
PRINCIPLES OF

COMPUTER
HARDWARE

Fourth Edition

Alan Clements
School of Computing

University of Teesside

1

3
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Alan Clements, 2006

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 1985
Second edition 1991
Third edition 2000
Fourth edition 2006-01-18

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India.
Printed in Great Britain
on acid-free paper by
Bath Press Ltd, Bath

ISBN 0–19–927313–8 978–0–19–927313–3

10 9 8 7 6 5 4 3 2 1

PREFACE

Principle of Computer Hardware is aimed at students taking
an introductory course in electronics, computer science, or
information technology. The approach is one of breadth
before depth and we cover a wide range of topics under the
general umbrella of computer hardware.

I have written Principles of Computer Hardware to achieve
two goals. The first is to teach students the basic concepts on
which the stored-program digital computer is founded.
These include the representation and manipulation of infor-
mation in binary form, the structure or architecture of a com-
puter, the flow of information within a computer, and the
exchange of information between its various peripherals. We
answer the questions, ‘How does a computer work’, and ‘How
is it organized?’ The second goal is to provide students with a
foundation for further study. In particular, the elementary
treatment of gates and Boolean algebra provides a basis for
a second-level course in digital design, and the introduction
to the CPU and assembly-language programming provides a
basis for advanced courses on computer architecture/organi-
zation or microprocessor systems design.

This book is written for those with no previous knowledge
of computer architecture. The only background information
needed by the reader is an understanding of elementary alge-
bra. Because students following a course in computer science
or computer technology will also be studying a high-level
language, we assume that the reader is familiar with the con-
cepts underlying a high-level language.

When writing this book, I set myself three objectives. By
adopting an informal style, I hope to increase the enthusiasm
of students who may be put off by the formal approach of
more traditional books. I have also tried to give students an
insight into computer hardware by explaining why things are
as they are, instead of presenting them with information to be
learned and accepted without question. I have included sub-
jects that would seem out of place in an elementary first-level

course. Topics like advanced computer arithmetic, timing
diagrams, and reliability have been included to show how the
computer hardware of the real world often differs from that
of the first-level course in which only the basics are taught.
I’ve also broadened the range of topics normally found in
first-level courses in computer hardware and provided sec-
tions introducing operating systems and local area networks,
as these two topics are so intimately related to the hardware of
the computer. Finally, I have discovered that stating a formula
or a theory is not enough—many students like to see an
actual application of the formula. Wherever possible I have
provided examples.

Like most introductory books on computer architecture,
I have chosen a specific microprocessor as a vehicle to illustrate
some of the important concepts in computer architecture. The
ideal computer architecture is rich in features and yet easy to
understand without exposing the student to a steep learning
curve. Some microprocessors have very complicated architec-
tures that confront the students with too much fine detail early
in their course.We use Motorola’s 68K microprocessor because
it is easy to understand and incorporates many of the most
important features of a high-performance architecture. This
book isn’t designed to provide a practical assembly language
programming course. It is intended only to illustrate the oper-
ation of a central processing unit by means of a typical assem-
bly language.We also take a brief look at other microprocessors
to show the range of computer architectures available.

You will see the words computer, CPU, processor, micro-
processor, and microcomputer in this and other texts. The part
of a computer that actually executes a program is called a
CPU (central processing unit) or more simply a processor.
A microprocessor is a CPU fabricated on a single chip of sili-
con. A computer that is constructed around a microprocessor
can be called a microcomputer. To a certain extent, these terms
are frequently used interchangeably.

CONTENTS

1 Introduction to computer hardware 1

1.1 What is computer hardware? 1

1.2 Why do we teach computer hardware? 2

1.2.1 Should computer architecture remain in the

CS curriculum? 3

1.2.2 Supporting the CS curriculum 4

1.3 An overview of the book 5

1.4 History of computing 6

1.4.1 Navigation and mathematics 6

1.4.2 The era of mechanical computers 6

1.4.3 Enabling technology—the telegraph 8

1.4.4 The first electromechanical computers 10

1.4.5 The first mainframes 11

1.4.6 The birth of transistors, ICs, and microprocessors 12

1.4.7 Mass computing and the rise of the Internet 14

1.5 The digital computer 15

1.5.1 The PC and workstation 15

1.5.2 The computer as a data processor 15

1.5.3 The computer as a numeric processor 16

1.5.4 The computer in automatic control 17

1.6 The stored program computer—an overview 19

1.7 The PC—a naming of parts 22

SUMMARY 23

PROBLEMS 23

2 Gates, circuits, and combinational logic 25

2.1 Analog and digital systems 26

2.2 Fundamental gates 28

2.2.1 The AND gate 28

2.2.2 The OR gate 30

2.2.3 The NOT gate 31

2.2.4 The NAND and NOR gates 31

2.2.5 Positive, negative, and mixed logic 32

2.3 Applications of gates 34

2.4 Introduction to Digital Works 40

2.4.1 Creating a circuit 41

2.4.2 Running a simulation 45

2.4.3 The clock and sequence generator 48

2.4.4 Using Digital Works to create embedded circuits 50

2.4.5 Using a macro 52

2.5 An introduction to Boolean algebra 56

2.5.1 Axioms and theorems of Boolean algebra 56

2.5.2 De Morgan’s theorem 63

2.5.3 Implementing logic functions in NAND or NOR two

logic only 65

2.5.4 Karnaugh maps 67

2.6 Special-purpose logic elements 83

2.6.1 The multiplexer 84

2.6.2 The demultiplexer 84

2.7 Tri-state logic 87

2.7.1 Buses 88

2.8 Programmable logic 91

2.8.1 The read-only memory as a logic element 91

2.8.2 Programmable logic families 93

2.8.3 Modern programmable logic 94

2.8.4 Testing digital circuits 96

SUMMARY 98

PROBLEMS 98

3 Sequential logic 101

3.1 The RS flip-flop 103

3.1.1 Analyzing a sequential circuit by assuming initial

conditions 104

3.1.2 Characteristic equation of an RS flip-flop 105

3.1.3 Building an RS flip-flop from NAND gates 106

3.1.4 Applications of the RS flip-flop 106

3.1.5 The clocked RS flip-flop 108

3.2 The D flip-flop 109

3.2.1 Practical sequential logic elements 110

3.2.2 Using D flip-flops to create a register 110

3.2.3 Using Digital Works to create a register 111

3.2.4 A typical register chip 112

3.3 Clocked flip-flops 113

3.3.1 Pipelining 114

3.3.2 Ways of clocking flip-flops 115

3.3.3 Edge-triggered flip-flops 116

3.3.4 The master–slave flip-flop 117

3.3.5 Bus arbitration—an example 118

3.4 The JK flip-flop 120

3.5 Summary of flip-flop types 121

3.6 Applications of sequential elements 122

3.6.1 Shift register 122

3.6.2 Asynchronous counters 128

3.6.3 Synchronous counters 132

3.7 An introduction to state machines 134

3.7.1 Example of a state machine 136

3.7.2 Constructing a circuit to implement

the state table 138

SUMMARY 139

PROBLEMS 140

4 Computer arithmetic 145

4.1 Bits, bytes, words, and characters 146

4.2 Number bases 148

4.3 Number base conversion 150

4.3.1 Conversion of integers 150

4.3.2 Conversion of fractions 152

4.4 Special-purpose codes 153

4.4.1 BCD codes 153

4.4.2 Unweighted codes 154

4.5 Error-detecting codes 156

4.5.1 Parity EDCs 158

4.5.2 Error-correcting codes 158

4.5.3 Hamming codes 160

4.5.4 Hadamard codes 161

4.6 Data-compressing codes 163

4.6.1 Huffman codes 164

4.6.2 Quadtrees 167

4.7 Binary arithmetic 169

4.7.1 The half adder 170

4.7.2 The full adder 171

4.7.3 The addition of words 173

4.8 Signed numbers 175

4.8.1 Sign and magnitude representation 176

4.8.2 Complementary arithmetic 176

4.8.3 Two’s complement representation 177

4.8.4 One’s complement representation 180

4.9 Floating point numbers 181

4.9.1 Representation of floating point numbers 182

4.9.2 Normalization of floating point numbers 183

4.9.3 Floating point arithmetic 186

4.9.4 Examples of floating point calculations 188

4.10 Multiplication and division 189

4.10.1 Multiplication 189

4.10.2 Division 194

SUMMARY 198

PROBLEMS 198

5 The instruction set architecture 203

5.1 What is an instruction set architecture? 204

5.2 Introduction to the CPU 206

5.2.1 Memory and registers 207

5.2.2 Register transfer language 208

5.2.3 Structure of the CPU 209

5.3 The 68K family 210

5.3.1 The instruction 210

5.3.2 Overview of addressing modes 215

5.4 Overview of the 68K’s instructions 217

5.4.1 Status flags 217

5.4.2 Data movement instructions 218

5.4.3 Arithmetic instructions 218

5.4.4 Compare instructions 220

5.4.5 Logical instructions 220

5.4.6 Bit instructions 221

5.4.7 Shift instructions 221

5.4.8 Branch instructions 223

SUMMARY 226

PROBLEMS 226

6 Assembly language programming 228

6.1 Structure of a 68K assembly language program 228

6.1.1 Assembler directives 229

6.1.2 Using the cross-assembler 232

6.2 The 68K’s registers 234

6.2.1 Data registers 235

6.2.2 Address registers 236

6.3 Features of the 68K’s instruction set 237

6.3.1 Data movement instructions 237

6.3.2 Using arithmetic operations 241

6.3.3 Using shift and logical operations 244

6.3.4 Using conditional branches 244

6.4 Addressing modes 249

6.4.1 Immediate addressing 249

6.4.2 Address register indirect addressing 250

6.4.3 Relative addressing 259

6.5 The stack 262

6.5.1 The 68K stack 263

6.5.2 The stack and subroutines 266

6.5.3 Subroutines, the stack, and parameter

passing 271

6.6 Examples of 68K programs 280

6.6.1 A circular buffer 282

SUMMARY 287

PROBLEMS 287

xii Contents

7 Structure of the CPU 293

7.1 The CPU 294

7.1.1 The address path 294

7.1.2 Reading the instruction 295

7.1.3 The CPU’s data paths 296

7.1.4 Executing conditional instructions 298

7.1.5 Dealing with literal operands 300

7.2 Simulating a CPU 300

7.2.1 CPU with an 8-bit instruction 301

7.2.2 CPU with a 16-bit instruction 304

7.3 The random logic control unit 308

7.3.1 Implementing a primitive CPU 308

7.3.2 From op-code to operation 312

7.4 Microprogrammed control units 315

7.4.1 The microprogram 316

7.4.2 Microinstruction sequence control 319

7.4.3 User-microprogrammed processors 320

SUMMARY 322

PROBLEMS 322

8 Accelerating performance 325

8.1 Measuring performance 326

8.1.1 Comparing computers 326

8.2 The RISC revolution 327

8.2.1 Instruction usage 328

8.2.2 Characteristics of RISC architectures 329

8.3 RISC architecture and pipelining 335

8.3.1 Pipeline hazards 336

8.3.2 Data dependency 338

8.3.3 Reducing the branch penalty 339

8.3.4 Implementing pipelining 341

8.4 Cache memory 344

8.4.1 Effect of cache memory on computer

performance 345

8.4.2 Cache organization 346

8.4.3 Considerations in cache design 350

8.5 Multiprocessor systems 350

8.5.1 Topics in Multiprocessor Systems 352

8.5.2 Multiprocessor organization 353

8.5.3 MIMD architectures 356

SUMMARY 362

PROBLEMS 362

9 Processor architectures 365

9.1 Instruction set architectures and their resources 365

9.1.1 Register sets 365

9.1.2 Instruction formats 366

9.1.3 Instruction types 366

9.1.4 Addressing modes 367

9.1.5 On-chip peripherals 367

9.2 The microcontroller 367

9.2.1 The M68HC12 368

9.3 The ARM—an elegant RISC processor 375

9.3.1 ARM’s registers 375

9.3.2 ARM instructions 377

9.3.3 ARM branch instructions 380

9.3.4 Immediate operands 381

9.3.5 Sequence control 381

9.3.6 Data movement and memory reference

instructions 382

9.3.7 Using the ARM 385

SUMMARY 397

PROBLEMS 398

10 Buses and input/output mechanisms 399

10.1 The bus 400

10.1.1 Bus architecture 400

10.1.2 Key bus concepts 400

10.1.3 The PC bus 404

10.1.4 The IEEE 488 bus 407

10.1.5 The USB serial bus 411

10.2 I/O fundamentals 412

10.2.1 Programmed I/O 413

10.2.2 Interrupt-driven I/O 415

10.3 Direct memory access 422

10.4 Parallel and serial interfaces 423

10.4.1 The parallel interface 424

10.4.2 The serial interface 428

SUMMARY 433

PROBLEMS 433

11 Computer Peripherals 435

11.1 Simple input devices 436

11.1.1 The keyboard 436

11.1.2 Pointing devices 440

11.2 CRT, LED, and plasma displays 444

11.2.1 Raster-scan displays 445

11.2.2 Generating a display 445

11.2.3 Liquid crystal and plasma displays 447

11.2.4 Drawing lines 450

11.3 The printer 452

11.3.1 Printing a character 453

11.3.2 The Inkjet printer 453

11.3.3 The laser printer 455

Contents xiii

11.4 Color displays and printers 457

11.4.1 Theory of color 457

11.4.2 Color CRTs 458

11.4.3 Color printers 460

11.5 Other peripherals 461

11.5.1 Measuring position and movement 461

11.5.2 Measuring temperature 463

11.5.3 Measuring light 464

11.5.4 Measuring pressure 464

11.5.5 Rotation sensors 464

11.5.6 Biosensors 465

11.6 The analog interface 466

11.6.1 Analog signals 466

11.6.2 Signal acquisition 467

11.6.3 Digital-to-analog conversion 473

11.6.4 Analog-to-digital conversion 477

11.7 Introduction to digital signal processing 486

11.7.1 Control systems 486

11.7.2 Digital signal processing 488

SUMMARY 491

PROBLEMS 492

12 Computer memory 493

12.1 Memory hierarchy 493

12.2 What is memory? 496

12.3 Memory technology 496

12.3.1 Structure modification 496

12.3.2 Delay lines 496

12.3.3 Feedback 496

12.3.4 Charge storage 497

12.3.5 Magnetism 498

12.3.6 Optical 498

12.4 Semiconductor memory 498

12.4.1 Static semiconductor memory 498

12.4.2 Accessing memory—timing diagrams 499

12.4.3 Dynamic memory 501

12.4.4 Read-only semiconductor memory devices 505

12.5 Interfacing memory to a CPU 506

12.5.1 Memory organization 507

12.5.2 Address decoders 508

12.6 Secondary storage 515

12.6.1 Magnetic surface recording 515

12.6.2 Data encoding techniques 521

12.7 Disk drive principles 524

12.7.1 Disk drive operational parameters 527

12.7.2 High-performance drives 529

12.7.3 RAID systems 531

12.7.4 The floppy disk drive 532

12.7.5 Organization of data on disks 533

12.8 Optical memory technology 536

12.8.1 Storing and reading information 537

12.8.2 Writable CDs 540

SUMMARY 543

PROBLEMS 543

13 The operating system 547

13.1 The operating system 547

13.1.1 Types of operating system 548

13.2 Multitasking 550

13.2.1 What is a process? 551

13.2.2 Switching processes 551

13.3 Operating system support from the CPU 554

13.3.1 Switching states 555

13.3.2 The 68K’s two Stacks 556

13.4 Memory management 561

13.4.1 Virtual memory 563

13.4.2 Virtual memory and the 68K family 565

SUMMARY 568

PROBLEMS 568

14 Computer communications 569

14.1 Background 570

14.1.1 Local area networks 571

14.1.2 LAN network topology 572

14.1.3 History of computer communications 574

14.2 Protocols and computer communications 576

14.2.1 Standards bodies 578

14.2.2 Open systems and standards 578

14.3 The physical layer 584

14.3.1 Serial data transmission 584

14.4 The PSTN 587

14.4.1 Channel characteristics 587

14.4.2 Modulation and data transmission 588

14.4.3 High-speed transmission over the PSTN 591

14.5 Copper cable 592

14.5.1 Ethernet 593

14.6 Fiber optic links 595

14.7 Wireless links 596

14.7.1 Spread spectrum technology 598

xiv Contents

14.8 The data link layer 599

14.8.1 Bit-oriented protocols 599

14.8.2 The Ethernet data link layer 603

14.9 Routing techniques 604

14.9.1 Centralized routing 607

14.9.2 Distributed routing 607

14.9.3 IP (Internet protocol) 607

SUMMARY 609

PROBLEMS 610

Appendix:The 68000 instruction set 611

Bibliography 641

Index 643

Contents and installation instructions for the CD-Rom 653

Contents xv

1.1 What is computer hardware?

To begin with I feel we ought to define the terms hardware
and software. I could give a deeply philosophical definition,
but perhaps an empirical one is more helpful. If any part of a
computer system clatters on the floor when dropped, it’s
hardware. If it doesn’t, it’s software. This is a good working
definition, but it’s incomplete because it implies that hardware
and software are unrelated entities. As we will discover, soft-
ware and hardware are often intimately related. Moreover, the
operation of much of today’s hardware is controlled by
firmware (software embedded in the structure of the hardware).

A computer’s hardware includes all the physical compon-
ents that make up the computer system. These components

range from the CPU to the memory and input/output
devices. The programs that control the operation of the com-
puter are its software. When a program is inside a computer
its physical existence lies in the state of electronic switches,
the magnetization of tiny particles on magnetic disk, or
bumps on the surface of a CD or DVD. We can’t point to a
program in a computer any more than we can point to
a thought in the brain.

Two terms closely related to hardware are architecture and
organization. A computer’s architecture is an abstract view of
the computer, which describes what it can do. A computer’s
architecture is the assembly language programmer’s view of
the machine. You could say that architecture has a similar
meaning to functional specification. The architecture is an

1Introduction to computer hardware

CHAPTER MAP

1 Introduction to
computer hardware

2 Logic elements and
Boolean algebra

Digital computers are

constructed from millions of very

simple logic elements called

gates. In this chapter we

introduce the fundamental gates

and demonstrate how they can

be combined to create circuits

that carry out the basic functions

required in a computer.

3 Sequential logic

We can classify logic circuits into

two groups: the combinational

circuit we described in Chapter 2

and the sequential circuit which

forms the subject of this chapter.

A sequential circuit includes

memory elements and its current

behavior is governed by its past

inputs.Typical sequential circuits

are counters and registers.

4 Computer arithmetic
In Chapter 4 we demonstrate

how numbers are represented in

binary form and look at binary

arithmetic.We also demonstrate

how the properties of binary

numbers are exploited to create

codes that compress data or even

detect and correct errors.

INTRODUCTION

In this chapter we set the scene for the rest of the book.We define what we mean by computer

hardware, explain just why we teach computer hardware to computer science students, provide a

very brief history of computing, and look at the role of the computer.

HARDWARE, ARCHITECTURE, AND ORGANIZATION

Hardware means all the parts of the computer that are not
software. It includes the processor, its memory, the buses that

connect devices together, and the peripherals.

Architecture describes the internal organization of a

computer in an abstract way; that is, it defines the capabilities
of the computer and its programming model.You can have

two computers that have been constructed in different ways

with different technologies but with the same architecture.

Organization describes how a computer is implemented.

Organization is concerned with a computer’s functional

components and their interrelationship. Organization is about

buses, timing, and circuits.

abstraction of the computer. A computer’s organization
describes how the architecture is implemented; that is, it
defines the hardware used to implement the architecture.
Let’s look at a simple example that distinguishes between
architecture and organization. A computer with a 32-bit
architecture performs operations on numbers that are 32 bits
wide. You could build two versions of this computer. One is
a high-performance device that adds two 32-bit numbers in a
single operation. The other is a low-cost processor that gets
a 32-bit number by bringing two 16-bit numbers from mem-
ory one after the other. Both computers end up with the same
result, but one takes longer to get there. They have the same
architecture but different organizations.

Although hardware and software are different entities,
there is often a trade-off between them. Some operations can
be carried out either by a special-purpose hardware system or
by means of a program stored in the memory of a general-
purpose computer. The fastest way to execute a given task is
to build a circuit dedicated exclusively to the task. Writing a
program to perform the same task on an existing computer
may be much cheaper, but the task will take longer, as the
computer’s hardware wasn’t optimized to suit the task.

Developments in computer technology in the late 1990s
further blurred the distinction between hardware and soft-
ware. Digital circuits are composed of gates that are wired
together. From the mid-1980s onward manufacturers were
producing large arrays of gates that could be interconnected
electronically to create a particular circuit. As technology
progressed it became possible to reconfigure the connections
between gates while the circuit was operating. We now have
the technology to create computers that can repair errors,
restructure themselves as the state of the art advances, or even
evolve.

1.2 Why do we teach computer
hardware?

A generation ago, school children in the UK had to learn
Latin in order to enter a university. Clearly, at some point it
was thought that Latin was a vital prerequisite for everyone
going to university. When did they realize that students could
still benefit from a university education without a prior
knowledge of Latin? Three decades ago students taking a
degree in electronics had to study electrodynamics, the dance
of electrons in magnetic fields, a subject so frightening that
older students passed on its horrors to the younger ones in
hushed tones. Today, electrodynamics is taught only to stu-
dents on specialist courses.

We can watch a television program without understanding
how a cathode ray tube operates, or fly in a Jumbo jet without
ever knowing the meaning of thermodynamics. Why then

should the lives of computer scientists and programmers be
made miserable by forcing them to learn what goes on inside
a computer?

If topics in the past have fallen out of the curriculum with no
obviously devastating effect on the education of students, what
about today’s curriculum? Do we still need to teach computer
science students about the internal operation of the computer?

Computer architecture is the oldest component of the
computer curriculum. The very first courses on computer
science were concerned with the design and construction of
computers. At that time programming was in its infancy and
compilers, operating systems, and databases did not exist.
In the 1940s, working with computers meant building com-
puters. By the 1960s computer science had emerged as a
discipline. With the introduction of courses in program-
ming, numerical methods, operating systems, compilers, and
databases, the then curriculum reflected the world of the
mainframe.

In the 1970s computer architecture was still, to a considerable
extent, an offshoot of electronics. Texts were more concerned
with the circuits in a computer than with the fundamental prin-
ciples of computer architecture as now encapsulated by the
expression instruction set architecture (ISA).

Computer architecture experienced a renaissance in the
1980s. The advent of the low-cost microprocessor-based sys-
tems and the single-board computer meant that computer
science students could study and even get hands-on experi-
ence of microprocessors. They could build simple systems,
test them, interface them to peripherals such as LEDs and
switches, and write programs in machine code. Bill Gates
himself is a product of this era.

Assembly language programming courses once mirrored
high-level language programming courses—students were
taught algorithms such as sorting and searching in assembly
language, as if assembly language were no more than the poor
person’s C. Such an approach to computer architecture is
now untenable. If assembly language is taught at all today, it is
used as a vehicle to illustrate instruction sets, addressing
modes, and other aspects of a processor’s architecture.

In the late 1980s and early 1990s computer architecture
underwent another change. The rise of the RISC micro-
processor turned the focus of attention from complex
instruction set computers to the new high-performance,
highly pipelined, 32-bit processors. Moreover, the increase in
the performance of microprocessors made it harder and
harder for classes to give students the hands-on experience
they had a few years earlier. In the 1970s a student could con-
struct a computer with readily available components and
simple electronic construction techniques. By the 1990s clock
rates rose to well over 100 MHz and buses were 32 bits wide
making it difficult for students to construct microprocessor-
based systems as they did in the 1980s. High clock rates
require special construction techniques and complex chips

2 Chapter 1 Introduction to computer hardware

have hundreds of connections rather than the 40- or 64-pin
packages of the 8086/68K era.

In the 1990s computer architecture was largely concerned
with the instruction set architecture, pipelining, hazards,
superscalar processors, and cache memories. Topics such as
microprocessor systems design at the chip level and micro-
processor interfacing had largely vanished from the CS cur-
riculum. These topics belonged to the CEng and EE curricula.

In the 1990s a lot was happening in computer science; for
example, the introduction of new subject areas such as
object-oriented programming, communications and net-
works, and the Internet/WWW. The growth of the computer
market, particularly for those versed in the new Internet-
based skills, caused students to look at their computing
curricula in a rather pragmatic way. Many CS students will
join companies using the new technologies, but very few of
them indeed will ever design chips or become involved with
cutting-edge work in computer architecture. At my own uni-
versity, the demand for courses in Internet-based computing
has risen and fewer students have elected to take computer
architecture when it is offered as an elective.

1.2.1 Should computer architecture
remain in the CS curriculum?

Developments in computer science have put pressure on
course designers to remove old material to make room for the
new. The fraction of students that will ever be directly
involved in computer design is declining. Universities pro-
vide programs in multimedia-based computing and visual-
ization at both undergraduate and postgraduate levels.
Students on such programs do not see the point of studying
computer architecture.

Some have suggested that computer architecture is a prime
candidate for pruning. It is easy to argue that computer archi-
tecture is as irrelevant to computer science as, say, Latin is to
the study of contemporary English literature. If a student
never writes an assembly language program or designs an
instruction set, or interfaces a memory to a processor, why
should we burden them with a course in computer architec-
ture? Does the surgeon study metallurgy in order to under-
stand how a scalpel operates?

It’s easy to say that an automobile driver does not have to
understand the internal combustion engine to drive an auto-
mobile. However, it is patently obvious that a driver who
understands mechanics can drive in such a way as to enhance
the life of the engine and to improve its performance. The
same is true of computer architecture; understanding com-
puter systems can improve the performance of software if the
software is written to exploit the underlying hardware.

The digital computer lies at the heart of computer science.
Without it,computer science would be little more than a branch
of theoretical mathematics. The very idea of a computer science

program that did not provide students with an insight into the
computer would be strange in a university that purports to edu-
cate students rather than to merely train them.

Those supporting the continued teaching of computer
architecture employ several traditional arguments. First,
education is not the same as training and CS students are not
simply being shown how to use commercial computer pack-
ages. A course leading to a degree in computer science should
also cover the history and the theoretical basis for the subject.
Without an appreciation of computer architecture, the com-
puter scientist cannot understand how computers have
developed and what they are capable of.

However, there are concrete reasons why computer archi-
tecture is still relevant in today’s world. Indeed, I would
maintain that computer architecture is as relevant to the
needs of the average CS student today as it was in the past.
Suppose a graduate enters the industry and is asked to select
the most cost-effective computer for use throughout a large
organization. Understanding how the elements of a com-
puter contribute to its overall performance is vital—is it
better to spend $50 on doubling the size of the cache or $100
on increasing the clock speed by 500 MHz?

Computer architecture cannot be divorced entirely from
software. The majority of processors are found not in PCs or
workstations but in embedded1 applications. Those designing
multiprocessors and real-time systems have to understand
fundamental architectural concepts and limitations of com-
mercially available processors. Someone developing an auto-
mobile electronic ignition system may write their code in C,
but might have to debug the system using a logic analyzer that
displays the relationship between interrupt requests from
engine sensors and the machine-level code.

There are two other important reasons for teaching com-
puter architecture. The first reason is that computer architec-
ture incorporates a wealth of important concepts that appear
in other areas of the CS curriculum. This point is probably
least appreciated by computer scientists who took a course in
architecture a long time ago and did little more than learn
about bytes, gates, and assembly language. The second reason
is that computer architecture covers more than the CPU; it is
concerned with the entire computer system. Because so many
computer users now have to work with the whole system
(e.g. by configuring hard disks, by specifying graphics cards,
by selecting a SCSI or FireWire interface), a course covering
the architecture of computer systems is more a necessity than
a luxury.

Some computer architecture courses cover the architecture
and organization of the processor but make relatively little

1.2 Why do we teach computer hardware? 3

1 An embedded computer is part of a product (digital camera, cell
phone, washing machine) that is not normally regarded as a computing
device. The end user does not know about the computer and does not
have to program it.

reference to buses, memory systems, and high-performance
peripherals such as graphics processors. Yet, if you scan the
pages of journals devoted to personal/workstation comput-
ing, you will rapidly discover that much attention is focused
on aspects of the computer system other than the CPU itself.
Computer technology was once driven by the paperless-
office revolution with its demand for low-cost mass storage,
sufficient processing power to rapidly recompose large docu-
ments, and low-cost printers. Today, computer technology is
being driven by the multimedia revolution with its insatiable
demand for pure processing power, high bandwidths, low
latencies, and massive storage capacities.

These trends have led to important developments in com-
puter architecture such as special hardware support for mul-
timedia applications. The demands of multimedia are being
felt in areas other than computer architecture. Hard disks
must provide a continuous stream of data because people can
tolerate a degraded picture much better than a picture with
even the shortest discontinuities. Such demands require
efficient track-seeking algorithms, data buffering, and high-
speed, real-time error correction and detection algorithms.
Similarly, today’s high data densities require frequent recal-
ibration of tracking mechanisms due to thermal effects. Disk
drives now include SMART technologies from the AI world
that are able to predict disk failure before it occurs. These
developments have as much right to be included in the archi-
tecture curriculum as developments in the CPU.

1.2.2 Supporting the CS curriculum

It is in the realm of software that you can most easily build a
case for the teaching of assembly language. During a student’s
career, they will encounter abstract concepts in areas ranging
from programming languages to operating systems to real-
time programming to AI. The foundation of many of these
concepts lies in assembly language programming and computer
architecture. Computer architecture provides bottom-up
support for the top-down methodology taught in high-level
languages. Consider some of the areas where computer
architecture can add value to the CS curriculum.

The operating system Computer architecture provides a
firm basis for students taking operating system courses. In
computer architecture students learn about the hardware
that the operating system controls and the interaction
between hardware and software; for example, in cache sys-
tems. Consider the following two examples of the way in
which the underlying architecture provides support for
operating system facilities.

Some processors operate in either a privileged or a user
mode. The operating system runs in the privileged or pro-
tected mode and all applications run in the user mode. This
mechanism creates a secure environment in which the effects
of an error in an application program can be prevented from

crashing the operating system or other applications. Covering
these topics in an architecture course makes the student
aware of the support the processor provides for the operating
system and enables those teaching operating system courses
to concentrate more on operating system facilities than on
the mechanics of the hardware.

High-level languages make it difficult to access peripherals
directly. By using an assembly language we can teach students
how to write device drivers that directly control interfaces.
Many real interfaces are still programmed at machine level by
accessing registers within them. Understanding computer
architecture and assembly language can facilitate the design
of high-performance interfaces.

Programming and data structures Students encounter the
notion of data types and the effect of strong and weak data
typing when they study high-level languages. Because
computer architecture deals with information in its most
primitive form, students rapidly become familiar with the
advantages and disadvantages of weak typing. They learn the
power that you have over the hardware by being able to apply
almost any operations to binary data. Equally, they learn
the pitfalls of weak typing as they discover the dangers of
inappropriate operations on data.

Computer architecture is concerned with both the type of
operations that act on data and the various ways in which the
location of an operand can be accessed in memory. Computer
addressing modes and the various means of accessing data
naturally lead on to the notion of pointers. Students learn
about how pointers function at machine level and the sup-
port offered for pointers by various architectures. This aspect
is particularly important if the student is to become a C
programmer.

An understanding of procedure call and parameter passing
mechanisms is vital to anyone studying processor perform-
ance. Programming in assembly language readily demon-
strates the passing of parameters by value and by reference.
Similarly, assembly language programming helps you to
understand concepts such as the use of local variables and
re-entrant programming.

Students sometimes find the concept of recursion difficult.
You can use an assembly language to demonstrate how recur-
sion operates by tracing through the execution of a program.
The student can actually observe how the stack grows as
procedures are called.

Computer science fundamentals Computer architecture is
awash with concepts that are fundamental to computer science
generally and which do not appear in other parts of the
undergraduate curriculum. A course in computer architecture
can provide a suitable forum for incorporating fundamental
principles in the CS curriculum. For example, a first course in
computer architecture introduces the student to bits and
binary encoding techniques. A few years ago much time
would have been spent on special-purpose codes for BCD

4 Chapter 1 Introduction to computer hardware

arithmetic. Today, the professor is more likely to introduce
error-correcting codes (important in data communications
systems and secure storage mechanisms) and data-compression
codes (used by everyone who has ever zipped a file or used a
JPEG-encoded image).

1.3 An overview of the book

It’s difficult to know just what should be included in an intro-
ductory course on computer architecture, organization, and
hardware—and what should be excluded. Any topic can be
expanded to an arbitrary extent; if we begin with gates and
Boolean algebra, do we go on to semiconductor devices and
then semiconductor physics? In this book, we cover the mater-
ial specified by typical computer curricula. However, I have
included a wider range of material because the area of influ-
ence encompassed by the digital computer has expanded
greatly in recent years. The major subject areas dealt with in
this book are outlined below.

Computer arithmetic Our system of arithmetic using the
base 10 has evolved over thousands of years.The computer car-
ries out its internal operations on numbers represented in the
base two. This anomaly isn’t due to some magic power inher-
ent in binary arithmetic but simply because it would be uneco-
nomic to design a computer to operate in denary (base 10)
arithmetic. At this point I must make a comment. Time and
time again, I read in the popular press that the behavior of
digital computers and their characteristics are due to the fact
that they operate on bits using binary arithmetic whereas we
humans operate on digits using decimal arithmetic. That idea
is nonsense. Because there is a simple relationship between
binary and decimal numbers, the fact that computers represent
information in binary form is a mere detail of engineering. It’s
the architecture and organization of a computer that makes it
behave in such a different way to the brain.

Basic logic elements and Boolean algebra Today’s techno-
logy determines what a computer can do. We introduce the
basic logic elements, or gates, from which a computer is made
up and show how these can be put together to create more
complex units such as arithmetic units. The behavior of these
gates determines both the way in which the computer carries
out arithmetic operations and the way in which the func-
tional parts of a computer interact to execute a program. We
need to understand gates in order to appreciate why the com-
puter has developed in the way it has. The operation of cir-
cuits containing gates can be described in terms of a formal
notation called Boolean algebra. An introduction to Boolean
algebra is provided because it enables designers to build cir-
cuits with the least number of gates.

As well as gates, computers require devices called flip-flops,
which can store a single binary digit. The flip-flop is the
basic component of many memory units. We provide an

introduction to flip-flops and their application to sequential
circuits such as counters, timers, and sequencers.

Computer architecture and assembly language The prim-
itive instructions that directly control the operation of a com-
puter are called machine-code instructions and are composed
of sequences of binary values stored in memory. As program-
ming in machine code is exceedingly tedious, an aid to
machine code programming called assembly language has
been devised. Assembly language is shorthand permitting the
programmer to write machine-code instructions in a simple
abbreviated form of plain language. High-level languages
(Java, C, Pascal, BASIC) are sometimes translated into a series
of assembly-language instructions by a compiler as an inter-
mediate step on the way to pure machine code. This interme-
diate step serves as a debugging tool for programmers who
wish to examine the operation of the compiler and the output
it produces. Computer architecture is the assembly language
programmer’s view of a computer.

Programmers writing in assembly language require a
detailed knowledge of the architecture of their machines,
unlike the corresponding programmers operating in high-
level languages. At this point I must say that we introduce
assembly language to explain the operation of the central pro-
cessing unit. Apart from certain special exceptions, programs
should be written in a high-level language whenever possible.

Computer organization This topic is concerned with how a
computer is arranged in terms of its building blocks (i.e. the
logic and sequential circuits made from gates and flip-flops).
We introduce the architecture of a simple hypothetical com-
puter and show how it can be organized in terms of func-
tional units. That is, we show how the computer goes about
reading an instruction from memory, decoding it, and then
executing it.

Input/output It’s no good having a computer unless it can
take in new information (programs and data) and output the
results of its calculations. In this section we show how
information is moved into and out of the computer. The
operation of three basic input/output devices is described:
the keyboard, the display, and the printer.

We also examine the way in which analog signals can be
converted into digital form, processed digitally by a com-
puter, and then converted back into analog form. Until the
mid-1990s it was uneconomical to process rapidly changing
analog signals (e.g. speech, music, video) digitally. The advent
of high-speed low-cost digital systems has opened up a new
field of computing called digital signal processing (DSP). We
introduce DSP and outline some of the basic principles.

Memory devices A computer needs memory to hold pro-
grams, data, and any other information it may require at
some point in the future. We look at the immediate access
store and the secondary store (sometimes called backing
store). An immediate access store provides a computer with
the data it requires in approximately the same time as it takes

1.3 An overview of the book 5

the computer to execute one of its machine-level operations.
The secondary store is very much slower and it takes thou-
sands of times longer to access data from a secondary store
than from an immediate access store. However, secondary
storage is used because it is immensely cheaper than an
immediate access store and it is also non-volatile (i.e. the data
isn’t lost when you switch the computer off). The most pop-
ular form of secondary store is the disk drive, which relies on
magnetizing a moving magnetic material to store data.
Optical storage technology in the form of the CD and DVD
became popular in the 1990s because it combines the rela-
tively fast access time of the disk with the large capacity and
low cost of the tape drive.

Operating systems and the computer An operating system
coordinates all the functional parts of the computer and pro-
vides an interface for the user. We can’t cover the operating
system in detail here. However, because the operating system
is intimately bound up with the computer’s hardware, we do
cover two of its aspects—multiprogramming and memory
management. Multiprogramming is the ability of a computer
to appear to run two or more programs simultaneously.
Memory management permits several programs to operate
as though each alone occupied the computer’s memory and
enables a computer with a small, high-speed random access
memory and a large, low-speed serial access memory (i.e.
hard disk) to appear as if it had a single large high-speed ran-
dom access memory.

Computer communications Computers are networked when
they are connected together. Networking computers has
many advantages, not least of which is the ability to share
peripherals such as printers and scanners. Today we have two
types of network—the local area network (LAN), which
interconnects computers within a building, and the wide area
network, which interconnects computers over much greater
distances (e.g. the Internet). Consequently, we have devoted a
section to showing how computers communicate with each
other. Three aspects of computer communications are exam-
ined. The first is the protocols or rules that govern the way in
which information is exchanged between systems in an
orderly fashion. The second is the way in which digital
information in a computer is encoded in a form suitable for
transmission over a serial channel, the various types of
channel, the characteristics of the physical channel, and how
data is reconstituted at the receiver. The third provides a
brief overview of both local area and wide area networks.

1.4 History of computing

The computer may be a marvel of our age, but it has had a long
and rich history. Writing a short introduction to computer
history is difficult because there is so much to cover. Here we
provide some of the milestones in the computer’s development.

1.4.1 Navigation and mathematics

The development of navigation in the eighteenth century was
probably the most important driving force behind auto-
mated computation. It’s easy to tell how far north or south of
the equator you are—you measure the height of the sun
above the horizon at midday and then use the elevation to
work out your latitude. Unfortunately, calculating your lon-
gitude relative to the prime meridian through Greenwich in
England is very much more difficult. Longitude is determined
by comparing your local time (obtained by observing the
angle of the sun) with the time at Greenwich.

The mathematics of navigation uses trigonometry, which
is concerned with the relationship between the sides and
angles of a triangle. In turn, trigonometry requires an accur-
ate knowledge of the sine, cosine, and tangent of an angle.
Those who originally devised tables of sines and other math-
ematical functions (e.g. square roots and logarithms) had to
do a lot of calculation by hand. If x is expressed in radians
(where 2� radians � 360�) and x �1, the expression for
sin(x) can be written as an infinite series of the form

Although the calculation of sin(x) requires the summation
of an infinite number of terms, we can obtain a reasonably
accurate approximation to sin(x) by adding just a handful of
terms together because xn tends towards zero as n increases
for x ��1.

An important feature of the formula for sin(x) is that it
involves nothing more than the repetition of fundamental
arithmetic operations (addition, subtraction, multiplication,
and division). The first term in the series is x itself. The sec-
ond term is �x3/3!, which is derived from the first term by
multiplying it by �x2 and dividing it by 1 � 2 � 3. Each new
term is formed by multiplying the previous term by �x2 and
dividing it by 2n(2n � 1), where n is number of the term. It
would eventually occur to people that this process could be
mechanized.

1.4.2 The era of mechanical computers

During the seventeenth century major advances were made in
watch making; for example, in 1656 Christiaan Huygens
designed the first pendulum clock. The art of watch making
helped develop the gear wheels required by the first mechanical
calculators. In 1642 the French scientist Blaise Pascal designed
a simple mechanical adder and subtracter using gear wheels
with 10 positions marked on them. One complete rotation of
a gear wheel caused the next wheel on its left to move one posi-
tion (a bit like the odometer used to record an automobile’s
mileage). Pascal’s most significant contribution was the use of
a ratchet device that detected a carry (i.e. a rotation of a wheel

sin(x) � x �
x3

3!
�

x5

5!
�

x7

7!
� … � (�1)n x2n�1

(2n � 1)!

6 Chapter 1 Introduction to computer hardware

from 9 to 0) and nudged the next wheel on the left one digit.
In other words, if two wheels show 58 and the right-hand
wheel is rotated two positions forward, it moves to the 0 posi-
tion and advances the 5 to 6 to get 60. Pascal’s calculator, the
Pascaline, could perform addition only.

In fact, Wilhelm Schickard, rather than Pascal, is now
generally credited with the invention of the first mechanical
calculator. His device, created in 1623, was more advanced
than Pascal’s because it could also perform partial multiplica-
tion. Schickard died in a plague and his invention didn’t
receive the recognition it merited. Such near simultaneous
developments in computer hardware have been a significant
feature of the history of computer hardware.

Within a few decades, mechanical computing devices
advanced to the stage where they could perform addition,
subtraction, multiplication, and division—all the operations
required by armies of clerks to calculate the trigonometric
functions we mentioned earlier.

The industrial revolution and early

control mechanisms

If navigation provided a requirement for mechanized com-
puting, other developments provided important steps along
the path to the computer. By about 1800 the industrial
revolution in Europe was well under way. Weaving was one
of the first industrial processes to be mechanized. A weaving
loom passes a shuttle pulling a horizontal thread to and fro
between vertical threads held in a frame. By changing the
color of the thread pulled by the shuttle and selecting whether
the shuttle passes in front of or behind the vertical threads,
you can weave a particular pattern. Controlling the loom
manually is tedious and time consuming. In 1801 Joseph
Jacquard designed a loom that could automatically weave a
predetermined pattern. The information necessary to control
the loom was stored in the form of holes cut in cards—the
presence or absence of a hole at a certain point controlled the
behavior of the loom. Information was read by rods that
pressed against the card and either went through a hole or
were stopped by the card. Some complex patterns required as
many as 10 000 cards strung together in the form of a tape.

Babbage and the computer

Two of the most significant advances in computing were
made by Charles Babbage, a UK mathematician born in 1792:
his difference engine and his analytical engine. Like other
mathematicians of his time, Babbage had to perform all
calculations by hand and sometimes he had to laboriously
correct errors in published mathematical tables. Living in the
age of steam, it was quite natural that Babbage asked himself
whether mechanical means could be applied to arithmetic
calculations.

The difference engine was a complex array of intercon-
nected gears and linkages that performed addition and

subtraction rather like Pascal’s mechanical adder. Its purpose
was to mechanize the calculation of polynomial functions
and automatically print the result. It was a calculator rather
than a computer because it could carry out only a set of
predetermined operations.

Babbage’s difference engine employed finite differences to
calculate polynomial functions. Trigonometric functions can
be expressed as polynomials in the form a0 x � a1x

1 �

a2x
2 � . . . The difference engine can evaluate such expres-

sions automatically. Table 1.1 demonstrates how you can use
the method of finite differences to create a table of squares
without having to use multiplication. The first column con-
tains the natural integers 1, 2, 3, . . . The second column
contains the squares of these integers (i.e. 1, 4, 9, . . .). Column
3 contains the first difference between successive pairs of
numbers in column 2; for example, the first value is 4 �1 � 3,
the second value is 9 � 4 � 5, and so on. The final column is
the second difference between successive pairs of first differ-
ences. As you can see, the second difference is always 2.

Suppose we want to calculate the value of 82 using finite
differences. We simply use Table 1.1 in reverse by starting
with the second difference and working back to the result. If
the second difference is 2, the next first difference (after 72) is
13 � 2 � 15. Therefore, the value of 82 is the value of 72 plus
the first difference; that is, 49 � 15 � 64. We have generated
82 without using multiplication. This technique can be
extended to evaluate many other mathematical functions.

Babbage’s difference engine project was cancelled in 1842
because of increasing costs. He did design a simpler differ-
ence engine using 31-digit numbers to handle seventh-order
differences, but no one was interested in financing it. In 1853
George Scheutz in Sweden constructed a working difference
engine using 15-digit arithmetic and fourth-order differ-
ences. Incidentally, in 1991 a team at the Science Museum in
London used modern construction techniques to build
Babbage’s difference engine. It worked.

Charles Babbage went on to design the analytical engine,
which was to be capable of performing any mathematical

1.4 History of computing 7

Number Number First Second

squared difference difference

1 1

2 4 3

3 9 5 2

4 16 7 2

5 25 9 2

6 36 11 2

7 49 13 2

Table 1.1 The use of finite differences to calculate squares.

operation automatically. This truly remarkable and entirely
mechanical device was nothing less than a general-purpose
computer that could be programmed. The analytical engine
included many of the elements associated with a modern elec-
tronic computer—an arithmetic processing unit that carries
out all the calculations, a memory that stores data, and input
and output devices. Unfortunately, the sheer scale of the ana-
lytical engine rendered its construction, at that time, impos-
sible. However, it is not unreasonable to call Babbage the
father of the computer because his machine incorporated
many of the intellectual concepts at the heart of the computer.

Babbage envisaged that his analytical engine would be
controlled by punched cards similar to those used to control
the operation of the Jacquard loom. Two types of punched
card were required. Operation cards specified the sequence of
operations to be carried out by the analytical engine and vari-
able cards specified the locations in the store of inputs and
outputs.

One of Babbage’s collaborators was Ada Gordon2, a math-
ematician who became interested in the analytical engine when
she translated a paper on it from French to English. When
Babbage discovered the paper he asked her to expand the
paper. She added about 40 pages of notes about the machine
and provided examples of how the proposed analytical engine
could be used to solve mathematical problems. Gordon
worked closely with Babbage and it’s been reported that she
even suggested the use of the binary system to store data. She
noticed that certain groups of operations are carried out over
and over again during the course of a calculation and pro-
posed that a conditional instruction be used to force the ana-
lytical engine to perform the same sequence of operations
many times. This action is the same as the repeat or loop func-
tion found in most of today’s high-level languages.

Gordon devised algorithms to perform the calculation of
Bernoulli numbers, making her one of the founders of numer-
ical computation. Some regard Gordon as the world’s first
computer programmer, who was constructing algorithms a
century before programming became a recognized discipline—
and long before any real computers were constructed.

Mechanical computing devices continued to be used in
compiling mathematical tables and performing the arithmetic
operations used by everyone from engineers to accountants
until about the 1960s. The practical high-speed computer had
to await the development of the electronics industry.

1.4.3 Enabling technology—
the telegraph

Many of the technological developments required to con-
struct a practical computer took place at the end of the
nineteenth century. The most important of these events was
the invention of the telegraph. We now provide a short history
of the development of telecommunications.

One of the first effective communication systems was the
optical semaphore, which passed visual signals from tower to
tower across Europe. Claude Chappe in France developed a
system with two arms, each of which could be in one of seven
positions. The Chappe telegraph could send a message across
France in about half an hour (good weather permitting). The
telegraph was used for commercial purposes, but it also
helped Napoleon to control his army.

King Maximilian had seen how the French visual sema-
phore system had helped Napoleon’s military campaigns and
in 1809 he asked the Bavarian Academy of Sciences to devise
a scheme for high-speed communication over long distances.
Samuil T. von Sömmering suggested a crude telegraph using
35 conductors, one for each character. Sömmering’s tele-
graph transmits electricity from a battery down one of these
35 wires where, at the receiver, the current is passed through
a tube of acidified water. Passing a current through the water
breaks it down into oxygen and hydrogen. To use the
Sömmering telegraph you detected the bubbles that appeared
in one of the 35 glass tubes and then wrote down the cor-
responding character. Sömmering’s telegraph was ingenious
but too slow to be practical.

In 1819 Hans C. Oersted made one of the greatest discover-
ies of all time when he found that an electric current creates a
magnetic field round a conductor. This breakthrough allowed
you to create a magnetic field at will. In 1828 Cooke exploited
Oersted’s discovery when he invented a telegraph that used
the magnetic field round a wire to deflect a compass needle.

The growth of the railway networks in the early nineteenth
century spurred the development of the telegraph because you
had to warn stations down the line that a train was arriving. By
1840 a 40-mile stretch between Slough and Paddington in
London had been linked using the telegraph of Charles
Wheatstone and William Cooke. The Wheatstone and Cooke
telegraph used five compass needles that normally hung in a
vertical position. The needles could be deflected by coils to
point to the appropriate letter. You could transmit one of
20 letters (J, C, Q, U, X, and Z were omitted).

The first long-distance data links

We take wires and cables for granted. In the early nineteenth
century, plastics hadn’t been invented and the only material
available for insulation waterproofing was a type of pitch
called asphaltum. In 1843 a form of rubber called gutta
percha was discovered. The Atlantic Telegraph Company cre-
ated an insulated cable for underwater use containing a single
copper conductor made of seven twisted strands, surrounded
by gutta percha insulation and protected by a ring of 18 iron
wires coated with hemp and tar.

8 Chapter 1 Introduction to computer hardware

2 Ada Gordon married William King in 1835. King inherited the title
Earl of Lovelace and Gordon became Countess of Lovelace. Gordon is
often considered the founder of scientific computing.

Submarine cable telegraphy began with a cable crossing
the English Channel to France in 1850. The cable failed after
only a few messages had been exchanged and a more success-
ful attempt was made the following year. Transatlantic cable
laying from Ireland began in 1857 but was abandoned when
the strain of the cable descending to the ocean bottom caused
it to snap under its own weight. The Atlantic Telegraph
Company tried again in 1858. Again, the cable broke after
only 3 miles but the two cable-laying ships managed to splice
the two ends. The cable eventually reached Newfoundland in
August 1858 after suffering several more breaks and storm
damage.

It soon became clear that this cable wasn’t going to be a
commercial success. The receiver used the magnetic field from
the current in the cable to deflect a magnetized needle.
Unfortunately, after crossing the Atlantic the signal was too
weak to be detected reliably. The original voltage used to drive
a current down the cable was approximately 600 V. So, they
raised the voltage to about 2000 V to drive more current along
the cable and improve the detection process. Unfortunately,
such a high voltage burned through the primitive insulation,
shorted the cable, and destroyed the first transatlantic tele-
graph link after about 700 messages had been transmitted in
3 months.

In England, the Telegraph Construction and Maintenance
Company developed a new 2300-mile-long cable weighing
9000 tons, which was three times the diameter of the failed
1858 cable. Laying this cable required the largest ship in the
world, the Great Eastern. After a failed attempt in 1865 a
transatlantic link was finally established in 1866. It cost $100
in gold to transmit 20 words across the first transatlantic
cable at a time when a laborer earned $20/month.

Telegraph distortion and the theory of

transmission lines

The telegraph hadn’t been in use for very long before people
discovered that it suffered from a problem called telegraph
distortion. As the length of cables increased it became appar-
ent that a sharply rising pulse at the transmitter end of a cable
was received at the far end as a highly distorted pulse with
long rise and fall times. This distortion meant that the 1866
transatlantic telegraph cable could transmit only eight words
per minute. The problem was eventually handed to William
Thomson at the University of Glasgow.

Thomson, who later became Lord Kelvin, was one of the
nineteenth century’s greatest scientists. He published more
than 600 papers, developed the second law of thermodynam-
ics, and created the absolute temperature scale. In 1855
Thomson presented a paper to the Royal Society analyzing
the effect of pulse distortion, which became the cornerstone
of what is now called transmission line theory. The transmis-
sion line effect reduces the speed at which signals can change
state. The cause of the problems investigated by Thomson

lies in the physical properties of electrical conductors
and insulators. Thomson’s theories enabled engineers to
construct data links with much lower levels of distortion.

Thomson contributed to computing by providing the the-
ory that describes the flow of pulses in circuits, which enabled
the development of the telegraph and telephone networks. In
turn, the switching circuits used to route messages through
networks were used to construct the first electromechanical
computers.

Developments in communications networks

Although the first telegraph systems operated from point to
point, the introduction of the telephone led to the develop-
ment of switching centers. First-generation switching centers
employed a telephone operator who manually plugged a sub-
scriber’s line into a line connected to the next switching center
in the link. By the end of the nineteenth century, the infra-
structure of computer networks was already in place.

In 1897 an undertaker called Almon Strowger was annoyed
to find that he was not getting the trade he expected because
the local telephone operator was connecting prospective
clients to Strowger’s competitor. So, Strowger cut out the
human factor by inventing the automatic telephone exchange
that used electromechanical devices to route calls between
exchanges. When you dial a number using a rotary dial, a
series of pulses are sent down the line to a rotary switch. If
you dial, for example, ‘5’, the five pulses move a switch five
steps clockwise to connect you to line number five, which
routes your call to the next switching center. Consequently,
when you phoned someone using Strowger’s technology the
number you dialed determined the route your call took
though the system.

By the time the telegraph was well established, radio was
being developed. James Clerk Maxwell predicted radio waves
in 1864 following his study of light and electromagnetic
waves. Heinrich Hertz demonstrated the existence of radio
waves in 1887 and Guglielmo Marconi is credited with being
the first to use radio to span the Atlantic in 1901.

The light bulb was invented by Thomas A. Edison in 1879.
Investigations into its properties led Ambrose Fleming to
discover the diode in 1904. A diode is a light bulb surrounded
by a wire mesh that allows electricity to flow only one way
between the filament (the cathode) and the mesh (the anode).
The flow of electrons from the cathode gave us the term
‘cathode ray tube’. In 1906 Lee de Forest modified Fleming’s
diode by placing a wire mesh between the cathode and anode.
By changing the voltage on this mesh, it was possible to
change the flow of current between the cathode and anode.
This device, called a triode, could amplify signals. Without
the vacuum tube to amplify weak signals, modern electronics
would have been impossible. The term electronics refers to
circuits with amplifying or active devices such as tubes or tran-
sistors. The first primitive computers using electromechanical

1.4 History of computing 9

devices did not use vacuum tubes and, therefore, these
computers were not electronic computers.

The telegraph, telephone, and vacuum tube were all steps
on the path to the development of the computer and, later,
computer networks. As each of these practical steps was
taken, there was a corresponding development in the accom-
panying theory (in the case of radio, the theory came before
the discovery).

Typewriters, punched cards, and tabulators

Another important part of computer history is the humble
keyboard, which is still the prime input device of most
personal computers. As early as 1711 Henry Mill, an
Englishman, described a mechanical means of printing text
on paper a character at a time. In 1829 the American William
Burt was granted the first US patent for a typewriter,
although his machine was not practical. It wasn’t until 1867
that three Americans, Christopher Sholes, Carlos Glidden,
and Samuel Soule, invented their Type-Writer, the forerun-
ner of the modern typewriter. One of the problems encoun-
tered by Sholes was the tendency of his machine to jam when
digraphs such as ‘th’ and ‘er’ were typed. Hitting the ‘t’ and ‘h’
keys at almost the same time caused the letters ‘t’ and ‘h’ to
strike the paper simultaneously and jam. His solution was to
arrange the letters on the keyboard to avoid the letters of
digraphs being located side by side. This layout has continued
until today and is now described by the sequence of the first
six letters on the left of the top row—QWERTY. Because the
same digraphs do not occur in different languages, the layout
of a French keyboard is different to that of an English key-
board. It is reported that Sholes made it easy to type ‘Type-
Writer’ by putting all these characters on the same row.

Another enabling technology that played a key role in the
development of the computer was the tabulating machine, a
development of the mechanical calculator that processes data
on punched cards. One of the largest data processing opera-
tions carried out in the USA during the nineteenth century
was the US census. A census involves taking the original data,
sorting and collating it, and tabulating the results.

In 1879 Herman Hollerith became involved in the evaluation
of the 1880 US Census data. He devised an electric tabulating
system that could process data stored on cards punched by
clerks from the raw census data. Hollerith’s electric tabulating
machine could read cards,process the information on the cards,
and then sort them. The tabulator helped lay the foundations of
the data processing industry.

Three threads converged to make the computer possible:
Babbage’s calculating machines, which performed arithmetic
calculations; communications technology, which laid the
foundations for electronics and even networking; and the
tabulator because it and the punched card media provided a
means of controlling machines, inputting data into them,
and storing information.

1.4.4 The first electromechanical
computers

The forerunner of today’s digital computers used electro-
mechanical components called relays, rather than electronic
circuits such as vacuum tubes and transistors. A relay is con-
structed from a coil of wire wound round an iron cylinder.
When a current flows through the coil, it generates a mag-
netic field that causes the iron to act like a magnet. A flat
springy strip of iron is located close to the iron cylinder.
When the cylinder is magnetized, the iron strip is attracted,
which, in turn, opens or closes a switch. Relays can perform
any operation that can be carried out by the logic gates mak-
ing up today’s computers. You cannot construct fast com-
puters from relays because they are far too slow, bulky, and
unreliable. However, the relay did provide a technology that
bridged the gap between the mechanical calculator and the
modern electronic digital computer.

One of the first electromechanical computers was built by
Konrad Zuse in Germany. Zuse’s Z2 and Z3 computers were
used in the early 1940s to design aircraft in Germany. The
heavy bombing at the end of the Second World War
destroyed Zuse’s computers and his contribution to the
development of the computer was ignored for many years.
He is mentioned here to demonstrate that the notion of a
practical computer occurred to different people in different
places. The Z3 was completed in 1941 and was the World’s
first functioning programmable mechanical computer.
Zuse’s Z4 computer was finished in 1945, was later taken to
Switzerland, and was used at the Federal Polytechnical
Institute in Zurich until 1955.

As Zuse was working on his computer in Germany, Howard
Aiken at Harvard University constructed his Harvard Mark I
computer in 1944 with both financial and practical support
from IBM. Aiken was familiar with Babbage’s work and his
electromechanical computer, which he first envisaged in 1937,
operated in a similar way to Babbage’s proposed analytical
engine. The original name for the Mark I was the Automatic
Sequence Controlled Calculator, which, perhaps, better
describes its nature.

Aiken’s machine was a programmable calculator that was
used by the US Navy until the end of the Second World
War. Just like Babbage’s machine, the Mark I used decimal
counter wheels to implement its main memory consisting of
72 words of 23 digits plus a sign. The program was stored on
a paper tape (similar to Babbage’s punched cards), although
operations and addresses (i.e. data) were stored on the same
tape. Input and output operations used punched cards or an
electric typewriter. Because the Harvard Mark I treated data
and instructions separately, the term Harvard architecture is
now applied to any computer with separate paths for data
and instructions. The Harvard Mark I didn’t support condi-
tional operations and therefore is not strictly a computer.

10 Chapter 1 Introduction to computer hardware

However, it was later modified to permit multiple paper tape
readers with a conditional transfer of control between
the readers.

1.4.5 The first mainframes

Relays have moving parts and can’t operate at very high
speeds. It took the invention of the vacuum tube by John A.
Fleming and Lee de Forest to make possible the design of
high-speed electronic computers. John V. Atanasoff is now
credited with the partial construction of the first completely
electronic computer. Atanasoff worked with Clifford Berry at
Iowa State College on their computer from 1937 to 1942.
Their machine used a 50-bit binary representation of num-
bers and was called the ABC (Atanasoff–Berry Computer). It
was designed to solve linear equations and wasn’t a general
purpose computer. Atanasoff and Berry abandoned their
computer when they were assigned to other duties because of
the war.

ENIAC

The first electronic general purpose digital computer was
John W. Mauchly’s ENIAC (Electronic Numerical Integrator
and Calculator), completed in 1945 at the University of
Pennsylvania. ENIAC was intended for use at the Army
Ordnance Department to create firing tables that relate the
range of a field gun to its angle of elevation, wind conditions,
and so on. For many years, ENIAC was regarded as the first
electronic computer, although credit was later given to
Atanasoff and Berry because Mauchly had visited Atanasoff
and read his report on the ABC machine.

ENIAC used 17 480 vacuum tubes and weighed about 30 t.
ENIAC was a decimal machine capable of storing 20 10-digit
decimal numbers. IBM card readers and punches imple-
mented input and output operations. ENIAC was pro-
grammed by means of a plug board that looked like an old
pre-automatic telephone switchboard; that is, a program was
set up manually by means of wires. In addition to these wires,
the ENIAC operator had to manually set up to 6000 muti-
position mechanical switches. Programming ENIAC was
very time consuming and tedious.

ENIAC did not support dynamic conditional operations
(e.g. IF . . . THEN). An operation could be repeated a fixed
number of times by hard wiring the loop counter to an
appropriate value. Because the ability to make a decision
depending on the value of a data element is vital to the
operation of all computers, ENIAC was not a computer in
today’s sense of the word. It was an electronic calculator.

John von Neumann, EDVAC and IAS

The first US computer to use the stored program concept was
EDVAC (Electronic Discrete Variable Automatic Computer).
EDVAC was designed by some of the same team that designed

the ENIAC at the Moore School of Engineering at the
University of Pennsylvania.

John von Neumann, one of the leading mathematicians of
his age, participated in EDVAC’s design. He wrote a docu-
ment entitled ‘First draft of a report on the EDVAC’, which
compiled the results of various design meetings. Before von
Neumann, computer programs were stored either mechan-
ically or in separate memories from the data used by the pro-
gram. Von Neumann introduced the concept of the stored
program—an idea so commonplace today that we take it for
granted. In a stored program von Neumann machine both the
program that specifies what operations are to be carried out
and the data used by the program are stored in the same
memory. The stored program computer consists of a memory
containing instructions coded in binary form. The control
part of the computer reads an instruction from memory,
carries it out, then reads the next instruction, and so on.
Although EDVAC is generally regarded as the first stored pro-
gram computer, this is not strictly true because data and
instructions did not have a common format and were not
interchangeable.

EDVAC promoted the design of memory systems. The
capacity of EDVAC’s mercury delay line memory was 1024
words of 44 bits. A mercury delay line operates by converting
data into pulses of ultrasonic sound that continuously retic-
ulate in a long column of mercury in a tube.

EDVAC was not a great commercial success. Its construc-
tion was largely completed by April 1949, but it didn’t run its
first applications program until October 1951. Because of its
adoption of the stored program concept, EDVAC became a
topic in the first lecture course given on computers. These
lectures took place before EDVAC was actually constructed.

Another important early computer was IAS constructed by
von Neumann and his colleagues at the Institute for
Advanced Studies in Princeton. IAS is remarkably similar to
modern computers. Main memory was 1K words and a mag-
netic drum was used to provide 16K words of secondary stor-
age. The magnetic drum was the forerunner of today’s disk
drive. Instead of recording data on the flat platter found in a
hard drive, data was stored on the surface of a rotating drum.

In the late 1940s the Whirlwind computer was produced
at MIT for the US Air Force. This was the first computer
intended for real-time information processing. It employed
ferrite-core memory (the standard form of mainframe mem-
ory until the semiconductor integrated circuit came along in
the late 1960s). A ferrite core is a tiny bead of a magnetic mar-
tial that can be magnetized clockwise or counterclockwise to
store a one or a zero. Ferrite core memory is no longer widely
used today, although the term remains in expressions such as
core dump, which means a printout of the contents of a region
of memory.

One of the most important centers of early computer
development in the 1940s was Manchester University in

1.4 History of computing 11

England. In 1948 Tom Kilburn created a prototype computer
called the Manchester Baby. This was a demonstration
machine that tested the concept of the stored program com-
puter and the Williams store, which stored data on the surface
of a cathode ray tube. Some regard the Manchester Baby as
the world’s first true stored program computer.

IBM’s place in computer history

No history of the computer can neglect the giant of the com-
puter world, IBM, which has had such an impact on the
computer industry.Although IBM grew out of the Computing–
Tabulating–Recording (C–T–R) Company founded in 1911,
its origin dates back to the 1880s. The C–T–R Company was
the result of a merger between the International Time
Recording (ITR) Company, the Computing Scale Company
of America, and Herman Hollerith’s Tabulating Machine
Company (founded in 1896). In 1914 Thomas J. Watson,
Senior, left the National Cash Register Company to join the
C–T–R company and soon became President. In 1917, a
Canadian unit of the C–T–R company called International
Business Machines Co. Ltd was set up. Because this name was
so well suited to the C–T–R company’s role, they adopted it
for the whole organization in 1924. IBM bought Electromatic
Typewriters in 1933 and the first IBM electric typewriter was
marketed 2 years later.

IBM’s first contact with computers was via its relationship
with Aiken at Harvard University. In 1948 Watson Senior at
IBM gave the order to construct the Selective Sequence
Control Computer. Although this was not a stored program
computer, it was IBM’s first step from the punched card
tabulator to the computer.

Thomas. J. Watson, Junior, was responsible for building the
Type 701 EDPM (Electronic Data Processing Machine) in
1953 to convince his father that computers were not a threat
to IBM’s conventional business. The 700 series was successful
and dominated the mainframe market for a decade. In 1956
IBM launched a successor, the 704, which was the world’s first
supercomputer. The 704 was largely designed by Gene
Amdahl who later founded his own supercomputer company
in the 1990s.

IBM’s most important mainframe was the System/360,
which was first delivered in 1965. The importance of the
32-bit System/360 is that it was a member of a series of com-
puters, each with the same architecture (i.e. programming
model) but with different performance; for example, the
System/360 model 91 was 300 times faster than the model 20.
IBM developed a common operating system, OS/360, for their
series. Other manufactures built their own computers that
were compatible with System/360 and thereby began the slow
process towards standardization in the computer industry.

In 1960 the Series/360 model 85 became the first computer
to implement cache memory. Cache memory keeps a copy of
frequently used data in very high-speed memory to reduce

the number of accesses to the slower main store. Cache
memory has become one of the most important features of
today’s high performance systems.

In August 1980 IBM became the first major manufacturer
to market a PC. IBM had been working on a PC since about
1979 when it was becoming obvious that IBM’s market would
eventually start to come under threat from the PC manufac-
turers such as Apple and Commodore. IBM not only sold
mainframes and personal computers—by the end of 1970s
IBM had introduced the floppy disk, computerized super-
market checkouts, and the first automatic teller machines.

1.4.6 The birth of transistors, ICs, and
microprocessors

Since the 1940s computer hardware has become smaller and
faster. The power-hungry and unreliable vacuum tube was
replaced by the smaller, reliable transistor in the 1950s. The
transistor plays the same role as a thermionic tube; the only
real difference is that a transistor switches a current flowing
through a crystal rather than a beam of electrons flowing
through a vacuum. The transistor was invented by William
Shockley, John Bardeen, and Walter Brattain at AT&T’s Bell
Lab in 1948.

If you can put one transistor on a slice of silicon, you can
put two or more transistors on the same piece of silicon. The
idea occurred to Jack St Clair Kilby at Texas Instruments
in 1958. Kilby built a working model and filed a patent
early in 1959. In January of 1959, Robert Noyce at Fairchild
Semiconductor was also thinking of the integrated circuit. He
too applied for a patent and it was granted in 1961. Today,
both Noyce and Kilby are regarded as the joint inventors
of the IC.

The minicomputer era

The microprocessor was not directly derived from the main-
frame computer. Between the mainframe and the micro-
processor lies the minicomputer, a cut-down version of the
mainframe, which appeared in the 1960s. By the 1960s many
departments of computer science could afford their own
minicomputers and a whole generation of students learned
computer science from PDP-11s and NOVAs in the 1960s and
1970s. Some of these minicomputers were used in real-time
applications (i.e. applications in which the computer has to
respond to changes in its inputs within a specified time).

One of the first minicomputers was Digital Equipment
Corporation’s PDP-5, introduced in 1964. This was followed
by the PDP-8, in 1966 and the very successful PDP-11, in
1969. Even the PDP-11 would be regarded as a very basic
machine by today’s standards. Digital Equipment built on
their success with the PDP-11 series and introduced their
VAX architecture in 1978 with the VAX-11/780, which
dominated the minicomputer world in the 1980s. The VAX

12 Chapter 1 Introduction to computer hardware

range was replaced by the 64-bit Alpha architecture (a high-
performance microprocessor) in 1991. The Digital Equipment
Corporation, renamed Digital, was taken over by Compaq
in 1998.

Microprocessor and the PC

Credit for creating the world’s first microprocessor, the 4040,
goes to Ted Hoff and Fagin at Intel. Three engineers from
Japan worked with Hoff to implement a calculator’s digital
logic circuits in silicon. Hoff developed a general purpose
computer that could be programmed to carry out calculator
functions. Towards the end of 1969 the structure of a pro-
grammable calculator had emerged. The 4004 used about
2300 transistors and is considered the first general purpose
programmable microprocessor, even though it was only a
4-bit device.

The 4004 was rapidly followed by the 8-bit 8008 micro-
processor, which was originally intended for a CRT applica-
tion. By using some of the production techniques developed
for the 4004, Intel was able to manufacture the 8008 as early
as March 1972. The 8008 was soon replaced by a better
version, the first really popular general purpose 8-bit micro-
processor, the 8080 (in production in early 1974). Shortly
after the 8080 went into production, Motorola created its
own competitor, the 8-bit 6800.

Six months after the 8008 was introduced, the first ready-
made computer based on the 8008, the Micral, was designed
and built in France. The term microcomputer was coined to
refer to the Micral, although the Micral was not successful in
the USA. In January 1975 Popular Electronics magazine pub-
lished an article on microcomputer design by Ed Roberts
who had a small company called MITS. Roberts’ computer
was called Altair and was constructed from a kit.

Although the Altair was intended for hobbyists, it had a
significant impact and sold 2000 kits in its first year. In March
1976, Steve Wozniak and Steve Jobs designed a 6502-based
computer, which they called the Apple 1. A year later in 1977
they created the Apple II with 16 kbytes of ROM, 4 kbytes of
RAM, and a color display and keyboard. Although unsoph-
isticated, this was the first practical PC.

As microprocessor technology improved, it became pos-
sible to put more and more transistors on larger and larger
chips of silicon. Microprocessors of the early 1980s were not

only more powerful than their predecessors in terms of the
speed at which they could execute instructions, they were also
more sophisticated in terms of the facilities they offered. Intel
took the core of their 8080 microprocessor and converted it
from an 8-bit into a 16-bit machine, the 8086. Motorola did
not extend their 8-bit 6800 to create a 16-bit processor.
Instead, they started again and did not attempt to achieve
either object or source code compatibility with earlier
processors. By beginning with a clean slate, Motorola was
able to create a 32-bit microprocessor with an exceptionally
clean architecture in 1979.

Several PC manufacturers adopted the 68K; Apple used it
in the Macintosh and it was incorporated in the Atari and
Amiga computers. All three of these computers were regarded
as technically competent and had many very enthusiastic
followers. The Macintosh was sold as a relatively high-priced
black box with the computer, software, and peripherals from a
single source. This approach could not compete with the IBM
PC, launched in 1981, with an open system architecture that
allowed the user to purchase hardware and software from the
supplier with the best price. The Atari and Amiga computers
suffered because they had the air of the games machine.
Although the Commodore Amiga in 1985 had many of the
hallmarks of a modern multimedia machine, it was derided
as a games machine because few then grasped the importance
of advanced graphics and high-quality sound.

The 68K developed into the 68020, 68030, 68040, and
68060. Versions were developed for the embedded processor
market and Motorola played no further role in the PC market
until Apple adopted Motorola’s PowerPC processor. The
PowerPC came from IBM and was not a descendent of the
68K family.

Many fell in love with the Apple Mac. It was a sophisticated
and powerful PC, but not a great commercial success. Apple’s
commercial failure demonstrates that those in the semi-
conductor industry must realize that commercial factors
are every bit as important as architectural excellence and
performance. Apple failed because their processor, from
hardware to operating system, was proprietary. Apple didn’t
publish detailed hardware specifications or license their BIOS
and operating system. IBM adopted open standards and
anyone could build a copy of the IBM PC. Hundreds of
manufacturers started producing parts of PCs and an entire

1.4 History of computing 13

EARLY MICROPROCESSOR SPINOFFS

The first two major microprocessors were the 8080 and

the 6800 from Intel and Motorola, respectively. Other

microprocessor manufacturers emerged when engineers

left Intel and Motorola to start their own companies.

Federico Faggin, one of the founders of Intel, left the

company and founded Zilog in 1974. Zilog made the

Z80, which was compatible with Intel’s 8080 at the

machine-code level. The Z80 has a superset of the 8080’s

instructions.

A group of engineers left Motorola to form MOS

Technologies in 1975.They created the 6502 microprocessor,

which was similar to the 6800 but not software compatible

with it. The 6502 was the first low-cost microprocessor and

was adopted by Apple and several other early PCs.

industry sprang up. You could buy a basic system from one
place, a hard disk from another, and a graphics card from yet
another supplier. By publishing standards for the PC’s bus,
anyone could create a peripheral for the PC. What IBM lost in
the form of increased competition, they more than made up
for in the rapidly expanding market. IBM’s open standard
provided an incentive for software writers to generate soft-
ware for the PC market.

The sheer volume of PCs and their interfaces (plus the
software base) pushed PC prices down and down. The Apple
was perceived as over-priced. Even though Apple adopted
the PowerPC, it was too late and Apple’s role in the PC world
was marginalized. However by 2005, cut-throat competition
from PC manufacturers was forcing IBM to abandon its PC
business, whereas Apple was flourishing in a niche market
that rewarded style.

A major change in direction in computer architecture took
place in the 1980s when the RISC or Reduced Instruction Set
Computer first appeared. Some observers expected the RISC to
sweep away all CISC processors like the 8086 and 68K families.

