.12 Truth table for Figs 2.23 and 2.24.
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Figure 2.25 Digital Works—the initial screen.

2.4 Introduction to Digital Works

We now introduce a Windows-based logic simulator called
Digital Works that enables you to construct a logic circuit
from simple gates (AND, OR, NOT, NAND, NOR, EOR,
XNOR) and to analyze the circuit’s behavior. Digital Works
also supports the tri-state logic gate that enables you to con-
struct systems with buses. In the next chapter we will discover

that Digital Works simulates both simple 1-bit storage
elements called flip-flops and larger memory components
such as ROM and RAM.

After installing Digital Works on your system, you can run
it to get the initial screen shown in Fig. 2.25. We have anno-
tated six of the most important icons on the toolbars. A cir-
cuit is constructed by using the mouse to place gates on the
screen or workspace and a wiring tool to connect the gates



together. The input to your circuit may come from a clock
generator (a continuous series of alternating 1s and 0s), a
sequence generator (a user-defined sequence of 1s and 0s), or
amanual input (from a switch that you can push by means of
the mouse). You can observe the output of a gate by connect-
ing it to a display, LED. You can also send the output of the
LED to a window that displays either a waveform or a
sequence of binary digits.

Digital Works has been designed to be consistent with the
Windows philosophy and has a help function that provides
further information about its facilities and commands. The
File command in the top toolbar provides the options you
would expect (e.g. load, save, save as).

2.4.1 Creating a circuit

We are going to design and test an EOR circuit that has the
logic function A-B + A-B. This function can be imple-
mented with two inverters, two AND gates, and an OR gate.
Figure 2.26 shows three of the icons we are going to use to
create this circuit. The first icon is the new circuit icon that
creates a fresh circuit (which Digital Works calls a macro).
The second icon is the pointer fool used to select a gate (or
other element) from the toolbars. The third icon is a gate that
can be planted in the work area.

Let’s start by planting some gates on the work area. The
EOR requires two AND gates, an OR gate, and two inverters.
First click on the pointer tool on the bottom row of icons. If it
hasn’t already been selected, it will become depressed when
you select it. The pointer tool remains selected until another
tool is selected.

You select a gate from the list on the second row of icons by
firstleft clicking on the gate with the pointer tool and then left
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clicking at a suitable point in the workspace as Fig. 2.27
demonstrates. If you hold the control key down when placing
a gate, you can place multiple copies of the gate in the work-
space. The OR gate is shown in broken outline because we’ve
just placed it (i.e. it is currently selected). Once a gate has been
placed, you can select it with the mouse by clicking the left
button and drag it wherever you want. You can click the right
button to modify the gate’s attributes (e.g. the number of
inputs).

You can tidy up the circuit by moving the gates within the
work area by left clicking a gate and dragging it to where you
want it. Figure 2.28 shows the work area after we’ve moved
the gates to create a symmetrical layout. You can even drag
gates around the work area after they’ve been wired up and
reposition wires by left clicking and dragging any node
(a node is a point on a wire that consists of multiple sections
or links).

Digital Works displays a grid to help you position the gates.
The grid can be turned on or off and the spacing of the grid
lines changed. Objects can be made to snap to the grid. These
functions are accessed via the View command in the top line.

Before continuing, we need to save the circuit. Figure 2.29
demonstrates how we use the conventional File function in
the toolbar to save a circuit. We have called this circuit
OUP_EORI and Digital Works inserts the extension .dwm.

The next step is to wire up the gates to create a circuit. First
select the wiring tool from the tool bars by left clicking on it
(Fig. 2.30). Then position the cursor over the point at which
you wish to connect a wire and left click. The cursor changes
to wire when it’s over a point that can legally be connected to.
Left click to attach a wire and move the cursor to the point
you wish to connect. Left click to create a connection. Instead
of making a direct connection between two points, you can
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Figure 2.26 Beginning a session with Digital Works.
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Figure 2.27 Placing gates in the work area.
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Figure 2.28 Tidying up the circuit.

click on the workspace to create a node (i.e. the connection is
series if straight lines.)

You can make the wiring look neat by clicking on interme-
diate points to create a signal path made up of a series of

straight-line segments. If you select the pointer tool and left
click on a wire, you can drag any of its nodes (i.e. the points
between segments on a line). If you right click on a wire you
can delete it or change its color. Once a wire has been
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Figure 2.30 Wiring gates together.

connected to another wire (or an input or output), the con-
nection point can’t be moved. To move a connection you have
to delete the wire and connect a new one.

Digital Works permits a wire to be connected only between
two legal connections. In Fig. 2.30 the inputs to the two
inverters and the circuit’s outputs aren’t connected anywhere.
This is because each wire must be connected between two
points—it can’t just be left hanging. In order to wire up the

inputs and output we need points we can connect the wire to.
In this case we are going to use the interactive input device
to provide an input signal from a push button and the LED to
show the state of the output.

In Fig. 2.31 we've added two interactive inputs and an LED
to the circuit. When we run the simulator, we can set the
states of the inputs to provide a 0 or a 1 and we can observe
the state of the output on the LED.
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Figure 2.32 Completing the circuit.

We can now wire up the inputs and the output and com-
plete the rest of the wiring as shown in Fig. 2.32. At this stage
we could run the circuit if we wanted. However, we will use
the text tool (indicated by the letter A on the middle toolbar)
to give the circuit a title. Click on the A and then click on the
place at which you wish to add the text to open the text

window. This brings down a text box. Enter the text and click
ok to place it on the screen.

We also wish to label the circuit’s inputs and outputs.
Although you can use the text tool to add text at any point,
input and output devices (e.g. clocks, switches, LEDs) can be
given names. We will use this latter technique because the
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Figure 2.33 Labeling the circuit and inputs and outputs.

names attached to input and output devices are automatically
used to label the timing diagrams we will introduce later.

Figure 2.33 shows the circuit with annotation. The label
EOR circuit has been added by the text tool, and inputs A and
B have been labeled by right clicking on the input devices. In
Fig. 2.33 we have right clicked on the LED to bring down
a menu and then selected Text to invoke the text box (not
shown). You enter the name of the output (in this case Sum)
into the text box and click ok. This label is then appended to
the LED on the screen. You can change the location of the
label by right clicking on its name, selecting Text Style from
the menu, and then selecting the required position (Left,
Right, Top, Bottom).

2.4.2 Running a simulation

We are now ready to begin simulation. The bottom row of
icons is concerned with running the simulation. The leftmost
icon (ringed in Fig. 2.34) is left clicked to begin the simulation.
The next step is to change the state of the interactive input
devices. If you click on the hand tool icon, the cursor changes
to a hand when positioned anywhere over the work area.

By putting the hand cursor over one of the input devices,
you can left click the mouse to change the status of the input
(i.e. input 0 or input 1). When the input device is supplying
a 1, it becomes red. Figure 2.34 shows the situation input
A =1, B =0, and the Sum = 1 (the output LED becomes
red when it is connected to a 1 state). You can change the
states of the input devices to generate all the possible input

values 0,0, 0,1, 1,0, and 1,1 to verify that the circuit is an EOR
(the output LED should display the sequence 0, 1, 1, 0).

Just observing the outputs of the LEDs is not always
enough to get a picture of the circuit’s behavior. We need a
record of the states of the inputs and outputs. Digital Works
provides a Logic History function that records and displays
inputs and outputs during a simulator run. Any input or out-
put device can be added to Logic History. If you select input
A with the pointer tool and then right click, you get a pull
down menu from which you can activate the Add to Logic
History function to record the value of input A. When this
function is selected (denoted by a tick on the menu), all input
is copied to a buffer (i.e. store). As we have two inputs, A and
B, we will have to assign them to the Logic History function
independently.

To record the output of the LED, you carry out the same
procedure you did with the two inputs A and B (i.e. right
click on the LED and select Add to Logic History) (see
Fig. 2.35).

In order to use the Logic History function, you have to
activate it from the Tools function on the toolbar. Selecting
Tools pulls down a menu and you have to select the Logic
History window. Figure 2.36 shows the logic history window
after a simulation run. Note that the inputs and outputs have
the labels you gave them (i.e. A, B, and Sum).

We now need to say something about the way the simulator
operates. The simulator uses an internal clock and a record of
the state of inputs and outputs is taken at each clock pulse.
Figure 2.37 shows how you can change the clock speed from



46 Chapter 2 Gates, circuits, and combinational logic

Digital Works 95 - OUP_EOR1.dwm

File Edit Circut Yiew Tools Help

DS ® & =2 8

D I» D e D D &+ B2 00 o @ B ¢ O

aru
inn

m B =

A7

B G

EOR circuit

The run
tool is used

. B.
to begina [g

The hand tool is used to
operate the input switches. H
First click on the hand tool to
select it. Then move the
hand cursor to the switch
(interactive input device) you
wish to operate. Each click
changes the input state. A
logical one state is shown by

simulation.
The LED connected to the

output becomes red when

the switch becoming red.

L]

the outputis a 1.

7

Figure 2.34 Running the simulator.
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Figure 2.35 Recording inputs and output.

the toolbar by pulling down the Circuit menu and selecting
Clock Speed.
We're not interested in clocks at this stage because we are

the signals are read and recorded at each clock pulse, the entire
simulation is over in a second or so. Blink and you miss it.
We need to stop the clock to perform a manual simulation.

looking at a circuit that doesn’t have a clock. However, because ~ The Logic History window contains a copy of the run, stop,
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pause, and single-step icons to allow you to step through the
simulation. Fig. 2.38 provides details of the Logic History
window. The waveform in Fig. 2.38 was created by putting the
simulator in the pause mode and executing a single cycle at a
time by clicking on the single-step button. Between each cycle
we have used the hand tool to change the inputs to the EOR
gate. We can use the hand tool to both change the state of the

inputs and to single step (you don’t have to use the pointer
tool to perform a single step).

The logic history can be displayed either as a waveform as
in Fig. 2.38 or as a binary sequence as in Fig. 2.39 by clicking
on the display mode icon in the Logic History window. You
can also select the number of states to be displayed in this
window.
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2.4.3 The clock and sequence generator

Inputting data into a digital circuit by using the hand tool to
manipulate push buttons and switches is suitable for simple
circuits, but not for more complex systems. Digital Works
provides two means of generating signals automatically. One
is a simple clock generator, which produces a constant stream
of alternating 1s and Os and the other is a sequence generator,
which produces a user-defined stream of 1s and 0s. The
sequence generator is controlled by Digital Works’ own clock
and a new 1 or 0 is output at each clock pulse. Figure 2.40
shows the icons for the clock and pulse generator and
demonstrates how they appear when placed in the work area.

Figure 2.41 demonstrates how you can define a sequence of
pulses you wish to apply to one of the inputs of a circuit

(in this example, a single AND gate). One of the inputs to the
AND gate comes from the clock generator and the other from
the sequence generator. We've added LEDs to the gate’s inputs
and output to make it easy to observe the state of all signals.
Let’s go through the operations required to place and set
up a sequence generator (called a bit generator by Digital
Works). First left click on the sequencer icon on the toolbar
and then move the cursor to the point at which you wish to
locate this device in the workspace. Then right click to both
place it in the workspace and bring down the menu that con-
trols the bit generator. From the pull-down menu, select Edit
Sequence and the window shown in Fig. 2.41 appears. You
can enter a sequence either from the computer’s keyboard or
by using the mouse on the simulated keyboard in the Edit
Sequence window. You can either enter the sequence in
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binary or hexadecimal form (see Chapter 4 for a discussion of
hexadecimal numbers).

We can run the simple circuit by clicking on the run icon.
When the system runs you will see the LEDs turn on and off.
The speed of the clock pulses can be altered by clicking on
Circuit in the toolbar to pull down a menu that allows you to
set the clock speed.

2.4.4 Using Digital Works to create
embedded circuits

Up to now, we have used Digital Works to create simple cir-
cuits composed from fundamental gates. You could create an
entire microprocessor in this manner, but it would rapidly
become too complex to use in any meaningful way. Digital
Works allows you to convert a simple circuit into a logic ele-
ment itself. The new logic element can be used as a building
block in the construction of more complex circuits. These
complex circuits can be converted into new logic elements,
and so on. Turning circuits into re-usable black boxes is anal-
ogous to the use of subroutines in a high-level language.
Let’s take the simple two-input multiplexer described in
Fig. 2.42 and convert it into a black box with four terminals:
two inputs A and B, a control input C whose state selects one
of the inputs, and an output. When we constructed this cir-
cuit with Digital Works, we used the macro tag icon to place
macro tags at the circuit’s inputs and outputs. A macro tag can

be wired up to the rest of the circuit exactly like an input or
output device. You left-click on the macro tag icon to select it
and then move the cursor to the place on the workspace you
wish to insert the macro tag (i.e. the input or output port).
Then you wire the macro tag to the appropriate input or out-
put point of the circuit. Note that you can’t apply a macro tag
to the input or output of a gate directly—you have to connect
it to an input or output by a wire.

You can also place a macro tag anywhere within the work-
space by right clicking the mouse when using the wiring tool.
Right clicking terminates the wiring process, inserts a macro
tag, and activates a pull-down menu.

We are going to take the circuit of Fig. 2.42 and convert it
into a black box with four terminals (i.e. the macro tags). This
new circuit is just a new means of representing the old
circuit—it is not a different entity. Indeed, this circuit doesn’t
have a different file name and is saved in the same file as the
original circuit.

The first step is to create the macro (i.e. black box) itself.
This is a slightly involved and repetitive process because you
have to repeat the procedure once for each of the macro tags.
Place the cursor over one of the macro tags in Fig. 2.43 and
right click to pull down the menu. Select Template Editor
from the menu with a left click. A new window called
Template Editor appears (Fig. 2.43). You create a black box
representation of the circuit in this window. Digital Works
allows you to draw a new symbol to represent the circuit (in
Fig. 2.43 we’ve used a special shape for the multiplexer).

- Digital Works 95 - OUP_MPLX.dwm

File Edit Circuit “iew Tools Help

R R R =

DDDE)]DDDODDD{%@EI&QED‘ﬂm@%

LA

(= R || UDHKQJ‘

htultiplexer
The macro tag
sEsrs tool s selected |
' to place four

tags at the

The macro tag 8 inputs and
outputs of the

allows you to utpL

i circuit.

define an

interface | .

bfetV\{een a :Df

circuit and the

outside world

o

Figure 2.42 Converting the two-input multiplexer circuit into a black box.



Figure 2.43 shows the Template Editor window. We have
used the simple polyline drawing tool provided by Digital
Works to create a suitable shape for the representation of the
multiplexer. You just click on this tool in the Template Editor
window and draw the circuit by clicking in the workspace at
the points you wish to draw a line. You exit the drawing mode
by double clicking. You can also add text to the drawing by
using the text tool. Figure 2.43 shows the shape we’ve drawn

Template Editor
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for the multiplexer and the label we’ve given it. To add a label
or text to the circuit, select the text tool and click on the point
you wish to insert the text. This action will pull down the Edit
Text box.

The next step is to add pins to the black box in the
Template Editor window and associate them with the macro
tags in the original circuit of Fig. 2.42. Once this has been
done, you can use the black box representation of the multi-
plexer in other circuits. The pins you
have added to the black box are the
connections to the circuit at the
macro tags.
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Figure 2.43 Drawing a symbol for the new circuit.
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Figure 2.46 shows the original or
expanded version of the circuit. Note
how the pins have been numbered
automatically.

To summarize, you create a black
box representation of a circuit by car-
rying out the following sequence of
operations.

« In Digital Works add and connect
(i.e. wire up) a macro tag to your

Fin 1 Selected

4 circuit.

Figure 2.44 Creating an interface point in the black box.

« Right click the macro tag to enter
the template editor.
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this save function simply saves the
drawing you've created but not the
pins, the circuit, or its logic.

2.4.5 Using a macro

Having created a black box circuit
(i.e. a macro), we can now use it as a
building block just like any other
logic element. We will start a new cir-
cuit in Digital Works and begin with
an empty work area. The macro for a
two-input multiplexer we have just
created and saved is used like other
circuit elements. You click on the
embed macro icon (see Fig. 2.47) and
move the pointer to the location in
the workspace where you wish to
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Figure 2.47 Embedding a macro in a circuit.

place the macro. Then you left click and select the appropri-
ate macro from the pull-down menu that appears.

The macro is automatically placed at the point you clicked on
and can be used exactly like a circuit element placed from one of
the circuit icons. Remember that the macro is the same as the
circuit—the only difference is its on-screen representation.

In Fig. 2.47 we have placed two of the multiplexers in the
workspace prior to wiring them together. Figure 2.48 demon-
strates how we can wire these two macros together, add a gate,
and provide inputs and LED displays.

Modifying a circuit

Suppose you build a circuit that contains one or more macros
(e.g. Fig. 2.48) and wish to modify it. A circuit can be modi-
fied in the usual way by opening its file in Digital Works and
making any necessary changes. Digital Works even allows you
to edit (i.e. modify) a circuit while it’s running.

In order to modify a macro itself, you have to return to the
macro’s expanded form (i.e. the circuit that the macro repre-
sents). A macro is expanded by right clicking on the macro’s
symbol and selecting the Edit Macro function from the pull-
down menu that appears. Figure. 2.49 shows the system of
Fig. 2.48 in which the macro representation of the multi-
plexer in the upper left-hand side of the workspace has been
right clicked on.

Selecting the Edit Macro function converts the black box
macro representation into the original circuit as Fig. 2.50
demonstrates. You can now edit this circuit in the normal
way. When editing has been completed, you select the Close
Macro icon that appears on the lower toolbar. Closing this
window returns to the normal circuit view, which contains
the macro that has now been changed.

There are two macros in the circuit diagram of Fig. 2.48. If
we edit one of them what happens to the other and what
happens to the original circuit? Digital Works employs object
embedding rather than object linking. When a macro is
embedded in a circuit, a copy of the macro is embedded in the
circuit. If you modify a macro only that copy is changed. The
original macro is not altered. Moreover, if you have embed-
ded several copies of a macro in a circuit, only the macro that
you edit is changed.

Figure 2.51 demonstrates the effect of editing the macro
version of a two-input multiplexer. Figure 2.51(a) shows the
modified expanded macro. An OR gate has been wired to
the A and B inputs on pins 1 and 2 and a macro tag added
to the output of the OR gate. By clicking on the macro tag, the
Template Editor window is invoked. You can add a pin and
assign it to the macro tag. When you exit the Template Editor
and close the macro, the final circuit of Fig. 2.51(b) appears
(we have added an LED to the output of the new macro).
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2.5 Anintroduction to Boolean
algebra

We've already seen that you can describe circuits containing
gates in terms of variables and AND, OR, and NOT operators.
Consider an AND gate with input variables A and B, and an
output C. We can write the Boolean equation C = A - B which
uses variables A, B, and C and the AND operator. In this sec-
tion we introduce Boolean algebra', show how equations are
manipulated, and demonstrate how logic circuits can be con-
structed with only one type of gate. Students requiring only a
very basic knowledge of Boolean algebra can omit some of
the fine detail that appears later in this section.

George Boole was an English mathematician (1815-1864)
who developed a mathematical analysis of logic and pub-
lished it in his book An Investigation of the Laws of Thought in
1854. Boole’s algebra of logic would probably have remained
atool of the philosopher, had it not been for the development
of electronics in the Twentieth Century.

In 1938 Claude Shannon published a paper entitled ‘A
symbolic analysis of relays and switching circuits, which
applied Boolean algebra to switching circuits using relays.
Such circuits were widely used in telephone exchanges and
later in digital computers. Today, Boolean algebra is used to
design digital circuits and to analyze their behavior.

Digital design is concerned with the conversion of ideas or
specifications into hardware and Boolean algebra is a tool
that facilitates this process. In particular, Boolean algebra
permits an idea to be expressed in a mathematical form and
the resulting expression to be simplified and then translated
into the real hardware of gates and other logic elements.

Let’s begin with a formal definition just in case this book
falls into the hands of a mathematician. Boolean algebra (or
any other algebra) consists of a set of elements E, a set of
functions F that operate on members of E, and a set of basic
laws called axioms that define the properties of E and F. The
set of elements making up a Boolean algebra are variables and
constants that have fixed values of 0 or 1. A Boolean algebra
with 7 variables has a set of 2" possible permutations of these
variables.

Only three functions or operations are permitted in
Boolean algebra. The first two are the logical OR represented
by a plus (e.g. A + B) and the logical AND represented by a
dot (e.g. A*B). Some texts use a U (cup) or a Vv to denote the
logical OR operator and a N (cap) or a A to denote a logical
AND operator.

The use of the plus and dot symbols is rather confusing
because the same symbols are used for addition and multipli-
cation in everyday life. One reason that these particular sym-
bols have been chosen is that they behave rather like
conventional addition and multiplication. Another possible
reason Boole chose + and - to represent the logical OR and

AND functions is that Boole’s background was in probability
theory. The chance of throwing a 1 or a 2 with two throws of
a single die is 1/6 + 1/6, whereas the chance of throwing a 1
anda2is 1/6 X 1/6;that is, the or and and in probability the-
ory also behave like addition and multiplication, respectively.

The third operation permitted in Boolean algebra is that of
negation or complementation and is denoted by a bar over a
constant or a variable. The complement of 0 (i.e.0) is 1 and vice
versa. The equation X + Y-Z = Aisread as X or Y and not Z
equals A” The priority of an AND operator is higher than that
of an OR operator so that the expression means A = X +
(Y-Z) and not A = (X + Y)Z. Some texts use an asterisk to
denote negation and some use a stroke. Thus, we can write
NOT(X) as X or X* or /X.

The arithmetic operations of subtraction and division do
not exist in Boolean algebra. For example, the Boolean
expression X +Y = X + Z, cannot be rearranged in the
form (X+Y) — X =(X+ Z) — X, which would lead to
Y = Z.If you don’t believe this, then consider the case X = 1,
Y = 1, and Z = 0. The left-hand side of the equation yields
X+Y=1+1=1, and the right-hand side yields
X+ Z=1+0=1. That is, the equation is valid even
though Y is not equal to Z.

2.5.1 Axioms and theorems of
Boolean algebra

An axiom or postulate is a fundamental rule that has to be
taken for granted (i.e. the axioms of Boolean algebra define
the framework of Boolean algebra from which everything
else can be derived). The first axiom is called the closure
property, which states that Boolean operations on Boolean
variables or constants always yield Boolean results. If vari-
ables A and B belong to a set of Boolean elements, the opera-
tions A - B,A + B,and NOT A and NOT B also belong to the
set of Boolean elements.

Boolean variables obey the same commutative, distributive,
and associative laws as the variables of conventional algebra.
We take these laws for granted when we do everyday arith-
metic; for example, the commutative law states that
6 X 3 = 3 X 6.Table 2.13 describes the commutative, distribu-
tive, and associative laws of Boolean algebra.

We approach Boolean algebra by first looking at the action
of NOT, OR, and AND operations on constants. The effect of
these three operations is best illustrated by means of the truth
table given in Table 2.14. These rules may be extended to any
number of variables.