It was the work carried out by David Paterson at the
University of Berkley in the early 1980s that brought the RISC
philosophy to a wider audience. Paterson was also respons-
ible for coining the term ‘RISC’ in 1980. The Berkeley RISC
was constructed at a university (like many of the first main-
frames such as EDSAC) and required only a very tiny fraction
of the resources consumed by these early mainframes. Indeed,
the Berkeley RISC is hardly more than an extended graduate
project. It took about a year to design and fabricate the RISC I
in silicon. By 1983 the Berkeley RISC II had been produced
and that proved to be both a testing ground for RISC ideas
and the start of a new industry. Many of the principles of
RISC design were later incorporated in Intel’s processors.

1.4.7 Mass computing and the rise of
the Internet

The Internet and digital multimedia have driven the evolu-
tion of the PC. The Internet provides interconnectivity and
the digital revolution has extended into sound and vision.
The cassette-based personal stereo system has been displaced
by the minidisk and the MP3 players with solid state memory.
The DVD with its ability to store an entire movie on a single
disk first became available in 1996 and by 1998 over one
million DVD players had been sold in the USA. The digital
video camera that once belonged to the world of the profes-
sional filmmaker is now available to anyone with a modest
income.

All these applications have had a profound effect on the
computer world. Digital video requires vast amounts of stor-
age. Within 5 years, low-cost hard disk capacities grew from
about 1 Gbyte to 400 Gbytes or more. The DVD uses very
sophisticated signal processing techniques that require very

high-performance hardware to process the signals in real-
time. The MP3 player requires a high-speed data link to
download music from the Internet.

The demand for increasing reality in video games and real-
time image processing has spurred development in special-
purpose video subsystems. Video processing requires the
ability to render images, which means drawing vast numbers
of polygons on the screen and filling them with a uniform
color. The more polygons used to compose an image, the
more accurate the rendition of the image.

The effect of the multimedia revolution had led to the com-
moditization of the PC, which is now just another commodity
like a television or a stereo player. Equally, the growth of multi-
media has forced the development of higher speed processors,
low-cost high-density memory systems, multimedia-aware
operating systems, data communications, and new processor
architectures.

The Internet revolution

Just as the computer itself was the result of a number of inde-
pendent developments (the need for automated calculation,
the theoretical development of computer science, the
enabling technologies of communications and electronics,
the keyboard and data processing industries), the Internet
was the fruit of a number of separate developments.

The principal ingredients of the Internet are communica-
tions, protocols, and hypertext. Communications systems
have been developed throughout human history as we have
already pointed out when discussing the enabling technology
behind the computer. The USA’s Department of Defense cre-
ated a scientific organization, ARPA (Advanced Research
Projects Agency) in 1958 at the height of the Cold War. ARPA
had some of the characteristics of the Manhattan project,
which had preceded it during the Second World War. A large
group of talented scientists was assembled to work on a pro-
ject of national importance. From its early days ARPA con-
centrated on computer technology and communications
systems; moreover, ARPA was moved into the academic area
which meant that it had a rather different ethos from that of
the commercial world because academics cooperate and
share information.

One of the reasons why ARPA concentrated on networking
was the fear that a future war involving nuclear weapons
would begin with an attack on communications centers lim-
iting the capacity to respond in a coordinated manner. By
networking computers and ensuring that a message can take
many paths through the network to get from its source to its
destination, the network can be made robust and able to cope
with the loss of some of its links of switching centers.

In 1969 ARPA began to construct a testbed for networking,
a system that linked four nodes: University of California at
Los Angeles, SRI (in Stanford), University of California at
Santa Barbara, and University of Utah. Data was sent in the

14 Chapter 1 Introduction to computer hardware

form of individual packets or frames rather than as complete
end-to-end messages. In 1972 ARPA was renamed DARPA
(Defense Advances Research Projects Agency).

In 1973 the TCP/IP (transmission control protocol/Internet
protocol) was developed at Stanford; this is the set of rules that
govern the routing of a packet through a computer network.
Another important step on the way to the Internet was Robert
Metcalfe’s development of the Ethernet, which enabled com-
puters to communicate with each other over a local area net-
work based on a low-cost cable. The Ethernet made it possible
to link computers in a university together and the ARPANET
allowed the universities to be linked together. Ethernet was,
however, based on techniques developed during the construc-
tion of the University of Hawaii’s radio-based packet-switching
ALOHAnet, another ARPA-funded project.

Up to 1983 ARPANET users had to use a numeric IP
address to access other users on the Internet. In 1983 the
University of Wisconsin created the Domain Name System
(DNS), which routed packets to a domain name rather than
an IP address.

The World’s largest community of physicists is at CERN in
Geneva. In 1990 Tim Berners-Lee implemented a hypertext-
based system to provide information to other the members of
the high-energy physics community. This system was
released by CERN in 1993 as the World-Wide Web (WWW).
In the same year, Marc Andreessen at the University of Illinois
developed a graphical user interface to the WWW, a browser
called Mosaic. All that the Internet and the WWW had to do
now was to grow.

1.5 The digital computer

Before beginning the discussion of computer hardware
proper, we need to say what a computer is and to define a few
terms. If ever an award were to be given to those guilty of mis-
information in the field of computer science, it would go to
the creators of HAL in 2001, R2D2 in Star Wars, K9 in Doctor
Who, and Data in Star Trek. These fictional machines have
generated the popular myth that a computer is a reasonably
close approximation to a human brain, which stores an infinite
volume of data.

The reality is a little more mundane. A computer is a
machine that takes in information from the outside world,
processes it according to some predetermined set of opera-
tions, and delivers the processed information. This definition
of a computer is remarkably unhelpful, because it attempts to
define the word computer in terms of the equally complex
words information, operation, and process. Perhaps a better
approach is to provide examples of what computers do by
looking at the role of computers in data processing, numerical
computation (popularly called number crunching), work-
stations, automatic control systems, and electronic systems.

1.5.1 The PC and workstation

The 1980s witnessed two significant changes in computing—
the introduction of the PC and the workstation. PCs bring
computing power to people in offices and in their own
homes. Although primitive PCs have been around since the
mid 1970s, the IBM PC and Apple Macintosh transformed
the PC from an enthusiast’s toy into a useful tool. Software
such as word processors, databases, and spreadsheets revolu-
tionized the office environment, just as computer-aided
design packages revolutionized the industrial design envir-
onment. Today’s engineer can design a circuit and simulate
its behavior using one software package and then create a lay-
out for a printed circuit board (PCB) with another package.
Indeed, the output from the PCB design package may be
suitable for feeding directly into the machine that actually
makes the PCBs.

In the third edition of this book in 1999 I said

Probably the most important application of the personal computer
is in word processing . . . Today’s personal computers have immensely
sophisticated word processing packages that create a professional-
looking result and even include spelling and grammar checkers to
remove embarrassing mistakes. When powerful personal computers
are coupled to laser printers, anyone can use desktop publishing
packages capable of creating manuscripts that were once the
province of the professional publisher.

Now, all that’s taken for granted. Today’s PCs can take video
from your camcorder, edit it, add special effects, and then burn
it to a DVD that can be played on any home entertainment
system.

Although everyone is familiar with the PC, the concept of
the workstation is less widely understood. A workstation can
be best thought of as a high-performance PC that employs
state-of-the-art technology and is normally used in industry.
Workstations have been produced by manufacturers such as
Apollo, Sun, HP, Digital, Silicon Graphics, and Xerox. They
share many of the characteristics of PCs and are used by
engineers or designers. When writing the third edition, I
stated that the biggest difference between workstations and
PCs was in graphics and displays. This difference has all but
vanished with the introduction of high-speed graphics cards
and large LCD displays into the PC world.

1.5.2 The computer as a data processor

The early years of computing were dominated by the main-
frame, which was largely used as a data processor. Figure 1.1
describes a computer designed to deal with the payroll of a
large factory. We will call the whole thing a computer, in
contrast with those who would say that the CPU (central
processing unit) is the computer and all the other devices
are peripherals. Inside the computer’s immediate access
memory is a program, a collection of primitive machine-code

1.5 The digital computer 15

operations, whose purpose is to calculate an employee’s pay
based on the number of hours worked, the basic rate of pay,
and the overtime rate. Of course, this program would also
deal with tax and any other deductions.

Because the computer’s immediate access memory is relat-
ively expensive, only enough is provided to hold the program
and the data it is currently processing. The mass of informa-
tion on the employees is normally held in secondary store as
a disk file. Whenever the CPU requires information about a
particular employee, the appropriate data is copied from the
disk and placed in the immediate access store. The time taken
to perform this operation is a small fraction of a second but is
many times slower than reading from the immediate access
store. However, the cost of storing information on disk is very
low indeed and this compensates for its relative slowness.

The tape transport stores data more cheaply than the disk
(tape is called tertiary storage). Data on the disks is copied
onto tape periodically and the tapes stored in the basement
for security reasons. Every so often the system is said to crash
and everything grinds to a halt. The last tape dump can be
reloaded and the system assumes the state it was in a short
time before the crash. Incidentally, the term crash had the
original meaning of a failure resulting from a read/write head
in a disk drive crashing into the rotating surface of a disk and
physically damaging the magnetic coating on its surface.

The terminals (i.e. keyboard and display) allow operators
to enter data directly into the system. This information could
be the number of hours an employee has worked in the cur-
rent week. The terminal can also be used to ask specific ques-
tions, such as ‘How much tax did Mr XYZ pay in November?’
To be a little more precise, the keyboard doesn’t actually ask
questions but it allows the programmer to execute a program

containing the relevant question. The keyboard can be used
to modify the program itself so that new facilities may be
added as the system grows. Computers found in data process-
ing are often characterized by their large secondary stores and
their extensive use of printers and terminals.

1.5.3 The computer as a numeric
processor

Numeric processing or number crunching refers to computer
applications involving a very large volume of mathematical
operations—sometimes billions of operations per job.
Computers used in numeric processing applications are fre-
quently characterized by powerful and very expensive CPUs,
very high-speed memories, and relatively modest quantities
of input/output devices and secondary storage. Some super-
computers are constructed from large arrays of microproces-
sors operating in parallel.

Most of the applications of numeric processing are best
described as scientific. For example, consider the application
of computers to the modeling of the processes governing the
weather. The atmosphere is a continuous, three-dimensional
medium composed of molecules of different gases. The sci-
entist can’t easily deal with a continuous medium, but can
make the problem more tractable by considering the atmo-
sphere to be composed of a very large number of cubes. Each
of these cubes is considered to have a uniform temperature,
density, and pressure. That is, the gas making up a cube shows
no variation whatsoever in its physical properties. Variations
exist only between adjacent cubes. A cube has six faces and
the scientist can create a model of how the cube interacts with
each of its six immediate neighbors.

16 Chapter 1 Introduction to computer hardware

Display

Display

Plotter

Keyboard

Tape drive

Line printer

Printer

Disk drives
Computer (central processing unit)

Figure 1.1 The computer as a

data processor.

The scientist may start by assuming that all cubes are
identical (there is no initial interaction between cubes) and
then consider what happens when a source of energy, the sun,
is applied to the model. The effect of each cube on its neigh-
bor is calculated and the whole process is repeated cyclically
(iteration). In order to get accurate results, the size of the
cubes should be small, otherwise the assumption that the
properties of the air in the cube are uniform will not be valid.
Moreover, the number of iterations needed to get the results
to converge to a steady-state value is often very large.
Consequently, this type of problem often requires very long
runs on immensely powerful computers, or supercomputers
as they are sometimes called. The pressure to solve complex
scientific problems has been one of the major driving forces
behind the development of computer architecture.

Numeric processing also pops up in some real-time
applications of computers. Here, the term real-time indicates
that the results of a computation are required within a given
time. Consider the application of computers to air-traffic
control. A rotating radar antenna sends out a radio signal that
is echoed back from a target. Because radio waves travel at a
fixed speed (the speed of light), radar can be used to measure
the bearing and distance (range) of each aircraft. At time t,
target i at position Pi,t returns an echo giving its range ri,t, and
bearing bi,t. Unfortunately, because of the nature of radar
receivers, a random error is added to the value of each echo
from a target.

The computer obtains data from the radar receiver for n
targets, updated p times a minute. From this raw data that
is corrupted by noise, the computer computes the position of
each aircraft and its track and warns air traffic control of
possible conflicts. All this requires considerable high-speed
numerical computation.

Supercomputers are also used by the security services to
crack codes and to monitor telecommunications traffic for
certain words and phrases.

1.5.4 The computer in automatic control

The majority of computers are found neither in data process-
ing nor in numeric processing activities. The advent of the
microprocessor put the computer at the heart of many auto-
matic control systems. When used as a control element, the
computer is embedded in a larger system and is invisible to the
observer. By invisible we mean that you may not be aware of
the existence of the computer. Consider a computer in a
pump in a gas station that receives cash in a slot and delivers
a measured amount of fuel. The user doesn’t care whether the
pump is controlled by a microprocessor or by a clockwork
mechanism, as long as it functions correctly.

A good example of a computer in automatic control is an
aircraft’s automatic landing system, illustrated in Fig. 1.2. The
aircraft’s position (height, distance from touch down, and

distance off the runway centerline) and speed are determined
by radio techniques in conjunction with a ground-based
instrument-landing system. Information about the aircraft’s
position is fed to the three computers, which, individually,
determine the error in the aircraft’s course. The error is
the difference between the aircraft’s measured position and the
position it should be in. The output from the computer is the
signals required to move the aircraft’s control surfaces
(ailerons, elevator, and rudder) and adjust the engine’s thrust.
In this case the computer’s program is held in ROM, a mem-
ory that can be read from but not written to. Once the
program to land the aircraft has been developed, it requires
only occasional modification.

The automatic-landing system requires three computers,
each working on the same calculation with the same inputs.
The outputs of the computers are fed to a majority logic
circuit called a voting network. If all three inputs to the major-
ity logic circuit are the same, its output is identical to its
inputs. If one computer fails, the circuit selects its output to
be the same as that produced by the two good computers.
This arrangement is called triple modular redundancy and
makes the system highly reliable.

Another example of the computer as a controller can be
found in the automobile. Car manufacturers want to increase
the efficiency and performance of the internal combustion
engine and reduce the emission of harmful combustion
products. Figure 1.3 illustrates the structure of a computer-
ized fuel injection system that improves the performance of
an engine. The temperature and pressure of the air, the angle
of the crankshaft, and several other variables have to be meas-
ured thousands of times a second. These input parameters
are used to calculate how much fuel should be injected into
each cylinder.

The glass cockpit provides another example of the computer
as a controller. Until the mid 1980s the flight instrumentation
of commercial aircraft was almost entirely electromechanical.

1.5 The digital computer 17

Position
sensors

Majority
logic

netwok

Aileron control (roll)

Rudder control (yaw)

Elevator control (pitch)

CPU
A

CPU
B

CPU
C

Figure 1.2 The computer as a control element in a flight

control system.

Today the mechanical devices that display height, speed,
engine performance, and the altitude of the aircraft are being
replaced by electronic displays controlled by microcomputers.
These displays are based on the cathode ray tube or LED,
hence the expression ‘glass cockpit’. Electronic displays are
easier to read and more reliable than their mechanical coun-
terparts, but they provide only the information required by
the flight crew at any instant.

Figure 1.4 illustrates an aircraft display that combines a
radar image of clouds together with navigational informa-
tion. In this example the pilot can see that the aircraft is
routed from radio beacon WCO to BKP to BED and will miss
the area of storm activity. Interestingly enough, this type of
indicator has been accused of deskilling pilots, because they
no longer have to create their own mental image of the posi-
tion of their aircraft with respect to the World from much
cruder instruments.

In the 1970s the USA planned a military navigation system
based on satellite technology called GPS (global positioning
system), which became fully operational in the 1990s. The
civilian use of this military technology turned out to be
one of the most important and unexpected growth areas in

the late 1990s. GPS provides another interesting application
of the computer as a component in an electronic system. The
principles governing GPS are very simple. A satellite in
medium Earth orbit at 20 200 km contains a very accurate
atomic clock and it broadcasts both the time and its position.

Suppose you pick up the radio signal from one of these
Navstar satellites, decode it, and compare the reported time
with your watch. You may notice that the time from the satel-
lite is inaccurate. That doesn’t mean that the US military has
wasted its tax dollars on faulty atomic clocks, but that the sig-
nal has been traveling through space before it reaches you.
Because the speed of light is 300 000 km/s, you know that the
satellite must 20 000 km away. Every point that is 20 000 km
from the satellite falls on the surface of a sphere whose center
is the satellite.

If you perform the same operation with a second satellite,
you know that you are on the surface of another sphere.
These two spheres must intersect. Three-dimensional geo-
metry tells us that the points at which two spheres merge is
a ring. If you receive signals from three satellites, the three
spheres intersect at just two points. One of these points is
normally located under the surface of the Earth and can be

18 Chapter 1 Introduction to computer hardware

Figure 1.3 The computerized fuel injection system.

Turbometer Pressure sensor Pressure sensor Pressure sensors

Injection

volume

θth-Ne basic fuel

injection volume map

Engine rpm

Engine rpm

PB-Ne basic fuel

injection volume map

Injection
volume

Throttle

 opening
Main relayPump

relay

Boost
pressure

Fuel
filter

Fuel
pump

Killswitch

combination

switch

Battery

Engine

rpm

Ignition timing map

Ignition

timing

Boost

pressure

Pressure
regulator

Injector

Temperature

sensor
Resonance

chamber

Surge

tank

Pulser

Ignition Coil
Ignition
control
unit

Wastegate valve

actuator

Pulser

Muffler

Air cleaner
Compressor

Turbine

Turbocharger

Throttle sensor

Air valve

TW
sensor

Throttle valve
Reed
valve

CFI
computer

disregarded. You can therefore work out your exact position
on the surface of the Earth. This scheme relies on you having
access to the exact time (i.e. your own atomic clock).
However, by receiving signals from a fourth satellite you can
calculate the time as well as your position.

Several companies produce small low-cost GPS receivers
that receive signals from the 24 Navstar satellites, decode the
timing signals and the ephemeris (i.e. satellite position), and
calculate the position in terms of latitude and longitude. By
embedding a microprocessor in the system, you can process
the position data in any way you want. For example, by com-
paring successive positions you can work out your speed and
direction. If you enter the coordinates of a place you wish to
go to, the processor can continually give you a bearing to
head, a distance to your destination, and an estimated time of
arrival.

By adding a liquid crystal display and a map stored in a
read-only memory to a GPS receiver, you can make a hand-
held device that shows where you are with respect to towns,
roads, and rivers. By 2000 you could buy a device for about
$100 that showed exactly where you were on the surface of
the Earth to an accuracy of a few meters.

The combination of a GPS unit plus a microprocessor plus
a display system became a major growth area from about
2000 because there are so many applications. Apart from its
obvious applications to sailing and aviation, GPS can be
included in automobiles (the road maps are stored on CD

ROMs). GPS can even be integrated into expensive systems
that aren’t intended to move—unless they are stolen. If the
system moves, the GPS detects the new position and reports
it to the police.

1.6 The stored program
computer—an overview

Before discussing the stored program computer, consider first
the human being. It’s natural to compare today’s wonder, the
computer, with the human just as the Victorians did with
their technology. They coined expressions like, ‘He has a
screw loose’, or ‘He’s run out of steam’, in an endeavor to
describe humans in terms of their mechanical technology.

Figure 1.5 shows how a human can be viewed as a system
with inputs, a processing device, and outputs. The inputs are
sight (eyes), smell (nose), taste (tongue), touch (skin), sound
(ear), and position (muscle tension). The brain processes
information from its sensors and stores new information.
The storage aspect of the brain is important because it mod-
ifies the brain’s operation by a process we call learning.
Because the brain learns from new stimuli, it doesn’t always
exhibit the same response to a given stimulus. Once a child
has been burned by a flame the child reacts differently the
next time they encounter fire.

The brain’s ability to both store and process information is
shared by the digital computer. Computers can’t yet mimic
the operation of the brain and simplistic comparisons
between the computer and the brain are misleading at best
and mischievous at worst. A branch of computer science is
devoted to the study of computers that do indeed share some
of the brain’s properties and attempt to mimic the human
brain. Such computers are called neural nets.

The output from the brain is used to generate speech or to
control the muscles needed to move the body.

Figure 1.6 shows how a computer can be compared with a
human. A computer can have all the inputs a human has plus
inputs for things we can’t detect. By means of photoelectric
devices and radio receivers, a computer can sense ultraviolet
light, infrared, X-rays, and radio waves. The computer’s out-
put is also more versatile than that of humans. Computers
can produce mechanical movement (by means of motors)
and generate light (TV displays), sound (loudspeakers), or
even heat (by passing a current through a resistor).

The computer’s counterpart of the brain is its central pro-
cessing unit plus its storage unit (memory). Like the brain, the
computer processes its various inputs and produces an output.

We don’t intend to write a treatise on the differences
between the brain and the computer, but we should make a
comment here to avoid some of the misconceptions about
digital computers. It is probable that the brain’s processing

1.6 The stored program computer—an overview 19

Figure 1.4 Computer-controlled displays in the glass cockpit.

This figure illustrates the primary navigation display (or

horizontal situation indicator) that the pilot uses to determine

the direction in which the aircraft is traveling (in this case

231�—approximately south-west). In addition to the heading,

the display indicates the position and density of cloud and the

location of radio beacons.The three arcs indicate range from the

aircraft (30, 60, 90 nautical miles).

and memory functions are closely interrelated, whereas in the
computer they are distinct. Some scientists believe that a
major breakthrough in computing will come only when
computer architecture takes on more of the features of the

brain. In particular, the digital computer
is serially organized and performs a
single instruction at a time, whereas the
brain has a highly parallel organization
and is able to carry out many activities at
the same time.

Somewhere in every computer’s
memory is a block of information that
we call a program. The word program has
the same meaning as it does in the
expression program of studies, or program
of music.A computer program is a collec-
tion of instructions defining the actions
to be carried out by the computer
sequentially. The classic analogy with a
computer program is a recipe in a cook-
ery book. The recipe is a sequence of
commands that must be obeyed one by
one in the correct order. Our analogy
between the computer program and the
recipe is particularly appropriate because
the cookery instructions involve opera-
tions on ingredients, just as the com-
puter carries out operations on data
stored in memory.

Figure 1.7 describes how a digital
computer can be divided into two parts:
a central processing unit (CPU) and a
memory system. The CPU reads the pro-
gram from memory and executes the
operations specified by the program.
The word execute means carry out; for
example, the instruction add A to B
causes the addition of a quantity called
A to a quantity called B to be carried out.
The actual nature of these instructions
does not matter here. What is important
is that the most complex actions carried
out by a computer can be broken down
into a number of more primitive opera-
tions. But then again, the most sublime
thoughts of Einstein or Beethoven can
be reduced to a large number of impulses
transmitted across the synapses of the
cells in their brains.

The memory system stores two types
of information; the program and the

data acted on or created by the program. It isn’t necessary to
store both the program and data in the same memory. Most
computers store programs and data in a single memory
system and are called von Neumann machines.

A computer is little more than a black box that moves
information from one point to another and processes the

20 Chapter 1 Introduction to computer hardware

Figure 1.5 The organization of a human being.

Eyes

Nose

Tongue

Brain

Inputs Outputs Muscle

(movement)

Mouth

(sound)

Skin

Ears

Muscle

tension

Figure 1.6 The organization of a computer.

Keyboard

Mouse

Modem

Scanner

Central processing unit Sound system

Printer

Video displayInputs Outputs

Memory

Information is accessed from our memories by applying a key
to all locations within the memory (brain). This key is related
to the data being accessed (in some way) and is not related to
its location within the brain. Any memory locations contain-
ing information that associates with the key respond to the
access. In other words, the brain carries out a parallel search
of its memory for the information it requires.

Accessing many memory locations in parallel permits
more than one location to respond to the access and is there-
fore very efficient. Suppose someone says ‘chip’ to you. The
word chip is the key that is fed to all parts of your memory for
matching.Your brain might produce responses of chip (silicon),
chip (potato), chip (on shoulder), and chip (gambling).

The program in Fig. 1.8 occupies consecutive memory
locations 0–3 and the data locations 4–6. The first instruc-
tion, get [4], means fetch the contents of memory location num-
ber 4 from the memory. We employ square brackets to denote
the contents of the address they enclose, so that in this
case [4] � 2. The next instruction, at address 1, is add it to [5]
and means add the number brought by the previous instruction
to the contents of location 5. Thus, the computer adds 2 and
7 to get 9. The third instruction, put result in [6], tells
the computer to put the result (i.e. 9) in location 6. The 1 that
was in location 6 before this instruction was obeyed is
replaced by 9. The final instruction in location 3 tells the
computer to stop.

We can summarize the operation of a digital computer by
means of a little piece of pseudocode (pseudocode is a method
of writing down an algorithm in a language that is a cross
between a computer language such as C, Pascal, or Java and
plain English). We shall meet pseudocode again.

1.6 The stored program computer—an overview 21

Input

Output

Central

processing

unit

Memory

Data

Program

Figure 1.7 Structure of the general purpose digital computer.

information as it goes along. When we say information we
mean the data and the instructions held inside the computer.
Figure 1.7 shows two information-carrying paths connecting
the CPU to its memory. The lower path with the single
arrowhead from the memory to the CPU (heavily shaded in
Fig. 1.7) indicates the route taken by the computer’s program.
The CPU reads the sequence of commands that make up a
program one by one from its memory.

The upper path (lightly shaded in Fig. 1.7) with arrows at
both its ends transfers data between the CPU and memory.
The program controls the flow of information along the data
path. This data path is bidirectional, because data can flow in
two directions. During a write cycle data generated by the
program flows from the CPU to the memory where it is
stored for later use. During a read cycle the CPU requests the
retrieval of a data item from memory, which is transferred
from the memory to the CPU.

Suppose the instruction x � y � z is stored in memory.
The CPU must first fetch the instruction from memory and
bring it to the CPU. Once the CPU has analyzed or decoded
the instruction it has to get the values of y and z from memory.
The CPU adds these values and sends the result, x, back to
memory for storage.

Figure 1.8 demonstrates how the instructions making up a
program and data coexist in the same memory. In this case
the memory has seven locations, numbered from 0 to 7.
Memory is normally regarded as an array of storage locations
(boxes or pigeonholes). Each of these boxes has a unique
location or address containing data. For example, in the
simple memory of Fig. 1.8, address 5 contains the number 7.
One difference between computers and people is that we
number m items from 1 to m, whereas the computer numbers
them from 0 to m � 1. This is because the computer regards 0
(zero) as a valid identifier. Unfortunately, people often
confuse 0 the identifier with 0 meaning nothing.

Information in a computer’s memory is accessed by pro-
viding the memory with the address (i.e. location) of the
desired data. Only one memory location is addressed at a
time. If we wish to search through memory for a particular
item because we don’t know its address, we have to read the
items one at a time until we find the desired item. It appears
that the human memory works in a very different way.

0 Get [4]

Add it to [5]

Put result in [6]

Stop

Address
(i.e. a location
in the memory)

Instruction to
be executed

Data element
in memory

2

7

1

1

2

3

4

5

6

7

Figure 1.8 The program and data in memory.

Throughout this book square brackets denote ‘the contents of’

so that in this figure, [4] is read as the contents of memory

location number 4 and is equal to 2.

1.7 The PC—a naming of
parts

The final part of this chapter looks at the computer
with which most readers will be familiar, the
PC. As we have not yet covered many of the ele-
ments of a computer, all we can do here is provide
an overview and to name some of the parts of a
typical computer system to help provide a context
for following chapters.

Figure 1.9 shows a typical single-board computer
(SBC). As its name suggests, the SBC consists of
one printed circuit board containing the micro-
processor, memory, peripherals, and everything

22 Chapter 1 Introduction to computer hardware

Figure 1.9 The microcontroller SBC.

PCI slots

Memory slots

CPU slot

Basic I/O

Video

slot

Disk

connectors

Figure 1.10 The PC motherboard.

else it needs to function. Such a board can be embedded in
systems ranging from automobile engines to cell phones. The
principal characteristic of the SBC is its lack of expandability
or flexibility. Once you’ve made it, the system can’t be
expanded.

The PC is very different from the single-board computer
because each user has their own requirements; some need
lots of memory and fast video processing and some need
several peripherals such as printers and scanners.

One way of providing flexibility is to design a system with
slots into which you can plug accessories. This allows you to
buy a basic system with functionality that is common to all
computers with that board and then you can add specific
enhancements such as a video card or a sound card.

Figure 1.10 shows a PC motherboard. The motherboard
contains the CPU and all the electronics necessary to connect
the CPU to memory and to provide basic input/output such
as a keyboard and mouse interface and an interface to floppy
and hard disk drives (including CD and DVD drives).

The motherboard in Fig. 1.10 has four areas of expandabil-
ity. Program and data memory can be plugged into slots
allowing the user to implement enough memory for their
application (and their purse). You can also plug a video card
into a special graphics slot, allowing you to use a basic system
for applications such as data processing or an expensive state-
of-the-art graphics card for a high-performance games
machine with fast 3D graphics.

The CPU itself fits into a rectangular slot and is not per-
manently installed on the motherboard. If you want a faster
processor, you can buy one and plug it in your motherboard.
This strategy helps prevent the computer becoming out of
date too soon.

The motherboard has built-in interfaces that are common
to nearly all systems. A typical motherboard has interfaces to
a keyboard and mouse, a floppy disk drive, and up to four
hard disks or CD ROMs. Over the last few years, special-
purpose functions have migrated from plug-in cards to the
motherboard. For example, the USB serial interface, the local
area network, and the audio system have been integrated on
some of the high-performance motherboards.

The motherboard in Fig. 1.10 has five PCI connectors.
These connectors allow you to plug cards into the mother-
board. Each connector is wired to a bus, a set of parallel
conductors that carry information between the cards and
the CPU and memory. One of the advantages of a PC is its
expandability because you can plug such a wide variety of
cards into its bus. There are modems and cards that capture
and process images from camcorders. There are cards that
contain TV receivers. There are cards that interface a PC to
industrial machines in a factory.

In this book we will be looking at all these aspects of a
computer.

■ SUMMARY

We began this chapter with a discussion of the role of computer

architecture in computer science education. Computer

architecture provides the foundation of computing; it helps you

to get the best out of computers and it aids in an understanding

of a wide range of topics throughout computing.

We provided a brief history of computing.We can’t do justice

to this topic in a few pages.What we have attempted to do is to

demonstrate that computing has had a long history and is the

result of the merging of the telegraph industry, the card-based

data processing industry, and the calculator industry.

In this chapter we have considered how the computer can be

looked at as a component or, more traditionally, as part of a

large system. Besides acting in the obvious role as a computer

system, computers are now built into a wide range of everyday

items from toys to automobile ignition systems. In particular,

we have introduced some of the topics that make up a

first-level course in computer architecture or computer

organization.

We have introduced the notion of the von Neumann

computer, which stored instructions and data in the same

memory.The von Neumann computer reads instructions from

memory, one by one and then executes them in turn.

The final part of this chapter provided an overview of the

computer system with which most students will be

familiar—the PC.This computer has a motherboard into which

you can plug a Pentium microprocessor, memory, and

peripherals.You can create a computer that suits your own

price–performance ratio.

As we progress through this book, we are going to examine

how the computer is organized and how it is able to step

through instructions in memory and execute them.We will also

show how the computer communicates with the world outside

the CPU and its memory.

■ PROBLEMS

Unlike the problems at the end of other chapters, these

problems are more philosophical and require further

background reading if they are to be answered well.

1.1 I have always claimed you cannot name the inventor of the

computer because what we now call a computer emerged after

a long series of incremental steps.Am I correct?

1.2 If you have to name one person as inventor of the

computer, who would you choose? And why?

1.3 What is the difference between computer architecture and

computer organization?

1.4 A Rolls–Royce is not a Volkswagen Beetle. Is the difference a

matter of architecture or organization?

1.5 List 10 applications of microprocessors you can think of

and classify them into the groups we described (e.g. computer

as a component).Your examples should cover as wide a range

of applications as possible.

1.7 The PC—a naming of parts 23

1.6 Do you think that a digital computer could ever be capable

of feelings, free will, original thought, and self-awareness in a

similar fashion to humans? If not, why not?

1.7 Some of the current high-performance civil aircraft such as

the A320 AirBus have fly-by-wire control systems. In a

conventional aircraft, the pilot moves a yoke that provides

control inputs that are fed to the flying control surfaces and

engines by mechanical linkages or hydraulic means. In the A320

the pilot moves the type of joystick normally associated with

computer games.The pilot’s commands from the joystick (called

a sidestick) are fed to a computer and the computer interprets

them and carries them out in the fashion it determines is most

appropriate. For example, if the pilot tries to increase the speed

to a level at which the airframe might be overstressed, the

computer will refuse to obey the command. Some pilots and

some members of the public are unhappy about this

arrangement.Are their fears rational?

1.8 The computer has often been referred to as a high-speed

moron. Is this statement fair?

1.9 Computers use binary arithmetic (i.e. all numbers are

composed of 1s and 0s) to carry out their operations. Humans

normally use decimal arithmetic (0–9) and have symbolic

means of representing information (e.g. the Latin alphabet or

the Chinese characters). Does this imply a fundamental

difference between people and computers?

1.10 Shortly after the introduction of the computer, someone

said that two computers could undertake all the computing in

the World.At that time the best computers were no more

powerful than today’s pocket calculators. The commentator

assumed that computers would be used to solve a few scientific

problems and little else.As the cost and size of computers has

been reduced, the role of computers has increased. Is there a

limit to the applications of computers? Do you anticipate any

radically new applications of computers?

1.11 A microprocessor manufacturer, at the release of their new

super chip, was asked the question, ‘What can your

microprocessor do?’ He said it was now possible to put it in

washing machines so that the user could tell the machine what

to do verbally, rather than by adjusting the settings manually.

At the same time we live in a world in which many of its

inhabitants go short of the very basic necessities of life: water,

food, shelter, and elementary health care. Does the computer

make a positive contribution to the future well-being of the

World’s inhabitants? Is the answer the same if we ask about the

computer’s short-term effects or its long-term effects?

1.12 The workstation makes it possible to design and to test

(by simulation) everything from other computers to large

mechanical structures. Coupled with computer communications

networks and computer-aided manufacturing, it could be

argued that many people in technologically advanced societies

will be able to work entirely from home. Indeed, all their

shopping and banking activities can also be performed from

home. Do you think that this step will be advantageous or

disadvantageous? What will be the effects on society of a

population that can, largely, work from home?

1.13 In a von Neumann machine, programs and data share the

same memory.The operation ‘get [4]’ reads the contents of

memory location number 4 and you can then operate on the

number you’ve just read from this location. However, the

contents of this location may not be a number. It may be an

instruction itself. Consequently, a program in a von Neumann

machine can modify itself. Can you think of any implications

this statement has for computing?

1.14 When discussing the performance of computers we

introduced the benchmark, a synthetic program whose

execution time provides a figure of merit for the performance of

a computer. If you glance at any popular computer magazine,

you’ll find computers compared in terms of benchmarks.

Furthermore, there are several different benchmarks.A computer

that performs better than others when executing one

benchmark might not do so well when executing a different

benchmark.What are the flaws in benchmarks as a test of

performance and why do you think that some benchmarks favor

one computer more than another?

1.15 The von Neumann digital computer offers just one

computing paradigm. Other paradigms are provided by analog

computers and neural networks.What are the differences

between these paradigms and are there others?

24 Chapter 1 Introduction to computer hardware

2
Gates, circuits, and
combinational logic

CHAPTER MAP

2 Logic elements and
Boolean algebra
Digital computers are

constructed from millions of very

simple logic elements called

gates. In this chapter we

introduce the fundamental gates

and demonstrate how they can

be combined to create circuits

that carry out the basic functions

required in a computer.

3 Sequential logic
We can classify logic circuits into

two groups: the combinational

circuit we described in Chapter 2

and the sequential circuit which

forms the subject of this chapter.

A sequential circuit includes

memory elements and its current

behavior is governed by its past

inputs.Typical sequential circuits

are counters and registers.

4 Computer arithmetic
In Chapter 4 we demonstrate

how numbers are represented in

binary form and look at binary

arithmetic.We also demonstrate

how the properties of binary

numbers are exploited to create

codes that compress data or

even detect and correct errors.

5 The instruction set
architecture
In Chapter 5 we introduce the

computer’s instruction set

architecture (ISA), which defines

the machine-level programmer’s

view of the computer.The ISA

describe the type of operations a

computer carries out.We are

interested in three aspects of the

ISA: the nature of the

instructions, the resources used

by the instructions (registers and

memory), and the ways in which

the instructions access data

(addressing modes).

INTRODUCTION

We begin our study of the digital computer by investigating the elements from which it is

constructed.These circuit elements are gates and flip-flops and are also known as combinational

and sequential logic elements, respectively.A combinational logic element is a circuit whose

output depends only on its current inputs, whereas the output from a sequential element

depends on its past history (i.e. a sequential element remembers its previous inputs) as well as

its current input.We describe combinational logic in this chapter and devote the next chapter to

sequential logic.

Before we introduce the gate, we highlight the difference between digital and analog systems

and explain why computers are constructed from digital logic circuits.After describing the

properties of several basic gates we demonstrate how a few gates can be connected together to

carry out useful functions in the same way that bricks can be put together to build a house or a

school.We include a Windows-based simulator that lets you construct complex circuits and then

examine their behavior on a PC.

The behavior of digital circuits can be described in terms of a formal notation called Boolean

algebra.We include an introduction to Boolean algebra because it allows you to analyze circuits

containing gates and sometimes enables circuits to be constructed in a simpler form. Boolean

algebra leads on to Karnaugh maps, a graphical technique for the simplification and manipulation

of Boolean equations.

The last circuit element we introduce is the tri-state gate, which allows you to connect lots of

separate digital circuits together by means of a common highway called a bus.A digital computer

is composed of nothing more than digital circuits, buses, and sequential logic elements.

By the end of this chapter, you should be able to design a wide range of circuits that can

perform operations as diverse as selecting between one of several signals to implementing simple

arithmetic operations.

Real circuits can fail. The final part of this chapter takes a brief look at how you test digital

circuits.

26 Chapter 2 Gates, circuits, and combinational logic

2.1 Analog and digital systems

Before we can appreciate the meaning and implications of
digital systems, it’s necessary to look at the nature of analog
systems. The term analog is derived from the noun analogy
and means a quantity that is related to, or resembles, or
corresponds to, another quantity; for example, the length of
a column of mercury in a thermometer is an analog of the
temperature because the length of the mercury is propor-
tional to the temperature. Analog electronic circuits repres-
ent physical quantities in terms of voltages or currents.

An analog variable can have any value between its max-
imum and minimum limits. If a variable X is represented by a
voltage in the range �10 V to �10 V, X may assume any one
of an infinite number of values within this range. We can say
that X is continuous in value and can change its value by an
arbitrarily small amount. Fig. 2.1 plots a variable X as a con-
tinuous function of time; that is, X doesn’t jump instanta-
neously from one value to another. In Fig. 2.1, a fragment of
the graph of X is magnified to reveal fluctuations that you
can’t see on the main graph. No matter how much you
magnify this graph, the line will remain continuous and
unbroken.

The design of analog circuits such as audio amplifiers is a
demanding process, because analog signals must be processed
without changing their shape. Changing the shape of an
analog signal results in its degradation or distortion.

Information inside a computer is represented in digital
form. A digital variable is discrete in both value and in time, as
Fig. 2.2 demonstrates. The digital variable Y must take one of
four possible values. Moreover, Y changes from one discrete
value to another instantaneously. In practice, no physical (i.e.
real) variable can change instantaneously and a real signal
must pass through intermediate values as it changes from one
discrete state to another.

All variables and constants in a digital system must take a
value chosen from a set of values called an alphabet. In
decimal arithmetic the alphabet is composed of the symbols 0,
1, 2, . . . 9 and in Morse code the alphabet is composed of the
four symbols dot, dash, short space, and long space. Other
digital systems are Braille, semaphore,and the days of the week.

A major advantage of representing information in digital
form is that digital systems are resistant to error. A digital
symbol can be distorted, but as long as the level of distortion
is not sufficient for the symbol to be confused with a different
symbol, the original symbol can always be recognized and
reconstituted. For example, if you write the letter K by hand,

most readers will be able to recognize
it as a K unless it is so badly formed
that it looks like another letter such as
an R or C.

Digital computers use an alphabet
composed of two symbols called 0 and
1 (sometimes called false and true, or
low and high, or off and on). A digital
system with two symbols is called a
binary system. The physical repres-
entation of these symbols can be made
as unlike each other as possible to give
the maximum discrimination between
the two digital values. Computers
once stored binary information on
paper tape—a hole represented one
binary value and no hole represented
the other. When reading paper tape
the computer has only to distinguish
between a hole and no-hole. Suppose
we decided to replace this binary
computer by a decimal computer.
Imagine that paper tape were to be
used to store the 10 digits 0–9. A
number on the tape would consist of
no-hole or a hole in one of nine sizes
(10 symbols in all). How does this
computer distinguish between a size
six hole and a size five or a size seven

X(t)

Magnification

Time-varying

analog signal

Time

Y(t)

3

2

1

0
Time

A digital signal must have one of a fixed
number of values and change from one

value to another instantaneously

Figure 2.1 Characteristics of an analog variable.

Figure 2.2 Characteristics of an ideal digital variable.

2.1 Analog and digital systems 27

NOTES ON LOGIC VALUES

1. Every logic input or output must assume one of two

discrete states.You cannot have a state that is neither

1 nor 0.

2. Each logic input or output can exist in only one state at any

one time.

3. Each logic state has an inverse or complement that is the

opposite of its current state.The complement of a true or

one state is a false or zero state, and vice versa.

4. A logic value can be a constant or a variable. If it is a

constant, it always remains in that state. If it is a variable, it

may be switched between the states 0 and 1.A Boolean

variable is also called a literal.

5. A variable is often named by the action it causes to take

place.The following logical variables are all self-evident:

START, STOP, RESET, COUNT, and ADD.

6. The signal level (i.e. high or low) that causes a variable to

carry out a function is arbitrary. If a high voltage causes the

action, the variable is called active-high. If a low voltage

causes the action, the variable is called active-low.Thus, if

an active-high signal is labeled START, a high level will

initiate the action. If the signal is active-low and labeled

, a low level will trigger the action.

7. By convention, a system of logic that treats a low level as a

0 or false state and a high-level as a 1 or true state is called

positive logic. Most of this chapter uses positive logic.

8. The term asserted is used to indicate that a signal is placed

in the level that causes its activity to take place. If we say

that START is asserted, we mean that it is placed in a high

state to cause the action determined by START. Similarly, if

we say that is asserted, we mean that it is placed in a

low state to trigger the action.

LOAD

START

LOGIC VALUES AND SIGNAL LEVELS

In a system using a 5 V power supply you might think that a

bit is represented by exactly 0 V or 5 V. Unfortunately, we

can’t construct such precise electronic devices cheaply.We can

construct devices that use two ranges of voltage to represent

the binary values 0 and 1. For example, one logic family

represents a 0 state by a signal in the range 0–0.4 V and a

1 state by a signal in the range 2.8–5 V.

This diagram

illustrates the ranges

of voltage used to

represent 0 and 1

states. Digital

component

manufacturers make

several promises to

users. First, they

guarantee that the

output of a gate in a

logical 0 state shall be

in the range 0–0.4V

and that the output of

a gate in a logical 1

state shall be in the range 2.8–5.0V. Similarly, they

guarantee that the input circuit of a gate shall

recognize a voltage in the range 0–0.8V as a logical

0 and a voltage in the range 2.4–5.0 V as a logical 1.

Here, two gates are wired together so that the

output of gate 1 becomes the input of gate 2.The

signal at the output of gate 1 is written Vout and

the input to gate 2 is written Vin.

An adder (represented by the circle with a ‘�’) is placed

between the two gates so that the input voltage to the second

gate is given by Vin � Vout � Vnoise; that is, a voltage called

Vnoise is added to the output from gate 1. In a real circuit there

is, of course, no such adder. The adder is fictitious and

demonstrates how the output voltage may be modified by the

addition of noise or interference.All electronic circuits are

subject to such interference; for example, the effect of noise

on a weak TV signal is to create snow on the screen.

Note that the range of input signals that are recognized as

representing a 1 state (i.e. 2.4–5 V) is greater than the

range of output signals produced by a gate in a 1 state (i.e.

2.8–5 V). By making the input range greater than the output

range, the designer compensates for the effect of noise or

unwanted signals. Suppose a noise spike of �0.2 V is added to

a logical 1 output of 2.8 V to give a total input signal of 2.6 V.

This signal, when presented to the input circuit of a gate, is

greater than 2.4 V and is still guaranteed to be recognized

as a logical 1.The difference between the input and output

ranges for a given logic value known as the gate’s guaranteed

noise immunity.

Input range
for a
logical 1

Output range
for a
logical 1

Input range
for a
logical 0 Output range

for a
logical 0

5 V

2.8 V

2.4 V

0.8 V

0.4 V

0 V

Forbidden
zone

Logic element 1 Logic element 2
Vout Vin

Vnoise

Noise
Output from

element 1 Input to

element 2

+

hole? Such a system would require extremely precise
electronics.

A single binary digit is known as a bit (BInary digiT) and is
the smallest unit of information possible; that is, a bit can’t be
subdivided into smaller units. Ideally, if a computer runs off,
say, 3 V, a low level would be represented by 0.0 V and a high
level by 3.0 V.

2.2 Fundamental gates

The digital computer consists of nothing more than the inter-
connection of three types of primitive elements called AND,
OR, and NOT gates. Other gates called NAND, NOR, and
EOR gates can be derived from these gates. We shall see that
all digital circuits, may be designed from the appropriate
interconnection of NAND (or NOR) gates alone. In other
words, the most complex digital computer can be reduced
to a mass of NAND gates. This statement doesn’t devalue
the computer any more than saying that the human brain is
just a lot of neurons joined in a particularly complex way
devalues the brain.

We don’t use gates to build computers because we like
them or because Boolean algebra is great fun. We use gates
because they provide a way of mass producing cheap and
reliable digital computers.

2.2.1 The AND gate

The AND gate is a circuit with two or more inputs and a sin-
gle output. The output of an AND gate is true if and only if
each of its inputs is also in a true state. Conversely, if one or
more of the inputs to the AND gate is false, the output will
also be false. Figure 2.3 provides the circuit symbol for both a
two-input AND gate and a three-input AND gate. Note that
the shape of the gate indicates its AND function (this will
become clearer when we introduce the OR gate).

An AND gate is visualized in terms of an electric circuit or
a highway as illustrated in Fig. 2.4. Electric current (or traffic)
flows along the circuit (road) only if switches (bridges) A and
B are closed. The logical symbol for the AND operator is a
dot, so that A AND B can be written A ⋅ B. As in normal alge-
bra, the dot is often omitted and A ⋅ B can be written AB. The
logical AND operator behaves like the multiplier operator in
conventional algebra; for example, the expression (A � B) ⋅
(C � D) � A ⋅ C � A ⋅ D � B ⋅ C � B ⋅ D in both Boolean
and conventional algebra.

28 Chapter 2 Gates, circuits, and combinational logic

WHAT IS A GATE?

The word gate conveys the idea of a two-state device—open

or shut.A gate may be thought of as a black box with one or

more input terminals and an output terminal. The gate

processes the digital signals at its input terminals to produce a

digital signal at its output terminal. The particular type of the

gate determines the actual processing involved.The output C

of a gate with two input terminals A and B can be expressed in

conventional algebra as C � F (A,B), where A, B, and C are two-

valued variables and F is a logical function.

The output of a gate is a function only of its inputs.When

we introduce the sequential circuit, we will discover that the

sequential circuit’s output depends on its previous output as

well as its current inputs.We can demonstrate the concept of

a gate by means of an example from the analog world.

Consider the algebraic expression y � F(x) � 2x2 � x � 1. If

we think of x as the input to a black box and y its output, the

block diagram demonstrates how y is generated by a sequence

of operations on x.The operations performed on the input are

those of addition, multiplication, and squaring.Variable x

enters the ‘squarer’ and comes out as x2. The output from the

squarer enters a multiplier (along with the constant 2) and

comes out as 2x2, and so on. By applying all the operations to

input x, we end up with output 2x2 � x � 1.The boxes

carrying out these operations are entirely analogous to gates

in the digital world—except that gates don’t do anything as

complicated as addition or multiplication.

The input signal x is
acted on by four functional
units to create a signal
y = 2x2 + x+ 1.

Input

Squarer Multiplier

X

2

()2
x2

x

2x2

Adder

+
Output
y

Adder

+

1

2x2 + x 2x2 + x +1

(a) Two-input AND gate (b) Three-input AND gate

A A
B
CB

C = A.B.CC = A.B

Figure 2.3 The AND gate.

2.2 Fundamental gates 29

A useful way of describing the relationship between the
inputs of a gate and its output is the truth table. In a truth
table the value of each output is tabulated for every possible
combination of the inputs. Because the inputs are two valued
(i.e. binary with states 0 and 1), a circuit with n inputs has 2n

lines in its truth table. The order in which the 2n possible
inputs are taken is not important but by convention the order
corresponds to the natural binary sequence (we discuss
binary numbers in Chapter 4). Table 2.1 describes the natural
binary sequences for values of n from 1 to 4.

Table 2.2 illustrates the truth table for a two-input AND
gate, although there’s no reason why we can’t have any num-
ber of inputs to an AND gate. Some real gates have three or
four inputs and some have 10 or more inputs. However, it
doesn’t matter how many inputs an AND gate has. Only one
line in the truth table will contain a 1 entry because all inputs
must be true for the output to be true.

When we introduce computer arithmetic, computer archi-
tecture, and assembly language programming, we will see
that computers don’t operate on bits in isolation. Computers
process entire groups of bits at a time. These groups are called
words and are typically 8, 16, 32, or 64 bits wide. The AND

Inputs Output

A B F = A ⋅ B

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.2 Truth table for the AND gate.

False because one or

more inputs is false

True because both

inputs are true

n � 1 n � 2 n � 3 n � 4

0 00 000 0000

1 01 001 0001

10 010 0010

11 011 0011

100 0100

101 0101

110 0110

111 0111

1000

1001

1010

1011

1100

1101

1110

1111

Table 2.1 The 2n possible values of an n-bit variable

for n � 1 to 4.

Switch A Switch B

A B

The circuit is completed only
if switch A and switch B is closed

Figure 2.4 The representation of an AND gate.

CIRCUIT CONVENTIONS

Because we write from left to right, many logic circuits are also

read from left to right; that is, information flows from left to

right with the inputs of gates on the left and the outputs on

the right.

Because a circuit often contains many signal paths, some of

these paths may have to cross over each other when the

diagram is drawn on two-dimensional paper.We need a means

of distinguishing between wires that join and wires that

simply cross each other (rather like highways that merge and

highways that fly over each other). The standard procedure is

to regard two lines that simply cross as not being connected as

the diagram illustrates. The connection of two lines is denoted

by a dot at their intersection.

The voltage at any point along a conductor is constant and

therefore the logical state is the same everywhere on the line.

If a line is connected to the input of several gates, the input to

each gate is the same. In this diagram, the value of X and P

must be the same because the two lines are connected.

A corollary of the statement that the same logic state exists

everywhere on a conductor is that a line must not be

connected to the output of more than one circuit—otherwise

the state of the line will be undefined if the outputs differ.At

the end of this chapter we will introduce gates with special

tri-state outputs that can be connected together without

causing havoc.

These two lines are connected

These two lines are not connected
and cross over at this point

X

Y

P

operation, when applied to words, is called a logical operation
to distinguish it from an arithmetic operation such as addi-
tion, subtraction, or multiplication. When two words take
part in a logical operation such as an AND, the operation
takes place between the individual pairs of bits; for example
bit ai of word A is ANDed with bit bi of word B to produce bit
ci of word C. Consider the effect of ANDing of the following
two 8-bit words A � 11011100 and B � 01100101.x

In this example the result C � A ⋅ B is given by 01000100.
Why should anyone want to AND together two words? If you
AND bit x with 1, the result is x (because Table 2.2 demon-
strates that 1.0 � 0 and 1.1 � 1). If you AND bit x with 0 the
result is 0 (because the output of an AND gate is true only if
both inputs are true). Consequently, a logical AND is used to
mask certain bits in a word by forcing them to zero. For
example, if we wish to clear the leftmost four bits of an 8-bit
word to zero, ANDing the word with 00001111 will do the
trick. The following example demonstrates the effect of an
AND operation with a 00001111 mask.

2.2.2 The OR gate

The output of an OR gate is true if any one (or more than
one) of its inputs is true. Notice the difference between AND
and OR operations. The output of an AND is true only if all
inputs are true whereas the output of an OR is true if at least
one input is true. The circuit symbol for a two-input and a
three-input OR gate is given in Fig. 2.5. The logical symbol
for an OR operation is an addition sign, so that the logical
operation A OR B is written as A � B. The logical OR opera-
tor is the same as the conventional addition symbol because
the OR operator behaves like the addition operator in algebra
(the reasons for this will become clear when we introduce
Boolean algebra). Table 2.3 provides the truth table for a two-
input OR gate.

The behavior of an OR gate can be represented by the
switching circuit of Fig. 2.6. A path exists from input to out-
put if either of the two switches is closed.

source word

mask

result

word A

word B

C = A·B

The use of the term OR here is rather different from the
English usage of or. The Boolean OR means (either A or B) or
(both A and B), whereas the English usage often means A or
B but not (A and B). For example, consider the contrasting
use of the word or in the two phrases: ‘Would you like tea
or coffee?’ and ‘Reduced fees are charged to members who
are registered students or under 25’. We shall see that the
more common English use of the word or corresponds to
the Boolean function known as the EXCLUSIVE OR, an
important function that is frequently abbreviated to EOR
or XOR.

A computer can also perform a logical OR on words as the
following example illustrates.

The logical OR operation is used to set one or more bits in
a word to a logical 1. The term set means make a logical one,
just as clear means reset to a logical zero. For example, the
least-significant bit of a word is set by ORing it with 00 . . . 01.
By applying both AND and OR operations to a word we can
selectively clear or set its bits. Suppose we have an 8-bit binary
word and we wish to clear bits 6 and 7 and set bits 4 and 5. If
the bits of the word are d0 to d7, we can write:

d7 d6 d5 d4 d3 d2 d1 d0 Source word
0 0 1 1 1 1 1 1 AND mask

0 0 d5 d4 d3 d2 d1 d0 First result
0 0 1 1 0 0 0 0 OR mask

0 0 1 1 d3 d2 d1 d0 Final result

word A

word B

C = A + B

30 Chapter 2 Gates, circuits, and combinational logic

Inputs Output

A B F=A+B

0 0 0

0 1 1

1 0 1

1 1 1

Table 2.3 Truth table for the OR gate.

False because

no input is true

True because at least

one input is true

(a) Two-input OR gate. (b) Three-input OR gate.

A

B

A
B
C

C = A + B D = A + B + C

Figure 2.5 The OR gate.

Switch A

Switch B

A

B

The circuit is
complete if either
switch A or B
is closed

Figure 2.6 The representation of an OR gate.

2.2 Fundamental gates 31

2.2.3 The NOT gate

The NOT gate is also called an inverter or a complementer and
is a two-terminal device with a single input and a single out-
put. If the input of an inverter is X, its output is NOT X which
is written X– or X*. Figure 2.7 illustrates the symbol for an
inverter and Table 2.4 provides its truth table. Some teachers
vocalize X– as ‘not X’ and others as ‘X not’. The inverter is the
simplest of gates because the output is the opposite of
the input. If the input is 1 the output is 0 and vice versa. By the
way, the triangle in Fig. 2.7 doesn’t represent an inverter.
The small circle at the output of the inverter indicates the
inversion operation. We shall see that this circle indicates
logical inversion wherever it appears in a circuit.

We can visualize the operation of the NOT gate in terms of
the relay illustrated in Fig. 2.8. A relay is an electromechanical
switch (i.e. a device that is partially electronic and partially
mechanical) consisting of an iron core around which a coil of
wire is wrapped. When a current flows through a coil, it gen-
erates a magnetic field that causes the iron core to act as a
magnet. Situated close to the iron core is a pair of contacts,
the lower of which is mounted on a springy strip of iron. If
switch A is open, no current flows through the coil and the
iron core remains unmagnetized. The relay’s contacts are

normally closed so that they form a switch that is closed when
switch A is open.

If switch A is closed, a current flows through the coil to
generate a magnetic field that magnetizes the iron core. The
contact on the iron strip is pulled toward the core, opening
the contacts and breaking the circuit. In other words, closing
switch A opens the relay’s switch and vice versa. The system in
Fig. 2.8 behaves like a NOT gate. The relay is used by a com-
puter to control external devices and is described further
when we deal with input and output devices.

Like both the AND and OR operations, the NOT function
can also be applied to words:

2.2.4 The NAND and NOR gates

The two most widely used gates in real circuits are the NAND
and NOR gates. These aren’t fundamental gates because the
NAND gate is derived from an AND gate followed by an
inverter (Not AND) and the NOR gate is derived from an OR
gate followed by an inverter (Not OR), respectively. The circuit
symbols for the NAND and NOR gates are given in Fig. 2.9.
The little circle at the output of a NAND gate represents the
symbol for inversion or complementation. It is this circle that
converts the AND gate to a NAND gate and an OR gate to a
NOR gate. Later, when we introduce the concept of mixed
logic, we will discover that this circle can be applied to the
inputs of gates as well as to their outputs.

Table 2.5 gives the truth table for the NAND and the NOR
gates. As you can see, the output columns in the NAND and
NOR tables are just the complements of the outputs in the
corresponding AND and OR tables.

We can get a better feeling for the effect that different gates
have on two inputs, A and B, by putting all the gates together
in a single table (Table 2.6). We have also included the
EXCLUSIVE OR (i.e. EOR) and its complement the
EXCLUSIVE NOR (i.e. EXNOR) in Table 2.6 for reference.
The EOR gate is derived from AND, OR, and NOT gates and
is described in more detail later in this chapter. It should be
noted here that is not the same as , just as is
not the same as .A�B

A�BA·BA·B

word A

B = A

Input Output

A F=A
–

0 1

1 0

Table 2.4 Truth table for the inverter.

The output is
the logical
complement of
the input

A A

Figure 2.7 The NOT gate or inverter.

Coil

Iron core

Iron strip Output

A
Battery

A

Contacts
(switch A)

Figure 2.8 The operation of a relay.

AND gate followed by an inverter

OR gate followed by an inverter

NAND gate

NOR gate

A

B

A

B

A

B

A

B
A . B

A + B

C = A . B

C = A + BC = A + B

C = A.B

Figure 2.9 Circuit symbols for the NAND and NOR gates.

2.2.5 Positive, negative, and mixed logic

At this point we introduce the concepts of positive logic,
negative logic, and mixed logic. Some readers may find that
this section interrupts their progress toward a better under-
standing of the gate and may therefore skip ahead to the next
section.

Up to now we have blurred the distinction between two
unconnected concepts. The first concept is the relationship
between low/high voltages in a digital circuit, 0 and 1 logical
levels, and true/false logic values. The second concept is the
logic function; for example, AND, OR, and NOT. So far, we
have used positive logic in which a high-level signal represents
a logical one state and this state is called true.

Table 2.7 provides three views of the AND function. The
leftmost column provides the logical truth table in which the
output is true only if all inputs are true (we have used T and F
to avoid reference to signal levels). The middle column
describes the AND function in positive logic form in which
the output is true (i.e. 1) only if all inputs are true (i.e. 1).

The right hand column in Table 2.7 uses negative logic in
which 0 is true and 1 is false. The output A ⋅ B is true (i.e. 0)
only when both inputs are true (i.e. 0).

As far as digital circuits are concerned, there’s no funda-
mental difference between logical 1s and 0s and it’s as sensible
to choose a logical 0 level as the true state as it is to choose a
logical 1 state. Indeed, many of the signals in real digital
systems are active-low which means that their function is
carried out by a low-level signal.

Suppose we regard the low level as true and use negative
logic, Table 2.7 shows that we have an AND gate whose out-
put is low if and only if each input is low. It should also be
apparent that an AND gate in negative logic functions as an
OR gate in positive logic. Similarly, a negative logic OR gate
functions as an AND gate in positive logic. In other words, the
same gate is an AND gate in negative logic and an OR gate in
positive logic. Figure 2.10 demonstrates the relationship
between positive and negative logic gates.

For years engineers used the symbol for a positive logic
AND gate in circuits using active-low signals with the result
that the reader was confused and could only understand the

32 Chapter 2 Gates, circuits, and combinational logic

Inputs Output

A B AND A ⋅ B OR A�B NAND NOR EOR EXNOR

0 0 0 0 1 1 0 1

0 1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 1 0 0 0 1

Table 2.6 Truth table for six gates.

A � BA � BA � BA.B

Logical form Positive logic Negative logic

A B A ⋅ B A B A ⋅ B A B A ⋅ B

F F F 0 0 0 1 1 1

F T F 0 1 0 1 0 1

T F F 1 0 0 0 1 1

T T T 1 1 1 0 0 0

Table 2.7 Truth table for AND gate in positive and negative

logic forms.

A B NAND

C �

0 0 1

0 1 1

1 0 1

1 1 0

A · B
A B NOR

C �

0 0 1

0 1 0

1 0 0

1 1 0

A � B

Table 2.5 Truth table for the NAND and NOR gates.

C is high if A or B is high C is low if A and B is low

C is low if A or B is lowC is high if A and B is high

A

B

A

B

A

B

A

B

C

C

C

C

Figure 2.10 Positive and negative logic.

2.2 Fundamental gates 33

circuit by mentally transforming the positive logic gate into
its negative logic equivalent. In mixed logic both positive
logic and negative logic gates are used together in the same
circuit. The choice of whether to use positive or negative logic
is determined only by the desire to improve the clarity of a
diagram or explanation.

Why do we have to worry about positive and negative
logic? If we stick to positive logic, life would be much simpler.
True, but life is never that simple. Many real electronic sys-
tems are activated by low-level signals and that makes it sens-
ible to adopt negative logic conventions. Let’s look at an
example. Consider a circuit that is activated by a low-level
signal only when input A is a low level and input B is a low
level. Figure 2.11 demonstrates the circuit required to imple-
ment this function. Note that the bubble at the input to the
circuit indicates that it is activated by a low level.

In Fig. 2.11(a) we employ positive logic and draw an OR
gate because the output of an OR gate is 0 only when both its
inputs are 0. There’s nothing wrong with this circuit, but it’s

confusing. When you see a gate with an OR shape you think
of an OR function. However, in this case, the gate is actually
performing an AND operation on low-level signals.

What we need is a means of preserving the AND shape and
indicating we are using negative logic signals. Figure 2.11(b)
does just that. By placing inverter circles at the AND gate’s
inputs and output we immediately see that the output of the
gate is low if and only if both of its inputs are low.

GATES AS TRANSMISSION ELEMENTS

We can provide more of an insight into what gates do by

treating them as transmission elements that control the flow

of information within a computer.

We are going to take three two-input gates (i.e.AND, OR,

EOR) and see what happens when we apply a variable to one

input and a control signal to the other input.The figure

illustrates three pairs of gates. Each pair demonstrates the

situation in which the control input C is set to a logical 0 and a

logical 1 state.The other input is a variable X and we wish to

determine the effect the gate has on the transmission of X

through it.

Figures (a) and (b) demonstrate the behavior of an AND

gate.When C � 0, an AND gate is disabled and its output is

forced into a logical zero state.When C � 1, the AND gate is

enabled and its X input is transmitted to the output

unchanged.We can think of an AND gate as a simple switch

that allows or inhibits the passage of

a logical signal. Similarly, in Fig (c)

and (d) an OR gate is enabled by

C � 0 and disabled by C � 1.

However, when the OR gate is

disabled, its output is forced into a

logical one state.

The EOR gate in Fig (e) and (f) is a

more interesting device.When its

control input is 0, it transmits the

other input unchanged. But when

C � 1, it transmits the complement

of X.The EOR gate can best be

regarded as a programmable inverter.

Later we shall make good use of this

property of an EOR gate.

The reason we’ve introduced the

concept of a gate as a transmission

element is that digital computers can

be viewed as a complex network

through which information flows and

this information is operated on by

gates as it flows round the system.

Gate disabled (output low) Gate enabled (output=X)

Gate disabled (output high)

Gate acts as inverter (output=X)

Gate enabled (output=X)

Gate acts as pass-through element (output=X)

(a) AND gate Control input C=0

(c) OR gate Control input C=0

X
0

C=0

X
X

C=0

(e) EOR gate Control input C=0

X
X

C=0

(a) AND gate Control input C=1

(d) OR gate Control input C=1

X
X

C=1

X
1

C=1

(f) EOR gate Control input C=1

X
X

C=1

(b) Negative logic system
The circuit is activated when

A is low and B is low

A

B

A

B
Circuit Circuit

(a) Positive logic system
The circuit is activated when

A is low and B is low

Figure 2.11 Mixed logic.

There is no physical difference between the circuits of
Figs. 2.11(a) and 2.11(b). They are both ways of representing
the same thing. However, the meaning of the circuit in
Fig. 2.11(b) is clearer.

Consider another example of mixed logic in which we use
both negative and positive logic concepts. Suppose a circuit is
activated by a low-level signal if input A is low and input B
high, or input D is high, or input C is low. Figure 2.12 shows
how we might draw such a circuit. For most of this book we
will continue to use positive logic.

2.3 Applications of gates

We now look at four simple circuits to demonstrate that a few
gates can be connected together in such a way as to create a
circuit whose function and importance may readily be appre-
ciated by the reader. Following this informal introduction to
circuits we introduce Digital Works, a Windows-based pro-
gram that lets you construct and simulate circuits containing
gates on a PC. We then return to gates and provide a more
formal section on the analysis of logic circuits by means of
Boolean algebra.

Circuits are constructed by connecting gates together. The
output from one gate can be connected (i.e. wired) to the
input of one or more other gates. However, two outputs can-
not be connected together.

Example 1 Consider the circuit of Fig. 2.13 that uses three
two-input AND gates labeled G1, G2, and G3, and a three-
input OR gate labeled G4. This circuit has three inputs A, B,
and C, and an output F. What does it do?

We can tackle this problem in several ways. One approach
is to create a truth table that tabulates the output F for all the
eight possible combinations of the three inputs A, B, and C.
Table 2.8 corresponds to the circuit of Fig. 2.13 and includes
columns for the outputs of the three AND gates as well as the
output of the OR gate, F.

The three intermediate signals P, Q, and R are defined by
P � A ⋅ B, Q � B ⋅ C, and R � A ⋅ C. Figure 2.13 tells us that
we can write down the output function, F, as the logical OR of
the three intermediate signals P, Q, and R; that is,
F � P � Q � R.

We can substitute the expressions for P, Q, and R to get
F � A ⋅ B � B ⋅ C � A ⋅ C. This is a Boolean equation, but it

doesn’t help us a lot at this point. However, by visually
inspecting the truth table for F we can see that the output is
true if two or more of the inputs A, B, and C, are true. That is,
this circuit implements a majority logic function whose out-
put takes the same value as the majority of inputs. We have
already seen how such a circuit is used in an automatic land-
ing system in an aircraft by choosing the output from three
independent computers to be the best (i.e. majority) of three
inputs. Using just four basic gates, we’ve constructed a circuit
that does something useful.

Example 2 The circuit of Fig. 2.14 has three inputs, one out-
put, and three intermediate values (we’ve also included a
mixed logic version of this circuit on the right hand side of
Fig. 2.14). By inspecting the truth table for this circuit
(Table 2.9) we can see that when the input X is 0, the output,
F, is equal to Y. Similarly, when X is 1, the output is equal to Z.
The circuit of Fig. 2.14 behaves like an electronic switch, con-
necting the output to one of two inputs,Y or Z, depending on
the state of a control input X.

The circuit of Fig. 2.14 is a two-input multiplexer that can
be represented by the arrangement of Fig. 2.15. Because the
word multiplexer appears so often in electronics, it is
frequently abbreviated to MUX.

34 Chapter 2 Gates, circuits, and combinational logic

Inputs Intermediate values Output

A B C P � A ⋅ B Q � B ⋅ C R � A ⋅ C F � P � Q � R

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 1

1 0 0 0 0 0 0

1 0 1 0 0 1 1

1 1 0 1 0 0 1

1 1 1 1 1 1 1

Table 2.8 Truth table for Fig. 2.13.

Active-low output

A

B

D

C

Figure 2.12 Using mixed logic.

P

Q

R

C

B

A

F

G1

G2 G4

G3
F is the output

P, Q, and R are
intermediate
variables

A, B, and C are
inputs

Figure 2.13 The use of gates—Example 1.

2.3 Applications of gates 35

Q Q

R R

F F

Y Y

Z Z

X X

P P

Mixed logic version
Figure 2.14 The use of gates—

Example 2.

We can derive an expression for F in terms of inputs X, Y, and
Z in two ways. From the circuit diagram of Fig. 2.14, we can
get an equation for F by writing the output of each gate in
terms of its inputs.

Therefore by substituting for P

Therefore

When we introduce Boolean algebra we will see how this
type of expression can be simplified. Another way of obtain-
ing a Boolean expression is to use the truth table. Each time a
logical one appears in the output column, we can write down

F � Y·X·X·Z

R � X·Z

Q � Y·X

 P � X

 Q � Y·P

 F � Q·R

the set of inputs that cause the output to be true. In Table 2.9
the output is true when

There are four possible combinations of inputs that make the
output true. Therefore, the output can be expressed as the
logical sum of the four cases (1)–(4) above; that is,

This function is true if any of the conditions (1)–(4) are
true. A function represented in this way is called a sum-of-
products (S-of-P) expression because it is the logical OR (i.e.
sum) of a group of terms each composed of several of vari-
ables ANDed together (i.e. products). A sum-of-products
expression represents one of the two standard ways of writing
down a Boolean expression.

An alternative way of writing a Boolean equation is called
a product-of-sums (P-of-S) expression and consists of several
terms ANDed together. The terms are made up of variables
ORed together. A typical product-of-sums expression has
the form

Later we shall examine ways of converting sum-of-products
expressions into product-of sums expressions and vice versa.

Each of the terms (1)–(4) in Example 2, is called a minterm.
A minterm is an AND (product) term that includes each of
the variables in either its true or complemented form. For
example, in the case above X ⋅ ⋅ Z is a minterm, but if we had
had the term X ⋅ that would not be a minterm, because X ⋅
includes only two of the three variables. When an equation is
expressed as a sum of minterms, it is said to be in its canonical
form. Canonical is just a fancy word that means standard.

As the output of the circuit in Fig. 2.14 must be the same
whether it is derived from the truth table or from the logic
diagram, the two equations we have derived for F must be
equivalent, with the result that

Y·X·X·Z � X·Y·Z � X·Y·Z � X·Y·Z � X·Y·Z

YY
Y

F � (A � B � C)·(A � B � C)·(A � B � C)

F � X·Y·Z � X·Y·Z � X·Y·Z � X·Y·Z

(4) X � 1, Y � 1, Z � 1 (X·Y·Z)

(3) X � 1, Y � 0, Z � 1 (X·Y·Z)

(2) X � 0, Y � 1, Z � 1 (X·Y·Z)

(1) X � 0, Y � 1, Z � 0 (X·Y·Z)

Inputs Intermediate values Output

X Y Z

0 0 0 1 1 1 0

0 0 1 1 1 1 0

0 1 0 1 0 1 1

0 1 1 1 0 1 1

1 0 0 0 1 1 0

1 0 1 0 1 0 1

1 1 0 0 1 1 0

1 1 1 0 1 0 1

Table 2.9 Truth table for Fig. 2.14.

F � Q ·RR � X ·ZQ � P ·YP�X

Output F
Electronic

switch

Input Y

Input Z

Control input X
select Y or Z

Figure 2.15 The logical representation of Figure 2.14.

This equation demonstrates that a given Boolean function
can be expressed in more than one way.

The multiplexer of Fig. 2.14 may seem a very long way from
computers and programming. However, multiplexers are
found somewhere in every computer because computers oper-
ate by modifying the flow of data within a system. A multi-
plexer allows one of two data streams to flow through a switch
that is electronically controlled. Let’s look at a highly simplified
example. The power of a digital computer (or a human brain)
lies in its ability to make decisions. Decision taking in a com-
puter corresponds to the conditional branch; for example,

We can’t go into the details of how such a construct is imple-
mented here. What we would like to do is to demonstrate that
something as simple as a multiplexer can implement some-
thing as sophisticated as a conditional branch. Consider
the system of Fig. 2.16. Two numbers P and Q are fed to a
comparator where they are compared. If they are the same,
the output of the comparator is 1 (otherwise it’s 0). The same
output is used as the control input to a multiplexer that
selects between two values X and Y. In practice, such a system
would be rather more complex (because P, Q, X, and Y are all
multi-bit values), but the basic principles are the same.

Example 3 Figure 2.17 describes a simple circuit with three
gates: an OR gate, an AND gate, and a NAND gate. This circuit

has two inputs, two intermediate values, and one output.
Table 2.10 provides its truth table.

The circuit of Fig. 2.17 represents one of the most
important circuits in digital electronics, the exclusive or (also
called EOR or XOR). The exclusive or corresponds to the
normal English use of the word or (i.e. one or the other but
not both). The output of an EOR gate output is true if one of
the inputs is true but not if both inputs are true.

An EOR circuit always has two inputs (remember that
AND and OR gates can have any number of inputs). Because
the EOR function is so widely used, the EOR gate has its own
special circuit symbol (Fig. 2.18) and the EOR operator its
own special logical symbol ‘�’; for example, we can write

F � A EOR B � A � B

The EOR is not a fundamental gate because it is constructed
from basic gates.

Because the EOR gate is so important, we will discuss it a
little further. Table 2.10 demonstrates that F is true when
A � 0 and B � 1, or when A � 1 and B � 0. Consequently,
the output . From the circuit in Fig. 2.17 we
can write

Therefore

As these two equations (i.e.
and are equivalent, we can
therefore also build an EOR function in the
manner depicted in Fig. 2.19.

It’s perfectly possible to build an EOR with
four NAND gates (Fig. 2.20). We leave it as an
exercise for the reader to verify that Fig. 2.20 does
indeed represent an EOR gate. To demonstrate
that two different circuits have the same func-
tion, all you need do is to construct a truth table
for each circuit. If the outputs are the same for
each and every possible input, the circuits are
equivalent.

F � (A � B)·A·B
F � A·B � A·B

F � (A � B)·A·B

 Q � A·B

 P � A � B

 F � P·Q

F � A·B � A·B

36 Chapter 2 Gates, circuits, and combinational logic

Implementing
Output

P

Q

Y X

IF P = Q
THEN Y
ELSE X

ControlComparator Multiplexer

The output from
the comparator is

true if P = Q

The output from
the multiplexer is

Y if the control input is
true, otherwise X

Figure 2.16 Application of the multiplexer.

A
P

Q

FB
G1

G2

G3

Figure 2.17 The use of gates—Example 3.

Inputs Intermediate values Output

A B P � A � B F � P ⋅ Q

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

Table 2.10 Truth table for the circuit of Fig. 2.17.

Q � A ·B

2.3 Applications of gates 37

The EOR is a remarkably versatile logic element that pops
up in many places in digital electronics. The output of an
EOR is true if its inputs are different and false if they are the
same. As we’ve already stated, unlike the AND, OR, NAND
and NOR gates the EOR gate can have only two inputs. The
EOR gate’s ability to detect whether its inputs are the same

allows us to build an equality tester that indicates whether or
not two words are identical (Fig. 2.21).

In Fig. 2.21 two m-bit words (Word 1 and Word 2) are fed
to a bank of m EOR gates. Bit i from Word 1 is compared with
bit i from Word 2 in the ith EOR gate. If these two bits are the
same, the output of this EOR gate is zero.

If the two words in Fig. 2.21 are equal, the outputs of all
EORs are zero and we need to detect this condition in order
to declare that Word 1 and Word 2 are identical. An AND gate
will give a 1 output when all its inputs are 1. However, in this
case, we have to detect the situation in which all inputs are 0.
We can therefore connect all m outputs from the m EOR gates
to an m-input NOR gate (because the output of a NOR gate
is 1 if all inputs are 0).

If you look at Fig. 2.21 you can see that the outputs from
the EOR gates aren’t connected to a NOR gate but to an
m-input AND gate with inverting inputs. The little bubbles at
the AND gate’s inputs indicate inversion and are equivalent to
NOT gates. When all inputs to the AND gate are active-low,
the AND gate’s output will go active-high (exactly what we
want). In mixed logic we can regard an AND gate with active-
low inputs and an active-high output as a NOR gate.

Remember that we required an equality detector (i.e. com-
parator) in Fig. 2.21 (Example 2) to control a multiplexer.
We’ve just built one.

Example 4 The next example of an important circuit con-
structed from a few gates is the prioritizer whose circuit is
given in Fig. 2.22. As this is a rather more complex circuit
than the previous three examples, we’ll explain what it does
first. A prioritizer deals with competing requests for attention
and grants service to just one of those requesting attention.
The prioritizer is a device with n inputs and n outputs. Each
of the inputs is assigned a priority from 0 to n�1 (assume
that the highest priority is input n�1, and the lowest is 0).

A

B

C = A ⊕ B

Figure 2.18 Circuit symbol for an EOR gate.

A
A

A

B

B

B
G1

G2

G3

A . B

A . B

F = A . B + A . B

Figure 2.19 An alternative circuit for an EOR gate.

A

B

F = A ⊕ B

Figure 2.20 An EOR circuit constructed with NAND gates only.

Word 1

Word 2

Bit m–1

Bit m–1

Bit 1 Bit 0

Bit 1 Bit 0

m-input AND gate
with active-low inputs

F (high if Word 1 = Word 2)

Each EOR gate compares
a pair of bits

Figure 2.21 The application of

EOR gates in an equality tester.

If two or more inputs are asserted simultaneously, only the
output corresponding to the input with the highest priority
is asserted. Computers use this type of circuit to deal with
simultaneous requests for service from several peripherals
(e.g. disk drives, the keyboard, the mouse, and the modem).

Consider the five-input prioritizer circuit in Fig. 2.22. The
prioritizer’s five inputs x0 to x4 are connected to the outputs
of five devices that can make a request for attention (input x4

has the highest priority). That is, device i can put a logical
1 on input xi to request attention at priority level i. If several
inputs are set to 1 at the same time, the prioritizer sets only
one of its outputs to 1, all the other outputs remain at 0.
For example, if the input is x4,x3,x2,x1,x0 � 00110, the output
y4,y3,y2,y1,y0 � 00100, because the highest level of input is x2.
Table 2.11 provides a truth table for this prioritizer.

If you examine the circuit of Fig. 2.22, you can see that out-
put y4 is equal to input x4 because there is a direct connection.
If x4 is 0, then y4 is 0; and if x4 is 1 then y4 is 1. The value of x4

is fed to the input of the AND gates G3, G2, and G1 in the
lower priority stages via an inverter. If x4 is 1, the logical level
at the inputs of the AND gates is 0, which disables them and
forces their outputs to 0. If x4 is 0, the value fed back to the
AND gates is 1 and therefore they are not disabled by x4.
Similarly, when x3 is 1, gates G3, G2 and G1 are disabled,
and so on.

Example 5 Our final example looks at two different circuits
that do the same thing. This is a typical exam question.

(a) Using AND, OR, and NOT gates only, draw circuits to
generate P and Q from inputs X, Y, and Z, where

and .
(b) By means of a truth table establish a relationship between

P and Q.

Q � Y ·Z � X ·Y ·ZP � (X � Y)(Y � Z)

(c) Compare the circuit diagrams of P and Q in terms of speed
and cost of implementation.

(a) The circuit diagram for is given by
Fig. 2.23 and the circuit diagram for
is give by Fig. 2.24.

(b) The truth table for functions P and Q is given in
Table 2.12 from which it can be seen that P � Q.

(c) We can compare the two circuits in terms of speed
and cost.

Q � Y·Z � X·Y·Z
P � (X � Y)(Y � Z)

38 Chapter 2 Gates, circuits, and combinational logic

G1

G2

G3

G4

x0

y0

y1

y2

y3

y4

x1

x2

x3

x4

Figure 2.22 Example 4—the priority circuit.

Inputs Outputs

x4 x3 x2 x1 x0 y4 y3 y2 y1 y0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0

0 0 1 0 1 0 0 1 0 0

0 0 1 1 0 0 0 1 0 0

0 0 1 1 1 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0

0 1 0 0 1 0 1 0 0 0

0 1 0 1 0 0 1 0 0 0

0 1 0 1 1 0 1 0 0 0

0 1 1 0 0 0 1 0 0 0

0 1 1 0 1 0 1 0 0 0

0 1 1 1 0 0 1 0 0 0

0 1 1 1 1 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0

1 0 0 1 1 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0

1 0 1 0 1 1 0 0 0 0

1 0 1 1 0 1 0 0 0 0

1 0 1 1 1 1 0 0 0 0

1 1 0 0 0 1 0 0 0 0

1 1 0 0 1 1 0 0 0 0

1 1 0 1 0 1 0 0 0 0

1 1 0 1 1 1 0 0 0 0

1 1 1 0 0 1 0 0 0 0

1 1 1 0 1 1 0 0 0 0

1 1 1 1 0 1 0 0 0 0

1 1 1 1 1 1 0 0 0 0

Table 2.11 Truth table for the priority circuit of Fig. 2.22.

2.3 Applications of gates 39

Propagation delay The maximum delay in the circuit for
P is four gates in series in the Y path (i.e. NOT gate, AND gate,
OR gate, AND gate). The maximum delay in the circuit for
Q is three gates in series in both Y and Z paths (i.e. NOT gate,
AND gate, OR gate). Therefore the circuit for Q is 33% faster
than that for P.

Cost Total number of gates needed to implement P is 7.
Total number of gates needed to implement Q is 5. Total
inputs in the circuit for P is 12. Total inputs in the circuit for
Q is 9. Clearly, the circuit for Q is better than that for P both
in terms of the number of gates and the number of inputs to
the gates.

COMPARING DIFFERENT DIGITAL CIRCUITS WITH THE SAME FUNCTION

Different combinations of gates may be used to implement

the same function.This isn’t the place to go into the detailed

design of logic circuits, but it is interesting to see how the

designer might go about selecting one particular

implementation in preference to another. Some of the basic

criteria by which circuits are judged are listed below. In general,

the design of logic circuits is often affected by other factors

than those described here.

Speed The speed of a circuit (i.e. how long it takes the output

to respond to a change at an input) is approximately governed

by the maximum number of gates through which a change of

state must propagate (i.e. pass). The output of a typical gate

might take 5 ns to change following a logic change at its input

(5 ns � 5 � 10�9 s). Figs 2.17 and 2.19 both implement an

EOR function. In Fig. 2.17 there are only two gates in series,

whereas in Fig. 2.19 there are three gates in series. Therefore

the implementation of an EOR function in Fig. 2.17 is 50%

faster.All real gates don’t have the same propagation delay,

because some gates respond more rapidly than others.

Number of interconnections It costs money to wire gates

together. Even if a printed circuit is used, somebody has to

design it and the more interconnections used the more it will

cost. Increasing the number of interconnections in a circuit

also increases the probability of failure due to a faulty

connection. One parameter of circuit design that takes

account of the number of interconnections is the total number

of inputs to gates. In Fig. 2.17 there are six inputs, whereas in

Fig. 2.19 there are eight inputs.

Number of packages Simple gates of the types we describe

here are available in 14-pin packages (two pins of which are

needed for the power supply).As it costs virtually nothing to

add extra gates to the silicon chip, only the number of pins

(i.e. external connections to the chip) limits the total number

of gates in a physical package.Thus, an inverter requires two

pins, so that six inverters are provided on the chip. Similarly, a

two-input AND/NAND/OR/NOR gate needs three pins, so

four of these gates are put on the chip. Because each of these

circuits uses three different types of gate, both circuits

require three 14 pin integrated circuits. Even so, the circuit of

Fig. 2.17 is better than that of Fig. 2.19 because there are

more unused gates left in the ICs, freeing them for use by

other parts of the computer system. Note that the circuit of

Fig. 2.20 uses only one package because all gates are the

same type.

You should appreciate that this is an introductory text and

what we have said is appropriate only to logic circuits

constructed from basic logic elements. Computer-aided design

techniques are used to handle more complex systems with

hundreds of gates. Indeed, complex circuits are largely

constructed from programmable digital elements.

X

Y

P

Z

X + Y
Y

Z YZ+ YZ

YZ

YZ

Figure 2.23 Circuit diagram for P.

Y

Z

X

Y

Z

XYZ

XYZ+

YZ

YZ

Q

Figure 2.24 Circuit diagram for Q.

2.4 Introduction to Digital Works

We now introduce a Windows-based logic simulator called
Digital Works that enables you to construct a logic circuit
from simple gates (AND, OR, NOT, NAND, NOR, EOR,
XNOR) and to analyze the circuit’s behavior. Digital Works
also supports the tri-state logic gate that enables you to con-
struct systems with buses. In the next chapter we will discover

that Digital Works simulates both simple 1-bit storage
elements called flip-flops and larger memory components
such as ROM and RAM.

After installing Digital Works on your system, you can run
it to get the initial screen shown in Fig. 2.25. We have anno-
tated six of the most important icons on the toolbars. A cir-
cuit is constructed by using the mouse to place gates on the
screen or workspace and a wiring tool to connect the gates

40 Chapter 2 Gates, circuits, and combinational logic

X Y Z Y � Z

0 0 0 1 0 0 0 0 0

0 0 1 1 1 1 1 0 1

0 1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 0 1 1 1 1 1 0 1

1 1 0 1 1 1 0 1 1

1 1 1 1 0 0 0 0 0

Table 2.12 Truth table for Figs 2.23 and 2.24.

Q � Y ·Z � X ·Y ·ZX ·Y ·ZY ·ZP � (X � Y)(Y � Z)X � Y

This is a typical gate symbol. Click on
it and move the mouse to where you
want the gate to be positioned. Click
again and the gate is placed there.

This is the wiring
tool that lets you
wire gates together.

This is the LED
symbol that lets you
 see the state of a
point in the circuit.

This is the hand
tool that allows
you to set the
state of a switch.

This is the push
button input tool
that lets you create
a 0 or a 1 input.

The pointer tool allows
you to select an object
in the window. You can
click the right-hand
mouse button to alter
the object's properties
or act on it in some
way.

Figure 2.25 Digital Works—the initial screen.

together. The input to your circuit may come from a clock
generator (a continuous series of alternating 1s and 0s), a
sequence generator (a user-defined sequence of 1s and 0s), or
a manual input (from a switch that you can push by means of
the mouse). You can observe the output of a gate by connect-
ing it to a display, LED. You can also send the output of the
LED to a window that displays either a waveform or a
sequence of binary digits.

Digital Works has been designed to be consistent with the
Windows philosophy and has a help function that provides
further information about its facilities and commands. The
File command in the top toolbar provides the options you
would expect (e.g. load, save, save as).

2.4.1 Creating a circuit

We are going to design and test an EOR circuit that has the
logic function . This function can be imple-
mented with two inverters, two AND gates, and an OR gate.
Figure 2.26 shows three of the icons we are going to use to
create this circuit. The first icon is the new circuit icon that
creates a fresh circuit (which Digital Works calls a macro).
The second icon is the pointer tool used to select a gate (or
other element) from the toolbars. The third icon is a gate that
can be planted in the work area.

Let’s start by planting some gates on the work area. The
EOR requires two AND gates, an OR gate, and two inverters.
First click on the pointer tool on the bottom row of icons. If it
hasn’t already been selected, it will become depressed when
you select it. The pointer tool remains selected until another
tool is selected.

You select a gate from the list on the second row of icons by
first left clicking on the gate with the pointer tool and then left

A·B � A·B

clicking at a suitable point in the workspace as Fig. 2.27
demonstrates. If you hold the control key down when placing
a gate, you can place multiple copies of the gate in the work-
space. The OR gate is shown in broken outline because we’ve
just placed it (i.e. it is currently selected). Once a gate has been
placed, you can select it with the mouse by clicking the left
button and drag it wherever you want. You can click the right
button to modify the gate’s attributes (e.g. the number of
inputs).

You can tidy up the circuit by moving the gates within the
work area by left clicking a gate and dragging it to where you
want it. Figure 2.28 shows the work area after we’ve moved
the gates to create a symmetrical layout. You can even drag
gates around the work area after they’ve been wired up and
reposition wires by left clicking and dragging any node
(a node is a point on a wire that consists of multiple sections
or links).

Digital Works displays a grid to help you position the gates.
The grid can be turned on or off and the spacing of the grid
lines changed. Objects can be made to snap to the grid. These
functions are accessed via the View command in the top line.

Before continuing, we need to save the circuit. Figure 2.29
demonstrates how we use the conventional File function in
the toolbar to save a circuit. We have called this circuit
OUP_EOR1 and Digital Works inserts the extension .dwm.

The next step is to wire up the gates to create a circuit. First
select the wiring tool from the tool bars by left clicking on it
(Fig. 2.30). Then position the cursor over the point at which
you wish to connect a wire and left click. The cursor changes
to wire when it’s over a point that can legally be connected to.
Left click to attach a wire and move the cursor to the point
you wish to connect. Left click to create a connection. Instead
of making a direct connection between two points, you can

2.4 Introduction to Digital Works 41

This icon creates a new

macro. If a circuit is

already open, you will be

invited to save it.

This is the pointer tool and

 is the most important icon

 because you use it to

select objects.

This is one of the gates

that you can select and put

in the work area.

Figure 2.26 Beginning a session with Digital Works.

straight-line segments. If you select the pointer tool and left
click on a wire, you can drag any of its nodes (i.e. the points
between segments on a line). If you right click on a wire you
can delete it or change its color. Once a wire has been

42 Chapter 2 Gates, circuits, and combinational logic

click on the workspace to create a node (i.e. the connection is
series if straight lines.)

You can make the wiring look neat by clicking on interme-
diate points to create a signal path made up of a series of

This is the icon for

a NOT gate

(inverter). Select it

with the pointer

tool and left click in

the workspace at

the point you wish

to place it.

This was the last

 item placed. Note

 that it remains

dotted until the

 next item is

selected.

Figure 2.27 Placing gates in the work area.

You can select a

gate by left clicking

on it and then drag

 it to a suitable point

 in the work area.

The View
command is used

to set up the grid,

display it, or select

snap-to-grid.

Figure 2.28 Tidying up the circuit.

connected to another wire (or an input or output), the con-
nection point can’t be moved. To move a connection you have
to delete the wire and connect a new one.

Digital Works permits a wire to be connected only between
two legal connections. In Fig. 2.30 the inputs to the two
inverters and the circuit’s outputs aren’t connected anywhere.
This is because each wire must be connected between two
points—it can’t just be left hanging. In order to wire up the

inputs and output we need points we can connect the wire to.
In this case we are going to use the interactive input device
to provide an input signal from a push button and the LED to
show the state of the output.

In Fig. 2.31 we’ve added two interactive inputs and an LED
to the circuit. When we run the simulator, we can set the
states of the inputs to provide a 0 or a 1 and we can observe
the state of the output on the LED.

2.4 Introduction to Digital Works 43

Click on the File
command to

bring down the

menu.

Figure 2.29 Saving the circuit.

STEP 1 Click on
the output of the
gate we wish to
connect.

STEP 2 Click
on the input we
wish to
connect the
output to.

Click on the
wiring tool to
connect gates
together.

Figure 2.30 Wiring gates together.

We can now wire up the inputs and the output and com-
plete the rest of the wiring as shown in Fig. 2.32. At this stage
we could run the circuit if we wanted. However, we will use
the text tool (indicated by the letter A on the middle toolbar)
to give the circuit a title. Click on the A and then click on the
place at which you wish to add the text to open the text

window. This brings down a text box. Enter the text and click
ok to place it on the screen.

We also wish to label the circuit’s inputs and outputs.
Although you can use the text tool to add text at any point,
input and output devices (e.g. clocks, switches, LEDs) can be
given names. We will use this latter technique because the

44 Chapter 2 Gates, circuits, and combinational logic

The LED is selected
like any other device
and placed on the
workspace.

The hand
tool is used
to operate
the input.

The interactive
tool allows you
to generate
digital inputs.

Figure 2.31 Adding inputs and outputs to the circuit.

The text tool is
used to add labels
and comments to
the work area.

Figure 2.32 Completing the circuit.

names attached to input and output devices are automatically
used to label the timing diagrams we will introduce later.

Figure 2.33 shows the circuit with annotation. The label
EOR circuit has been added by the text tool, and inputs A and
B have been labeled by right clicking on the input devices. In
Fig. 2.33 we have right clicked on the LED to bring down
a menu and then selected Text to invoke the text box (not
shown). You enter the name of the output (in this case Sum)
into the text box and click ok. This label is then appended to
the LED on the screen. You can change the location of the
label by right clicking on its name, selecting Text Style from
the menu, and then selecting the required position (Left,
Right, Top, Bottom).

2.4.2 Running a simulation

We are now ready to begin simulation. The bottom row of
icons is concerned with running the simulation. The leftmost
icon (ringed in Fig. 2.34) is left clicked to begin the simulation.
The next step is to change the state of the interactive input
devices. If you click on the hand tool icon, the cursor changes
to a hand when positioned anywhere over the work area.

By putting the hand cursor over one of the input devices,
you can left click the mouse to change the status of the input
(i.e. input 0 or input 1). When the input device is supplying
a 1, it becomes red. Figure 2.34 shows the situation input
A � 1, B � 0, and the Sum � 1 (the output LED becomes
red when it is connected to a 1 state). You can change the
states of the input devices to generate all the possible input

values 0,0, 0,1, 1,0, and 1,1 to verify that the circuit is an EOR
(the output LED should display the sequence 0, 1, 1, 0).

Just observing the outputs of the LEDs is not always
enough to get a picture of the circuit’s behavior. We need a
record of the states of the inputs and outputs. Digital Works
provides a Logic History function that records and displays
inputs and outputs during a simulator run. Any input or out-
put device can be added to Logic History. If you select input
A with the pointer tool and then right click, you get a pull
down menu from which you can activate the Add to Logic
History function to record the value of input A. When this
function is selected (denoted by a tick on the menu), all input
is copied to a buffer (i.e. store). As we have two inputs, A and
B, we will have to assign them to the Logic History function
independently.

To record the output of the LED, you carry out the same
procedure you did with the two inputs A and B (i.e. right
click on the LED and select Add to Logic History) (see
Fig. 2.35).

In order to use the Logic History function, you have to
activate it from the Tools function on the toolbar. Selecting
Tools pulls down a menu and you have to select the Logic
History window. Figure 2.36 shows the logic history window
after a simulation run. Note that the inputs and outputs have
the labels you gave them (i.e. A, B, and Sum).

We now need to say something about the way the simulator
operates. The simulator uses an internal clock and a record of
the state of inputs and outputs is taken at each clock pulse.
Figure 2.37 shows how you can change the clock speed from

2.4 Introduction to Digital Works 45

Right click on the LED
to bring down the
menu and click on Text
to select the text box.

Figure 2.33 Labeling the circuit and inputs and outputs.

the toolbar by pulling down the Circuit menu and selecting
Clock Speed.

We’re not interested in clocks at this stage because we are
looking at a circuit that doesn’t have a clock. However, because

the signals are read and recorded at each clock pulse, the entire
simulation is over in a second or so. Blink and you miss it.

We need to stop the clock to perform a manual simulation.
The Logic History window contains a copy of the run, stop,

46 Chapter 2 Gates, circuits, and combinational logic

The run

tool is used

to begin a

simulation.
The LED connected to the

output becomes red when

the output is a 1.

The hand tool is used to
operate the input switches.
First click on the hand tool to
select it. Then move the
hand cursor to the switch
(interactive input device) you
wish to operate. Each click
changes the input state. A
logical one state is shown by
the switch becoming red.

Figure 2.34 Running the simulator.

Use the pointer tool to

select and right click

on the output LED.

This brings down the

attributes menu. Click

on Add to Logic

History to record the

output values

generated during a

simulation.

Figure 2.35 Recording inputs and output.

pause, and single-step icons to allow you to step through the
simulation. Fig. 2.38 provides details of the Logic History
window. The waveform in Fig. 2.38 was created by putting the
simulator in the pause mode and executing a single cycle at a
time by clicking on the single-step button. Between each cycle
we have used the hand tool to change the inputs to the EOR
gate. We can use the hand tool to both change the state of the

2.4 Introduction to Digital Works 47

inputs and to single step (you don’t have to use the pointer
tool to perform a single step).

The logic history can be displayed either as a waveform as
in Fig. 2.38 or as a binary sequence as in Fig. 2.39 by clicking
on the display mode icon in the Logic History window. You
can also select the number of states to be displayed in this
window.

Select the Tools

function to pull down

a menu and then

select Logic History

window.

This is the Logic

History window that

displays the inputs

and outputs as a

waveform.

Figure 2.36 The logic history window.

Figure 2.37 Changing the clock rate.

2.4.3 The clock and sequence generator

Inputting data into a digital circuit by using the hand tool to
manipulate push buttons and switches is suitable for simple
circuits, but not for more complex systems. Digital Works
provides two means of generating signals automatically. One
is a simple clock generator, which produces a constant stream
of alternating 1s and 0s and the other is a sequence generator,
which produces a user-defined stream of 1s and 0s. The
sequence generator is controlled by Digital Works’ own clock
and a new 1 or 0 is output at each clock pulse. Figure 2.40
shows the icons for the clock and pulse generator and
demonstrates how they appear when placed in the work area.

Figure 2.41 demonstrates how you can define a sequence of
pulses you wish to apply to one of the inputs of a circuit

(in this example, a single AND gate). One of the inputs to the
AND gate comes from the clock generator and the other from
the sequence generator.We’ve added LEDs to the gate’s inputs
and output to make it easy to observe the state of all signals.

Let’s go through the operations required to place and set
up a sequence generator (called a bit generator by Digital
Works). First left click on the sequencer icon on the toolbar
and then move the cursor to the point at which you wish to
locate this device in the workspace. Then right click to both
place it in the workspace and bring down the menu that con-
trols the bit generator. From the pull-down menu, select Edit
Sequence and the window shown in Fig. 2.41 appears. You
can enter a sequence either from the computer’s keyboard or
by using the mouse on the simulated keyboard in the Edit
Sequence window. You can either enter the sequence in

48 Chapter 2 Gates, circuits, and combinational logic

The toggle display

button switches

between waveform

and binary display

modes.

These buttons

allow you to

specify the

number of clock

cycles in the run.

Figure 2.39 Viewing the simulation as a binary sequence.

The run

button begins

a simulation.

The stop

button

terminates a

simulation.

The pause

button

suspends

simulation.

The single

step button

executes a

single clock

cycle.

Figure 2.38 Controlling the simulation.

2.4 Introduction to Digital Works 49

Figure 2.40 The clock generator and sequencer.

The clock icon

is used to

place a clock

generator in

the work area.

The sequencer icon is

used to place a pattern

generator in the work

area. You can set this to

generate any sequence

of 1s and 0s.

The Circuit menu allows

you to change the

speed of the clock.

Figure 2.41 Setting up the sequence generator.

The calculator lets

you enter a sequence

in either binary or

hexadecimal form.

When you run the

simulation, the bits of

this sequence are fed

to the input.

The sequence generator

tool we have used to

provide user-defined

input.

The sequence

device has been

selected and right

clicked. From the

pull down menu

‘Edit Sequence’ is

selected and the

calculator appears

50 Chapter 2 Gates, circuits, and combinational logic

be wired up to the rest of the circuit exactly like an input or
output device. You left-click on the macro tag icon to select it
and then move the cursor to the place on the workspace you
wish to insert the macro tag (i.e. the input or output port).
Then you wire the macro tag to the appropriate input or out-
put point of the circuit. Note that you can’t apply a macro tag
to the input or output of a gate directly—you have to connect
it to an input or output by a wire.

You can also place a macro tag anywhere within the work-
space by right clicking the mouse when using the wiring tool.
Right clicking terminates the wiring process, inserts a macro
tag, and activates a pull-down menu.

We are going to take the circuit of Fig. 2.42 and convert it
into a black box with four terminals (i.e. the macro tags). This
new circuit is just a new means of representing the old
circuit—it is not a different entity. Indeed, this circuit doesn’t
have a different file name and is saved in the same file as the
original circuit.

The first step is to create the macro (i.e. black box) itself.
This is a slightly involved and repetitive process because you
have to repeat the procedure once for each of the macro tags.
Place the cursor over one of the macro tags in Fig. 2.43 and
right click to pull down the menu. Select Template Editor
from the menu with a left click. A new window called
Template Editor appears (Fig. 2.43). You create a black box
representation of the circuit in this window. Digital Works
allows you to draw a new symbol to represent the circuit (in
Fig. 2.43 we’ve used a special shape for the multiplexer).

binary or hexadecimal form (see Chapter 4 for a discussion of
hexadecimal numbers).

We can run the simple circuit by clicking on the run icon.
When the system runs you will see the LEDs turn on and off.
The speed of the clock pulses can be altered by clicking on
Circuit in the toolbar to pull down a menu that allows you to
set the clock speed.

2.4.4 Using Digital Works to create
embedded circuits

Up to now, we have used Digital Works to create simple cir-
cuits composed from fundamental gates. You could create an
entire microprocessor in this manner, but it would rapidly
become too complex to use in any meaningful way. Digital
Works allows you to convert a simple circuit into a logic ele-
ment itself. The new logic element can be used as a building
block in the construction of more complex circuits. These
complex circuits can be converted into new logic elements,
and so on. Turning circuits into re-usable black boxes is anal-
ogous to the use of subroutines in a high-level language.

Let’s take the simple two-input multiplexer described in
Fig. 2.42 and convert it into a black box with four terminals:
two inputs A and B, a control input C whose state selects one
of the inputs, and an output. When we constructed this cir-
cuit with Digital Works, we used the macro tag icon to place
macro tags at the circuit’s inputs and outputs. A macro tag can

The macro tag

allows you to

define an

interface

between a

circuit and the

outside world

The macro tag

tool is selected

to place four

tags at the

inputs and

outputs of the

circuit.

Figure 2.42 Converting the two-input multiplexer circuit into a black box.

Figure 2.43 shows the Template Editor window. We have
used the simple polyline drawing tool provided by Digital
Works to create a suitable shape for the representation of the
multiplexer. You just click on this tool in the Template Editor
window and draw the circuit by clicking in the workspace at
the points you wish to draw a line.You exit the drawing mode
by double clicking. You can also add text to the drawing by
using the text tool. Figure 2.43 shows the shape we’ve drawn

for the multiplexer and the label we’ve given it. To add a label
or text to the circuit, select the text tool and click on the point
you wish to insert the text. This action will pull down the Edit
Text box.

The next step is to add pins to the black box in the
Template Editor window and associate them with the macro
tags in the original circuit of Fig. 2.42. Once this has been
done, you can use the black box representation of the multi-

plexer in other circuits. The pins you
have added to the black box are the
connections to the circuit at the
macro tags.

Click on the pin icon in the
Template Editor and then left click in
the workspace at the point you wish
to locate this pin—see Fig. 2.44. You
then right click on this new pin
and select Associate with Tag. This
operation associates the pin you have
just placed with a macro tag in the
circuit diagram. Each new pin placed
on the circuit in the Template Editor
window is automatically numbered
in sequence.

We add additional pins to the black
box by closing the Template Editor,
going back to the circuit, clicking on
one of the unassigned pins, and
selecting Associate with Tag again.
Remember that Digital Works auto-
matically numbers the pins in the
circuit diagram as you associate them
with tags.We can finish the process by
using the text tool to add labels to the
four pins see Fig. 2.45. We have now
created a new element that behaves
exactly like the circuit from which it
was constructed and which can be
used itself as a circuit element.

Figure 2.46 shows the original or
expanded version of the circuit. Note
how the pins have been numbered
automatically.

To summarize, you create a black
box representation of a circuit by car-
rying out the following sequence of
operations.

● In Digital Works add and connect
(i.e. wire up) a macro tag to your
circuit.

● Right click the macro tag to enter
the template editor.

2.4 Introduction to Digital Works 51

Text tool.

Use this to

label the

symbol.

This is the

label we’ve

added to the

multiplexer.

This is the

symbol we’ve

drawn for the

multiplexer.

Polyline drawing tool.

Use this tool to create a

suitable symbol for your

circuit.

Pin icon. This is used

to place the pins on

the representation of

the circuit

Figure 2.43 Drawing a symbol for the new circuit.

Figure 2.44 Creating an interface point in the black box.

The pin tool

creates an

interface point

between the black

box and circuit.

This is the location of the

first pin. Right click it to

associate it with the

macro tag in the circuit

diagram.

● Use the Template Editor to add a pin to the circuit
representation

● In the Template Editor, select this pin and right click to
associate it with the macro tag in the circuit diagram.

● Close the Template Editor.

● Repeat these operations, once for each macro tag.

When you exit Digital Works, saving your circuit also saves
its black box representation.You can regard these two circuits

as being bound together—with one
representing a short-hand version of
the other. Note that the Template
Editor also has a save function. Using
this save function simply saves the
drawing you’ve created but not the
pins, the circuit, or its logic.

2.4.5 Using a macro

Having created a black box circuit
(i.e. a macro), we can now use it as a
building block just like any other
logic element. We will start a new cir-
cuit in Digital Works and begin with
an empty work area. The macro for a
two-input multiplexer we have just
created and saved is used like other
circuit elements. You click on the
embed macro icon (see Fig. 2.47) and
move the pointer to the location in
the workspace where you wish to

52 Chapter 2 Gates, circuits, and combinational logic

Figure 2.45 The completed black box representation.

This icon is a switch.

When down, the macro

 will display the pins.

When up, an embedded

macro will not show pins.

This logic element

will behave exactly

like the circuit of the

multiplexer. It is a

multiplexer with all

its internal details

hidden.

The pins (macro tags)

are automatically

numbered as they are

associated with pins in

the Template Editor).

Figure 2.46 The original circuit with the macro tags numbered.

place the macro. Then you left click and select the appropri-
ate macro from the pull-down menu that appears.

The macro is automatically placed at the point you clicked on
and can be used exactly like a circuit element placed from one of
the circuit icons. Remember that the macro is the same as the
circuit—the only difference is its on-screen representation.

In Fig. 2.47 we have placed two of the multiplexers in the
workspace prior to wiring them together. Figure 2.48 demon-
strates how we can wire these two macros together, add a gate,
and provide inputs and LED displays.

Modifying a circuit

Suppose you build a circuit that contains one or more macros
(e.g. Fig. 2.48) and wish to modify it. A circuit can be modi-
fied in the usual way by opening its file in Digital Works and
making any necessary changes. Digital Works even allows you
to edit (i.e. modify) a circuit while it’s running.

In order to modify a macro itself, you have to return to the
macro’s expanded form (i.e. the circuit that the macro repre-
sents). A macro is expanded by right clicking on the macro’s
symbol and selecting the Edit Macro function from the pull-
down menu that appears. Figure. 2.49 shows the system of
Fig. 2.48 in which the macro representation of the multi-
plexer in the upper left-hand side of the workspace has been
right clicked on.

Selecting the Edit Macro function converts the black box
macro representation into the original circuit as Fig. 2.50
demonstrates. You can now edit this circuit in the normal
way. When editing has been completed, you select the Close
Macro icon that appears on the lower toolbar. Closing this
window returns to the normal circuit view, which contains
the macro that has now been changed.

There are two macros in the circuit diagram of Fig. 2.48. If
we edit one of them what happens to the other and what
happens to the original circuit? Digital Works employs object
embedding rather than object linking. When a macro is
embedded in a circuit, a copy of the macro is embedded in the
circuit. If you modify a macro only that copy is changed. The
original macro is not altered. Moreover, if you have embed-
ded several copies of a macro in a circuit, only the macro that
you edit is changed.

Figure 2.51 demonstrates the effect of editing the macro
version of a two-input multiplexer. Figure 2.51(a) shows the
modified expanded macro. An OR gate has been wired to
the A and B inputs on pins 1 and 2 and a macro tag added
to the output of the OR gate. By clicking on the macro tag, the
Template Editor window is invoked. You can add a pin and
assign it to the macro tag. When you exit the Template Editor
and close the macro, the final circuit of Fig. 2.51(b) appears
(we have added an LED to the output of the new macro).

2.4 Introduction to Digital Works 53

This is the embed

macro icon. Click

on it and then

place the cursor

at the point you

wish to place the

macro. Left click

and then select

the appropriate

macro from the

file list.

This is one of the

two macros we

have placed in

this window.

Figure 2.47 Embedding a macro in a circuit.

54 Chapter 2 Gates, circuits, and combinational logic

We have used the

embed macro tool twice

to place two full adders

on the work area.

Figure 2.48 Embedding two macros, wiring them, and creating a new macro.

In order to edit a

macro, select the

pointer tool and right

click on the macro to

pull down a menu

with the Edit Macro

option.

Figure 2.49 Editing a macro in a circuit.

2.4 Introduction to Digital Works 55

Once the
expanded version
of the macro has
been edited, you
can return to the
circuit that
embeds the macro
by clicking on
Close Macro.

This is the
expanded
macro. It
can be
modified
just like any
other.

Figure 2.50 Editing the expanded form of the macro.

Figure 2.51 Example of editing a macro.

(a) The modified macro. (b) The circuit with the modified macro.

2.5 An introduction to Boolean
algebra

We’ve already seen that you can describe circuits containing
gates in terms of variables and AND, OR, and NOT operators.
Consider an AND gate with input variables A and B, and an
output C. We can write the Boolean equation C � A ⋅ B which
uses variables A, B, and C and the AND operator. In this sec-
tion we introduce Boolean algebra1, show how equations are
manipulated, and demonstrate how logic circuits can be con-
structed with only one type of gate. Students requiring only a
very basic knowledge of Boolean algebra can omit some of
the fine detail that appears later in this section.

George Boole was an English mathematician (1815–1864)
who developed a mathematical analysis of logic and pub-
lished it in his book An Investigation of the Laws of Thought in
1854. Boole’s algebra of logic would probably have remained
a tool of the philosopher, had it not been for the development
of electronics in the Twentieth Century.

In 1938 Claude Shannon published a paper entitled ‘A
symbolic analysis of relays and switching circuits’, which
applied Boolean algebra to switching circuits using relays.
Such circuits were widely used in telephone exchanges and
later in digital computers. Today, Boolean algebra is used to
design digital circuits and to analyze their behavior.

Digital design is concerned with the conversion of ideas or
specifications into hardware and Boolean algebra is a tool
that facilitates this process. In particular, Boolean algebra
permits an idea to be expressed in a mathematical form and
the resulting expression to be simplified and then translated
into the real hardware of gates and other logic elements.

Let’s begin with a formal definition just in case this book
falls into the hands of a mathematician. Boolean algebra (or
any other algebra) consists of a set of elements E, a set of
functions F that operate on members of E, and a set of basic
laws called axioms that define the properties of E and F. The
set of elements making up a Boolean algebra are variables and
constants that have fixed values of 0 or 1. A Boolean algebra
with n variables has a set of 2n possible permutations of these
variables.

Only three functions or operations are permitted in
Boolean algebra. The first two are the logical OR represented
by a plus (e.g. A � B) and the logical AND represented by a
dot (e.g. A�B). Some texts use a ∪ (cup) or a ∨ to denote the
logical OR operator and a ∩ (cap) or a � to denote a logical
AND operator.

The use of the plus and dot symbols is rather confusing
because the same symbols are used for addition and multipli-
cation in everyday life. One reason that these particular sym-
bols have been chosen is that they behave rather like
conventional addition and multiplication. Another possible
reason Boole chose � and � to represent the logical OR and

AND functions is that Boole’s background was in probability
theory. The chance of throwing a 1 or a 2 with two throws of
a single die is 1/6 � 1/6, whereas the chance of throwing a 1
and a 2 is 1/6 � 1/6; that is, the or and and in probability the-
ory also behave like addition and multiplication, respectively.

The third operation permitted in Boolean algebra is that of
negation or complementation and is denoted by a bar over a
constant or a variable.The complement of 0 (i.e.0–) is 1 and vice
versa. The equation X � Y ⋅ � A is read as ‘X or Y and not Z
equals A’. The priority of an AND operator is higher than that
of an OR operator so that the expression means A � X �

(Y ⋅) and not A � (X � Y) . Some texts use an asterisk to
denote negation and some use a stroke. Thus, we can write
NOT(X) as X– or X* or /X.

The arithmetic operations of subtraction and division do
not exist in Boolean algebra. For example, the Boolean
expression X � Y � X � Z, cannot be rearranged in the
form (X � Y) � X � (X � Z) � X, which would lead to
Y � Z. If you don’t believe this, then consider the case X � 1,
Y � 1, and Z � 0. The left-hand side of the equation yields
X � Y � 1 � 1 � 1, and the right-hand side yields
X � Z � 1 � 0 � 1. That is, the equation is valid even
though Y is not equal to Z.

2.5.1 Axioms and theorems of
Boolean algebra

An axiom or postulate is a fundamental rule that has to be
taken for granted (i.e. the axioms of Boolean algebra define
the framework of Boolean algebra from which everything
else can be derived). The first axiom is called the closure
property, which states that Boolean operations on Boolean
variables or constants always yield Boolean results. If vari-
ables A and B belong to a set of Boolean elements, the opera-
tions A ⋅ B, A � B, and NOT A and NOT B also belong to the
set of Boolean elements.

Boolean variables obey the same commutative, distributive,
and associative laws as the variables of conventional algebra.
We take these laws for granted when we do everyday arith-
metic; for example, the commutative law states that
6 � 3 � 3 � 6. Table 2.13 describes the commutative, distribu-
tive, and associative laws of Boolean algebra.

We approach Boolean algebra by first looking at the action
of NOT, OR, and AND operations on constants. The effect of
these three operations is best illustrated by means of the truth
table given in Table 2.14. These rules may be extended to any
number of variables.

We can extend Table 2.14, which defines the relationship
between the Boolean operators and the constants 0 and 1, to

ZZ

Z

56 Chapter 2 Gates, circuits, and combinational logic

1 There are, in fact, an infinite number of Boolean algebras. We are
interested only in the Boolean algebra whose variables have binary two-
state values.

the relationship between a Boolean operator, a variable, and a
literal (see Table 2.15).

We can prove the validity of the equations in Table 2.15 by
substituting all the possible values for X (i.e. 0 or 1). For
example, consider the axiom 0 ⋅ X � 0. If X � 1 we have
0.1 � 0, which is correct because by definition the output of
an AND gate is true if and only if all its inputs are true.
Similarly, if X � 0 we have 0 ⋅ 0 � 0, which is also correct.
Therefore, the expression 0 ⋅ X � 0 is correct for all possible

values of X. A proof in which we test a theorem by examining
all possibilities is called proof by perfect induction.

The axioms of Boolean algebra could be used to simplify
equations, but it would be too tedious to keep going back
to first principles. Instead, we can apply the axioms of
Boolean algebra to derive some theorems to help in the sim-
plification of expressions. Once we have proved a theorem
by using the basic axioms, we can apply the theorem to
equations.

2.5 An Introduction to Boolean algebra 57

A � B � B � A The AND and OR operators are commutative so that the order of the

A ⋅ B � B ⋅ A variables in a sum or product group does not matter.

A ⋅ (B ⋅ C) � (A ⋅ B) ⋅ C The AND and OR operators are associative so that the order in which

A � (B � C) � (A � B) � C sub-expressions are evaluated does not matter.

A ⋅ (B � C) � A ⋅ B � A ⋅ C The AND operator behaves like multiplication and the OR operator like

A � B ⋅ C � (A � B)(A � C) addition.The first distributive property states that in an expression

containing both AND and OR operators the AND operator takes precedence

over the OR.The second distributive law,A � B ⋅ C � (A � B)(A � C), is not

valid in conventional algebra.

Table 2.13 Commutative, distributive, and associative laws of Boolean algebra.

NOT AND OR

� 1 0 ⋅ 0 � 0 0 � 0 � 0

� 0 0 ⋅ 1 � 0 0 � 1 � 0

1 ⋅ 0 � 0 1 � 0 � 1

1 ⋅ 1 � 1 1 � 1 � 1

Table 2.14 Basic axioms of Boolean algebra.

1

0

AND OR NOT

0 ⋅ X = 0 0 + X = X = X

1 ⋅ X = X 1 + X = 1

X ⋅ X = X X + X = X

X ⋅ X
–

= 0 X + X
–

= 1

Table 2.15 Boolean operations on a

constant and a variable.

X

Theorem 1 X � X ⋅ Y � X

Proof X � X ⋅ Y � X ⋅ 1 � X ⋅ Y Using 1 ⋅ X � X and commutativity
� X(1 � Y) Using distributivity
� X(1) Because 1 � Y � 1
� X

Theorem 2 X � ⋅ Y � X � Y

Proof X � ⋅ Y � (X � X ⋅ Y) � ⋅ Y By Theorem 1 X � X � X ⋅ Y
� X � X ⋅ Y � ⋅ Y
� X � Y(X �) Remember that X � � 1
� X � Y(1)
� X � Y

Theorem 3 X ⋅ Y � ⋅ Z � Y ⋅ Z � X ⋅ Y � ⋅ Z

Proof X ⋅ Y � ⋅ Z � Y ⋅ Z � X ⋅ Y � ⋅ Z � Y ⋅ Z(X �) Remember that (X �) � 1
� X ⋅ Y � ⋅ Z � X ⋅ Y ⋅ Z � ⋅ Y ⋅ Z Multiply bracketed terms
� X ⋅ Y(1 � Z) � ⋅ Z(1 � Y) Apply distributive rule
� X ⋅ Y(1) � ⋅ Z(1) Because (1 � Y) � 1
� X ⋅ Y � ⋅ ZX

X
X

XX
XXXX

XX

XX
X

XX

X

We can also prove Theorem 3 by the method of perfect
induction. To do this, we set up a truth table and demonstrate
that the theorem holds for all possible values of X, Y, and Z

(Table 2.16). Because the columns labeled X ⋅ Y � ⋅ Z and
X ⋅ Y � ⋅ Z � Y ⋅ Z in Table 2.16 are identical for all possible
inputs, these two expressions must be equivalent.

X
X

58 Chapter 2 Gates, circuits, and combinational logic

Inputs

X Y Z X ⋅ Y ⋅ Z Y ⋅ Z X ⋅ Y � ⋅ Z X ⋅ Y � ⋅ Z � Y ⋅ Z

0 0 0 1 0 0 0 0 0

0 0 1 1 0 1 0 1 1

0 1 0 1 0 0 0 0 0

0 1 1 1 0 1 1 1 1

1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 0 1 0 0 1 1

1 1 1 0 1 0 1 1 1

Table 2.16 Proof of Theorem 3 by perfect induction.

XXXX

same

Theorem 4 X(X � Y) � X

Proof X(X � Y) � X ⋅ X � X ⋅ Y Multiply by X
� X � X ⋅ Y Because X ⋅ X � X
� X By Theorem 1

Theorem 5 X(� Y) � X ⋅ Y

Proof X(� Y) � X ⋅ � X ⋅ Y
� 0 � X ⋅ Y Because X ⋅ � 0
� X ⋅ Y

Theorem 6 (X � Y)(X �) � X

Proof (X � Y)(X �) � X ⋅ X � X ⋅ � X ⋅ Y � ⋅ Y
� X � X ⋅ � X ⋅ Y Because X ⋅ X � X, Y ⋅ � 0
� X(1 � � Y)
� X

Theorem 7 (X � Y)(� Z) � X ⋅ Z � ⋅ Y

Proof (X � Y)(� Z) � X ⋅ � X ⋅ Z � ⋅ Y � Y ⋅ Z Multiply brackets
� X ⋅ Z � ⋅ Y � Y ⋅ Z Because X ⋅ � 0
� X ⋅ Z � ⋅ Y By Theorem 3

Theorem 8 (X � Y)(� Z)(Y � Z) � (X � Y)(� Z)

Proof (X � Y)(� Z)(Y � Z) � (X ⋅ Z � ⋅ Y)(Y � Z) By Theorem 7
� X ⋅ Y ⋅ Z � X ⋅ Z ⋅ Z � ⋅ Y ⋅ Y � ⋅ Y ⋅ Z
� X ⋅ Y ⋅ Z � X ⋅ Z � ⋅ Y � ⋅ Y ⋅ Z Because X ⋅ X � 1
� X ⋅ Z(Y � 1) � ⋅ Y(1 � Z)
� X ⋅ Z � ⋅ Y
� (X � Y)(� Z) By Theorem 7

We provide an alternative proof for Theorem 8 when we look at de Morgan’s theorem later in this chapter.

X
X

X
XX

XX
XX

XX

X
XX

XXX

XX

Y
YY

YYY

Y

X
XX

X

Theorems 9 and 10 are collectively called de Morgan’s
theorem. This theorem can be stated as an entire function is
complemented by replacing AND operators by OR operators,
replacing OR operators by AND operators, and complement-
ing variables and literals. We make extensive use of de
Morgan’s theorem later.

An important rule in Boolean algebra is called the principle
of duality. Any expression that is true is also true if AND is
replaced by OR (and vice versa) and 1 replaced by 0 (and vice
versa). Consider the following examples of duals.

Expression Dual
X � X � X X � X ⋅ X (replace � by ⋅)
1 � X � 1 0 � X ⋅ 0 (replace � by ⋅ and

replace 1 by 0)
X � X(X � Y) X � X � X ⋅ Y (replace ⋅ by � and

replace � by ⋅)

As you can see, the dual of each expression is also true.

2.5 An Introduction to Boolean algebra 59

Theorem 9

Proof To prove that , we assume that the
expression is true and test its consequences.
If � � is the complement of X ⋅ Y ⋅ Z, then from the
basic axioms of Boolean algebra, we have
(� �) ⋅ (X ⋅ Y ⋅ Z) � 0 and (� �) � (X ⋅ Y ⋅ Z) � 1

Subproof 1 (� �) ⋅ X ⋅ Y ⋅ Z � ⋅ X ⋅ Y ⋅ Z � ⋅ X ⋅ Y ⋅ Z � ⋅ X ⋅ Y ⋅ Z
� ⋅ X ⋅ (Y ⋅ Z) � ⋅ Y ⋅ (Y ⋅ Z) � ⋅ Z(X ⋅ Y)
� 0

Subproof 2 (� �) � X ⋅ Y ⋅ Z � Y ⋅ Z ⋅ (X) � � � Re-arrange equation
� Y ⋅ Z � � � Use A ⋅ B � � A �

� (� Y ⋅ Z) � � Re-arrange equation
� � Z � �

� � 1 � � 1 Use Z � � 1

As we have demonstrated that
(� �) ⋅ X ⋅ Y ⋅ Z � 0 and that
(� �) � X ⋅ Y ⋅ Z � 1, it follows that � � is the
complement of X ⋅ Y ⋅ Z.

Theorem 10

Proof One possible way of proving Theorem 10 is to use the method
we used to prove Theorem 9. For the sake of variety, we will
prove Theorem 10 by perfect induction (see Table 2.17).

X·Y·Z � X � Y � Z

ZYXZYX
ZYX

ZXY
XZY

ZXY
BBZYX

ZYXZYX

ZYX
ZYXZYX

ZYXZYX

ZYX

X·Y·Z � X � Y � Z

X·Y·Z � X � Y � Z

Inputs

X Y Z X � Y � Z ⋅ ⋅

0 0 0 0 1 1 1 1 1

0 0 1 1 0 1 1 0 0

0 1 0 1 0 1 0 1 0

0 1 1 1 0 1 0 0 0

1 0 0 1 0 0 1 1 0

1 0 1 1 0 0 1 0 0

1 1 0 1 0 0 0 1 0

1 1 1 1 0 0 0 0 0

Table 2.17 Proof of Theorem 10 by perfect induction.

ZYXZYXX � Y � Z

same

Examples of the use of Boolean algebra in

simplifying equations

Having presented the basic rules of Boolean algebra, the next
step is to show how it’s used to simplify Boolean expressions.
By simplifying these equations you can sometimes produce

a cheaper version of the logic circuit. The following equations
are generally random functions chosen to demonstrate the
rules of Boolean algebra.

(a) X � � ⋅ Y � (X �) ⋅ ⋅ Y

(b) ⋅ Y ⋅ � ⋅ Y ⋅ Z � X ⋅ ⋅ Z � X ⋅ Y ⋅ ZYXZX

XYXY

60 Chapter 2 Gates, circuits, and combinational logic

OBSERVATIONS

When novices first encounter Boolean algebra, it is not

uncommon for them to invent new theorems that are incorrect

(because they superficially look like existing theorems).We

include the following observations because they represent the

most frequently encountered misconceptions.

Observation 1 ⋅ � X ⋅ Y is not equal to 1

⋅ � X ⋅ Y cannot be simplified

Observation 2 ⋅ Y � X ⋅ is not equal to 1

⋅ Y � X ⋅ cannot be simplified

Observation 3

Observation 4 X � Y is not equal to X � Y

X ·Y is not equal to X ·Y

YX
YX

YX
YX

ALL FUNCTIONS OF TWO VARIABLES—ALL POSSIBLE GATES

This table provides all possible functions of two variables A and

B.These two variables have 22 � 4 possible different

combinations.We can associate a different function with

each of these 42 � 16 values to create all possible functions

of two variables; that is, there are only 16 possible types of

two-input gate. Some of the functions correspond to

functions we’ve already met. Some functions are

meaningless.

Inputs Functions

A B F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Function Expression Name

F0 0

F1 NOR

F2 ⋅ B

F3 NOT

F4 A ⋅
F5 NOT

F6 A � B EOR

F7 A ⋅ B NAND

F8 A ⋅ B AND

F9 A � B ENOR

F10 B

F11 ⋅ � A ⋅ � A ⋅ B = = + B

F12 A

F13 ⋅ � A ⋅ � A ⋅ B � = A �

F14 A � B OR

F15 1

BA·BBBA

AA·BBBA

B

B

A

A

A � B

(c)

(d) (X �)(� Z)(Y �)

(e) (W � X � Y ⋅ Z)(� X)(� Y)XW

ZXY

X·Y·X·Z (f) W ⋅ X ⋅ � ⋅ Y ⋅ Z � W ⋅ X ⋅ � X ⋅ Y ⋅ Z � ⋅ Y ⋅ Z

(g) ⋅ X ⋅ Z � W ⋅ Z � X ⋅ Y ⋅ � ⋅ X ⋅ Y

(h) (X � Y � Z)(� Y � Z)(� Y �)ZXX

WZW

WYXZ

2.5 An Introduction to Boolean algebra 61

Solutions

When I simplify Boolean expressions, I try to keep the order of the variables alphabetical, making it easier to pick out logical
groupings.

(a) X+ � ⋅ Y � (X �)⋅ ⋅ Y � X � � ⋅ Y � X ⋅ ⋅ Y � ⋅ ⋅ Y

� X � � ⋅ Y As ⋅ A � 0

� X � Y � as A� ⋅ B � A � B

� 1 as A� � 1

Note: When a Boolean expression can be reduced to the constant 1, the expression is always true and is independent of the
variables.

(b) ⋅ Y ⋅ � ⋅ Y ⋅ Z � X ⋅ ⋅ Z � X ⋅ Y ⋅ Z � ⋅ Y ⋅ (� Z) � X ⋅ Z ⋅ (� Y)

� ⋅ Y ⋅ (1) � X ⋅ Z ⋅ (1)

� ⋅ Y � X ⋅ Z

(c) By Theorem 9

� ⋅ Y � X ⋅ Z As

Note: Both expressions in examples (b) and (c) simplify to X ⋅ � X ⋅ Z, demonstrating that these two expressions are equiv-
alent. These equations are those of the multiplexer with (b) derived from the truth table (Table 2.9) and (c) from the circuit
diagram of Fig. 2.14.

(d) (X �)(� Z)(Y �) � (X ⋅ � X ⋅ Z � ⋅ � ⋅ Z) ⋅ (Y �)

� (X ⋅ Z � ⋅ � ⋅ Z) ⋅ (Y �) As X ⋅ � 0

� (X ⋅ Z � ⋅) ⋅ (Y �) By Theorem 3

� X ⋅ Y ⋅ Z � X ⋅ ⋅ Z � ⋅ ⋅ Y � ⋅ ⋅
� X ⋅ Y ⋅ Z � ⋅ ⋅

(e) (W � X � Y ⋅ Z)(� X)(� Y) � (W ⋅ � ⋅ X � ⋅ Y ⋅ Z � W ⋅ X � X ⋅ X � X ⋅ Y ⋅ Z)(� Y)

� (⋅ X � ⋅ Y ⋅ Z � W ⋅ X � X � X ⋅ Y ⋅ Z)(� Y)

� (X � ⋅ Y ⋅ Z)(� Y)

� X ⋅ � X ⋅ Y � ⋅ ⋅ Y ⋅ Z � ⋅ Y ⋅ Y ⋅ Z

� X ⋅ Y � ⋅ ⋅ Y ⋅ Z � ⋅ Y ⋅ Z

� X ⋅ Y � ⋅ Y ⋅ Z(� 1)

� X ⋅ Y � ⋅ Y ⋅ Z

(f) WX � YZ � WX � XYZ + YZ � WX � YZ(� X �) � WX

� WX � YZ � WX

� WX(�) � YZ

Note that so we can write

�

� W ⋅ X � Y ⋅ Z Because A � ⋅ B � A � BA

W·X(Y � Z) � Y � Z

YZ � Y � Z

ZY

YZ

YWXZWYXZ

W

XW

WXW

WXWX

XW

XWW

XWWWXW

ZYX

ZYXYXZ

ZYX

XZYYX

ZYYXXZXY

Y

F � FX

X.Y.X.Z = X.Y + X.Z

X

X

YZXYXZX

A

AY

AXY

YXXXYXYXY

62 Chapter 2 Gates, circuits, and combinational logic

(g) XZ � WZ � XY � XY � Z(X � W) � XY � XY

� Z(X � W) � XY � XY

� XZ � WZ � XY � XY

� X(Z � Y) � WZ � XY

� X(Z � Y) � WZ � XY

� XZ � XY � WZ � XY

� XZ � XY(1 �) � WZ

� XZ � XY � WZ

(h) (X � Y � Z)(� Y � Z)(� Y �) � (Y � Z)(� Y �) as (A � B)(A �) � A

� Z(� Y) � Y ⋅ as (A � B)(� C) � A ⋅ C � ⋅ B

� ⋅ Z � Y ⋅ Z � Y ⋅
� ⋅ Z � Y(Z �)

� ⋅ Z � YX

ZX

ZX

AAZX

BZXZXX

W

W

W

WZ

WZ

WZ

WZWWZW

Input

X

Input

Y

X0

X1

Y0

Y1

Z0

4-bit product

Z

Z1

Z2

Z3

For example, 1,0 = 2

For example, 1,1 = 3

In this example, 2 × 3 = 6 = 0110

2-bit by 2-bit

multiplier

Figure 2.52 A 2-bit multiplier

Inputs Output

X Y Z

X x Y = Z X1 X0 Y1 Y0 Z3 Z2 Z1 Z0

0 � 0 � 0 0 0 0 0 0 0 0 0

0 � 1 � 0 0 0 0 1 0 0 0 0

0 � 2 � 0 0 0 1 0 0 0 0 0

0 � 3 � 0 0 0 1 1 0 0 0 0

1 � 0 � 0 0 1 0 0 0 0 0 0

1 � 1 � 1 0 1 0 1 0 0 0 1

1 � 2 � 2 0 1 1 0 0 0 1 0

1 � 3 � 3 0 1 1 1 0 0 1 1

2 � 0 � 0 1 0 0 0 0 0 0 0

2 � 1 � 2 1 0 0 1 0 0 1 0

2 � 2 � 4 1 0 1 0 0 1 0 0

2 � 3 � 6 1 0 1 1 0 1 1 0

3 � 0 � 0 1 1 0 0 0 0 0 0

3 � 1 � 3 1 1 0 1 0 0 1 1

3 � 2 � 6 1 1 1 0 0 1 1 0

3 � 3 � 9 1 1 1 1 1 0 0 1

Table 2.18 Truth table for a 2-bit by 2-bit multiplier.

Next Page

We have now obtained four simplified sum of products
expressions for Z0 to Z3; that is,

It’s interesting to note that each of the above expressions is
symmetric in X and Y. This is to be expected—if the problem

 Z3 � X1 ·X0 ·Y1 ·Y0

 Z2 � X1 ·X0 ·Y1 � X1 ·Y1 ·Y0

 Z1 � X1 ·X0 ·Y1 � X0 ·Y1 ·Y0 � X1 ·X0 ·Y0 � X1 ·Y1 ·Y0

 Z0 � X0 ·Y0

itself is symmetric in X and Y (i.e. 3 � 1 � 1 � 3), then the
result should also demonstrate this symmetry. There are
many ways of realizing the expressions for Z0 to Z3. The
circuit of Fig. 2.53 illustrates one possible way.

2.5.2 De Morgan’s theorem

Theorems 9 and 10 provide the designer with a powerful tool
because they enable an AND function to be implemented by

2.5 An Introduction to Boolean algebra 63

The multiplier has four inputs, X1, X0, Y1, Y0, (indicat-
ing a 16-line truth table) and four outputs. Table 2.18 pro-
vides a truth table for the binary multiplier. Each 4-bit
input represents the product of two 2-bit numbers so that,
for example, an input of X1, X0, Y1, Y0 � 1011 represents
the product 102 � 112 or 2 � 3. The corresponding out-
put is a 4-bit product, which, in this case, is 6 or 0110 in
binary form.

From Table 2.18, we can derive expressions for the four
outputs, Z0 to Z3. Whenever a truth table has m output
columns, a set of m Boolean equations must be derived. One
equation is associated with each of the m columns. To derive
an expression for Z0, the four minterms in the Z0 column are
ORed logically.

 Z3 � X1 ·X0 ·Y1 ·Y0

� X1 ·X0 ·Y1 � X1 ·Y1 ·Y0

� X1 ·Y1(X0 � Y0)

� X1 ·Y1(X0 � X0Y0)

� X1 ·X0 ·Y1 � X1 ·X0 ·Y1 ·Y0

� X1 ·X0 ·Y1(Y0 � Y0) � X1 ·X0 ·Y1 ·Y0

Z2 � X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0

� X1 ·X0 ·Y1 � X0 ·Y1 ·Y0 � X1 ·X0 ·Y0 � X1 ·Y1 ·Y0

� X0 ·Y1(X1 � Y0) � X1 ·Y0(X0 � Y1)

� X0 ·Y1(X1 � X1 ·Y0) � X1 ·Y0(X0 � X0 ·Y1)

� X1 ·X0 ·Y1 � X1 ·X0 ·Y0 � X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0

� X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0� X1 ·X0 ·Y1(Y0 � Y0) � X1 ·X0 ·Y0(Y1 � Y1)

� X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0Z1 � X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0

� X0 ·Y0

� X0 ·Y0(X1 � X1)

� X1 ·X0 ·Y0 � X1 ·X0 ·Y0

� X1 ·X0 ·Y0(Y1 � Y1) � X1 ·X0 ·Y0(Y1 � Y1)

� X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0 Z0 � X1 ·X0 ·Y1 ·Y0 � X1 ·X0 ·Y1 ·Y0

These examples illustrate the art of manipulating Boolean
expressions. It’s difficult to be sure we have reached an optimal
solution. Later we study Karnaugh maps, which provide an
approach that gives us confidence that we’ve reached an opti-
mal solution.

The Design of a 2-bit Multiplier

The following example illustrates how Boolean algebra is
applied to a practical problem. A designer wishes to produce
a 2-bit by 2-bit binary multiplier. The two 2-bit inputs are X1,
X0 and Y1,Y0 and the four-bit product at the output terminals
is Z3, Z2, Z1, Z0. We have not yet introduced binary arithmetic
(see Chapter 4), but nothing difficult is involved here. We
begin by considering the block diagram of the system
(Fig. 2.52) and constructing its truth table.

Previous Page

an OR gate and inverter. Similarly, these theorems enable an
OR gate to be implemented by an AND gate and inverter.
We first demonstrate how de Morgan’s theorem is applied
to Boolean expressions and then show how circuits can be
converted to NAND-only or NOR-only forms. You may
wonder why anyone should wish to implement circuits in
NAND (or NOR) logic only. There are several reasons for
this, but, in general, NAND gates operate at a higher speed
than AND gates and NAND gates can be built with fewer
components (at the chip level). Later we shall examine in
more detail how a circuit can be designed entirely with
NAND gates only.

To apply de Morgan’s theorem to a function the ANDs are
changed into ORs, ORs and the into ANDs and variables (and

literals) are complemented. The following examples illustrate
the application of de Morgan’s theorem.

1. We wish to apply de Morgan’s
theorem to the right-hand side
The � becomes ⋅ and variables
‘X ⋅ Y’ and ‘X ⋅ Z’ complemented

� (�)(�) Variables and are
themselves complemented

As you can see, the first step is to replace the OR by an AND
operator. The compound variables X ⋅ Y and X ⋅ Z are comple-
mented to get and . The process is continued by
applying de Morgan to the two complemented groups (i.e.

becomes � and becomes �).ZXX·ZYXX·Y

X·ZX·Y

X·YX·YZXYX

� X·Y·X·Z

F � X·Y � X·Z

64 Chapter 2 Gates, circuits, and combinational logic

X1

X1 Y1 Y0

X0Y0

X1X0Y1

X0Y1Y0

X1X0Y0

X1Y1Y0

X1X0Y1

X1Y1Y0

X1X0Y1Y0

X0

X0 Y1 Y0

Z0

Z1

Z2

Z3

Figure 2.53 Circuit for the two-bit multiplier.

2.5.3 Implementing logic functions in
NAND or NOR two logic only

Some gates are better than others; for example, the NAND
gate is both faster and cheaper than the corresponding AND
gate. Consequently, it’s often necessary to realize a circuit
using one type of gate only. Engineers sometimes implement
a digital circuit with one particular type of gate because there
is not a uniform range of gates available. For obvious eco-
nomic reasons manufacturers don’t sell a comprehensive
range of gates (e.g. two-input AND, three-input AND, . . . ,
10-input AND, two-input OR, . . .). For example, there are
many types of NAND gate, from the quad two-input NAND
to the 13-input NAND, but there are few types of AND gates.

NAND logic We first look at the way in which circuits can
be constructed from nothing but NAND gates and then
demonstrate that we can also fabricate circuits with NOR
gates only. To construct a circuit solely in terms of NAND
gates, de Morgan’s theorem must be invoked to get rid of all
OR operators in the expression. For example, suppose we
wish to generate the expression F � A � B � C using NAND
gates only. We begin by applying a double negation to the
expression, as this does not alter the expression’s value but it
does give us the opportunity to apply de Morgan’s theorem.

F = A + B + C The original expression using
OR logic

F = Double negation has no effect on
the value of a function

F = Apply de Morgan's theoremA·B·C

F � A � B � C

We’ve now converted the OR function into a NAND func-
tion. The three NOT functions that generate , , and can
be implemented in terms of NOT gates, or by means of two-
input NAND gates with their inputs connected together.

Figure 2.54 shows how the function F � A � B � C can
be implemented in NAND logic only. If the inputs of a
NAND gate are A and B, and the output is C, then .
But if A � B, then or C � . You can better under-
stand this by looking at the truth table for the NAND gate,
and imagining the effect of removing the lines A, B � 0, 1 and
A, B � 1, 0.

It’s important to note that we are not using de Morgan’s
theorem here to simplify Boolean expressions. We are using
de Morgan’s theorem to convert an expression into a form
suitable for realization in terms of NAND (or NOR) gates.

AC � A·A
C � A·B

CBA

2.5 An Introduction to Boolean algebra 65

2.

Replace � by ⋅ and complement the product terms

� (�)(�)(�) Expand the complemented product terms

3. This is a product term with three elements.

Replace ⋅ by � and complement variables

Evaluate the complemented expression (change � to ⋅)
� � � ⋅ (�) Final step, evaluate

This example demonstrates how you have to keep applying de Morgan’s theorem until there are no complemented terms left
to evaluate.
4. A proof of Theorem 8 by de Morgan’s theorem

Complement twice because

Remove inner bar by applying de Morgan

Complement the three two-variable groups

Use Theorem 3 to simplify

Remove outer bar, change � to ⋅
Remove bars over two-variable groups� (X � Y)(X � Z)

� X·Y·X·Z

� X·Y � X·Z

� X·Y � X·Z � Y·Z

� X � Y � X � Z � Y � Z

X � X.(X � Y)·(X � Y)·(Y � Z) � (X � Y)·(X � Z)·(Y � Z)

E·DDECBA

� A � B � C·E·D

� A � B � C � E·D

F � A·B·(C � E·D)

DADCBA

� A·B·C·D·A·D

F � A·B � C·D � A·D

A

B

C

A

A B C = A + B + C

B

C

Figure 2.54 Implementing F � A � B � C with NAND logic only.

By applying the same techniques to the 2-bit by 2-bit
multiplier we designed earlier we can convert the expressions
for the four outputs into NAND-only logic.

(i.e. NAND gate followed by NOT
gate � AND gate)

� X1X0Y1 ·X0Y1Y0 ·X1X0Y0 ·X1Y1Y0

� X1X1Y0 � X0Y1Y0 � X1X0Y0 � X1Y1Y0

 Z1 � X1X0Y1 � X0Y1Y0 � X1X0Y0 � X1Y1Y0

 Z0 � X0 ·Y0 � X0Y0

� X1X0Y1 � X1Y1Y0

� X1X0Y1
. X1Y1Y0

� X1X0Y1Y0

Figure 2.55 shows the implementation of the multiplier in
terms of NAND logic only. Note that this circuit performs
exactly the same function as the circuit of Fig. 2.53.

NOR logic The procedures we’ve just used may equally be
applied to the implementation of circuits using NOR gates

 Z3 � X1X0Y1Y0

 Z2 � X1X0Y1 � X1Y1Y0

66 Chapter 2 Gates, circuits, and combinational logic

X1

X1

X0

X0

Y1 Y0

Y1 Y0

Z0

Z1

Z2

Z3

Figure 2.55 Implementing the multiplier circuit in NAND logic only.

only. By way of illustration, the value of Z3 in the 2-bit multi-
plier can be converted to NOR logic form in the following way

Note that negation may be implemented by an inverter or by
a NOR gate with its inputs connected together.

As a final example of NAND logic consider Fig. 2.56. A
Boolean expression can be expressed in sum-of-products
form as A ⋅ B � C ⋅ D. This expression can be converted to
NAND logic as

Note how the three-gate circuit in Fig. 2.56(a) can be
converted into the three-gate NAND circuit of Fig. 2.56(b).

A·B·C·D

� X1 � X0 � Y1 � Y0

� X1 ·X0 ·Y1 ·Y0

 Z3 � X1 ·X0 ·Y1 ·Y0

Fig. 2.57 shows the construction of the two versions of
AB � CD in Digital Works. We have provided an LED at each
output and manually selectable inputs to enable you to inves-
tigate the circuits.

2.5.4 Karnaugh maps

When you use algebraic techniques to simplify a Boolean
expression you sometimes reach a point at which you
can’t proceed, because you’re unable to find further
simplifications. The Karnaugh map, or more simply the
K-map, is a graphical technique for the representation and
simplification of a Boolean expression that shows unambigu-
ously when a Boolean expression has been reduced to its
most simple form.

Although the Karnaugh map can simplify Boolean equa-
tions with five or six variables, we will use it to solve problems

2.5 An Introduction to Boolean Algebra 67

A AB AB

AB.CD

AB.CD = AB + CD = AB + CD

AB+CD

CD CD

B

C

D

A

B

C

D

(A) Realization of AB + CD

(AND/OR logic).
(b) Realization of AB + CD

(NAND logic).

Figure 2.56 Implementing

A ⋅ B � C ⋅ D in AND/OR and

NAND logic.

Figure 2.57 Using Digital Works to investigate two circuits.

with only three or four variables. Other techniques such as
the Quine–McCluskey method can be applied to the simplifi-
cation of Boolean expressions in more than six variables.
However, these techniques are beyond the scope of this book.

The Karnaugh map is just a two-dimensional form of the
truth table, drawn in such a way that the simplification of

a Boolean expression can immediately be seen from the loca-
tion of 1s on the map. A system with n variables has 2n lines in
its truth table and 2n squares on its Karnaugh map. Each
square on the Karnaugh map is associated with a line (i.e.
minterm) in the truth table. Figure 2.58 shows Karnaugh
maps for one to four variables.

68 Chapter 2 Gates, circuits, and combinational logic

EXAMPLE

Show that the exclusive or, EOR, operator is associative, so

that A �(B � C) � (A � B) � C.

Both these expressions are equal and therefore the �

operator is associative.

� A ·B ·C � A ·B ·C � (A ·B � A ·B)C

� A ·B ·C � A ·B ·C � (A � B) ·(A � B)C

� A ·B ·C � A ·B ·C � (A ·B ·A ·B)C

� (A ·B � A ·B)C � (A ·B � A ·B)C

(A�B)�C � (A ·B � A ·B)�C

� A ·B ·C � A ·B ·C � A ·B ·C � A ·B ·C

� A(B ·C � B ·C) � A ·B ·C � A ·B ·C

� A(B � C)(B � C) � A ·B ·C � A ·B ·C

� A(B ·C � B ·C) � A(B ·C � B ·C)

A � (B � C) � A � (B ·C � B ·C)

EFFECT OF FINITE PROPAGATION DELAYS ON LOGIC ELEMENTS

We have assumed that if signals are applied to the input

terminals of a circuit, the correct output will appear

instantaneously at the output of the circuit. In practice, this is

not so. Real gates suffer from an effect called propagation

delay and it takes about 1 ns for a change in an input signal to

affect the output. One nanosecond is an unbelievably short

period of time in human terms—but not in electronic terms.

The speed of light is 300 � 108 cm/s and electrical signals in

computers travel at about 70% of the speed of light. In 1 ns

a signal travels about 20 cm.

The propagation delay introduced by logic elements is one

of the greatest problems designers have to contend with.The

diagram illustrates the effect of propagation delay on a single

inverter where a pulse with sharp (i.e. vertical) rising and

falling edges is applied to the input of an inverter.An inverted

pulse is produced at its output and is delayed with respect to

the input pulse. Moreover, the edges of the output pulse are no

longer vertical. The time tHL represents the time delay

between the rising edge of the input pulse and the point at

which the output of the gate has reached VOL. Similarly, tLH

represents the time between the falling edge of the input and

the time at which the output reaches VOH.

You might think that the effect of time delays on the passage

of signals through gates simply reduces the speed at which a

digital system may operate. Unfortunately, propagation delays

have more sinister effects as demonstrated by the diagram. By

the rules of Boolean algebra the output of the AND gate is X ⋅ X

and should be permanently 0. Now examine its timing diagram.

At point A the input, X, rises from 0 to 1. However, the X
–

input to the AND gate does not fall to 0 for a time equal to

the propagation delay of the inverter. Consequently, for a short

time the inputs of the AND gate are both true, and its output

rises to a logical 1 from points B to C (after its own internal

delay). The short pulse at the output of the AND gate is called

a glitch, and can be very troublesome in digital systems.There

are two solutions to this problem. One is to apply special

design techniques to the Boolean logic to remove the glitch.

The other is to connect the output to a flip-flop, and to clock

the flip-flop after any glitches have died away.

X X
Input Output

Input

Output

X
1

0

1

0
X

t

tHL t LH

Input waveform

Negated and delayed

output from invertor

Output from AND gate

is a glitch

X

X

t

X
1

0

1

0

1

0

X

Output F glitch

A B C

F = X · X =0

As you can see from Fig. 2.58, each
line in a truth table is mapped onto a
Karnaugh map; for example, in four
variables each logical combination
from A ⋅B ⋅ C ⋅ D to ⋅ ⋅ ⋅ has a
unique location. However, the key to
the Karnaugh map is the layout of the
squares. Adjacent squares differ by only
one variable. By adjacent we mean
horizontally and vertically adjacent,
but not diagonally adjacent. For exam-
ple, if you look the three-variable map
of Fig. 2.58(c) you will see that the left-
most two terms on the top line are ⋅
⋅ and ⋅B ⋅ . The only difference
between these terms is B and .