We can extend Table 2.14, which defines the relationship
between the Boolean operators and the constants 0 and 1, to

! There are, in fact, an infinite number of Boolean algebras. We are
interested only in the Boolean algebra whose variables have binary two-
state values.
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A+B=B+A The AND and OR operators are commutative so that the order of the
A-B=B-A variables in a sum or product group does not matter.
A-(B-C)=(A-B)-C The AND and OR operators are associative so that the order in which
A+(B+C)=(A+B)+C  sub-expressions are evaluated does not matter.
A-B+C)=A-B+A-C The AND operator behaves like multiplication and the OR operator like
A+B-C=(A+B)A+C) addition. The first distributive property states that in an expression

containing both AND and OR operators the AND operator takes precedence
over the OR.The second distributive law,A + B-C = (A + B)(A + C), is not

valid in conventional algebra.

Table 2.13 Commutative, distributive, and associative laws of Boolean algebra.

NOT AND OR
0=1 0-:0=0 04+0=0
1=0 0-1=0 0+1=0
1.0=0 140=1
1.1=1 14+1=1

Table 2.14 Basic axioms of Boolean algebra.

the relationship between a Boolean operator, a variable, and a
literal (see Table 2.15).

We can prove the validity of the equations in Table 2.15 by
substituting all the possible values for X (i.e. 0 or 1). For
example, consider the axiom 0-X = 0. If X =1 we have
0.1 = 0, which is correct because by definition the output of
an AND gate is true if and only if all its inputs are true.
Similarly, if X = 0 we have 0-0 = 0, which is also correct.
Therefore, the expression 0-X = 0 is correct for all possible

AND OR NOT
0-X=0 0+X=X X =X
1-X =X T+X=1
X-X =X X+ X=X
X-X=0 X+X=1

Table 2.15 Boolean operations on a
constant and a variable.

values of X. A proof in which we test a theorem by examining
all possibilities is called proof by perfect induction.

The axioms of Boolean algebra could be used to simplify
equations, but it would be too tedious to keep going back
to first principles. Instead, we can apply the axioms of
Boolean algebra to derive some theorems to help in the sim-
plification of expressions. Once we have proved a theorem
by using the basic axioms, we can apply the theorem to
equations.

Theorem 1 X+XY=X

Proof X+XY=X-1+XY
=X(1+Y)
= X(1)
=X

Theorem 2 X+X-Y=X+Y

Proof X+X-Y=(X+XY)+XY
=X +X-Y+XY
=X+ YX+X)
=X+ Y(1)
=X+Y

Theorem 3 X-Y+X-Z+Y Z2=X-Y+X-Z

Proof XY+X-Z+Y-Z=X-Y+X-Z+Y-Z(X+X)

=XY+XZ+§YZ+§YZ
=X-Y1+2Z)+X-Z(1 +Y)

=X-Y(1) + X-Z(1)
=X-Y+X-Z

Using 1-X = X and commutativity
Using distributivity
Becausel +Y =1

By Theorem1X = X + X-Y

Remember that X + X = 1

Remember that (X + X) = 1
Multiply bracketed terms
Apply distributive rule
Because (1 +Y) =1
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Inputs
X Y z X X-Y Xz Y.Z XY+XzZ XY+X-Z+Y-Z
0O 0 o0 1 0 0 0 0 /o
0o 0 1 1 0 1 0 1 I
o 1 0 1 0 0 0 0 (0
o 1 1 1 0 1 1 1 1
170 0 0 0 0 0 0 (0
10 1 0 0 0 0 0 Lo
1T 1 o0 0 1 0 0 1 11
11 0 1 0 1 1 1

~<—— same —>
Table 2.16 Proof of Theorem 3 by perfect induction.

We can also prove Theorem 3 by the method of perfect ~(Table 2.16). Because the columns labeled XY + X - Z and
induction. To do this, we set up a truth table and demonstrate  X-Y + X-Z + Y- Z in Table 2.16 are identical for all possible
that the theorem holds for all possible values of X, Y, and Z  inputs, these two expressions must be equivalent.

Theorem 4 XX+Y)=X

Proof XX+Y)=X-X+X-Y Multiply by X
=X+XY Because X- X =X
=X By Theorem 1

Theorem5 XX +Y)=X-Y

Proof XX+Y)=X-X+X-Y B
=0+ X-Y Because X-X =0
=X-Y

Theorem6 (X +Y)(X+Y)=X

Proof X+Y)X+Y)=X-X+X-Y+X-Y+YY
=X+X-Y+XY Because X-X =X, Y-Y =0
=X(1+Y+Y)
=X

Theorem 7 X+Y)X+2Z2)=X-Z+X-Y

Proof X+YV)X+2Z)=X-X+X-Z+X-Y+Y-Z Multiply brackets
=X-Z+XY+Y-Z Because X-X =0
=X-Z+X-Y By Theorem 3

Theorem8 (X+Y)X+Z)(Y+2Z) =X+Y)X+2)

Proof X+Y)VX+2)(Y+2Z)=(X-Z+X-Y)Y+2Z) By Theorem 7
=X-YZ+XZZ+XYY+X-Y-Z
=XYZ+XZ+XY+X-Y-Z Because X - X =1
=X-Z(Y+ 1)+ X-Y(1 + 2)
=X-Z+X-Y
=X+Y)X+2) By Theorem 7

We provide an alternative proof for Theorem 8 when we look at de Morgan’s theorem later in this chapter.
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Theorem 9 XYZ=X+Y+2Z
Proof To prove that X-Y-Z = X + Y + Z, we assume that the
expression is true and test its consequences.
If X + Y + Zis the complement of X-Y - Z, then from the
basic axioms of Boolean algebra, we have
X+Y+7) X-Y-Z)=0and X+Y+2) + (X-Y-Z) =1
Subproof 1 X+Y+2)X-Y-Z=XX-Y-Z+Y-X-Y-Z+Z-X-Y-Z
=X-X-(Y'Z)+Y-Y-(Y-Z) + Z-Z(X-Y)
=0
Subproof 2 (X+Y+ Z) +XY-Z=Y-Z- X)+X+Y+2Z Re-arrange equation
=Y-Z+X+Y+Z UseA-B+B=A+B
=Y +Y-Z)+X+Z Re-arrange equation
—Y+Z+Z+X B
=Y+1+X=1 UseZ+7Z=1
As we have demonstrated that
(§+X+g)~X-Y-Z=0andthat -
X+Y+272)+X-Y-Z=1,itfollows that X + Y + Zis the
complement of X-Y - Z.
Theorem10 X-Y-Z=X+Y+ Z
Proof One possible way of proving Theorem 10 is to use the method
we used to prove Theorem 9. For the sake of variety, we will
prove Theorem 10 by perfect induction (see Table 2.17).
Inputs
X Y z X+Y+zZ X+Y+Z X Y z X-Y-Z
0 0 0 0 1 1 1 1 1
0 0 1 1 0 1 1 0 0
0 1 0 1 0 1 0 1 0
0 1 1 1 0 1 0 0 0
1 0 0 1 0 0 1 1 0
1 0 1 1 0 0 1 0 0
1 1 0 1 0 0 0 1 0
1 1 1 1 0 0 0 0 )
=< same >
Table 2.17 Proof of Theorem 10 by perfect induction.
Theorems 9 and 10 are collectively called de Morgan’s Expression Dual
theorem. This theorem can be stated as an entire functionis X =X+ X X=X-X (replace + by-)
complemented by replacing AND operators by OR operators, 1=X+1 0=X-0 (replace + by-and
replacing OR operators by AND operators, and complement- replace 1 by 0)
ing variables and literals. We make extensive use of de X=X(X+Y) X=X+X-Y (replace-by + and
Morgan’s theorem later. replace + by-)

An important rule in Boolean algebra is called the principle
of duality. Any expression that is true is also true if AND is

As you can see, the dual of each expression is also true.

replaced by OR (and vice versa) and 1 replaced by 0 (and vice
versa). Consider the following examples of duals.
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OBSERVATIONS

When novices first encounter Boolean algebra, it is not Observation 2
uncommon for them to invent new theorems that are incorrect

(because they superficially look like existing theorems). We L L
include the following observations because they represent the Observation 3 -Yis not equal to X-Y
most frequently encountered misconceptions.

XY is not equal to 1
X-Y cannot be simplified

X4

Y+
Y+

Observation4 X + YisnotequaltoX + Y

Observation 1 + X-Yisnotequalto 1

X7
X-Y + X-Y cannot be simplified

ALL FUNCTIONS OF TWO VARIABLES—ALL POSSIBLE GATES

This table provides all possible functions of two variables Aand  of two variables; that is, there are only 16 possible types of

B.These two variables have 22 = 4 possible different two-input gate. Some of the functions correspond to
combinations. We can associate a different function with functions we've already met. Some functions are
each of these 42 = 16 values to create all possible functions meaningless.

Inputs Functions

A B |:0 |:‘I FZ F3 F4 FS F6 |:7 FB F9 F10 F1‘I F12 F‘IB |:14 F15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Function Expression Name

Fo 0

F, A+ B NOR

F, A-B

Fs A NOT

F, A-B

Fs B NOT

Fe A®B EOR

F, A-B NAND

Fe A-B AND

Fo A®B ENOR

Fio B —

Fi A-B+A-B+A-B=A-B=A+B

Fiz A _

Fis A-B+A-B+A-B=AB=A+B

Fis A+B OR

Fis 1

Examples of the use of Boolean algebra in a cheaper version of the logic circuit. The following equations
simplifying equations are generally random functions chosen to demonstrate the

Having presented the basic rules of Boolean algebra, the next rules of Boolean algebra.

step is to show how it’s used to simplify Boolean expressions. ~ (a) X + §7+ X;Y + X+ §l XY
By simplifying these equations you can sometimes produce (b) X-Y-Z+X-Y-Z+X-Y-Z+X-Y-Z



2.5 An Introduction to Boolean algebra 61

(©) XY-XZ ) WXZ+XYZ+W-XY+XY-Z+W-Y-Z

d) X+ V)X + 2)(Y + Z) (9 W-X-Z+W-Z+X-Y-Z+W-X-Y
(e) WH+X+Y-Z)Y(W+X)(X+Y) (h) X+Y+2)X+Y+2)X+Y +2)
Solutions

When I simplify Boolean expressions, I try to keep the order of the variables alphabetical, making it easier to pick out logical
groupings.

@) XAY + X- Y+ X+ V)X Y=X+ Y+ X- Y +X-X- Y+ X-Y-Y

=X+Y+XY AsA-A=0
=X+Y+Y asA+A-B=A+B
=1 asA+A=1

Note: When a Boolean expression can be reduced to the constant 1, the expression is always true and is independent of the
variables.

) XY Z+XYZ+XYZ+XY-Z=X-Y(Z+Z)+X-Z-(Y+Y)

=X-Y-(1)+X-Z-(1)
=X-Y+X-Z

() XY-XZ=XY+XZ By Iheorem 9
=X-Y+X-Z AsF=F
Note: Both expressions in examples (b) and (c) simplify to X-Y + X - Z, demonstrating that these two expressions are equiv-

alent. These equations are those of the multiplexer with (b) derived from the truth table (Table 2.9) and (c) from the circuit
diagram of Fig. 2.14.

d) X+VNVX+2)(Y+Z2)=X-X+X-Z+X-Y+Y-2)-(Y+2Z)
=X-Z+XY+Y-2)-(Y+2Z) AsX-X =0
=X-Z+XY)-(Y+2Z) By Theorem 3
=X-YZ+X-ZZ+X-YY+X-Y-Z
=X-Y-Z+X-Y-Z

(&) WHX+Y Z(W+X)X+Y)=(W-W+W-X+W-Y-Z+W-X+X-X+X-Y-Z)(X+Y)
=(W-X+W-Y-Z+W-X+X+X-Y-Z)(X+Y)
=X+W-Y-2)(X+Y)
=X-X+X-Y+W-X-Y-Z+W-Y-Y-Z
=X-Y+W-X-Y-Z+W-Y-Z
=X-Y+W-Y-ZX+ 1)
=X-Y+W-Y-Z

(f) WXZ + XYZ + WXY + XYZ + WYZ = WXZ + YZ(X + X + W) + WXY
= WXZ + YZ + WXY
=WX(Y + Z) + YZ
Note that YZ = Y + Z so we can write
=WXY+2)+Y+2Z
=W-X+Y-Z BecauseA + A-B=A + B
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(g) WXZ + WZ + XYZ + WXY = Z(WX + W) + XYZ + WXY
=Z(X + W) + XYZ + WXY
=XZ + WZ + XYZ + WXY
=X(Z + YZ) + WZ + WXY
=X(Z+Y) + WZ + WXY
=XZ + XY + WZ + WXY
=XZ + XY(1 + W) + WZ
=XZ+ XY + WZ

h) X+Y+2)X+Y+2)X+Y+2) =Y +2)X+Y+2) as(A+B)(A+B)=A
=ZX+Y)+Y-Z as(A+B)A+C)=A-C+A-B
=X-Z+Y-2+Y-Z

=X-Z+Y(Z+2)

=X-Z+Y

/

For example, 1,0=2

In this example, 2x3=6=0110

Input Xo —A— 2o
XX 11
2-bit by 2-bit " 4-bit product
multiplier 4
Input Yo > 7,
Y Y ——— 13
™ For example, 1,1=3 Figure 2.52 A 2-bit multiplier
Inputs Output
X Y y4
XxY=Z X, Xo Y, Y, Z, Z, Z, Zs
0X0=0 0 0 0 0 0 0 0 0
0X1=0 0 0 0 1 0 0 0 0
0X2=0 0 0 1 0 0 0 0 0
0X3=0 0 0 1 1 0 0 0 0
1X0=0 0 1 0 0 0 0 0 0
1TX1=1 0 1 0 1 0 0 0 1
1X2=2 0 1 1 0 0 0 1 0
1X3=3 0 1 1 1 0 0 1 1
2X0=0 1 0 0 0 0 0 0 0
2X1=2 1 0 0 1 0 0 1 0
2X2=4 1 0 1 0 0 1 0 0
2X3=6 1 0 1 1 0 1 1 0
3X0=0 1 1 0 0 0 0 0 0
3X1=3 1 1 0 1 0 0 1 1
3X2=6 1 1 1 0 0 1 1 0
3X3=9 1 1 1 1 1 0 0 1

Table 2.18 Truth table for a 2-bit by 2-bit multiplier.
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These examples illustrate the art of manipulating Boolean
expressions. It’s difficult to be sure we have reached an optimal
solution. Later we study Karnaugh maps, which provide an
approach that gives us confidence that we’ve reached an opti-
mal solution.

The Design of a 2-bit Multiplier

The following example illustrates how Boolean algebra is
applied to a practical problem. A designer wishes to produce
a 2-bit by 2-bit binary multiplier. The two 2-bit inputs are X,
Xoand Y;, Y, and the four-bit product at the output terminals
is Zs,Z,, Z,, Z,. We have not yet introduced binary arithmetic
(see Chapter 4), but nothing difficult is involved here. We
begin by considering the block diagram of the system
(Fig. 2.52) and constructing its truth table.
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The multiplier has four inputs, X;, X,, Y;, Yo, (indicat-
ing a 16-line truth table) and four outputs. Table 2.18 pro-
vides a truth table for the binary multiplier. Each 4-bit
input represents the product of two 2-bit numbers so that,
for example, an input of X, X, Y;, Y, = 1011 represents
the product 10, X 11, or 2 X 3. The corresponding out-
put is a 4-bit product, which, in this case, is 6 or 0110 in
binary form.

From Table 2.18, we can derive expressions for the four
outputs, Z, to Z;. Whenever a truth table has m output
columns, a set of m Boolean equations must be derived. One
equation is associated with each of the m columns. To derive
an expression for Z,, the four minterms in the Z, column are
ORed logically.

Zo = X, X0 Y, Y, + XX Y, Y, + XX Y0 Y + X XYY

= XI'XO'Y0(§1 +Y,) + XI'XO'Y0(§1 +Y)
=X,-X,-Y, + X,-X,Y,

= X, Yo(X, + X))

= XO'YO

Z = i1'X0'Yl'Y0 + i1'X0'Yl'Y0 + X, 'io'?l'Yo'f' X, 'io'Yl‘Yo + XI'XO'?I'YO + XI'XO'YI'YO
= X, XY, (Yo + Yo) + X XorYo(Y) + Y)) + X, XY, Yo + X, XYY,

=X, XY, + X, Xo Yy + XX Y, Y + XKoo Y0 Y,
= X{)'Yl(il + Xl'i)) + Xl'Yo(io + Xo'§1)

= X{)'Yl(il + ?o) + X1‘Y0(§0 + Y1)

=X, XY, + X Y, Y + X, XY, + XYY,

Z, =X, XY, Yy + X, X Y, Y + X X0 Y, Y,
=X, XY, (Y, + Yo) + XXy Y, Y,
=X, XY, + X,-X,-Y, Y,
= Xl‘Yl(i() + Xo?o)
= Xl‘Yl(io + §o)
=X,-X,'Y, + X,-Y,-Y,

Zy = X" XY Y

We have now obtained four simplified sum of products
expressions for Z, to Zs; that is,

Zy = Xo'Y,

Z, =X, XY, + X Y, Y, + XX Y, + X0 0Y,
Z, = X, XY, + X,-Y,-Y,

Zy = X" X Y'Y,

It’s interesting to note that each of the above expressions is
symmetric in X and Y. This is to be expected—if the problem

itself is symmetric in X and Y (i.e. 3 X 1 = 1 X 3), then the
result should also demonstrate this symmetry. There are
many ways of realizing the expressions for Z; to Z;. The
circuit of Fig. 2.53 illustrates one possible way.

2.5.2 De Morgan'’s theorem

Theorems 9 and 10 provide the designer with a powerful tool
because they enable an AND function to be implemented by
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¥

Figure 2.53 Circuit for the two-bit multiplier.

an OR gate and inverter. Similarly, these theorems enable an
OR gate to be implemented by an AND gate and inverter.
We first demonstrate how de Morgan’s theorem is applied
to Boolean expressions and then show how circuits can be
converted to NAND-only or NOR-only forms. You may
wonder why anyone should wish to implement circuits in
NAND (or NOR) logic only. There are several reasons for
this, but, in general, NAND gates operate at a higher speed
than AND gates and NAND gates can be built with fewer
components (at the chip level). Later we shall examine in
more detail how a circuit can be designed entirely with
NAND gates only.

To apply de Morgan’s theorem to a function the ANDs are
changed into ORs, ORs and the into ANDs and variables (and

Xo v, Yo
\ XoYo 2
| ]
\ XiXoY4
L/
\ Xo¥1Yo
\ X:XoYo
L
\ X1Y1Yo
\ X1XoY4
J
Z;
AR —
\ X;XoY+Yo > 7,

literals) are complemented. The following examples illustrate
the application of de Morgan’s theorem.

1. F=XY+ X:Z We wish to apply de Morgan’s
theorem to the right-hand side
The + becomes - and variables
X-Y and X - Z’ complemented
Variables X-Y and X-Y are
themselves complemented

=XY-X-Z

As you can see, the first step is to replace the OR by an AND
operator. The compound variables X - Y and X - Z are comple-
mented to get X-Y and X-Z. The process is continued by
applying de Morgan to the two complemented groups (i.e.
X-Y becomes X + Y and X-Z becomes X + Z).
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Replace + by - and complement the product terms

Expand the complemented product terms

This is a product term with three elements.
Replace - by + and complement variables
Evaluate the complemented expression (change + to-)

Final step, evaluate E-D

This example demonstrates how you have to keep applying de Morgan’s theorem until there are no complemented terms left

to evaluate.
4. A proof of Theorem 8 by de Morgan’s theorem

X+Y)X+Y)(Y+2Z2)=X+Y)X+2Z2)(Y + 2)

=X+Y+X+Z+Y+7Z

Il
ol

Y +XZ+YZ
+ X-Z

Il
ol
=<

Il
-
=
S
N[

Y)(X + Z)

[
=
+

2.5.3 Implementing logic functions in
NAND or NOR two logic only

Some gates are better than others; for example, the NAND
gate is both faster and cheaper than the corresponding AND
gate. Consequently, it’s often necessary to realize a circuit
using one type of gate only. Engineers sometimes implement
a digital circuit with one particular type of gate because there
is not a uniform range of gates available. For obvious eco-
nomic reasons manufacturers don’t sell a comprehensive
range of gates (e.g. two-input AND, three-input AND, .. .,
10-input AND, two-input OR, ... ). For example, there are
many types of NAND gate, from the quad two-input NAND
to the 13-input NAND, but there are few types of AND gates.
NAND logic We first look at the way in which circuits can
be constructed from nothing but NAND gates and then
demonstrate that we can also fabricate circuits with NOR
gates only. To construct a circuit solely in terms of NAND
gates, de Morgan’s theorem must be invoked to get rid of all
OR operators in the expression. For example, suppose we
wish to generate the expression F = A + B + Cusing NAND
gates only. We begin by applying a double negation to the
expression, as this does not alter the expression’s value but it
does give us the opportunity to apply de Morgan’s theorem.

F=A+B+C The original expression using
OR logic

Double negation has no effect on
the value of a function

F=F=A+B+C

Apply de Morgan's theorem

Complement twice because X = §
Remove inner bar by applying de Morgan
Complement the three two-variable groups
Use Theorem 3 to simplify

Remove outer bar, change + to -

Remove bars over two-variable groups

We’ve now converted the OR function into a NAND func-
tion. The three NOT functions that generate A, B, and C can
be implemented in terms of NOT gates, or by means of two-
input NAND gates with their inputs connected together.

Figure 2.54 shows how the function F = A + B + C can
be implemented in NAND logic only. If the inputs of a
NAND gate are A and B, and the output is C, then C = A-B.
Butif A = B,then C = A-A or C = A.You can better under-
stand this by looking at the truth table for the NAND gate,
and imagining the effect of removing thelines A,B = 0, 1 and
A,B=1,0.

It’s important to note that we are not using de Morgan’s

theorem here to simplify Boolean expressions. We are using
de Morgan’s theorem to convert an expression into a form
suitable for realization in terms of NAND (or NOR) gates.

=D

ABC=A+B+C

L

Figure 2.54 Implementing F = A + B + C with NAND logic only.
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By applying the same techniques to the 2-bit by 2-bit 7, = X, X,Y, + X,Y,Y,
multiplier we designed earlier we can convert the expressions

for the four outputs into NAND-only logic. = XXV, XYoo

= X1>_(0Y1 ) XIYI?O
Zy = XY, = XY, (i.e. NAND gate followed by NOT Zy = Xi XYY,
gate = AND gate) =X, X,Y,Y,

= X XY, + XYY, + X, XY, + X,Y .
Zi = XYy + XYY 4+ XiXoY + X YWY, Figure 2.55 shows the implementation of the multiplier in

= X, X,Y, + X,Y,Y, + X, X,Y, + X,Y,Y, terms of NAND logic only. Note that this circuit performs
- — - exactly the same function as the circuit of Fig. 2.53.
= X, XY - XY, Y, X, XY, X, Y, Y, NOR logic The procedures we’ve just used may equally be

applied to the implementation of circuits using NOR gates

Y
:

gaea

Y
:

Figure 2.55 Implementing the multiplier circuit in NAND logic only.



only. By way of illustration, the value of Z; in the 2-bit multi-
plier can be converted to NOR logic form in the following way

Zy = X" XYY,
= X,-X,-Y,"Y,

=X, +X +Y +Y,

Note that negation may be implemented by an inverter or by
a NOR gate with its inputs connected together.