Figure 2.59 demonstrates the struc-
ture of a four-variable Karnaugh map
with variables A, B, C, and D. This map
has been repeated four times and, in each
case, the region in which the selected
variable is true has been shaded. The
unshaded portion of each map repre-
sents the region in which the chosen
variable is false.

We will soon see that you need to
develop three skills to use a Karnaugh
map.The first is to plot terms on the map
(i.e. transfer a truth table or a Boolean

B
CAC

BA

DCBA

2.5 An Introduction to Boolean algebra 69

(a) One-variable Karnaugh map.

0 1

A A A

A

AB AB

AB AB

B

1

0

0 1

(b) Two-variable Karnaugh map.

(b) Four-variable Karnaugh map.

(c) Three-variable Karnaugh map.

AB AB
00

00

01

11

10

01 11 10C CD

0

1

00 01 11 10

ABC

ABC

ABC

ABC ABC ABC

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

ABC ABC

Figure 2.58 The Karnaugh map.

(a) The region for which A is true.

(c) The region for which C is true. (d) The region for which D is true.

(b) The region for which B is true.

AB AB

ABCD

ABCD

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

ABCD ABCD ABCD

ABCDABCDABCD ABCD ABCDABCDABCD

ABCD ABCDABCDABCD ABCD ABCDABCDABCD

00

00

01

11

10

01 11 10

00

00 01 11 10

01

11

10

CD CD

CD CD
AB AB00

00

01

11

10

01 11 10 00

00

01

11

10

01 11 10

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

Figure 2.59 Regions of a Karnaugh map.

expression onto the map). The second skill is the ability to
group the 1s you’ve plotted on the map. The third skill is to
read the groups of 1s on the map and express each group as a
product term.

We now use a simple three-variable map to demonstrate
how a truth table is mapped onto a Karnaugh map. One-and
two-variable maps represent trivial cases and aren’t consid-
ered further. Figure 2.60 shows the truth table for a three-
variable function and the corresponding Karnaugh map.
Each of the three 1s in the truth table is mapped onto its
appropriate square on the Karnaugh map.

A three-variable Karnaugh map has four vertical columns,
one for each of the four possible values of two out of the three
variables. For example, if the three variables are A, B, and C,
the four columns represent all the combinations of A and B.
The leftmost column is labeled 00 and represents the region for
which A � 0, B � 0. The next column is labeled 01, and repre-
sents the region for which A � 0, B � 1. The next column is
labeled 11 (not 10), and represents the region for which A � 1,
B � 1. Remember that adjacent columns differ by only one
variable at a time. The fourth column, 10, represents the region
for which A � 1, B � 0. In fact, a Karnaugh map is made up of
all possible 2n minterms for a system with n variables.

The three-variable Karnaugh map in Fig. 2.60 has two
horizontal rows, the upper row corresponding to C � 0 and
the lower to C � 1. Any square on this Karnaugh map repre-
sents a unique combination of the three variables, from A ⋅ B
⋅ C to ⋅ ⋅ .

Figure 2.60 demonstrates how a function of three variables,
F � ⋅ ⋅ � ⋅ B ⋅ C �A ⋅ ⋅ C is plotted on a KarnaughBACBA

CBA

map. If it isn’t clear how the entries in the table are plotted on
the Karnaugh map, examine Fig. 2.60 and work out which cell
on the map is associated with each line in the table. A square
containing a logical 1 is said to be covered by a 1.

At this point it’s worth noting that no two 1s plotted on the
Karnaugh map of Fig. 2.60 are adjacent to each other, and
that the function F � ⋅ ⋅ � ⋅ B ⋅ C � A ⋅ ⋅ C cannot
be simplified. To keep the Karnaugh maps as clear and
uncluttered as possible, squares that do not contain a 1 are left
unmarked even though they must, of course, contain a 0.

Consider Fig. 2.61 in which the function F1 � A ⋅ B ⋅ �

A ⋅ B ⋅ C is plotted on the left-hand map. The two minterms in
this function are A ⋅ B ⋅ and A ⋅ B ⋅ C and occupy the cells for
which A � 1, B � 1, C � 0, and A � 1, B � 1, C � 1,
respectively. If you still have difficulty plotting minterms, just
think of them as coordinates of squares; for example, A ⋅ B ⋅
has the coordinates 1,1,0 and corresponds to the square
ABC � 110.

In the Karnaugh map for F1 two separate adjacent squares
are covered. Now look at the Karnaugh map for F2 � A ⋅ B at
the right-hand side of Fig. 2.61. In this case a group of two
squares is covered, corresponding to the column A � 1,
B � 1. As the function for F2 does not involve the variable C,
a 1 is entered in the squares for which A � B � 1 and C � 0,
and A � B � 1 and C � 1; that is, a 1 is entered for all values
of C for which AB � 11. When plotting a product term like
A ⋅ B on the Karnaugh map, all you have to do is to locate the
region for which AB � 11.

It is immediately obvious that both Karnaugh maps in
Fig. 2.61 are identical, so that F1 � F2 and A ⋅ B ⋅ C � A ⋅ B ⋅
� A ⋅ B. From the rules of Boolean algebra A ⋅ B ⋅ C � A ⋅ B ⋅
� A ⋅ B (C�) � A ⋅ B(1) � A ⋅ B. It should be apparent that
two adjacent squares in a Karnaugh map can be grouped
together to form a single simpler term. It is this property that
the Karnaugh map exploits to simplify expressions.

Simplifying Sum-of-Product expressions with a

Karnaugh map

The first step in simplifying a Boolean expression by means of
a Karnaugh map is to plot all the 1s (i.e. minterms) in the
function’s truth table on the Karnaugh map. The next step is
to combine adjacent 1s into groups of one, two, four, eight, or

C
C
C

C

C

C

BACBA

70 Chapter 2 Gates, circuits, and combinational logic

0 0 0
A B C F

0
0

1
0
1

0
0

1

1

1 1

0 0 1
0 1 0
0 1 1

1 0 0
1 0 1

1 1 0

1 1 1

00C
AB

01 11 10

0

1

Figure 2.60 Relationship between a Karnaugh map and

truth table.

00

0

1

0

1ABC

ABC

1

1

AB AB

AB

01 11 10 00 01 11 10C C

F1 = ABC + ABC F2 = AB Figure 2.61 Plotting two functions

on Karnaugh maps.

16. The groups of minterms should be as large as possible—a
single group of four minterms yields a simpler expression
than two groups of two minterms. The final stage in simplify-
ing an expression is reached when each of the groups of
minterms (i.e. the product terms) are ORed together to form
the simplified sum-of-products expression. This process is
best demonstrated by means of examples. In what follows, a
four-variable map is chosen to illustrate the examples.

Transferring a truth table to a Karnaugh map is easy
because each 1 in the truth table is placed in a unique square
on the map. We now have to demonstrate how the product
terms of a general Boolean expression are plotted on the map.
Figures 2.62–2.67 present six functions plotted on Karnaugh
maps. In these diagrams various sum-of-products expressions
have been plotted directly from the equations themselves,
rather than from the minterms of the truth table. The follow-
ing notes should help in understanding these diagrams.

1. For a four-variable Karnaugh map

one-variable product term covers 8 squares
two-variable product terms cover 4 squares

three-variable product terms cover 2 squares
four-variable product terms cover 1 square.

2. A square covered by a 1 may belong to more than one term
in the sum-of-products expression. For example, in
Fig. 2.63 the minterm ⋅ ⋅ C ⋅D belongs to two groups,

⋅ and C ⋅D. If a 1 on the Karnaugh map appears in two
groups, it is equivalent to adding the corresponding
minterm to the overall expression for the function plotted
on the map twice. Repeating a term in a Boolean expression
does not alter the value of the expression, because one of
the axioms of Boolean algebra is X � X � X.

3. The Karnaugh map is not a square or a rectangle as it
appears in these diagrams. A Karnaugh map is a torus or
doughnut shape. That is, the top edge is adjacent to the
bottom edge and, the left-hand edge is adjacent to the
right-hand edge. For example, in Figure 2.65 the term ⋅

covers the two minterms ⋅ ⋅ ⋅ and ⋅ ⋅ ⋅ at
the top, and the two minterms ⋅ ⋅ ⋅ and ⋅ ⋅ ⋅
at the bottom of the map. Similarly, in Fig. 2.66 the term

⋅ covers all four corners of the map. Whenever a groupDB

DCBADCBA
DCBADCBAD

A

BA
BA

2.5 An Introduction to Boolean algebra 71

ACD

ABCD

AD

AB 00

00

01 1 1

1

1 1

111

10

01 11 10CD

Figure 2.62 Plotting F � D �AC � BCD on a Karnaugh map.ADA

Figure 2.63 Plotting F � AB � CD on a Karnaugh map.

The two-variable term ⋅ D covers four

squares (the region A � 0 and D � 1).The

term ⋅ B ⋅ C ⋅ D covers one square and is part

of the same group as ⋅ D.A

A

A

The two-variable term ⋅ covers four squares

(the region A � 0 and B � 0).The two-variable

term C ⋅ D covers four squares (the region C � 1

and D � 1).The term ⋅ ⋅ C⋅ D is common to

both groups.

BA

BAAB

AB
00

00

01

11

1

1

1

1

1 1 1

10

01 11 10CD

CD

of terms extends across the edge of a Karnaugh map, we
have shaded it to emphasize the wraparound nature of
the map.

4. In order either to read a product term from the map, or to
plot a product term on the map, it is necessary to ask the

question, ‘what minterms (squares) are covered by this
term?’ Consider the term ⋅D in Fig. 2.62. This term covers
all squares for which A � 0 and D � 1 (a group of 4).

Having shown how terms are plotted on the Karnaugh
map, the next step is to apply the map to the simplification of

A

72 Chapter 2 Gates, circuits, and combinational logic

AB

00

01

11

10

00 01 11 10
CD

1 1

1

11 1

ACD

ABCD

BD

Figure 2.66 Plotting F � B
–

D
–

� AB
–
CD �

–
AC

–
D on a Karnaugh map.

The four-variable term covers four squares

(the region B � 0, D � 0). In this case the

adjacent squares are the corner squares. If you

examine any pair of horizontally or vertically

adjacent corners, you will find that they differ in

one variable only.

B ·D

Figure 2.64 Plotting on a Karnaugh map.F � A � BD � ABCD

Figure 2.65 Plotting F � �A D� B on a Karnaugh map.DCACDA

The one-variable term covers four squares

(the region A � 0).

A

The four-variable term covers four squares

(the region A � 0, D �0). Note that two squares

are at the top (A � 0, C � 0, D � 0) and two are

at the bottom (A � 0, C � 1, D � 0).

A ·D

ABCD

AB

A

AB
00

00

01

1 1

1 1 1

1 1 1

1 1

11

10

01 11 10CD

AB 00

00

01

11

10

01 11 10CD

1 1

1 1

1 1

AD

ACD

ABCD

the expressions. Once again, we demonstrate this process by
means of examples. In each case, the original function is plot-
ted on the left-hand side of the figure and the regrouped ones
(i.e. minterms) are plotted on the right-hand side.

Example 1 Figure 2.68 gives a Karnaugh map for the expres-
sion . The
simplified function is .F � A·B � B·D � A·C·D

F � A·B � A·B·C·D � A·B·C·D � A·B·C·D

Example 2 (Fig.
2.69). In this case only one regrouping is possible. The simpli-
fied function is .

Example 3

(Fig. 2.70). This function can be simplified to two product
terms with .F � B·D � B·D

A·B·C·D � A·B·C·D � A·B·C·D � A·B·C·D � A ·B ·C·D
F � A·B·C·D � A·B·C·D � A·B·C·D �

F � B·D � A·C·D � A·C·D � A·B·C

F � A·C·D � A·B·C � A·C·D � A·B·D

2.5 An Introduction to Boolean algebra 73

AB
00

00

01

11

10

01 11 10CD

1

11

1

1

ACD

ABC

BCD

AC

1

1

1

Figure 2.67 Plotting on a Karnaugh map.F � ACD � ABC � BCD � AC

Three two-variable groups overlap. In

this example, the square (i.e. minterm)

⋅ B ⋅ C ⋅ D belongs to groups B ⋅ C ⋅ D,

, and .A ·C ·DA ·B ·C
A

AB
00

00

01

11

10

00

01

11

10

01 11 10 00 01 11 10CD
AB

CD

1

1

1

1

1

1 1 11

1

1

1

1

1

AB AB
00

00

01

11

10

00

01

11

10

01 11 10 00 01 11 10CD CD

1 1

1

1

1

1

1 1

1 1

1

1

1 1

1

1

Figure 2.68 Karnaugh map for Example 1.

Figure 2.69 Karnaugh map for Example 2.

Example 4
(Fig. 2.71).We can group the minterms together in two

ways, both of which are equally valid; that is, there are two
equally correct simplifications of this expression.We can write
either or .

Applications of Karnaugh maps

Karnaugh maps can also be used to convert sum-of-products
expressions to the corresponding product-of-sums form. The
first step in this process involves the generation of the com-
plement of the sum-of-products expression.

Example 5 The Karnaugh map in Fig. 2.72 demonstrates how
we can obtain the complement of a sum-of-products expression.
Consider the expression
(left-hand side of Fig. 2.72). If the squares on a Karnaugh
map covered by 1s represent the function F, then the remain-
ing squares covered by 0s must represent , the complement
of F. In the right-hand side of Fig. 2.72, we have plotted the

F

F � C·D � A·B � A·B � C·D

F � A·B � B·C � A·BF � A·B � A·C � A·B

A·B·C
F � A·B·C � A·B·C � A·B·C � A·B·C � complement of this function. The group of four 0s corre-

sponds to the expression .

Example 6 We can use a Karnaugh map to convert of sum-
of-products expression into a product-of-sums expression.
In Example 5, we used the Karnaugh map to get the comple-
ment of a function in a product-of-sums form. If we then
complement the complement, we get the function but in a
sum-of-products form (because de Morgan’s theorem allows
us to step between SoP and PoS forms). Let’s convert

into product of sums form
(Fig. 2.73).

The complement of F is defined by the zeros on the map
and may be read from the right-hand map as

We now have an expression for F in product-of-sums form.

� (C � D)(B � C)(A � D)

 F � C·D � B·C � A·D

 F � C·D � B·C � A·D

F � A·B·C � C·D � A·B·D

F � B·D

74 Chapter 2 Gates, circuits, and combinational logic

AB
00

00

01

11

10

01 11 10
AB

00 01 11 10CD

00

01

11

10

CD

1 1

1 1

1 1

1 1 1 1

1

1

11

1

1

(a) Ones placed. (b) Ones grouped. (c) Alternate grouping.

00 01 11 10
AB

00 01 11 10
AB

00 01 11 10
AB

C C C

0

1

0

1

0

1

1

1

1 1 1

1

1 1

1

1

1

1 1

11

Figure 2.70 Karnaugh map for Example 3.

Figure 2.71 Karnaugh map for Example 4.

00

00

01

11

10

00

01

11

10

01 11 10 00 01 11 10
CD

AB AB
CD

1

1

1

1 1 1 1

0

0 0

0

1

1

111

Figure 2.72 Example 5—using a

Karnaugh map to obtain the

complement of a function.

Using the Karnaugh map to design a circuit

with NAND logic

Now that we’ve demonstrated how Karnaugh maps are used
to simplify and transform Boolean expressions, we’re going
to apply the Karnaugh map to the design of a simple logic cir-
cuit using NAND logic only.

A fire detection system protects a room against fire by means
of four sensors. These sensors comprise a flame detector, a
smoke detector, and two high-temperature detectors located at
the opposite ends of the room. Because such sensors are prone
to errors (i.e. false alarms or the failure to register a fire), the fire
alarm is triggered only when two or more of the sensors indi-
cate the presence of a fire simultaneously. The output of a sen-
sor is a logical 1 if a fire is detected, otherwise a logical 0.

The output of the fire alarm circuit is a logical 1 whenever
two or more of its inputs are a logical one. Table 2.19 gives the
truth table for the fire detector circuit. The inputs from the
four sensors are labeled A, B, C, and D. Because it is necessary
only to detect two or more logical 1s on any of the lines, the
actual order of A, B, C, and D columns doesn’t matter. The
circuit is to be constructed from two-input and three-input
NAND gates only.

The output of the circuit, F, can be written down directly
from Table 2.19 by ORing the 11 minterms to get the expression

Plotting these 11 minterms terms on a Karnaugh map we
get Fig. 2.74(a). The next step is to group these terms together
into six groups of four minterms (Fig. 2.74(b)). Note that the
minterm A�B�C�D belongs to all six groups.

Therefore, the simplified sum-of-products form of F is
given by

This expression is (as you might expect) the sum of all possible
two-variable combinations.

F � A·B � A·C � A·D � B·C � B·D � C·D

� A·B·C·D � A·B·C·D � A·B·C·D
� A·B·C·D � A·B·C·D � A·B·C·D � A·B·C·D

 F � A·B·C·D � A·B·C·D � A·B·C·D � A·B·C·D
In order to convert the expression into NAND logic only

form, we have to eliminate the five logical OR operators. We
do that by complementing F twice and then using de Morgan’s
theorem.

Although we have realized the expression in NAND logic
as required, it calls for a six-input NAND gate. If the expres-
sion for F is examined, it can be seen that six terms are
NANDed together, which is the same as ANDing them and
then inverting the result. Because of the associative property

� A·B·A·C·A·D·B·C·B·D·C·D

F � F � A·B � A·C � A·D � B·C � B·D � C·D

2.5 An Introduction to Boolean algebra 75

AB
00

00

01

11

1 1 1 1

1 1

110

00

01

11

10 0

0

00

01 11 10 00 01 11 10CD
AB

CD

0000

000

0

Figure 2.73 Example 6—using a

Karnaugh map to convert an expression

from SoP to PoS form.

Inputs Output

A B C D F

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Table 2.19 Truth table for a fire detector.

of Boolean variables, we can write X (Y ⋅ Z) � (X ⋅ Y)Z and
hence extending this to our equation we get

Figure 2.75 shows how this expression can be implemented
in terms of two- and three-input NAND gates.

Using Karnaugh Maps—an example

A circuit has four inputs, A, B, C, and D, representing the 16
natural binary integers from 0000 to 1111 (i.e. 0 to 15). The
output of the circuit, F, is true if the input is divisible by a
multiple of 4, 5, 6, or 7, with the exception of 15, in which case
the output is false. Zero is not divisible by 4, 5, 6, or 7. Suppose
we wish to design a logic circuit to implement F using NAND
gates only.

We can obtain a sum-of-products expression for F from
Table 2.20 by writing down the sum of the minterms (i.e. the
lines with a 1).

C . D

� A·B·C·D � A·B·C·D � A·B·C·D � A·B·C·D

F � A·B·C·D � A·B·C·D � A·B·C·D � A·B·

F � A·B·A·C·A·D·B·C·B·D·C·D

By means of Boolean algebra the expression can be simpli-
fied to

Figure 2.76 gives the Karnaugh map for F. In Fig. 2.77 the
squares covered by 1s are formed into two groups of four.
This gives , which is reassuringly the same as
the result obtained above.

F � A·B � A·D

� A·B � A·D

� A·B(C � C) � A·D(B � B)

� A·B·C � A·B·C � A·B·D � A·B·D

� A·B·D(C � C)

 F � A·B·C(D � D) � A·B·C(D � D) � A·B·D(C � C)

76 Chapter 2 Gates, circuits, and combinational logic

Figure 2.74 Karnaugh map corresponding

to Table 2.19.

AB
00

00

01

11

10

00

01

11

10

(a) Location of the 1s. (b) After grouping the 1s.

01 11 10 00 01 11 10CD
AB

CD

1

1

1 1

1 1 1 1

11

1

1

1 1 1

1111

1 1 1

A

B

C

D

Figure 2.75 NAND-only circuit for fire detector.

Inputs Number F

A B C D

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 2 0

0 0 1 1 3 0

0 1 0 0 4 1 Divisible by 4

0 1 0 1 5 1 Divisible by 5

0 1 1 0 6 1 Divisible by 6

0 1 1 1 7 1 Divisible by 7

1 0 0 0 8 1 Divisible by 4

1 0 0 1 9 0

1 0 1 0 10 1 Divisible by 5

1 0 1 1 11 0

1 1 0 0 12 1 Divisible by 6

1 1 0 1 13 0

1 1 1 0 14 1 Divisible by 7

1 1 1 1 15 0 False by definition

Table 2.20 Truth table for example.

To obtain a product-of-sums expression, it’s necessary to
generate the complement of F in a sum-of-products form
and then complement it.

Get the complement of F

Complement of F in
product-of-sums form

Multiply out sum terms

Complement of F in
sum-of-products form

Complement in
simplified sum-of-
products form

Complement the
complement to get F

Function in required
product-of-sums form

� (A � D)(A � B)

F � A·D � A·B

� A·D � A·B

� A·D � A·B � B·D

� A·A � A·D � A·B � B·D

� (A � B)(A � D)

F � A·B � A·D

F � A·B � A·D

Note that the complement of F in sum-of-products form
could have been obtained directly from the Karnaugh map of
F by considering the squares covered by zeros.

To convert the expression into NAND
logic form, the ‘�’ must be eliminated.

The inverse functions and can be generated by two-
input NAND gates with their inputs connected together.
Figure 2.78 implements F in NAND logic only.

Karnaugh maps and don’t care conditions

We now demonstrate how Karnaugh maps can be applied
to problems in which the truth table isn’t fully specified; that
is, for certain input conditions the output is undefined.
Occasionally, a system exists in which a certain combination
of inputs can’t happen; or, if it does, we don’t care what the
output is. In such cases, the output may be defined as either
true or false.

Consider the Karnaugh map of Fig. 2.79 for
. Now suppose that the input condi-

tions and cannot occur. We have marked
these two inputs on the map with an X. The value of X is
undefined (if the input can’t occur then the value of the out-
put is undefined).

If an input can’t occur and the output is undefined, we can
cover that square with either a 0 or a 1. In Fig. 2.79(b) we have
made one of the Xs a 1 and one of the Xs a zero. We can
express the output function as F � B ⋅ D, which is simpler
than the function in Fig. 2.79(a).

A don’t care condition is set to a 0 or a 1 in order to simplify
the solution. There is an important exception. Although an
impossible input can’t occur in normal circumstances, it
could under fault conditions (e.g. when an input circuit
fails). No designer would assign an output to an impossible
input condition that might lead to an unsafe or dangerous
situation. However, the ultimate aim is to cover all the 1s in

A·B·C·DA·B·C·D
F � A·B·D � A·B·C·D

DA

F � F � A·B � A·D � A·B·A·D

F � A·B � A·D

2.5 An Introduction to Boolean algebra 77

AB
00

00

01

11

10

01 11 10CD

1

1

1

1 1 1

1 1

1

1

1

1

1 1

1 1

AB
00

00

01

11

10

01 11 10CD

A.D

A.B

Figure 2.76 Karnaugh map for F.

Figure 2.77 Karnaugh map after regrouping the minterms.

A A

AB

AB

AD

AD

B

D
D

F

Figure 2.78 NAND-only circuit.

the map and to incorporate them in the smallest number of
large groups.

The following example demonstrates the concept of
impossible input conditions. An air conditioning system has
two temperature control inputs. One input, C, from a cold-
sensing thermostat is true if the temperature is below 15�C
and false otherwise. The other input, H, from a hot-sensing
thermostat is true if the temperature is above 22�C and false
otherwise. Table 2.21 lists the four possible logical conditions
for the two inputs.

The input condition C � 1, H � 1 in Table 2.20 has no real
meaning, because it’s impossible to be too hot and too cold
simultaneously. Such an input condition could arise only if at
least one of the thermostats failed. Consider now the example
of an air conditioning unit with four inputs and four outputs.
Table 2.22 defines the meaning of the inputs to the controller.

The controller has four outputs P, Q, R, and S. When P � 1
a heater is switched on and when Q � 1 a cooler is switched
on. Similarly, a humidifier is switched on by R � 1 and a
dehumidifier by S � 1. In each case a logical 0 switches off the

appropriate device. The relationship
between the inputs and outputs is as
follows.

● If the temperature and humidity are
both within limits, switch off the
heater and the cooler. The humidifier
and dehumidifier are both switched
off unless stated otherwise.

● If the humidity is within limits,
switch on the heater if the tempera-
ture is too low and switch on the
cooler if the temperature is too high.

● If the temperature is within limits,
switch on the heater if the humidity is
too low and the cooler if the humidity
is too high.

● If the humidity is high and the tem-
perature low, switch on the heater. If
the humidity is low and the tempera-
ture high, switch on the cooler.

● If both the temperature and humidity are high switch on
the cooler and dehumidifier.

● If both the temperature and humidity are too low switch on
the heater and humidifier.

The relationship between the inputs and outputs can now be
expressed in terms of a truth table (Table 2.23). We can draw
Karnaugh maps for P to S, plotting a 0 for a zero state, a 1 for a
one state, and an X for an impossible state. Remember that an
X on the Karnaugh map corresponds to a state that cannot
exist and therefore its value is known as a don’t care condition.

78 Chapter 2 Gates, circuits, and combinational logic

AB
00

00

01

11

10

00

01

11

10

01 11 10 00 01 11 10CD
AB

CD

1

1 1

1

1 1

X X XX

(a) The function F = ABD + ABCD.

Note that the inputs ABCD and ABCD

cannot occur

(b) The function F = BD.

Minterm ABCD is included to simplify

the expression

Figure 2.79 The effect of don’t care conditions.

Inputs Meaning

C H

0 0 Temperature OK

0 1 Too hot

1 0 Too cold

1 1 Impossible condition

Table 2.21 Truth table for a pair of temperature sensors.

Input Name Meaning when input � 0 Meaning when input � 1

H Hot Temperature � upper limit Temperature � upper limit

C Cold Temperature � lower limit Temperature � lower limit

W Wet Humidity � upper limit Humidity � upper limit

D Dry Humidity � lower limit Humidity � lower limit

Table 2.22 Truth table for a climate controller.

Figure 2.80 provides a Karnaugh map corresponding to
output P, the heater. We have marked all the don’t care condi-
tions with an X. We could replace the Xs by 1s or 0s. However,
by forcing some of the don’t care outputs to be a 1, we can
convert a group of 1s into a larger group.

Figure 2.81 provides Karnaugh maps for outputs P, Q, R,
and S. In each case we have chosen the don’t care conditions
to simplify the output function. For example, the Karnaugh
map of Fig. 2.81(a) corresponds to output P where we have
included six of the don’t care conditions within the groupings
to get P � C � H ⋅ D.

You should appreciate that by taking this approach we have
designed a circuit that sets the output 1 for some don’t care
inputs and 0 for other don’t care inputs. You cannot avoid
this. The output of any digital circuit must always be in a 0 or
a 1 state. As we said at the beginning of this chapter, there is
no such state as an indeterminate state. It is up to the designer
to choose what outputs are to be assigned to don’t care
inputs.

Exploiting don’t care conditions—constructing a

seven-segment decoder

We now design a BCD-to-seven-segment decoder (BCD
means binary-coded decimal). The decoder has a 4-bit nat-
ural binary BCD input represented by D, C, B, A, where A is
the least-significant bit. Assume that the BCD input can
never be greater than 9 (Chapter 4 describes BCD codes). The
seven-segment decoder illustrated by Fig. 2.82 has seven out-
puts (a to g), which are used to illuminate any combination of
bars a to g of a seven-segment display; for example, if the code
for 2 (i.e. 0010) is sent to the decoder, segments a, b, d, e, and
g are illuminated to form a ‘2’.

The truth table for this problem is given in Table 2.24. This
table has four inputs and seven outputs (one for each of the
segments).

We can now solve the equation for segments a to g. By
using Karnaugh maps the don’t care conditions can be
catered for.

2.5 An Introduction to Boolean algebra 79

Inputs Condition Outputs

H C W D P Q R S

heater cooler humidifier dehumidifier

0 0 0 0 OK 0 0 0 0

0 0 0 1 Dry 1 0 0 0

0 0 1 0 Wet 0 1 0 0

0 0 1 1 Impossible X X X X

0 1 0 0 Cold 1 0 0 0

0 1 0 1 Cold and dry 1 0 1 0

0 1 1 0 Cold and wet 1 0 0 0

0 1 1 1 Impossible X X X X

1 0 0 0 Hot 0 1 0 0

1 0 0 1 Hot and dry 0 1 0 0

1 0 1 0 Hot and wet 0 1 0 1

1 0 1 1 Impossible X X X X

1 1 0 0 Impossible X X X X

1 1 0 1 Impossible X X X X

1 1 1 0 Impossible X X X X

1 1 1 1 Impossible X X X X

Table 2.23 Truth table for a climate controller.

HC
00

00

01

11

10

01 11 10WD

1

1

1

1

X X X X

X

X

X

Figure 2.80 Karnaugh map for P (the heater).

Figure 2.83 gives the Karnaugh map for segment a. From
the Karnaugh map we can write down the expression for

.
An alternative approach is to obtain a by considering

the zeros on the map to get the complement of a. From
the Karnaugh map in Fig. 2.84 we can write

. Therefore,a � D·C·B·A � C·B·A

a � D � B � C·A � C·A

� (D � C � B � A)

This expression offers no improvement over the first realiza-
tion of a.

Figure 2.85 provides the Karnaugh map for segment b,
which gives . We can proceed as we did
for segment a and see what happens if we use . Plotting zeros
on the Karnaugh map for we get
Fig. 2.86. Therefore,

� C � B·A � B·A

� (C � B � A)(C � B � A)
 b � C·B·A � C·B·A

b � C � B·A·C·B·Ab
b

b � C � B·A � B·A

� D·C � C·A � B � C·A

� D·C � D·A � C·A � B � C·A

� B·A � C·A � B·A

� D·C � D·B � D·A � C·B � C·A � C·B � B

� B·B � B·A � C·A � B·A � A·A

� D·C � D·B � D·A � C·C � C·B � C·A � C·B

(C � B � A)

 a � D·C·B·A � C·B·A

80 Chapter 2 Gates, circuits, and combinational logic

Figure 2.81 Karnaugh maps for outputs

P, Q, R, and S.

HC

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00 01 11 10

00 01 11 10

00 01 11 10

00 01 11 10

WD

HC

WD

HC

WD

HC
WD

1

1

1 1

1

1

X

X

XX

1

XX XX

X X X X X

X

X

X 1

X 1

X

X

X

X X X

1X

X

X

X

X

(a) P = C + HD. (b) Q = H + CW.

(c) R = CD. (d) S = HW.

Decoder

Display

The decoder converts
a 4-bit binary numeric
code on D, C, B, A into
the signals that light up
segments a to g of the
display

a
b
c

d
e
f
g

a

bf

g

e

d

c

Figure 2.82 The seven-segment display.

2.5 An Introduction to Boolean algebra 81

Inputs Character Outputs

D C B A a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 0 0 1 1

1 0 1 0 Forbidden code X X X X X X X

1 0 1 1 X X X X X X X

1 1 0 0 X X X X X X X

1 1 0 1 X X X X X X X

1 1 1 0 X X X X X X X

1 1 1 1 X X X X X X X

Table 2.24 Truth table for a seven—segment display.

DC

00

01

11

10

00

01

11

10

00 01 11 10 00 01 11 10BA
DC

BA

1 1

1

1 1

1

1 1

1

1

1

1

1

1

11

X

X

X

X

X

X

X

×

X

X

X

X

DC

00

01

11

10

00

01

11

10

00 01 11 1000 01 11 10BA
DC

BA

X

X X

X

X X

X

X

X

X X

X

0

0

0

0

Figure 2.83 Karnaugh map for the

segment a control signal.

Figure 2.84 Karnaugh map for the

complement of segment a.

This expression yields the same result as that obtained
directly by considering the 1s on the Karnaugh map. The
equations for the remaining five segments can be considered
in a similar way.

Example of the use of Karnaugh maps to

implement a circuit

A logic circuit has four inputs D, C, B, A, which represent two
pairs of bits (D,C) and (B,A). Bits (B,A) are subtracted from bits
(D,C) to give a result F1, F0 and an n-bit that indicates a negative
result. Table 2.25 provides a truth table for this problem.

We first construct three Karnaugh maps for the outputs
and use them to obtain simplified sum-of-product expres-
sions (Table 2.25).

Figure 2.87 provides the three Karnaugh maps cor-
responding to outputs n, F1, and F0 in the truth table. The 1s
have been regrouped under each truth table to provide the
minimum number of large groups.

We can write down expressions for n, F1, and F0 from
Fig. 2.87 as

 F0 � C·A � C·A
 F1 � D·C·B � D·C·B � D·B·A � D·B·A

n � D·B � C·B·A � D·C·A

82 Chapter 2 Gates, circuits, and combinational logic

1 1

1

1 1

1

1 1

11

1

1

1 1

1

1

DC

00

01

11

10

00

01

11

10

00 01 11 10 00 01 11 10BA
DC

BA

X

X

X

X X

X

X

X

X

X X

X

Figure 2.86 Karnaugh map for the

complement of segment b.

DC

00

01

11

10

00

01

11

10

00 01 11 10 00 01 11 10BA
DC

BA

0

0

X

X

X X

X X X

X

X

X

X

X

0

0

Inputs Number Outputs

n F1 F0

D C B A

0 0 0 0 0�0�0 0 0 0

0 0 0 1 0�1� �1 1 0 1

0 0 1 0 0� 2� �2 1 1 0

0 0 1 1 0�3� �3 1 1 1

0 1 0 0 1� 0�1 0 0 1

0 1 0 1 1�1�0 0 0 0

0 1 1 0 1� 2� �1 1 0 1

0 1 1 1 1�3� �2 1 1 0

1 0 0 0 2�0�2 0 1 0

1 0 0 1 2�1�1 0 0 1

1 0 1 0 2�2�0 0 0 0

1 0 1 1 2�3� �1 1 0 1

1 1 0 0 3�0�3 0 1 1

1 1 0 1 3�1�2 0 1 0

1 1 1 0 3�2�1 0 0 1

1 1 1 1 3�3�0 0 0 0

Table 2.25 Truth table for a two-bit subtractor.

Figure 2.85 Karnaugh map for

segment b.

2.6 Special-purpose logic
elements

So far, we’ve looked at the primitive logic elements from
which all digital systems can be constructed. As technology
progressed, more and more components were fabricated on
single chips of silicon to produce increasingly complex cir-
cuits. Today, you can buy chips with tens of millions of gates
that can be interconnected electronically (i.e. the chip pro-
vides a digital system whose structure can be modified elec-
tronically by the user). Indeed, by combining microprocessor
technology, electronically programmable with arrays of
gates, we can now construct self-modifying (self-adaptive)
digital systems.

Let’s briefly review the development of digital circuits. The
first digital circuits contained a few basic NAND, NOR, AND
gates, and were called small-scale integration (SSI). Basic SSI
gates were available in 14-pin dual-in-line (DIL) packages.
Dual-in-line simply means that there are two parallel rows of
pins (i.e. contacts) forming the interface between the chip
and the outside world. The rows are 0.3 inches apart and the

pins are spaced by 0.1 inch. Two pins are used for the power
supply (Vcc � �5.0 V and ground � 0 V). These devices are
often called 74-series logic elements because the part number
of each chip begins with 74; for example, a 7400 chip contains
four NAND gates. Today, the packaging of such gates has
shrunk to the point where the packages are very tiny and are
attached to circuit boards by automatic machines.

It soon became possible to put tens of gates on a chip and
manufacturers connected gates together to create logic func-
tions such as a 4-bit adder, a multiplexer, and a decoder. Such
circuits are called medium-scale integration (MSI). By the
1970s entire systems began to appear on a single silicon chip,
of which the microprocessor is the most spectacular example.
The technology used to make such complex systems is called
large-scale integration (LSI). In the late l980s LSI gave way to
very-large-scale integration (VLSI), which allowed designers
to fabricate millions of transistors on a chip. Initially, VLSI
technology was applied to the design of memories rather
than microprocessors. Memory systems are much easier to
design because they have a regular structure (i.e. a simple
memory cell is replicated millions of times).

2.6 Special-purpost logic elements 83

DC

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00 01 11 10

00 01 11 10 00 01 11 10 00 01 11 10

00 01 11 10 00 01 11 10BA
DC

BA
DC

BA

DC
BA

DC
BA

DC
BA

1

1

1 1

1

1

1 1

1 1

1

1 1

1

1 1 11

1

1

1 1

1

1

1 1 1 1

1

1

1 1

1

1

1 1

1

1

11

(a) Karnaugh map for n.

(a) Regrouped Karnaugh map for n. (b) Regrouped Karnaugh map for F1. (c) Regrouped Karnaugh map for F0.

(b) Karnaugh map for F1. (c) Karnaugh map for F0.

Figure 2.87 The Karnaugh maps for the subtractor.

A major change in digital technology occurred in the mid
1990s. From the 1970s to the 1990s, digital logic had largely
used a power supply of �5 V. As the number of gates per chip
approached the low millions, the problem of heat manage-
ment created a limit to complexity. It was obvious that more
and more transistors couldn’t be added to a chip without
limit because the power they required would destroy the chip.
Radiators and fans were used to keep chips cool. Improvements
in silicon technology in the 1990s provided digital logic ele-
ments that could operate at 3 V or less and, therefore, create
less heat. A further impetus to the development of low-power
systems was provided by the growth of the laptop computer
market.

We now look at the characteristics of some of the simple
digital circuits that are still widely available—even though
VLSI systems dominate the digital world, designers often
have to use simple gates to interface these complex chips to
each other.

2.6.1 The multiplexer

A particularly common function arising regularly in digital
design is the multiplexer, which we met earlier in this chapter.
Figure 2.88 shows the 74157, a quad two-input multiplexer,
which is available in a 16-pin MSI circuit. The prefix quad
simply means that there are four multiplexers in one package.

Each of the four Y outputs is connected to the correspond-
ing A input pin when SELECT � 0 and to the B input when
SELECT � 1. The multiplexer’s input forces all Y
outputs into logical 0 states whenever . We have
already described one use of the multiplexer when we looked
at some simple circuits.

STROBE � 1
STROBE

Figure 2.89 illustrates the structure of a 1-of-8 data
multiplexer, which has eight data inputs, D0, D1, D2, . . ., D7,
an output Y, and three data select inputs, S0, S1, S2. When S0,
S1, S2 � 0, 0, 0 the output is Y � D0, and when S0, S1, S2 � 1,
0, 0 the output Y � D1, etc. That is, if the binary value at the
data select input is i, the output is given by Y � Di.

A typical application of the 1-of-8 multiplexer is in the
selection of one out of eight logical conditions within a digital
system. Figure 2.90 demonstrates how the 1-of-8 multiplexer
might be used in conjunction with a computer’s flag register
to select one of eight logical conditions. We cover registers in
the next chapter—all we need know at this points that a regis-
ter is a storage unit that holds the value of 1 or more bits.

The flag register in Fig. 2.90 stores the value of up to eight
so-called flags or marker bits. When a computer performs an
operation (such as addition or subtraction) it sets a zero flag
if the result was zero, a negative flag if the result was negative,
and so on. These flags define the state of the computer. In
Fig. 2.90 the eight flag bits are connected to the eight inputs of
the multiplexer. The 3-bit code on S0 to S2 determines which
flag bit is routed to the multiplexer’s Y output. This code
might be derived from the instruction that the computer is
currently executing. That is, the bits of the instruction can be
used to select a particular flag (via the multiplexer) and the
state of this flag bit used to determine what happens next.

Suppose a computer instruction has the form IF x � 0

THEN do something.The computer compares x with 0,which
sets the zero flag if x is equal to zero. The bits that encode this
instruction provide the code on S0 to S2 that routes the Z flag to
the Y output.Finally, the computer uses the value of the Y output
to ‘do something’or not to ‘do something’. Later we shall see how
alternative courses of action are implemented by a computer.

2.6.2 The demultiplexer

The inverse function of the multiplexer is the demultiplexer,
which converts a binary code on n inputs into an asserted

84 Chapter 2 Gates, circuits, and combinational logic

Inputs Outputs

Y1

Y2

Y3

Y4

Multiplexer

1A
1B

2B

3A
3B

4A
4B

2A

STROBE

SELECT

The STROBE input enables the
multiplexer. When STROBE = 1
all Y outputs are set to zero.
When STROBE = 0 the outputs
are either the A or B inputs

The SELECT inputs determines
whether the output is connected
to the A input or the B input

switch

switch

switch

switch

Figure 2.88 The 74157 quad two-input multiplexer.

D0

D1
D2
D3

D4
D5

D6
D7

S0 S1 S2

A

Multiplexer

B
C
D
E
F
G

H

Y output

Eight inputs
Three-bit select
input connects one
of eight inputs to
the Y output

Figure 2.89 The 1-of-8 multiplexer.

level on one of 2n outputs. The demulti-
plexer circuit of Fig. 2.91 has three inputs
A, B, and C and eight outputs Y0 to Y7.
The three inverters generate the comple-
ments of the inputs A, B, and C. Each of
the eight AND gates is connected to three
of the six lines A, , B, , C, (each of the
three variables must appear in either its
true or complemented forms).

The output of first gate, Y0, is
and is 1 if all inputs to the AND gates are
1 (i.e. , ,). Therefore,
Y0 is 1 when A � 0, B � 0, C � 0. If you
examine the other AND gates, you will
see that each gate is enabled by one of the
eight possible combinations of A, B, C.

This circuit is called a 3-line to 8-line
demultiplexer, because it converts a 3-bit
binary value, A, B, C, into one of 23 � 8
outputs. Table 2.26 provides a truth table
for this circuit, which is also called a
decoder because it can take, for example,
the bits that define a computer instruc-
tion and decode it into individual
instructions as Fig. 2.92 demonstrates.

Let’s look at an actual demultiplexer,
the 74138 3-line to 8-line demultiplexer
(Fig. 2.93). The 74138’s eight outputs,
to , are active-low and remain in a high
state unless the corresponding input is
selected. The device has three enable
inputs, , , E3, which must be 0, 0, 1
respectively, for the chip to be selected.
When the chip is selected, one (and only
one) of the eight outputs is forced into a
0 state by the 3-bit code at the select
inputs, A, B, C. Remember that the
74138’s outputs are active-low.

One application of this circuit is as a
device selector. Suppose that a system has
eight devices and only one can be active
(in use) at any instant. If each device is
enabled by a 0 at its input, the binary
code applied to the 74138’s C, B, A inputs
will determine which device is selected
(assuming that the 74138 is enabled by 0,
0, 1 at its , , E3 enable inputs).

The demultiplexer generates the 2n

minterms of an n-bit function. Why?
Because a three-variable function has
eight minterms and the demultiplexer
converts a 3-bit code into one of eight
values. For example, if you present a

E2E1

E2E1

Y7

Y0

C � 1B � 1A � 1

A·B·C

CBA

2.6 Special-purpost logic elements 85

Flag register

Z N C

Output

8-way multiplexer

D0

D1

D2

D3

D4

D5

D6

S0 S1 S2

Select register

Select
The flag register contains
eight status bits such as the
zero, carry, and negative
flags

The 3-bit code from
the select register
determines which flag
bit appears at the output.

Figure 2.90 The 1-of-8 multiplexer.

C

C

B

B

A

A

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

For each value on C, B, A
from 000 to 111, one of
Y0 to Y7 goes high

Figure 2.91 The demultiplexer (3-line to 8-line decoder).

74138 with the code 101 (representing C� �A), output will
be asserted low.

By ORing together the appropriate minterms we can gen-
erate an arbitrary sum of products expression in n variables.
In other words, any function can be implemented by a
demultiplexer and OR gate.

Figure 2.94 demonstrates how a 3-line to 8-line decoder
can be used to implement a full-adder that adds three bits
to generate a sum and a carry. Chapter 4 discusses binary
arithmetic and adders—all we need say here is that the sum of
bits A, B, and Cin is given by the Boolean expression in ⋅ ⋅ B
� in ⋅ A ⋅ � in ⋅ ⋅ � Cin ⋅ A ⋅ B and the carry by in ⋅ B ⋅ A
� Cin ⋅ ⋅ A � Cin ⋅ ⋅ B � Cin ⋅ A ⋅ B.

Note that the outputs of the 74LS138 are active-low and
therefore it is necessary to employ a NAND gate to generate
the required sum-of-products expression.

Another application of the demultiplexer is in decoding
binary characters. Consider the ISO/ASCII character code (to
be described in Chapter 4) which represents the alpha-
numeric characters (A–Z, 0–9, and symbols such as !, @, #, $,
% . . .) together with certain non-printing symbols such
as the back space and carriage return. The ASCII codes for
some of these non-printing control codes are given in
Table 2.27.

Suppose we receive an ASCII code from a keyboard
and wish to decode its function in hardware. First note
that all the codes of interest start with 00001. We can use
the most-significant five bits to enable a 74LS138 3-line
to 8-line decoder and then decode the three least-significant
bits of the word 00001d2d1d0 to distinguish between the
control codes. Figure 2.95 demonstrates how this is
achieved. Each output from the decoder can be fed to a cir-
cuit to perform the appropriate action (e.g. carriage
return).

Medium-scale logic devices like the 74138 make it easy to
design circuits with just a handful of chips. However, many

AB
CBACBC

AC

Y5B

86 Chapter 2 Gates, circuits, and combinational logic

Inputs Outputs

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Table 2.26 Truth table for a 3-line demultiplexer.

The 3-bit op-code
in the instruction register
is decoded in to one of
eight actions.

Instruction register

Op-code

Add

Decoded instruction

Subtract

Load

Store

Branch on zero

Branch on not zero

Branch unconditonally

Stop

Figure 2.92 Application of a demultiplexer as an instruction

decoder.

74138 3-line to 8-line
demultiplexer

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Eight active-low
outputs

A

B

C

Control
inputs

E1

E2

E3

Enable
inputs

1

0

0

Select

Figure 2.93 The 74138 3-line to 8-line decoder.

circuits are now constructed from special-purpose user-pro-
grammable logic elements. Indeed, today’s very low cost sin-
gle-chip microprocessors sometimes make it feasible to
program the microprocessor to carry out the required logic
function. These microprocessors are called microcontrollers
to distinguish them from their more powerful relatives in PCs
and workstations.

2.7 Tri-state logic

The logic elements we introduced at the beginning of this
chapter are used to create functional units in which one or

more logical outputs are generated from
several inputs. A computer is composed
of the interconnection of such func-
tional units together with the storage
elements (registers) to be described in
Chapter 3. We now examine a special
type of gate that enables the various
functional units of a computer to be
interconnected. This new gate can be any
of the gates we’ve already described—it’s
not the gate’s logical function that’s dif-
ferent, it’s the behavior of its output. A
logic element with a tri-state output has
the special property that the output can
be in a 0 state, a 1 state, or an unconnected
state (hence the term tri-state). Before
we can explain the operation of tri-state
gates, we have to introduce the reason for
their existence—the bus.

2.7 Tri-state logic 87

D

D

D

D

D

D

2

0

4

3

1

5

74138 3-line to
8-line
demultiplexer

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A

B

C

Control
inputs

E1

E2

E31

0

0

A

B

C in

Carry Sum

C BAin

C BAin

C BAin

C BAin

C BAin

C BAin

C BAin

C BAin

Eight minterms

The circuit adds bits
A + B + Cin to
generate a sum and
a carry out

Figure 2.94 Generating a

logic function with a

demultiplexer.

Mnemonic Name Value

BS Back space 00001000

LF Line feed 00001010

CR Carriage return 00001101

HT Horizontal tabulate 00001001

VT Vertical tabulate 00001011

Table 2.27 ASCII control characters.

D

74138 3-line to
8-line
demultiplexer

Y

Y

Y

Y

Y

Y

Y

Y

0

1

2

3

4

5

6

7

A

B

C

E1

E2

E3

BS

HT

LF

VT

CR

d

d

d

d

d

d

d

d

7

6

5

4

3

2

1

0

Decoded control
characters

ASCII code
Bits d to d must be
00001 and bits
d to d are decoded
into one of eight control
values

7 3

0 2

Figure 2.95 Decoding ASCII control characters with a demultiplexer.

2.7.1 Buses

A computer is like a city. Just as roads link homes, shops, and
factories, buses link processing units, storage devices, and
interfaces. Figure 2.96 shows a digital system composed of
five functional units, A, B, C, D, and E. These units are linked
together by means of two data highways (or buses), P and Q,
permitting data to be moved from one unit to another. Data
can flow onto the bus from a device connected to it and off

the bus to any other device. Buses may be unidirectional (i.e.
data always flows the same way) or bidirectional (i.e. data can
flow in two directions—but not simultaneously).

A bus is normally represented diagrammatically by a single
thick line or a wide shaded line as in Fig. 2.96. Real buses are
composed of several individual wires (i.e. electrical connec-
tions). Modern computer buses have 100 or more lines,
because a bus has to carry data, addresses, control signals, and
even the power supply. Indeed the nature of a bus can be an
important factor in the choice of a computer (consider the
PC with its USB, and PCI buses).

Figure 2.97 demonstrates how a bus is arranged. Logical
units A and B are connected to an m-bit data bus and can
transmit data to the bus or receive data from it. We are not
concerned with the nature of the processes A and B here, but
simply wish to show how they communicate with each other
via the bus. For clarity, the connections to only one line of the
bus are shown. Similar arrangements exist for bits d1 to dm�1.

Suppose unit A wishes to send data to unit B. The system in
unit A puts data on the bus via gate Aout and B receives the
data from the bus via gate Bin. These two gates look like
inverters but they aren’t because they don’t have bubbles at
their output. Such a gate is called a buffer and it just copies the
signal at its input terminal to its output terminal (i.e. the gate
doesn’t change the state of the data passing through it). We
will soon see why such a gate is needed.

Such an arrangement is, in fact, unworkable and a glance at
Fig. 2.98 shows why. In Fig. 2.98(a) the outputs of two AND
gates are connected together. Figure 2.98(b) shows the same

circuit as Fig. 2.98(a) except that we’ve
included the internal organization of
the two gates. Essentially, a gate’s out-
put circuit consists of two electronic
switches that can connect the output to
the �5 V power supply or to the 0 V (i.e.
ground) power supply. These switches
are transistors that are either conduct-
ing or non-conducting. Because only
one switch is closed at a time, the out-
put of a gate is always connected either
to �5 V or to ground.

In Figure 2.98(b) the output from
gate G1 is in a logical 1 state and is
pulled up towards �5 V by a switch
inside the gate. Similarly, the output
from G2 is a logical 0 state and is pulled
down towards 0 V. Because the two out-
puts are wired together and yet their
states differ, two problems exist. The
first is philosophical. The logical level at
all points along a conductor is constant,
because the voltage along the conduc-
tor is constant. Because the two ends of

88 Chapter 2 Gates, circuits, and combinational logic

A

B

C

D

E

Logical unit
or storage device

P bus

Q bus

Figure 2.96 Functional units and buses.

A

B

Aout

Bout

Ain

B in

d0 d1 dm–1

m-bit data bus

Data path between
functional unit and
system bus (only one
bit shown)

Figure 2.97 Connecting systems to the bus.

the bus in Fig. 2.98(b) are connected to different voltages, the
logical level on the conductor is undefined and breaks one of
the rules of Boolean algebra. We have stated that in a Boolean
system there is no such thing as a valid indeterminate state
lying between a logical 1 and a logical 0. Secondly, and more
practically, a direct physical path exists between the �5 V
power supply and ground (0 V). This path represents is a
short circuit and the current flowing through the two output
circuits could even destroy the gates.

The tri-state gate lets you connect outputs together. Tri-
state logic is not, as its name might suggest, an extension of
Boolean algebra into ternary or three-valued logic. It is a
method of resolving the conflict that arises when two outputs
are connected as in Fig. 2.98. Tri-state logic disconnects from
the bus all those gates not actively engaged in transmitting
data. In other words, a lot of tri-state outputs may be wired to

a bus, but only one of them may be actively connected to the
bus internally. We shouldn’t speak of tri-state logic or tri-
state gates, we should speak of (conventional) gates with
tri-state outputs.

Figure 2.99 illustrates the operation of a gate with a tri-state
enable output. In fact, any type of gate can have a tri-state
output. All tri-state gates have a special ENABLE input. When
ENABLE � 1. the gate behaves normally and its output is
either a logical 1 or a logical 0 depending on its input
(Fig. 2.99(a) shows a 0 state and Fig. 2.99(b) a 1 state).

When ENABLE � 0, both switches in the output circuit of
the gate are open and the output is physically disconnected
from the gate’s internal circuitry (Fig. 2.99(c)). If I were to ask
what state the output is in when ENABLE � 0, the answer
should be that the question is meaningless. In fact, because
the output of an un-enabled tri-state gate is normally

2.7 Tri-state logic 89

G1

G2

Bus

(a) Logical arrangement
Two outputs connected together

(b) Physical arrangement
Two outputs connected together

+5 V +5 V

0 V 0 V

Switch
closed

Switch
closed

Switch
open

Switch
open

Output = 5 V

Output = 0 V

Gate G1 = logical 1 Gate G2 = logical 0

Bus

Figure 2.98 Connecting two

outputs together.

Figure 2.99 The operation of

the tri-state output.

+5 V +5 V +5 V

0 V 0 V 0 V

Logical 1
output

Logical 0
output

Floating
output

(a) Lower switch closed.
Output connected to ground

(b) Upper switch closed.
Output connected to +5V

(c) Both switches open.
Output disconnected

connected to a bus, the logic level at the output terminal is the
same as that on the bus to which it is connected. For this rea-
son, the output of a tri-state gate in its third state is said to be
floating. It floats up and down with the bus traffic.

Most practical tri-state gates do, in fact, have active-low
enable inputs rather than active-high enable inputs.
Figure 2.100 provides the circuit symbols for four tri-state
buffers, two of which are inverting buffers (i.e., NOT gates)
and two of which are non-inverting buffers. Two of these
gates have active-low enable inputs and two have active-high
enable inputs. The truth table of an inverter with a tri-state
output is given in Table 2.28.

Figure 2.101 demonstrates how tri-state buffers imple-
ment a bused structure. The buffers connect or disconnect
the three networks A, B, and C, to the bus. The outputs of net-
works A, B, and C are placed on the bus by three tri-state
buffers Ao, Bo, and Co, which are enabled by signals EAo, EBo,
and ECo, respectively. If any network wishes to put data on to
the bus it sets its enable signal (e.g. EBo) to a 1. It is vital that
no more than one of EAo, EBo, and ECo be at a 1 level at any
instant.

Each of the networks receives data from the bus via its own
input buffers (Ai, Bi, and Ci). If a network wishes to receive

data, it enables its input buffer by asserting one of EAi, EBi, or
ECi, as appropriate. For example, if network C wishes to trans-
mit data to network A, all that is necessary is for ECO and EAI

to be set to a logical 1 simultaneously. All other enable signals
remain in a logical 0 state for the duration of the information
transfer.

Input buffers (Ai, Bi, Ci) are not always necessary. If the
data flowing from the bus into a network goes only into the
input of one or more gates, a buffer is not needed. If however,
the input data is placed on an internal bus (local to the net-
work) on which other gates may put their output, the buffer
is necessary to avoid conflict between the various other out-
puts that may drive the local bus.

The bus in Fig. 2.101 is bidirectional; that is, data can flow
onto the bus or off the bus. The pairs of buffers are arranged
back to back (e.g. Ai and Ao) so that one buffer reads data
from the bus and the other puts data on the bus—but not at
the same time.

In the description of the bused system in Fig. 2.101 the
names of the gates and their control signals have been care-
fully chosen. Ao stands for Aout, and Ai for Ain. This labels the
gate and the direction in which it transfers data with respect to
the network it is serving. Similarly, EAo stands for enable gate

A out, and EAi for enable gate A in. By
choosing consistent and meaningful
names, the reading of circuit diagrams
and their associated text is made easier.

Further details of a bused system will
be elaborated on in Chapter 3, and
Chapter 7 on the structure of the CPU
makes extensive use of buses in its
description of how the CPU actually
carries out basic computer operations.

Digital Works supports tri-state
buffers. The device palette provides a
simple non-inverting tristate buffer with
an active-high enable input. Figure 2.102
shows a system with a single bus to
which three tri-state buffers are con-
nected. One end of the bus is connected
to an LED to show the state of the bus.

Digital Works requires you to con-
nect a wire between two points so we’ve
added a macro tag to the bottom of the

bus to provide an anchor point (we don’t use the macro tag
for its normal purpose in this example).

The input of each tri-state gate in Fig. 2.102 is connected to
the interactive input tool that can be set to a 0 or a 1 by the
hand tool. Similarly, the enable input of each gate is con-
nected to an interactive input tool.

By clicking on the run icon and then using the hand tool to
set the input and enable switches, we can investigate the oper-
ation of the tristate buffer. In Fig. 2.102 inputs 1 and 3 are set

90 Chapter 2 Gates, circuits, and combinational logic

PP

P PPP

XP

E

E

E

E

(a) Non-inverting buffer.
Active-high enable

(c) Non-inverting buffer.
Active-low enable

(d) Inverting buffer.
Active-low enable

(b) Inverting buffer.
Active-high enable

Figure 2.100 Logic symbol for the tri-state buffer.

ENABLE Input Output

0 0 X Output floating

0 1 X Output floating

1 0 0 Output same as input

1 1 1 Output same as input

Table 2.28 Truth table for the non-inverting tri-state

buffer with an active-high enable input.

to 1 and only buffer 3 is enabled. Consequently, the output of
buffer 3 is placed on the bus and the bus LED is illuminated.

We have stated that you shouldn’t enable two or more of
the tri-state gates at the same time. If you did, that would cre-
ate bus contention as two devices attempted to put data on
the bus simultaneously. In Fig. 2.103 we have done just that
and used the hand tool to enable buffer 2 as well as buffer 3.
As you can see, the simulation has stopped (the run button is
in the off state) and an error message has been generated at
the buffer we’ve attempted to enable.

2.8 Programmable logic

In this short section we introduce some of the single-chip
programmable logic elements that can be configured by the
user to perform any function they require. In the earlier days
of logic design, systems were constructed with lots of basic
logic elements; for example, the two-input OR gate, the five-
input NAND gate, and so on. The introduction of medium

scale integration by the major semiconductor manufacturers
generated a range of basic building blocks from multiplexers
to digital multiplier circuits and allowed the economic design
of more complex systems. We now introduce the next step
in the history of digital systems—programmable logic that can
be configured by the user.

2.8.1 The read-only memory as a logic
element

Semiconductor manufactures find it easier to design regular
circuits with repeated circuit elements than special-purpose
highly complex systems. A typical regular circuit is the read
only memory or ROM. We deal with memory in a later
chapter. All we need say here is that a ROM is a device with n
address input lines specifying 2n unique locations within it.
Each location, when accessed, produces an m-bit value on its
m output lines. It is called read only because the output corre-
sponding to a given input cannot be modified (i.e. written
into) by the user.A ROM is specified by its number of locations

2.8 Programmable logic 91

A

B

EAi

EBi

ECi

EAo

EBo

ECo

d0 d1 dm–1

C

Ai

Ao

Ci

Co

Bo

Bi

Figure 2.101 Interconnecting logic elements with a bus and tri-state buffers.

Figure 2.103 Attempting to enable two tri-state drivers simultaneously.

Icon for non-inverting
tri-state buffer.

Bus (to which

three tri-state

buffers are

connected).

Tri-state buffer.

Figure 2.102 Using tri-state buffers in Digital Works.

x width of each location; for example, a 16 � 4 ROM has
16 locations each containing 4 bits.

An alternative approach to the design of digital systems
with basic gates or MSI elements is to use ROMs to imple-
ment the required function as a look-up table. Figure 2.104
shows how a 16 � 4 ROM implements the 4-bit multiplier
we designed earlier in this chapter using AND, OR, and NOT
gates. The binary code, X1, X0, Y1, Y0, at the four address
inputs selects one of the 16 possible locations, each contain-
ing a 4-bit word corresponding to the desired result. The
manufacturer or user of the ROM writes the appropriate out-
put into each of these 16 locations; for example, the location
1011, corresponding to 10 � 11 (i.e. 2 � 3), has 0110 (i.e. 6)
written into it.

The ROM directly implements not the circuit but the truth
table. The value of the output is stored for each of the possible
inputs. The ROM look-up table doesn’t even require Boolean
algebra to simplify the sum-of-products expression derived
from the truth table. Not only does a ROM look-up table save
a large number of logic elements, but the ROMs themselves
can be readily replaced to permit the logic functions to be
modified (to correct errors or to add improved facilities).
Unfortunately, the ROM look-up table is limited to about 20
inputs and eight outputs (i.e. 220 � 8 � 8 Mbits). The ROM
can be programmed during its manufacture or a PROM (pro-
grammable ROM) can be programmed by means of a special
device.

2.8.2 Programmable logic families

Because ROM requires a very large number of bits to imple-
ment moderately complex digital circuits, semiconductor
manufacturers have created much simpler logic elements

than ROMs containing a regular structure of AND and OR
gates that can be interconnected by the user to generate the
required logical function.

Figure 2.105 provides a simplified picture of how pro-
grammable logic devices operate. The three inputs on the
left-hand side of the diagram are connected to six vertical
lines (three lines for the inputs and three for their comple-
ments). On the right of the diagram are three two-input AND
gates whose inputs run horizontally. The key to programma-
ble logic is the programmable link between each horizontal
and vertical conductor.

Fusible links between gates are broken by passing a suffi-
ciently large current through the link to melt it. By leaving a
link intact or by blowing it, the outputs of the AND gates can
be determined by the designer. Modern programmable logic
devices have electrically programmed links that can be made
and un-made many times.

A real programmable device has many more inputs vari-
ables than in Fig. 2.105 and the AND gates can have an input
for each of the variables and their complements. The digital
designer selects the appropriate programmable device from a
manufacturer’s catalogue and adapts the Boolean equations
to fit the type of gates on the chip. The engineer then plugs
the chip into a special programming machine that intercon-
nects the gates in the desired way.

Programmable logic elements enable complex systems to be
designed and implemented without requiring large numbers
of chips. Without the present generation of programmable
logic elements, many of the low-cost microcomputers would
be much more bulky, consume more power, and cost consid-
erably more.

Today’s designers have several types of programmable logic
element at their disposal; for example, the PAL (programmable

2.8 Programmable logic 93

Input
X

Input
Y

4-bit product
Z

X 0

Y0

Z0

Z3

X 1

Y1

Z1

Z2

ROM with 16 locations

A0

D 0D 2 D 1D 3

A1

A2

A3

Address input

Data output

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0000
0000
0000
0000
0001
0010
0011
0000
0010
0100
0110
0000
0011
0110
1001

Address

Figure 2.104 Using a ROM to

implement a multiplier.

array logic), the PLA (programmable logic array), and the
PROM (programmable read-only memory). The PROM and
the PAL are special cases of the PLA. The difference between
the various types of programmable logic element depends
on whether one or both of the AND and OR arrays are
programmable.

Programmable Logic Array

The programmable logic array (PLA) was one of the first field
programmable logic elements to become widely available. It
has an AND–OR gate structure with a programmable array of
AND gates whose inputs may be variables, their comple-
ments, or don’t care states. The OR gates are also program-
mable, which means that you can define each output as the
sum of any of the product terms. A typical PLA has 48 AND
gates (i.e. 48 product terms) for 16 input variables, compared
with the 65 536 required by a 16-input PROM. Figure 2.106
provides a simple example of a PLA that has been pro-
grammed to generate three outputs (no real PLA is this
simple). Because the PLA has a programmable address decoder
implemented by the AND gates, you can create product terms
containing between one and n variables.

Programmable array logic

A more recent programmable logic element is the program-
mable array logic (PAL), which is not to be confused with the
PLA we discussed earlier. The PAL falls between the simple
gate array that contains only programmable AND gates and

the more complex programmed logic array. The PLA has
both programmable AND and OR arrays, whereas the PAL
has a programmable AND array but a fixed OR array. In
short, the PAL is an AND gate array whose outputs are ORed
together in a way determined by the device’s programming.

Consider a hypothetical PAL with three inputs x0 to x2 and
three outputs y0 to y2. Assume that inputs x0 to x2, generate six
product terms P0 to P5. These product terms are, of course,
user programmable and may include an input variable in a
true, complement, or don’t care form. In other words, you
can generate any six product terms you want.

The six product terms are applied to three two-input OR
gates to generate the outputs y0 to y2 (Fig. 2.107). Each output
is the logical OR of two product terms. Thus, y0 � P0 � P1,
y1 � P2 � P3, and y2 � P4 � P5. We have chosen to OR three
pairs of products. We could have chosen three triplets so that
y0 � P1 � P2 � P3, y1 � P4 � P5 � P6, etc. In other words,
the way in which the product terms are ORed together is a
function of the device and is not programmable by the user.

2.8.3 Modern programmable logic

Over the years, logic systems have evolved. Once the designer
was stuck with basic gates and MSI building blocks. The
1980s were the era of the programmable logic element with
PROMs, PALs, PLAs, and so on. Today’s programmable logic
elements are constructed on a much grander scale. Typical
programmable logic devices extend the principles of the PLA

94 Chapter 2 Gates, circuits, and combinational logic

Figure 2.105 Conceptual

structure of a programmable

logic device.

0

1

2

3

4

5

Output 1

Output 2

Output 3

0 1 2 3 4 5

Input 1

Input 2

Input 3

A connection can be made
at each horizontal and
vertical crosspoint

and employ macro cells that implement more complex build-
ing blocks containing storage elements as well as AND, OR,
and EOR gates.

A more recent innovation in programmable logic is
the electrically programmable and erasable logic element

which can be programmed, erased, and reprogrammed.
Reprogrammable logic elements represent a considerable
saving at the design stage. Moreover, they can be used to con-
struct systems that can be reconfigured by downloading data
from disk.

2.8 Programmable logic 95

X 0 X

X

X

X

X

X

0

0

1

1

2

2

X 1

X 2

P0 P2P1 P3

Y0

Y1

Y2

The inputs are
used to generate
user-programmable
product terms

These OR gates combine
product terms to generate
user-programmable sum
terms

Outputs

Inputs

Figure 2.106 Example of a circuit built with a PLA.

P0 P1 P2 P3 P4 P5

Y0

Y2

Y3

These OR gates are fixed; that is,
you cannot program them

Outputs

Fixed array

Programmable array

Each input used to
generate a product
term can be open
or closed

Inputs

X0 X0

X0

X1

X1

X2

X2

X1

X2

Figure 2.107 Structure of

the PAL.

Design techniques for modern logic

There’s little point in developing massively complex
programmable logic elements if they can’t easily be used.
Although the Boolean algebra and logic construction meth-
ods we’ve described earlier in this chapter are perfectly good
for simple circuits, more efficient design techniques and tools
are needed for complex circuits.

Device manufacturers have developed logic languages that
run on PCs and make it possible to configure these program-
mable logic elements. You can express the required functions
in Boolean form and the software will generate the data nec-
essary to program the device.

Just as high-level languages have replaced assembly lan-
guage in computer programming, circuit designers use high-
level design languages. One such language is called VHDL
(VHSIC hardware description language, where VHSIC is an
acronym for very-high-speed integrated circuit), which per-
mits you to specify a digital circuit in a high-level abstract
language. VHDL started out as a US Department of Defense
project to specify complex circuits and evolved into a general-
purpose design tool.VHDL became an IEEE standard in 1987
with the number IEEE 1076.

A designer armed with VHDL can specify a circuit in
VHDL code and then simulate the circuit’s behavior on a PC
(or a workstation under Unix). The software can even cope
with the problems of delays in the circuit. Because the device
can be simulated, the engineer is reasonably certain that
the final circuit will work when it is constructed. This soft-
ware can even drive the devices that program these logic
elements.

About three decades ago, the engineer built digital circuits
on breadboards with hundreds of small-scale and medium-
scale integrated circuits—and then spent weeks debugging
the circuit. Today, the engineer can express complex logical
operations in a high-level notation, design a circuit, simulate
its behavior, and then program a real device knowing that it
will probably work first time.

The following fragment of VHDL code is
taken from VHDL of Programmable Logic
by Kevin Skahill (Addison Wesley, 1996)
and demonstrates how a quad 4-bit multi-
plexer can be specified. This device has four
4-bit inputs a to d and a 4-bit output x. A
2-bit input s determines which of the four
inputs is connected to the output.

Readers who have programmed in
almost any high-level language would
probably be able to follow this fragment of
VHDL. It consists of a declaration block
that defines the inputs and outputs and a
process block that defines what the circuit
is to do.

2.8.4 Testing digital circuits

A significant part of the cost of a digital system is its testing.
Why should testing be so expensive? After all, a system either
works or it doesn’t. If it doesn’t work it can often be scrapped
and replaced more economically than repairing it.

Although it’s easy to test a light bulb by plugging it into a
socket, it’s much more difficult to test all but the most primi-
tive of digital systems. Consider a small memory element
with 10 address lines and eight data outputs (i.e. 1 kbyte).
How many tests do we need to perform to verify that the
memory is working correctly? Obviously the memory can be
tested by writing a pattern into each of its 210 � 1024 loca-
tions and then reading the pattern back. That is, the test
requires a total of 1024 read and 1024 write cycles.

But wait a moment. How do we know that the memory will
store every possible data pattern in each possible word loca-
tion? The test must be extended by writing all possible data
values into a location before testing the next location. In this
case there are 28 � 256 tests per location, or 28 � 210 � 218

tests altogether.
At last we have now thoroughly tested the memory com-

ponent. No we have not! Some memories display a fault
called pattern sensitivity in which writing data to one location
affects the contents of another location. You can test for pat-
tern sensitivity by writing a data pattern to the location we
wish to test and then filling all other locations with a different
data pattern. We then reread the data in the location under
test to see whether it has changed. So for each of our 218 tests,
we must write a different pattern in all the other 210�1 word
cells. This gives us a total of 218 � 210 or 228 tests. If we were to
consider a 64 Mbyte memory, it would require 28 � 226 �

226 � 252 tests (a gigantic number).
This example demonstrates that it’s effectively impossible

to test any reasonably complex digital system with external
inputs and internal states. Even if tests could be carried out at
a rate of over 100 million/s, most complex digital systems

96 Chapter 2 Gates, circuits, and combinational logic

(e.g. a microprocessor chip) would take longer to test than
the anticipated life of the entire universe. A way out of this
dilemma is to perform a test that provides a reasonable level
of confidence in its ability to detect a large fraction of possible
faults without requiring an excessive amount of time.

The first step in devising such a test is to distinguish
between the idea of a defect and a fault. A real system fails
because of a defect in its manufacture. For example, a digital
system may fail because of a defect at the component level (a
crystal defect in a silicon chip), or at the system level (a solder
splash joining together two adjacent tracks on a printed cir-
cuit board). The observed failure is termed a fault.

Although there are an infinite number of possible defects
that might cause a system to fail, their effects (i.e. faults) are
relatively few. In simpler terms, an automobile may suffer
from many defects, but many of these defects result in a
single observable fault—the car doesn’t move. That is, a fault
is the observable effect due to a defect. A digital system can be
described in terms of a fault model (i.e. the list of observable
effects of defects). Typical faults are given below.

Stuck-at-one The input or output of a circuit remains in a
logical 1 state independently of all other circuit conditions.
This is usually written s_a_1.
Stuck-at-zero In this case the input or output is permanently
stuck in a 0 state (i.e. s_a_0).
Bridging faults Two inputs or outputs of a circuit are effect-
ively connected together and cannot assume independent
logic levels. That is, they must both be 0s or 1.

It is possible to devise a longer list of fault models, but the
stuck-at fault model is able to detect a surprisingly large

number of defects. In other words, if we test a system by
considering all possible stuck-at-1 and stuck-at-0 faults, we
are likely to detect almost all of the probable defects.

The sensitive path test

A sensitive path between an input and an output is con-
structed to make the output a function of the input being
tested (i.e. the output is sensitive to a change in the input).
Figure 2.108(a) illustrates a circuit with three gates and six
inputs A, B, C, F, I and J. The sensitive path to be tested is
between input A and output K.

Figure 2.108(b) demonstrates how we have chosen the sen-
sitive path by ensuring that a change in input A is propagated
through the circuit. By setting AND gate 1’s B and C inputs
high, input A is propagated through this gate to the E input of
AND gate 2. The second input of AND gate 2, F, must be set
high to propagate E through gate 2. Output G of AND gate 2
is connected to input H of the three-input OR gate 3. In this
case, inputs I and J must be set low to propagate input H
(i.e. A) through OR gate 3.

By setting inputs B, C, F, I, and J to 1, 1, 1, 0, and 0, the out-
put becomes K � A and, therefore, by setting A to 0 and then
to 1, we can test the sensitive path between A and K and deter-
mine whether any A_stuck_at fault exists.

A fault-list can be prepared for the circuit, which, in this
case, might consist of A s_a_0, A s_a_1, B s_a_0, B s_a_1,
A convenient notation for the fault list is A/0, A/1, B/0,
B/1, . . . etc. The ‘/’ is read as ‘stuck at’.

To test for A s_a_0 (i.e. A/0), the other inputs are set to the
values necessary to create a sensitive path and A is switched
from 0 to 1. If the output changes state, A is not stuck at zero.

The same test also detects A/1.
Fault tests are designed by engineers

(possibly using CAD techniques) and can be
implemented either manually or by means
of computer-controlled automatic test equip-
ment (ATE). This equipment sets up the
appropriate input signals and tests the out-
put against the expected value. We can spec-
ify the sensitive path for A in the circuit of
Fig. 2.108(b) as B ⋅ C ⋅ F ⋅ ⋅ .

It’s not always possible to test digital cir-
cuits by this sensitive path analysis because
of the topological properties of some digital
circuits. For example, a digital signal may
take more than one route through a circuit
and certain faults may lead to a situation in
which an error is cancelled at a particular
node. Similarly, it’s possible to construct
logic circuits that have an undetectable
fault. Figure 2.109 provides an example of
such a circuit. This type of undetectable

JI

2.8 Programmable logic 97

D

D

E

E

G

G

H

H

K

K
J

I

3
2

1
A
B
C

A
B
C

F

I

J

Set high to propagate
A through gate 1 Set high to

propagate E
through gate 2

Set low to
propagate H
through gate 3

3
2

1

(a) A simple three-gate digital circuit.

(b) Establishing a sensitive path between input A and output K.

Figure 2.108 Using sensitive path analysis to test digital circuits.

fault is due to redundancy in the circuit and can be eliminated
by redesigning the circuit. Alternatively, a circuit can be made
easier to test by connecting some of its internal nodes to pins
so that they can be directly examined.

■ SUMMARY

In this chapter we have looked at the basic set of logic elements

used to create any digital system—the AND, OR, and NOT

gates.We have demonstrated how simple functions can be

generated from gates by first converting a problem in words into

a truth table and then using either graphical or algebraic

methods to convert the truth table into a logical expression and

finally into a circuit made up of gates.At the end of this chapter

we briefly mentioned the new families of programmable logic

elements and their design tools that have revolutionized the

creation of today’s complex digital systems.

We have introduced Digital Works, a design tool that enables

you to create digital circuits and to observe their behavior.We

also introduced the tri-state buffer, a device that enables you to

connect logic subsystems to each other via a common data

highway called a bus.

In the next chapter we look at sequential circuits built from

flip-flops.As the term sequential suggests, these circuits involve

the time factor, because the logical state of a sequential device is

determined by its current inputs and its past history (or

behavior). Sequential circuits form the basis of counters and data

storage devices. Once we have covered sequential circuits, we

will have covered all the basic building blocks necessary to design

a digital system of any complexity (e.g. the digital computer).

■ PROBLEMS

2.1 Explain the meaning of the following terms.

(a) Sum-of-products

(b) Product of sums

(c) Minterm

(d) Truth table

(e) Literal

(f) Constant

(g) Variable

2.2 Tabulate the values of the variables P, Q, R, S, T, and U in the

circuit of Fig. 2.110 for all possible input variables A, B, C, and D.

The truth table for this question should be expressed in the form

of Table 2.29.

2.3 For the circuit of Fig. 2.110 in Question 2.2 obtain a

Boolean expression for the output U, in terms of the inputs A, B,

C, and D.You should obtain an expression for the output U by

considering the logic function of each gate.

2.4 For the truth table in Question 2.2 (Table 2.29) obtain a

sum-of-minterms expression for U and use Boolean algebra to

obtain a simplified sum-of-products expression for U.

98 Chapter 2 Gates, circuits, and combinational logic

Figure 2.109 Circuit with an

undetectable fault.

A

B

C

D
0

1 0

1

1

0
0

53

1

1

1

0

E
G

F

H

F

1
1

0

Contradiction

In order to establish a sensitive path for internal node D
to external node H, it is necessary to set inputs G and F to
OR gate 5 low. G is set low by setting inputs B and
E to NAND gate 3 high. Input E is derived from NOT gate
2 and is set high by setting input A low. Similarly, output F
of NAND gate 4 is set low by setting inputs A and C to
gate 4 high. Unfortunately, in order to set G and F low
requires that input A be both 0 and 1 simultaneously.
This condition is a contradiction and therefore node D

Node to tested

A B C D

P

R

Q

S

T

U

Figure 2.110 Circuit for Question 2.2.

2.5 Use a truth table to obtain the relationship between

outputs X and Y and the input variables A, B, and C for the circuit

in Fig. 2.111. From the truth table write down Boolean

expressions for X and Y. Derive expressions for X and Y by

considering the Boolean equations of the gates.

Demonstrate that the two results (i.e. those derived from the

truth table and those derived from the Boolean equations) are

equivalent by substituting literals (000, 001, etc.) for A, B, and C

in the Boolean equations.

2.6 Draw logic diagrams, using AND, OR, and NOT gates only, to

implement the following Boolean expressions. In each case draw

the diagrams directly from the equations and do not attempt to

simplify the expressions.

(a)

(b) F � (A � B � C)(A ⋅ B � A ⋅ C)

(c) F � (A �)(A � B ⋅)

(d)

(e) F � (A ·B � A ·B � A ·C)(A ·B � A ·B � A ·C)

F � A � C ·A � B ·D

DC

F � A ·B � A ·B

2.7 Plot the following functions on a Karnaugh map.

(a) F � A ⋅ B ⋅ C � ⋅ ⋅
(b) F � ⋅ ⋅ C � A ⋅ ⋅ � ⋅ B ⋅ C

(c) F � � A ⋅ B � A ⋅ C � A ⋅ B ⋅ C

(d) F � A � B ⋅ ⋅ C � D

(e) F � A ⋅ B ⋅ C ⋅ D � A ⋅ B ⋅ C ⋅ D � B ⋅ D

2.8 How would you plot the following expressions on a

Karnaugh map?

(a) (� B � C) (� B) (� C)

(b) (⋅ � A ⋅ B � ⋅) (⋅ D � A ⋅ � A ⋅ C)

2.9 Simplify the following expressions by means of Boolean

algebra.That is, do not use Karnaugh maps.

(a) A ⋅ ⋅ � ⋅ ⋅ � ⋅ B ⋅ � ⋅ ⋅ C

(b) A ⋅ B ⋅ C � ⋅ B ⋅ C � A ⋅ ⋅ C � A ⋅ ⋅ � ⋅ B ⋅
� ⋅ ⋅

(c) A ⋅ B ⋅ C � A ⋅ ⋅ � ⋅ ⋅ C � ⋅ B ⋅ � A ⋅ ⋅ C

� A ⋅ B ⋅ � ⋅ ⋅ � ⋅ B ⋅ C

2.10 Simplify the following expressions.

(a) (A � B � C)(� B �)

(b) (A ⋅ � ⋅ B � ⋅ C) (⋅ � A ⋅ � A ⋅ C)

(c) A � � (A � C ⋅ D) (A � ⋅)

(d) A ⋅ � B ⋅ � A ⋅ ⋅ � A ⋅ B ⋅ C ⋅
(e) (� B)(A � �) (A � B �) (� � C)

2.11 Use de Morgan’s theorem to complement the following

expressions. Do not simplify the expressions either before or

after you complement them.

(a) ⋅ � B ⋅ C

(b) B ⋅ C ⋅ D � ⋅
(c) B (C � D) � ⋅
(d) A ⋅ B(⋅ D � C ⋅ D)

(e) A ⋅ B(A ⋅ � ⋅ D)

(f) B ⋅ C � ⋅ (A ⋅ D � ⋅)DACB

CD

C

CB

CB

CB

BACCBA

DCBCB

CBB

BBAAAB

CA

ACBAC

BCABACB

CBA

CACBBA

BACACBACB

BACABA

ADA

A

A

ACBBA

CBA

2.8 Programmable Logic 99

Inputs Output

A B C D P � B �C
–

Q � P ⋅ A R � C � D
–

S � B ⋅ R T � B ⋅ D U � Q � S � T

0 0 0 0 1 0 1 0 0 0

0 0 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
1 1 1 1 1 1 1 1 1 1

Table 2.29 Truth table for Question 2.2.

A

B
C

Y

X

Figure 2.111 Circuit for Question 2.5.

2.12 Convert the following expressions to sum-of-products form.

(a) (A � B) (� C) (� C)

(b) (C � D) (A ⋅ � A ⋅ C) (⋅ � B)

(c) (A � B � C) (A � C ⋅ D) (D � F)

2.13 Simplify

(a) A � B � C

(b)

2.14 Convert the following expressions to product-of-sums form.

(a) A ⋅ B � ⋅ � B ⋅ C

(b) ⋅ � B ⋅ C � ⋅ ⋅ D

(c) A ⋅ B � ⋅ C � B ⋅
(d) A ⋅ ⋅ � ⋅ ⋅ � ⋅ B ⋅ � ⋅ ⋅ C

2.15 A circuit has four inputs, P, Q, R, and S, representing the

natural binary numbers 0000 � 0, to 1111 � 15. P is the

most-significant bit. The circuit has one output, X, which is true

if the number represented by the input is divisible by three

(regard zero as being indivisible by three.) Design a truth table

for this circuit and hence obtain an expression for X in terms

of P, Q, R, and S. Give the circuit diagram of an arrangement of

AND, OR, and NOT gates to implement this circuit. Design a

second circuit to implement this function using NAND

gates only.

2.16 A device accepts natural binary numbers in the range

0000 to 1111 which represent 0 to 15.The output of the circuit

is true if the input to the circuit represents a prime number and

is false otherwise. Design a circuit using AND, OR, and NOT

gates to carry out this function.A prime number is an integer

that is greater than 1 and is divisible only by itself and 1. Zero

and 1 are not prime numbers.

2.17 Demonstrate how you would use a 4-line to 16-line

demultiplexer to implement the system in Question 2.16.

2.18 A logic circuit accepts a natural binary number DCBA in

the range 0 to 15 (the least-significant bit is bit A). The output is

the square of the input; for example, if DCBA � 01012 � 510, the

output is 000101012 � 2510. Design a circuit to implement this

function.

2.19 A logic circuit has three inputs C, B, and A, where A is the

least-significant bit. The circuit has three outputs R, Q, and P. For

any binary code applied to the input terminals (A, B, and C) the

BACACBACB

CA

CBBA

BA

A ·B(C�A)

CAB

AB

output is given by the input plus 1; for example, if C, B,A � 0, 1,

1, the output R, Q, P is 1, 0, 0. Note that 111 � 1 � 000 (i.e.

there is no carry out). Design a circuit to implement this system.

2.20 A 4-bit binary number is applied to a circuit on four lines

D, C, B, and A.The circuit has a single output, F, which is true if

the number is in the range 3 to 12, inclusive. Draw a truth table

for this problem and obtain a simplified expression for F in

terms of the inputs. Implement the circuit

(a) in terms of NAND gates only

(b) in terms of NOR gates only

2.21 A circuit has four inputs D, C, B, and A encoded in 8421

natural binary form.The inputs in the range 00002 � 0 to

10112 � 11 represent the months of the year from January (0)

to December (11). Inputs in the range 1100 to 1111 (i.e. 12 to

15) cannot occur. The output of the circuit is a logical one if the

month represented by the input has 31 days. Otherwise the

output is false. The output for inputs in the range 1100 to 1111

is undefined.

(a) Draw a truth table to represent the problem and use it to

construct a Karnaugh map.

(b) Use the Karnaugh map to obtain a simplified

expression for the function.

(c) Construct a circuit to implement the function using AND,

OR, and NOT gates.

(d) Construct a circuit to implement the function using NAND

gates only.

2.22 A multiplexer has eight inputs Y0 to Y7 and a single output

Z.A further three inputs A, B, and C (A � least-significant bit)

determine which output the single input X is connected to. For

example, if A, B, C � 110, the output Y6 � X and all other

outputs are low. Design a circuit to implement this function.

2.23 What is tri-state logic and why is it used in digital

systems?

2.24 Use Digital Works to construct a circuit that realizes the

expression

⋅ B ⋅ C � ⋅ ⋅ C � ⋅ ⋅ � A ⋅ B ⋅ C

Simplify the above expression and use Digital Works to

construct a new circuit. Demonstrate that the two circuits are

equivalent (by comparing their outputs for all inputs).

2.25 Use Digital Works to construct the system of

Question 2.20 and demonstrate that your system works.

CBABAA

100 Chapter 2 Gates, circuits, and combinational logic

3Sequential Logic

CHAPTER MAP

2 Logic elements and
Boolean algebra

We begin our introduction to the

computer with the basic building

block from which we construct

all computers, the gate.

A combinational digital circuit

such as an adder is composed

of gates and its output is a

Boolean (logical) function of

its inputs only.

3 Sequential logic

The output of a sequential circuit

is a function of both its current

inputs and its past inputs; that is,

a sequential circuit has memory.

The building blocks used to

construct devices that store data

are called flip-flops. In this

chapter we look at basic

sequential elements and the

counters, registers, and shifters

that are constructed from

flip-flops.

4 Computer arithmetic

Computer arithmetic concerns

the representation of numbers in

a computer and the arithmetic

used by digital computers.We

look at how decimal numbers are

converted into binary form and

the properties of binary numbers

and we demonstrate how

operations like addition and

subtraction are carried out.We

also look at how computers deal

with negative numbers and

fractional numbers.

5 The instruction set
architecture

In this chapter we introduce the

computer’s instruction set

architecture (ISA), which

describes the low-level

programmer’s view of the

computer.The ISA describe the

type of operations a computer

carries out.We are interested in

three aspects of the ISA: the

nature of the instructions, the

resources used by the

instructions (registers and

memory), and the ways in which

the instructions access data

(addressing modes).The 68K

microprocessor is used to

illustrate the operation of a real

device.

INTRODUCTION

We now introduce a new type of circuit that is constructed from devices that remember their

previous inputs. The logic circuits in Chapter 2 were all built with combinational elements whose

outputs are functions of their inputs only. Given a knowledge of a combinational circuit’s inputs

and its Boolean function, we can always calculate the state of its outputs. The output of a

sequential circuit depends not only on its current inputs, but also on its previous inputs. Even if

we know a sequential circuit’s Boolean equations, we can’t determine its output state without

knowing its past history (i.e. its previous internal states). The basic building blocks of sequential

circuits are the flip-flop, bistable, and latch just as the basic building block of the combinational

circuit is the gate.

It’s not our intention to deal with sequential circuits at anything other than an introductory

level, as their full treatment forms an entire branch of digital engineering. Sequential circuits can’t

be omitted from introductory texts on computer hardware because they are needed to implement

registers, counters, and shifters, all of which are fundamental to the operation of the central

processing unit.

Figure 3.1 describes the conceptual organization of a sequential circuit. An input is applied

to a combinational circuit using AND, OR, and NOT gates to generate an output that is fed to

a memory circuit that holds the value of the output. The information held in this memory is

called the internal state of the circuit. The sequential circuit uses its previous output together

with its current input to generate the next output. This statement contains a very important

implicit concept, the idea of a next state. Sequential circuits have a clock input, which triggers

the transition from the current state to the next state. The counter is a good example of a

sequential machine because it stores the current count that is updated to become the next

count. We ourselves are state machines because our future behavior depends on our past

102 Chapter 3 Sequential logic

inputs—if you burn yourself getting something out of the oven, you approach the oven with

more care next time.

We begin our discussion of sequential circuits with the bistable or flip-flop.A bistable is so called

because its output can remain in one of two stable states indefinitely, even if the input changes.

For a particular input, the bistable’s output may be high or low, the actual value depending on the

WHAT IS SEQUENTIAL LOGIC?

Sequential logic elements perform as many different functions as combinational logic

elements; however, they do carry out certain well-defined functions, which have been

given names.

Latch A latch is a 1-bit memory element.You can capture a single bit in a latch at one instant

and then use it later; for example, when adding numbers you can capture the carry-out in a

latch and use it as a carry-in in the next calculation.

Register The register is just m latches in a row and is able to store an m-bit word; that is, the

register is a device that stores one memory word.A computer’s memory is just a very large

array of registers.

Shift register A shift register is a special-purpose register that can move the bits of the word it

holds left or right; for example the 8-bit word 00101001 can be shifted left to give 01010010.

Counter A counter is another special-purpose register that holds an m-bit word. However,

when a counter is triggered (i.e. clocked) its contents increase by 1; for example, if a counter

holding the binary equivalent of 42 is clocked, it will hold the value 43. Counters can count up

or down, by 1 or any other number, or they can count through any arbitrary sequence.

State machines A state machine is a digital system that moves from one state to another

each time it is triggered.You can regard a washing machine controller as a state machine

that steps though all the processes involved in washing (at a rate depending on the load,

the temperature, and its preselected functions). Ultimately, the computer itself is a nothing

more than a state machine controlled by a program and its data.

Input Output

Memory

The memory holds
the previous output
(i.e. state) and uses it
to generate the next
output

The combinational logic
is composed of conventional
AND, OR, and NOT gates

Sequential logic circuit

Combinational logic

Figure 3.1 The sequential circuit.

3.1 The RS flip-flop

We begin our discussion of the flip-flop with the simplest
member of the family, the RS flip-flop. Consider the circuit of
Fig. 3.2. What differentiates this circuit from the combina-
tional circuits of Chapter 2 is that the gates are cross-coupled
and the output of a gate is fed back to its input. Although
Fig. 3.2 uses no more than two two-input NOR gates, its
operation is not immediately apparent.

The circuit has two inputs, A and B, and two outputs, X
and Y. A truth table for the NOR gate is provided alongside
Fig. 3.2 for reference. From the Boolean equations governing

the NOR gates we can readily write down expressions for out-
puts X and Y in terms of inputs A and B.

If we substitute the value for Y from equation (2) in equation
(1), we get

By de Morgan’s theorem

Two negations cancel

Expand the expression� A ·B � A ·X

� A ·(B � X)

� A ·B � X

3. X � A � B � X

2. Y � B � X

1. X � A � Y

3.1 The RS flip-flop 103

previous inputs. Such a circuit remembers what has happened to it in the past and is therefore

a form of memory element.A more detailed discussion of memory elements is given in

Chapter 8.A bistable is the smallest possible memory cell and stores only a single bit of

information.The term flip-flop, which is synonymous with bistable, gives the impression of the

circuit going flip into one state and then flop into its complement. Bistables were constructed

from electromagnetic relays that really did make a flip-flop sound as they jumped from one

state into another.

The term latch is also used to describe certain types of flip-flop.A latch is a flip-flop that is

unclocked (i.e. its operation isn’t synchronized with a timing signal called a clock). The RS

flip-flop that we describe first can also be called a latch.

Sequential systems can be divided into two classes: synchronous and asynchronous.

Synchronous systems use a master clock to update the state of all flip-flops periodically.

The speed of a synchronous system is determined by its slowest device and all signals must

have settled to steady-state values by the time the system is clocked. In an asynchronous

system a change in an input signal triggers a change in another circuit and this change ripples

through the system (an asynchronous system is rather like a line of closely spaced dominoes

on edge—when one falls it knocks its neighbor over and so on). Reliable asynchronous systems

are harder to design than synchronous systems, although they are faster and consume less

power.We will return to some of these topics later.

We can approach flip-flops in two ways. One is to demonstrate what they do by defining

their characteristics as an abstract model and then show how they are constructed.That is, we

say this is a flip-flop and this is how it behaves—now let’s see what it can do.The other way

of approaching flip-flops is to demonstrate how they can be implemented with just two gates

and then show how their special properties are put to work.We intend to follow the latter

path. Some readers may prefer to skip ahead to the summary of flip-flops at the end of this

section and then return when they have a global picture of the flip-flop.

Gate
G1

Gate
G2

A

X

Y

B

A B

0 0 1

0 1 0

1 0 0

1 1 0
Figure 3.2 Two cross-coupled NOR

gates.

A � B

Because Boolean algebra doesn’t define the operations
of division or subtraction we can’t simplify this equation
any further and are left with an expression in which the
output is a function of the output; that is, the value of X
depends on X. Equation (3) is correct but its meaning
isn’t obvious. We have to look for another way of analyz-
ing the behavior of cross-coupled gates. Perhaps a better
approach to understanding this circuit is to assume a value
for output X and for the inputs A and B and then see
where it leads us.

3.1.1 Analyzing a sequential circuit by
assuming initial conditions

Figure 3.3(a) shows the cross-coupled NOR gate circuit with
the initial condition X � 1 and A � B � 0 and Fig. 3.3(b)
shows the same circuit redrawn to emphasize the way in
which data flows between the gates.

Because the inputs to gate G2 are X � 1, B � 0, its output,
, must be 0. The inputs to gate G1 are Y � 0 and

A � 0, so that its output, X, is , which is 1. Note that
this situation is self-consistent. The output of gate G1 is X � 1,
which is fed back to the input of gate G1 to keep X in a logical
1 state. That is, the output actually maintains itself. It should
now be a little clearer why equation (3) has X on both sides
(i.e. X � ⋅ B � ⋅ X).

Had we assumed the initial state of X to be 0 and inputs
A � B � 0, we could have proceeded as follows. The inputs
to G2 are X � 0, B � 0 and therefore its output is

. The inputs to G1 are Y � 1 and
A � 0, and its output is . Once
more we can see that the circuit is self-consistent. The output
can remain indefinitely in either a 0 or a 1 state for the inputs
A � B � 0.

The next step in the analysis of the circuit’s behavior is to
consider what happens if we change inputs A or B. Assume
that the X output is initially in a logical 1 state. If input B to
gate G2 goes high while input A remains low, the output of
gate G2 (i.e. Y) is unaffected, because the output of a NOR

X � Y � A � 1 � 0 � 0
Y � X � B � 0 � 0 � 1

AA

Y � A
Y � X � B

gate is low if either of its inputs are high. As X is already high,
the state of B has no effect on the state of Y.

If now input A goes high while B remains low, the output,
X, of gate G1 must fall to a logical 0 state. The inputs to gate G2

are now both in logical 0 states and its output Y rises to a
logical 1. However, because Y is fed back to the input of gate
G1, the output X is maintained at a logical 0 even if A returns
to a 0 state.

The effect of setting A to a 1 causes output X to flip over
from a 1 to a 0 and to remain in that state when A returns to
a 0. We call an RS flip-flop a latch because of its ability to
capture a signal. Table 3.1 provides a truth table for the circuit
of Fig. 3.2. Two tables are presented—one appropriate to the
circuit we have described and one with its inputs and outputs
relabeled.

Table 3.1(a) corresponds exactly to the two-NOR gate
circuit of Fig. 3.2 and Table 3.1(b) to the idealized form of this
circuit that’s called an RS flip-flop. There are two differences
between Tables 3.1(a) and 3.1(b). Table 3.1(b) uses the
conventional labeling of an RS flip-flop with inputs R and S
and an output Q. The other difference is in the entry for the
case in which A � B � 1 and R � S � 1. The effect of these
differences will be dealt with later.

We’ve already stated that Fig. 3.2 defines its output in terms
of itself (i.e. X � ⋅ B � ⋅ X). The truth table gets round
this problem by creating a new variable, X� (or Q�), where
X� is the new output generated by the old output X and
the current inputs A and B. We can write X� � ⋅ B � ⋅ X.
The input and output columns of the truth table are now not
only separated in space (e.g. input on the left and output on
the right) but also in time. The current output X is combined
with inputs A and B to generate a new output X�. The value
of X that produced X� no longer exists and belongs only to
the past.

Labels R and S in the Table 3.1(b) correspond to reset
and set, respectively. The word reset means make 0 (clear has
the same meaning) and set means make 1. The output of all
flip-flops is called Q by a historical convention. Examining
the truth table reveals that whenever R � 1, the output Q
is reset to 0. Similarly, when S � 1 the output is set to 1.

AA

AA

104 Chapter 3 Sequential logic

Assume that
A and B are
initially 0 Assume that X

is initially 1
Note that the gates are cross-coupled
with the output of one gate connected
to the input of the other gate

A A

B

B

X
X

Y

Y

0 0

0

00

1

1 1

0 0

Gate
G1

Gate
G1 Gate

G2

Gate
G2

Analyzing the circuit by assuming initial conditions. An alternative view of the circuit.

(a) (b)

Figure 3.3 Analyzing the behavior of cross-coupled NOR gates.

When R and S are both 0, the output does not change; that
is, Q� � Q.

If both R and S are simultaneously 1, the output is concep-
tually undefined (hence the question marks in Table 3.1(b),
because the output can’t be set and reset at the same time. In
the case of the RS flip-flop implemented by two NOR gates,
the output X does, in fact, go low when A � B � 1. In prac-
tice, the user of an RS flip-flop should avoid the condition
R � S � 1.

The two-NOR gate flip-flop of Fig. 3.2 has two outputs X
and Y. An examination of the circuit for all inputs except
A � B � 1 reveals that X and Y are complements. Because of
the symmetric nature of flip-flops, almost all flip-flops have
two outputs, Q and its complement . The complement of Q
may not always be available to the user of the flip-flop
because many commercial devices leave buried on the chip
and not brought out to a pin. Figure 3.4 gives the circuit
representation of an RS flip-flop.

We can draw the truth table of the RS or any other flip-
flop in two ways. Up to now we’ve presented truth tables
with two output lines for each possible input, one line
for Q � 0 and one for Q � 1. An alternative approach is to
employ the algebraic value of Q and is illustrated by
Table 3.2.

When R � S � 0 the new output Q� is simply the old
output Q. In other words, the output doesn’t change state and
remains in its previous state as long as R and S are both 0.
The inputs R � S � 1 result in the output Q� � X. The
symbol X is used in truth tables to indicate an indeterminate
or undefined condition. In Chapter 2 we used the same symbol

Q

Q

to indicate a don’t care condition. An indeterminate condi-
tion is one whose outcome can’t be calculated, whereas a
don’t care condition is one whose outcome does not matter to
the designer.

3.1.2 Characteristic equation of
an RS flip-flop

We have already demonstrated that you can derive an equa-
tion for a flip-flop by analyzing its circuit. Such an equation is
called the flip-flop’s characteristic equation. Instead of using
an actual circuit, we can derive a characteristic equation from

3.1 The RS Flip-flop 105

(a) Truth table for Fig. 3.2. (b) Truth table for relabeled Fig. 3.2.

Inputs Output Inputs Output

A B X X� R S Q Q�

0 0 0 0 0 0 0 0 No change

0 0 1 1 0 0 1 1 No change

0 1 0 1 0 1 0 1 Set

0 1 1 1 0 1 1 1 Set

1 0 0 0 1 0 0 0 Clear

1 0 1 0 1 0 1 0 Clear

1 1 0 0 1 1 0 ? Undefined

1 1 1 0 1 1 1 ? undefined

↑ ↑ ↑ ↑
Old X New X Old Q New Q

The truth table is interpreted as follows.The output of the circuit is currently X (or Q) and the new inputs to be applied to the input terminals are A, B
(or R, S).When these new inputs are applied to the circuit, its output is given by X� (or Q�). For example, if the current output X is 1 and the new
values of A and B are A � 1, B � 0, then the new output, X�, will be 0.This value of X� then becomes the next value of X when new inputs A and B
are applied to the circuit.

Table 3.1 Truth table for the circuit in Fig. 3.2.

R

S

R Q

S Q
Inputs Outputs

Figure 3.4 Circuit representation of the RS flip-flop as a black box.

Inputs Output Description

R S Q�

0 0 Q No change

0 1 1 Set output to 1

1 0 0 Reset output to 0

1 1 X Forbidden

Table 3.2 An alternative truth table for the RS flip-flop.

the flip-flop’s truth table. Figure 3.5 plots Table 3.1(b) on a
Karnaugh map. We have indicated the condition R � S � 1
by X because it is a forbidden condition. From this truth table
we can write Q� � S � Q ⋅ .

Note that this equation is slightly different from the one
we derived earlier because it treats R � S � 1 as a don’t care
condition.

3.1.3 Building an RS flip-flop from
NAND gates

An RS flip-flop can be constructed from two cross-coupled
NAND gates just as easily as from two NOR gates. Figure 3.6
illustrates a two-NAND gate flip-flop whose truth table is
given in Table 3.3.

The only significant difference between the NOR gate flip-
flop of Fig. 3.2 and the NAND gate flip-flop of Fig. 3.6 is that
the inputs to the NAND gate flip-flop are active-low. If we
were to place inverters at the R and S inputs to the NAND gate
flip-flop, it would then be logically equivalent to the NOR
gate flip-flop of Fig. 3.2.

The no change input to the NAND gate flip-flop is R, S � 1,
1; the output is cleared by forcing R � 0 and set by forcing
S � 0; the forbidden input state is R, S � 0, 0. Suppose that
we did set the inputs of a NAND gate RS flip-flop to 0, 0 and
then released the inputs to 1,1 to enter the no change state.
What would happen? The answer is that we can’t predict the
final outcome. Initially, when both inputs are 0s, both outputs
of the RS flip-flop must be 1s (because the output of a NAND
gate is a 1 if either of its inputs are a 0). The real problem
arises when the inputs change state from 0, 0 to 1, 1. Due to
tiny imperfections, either one or the other input would go
high before its neighbor and cause the flip-flop to be set or
reset.

R

Real applications of RS flip-flops may employ either two
NAND or two NOR gates depending only on which gates
provide the simpler solution. In practice, the majority of RS
flip-flops are often constructed from NAND gates because
most circuits use active-low signals. We began our discussion
of RS flip-flops with the NOR gate circuit (unlike other texts
that introduce first the more common NAND gate flip-flop)
because we have discovered that many students find it hard to
come to terms with negative logic (i.e. logic in which the low
state is the active state).

3.1.4 Applications of the RS flip-flop

An important application of RS flip-flops is in the recording
of short-lived events. If the Q output of a flip-flop is in a zero
state, a logical 1 pulse at its S input (assuming the R input is 0)
will cause Q to be set to a 1, and to remain at a 1, until the R
input resets Q. The effect of a pulse at the S input followed by
a pulse at the R input of an RS flip-flop is illustrated in Fig. 3.7.

Consider the following application of RS flip-flops to an
indicator circuit. If an aircraft is flown outside its perfor-
mance envelope no immediate damage may be apparent, but
its structure might be permanently weakened. To keep things

106 Chapter 3 Sequential logic

00
SR

Q

0 X 1

X 111

01 11 10

Figure 3.5 Karnaugh map for the characteristic equation of an

RS flip-flop.

R

Q

Q
S

Active-low
inputs

Gate
G1

Gate
G2

Figure 3.6 RS flip-flop constructed from two cross-coupled

NAND gates.

Inputs Output Comment

R S Q�

0 0 X Forbidden

0 1 1 Reset output to 0

1 0 0 Set output to 1

1 1 Q No change

Table 3.3 Truth table for an RS flip-flop constructed from

NAND gates.

1

1

1

0

0

0

S

R

Rising edge
of S sets Q

Rising edge
of R resets Q

Inputs

Output Q

Figure 3.7 Timing diagram of the effect of pulses on an

RS flip-flop’s inputs.

simple, we will consider three possible events that are consid-
ered harmful and might endanger the aircraft.

1. Exceeding the maximum permissible speed Vne.

2. Extending the flaps above the flap-limiting speed Vfl. That is,
the flaps must not be lowered if the aircraft is going faster
than Vfl.

3. Exceeding the maximum acceleration (g-force) Gmax.

If any of the above parameters are exceeded (even for only
an instant), a lasting record of the event must be made.

Figure 3.8 shows the arrangement of warning lights used
to indicate that one of these conditions has been violated.
Transducers that convert acceleration or velocity into a
voltage measure the acceleration and speed of the aircraft.
The voltages from the transducers are compared with the three
threshold values (Vne, Vfl, Gmax) in comparators, whose outputs
are true if the threshold is exceeded, otherwise false. In order
to detect the extension of flaps above the flap-limiting
speed, the output of the comparator is ANDed with a signal
from the flap actuator circuit that is true when the flaps
are down.

The three signals from the comparators are fed, via OR
gates, to the S inputs of three RS flip-flops. Initially, on
switching on the system, the flip-flops are automatically reset
by applying a logical 1 pulse to all R inputs simultaneously. If
at any time one of the S inputs becomes true, the output of
that flip-flop is set to a logical 1 and triggers an alarm. All
outputs are ORed together to illuminate a master warning
light. A master alarm signal makes it unnecessary for the pilot
to have to scan all the warning lights periodically. An addi-
tional feature of the circuit is a test facility. When the warning

test button is pushed, all warning lights should be illumin-
ated and remain so until the reset button is pressed. A test
facility verifies the correct operation of the flip-flops and the
warning lights.

A pulse-train generator

Figure 3.9 gives the circuit of a pulse-train generator that
generates a sequence of N pulses each time it is triggered by a
positive transition at its START input. The value of N is user
supplied and is fed to the circuit by three switches to select the
values of Cc, Cb, Ca. This circuit uses the counter that we will
meet later in this chapter.

The key to this circuit is the RS flip-flop, G6, used to start
and stop the pulse generator. Assume that initially the R and
S inputs to the flip-flop are R � 0 and S � 0 and that its
output Q is a logical 0. Because one of the inputs to AND gate
G1 is low, the pulse train output is also low.

When a logical 1 pulse is applied to the flip-flop’s START
input, its Q output rises to a logical 1 and enables AND gate
G1. A train of clock pulses at the second input of G1 now
appears at the output of the AND gate. This gated pulse train
is applied to the input of a counter (to be described later),
which counts pulses and generates a three-bit output on Qa,
Qb, Qc, corresponding to the number of pulses counted in the
range 0 to 7. The outputs of the counter are fed to an equality
detector composed of three EOR gates, G2 to G4, plus NOR
gate G5. A second input to the equality detector is the user-
supplied count value Ca, Cb, Cc. The outputs of the EOR gates
are combined in NOR gate G5 (notice that it’s drawn in
negative logic form to emphasize that the output is 1 if all its
inputs are 0).

3.1 The RS Flip-flop 107

Pressure
sensing
head

Pressure to
voltage
transducer

Accelerometer
measures
g-force

Flap selection
switch

S Q

R

FF1

S Q

R

FF2

S Q

R

FF3

Overspeed

warning light

Flap extension

warning light

Overstress

From other
warning circuits

warning light

Master
warning

Test warning
lights

Master reset
1

1

Comparator

Comparator

Comparator

Vfl

Vne

1

Gmax

Figure 3.8 Application of RS flip-flops in a warning system.

Figure 3.10 gives a timing diagram for the pulse generator.
Initially the counter is held in a reset state (Qa � Qb � Qc � 0).
When the counter is clocked, its output is incremented by 1 on
the falling edge of each clock pulse. The counter counts upward
from 0 and the equality detector compares the current count on
Qa, Qb, Qc output with the user-supplied inputs Ca, Cb, Cc.When
the output of the counter is equal to the user-supplied input, the
output of gate G5 goes high and resets both the counter and the
RS flip-flop.Resetting the counter forces the counter output to 0.

Resetting the RS flip-flop disables AND gate G1 and no further
clock pulses appear at the output of G1. In this application of the
RS flip-flop, its S input is triggered to start an action and its
R input is triggered to terminate the action.

3.1.5 The clocked RS flip-flop

The RS flip-flop of Fig. 3.2 responds to signals applied to its
inputs according to its truth table. There are situations when

108 Chapter 3 Sequential logic

START

RESET Counter

S

R Q

Start/stop flip-flop

Pulse train
output

Clock

RESET

Clock

G6

G1

G7

G2

G5

Cc Cb Ca

G3 G4

Qc Qb QaThe counter's
RESET input
resets its outputs
to zero

RESET asserted when the counter
reaches the preselected value of
Cc, Cb, Ca

The values of Cc, Cb, Ca are
user selected to determine
the length of the pulse train

Gates G2, G3, G4, and G5

constitute a comparator

that compares QcQbQa

with CcCbCa

The counter
counts pulses

Figure 3.9 Pulse train

generator.

Clock

START

Q

Output

Counter
output

RESET

0 1 2 3 4 0

Figure 3.10 Timing diagram of pulse train generator.

we want the RS flip-flop to ignore its inputs until a particular
time. The circuit of Fig. 3.11 demonstrates how this is accomp-
lished by turning the RS flip-flop into a clocked RS flip-flop.

A normal, unmodified, RS flip-flop lies in the inner box in
Fig. 3.11. Its inputs, R	 and S	, are derived from the external
inputs R and S by ANDing them with a clock input C—some
texts call these two AND gates ‘steering gates’. As long as
C � 0, the inputs to the RS flip-flop, R	 and S	, are forced to
remain at 0, no matter what is happening to the external

R and S inputs. The output of the RS flip-flop remains
constant as long as these R	 and S	 inputs are both 0.

Whenever C � 1, the external R and S inputs to the
circuit are transferred to the flip-flop so that R	 � R and
S � S, and the flip-flop responds accordingly. The clock
input may be thought of as an inhibitor, restraining the flip-
flop from acting until the right time. Figure 3.12 demon-
strates how we can build a clocked RS flip-flop from NAND
gates. Clocked flip-flops are dealt with in more detail later
in this chapter.

3.2 The D flip-flop

Like the RS flip-flop, the D flip-flop has two inputs, one called
D and the other C. The D input is referred to as the data input
and C as the clock input. The D flip-flop is, by its nature, a
clocked flip-flop and we will call the act of pulsing the C input
high and then low clocking the D flip-flop.

When a D flip-flop is clocked, the value at its D input is
transferred to its Q output and the output remains constant
until the next time it is clocked. The D flip-flop is a staticizer
because it records the state of the D input and holds it con-
stant until it’s clocked. Others call it a delay element because,
if the D input changes state at time T but the flip-flop is
clocked t seconds later, the output Q doesn’t change state
until t seconds after the input. I think of the D flip-flop as a
census taker because it takes a census of the input and remem-
bers it until the next census is taken. The truth table for a
D flip-flop is given in Table 3.4.

The circuit of a D flip-flop is provided in Fig. 3.13 and
consists of an RS flip-flop plus a few gates. The two AND
gates turn the RS flip-flop into a clocked RS flip-flop. As long
as the C input to the AND gates is low, the R and S inputs are
clamped at 0 and Q cannot change.

3.2 The D flip-flop 109

R R�

S�S

C
RS flip-flop

The AND gates ensure that
the inputs to the RS flip-flop
are low unless C is high

Q

Q

Figure 3.11 The clocked RS flip-flop.

R

S

C

Q

Q

Figure 3.12 Building a clocked RS flip-flop with NAND gates.

Full form Algebraic form

Inputs Output Inputs Output

C D Q
Q�

C D
Q�

0 0 0 0 Q�←Q No change 0 0 Q

0 0 1 1 Q�←Q No change 0 1 Q

0 1 0 0 Q�←Q No change 1 0 0

0 1 1 1 Q�←Q No change 1 1 1

1 0 0 0 Q�←D

1 0 1 0 Q�←D

1 1 0 1 Q�←D

1 1 1 1 Q�←D

Table 3.4 Truth table for a D flip-flop.

When C goes high, the S input is connected to D and the
R input to . Consequently, (R, S) must either be (0, 1) if
D � 1, or (1, 0) if D � 0. Therefore, D � 1 sets the RS flip-
flop, and D � 0 clears it.

3.2.1 Practical sequential logic
elements

Just as semiconductor manufacturers have provided combi-
national logic elements in single packages, they have done the
same with sequential logic elements. Indeed, there are more
special-purpose sequential logic elements than combina-
tional logic elements. Practical flip-flops are more complex
than those presented hitherto in this chapter. Real circuits
have to cater for real-world problems. We have already said
that the output of a flip-flop is a function of its current inputs
and its previous output. What happens when a flip-flop is
first switched on? The answer is quite simple. The Q output
takes on a random state, assuming no input is being applied
that will force Q into a 0 or 1 state.

Random states may be fine at the gaming tables in Las
Vegas; they’re less helpful when the control systems of a
nuclear reactor are first energized. Many flip-flops are pro-
vided with special control inputs that are used to place them
in a known state. Figure 3.14 illustrates the 74LS74, a dual
positive-edge triggered D flip-flop that has two active-low
control inputs called preset and clear (abbreviated and

). In normal operation both and remain in
logical 1 states. If � 0 the Q output is set to a logical 1
and if � 0 the Q output is cleared to a logical 0. As in
the case of the RS flip-flop, the condition � � 0
should not be allowed to occur.

These preset and clear inputs are unconditional in the sense
that they override all activity at the other inputs of this flip-
flop. For example, asserting sets Q to 1 irrespective of
the state of the flip-flop’s C and D inputs. When a digital
system is made up from many flip-flops that must be set or
cleared at the application of power, their or lines
are connected to a common line and this line isRESET

CLRPRE

PRE

CLRPRE
CLR

PRE
CLRPRECLR

PRE

D

momentarily asserted active-low by a single pulse shortly
after the power is switched on.

3.2.2 Using D flip-flops to
create a register

Later we shall discover that a computer is composed of little
more than combinational logic elements, buses, and groups of
flip-flops called registers that transmit data to and receive data
from buses. A typical example of the application of D flip-
flops is provided by Fig. 3.15 in which an m-bit wide data bus
transfers data from one part of a digital system to another.
Data on the bus is constantly changing as different devices use
it to transmit their data from one register to another.

The D inputs of a group of m D flip-flops are connected to
the m lines of the bus. The clock inputs of all flip-flops are

110 Chapter 3 Sequential logic

D

R

S

RS flip-flop
C

Q

D

D

Q

Figure 3.13 Circuit of a D flip-flop.

Vcc

1CLR 1D 1Clk 1PRE 1Q 1Q GND

2Clk 2Q2D

14 13 12 11 10 9

D Q

QD

1 2 3 4 5 6 7

PRE

PRE

CLR CLR

Clk

Clk

8

Q Q

2CLR 2Q2PRE

Figure 3.14 The 74LS74 D flip-flop.

Figure 3.15 Using D flip-flops to create a register.

dm–1 d1 d0

Register

D Q Q0

C

D Q Q1

C

D Q Qm–1

m D flip-flops

m-bit data bus Clock

C

connected together, allowing them to be clocked simultan-
eously. As long as C � 0, the flip-flops ignore data on the bus
and their Q outputs remain unchanged. Suppose some device
wishes to transfer its data to the flip-flops. It first puts its data
on the bus and then the flip-flops are clocked, latching the
data into them. When the clock has returned to zero, the data
remains frozen in the flip-flops.

3.2.3 Using Digital Works to
create a register

We are now going to use Digital Works to create a simple
bused system using D flip-flops. Although Digital Works
implements both RS and D flip-flops, we’ll construct a D flip-
flop from basic gates. Figure 3.16 shows a single 1-bit cell in a
register (we can construct an m-bit register by using m iden-
tical elements in parallel).

If you examine Fig. 3.16 you will find that the flip-flop is
more complex than the simple D flip-flop of Fig. 3.13. We
have added a tri-state gate to the Q output to allow the flip-
flop to drive a bus or to be disconnected from the bus.
Furthermore, we’ve added an input multiplexer to allow the
D input to be connected to one of two sources A and B. The
inputs and output of Fig. 3.16 are

● A input

● B input

● A/B select input

● Clock input

● Enable output

● Q output.

In Fig. 3.17 we’ve used Digital Work’s macro facility to
convert the circuit in Fig. 3.16 into a black box macro that
can be used as a circuit element to build more complex
systems.

Figure 3.18 provides a test bed for three of the register slices.
We have provided one bit of three registers and three buses
(input bus A, input bus B, and output bus C). Each register
slice is connected to all three buses. We’ve added input
devices to all the control inputs to enable us to experiment
with this circuit.

The system in Fig. 3.18 can’t do a lot, but what it can do is
very important. Because we’ve added input devices to buses A
and B, we can force our own data on bus A and B. We can
select whether each register slice gets its input from bus A or
bus B by setting the value of the Input select input to 1 (bus A)
or 0 (bus B). Data is clocked into any of the register slices by
clocking it (i.e. setting its clock input to 1 to capture the data
and then setting the clock input to 0 to latch and retain the
data). Finally, data from any of the three register slices can be
put on bus C by asserting the appropriate output.

This circuit is important because it forms the heart of a
computer. All we need to create an ALU (arithmetic and logic
unit) are the circuits that take data from bus C, process it, and
copy the result to the A or B bus.

3.2 The D filp-flop 111

Figure 3.16 Using D

flip-flops to create one cell of

a register.

3.2.4 A typical register chip

You can obtain a single package containing the flip-flops that
implement a register. Figure 3.19 illustrates the 74LS373, an
octal register composed of D flip-flops that is available in a
20-pin package with eight inputs, eight outputs, two power

supply pins, and two control inputs. The clock input, G, is a
level-sensitive clock, which, when high, causes the value at Di

to be transferred to Qi. All eight clock inputs are connected
together internally so that the G input clocks each flip-flop
simultaneously.

112 Chapter 3 Sequential logic

Figure 3.17 Converting the circuit of Fig. 3.16

into a macro (i.e. black box representation).

We can jam data

on the A or B bus

via the Set A and

Set B switches.

Data from a register

is put on the C bus

by enabling the

appropriate register.

LEDs on the A, B,

and C buses show

the state of the bus.

Figure 3.18 Using D flip-flops to create a register in Digital Works.

The 74LS373’s other control input is active-low (out-
put enable), which controls the output of all flip-flops. When

, the flip-flop behaves exactly as we would expect.
When , the eight Q outputs are internally discon-
nected from the output pins of the device; that is, the
74LS373 has tri-state outputs and is used to turn off the
chip’s output circuits when it is not driving a bus.

Figure 3.20 demonstrates the 74LS373 octal register in a
digital system where four registers are connected to a com-
mon data bus. Each register is arranged with both its outputs
and its inputs connected to the same bus allowing it to trans-
mit data onto the bus or to receive data from it.

Each register has tri-state outputs controlled by an output
enable pin. When is asserted low, the corresponding reg-
ister drives the bus. Registers are clocked by an active-high
clock input labeled G.

IC5a is a 2-line to 4-line decoder; that is, a demultiplexer
of the type we described in Chapter 2. When this device
is enabled, the 2-bit binary source code at the input of IC5a
causes one of its output lines, 0 to 3, to go low. These out-
puts are connected to the respective inputs of the four
registers. Each of the four possible source codes enables one
of the registers; for example, if the source code at the input to
IC5a is 01, the output of register 1 is enabled and the contents
of register 1 are placed on the bus. The outputs of all other
registers remain internally disconnected from the bus.

The 74LS139 contains two complete 2-line to 4-line
decoders in a single 16-pin package. The second half of this
package acts as a destination decoder. Each of the four out-
puts from IC5b is connected to one of the clock inputs, G, of

OE
YY

OE

OE

OE � 1
OE � 0

OE

the four registers. Because the clock inputs are active-high
and the outputs of the decoder are active-low, it’s necessary to
invert these outputs. Four inverters, IC6, perform this func-
tion. When IC5b is enabled, one of its outputs is asserted and
the corresponding register clocked. Clocking a register
latches data from the data bus.

Suppose the contents of register 1 are to be copied into reg-
ister 3. The source code at IC5a is set to 01 and the destination
code at IC5b is set to 11. This puts the data from register 1 on
the bus and latches the data into register 3. We can easily
relate the example of Fig. 3.20 to the digital computer. One of
the most fundamental operations in computing is the assign-
ment that can be represented in a high-level language as
B�A and in a low-level language as MOVE A, B. The action
MOVE A, B (i.e. transfer the contents of A to B) is imple-
mented by specifying A as the source and B as the destination.
Note that throughout this text we put the destination of a
data transfer in bold font to stress the direction of data
transfer.

3.3 Clocked flip-flops

Before we introduce the JK flip-flop we look more closely at
the idea of clocking sequential circuits. Clocked circuits allow
logic elements to respond to their inputs only when the
inputs are valid. Some writers use the term trigger rather than
clock, because triggering a flip-flop gives the impression of
causing an event to take place at a discrete instant. We begin
by examining the effect of delays on the passage of signals
through systems.

Figure 3.21 demonstrates the effect of circuit delays on a
system with two inputs, A and B, that are acted upon by
processes A, B, and C to produce an output. The nature of the
processes is not important because we’re interested only in
the way in which they delay signals passing through them.
Imagine that at time t � 0, the inputs to processes A and B
become valid (i.e. these are the correct inputs to be operated
on by the processes). Assume that process A in Fig. 3.21 intro-
duces a two-unit delay, process B a one-unit delay, and
process C a two-unit delay.

Although the output from process B becomes valid at
t � 1, it’s not until t � 2 that the output of process A has
become valid. The outputs of processes A and B are fed to
process C, which has a two-unit delay. Clearly, the desired
output from C due to inputs A and B is not valid until at least
four time units after t � 0. The output from process C
changes at least once before it settles down to its final value
(Why? Because of the different delays through processes A
and B). This poses a problem. How does an observer at the
output of process C know when to act upon the data from C?

What we need is some means of capturing data only when
we know that it’s valid—see Fig. 3.22. If a D flip-flop is placed

3.3 Clocked flip-flops 113

Output enable

OE

1D

1Q

2Q

3Q

4Q

5Q

6Q

7Q

8Q

D

G

2D

3D

4D

5D

6D

7D

8D

Clock
G

Q

D

G Q

D

G Q

D

G Q

D

G Q

D

G Q

D

G Q

D

G Q

Figure 3.19 The 74LS373 octal register.

at the output of process C and is clocked four units of time
after t � 0, the desired data will be latched into the flip-flop
and held constant until the next clock pulse. Clocked systems
hold digital information constant in flip-flops while the infor-
mation is operated on by groups of logic elements, analogous
to the processes of Fig. 3.21. Between clock pulses, the outputs
of the flip-flops are processed by the logic elements and the
new data values are presented to the inputs of flip-flops.

After a suitable time delay (longer than the time taken for
the slowest process to be completed), the flip-flops are clocked.
The outputs of the processes are held constant until the next
time the flip-flops are clocked. A clocked system is often called
synchronous, as all processes are started simultaneously on each
new clock pulse. An asynchronous system is one in which the
end of one process signals (i.e. triggers) the start of the next.
Obviously, an asynchronous system must be faster than the
corresponding synchronous system. Asynchronous systems
are more complex and difficult to design than synchronous

systems and popular wisdom says that they are best avoided
because they are inherently less reliable than synchronous
circuits. The 1990s saw a renewed interest in asynchronous
systems because of their speed and lower power consumption.

3.3.1 Pipelining

Now consider the effect of placing D flip-flops at the outputs of
processes A, B, and C in the system of Fig. 3.23. Figure 3.23
shows the logical state at several points in a system as a function
of time. The diagram is read from left to right (the direction of
time flow). Signals are represented by parallel lines to demon-
strate that the signal values may be 1s or 0s (we don’t care).
What matters is the time at which signals change. Changes are
shown by the parallel lines crossing over. Lines with arrow-
heads are drawn between points to demonstrate cause and
effect; for example, the line from Input A to Output A shows
that a change in Input A leads to a change in Output A.

114 Chapter 3 Sequential logic

IC1

Q0

D0

Q1

D1

Q2

D2

Q3

D3

Q4

D4

Q5

D5

Q6

D6

Q7

D7
G
OE

Register 3 74LS373 d0 d1 d7

IC2

Q0

D0

Q1

D1

Q2

D2

Q3

D3

Q4

D4

Q5

D5

Q6

D6

Q7

D7
G
OE

Register 2 74LS373

IC3

Q0

D0

Q1

D1

Q2

D2

Q3

D3

Q4

D4

Q5

D5

Q6

D6

Q7

D7
G
OE

Register 1 74LS373

IC4

Q0

D0

Q1

D1

Q2

D2

Q3

D3

Q4

D4

Q5

D5

Q6

D6

Q7

D7
G
OE

Register 0 74LS373

IC6 74LS04

OE = Output enable
G = Clock

Y3 Y2 Y1 Y0

74LS139
IC 5a

Y3 Y2 Y1 Y0

74LS139

S1 S0
Source code

Enable source Enable destination 8-bit parallel data bus

DE1 DE0
Destination code

2-line to 4-line
decoders

IC 5b

Figure 3.20 Using the

74LS373 octal register in a

bused system.

In this example we assume that each of the processes intro-
duces a single unit of delay and the flip-flops are clocked
simultaneously every unit of time. Figure 3.23 gives the tim-
ing diagram for this system. Note how a new input can be
accepted every unit of time, rather than every two units of
time as you might expect. The secret of our increase in
throughput is called pipelining because we are operating on
different data at different stages in the pipeline. For example,
when process A and process B are operating on data i, process
C is operating on data i � 1 and the latched output from
process C corresponds to data i � 2.

When we introduce the RISC processor we will discover
that pipelining is a technique used to speed up the operation
of a computer by overlapping consecutive operations.

3.3.2 Ways of clocking flip-flops

A clocked flip-flop captures a digital value and holds it
constant. There are, however, three ways of clocking a
flip-flop.

1. Whenever the clock is asserted (i.e. a level-sensitive flip-flop).

2. Whenever the clock is changing state (i.e. an edge-sensitive
flip-flop).

3. Capture data on one edge of the clock and transfer it to the
output on the following edge (i.e. a master–slave flip-flop).

A level-sensitive clock triggers a flip-flop whenever the
clock is in a particular logical state (some flip-flops are
clocked by a logical 1 and some by a logical 0). The clocked RS
flip-flop of Fig. 3.11 is level sensitive because the RS flip-flop
responds to its R and S inputs whenever the clock input is
high. A level-sensitive clock is unsuitable for certain
applications. Consider the system of Fig. 3.24 in which the
output of a D flip-flop is fed through a logic network and
then back to the flip-flop’s D input. If we call the output of the
flip-flop the current Q, then the current Q is fed through the
logic network to generate a new input D. When the flip-flop
is clocked, the value of D is transferred to the output to
generate Q�.

If the clock is level sensitive, the new Q� can rush through
the logic network and change D and hence the output. This
chain of events continues in an oscillatory fashion with the
dog chasing its tail. To avoid such unstable or unpredictable
behavior, we need an infinitesimally short clock pulse to
capture the output and hold it constant. As such a short pulse
can’t easily be created, the edge-sensitive clock has been intro-
duced to solve the feedback problem. Level-sensitive clocked
D flip-flops are often perfectly satisfactory in applications
such as registers connected to data buses, because the dura-
tion of the clock is usually small compared to the time for
which the data is valid.

3.3 Clocked flip-flops 115

Input A

Input A
Input A valid

Output A valid

Output B valid

Output C valid

Input B valid
Input B

Output A

Output B

Output C
0 41 2 3 5 6 Time

Delay before C is valid

Process A

Process C

Process B

Output C

Two-unit delay

One-unit delay

One-unit delay

Two signals, A and B are operated on
by process A and process B respectively.
The outputs of these two processes, are
the inputs to process C

Two-unit delay

Two-unit delay

Two-unit delay

Input B

Figure 3.21 Processes and

delays.

3.3.3 Edge-triggered flip-flops

An edge-triggered flip-flop is clocked not by the level or state
of the clock (i.e. high or low), but by the transition of the
clock signal from zero to one, or one to zero. The former case
is called a positive or rising-edge sensitive clock and the latter
is called a negative or falling-edge sensitive clock. As the ris-
ing or falling edge of a pulse may have a duration of less than
1 ns, an edge-triggered clock can be regarded as a level-
sensitive clock triggered by a pulse of an infinitesimally short
duration. A nanosecond (ns) is a thousand millionth (10�9)
of a second. The feedback problem described by Fig. 3.24
ceases to exist if you use an edge-sensitive flip-flop because
there’s insufficient time for the new output to race back to the
input within the duration of a single rising edge.

There are circumstances when edge-triggered flip-flops are
unsatisfactory because of a phenomenon called clock skew.
If, in a digital system, several edge-triggered flip-flops are
clocked by the same edge of a pulse, the exact times at which
the individual flip-flops are clocked vary. Variation in the
arrival time of pulses at each clock input is called clock skew
and is caused by the different paths by which clock pulses

reach each flip-flop. Electrical impulses move through
circuits at somewhat less than the speed of light, which is
30 cm/ns. Unless each flip-flop is located at the same distance
from the source of the clock pulse and unless any additional
delays in each path due to other logic elements are identical,
the clock pulse will arrive at the flip-flops at different
instants. Moreover, the delay a signal experiences going
through a gate changes with temperature and even the age of
the gate. Suppose that the output of flip-flop A is connected
to the input of flip-flop B and they are clocked together.
Ideally, at the moment of clocking, the old output of A is
clocked into B. If, by bad design or bad luck, flip-flop A is trig-
gered a few nanoseconds before flip-flop B, B sees the new
output from A, not the old (i.e. previous) output—it’s as if
A were clocked by a separate and earlier clock.

Figure 3.25 gives the circuit diagram of a positive edge-
triggered D flip-flop that also has unconditional preset and
clear inputs. Edge triggering is implemented by using the
active transition of the clock to clock latches 1 and 2 and then
feeding the output of latch 2 back to latch 1 to cut off the
clock in the NAND gate. That is, once the clock has been
detected, the clock input path is removed.

116 Chapter 3 Sequential logic

Input A Process A

Process B

i –1 i +2i

i –1 i +2i

i –1 i

i –1 i

i –1 i

i –1 i

Process C D Q
Output

Clock

The output of
process C is latched
by a D flip-flop and
held constant

The input to the
D flip-flop is sampled
at this point

C

Input A

Time

Output A

Output B

Output C

Output Q

Clock

Input B

Input B

Figure 3.22 Latching the

output of a system.

3.3.4 The master–slave flip-flop

The master–slave (MS) flip-flop has the external appearance
of a single flip-flop, but internally is arranged as two flip-flops
operating in series. One of these flip-flops is called the master
and the other the slave. The term slave is used because the
slave flip-flop follows the master. Figure 3.26 describes a

simple RS master–slave flip-flop composed of two RS flip-
flops in series. Note that the master flip-flop is enabled when
the clock is high and the slave flip-flop is enabled when the
clock is low.

When the clock pulse goes high, the input data at the R and
S input terminals of the master flip-flop is copied into the
master flip-flop. At this point, the output terminals of the
master–slave flip-flop aren’t affected and don’t change state
because the output comes from the slave flip-flop that is in a
hold state because its clock is low.

Because the master flip-flop of Fig. 3.26 uses a level-
sensitive RS flip-flop, the master responds to data at its RS
inputs as long as the clock is asserted high. The data at the RS
inputs of the master is latched by the master at the instant the
clock input goes low. On the falling edge of the clock, the
slave’s clock input goes high and data from the master flip-
flop’s outputs is copied into the save flip-flop. Only now may
the output terminals change state. Figure 3.27 provides a tim-
ing diagram for the master–slave RS flip-flop.

Master–slave flip-flops totally isolate their input terminals
from their output terminals simply because the output of the
slave flip-flop does not change until after the input conditions
have been sampled and latched internally in the master.
Conceptually, the master–slave flip-flop behaves like an air

3.3 Clocked flip-flops 117

Input A Process A

Process B

Process C

Clock

Output

Time

The outputs from processes
A and B are captured and
latched and held constant
as the inputs to process C

Input B

Clock

Input A
i –1 i +1 i + 2 i + 3 i + 4 i + 5i

i – 2 i i + 1 i + 2 i + 3 i + 4i –1

i – 3 i –1 i i + 1 i + 2 i + 3i – 2

i – 3 i –1 i i + 1 i + 2 i + 3i – 2

i – 4 i – 2 i –1 i i + 1 i + 2i – 3

i – 5 i – 3 i – 2 i –1 i i + 1i – 4

Output A

Latched A

Latched B

Latched C

Output C

D Q

C

D Q

C

Figure 3.23 Latching the

input and output of processes

to implement pipelining.

Clock

D

D = f(Q)
Logic network

Loop

During clocking
the input can be
fed to the output

Output from
the flip-flop
is the input to
the network

Q

C

Figure 3.24 Feedback and the level-sensitive clock.

lock in a submarine or spacecraft. An air lock exists to transfer
people between regions of different pressure (air-to-vacuum
or air-to-water) without ever permitting a direct path between
the two pressure regions. A flip-flop is analogous to an air
lock because its output must not be fed directly back to its

input. To operate an air lock in a submarine,
divers in the water open the air lock, enter, and
close the door behind them. The divers are
now isolated from both the water outside and
the air inside. When the divers open the door
into the submarine, they step inside and close
the air lock door behind them.

In order to demonstrate how the different
types of clocked flip-flop behave, Fig. 3.28
presents the output waveforms for four
clocked D flip-flops when presented with the
same input.

3.3.5 Bus arbitration—an
example

We now look at a more advanced application
of flip-flops in a bus arbitration circuit that
decides which of two processors get to access
a block of common memory, called dual-
ported RAM, when both processors want the
memory at the same time. Students may omit
this section on a first reading.

Let’s look at a system with two processors
that communicate via a common block of
RAM called DPRAM (dual-ported RAM).
Figure 3.29 describes such an arrangement.
You could regard the DPRAM as a bridge
between two buses.

Because both processors 1 and 2 operate
independently, either processor may access

the common memory at any time. We need a means of
requesting control of the common memory and getting
access to the memory even if both processors make near-
simultaneous requests.

Figure 3.30 describes an arbiter with a clock input, two
request inputs, and two grant outputs. The request and grant
inputs and outputs are all active-low. The memory-request
inputs, and , are sampled by two positive-
edge triggered latches. The arbiter clocks latch 1a on the ris-
ing edge of the clock and latch 2a on the falling edge of the
clock. This arrangement ensures that the two request inputs
are not sampled simultaneously.

Figure 3.31 provides a timing diagram for the case in which
both processors request the bus simultaneously. As we can
see, processor 2 wins the request and processor 1 must wait
until processor 2 has relinquished the bus. That is, processor
1 does not have to try again—it simply waits for the memory
to become free. Processor 1 determines that the bus is once
more free.

Initially, the arbiter is in an idle state with both request
inputs inactive-high. Therefore, both D inputs to latches 1a
and 2a are high and in a steady-state condition. Outputs AA,
BB, Grant1, and Grant2 are all high.

Request2Request1

118 Chapter 3 Sequential logic

Unconditonal
preset

Unconditonal
clear

PRE

CLR

Clock

D

RS latch 1

RS latch 3

Q

RS latch 2

Q

Figure 3.25 Circuit of an edge-triggered flip-flop.

S
S

R
R

Clock

Q

Q S

R Q Q

Q Q

SlaveMaster

Clock

The master captures the input The slave holds the output

Figure 3.26 The master–slave RS flip-flop.

Clock

Input sampled
by master

Master flip-flop
may change as
long as the clock
is high

Clock to master
goes low and
clock to slave
goes high

Input Input valid

Output validOutput

Figure 3.27 Timing diagram of a master–slave RS flip-flop.

3.3 Clocked flip-flops 119

D input to
flip-flop

Q input of
level-sensitive
flip-flop

Q output of
positive-edge
triggered
flip-flop

Q output of
negative-edge
triggered
flip-flop

Q output of
master–slave
flip-flop

Clock input

Figure 3.28 Comparison of

flip-flop clocking modes.

Address DP RAM

Data

Grant1

Request1 Request1

Grant1

Request2

Grant2

Processor 1

Address

Data

Grant2

Request2

Processor 2Local
memory 1

Local
memory 2

Request1
Grant1

Grant2
Request2

Clock CLK

CLK CLK

CLK

Latch 1a Latch 1b

AAA
D Q

CLK

Latch 2a

D Q

CLK

Latch 2b

Pre
D Q

CLK

CLK

D

B BB

Pre
Q

Q

Q

Figure 3.29 Two processors communicating via

dual-ported RAM.

Figure 3.30 An

arbiter circuit.

Suppose that and are asserted almost
simultaneously when the clock is in a high state. This results in
the outputs of both OR gates (A and B) going low simultan-
eously. The cross-coupled feedback inputs to the OR gates
(Grant1 and Grant2) are currently both low.

On the next rising edge of the clock, the Q output of latch
1a (i.e. AA) and the Q output of latch 2a (i.e. BB) both go low.
However, as latch 2a sees a rising edge clock first, its Q output
goes low one half a clock cycle before latch 1’s output also
goes low.

When a latch is clocked at the moment its input is chang-
ing, it may enter a metastable1 state lasting for up to about
75 ns before the output of the latch settles into one state or
the other. For this reason a second pair of latches is used to
sample the input latches after a period of 80 ns.

One clock cycle after has been latched and out-
put BB forced low, the output of latch 2b, goes low. Its
complement, Grant2 is fed back to OR gate 1, forcing input A
high. After a clock cycle AA also goes high. Because is
connected to latch 1b’s active-low preset input, latch 1b is
held in a high state.

At this point, is negated and asserted, per-
mitting processor 2 to access the bus.

When processor 1 relinquishes the memory,
becomes inactive-high, causing first B, then BB and finally

to be negated as the change ripples through theGrant2

Request2

Grant2Grant1

Grant2

Grant2
Request2

Request2Request1 arbiter. Once is high, Grant2 goes low, causing the
output of OR gate 1 (i.e. A) to go low. This is clocked through
latches 1a and 1b to force low and therefore permit
processor 1 to access the memory. Of course, once is
asserted, any assertion of Request2 is ignored.

3.4 The JK flip-flop

The JK flip-flop can be configured, or programmed, to oper-
ate in one of two modes. All JK flip-flops are clocked and the
majority of them operate on the master–slave principle. The
truth table for a JK flip-flop is given in Table 3.5 and Fig. 3.32
gives its logic symbol. A bubble at the clock input to a flip-
flop indicates that the flip-flop changes state on the falling
edge of a clock pulse.

Table 3.5 demonstrates that for all values of J and K, except
J � K � 1, the JK flip-flop behaves exactly like an RS flip-flop
with J acting as the set input and K acting as the reset input.
When J and K are both true, the output of the JK flip-flop

Grant1
Grant1

Grant2

120 Chapter 3 Sequential logic

CLK

CLK

A

AA

BB

Grant1

Grant2

B

Request1

Idle Contention Request2 gets bus Request1
gets bus

Idle Idle

Request2

Figure 3.31 Timing diagram for

Fig. 3.30.

1 If a latch is clocked at the exact moment its input is changing state, it
can enter a metastable state in which its output is undefined and it may
even oscillate for a few nanoseconds.You can avoid the effects of metasta-
bility by latching a signal, waiting for it to settle, and then capturing it in
a second latch.

toggles, or changes state, each time the flip-flop is clocked.
That is, if Q was a 0 it becomes a 1 and vice versa. It is this
property that puts the JK flip-flop at the heart of many
counter circuits, the operation of which is dealt with in the

next section. Note that the T flip-flop is a JK flip-flop with
J � K � 1, which changes state on each clock pulse (we don’t
deal with T flip-flops further in this text).

We can derive the characteristic equation for a JK flip-flop
by plotting Table 3.5 on a Karnaugh map, Fig. 3.33. This gives
Q� � J ⋅ � ⋅ Q.

Figure 3.34 demonstrates how a JK flip-flop can be
constructed from NAND gates and Fig. 3.35 describes a
master–slave JK flip-flop.

3.5 Summary of flip-flop types

To understand flip-flops, it’s necessary to appreciate that,
unlike combinational circuits, they have internal states as
well as external inputs; that is, the output of a flip-flop
depends on the previous inputs of the flip-flop. Flip-flops
are therefore memory elements. The most common forms of
flip-flop are the D flip-flop, the RS flip-flop, and the JK flip-
flop. Each flip-flop has two outputs, and its complement
Q, although the complementary output is not always con-
nected to a pin in an integrated circuit. Most flip-flops are
clocked and have a clock input that is used to trigger the flip-
flop. Flip-flops often have unconditional preset and clear
inputs that can be used the set or clear the output, respect-
ively. The term unconditional means that these inputs
override any clock input.

The D flip-flop D flip-flops have two inputs, a D (data) input
and a C (clock) input. The output of a D flip-flop remains in
its previous state until its C input is clocked. When its C input
is clocked, the Q output becomes equal to D until the next
time it is clocked.

The RS flip-flop An RS flip-flop has two inputs, R (reset) and
S (set). As long as both R and S are 0, the Q output of the
RS flip-flop is constant and remains in its previous state.
When R � 1 and S � 0, the Q output is forced to 0 (and

Q

KQ

3.5 Summary of flip-flop types 121

Falling-edge
clock

Positive-edge triggered

JK flip-flop.

Negatitive-edge triggered

JK flip-flop.

Rising-edge
clock

J

C Clk

K

J

K Q

Q
Clk

J

K Q

Q

(a) (b)

Full form Algebraic form

Inputs Output Inputs Output

J K Q Q� J K Q�

0 0 0 0 No change 0 0 Q No change

0 0 1 1 No change 0 1 0 Clear

0 1 0 0 Reset Q 1 0 1 Set

0 1 1 0 Reset Q 1 1 Toggle

1 0 0 1 Set Q

1 0 1 1 Set Q

1 1 0 1 Q�←
1 1 1 0 Q�←

Table 3.5 Truth table for a JK flip-flop.

Q

Q

Q

Figure 3.32 Representation of the JK flip-flop.

Q

JK

00

0 1 1

1 1 1

01 11 10

Figure 3.33 Deriving the characteristic equation of a

JK flip-flop.

K

C

J
RS flip-flop

Q

Q

Figure 3.34 Construction of a basic JK flip-flop.

remains at zero when R returns to 0). When S � 1 and R � 0,
the Q output is forced to one (and remains at one when S
returns to 0). The input conditions R � S � 1 produce an
indeterminate state and should be avoided. Clocked RS flip-
flops behave as we have described, except that their R and S
inputs are treated as zero until the flip-flop is clocked. When
the RS flip-flop is clocked, its Q output behaves as we have
just described.

The JK flip-flop The JK flip-flop always has three inputs, J, K,
and a clock input C. As long as a JK flip-flop is not clocked, its
output remains in the previous state. When a JK flip-flop is
clocked, it behaves like an RS flip-flop (where J � S, K � R)
for all input conditions except J � K � 1. If J � K � 0, the
output does not change state. If K � 1 and J � 0, the Q out-
put is reset to zero. If J � 1 and K � 0, the Q output is set to
1. If both J and K are 1, the output changes state (or toggles)
each time it is clocked.

The T flip-flop The T flip-flop has a single clock input. Each
time it is clocked, its output toggles or changes state. A T flip-
flop is functionally equivalent to a JK flip-flop with
J � K � 1.

3.6 Applications of
sequential elements

Just as the logic gate is combined with other gates to form
combinational circuits such as adders and multiplexers, flip-
flops can be combined together to create a class of circuits
called sequential circuits. Here, we are concerned with two
particular types of sequential circuit: the shift register, which
moves a group of bits left or right and the counter, which steps
through a sequence of values.

3.6.1 Shift register

By slightly modifying the circuit of the register we can build a
shift register whose bits can be moved one place right every
time the register is clocked. For example, the binary pattern

01110101
becomes 00111010 after the shift register is clocked once
and 00011101 after it is clocked twice
and 00001110 after it is clocked three times, and so on.

Note that after the first shift, a 0 has been shifted in from
the left-hand end and the 1 at the right-hand end has been
lost. We used the expression binary pattern because, as we
shall see later, the byte 01110101 can represent many things.
However, when the pattern represents a binary number, shift-
ing it one place right has the effect of dividing the number by
two (just as shifting a decimal number one place right divides
it by 10). Similarly, shifting a number one place left multiplies
it by 2. Later we will see that special care has to be taken when
shifting signed two’s complement binary numbers right (the
sign-bit has to be dealt with).

Figure 3.36 demonstrates how a shift register is con-
structed from D flip-flops. The Q output of each flip-flop is
connected to the D input of the flip-flop on its right. All clock
inputs are connected together so that each flip-flop is clocked
simultaneously. When the ith stage is clocked, its output, Qi,
takes on the value from the stage on its left, that is, Qi ← Qi�1.
Data presented at the input of the left-hand flip-flop, Din, is
shifted into the (m�1)th stage at each clock pulse.
Figure 3.36 describes a right-shift register—we will look at
registers that shift the data sequence left shortly.

The flip-flops in a shift register must either be edge-
triggered or master-slave flip-flops, otherwise if a level-sensitive
flip-flop were used, the value at the input to the left-hand

122 Chapter 3 Sequential logic

The invertor ensures that the master stage
operates on a rising edge and the slave stage
on a falling edge

The master stage captures the input
and holds it constant

The slave stage copies the previous
captured input to the output terminals
and holds it constant while the next
input is being captured

J
Master Slave

K

Clock

Q

Q

Figure 3.35 Circuit diagram of a

master–slave JK flip-flop.

stage would ripple through all stages as soon as the clock went
high. We can construct a shift register from JK flip-flops just
as easily as from RS flip-flops as Fig. 3.37 demonstrates.

Figure 3.38 shows a five-stage shift register that contains
the initial value 01101. At each clock pulse the bits are shifted

right and a 0 enters the most-significant bit stage. This figure
also provides a timing diagram for each of the five Q outputs.
The output of the right-hand stage, Q0, consists of a series of
five sequential pulses, corresponding to the five bits of the
word in the shift register (i.e. 11010).

3.6 Applications of sequential elements 123

Din D

C

Clock

Q D

Qm–1 Qm–2 Qm–3 Q0

C

Q D

C

Q D

C

Q

On each clock pulse
data is copies to the
next stage on the right

Din J Q

C

K

Shift clock

Q

J Q

C

K Q

J Q

C

K Q

J Q

C

K Q

The invertor ensures that
the J, K input is 0, 1 or 1, 0

Qm–1 Qm–2 Qm–3 Q0

Figure 3.36 The right-shift

register.

Figure 3.37 Shift register

composed of JK flip-flops.

0 D

C

Clock

Clock

Q4

Q3

Q2

Q1

Q0

State 11010 01101 00110 00011 00001 00000

Q D

C

Q

Q4 Q3 Q2 Q1 Q0

D

C

Q D

C

Q D

C

Q

Figure 3.38 Example of a five-stage

shift-right register.

A shift register can be used to convert a parallel word of
m bits into a serial word of m consecutive bits. Such a circuit
is called a parallel to serial converter. If the output of an m-bit
parallel to serial converter is connected to the Din input of an
m-bit shift register, after m clock pulses the information in
the parallel to serial converter has been transferred to the
second (right-hand) shift register. Such a shift register is
called a serial to parallel converter and Fig. 3.39 describes a
simplified version. In practice, a means of loading parallel
data into the parallel-to-serial converter is necessary (see
Fig. 3.40). There is almost no difference between a parallel to
serial converter and a serial to parallel converter.

A flaw in our shift register (when operating as a parallel to
serial converter) is the lack of any facilities for loading it with
m bits of data at one go, rather than by shifting in m bits
through Din. Figure 3.40 shows a right-shift register with a

parallel load capacity. A two-input multiplexer, composed of
two AND gates, an OR gate, and an inverter switches a flip-
flop’s D input between the output of the previous stage to the
left (shift mode) and the load input (load mode). The control
inputs of all multiplexers are connected together to provide
the mode control, labeled load/ . When we label a variable
name1/ 2, we mean that when the variable is high it
carries out action name1 and when it is low it carries out
action name2. If load/ the operation performed
is a shift and if load/ the operation performed is a
load.