As a final example of NAND logic consider Fig. 2.56. A
Boolean expression can be expressed in sum-of-products
form as A-B + C-D. This expression can be converted to
NAND logic as

A-B-C-D

Note how the three-gate circuit in Fig. 2.56(a) can be
converted into the three-gate NAND circuit of Fig. 2.56(b).

A AB

B —

€ — AB+CD
b D

(A) Realization of AB+CD
(AND/OR logic).

(b) Realization of AB + CD
(NAND logic).

%% Digital Works 95 - OUPNANDNAND  dwm
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Fig. 2.57 shows the construction of the two versions of
AB + CD in Digital Works. We have provided an LED at each
output and manually selectable inputs to enable you to inves-
tigate the circuits.

2.5.4 Karnaugh maps

When you use algebraic techniques to simplify a Boolean
expression you sometimes reach a point at which you
can’'t proceed, because youre unable to find further
simplifications. The Karnaugh map, or more simply the
K-map, is a graphical technique for the representation and
simplification of a Boolean expression that shows unambigu-
ously when a Boolean expression has been reduced to its
most simple form.

Although the Karnaugh map can simplify Boolean equa-
tions with five or six variables, we will use it to solve problems

Figure 2.56 Implementing
A-B+ C-DinAND/OR and
NAND logic.

FEile Edit Circuit Yiew Tools Help

=

DS H| ¢ a4

D e I Dre D D &+ 8B = @A o

ann

m B *

A

’To o0 uv‘k‘g|

AND-OR circuit MAMD circuit

Figure 2.57 Using Digital Works to investigate two circuits.
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EXAMPLE
Show that the exclusive or, EOR, operator is associative, so
that A@B@C) = (ADB) PC.
ADB@C) =A@ (B-C+ B-C)
= A(B-C + B-C) + A(B-C +
=AB+ C)B + C) + A-B-C
= A(B-C + B-C) + A-
= A-B-C+ A-B-C+

Both these expressions are equal and therefore the @
operator is associative.

We have assumed that if signals are applied to the input
terminals of a circuit, the correct output will appear
instantaneously at the output of the circuit. In practice, this is
not so. Real gates suffer from an effect called propagation
delay and it takes about 1 ns for a change in an input signal to
affect the output. One nanosecond is an unbelievably short
period of time in human terms—but not in electronic terms.
The speed of light is 300 X 108 cm/s and electrical signals in
computers travel at about 70% of the speed of light.In 1 ns

a signal travels about 20 cm.

The propagation delay introduced by logic elements is one
of the greatest problems designers have to contend with. The
diagram illustrates the effect of propagation delay on a single
inverter where a pulse with sharp (i.e. vertical) rising and
falling edges is applied to the input of an inverter. An inverted
pulse is produced at its output and is delayed with respect to
the input pulse. Moreover, the edges of the output pulse are no
longer vertical. The time tHL represents the time delay
between the rising edge of the input pulse and the point at
which the output of the gate has reached V.. Similarly,
represents the time between the falling edge of the input and
the time at which the output reaches Vo,

X Dc > X

Input Output
Input 1T‘
X o
—>t
Outputi4
ol "
<> >
thi ATy

EFFECT OF FINITE PROPAGATION DELAYS ON LOGIC ELEMENTS

You might think that the effect of time delays on the passage
of signals through gates simply reduces the speed at which a
digital system may operate. Unfortunately, propagation delays
have more sinister effects as demonstrated by the diagram. By
the rules of Boolean algebra the output of the AND gate is X- X
and should be permanently 0. Now examine its timing diagram.

At point A the input, X, rises from 0 to 1. However, the X
input to the AND gate does not fall to O for a time equal to
the propagation delay of the inverter. Consequently, for a short
time the inputs of the AND gate are both true, and its output
rises to a logical 1 from points B to C (after its own internal
delay). The short pulse at the output of the AND gate is called
a glitch, and can be very troublesome in digital systems. There
are two solutions to this problem. One is to apply special
design techniques to the Boolean logic to remove the glitch.
The other is to connect the output to a flip-flop, and to clock
the flip-flop after any glitches have died away.

L

— Input waveform
X

1
0 | | I Negated and delayed

output from invertor

Output F slitch
1 M Output from AND gate
0 is a glitch
A B C

with only three or four variables. Other techniques such as
the Quine—McCluskey method can be applied to the simplifi-
cation of Boolean expressions in more than six variables.
However, these techniques are beyond the scope of this book.

The Karnaugh map is just a two-dimensional form of the
truth table, drawn in such a way that the simplification of

a Boolean expression can immediately be seen from the loca-
tion of 1s on the map. A system with n variables has 2" lines in
its truth table and 2" squares on its Karnaugh map. Each
square on the Karnaugh map is associated with a line (i.e.
minterm) in the truth table. Figure 2.58 shows Karnaugh
maps for one to four variables.



0 1
A A A
(a) One-variable Karnaugh map.
AB
C 00 01 11 10
0| ABC ABC ABC ABC
1| ABC ABC | ABC ABC

(c) Three-variable Karnaugh map.
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A

N0 1

0 AB AB

1 p—

AB AB
(b) Two-variable Karnaugh map.

AB
cD 00 01 11 10
00 | ABCD | ABCD | ABCD | ABCD
01 | ABCD | ABCD | ABCD | ABCD
11 |ABCD [ ABCD | ABCD ABCD
10 | ABCD | ABCD | ABCD | ABCD

(b) Four-variable Karnaugh map.

AB 00 01 11 10 AB 00 01 11 10
cD CD
00 | ABCD | ABCD | ABCD | ABCD 00 | ABCD | ABCD | ABCD | ABCD
01 | ABCD |ABCD | ABCD | ABCD 01 | ABCD | ABCD | ABCD | ABCD
11 | ABCD | ABCD | ABCD | ABCD 11 | ABCD | ABCD | ABCD | ABCD
10 | ABCD | ABCD | ABCD | ABCD 10 | ABcD | ABCD | ABCD | ABCD

(a) The region for which A is true. (b) The region for which B is true.

AB 00 01 11 10 AB 00 01 11 10
cD cD
00 | ABCD | ABCD | ABCD | ABCD 00 | ABCD | ABCD | ABCD | ABCD
01 | ABCD |7ABCD | ABCD | ABCD o1 | ABCD | ABCD | ABCD | ABCD
11 | ABCD | ABCD | ABCD | ABCD 11 | ABCD | ABCD | ABCD | ABCD
10 | ABcD | ABCD | ABCD | ABCD 10 | ABcD | ABCD | ABCD | ABCD

(c) The region for which C is true.

Figure 2.59 Regions of a Karnaugh map.

(d) The region for which D is true.

Figure 2.58 The Karnaugh map.

As you can see from Fig. 2.58, each
line in a truth table is mapped onto a
Karnaugh map; for example, in four
variables each logical combination
from A-B-C-D to A-B-C-D has a
unique location. However, the key to
the Karnaugh map is the layout of the
squares. Adjacent squares differ by only
one variable. By adjacent we mean
horizontally and vertically adjacent,
but not diagonally adjacent. For exam-
ple, if you look the three-variable map
of Fig. 2.58(c) you will see that the left-
most two terms on the top line are A - B
-C and A-B-C. The only difference
between these terms is B and B.

Figure 2.59 demonstrates the struc-
ture of a four-variable Karnaugh map
with variables A, B, C, and D. This map
hasbeen repeated four times and, in each
case, the region in which the selected
variable is true has been shaded. The
unshaded portion of each map repre-
sents the region in which the chosen
variable is false.

We will soon see that you need to
develop three skills to use a Karnaugh
map. The first is to plot terms on the map
(i.e. transfer a truth table or a Boolean
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expression onto the map). The second skill is the ability to
group the 1s you've plotted on the map. The third skill is to
read the groups of 1s on the map and express each group as a
product term.

We now use a simple three-variable map to demonstrate
how a truth table is mapped onto a Karnaugh map. One-and
two-variable maps represent trivial cases and aren’t consid-
ered further. Figure 2.60 shows the truth table for a three-
variable function and the corresponding Karnaugh map.
Each of the three 1s in the truth table is mapped onto its
appropriate square on the Karnaugh map.

A three-variable Karnaugh map has four vertical columns,
one for each of the four possible values of two out of the three
variables. For example, if the three variables are A, B, and C,
the four columns represent all the combinations of A and B.
The leftmost column is labeled 00 and represents the region for
which A = 0, B = 0. The next column is labeled 01, and repre-
sents the region for which A = 0, B = 1. The next column is
labeled 11 (not 10), and represents the region for which A = 1,
B = 1. Remember that adjacent columns differ by only one
variable at a time. The fourth column, 10, represents the region
for which A = 1, B = 0.1In fact, a Karnaugh map is made up of
all possible 2" minterms for a system with n variables.

The three-variable Karnaugh map in Fig. 2.60 has two
horizontal rows, the upper row corresponding to C = 0 and
the lower to C = 1. Any square on this Karnaugh map repre-
sents a unique combination of the three variables, from A - B
-CtoA-B-C.

Figure 2.60 demonstrates how a function of three variables,

F=A-B-C+A-B-C+A-B-C is plotted on a Karnaugh

ABC|F AB

00 0| C 00 01 11 10
0010—\\‘

010[0 o [*@

01 1|@)

1000\3(

10 1|® — 0 C?
110[0

111f0

Figure 2.60 Relationship between a Karnaugh map and
truth table.

LB 10 C N 00

map. If it isn’t clear how the entries in the table are plotted on
the Karnaugh map, examine Fig. 2.60 and work out which cell
on the map is associated with each line in the table. A square
containing a logical 1 is said to be covered by a 1.

At this point it’s worth noting that no two 1s plotted on the
Karnaugh map of Fig. 2.60 are adjacent to each other, and
that the function F=A-B-C + A-B-C + A-B-C cannot
be simplified. To keep the Karnaugh maps as clear and
uncluttered as possible, squares that do not contain a 1 are left
unmarked even though they must, of course, contain a 0.

Consider Fig. 2.61 in which the function F, = A-B-C +
A-B- Cis plotted on the left-hand map. The two minterms in
this function are A - B- C and A - B- C and occupy the cells for
which A=1, B=1, C=0, and A=1, B=1, C=1,
respectively. If you still have difficulty plotting minterms, just
think of them as coordinates of squares; for example, A -B-C
has the coordinates 1,1,0 and corresponds to the square
ABC = 110.

In the Karnaugh map for F, two separate adjacent squares
are covered. Now look at the Karnaugh map for F, = A-B at
the right-hand side of Fig. 2.61. In this case a group of two
squares is covered, corresponding to the column A =1,
B = 1. As the function for F, does not involve the variable C,
a 1is entered in the squares for whichA =B = 1and C = 0,
and A = B = 1 and C = 1; thatis, a 1 is entered for all values
of C for which AB = 11. When plotting a product term like
A - B on the Karnaugh map, all you have to do is to locate the
region for which AB = 11.

It is immediately obvious that both Karnaugh maps in
Fig. 2.61 are identical, so that F, = F,and A-B-C + A-B-C
= A - B. From the rules of Boolean algebraA-B-C + A-B-C
= A-B(C+ C) = A-B(1) = A-B.Itshould be apparent that
two adjacent squares in a Karnaugh map can be grouped
together to form a single simpler term. It is this property that
the Karnaugh map exploits to simplify expressions.

Simplifying Sum-of-Product expressions with a
Karnaugh map

The first step in simplifying a Boolean expression by means of
a Karnaugh map is to plot all the 1s (i.e. minterms) in the
function’s truth table on the Karnaugh map. The next step is
to combine adjacent 1s into groups of one, two, four, eight, or

01 11 10

ABC 0

1
0 @’__\\/4
O ABC 1

— ;

F1=ABC + ABC F2=AB

Figure 2.61 Plotting two functions
on Karnaugh maps.



16. The groups of minterms should be as large as possible—a
single group of four minterms yields a simpler expression
than two groups of two minterms. The final stage in simplify-
ing an expression is reached when each of the groups of
minterms (i.e. the product terms) are ORed together to form
the simplified sum-of-products expression. This process is
best demonstrated by means of examples. In what follows, a
four-variable map is chosen to illustrate the examples.

Transferring a truth table to a Karnaugh map is easy
because each 1 in the truth table is placed in a unique square
on the map. We now have to demonstrate how the product
terms of a general Boolean expression are plotted on the map.
Figures 2.62-2.67 present six functions plotted on Karnaugh
maps. In these diagrams various sum-of-products expressions
have been plotted directly from the equations themselves,
rather than from the minterms of the truth table. The follow-
ing notes should help in understanding these diagrams.

1. For a four-variable Karnaugh map

one-variable product term covers 8 squares
two-variable product terms cover 4 squares

B 00 01 1 10
00
L L »AD
o1 [1 2y
L —» ABCD
ACD
10 =

Figure 2.62 Plotting F = AD +ACD + ABCD on a Karnaugh map.

AB
oD 00 01 11 10
/‘/—\
oo (1} TN
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01 1
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1] [ 1 1 1)
10 1
_J

Figure 2.63 Plotting F = AB + CD on a Karnaugh map.
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three-variable product terms cover 2 squares
four-variable product terms cover 1 square.

. A square covered by a 1 may belong to more than one term
in the sum-of-products expression. For example, in
Fig. 2.63 the minterm A-B-C-D belongs to two groups,
A-Band C-D.Ifa 1 on the Karnaugh map appears in two
groups, it is equivalent to adding the corresponding
minterm to the overall expression for the function plotted
on the map twice. Repeating a term in a Boolean expression
does not alter the value of the expression, because one of
the axioms of Boolean algebrais X + X = X.

3. The Karnaugh map is not a square or a rectangle as it

appears in these diagrams. A Karnaugh map is a torus or
doughnut shape. That is, the top edge is adjacent to the
bottom edge and, the left-hand edge is adjacent to the
right-hand edge. For example, in Figure 2.65 the term A -

D covers the two minterms A-B-C-Dand A-B-C-D at

the top, and the two minterms A-B-C-Dand A-B-C-D
at the bottom of the map. Similarly, in Fig. 2.66 the term
B - D covers all four corners of the map. Whenever a group

The two-variable term A D covers four
squares (the regionA = 0and D = 1).The
term A-B-C- D covers one square and is part
of the same group as A - D.

The two-variable term A - B covers four squares
(the region A = 0 and B = 0). The two-variable
term C- D covers four squares (the region C = 1
and D = 1).The term A-B - C- D is common to
both groups.




72 Chapter 2 Gates, circuits, and combinational logic

AB
cO\_ 00 01 11 10
olf1 [ 1)
L AB
o1 ] 1 (1 1)
ABCD
1] 1 L‘ G))M_//*

10 1 1 //‘—_’K

Figure 2.64 PlottingF = A + BD + ABCD on a Karnaugh map.
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Figure 2.65 Plotting F =A D +ACD+ABCD on a Karnaugh map.
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Figure 2.66 Plotting F =BD+ ABCD + ACD on a Karnaugh map.

of terms extends across the edge of a Karnaugh map, we
have shaded it to emphasize the wraparound nature of
the map.

4. In order either to read a product term from the map, or to
plot a product term on the map, it is necessary to ask the

The one-variable term A covers four squares
(the region A = 0).

The four-variable term A-D covers four squares
(the region A = 0, D =0). Note that two squares
are at the top (A = 0,C = 0, D = 0) and two are
at the bottom (A =0,C=1,D =0).

The four-variable term B-D covers four squares
(the region B = 0, D = 0). In this case the
adjacent squares are the corner squares. If you
examine any pair of horizontally or vertically
adjacent corners, you will find that they differ in
one variable only.

question, ‘what minterms (squares) are covered by this
term? Consider the term A - D in Fig. 2.62. This term covers
all squares for which A = 0 and D = 1 (a group of 4).

Having shown how terms are plotted on the Karnaugh

map, the next step is to apply the map to the simplification of
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Three two-variable groups overlap. In
this example, the square (i.e. minterm)
A-B-C-D belongs to groups B-C-D,
A-B-C,and A-C-D.

Figure 2.67 Plotting F = ACD + ABC + BCD + AC on a Karnaugh map.

11 10

Figure 2.68 Karnaugh map for Example 1.
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Figure 2.69 Karnaugh map for Example 2.

the expressions. Once again, we demonstrate this process by
means of examples. In each case, the original function is plot-
ted on the left-hand side of the figure and the regrouped ones
(i.e. minterms) are plotted on the right-hand side.

sion F=A-B+ A-B-C-D + A-B-C-D + A-B-C-D. The
simplified functionisF = A-B + B-D + A-C-D.

Example 1 Figure 2.68 gives a Karnaugh map for the expres-

Example 2 F = A-C-D + A-B-C + A-C-D + A-B-D (Fig.
2.69). In this case only one regrouping is possible. The simpli-
fied functionisF = B-D + A-C-D + A-C-D + A-B-C.

Example 3 F=A-B-C-D+ A-B-C-D + A-B-C-D +
A-B-C-D + A-B-C:D + A-B-C-D + A-B-C-D + A-B-C-D
(Fig. 2.70). This function can be simplified to two product
terms with F = B-D + B-D.
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Figure 2.70 Karnaugh map for Example 3.
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(a) Ones placed. (b) Ones grouped.

AB AB

(c) Alternate grouping.

Figure 2.71 Karnaugh map for Example 4.
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Figure 2.72 Example 5—using a
Karnaugh map to obtain the
complement of a function.

Example 4 F=A-B-C+ A-B-C + A-B-C + A-B-C +
A-B-C (Fig.2.71). We can group the minterms together in two
ways, both of which are equally valid; that is, there are two
equally correct simplifications of this expression. We can write
cither F = A-B + A-C + A-BorF = A-B + B-C + A-B.

Applications of Karnaugh maps

Karnaugh maps can also be used to convert sum-of-products
expressions to the corresponding product-of-sums form. The
first step in this process involves the generation of the com-
plement of the sum-of-products expression.

Example5 The Karnaugh map in Fig.2.72 demonstrates how
we can obtain the complement of a sum-of-products expression.
Consider the expression F = C-D + A-B + A-B + C-D
(left-hand side of Fig. 2.72). If the squares on a Karnaugh
map covered by 1s represent the function F, then the remain-
ing squares covered by 0s must represent F, the complement
of F. In the right-hand side of Fig. 2.72, we have plotted the

complement of this function. The group of four 0s corre-
sponds to the expression F = B-D.

Example 6 We can use a Karnaugh map to convert of sum-
of-products expression into a product-of-sums expression.
In Example 5, we used the Karnaugh map to get the comple-
ment of a function in a product-of-sums form. If we then
complement the complement, we get the function but in a
sum-of-products form (because de Morgan’s theorem allows
us to step between SoP and PoS forms). Let’s convert
F=A-B-C+ C-D + A-B-D into product of sums form
(Fig. 2.73).

The complement of F is defined by the zeros on the map
and may be read from the right-hand map as

F=CD+BC+AD
F=C-D+ B-C+ A-D
= (C+ D)(B + C)(A + D)

We now have an expression for F in product-of-sums form.
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Figure 2.73 Example 6—using a
Karnaugh map to convert an expression
from SoP to PoS form.

Using the Karnaugh map to design a circuit
with NAND logic

Now that we’ve demonstrated how Karnaugh maps are used
to simplify and transform Boolean expressions, we’re going
to apply the Karnaugh map to the design of a simple logic cir-
cuit using NAND logic only.

A fire detection system protects a room against fire by means
of four sensors. These sensors comprise a flame detector, a
smoke detector, and two high-temperature detectors located at
the opposite ends of the room. Because such sensors are prone
to errors (i.e. false alarms or the failure to register a fire), the fire
alarm is triggered only when two or more of the sensors indi-
cate the presence of a fire simultaneously. The output of a sen-
sor is a logical 1 if a fire is detected, otherwise a logical 0.

The output of the fire alarm circuit is a logical 1 whenever
two or more of its inputs are a logical one. Table 2.19 gives the
truth table for the fire detector circuit. The inputs from the
four sensors are labeled A, B, C, and D. Because it is necessary
only to detect two or more logical 1s on any of the lines, the
actual order of A, B, C, and D columns doesn’t matter. The
circuit is to be constructed from two-input and three-input
NAND gates only.

The output of the circuit, E can be written down directly
from Table 2.19 by ORing the 11 minterms to get the expression

F=A-B-C-D+ A-B-C-D+ A-B-C-D + A-B-C-D
+A§§D+AEC§+AECD+ABEE
+ A-B-C:D + A-B-C-D + A-B-C-D

Plotting these 11 minterms terms on a Karnaugh map we
get Fig. 2.74(a). The next step is to group these terms together
into six groups of four minterms (Fig. 2.74(b)). Note that the
minterm A-B-C-D belongs to all six groups.

Therefore, the simplified sum-of-products form of F is
given by

F=AB+A-C+A-D+B-C+B-D+C-D

This expression is (as you might expect) the sum of all possible
two-variable combinations.

Inputs Output
A B C D F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Table 2.19 Truth table for a fire detector.

In order to convert the expression into NAND logic only
form, we have to eliminate the five logical OR operators. We
do that by complementing F twice and then using de Morgan’s
theorem.

F=F=AB+AC+AD+BC+BD+CD

Although we have realized the expression in NAND logic
as required, it calls for a six-input NAND gate. If the expres-
sion for F is examined, it can be seen that six terms are
NANDed together, which is the same as ANDing them and
then inverting the result. Because of the associative property
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Figure 2.74 Karnaugh map corresponding
(a) Location of the 1s. (b) After grouping the 1s. to Table 2.19.
A
Inputs Number F
B A B C D
C 0 0 0 0 0 0
0 0 0 1 1 0
D o 0o 1 0 2 0
:i:>—» o 0 1 1 3 0
0 1 0 0 4 1 Divisible by 4
0 1 0 1 5 1 Divisible by 5
0 1 1 0 6 1 Divisible by 6
0 1 1 1 7 1 Divisible by 7
1 0 0 0 8 1 Divisible by 4
1 0 0 1 9 0
1 0 1 0 10 1 Divisible by 5
Figure 2.75 NAND-only circuit for fire detector. 1 0 1 1 11 0
1 1 0 0 12 1 Divisible by 6
of Boolean variables, we can write X(Y-Z) = (X-Y)Z and 1 1 0 1 13 0
hence extending this to our equation we get 1 . . 0 14 1 Divisible by 7
= 1 1 1 1 15 0 False by definition

F=A-B-A-C-A-D-B-C-B-D-C-D

Figure 2.75 shows how this expression can be implemented
in terms of two- and three-input NAND gates.

Using Karnaugh Maps—an example

A circuit has four inputs, A, B, C, and D, representing the 16
natural binary integers from 0000 to 1111 (i.e. 0 to 15). The
output of the circuit, F, is true if the input is divisible by a
multiple of 4, 5, 6, or 7, with the exception of 15, in which case
the output is false. Zero is not divisible by 4, 5, 6, or 7. Suppose
we wish to design a logic circuit to implement F using NAND
gates only.