Constructing a left-shift register with

JK flip-flops

Although we’ve considered the right-shift register, a left-shift
register is easy to design. The input of the ith stage, Di, is

shift � 1
shift � 0

name
shift

124 Chapter 3 Sequential logic

D DD DD D

C CC CC C

Q QQ QQ Q

Shift
clock

Input

Serial data

Parallel to serial converter Serial to parallel converter

Qm–1 Qm–2 Q0

Parallel output

Only two lines are required
to transmit serial data

Note: A real parallel to serial register would
have a means of loading parallel data into it

Figure 3.39 Serial to parallel converter.

Q i+1

D i –2

D i –2D i –1D i

Q i–1D i –1Q iD i

C C

Shift clock

Load/shift

Multiplexer

Parallel load inputs

The D input of each
stage in the shift register
comes either from the
previous stage or from
an external input

Figure 3.40 Shift register with a parallel load capability.

connected to the output of the (i�1)th stage so that, at each
clock pulse, Qi ← Di �1. In terms of the previous example

01110101
becomes 11101010 after one shift left
and 11212100 after two shifts left

The structure of a left-shift register composed of JK flip-
flops is described in Fig. 3.41.

When we introduce the instruction set of a typical computer
we’ll see that there are several types of shift (logical, arithmetic,
circular). These operations all shift bits left or right—the only
difference between them concerns what happens to the bit
shifted in. So far we’ve described the logical shift where a 0 is
shifted in and the bit shifted out at the other end is lost. In an
arithmetic shift the sign of 2’s complement number is preserved
when it is shifted right (this will become clear when we intro-
duce the representation of negative numbers in the next chap-
ter). In a circular shift the bit shifted out of one end becomes the
bit shifted in at the other end. Table 3.6 describes what happens
when the 8-bit value 11010111 undergoes three types of shift.

A typical shift register

Figure 3.42 gives the internal structure of a 74LS95 parallel-
access bidirectional shift register chip.You access the shift regis-
ter through its pins and cannot make connections to the
internal parts of its circuit. Indeed, its actual internal imple-
mentation may differ from the published circuit. As long as it
behaves like its published circuit, the precise implementation of

its logic function doesn’t matter to the end user. The 74LS95 is a
versatile shift register and has the following functions.

Parallel load The four bits of data to be loaded into the shift
register are applied to its parallel inputs, the mode control
input is set to a logical one, and a clock pulse applied to the
clock 2 input. The data is loaded on the falling edge of the
clock 2 pulse.

Right-shift A shift right is accomplished by setting the mode
control input to a logical zero and applying a pulse to the
clock 1 input. The shift takes place on the falling edge of the
clock pulse.

Left-shift A shift left is accomplished by setting the mode con-
trol input to a logical one and applying a pulse to the clock 2
input. The shift takes place on the falling edge of the clock
pulse. A left shift requires that the output of each flip-flop be
connected to the parallel input of the previous flip-flop and
serial data entered at the D input.

Table 3.7 provides a function table for this shift register
(taken from the manufacturer’s literature). This table
describes the behavior of the shift register for all combina-
tions of its inputs. Note that the table includes don’t care
values of inputs and the effects of input transitions (indicated
by ↓ and ↑).

Designing a versatile shift register—an example

Let’s design an 8-bit shift register to perform the following
operations.

(a) Load each stage from
an 8-bit data bus (parallel load)

(b) Logical shift left (0 in, MSB lost)

(c) Logical shift right (0 in, LSB lost)

(d) Arithmetic shift left (same as logical shift left)

(e) Arithmetic shift right (MSB replicated, LSB lost)

(f) Circular shift left (MSB moves to LSB position)
(g) Circular shift right (LSB moves to MSB position)

3.6 Applications of sequential elements 125

K K K K

Q Q

QQ Q Q

Q Q

Shift clock

C

J J J J

C C C

Stage i+1 Stage i Stage i–1 Stage i–2

The input to stage i
comes from the register
on the right (i.e. stage i–1)

Figure 3.41 The left-shift

register.

Shift type Shift left Shift right

Original bit pattern before shift 11010111 11010111

Logical shift 10101110 01101011

Arithmetic shift 10101110 11101011

Circular shift 10101111 11101011

Table 3.6 The effect of logical, arithmetic, and circular shifts.

126 Chapter 3 Sequential logic

Inputs Outputs

Mode Clocks Serial Parallel inputs

control

2 (L) 1(R) A B C D Qa Qb Qc Qd

1 1 x x x x x x Qa0 Qb0 Qc0 Qd0

1 ↓ x x A B C D A B C D

1 ↓ x x Qb Qc Qd D Qbn Qcn Qdn D

0 0 1 x x x x x Qa0 Qb0 Qc0 Qd0

0 x ↓ 1 x x x x 1 Qan Qbn Qcn

0 x ↓ 0 x x x x 0 Qan Qbn Qcn

↑ 0 0 x x x x x Qa0 Qb0 Qc0 Qd0

↓ 0 0 x x x x x Qa0 Qb0 Qc0 Qd0

↓ 0 1 x x x x x Qa0 Qb0 Qc0 Qd0

↑ 1 0 x x x x x Qa0 Qb0 Qc0 Qd0

↑ 1 1 x x x x x Qa0 Qb0 Qc0 Qd0

Notes 1. Left-shift operations assume that Qb is connected to A, Qc to B, and Qd to C.
2. x � don’t care.
3. ↓ and ↑ indicate high-to-low and low-to-high transitions, respectively.
4. Qa0 indicates the level at Qa before the indicated inputs were established.
5. Qan indicates the level of Qa before the ↓ transition of the clock.

Table 3.7 Function table for a 74LS95 shift register.

R R RR

S S SQS Q Q Q

Clk Clk ClkClk

Qa Qb Qc Qd

Outputs

DCBA

Parallel inputs

Serial
input

Mode
control

Clock1
right shift

Clock2
left shift

Figure 3.42 The left-shift register.

The circuit is composed of eight master–slave JK flip-flops
and has a clock input that causes operations (a)–(g) above to
be carried out on its falling edge. The circuit has five control
inputs:

R When R � 1 shift right, when R � 0 shift left.
S When S � 1 perform a shift operation, when S � 0

a parallel load.
L When L � 1 perform a logical shift (if S � 1).
A When A � 1 perform an arithmetic shift (if S � 1).
C When C � 1 perform a circular shift (if S � 1).

Assume that illegal combinations of L, A, and C cannot
occur because only one type of shift can be performed at a
time. Therefore, more than one of L, A, and C, will never be
true simultaneously.

For all eight stages of the shift register obtain algebraic
expressions for J and K in terms of control inputs R, S, L, A,
and C and the outputs of the flip-flops.

Figure 3.43 illustrates five stages of the shift register. These
are the end stages Q7 and Q0, the most-significant and least-
significant bit stages, respectively. A non-end stage Qi,
together with its left-hand neighbor Qi�1 and its right-hand
neighbor Qi�1, must also be considered.

All stages except 0 and 7 perform the same functions: par-
allel load, shift right, and shift left. As the JK flip-flops always
load from an external input or another stage, only the inputs
J � 1, K � 0, or J � 0, K � 1 have to be considered.
Consequently, J � and we need only derive expressions for
J, as the corresponding values for K can be obtained from an
inverter.

K

Stage i

Parallel load Ji � Di S � 0
Shift right Ji � Qi�1 S � 1, R � 1
Shift left Ji � Qi�1 S � 1, R � 0

Therefore, Ji� ⋅Di � S(R⋅Qi�1 � ⋅Qi�1)

Stage 0 (LSB)

Parallel load J0 � D0 S � 0
Shift right logical J0 � Q1 S � 1, R � 1, L � 1

arithmetic J0 � Q1 S � 1, R � 1, A � 1
circular J0 � Q1 S � 1, R � 1, C � 1

Shift left logical J0 � 0 S � 1, R � 0, L � 1
arithmetic J0 � 0 S � 1, R � 0, A � 1
circular J0 � Q7 S � 1, R � 0, C � 1

Therefore, J0 � ⋅D0 � S(R⋅L⋅Q1 � R⋅A⋅Q1 � R⋅C⋅Q1

� ⋅L⋅0 � ⋅A⋅0 � ⋅C⋅Q7)
� ⋅D0 � S(R⋅L⋅Q1 � R⋅A⋅Q1 � R⋅C⋅Q1

� ⋅C⋅Q7)
� ⋅D0 � S(R⋅Q1(L � A � C)� ⋅C⋅Q7)

Note: L � A � C � 1
� ⋅D0 � S(R⋅Q1 � ⋅C⋅Q7).

Stage 7 (MSB)

Parallel load J7 � D7 S � 0
Shift right logical J7 � 0 S � 1, R � 1, L � 1

arithmetic J7 � Q7 S � 1, R � 1, A � 1
circular J7 � Q0 S � 1, R � 1, C � 1

Shift left logical J7 � Q6 S � 1, R � 0, L � 1
arithmetic J7 � Q6 S � 1, R � 0, A � 1
circular J7 � Q6 S � 1, R � 0, C � 1

RS

RS
R

S
RRR

S

RS

3.6 Applications of sequential elements 127

J

K

Q

Shift clock

C

J

K

Q

C

J

K

Q

C

J

K

Q

C

J

K

Q

Q

C

J7 Ji J0Ji+1 Ji–1

Q7

D 7 Di+1 D i D i–1 D0

Qi Q0Q i+1 Q i –1

Q
Q Q

Q Q
Q

Q
Q

Q7 i 0i+1 i –1K 7 Ki K 0K i+1 Ki–1

Most-significant
bit stage

Least-significant
bit stage

Three middle stages i +1, i, i –1

Parallel input

Figure 3.43 End and middle stages of a shift register.

Therefore, J7 � ⋅D7 � S(R⋅L⋅0 � R⋅A⋅Q7 � R⋅C⋅Q0

� ⋅L⋅Q6 � ⋅A⋅Q6 � ⋅C⋅Q6)
� ⋅D7 � S(R⋅A⋅Q7 � R⋅C⋅Q0

� ⋅Q6 (L � A � C))
� ⋅D7 � S(R (A⋅Q7 � C⋅Q0) � ⋅Q6)

3.6.2 Asynchronous counters

A counter is a sequential circuit with a clock input and
m outputs. Each time the counter is clocked, one or more of
its outputs change state. These outputs form a sequence with
N unique values. After the Nth value has been observed at the
counter’s output terminals, the next clock pulse causes
the counter to assume the same output as it had at the start of
the sequence; that is, the sequence is cyclic. For example, a
counter may display the sequence 01234501234501 . . . or the
sequence 9731097310973 . . .

A counter composed of m flip-flops can generate an arbit-
rary sequence with a length of not greater than 2m cycles
before the sequence begins to repeat itself.

One of the tools frequently employed to illustrate the oper-
ation of sequential circuits is the state diagram. Any system
with internal memory and external inputs such as the flip-
flop can be said to be in a state that is a function of its internal
and external inputs. A state diagram shows some (or all) of
the possible states of a given system. A labeled circle repres-
ents each of the states and the states are linked by unidirec-
tional lines showing the paths by which one state becomes
another state.

Figure 3.44 gives the state diagram of a JK flip-flop that has
just two states, S0 and S1. S0 represents the state Q � 0 and
S1 represents the state Q � 1. The transitions between states
S0 and S1 are determined by the values of the JK inputs at the
time the flip-flop is clocked. In Fig. 3.44 we have labeled the
flip-flop’s input states C1 to C4. Table 3.8 defines the four pos-
sible input conditions, C1, C2, C3, and C4, in terms of J and K.

RS
R

S
RRR

S From Fig. 3.44 it can be seen that conditions C3 or C4 cause
a transition from state S0 to state S1. Similarly, conditions
C2 or C4 cause a transition from state S1 to state S0. Condition
C4 causes a change of state from S0 to S1 and also from S1 to S0.
This is, of course, the condition J � K � 1, which causes the
JK flip-flop to toggle its output. Some conditions cause a state
to change to itself; that is, there is no overall change. Thus,
conditions C1 or C2, when applied to the system in state S0,
have the effect of leaving the system in state S0.

The binary up-counter

The state diagram of a simple 3-bit binary up-counter is given
in Fig. 3.45 (an up-counter counts upward 0, 1, 2, 3, . . . in
contrast with a down-counter, which counts downward . . . ,
3, 2, 1, 0). In this state diagram, there is only a single path from
each state to its next higher neighbor. As the system is clocked,
it cycles through the states S0 to S7 representing the natural
binary numbers 0 to 7. The actual design of counters in gen-
eral can be quite involved, although the basic principle is to
ask ‘What input conditions are required by the flip-flops to
cause them to change from state Si to state Si�1?’

The design of an asynchronous natural binary up-counter
is rather simpler than the design of a counter for an arbitrary
sequence. Figure 3.46 gives the circuit diagram of a 3-bit
binary counter composed of JK flip-flops and Fig. 3.47 pro-
vides its timing diagram. The J and K inputs to each flip-flop

128 Chapter 3 Sequential logic

A line from a state back to
itself indicates that the
corresponding condition
does not cause a change
of state

Lines with arrows indicate a change of state.
The boolean equation indicates the condition
that causes this state transition

C1 + C2

C3 + C4

C2 + C4

C1 + C3

S0
(Q = 0)

S1
(Q = 0)

Figure 3.44 The state diagram of a JK flip-flop.

J K Condition

0 0 C1

0 1 C2

1 0 C3

1 1 C4

Table 3.8 Relationship between JK inputs

and conditions C1 to C4.

are connected to constant logical 1 levels. Consequently,
whenever a flip-flop is clocked, its output changes state. The
flip-flops are arranged so that the Q output of one stage trig-
gers the clock input of the next higher stage (i.e. the output Qi

of stage i triggers the clock input of stage i�1). The flip-flops
in Fig. 3.46 are master–slave clocked and their outputs change
on the negative edge of the clock pulse.

Consider the first stage of this counter. When the clock
input makes a complete cycle (0 to 1 to 0), the Q output
changes state on the falling edge of the clock. It takes two
clock cycles to make the Q output execute one cycle; that is,
the flip-flop divides the clock input by 2.

The asynchronous binary counter of Fig. 3.46 is called a
ripple counter because the output of the first stage triggers the
input of the second stage, the output of the second stage trig-
gers the input of the third stage, and so on. Consequently,
a change of state at the output of the first stage ripples through

the counter until it clocks the final stage. The propagation
delay through each stage of the counter determines its max-
imum speed of operation. The timing diagram of Fig. 3.47
doesn’t show the ripple effect—when one stage changes state,
there’s a short delay before stages to its right change state.

Figure 3.48 demonstrates the construction of a four-stage
binary up-counter in Digital Works. We have wired all J and
K inputs together and connected them to Vcc (the positive
power supply that provides a logical 1 to cause the JK flip-
flops to toggle when clocked). We have labeled each of the
Q outputs and used the Logic History function to capture
the output waveform. Digital Works clears all flip-flops at the
start of each run. However, the flip-flops have two unlabeled
set and clear inputs that can be used to preset outputs to 1 or
0, respectively (these are not used in this application).

The binary down-counter

We can also create a binary down-counter that counts
backwards from 7 to 0. Figure 3.49 demonstrates the effect of
connecting the output of each stage in a ripple counter to the
clock input of the next stage.You can also create a binary down-
counter by using JK flip-flops that are clocked on the positive or
rising edge of the clock pulse by connecting Qi to Clki�1.

Designing an asynchronous decimal counter

Let’s design a 4-bit asynchronous ripple-through decimal
counter to count from 0 to 9 cyclically. We use JK
master–slave flip-flops with an unconditional active-low
clear input. A decimal counter can be derived from a binary
counter by resetting the counter to zero at the appropriate
point. A four-stage binary counter counts from 0000 to 1111

Q

3.6 Applications of sequential elements 129

S0
000

S7
111

S6
110

S5
101

S4
100

S3
011

S2
010

S1
001

At each clock pulse, the system
changes state; for example, if
the current state is S4 with the
output 100, the next state will
be S5 with the output 101

Figure 3.45 The state diagram of a

binary 3-bit up-counter.

The J and K inputs
of each filp-flop
are connected to
logical 1 levels to force
the flip-flop to toggle
on each clock pulse

The Q output of each
flip-flop is connected
to the clock input of the
next stage

The flip-flops are
negative-edge triggered
and change state on
the falling edge of
the clock

Clock

1 11

1 11

Q2

J

C C C

Q

QK

J Q

QK

J Q

QK

Q1 Q0

Figure 3.46 Circuit of an asynchronous binary up-counter.

Digital Works
initializes flip-flops to
Q = 0 at the start of
a simulation.

This is the symbol for
a connection to a high
level. When placed in
the work area, it
appears as Vcc and
can be used to provide
a logical 1 level.

130 Chapter 3 Sequential logic

Figure 3.48 Using Digital Works to create a binary up-counter.

State S0

Q0

Q1

Q2

S0S4S2 S6S1 S5S3 S7

Clock

Count 000 000001 010 011 100 101 110 111

Figure 3.47 Timing diagram of an

asynchronous 3-bit binary up-counter.

(i.e. 0 to 15). To create a decade counter the state 10 (1010)
must be detected and used to reset the flip-flops. Fig. 3.50
provides a possible circuit.

The binary counter counts normally from 0 to 9. On the
tenth count Q3 � 1 and Q1 � 1. This condition is detected by
the NAND gate whose output goes low, resetting the flip-
flops. The count of 10 exists momentarily as Fig. 3.51 demon-
strates. We could have detected the state 10 with Q3, Q2, Q1,
Q0 � 1010. However, that would have required a four-input
gate and is not strictly necessary. Although Q3 � 1 and
Q1 � 1 corresponds to counts 10, 11, 14, and 15, the counter
never gets beyond 10.

The reset pulse must be long enough to reset all flip-flops
to zero. If the reset pulse were too short and, say, Q1 was reset
before Q3, the output might be reset to 1000. The counting
sequence would now be: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (10), 8, 9, 8,
9, However, such a problem is unlikely to occur in this
case, because the reset pulse is not removed until at least the
output of one flip-flop and the NAND gate has changed state.

The combined duration of flip-flop reset time plus a gate
delay will normally provide sufficient time to ensure that all
flip-flops are reset.

It is possible to imagine situations in which the circuit
would not function correctly. Suppose that the minimum
reset pulse required to guarantee the reset of a flip-flop were
50 ns. Suppose also that the minimum time between the
application of a reset pulse and the transition Q ← 0 were
10 ns and that the propagation delay of a NAND gate were
10 ns. It would indeed be possible for the above error to
occur. This example demonstrates the dangers of designing
asynchronous circuits!

The pulse generator revisited

When we introduced the RS flip-flop we used it to start and
stop a simple pulse generator that created a train of n pulses.
Figure 3.52 shows a pulse generator in Digital Works. This
system is essentially the same as that in Fig. 3.9, except that
we’ve built the counter using JK flip-flops and we’ve added

3.6 Applications of sequential elements 131

Figure 3.49 Using Digital Works to create a binary down-counter.

LEDs to examine the signals produced when the system runs.
Note also that the RS flip-flop can be set only when the
flip-flop is in the reset mode.

3.6.3 Synchronous counters

Synchronous counters are composed of flip-flops that are all
clocked at the same time. The outputs of all stages of a syn-
chronous counter become valid at the same time and the
ripple-through effect associated with asynchronous counters
is entirely absent. Synchronous counters can be easily

designed to count through any arbitrary sequence just as well
as the natural sequence 0, 1, 2, 3,

We design a synchronous counter by means of a state dia-
gram and the excitation table for the appropriate flip-flop
(either RS or JK). An excitation table is a version of a flip-
flop’s truth table arranged to display the input states required
to force a given output transition. Table 3.9 illustrates the
excitation table of a JK flip-flop. Suppose we wish to force the
Q output of a JK flip-flop to make the transition from 0 to 1
the next time it is clocked. Table 3.9 tells us that the J, K input
should be 1, d (where d � don’t care).

132 Chapter 3 Sequential logic

When the counter reaches 1010, both
Q1 and Q3 are 1. The NAND gate detects
this condition and resets all flop-flops to 0

1s counter 2s counter 4s counter 8s counter

Q0

Q1 Q3

Q1 Q2 Q3

CLR CLR CLR CLR

Clock

1

1

1

1

1

1

1

1

J Q

C

K

J Q

C

K

J Q

C

K

J Q

C

K QQQQ

Figure 3.50 Circuit of a

decimal counter.

The NAND gate
detects when the
counter reaches 10

Although Q goes high
when the counter
reaches 10, it is reset
by the NAND gate

State S0

Q0

Q1

Q2

Q3

Q3Q1

S8 S9
S0S4S2 S6S1 S5S3 S7

Clock

Count 0000 000010000001 0010 0011 0100 0101 0110 0111 1001

Figure 3.51 Timing diagram of a decimal counter.

Why is the K input a don’t care condition when we want a
0 → 1 transition? If we set J � 1 and K � 0, the flip-flop is set
when it’s clocked and Q� becomes 1. If we set J � 1 and
K � 1, the flip-flop is toggled when it’s clocked and the out-
put Q � 0 is toggled to Q � 1. Clearly, the state of the K input
doesn’t matter when we wish to set Q� to 1 given that Q � 0
and J � 1. It should now be clear why all the transitions in the
JK’s excitation table have a don’t care input—a given state can
be reached from more than one starting point.

The next step in designing a synchronous counter is to
construct a truth table for the system to determine the JK
inputs required to force a transition to the required next state
for each of the possible states in the table. It is much easier to
explain this step by example rather than by algorithm.

Let’s design a synchronous binary-coded decimal or
modulo-10 counter to count through the natural sequence 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, As there are 10 states, we require
four JK flip-flops because 23 �10 �24. Table 3.10 provides
a truth table for this counter.

To understand Table 3.10 it’s necessary to look along a line
and to say, ‘Given this state, what must the inputs of the flip-
flops be to force the transition to the next state?’ For example,
in the first line the current state is 0, 0, 0, 0 and the next state
is 0, 0, 0, 1. The values for the four pairs of J, K inputs are
obtained from the excitation table in Table 3.9. Three of these
outputs cause the transition 0 → 0 and one causes the
transition 0 → 1. The J, K inputs required are 0, d for the 0 to
0 transitions and 1, d for the 0 to 1 transition.

From the truth table of the synchronous counter we can
write down eight Karnaugh maps for the Js and Ks.

3.6 Applications of sequential elements 133

Figure 3.52 Using Digital Works to design a pulse generator.

Inputs Transition

J K Q → Q�

0 d 0 → 0

1 d 0 → 1

d 1 1 → 0

d 0 1 → 1

Table 3.9 Excitation table of a JK flip-flop.

Figure 3.53 gives the Karnaugh maps for this counter. These
maps can be simplified to give

Jd � Qc⋅ Qb⋅ Qa Kd � Qa

Jc � Qb⋅ Qa Kc � Qb⋅Qa

Jb � d⋅ Qa Kb � Qa

Ja � 1 Ka � 1

We can now write down the circuit diagram of the
synchronous counter (Fig. 3.54). Remember that d denotes a
don’t care condition and indicates that the variable marked
by a d may be a 0 or a 1 state. The same technique can be
employed to construct a counter that will step through any
arbitrary sequence. We will revisit this technique when we
look at state machines.

Q

3.7 Introduction to state machines

No discussion of sequential circuits would be complete with-
out at least a mention of state machines. The state machine
offers the designer a formal way of specifying, designing, test-
ing, and analyzing sequential systems. Because the detailed
study of state machines is beyond the scope of this intro-
ductory text, we shall simply introduce some of the basic
concepts here.

It would be impossible to find a text on state machines
without encountering the general state machines called
Mealy machines and Moore machines (after G. H. Mealy and
E. Moore). Figure 3.55 illustrates the structure of a Mealy

134 Chapter 3 Sequential logic

Count Output Next state J, K inputs required to force transition

Qd Qc Qb Qa Qd Qc Qb Qa Jd Kd Jc Kc Jb Kb Ja Ka

0 0 0 0 0 0 0 0 1 0 d 0 d 0 d 1 d

1 0 0 0 1 0 0 1 0 0 d 0 d 1 d d 1

2 0 0 1 0 0 0 1 1 0 d 0 d d 0 1 d

3 0 0 1 1 0 1 0 0 0 d 1 d d 1 d 1

4 0 1 0 0 0 1 0 1 0 d d 0 0 d 1 d

5 0 1 0 1 0 1 1 0 0 d d 0 1 d d 1

6 0 1 1 0 0 1 1 1 0 d d 0 d 0 1 d

7 0 1 1 1 1 0 0 0 1 d d 1 d 1 d 1

8 1 0 0 0 1 0 0 1 d 0 0 d 0 d 1 d

9 1 0 0 1 0 0 0 0 d 1 0 d 0 d d 1

10 1 0 1 0 x X x x x x x x x x x x

11 1 0 1 1 x x x x x x x x x x x x

12 1 1 0 0 x x x x x x x x x x x x

13 1 1 0 1 x x x x x x x x x x x x

14 1 1 1 0 x x x x x x x x x x x x

15 1 1 1 1 x x x x x x x x x x x x

The ds in the table correspond to don’t care conditions in the excitation table of the JK flip-flop.The x’s correspond to don’t care conditions due to
unused states; for example, the counter never enters states 1010 to 1111.There is, of course, no fundamental difference between x and d.We’ve
chosen different symbols in order to distinguish between the origins of the don’t care states.

Table 3.10 Truth table for a synchronous counter.

The clock triggers all flip-flops simultaneously

Clock

1

1

G1 G2
G3

K

FF1

J

C

Qa

Qa

K

FF2

J

C

Qb

Qb

K

FF3

J

C

Qc

Qc

K

FF4

J

C

Qd

Qd

Figure 3.54 Circuit diagram for

a 4-bit synchronous BCD

counter.

3.7 Introduction to state machines 135

00 00

0000

00 00

0000

01 01

0101

01 01

0101

11 11

1111

11 11

1111

10 10

1010

10 10

1010

XX

X

X

X

X X

X X

X X

X X

X

Q Qd c

Q Qd c Q Qd c

Q Qd c

Q Qb a

Q Qb a Q Qb a

Q Qb a

d

d

d

d

d

d

d

ddd

d

d

d

d

J = Q Q Qd c b a

J = Q Qc b a K = Q Qc b a

K = Qd a

X1 XX

X 1

d d

d d

X X

X X

d1 X Xd 1

00 00

0000

00 00

0000

01 01

0101

01 01

0101

11 11

1111

11 11

1111

10 10

1010

10 10

1010

XX

X

X X

X

X

X X

Q Qd c

Q Qd c Q Qd c

Q Qd c

Q Qb a

Q Qb a Q Qb a

Q Qb a

d dd

dd

J = Q Qb d a

J = 1a K = 1a

K = Qb a

1

dd

1

XX

X

1 1

d dd

X

X X

X X

X

X

X

X

X

X X

X

dd d

1dd

11

1

1

1

1

d

1

1

d

d d

1

Figure 3.53 Karnaugh maps for a

synchronous counter.

state machine and Fig. 3.56 the structure of a Moore state
machine. Both machines have a combinational network that
operates on the machine’s inputs and on its internal states to
produce a new internal state. The output of the Mealy
machine is a function of the current inputs and the internal
state of the machine, whereas the output of a Moore machine
is a function of the internal state of the machine only.

3.7.1 Example of a state machine

As we have already said, the state machine approach to the
design of sequential circuits is by no means trivial. Here, we
will design a simple state machine by means of an example.

Suppose we require a sequence detector that has a serial
input X and an output Y. If a certain sequence of bits appears
at the input of the detector, the output goes true. Sequence
detectors are widely used in digital systems to split a stream of
bits into units or frames by providing special bit patterns
between adjacent frames and then using a sequence detector
to identify the start of a frame.

In the following example we design a sequence detector
that produces a true output Y whenever it detects the
sequence 010 at its X input.

For example, if the input sequence is 000110011010110001011,
the output sequence will be 000000000000100000010

(the output generates a 1 in the state following the detection
of the pattern).

Figure 3.57 shows a black box state machine that detects
the sequence 010 in a bit stream. We have provided input and
output sequences to demonstrate the machine’s action.

We solve the problem by constructing a state diagram as
illustrated in Fig. 3.58. Each circle represents a particular state
of the system and transitions between states are determined
by the current input to the system at the next clock pulse.

A state is marked name/value, where name is the label we
use to describe the state (e.g. states A, B, C, and D in Fig. 3.58)
and value is the output corresponding to that state. The trans-
ition between states is labeled a/b, where a is the input condi-
tion and b the output value after the next clock. For example,
the transition from state A to state B is labeled 0/0 and
indicates that if the system is in state A and the input is 0, the
next clock pulse will force the system into state B and set
the output to 0.

Figure 3.59 provides a partial state diagram for this
sequence detector with details of the actions that take place
during state transitions. State A is the initial state in Fig. 3.59.
Suppose we receive an input while in state A. If input X is a 0
we may be on our way to detecting the sequence 010 and
therefore we move to state B along the line marked 0/0 (the
output is 0 because we have not detected the required
sequence yet). If the input is 1, we return to state A because we
have not even begun to detect the start of the sequence.

From state B there are two possible transitions. If we detect
a 0 we remain in state B because we are still at the start of the
desired sequence. If we detect a 1, we move on to state C (we
have now detected 01). From state C a further 1 input takes us

136 Chapter 3 Sequential logic

This logic generates
the next state

Memory

Input logic
(combinational)

Output logic
(combinational)

Inputs

Outputs

Clock
Figure 3.55 The Mealy state

machine.

This logic generates
the next state

Memory

Input logic
(combinational)

Output logic
(combinational)

Inputs

Outputs

Clock Figure 3.56 The Moore state

machine.

3.7 Introduction to state machines 137

State machine
Serial input X Output Y

Clock

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 00 0 1 1 0 1 0 1 1 0 0 0 1 0 1 1

This machine detects the
input sequence 010

X = 1
1/0

X = 1
1/0

X = 1
1/0

X = 1
1/0

X = 0
0/1

X = 0
0 /0

X = 0
0/0

X = 0
0/0

A/0 B/0 C/0 D/1

Start

Figure 3.57 State machine to detect

the sequence 010.

Figure 3.58 State diagram for a

010 sequence detector (X is the

current input).

Figure 3.59 Details of the

state counter diagram of

Fig. 3.58.

This is the initial state
called A. The initial
output is 0If the system is

in state A and the
input is X = 1, the
system remains
in state A

If the system is
in state A and the
input is X = 0, the
system moves to
state B

The notation 0/0
means that the
input is 0 and the
output is 0

The notation B/0
indicates that this is
state B with output 0

If the next input is
X=1, we have detected
the sequence 01 and
we move to state C
where we look for 0
to complete the
sequence 010

A/0 B/0

X=1
1/0

X = 1
1/0

X=0
0/0

X = 0
0/0

Start

right back to state A (because we have received 011).
However, if we detect a 0 we move to state D and set the out-
put to 1 to indicate that the sequence has been detected. From
state D we move back to state A if the next input is a 1 and
back to state B if it is a 0. From the state diagram we can con-
struct a state table that defines the output and the next state
corresponding to each current state and input. Table 3.11
provides a state table for Fig. 3.58.

3.7.2 Constructing a circuit to implement
the state table

The next step is to go about constructing the circuit itself. If a
system can exist in one of several states, what then defines the
current state? In a sequential system flip-flops are used to hold
state information—in this example there are four states,
which requires two flip-flops.

138 Chapter 3 Sequential logic

Current state Output Next state

X � 0 X � 1

A 0 B A

B 0 B C

C 0 D A

D 1 B A

Table 3.11 State table for a 010 sequence detector.

Current state Flip-flop outputs Output Next state

Q1 Q2 X � 0 X � 1

A 0 0 0 0,1 0,0

B 0 1 0 0,1 1,0

C 1 0 0 1,1 0,0

D 1 1 1 0,1 0,0

Table 3.12 Modified state table for a sequence detector.

Current state Next state Output

Q1 Q2 X Q1 Q2 J1 K1 J2 K2

0 0 0 0 1 0 d 1 d

0 0 1 0 0 0 d 0 d

0 1 0 0 1 0 d d 0

0 1 1 1 0 1 d d 1

1 0 0 1 1 d 0 1 d

1 0 1 0 0 d 1 0 d

1 1 0 0 1 d 1 d 0

1 1 1 0 0 d 1 d 1

J1 � Q1 � Q2⋅X
J2 �

K1 � Q2 � X

K2 � X

Table 3.13 Determining the JK outputs of the sequence detector.

X

Q2

Q2
Q1

Q1

J2J1

K2K1

CC

X

X

X + Q2

X· Q2

Input X

Clock

Output = Q1Q2

Figure 3.60 Circuit to detect

the sequence 010.

Table 3.12 expands Table 3.11 to represent internal states A
to D by flip-flop outputs Q1, Q2 � 0, 0 to 1, 1. We next
construct Table 3.13 to determine the JK input of each JK
flip-flop that will force the appropriate state transition, given
the next input X. Table 3.13 is derived by using the excitation
table of the JK flip-flop (see Table 3.9). The final step is to cre-
ate a circuit diagram from Table 3.13 (i.e. Fig. 3.60).

Figure 3.61 demonstrates the construction of the
sequence detector in Digital Works.We’ve added LEDs to show
the state of the flip-flop outputs and control signals and have
provided an example of a run. Note the output pulse after the
sequence 010. We used the programmable sequence generator
to provide a binary pattern for the test.

■ SUMMARY

In this chapter we’ve looked at the flip-flop, which provides data

storage facilities in a computer and which can be used to create

counters and shift registers as well as more general forms of

state machine.We have introduced the RS, D, and JK flip-flops.

All these flip-flops can capture data and the JK flip-flop is able

to operate in a toggle mode in which its output changes state

each time it is clocked.Any of these flip-flops can be converted

into the other two flip-flops by the addition of a few gates.

We have also introduced the idea of clocking or triggering

flip-flops.A flip-flop can be triggered by a clock at a given level

or by the change in state of a clock.The master–slave flip-flop

latches data at its input when the clock is high (or low) and

transfers data to the output (slave) when the clock changes

state.

We have looked at the counter and shift register. The counter

counts through a predetermined sequence such as the natural

integers 0, 1, 2, 3, A shift register holds a word of data and

is able to shift the bits one or more places left or right. Shift

registers are used to divide and multiply by two and to

manipulate data in both arithmetic and logical operations.

Counters and shift registers can be combined with the type of

3.7 Introduction to state machines 139

Figure 3.61 Using Digital Works to implement the sequence detector.

combinational logic we introduced in the previous chapter to

create a digital computer.

Sequential machines fall into two categories.Asynchronous

sequential machines don’t have a master clock and the output

from one flip-flop triggers the flip-flop it’s connected to. In a

synchronous sequential machine all the flip-flops are triggered

at the same time by means of a common master clock.

Synchronous machines are more reliable. In this chapter we

have briefly demonstrated how you can construct a

synchronous counter and a machine that can detect a specific

binary pattern in a stream of serial data.

■ PROBLEMS

3.1 What is a sequential circuit and in what way does it differ

from a combinational circuit?

3.2 Explain why it is necessary to employ clocked flip-flops in

sequential circuits (as opposed to unclocked flip-flops)?

3.3 What are the three basic flip-flop clocking modes and why

is it necessary to provide so many clocking modes?

3.4 The behavior of an RS flip-flop is not clearly defined when

R � 1 and S � 1. Design an RS flip-flop that does not suffer from

this restriction. (Note:What assumptions do you have to

make?)

3.5 For the waveforms in Fig. 3.62 draw the Q and outputs

of an RS flip-flop constructed from two NOR gates (as in

Fig. 3.2).

3.6 For the input and clock signals of Fig. 3.63, provide a

timing diagram for the Q output of a D flip-flop.Assume that

the flip-flop is

(a) Level sensitive

(b) positive edge triggered

(c) negative-edge triggered

(d) a master–slave flip-flop

3.7 What additional logic is required to

convert a JK flip-flop into a D flip-flop?

3.8 Assuming that the initial state of the

circuit of Fig. 3.64 is given by C � 1, D � 1,

P � 1, and Q � 0, complete the table. This

question should be attempted by calculating

the effect of the new C and D on the inputs to

both cross-coupled pairs of NOR gates and

therefore on the outputs P and Q.As P and Q

are also inputs to the NOR gates, the change

in P and Q should be taken into account when

calculating the effect of the next inputs C and

D. Remember that the output of a NOR is 1 if

both its inputs are 0, and is 0 otherwise.

Q

140 Chapter 3 Sequential logic

R input

S input

Q output

Q output

D input to
flip-flop

Clock input

Figure 3.63 Timing diagram of a clock and data signal.

Figure 3.62 R and S inputs to an RS flip-flop.

D

Q

P

C

Figure 3.64 Circuit for Question 3.8. Figure 3.65 Circuit for Question 3.9.

Modify the circuit to provide a new input S which, when 1, will

at any time set P to 1 and Q to 0. Provide another input R that

will similarly set P to 0 and Q to 1. Note that R and S cannot

both be a 1 at the same time and therefore the condition

R � S � 1 need not be considered.

3.9 Demonstrate that the flip-flops in Fig. 3.65 are equivalent.

Are they exactly equivalent?

3.10 Many flip-flops have unconditional preset and clear inputs.

What do these inputs do and why are they needed in sequential

circuits?

C D P Q

1 1 1 0

1 0

0 0

1 1

0 1

1 1

0 1

0 0

1 0

3.11 A T flip-flop has a single clock input and outputs Q and .

Its Q output toggles (changes state) each time it is clocked.The

T flip-flop behaves exactly like a JK flip-flop with its J and K

inputs connected permanently to a logical one. Design a T flip-

flop using a D flip-flop.

3.12 Why haven’t D and RS flip-flops been replaced by the JK

flip-flop, because the JK flip-flop can, apparently, do everything a

D flip-flop or an RS flip-flop can do?

3.13 What is a shift register and why is it so important in digital

systems?

3.14 Design a shift register that has two inputs, a clock input

and a shift input.Whenever this register receives a pulse at its

shift input, it shifts its contents two places right.

3.15 Analyze the operation of the circuit of Fig. 3.66 by

constructing a timing diagram (assume that Q0 and Q1 are

initially 0). Construct the circuit using Digital Works and observe

its behavior.

3.16 Analyze the operation of the circuit of Fig. 3.67 by

constructing a timing diagram (assume any initial value for Q0 to

Q3). Construct the circuit using Digital Works and observe its

behavior.This type of circuit is an important circuit in digital

systems because it can be used to generate a pseudo random

sequence; that is, the sequence of bits at its Q0 output look (to an

Q

3.7 Introduction to state machines 141

Q0 Q1

Q0 Q1

J0 J1

K0 K1

C C

Input
Output

Clock

Figure 3.66 Circuit diagram for

Question 3.15.

Shift clock

J Q3

Q

C

K

J Q2

Q

C

K

J Q1

Q

C

K

J Q0

Q

C

K

Figure 3.67 Circuit diagram for

Question 3.16.

Q2

Q2

Q3

Q3

Q1
J2 J3J1

K2 K3K1

C CC

Clock

1

1

Figure 3.68 Circuit diagram for

Question 3.17.

142 Chapter 3 Sequential logic

Q

Q

J

C

J

Clock

1

1

G1

FF1

Q

Q

J

C

J

FF2

Q

Q

J

C

J

FF3

Q

Q

J

C

J

FF4

G2

Figure 3.69 Circuit diagram for Question 3.18.

Q

Q

J

C

K

Q3
Q2 Q1 Q0

Shift clock

Q

Q

J

C

K

Q

Q

J

C

K

Q

Q

J

C

K

Figure 3.70 Circuit diagram of a Johnson

counter.

Figure 3.71 Organization of a 74162 synchronous decade counter.

QA

QD

QB

QC

Load

Data A

Data B

Clock

QData D

Clear

Data C

Carry out
P

T

Enable
inputs

3.7 Introduction to state machines 143

3.23 Design a programmable modulo 10/modulo 12

synchronous counter using JK flip-flops.The counter

has a control input,TEN/ , which when high, causes

the counter to count modulo 10.When low,TEN/

causes the counter to count

modulo 12.

3.24 How would you determine the maximum rate at which a

synchronous counter could be clocked?

3.25 The circuit in Fig. 3.70 represents a Johnson counter.

This is also called a twisted ring counter because

feedback from the last (rightmost) stage is fed back

to the first stage by crossing over the Q and connections.

Investigate the operation of this

circuit.

3.26 Design a simple digital time of day clock that can display

the time from 00:00:00 to 23:59:59. Assume that

you have a clock pulse input derived from the public

electricity supply of 50 Hz (Europe) or

60 Hz (USA).

3.27 Figure 3.71 gives the internal organization of a 74162

synchronous decade (i.e. modulo 10) counter.

Investigate its operation. Explain the function of the various

control inputs. Note that the flip-flops are master–slave JKs

with asynchronous (i.e. unconditional) clear inputs.

3.28 Design a modulo 8 counter with a clock and a

control input UP. When UP � 1, the counter counts 0, 1, 2, . . . ,

7.When UP � 0, the counter counts down 7, 6, 5, . . . 0. This

circuit is a programmable up-/down-counter.

3.29 Design a counter using JK flip-flops to count through the

following sequence.

Q2 Q1 Q0

0 0 1

0 1 0

0 1 1

1 1 0

1 1 1

0 0 1 sequence repeats

Q

TWELVE

TWELVE

Figure 3.72 Circuit diagram of a

sequence processor.

QK QK

J JQ Q

C C

FF1 FF2Qa Qb

G2

G1

G3

Input
X

Clock

S3

S2

S1

S5

S4

1/0

1/0

1/0

1/0

1/0

1/0

1/0

0/0

0/0

0/0 0/0

0/1

0/1
0/1

S0

S6

Figure 3.73 Circuit diagram of a sequence processor.

observer) as if they constitute a random series of 1s and 0s. Longer

sequences of random numbers are generated by increasing the

number of stages in the shift register.The input is the exclusive OR

of two or more outputs.

3.17 Use Digital Works to construct the circuit of Fig. 3.68 and

then investigate its behavior.

3.18 Investigate the behavior of the circuit in Fig. 3.69.

3.19 Explain the meaning of the terms asynchronous and

synchronous in the context of sequential logic systems.What is

the significance of these terms?

3.20 Design an asynchronous base 13 counter that counts

through the natural binary sequence from 0 (0000) to

12 (1100) and then returns to zero on the next count.

3.21 Design a synchronous binary duodecimal (i.e. base 12)

counter that counts through the natural binary sequence

from 0 (0000) to 11 (1011) and then returns to zero on

the next count.The counter is to be built from four JK

flip-flops.

3.22 Design a synchronous modulo 9 counter using

(a) JK flip-flops

(b) RS flip-flops (with a master–slave clock).

144 Chapter 3 Sequential logic

Figure 3.74 A sequential circuit constructed with Digital Works.

3.30 Investigate the action of the circuit in Fig. 3.72 when it is

presented with the input sequence 111000001011111, where

the first bit is the rightmost bit. Assume that all flip-flops are

reset to Q � 0 before the first bit is received.

3.31 Design a state machine to implement the state diagram

defined in Fig. 3.73.

3.32 Figure 3.74 provides a screen shot of a session using

Digital Works. Examine the behavior of the circuit both by

constructing it and by analyzing it.

4Computer arithmetic

CHAPTER MAP

2 Logic elements and
Boolean algebra
This chapter introduces the basic

component of the digital

computer, the gate.We show

how a few simple gates can be

used to create circuits that

perform useful functions.We also

demonstrate how Boolean

algebra and Karnaugh maps can

be used to design and even

simplify digital circuits.

3 Sequential logic
Computers use sequential

circuits such as counters to step

through the instructions of a

program.This chapter

demonstrates how sequential

circuits are designed using the

flip-flop.

4 Computer arithmetic
We show how both positive and

negative numbers are

represented in binary and how

simple arithmetic operations are

implemented.We also look at

other aspects of binary

information such as

error-detecting codes and data

compression. Part of this chapter

is devoted to the way in which

multiplication and division is

carried out.

5 The instruction set
architecture
This is the heart of the book and

is concerned with the structure

and operation of the computer

itself.We examine the instruction

set of a processor with a

sophisticated architecture.

INTRODUCTION

Because of the ease with which binary logic elements are manufactured and because of their

remarkably low price, it was inevitable that the binary number system was chosen to represent

numerical data within a digital computer. This chapter examines how numbers are represented in

digital form, how they are converted from one base to another, and how they are manipulated

within the computer.We begin with an examination of binary codes in general and demonstrate

how patterns of ones and zeros can represent a range of different quantities.

We demonstrate how computers use binary digits to implement codes that detect errors in

stored or transmitted data and how some codes can even correct bits that have been corrupted.

Similarly, we show how codes can be devised that reduce the number of bits used to encode

information (e.g. the type of codes used to zip files).

The main theme of this chapter is the class of binary codes used to represent numbers in digital

computers.We look at how numbers are converted from our familiar decimal (or denary) form to

binary form and vice versa. Binary arithmetic is useless without the hardware needed to

implement it, so we examine some of the circuits of adders and subtractors.We also introduce

error-detecting codes, which enable the computer to determine whether data has been corrupted

(i.e. inadvertently modified). Other topics included here are ways in which we represent and

handle negative as well as positive numbers.We look at the way in which the computer deals with

very large and very small numbers by means of a system called floating point arithmetic. Finally,

we describe how computers carry out multiplication and division—operations that are much

more complex than addition or subtraction.

We should stress that error-detecting codes, data compressing codes, and computer arithmetic

are not special properties of the binary representation of data used by computers.All these

applications are valid for any number base.The significance of binary arithmetic is its elegance and

simplicity.

4.1 Bits, bytes, words, and characters

The smallest quantity of information that can be stored and
manipulated inside a computer is the bit, which can take the
value 0 or 1. Digital computers store information in the form
of groups of bits called words. The number of bits per word
varies from computer to computer. A computer with a 4-bit
word is not less accurate than a computer with a 64-bit word;
the difference is one of performance and economics.
Computers with small words are cheaper to construct than
computers with long words. Typical word lengths of com-
puter both old and new are

Cray-1 supercomputer 64 bits
ICL 1900 series mainframe 24 bits
UNIVAC 1100 mainframe 36 bits

PDP-11 minicomputer 16 bits
VAX minicomputer 32 bits

The first microprocessor (4004) 4 bits
First-generation microprocessors 8 bits
8086 microprocessor 16 bits
Third-generation microprocessors 32 bits
Fourth-generation microprocessors 64 bits
Special-purpose graphics processors 128 bits

A group of 8 bits has come to be known as a byte.
Today’s microprocessors and minicomputers are byte ori-
ented with word lengths that are integer multiples of 8 bits
(i.e. their data elements and addresses are 8, 16, 32, or 64 bits).
A word is spoken of as being 2, 4, or 8 bytes long, because its
bits can be formed into two, four, or eight groups of 8 bits,
respectively.1

An n-bit word can be arranged into 2n unique bit patterns
as Table 4.1 demonstrates for n � 1, 2, 3, and 4. So, what do
the n bits of a word represent? The simple and correct answer
is nothing, because there is no intrinsic meaning associated
with a pattern of 1s and 0s. The meaning of a particular
pattern of bits is the meaning given to it by the programmer.

As Humpty Dumpty said to Alice in Through the Looking
Glass, ‘When I use a word,’ Humpty Dumpty said, ‘in a rather
scornful tone, ‘it means just what I choose it to mean—
neither more nor less.’

The following are some of the entities that a word may
represent.

An instruction An instruction or operation to be per-
formed by the CPU is represented by a binary pattern such as
00111010111111111110000010100011. The relationship
between the instruction’s bit pattern and what it does is arbit-
rary and is determined by the computer’s designer. A partic-
ular sequence of bits that means add A to B on one computer
might have an entirely different meaning on another com-
puter. Instructions vary in length from 8 to about 80 bits.

A numeric quantity A word, either alone or as part of a
sequence of words, may represent a numerical quantity.

146 Chapter 4 Computer arithmetic

ACCURACY AND WORD LENGTH

If I ask students what the advantages of a 32-bit wordlength

over an 8-bit wordlength are, some will say that computers

with long wordlengths are more accurate than computers

with short wordlengths.

This answer is incorrect.All computers are completely

accurate unless they have failed.The answer confuses

precision with accuracy.A computer with an 8-bit

wordlength can represent one of 256 values, whereas a

computer with a 32-bit wordlength can represent one

of 4, 294, 967, 296 values.The number of bits in a

word indicates how precisely a value can be

represented.

An 8-bit computer can deal with any arbitrary wordlength.

If you wish to represent integers to a precision of 1 in 32 bits

on an 8-bit machine, you have to take four 8-bit words and

concatenate them to form a 32-bit entity.When you add two

32-bit values, you have to add each of the two pairs of four

bytes.An m-bit computer can simulate an n-bit computer for

any values of m and n and achieve exactly the same results as

the n-bit machine. However, simulating, say, a 32-bit

computer on a real 8-bit machine may seriously reduce

performance (i.e. speed).A real 32-bit machine is faster than a

simulated 32-bit machine.The trend toward longer

wordlengths is about performance and not accuracy.

1 Some early computers grouped bits into sixes and called them bytes.
Computer science uses flexible jargon where a term sometimes has differ-
ent meanings in different contexts; for example, some employ the term
word to mean a 16-bit value and longword to mean a 32-bit value. Others
use the term word to refer to a 32-bit value and halfword to refer to a
16-bit value. Throughout this text we will use word to mean the basic
unit of information operated on by a computer except when we are
describing the 68K microprocessor.

Bits (n) Patterns 2n Values

1 2 0, 1

2 4 00, 01, 10, 11

3 8 000, 001, 010, 011, 100, 101, 110, 111

4 16 0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111, 1000, 1001, 1010, 1011, 1100, 1101,

1110, 1111

Table 4.1 The relationship between the number of bits in a word

and the number of patterns.

Numbers can be represented in one of many formats: BCD
integer, unsigned binary integer, signed binary integer, BCD
floating point, binary floating point, complex integer, com-
plex floating point, double precision integer, etc. The mean-
ing of these terms and the way in which the computer carries
out its operations in the number system represented by the
term is examined later. Once again we stress that the byte
10001001 may represent the value �119 in one system, 137 in
another system, and 89 in yet another system. We can think of
a more human analogy. What is GIFT? To a Bulgarian it
might be their login password; to an American it might be
something to look forward to on their birthday; to a German
it is something to avoid because it means poison. Only the
context in which GIFT is used determines its meaning.

A character The alphanumeric characters (A to Z, a to z,
0 to 9) and the symbols *, �, �, !, ?, etc. are assigned binary
patterns so that they can be stored and manipulated within
the computer. The ASCII code (American Standard Code
for Information Interchange) is widely used throughout
the computer industry to encode alphanumeric characters.
Table 4.2 defines the relationship between the bits of the
ASCII code and the character it represents. This is also called
the ISO 7-bit character code.

The ASCII code represents a character by 7 bits, allowing a
maximum of 27 � 128 different characters. 96 characters are
the normal printing characters. The remaining 32 characters
are non-printing characters that carry out special functions,
such as carriage return, backspace, line feed, etc.

To convert an ASCII character into its 7-bit binary code,
you read the upper-order three bits of the code from the col-
umn in which the character falls and the lower-order four bits
of code from the row. Table 4.2 numbers the rows and
columns in both binary and hexadecimal forms (we’ll intro-
duce hexadecimal numbers shortly); for example, the ASCII
representation of the letter ‘Z’ is given by 5A16 or 10110102.
Because most computers use 8-bit bytes, the ASCII code for
‘Z’ would be 01011010. If you wish to print the letter ‘Z’ on a
printer, you send the ASCII code for Z, 01011010, to the
printer.

The ASCII codes for the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9, are 3016, 3116, 3216, 3316, 3416, 3516, 3616, 3716, 3816, and
3916, respectively. For example, the symbol for the number 4 is
represented by the ASCII code 001101002, whereas the binary
value for 4 is represented by 000001002. When you hit the key
‘4’ on a keyboard, the computer receives the input 00110100
and not 00000100. Input from a keyboard or output to a dis-
play must be converted between the codes for the numbers
and the values of the numbers. In high-level language this
translation takes place automatically.

The two left-hand columns of Table 4.2, representing
ASCII codes 0000000 to 0011111, don’t contain letters, num-
bers, or symbols. These columns are non-printing codes that
are used either to control printers and display devices or to
control data transmission links. Data link control characters
such as ACK (acknowledge) and SYN (synchronous idle) are
associated with communications systems that mix the text

4.1 Bits, bytes, words, and characters 147

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 0000 NULL DCL SP 0 @ P ‘ p

1 0001 SOH DC1 ! 1 A Q a q

2 0010 STX DC2 “ 2 B R b r

3 0011 ETX DC3 # 3 C S c s

4 0100 EOT DC4 $ 4 D T d t

5 0101 ENQ NAK % 5 E U e u

6 0110 ACK SYN & 6 F V f v

7 0111 BEL ETB ‘ 7 G W g w

8 1000 BS CAN (8 H X h x

9 1001 HT EM) 9 I Y i y

A 1010 LF SUB * : J Z j z

B 1011 VT ESC + ; K [k }

C 1100 FF FS , < L \ l |

D 1101 CR GS - = M] m }

E 1110 SO RS . > N ^ n ~

F 1111 SI US / ? O _ o DEL

Table 4.2 The ASCII code.

being transmitted with the special codes used to regulate the
flow of the information.

The 7-bit ASCII code has been extended to the 8-bit
ISO 8859-1 Latin code to add accented characters such as
Å, ö, and é. Although suited to Europe and the USA,
ISO 8859-1 can’t deal with many of the World’s languages. A
16-bit code, called Unicode, has been designed to represent
the characters of most of the World’s written languages such
as Chinese and Japanese. The first 256 characters of Unicode
map onto the ASCII character set, making ASCII to Unicode
conversion easy. The programming language Java has
adopted Unicode as the standard means of character
representation.

A picture element One of the many entities that have to be
digitally encoded is the picture or graphical display. Pictures
vary widely in their complexity and there are a correspond-
ingly large number of ways of representing pictorial informa-
tion. For example, pictures can be parameterized and stored
as a set of instructions that can be used to recreate the image
(i.e. the picture is specified in terms of lines, arcs, and poly-
gons and their positions within the picture). When the pic-
ture is to be displayed or printed, it is recreated from its
parameters.

A simple way of storing pictorial information is to employ
symbols that can be put together to make a picture. Such an
approach was popular with the low-cost microprocessor sys-
tems associated with computer games where the symbols
were called sprites.

Complex pictures can be stored as a bit-map (an array of
pixels or picture elements). By analogy with the bit, a pixel is
the smallest unit of information of which a picture is com-
posed. Unlike a bit, the pixel can have attributes such as color.
If we wish to store a 10 in � 8 in image at a reasonably high
resolution of 300 pixels/in in both the horizontal and vertical
axes, we require (10 � 300)� (8 � 300) � 7 200 000 pixels.
If the picture is in color and each pixel has one of 256 differ-
ent colors, the total storage requirement is 8 � 7 200 000 bits,

or approximately 8 Mbytes. Typical high-quality color video
displays have a resolution of 1600 by 1 200 (i.e. 221 pixels) per
frame. These values explain why high-quality computer
graphics requires such expensive hardware to store and
manipulate images in real time. There are techniques for com-
pressing the amount of storage required by a picture. Some
techniques operate by locating areas of a constant color and
intensity and storing the shape and location of the area and its
color. Other techniques such as JPEG work by performing a
mathematical transformation on an image and deleting data
that contributes little to the quality of the image.

4.2 Number bases

Our modern number system, which includes a symbol to
represent zero, was introduced into Europe from the
Hindu–Arabic world in about 1400. This system uses a posi-
tional notation to represent decimal numbers. By positional
we mean that the value or weight of a digit depends on its
location within a number. In our system, when each digit
moves one place left, it is multiplied by 10 (the base or radix).
Thus, the 9 in 95 is worth 10 times the 9 in 49. Similarly, a
digit is divided by 10 when moved one place right (e.g. con-
sider 0.90 and 0.09).

If the concept of positional notation seems obvious and not
worthy of mention consider the Romans. They conquered
most of the known world, invented Latin grammar, wrote the
screenplays of many Hollywood epics, and yet their math-
ematics was terribly cumbersome. Because the Roman World
did not use a positional system to represent numbers, each
new large number had to have its own special symbol. Their
number system was one of give and take so that if X � 10 and
I � 1, then XI � 11 (i.e. 10 � 1) and IX � 9 (i.e. 10 � 1). The
decimal number 1970 is represented in Roman numerals by
MCMLXX (i.e. 1000 � (1000�100) � (50 � 10 � 10)).
The Romans did not have a symbol for zero.

148 Chapter 4 Computer arithmetic

WHAT ARE NUMBERS?

Before we introduce binary numbers, we need to say what we

mean by numbers. The numbers we use to count things

(i.e. 1, 2, 3, 4, . . .) are called natural numbers and are whole

numbers or integers. Natural numbers are so called because

they don’t depend on our mathematics (there are three stars

in Orion’s belt whether or not there are humans on the Earth

to count them).The way in which we count is defined by the

number system, which uses 10 special symbols to represent

numbers.

Not all numbers are natural. For example, we have invented

negative numbers to handle certain concepts.We have real

numbers, which describe non-integer values including

fractions. Real numbers themselves are divided into rational

and irrational numbers.A rational number can be expressed as

a fraction (e.g. 7/12), whereas an irrational number can’t be

expressed as one integer divided by another. Paradoxically we

can draw a line that has a finite length but we can’t write

down the length as a real number. If a square measures one

inch by one inch, its diagonal is inches long.You can draw

the diagonal, but the irrational value of cannot be

expressed by a finite number of digits in our number system.

We have introduced these basic concepts because they

have implications for the way in which computers process

numeric information.

�2

�2

The number base lies at the heart of both conventional and
computer arithmetic. Humans use base 10 and computers
use base 2. We sometimes use other bases even in our every-
day lives; for example, we get base 60 from the Babylonians
(60 seconds � 1 minute and 60 minutes � 1 hour). We can
express the time 1:2:3 (1 hour 2 minutes 3 seconds) as
1 � 60 � 60 � 2 � 60 � 3 seconds. Similarly, we occasion-
ally use the base 12 (12 � 1 dozen, 12 � 12 � 1 gross).
Indeed, the Docenal Society of America exists to promote the
base 12 (also called duodecimal).

We now examine how a number is represented in a general
base using positional notation. Integer N, which is made up
of n digits can be written in the form

The ais that make up the number are called digits and can take
one of b values (where b is the base in which the number is
expressed). Consider the decimal number 821 686, where the
six digits are a0 � 6, a1 � 8, a2 � 6, a3 � 1, a4 � 2, and
a5 � 8, and these digits are taken from a set of 10 symbols
{0 to 9}.

The same notation can be used to express real values by
using a radix point (e.g. decimal point in base 10 arithmetic or
binary point in binary arithmetic) to separate the integer and
fractional parts of the number. The following real number
uses n digits to the left of the radix point and m digits to the
right.

The value of this number, expressed in positional notation in
the base b is written, is defined as

The value of a number is equal to the sum of its digits, each
of which is multiplied by a weight according to its position in
the number. Let’s look at some examples of how this
formula works. The decimal number 1982 is equal
to 1 � 103 � 9 � 102 � 8 � 101 � 2 � 100 (i.e. one thou-
sand � nine hundreds � eight tens � two). Similarly, 12.34
is equal to 1 � 101 � 2 � 100 � 3 � 10�1 � 4 � 0�2. The
value of the binary number 10110.11 is given by
1 � 24 � 0 � 23 � 1 � 22 �1 � 21 � 0 � 20 � 1 � 2�1 �

1 � 2�2, or, in decimal, 16 � 4 � 2 � 0.5 � 0.25 � 22.75.
Remember that the value of r 0 is 1 (i.e. any number to the
power zero is 1).

i � � m

� �aib
i

i � n�1

� a�2b
�2... � a�mb�m

N � an�1b
n�1... � a1b

1 � a0b
0 � a�1b

�1

an�1 an�2 ...a1 a0.a�1a�2a�m

an�1an�2...a1a0

In base seven arithmetic, the number 123 is equal to the
decimal number 1 � 72 � 2 � 71 � 3 � 70 � 49 � 14 �

3 � 66. Because we are talking about different bases in this
chapter, we will sometimes use a subscript to indicate the base;
for example, 1237 � 6610.

We should make it clear that we’re talking about natural
positional numbers with positional weights of 1, 10, 100,
1000, . . . (decimal) or 1, 2, 4, 8, 16, 32, . . . (binary). The
weight of a number is the value by which it is multiplied by
virtue of its position in the number. It’s perfectly possible to
have weightings that are not successive powers of an integer;
for example, we can choose a binary weighting of 2, 4, 4, 2
which means that the number 1010 is interpreted as
1 � 2 � 0 � 4 � 1 � 4 � 0 � 2 � 6.

We are interested in three bases: decimal, binary, and hexa-
decimal (the term hexadecimal is often abbreviated to hex).
Although some texts use base-8 octal arithmetic, this base is
ill-fitted to the representation of 8- or 16- bit binary values.
Octal numbers were popular when people used 12-, 24- or
36-bit computers. We do not discuss octal numbers further.
Table 4.3 shows the digits used by each of these bases. Because
the hexadecimal base has 16 digits, we use the letters A to F to
indicate decimal values between 10 and 15.

People work in decimal and computers in binary. We use
base 10 because we have 10 fingers and thumbs. The hexa-
decimal system is used by people to handle computer arithm-
etic. By converting binary numbers to hexadecimal form (a
very easy task), the shorter hexadecimal numbers can be
more readily remembered. For example, the 8-bit binary
number 10001001 is equivalent to the hexadecimal number
89 which is easier to remember than 10001001. Because hexa-
decimal numbers are more compact than binary numbers (1
hexadecimal digit � 4 binary digits), they are used in com-
puter texts and core-dumps. The latter term refers to a print-
out of part of the computer’s memory, an operation normally
performed as a diagnostic aid.

There are occasions where binary numbers offer people
advantages over other forms of representation. Suppose a
computer-controlled chemical plant has three heaters, three
valves, and two pumps, which are designated H1, H2, H3, V1,
V2,V3, P1, P2, respectively. An 8-bit word from the computer
is fed to an interface unit that converts the binary ones and
zeros into electrical signals to switch on (logical one) or
switch off (logical zero) the corresponding device. For
example, the binary word 01010011 has the effect described
in Table 4.4 when presented to the control unit:

4.2 Number bases 149

Decimal b � 10 a � {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Binary b � 2 a � {0,1}

Hexadecimal b � 16 a � {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A, B, C, D, E, F}

Table 4.3 Three number bases.

By inspecting the binary value of the control word, the sta-
tus of all devices is immediately apparent. If the output had
been represented in decimal (83) or hexadecimal (53) the
relationship between the number and its intended action
would not have been so obvious.

Now that we’ve looked at the structure of binary and
decimal numbers, the next step is to consider how we convert
a number in one base into its equivalent value in another
base.

4.3 Number base conversion

It’s sometimes necessary to convert numbers from one base
to another by means of a pencil-and-paper method. This
statement is particularly true when working with micro-

processors at the assembly language or machine code level.
Computer users don’t concern themselves with conversion
between number bases, as the computer will have software to
convert a decimal input into the computer’s own internal
binary representation of the input. Once the computer has
done its job, it converts the binary results into decimal form
before printing them.

A knowledge of the effect of number bases on arithmetic
operations is sometimes quite vital, as, for example, even the
simplest of decimal fractions (say 1/10 � 0.1) has no exact
binary equivalent. That is, a rational number expressed in a
finite number of digits in one base may require an infinite
number of digits in another base. Suppose the computer were
asked to add the decimal value 0.110 to itself and stop when
the result reaches 1. The computer may never stop because
the decimal value 0.110 cannot be exactly represented by a
binary number, with the result that the sum of 10 binary rep-
resentations of 0.1 is never exactly 1. The sum may be
1.0000000000001 or 0.99999999999, which is almost as good
as 1, but it is not the same as 1, and a test for equality with 1
will always fail.

4.3.1 Conversion of integers

In this section we are going to demonstrate how integers are
converted from one base to another.

Decimal to binary To convert a decimal integer to binary,
divide the number successively by 2, and after each division
record the remainder, which is either 1 or 0. The process is
terminated only when the result of the division is 0 remain-
der 1. In all the following conversions R represents the
remainder after a division.

150 Chapter 4 Computer arithmetic

RULES OF ARITHMETIC

If there’s one point that we would like to emphasize here, it’s

that the rules of arithmetic are the same in base x as they are

in base y.All the rules we learned for base 10 arithmetic can

be applied to base 2, base 16, or even base 5-arithmetic. For

example, the base 5 numbers 1235 and 2215 represent, in

decimal, 1 � 52 � 2 � 51 � 3 � 50 � 3810 and

2 � 52 � 2 � 51 � 1 � 50 � 6110, respectively. Let’s add both

pairs of numbers together using the conventional rules of

arithmetic in base 5 and base 10.

Base 5 Base 10

123 38

�221 �61

344 99

If we add 1235 to 2215 we get 3445, which is equal to the decimal number 3 � 52 � 4 � 51 � 4 � 50 � 9910.Adding the

decimal numbers 3810 and 6110 also gives us 9910.

Bit Value Component Action

7 0 Heater 1 off

6 1 Heater 2 on

5 0 Heater 3 off

4 1 Valve 1 on

3 0 Valve 2 off

2 0 Valve 3 off

1 1 Pump 1 on

0 1 Pump 2 on

Table 4.4 Decoding the binary sequence 01010011.

For example, 24510 becomes

Most-significant bit

The result is read from the most-significant bit (the last
remainder) upwards to give 24510 � 111101012.

Decimal to hexadecimal Decimal numbers are converted
from decimal into hexadecimal form in exactly the same way
that decimal numbers are converted into binary form.
However, in this case the remainder lies in the decimal range
0 to 15, corresponding to the hexadecimal range 0 to F.
For example, 5324110 becomes

Therefore, 5324110 � CFF916.

Binary to decimal It is possible to convert a binary num-
ber to decimal by adding together the requisite powers of two.
This technique is suitable for relatively small binary numbers
up to about 7 or 8 bits.
For example, 110001112 is represented by

A more methodical technique is based on a recursive algo-
rithm as follows. Take the leftmost non-zero bit, double it,
and add it to the bit on its right. Now take this result, double
it, and add it to the next bit on the right. Continue in this way
until the least-significant bit has been added in. The recursive
procedure may be expressed mathematically as

(a0�2(a1�2(a2�⋅ ⋅ ⋅)))

where the least-significant bit of the binary number
is a0.

For example, 10101112 becomes

Therefore, 10101112 � 8710.

Hexadecimal to decimal The method is identical to the
procedure for binary except that 16 is used as a multiplier.

4.3 Number base conversion 151

HOW MANY BITS DOES IT REQUIRE TO REPRESENT A DECIMAL NUMBER?

If we represent decimal numbers in binary form, we need

to know how many binary digits are required to express an

n-digit decimal number in binary form. For example, how

many bits does it take to represent numbers up to

90 000 000? The following explanation requires an

understanding of logarithms.

Suppose we require m bits to represent the largest n-digit

decimal number, which is, of course, 99 . . . 999 or 10n�1.We

require the largest binary number in m bits (i.e. 11 . . . 111) to

be equal to or greater than the largest decimal number in

n bits (i.e. 99 . . . 999) that is,

10n�1
2m�1,

that is, 10n
 2m

Taking logarithms to base 10 we get

log1010n
 log102
m

Note: log1010n � nlog1010 and log1010 � 1

nlog1010
 mlog102

n
 mlog102

m
 3.322n

In other words, it takes approximately 3.3n bits to

represent an n-bit decimal number. For example, if we wish

to represent decimal numbers up to 1 000 000 in binary, we

must use at least 6 � 3.3 bits, which indicates a 20-bit word

length.

For example, 24E16 becomes

Therefore, 24E16 � 59010.

Binary to hexadecimal The binary number is formed into
groups of 4 bits starting at the binary point. Each group is
replaced by a hexadecimal digit from 0 to 9, A, B, C, D, E, F.
For example, 11001011101 becomes

Therefore, 110010111012 � 65D16.

Hexadecimal to binary Each hexadecimal digit is replaced
by its four bit binary equivalent.
For example, 1234AF0C16 becomes

Therefore,
1234AF0C16 � 000100100011010010101111000011002.

4.3.2 Conversion of fractions

The conversion of fractions from one base to another is car-
ried out in a similar way to the conversion of integers,
although it’s rather more tedious to manipulate fractions
manually. Fortunately, it’s rare to have to perform actual pen-
cil and paper conversion of fractions outside the classroom.
One way of effectively abolishing fractions is to treat all frac-
tions as integers scaled by an appropriate factor. For example,
the binary fraction 0.10101 is equal to the binary integer
101012 divided by 25 (i.e. 32), so that, for example, 0.101012 is
the same as 101012/2

5 � 21/32 � 0.65625.

Converting binary fractions to decimal fractions

The algorithm for converting binary fractions to their deci-
mal equivalent is based on the fact that a bit in one column is
worth half the value of a bit in the column on its left. Starting
at the rightmost non-zero bit, take that bit and halve it. Now
add the result to the next bit on its left. Halve this result and
add it to the next bit on the left. Continue until the binary
point is reached.

152 Chapter 4 Computer arithmetic

For example, consider the conversion of 0.011012 into
decimal form.

Therefore, 0.011012 � 13/32.

Converting decimal fractions to binary fractions

The decimal fraction is multiplied by 2 and the integer part
noted. The integer, which will be either 1 or 0, is then stripped
from the number to leave a fractional part. The new fraction
is multiplied by two and the integer part noted. We continue
in this way until the process ends or a sufficient degree of pre-
cision has been achieved. The binary fraction is formed by
reading the integer parts from the top to the bottom as illus-
trated below.
For example, 0.687510 becomes

Therefore, 0.687510 � 0.10112.
Now consider the conversion of 0.110 into binary form.

etc.

Therefore, 0.110 � 0.00011001100 . . . 2 etc. As we pointed
out before 0.110 cannot be expressed exactly in binary form
with a finite number of bits.

Converting between hexadecimal fractions and

decimal fractions

We can convert between hexadecimal fractions and decimal
fractions using the same algorithms we used for binary con-
versions. All we have to change is the base (i.e., 2 to 16).

ends the process

Consider the following example where we convert 0.12316

into a decimal fraction.

Binary to hexadecimal fraction conversion and

vice versa

The conversion of binary fractions to hexadecimal bases is as
easy as the corresponding integer conversions. The only point
worth mentioning is that when binary digits are split into
groups of four, we start grouping bits at the binary point and
move to the right. Any group of digits remaining on the right
containing fewer than 4 bits must be made up to 4 bits by the
addition of zeros to the right of the least-significant bit. The
following examples illustrate this point.

Binary to hexadecimal
0.101011002→0.1010 11002→0.AC16

Binary to hexadecimal
0.101011001→ 0.1010 1100 1(000)→0.AC816

Hexadecimal to binary
0.ABC16→0.1010 1011 1100 →0.1010101111002

Numbers containing an integer part and a fraction part
(e.g. 110101.11010 in base 2 or 123.125 in decimal) are con-
verted from one base to another in two stages. The integer
part is converted and then the fractional part.

4.4 Special-purpose codes

Throughout this book a group of binary digits generally
represents one of three things: a numerical quantity, an
instruction, or a character. However, many different codes
exist in the world of computing and digital systems, each of
which is best suited to the particular job for which it was
designed.

4.4.1 BCD codes

A common alternative to natural binary arithmetic is called
BCD or binary-coded decimal. In theory BCD is a case of hav-
ing your cake and eating it. We have already stated that com-
puter designers use two-state logic elements on purely
economic grounds. This, in turn, leads to the world of binary
arithmetic and the consequent problems of converting
between binary and decimal representations of numeric
quantities. Binary-coded decimal numbers accept the
inevitability of two-state logic by coding the individual deci-
mal digits into groups of four bits. Table 4.5 shows how the
10 digits, 0 to 9, are represented in BCD, and how a decimal
number is converted to a BCD form.

BCD arithmetic is identical to decimal arithmetic and
differs only in the way the 10 digits are represented. The
following example demonstrates how a BCD addition is
carried out.

As you can see, the arithmetic is decimal with the digits 0 to
9 represented by 4-bit codes. When 6 is added to 8 (i.e. 0110
to 1000), the result is not the binary value 1110, but the
decimal 6 � 8 � 14 � 01002 (i.e. 4) carry 1.

Decimal BCD

4.4 Special-purpose codes 153

Binary code BCD value

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 Forbidden code

1011 Forbidden code

1100 Forbidden code

1101 Forbidden code

1110 Forbidden code

1111 Forbidden code

Table 4.5 Binary-coded decimal.

Although BCD makes decimal to binary conversion easy, it
suffers from two disadvantages. The first is that BCD arith-
metic is more complex than binary arithmetic simply
because the binary tables (i.e. addition, subtraction, multipli-
cation, and division) can be implemented in hardware by a
few gates. The decimal tables involve all combinations of the
digits 0 to 9 and are more complex. Today’s digital technology
makes these disadvantages less evident than in the early days
of computer technology where each gate was an expensive
item.

BCD uses storage inefficiently. A BCD digit requires 4 bits
of storage but only 10 symbols are mapped onto 10 of the 16
possible binary codes making the binary codes 1010 to 1111
(10 to 15) redundant and wasting storage. As we demon-
strated earlier, natural binary numbers require an average of
approximately 3.3 bits per decimal digit. In spite of its dis-
advantages, BCD arithmetic can be found in applications
such as pocket calculators or digital watches. Some micro-
processors have special instructions to aid BCD operations.