We can obtain a sum-of-products expression for F from
Table 2.20 by writing down the sum of the minterms (i.e. the
lines witha 1).

F=A-B-C-D+ A-B-C-D+ A-B-C-D + A-B-C-D
+ A-B-C-D + A-B-C-D + A-B-C-D + A-B-C-D

Table 2.20 Truth table for example.

By means of Boolean algebra the expression can be simpli-
fied to

F=A-B-C(D+ D) + A-B-C(D + D) + A-B-D(C + C)
+ A-B-D(C + C)
=A-B-C+ A-B-C+ AB-D + A-B-D
= A-B(C + C) + A-D(B + B)
=AB+AD
Figure 2.76 gives the Karnaugh map for F. In Fig. 2.77 the
squares covered by 1s are formed into two groups of four.

This gives F = A-B + A-D, which is reassuringly the same as
the result obtained above.
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Figure 2.76 Karnaugh map for F.
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Figure 2.77 Karnaugh map after regrouping the minterms.

To obtain a product-of-sums expression, it’s necessary to
generate the complement of F in a sum-of-products form
and then complement it.

Get the complement of F

Complement of F in
product-of-sums form

= A-A+ A-D+ A-B+ B-D Multiply out sum terms

=AD+AB+BD Complement of F in
sum-of-products form

=AD+AB Complement in

simplified sum-of-

products form
F=AD+AB Complement the
complement to get F
= (A + D)(A + B) Function in required
product-of-sums form
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Figure 2.78 NAND-only circuit.

Note that the complement of F in sum-of-products form
could have been obtained directly from the Karnaugh map of
F by considering the squares covered by zeros.

To convert the expression F = A-B + A-D into NAND
logic form, the ‘“+’ must be eliminated.

F=F=A-B+ A-D=A-B-A-D

The inverse functions A and D can be generated by two-
input NAND gates with their inputs connected together.
Figure 2.78 implements F in NAND logic only.

Karnaugh maps and don't care conditions

We now demonstrate how Karnaugh maps can be applied
to problems in which the truth table isn’t fully specified; that
is, for certain input conditions the output is undefined.
Occasionally, a system exists in which a certain combination
of inputs can’t happen; or, if it does, we don’t care what the
output is. In such cases, the output may be defined as either
true or false.

Consider the Karnaugh map of Fig. 2.79 for
F = A-B-D + A-B-C-D.Now suppose that the input condi-
tions A-B-C-D and A-B-C-D cannot occur. We have marked
these two inputs on the map with an X. The value of X is
undefined (if the input can’t occur then the value of the out-
put is undefined).

If an input can’t occur and the output is undefined, we can
cover that square with eithera 0 ora 1. In Fig. 2.79(b) we have
made one of the Xs a 1 and one of the Xs a zero. We can
express the output function as F = B- D, which is simpler
than the function in Fig. 2.79(a).

A don’t care condition is set toa 0 or a 1 in order to simplify
the solution. There is an important exception. Although an
impossible input can’t occur in normal circumstances, it
could under fault conditions (e.g. when an input circuit
fails). No designer would assign an output to an impossible
input condition that might lead to an unsafe or dangerous
situation. However, the ultimate aim is to cover all the 1s in
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the map and to incorporate them in the smallest number of
large groups.

The following example demonstrates the concept of
impossible input conditions. An air conditioning system has
two temperature control inputs. One input, C, from a cold-
sensing thermostat is true if the temperature is below 15°C
and false otherwise. The other input, H, from a hot-sensing
thermostat is true if the temperature is above 22°C and false
otherwise. Table 2.21 lists the four possible logical conditions
for the two inputs.

AB AB

00 01 1m0 O\ 00 01

CcD

The input condition C = 1,H = 1 in Table 2.20 has no real
meaning, because it’s impossible to be too hot and too cold
simultaneously. Such an input condition could arise only if at
least one of the thermostats failed. Consider now the example
of an air conditioning unit with four inputs and four outputs.
Table 2.22 defines the meaning of the inputs to the controller.

The controller has four outputs P, Q,R,and S. When P = 1
a heater is switched on and when Q = 1 a cooler is switched
on. Similarly, a humidifier is switched on by R =1 and a
dehumidifier by S = 1.In each case a logical 0 switches off the

appropriate device. The relationship
between the inputs and outputs is as

follows.
11 10

00 00

« If the temperature and humidity are
both within limits, switch off the
heater and the cooler. The humidifier

01 ﬂ X X 01

ank

and dehumidifier are both switched
off unless stated otherwise.

11 U @ 11

W

If the humidity is within limits,
switch on the heater if the tempera-
ture is too low and switch on the

10 10

cooler if the temperature is too high.

If the temperature is within limits,

(a) The function F = ABD + ABCD.

Note that the inputs ABCD and ABCD

cannot occur the expression

Figure 2.79 The effect of don’t care conditions.

Inputs Meaning

C H

0 0 Temperature OK

0 1 Too hot

1 0 Too cold

1 1 Impossible condition

Table 2.21 Truth table for a pair of temperature sensors.

(b) The function F = BD.
Minterm ABCD is included to simplify

switch on the heater if the humidity is
too low and the cooler if the humidity
is too high.

If the humidity is high and the tem-
perature low, switch on the heater. If
the humidity is low and the tempera-
ture high, switch on the cooler.

« If both the temperature and humidity are high switch on
the cooler and dehumidifier.

« If both the temperature and humidity are too low switch on
the heater and humidifier.

The relationship between the inputs and outputs can now be
expressed in terms of a truth table (Table 2.23). We can draw
Karnaugh maps for P to S, plotting a 0 for a zero state,a 1 for a
one state, and an X for an impossible state. Remember that an
X on the Karnaugh map corresponds to a state that cannot
exist and therefore its value is known as a don’t care condition.

Input Name Meaning when input = 0 Meaning when input = 1
H Hot Temperature << upper limit Temperature > upper limit
C Cold Temperature > lower limit Temperature < lower limit
W Wet Humidity < upper limit Humidity > upper limit
D Dry Humidity > lower limit Humidity < lower limit

Table 2.22 Truth table for a climate controller.



2.5 An Introduction to Boolean algebra 79

Inputs Condition Outputs
H C w D P Q R S
heater cooler humidifier dehumidifier
0 0 0 0 OK 0 0 0 0
0 0 0 1 Dry 1 0 0 0
0 0 1 0 Wet 0 1 0 0
0 0 1 1 Impossible X X X X
0 1 0 0 Cold 1 0 0 0
0 1 0 1 Cold and dry 1 0 1 0
0 1 1 0 Cold and wet 1 0 0 0
0 1 1 1 Impossible X X X X
1 0 0 0 Hot 0 1 0 0
1 0 0 1 Hot and dry 0 1 0 0
1 0 1 0 Hot and wet 0 1 0 1
1 0 1 1 Impossible X X X X
1 1 0 0 Impossible X X X X
1 1 0 1 Impossible X X X X
1 1 1 0 Impossible X X X X
1 1 1 1 Impossible X X X X

Table 2.23 Truth table for a climate controller.

WDHC 00 01 11 10
00 1 X
01 1 1 X
11 X X X X
10 1 X

Figure 2.80 Karnaugh map for P (the heater).

Figure 2.80 provides a Karnaugh map corresponding to
output P, the heater. We have marked all the don’t care condi-
tions with an X. We could replace the Xs by 1s or 0s. However,
by forcing some of the don’t care outputs to be a 1, we can
convert a group of 1s into a larger group.

Figure 2.81 provides Karnaugh maps for outputs P, Q, R,
and S. In each case we have chosen the don’t care conditions
to simplify the output function. For example, the Karnaugh
map of Fig. 2.81(a) corresponds to output P where we have
included six of the don’t care conditions within the groupings
togetP =C+ H-D.

You should appreciate that by taking this approach we have
designed a circuit that sets the output 1 for some don’t care
inputs and 0 for other don’t care inputs. You cannot avoid
this. The output of any digital circuit must always be ina 0 or
a 1 state. As we said at the beginning of this chapter, there is
no such state as an indeterminate state. It is up to the designer
to choose what outputs are to be assigned to don’t care
inputs.

Exploiting don’t care conditions—constructing a
seven-segment decoder

We now design a BCD-to-seven-segment decoder (BCD
means binary-coded decimal). The decoder has a 4-bit nat-
ural binary BCD input represented by D, C, B, A, where A is
the least-significant bit. Assume that the BCD input can
never be greater than 9 (Chapter 4 describes BCD codes). The
seven-segment decoder illustrated by Fig. 2.82 has seven out-
puts (a to g), which are used to illuminate any combination of
bars a to g of a seven-segment display; for example, if the code
for 2 (i.e. 0010) is sent to the decoder, segments a, b, d, e, and
g are illuminated to form a 2.

The truth table for this problem is given in Table 2.24. This
table has four inputs and seven outputs (one for each of the
segments).

We can now solve the equation for segments a to g. By
using Karnaugh maps the don’t care conditions can be
catered for.
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WD 00 01 11 10 WD 00 01 11 10
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00 1 X 00 X 1
01 [1 1] X 01 X 1
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(a) P=C+HD. (b) Q=H +CW.
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The decoder converts

a 4-bit binary numeric
codeon D, C, B, Ainto
the signals that light up
segments a to g of the
display

Figure 2.82 The seven-segment display.

Figure 2.83 gives the Karnaugh map for segment a. From
the Karnaugh map we can write down the expression for
a=D+ B+ CA+CA.

An alternative approach is to obtain a by considering
the zeros on the map to get the complement of a. From
the Karnaugh map in Fig. 2.84 we can write

a = D-C-B-A + C-B-A. Therefore,

Figure 2.871 Karnaugh maps for outputs
P,Q,R,and S.

a=D-C-B-A+ C-B-A
=(D+C+B+A)(C+B+A)
=D-C+D-B+D-A+C-C+CB+CA+CB
+ BB+ B-A+ C-A+BA+AA
=D-C+DB+DA+CB+CA+CB+B
+ B-A+ C-A+ BA
=D-C+D-A+CA+B+CA

=D-C+ C-A+B+CA

This expression offers no improvement over the first realiza-
tion of a.

Figure 2.85 provides the Karnaugh map for segment b,
which givesb = C + B-A + B-A. We can proceed as we did
for segment a and see what happens if we use b. Plotting zeros
on the Karnaugh map for b we get b = C + B-A-C-B-A
Fig. 2.86. Therefore,

b=CB-A+CBA
= (C+B+A)(C+B+A)
=C+B-A+BA



2.5 An Introduction to Boolean algebra 81

Inputs Character Outputs
DCBA a b c d e f g
0000 L 1 1 1 1 1 1 0
0001 | 0 1 1 0 0 0 0
0010 i 1 1 0 1 1 0 1
0011 I 1 1 1 1 0 0 1
0100 N 0 1 1 0 0 1 1
0101 :Z_I 1 0 1 1 0 1 1
0110 I 1 0 1 1 1 1 1
0111 nl 1 1 1 0 0 0 0
1000 Ul 1 1 1 1 1 1 1
1001 o 1 1 1 0 0 1 1
1010 Forbidden code X X X X X X X
1011 X X X X X X X
17100 X X X X X X X
17101 X X X X X X X
17110 X X X X X X X
1111 X X X X X X X
Table 2.24 Truth table for a seven—segment display.
DC DC
BA 00 01 11 10 BA 00 01 gkl 10
0| X ] 00| 4 , - U\
01 1 X ; 01 a4 X) | 1
- T~
o1 | x| X (R I I 9
B
10 1 1 X X 10 x X .
3 1 \_ ( M) Figure 2.83 Karnaugh map for the
I segment a control signal.
DC DC
BA 00 01 gkl 10 BA 00 01 1 10
00 0 X 00 (o X)
01| o X 01 @ X
11 X X 11 X X
10 A A 10 X X Figure 2.84 Karnaugh map for the
complement of segment a.
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DC DC
BA 00 01 11 10 BA 00 01 11 10
_— —
0| 1 X . 00 4} 1 X 1)
o1 1 X 1 Sl X 1
| 1 1 X X | [ 1 X X
1001 4 X X 10 1) X \X Figure 2.85 Karnaugh map for
segment b.
DC DC
AN 00 01 11 10 BN 00 01 11 10
00 X 00 X
01 o | X 01 @ X
1 X X 11 X X
10 0 X X 10 o x) X Figure 2.86 Karnaugh map for the
complement of segment b.

This expression yields the same result as that obtained
directly by considering the 1s on the Karnaugh map. The
equations for the remaining five segments can be considered n Fs Fo
in a similar way.

Inputs Number Outputs

D C B A

Example of the use of Karnaugh maps to 0000 0-0=0 0 0 0
implement a circuit 0 0 01 0-1=-1 1 0 1
A logic circuit has four inputs D, C, B, A, which representtwo 0 0 1 0 0—2=-2 1 1 0
pairs of bits (D,C) and (B,A). Bits (B,A) are subtracted from bits 0 0 1 1 0—-3=-3 1 1 1
(D,C) to give a result F, Fy and an n-bit that indicates a negative 0100 1-0=1 0 0 1
result. Table 2.25 provides a truth table for this problem. 01 0 1 1-1=0 0 0 0
We first construct three Karnaugh maps for the outputs 011 0 1—92=-1 1 0 1
and use them to obtain simplified sum-of-product expres- 01 1 1 1-3=-9 1 1 0
sion's (Table 2.25). . 100 0 0_0=2 0 1 0
Flgurf'a 2.87 provides the thret? Karnaugh maps cor- 100 1 o1—1 0 0 1

responding to outputs n, F,, and F in the truth table. The 1s
. 10 1 0 2—2=0 0 0 0

have been regrouped under each truth table to provide the
minimum number of large groups. tooT 2m3=71 ! 0 !
We can write down expressions for n, F;, and F, from T1oo 3-0=3 0 L 1
Fig. 2.87 as T 1 0 1 3—1=2 0 1 0
T 1 1 0 3—2=1 0 0 1
n=D-B+ CBA+ D-CA 11 1 1 3-3=0 0 0 0

F,=D-C-B + D-C-B + D-B-A + D-B-A
Fp=C-A+ CA Table 2.25 Truth table for a two-bit subtractor.



2.6 Special-purpost logic elements 83

DC DC DC
BA 00 01 11 10 BA 00 01 1 10 BA 00 01 11 10
00 00 1 1 00 1 1
01 1 01 1 01 1 1
1 1 1 1 1Ml 1 1 1 1 1
10 1 1 10| 1 10 1 1
(a) Karnaugh map for n. (b) Karnaugh map for F;. (c) Karnaugh map for F,.
DC DC DC
BA 00 01 1 10 BA 00 01 1 10 BA 00 01 11 10
00 00 ﬁ 1) 00 l 1 1 }
01 | M 01 [_1, o1| 1 l | 1
1
1 | 11 (7 11 E D) n| o | l 1
10 [ U 1J 10 ‘ 1 10 r 1 1 ]

(a) Regrouped Karnaugh map for n.

Figure 2.87 The Karnaugh maps for the subtractor.

2.6 Special-purpose logic
elements

So far, we’'ve looked at the primitive logic elements from
which all digital systems can be constructed. As technology
progressed, more and more components were fabricated on
single chips of silicon to produce increasingly complex cir-
cuits. Today, you can buy chips with tens of millions of gates
that can be interconnected electronically (i.e. the chip pro-
vides a digital system whose structure can be modified elec-
tronically by the user). Indeed, by combining microprocessor
technology, electronically programmable with arrays of
gates, we can now construct self-modifying (self-adaptive)
digital systems.

Let’s briefly review the development of digital circuits. The
first digital circuits contained a few basic NAND, NOR, AND
gates, and were called small-scale integration (SSI). Basic SSI
gates were available in 14-pin dual-in-line (DIL) packages.
Dual-in-line simply means that there are two parallel rows of
pins (i.e. contacts) forming the interface between the chip
and the outside world. The rows are 0.3 inches apart and the

(b) Regrouped Karnaugh map for F;

(c) Regrouped Karnaugh map for Fy,

pins are spaced by 0.1 inch. Two pins are used for the power
supply (V.. = +5.0 V and ground = 0 V). These devices are
often called 74-series logic elements because the part number
of each chip begins with 74; for example, a 7400 chip contains
four NAND gates. Today, the packaging of such gates has
shrunk to the point where the packages are very tiny and are
attached to circuit boards by automatic machines.

It soon became possible to put tens of gates on a chip and
manufacturers connected gates together to create logic func-
tions such as a 4-bit adder, a multiplexer, and a decoder. Such
circuits are called medium-scale integration (MSI). By the
1970s entire systems began to appear on a single silicon chip,
of which the microprocessor is the most spectacular example.
The technology used to make such complex systems is called
large-scale integration (LSI). In the late 1980s LSI gave way to
very-large-scale integration (VLSI), which allowed designers
to fabricate millions of transistors on a chip. Initially, VLSI
technology was applied to the design of memories rather
than microprocessors. Memory systems are much easier to
design because they have a regular structure (i.e. a simple
memory cell is replicated millions of times).
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A major change in digital technology occurred in the mid
1990s. From the 1970s to the 1990s, digital logic had largely
used a power supply of +5 V. As the number of gates per chip
approached the low millions, the problem of heat manage-
ment created a limit to complexity. It was obvious that more
and more transistors couldn’t be added to a chip without
limit because the power they required would destroy the chip.
Radiators and fans were used to keep chips cool. Improvements
in silicon technology in the 1990s provided digital logic ele-
ments that could operate at 3 V or less and, therefore, create
less heat. A further impetus to the development of low-power
systems was provided by the growth of the laptop computer
market.

We now look at the characteristics of some of the simple
digital circuits that are still widely available—even though
VLSI systems dominate the digital world, designers often
have to use simple gates to interface these complex chips to
each other.

2.6.1 The multiplexer

A particularly common function arising regularly in digital
design is the multiplexer, which we met earlier in this chapter.
Figure 2.88 shows the 74157, a quad two-input multiplexer,
which is available in a 16-pin MSI circuit. The prefix quad
simply means that there are four multiplexers in one package.

Each of the four Y outputs is connected to the correspond-
ing A input pin when SELECT = 0 and to the B input when
SELECT = 1. The multiplexer’s STROBE input forces all Y
outputs into logical 0 states whenever STROBE = 1. We have
already described one use of the multiplexer when we looked
at some simple circuits.

Inputs

A ——m[¢
1B ——————»|~«—Tswitch

Multiplexer Outputs

2A————» ¢
2B ————— ¥ [*4+— ' 5witch

3A ————————— s
3B ——————¥{|*+— switch

N —
48—+ switch

SELECT >
v\ 5

4

The SELECT inputs determines

STROBE
whether the output is connected

The STROBE input enables thel® the Ainput or the B input

multiplexer. When STROBE = 1
all Y outputs are set to zero.
When STROBE = 0 the outputs
are either the A or B inputs

Figure 2.88 The 74157 quad two-input multiplexer.

Figure 2.89 illustrates the structure of a 1-of-8 data
multiplexer, which has eight data inputs, Dy, D,, D,, .. ., D;,
an output Y, and three data select inputs, Sy, S;, S,. When S,
S1,S;, = 0,0, 0 the output isY = D, and when S, S;, S, = 1,
0, 0 the output Y = Dy, etc. That is, if the binary value at the
data select input is 7, the output is given by Y = D;.

A typical application of the 1-of-8 multiplexer is in the
selection of one out of eight logical conditions within a digital
system. Figure 2.90 demonstrates how the 1-of-8 multiplexer
might be used in conjunction with a computer’s flag register
to select one of eight logical conditions. We cover registers in
the next chapter—all we need know at this points that a regis-
ter is a storage unit that holds the value of 1 or more bits.

The flag register in Fig. 2.90 stores the value of up to eight
so-called flags or marker bits. When a computer performs an
operation (such as addition or subtraction) it sets a zero flag
if the result was zero, a negative flag if the result was negative,
and so on. These flags define the state of the computer. In
Fig.2.90 the eight flag bits are connected to the eight inputs of
the multiplexer. The 3-bit code on S, to S, determines which
flag bit is routed to the multiplexer’s Y output. This code
might be derived from the instruction that the computer is
currently executing. That is, the bits of the instruction can be
used to select a particular flag (via the multiplexer) and the
state of this flag bit used to determine what happens next.

Suppose a computer instruction has the form IF x = 0
THEN do something. The computer compares x with 0, which
sets the zero flag if x is equal to zero. The bits that encode this
instruction provide the code on S, to S, that routes the Z flag to
theY output. Finally, the computer uses the value of the Y output
to ‘do something’ or not to ‘do something’ Later we shall see how
alternative courses of action are implemented by a computer.

2.6.2 The demultiplexer

The inverse function of the multiplexer is the demultiplexer,
which converts a binary code on 7 inputs into an asserted

Multiplexer
Do A
D-I—) B 0
S —
3 D .
—
Dy E - Y output
D5 fF .
Dg————»G -
D7—>H .
11
Eight inputs So S 52\

Three-bit select
input connects one
of eight inputs to
the Y output

Figure 2.89 The 1-of-8 multiplexer.



Flag register

Z|N| C
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» D,
»| D,
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» D,
» D
> Select
The flag register contains/y So $1°S;
eight status bits such as the A 4 A
zero, carry, and negative
flags ) A
The 3-bit code from T
the select register U
determines which flag /

bit appears at the output.

Figure 2.90 The 1-of-8 multiplexer.
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Figure 2.91 The demultiplexer (3-line to 8-line decoder).

Select register

Y3
For each value on C, B, A
from 000 to 111, one of
Y4 Yqto Y7 goes high

Ys
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level on one of 2" outputs. The demulti-
plexer circuit of Fig. 2.91 has three inputs
A, B, and C and eight outputs Y, to Y,.
The three inverters generate the comple-
ments of the inputs A, B, and C. Each of
the eight AND gates is connected to three
of the six lines A, A, B, B, C, C (each of the
three variables must appear in either its
true or complemented forms).

The output of first gate, Y, is A-B-C
and is 1 if all inputs to the AND gates are
1 (i.e. A=1B=1C= 1). Therefore,
Y,is 1 when A =0,B =0,C = 0. If you
examine the other AND gates, you will
see that each gate is enabled by one of the
eight possible combinations of A, B, C.

This circuit is called a 3-line to 8-line
demultiplexer, because it converts a 3-bit
binary value, A, B, C, into one of 2° = 8
outputs. Table 2.26 provides a truth table
for this circuit, which is also called a
decoder because it can take, for example,
the bits that define a computer instruc-
tion and decode it into individual
instructions as Fig. 2.92 demonstrates.

Let’s look at an actual demultiplexer,
the 74138 3-line to 8-line demultiplexer
(Fig. 2.93). The 74138’s eight outputs, Y,
to Y,, are active-low and remain in a high
state unless the corresponding input is
selected. The device has three enable
inputs, E1, E2, E3, which must be 0, 0, 1
respectively, for the chip to be selected.
When the chip is selected, one (and only
one) of the eight outputs is forced into a
0 state by the 3-bit code at the select
inputs, A, B, C. Remember that the
74138’s outputs are active-low.

One application of this circuit is as a
device selector. Suppose that a system has
eight devices and only one can be active
(in use) at any instant. If each device is
enabled by a 0 at its input, the binary
code applied to the 74138’s C, B, A inputs
will determine which device is selected
(assuming that the 74138 is enabled by 0,
0,1 atits E1, E2, E3 enable inputs).

The demultiplexer generates the 2"
minterms of an n-bit function. Why?
Because a three-variable function has
eight minterms and the demultiplexer
converts a 3-bit code into one of eight
values. For example, if you present a
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Inputs Outputs
A B C Yo Y, Y, Y3 Y, Ys Ye Y,
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Table 2.26 Truth table for a 3-line demultiplexer.

Instruction register .
I Op-code | The 3-bit op-code

in the instruction register

is decoded in to one of
eight actions.

-

Decoded instruction

Add

Subtract

Load

Store

Branch on zero

Branch on not zero

Branch unconditonally

B

Stop

Figure 2.92 Application of a demultiplexer as an instruction
decoder.

74138 3-line to 8-line
demultiplexer

o— v,
A —> O—» Y_1
Control -
inputs B — Select O—> Y,
C —> o—> v,
— Eight active-low

O—> Y, outputs
0 +»QE1 0O—> V.
Enable = -
inputs 0 —»QE2 o—> v,
1 —>E3 O—> Vv,

Figure 2.93 The 74138 3-line to 8-line decoder.

74138 with the code 101 (representing C-B-A), output Y will
be asserted low.

By ORing together the appropriate minterms we can gen-
erate an arbitrary sum of products expression in n variables.
In other words, any function can be implemented by a
demultiplexer and OR gate.

Figure 2.94 demonstrates how a 3-line to 8-line decoder
can be used to implement a full-adder that adds three bits
to generate a sum and a carry. Chapter 4 discusses binary
arithmetic and adders—all we need say here is that the sum of
bits A, B, and C;, is given by the Boolean expression C;,- A - B
+Cy,-A-B+C,-A-B+ C,-A-Band the carrybyan-B~A
+C,-B-A+C,,-A-B+ C,,-A-B.

Note that the outputs of the 74LS138 are active-low and
therefore it is necessary to employ a NAND gate to generate
the required sum-of-products expression.

Another application of the demultiplexer is in decoding
binary characters. Consider the ISO/ASCII character code (to
be described in Chapter 4) which represents the alpha-
numeric characters (A-Z, 0-9, and symbols such as |, @, #, §,
% ...) together with certain non-printing symbols such
as the back space and carriage return. The ASCII codes for
some of these non-printing control codes are given in
Table 2.27.

Suppose we receive an ASCII code from a keyboard
and wish to decode its function in hardware. First note
that all the codes of interest start with 00001. We can use
the most-significant five bits to enable a 74LS138 3-line
to 8-line decoder and then decode the three least-significant
bits of the word 00001d,d,d, to distinguish between the
control codes. Figure 2.95 demonstrates how this is
achieved. Each output from the decoder can be fed to a cir-
cuit to perform the appropriate action (e.g. carriage
return).

Medium-scale logic devices like the 74138 make it easy to
design circuits with just a handful of chips. However, many
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8-line . 7 » C..BA
demultiplexer 0 —
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inputs 4 =
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Y_4 p CinBA
0—>iEl 7 » CinBA
0—>{E2 i » CinBA
1—>E3 i » CinBA
The circuit adds bits
A+B+C,to
generate a sum and
a carry out
Carry Sum
Mnemonic  Name Value
BS Back space 00001000
LF Line feed 00001010
CR Carriage return 00001101 and workstations.
HT Horizontal tabulate 00001001
\2) Vertical tabulate 00001011

Table 2.27 ASCII control characters.
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ASCII code

Bits d, to d3 must be
00001 and bits

dg to d, are decoded
into one of eight control
values

74138 3-line to
8-line
demultiplexer
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Eight minterms

Figure 2.94 Generating a
logic function with a
demultiplexer.

circuits are now constructed from special-purpose user-pro-

grammable logic elements. Indeed, today’s very low cost sin-

gle-chip microprocessors sometimes make it feasible to

program the microprocessor to carry out the required logic

function. These microprocessors are called microcontrollers

to distinguish them from their more powerful relatives in PCs

2.7 Tri-state logic

The logic elements we introduced at the beginning of this
chapter are used to create functional units in which one or

Decoded control
characters

Figure 2.95 Decoding ASCII control characters with a demultiplexer.

more logical outputs are generated from
several inputs. A computer is composed
of the interconnection of such func-
tional units together with the storage
elements (registers) to be described in
Chapter 3. We now examine a special
type of gate that enables the various
functional units of a computer to be
interconnected. This new gate can be any
of the gates we’ve already described—it’s
not the gate’s logical function that’s dif-
ferent, it’s the behavior of its output. A
logic element with a tri-state output has
the special property that the output can
bein a0 state, a 1 state, or an unconnected
state (hence the term tri-state). Before
we can explain the operation of tri-state
gates, we have to introduce the reason for
their existence—the bus.
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2.7.1 Buses

A computer is like a city. Just as roads link homes, shops, and
factories, buses link processing units, storage devices, and
interfaces. Figure 2.96 shows a digital system composed of
five functional units, A, B, C, D, and E. These units are linked
together by means of two data highways (or buses), P and Q,
permitting data to be moved from one unit to another. Data
can flow onto the bus from a device connected to it and off

Q bus—

P bus

o
@9,

A

Logical unit
or storage device

Figure 2.96 Functional units and buses.

the bus to any other device. Buses may be unidirectional (i.e.
data always flows the same way) or bidirectional (i.e. data can
flow in two directions—but not simultaneously).

A bus is normally represented diagrammatically by a single
thick line or a wide shaded line as in Fig. 2.96. Real buses are
composed of several individual wires (i.e. electrical connec-
tions). Modern computer buses have 100 or more lines,
because a bus has to carry data, addresses, control signals, and
even the power supply. Indeed the nature of a bus can be an
important factor in the choice of a computer (consider the
PC with its USB, and PCI buses).

Figure 2.97 demonstrates how a bus is arranged. Logical
units A and B are connected to an m-bit data bus and can
transmit data to the bus or receive data from it. We are not
concerned with the nature of the processes A and B here, but
simply wish to show how they communicate with each other
via the bus. For clarity, the connections to only one line of the
bus are shown. Similar arrangements exist for bits d, to d,,_;.

Suppose unit A wishes to send data to unit B. The system in
unit A puts data on the bus via gate A, and B receives the
data from the bus via gate B;,. These two gates look like
inverters but they aren’t because they don’t have bubbles at
their output. Such a gate is called a buffer and it just copies the
signal at its input terminal to its output terminal (i.e. the gate
doesn’t change the state of the data passing through it). We
will soon see why such a gate is needed.

Such an arrangement is, in fact, unworkable and a glance at
Fig. 2.98 shows why. In Fig. 2.98(a) the outputs of two AND
gates are connected together. Figure 2.98(b) shows the same
circuit as Fig. 2.98(a) except that we’ve
included the internal organization of
the two gates. Essentially, a gate’s out-
put circuit consists of two electronic
switches that can connect the output to

A

the +5 V power supply or to the 0 V (i.e.
ground) power supply. These switches
are transistors that are either conduct-

A 4

Data path between
functional unit and
system bus (only one
bit shown)

m-bit data bus

ing or non-conducting. Because only
one switch is closed at a time, the out-
put of a gate is always connected either
to +5 V or to ground.

In Figure 2.98(b) the output from
gate G1 is in a logical 1 state and is
pulled up towards +5V by a switch
inside the gate. Similarly, the output

A

from G2 is a logical 0 state and is pulled
down towards 0 V. Because the two out-
puts are wired together and yet their

Y

Figure 2.97 Connecting systems to the bus.

states differ, two problems exist. The
firstis philosophical. The logical level at
all points along a conductor is constant,
because the voltage along the conduc-
tor is constant. Because the two ends of

do dq dpyg
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Gate G2 = logical 0

T +5V
Switch
open

¢

@

G1 ’—‘
G2 ’—‘ ®
Switch
open

oV

(a) Logical arrangement
Two outputs connected together

+5V — e +5V

s

®
» Logical 0 » Logical 1
output output
( ] (]
®
—_%—0V oV

(b) Upper switch closed.
Output connected to +5V

(a) Lower switch closed.
Output connected to ground

the bus in Fig. 2.98(b) are connected to different voltages, the
logical level on the conductor is undefined and breaks one of
the rules of Boolean algebra. We have stated that in a Boolean
system there is no such thing as a valid indeterminate state
lying between a logical 1 and a logical 0. Secondly, and more
practically, a direct physical path exists between the +5V
power supply and ground (0 V). This path represents is a
short circuit and the current flowing through the two output
circuits could even destroy the gates.

The tri-state gate lets you connect outputs together. Tri-
state logic is not, as its name might suggest, an extension of
Boolean algebra into ternary or three-valued logic. It is a
method of resolving the conflict that arises when two outputs
are connected as in Fig. 2.98. Tri-state logic disconnects from
the bus all those gates not actively engaged in transmitting
data. In other words, a lot of tri-state outputs may be wired to

(b) Physical arrangement
Two outputs connected together

TN

Output=0V
Switch
closed

Figure 2.98 Connecting two
outputs together.

THV

____» Floating
output

oV

Figure 2.99 The operation of
the tri-state output.

(c) Both switches open.
Output disconnected

a bus, but only one of them may be actively connected to the
bus internally. We shouldn’t speak of tri-state logic or tri-
state gates, we should speak of (conventional) gates with
tri-state outputs.

Figure 2.99 illustrates the operation of a gate with a tri-state
enable output. In fact, any type of gate can have a tri-state
output. All tri-state gates have a special ENABLE input. When
ENABLE = 1. the gate behaves normally and its output is
either a logical 1 or a logical 0 depending on its input
(Fig. 2.99(a) shows a 0 state and Fig. 2.99(b) a 1 state).

When ENABLE = 0, both switches in the output circuit of
the gate are open and the output is physically disconnected
from the gate’s internal circuitry (Fig. 2.99(c)). If I were to ask
what state the output is in when ENABLE = 0, the answer
should be that the question is meaningless. In fact, because
the output of an un-enabled tri-state gate is normally
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connected to a bus, the logic level at the output terminal is the
same as that on the bus to which it is connected. For this rea-
son, the output of a tri-state gate in its third state is said to be
floating. It floats up and down with the bus traffic.

Most practical tri-state gates do, in fact, have active-low
enable inputs rather than active-high enable inputs.
Figure 2.100 provides the circuit symbols for four tri-state
buffers, two of which are inverting buffers (i.e., NOT gates)
and two of which are non-inverting buffers. Two of these
gates have active-low enable inputs and two have active-high
enable inputs. The truth table of an inverter with a tri-state
output is given in Table 2.28.

Figure 2.101 demonstrates how tri-state buffers imple-
ment a bused structure. The buffers connect or disconnect
the three networks A, B, and C, to the bus. The outputs of net-
works A, B, and C are placed on the bus by three tri-state
buffers Ao, Bo, and Co, which are enabled by signals E,, Eg,,
and E,, respectively. If any network wishes to put data on to
the bus it sets its enable signal (e.g. Eg,) to a 1. It is vital that
no more than one of E,, Eg,, and E, be at a 1 level at any
instant.

Each of the networks receives data from the bus via its own
input buffers (Ai, Bi, and Ci). If a network wishes to receive

(a) Non-inverting buffer
Active-high enable

E

(c) Non-inverting buffer.

Active-low enable Active-low enable

Figure 2.100 Logic symbol for the tri-state buffer.

ENABLE Input Output
0 0 X Output floating
0 1 X Output floating
1 0 0 Output same as input
1 1 1 Output same as input

Table 2.28 Truth table for the non-inverting tri-state
buffer with an active-high enable input.

(b) Inverting buffer.
Active-high enable

(d) Inverting buffer.

data, it enables its input buffer by asserting one of Ey;, Ey;, or
E;, as appropriate. For example, if network C wishes to trans-
mit data to network A, all that is necessary is for Eqq and E,;
to be set to alogical 1 simultaneously. All other enable signals
remain in a logical 0 state for the duration of the information
transfer.

Input buffers (Ai, Bi, Ci) are not always necessary. If the
data flowing from the bus into a network goes only into the
input of one or more gates, a buffer is not needed. If however,
the input data is placed on an internal bus (local to the net-
work) on which other gates may put their output, the buffer
is necessary to avoid conflict between the various other out-
puts that may drive the local bus.

The bus in Fig. 2.101 is bidirectional; that is, data can flow
onto the bus or off the bus. The pairs of buffers are arranged
back to back (e.g. Ai and Ao) so that one buffer reads data
from the bus and the other puts data on the bus—but not at
the same time.

In the description of the bused system in Fig. 2.101 the
names of the gates and their control signals have been care-
fully chosen. Ao stands for A, and Ai for A;,. This labels the
gate and the direction in which it transfers data with respect to
the network it is serving. Similarly, E,, stands for enable gate

A out, and E,; for enable gate A in. By
choosing consistent and meaningful
p  names, the reading of circuit diagrams
and their associated text is made easier.

Further details of a bused system will
be elaborated on in Chapter 3, and
Chapter 7 on the structure of the CPU
makes extensive use of buses in its
description of how the CPU actually
carries out basic computer operations.

Digital Works supports tri-state
buffers. The device palette provides a
simple non-inverting tristate buffer with
an active-high enable input. Figure 2.102
shows a system with a single bus to
which three tri-state buffers are con-
nected. One end of the bus is connected
to an LED to show the state of the bus.

Digital Works requires you to con-
nect a wire between two points so we’ve
added a macro tag to the bottom of the
bus to provide an anchor point (we don’t use the macro tag

ol

for its normal purpose in this example).

The input of each tri-state gate in Fig. 2.102 is connected to
the interactive input tool that can be set to a 0 or a 1 by the
hand tool. Similarly, the enable input of each gate is con-
nected to an interactive input tool.

By clicking on the run icon and then using the hand tool to
set the input and enable switches, we can investigate the oper-
ation of the tristate buffer. In Fig. 2.102 inputs 1 and 3 are set
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Figure 2.107 Interconnecting logic elements with a bus and tri-state buffers.

to 1 and only buffer 3 is enabled. Consequently, the output of
buffer 3 is placed on the bus and the bus LED is illuminated.

We have stated that you shouldn’t enable two or more of
the tri-state gates at the same time. If you did, that would cre-
ate bus contention as two devices attempted to put data on
the bus simultaneously. In Fig. 2.103 we have done just that
and used the hand tool to enable buffer 2 as well as buffer 3.
As you can see, the simulation has stopped (the run button is
in the off state) and an error message has been generated at
the buffer we’ve attempted to enable.

2.8 Programmable logic

In this short section we introduce some of the single-chip
programmable logic elements that can be configured by the
user to perform any function they require. In the earlier days
of logic design, systems were constructed with lots of basic
logic elements; for example, the two-input OR gate, the five-
input NAND gate, and so on. The introduction of medium

scale integration by the major semiconductor manufacturers
generated a range of basic building blocks from multiplexers
to digital multiplier circuits and allowed the economic design
of more complex systems. We now introduce the next step
in the history of digital systems—programmable logic that can
be configured by the user.

2.8.1 The read-only memory as a logic
element

Semiconductor manufactures find it easier to design regular
circuits with repeated circuit elements than special-purpose
highly complex systems. A typical regular circuit is the read
only memory or ROM. We deal with memory in a later
chapter. All we need say here is that a ROM is a device with n
address input lines specifying 2" unique locations within it.
Each location, when accessed, produces an m-bit value on its
m output lines. It is called read only because the output corre-
sponding to a given input cannot be modified (i.e. written
into) by the user. A ROM is specified by its number of locations
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Figure 2.103 Attempting to enable two tri-state drivers simultaneously.



x width of each location; for example, a 16 X 4 ROM has
16 locations each containing 4 bits.

An alternative approach to the design of digital systems
with basic gates or MSI elements is to use ROMs to imple-
ment the required function as a look-up table. Figure 2.104
shows how a 16 X 4 ROM implements the 4-bit multiplier
we designed earlier in this chapter using AND, OR, and NOT
gates. The binary code, X,, X, Y;, Y, at the four address
inputs selects one of the 16 possible locations, each contain-
ing a 4-bit word corresponding to the desired result. The
manufacturer or user of the ROM writes the appropriate out-
put into each of these 16 locations; for example, the location
1011, corresponding to 10 X 11 (i.e. 2 X 3), has 0110 (i.e. 6)
written into it.

The ROM directly implements not the circuit but the truth
table. The value of the output is stored for each of the possible
inputs. The ROM look-up table doesn’t even require Boolean
algebra to simplify the sum-of-products expression derived
from the truth table. Not only does a ROM look-up table save
a large number of logic elements, but the ROMs themselves
can be readily replaced to permit the logic functions to be
modified (to correct errors or to add improved facilities).
Unfortunately, the ROM look-up table is limited to about 20
inputs and eight outputs (i.e. 22° X 8 = 8 Mbits). The ROM
can be programmed during its manufacture or a PROM (pro-
grammable ROM) can be programmed by means of a special
device.

2.8.2 Programmable logic families

Because ROM requires a very large number of bits to imple-
ment moderately complex digital circuits, semiconductor
manufacturers have created much simpler logic elements

ROM with 16 locations

Address
A 0000 0000
Input X, 0 0000 0001
A 0000 0010
X, 1, 0000 0011
. A, 5001 0
nput Y » 0101
Pat Yo g 0010 0110
Y 3 0011 0111
1 d 0000 1000
0010 1001
0100 1010
0110 1011
0000
0011 o
Address input 0110 1110
1001 111

D, [0, oy oo
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than ROMs containing a regular structure of AND and OR
gates that can be interconnected by the user to generate the
required logical function.

Figure 2.105 provides a simplified picture of how pro-
grammable logic devices operate. The three inputs on the
left-hand side of the diagram are connected to six vertical
lines (three lines for the inputs and three for their comple-
ments). On the right of the diagram are three two-input AND
gates whose inputs run horizontally. The key to programma-
ble logic is the programmable link between each horizontal
and vertical conductor.

Fusible links between gates are broken by passing a suffi-
ciently large current through the link to melt it. By leaving a
link intact or by blowing it, the outputs of the AND gates can
be determined by the designer. Modern programmable logic
devices have electrically programmed links that can be made
and un-made many times.

A real programmable device has many more inputs vari-
ables than in Fig. 2.105 and the AND gates can have an input
for each of the variables and their complements. The digital
designer selects the appropriate programmable device from a
manufacturer’s catalogue and adapts the Boolean equations
to fit the type of gates on the chip. The engineer then plugs
the chip into a special programming machine that intercon-
nects the gates in the desired way.

Programmable logic elements enable complex systems to be
designed and implemented without requiring large numbers
of chips. Without the present generation of programmable
logic elements, many of the low-cost microcomputers would
be much more bulky, consume more power, and cost consid-
erably more.

Today’s designers have several types of programmable logic
element at their disposal; for example, the PAL (programmable

1 4-bit product

Data output

vyVvYyy

2 2 Figure 2.104 Using a ROM to

N N N N

w

implement a multiplier.
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array logic), the PLA (programmable logic array), and the
PROM (programmable read-only memory). The PROM and
the PAL are special cases of the PLA. The difference between
the various types of programmable logic element depends
on whether one or both of the AND and OR arrays are
programmable.

Programmable Logic Array

The programmable logic array (PLA) was one of the first field
programmable logic elements to become widely available. It
has an AND-OR gate structure with a programmable array of
AND gates whose inputs may be variables, their comple-
ments, or don’t care states. The OR gates are also program-
mable, which means that you can define each output as the
sum of any of the product terms. A typical PLA has 48 AND
gates (i.e. 48 product terms) for 16 input variables, compared
with the 65 536 required by a 16-input PROM. Figure 2.106
provides a simple example of a PLA that has been pro-
grammed to generate three outputs (no real PLA is this
simple). Because the PLA has a programmable address decoder
implemented by the AND gates, you can create product terms
containing between one and 7 variables.

Programmable array logic

A more recent programmable logic element is the program-
mable array logic (PAL), which is not to be confused with the
PLA we discussed earlier. The PAL falls between the simple
gate array that contains only programmable AND gates and

\A connection can be made

D—V Output 3

Figure 2.105 Conceptual
structure of a programmable

at each horizontal and - .
logic device.

vertical crosspoint

the more complex programmed logic array. The PLA has
both programmable AND and OR arrays, whereas the PAL
has a programmable AND array but a fixed OR array. In
short, the PAL is an AND gate array whose outputs are ORed
together in a way determined by the device’s programming.

Consider a hypothetical PAL with three inputs x, to x, and
three outputs y, to y,. Assume that inputs x, to x,, generate six
product terms P, to Ps. These product terms are, of course,
user programmable and may include an input variable in a
true, complement, or don’t care form. In other words, you
can generate any six product terms you want.

The six product terms are applied to three two-input OR
gates to generate the outputs y, to y, (Fig. 2.107). Each output
is the logical OR of two product terms. Thus, y, = P, + P},
y; = P, + Pj,andy, = P, + P5. We have chosen to OR three
pairs of products. We could have chosen three triplets so that
Yo =P, + P, + P;, y, = P, + P; + P, etc. In other words,
the way in which the product terms are ORed together is a
function of the device and is not programmable by the user.

2.8.3 Modern programmable logic

Opver the years, logic systems have evolved. Once the designer
was stuck with basic gates and MSI building blocks. The
1980s were the era of the programmable logic element with
PROMs, PALs, PLAs, and so on. Today’s programmable logic
elements are constructed on a much grander scale. Typical
programmable logic devices extend the principles of the PLA
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Inputs

Xo Xo
I >0 Xy

X4 1 X,
>0 X,

X2 X,
I >0 X5

| These OR gates combine

user-programmable sum

) C ) O e
The inputs are ®_>
used to generate
user-programmable
product terms _D_>

/product terms to generate

Outputs
Py P, P, Py
Figure 2.106 Example of a circuit built with a PLA.
Inputs
Xo Xo
[—|>° Xo
X-l X1
[—|>° X
[—|>° X
<_>v\ Each input used to
generate a product
k) kj kj k) k) kj term can be open
or closed
Programmable arra
g y D_, Yy
Damat
Fixed array
]
) ) —Ys
Outputs
PO P1 PZ P3 P4 PS\
These OR gates are fixed; that is, Figure 2.107 Structure of
you cannot program them the PAL.

and employ macro cells that implement more complex build- ~ which can be programmed, erased, and reprogrammed.
ing blocks containing storage elements as well as AND, OR, Reprogrammable logic elements represent a considerable
and EOR gates. saving at the design stage. Moreover, they can be used to con-

A more recent innovation in programmable logic is  struct systems that can be reconfigured by downloading data
the electrically programmable and erasable logic element from disk.
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Design techniques for modern logic

There’s little point in developing massively complex
programmable logic elements if they can’t easily be used.
Although the Boolean algebra and logic construction meth-
ods we’ve described earlier in this chapter are perfectly good
for simple circuits, more efficient design techniques and tools
are needed for complex circuits.