There are other ways of representing BCD numbers in
addition to the BCD code presented above. Each of these
codes has desirable properties making it suitable for a partic-
ular application (e.g. the representation of negative num-
bers). These BCD codes are not relevant to this text.

4.4.2 Unweighted codes

The binary codes we’ve just described are called pure binary,
natural binary, or 8421 weighted binary because the 8, 4, 2,
and 1 represent the weightings of each of the columns in the
positional code. These are not the only types of code avail-
able. Some positional codes don’t have a natural binary
weighting, other codes are called unweighted because the
value of a bit doesn’t depend on its position within a number.
Each of the many special-purpose codes has properties that
make it suitable for a specific application. One such
unweighted code is called a unit distance code.

In a unit distance code, the Hamming distance between
consecutive code words is equal to one, and no two consecu-
tive code words differ in more than one bit position. Natural
binary numbers are not unit distance codes; for example, the
sequential values 01112 � 7 and 10002 � 8 differ by a
Hamming distance of four. The most widely encountered
unit distance code is the Gray code, the first 16 values of
which are given in Table 4.6. Figure 4.1 illustrates the timing
diagrams of 4-bit binary and 4-bit Gray counters. As you can
see, only one bit makes a change at each new count of the
Gray counter.

Decimal value Natural binary value Gray code

DCBA DCBA

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Table 4.6 The 4-bit Gray code (an unweighted unit distance

code).

154 Chapter 4 Computer arithmetic

HAMMING DISTANCE

The Hamming distance between two words is the number of places (i.e. positions) in which their bits differ. Consider the

following five pairs of words.

Word 1 00101101 00101101 00101101 00101101 00101101

Word 2 00101100 11101100 11101101 00100101 11010010

Places different ✓ ✓✓ ✓ ✓✓ ✓ ✓✓✓✓✓✓✓✓

Hamming distance 1 3 2 1 8

Two m-bit words have a zero Hamming distance if they are the same and an m-bit distance if they are logical complements.

The Gray code is used by the optical encoder, a mechanism
for converting the angle of a shaft or spindle into a binary
value. An optical encoder allows you to measure the angular
position of a shaft electronically without any physical con-
nection between the shaft and the measuring equipment. A
typical example of an optical encoder is found in an auto-
mated weather reporting system. The direction from which
the wind is blowing is measured by one of the World’s oldest
instruments, the weather vane. The weather vane is mounted
on a shaft connected to an optical encoder, which provides
the angle of rotation (i.e. wind direction) as a digital signal.

Figure 4.2 shows an optical encoder using a natural binary
code and Figure 4.3 shows the same arrangement but with
a Gray-encoded disk. A transparent glass or plastic disk is
attached to the shaft whose angular position is to be measured.
As you can see, the disk is covered with concentric tracks, one
for each of the bits in the code representing the position of the
shaft. A 4-bit code might be suitable for a wind direction indi-
cator, whereas a 10-bit code may be required to indicate the
position of a shaft in a machine. Each of these tracks is divided
into sectors that are either opaque or transparent.

A light source is located on one side of the disk over each
track. A photoelectric sensor is located on the other side

directly opposite each light source. For any position of the
disk, a particular combination of the photoelectric cells
detects a light beam, depending on whether or not
there is a transparent sector between the light source and
detector.

A natural binary code can create problems when more
than one bit of the output code changes as the shaft rotates
from one code to the next. The photoelectric cells may not be
perfectly aligned; the light source isn’t a point source; and the
edges of the sectors don’t have perfectly straight edges. When
the disk rotates from one sector to the next and two or three
bits change state, one bit may change slightly before the other.
For example, the change from the natural binary code 001 to
010 might be observed as the sequence 001, 000, 010. Because
the least-significant bit changes before the middle bit, the spu-
rious code 000 is generated momentarily. In some applica-
tions this can be very troublesome. Figure 4.3 demonstrates
that a Gray-encoded disk has the property that only one bit at
a time changes, solving the problems inherent in the natural
binary system. Once the Gray code has been read into a digi-
tal system it may be converted into a natural binary code for
processing in the normal way. The EOR gate logic of Fig. 4.4
converts between Gray codes and natural binary codes.

4.4 Special-purpose codes 155

(a) Binary code

(b) Gray code

A

B

C

D

A

B

C

D

Figure 4.1 Sequencing

though a 4-bit binary and

a 4-bit Gray code.

4.5 Error-detecting codes

In an ideal world, errors don’t occur. In reality a bit that
should be a 1 sometimes gets changed into a 0, and a bit that
should be a 0 sometimes gets changed into a 1. In any

electronic system there are always unwanted random signals,
collectively called noise which may interfere with the correct
operation of the system. These random signals arise from a
variety of causes, ranging from the thermal motion of elec-
trons in a digital system, to electromagnetic radiation from

156 Chapter 4 Computer arithmetic

1
1
1

0

0

0
0

0

0

0

0
0
0

0

0

1 1

1

1

1
1

1

1

1

Light
sources

D
i
s
k

Binary
output

Spindle
Binary-encoded disk

Bit 2 Bit 1

Bit 0

Binary codeSector

0
1
2
3
4
5
6
7

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Angle

 0 – 45
 45 – 90
 90 – 135
 135 – 180
 180 – 225
 225 – 270
 270 – 315
 315 – 360 Figure 4.2 A natural

binary-encoded optical

encoder.

Light
sources

Binary
output

Gray-encoded disk

Bit 2
Bit 1

Bit 0

Binary codeSector Angle

0
1
2
3
4
5
6
7

 0 – 45
 45 – 90
 90 – 135
 135 – 180
 180 – 225
 225 – 270
 270 – 315
 315 – 360

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

1
11

0

0

0

0
0

0

0

0
0
0

0

0

11

1

1

1
1 1

11

Figure 4.3 A Gray-encoded

optical encoder.

g
3

g
4

b3b4

g
2

b2

g
1

b1

g
0

b0
g3g4

b3b4

g2

b2

g1

b1

g0

b0

Natural binary input

Gray-encoded output Natural binary input

Gray-encoded output

Figure 4.4 Converting binary codes to Gray codes and vice versa.

nearby lightning strikes and power line transients caused
by the switching of inductive loads (e.g. starting motors in
vacuum cleaners or elevators). The magnitude of these
unwanted signals is generally tiny compared with digital sig-
nals inside the computer. The two electrical signal levels
representing the zero and one binary states are so well sepa-
rated that one level is almost never spontaneously converted
into the other level inside a digital computer under normal
operating conditions.

We can use some of the properties of binary numbers to
detect errors, or even to correct errors. Suppose we take the
binary pattern 01101011 and ask whether there is an error in
it. We can’t answer this question, because one binary pattern
is just as good as another. Now consider the word ‘Jamuary’.
You will immediately realize that it should be spelt January,
because there is no word ‘Jamuary’ in the English language.
You can correct this spelling error because the closest valid
word to ‘Jamuary’ is January. It’s exactly the same with binary
codes.

Error-detecting codes, (EDCs), can detect that a word has
been corrupted (i.e. changed). The subject of error-detecting
codes is large enough to fill several textbooks. Here we look at

threes codes. We also introduce the error-correcting code
(ECC), which can correct one or more errors in a corrupted
word. Of course the ECC is also an EDC whereas the EDC is
not necessarily an ECC.

Before we can discuss EDCs and ECCs we must introduce
two terms: source word and code word. A source word is an
unencoded string of bits and a code word is a source word
that has been encoded. For example, the source code 10110
might be transformed into the code word 111000111111000
by triplicating each bit.

In order to create an error-detecting code, we have to con-
struct a code in such a way that an error always leaves
a noticeable trace or marker. An error-correcting code
increases the length of the source code by adding one (or
more) redundant bits, so called because they carry no new
information. Figure 4.5 demonstrates how r redundant bits
are added to an m-bit source word to create an (m � r)-bit
code word. The redundant bits are also called check bits
because they are used to check whether the code word is valid
or not. Note that the check bits can be interleaved throughout
the word and don’t have to be located together as Fig. 4.5
shows.

4.5 Error-detecting codes 157

WHERE DO WE FIND ECCs AND EDCs?

Whenever digital signals are transmitted over a long distance

by cables, their magnitude is diminished, making it possible for

external noise signals to exceed the level of the digital signals

and thus corrupt them.The effect of electrical noise is familiar

to anyone who has tuned a radio or television to a distant

station—the sound or picture is of a lower quality than when

a local station is received.Whenever an error occurs in the

reception of digital signals, it is important for the event to be

detected so that a request for retransmission of the corrupted

data can be made.

ECCs and EDCs are also required by data storage

technology. Some of the techniques used to store

digital data are prone to errors (albeit with a very low

probability); for example, DRAM chips are susceptible

to errors caused by alpha particles due to radioactivity.

ECCs and EDCs can determine whether data has been

corrupted during the process of storage and

retrieval.

Error detection can be implemented by transmitting the

desired digital information (i.e. the source word) plus one or

more check bits whose value is a function of the information

bits. Because check bits convey no new information, they are

called redundant bits.

At the receiving end of a data link the information bits are

used to recalculate the check bits. If the received check bits

are the same as those locally generated, error-free transmis-

sion is assumed—otherwise the receiver sends a message

back to the transmitter asking it to repeat the lost data.

If an error is detected in a word stored in memory, the error

can’t be corrected by asking the computer what the stored

word should have been, because there is no other copy of the

word. Consequently the operating system must be informed

of the error and then left to take appropriate action (usually

by aborting the current task). Memories that use error-

correcting codes are able to repair the damage done by an

error before the word is passed to the computer.

Source word

Code word

dm–1 dm–1
d1 d0 d1 d0

r redundant bits m data bits

The redundant bits
are a function of the

m data bits.

Figure 4.5 Encoding a source

word.

4.5.1 Parity EDCs

The simplest error-detecting code is called a parity check code.
We take an m-bit source word and append a parity bit to the
source word to produce an (m �1)-bit codeword. The parity
bit is chosen to make the total number of 1s in the code word
even (an even parity bit) or odd (an odd parity bit). We will
assume an even parity bit here.

Figure 4.6 shows an 8-bit source word, 01101001, which is
converted into a 9-bit code with even parity. This binary
string has a total of four 1s, so the parity bit must be selected
as 0 to keep the total number of 1s even. Assuming that the
parity bit is appended to the left-hand end of the string, the
9-bit code word is 001101001. If, when this value is stored in
memory or transmitted over a data link, any one of the bits is
changed, the resulting parity will no longer be even. Imagine
that bit 2 is changed from 0 to 1 and the code word becomes
001101101. This word now contains five 1s, which indicates
an error, because the parity is odd.

Figure 4.7 provides a graphical representation of a 2-bit
source word with an even parity bit. Although 3 bits provide
eight possible binary values, only four of them are valid code
words with an even parity (i.e. the black circles representing
codes 000, 101, 110, 011). As you can see, a valid code word is
separated from another nearest valid code word by two unit
lengths. In Fig. 4.7 a unit length corresponds to an edge of the
cube. If one of the valid codewords suffers a single error (i.e.

only one bit changes), the codeword changes from one of the
black circles to one of the white circles one unit length away.
Because these code words all have an odd parity, you can
always detect a single error. Two errors (or any even number
of errors) cannot be detected because you move from one
valid code word to another valid codeword. Fortunately, if
one error is a rare event, two errors are correspondingly rarer
(unless the nature of the error-inducing mechanism affects
more than one bit at a time).

If you detect an error, you must ask for the correct data to
be retransmitted (if the corruption occurred over a data
link). If the data was stored in memory, there’s little you can
do other than to tell the operating system that something has
gone wrong.

Table 4.7 gives the eight valid code words for a three-bit
source word, for both even and odd parities. In each case the
parity bit is the most-significant bit.

As an example of the application of check bits consider a
simple two-digit decimal code with a single decimal check
digit. The check digit is calculated by adding up the two
source digits modulo 10 (modulo 10 simply means that we
ignore any carry when we add the digits; for example, the
modulo 10 value of 6 � 7 is 3). If the two source digits are 4
and 9, the code word is 493 (the check digit is 3). Suppose that
during transmission or storage the code word is corrupted
and becomes 463. If we re-evaluate the check digit we get 4 �
6 � 10 � 0 (modulo 10). As the recorded check digit is 3, we
know that an error must have occurred.

4.5.2 Error-correcting codes

We can design error-detecting and-correcting codes to both
locate and fix errors. Figure 4.8 illustrates the simplest 3-bit
error detecting and correcting code where only code words
000 and 111 are valid. The Hamming distance between these
two valid code words is 3. Suppose that the valid code word

158 Chapter 4 Computer arithmetic

Parity bits

Source code
Eight data bits

00 1 1 0 1 0 0 10 1 1 0 1 0 0 1

Figure 4.6 Creating a code word with even parity.

000 001

010

101

011

100

110 111

The black circles

represent valid code

 words with even

 parity

The blue circles
represent invalid
code words (error
states) with
odd parity

Hamming distance =1

Figure 4.7 A 3-bit error detecting code

Message Code word (even parity) Code word (odd parity)

000 0 000 1 000

001 1 001 0 001

010 1 010 0 010

011 0 011 1 011

100 1 100 0 100

101 0 101 1 101

110 0 110 1 110

111 1 111 0 111

Even parity bit Odd partity bit

Table 4.7 Odd and even parity codes.

111 is stored in memory and later read back as 110. This code
word is clearly invalid, because it is neither 000 nor 111. If you
examine Fig. 4.8, you can see that the invalid code word 110
has a Hamming distance of 1 from the valid code word 111
and a Hamming distance 2 from the valid code word 000. An
error correcting code selects the correct code as the nearest
valid code word to the invalid code word. We assume that the
valid code word was 111—we have now both detected an
error and corrected it.

How error-detecting codes work

The idea behind EDCs is simple, as Fig. 4.9 demonstrates. An
incorrect code word has to be made to reveal itself. Assume
we transmit n-bit messages, where m bits are data bits and
r � n�m bits are redundant check bits. Imagine an n-dimen-
sional space in which each point is represented by the value of
an n-bit signal. This n-dimensional space contains 2n possible
elements (i.e. all the possible combinations of n bits).
However, an m-bit source code can convey 2m unique mes-
sages. In other words, only 2m signals are valid out of the 2n

possible signals. Should a code word be received that is not
one of these 2m values, an error may be assumed.

If r check bits are added to the m message digits to create an
n-bit code word, there are 2n � 2m�r possible code words.
The n-dimensional space will contain 2m valid code words, 2n

possible code words and 2n�2m � 2m(2n�m�1) � 2m(2r�1)
error states.

If we read a word from memory or from a communication
system, we can check its location within the n-dimensional
space. If the word is located at one of the 2m valid points we
assume that it’s error free. If it falls in one of the 2n�2m error
states, we can reject it.

Error-correcting codes require that all valid code words be
separated from each other by a Hamming distance of at least 3.
An error-correcting code tries to correct an error by selecting
the nearest valid code to the code word in error. Because valid
codes are separated by a minimum of three units from each
other, a single error moves a code word one unit from its cor-
rect value, but it remains two units from any other valid code
word. Figure 4.10 illustrates this concept.

4.5 Error-detecting codes 159

000 001

010

101

011

100

110 111

The black circles represent

the two valid code words

 000 and 111

The blue circles represent
 invalid codewords. Each
invalid code word is one
unit from the nearest valid
 code word and two units
from the next valid code
 word

Figure 4.8 A 3-bit error-correcting code.

2n possible code words

2m possible code words

Figure 4.9 The principle of the EDC.

3 unit distances between valid code words

State A is closer to code word X
than code word Y

1 unit
distance

1 unit
distance

1 unit
distance

A sphere represents a

region that encloses

code words that are

closer to the valid

code word (the black

circle) than to all other

valid code words.

Invalid states
A, and B

Valid code word
Valid code word

X YA B

Figure 4.10 Minimum condition

required to correct a single bit error.

Block parity error-correcting codes

The single parity-bit, error-detecting code can be extended to
create a block EDC (also called a matrix EDC). A block EDC
uses two types of parity check bit: a vertical parity bit and a
horizontal (or longitudinal) parity bit. Imagine a block of
data composed of a sequence of source words. Each source
word can be written vertically to form a column and the
sequence of source words can be written one after another to
create a block. Figure 4.11 demonstrates a simple block of six
3-bit source words.

The source words are 110, 101, 001, 110, 101, and 010 and
have been written down as a block or matrix. We can generate
a parity bit for each source word (i.e. column) and append it
to the bottom of each column to create a new row. Each of
these parity bits is called a vertical parity bit. Since a block of
source words is made up of a number of columns, a parity
word can be formed by calculating the parity across the bits.
Each code word (i.e. column) in Fig. 4.12 is composed of four
bits: D0, D1, D2, and D3 (where D3 is the vertical parity bit).
We can now derive a horizontal parity bit by calculating the
parity across the columns. That is, we create a parity bit across
all the D0s. Horizontal parity bits for D1, D2, and the vertical
parity bits, D3, can be generated in a similar way. Figure 4.12
shows how the source words of Fig. 4.11 are transformed into
a block error-detecting code.

A vertical even parity bit has been appended to each col-
umn to create a new row labeled D3. Similarly, a horizontal
parity bit has been added to each row to create a new column
labeled word 7.

Figure 4.13 demonstrates the action of a block error-
detecting code in the presence of a single error. A tick marks
each row or column where the parity is correct and a cross
marks where it is not. In this example, the bit in error is
detected by the intersection of the row and column in which
it creates a parity violation. Thus, although the word 1001 is
received incorrectly as 1101 it can be corrected. Although the
block parity code can detect and correct single errors, it can
detect (but not correct) certain combinations of multiple
error. Block EDCs/ECCs are sometimes found in data trans-
mission systems and in the storage of serial data on magnetic
tape.

By detecting a parity error in a row, we can detect the posi-
tion of the bit in error (i.e. in this case bit D1). By detecting a
parity error in a column, we can detect the word in error
(i.e. in this case word 3). Now we can locate the error, which
is bit D1 of word 3. The error can be corrected by inverting
this bit.

4.5.3 Hamming codes

Hamming codes are the simplest class of error-detecting
and-correcting codes that can be applied to a single code
word (in contrast with a block error-correcting code that is
applied to a group of words). A Hamming code takes an
m-bit source word and generates r parity check bits to create
an n-bit code word. The r parity check bits are selected so that
a single error in the code word can be detected, located, and
therefore corrected.

160 Chapter 4 Computer arithmetic

D 0 0 1 1 0 1 0 1

D 1 1 0 1 1 0 1 1

D 2 1 1 0 1 1 0 0

D 3 0 0 1 0 0 1 0

Bit Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

Figure 4.13 Detecting and

correcting an error in a block

code.

Bit Word 1 Word 2 Word 3 Word 4 Word 5 Word 6 Word 7

D0 0 1 1 0 1 0 1

D1 1 0 0 1 0 1 1

D2 1 1 0 1 1 0 0

D3 0 0 1 0 0 1 0
Figure 4.12 Creating a block

error-detecting code.

Bit Word 1 Word 2 Word 3 Word 4 Word 5 Word 6

D 0 0 1 1 0 1 0

D 1 1 0 0 1 0 1

D 2 1 1 0 1 1 0 Figure 4.11 Six 3-bit words.

Hamming codes are designated Hn, m where, for example,
H7,4 represents a Hamming code with a code word of 7 bits
and a source word of 4 bits. The following sequence of bits
represents a H7,4 code word:

Bit position 7 6 5 4 3 2 1
Code bit I4 I3 I2 C3 I1 C2 C1

Ii � source bit i, Cj � check bit j.
The information (i.e. source word) bits are numbered

I1, I2, I3, and I4, and the check bits are numbered C1, C2,
and C3. Similarly, the bit positions in the code word are
numbered from 1 to 7. The check bits are located in
binary positions 2i in the code word (i.e. positions 1, 2,
and 4). Note how the check bits are interleaved with the
source code bits.

The three check bits are generated from the source word
according to the following parity equations.

C3�I2⊕I3⊕I4
C2�I1⊕I3⊕I4
C1�I1⊕I2⊕I4

For example, C3 is the parity bit generated by information
bits I2, I3, and I4, etc. Suppose we have a source word equal to
I4, I3, I2, I1 � 1, 1, 0, 1. The check bits are calculated as

C3�0⊕1⊕1�0
C2�1⊕1⊕1�1
C1�1⊕0⊕1�0

The code word is therefore

I4, I3, I2, C3, I1, C2, C1 � 1, 1, 0, 0, 1, 1, 0

Suppose now that the code word is corrupted during storage
(or transmission). Assume that the value of I3 is switched
from 1 to 0. The resulting code word is now 1000110. Using
the new code word we can recalculate the check bits
to give

C3�0⊕0⊕1�1
C2�1⊕0�O1�0
C1�1⊕0⊕1�0

The new check bits are 1, 0, 0 and the stored check bits are 0,
1, 0. If we take the exclusive OR of the old and new check
bits we get 1 ⊕ 0, 0 ⊕ 1, 0 ⊕ 0 � 1, 1, 0. The binary value 110
expressed in decimal form is 6 and points to bit position 6 in
the code word. It is this bit that is in error. How does a
Hamming code perform this apparent magic trick? The
answer can be found in the equations for the parity check
bits. The check bits are calculated in such a way that any
single bit error will change the particular combination of
check bits that points to its location.

The Hamming code described above can detect and cor-
rect a single error. By adding a further check bit we can create
a Hamming code that can detect two errors and correct one
error.

4.5.4 Hadamard codes

Computer and communication systems designers employ a
wide range of error-correcting codes and each code has its
own particular characteristics. As the mathematics of error-
correcting codes is not trivial, we will demonstrate the con-
struction of an error-correcting code that can be appreciated
without any math.

A Hadamard matrix of order n is written [H]n and has
some very interesting properties. All elements in a Hadamard
matrix are either 1 or �1 (this is still a binary or two-state
system because we can write �1 and 1 instead of 0 and 1 with-
out loss of generality). The simplest Hadamard matrix is
written [H]2 and has the following value:

An interesting property of the Hadamard matrix is that
a 2n x 2n Hadamard matrix [H]2n can be derived from the
n x n Hadamard matrix [H]n by means of the expansion

That is, you just write down the matrix [H]n four times, with
the appropriate signs in front of each matrix. Let’s use this
relationship to construct the Hadamard matrix of the order
four, [H]4, from [H]2. All we have to do is write down [H]2

four times. Each time a �[H]n appears in the expression for
[H]2n, we write the value of [H]2 and each time a �[H]n

appears in the expression we write the value of �[H]2 (i.e.
[H]2 with all elements reversed).

Can you see any pattern in the matrix emerging? Let’s
construct a Hadamard matrix of the order eight, [H]8, by
taking the value of [H]4 and using the expansion to
generate [H]8.

4.5 Error-detecting codes 161

If you inspect the rows of this Hadamard matrix of the order
eight, you find that each row has a Hamming distance of 4
from each of the other seven rows. The Hamming distance
between any row and all other rows of a Hadamard matrix of
the order n is n/2.

Let’s now use the Hadamard matrix of the order eight to
transform a 3-bit source code into an 8-bit code word. The
matrix for [H]8 has eight rows, so that a 3-bit source code can
be used to select one of the eight possible rows. Table 4.8 is a
simple copy of an [H]8 matrix in which the rows of the matrix
are numbered 0 to 7 to represent source codes 000 to 111.

Suppose you want to encode the 3-bit source code 011
using [H]8. The source word is 011, which corresponds to the
8-bit code word �1 �1 �1 �1 �1 �1 �1 �1 (or 10011001
expressed in conventional binary form) on row 3 of Table 4.8.
This code word has three information bits and five redundant
bits. These five redundant bits enable us to both detect and
correct an error in the code word.

The most important property of the Hadamard matrix of
the order n is that each row differs from all other rows in
exactly n/2 bit positions. The rows of an [H]8 matrix differ
from each other in four bit positions; that is, the minimum
Hamming distance between code words is 4. We have already
demonstrated that a code with a minimum Hamming dis-
tance of 3 can both detect and correct errors. Consider, for
example, the valid code words �1�1 �1 �1 �1 �1 �1 �1

and �1 �1 �1 �1 �1 �1 �1 �1. The first code word has a
unit distance of 4 from the second code word. If the first code
word were converted into the second code word, it might go
through the intermediate error states �1 �1 �1 �1
�1 �1 �1 �1 , �1 �1 �1 �1 �1 �1 �1 �1, �1 �1 �1
�1 �1 �1 �1 �1, and �1 �1 �1 �1 �1 �1 �1 �1.

Let’s look at this code in more detail. Figure 4.14 illustrates
two adjacent valid codewords, X and Y, generated by a [H]8

matrix, which are, of course, separated by a Hamming dis-
tance of 4. The intermediate error states between X and Y (i.e.
the invalid codewords) are labeled A, B, and C. Each state is
separated by 1 unit distance from its immediate neighbors.As
you can see, error state A is closer to valid code word X than
to the next nearest code word, Y. Similarly, error state C is
closer to valid code word Y than to any other valid code word.
Error state B is equidistant from the two valid code words and
cannot be used to perform error correction. Two errors in a
code word are therefore detectable but not correctable,
because the resulting error state has a Hamming distance of 2
from the correct state and 2 from at least one other valid state.

Suppose that the code word 011 is transformed into the
8-bit Hadamard code 10011001 and an error occurs in storage
(or transmission) to give a new incorrect value 10011101 (we
have made an error in bit 2). We detect and correct the error
by matching the new code word against all the valid code
words.

162 Chapter 4 Computer arithmetic

Table 4.8 Using a Hadamard matrix to generate an 8-bit codeword from a

3-bit source code.

4 unit distances between valid code words

State A is closer to code word X
than code word Y

X A B C Y

1 unit
distance

1 unit
distance

1 unit
distance

1 unit
distance

A sphere represents a

region that encloses

code words that are

closer to the valid

code word (the black

circle)than to all other

valid code words.

Invalid states
A, B, and C Valid code word

Valid code word

Figure 4.14 Adjacent code

words in a 4-unit code.

Table 4.9 gives the Hamming distance between the code
word 10011101 and each row of the Hamming matrix. The
smallest Hamming distance is 1, which corresponds to a
source code of 011 (i.e. the correct source code). All other
Hamming distances are either 3 or 5; that is, the new error
state is closer to some of the valid states and further away
from some of the valid states.

Having looked at [H]8 let’s continue and construct a
Hadamard matrix [H]16, which is even more interesting. The
16 � 16 Hadamard matrix [H]16 is given by

In this case there are 16 rows and each row has a minimum
Hamming distance of 8 from all other rows. If a 4-bit source
word is used to select one of the 16 rows, the resulting 16-bit
code word will differ from all other valid code words in eight
bit positions. Figure 4.15 illustrates two adjacent valid code
words. Up to three errors in a code word can still be corrected
because a code word with three errors is 3 Hamming units
away from the correct code word and 5 Hamming units away
from the next nearest valid code word.

Because this 16-bit Hadamard code can correct up to three
errors in a code word, it is used in applications in which

errors occur relatively frequently (e.g. when transmitting
digital data between spacecraft and receiving stations on Earth).
Error-correcting codes are widely used to minimize the error
rate in digital storage systems (e.g. hard disk and CD-ROM).

4.6 Data-compressing codes

Whoever said ‘the best things in life are free’ was wrong—very
little in life is free. Encoding information into binary form
costs time and money; time because data takes time to process
and money because both random access memory and sec-
ondary storage systems are not free. Consequently, computer
scientists have attempted to squeeze as much information
into as few bits as possible.

Most computer users will have heard of data compression.
Data compression operates by encoding data in such a way
that the encoded version occupies fewer bits than the original
version. Although you can’t compress random numbers, you
can compress data that contains redundancy. Consider the
sentence ‘I am going to Washington in January 2007’. If you
were taking this down in note form, you might write ‘I’m gng
to W’shtn Jan 07’. You have now compressed 40 ASCII char-
acters into 24 ASCII characters. Digital data can also be com-
pressed if it contains redundant information that can later be
restored when the data is decompressed—e.g. English text,
diagrams, and pictures.

Let’s look at how you might go about compressing data.
Figure 4.16 shows a radar screen with three targets. Suppose
that the radar image is converted into a 16 � 16 block of pix-
els, and a 1 is used to represent a target and a 0 no target—see
Table. 4.10. The three targets are represented by 1s in this
block of 16 � 16 elements.

The information in Table 4.10 can be stored as a string of
16 �16 � 256 bits. Or, we could just store the locations of the
three targets as conventional x, y coordinates: 4,6 10,10 13,3
(the data block begins at location 0, 0 at the top left hand
position and the location is given as row, column). These
three coordinates can be stored as the string of six values 4,6,
10,10, 13,3 or 010001101010101011010011 in binary form
(each coordinate is a 4-bit value). We have just compressed a
256-bit table into 24 bits. As you can imagine, this type of
data compression is effective only if the table is sparse and
contains relatively few targets.

We can approach the coding in another way. If you look at
the data, you can regard it as strings of 0s and 1s (even though
there are no multiple 1s in this example). If we regard the
start of the string as the top left-hand bit, it can be expressed
as 70 zeros, 1 one, 99 zeros, 1 one, 40 zeros, 1 one, 44 zeros.
The information needed to store this block of data is 70, 1, 99,
1, 40, 1, 44; i.e. 7 bytes (i.e. 56 bits).

These two examples demonstrate that some data can be
greatly compressed, although the type of data found in real

4.6 Data-compressing codes 163

Code Code word

000 1 1 1 1 1 1 1 1

1 0 0 1 1 1 0 1 Distance 3

001 1 0 1 0 1 0 1 0

1 0 0 1 1 1 0 1 Distance 5

010 1 1 0 0 1 1 0 0

1 0 0 1 1 1 0 1 Distance 3

011 1 0 0 1 1 0 0 1

1 0 0 1 1 1 0 1 Distance 1

100 1 1 1 1 0 0 0 0

1 0 0 1 1 1 0 1 Distance 5

101 1 0 1 0 0 1 0 1

1 0 0 1 1 1 0 1 Distance 3

110 1 1 0 0 0 0 1 1

1 0 0 1 1 1 0 1 Distance 5

111 1 0 0 1 0 1 1 0

1 0 0 1 1 1 0 1 Distance 3

Table 4.9 Correcting an error in a

Hadamard code.

The word 10011101 has

a Hamming distance of

1 from the valid code

10011001. Therefore, we

assume that the code was

011.

computers can’t be compressed to such an extent. The figure
of merit of a data compression system is its compression
ratio, which is defined as uncompressed size:compressed size.
The compression ratio for a typical mixture of code, text, and
images found in a PC is approximately 2:1.

4.6.1 Huffman codes

Huffman codes employ a variable-length code word. The idea
of a Huffman code isn’t new. When Samuel Morse devised his
famous code he sent his assistant to a printer to count the
number of letters in each storage bin. Morse argued that the
printer’s storage bins would provide a crude estimate of how
much each letter was used on average. The letter E appears so
frequently in English language text that there were many Es,
whereas there were relatively few Qs. Morse constructed a
code that assigned frequently used letters short codes, and
infrequently used letters longer codes.

A similar arrangement can be extended to binary codes.
Huffman codes are applied only to information in which
some elements appear more frequently than others. Plain text
(e.g. written English) is such a case. To keep things simple, we
provide a simple example before looking at Huffman codes in
more depth.A grocer sells only four items (we did say we were
keeping things simple), potatoes, onions, beans, and avocado
pears. Being a thoroughly modern trader and a computer sci-
entist the grocer has a computerized business. Every time an
item is bought, it is encoded in binary form and stored on
disk. The grocer wishes to code transactions in such a way as
to use the least possible storage. Initially the grocer tried the
2-bit binary code described in Table 4.11.

164 Chapter 4 Computer arithmetic

Units distance of 8 between valied code words

Invalid states
A, B, C, D,
E, F, and G

Valied code word Valid code word

X YA
3

B C D E F G

Code words with a
unit distance of 3 or
less are closer to
valid code word X
than to any other
valid code word.

Figure 4.15 Adjacent code

words in an 8-unit code.

Target

Figure 4.16 A radar image.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.10 Radar data (0 � no target, 1 � target).

Item Code

Potatoes 00

Onions 01

Beans 10

Avocado pears 11

Table 4.11 Coding four items with a 2-bit code.

If there are n transactions, the total storage required to
record them is 2n bits. At first sight it would seem that there’s
no way the grocer can get away with less than two bits to
encode each transaction. However, after a little thought, the
grocer realizes that most customers buy potatoes and
therefore devises the encoding scheme of Table 4.12.

Table 4.12 uses codes of different lengths. One code has a
1-bit length, one has a 2-bit length, and two have 3-bit lengths.
After a week’s trading, the total storage space occupied will be
the number of transactions for each item multiplied by the
length of its code. The average code length will be:

By adopting this code, a Huffman code, the average storage
has been reduced from 2 bits per transaction to 1.375 bits per
transaction, a saving of 31.25%. A Huffman code is often
represented in the form of a binary tree, the tree in Fig. 4.17
corresponding to the grocer’s example.

The diagram in Fig. 4.17 is sometimes called a trellis and is
read from left to right. From the left, each of the four terminal
nodes (labeled node 0, node 10, node 110, and node 111) can
be reached by following the marked paths. These paths are
indicated by a 1 or a 0 depending on the bit to be decoded.
Let’s look at how a Huffman code is interpreted. Suppose that
the grocer’s disk contains the following string of bits,
001100101110. What codes does this string correspond to?

1 �
3
4 � 2 �

1
8 � 3 �

1
16 � 3 �

1
16 � 1.375

The first (leftmost) bit of the string is 0. From the trellis we
can see that a first bit 0 leads immediately to the terminal
node 0. Thus, the first code is 0. Similarly, the second code is
also 0. The third code begins with a 1, which takes us to a
junction rather than to a terminal. We must examine another
bit to continue. This is also a 1, and yet another bit must be
read. The third bit is a 0 leading to a terminal node 110. This
process can be continued until the string is broken down into
the sequence: 0 0 110 0 10 111 0 � potatoes, potatoes, beans,
potatoes, beans, avocados, potatoes.

Variations of this type code are used in data and program
compression algorithms to reduce the size of files (e.g. the
widely used ZIP program).

Statistical encoding

The type of encoding performed by Samuel Morse employs a
probabilistic model of the source words to generate code
words. Frequently occurring source words are assigned short
code words, and infrequently used source words are assigned
long code words. We can easily calculate the average length of
a message that has been Huffman encoded. Suppose that a
source word si has a probability pi of appearing as the next
element in the information to be encoded. The average length
of a Huffman-encoded message is therefore given by the sum
of the probability of each source word in the message multi-
plied by the length of its code word, that is

If a system employs four code words with the lengths 1, 2, 4,
and 5 and the probability of each code word is 0.4, 0.3, 0.2, and
0.1, respectively, the average length of a message with n code
words is 1 � 0.4 � 2 � 0.3 � 4 � 0.2 � 5 � 0.1 � 2.3n.

Let’s look at a simple example of Huffman encoding.
Consider an alphabet of five characters A, B, C, D, and E.
Table 4.13 provides the relative frequency of the occurrence

n�pisi for i � 1 to n symbols.

4.6 Data-compressing codes 165

Item Percent of transactions Code

Potatoes 75 0

Onions 12.5 10

Beans 6.25 110

Avocado pears 6.25 111

Table 4.12 A Huffman code for four items.

0

0

Terminal node

Terminal node

Terminal node

Terminal node

0

10

110

111

Start

(Potatoes)

(Onions)

(Beans)

(Avocados)

0

1

1

1

Figure 4.17 The Huffman code

corresponding to Table 4.12.

of these letters in a long message. Such a table can be derived
by obtaining the statistics from many messages. The values in
this table are hypothetical and have been chosen to provide a
simple example.

Symbol A is the most common symbol (it occurs eight
times more frequently than symbol D) and we will give it the
shortest possible code—a single bit. It doesn’t matter whether
we choose a 1 or a 0. We’ll represent A by 0. If symbol A is
represented by a single-bit code 0, what is represented by a 1?
The answer is, all the remaining symbols. We therefore have
to qualify the code 1 by other bits in order to distinguish
between the remaining four symbols.

We will represent the next most common symbol B by the
code 10, leaving the code 11 to be shared among symbols C,
D, and E. Continuing in this manner, the code for symbol C is
110, for symbol D is 1110, and for symbol E is 1111.
Figure 4.18 provides a trellis to illustrate how the symbols are
encoded. As you can see, we have now constructed a code in
which symbol A is represented by a single bit, whereas symbol
E is represented by four bits.

Consider encoding the string BAEAABDA. We begin at the
point labeled start in Fig. 4.18 and follow the tree until we get
to the terminal symbol (i.e. A, B, C, D, or E); for example, the
bit 0 takes us immediately to the terminal symbol A, whereas
you have to take the path 1, 1, 1, 0 to reach the terminal
symbol D. The encoding of the sequence BAEAABDA is
therefore B � 10, A � 0, E � 1111, A � 0, A � 0, B � 10,
D � 1110, A � 0, to give the string 1001111001011100.

In this example there are five symbols and the average
length of a message is 1 � 0.5 � 2 � 0.25 � 3 � 0.125 �

4 � 0.0625 � 4 � 0.0625 � 1.875 bits per symbol. If the same
five symbols had been coded conventionally, 3 bits would
have been required to represent 000 � A to E � 100. Huffman
encoding has reduced the average storage requirement from
3 to less than 2 bits per symbol.

Now let’s look at a more complex example of Huffman
encoding. In this case we will use a wider range of symbols
and avoid the easy numbers of the previous example (did you
notice that all the probabilities were binary fractions?). In this
case, we take 16 letters, A to P, and produce a table of relative
frequencies, (Table. 4.14). We have not used all 26 letters, to
keep the example reasonably simple. The relative frequencies
are made up.

Figure 4.19 shows how we can construct a Huffman tree
for this code. The letters (i.e. symbols) are laid out along the
top with the relative frequencies underneath. The task is to
draw a tree whose branches always fork left (a 1 path) or right
(a 0 path). The two paths are between branches of equal (or as
nearly equal as possible) relative frequency. At each node in
the tree, a shaded box shows the cumulative relative fre-
quency of all the symbols above that node. The node at the
bottom of the tree has a relative frequency equal to the sum of
all the symbols.

Consider the right-hand end of the tree. The symbols G
and J each have a relative frequency 1 and are joined at a
node whose combined relative frequency is 2. This node is
combined with a path to symbol K that has a frequency 2
(i.e. G and J are as relatively frequent as I). You derive the

166 Chapter 4 Computer arithmetic

Symbol A B C D E

Relative frequency 8 4 2 1 1

Relative probability 0.5 0.25 0.125 0.0625 0.0625

Table 4.13 The relative frequency of symbols in an alphabet.

0

0

0

1

1

1

1

A

B
0

Start

C

D

E

Symbol Code

A

B

C

D

E

0

10

110

1110

1111

Figure 4.18 A Huffman encoding tree.

Symbol A B C D E F G H I J K L M N O P

Relative frequency 10 3 4 4 12 2 1 3 3 1 2 6 4 5 5 3

Table 4.14 The relative probability of symbols in a 16-symbol

alphabet.

A BC DE F GH I JKL MN O P

10 34 412 2 13 355 46 2 13

2

46 5

9

7

1316

10 8

18

34 22

46

68

1

1

0

1
0

1 0 1 0 1 0 1 0 1 0 1 0 1

1 0

0

1 0

1 0

0

1 01 0

Figure 4.19 A Huffman encoding tree for a 16-symbol code.

codes for the letters by starting at the bottom-most node and
working back to the symbol (see Table. 4.15).

4.6.2 Quadtrees

An interesting data compression technique employs a data
structure called the quadtree, which is used to encode two-
dimensional images. Figure 4.20 illustrates an 8 � 8 pixel
image. This image can be divided into four quadrants, as

Fig. 4.20(b) demonstrates (hence the term quadtree). As you
can see from Fig. 4.20(b), the four quadrants have different
properties.

In the top left-hand quadrant, all the pixels are black and
are marked ‘F’ for full. In the bottom left-hand quadrant, all
the pixels are white and are marked ‘E’ for empty. Each of the
two right-hand quadrants contains a mixture of black and
white pixels—these quadrants are marked ‘P’ for partially
occupied.

4.6 Data-compressing codes 167

Symbol A B C D E F G H I J K L M N O P

Code 1011 0110 10001 10000 11 0010 00001 0101 0100 00000 0001 1010 0111 10011 10010 0011

Table 4.15 The Huffman encoding of a 16-symbol alphabet.

F

E

E E

E

E E

E

(a) Block of 8 x 8 pixels (b) Dividing the block into four quadrants

F = full (all elements 1)
E = empty (all elements 0)
P = partially filled

(c) The top right-hand quadrant of (b)
is divided into four quadrants

(d) The top right-hand quadrant of (c)
is divided into four quadrants

F

F

F F

FF

(e) Bottom right-hand quadrant of (a)
is divided into four quadrants

(f) Top right-hand quadrant of (e)
is divided into four quadrants

0 1

2 3

Quadrant
numbering

P

P

P

P

P P

Figure 4.20 The quadtree.

The picture of Fig. 4.20(b) can be represented by its four
quadrants 0, 1, 2, 3 as E, P, F, P (see figure 4.20 for the
quadrant numbering scheme). We can partially regenerate
the image because we know that one quadrant is all black and
another is all white. However, we don’t know anything about
the two quadrants marked ‘P’.

We can, however, subdivide partially filled quadrants 1 and
3 into further quadrants. Consider the upper right-hand
quadrant of Fig. 4.20(b) (i.e. quadrant 3). This can be divided
into four quadrants as Fig. 4.20(c) demonstrates. We can
describe the structure of Fig. 4.20(c) by E, P, E, P. If we substi-
tute this expansion of quadrant 3 in the original expression
for the image, we get: E, P, F, (E, P, E, P).

We haven’t yet completely defined quadrant 3 of the image
because there are still subdivisions marked ‘P’. Figure 4.20(d)
demonstrates how the top right-hand quadrant for Fig. 4.20(c)
can be subdivided into the quadrants E, F, E, F. If we now

substitute this in the expression for the image we get E, P, F, (E,
(E, F, E, F), E, P). We can do the same thing to quadrant 1 of
Fig. 4.20(c) to get: E, P, F, (E, (E, F, E, F), E, (E, F, E, F)). Now we
have completely defined quadrant 3 of the original image.

Continuing in this way and expanding quadrant 1 of
the original image, we get the expression E, (E, F, (E, E, F, F),
(E, F, F, F)), F, (E, (E, F, E, F), E, (E, F, E, F)). All we have done
is to divide an image into four quadrants and successively
divided a quadrant into four quadrants until we reach that
point at which each quadrant contains only one color.
Because many areas of an image contain the same color, the
quadtree structure can compress the image. In the case of
Fig. 4.20 we have compressed a 64-element block into a string
of 29 elements (the elements may be E, F, left bracket, or right
bracket).

Figure 4.21 demonstrate the complete quadtree expansion
of Fig. 4.20.

168 Chapter 4 Computer arithmetic

F

E E E

E

E

E

E F

F

F

F

FF

E

E F

F

E E

FF

(E, E, F, F)

(E, F, F, F)

(E, F, E, F)

(E, F, E , F)

(E, (E, F, E, F), E, (E, F, E, F))

(E, F, (E, E, F, F), (E, F, F, F))

Initial image

E, (E, F, (E, E, F, F), (E, F, F, F)), F, (E, (E, F, E, F), E, (E, F, E, F))

Figure 4.21 The complete quadtree expansion of Fig. 4.20.

The quad tree and the other compression techniques we’ve
described are lossless encoding techniques because a file can
be compressed and restored with no loss of information (i.e.
compress and decompress yields the original source). Some
compressing techniques are lossy because information is lost

during compression and the original information can’t be
restored. Lossy compression technology is used to compress
images and sound because humans can lose a lot of detail in
an image (or piece of music) without noticing missing it.
Typical lossy compression techniques are MP3 (sound),
JPEG (still images), and MPEG (video).

4.7 Binary arithmetic

Now that we’ve introduced binary numbers and demon-
strated how it’s possible to convert between binary and deci-
mal formats, the next step is to look at how binary numbers
are manipulated. Binary arithmetic follows exactly the same
rules as decimal arithmetic and all that we have to do to work
with binary numbers is to learn the binary tables. Table 4.16
gives the decimal addition tables and Table 4.17 gives the dec-
imal multiplication table. Table 4.18 gives the hexadecimal
multiplication table. Table 4.19 gives the binary addition,
subtraction, and multiplication tables. As you can see, these
are much simpler than their decimal equivalents.

A remarkable fact about binary arithmetic revealed by
Table 4.19 is that if we didn’t worry about the carry in addition
and the borrow in subtraction, then the operations of addition
and subtraction would be identical. Such an arithmetic in which
addition and subtraction are equivalent does exist and has some
important applications; this is called modulo-2 arithmetic.

Table 4.19 tells us how to add two single digits. We need to
add longer words. The addition of n-bit numbers is entirely
straightforward, except that when adding the two bits in each
column, a carry bit from the previous stage must also be
added in. Each carry bit results from a carry-out from the
column on its right. In the following example, we present the

4.7 Binary arithmetic 169

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 12

4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 13 14

6 7 8 9 10 11 12 13 14 15

7 8 9 10 11 12 13 14 15 16

8 9 10 11 12 13 14 15 16 17

9 10 11 12 13 14 15 16 17 18

Table 4.16 The decimal addition tables.

0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 2 4 6 8 10 12 14 16 18

3 3 6 9 12 15 18 21 24 27

4 4 8 12 16 20 24 28 32 36

5 5 10 15 20 25 30 35 40 45

6 6 12 18 24 30 36 42 48 54

7 7 14 21 28 35 42 49 56 63

8 8 16 24 32 40 48 56 64 72

9 9 18 27 36 45 54 63 72 81

Table 4.17 The decimal multiplication tables.

0 01 02 03 04 05 06 07 08 9 0A 0B 0C 0D 0E 0F

1 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

2 02 04 06 08 0A 0C E 10 12 14 16 18 1A 1C 1E

3 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D

4 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

5 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B

6 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 07 0E 15 1C 23 2A 31 38 40 46 4D 54 5B 62 69

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

Table 4.18 The hexadecimal multiplication tables.

numbers to be added on the left, and on the right we include
the carry bits that must be added in.

We can carry out hexadecimal addition in the same way
that we carry out binary addition. All we have to remember is
that if we add together two digits whose sum is greater than
15, we must convert the result into a carry digit whose value
is 16 plus the remainder, which is the sum less 16. For exam-
ple, if we add E and 7 in hexadecimal arithmetic, we get 1516

which is 5 carry 1 (i.e. 5 plus 16).
Consider the addition EA34816 � 6701916.

Subtraction can also be carried out in a conventional
fashion, although we shall see later that a computer does not
subtract numbers in the way we do because negative numbers
are not usually represented in a sign plus magnitude form but
by means of their complements.

The multiplication of binary numbers can be done by the
pencil and paper method of shifting and adding, although in
practice the computer uses a somewhat modified technique.

borrows

carries

carries

4.7.1 The Half adder

We now design circuits to add binary numbers. The most
primitive circuit is called the half adder or HA which
adds together two bits to give a sum, S, and a carry, C as
described in Table 4.20. The sum, S, is given by their exclus-
ive OR; that is, S � ⋅ B � A ⋅ . The carry is given by
C � A ⋅ B.

From the chapter on gates we know that this circuit may
be realized in at least three different ways as Fig. 4.22
demonstrate. This circuit, whatever its implementation,
is often represented in many texts by the symbol in
Figure 4.23.

We can use Digital Works to construct a half adder and
to simulate its behavior. Figure 4.24 shows a screen in
which we’ve constructed a half adder and used the push-
button (i.e. input device) to provide inputs A and B. We
have connected the adder’s sum and carry outputs to
LEDs and have linked all inputs and outputs to the Logic
History function.

As you can see from fig. 4.24, we’ve run the simulation in
the single step mode, applied all possible inputs to the circuit,
and observed the output waveforms.

AA

170 Chapter 4 Computer arithmetic

Addition Subtraction Multiplication

0�0 � 0 0�0 � 0 0 � 0 � 0

0�1 � 1 0�1 � 1 borrow 1 0 � 1 � 0

1�0 � 1 1�0 � 1 1 � 0 � 0

1�1 � 0 carry 1 1�1 � 0 1 � 1 � 1

Table 4.19 Binary tables.

PERFORMING ADDITION

The following sequence demonstrates binary addition. Each

step shows the current carry in (light blue) and the carry out

generated in the next column to the right (bold blue). Only

seven stages are shown in order to fit on the page.

A B S (sum) C (carry)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 4.20 Truth table for a half adder.

4.7.2 The Full Adder

Unfortunately, the half adder is of little use as it stands. When
two n-bit numbers are added together we have to take
account of any carry bits. Adding bits ai of A and bi of B
together must include provision for adding in the carry bit
ci�1 from the results of the addition in the column to the right
of ai and bi. This is represented diagrammatically as

When people perform an addition they deal with the carry
automatically,without thinking about it.More specifically they
say, ‘If a carry is generated we add it to the next column, if it is
not we do nothing.’ In human terms doing nothing and adding
zero are equivalent.As far as the logic necessary to carry out the
addition is concerned, we always add in the carry from the
previous stage, where the carry bit has the value 0 or 1.

The full adder, represented by the circuit symbol of
Fig. 4.25, adds together two bits A and B, plus a carry-in Cin

from the previous stage, to generate a sum S and a carry-out
Cout. In other words, the full adder is a 3-bit adder. Table 4.21
provides the truth table for a full adder.

You can realize the circuit for a full adder by connecting two
half adders in tandem. Conceptually, a full adder requires that
the two bits of A and B be added together and then
the carry-in is added to the result. Figure 4.26 shows a possible
representation of the full adder in terms of two half adders.

The sum output of the full adder is provided by the sum out-
put of the second half adder, HA2. The carry-out from the full
adder, Cout, is given by ORing the carries from both half adders.
To demonstrate that the circuit of Fig. 4.26 does indeed per-
form the process of full addition a truth table may be used.
Table 4.22 provides a truth table for the circuit of Fig. 4.26.

As the contents of the S2 and Cout columns are identical to
those of the corresponding columns of the truth table for the
full adder (Table 4.22), we must conclude that the circuit of
Fig. 4.26 is indeed that of a full adder. Figure 4.27 demonstrates

4.7 Binary arithmetic 171

Sum

Carry

A

B

Sum

Carry

A

B

Sum

Carry

A

B

HA

A B

S Cout

Figure 4.22 Three ways of implementing a half adder.

Figure 4.23 The circuit representation of a half adder.

A B Cin S (sum) Cout (carry-out)

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Table 4.21 Truth table for full adder.

This row consists of the

carry bits generated by

the columns on the right.

172 Chapter 4 Computer arithmetic

Figure 4.24 Using Digital Works to implement and test a half adder circuit.

FA

A B

S Cout

Cin

Figure 4.25 The circuit representation of a full adder.

HA1

A B

S
2

C

C S

C

out

1 1

in

Full adder

HA2

Fig. 4.26 Implementing a full adder using two half adders.

Cin A B S1 C1 S2 C2 Cout

0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 0

0 1 0 1 0 1 0 0

0 1 1 0 1 0 0 1

1 0 0 0 0 1 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 1 1

1 1 1 0 1 1 0 1

Table 4.22 Truth table for a full adder implemented by two half

adders.

the use of Digital Words to construct and simulate a full adder
built from two half adders.

In practice the full adder is not implemented in this way
because the propagation path through the two half adders
involves six units of delay. An alternative full adder circuit
may be derived directly from the equations for the sum and
the carry from the truth table. Let the sum be S, the carry-out
Co, and the carry-in C.

The carry-out represents a majority logic function that is true
if two or more of the tree inputs are true. The circuit diagram of
the full adder corresponding to the above equations is given in
Fig. 4.28. This circuit contains more gates than the equivalent
realization in terms of half adders (12 against 9) but it is faster.
The maximum propagation delay is three gates in series.

4.7.3 The addition of words

Even a full adder on its own is not a great deal of help, as we
normally wish to add two n-bit numbers together. We now

and

look at ways in which two n-bit numbers can be added
together. We begin with the serial full adder and then describe
the parallel full adder.

It is perfectly possible to add two n-bit numbers, A and B,
together, serially, a bit at a time by means of the scheme given
in Fig. 4.29. The contents of the shift registers containing the
n-bit words A and B are shifted into the full adder a bit at a
time. The result of each addition is shifted into a result (i.e.
sum) register. A single flip-flop holds the carry bit so that the
old carry-out becomes the next carry-in. After n clock pulses,
the sum register, S, contains the sum of A and B. Serial adders
aren’t used today because parallel adders are much faster.

Parallel adders

A parallel adder adds the n bits of word A to the n bits of word
B in one simultaneous operation. Figure 4.30 describes a
parallel adder constructed from n full adders. The carry-out
from each full adder provides the carry-in to the stage on its
left. The term parallel implies that all n additions take place at
the same time and it’s tempting to think that the parallel
adder is n times faster than the corresponding serial adder. In
practice a real parallel adder is slowed down by the effect
of the carry-bit propagation through the stages of the full
adder.

Several points are worth noting in Fig. 4.30. You might
think that a half adder could replace the least-significant bit
stage because this stage doesn’t have a carry-in. However,

4.7 Binary arithmetic 173

Figure 4.27 Using Digital Works to implement and test a full adder built from two half adders.

by using a full adder for this stage, the carry-in may be set to
zero for normal addition, or it may be set to 1 to generate
A � B � 1. If input B is set to zero, A � 1 is generated and
the circuit functions as an incrementer. A facility to add in 1
to the sum of A plus B will prove very useful when we come to
complementary arithmetic.

Another feature of this circuit concerns the carry-out from
the most-significant bit stage. If two n-bit words are added
and the result is greater than 111 . . . 1, then a carry-out is
generated. As the computer cannot store words longer than
n bits, the sum cannot be stored in the memory as a single
entity. The carry-out of the most-significant stage may be

174 Chapter 4 Computer arithmetic

The full adder adds two bits and
the carry-in from the previous
addition at each clock pulse.

The carry flip-flop stores the
carry-out from the previous
addition to generate the carry-in
to the next addition.

Shift register A

Shift register B
Full
adder

Shift register S (sum)

Shift clock
n pulses per addition

Carry
flip-flop

a

b

C C

S

in out

i

i

i

D

C

Q

Figure 4.29 The serial adder.

s0s1s2
sn-1

a2
an–1

Cout

b2 a1 b1 a0 b0
bn–1

Full adder

Cout

CinA B

Sum

Full adder

Cout

CinA B

Sum

Full adder

Cout

CinA B

Sum

Full adder

Cout

CinA B

Sum

Carry-in to
first stage

........

Figure 4.30 The parallel adder.

Sum

A B Cin

Carry

A

B

C in

Figure 4.28 A possible circuit for the full

adder.

latched into a flip-flop (normally forming part of the com-
puter’s condition code register). When addition is performed
by software as part of a program, it is usual for the program-
mer to test the carry bit to check whether the result has gone
out of range.

A final point about the parallel adder concerns the mean-
ing of the term parallel. The first stage can add a0 to b0 to get
S0 as soon as A and B are presented to the input terminals of
the full adder. However, the second stage must wait for the
first stage’s carry-out to be added in to a1 plus b1 before it can
be sure that its own output is valid. In the worst case inputs of
111 . . . 1 � 1, the carry must ripple through all the stages.
This type of adder is referred to as a ripple-carry adder.

The full adder we have described here is parallel in the sense
that all the bits of A are added to all the bits of B in a single
operation without the need for a number of separate clock
cycles. Once the values of A and B have been presented to the
inputs of the full adders, the system must wait until the circuit
has had time to settle down and for all carries to propagate
before the next operation is started. Figure 4.31 shows a ripple
adder in more detail using the circuits we’ve developed before.
As you can see, the carry in has to ripple through successive
stages until it reaches the most-significant bit position.

Real full adders in computers are much more complicated
than those we have shown here. The fundamental principles
are the same, but the effect of the ripple-through carry from
first to last stage cannot be tolerated. A mechanism called

carry look ahead circuits can be used to anticipate a carry over
a group of say four full adders. That is, the carry out to stage
i � 5 is calculated by examining the inputs to stages i � 4,
i � 3, i � 2, and i � 1, and the carry in to stage i � 1, by
means of a special high-speed circuit. This anticipated carry
is fed to the fifth stage to avoid the delay that would be
incurred if a ripple-through carry were used. The exact
nature of these circuits is beyond the scope of this book.

4.8 Signed numbers

Any real computer must be able to deal with negative
numbers as well as positive numbers. Before we examine how
the computer handles negative numbers, we should consider
how we deal with them. I believe that people don’t, in fact,
actually use negative numbers. They use positive numbers
(the 5 in �5 is the same as in �5), and place a negative sign
in front of a number to remind them that it must be treated
in a special way when it takes part in arithmetic operations. In
other words, we treat all numbers as positive and use a sign
(i.e. � or �) to determine what we have to do with the num-
bers. For example, consider the following two operations.

8 8
+5 and -5
13 3

4.8 Signed numbers 175

a0

s0s1
s2

b0

Cout

Carry-in to
first stage

Cin Cin

Full adder Full adder Full adder

a1 b1
a2 b2

CoutCout

Carry to
next stage

HA

HA HA HA

HA HA

Figure 4.31 Ripple carry.

In both these examples the numbers are the same, but the
operations we performed on them were different; in the
first case we added them together and in the second case we
subtracted them. This technique can be extended to
computer arithmetic to give the sign and magnitude represen-
tation of a negative number.

4.8.1 Sign and magnitude representation

An n-bit word can have 2n possible different values from 0 to
2n�1; for example, an 8-bit word can represent 0, 1, . . . , 254,
255. One way of indicating a negative number is to take the
most-significant bit and reserve it to indicate the sign of the
number. The usual convention is to choose the sign bit as 0
to represent positive numbers and 1 to represent negative
numbers. We can express the value of a sign and magnitude
number mathematically in the form (�1)S � M, where S is
the sign bit of the number and M is its magnitude. If S � 0,
(�1)0 � �1 and the number is positive. If S � 1,
(�1)1 � �1 and the number is negative. For example, in
8 bits we can interpret the two numbers 00001101 and
10001101 as

Using a sign bit to represent signed numbers is not widely
used in integer arithmetic. The range of a sign and magnitude
number in n bits is given by �(2n�1 � 1) to �(2n�1 � 1).

All we’ve done is to take an n bit number, use 1 bit to
represent the sign, and let the remaining n � 1 bits represent
the number. Thus, an 8-bit number can represent from �127
(11111111) to �127 (01111111). One of the objections to
this system is that it has two values for zero:

00000000 � � 0 and 10000000 � �0

Another reason for rejecting this system is that it requires
separate adders and subtractors. The are other ways of
representing negative numbers that remove the need for
subtractor circuits.

Examples of addition and subtraction in sign and
magnitude arithmetic are given below. Remember that the
most-significant bit is a sign bit and does not take part in the
calculation itself. This is in contrast with two’s complement
arithmetic (see later) in which the sign bit forms an integral
part of the number when it is used in calculations. In each of
the four examples below, we perform the calculation by first
converting the sign bit to a positive or to a negative sign. Then
we perform the calculation and, finally, convert the sign of
the result into a sign bit.

000011012 = +1310 100011012 = –1310

number
magnitude

sign bit sign bitNegative Positive

number
magnitude

0 0 0 0 01 1 1 1 0 0 0 01 1 1

4.8.2 Complementary arithmetic

In complementary arithmetic the negativeness of a number is
contained within the number itself. Because of this, the
concept of signs (� and �) may, effectively, be dispensed
with. If we add X to Y the operation is that of addition if X is
positive and Y is positive, but if Y is negative the end result is
that of subtraction (assuming that Y is represented by its
negative form). It is important to point out here that comple-
mentary arithmetic is used to represent and to manipulate
both positive and negative numbers. To demonstrate that
there is nothing magical about complementary arithmetic,
let’s examine decimal complements.

Ten’s complement arithmetic

The ten’s complement of an n-digit decimal number, N, is
defined as 10n�N. The ten’s complement may also be
calculated by subtracting each of the digits of N from 9 and
adding 1 to the result; for example, if n �1, the value of �1 is
represented in ten’s complement by 9. Consider the four-digit
decimal number 1234. Its ten’s complement is:

Suppose we were to add this complement to another
number (say) 8576. We get

Now let’s examine the effect of subtracting 1234 from 8576
by conventional means.

8576
�1234

7342

8576
+8766
17342

(a) 104 � 1234 � 8766 or (b) 9999
�1234

8765 � 1 � 8766

1.

Sign and

magnitude

value

Number

with sign

bit converted

into sign

Result

with sign

converted

into sign bit

2.

3.

4.

176 Chapter 4 Computer arithmetic

Notice that the results of the two operations are similar in
the least-significant four digits, but differ in the fifth digit
by 104. The reason for this is not hard to find. Consider the
subtraction of Y from X. We wish to calculate Z � X � Y,
which we do by adding the ten’s complement of Y to X. The
ten’s complement of Y is defined as 104 � Y. Therefore we get

Z � X � (104 � Y) � 104 � (X � Y).

In other words, we get the desired result, X � Y, together with
an unwanted digit in the leftmost position. This digit may be
discarded.

Complementing a number twice results in the original num-
ber; for example, �1234 is 104 � 1234 � 8876. Complementing
twice, we get �(�1234) � �8876 � 104 � 8876 � 1234.

4.8.3 Two’s complement representation

The equivalent of ten’s complement in binary arithmetic is
two’s complement. To form the two’s complement of an n-bit
binary number, N, we evaluate 2n � N. For example, in 5 bits,
if N � 5 � 00101 then the two’s complement of N is given by
25 � 00101 � 100000 � 00101 � 11011. It is important to
note here that 11011 represents �00101 (�5) or �27
depending only on whether we interpret the bit pattern 11011
as a two’s complement integer or as an unsigned integer.

If we add the two’s complement of N (i.e. 11011) to
another binary number, we should execute the operation of
subtraction. In the following demonstration we add 11011 to
01100 (i.e. 12).

01100 12
� 11011 � �5

100111 7

As in the case of ten’s complement arithmetic, we get
the correct answer together with the 2n � 25 term, which is

discarded. Before continuing further, it is worthwhile exam-
ining the effect of adding all the combinations of positive and
negative values for a pair of numbers.

All four examples give the result we’d expect when the
result is interpreted as a two’s complement number. However,

examples 3 and 4 give negative results that require a little fur-
ther explanation. Example 3 calculates �9 � 6 by adding the
two’s complement of 9 to 6 to get �3 expressed in two’s com-
plement form. The two’s complement representation of �3 is
given by 100000 � 00011 � 11101.

Example 4 evaluates �X � �Y to get a result of �15 but
with the addition of a 2n term. The two’s complement repre-
sentation of �15 is given by 100000 � 01111 � 10001. In
example 4, where both numbers are negative, we have
(2n � X) � (2n � Y) � 2n � (2n � X � Y). The first part of
this expression is the redundant 2n and the second part is the
two’s complement representation of �X �Y. The two’s com-
plement system works for all possible combinations of posi-
tive and negative numbers.

Calculating two’s complement values

The two’s complement system would not be so attractive if it
weren’t for the ease with which two’s complements can be
formed. Consider the two’s complement of N, which is
defined as: 2n � N.

Suppose we re-arranged the equation by subtracting 1
from the 2n and adding it to the result.

2n � 1 � N � 1 � 111 . . . 1 � N � 1

n places

For example, in 8 bits (n � 8) we have

28 � N � 100000000 � N � 100000000 � 1 � N � 1
(after rearranging) � 11111111 � N � 1

In practice, it’s easy to evaluate the two’s complement of N.
All you have to do is invert the bits and add 1. Why? Because
the previous expression demonstrates that 1 � Ni � Ni

—
. If bit

i of N is 0, subtracting bit i from 1 gives 1, and if the bit is 1,
subtracting bit i from 1 gives 0. For example, in 5 bits we have

7 � 00111
�7 � 00111 0

-
0
-
1
-
1
-
1
-

� 1 � 11000 � 1 � 11001

Evaluating two’s complement numbers in this fashion is
attractive because it’s easy to perform with hardware.
Figure 4.32 demonstrate how an adder/subtractor is imple-
mented. All you need is a little extra logic to convert a parallel
binary adder into an adder/subtractor for two’s complement
numbers. Each of the EOR gates has two inputs bi (where
i � 0 to n � 1) and C, a control signal. The output of the
EOR gate is bi ⋅ C

—
� bi

—
⋅ C

—
. If C is 0 then C

—
� 1 and the output

is bi. If C is 1 then C
—

� 0 and the output is bi. The n EORs
form a chain of programmable invertors, complementing the
input if C � 1 and passing the input unchanged if C � 0. The
carry-in input to the first full adder is C. When addition is
being performed, C � 0 and the carry-in is 0. However, when
we perform subtraction, C � 1 so that 1 is added to the result
of the addition. We have already inverted B’s bits so that

4.8 Signed numbers 177

Let X � 9 � 01001 and Y � 6 � 00110

�X � 100000 � 01001 � 10111
�Y � 100000 � 00110 � 11010

1. � X � 9 01001 2. �X �9 01001
� Y � 6 � 00110 �Y �6 �11010

01111 � 15 . 100011 � �3

3. �X �9 10111 4. �X �9 10111
�Y �6 � 00110 �Y �6 �11010

11101 = �3 110001 = �15

adding this 1 forms the two’s complement of B enabling the
subtraction of B from A to take place.

Properties of two’s complement numbers

1. The two’s complement system is a true complement system in
that �X � (�X) � 0. For example, in 5 bits �1310 �
0110110 and �132 � 100112. The sum of �13 and �13 is

01101
�10011

100000 � 0

2. There is one unique zero 00 . . . 0.

3. If the number is positive the most-significant bit is 0,
and if it is negative the most-significant bit is 1. Thus, the
most-significant bit is a sign bit.

4. The range of two’s complement numbers in n bits is
from �2n�1 to �2n � 1 � 1. For n � 5, this range is
from �16 to �15. Note that the total number of different
numbers is 32 (16 negative, zero and 15 positive). What this
demonstrates is that a 5-bit number can uniquely describe
32 items, and it is up to us whether we choose to call these
items the natural binary integers 0 to 31, or the signed two’s
complement numbers �16 to �15.

5. The complement of the complement of X is X (i.e.
�(�X) � X). In 5 bits �12 � 01100 and �12 � 1

-
0
-
0
-
1
-
1
-

�
1 � 10100. If we form the two’s complement of �12 (i.e.
10100) in the usual fashion by inverting the bits and adding 1,
we get 1

-
0
-
1
-
0
-
0
-

� 1 � 01011 � 1 � 01100, which is the same as
the number we started with.

Let’s now see what happens if we violate the range of two’s
complement numbers. That is, we will carry out an operation
whose result falls outside the range of values that can be
represents by two’s complement numbers.

If we choose a 5-bit representation, we know that the range
of valid signed numbers is �16 to �15. Suppose we first add
5 and 6 and then try 12 and 13.

Case 1 Case 2
5 � 00101 12 � 01100

�6 � 00110 �13 � 01101
11 01011 � 1110 25 11001 � �710 (as a

two's complement number)

In case 1 we get the expected answer of �1110, but in case 2
we get a negative result because the sign bit is ‘1’. If the answer
were regarded as an unsigned binary number it would
be �25, which is, of course, the correct answer. However,
once the two’s complement system has been chosen to
represent signed numbers, all answers must be interpreted in
this light.

Similarly, if we add together two negative numbers whose
total is less than �16, we also go out of range. For example, if
we add �9 � 101112 and �12 � 101002, we get

� 9 10111
�12 �10100
�27 101011 gives a positive result 0101112 � �1110

Both these cases represent an out-of-range condition
called arithmetic overflow. Arithmetic overflow occurs during
a two’s complement addition if the result of adding two
positive numbers yields a negative result, or if adding two
negative numbers yields a positive result.2 If the sign bits of
A and B are the same but the sign bit of the result is different,
arithmetic overflow has occurred. If an�1 is the sign bit of A,

178 Chapter 4 Computer arithmetic

CinB

The control input
adds A and B when
C = 0 and subtracts
A – B when C = 1.

a0a1

s0s1s2sm–1

a2am–1

Cout

b0b1b2bm–1

Full adder

Cout

A

Sum

Full adder

Cout

CinA B

Sum

Full adder

Cout

CinA B

Sum

Full adder

Cout

CinA B

Sum

........

C

Fig. 4.32 The binary adder/subtractor.

2 Some define overflow more generally as ‘A condition that occurs
when the result of an operation does not fit the number representation
in use’.

bn�1 is the sign bit of B, and sn�1 is the sign bit of the sum of
A and B, then overflow is defined by

Arithmetic overflow is a consequence of two’s complement
arithmetic and shouldn’t be confused with carry-out, which
is the carry bit generated by the addition of the two most-
significant bits of the numbers.

In practice, real systems detect overflow from Cin � Cout to
the last stage. That is, we detect overflow from

We now demonstrate that this expression is correct. This
proof has been included to improve your understanding of
the nature of two’s complement arithmetic.

Figure 4.33 illustrates the most-significant stage of a paral-
lel adder that adds together bits an�1, bn�1, and cn�1 to gener-
ate a sum bit, sn�1, and a carry-out, cn. There are four possible
combinations of A and B that can be added together

�A � �B
�A + �B
�A � �B
�A � �B

As adding two numbers of differing sign cannot result in
arithmetic overflow, we need consider only the cases where
A and B are both positive, or both negative.
Case 1 A and B positive an�1 � 0, bn�1 � 0

The final stage adds an�1 � bn�1 � cn�1 to get cn-1, because
an�1 and bn�1 are both 0 (by definition if the numbers are pos-
itive). That is, the carry-out, cn, is 0 and sn�1 � cn�1.

We know overflow occurs if sn�1 � 1, therefore overflow
occurs if the sum is negative and .

Case 2 A and B negative an�1 � 1, bn�1 � 1.
The final stage adds an�1 � bn�1 � cn�1 � 1 � 1 � cn�1, to

get a sum, sn�1 � cn�1 and a carry-out cn � 1. Overflow
occurs if the sum is positive and sn�1 � 0. That is, if cn�1 � 0,
or if .cn ·cn�1 � 1

cn ·cn�1 � 1

V � cn ·cn�1 � cn · cn�1

V � an�1 ·bn�1 ·sn�1 � an�1 ·bn�1 ·sn�1

Considering both cases, overflow occurs if

.

Alternative view of two’s complement numbers

We have seen that a binary integer, N, lying in the range
0
 N � 2n � 1, is represented in a negative form in n bits by
the expression 2n � N. We have also seen that this expression
can be readily evaluated by inverting the bits of N and adding
1 to the result.

Another way of looking at a two’s complement number is
to regard it as a conventional binary number represented
in the positional notation but with the sign of the most-
significant bit negative. That is,

where dn�1, dn�2, . . . d0 are the bits of the two’s complement
number D. Consider the binary representation of 1410 and
the two’s complement form of �14, in 5 bits.

We can regard the two’s complement representation
of �14 (i.e. 10010) as

�1 � 24 � 0 � 23 � 0 � 22 � 1 � 21 � 0 � 20 (this is a con-
ventional 8421-coded binary number with a negative
weight for the most-significant bit)

� �16 � (0 � 0 � 2 � 0)
� �16 � 2 � �14

We can demonstrate that a two’s complement number is
indeed represented in this way. In what follows N represents a
positive integer, and D the two’s complement form of �N.
We wish to prove that �N � D.

That is, (1)

In terms of the bits of N and D we have

(2)

The bits of D are formed from the bits of N by inverting and
adding 1.

(3)

Substituting equation 3 in equation 1 to eliminate D we get

But � 1 � Ni, so that

� 2n�1 � (2n�1 � 1) � �
n�2

i�0
Ni2

i � 1

� �2n�1 � �
n�2

i�0
 2i � �

n�2

i�0
Ni2

i � 1

� N � �2n�1 � �
n�2

i�0
(1 � Ni)2i � 1

Ni

�N � �2n�1 � �
n�2

i�0
Ni2

i � 1

Nn�1 Nn�2 . . . N1 N0 � 1 � dn�1dn�2 . . . d1d0

�(Nn�1Nn�2 . . . N1N0) � dn�1dn�2 . . . d1d0 � D

�N � �2n�1 � �
n�2

i�1
di2

i

or � 14 � 0 1 1 1 0 � 1 � 10001 � 1 � 100102.

�14 � 2n � N � 25 � 14 � 32 � 14 � 18 � 10010

�1410 � 011102

�N � � dn�12
n�1 � dn�22

n�2 � . . . � d02
0

cn ·cn�1 � cn ·cn�1 � 1

4.8 Signed numbers 179

Fig. 4.33 Most-significant stage of a full adder.

FA

S

ca b

Cnn–1

n–1n–1 n–1

V = cncn–1 + cncn–1

Demonstrating that

Representing two’s complement numbers graphically

We can visualize numbers in the two’s complement system by
arranging numbers around a circle. Figure 4.34 demonstrates
such an arrangement for 4-bit numbers in which a circle has
been divided up by 16 radials numbered from 0000 to 1111.
Suppose we number the radials according to their two’s com-
plement values, so that radials 0000 to 0111 are numbered
0 to 7 and radials 1000 to 1111 are numbered �8 to �1.
Notice how stepping one place clockwise increases a number
and stepping one place counterclockwise decreases a number.
We can now see how adding numbers to a negative value
causes the result to move in the direction toward zero. For
example, if we add 0011 (�3) to 1100 (�4) we get 1111
which is �1. If we had added 0101 (�5) to 1100, we would
have got (1)0001 which is �1 and lies to the right of zero.

4.8.4 One’s complement representation

An alternative to two’s complement arithmetic is one’s com-
plement arithmetic in which the representation of a negative
number, N, in n bits is given by 2n � N � 1. The one’s com-
plement representation of a number is one less than the cor-
responding two’s complement representation and is formed
more simply by inverting the bits of N. For example, for
n � 5 consider the subtraction of 4 from 9. The binary value
of 4 is 00100 and its one’s complement is 11011.