Device manufacturers have developed logic languages that
run on PCs and make it possible to configure these program-
mable logic elements. You can express the required functions
in Boolean form and the software will generate the data nec-
essary to program the device.

Just as high-level languages have replaced assembly lan-
guage in computer programming, circuit designers use high-
level design languages. One such language is called VHDL
(VHSIC hardware description language, where VHSIC is an
acronym for very-high-speed integrated circuit), which per-
mits you to specify a digital circuit in a high-level abstract
language. VHDL started out as a US Department of Defense
project to specify complex circuits and evolved into a general-
purpose design tool. VHDL became an IEEE standard in 1987
with the number IEEE 1076.

A designer armed with VHDL can specify a circuit in
VHDL code and then simulate the circuit’s behavior on a PC
(or a workstation under Unix). The software can even cope
with the problems of delays in the circuit. Because the device
can be simulated, the engineer is reasonably certain that
the final circuit will work when it is constructed. This soft-
ware can even drive the devices that program these logic
elements.

About three decades ago, the engineer built digital circuits
on breadboards with hundreds of small-scale and medium-
scale integrated circuits—and then spent weeks debugging
the circuit. Today, the engineer can express complex logical
operations in a high-level notation, design a circuit, simulate
its behavior, and then program a real device knowing that it
will probably work first time.

The following fragment of VHDL code is
taken from VHDL of Programmable Logic
by Kevin Skahill (Addison Wesley, 1996)
and demonstrates how a quad 4-bit multi-

plexer can be specified. This device has four ar
o e . S

4-bit inputs a to d and a 4-bit output x. A -

2-bit input s determines which of the four end mux;

inputs is connected to the output.
Readers who have programmed in

almost any high-level language would EEERE

2.8.4 Testing digital circuits

A significant part of the cost of a digital system is its festing.
Why should testing be so expensive? After all, a system either
works or it doesn’t. If it doesn’t work it can often be scrapped
and replaced more economically than repairing it.

Although it’s easy to test a light bulb by plugging it into a
socket, it’s much more difficult to test all but the most primi-
tive of digital systems. Consider a small memory element
with 10 address lines and eight data outputs (i.e. 1 kbyte).
How many tests do we need to perform to verify that the
memory is working correctly? Obviously the memory can be
tested by writing a pattern into each of its 2!° = 1024 loca-
tions and then reading the pattern back. That is, the test
requires a total of 1024 read and 1024 write cycles.

But wait a moment. How do we know that the memory will
store every possible data pattern in each possible word loca-
tion? The test must be extended by writing all possible data
values into a location before testing the next location. In this
case there are 28 = 256 tests per location, or 28 X 210 = 218
tests altogether.

At last we have now thoroughly tested the memory com-
ponent. No we have not! Some memories display a fault
called pattern sensitivity in which writing data to one location
affects the contents of another location. You can test for pat-
tern sensitivity by writing a data pattern to the location we
wish to test and then filling all other locations with a different
data pattern. We then reread the data in the location under
test to see whether it has changed. So for each of our 28 tests,
we must write a different pattern in all the other 2'°~1 word
cells. This gives us a total of 2! X 2% or 278 tests. If we were to
consider a 64 Mbyte memory, it would require 28 X 226 X
226 = 252 tests (a gigantic number).

This example demonstrates that it’s effectively impossible
to test any reasonably complex digital system with external
inputs and internal states. Even if tests could be carried out at
a rate of over 100 million/s, most complex digital systems

library ieee;
use ieee.std logic 1164.all;
entity mux is port(

bl

@, @lg in std logic vector (3 downto 0);
in std logic vector (1l downto 0);
out std logic vector (3 downto 0))

’

architecture archmux of mux is

with s select

probably be able to follow this fragment of x <= a when "00",
VHDL. It consists of a declaration block b when "01",
that defines the inputs and outputs and a ¢ when "10",

process block that defines what the circuit
is to do.

d when others;
end archmux;



(e.g. a microprocessor chip) would take longer to test than
the anticipated life of the entire universe. A way out of this
dilemma is to perform a test that provides a reasonable level
of confidence in its ability to detect a large fraction of possible
faults without requiring an excessive amount of time.

The first step in devising such a test is to distinguish
between the idea of a defect and a fault. A real system fails
because of a defect in its manufacture. For example, a digital
system may fail because of a defect at the component level (a
crystal defect in a silicon chip), or at the system level (a solder
splash joining together two adjacent tracks on a printed cir-
cuit board). The observed failure is termed a fault.

Although there are an infinite number of possible defects
that might cause a system to fail, their effects (i.e. faults) are
relatively few. In simpler terms, an automobile may suffer
from many defects, but many of these defects result in a
single observable fault—the car doesn’t move. That is, a fault
is the observable effect due to a defect. A digital system can be
described in terms of a fault model (i.e. the list of observable
effects of defects). Typical faults are given below.

Stuck-at-one The input or output of a circuit remains in a
logical 1 state independently of all other circuit conditions.
This is usually written's_a_1.

Stuck-at-zero In this case the input or output is permanently
stuck in a 0 state (i.e.s_a_0).

Bridging faults Two inputs or outputs of a circuit are effect-
ively connected together and cannot assume independent
logic levels. That is, they must both be 0s or 1.

It is possible to devise a longer list of fault models, but the
stuck-at fault model is able to detect a surprisingly large

w
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number of defects. In other words, if we test a system by
considering all possible stuck-at-1 and stuck-at-0 faults, we
are likely to detect almost all of the probable defects.

The sensitive path test

A sensitive path between an input and an output is con-
structed to make the output a function of the input being
tested (i.e. the output is sensitive to a change in the input).
Figure 2.108(a) illustrates a circuit with three gates and six
inputs A, B, C, E I and J. The sensitive path to be tested is
between input A and output K.

Figure 2.108(b) demonstrates how we have chosen the sen-
sitive path by ensuring that a change in input A is propagated
through the circuit. By setting AND gate 1’s B and C inputs
high, input A is propagated through this gate to the E input of
AND gate 2. The second input of AND gate 2, F, must be set
high to propagate E through gate 2. Output G of AND gate 2
is connected to input H of the three-input OR gate 3. In this
case, inputs I and ] must be set low to propagate input H
(i.e. A) through OR gate 3.

By setting inputs B, C, F, I, and J to 1, 1, 1, 0, and 0, the out-
put becomes K = A and, therefore, by setting A to 0 and then
to 1, we can test the sensitive path between A and K and deter-
mine whether any A_stuck_at fault exists.

A fault-list can be prepared for the circuit, which, in this
case, might consistof As_a_0,As_a_1,Bs_a_0,Bs_a_1,....
A convenient notation for the fault list is A/0, A/1, B/0,
B/1, ... etc. The / is read as ‘stuck at’

To test for As_a_0 (i.e. A/0), the other inputs are set to the
values necessary to create a sensitive path and A is switched
from 0 to 1. If the output changes state, A is not stuck at zero.

The same test also detects A/1.

Fault tests are designed by engineers
(possibly using CAD techniques) and can be
implemented either manually or by means

J
a) A simple three-gate digital circuit.

—
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=D

of computer-controlled automatic test equip-
ment (ATE). This equipment sets up the
appropriate input signals and tests the out-
put against the expected value. We can spec-
ify the sensitive path for A in the circuit of
Fig.2.108(b) as B-C-F-1-J.

It’s not always possible to test digital cir-
cuits by this sensitive path analysis because
of the topological properties of some digital

Set high to propagate

A through gate 1 Set low to

propagate H
through gate 3

Set high to
propagate E
through gate 2

(b) Establishing a sensitive path between input A and output K.

Figure 2.108 Using sensitive path analysis to test digital circuits.

—— 1D D)—n
/

//I.J—LB/ ‘

circuits. For example, a digital signal may
take more than one route through a circuit
and certain faults may lead to a situation in
which an error is cancelled at a particular
node. Similarly, it’s possible to construct
logic circuits that have an undetectable
fault. Figure 2.109 provides an example of
such a circuit. This type of undetectable
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A _.>—‘02>D 1= 0
1
1 — Node to tested
0
7/ a

1E;: FngL/s\ :

In order to establish a sensitive path for internal node D
to external node H, it is necessary to set inputs G and F to
OR gate 5 low. G is set low by setting inputs B and

E to NAND gate 3 high. Input E is derived from NOT gate

2 and is set high by setting input A low. Similarly, output F
of NAND gate 4 is set low by setting inputs A and C to
gate 4 high. Unfortunately, in order to set G and F low

requires that input A be both 0 and 1 simultaneously.
This condition is a contradiction and therefore node D

fault is due to redundancy in the circuit and can be eliminated
by redesigning the circuit. Alternatively, a circuit can be made
easier to test by connecting some of its internal nodes to pins
so that they can be directly examined.

SUMMARY

In this chapter we have looked at the basic set of logic elements
used to create any digital system—the AND, OR, and NOT
gates. We have demonstrated how simple functions can be
generated from gates by first converting a problem in words into
a truth table and then using either graphical or algebraic
methods to convert the truth table into a logical expression and
finally into a circuit made up of gates. At the end of this chapter
we briefly mentioned the new families of programmable logic
elements and their design tools that have revolutionized the
creation of today’s complex digital systems.

We have introduced Digital Works, a design tool that enables
you to create digital circuits and to observe their behavior. We
also introduced the tri-state buffer, a device that enables you to
connect logic subsystems to each other via a common data
highway called a bus.

In the next chapter we look at sequential circuits built from
flip-flops. As the term sequential suggests, these circuits involve
the time factor, because the logical state of a sequential device is
determined by its current inputs and its past history (or
behavior). Sequential circuits form the basis of counters and data
storage devices. Once we have covered sequential circuits, we
will have covered all the basic building blocks necessary to design
a digital system of any complexity (e.g. the digital computer).

PROBLEMS

2.7 Explain the meaning of the following terms.

(@) Sum-of-products
(b) Product of sums

Figure 2.109 Circuit with an
undetectable fault.

D D
_D_DR_D%_’“

AB CD

Figure 2.110 Circuit for Question 2.2.

(c) Minterm
(d) Truth table
(e) Literal

(f) Constant
(g) Variable

2.2 Tabulate the values of the variables P, Q,R, S, T, and U in the
circuit of Fig. 2.110 for all possible input variables A, B, C, and D.

The truth table for this question should be expressed in the form
of Table 2.29.

2.3 For the circuit of Fig. 2.110 in Question 2.2 obtain a
Boolean expression for the output U, in terms of the inputs A, B,
C, and D.You should obtain an expression for the output U by
considering the logic function of each gate.

2.4 For the truth table in Question 2.2 (Table 2.29) obtain a
sum-of-minterms expression for U and use Boolean algebra to
obtain a simplified sum-of-products expression for U.
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Inputs Output

=BR T=BD U=Q+S+T

00 0O 1 0 1
0 0 0 1
00 10
0 0 1 1
0 1 00
0 1 0 1
T 1 11 1 1 1

0 0

Table 2.29 Truth table for Question 2.2.
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Figure 2.111 Circuit for Question 2.5.

2.5 Use a truth table to obtain the relationship between
outputs X and Y and the input variables A, B, and C for the circuit
in Fig. 2.111. From the truth table write down Boolean
expressions for X and Y. Derive expressions for X and Y by
considering the Boolean equations of the gates.

Demonstrate that the two results (i.e. those derived from the
truth table and those derived from the Boolean equations) are
equivalent by substituting literals (000, 001, etc.) for A, B, and C
in the Boolean equations.

2.6 Draw logic diagrams, using AND, OR, and NOT gates only, to
implement the following Boolean expressions. In each case draw
the diagrams directly from the equations and do not attempt to
simplify the expressions.

(@ F=AB+AB

(b) F=(A+B+C)(A-B+A-C)

(c) F=(A+C)(A+B-D)

(d)
(e)

A+ C-A+BD
A-B+ A-B+ A-C)(AB+ A-B + A-Q)

F
F

Il
—_

2.7 Plot the following functions on a Karnaugh map.
(@ F=A-B-C+A-B-C

(b) F=A-B-C+A-B-C+A-B-C

() F=A+AB+A-C+ABC

(d) F=A+B-A-C+D

() F=A-B-C-D+A-B-C-D+B-D

2.8 How would you plot the following expressions on a
Karnaugh map?

(@) (A+B+C)(D+B)(A+C)

(b) A-B+A-B+A-C)(A-D+A-B+A-Q)

2.9 Simplify the following expressions by means of Boolean
algebra. That is, do not use Karnaugh maps.

(@) A-B-C+A-B-C+A-B-C+A-B-C

(b) A\B-C+A-B-C+A-B-C+A-B-C+AB-C
+A-B-C

() A-B-C+A-B-C+A-B-C+A-B-C+A-B-C
+A-B-C+A-B-C+AB-C

2.10 Simplify the following expressions.

(@ A+B+C)(A+B+CQ)

(b) (A-B+A-B+A-C)(A-B+A-B+A-C)

() A+B+(A+C-D)(A+B-C)

(d) AAB+B-C+A-B-C+A-B-C-D

(e) (A+B)A+B+C)(A+B+C)(A+B+C)

2.171 Use de Morgan’s theorem to complement the following

expressions. Do not simplify the expressions either before or
after you complement them.

929
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2.12 Convert the following expressions to sum-of-products form.
(a (A+B)(B+C)(A+0Q)

(b) (C+D)(A-B+A-C)(A-C+B)
(c) A+B+C)(A+C-D)(D+F)
2.13 Simplify
(a) AGB@C

(b) A-B(C®A)

2.14 Convert the following expressions to product-of-sums form.
(@) A\B+A-B+B-C

(b) A-B+B-C+B-C-D

() A\-B+A-C+B-C

(d) A-B-C+A-B-C+A-B-C+A-B-C

2.15 Acircuit has four inputs, P, Q, R, and S, representing the
natural binary numbers 0000 = 0, to 1111 = 15.P is the
most-significant bit. The circuit has one output, X, which is true
if the number represented by the input is divisible by three
(regard zero as being indivisible by three.) Design a truth table
for this circuit and hence obtain an expression for X in terms

of P,Q, R, and S. Give the circuit diagram of an arrangement of
AND, OR, and NOT gates to implement this circuit. Design a
second circuit to implement this function using NAND

gates only.

2.16 A device accepts natural binary numbers in the range
0000 to 1111 which represent O to 15.The output of the circuit
is true if the input to the circuit represents a prime number and
is false otherwise. Design a circuit using AND, OR, and NOT
gates to carry out this function. A prime number is an integer
that is greater than 1 and is divisible only by itself and 1. Zero
and 1 are not prime numbers.

2.17 Demonstrate how you would use a 4-line to 16-line
demultiplexer to implement the system in Question 2.16.

2.18 Alogic circuit accepts a natural binary number DCBA in
the range O to 15 (the least-significant bit is bit A). The output is
the square of the input; for example, if DCBA = 0101, = 54, the
output is 00010101, = 25,,. Design a circuit to implement this
function.

2.19 Alogic circuit has three inputs C, B, and A, where A is the
least-significant bit. The circuit has three outputs R, Q, and P. For
any binary code applied to the input terminals (A, B, and C) the

output is given by the input plus 1; for example, if C,B,A =0, 1,
1, the output R, Q,Pis 1,0, 0. Note that 111 + 1 = 000 (i.e.
there is no carry out). Design a circuit to implement this system.

2.20 A 4-bit binary number is applied to a circuit on four lines
D, C, B, and A.The circuit has a single output, F, which is true if
the number is in the range 3 to 12, inclusive. Draw a truth table
for this problem and obtain a simplified expression for F in
terms of the inputs. Implement the circuit

(@) in terms of NAND gates only
(b) in terms of NOR gates only

2.271 Acircuit has four inputs D, C, B, and A encoded in 8421
natural binary form. The inputs in the range 0000, = 0 to
1011, = 11 represent the months of the year from January (0)
to December (11). Inputs in the range 1100 to 1111 (i.e. 12 to
15) cannot occur. The output of the circuit is a logical one if the
month represented by the input has 31 days. Otherwise the
output is false. The output for inputs in the range 1100 to 1111
is undefined.

(a) Draw a truth table to represent the problem and use it to
construct a Karnaugh map.

(b) Use the Karnaugh map to obtain a simplified
expression for the function.

(c) Construct a circuit to implement the function using AND,
OR, and NOT gates.

(d) Construct a circuit to implement the function using NAND
gates only.

2.22 A multiplexer has eight inputs Y, to Y, and a single output
Z.A further three inputs A, B, and C (A = least-significant bit)
determine which output the single input X is connected to. For
example, if A, B, C = 110, the output Y¢ = X and all other
outputs are low. Design a circuit to implement this function.

2.23 What is tri-state logic and why is it used in digital
systems?

2.24 Use Digital Works to construct a circuit that realizes the
expression

A-B-C+A-B-C+A-B-C+A-B-C

Simplify the above expression and use Digital Works to
construct a new circuit. Demonstrate that the two circuits are
equivalent (by comparing their outputs for all inputs).

2.25 Use Digital Works to construct the system of
Question 2.20 and demonstrate that your system works.



2 Logic elements and
Boolean algebra

We begin our introduction to the
computer with the basic building
block from which we construct
all computers, the gate.

A combinational digital circuit
such as an adder is composed

of gates and its output is a
Boolean (logical) function of
its inputs only.
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Sequential Logic

4 Computer arithmetic

Computer arithmetic concerns
the representation of numbers in
a computer and the arithmetic
used by digital computers. We
look at how decimal numbers are
converted into binary form and
the properties of binary numbers
and we demonstrate how
operations like addition and
subtraction are carried out. We
also look at how computers deal
with negative numbers and
fractional numbers.

5 The instruction set
architecture

In this chapter we introduce the
computer's instruction set
architecture (ISA), which
describes the low-level
programmer’s view of the
computer. The ISA describe the
type of operations a computer
carries out. We are interested in
three aspects of the ISA: the
nature of the instructions, the
resources used by the
instructions (registers and

memory), and the ways in which
the instructions access data
(addressing modes). The 68K
microprocessor is used to
illustrate the operation of a real
device.

INTRODUCTION

We now introduce a new type of circuit that is constructed from devices that remember their
previous inputs. The logic circuits in Chapter 2 were all built with combinational elements whose
outputs are functions of their inputs only. Given a knowledge of a combinational circuit’s inputs
and its Boolean function, we can always calculate the state of its outputs. The output of a
sequential circuit depends not only on its current inputs, but also on its previous inputs. Even if
we know a sequential circuit’s Boolean equations, we can't determine its output state without
knowing its past history (i.e. its previous internal states). The basic building blocks of sequential
circuits are the flip-flop, bistable, and latch just as the basic building block of the combinational
circuit is the gate.

It's not our intention to deal with sequential circuits at anything other than an introductory
level, as their full treatment forms an entire branch of digital engineering. Sequential circuits can’t
be omitted from introductory texts on computer hardware because they are needed to implement
registers, counters, and shifters, all of which are fundamental to the operation of the central
processing unit.

Figure 3.1 describes the conceptual organization of a sequential circuit. An input is applied
to a combinational circuit using AND, OR, and NOT gates to generate an output that is fed to
a memory circuit that holds the value of the output. The information held in this memory is
called the internal state of the circuit. The sequential circuit uses its previous output together
with its current input to generate the next output. This statement contains a very important
implicit concept, the idea of a next state. Sequential circuits have a clock input, which triggers
the transition from the current state to the next state. The counteris a good example of a
sequential machine because it stores the current count that is updated to become the next
count. We ourselves are state machines because our future behavior depends on our past
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Sequential logic circuit

Input [ :) Output
Combinational logic
) oy
\\\
[~~~ The combinational logic
is composed of conventional
AND, OR, and NOT gates
Memory G
7

The memory holds
the previous output
(i.e. state) and uses it
to generate the next
output

Figure 3.1 The sequential circuit.

WHAT IS SEQUENTIAL LOGIC?

Sequential logic elements perform as many different functions as combinational logic
elements; however, they do carry out certain well-defined functions, which have been
given names.

Latch A latch is a 1-bit memory element. You can capture a single bit in a latch at one instant
and then use it later; for example, when adding numbers you can capture the carry-outin a
latch and use it as a carry-in in the next calculation.

Register The register is just m latches in a row and is able to store an m-bit word; that is, the
register is a device that stores one memory word. A computer’s memory is just a very large
array of registers.

Shift register A shift register is a special-purpose register that can move the bits of the word it
holds left or right; for example the 8-bit word 00101001 can be shifted left to give 01010010.

Counter A counter is another special-purpose register that holds an m-bit word. However,
when a counter is triggered (i.e. clocked) its contents increase by 1; for example, if a counter
holding the binary equivalent of 42 is clocked, it will hold the value 43. Counters can count up
or down, by 1 or any other number, or they can count through any arbitrary sequence.

State machines A state machine is a digital system that moves from one state to another
each time it is triggered. You can regard a washing machine controller as a state machine
that steps though all the processes involved in washing (at a rate depending on the load,
the temperature, and its preselected functions). Ultimately, the computer itself is a nothing
more than a state machine controlled by a program and its data.

inputs—if you burn yourself getting something out of the oven, you approach the oven with
more care next time.

We begin our discussion of sequential circuits with the bistable or flip-flop.A bistable is so called
because its output can remain in one of two stable states indefinitely, even if the input changes.
For a particular input, the bistable’s output may be high or low, the actual value depending on the



3.1 The RS flip-flop 103

previous inputs. Such a circuit remembers what has happened to it in the past and is therefore

a form of memory element. A more detailed discussion of memory elements is given in
Chapter 8.A bistable is the smallest possible memory cell and stores only a single bit of
information. The term flip-flop, which is synonymous with bistable, gives the impression of the
circuit going flip into one state and then flop into its complement. Bistables were constructed
from electromagnetic relays that really did make a flip-flop sound as they jumped from one

state into another.

The term latch is also used to describe certain types of flip-flop. A latch is a flip-flop that is
unclocked (i.e. its operation isn't synchronized with a timing signal called a clock). The RS
flip-flop that we describe first can also be called a latch.

Sequential systems can be divided into two classes: synchronous and asynchronous.

Synchronous systems use a master clock to update the state of all flip-flops periodically.

The speed of a synchronous system is determined by its slowest device and all signals must
have settled to steady-state values by the time the system is clocked. In an asynchronous
system a change in an input signal triggers a change in another circuit and this change ripples

through the system (an asynchronous system is rather like a line of closely spaced dominoes
on edge—when one falls it knocks its neighbor over and so on). Reliable asynchronous systems
are harder to design than synchronous systems, although they are faster and consume less
power. We will return to some of these topics later.

We can approach flip-flops in two ways. One is to demonstrate what they do by defining
their characteristics as an abstract model and then show how they are constructed. That is, we
say this is a flip-flop and this is how it behaves—now let’s see what it can do. The other way
of approaching flip-flops is to demonstrate how they can be implemented with just two gates
and then show how their special properties are put to work. We intend to follow the latter
path. Some readers may prefer to skip ahead to the summary of flip-flops at the end of this
section and then return when they have a global picture of the flip-flop.

3.1 The RS flip-flop

We begin our discussion of the flip-flop with the simplest
member of the family, the RS flip-flop. Consider the circuit of
Fig. 3.2. What differentiates this circuit from the combina-
tional circuits of Chapter 2 is that the gates are cross-coupled
and the output of a gate is fed back to its input. Although
Fig. 3.2 uses no more than two two-input NOR gates, its
operation is not immediately apparent.

the NOR gates we can readily write down expressions for out-
puts X and Y in terms of inputs A and B.

. X=A+Y
22.Y=B+X

If we substitute the value for Y from equation (2) in equation
(1), we get

3.X=A+B+X

The circuit has two inputs, A and B, and two outputs, X - ﬁ'B X By de Morgan’s theorem
and Y. A truth table for the NOR gate is provided alongside - é'(B +}) Two negations cancel
Fig. 3.2 for reference. From the Boolean equations governing =AB+AX Expand the expression
A —
E. —> X A B A+B
0 0 1
0 1 0
1 0 0
1 1 0 .
— Y Figure 3.2 Two cross-coupled NOR

gates.
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Because Boolean algebra doesn’t define the operations
of division or subtraction we can’t simplify this equation
any further and are left with an expression in which the
output is a function of the output; that is, the value of X
depends on X. Equation (3) is correct but its meaning
isn’t obvious. We have to look for another way of analyz-
ing the behavior of cross-coupled gates. Perhaps a better
approach to understanding this circuit is to assume a value
for output X and for the inputs A and B and then see
where it leads us.

3.1.1 Analyzing a sequential circuit by
assuming initial conditions

Figure 3.3(a) shows the cross-coupled NOR gate circuit with
the initial condition X =1 and A = B = 0 and Fig. 3.3(b)
shows the same circuit redrawn to emphasize the way in
which data flows between the gates.

Because the inputs to gate G, are X = 1, B = 0, its output,
Y = X + B, must be 0. The inputs to gate G, are Y = 0 and
A = 0, so that its output, X, is Y + A, which is 1. Note that
this situation is self-consistent. The output of gate G, is X = 1,
which is fed back to the input of gate G, to keep X in a logical
1 state. That is, the output actually maintains itself. It should
now be a little clearer why equation (3) has X on both sides
(ie.X=A-B+A-X).

Had we assumed the initial state of X to be 0 and inputs
A = B = 0, we could have proceeded as follows. The inputs
to G, are X=0, B=0 and therefore its output is
Y =X+ B =0+ 0= 1. The inputs to G, are Y = 1 and
A =0, and its output is X =Y + A =1+ 0 = 0. Once
more we can see that the circuit is self-consistent. The output

can remain indefinitely in either a 0 or a 1 state for the inputs
A=B=0.

The next step in the analysis of the circuit’s behavior is to
consider what happens if we change inputs A or B. Assume
that the X output is initially in a logical 1 state. If input B to
gate G, goes high while input A remains low, the output of
gate G, (i.e.Y) is unaffected, because the output of a NOR

0 0
@) X
X
Assume that, \
A and B are
initially 0 Assume that X
\ is initially 1

Analyzing the circuit by assuming initial conditions.

Figure 3.3 Analyzing the behavior of cross-coupled NOR gates.

gate is low if either of its inputs are high. As X is already high,
the state of B has no effect on the state of Y.

If now input A goes high while B remains low, the output,
X, of gate G, must fall to a logical 0 state. The inputs to gate G,
are now both in logical 0 states and its output Y rises to a
logical 1. However, because Y is fed back to the input of gate
G, the output X is maintained at a logical 0 even if A returns
to a 0 state.

The effect of setting A to a 1 causes output X to flip over
from a 1 to a 0 and to remain in that state when A returns to
a 0. We call an RS flip-flop a latch because of its ability to
capture a signal. Table 3.1 provides a truth table for the circuit
of Fig. 3.2. Two tables are presented—one appropriate to the
circuit we have described and one with its inputs and outputs
relabeled.

Table 3.1(a) corresponds exactly to the two-NOR gate
circuit of Fig. 3.2 and Table 3.1(b) to the idealized form of this
circuit that’s called an RS flip-flop. There are two differences
between Tables 3.1(a) and 3.1(b). Table 3.1(b) uses the
conventional labeling of an RS flip-flop with inputs R and S
and an output Q. The other difference is in the entry for the
case in which A = B =1 and R = S = 1. The effect of these
differences will be dealt with later.

We've already stated that Fig. 3.2 defines its output in terms
of itself (i.e. X = A-B + A-X). The truth table gets round
this problem by creating a new variable, X* (or Q*), where
X* is the new output generated by the old output X and
the current inputs A and B. We can write X* = A-B + A-X.
The input and output columns of the truth table are now not
only separated in space (e.g. input on the left and output on
the right) but also in time. The current output X is combined
with inputs A and B to generate a new output X*. The value
of X that produced X* no longer exists and belongs only to
the past.

Labels R and S in the Table 3.1(b) correspond to reset
and set, respectively. The word reset means make 0 (clear has
the same meaning) and set means make 1. The output of all
flip-flops is called Q by a historical convention. Examining
the truth table reveals that whenever R = 1, the output Q
is reset to 0. Similarly, when S = 1 the output is set to 1.

Note that the gates are cross-coupled
with the output of one gate connected
to the input of the other gate

An alternative view of the circuit.
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(a) Truth table for Fig. 3.2.

Inputs Output
A B X X'
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0
T T
Old X New X

(b) Truth table for relabeled Fig. 3.2.

Inputs Output
R S Q Q’
0 0 0 0 No change
0 0 1 1 No change
0 1 0 1 Set
0 1 1 1 Set
1 0 0 0 Clear
1 0 1 0 Clear
1 1 0 ? Undefined
1 1 1 ? undefined
T T
Old Q New Q

The truth table is interpreted as follows. The output of the circuit is currently X (or Q) and the new inputs to be applied to the input terminals are A, B
(or R, S). When these new inputs are applied to the circuit, its output is given by X* (or Q™). For example, if the current output X is 1 and the new
values of A and B are A = 1, B = 0, then the new output, X*, will be 0.This value of X* then becomes the next value of X when new inputs A and B

are applied to the circuit.

Table 3.1 Truth table for the circuit in Fig. 3.2.

When R and S are both 0, the output does not change; that
is,Q" = Q.

If both R and S are simultaneously 1, the output is concep-
tually undefined (hence the question marks in Table 3.1(b),
because the output can’t be set and reset at the same time. In
the case of the RS flip-flop implemented by two NOR gates,
the output X does, in fact, go low when A = B = 1. In prac-
tice, the user of an RS flip-flop should avoid the condition
R=S=1.

The two-NOR gate flip-flop of Fig. 3.2 has two outputs X
and Y. An examination of the circuit for all inputs except
A = B = 1 reveals that X and Y are complements. Because of
the symmetric nature of flip-flops, almost all flip-flops have
two outputs, Q and its complement Q. The complement of Q
may not always be available to the user of the flip-flop
because many commercial devices leave Q buried on the chip
and not brought out to a pin. Figure 3.4 gives the circuit
representation of an RS flip-flop.

We can draw the truth table of the RS or any other flip-
flop in two ways. Up to now we’ve presented truth tables
with two output lines for each possible input, one line
for Q = 0 and one for Q = 1. An alternative approach is to
employ the algebraic value of Q and is illustrated by
Table 3.2.

When R =S = 0 the new output Q* is simply the old
output Q. In other words, the output doesn’t change state and
remains in its previous state as long as R and S are both 0.
The inputs R =S =1 result in the output Q* = X. The
symbol X is used in truth tables to indicate an indeterminate
or undefined condition. In Chapter 2 we used the same symbol

R—>R QF——
S—»S QF—
Inputs Outputs

Figure 3.4 Circuit representation of the RS flip-flop as a black box.

Inputs Output Description

R S Q

0 0 Q No change

0 1 1 Set output to 1

1 0 0 Reset output to O
1 1 X Forbidden

Table 3.2 An alternative truth table for the RS flip-flop.

to indicate a don’t care condition. An indeterminate condi-
tion is one whose outcome can’t be calculated, whereas a
don’t care condition is one whose outcome does not matter to
the designer.

3.1.2 Characteristic equation of
an RS flip-flop

We have already demonstrated that you can derive an equa-
tion for a flip-flop by analyzing its circuit. Such an equation is
called the flip-flop’s characteristic equation. Instead of using
an actual circuit, we can derive a characteristic equation from
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Figure 3.5 Karnaugh map for the characteristic equation of an
RS flip-flop.

R
Gate
}—’ Q
Active-low
inputs
Gate
3—} °

Figure 3.6 RS flip-flop constructed from two cross-coupled
NAND gates.

the flip-flop’s truth table. Figure 3.5 plots Table 3.1(b) on a
Karnaugh map. We have indicated the condition R =S =1
by X because it is a forbidden condition. From this truth table
we canwrite Q" =S + Q-R.

Note that this equation is slightly different from the one
we derived earlier because it treats R = S = 1 as a don’t care
condition.

3.1.3 Building an RS flip-flop from
NAND gates

An RS flip-flop can be constructed from two cross-coupled
NAND gates just as easily as from two NOR gates. Figure 3.6
illustrates a two-NAND gate flip-flop whose truth table is
given in Table 3.3.

The only significant difference between the NOR gate flip-
flop of Fig. 3.2 and the NAND gate flip-flop of Fig. 3.6 is that
the inputs to the NAND gate flip-flop are active-low. If we
were to place inverters at the R and S inputs to the NAND gate
flip-flop, it would then be logically equivalent to the NOR
gate flip-flop of Fig. 3.2.

The no change input to the NAND gate flip-flopisR,S = 1,
1; the output is cleared by forcing R = 0 and set by forcing
S = 0; the forbidden input state is R, S = 0, 0. Suppose that
we did set the inputs of a NAND gate RS flip-flop to 0, 0 and
then released the inputs to 1,1 to enter the no change state.
What would happen? The answer is that we can’t predict the
final outcome. Initially, when both inputs are Os, both outputs
of the RS flip-flop must be 1s (because the output of a NAND
gate is a 1 if either of its inputs are a 0). The real problem
arises when the inputs change state from 0, 0 to 1, 1. Due to
tiny imperfections, either one or the other input would go
high before its neighbor and cause the flip-flop to be set or
reset.

Inputs Output Comment

R S Q*

0 0 X Forbidden

0 1 1 Reset output to 0
1 0 0 Set output to 1

1 1 Q No change

Table 3.3 Truth table for an RS flip-flop constructed from
NAND gates.

‘A

1 Rising edge
of Ssets Q

3 al

Rising edge
of R resets Q

1
Output Q \>

0

Inputs

Figure 3.7 Timing diagram of the effect of pulses on an
RS flip-flop’s inputs.

Real applications of RS flip-flops may employ either two
NAND or two NOR gates depending only on which gates
provide the simpler solution. In practice, the majority of RS
flip-flops are often constructed from NAND gates because
most circuits use active-low signals. We began our discussion
of RS flip-flops with the NOR gate circuit (unlike other texts
that introduce first the more common NAND gate flip-flop)
because we have discovered that many students find it hard to
come to terms with negative logic (i.e. logic in which the low
state is the active state).

3.1.4 Applications of the RS flip-flop

An important application of RS flip-flops is in the recording
of short-lived events. If the Q output of a flip-flop is in a zero
state, alogical 1 pulse at its S input (assuming the R input is 0)
will cause Q to be set to a 1, and to remain at a 1, until the R
input resets Q. The effect of a pulse at the S input followed by
a pulse at the R input of an RS flip-flop is illustrated in Fig. 3.7.

Consider the following application of RS flip-flops to an
indicator circuit. If an aircraft is flown outside its perfor-
mance envelope no immediate damage may be apparent, but
its structure might be permanently weakened. To keep things
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Figure 3.8 Application of RS flip-flops in a warning system.

simple, we will consider three possible events that are consid-
ered harmful and might endanger the aircraft.

1. Exceeding the maximum permissible speed V..

2. Extending the flaps above the flap-limiting speed Vj. That is,
the flaps must not be lowered if the aircraft is going faster
than V.

3. Exceeding the maximum acceleration (g-force) G,

If any of the above parameters are exceeded (even for only
an instant), a lasting record of the event must be made.

Figure 3.8 shows the arrangement of warning lights used
to indicate that one of these conditions has been violated.
Transducers that convert acceleration or velocity into a
voltage measure the acceleration and speed of the aircraft.
The voltages from the transducers are compared with the three
threshold values (V,, Vi, G,,,) in comparators, whose outputs
are true if the threshold is exceeded, otherwise false. In order
to detect the extension of flaps above the flap-limiting
speed, the output of the comparator is ANDed with a signal
from the flap actuator circuit that is true when the flaps
are down.

The three signals from the comparators are fed, via OR
gates, to the S inputs of three RS flip-flops. Initially, on
switching on the system, the flip-flops are automatically reset
by applying a logical 1 pulse to all R inputs simultaneously. If
at any time one of the S inputs becomes true, the output of
that flip-flop is set to a logical 1 and triggers an alarm. All
outputs are ORed together to illuminate a master warning
light. A master alarm signal makes it unnecessary for the pilot
to have to scan all the warning lights periodically. An addi-
tional feature of the circuit is a test facility. When the warning

Master
warning

From other
warning circuits

test button is pushed, all warning lights should be illumin-
ated and remain so until the reset button is pressed. A test
facility verifies the correct operation of the flip-flops and the
warning lights.

A pulse-train generator

Figure 3.9 gives the circuit of a pulse-train generator that
generates a sequence of N pulses each time it is triggered by a
positive transition at its START input. The value of N is user
supplied and is fed to the circuit by three switches to select the
values of C_, C,, C,. This circuit uses the counter that we will
meet later in this chapter.

The key to this circuit is the RS flip-flop, G, used to start
and stop the pulse generator. Assume that initially the R and
S inputs to the flip-flop are R =0 and S = 0 and that its
output Q is a logical 0. Because one of the inputs to AND gate
G, is low, the pulse train output is also low.

When a logical 1 pulse is applied to the flip-flop’s START
input, its Q output rises to a logical 1 and enables AND gate
G,. A train of clock pulses at the second input of G, now
appears at the output of the AND gate. This gated pulse train
is applied to the input of a counter (to be described later),
which counts pulses and generates a three-bit output on Q,,
Q> Qo corresponding to the number of pulses counted in the
range 0 to 7. The outputs of the counter are fed to an equality
detector composed of three EOR gates, G, to G,, plus NOR
gate Gs. A second input to the equality detector is the user-
supplied count value C,, Cy,, C... The outputs of the EOR gates
are combined in NOR gate G5 (notice that it’s drawn in
negative logic form to emphasize that the output is 1 if all its
inputs are 0).
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Figure 3.9 Pulse train
generator.
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Figure 3.10 Timing diagram of pulse train generator.

Figure 3.10 gives a timing diagram for the pulse generator.
Initially the counter is held in a reset state (Q, = Q, = Q. = 0).
When the counter is clocked, its output is incremented by 1 on
the falling edge of each clock pulse. The counter counts upward
from 0 and the equality detector compares the current count on
Q> Qp, Q. output with the user-supplied inputs C,, Cy,, C.. When
the output of the counter is equal to the user-supplied input, the
output of gate G5 goes high and resets both the counter and the
RS flip-flop. Resetting the counter forces the counter output to 0.

Resetting the RS flip-flop disables AND gate G, and no further
clock pulses appear at the output of G;. In this application of the
RS flip-flop, its S input is triggered to start an action and its
R input is triggered to terminate the action.

3.1.5 The clocked RS flip-flop

The RS flip-flop of Fig. 3.2 responds to signals applied to its
inputs according to its truth table. There are situations when



we want the RS flip-flop to ignore its inputs until a particular
time. The circuit of Fig. 3.11 demonstrates how this is accomp-
lished by turning the RS flip-flop into a clocked RS flip-flop.
A normal, unmodified, RS flip-flop lies in the inner box in
Fig. 3.11. Its inputs, R and S, are derived from the external
inputs R and S by ANDing them with a clock input C—some
texts call these two AND gates ‘steering gates. As long as
C = 0, the inputs to the RS flip-flop, R" and S’, are forced to
remain at 0, no matter what is happening to the external

am SE
»Q
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v

Ql

RS flip-flop
@

\The AND gates ensure that
the inputs to the RS flip-flop
are low unless C is high

Figure 3.11 The clocked RS flip-flop.
—D—

Figure 3.12 Building a clocked RS flip-flop with NAND gates.
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R and S inputs. The output of the RS flip-flop remains
constant as long as these R and S’ inputs are both 0.

Whenever C = 1, the external R and S inputs to the
circuit are transferred to the flip-flop so that R” = R and
S =S, and the flip-flop responds accordingly. The clock
input may be thought of as an inhibitor, restraining the flip-
flop from acting until the right time. Figure 3.12 demon-
strates how we can build a clocked RS flip-flop from NAND
gates. Clocked flip-flops are dealt with in more detail later
in this chapter.

3.2 The D flip-flop

Like the RS flip-flop, the D flip-flop has two inputs, one called
D and the other C. The D input is referred to as the data input
and C as the clock input. The D flip-flop is, by its nature, a
clocked flip-flop and we will call the act of pulsing the C input
high and then low clocking the D flip-flop.

When a D flip-flop is clocked, the value at its D input is
transferred to its Q output and the output remains constant
until the next time it is clocked. The D flip-flop is a staticizer
because it records the state of the D input and holds it con-
stant until it’s clocked. Others call it a delay element because,
if the D input changes state at time T but the flip-flop is
clocked t seconds later, the output Q doesn’t change state
until 7 seconds after the input. I think of the D flip-flop as a
census taker because it takes a census of the input and remem-
bers it until the next census is taken. The truth table for a
D flip-flop is given in Table 3.4.

The circuit of a D flip-flop is provided in Fig. 3.13 and
consists of an RS flip-flop plus a few gates. The two AND
gates turn the RS flip-flop into a clocked RS flip-flop. As long
as the C input to the AND gates is low, the R and S inputs are
clamped at 0 and Q cannot change.

Full form Algebraic form

Inputs Output Inputs Output
Q’ D — Q°

C D Q C D

0 0 0 0 Q"«0Q No change 0 0 Q

0 0 1 1 Q"«0Q No change 0 1 Q

0 1 0 0 Q" «0Q No change 1 0 0

0 1 1 1 Q"0 No change 1 1 1

1 0 0 0 Q*«D

1 0 1 0 Q<D

1 1 0 1 Q*«D

1 1 1 1 Q*«D

Table 3.4 Truth table for a D flip-flop.
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Figure 3.13 Circuit of a D flip-flop.

RS flip-flop

When C goes high, the S input is connected to D and the
R input to D. Consequently, (R, S) must either be (0, 1) if
D =1, o0r (1, 0) if D = 0. Therefore, D = 1 sets the RS flip-
flop, and D = 0 clears it.

3.2.1 Practical sequential logic
elements

Just as semiconductor manufacturers have provided combi-
national logic elements in single packages, they have done the
same with sequential logic elements. Indeed, there are more
special-purpose sequential logic elements than combina-
tional logic elements. Practical flip-flops are more complex
than those presented hitherto in this chapter. Real circuits
have to cater for real-world problems. We have already said
that the output of a flip-flop is a function of its current inputs
and its previous output. What happens when a flip-flop is
first switched on? The answer is quite simple. The Q output
takes on a random state, assuming no input is being applied
that will force Q into a 0 or 1 state.

Random states may be fine at the gaming tables in Las
Vegas; they’re less helpful when the control systems of a
nuclear reactor are first energized. Many flip-flops are pro-
vided with special control inputs that are used to place them
in a known state. Figure 3.14 illustrates the 74LS74, a dual
positive-edge triggered D flip-flop that has two active-low
control inputs called preset and clear (abbreviated PRE and
CLR). In normal operation both PRE and CLR remain in
logical 1 states. If PRE = 0 the Q output is set to a logical 1
and if CLR = 0 the Q output is cleared to a logical 0. As in
the case of the RS flip-flop, the condition PRE = CLR =0
should not be allowed to occur.

These preset and clear inputs are unconditional in the sense
that they override all activity at the other inputs of this flip-
flop. For example, asserting PRE sets Q to 1 irrespective of
the state of the flip-flop’s C and D inputs. When a digital
system is made up from many flip-flops that must be set or
cleared at the application of power, their PRE or CLR lines
are connected to a common RESET line and this line is

2Clk 2PRE 2Q 20
11]_[10] _[9 8
D PRE ]
> Clk

Ve 2CIR 2D
14| {13 _[12

>Clk
D pre Q

1 2 3 4 5 6 7

1CIR 1D 1Clk 1PRE 1Q 1Q GND
Figure 3.14 The 74LS74 D flip-flop.
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Figure 3.15 Using D flip-flops to create a register.

momentarily asserted active-low by a single pulse shortly
after the power is switched on.

3.2.2 Using D flip-flops to
create aregister

Later we shall discover that a computer is composed of little
more than combinational logic elements, buses, and groups of
flip-flops called registers that transmit data to and receive data
from buses. A typical example of the application of D flip-
flops is provided by Fig. 3.15 in which an m-bit wide data bus
transfers data from one part of a digital system to another.
Data on the bus is constantly changing as different devices use
it to transmit their data from one register to another.

The D inputs of a group of m D flip-flops are connected to
the m lines of the bus. The clock inputs of all flip-flops are



connected together, allowing them to be clocked simultan-
eously. As long as C = 0, the flip-flops ignore data on the bus
and their Q outputs remain unchanged. Suppose some device
wishes to transfer its data to the flip-flops. It first puts its data
on the bus and then the flip-flops are clocked, latching the
data into them. When the clock has returned to zero, the data
remains frozen in the flip-flops.

3.2.3 Using Digital Works to
create aregister

We are now going to use Digital Works to create a simple
bused system using D flip-flops. Although Digital Works
implements both RS and D flip-flops, we’ll construct a D flip-
flop from basic gates. Figure 3.16 shows a single 1-bit cell in a
register (we can construct an m-bit register by using m iden-
tical elements in parallel).

If you examine Fig. 3.16 you will find that the flip-flop is
more complex than the simple D flip-flop of Fig. 3.13. We
have added a tri-state gate to the Q output to allow the flip-
flop to drive a bus or to be disconnected from the bus.
Furthermore, we’ve added an input multiplexer to allow the
D input to be connected to one of two sources A and B. The
inputs and output of Fig. 3.16 are

+ Alinput
* Binput

A/B select input

“* Digital Works 95 - OUPcell.dwm
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+ Clock input
+ Enable output
* Qoutput.

In Fig. 3.17 we've used Digital Work’s macro facility to
convert the circuit in Fig. 3.16 into a black box macro that
can be used as a circuit element to build more complex
systems.

Figure 3.18 provides a test bed for three of the register slices.
We have provided one bit of three registers and three buses
(input bus A, input bus B, and output bus C). Each register
slice is connected to all three buses. We've added input
devices to all the control inputs to enable us to experiment
with this circuit.

The system in Fig. 3.18 can’t do a lot, but what it can do is
very important. Because we’ve added input devices to buses A
and B, we can force our own data on bus A and B. We can
select whether each register slice gets its input from bus A or
bus B by setting the value of the Input select input to 1 (bus A)
or 0 (bus B). Data is clocked into any of the register slices by
clocking it (i.e. setting its clock input to 1 to capture the data
and then setting the clock input to 0 to latch and retain the
data). Finally, data from any of the three register slices can be
put on bus C by asserting the appropriate output.

This circuit is important because it forms the heart of a
computer. All we need to create an ALU (arithmetic and logic
unit) are the circuits that take data from bus C, process it, and
copy the result to the A or B bus.
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3.2.4 Atypicalregister chip

supply pins, and two control inputs. The clock input, G, is a
You can obtain a single package containing the flip-flops that  level-sensitive clock, which, when high, causes the value at D;
implement a register. Figure 3.19 illustrates the 74LS373,an  to be transferred to Q,. All eight clock inputs are connected
octal register composed of D flip-flops that is available in a  together internally so that the G input clocks each flip-flop
20-pin package with eight inputs, eight outputs, two power  simultaneously.
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Figure 3.19 The 74LS373 octal register.

The 74LS373’s other control input is active-low OE (out-
put enable), which controls the output of all flip-flops. When
OE = 0, the flip-flop behaves exactly as we would expect.
When OE = 1, the eight Q outputs are internally discon-
nected from the output pins of the device; that is, the
7418373 has tri-state outputs and OE is used to turn off the
chip’s output circuits when it is not driving a bus.

Figure 3.20 demonstrates the 74LS373 octal register in a
digital system where four registers are connected to a com-
mon data bus. Each register is arranged with both its outputs
and its inputs connected to the same bus allowing it to trans-
mit data onto the bus or to receive data from it.

Each register has tri-state outputs controlled by an output
enable pin. When OE is asserted low, the corresponding reg-
ister drives the bus. Registers are clocked by an active-high
clock input labeled G.

IC5a is a 2-line to 4-line decoder; that is, a demultiplexer
of the type we described in Chapter 2. When this device
is enabled, the 2-bit binary source code at the input of IC5a
causes one of its output lines, Y, to Y., to go low. These out-
puts are connected to the respective OE inputs of the four
registers. Each of the four possible source codes enables one
of the registers; for example, if the source code at the input to
IC5ais 01, the output of register 1 is enabled and the contents
of register 1 are placed on the bus. The outputs of all other
registers remain internally disconnected from the bus.

The 74LS139 contains two complete 2-line to 4-line
decoders in a single 16-pin package. The second half of this
package acts as a destination decoder. Each of the four out-
puts from IC5b is connected to one of the clock inputs, G, of
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the four registers. Because the clock inputs are active-high
and the outputs of the decoder are active-low, it’s necessary to
invert these outputs. Four inverters, [C6, perform this func-
tion. When IC5Db is enabled, one of its outputs is asserted and
the corresponding register clocked. Clocking a register
latches data from the data bus.

Suppose the contents of register 1 are to be copied into reg-
ister 3. The source code at IC5a is set to 01 and the destination
code at IC5b is set to 11. This puts the data from register 1 on
the bus and latches the data into register 3. We can easily
relate the example of Fig. 3.20 to the digital computer. One of
the most fundamental operations in computing is the assign-
ment that can be represented in a high-level language as
B = A and in a low-level language as MOVE A, B.The action
MOVE A, B (i.e. transfer the contents of A to B) is imple-
mented by specifying A as the source and B as the destination.
Note that throughout this text we put the destination of a
data transfer in bold font to stress the direction of data
transfer.

3.3 Clocked flip-flops

Before we introduce the JK flip-flop we look more closely at
the idea of clocking sequential circuits. Clocked circuits allow
logic elements to respond to their inputs only when the
inputs are valid. Some writers use the term trigger rather than
clock, because triggering a flip-flop gives the impression of
causing an event to take place at a discrete instant. We begin
by examining the effect of delays on the passage of signals
through systems.

Figure 3.21 demonstrates the effect of circuit delays on a
system with two inputs, A and B, that are acted upon by
processes A, B, and C to produce an output. The nature of the
processes is not important because we’re interested only in
the way in which they delay signals passing through them.
Imagine that at time ¢ = 0, the inputs to processes A and B
become valid (i.e. these are the correct inputs to be operated
on by the processes). Assume that process A in Fig. 3.21 intro-
duces a two-unit delay, process B a one-unit delay, and
process C a two-unit delay.

Although the output from process B becomes valid at
t =1, it’s not until + = 2 that the output of process A has
become valid. The outputs of processes A and B are fed to
process C, which has a two-unit delay. Clearly, the desired
output from C due to inputs A and B is not valid until at least
four time units after + = 0. The output from process C
changes at least once before it settles down to its final value
(Why? Because of the different delays through processes A
and B). This poses a problem. How does an observer at the
output of process C know when to act upon the data from C?

What we need is some means of capturing data only when
we know that it’s valid—see Fig. 3.22. If a D flip-flop is placed
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at the output of process C and is clocked four units of time
after t = 0, the desired data will be latched into the flip-flop
and held constant until the next clock pulse. Clocked systems
hold digital information constant in flip-flops while the infor-
mation is operated on by groups of logic elements, analogous
to the processes of Fig. 3.21. Between clock pulses, the outputs
of the flip-flops are processed by the logic elements and the
new data values are presented to the inputs of flip-flops.

After a suitable time delay (longer than the time taken for
the slowest process to be completed), the flip-flops are clocked.
The outputs of the processes are held constant until the next
time the flip-flops are clocked. A clocked system is often called
synchronous, as all processes are started simultaneously on each
new clock pulse. An asynchronous system is one in which the
end of one process signals (i.e. triggers) the start of the next.
Obviously, an asynchronous system must be faster than the
corresponding synchronous system. Asynchronous systems
are more complex and difficult to design than synchronous

Figure 3.20 Using the
74LS373 octal register in a
bused system.

8-bit parallel data bus

systems and popular wisdom says that they are best avoided
because they are inherently less reliable than synchronous
circuits. The 1990s saw a renewed interest in asynchronous
systems because of their speed and lower power consumption.

3.3.1 Pipelining

Now consider the effect of placing D flip-flops at the outputs of
processes A, B, and C in the system of Fig. 3.23. Figure 3.23
shows the logical state at several points in a system as a function
of time. The diagram is read from left to right (the direction of
time flow). Signals are represented by parallel lines to demon-
strate that the signal values may be 1s or Os (we don’t care).
What matters is the time at which signals change. Changes are
shown by the parallel lines crossing over. Lines with arrow-
heads are drawn between points to demonstrate cause and
effect; for example, the line from Input A to Output A shows
that a change in Input A leads to a change in Output A.
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In this example we assume that each of the processes intro-
duces a single unit of delay and the flip-flops are clocked
simultaneously every unit of time. Figure 3.23 gives the tim-
ing diagram for this system. Note how a new input can be
accepted every unit of time, rather than every two units of
time as you might expect. The secret of our increase in
throughput is called pipelining because we are operating on
different data at different stages in the pipeline. For example,
when process A and process B are operating on data i, process
C is operating on data i — 1 and the latched output from
process C corresponds to datai — 2.

When we introduce the RISC processor we will discover
that pipelining is a technique used to speed up the operation
of a computer by overlapping consecutive operations.

3.3.2 Ways of clocking flip-flops

A clocked flip-flop captures a digital value and holds it
constant. There are, however, three ways of clocking a
flip-flop.

1. Whenever the clock is asserted (i.e. a level-sensitive flip-flop).

2. Whenever the clock is changing state (i.e. an edge-sensitive

flip-flop).

3. Capture data on one edge of the clock and transfer it to the
output on the following edge (i.e. a master—slave flip-flop).

" Time
Figure 3.27 Processes and
delays.

A level-sensitive clock triggers a flip-flop whenever the
clock is in a particular logical state (some flip-flops are
clocked by alogical 1 and some by alogical 0). The clocked RS
flip-flop of Fig. 3.11 is level sensitive because the RS flip-flop
responds to its R and S inputs whenever the clock input is
high. A level-sensitive clock is unsuitable for certain
applications. Consider the system of Fig. 3.24 in which the
output of a D flip-flop is fed through a logic network and
then back to the flip-flop’s D input. If we call the output of the
flip-flop the current Q, then the current Q is fed through the
logic network to generate a new input D. When the flip-flop
is clocked, the value of D is transferred to the output to
generate Q™.

If the clock is level sensitive, the new Q" can rush through
the logic network and change D and hence the output. This
chain of events continues in an oscillatory fashion with the
dog chasing its tail. To avoid such unstable or unpredictable
behavior, we need an infinitesimally short clock pulse to
capture the output and hold it constant. As such a short pulse
can’t easily be created, the edge-sensitive clock has been intro-
duced to solve the feedback problem. Level-sensitive clocked
D flip-flops are often perfectly satisfactory in applications
such as registers connected to data buses, because the dura-
tion of the clock is usually small compared to the time for
which the data is valid.
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3.3.3 Edge-triggered flip-flops

An edge-triggered flip-flop is clocked not by the level or state
of the clock (i.e. high or low), but by the transition of the
clock signal from zero to one, or one to zero. The former case
is called a positive or rising-edge sensitive clock and the latter
is called a negative or falling-edge sensitive clock. As the ris-
ing or falling edge of a pulse may have a duration of less than
1 ns, an edge-triggered clock can be regarded as a level-
sensitive clock triggered by a pulse of an infinitesimally short
duration. A nanosecond (ns) is a thousand millionth (107°)
of a second. The feedback problem described by Fig. 3.24
ceases to exist if you use an edge-sensitive flip-flop because
there’s insufficient time for the new output to race back to the
input within the duration of a single rising edge.

There are circumstances when edge-triggered flip-flops are
unsatisfactory because of a phenomenon called clock skew.
If, in a digital system, several edge-triggered flip-flops are
clocked by the same edge of a pulse, the exact times at which
the individual flip-flops are clocked vary. Variation in the
arrival time of pulses at each clock input is called clock skew
and is caused by the different paths by which clock pulses

The input to the
D flip-flop is sampled
at this point

Figure 3.22 Latching the
output of a system.

reach each flip-flop. Electrical impulses move through
circuits at somewhat less than the speed of light, which is
30 cm/ns. Unless each flip-flop is located at the same distance
from the source of the clock pulse and unless any additional
delays in each path due to other logic elements are identical,
the clock pulse will arrive at the flip-flops at different
instants. Moreover, the delay a signal experiences going
through a gate changes with temperature and even the age of
the gate. Suppose that the output of flip-flop A is connected
to the input of flip-flop B and they are clocked together.
Ideally, at the moment of clocking, the old output of A is
clocked into B. If, by bad design or bad luck, flip-flop A is trig-
gered a few nanoseconds before flip-flop B, B sees the new
output from A, not the old (i.e. previous) output—it’s as if
A were clocked by a separate and earlier clock.

Figure 3.25 gives the circuit diagram of a positive edge-
triggered D flip-flop that also has unconditional preset and
clear inputs. Edge triggering is implemented by using the
active transition of the clock to clock latches 1 and 2 and then
feeding the output of latch 2 back to latch 1 to cut off the
clock in the NAND gate. That is, once the clock has been
detected, the clock input path is removed.
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Figure 3.24 Feedback and the level-sensitive clock.

3.3.4 The master-slave flip-flop

The master—slave (MS) flip-flop has the external appearance
of asingle flip-flop, but internally is arranged as two flip-flops
operating in series. One of these flip-flops is called the master
and the other the slave. The term slave is used because the
slave flip-flop follows the master. Figure 3.26 describes a

to implement pipelining.

simple RS master—slave flip-flop composed of two RS flip-
flops in series. Note that the master flip-flop is enabled when
the clock is high and the slave flip-flop is enabled when the
clock is low.

When the clock pulse goes high, the input data at the R and
S input terminals of the master flip-flop is copied into the
master flip-flop. At this point, the output terminals of the
master—slave flip-flop aren’t affected and don’t change state
because the output comes from the slave flip-flop that is in a
hold state because its clock is low.

Because the master flip-flop of Fig. 3.26 uses a level-
sensitive RS flip-flop, the master responds to data at its RS
inputs as long as the clock is asserted high. The data at the RS
inputs of the master is latched by the master at the instant the
clock input goes low. On the falling edge of the clock, the
slave’s clock input goes high and data from the master flip-
flop’s outputs is copied into the save flip-flop. Only now may
the output terminals change state. Figure 3.27 provides a tim-
ing diagram for the master—slave RS flip-flop.

Master—slave flip-flops totally isolate their input terminals
from their output terminals simply because the output of the
slave flip-flop does not change until affer the input conditions
have been sampled and latched internally in the master.
Conceptually, the master—slave flip-flop behaves like an air
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Figure 3.25 Circuit of an edge-triggered flip-flop.

same input.

3.3.5 Bus arbitration—an
example

We now look at a more advanced application
of flip-flops in a bus arbitration circuit that
decides which of two processors get to access
a block of common memory, called dual-
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Figure 3.29 describes such an arrangement.
You could regard the DPRAM as a bridge

Figure 3.26 The master—slave RS flip-flop.
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Figure 3.27 Timing diagram of a master—slave RS flip-flop.

lock in a submarine or spacecraft. An air lock exists to transfer
people between regions of different pressure (air-to-vacuum
or air-to-water) without ever permitting a direct path between
the two pressure regions. A flip-flop is analogous to an air
lock because its output must not be fed directly back to its

between two buses.
Because both processors 1 and 2 operate
independently, either processor may access
the common memory at any time. We need a means of
requesting control of the common memory and getting
access to the memory even if both processors make near-
simultaneous requests.

Figure 3.30 describes an arbiter with a clock input, two
request inputs, and two grant outputs. The request and grant
inputs and outputs are all active-low. The memory-request
inputs, Request1 and Request2, are sampled by two positive-
edge triggered latches. The arbiter clocks latch 1a on the ris-
ing edge of the clock and latch 2a on the falling edge of the
clock. This arrangement ensures that the two request inputs
are not sampled simultaneously.

Figure 3.31 provides a timing diagram for the case in which
both processors request the bus simultaneously. As we can
see, processor 2 wins the request and processor 1 must wait
until processor 2 has relinquished the bus. That is, processor
1 does not have to try again—it simply waits for the memory
to become free. Processor 1 determines that the bus is once
more free.

Initially, the arbiter is in an idle state with both request
inputs inactive-high. Therefore, both D inputs to latches 1a
and 2a are high and in a steady-state condition. Outputs AA,
BB, Grantl, and Grant2 are all high.
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Suppose that Requestl and Request2 are asserted almost
simultaneously when the clock is in a high state. This results in
the outputs of both OR gates (A and B) going low simultan-
eously. The cross-coupled feedback inputs to the OR gates
(Grantl and Grant2) are currently both low.

On the next rising edge of the clock, the Q output of latch
la (i.e. AA) and the Q output of latch 2a (i.e. BB) both go low.
However, as latch 2a sees a rising edge clock first, its Q output
goes low one half a clock cycle before latch 1’s output also
goes low.

When a latch is clocked at the moment its input is chang-
ing, it may enter a metastable' state lasting for up to about
75 ns before the output of the latch settles into one state or
the other. For this reason a second pair of latches is used to
sample the input latches after a period of 80 ns.

One clock cycle after Request2 has been latched and out-
put BB forced low, the output of latch 2b, Grant2 goes low. Its
complement, Grant2 is fed back to OR gate 1, forcing input A
high. After a clock cycle AA also goes high. Because Grant2 is
connected to latch 1b’s active-low preset input, latch 1b is
held in a high state.

At this point, Grant1 is negated and Grant2 asserted, per-
mitting processor 2 to access the bus.

When processor 1 relinquishes the memory, Request2
becomes inactive-high, causing first B, then BB and finally
Grant2 to be negated as the change ripples through the

N |

~ |

Grant2

Figure 3.371 Timing diagram for
Fig. 3.30.

arbiter. Once Grant2 is high, Grant2 goes low, causing the
output of OR gate 1 (i.e. A) to go low. This is clocked through
latches 1a and 1b to force Grantl low and therefore permit
processor 1 to access the memory. Of course, once Grantl is
asserted, any assertion of Request2 is ignored.

3.4 The JK flip-flop

The JK flip-flop can be configured, or programmed, to oper-
ate in one of two modes. All JK flip-flops are clocked and the
majority of them operate on the master—slave principle. The
truth table for a JK flip-flop is given in Table 3.5 and Fig. 3.32
gives its logic symbol. A bubble at the clock input to a flip-
flop indicates that the flip-flop changes state on the falling
edge of a clock pulse.

Table 3.5 demonstrates that for all values of ] and K, except
] = K = 1, the JK flip-flop behaves exactly like an RS flip-flop
with J acting as the set input and K acting as the reset input.
When ] and K are both true, the output of the JK flip-flop

! Ifalatch is clocked at the exact moment its input is changing state, it
can enter a metastable state in which its output is undefined and it may
even oscillate for a few nanoseconds. You can avoid the effects of metasta-
bility by latching a signal, waiting for it to settle, and then capturing it in
a second latch.
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Full form Algebraic form

Inputs Output Inputs Output
J K Q Q J K Q’

0 0 0 0 No change 0 0 Q No change
0 0 1 1 No change 0 1 0 Clear

0 1 0 0 Reset Q 1 0 1 Set

0 1 1 0 Reset Q 1 1 Q Toggle
1 0 0 1 SetQ

1 0 1 1 SetQ

1 1 0 1T Q'«Q

1 1 1 0 Q*«Q

Table 3.5 Truth table for a JK flip-flop.
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Figure 3.32 Representation of the JK flip-flop.
JK
Q 00 01 11 10
0 ()
Bl 1d
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Figure 3.34 Construction of a basic JK flip-flop.

toggles, or changes state, each time the flip-flop is clocked.
That is, if Q was a 0 it becomes a 1 and vice versa. It is this
property that puts the JK flip-flop at the heart of many
counter circuits, the operation of which is dealt with in the

next section. Note that the T flip-flop is a JK flip-flop with
] = K = 1, which changes state on each clock pulse (we don’t
deal with T flip-flops further in this text).

We can derive the characteristic equation for a JK flip-flop
by plotting Table 3.5 on a Karnaugh map, Fig. 3.33. This gives
Q"=J-Q+K-Q

Figure 3.34 demonstrates how a JK flip-flop can be
constructed from NAND gates and Fig. 3.35 describes a
master—slave JK flip-flop.

3.5 Summary of flip-flop types

To understand flip-flops, it’s necessary to appreciate that,
unlike combinational circuits, they have internal states as
well as external inputs; that is, the output of a flip-flop
depends on the previous inputs of the flip-flop. Flip-flops
are therefore memory elements. The most common forms of
flip-flop are the D flip-flop, the RS flip-flop, and the JK flip-
flop. Each flip-flop has two outputs, Q and its complement
Q, although the complementary output is not always con-
nected to a pin in an integrated circuit. Most flip-flops are
clocked and have a clock input that is used to trigger the flip-
flop. Flip-flops often have unconditional preset and clear
inputs that can be used the set or clear the output, respect-
ively. The term unconditional means that these inputs
override any clock input.

The D flip-flop D flip-flops have two inputs, a D (data) input
and a C (clock) input. The output of a D flip-flop remains in
its previous state until its C input is clocked. When its C input
is clocked, the Q output becomes equal to D until the next
time it is clocked.

The RS flip-flop An RS flip-flop has two inputs, R (reset) and
S (set). As long as both R and S are 0, the Q output of the
RS flip-flop is constant and remains in its previous state.
When R =1 and S = 0, the Q output is forced to 0 (and
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remains at zero when R returns to 0). When S = 1 andR = 0,
the Q output is forced to one (and remains at one when S
returns to 0). The input conditions R = S = 1 produce an
indeterminate state and should be avoided. Clocked RS flip-
flops behave as we have described, except that their R and S
inputs are treated as zero until the flip-flop is clocked. When
the RS flip-flop is clocked, its Q output behaves as we have
just described.

The JK flip-flop The JK flip-flop always has three inputs, ], K,
and a clock input C. As long as a JK flip-flop is not clocked, its
output remains in the previous state. When a JK flip-flop is
clocked, it behaves like an RS flip-flop (where ] = S, K = R)
for all input conditions except ] = K= 1.If ] = K = 0, the
output does not change state. If K = 1 and ] = 0, the Q out-
put is reset to zero. If ] = 1 and K = 0, the Q output is set to
1. If both J and K are 1, the output changes state (or foggles)
each time it is clocked.

The T flip-flop The T flip-flop has a single clock input. Each
time it is clocked, its output toggles or changes state. A T flip-
flop is functionally equivalent to a JK flip-flop with
J=K=1.

3.6 Applications of
sequential elements

Just as the logic gate is combined with other gates to form
combinational circuits such as adders and multiplexers, flip-
flops can be combined together to create a class of circuits
called sequential circuits. Here, we are concerned with two
particular types of sequential circuit: the shift register, which
moves a group of bits left or right and the counter, which steps
through a sequence of values.

|l>g The invertor ensures that the master stage
operates on a rising edge and the slave stage

Figure 3.35 Circuit diagram of a
master—slave JK flip-flop.

3.6.1 Shiftregister

By slightly modifying the circuit of the register we can build a
shift register whose bits can be moved one place right every
time the register is clocked. For example, the binary pattern

01110101
becomes 00111010 after the shift register is clocked once
and 00011101 after it is clocked twice
and 00001110 after it is clocked three times, and so on.

Note that after the first shift, a 0 has been shifted in from
the left-hand end and the 1 at the right-hand end has been
lost. We used the expression binary pattern because, as we
shall see later, the byte 01110101 can represent many things.
However, when the pattern represents a binary number, shift-
ing it one place right has the effect of dividing the number by
two (just as shifting a decimal number one place right divides
it by 10). Similarly, shifting a number one place left multiplies
it by 2. Later we will see that special care has to be taken when
shifting signed two’s complement binary numbers right (the
sign-bit has to be dealt with).

Figure 3.36 demonstrates how a shift register is con-
structed from D flip-flops. The Q output of each flip-flop is
connected to the D input of the flip-flop on its right. All clock
inputs are connected together so that each flip-flop is clocked
simultaneously. When the ith stage is clocked, its output, Q;,
takes on the value from the stage on its left, that is, Q; «— Q.
Data presented at the input of the left-hand flip-flop, D;,,, is
shifted into the (m—1)th stage at each clock pulse.
Figure 3.36 describes a right-shift register—we will look at
registers that shift the data sequence left shortly.

The flip-flops in a shift register must either be edge-
triggered or master-slave flip-flops, otherwise if a level-sensitive
flip-flop were used, the value at the input to the left-hand
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stage would ripple through all stages as soon as the clock went
high. We can construct a shift register from JK flip-flops just
as easily as from RS flip-flops as Fig. 3.37 demonstrates.
Figure 3.38 shows a five-stage shift register that contains
the initial value 01101. At each clock pulse the bits are shifted

Figure 3.38 Example of a five-stage
shift-right register.

right and a 0 enters the most-significant bit stage. This figure
also provides a timing diagram for each of the five Q outputs.
The output of the right-hand stage, Q,, consists of a series of
five sequential pulses, corresponding to the five bits of the
word in the shift register (i.e. 11010).
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