� �N

� �2n�1 � 2n�1 � N

for N to be within its stated range)

�
n�2

i�0
Ni2

i � N as the most- significant bit of N is zero

� �2n�1 � (2n�1 � 1) � 1 � N (because

After the addition has been completed, the leftmost bit of
the result is added to the least-significant bit of the result in
an arrangement called end-around-carry. This provides us
with the final and correct result. Note that if the result of the
initial addition yields a carry-out of zero, the result is negative
and adding in the carry-out (i.e. zero) also gives the correct
answer. Consider the following example.

180 Chapter 4 Computer arithmetic

0 +1

+2

+3

+4

+5

+6

+7–8

–1

–2

–3

–4

–5

–6

–7

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

Negative Positive

Fig. 4.34 Visualizing two’s complement numbers.

result after addition

result after adding
in the end-
around-carry

result after addition

result after adding
in the end-
around-carry

In one’s complement 11010 represents the value �00101
(i.e. �5).

We can demonstrate that end-around-carry works in one’s
complement arithmetic as follows. Suppose we wish to com-
pute X � Y. We add the one’s complement of Y to X to get
X � (2n � Y � 1) � 2n � (X � Y) � 1. By transferring the
carry-out, 2n, to the least-significant bit, we correct the result
(X � Y) � 1 to (X � Y) by canceling the �1 term.

If we add together two one’s complement negative numbers
we get �X� �Y � (2n � X � 1) � (2n � Y � 1) � 2n � 1 �

2n � 1 � (X � Y). If we apply end-around-carry to this
result, the first 2n term cancels the first �1 term to leave
2n � 1 � (X � Y). This is, of course, the correct result in one’s
complement form.

The one’s complement system is not a true complement as
the value of X � (�X) is not zero. Furthermore, there are two
representations for zero: 00 . . . 0 and 11 . . . 1. Today, the
one’s complement system is rarely used to represent signed
numbers.

It’s instructive to compare the various ways of representing
numbers we have encountered so far. Table 4.23 shows the
sequence of 5-bit binary numbers for n � 5 for pure binary
numbers, sign and magnitude, one’s complement, and two’s
complement representations. The rightmost column
includes the biased representation of signed numbers—a
system that we will use when we describe floating point
numbers. In this case the biased representation of a number

is 15 greater than the actual number; for example, 7 is repre-
sented by 7 � 15 � 22 � 101102.

4.9 Floating point numbers

So far, we’ve largely dealt with integer values. Let’s look at a
simple way of handling numbers with both integer and
fractional parts (e.g. 13.7510 or 1101.112). Fortunately, a
binary (or decimal) fraction presents no problems. Consider
the following two calculations in decimal arithmetic.

Case 1 Integer arithmetic Case 2 Fixed point arithmetic

Although case 1 uses integer arithmetic and case 2 uses
fractional arithmetic, the calculations are entirely identical.
The only difference is in the location of the decimal point. We
can extend this principle to computer arithmetic. All the
computer programmer has to do is to remember where the
binary point is assumed to lie. Input to the computer is scaled
to match this convention and the output is similarly scaled.
The internal operations themselves are carried out as if the

4.9 Floating point numbers 181

Binary code Natural binary Sign and magnitude One's complement Two's complement Biased form

00000 0 0 0 0 �15

00001 1 1 1 1 �14

00010 2 2 2 2 �13

00011 3 3 3 3 �12

00100 4 4 4 4 �11

00101 5 5 5 5 �10

00110 6 6 6 6 �9

00111 7 7 7 7 �8

01000 8 8 8 8 �7

01001 9 9 9 9 �6

01010 10 10 10 10 �5

01011 11 11 11 11 �4

01100 12 12 12 12 �3

01101 13 13 13 13 �2

01110 14 14 14 14 �1

01111 15 15 15 15 0

10000 16 �0 �15 �16 1

10001 17 �1 �14 �15 2

10010 18 �2 �13 �14 3

10011 19 �3 �12 �13 4

10100 20 �4 �11 �12 5

10101 21 �5 �10 �11 6

10110 22 �6 �9 �10 7

10111 23 �7 �8 �9 8

11000 24 �8 �7 �8 9

11001 25 �9 �6 �7 10

11010 26 �10 �5 �6 11

11011 27 �11 �4 �5 12

11100 28 �12 �3 �4 13

11101 29 �13 �2 �3 14

11110 30 �14 �1 �2 15

11111 31 �15 �0 �1 16

Table 4.23 The representation of negative numbers.

numbers were in integer form. This arrangement is called
fixed point arithmetic, because the binary point is assumed to
remain in the same position. That is, there is always the same
number of digits before and after the binary point. The
advantage of the fixed point representation of numbers is
that no complex software or hardware is needed to imple-
ment it.

A simple example should make the idea of fixed point arith-
metic clearer. Consider an 8-bit fixed point number with the
four most-significant bits representing the integer part and
the four least-significant bits representing the fractional part.

Let’s see what happens if we wish to add the two numbers
3.625 and 6.5 and print the result. An input program first
converts these numbers to binary form.

the integer part of the number and 12 bytes for the fractional
part; that is, they would need a 26-byte (208 bit) number. A
clue to a way out of our dilemma is to note that both figures
contain a large number of zeros but few significant digits.

4.9.1 Representation of floating point
numbers

We can express a decimal number such as 1234.56 in the form
0.123456�104 which is called the floating point format or
scientific notation. The computer handles large and small
binary values in a similar way; for example, 1101101.1101101
may be represented internally as 0.11011011101101 � 27

(the 7 is, of course, also stored in a binary format). Before
looking at floating point numbers in more detail we should to
consider the ideas of range, precision, and accuracy, which are
closely related to the way numbers are represented in floating
point format.

Range A number’s range tells us how big or how small
it can be; for example, the astrophysicist was dealing with
numbers as large as 2 � 1033 and those as small as
9 � 10�28, representing a range of approximately 1061, or 61
decades. The range of numbers capable of representation by
a computer must be sufficient for the calculations that are
likely to be performed. If the computer is employed in a
dedicated application where the range of data to be handled
is known to be quite small, then the range of valid numbers
may be restricted, simplifying the hardware/software
requirements.

Precision The precision of a number is a measure of its
exactness and corresponds to the number of significant
figures used to represent it. For example, the constant �

may be written as 3.142 or 3.141592. The latter value is
more precise than the former because it represents � to one
part in 107 whereas the former value represents � to one part
in 104.

Accuracy Accuracy has been included here largely to con-
trast it with precision, a term often incorrectly thought to
mean the same as accuracy. Accuracy is the measure of the
correctness of a quantity. For example, we can say � � 3.141
or � � 3.241592. The first value is a low-precision number
but is more accurate than the higher precision value, which
has an error in the second digit. In an ideal world accuracy and
precision would go hand in hand. It’s the job of the computer
programmer to design algorithms that preserve the accuracy
that the available precision allows. One of the potential
hazards of computation is calculations that take the form

182 Chapter 4 Computer arithmetic

(in 8 bits)

(in 8 bits)

The computer now regards these numbers as 00111010
and 01101000, respectively. Remember that the binary point
is only imaginary. These numbers are added in the normal
way to give

This result would be equal to 16210 if we were to regard it as
an unsigned natural binary integer. But it isn’t. We must
regard it as a fixed point value. The output program now
takes the result and splits it into an integer part 1010 and a
fractional part 0010. The integer part is equal to 1010 and the
fractional part is 0.12510. The result would be printed as
10.125.

In practice, a fixed point number may be spread over several
words to achieve a greater range of values than allowed by a
single word. The fixed point representation of fractional num-
bers is very useful in some circumstances, particularly for
financial calculations. For example, the smallest fractional
part may be (say) 0.1 of a cent or 0.001 of a dollar. The largest
integer part may be $1 000 000. To represent such a quantity in
BCD a total of 6 � 4 � 3 � 4 � 36 bits are required. A byte-
oriented computer would require 5 bytes for each number.

Fixed point numbers have their limitations. Consider the
astrophysicist who is examining the sun’s behavior. They are
confronted with numbers ranging from the mass of the sun
(1990000000000000000000000000000000 grams) to the mass
of an electron (0.000000000000000000000000000910956
grams).

If astrophysicists were to resort to fixed point arithmetic,
they would require an extravagantly large number of bits to
represent the range of numbers used in their trade. A single
byte represents numbers in the range 0 to 255. If the physicist
wanted to work with astronomically large and microscop-
ically small numbers, roughly 14 bytes would be required for

When the denominator is evaluated we are left with
0.0009, a number with only one decimal place of precision.
Although the result might show eight figures of precision, it
may be very inaccurate indeed.

A floating point number can be represented in the form
a � re where a is the mantissa (also called the argument), r is
the radix or base, and e is the exponent or characteristic. The
computer stores a floating point number by splitting the
binary sequence representing the number into the two fields
illustrated in Fig. 4.35. The radix r is not stored explicitly by
the computer.

Throughout the remainder of this section the value of the
radix in all floating point numbers is assumed to be two.
Before the IEEE format became popular, some computers
used an octal or hexadecimal exponent, so that the mantissa
is multiplied by 8e or 16e, respectively. For example, if a float-
ing-point number has a mantissa 0.101011 and an octal
exponent of 4 (i.e. 0100 in 4 bits), the number is equal to
0.101011 � 84 or 0.101011 � 212, which is 1010110000002.

It’s not necessary for a floating point number to occupy a
single storage location. Indeed with an 8-bit word, such a rep-
resentation would be useless. Several words are grouped to
form a floating point number (the number of words required
is bits-in-floating-point-representation/computer-word-
length). The split between exponent and mantissa need not
fall at a word boundary. That is, a mantissa might occupy 3
bytes and the exponent 1 byte of a two 16-bit word floating-
point number.

When constructing a floating point representation for
numbers, the programmer must select the following.

1. The total number of bits.

2. The representation of the mantissa (two’s complement etc.).

3. The representation of the exponent (biased etc.).

4. The number of bits allocated to the mantissa and exponent.

5. The location of the mantissa (exponent first or mantissa first).

Point 4 is worthy of elaboration. Once you’ve decided on the
total number of bits in the floating point representation, the
number must be split into a mantissa and exponent.
Dedicating a large number of bits to the exponent lets you rep-
resent numbers with a large range.Gaining exponent bits at the
expense of the mantissa reduces the precision of the floating
point number. Conversely, increasing the bits available for the
mantissa improves the precision at the expense of the range.

Once, almost no two machines used the same format.
Things improved with the introduction of microprocessors.

Today, the IEEE standard for floating-point numbers
dominates the computer industry. Accordingly, we concen-
trate on this standard.

4.9.2 Normalization of floating
point numbers

By convention a floating point mantissa is always normalized
unless it is equal to zero and is expressed in the form 1.F
where F is the fractional part.3 Because a normalized IEEE
floating pint mantissa always begins with a 1, this is called ‘the
leading 1’. A normalized mantissa is therefore in the range
1.00 . . . 00 to 1.11 . . . 11; that is

If the result of a calculation were to yield 11.010 . . . � 2e,
the result would be normalized to give 1.1010 . . . � 2e � 1.
Similarly, the result 0.1001 . . . � 2e would be normalized to
1.001 . . . � 2e�1.

By normalizing a mantissa, the greatest possible advantage
is taken of the available precision. For example, the unnor-
malized 8-bit mantissa 0.00001010 has only four significant
bits, whereas the normalized 8-bit mantissa 1.0100011 has
eight significant bits. It is worth noting here that there is a
slight difference between normalized decimal numbers as
used by engineers and scientists, and normalized binary
numbers. By convention, a decimal floating point number is
normalized so that its mantissa lies in the range 1.00 . . . 0 to
9.99 . . . 9.

A special exception has to be made in the case of zero, as
this number cannot, of course, be normalized.

Because the IEEE floating-point format uses a sign and
magnitude format, a sign-bit indicates the sign of a mantissa.
A negative floating point mantissa is stored in the form

A floating point number is limited to one of the three
ranges �2 � x
 �1, or x � 0, or 1
 x � 2 described by
Fig. 4.36.

Biased exponents

A floating-point representation of numbers must make
provision for both positive and negative numbers, and

x � �1.11 . . . 1 to �1.00 . . . 0

� 2� x
 � 1, or x � 0, or 1
 x � 2.

4.9 Floating point numbers 183

This floating point number
represents a x 2e.MantissaExponent

e a

Floating point number

Fig. 4.35 Storing a floating-

point number.

3 Before the advent of the IEEE standard, floating point numbers were
often normalized in the form 0.1 . . . x 2e and constrained to the range
1⁄2
 x � 1 or �1⁄2 � x � �1.

positive and negative exponents. The following example in
decimal notation demonstrates this concept.

The mantissa of an IEEE format floating point number is
represented in sign and magnitude form. The exponent, how-
ever, is represented in a biased form. An m-bit exponent pro-
vides 2m unsigned integer exponents from 00 . . . 0 to
11 . . . 1. Suppose that we relabel these 2m values from �2m�1

�0.459 � 10�7

�0.123 � 1012, �0.756 � 109, �0.176 � 10�3,

to �2m�1 �1 by subtracting a constant value
(or bias) of B � 2m�1 from each of the num-
bers. We get a continuous natural binary series
from 0 to N representing exponents from �B
to N � B.

If we use a 3-bit decimal biased exponent
with B � 4, the biased exponents are 0, 1, 2, 3,
4, 5, 6, 7 and represent the actual expo-
nents �4, �3, �2, �1, 0, 1, 2, 3. We’ve

invented a way of representing negative num-
bers by adding a constant to the most negative
number to make it equal to zero. In this exam-

ple, we’ve added 4 to each true number so that �4 is repre-
sented by the biased values 0, and � 3 by �1, etc.

We create a biased exponent by adding a constant to the
true exponent so that the biased exponent is given by
b � � b � B, where b� is the biased exponent, b the true expo-
nent, and B a weighting. The weighting B is frequently either
2m�1 or 2m�1 � 1. Consider what happens for the case where
m � 4 and B � 23 � 8. (See Table 4.24).

The true exponent ranges from �8 to �7, allowing us to
represent powers of 2 from 2�8 to 2�7, while the biased expo-
nent ranges from 0 to �15. The advantage of the biased rep-
resentation of exponents is that the most negative exponent is
represented by zero. Conveniently, the floating-point value of
zero is represented by 0.0 . . . 0 � 2most negative exponent (see
Figure 4.37). By choosing the biased exponent system we
arrange that zero is represented by a zero mantissa and a zero
exponent as Figure 4.36 demonstrates.

The biased exponent representation of exponents is also
called excess n, where n is typically 2m�1. For example, a 6-bit
exponent is called excess 32 because the stored exponent
exceeds the true exponent by 32. In this case, the smallest
true exponent that can be represented is �32 and is stored as
an excess 32 value of 0. The maximum true exponent that can
be represented is 31 and this is stored as 63.

A second advantage of the biased exponent representation
is that the stored (i.e. biased) exponents form a natural binary
sequence. This sequence is monotonic so that increasing the
exponent by 1 involves adding 1 to the binary exponent, and
decreasing the exponent by 1 involves subtracting one from
the binary exponent. In both cases the binary biased expo-
nent can be considered as behaving like an unsigned binary
number. Consequently, you can use relatively simple logic to
compare two exponents. Remember that in 4-bit signed arith-
metic the number 0110 is larger than 1110 because the
second number is negative. If these were biased exponents,
1110 would be larger than 0110.

IEEE floating point format

The Institute of Electronics and Electrical Engineers (IEEE)
has defined a standard floating point format for arithmetic
operations called ANSI/IEEE standard 754-1985. To cater for

184 Chapter 4 Computer arithmetic

Binary value True exponent Biased form

0000 �8 0

0001 �7 1

0010 �6 2

0011 �5 3

0100 �4 4

0101 �3 5

0110 �2 6

0111 �1 7

1000 0 8

1001 1 9

1010 2 10

1011 3 11

1100 4 12

1101 5 13

1110 6 14

1111 7 15

For example, if n � 1010.1111, we normalize it to �1.0101111 � 23. The
true exponent is �3, which is stored as a biased exponent of 3 � 8, which is
1110 or 1011 in binary form.

Table 4.24 Relationship between true and biased exponents.

Figure 4.36 Range of valid normalized two’s complement mantissas.

1.000 ... 1.1111 ...

0.000 ...

–1.000 ...–1.1111 ...

0

+_

–2 –1 1 2

Valid negative
mantissas

Valid positive
mantissas

Fig. 4.37 Representing zero in floating point arithmetic.

Exponent Mantissa

representing zero by a
zero exponent and mantissa 0 0 00 0 0 00

S

0

different applications, the standard specifies three basic
formats, called single, double, and quad. Table 4.25 defines the
principal features of these three floating point formats.

An IEEE format floating point number X is formally
defined as

X � �1S � 2E�B � 1.F,

where S � sign bit, 0 � positive mantissa, 1 � negative
mantissa, E � exponent biased by B, F � fractional mantissa
(note that the mantissa is 1. F and has an implicit leading 1).

A single-format 32-bit floating-point number has a bias of
127 and a 23-bit fractional mantissa. A sign and magnitude
representation has been adopted for the mantissa; if S � 1
the mantissa is negative and if S � 0 it is positive.

The mantissa is always normalized and lies in the range
1.000 . . . 00 to 1.111 . . . 11. If the mantissa is always normal-
ized, it follows that the leading 1, the integer part, is redun-
dant when the IEEE format floating point number is stored in

memory. If we know that a 1 must be located to the left of the
fractional mantissa, there is no need to store it. In this way 1
bit of storage is saved, permitting the precision of the man-
tissa to be extended by 1 bit. The format of the number when
stored in memory is given in Fig. 4.38.

As an example of the use of the IEEE 32-bit format, con-
sider the representation of the decimal number �2345.125.
�2345.12510 � �100100101001.0012 (as an equivalent
binary number)

� �1.00100101001001 � 211 (as a nor-
malized binary number)

The mantissa is negative so the sign bit S is 1. The biased
exponent is given by �11 � 127 � 138 � 100010102. The
fractional part of the mantissa is
.00100101001001000000000 (in 23 bits). Therefore, the IEEE
single format representation of �2345.125 is:

11000101000100101001001000000000
In order to minimize storage space in computers where the

memory width is less than that of the floating point number,
floating point numbers are packed so that the sign bit, expo-
nent and mantissa share part of two or more machine words.
When floating point operations are carried out, the numbers
are first unpacked and the mantissa separated from the expo-
nent. For example, the basic single precision format specifies
a 23-bit fractional mantissa, giving a 24-bit mantissa when
unpacked and the leading 1 reinserted. If the processor on
which the floating point numbers are being processed has a
16-bit word length, the unpacked mantissa will occupy 24
bits out of the 32 bits taken up by two words.

If, when a number is unpacked, the number of bits in its
exponent and mantissa is allowed to increase to fill the avail-
able space, the format is said to be extended. By extending the
format in this way, the range and precision of the floating

4.9 Floating point numbers 185

Single Double Quad

precision precision precision

Field width in bits

S � sign 1 1 1

E � exponent 8 11 15

L � leading bit 1 1 1

F � fraction 23 52 111

Total width 32 64 128

Exponent

Maximum E 255 2047 32 767

Minimum E 0 0 0

Bias 127 1023 16 383

Notes
S � sign bit (0 for a negative number, 1 for a positive number).
L � leading bit (always 1 in a normalized, non-zero mantissa).
F � fractional part of the mantissa.
The range of exponents is from Min E � 1 to Max E�1
The number is represented by �1S x 2E � exponent � L • F.
A signed zero is represented by the minimum exponent, L � 0, and
F � 0, for all three formats.
The maximum exponent has a special function that represents signed
infinity for all three formats.

Table 4.25 Basic IEEE floating point formats.

IEEE SPECIAL NUMBERS

When we said that floating point numbers are always

normalized, we were being economical with the truth.

The IEEE floating point standard does allow for

denormalized numbers called denormals.A denormal can

be used to represent a value that is less than

1.000 . . . 00 � 2Emin. The denormal permits the representation

of numbers below the minimum at the cost of a reduced

precision; for example, you can have

0.000001011101 . . . �2Emin, where we have lost six places of

precision.

The not-a-number (NaN) can be used to speed the processing

of chained calculations. For example, if we have Z � A•B•C and C

is a NaN, the computer can immediately say that Z is also a NaN.

The special exponent Emax � 1 is used to represent infinity if

the fractional part is zero or a NaN if the fractional part is

non-zero.

Figure 4.38 Format of the IEEE 32-bit floating point format.

Fractional mantissaS Biased exponent 1.

23 bits1 bit 8 bits

32-bit floating point number

31 30 23 22 0

Imaginary leading bit

point number are considerably increased. For example, a
single format number is stored as a 32-bit quantity. When it is
unpacked the 23-bit fractional mantissa is increased to 24 bits
by including the leading 1 and then the mantissa is extended
to 32 bits (either as a single 32-bit word or as two 16-bit
words). All calculations are then performed using the 32-bit
extended precision mantissa. This is particularly helpful
when trigonometric functions (e.g., sin x, cos x) are evalu-
ated. After a sequence of floating operations have been car-
ried out in the extended format, the floating point number is
repacked and stored in memory in its basic form.

In 32-bit single IEEE format, the maximum exponent Emax

is �127 and the minimum exponent Emin is �126 rather
than �128 to �127 as we might expect. The special value
Emin�1 (i.e. �127) is used to encode zero and Emax � 1 is
used to encode plus or minus infinity or a NaN. A NaN is a
special entity catered for in the IEEE format and is not a
number. The use of NaNs is covered by the IEEE standard and
they permit the manipulation of formats outside the IEEE
standard.

4.9.3 Floating point arithmetic

Unlike integer and fixed point number representations, float-
ing point numbers can’t be added in one simple operation. A
moment’s thought should demonstrate why this is so.
Consider an example in decimal arithmetic. Let A � 12345
and B � 567.89. In decimal floating point form these num-
bers can be represented by

A � 0.12345 � 105 and B � 0.56789 � 103

If these numbers were to be added by hand, no problems
would arise.

12345
1+567.89
12912.89

However, as these numbers are held in a normalized float-
ing point format we have the following problem.

Addition can’t take place as long as the exponents are differ-
ent. To perform a floating-point addition (or subtraction)
the following steps must be carried out.

1. Identify the number with the smaller exponent.

2. Make the smaller exponent equal to the larger exponent by
dividing the mantissa of the smaller number by the same
factor by which its exponent was increased.

3. Add (or subtract) the mantissas.

4. If necessary, normalize the result (post-normalization).

In the above example we have A � 0.12345 � 105 and
B � 0.56789 � 103.

The exponent of B is smaller than that of A which results
an increase of 2 in B’s exponent and a corresponding division
of B’s mantissa by 102 to give 0.0056789 � 105. We can now
add A to the denormalized B.

A � 0.1234500 � 105

�B � 0.0056789 � 105

0.1291289 � 105

The result is already in a normalized form and doesn’t need
post-normalizing. Note that the answer is expressed to a pre-
cision of seven significant figures whereas A and B are each
expressed to a precision of five significant figures. If the result
were stored in a computer, its mantissa would have to be
reduced to five figures after the decimal point (because we
were working with five-digit mantissas).

When people do arithmetic they often resort to what may
best be called floating precision. If they want greater preci-
sion they simply use more digits. Computers use a fixed rep-
resentation for floating point numbers so that the precision
may not increase as a result of calculation. Consider the
following binary example of floating point addition.

The exponent of B must be increased by 1 and the mantissa of
B divided by 2 (i.e. shifted one place right) to make both
exponents equal to 4.

A � 0.11001 � 24

B � 0.010001 � 24

1.000011 � 24

Because the result is no longer normalized, we have to shift
its mantissa one place right (i.e. divide it by 2) and add 1 to
the exponent to compensate; that is, the result becomes
0.1000011 � 25. We’ve gained two extra places of precision.
We can simply truncate the number to get

A � B � 0.10000 � 25

A more formal procedure for the addition of floating point
numbers is given in Fig. 4.39 as a flowchart. A few points to
note about this flowchart are given below.

1. Because the exponent shares part of a word with the
mantissa, it’s necessary to separate them before the process
of addition can begin. As we pointed out before, this is called
unpacking.

2. If the two exponents differ by more than p � 1, where p is the
number of significant bits in the mantissa, the smaller num-
ber is too small to affect the larger and the result is effectively
equal to the larger number. For example, there’s no point in
adding 0.1234 � 1020 to 0.4567 � 102, because adding
0.4567 � 102 to 0.1234 � 1020 has no effect on a four-digit
mantissa.

3. During the post-normalization phase the exponent is
checked to see if it is less than its minimum possible value or

186 Chapter 4 Computer arithmetic

4.9 Floating point numbers 187

A = a × 2e1

B = b × 2e2

Mantissas a and b are expressed in p bits

e1 < e2 e2 < e1

e1 = e2

Test resulting
mantissa

Shift mantissa right
e1 = e1 + 1

Shift mantissa left

e1 = e1– 1

Shift mantissa b right
one place.
Compensate by
e2 = e2 +1

Unpack the
numbers

STOP
Yes No

Over range

Add a to b

Under range

ERROR

Exponent overflow

ERROR
Exponent underflowEND

Is
> maximum?e1

Is
< minimum?e1

Yes Yes

NoNo

e1 – e2 >p +1

or
e2 – e1 >p +1

Shift mantissa a right
one place.
Compensate by
e1 = e1 +1

Compare
e1 and e2

Fig. 4.39 Flowchart for floating point addition and subtraction.

188 Chapter 4 Computer arithmetic

greater than its maximum possible value. This corresponds to
testing for exponent underflow and overflow, respectively. Each
of these cases represents conditions in which the number is
outside the range of numbers that the computer can handle.
Exponent underflow would generally lead to the number
being made equal to zero, whereas exponent overflow would
result in an error condition and may require the intervention
of the operating system.

Floating point multiplication is easier than addition or
subtraction because we simply multiply mantissas and add
exponents. For example if x � s1 � 2e1 and y � s2 � 2e2 then
x • y � s1 • s2 � 2(e1�e2). The multiplication can be done with
an integer multiplier (we don’t even have to worry about
signed numbers). Of course, multiplication of two p-bit
numbers yields a 2p-bit product and we therefore have to
round down the result of the multiplication. When we add
the two exponents, we have to remember to subtract the bias
because each exponent is Etrue � b.

Rounding and truncation

We have seen that some of the operations involved in floating
point arithmetic lead to an increase in the number of bits in
the mantissa and that some technique must be invoked to
keep the number of bits in the mantissa constant. The sim-
plest technique is called truncation and involves nothing
more than dropping unwanted bits. For example, if we trun-
cate 0.1101101 to four significant bits we get 0.1101.
Truncating a number creates an error called an induced error
(i.e. an error has been induced in the calculation by an oper-
ation on the number). Truncating a number causes a biased
error because the number after truncation is always smaller
than the number that was truncated.

A much better technique for reducing the number of bits
in a word is rounding. If the value of the lost digits is greater
than half the least-significant bit of the retained digits, 1 is
added to the least-significant bit of the remaining digits. We
have been doing this with decimal numbers for years—the
decimal number 12.234 is rounded to 12.23, whereas 13.146
is rounded to 13.15. Consider rounding to four significant
bits the following numbers.

0.1101011 → 0.1101 The three bits removed are 011, so do
nothing

0.1101101 → 0.1101 � 1 � 0.1110 The three bits removed
are 101, so add 1

Rounding is always preferred to truncation partially
because it is more accurate and partially because it gives
rise to an unbiased error. Truncation always undervalues
the result leading to a systematic error whereas rounding
sometimes reduces the result and sometimes increases it.
The major disadvantage of rounding is that it requires
a further arithmetic operation to be performed on the
result.

4.9.4 Examples of floating point
calculations

Because handling floating point numbers can be tricky, we
provide several examples. An IEEE standard 32-bit floating-
point number has the format N � �1S � 1.F � 2E�127,
where S is the sign bit, F is the fractional mantissa, and E the
biased exponent.

EXAMPLE 1

Convert the decimal numbers 123.5 and 100.25 into the IEEE
format for floating point numbers. Then carry out the subtrac-
tion of 123.5�100.25 and express the result as a normalized
32-bit floating point value.

The mantissa is positive, so S � 0.The exponent is �6,which
is stored in biased form as 6 � 127 � 13310 � 100001012. The
mantissa is 1.1110111, which is stored as 23 bits with the lead-
ing 1 suppressed. The number is stored in IEEE format as
010000101 10010001000000000000000.

We can immediately write down the IEEE value for 100.25
because it is so close to the 123.5 we have just calculated; that
is, 0 10000101 10010001000000000000000.

The two IEEE-format floating point numbers taking
part in the operation are first unpacked. The sign, the expo-
nent, and the mantissa (with the leading 1 restored) must be
reconstituted.

The two exponents are compared. If they are the same, the
mantissas are added. If they are not, the number with the
smaller exponent is denormalized by shifting its mantissa
right (i.e. dividing by 2) and incrementing its exponent (i.e.
multiplying by 2) until the two exponents are equal. Then the
numbers are added.

If the mantissa of the result is out of range (i.e. greater than
1.11111 . . . 1 or less than 1.0000 . . . 0) it must be re-normal-
ized. If the exponent goes out of range (bigger than its largest
value or smaller than its smallest value) exponent overflow
occurs and an error is flagged. The result is then repacked and
the leading 1 in front of the normalized mantissa removed.

IEEE number
123.510 � 001000101111011100000 00000000000

IEEE number
100.2510 � 0 0100010110010001000000000000000

These floating-point numbers have the same exponent, so
we can subtract their mantissas (after inserting the leading 1).

1.11101110000000000000000
�1.10010001000000000000000

0.01011101000000000000000

� 1.1110111 � 26

 123.510 � 1111011.1

The result is not normalized and must be shifted left twice to
get 1.01110100000000000000000. The exponent must be
decreased by 2 to get 01000011. The result expressed in floating
point format is

0 0100011 01110100000000000000000

EXAMPLE 2

Carry out the operation 42.6875 � 0.09375 by first converting
these numbers to the IEEE 32-bit format. Use these floating
point numbers to perform the subtraction and then calculate
the new floating point value.

42.687510 = 101010.10112

= 1.010101011 � 25

This number is positive and S � 0. The true exponent is 5
and, therefore, the biased exponent is 5 � 127 (i.e. actual
exponent � bias) � 132 � 100001002 in 8 bits. The frac-
tional exponent is 010101011(00000000000000). Therefore
42.6875 is represented as an IEEE floating point value by
01000010001010101100000000000000.

Similarly, �0.0937510 � �0.000112 � �1.1 � 2�4. The
sign-bit S � 1 because the number is negative and the biased
exponent E � �4 � 127 � 123 � 011110112. The frac-
tional mantissa is F � 10000000000000000000000. The
representation of �0.09375 is therefore 1011110111
0000000000000000000000. These two numbers are stored as

01000010001010101100000000000000 and
10111101110000000000000000000000, respectively.

In order to perform the addition we have to unpack these
numbers to sign � biased exponent � mantissa.

We must insert the leading 1 into the fractional mantissa to
get the true mantissa.

In order to add or subtract the numbers, the exponents must
be the same (we can work with biased exponents). The second
number’s exponent is smaller by 10000100 �

0111011 � 000010012 � 910.We increase the second exponent
by 9 and shift the mantissa right 9 times to get

We can now subtract mantissas to get
10101010011000000000000. The result is positive with a
biased exponent of 10000100 and a mantissa of
1.0101010011000000000000. This number would be stored as
0 10000100 0101010011000000000000 (we’ve dropped the
leading 1 mantissa).

This number is equal to � 25 � 1.0101010011 �

101010.10011 � 42.59375.

EXAMPLE 3

Let’s perform a floating point multiplication. We’ll use two dec-
imal floating point numbers that can be converted into binary
form without a calculator. Assume we wish to calculate
X � 256.5 x 4.652.

We can immediately write 256.5 � 100000000.12 �

1.000000001 � 28 and 4.625 � 100.1012 � 1.00101 � 22.
In IEEE 32-bit format, these two numbers are represented by

0 10000111 00000000100000000000000 and
0 10000001 00101000000000000000000

To multiply the numbers, we unpack the fractional
mantissas, insert the leading 1s, and multiply them. Then we
add the two biased exponents and subtract one bias. The new
mantissa is

1.000000001 � 1.00101 � 1.001010001001012

If we add the biased mantissas and subtract one bias we get
10000111 � 10000001 � 01111111 � 100010012. The final
IEEE format result is

0 10001001 00101000100101000000000 � 44944A016.

The decimal result is �1.00101000100101000000000 �

2 1 0 0 0 1 0 0 1 � 1 1 1 1 1 1 1 � 1 . 0 0 1 0 1 0 0 0 1 0 0 1 0 1 � 2 1 0 �

10010100010.01012 � 1186.312510.

4.10 Multiplication and division

We’ve looked at addition and subtraction—now we consider
multiplication and division. Other mathematical functions
can be derived from multiplication. Division itself will later
be defined as an iterative process involving multiplication.

4.10.1 Multiplication

Binary multiplication is no more complex than decimal
multiplication. In many ways it’s easier as the whole binary
multiplication table can be reduced to

0 � 0 � 0
0 � 1 � 0
1 � 0 � 0
1 � 1 � 1

The multiplication of two bits is identical to their logical
AND. When we consider the multiplication of strings of bits,
things become more complex and the way in which multipli-
cation is carried out, or mechanized, varies from machine to
machine. The faster and more expensive the computer, the

4.10 Multiplication and division 189

First number 0 10000100 101010101100000000000000

Second number 1 10000100 000000000110000000000000000000000

First number 0 10000100 01010101100000000000000
Second number 1 01111011 10000000000000000000000

First number 0 10000100 101010101100000000000000
Second number 1 01111011 110000000000000000000000

more complex the hardware used to implement multiplica-
tion. Some high-speed computers perform multiplication in
a single operation by means of a very large logic array involv-
ing hundreds of gates.

Unsigned binary multiplication

The so-called pencil and paper algorithm used by people to cal-
culate the product of two multidigit numbers, involves the
multiplication of an n-digit number by a single digit followed
by shifting and adding. We can apply the same approach to
unsigned binary numbers in the following way. The multiplier
bits are examined, one at a time, starting with the least-signif-
icant bit. If the current multiplier bit is one the multiplicand is
written down, if it is zero then n zeros are written down
instead. Then the next bit of the multiplier is examined, but
this time we write the multiplicand (or zero) one place to the
left of the last digits we wrote down. Each of these groups of n
digits is called a partial product.When all partial products have
been formed, they are added up to give the result of the multi-
plication. An example should make this clear.

The result, 100000102 � 13010, is 8 bits long. The multiplica-
tion of two n-bit numbers yields a 2n-bit product.

Digital computers don’t implement the pencil and paper
algorithm in the above way, as this would require the storing
of n partial products, followed by the simultaneous addition
of n words. A better technique is to add up the partial prod-
ucts as they are formed. An algorithm for the multiplication
of two n-bit unsigned binary numbers is given in Table 4.26.
We will consider the previous example of 1101 � 1010 using

the algorithm of Table 4.26. The mechanization of the prod-
uct of 1101 � 1010 is presented in Table 4.27.

Signed multiplication

The multiplication algorithm we’ve just discussed is valid
only for unsigned integers or unsigned fixed point numbers.
As computers represent signed numbers by means of two’s
complement notation, it is necessary to find some way of
forming the product of two’s complement numbers. It is, of
course, possible to convert negative numbers into a modulus-
only form, calculate the product, and then convert it into a
two’s complement form if it is negative. That approach wastes
time.

We first demonstrate that the two’s complement represen-
tation of negative numbers can’t be used with the basic shift-
ing and adding algorithm. That is, two’s complement
arithmetic works for addition and subtraction, but not for
multiplication or division (without using special algo-
rithms). Consider the product of X and �Y. The two’s com-
plement representation of �Y is 2n�Y.

If we use two’s complement arithmetic, the product X(�Y)
is given by X(2n�Y) � 2nX�XY.

190 Chapter 4 Computer arithmetic

Multiplier � 11012 Multiplicand � 10102

Step Counter Multiplier Partial product Cycle

a and b 4 1101 00000000

c 4 1101 10100000 1

d and e 4 0110 01010000 1

f 3 0110 01010000 1

c 3 0110 01010000 2

d and e 3 0011 00101000 2

f 2 0011 00101000 2

c 2 0011 11001000 3

d and e 2 0001 01100100 3

f 1 0001 01100100 3

c 1 0001 100000100 4

d and e 1 0000 10000010 4

f 0 0000 10000010 4

Table 4.27 Mechanizing unsigned multiplication.

1010
�1101
1010 Step 1 first multiplier bit = 1, write down multiplicand

0000 Step 2 second multiplier bit = 0, write down zeros shifted left
1010 Step 3 third multiplier bit = 1, write down multiplicand shifted left

1010 Step 4 fourth multiplier bit = 1, write down multiplicand shifted left
10000010 Step 5 add together four partial products

10�13 Multiplier � 11012

Multiplicand � 10102

(a) Set a counter to n.

(b) Clear the 2n-bit partial product register.

(c) Examine the rightmost bit of the multiplier (initially the least-

significant bit). If it is one add the multiplicand to the n most-

significant bits of the partial product.

(d) Shift the partial product one place to the right.

(e) Shift the multiplier one place to the right (the rightmost bit is, of

course, lost).

(f) Decrement the counter. If the result is not zero repeat from step c. If

the result is zero read the product from the partial product register.

Table 4.26 An algorithm for multiplication.

The expected result, �XY, is represented in two’s
complement form by 22n�XY. The most-significant bit is 22n

(rather than 2n) because multiplication automatically yields a

double-length product. In order to get the correct two’s com-
plement result we have to add a correction factor of

This correction factor is the two’s complement of X scaled
by 2n. As a further illustration consider the product of X � 15
and Y � �13 in 5 bits.

The final result in 10 bits, 11001111012 � �19510, is cor-
rect. Similarly, when X is negative and Y is positive, a correc-
tion factor of 2n(2n�Y) must be added to the result.

When both multiplier and multiplicand are negative the
following situation exists.

In this case correction factors of 2nX and 2nY must be
added to the result. The 22n term represents a carry-out bit
from the most-significant position and can be neglected.

Booth’s algorithm

One approach to the multiplication of signed numbers in
two’s complement form is provided by Booth’s algorithm.
This algorithm works for two positive numbers, one negative
and one positive, or both negative. Booth’s algorithm is
broadly similar to conventional unsigned multiplication but
with the following differences. In Booth’s algorithm two bits
of the multiplier are examined together, to determine which
of three courses of action is to take place next. The algorithm
is defined below.

1. If the current multiplier bit is 1 and the next lower order
multiplier bit is 0, subtract the multiplicand from the
partial product.

2. If the current multiplier bit is 0 and the next lower order
multiplier bit is 1, add the multiplicand to the partial
product.

(2n � X)(2n � Y) � 22n � 2nX � 2nY � XY

22n � 2nX � 2n(2n � X)

4.10 Multiplication and division 191

(Two’s complement form)

First partial product
Second partial product
Third partial product
Fourth partial product
Fifth partial product
Uncorrected result
Correction factor

Corrected result

3. If the current multiplier bit is the same as the next lower
order multiplier bit, do nothing.

Note 1. When adding in the multiplicand to the partial
product, discard any carry bit generated by the
addition.

Note 2. When the partial product is shifted, an arithmetic
shift is used and the sign bit propagated.

Note 3. Initially, when the current bit of the multiplier is its
least-significant bit, the next lower-order bit of the
multiplier is assumed to be zero.

The flowchart for Booth’s algorithm is given in Fig. 4.40. In
order to illustrate the operation of Booth’s algorithm,
consider the three products 13 � 15, �13 � 15, and
�13 � (�15). Table 4.28 demonstrates how Booth’s
algorithm mechanizes these three multiplications.

High-speed multiplication

We don’t intend to delve deeply into the subject of high-speed
multiplication as large portions of advanced textbooks are
devoted to this topic alone. Here two alternative ways of
forming products to the method of shifting and adding are
explained.

We have seen in Chapter 2 that you can construct a 2-bit by
2-bit multiplier by means of logic gates. This process can be
extended to larger numbers of bits. Figure 4.41 illustrates the
type of logic array used to directly multiply two numbers.

An alternative approach is to use a look-up table in which
all the possible results of the product of two numbers are
stored in a ROM read-only-memory. Table 4.29 shows how
two four-bit numbers may be multiplied by storing all
28 � 256 possible results in a ROM.

The 4-bit multiplier and 4-bit multiplicand together form
an 8-bit address that selects one of 256 locations within the
ROM. In each of these locations the product of the multiplier
(most-significant four address bits) and the multiplicand

192 Chapter 4 Computer arithmetic

Unpack the
numbers

Set cycle counter
Clear partial product

Test current multiplier bit
and next lower-order bit

Do nothing

Decrement cycle counter

Subtract multiplicand from
partial product

Add multiplicand to
partial product

Both multiplier and next
lower-order bit the same

Shift partial product right and
select next pair of multiplier bits

Multiplier bit = 1
Next lower bit = 0

Multiplier bit = 0
Next lower bit = 1

Stop
Yes No

Result zero?

Figure 4.40 Flowchart for Booth’s algorithm.
34 � 27 � (3 � 10 + 4)(2 � 10 + 7)

� 3 � 2 � 102 + 3 � 7 � 10 + 4 � 2 � 10 + 4 � 7
� 6 � 102 � 21 � 10 � 8 � 10 � 28
� 6 � 102 � 29 � 10 � 28
� 600 � 290 � 28
� 918

Now consider the generation of the product of two 8-bit
numbers by means of 4-bit multipliers. Let the two 8-bit
numbers A and B be represented by the structure in Fig. 4.42.

Au represents the four most-significant bits of A, and Al the
four least-significant bits. We have already encountered the
idea of splitting up numbers when we performed 64-bit
addition on a 32-bit microprocessor. Eight-bit numbers
A and B can be represented algebraically as follows

A � Au � 16 � Al and B � Bu � 16 � Bl

Consequently, A � B � (Au � 16 � Al)(Bu � 16 � Bl)

� 256AuBu � 16AuBl � 16AlBu � AlBl

(least-significant four address bits) are stored. For example,
the product of 2 and 3 is given by the contents of location
0010 0011, which contains 00000110.

The disadvantage of this technique is the rapid increase in
the size of the ROM as the number of bits in the multiplier
and multiplicand increases. Table 4.30 provides the relation-
ship between the size of a multiplier and the number of bits a
ROM requires to hold the appropriate multiplication table.

The multiplication of two 8-bit numbers requires a
memory capacity of 1 048 576 bits. Forming the product of
large numbers directly by look-up table is impracticable.
Fortunately, it’s possible to calculate the product of two
2n-bit numbers by using an n-bit multiplier.

Before showing how we proceed with binary numbers, let’s
take a look at the product of two 2-digit decimal numbers,
and then extend the technique to binary arithmetic.

This expression requires the evaluation of four 4-bit prod-
ucts (AuBu, AuBl, AlBu, AlBl), the shifting of the products by
eight or four positions (i.e. multiplication by 256 or 16), and
the addition of four partial products. Figure 4.43 shows how
this may be achieved.

4.10 Multiplication and division 193

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Y3 Y2 Y1 Y0

X0

X1

X2

X3

LSB

LSB

C2,0 S1,0

C2,1

C2,2

C2,3

C1,0

C1,1

C1,2 C0,2

C0,1

C0,0S2,0

S2,1

S2,2

S1,1

S1,2

S0,0

S0,1

S0,2

S0,3S1,3S2,3

P2

P0

P1

P3
C1,3 C0,3

Figure 4.41 The multiplier array.

1. Multiplicand � 01111 � �15

Multiplier � 01101 � �13

Step Multiplier bits Partial product

0000000000

Subtract multiplicand 011010 1000100000

Shift partial product right 1100010000

Add multiplicand 01101 10011110000

Shift partial product right 0001111000

Subtract multiplicand 01101 1010011000

Shift partial product right 1101001100

Do nothing 01101 1101001100

Shift partial product right 1110100110

Add multiplicand 01101 10110000110

Shift partial product right 0011000011

The final result is 00110000112, which is equal to �195. Note that the under-
lined numbers represent the bits to be examined at each stage.

2. Multiplicand � 01111 � �15

Multiplier � 10011 � �13

Step Multiplier bits Partial product

0000000000

Subtract multiplicand 100110 1000100000

Shift partial product right 1100010000

Do nothing 10011 1100010000

Shift partial product right 1110001000

Add multiplicand 10011 10101101000

Shift partial product right 0010110100

Do nothing 10011 0010110100

Shift partial product right 0001011010

Subtract multiplicand 10011 1001111010

Shift partial product right 1100111101

The result is 11001111012, which corresponds to �195.

Table 4.28 Three examples of mechanizing Booth’s algorithm.

3. Multiplicand � 10001 � �15

Multiplier � 10011 � �13

Step Multiplier bits Partial product

0000000000

Subtract multiplicand 100110 0111100000

Shift partial product right 0011110000

Do nothing 10011 0011110000

Shift partial product right 0001111000

Add multiplicand 10011 1010011000

Shift partial product right 1101001100

Do nothing 10011 1101001100

Shift partial product right 1110100110

Subtract multiplicand 10011 10110000110

Shift partial product right 0011000011

The result is 00110000112, which corresponds to �195.

Address Data

Multiplier Multiplicand Result

0000 0000 00000000

0000 0001 00000000

: : :

: : :

0000 1111 00000000

0001 0000 00000000

0001 0001 00000001

: : :

: : :

0001 1111 00001111

0010 0000 00000000

0010 0001 00000010

: : :

: : :

0010 1111 00011110

: : :

: : :

1111 0000 00000000

1111 0001 00001111

: : :

: : :

1111 1111 11100001

Table 4.29 Multiplication by means of a look-up table.

4.10.2 Division

Division is the inverse of multiplication and is performed by
repeatedly subtracting the divisor from the dividend until the
result is either zero or less than the divisor. The number of times
the divisor is subtracted is called the quotient, and the number
left after the final subtraction is the remainder. That is

dividend/divisor � quotient � remainder/ divisor
Alternatively, we can write

dividend � quotient � divisor � remainder

Before we consider binary division let’s examine decimal
division using the traditional pencil and paper technique.
The following example illustrates the division of 575 by 25.

The first step is to compare the two digits of the divisor
with the most-significant two digits of the dividend and ask
how many times the divisor goes into these two digits. The
answer is 2 (i.e. 2 � 25 � 50), and 2 � 25 is subtracted
from 57. The number 2 is entered as the most-significant
digit of the quotient to produce the situation below.

The next digit of the dividend is brought down, and the
divisor is compared with 75. As 75 is an exact multiple of 25,
a three can be entered in the next position of the quotient to
give the following result.

2
25�575

50
7

25�575
quotient

divisor�dividend

division is complete, and the quotient is 23 with a zero
remainder.

A difficulty associated with division lies in estimating how
many times the divisor goes into the partial dividend (i.e. 57
was divided by 25 to produce 2 remainder 7). Although peo-
ple do this mentally, some way has to be found to mechanize
it for application to computers. Luckily this process is easier
in binary arithmetic. Consider, the above example using
unsigned binary arithmetic.

The 5 bits of the divisor do not go into the first 5 bits of the
dividend, so a zero is entered into the quotient and the divi-
sor is compared with the first 6 bits of the dividend.

The divisor goes into the first 6 bits of the dividend once, to
leave a partial dividend 001010(1111).

The next bit of the dividend is brought down to give

The partial dividend is less than the divisor, and a zero is
entered into the next bit of the quotient. The process contin-
ues as follows.

010
11001�1000111111

11001
010101

11001

01
11001�1000111111

 11001
001010

11001�1000111111
11001

25 � 110012 575 � 10001111112

194 Chapter 4 Computer arithmetic

Multiplier bits Address bits Lines in table Total of bits in ROM

(n) (2n) (22n) (2n � 22n)

2 4 16 64

3 6 64 384

4 8 256 1024

5 10 1024 10240

6 12 4096 49152

7 14 16384 229376

8 16 65536 1048576

Table 4.30 Relationship between multiplier size and array size.

23

50
75
75
00

25�575

010111

11001
00101011

11001
000100101

11001
000011001

11001
0000000000

11001�1000111111

As we have examined the least-significant bit of the
dividend and the divisor was an exact multiple of 75, the

In this case the partial quotient is zero, so that the final
result is 10111, remainder 0.

Restoring division

The traditional pencil and paper algorithm we’ve just dis-
cussed can be implemented in digital form with little modifi-
cation. The only real change is to the way in which the divisor
is compared with the partial dividend. People do the compar-
ison mentally whereas computers must perform a subtrac-
tion and test the sign of the result. If the subtraction yields a
positive result, a one is entered into the quotient, but if the

result is negative a zero is entered in the quotient and the divi-
sor added back to the partial dividend to restore it to its pre-
vious value.

A suitable algorithm for restoring division is as follows.

1. Align the divisor with the most-significant bit of the
dividend.

2. Subtract the divisor from the partial dividend.

3. If the resulting partial dividend is negative, place a zero
in the quotient and add back the divisor to restore the
partial dividend.

4. If the resulting partial dividend is positive, place a one in
the quotient.

5. Perform a test to determine end of division. If the divisor
is aligned so that its least-significant bit corresponds to the
least-significant bit of the partial dividend, stop. The final
partial product is the remainder. Otherwise, continue

with step 6.

6. Shift the divisor one place right. Repeat from
step 2.

The flowchart corresponding to this algorithm
is given in Fig. 4.44. Consider the division of
011001112 by 10012, which corresponds to 103
divided by 9 and should yield a quotient 11 and a
remainder 4. Figure 4.45 illustrates the division
process, step by step.

Non-restoring division

It’s possible to modify the restoring division algo-
rithm of Fig. 4.44 to achieve a reduction in the
time taken to execute the division process. The
non-restoring division algorithm is almost identi-
cal to the restoring algorithm. The only difference
is that the so-called restoring operation is elimi-
nated. From the flowchart for restoring division,
it can be seen that after a partial dividend has
been restored by adding back the divisor, one-half
the divisor is subtracted in the next cycle. This is
because each cycle includes a shift-divisor-right
operation, which is equivalent to dividing the
divisor by two. The restore divisor operation in the
current cycle followed by the subtract half the
divisor in the following cycle is equivalent to a
single operation of add half the divisor to the par-
tial dividend. That is, D � D/2 � �D/2, where D
is the divisor.

Figure 4.46 gives the flowchart for non-restoring
division. After the divisor has been subtracted
from the partial dividend, the new partial divi-
dend is tested. If it is negative, zero is shifted into
the least-significant position of the quotient and
half the divisor is added back to the partial divi-

dend. If it is positive, one is shifted into the least-significant
position of the quotient and half the divisor is subtracted
from the partial dividend. Figure 4.47 repeats the example of
Fig. 4.4 using non-restoring division.

Division by multiplication

Because both computers and microprocessors perform
division less frequently than multiplication, some processors
implement multiplication but not division. It is, however, possi-
ble to perform division by means of multiplication, addition,
and shifting.

4.10 Multiplication and division 195

A B BAu u ll

8 bits 8 bits

4 bits 4 bits4 bits 4 bits

Fig. 4.42 High-speed multiplication.

Fig. 4.43 High-speed multiplication.

4-bit 4-bit
multiplier

 4-bit 4-bit
multiplier

 4-bit 4-bit
multiplier

 4-bit 4-bit
multiplier

Au

Al BlAu Bu

AlAu AlBu BuBl Bl

256A B + 16A B + 16A B + A Bu u u l l u l l

Partial product adder

16-bit product

A Bu u A Bu l A Bl u A Bl l

A Bl l

A Bu l

Al u

A Bu u

B

196 Chapter 4 Computer arithmetic

Fig. 4.44 The flowchart for restoring division.

Align most-significant
bits of divisor and dividend

Add divisor to partial
dividend to restore divisor

Shift divisor one place right

Shift 0 in quotient Shift 1 in quotient

End

Is result positive?

Is
divisor aligned

with LSB of
dividend?

No

No

Yes

Yes

Start

Subtract divisor from
partial dividend

Suppose we wish to divide a dividend N by a divisor D to
obtain a quotient Q, so that Q � N/D. The first step is to scale
D so that it lies in the range

This operation is carried out by shifting D left or right and
recording the number of shifts—rather like normalization in
floating point arithmetic. We define a new number, Z, in
terms of D as Z � 1�D. Because D lies between 1⁄2 and unity,
it follows that Z lies between zero and 1⁄2. That is, 0 � Z
 1⁄2.

An elementary rule of arithmetic states that the value of
the fraction remains unaltered if the top and bottom of a
fraction are multiplied by the same number.

Thus, Q � N/D � KN/KD. Suppose that K � 1 � Z, then

Q �
N
D

�
N(1 � Z)

D(1 � Z)
�

N(1 � Z)

(1 � Z)(1 � Z)
�

N(1 � Z)

1 � Z2

1�2
 D � 1

If we now repeat the process with K � (1 � Z2), we get

This process may be repeated n times with the result that

Because Z is less than unity, the value of rapidly
approaches zero as n is increased. Consequently, the approxi-
mate value of Q is given by

For 8-bit precision n need be only 3, and if n � 5 the
quotient yields a precision of 32 bits. As the divisor was scaled
to lie between 1⁄2 and unity, the corresponding quotient, Q,

Q � N(1 � Z)(1 � X2)(1 � Z4) . . . (1 � Z2n�1

)

Z2n�1

Q �
N
D

�
N(1 � Z)(1 � Z2)(1 � Z4) . . . (1 � Z2n�1

)

1 � Z2n�1

Q �
N(1 � Z)

1 � Z2
 · 1 � Z2

1 � Z2
�

N(1 � Z)(1 � Z2)

1 � Z 4

4.10 Multiplication and division 197

Step Description Partial dividend Divisor Quotient

 01100111 00001001 00000000

1 Align 01100111 01001000 00000000
2 Subtract divisor from partial dividend 00011111 01001000 00000000
4 Result positive— shift in 1 in quotient 00011111 01001000 00000001
5 Test for end

6 Shift divisor one place right 00011111 00100100 00000001
2 Subtract divisor from partial dividend -00000101 00100100 00000001
3 Restore divisor, shift in 0 in quotient 00011111 00100100 00000010
5 Test for end

6 Shift divisor one place right 00011111 00010010 00000010
2 Subtract divisor from partial dividend 00001101 00010010 00000010
4 Result positive—shift in 1 in quotient 00001101 00010010 00000101
5 Test for end

6 Shift divisor one place right 00001101 00001001 00000101
2 Subtract divisor from partial dividend 00000100 00001001 00000101
4 Result positive—shift in 1 in quotient 00000100 00001001 00001011
5 Test for end

Figure 4.45 Example of restoring division for 1001�01100111.

Figure 4.46 Flowchart for non-restoring division.

Subtract divisor from
dividend

Shift 1 in LSB of quotient.
Subtract divisor from
partial dividend.

Shift 0 in LSB of quotient.
Add divisor to
partial dividend.

End

Test partial
dividend

Is
divisor aligned

with LSB of
dividend?

NoYes

Align most-significant bits
of divisor and dividend

Start

Shift divisor one place right

Restore final divisor to
get remainder

Positive Negative

calculated from the above formula must be scaled by the
same factor to produce the desired result.

■ SUMMARY

In this chapter we have looked at how numerical information is

represented inside a digital computer.We have concentrated on

the binary representation of numbers, because digital

computers handle binary information efficiently. Because both

positive and negative numbers must be stored and manipulated

by a computer, we have looked at some of the ways in which

digital computers represent negative numbers. The two’s

complement system is used to represent negative integers,

whereas a biased representation is used to represent negative

exponents in floating point arithmetic and a floating point

mantissa uses a sign and magnitude representation.

Because digital computers sometimes have to work with

very large and very small numbers, we have covered some of

the ways in which the so-called scientific notation is used

to encode both large and small numbers.These numbers

are stored in the form of a mantissa and a magnitude

(i.e. the number of zeros before/after the binary point) and are

called floating point numbers. Until recently, almost every

computer used its own representation of floating point numbers.

Today, the IEEE standard for the format of floating point numbers

has replaced most of these ad hoc floating point formats.

At the end of this chapter we have briefly introduced the

operations of multiplication and division and have

demonstrated how they are mechanized in digital computers.

Special hardware has to be used to implement signed

multiplication because the two’s complement system cannot be

used for signs and unsigned multiplication.

■ PROBLEMS

4.1 Convert the following decimal integers to their natural

binary equivalents.

(a) 12 (d) 4090

(b) 42 (e) 40900

(c) 255 (f) 65530

4.2 Convert the following natural binary integers to their

decimal equivalents.

(a) 110 (c) 110111

(b) 1110110 (d) 11111110111

4.3 Complete the table below.

198 Chapter 4 Computer arithmetic

Description Partial dividend Divisor Quotient

 01100111 00001001 00000000

1 Align divisor 01100111 01001000 00000000
2 Subtract divisor from partial dividend 00011111 01001000 00000000
3 Shift divisor right 00011111 00100100 00000000
4 Test partial dividend—enter 1 in quotient

and subtract divisor from partial dividend
-00000101 00100100 00000001

6 Test for end of process -00000101 00100100 00000001
3 Shift divisor right -00000101 00010010 00000001
5 Test partial dividend—enter 0 in quotient

and add divisor to partial dividend
 00001101 00010010 00000010

6 Test for end of process 00001101 00010010 00000010
3 Shift divisor right 00001101 00001001 00000010
4 Test partial dividend enter—1 in quotient

and subtract divisor from partial dividend
 00000100 00001001 00000101

6 Test for end of process 00000100 00001001 00000101
3 Shift divisor right 00000100 0000100.1 00000101
4 Test partial dividend—enter 1 in quotient

and subtract divisor from partial dividend
–00000000.1 0000100.1 00001011

6 Test for end of process –00000000.1 0000100.1 00001011
7 Restore last divisor 00000100 0000100.1 00001011

Step

Fig. 4.47 An example of non-restoring division for .1001�0110011

Decimal Binary Hexadecimal Base 7

37

99

10101010

11011011101

256

CAB

12

666

4.4 Convert the following base 5 numbers into base 9

equivalents. For example, 235 � 149.

(a) 14 (b) 144 (c) 444 (d) 431

4.11 Convert the following decimal numbers into BCD form.

(a) 1237 (b) 4632 (c) �9417

4.12 Perform the following additions on the BCD numbers

using BCD arithmetic.

(a) 0010100010010001 (b) 1001100101111000

0110100001100100 1001100110000010

4.13 The 16-bit hexadecimal value C12316 can represent many

things.What does this number represent, assuming that it is the

following:

(a) an unsigned binary integer

(b) a signed two’s complement binary integer

(c) a sign and magnitude binary integer

(d) an unsigned binary fraction

4.14 Convert the following 8-bit natural binary values into their

Gray code equivalents.

(a) 10101010

(b) 11110000

(c) 00111011

4.15 Convert the following 8-bit Gray code values into their

natural binary equivalents.

(a) 01010000

(b) 11110101

(c) 01001010

4.16 What are the Hamming distances between the following

pairs of binary values?

(a) 00101111 (b) 11100111

01011101 01110101

(c) 01010011 (d) 11111111

00011011 00000111

(e) 11011101 (f) 0011111

11011110 0000110

4.17 Decode the Huffman code below, assuming that the valid

codes are P � 0, Q � 10, R � 110, and S � 111. How many bits

would be required if P, Q, R, and S had been encoded as 00, 01,

10, and 11, respectively?

000001110111000000101111111101010001111100010

4.18 The hexadecimal dump from part of a microcomputer’s

memory is as follows.

0000 4265 6769 6EFA 47FE BB87 0086 3253 7A29

0010 698F E000

The dump is made up of a series of strings of characters, each

string being composed of nine groups of four hexadecimal

characters. The first four characters in each string provide the

starting address of the following 16 bytes. For example, the first

byte in the second string (i.e. $C9) is at address $0010 and the

second byte (i.e. $8F) is at address $0011.

The 20 bytes of data in the two strings represent the

following sequence of items (starting at location 0000):

(a) five consecutive ASCII-encoded characters

(b) one unsigned 16-bit integer

(c) one two’s complement 16-bit integer

4.10 Multiplication and division 199

Decimal Binary Hexadecimal Base 7

0.25

0.35

11011.0111

111.1011

2.08

AB.C

1.2

66.6

4.5 Convert the following decimal numbers to their binary

equivalents. Calculate the answer to five binary places and

round the result up or down as necessary.

(a) 1.5 (d) 1024.0625

(b) 1.1 (e) 3.141592

(c) 1/3 (f) 1/

4.6 Convert the following binary numbers to their decimal

equivalents.

(a) 1.1 (d) 11011.111010

(b) 0.0001 (e) 111.111111

(c) 111.101 (f) 10.1111101

4.7 Complete the following table. Calculate all values to four

places after the radix point.

�2

4.8 Calculate the error (both absolute and as a percentage) if

the following decimal fractions are converted to binary

fractions, correct to 5 binary places. Convert the decimal

number to six binary digits and then round up the fifth bit if the

sixth bit is a 1.

(a) 0.675

(b) 0.42

(c) 0.1975

4.9 An electronics engineer has invented a new logic device

that has three states: �1, 0, and �1.These states are

represented by 1
–
, 0, and 1, respectively. This arrangement may

be used to form a balanced ternary system with a radix 3, but

where the trits represent -1, 0, �1 instead of 0, 1, 2.The

following examples illustrate how this system works.

Ternary Balanced ternary Decimal
11 11 4 (3 � 1)

12 11
–
1
–

5 (9 � 3 �1)

22 101
–

8 (9 � 1)

1012 111
–
1
–

32 (27 � 9 � 3 � 1)

Write down the first 15 decimal numbers in the balanced

ternary base.

4.10 The results of an experiment fall in the range

�4 to �9.A scientist reads the results into a computer and

then processes them.The scientist decides to use a 4-bit

binary code to represent each of the possible inputs. Devise a

4-bit code capable of representing numbers in the range

�4 to �9.

(d) one unsigned 16-bit fraction

(e) one six-digit natural BCD integer

(f) one 16-bit unsigned fixed-point number with a 12-bit

integer part and a 4-bit fraction

(g) One 4-byte floating point number with a sign bit and true

fraction plus an exponent biased by 64

Show that no two valid code words differ by less than 3 bits.

Demonstrate that an error in any single bit can be used to locate

the position of the error and, therefore, to correct it.

4.24 Examine the following H7,4 Hamming code words and

determine whether the word is a valid code word. If it isn’t valid,

what should the correct code word have been (assuming that

only 1 error is present)?

(a) 0000000

(b) 1100101

(c) 0010111

4.25 Convert the following image into a quadtree.

4.26 Convert the following image into a quadtree.

4.27 Almost all computer hardware courses include a section

on number bases and the conversion of numbers between bases.

Does the base in which a computer represents numbers really

matter to the computer user or even to the student of

computer science?

4.28 Perform the following binary additions:

(a) 10110 (b) 100111 (c) 11011011

� 101 111001 10111011

�101101 00101011

�01111111

4.29 Perform the following octal additions.We have not

covered octal arithmetic (base 8).You must determine the rules

of addition,

(a) 42 (b) 3357 (c) 777 (d) 437

�53 �2741 543 426

�420 772

�747

4.30 Perform the following hexadecimal additions:

(a) 42 (b) 3357 (c) 777 (d) ABCD

�53 �2741 543 FE10

�420 �123A

F = full (all elements1)

E = empty (all elements0)

P = partially filled

0 1

2 3

Quadrant

numbering

200 Chapter 4 Computer arithmetic

S E � 64 Mantissa

8 bits 24 bits

Decode the hexadecimal data, assuming that it is interpreted as

above.

4.19 A message can be coded to protect it from unauthorized

readers by EORing it with a binary sequence of the same length

to produce an encoded message.The encoded message is

decoded by EORing it with the same sequence that was used to

decode it. If the ASCII-encoded message used to generate the

code is ALANCLEMENTS, what does the following encoded

message (expressed in hexadecimal form) mean?

09 09 0D 02 0C 6C 12 02 17 02 10 73

4.20 A single-bit error-detecting code appends a parity bit to a

source word to produce a code word.An even parity bit is

chosen to make the total number of ones in the code word even

(this includes the parity bit itself). For example the source words

0110111 and 1100110 would be coded as 01101111 and

1100110, respectively. In these cases the parity bit has been

located in the LSB position. Indicate which of the following

hexadecimal numbers have parity errors.

$00, $07, $FF, $A5, $5A, $71, $FE.

4.21 A checksum digit is the least-significant digit formed

when a series of numbers are added together. For example, the

decimal checksum of the sequence 98731 is 8 because

9 � 8 � 7 � 3 � 1 � 28 and 8 is the least-significant digit.

Similarly, the checksum of the hexadecimal sequence A3, 02, 49,

FF is ED because A3 � 02 � 49 � FF � 1ED.

The purpose of a checksum is to detect errors in a sequence

of digits after they have been transmitted or stored in memory

or on tape.The following hexadecimal sequences are terminated

by a checksum.Which, if any, are in error?

(a) 0001020304050F

(b) 11223344556675

(c) FFA32415751464

The position of the checksum in the above three strings is the

right-most byte. Does it matter where the checksum is located?

What happens if there is an error in the checksum itself?

4.22 What is the meaning of Hamming distance?

4.23 The H7,4 Hamming code is written I4 I3 I2 C3 I1 C2 C1, where

II � source bit i, and CI � check bit i. The three Hamming check

bits are calculated from the parity equations.

C1 � I1 � I2 � I4

C2 � I1 � I3 � I4

C3 � I2 � I3 � I4

4.31 Using 8-bit arithmetic throughout, express the following

decimal numbers in two’s complement binary form:

(a) �4 (d) �25 (g) �127

(b) �5 (e) �42 (h) �111

(c) 0 (f) �128

4.32 Perform the following decimal subtractions in 8-bit two’s

complement arithmetic. Note that some of the answers will

result in arithmetic overflow. Indicate where overflow has

occurred.

(a) 20 (b) 127 (c) 127 (d) 5

�5 �126 �128 �20

(e) 69 (f) �20 (g) �127 (h) �42

�42 �111 �2 �69

�120

4.33 Using two’s complement binary arithmetic with a 12-bit

word, write down the range of numbers capable of being

represented (both in decimal and binary formats) by giving the

smallest and largest numbers.What happens when the smallest

and largest numbers are

(a) incremented? (b) decremented?

4.34 Distinguish between overflow and carry when these terms

are applied to two’s complement arithmetic on n-bit words.

4.35 Write down an algebraic expression giving the value of the

n-bit integer N � an�1, an�2, . . . ,a1, a0 for the case where N

represents a two’s complement number.

Hence prove that (in two’s complement notation) the

representation of a signed binary number in n� 1 bits may be

derived from its representation in n bits by repeating the

leftmost bit. For example, if n � �12 � 10100 in 5 bits,

n � �12 � 110100 in 6 bits.

4.36 Perform the additions below on 4-bit binary numbers.

(a) 0011 (b) 1111 (c) 0110 (d) 1100

�1100 �0001 �0111 �1010

In each case, regard the numbers as being (i) unsigned integer,

(ii) two’s complement integer, and (iii) sign and magnitude

integer. Calculate the answer and comment on it where

necessary.

4.37 Add together the following pairs of numbers. Each number

is represented in a 6-bit sign-and-magnitude format.Your

answer should also be in sign-and-magnitude format. Convert

each pair of numbers (and result) into decimal form in order to

check your answer.

(a) 000111 (b) 100111

010101 010101

(c) 010101 (d) 111111

000111 000001

(e) 110111 (f) 011111

110111 000110

4.38 Write down the largest base 5 positive integer in n digits

and the largest base 7 number in m digits. It is necessary to

represent n-digit base 5 numbers in base 7.What is the

minimum number m of digits needed to represent all possible

n-digit base 5 numbers? Hint—the largest m-digit base-7

number should be greater than, or equal to, the largest n-digit

base 5 number.

4.39 A 4-bit binary adder adds together two 4-bit numbers, A

and B, to produce a 4-bit sum, S, and a single-bit carry-out C.

What is the range of outputs (i.e. largest and smallest values)

that the adder is capable of producing? Give your answer in

both binary and decimal forms.

An adder is designed to add together two binary coded

decimal (BCD) digits to produce a single digit sum and a 1-bit

carry-out.What is the range of valid outputs that this circuit

may produce?

The designer of the BCD adder decides to use a pure binary

adder to add together two BCD digits as if they were pure 4-bit

binary numbers. Under what circumstances does the binary

adder give the correct BCD result? Under what circumstances is

the result incorrect (i.e. the 4-bit binary result differs from the

required BCD result)?

What algorithm must the designer apply to the 4-bit output

of the binary adder to convert it to a BCD adder?

4.40 Design a 4-bit parallel adder to add together two 4-bit

natural binary-encoded integers.Assume that the propagation

delay of a signal through a gate is t ns. For your adder, calculate

the time taken to add

(a) 0000 to 0001

(b) 0001 to 0001

(c) 0001 to 1111

4.41 Design a full subtractor circuit that will subtract bit X

together with a borrow-in bit Bi from bit Y to produce a

difference bit D � Y � X � Bi, and a borrow-out Bo.

4.42 In the negabinary system an i-bit binary integer, N, is

expressed using positional notation as

This is the same as conventional natural 8421 binary

weighted numbers, except that alternate positions have the

additional weighting �1 and �1.

For example, 1101 � (�1 � 1 � 8) � (�1 � 1 � 4) �
(�1 � 0 � 2) � (�1 � 1 � 1) � �8 � 4 � 1 � �3

The following 4-bit numbers are represented in

negabinary form. Convert them into their decimal

equivalents.

(a) 0000

(b) 0101

(c) 1010

(d) 1111

ai�1 � �1i�1 � 2i�1

N � a0 � �10 � 20 � a1 � �11 � 21 � . . . �

4.10 Multiplication and division 201

4.43 Perform the following additions on 4-bit negabinary

numbers. The result is a 6-bit negabinary value.You must

construct your own algorithm.

(a) 0000 (b) 1010 (c) 1101 (d) 1111

�0001 �0101 1011 1111

4.44 Convert the following signed decimal numbers into their

6-bit negabinary counterparts.

(a) 4 (b) �7 (c) �7 (d) 10

4.45 What is the range of values that can be expressed as an

n-bit negabinary value? That is, what is the largest positive

decimal number and what is the largest negative decimal

number that can be converted into an n-bit negabinary form?

4.46 A computer has a 24-bit word length, which, for the

purpose of floating point operations, is divided into an 8-bit

biased exponent and a 16-bit two’s complement mantissa.

Write down the range of numbers capable of being represented

in this format and their precision.

4.47 Explain the meaning of the following terms (in the context

of floating point arithmetic):

(a) biased exponent

(b) fractional part

(c) packed

(d) unpacked

(e) range

(f) precision

(g) normalization

(h) exponent overflow/underflow

4.48 An IEEE standard 32-bit floating point number has the

format N � �1S � 1.F � 2E�127, where S is the sign bit, F is the

fractional mantissa, and E the biased exponent.

(a) (i) Convert the decimal number 1000.708 into the IEEE

format for floating point numbers.

(ii) Convert the decimal number 100.125 into the IEEE

format for floating point numbers.

(b) Describe the steps that take place when two IEEE floating

point numbers are added together.You should start with the

two packed floating point numbers and end with the packed

sum.

(c) Perform the subtraction of 1000.708 � 100.25 using the

two IEEE-format binary floating point numbers you

obtained for 1000.708 and 100.25 in part (a) of this

question.You should begin the calculation with the packed

floating-point representations of these numbers and end

with the packed result.

4.49 Convert the 32-bit IEEE format number C33BD00016 into

its decimal representation.

4.50 Explain why floating point numbers have normalized

mantissas.

4.51 What is the difference between a truncation error and a

rounding error?

4.52 The following numbers are to be represented by three

significant digits in the base stated. In each case perform the

operation by both truncation and rounding and state the

relative error created by the operation.

(a) 0.11001002 (b) 0.1A3416

(c) b. 0.00110112 (d) d. 0.12AA16

4.53 We can perform division by multiplication to calculate

Q � N/D.The iterative expression for Q is given by

where Z � 1 � D.

If N � 5010 and D � 0.7410, calculate the value of Q. Evaluate

Q using 1, 2, 3, and 4 terms in the expression.

4.54 For each of the following calculations (using 4-bit

arithmetic) calculate the value of the Z (zero), C (carry), N

(negative), and V (overflow) flag bits at the end of the operation.

(a) 1010 � 1010

(b) 1111 � 0001

(c) 1111 � 0001

(d) 0110 � 0110

(e) 1010 � 1110

(f) 1110 � 1010

Q � N(1 � Z)(1 � Z2)(1 � Z4)…(1 � Z2n�1

)

202 Chapter 4 Computer arithmetic

INTRODUCTION

There are two ways of introducing the processor. One is to explain how a computer works at the

level of its internal information flow by describing the way in which information is transmitted

between registers and internal units and showing how an instruction is decoded and interpreted

(i.e. executed). The other approach is to introduce the native language, or machine code, of a

computer and show what computer instructions can do. In practice no-one writes programs in

machine code; instead they use assembly language which is a human-readable representation of

machine code (see the box ‘The assembler’).

Both approaches to the description of a computer are valid. Beginning with how a computer

works by examining its internal operation is intuitive. Once you understand how information flows

from place to place through adders and subtractors, you can see how instructions

are constructed and then you can examine how sequences of instructions implement

programs.

Unfortunately, beginning with the hardware and looking at very primitive operations hides the

big picture.You don’t immediately see where you are going or understand why we need the

primitive operations in the first place.This bottom-up approach is rather like studying cellular

biochemistry as the first step in a course on sociology. Knowing how a brain cell works doesn’t tell

you anything about human personality.

5The instruction set architecture

CHAPTER MAP

2 Logic elements and
Boolean algebra

The basic building blocks, gates,

from which we construct the

computer.

3 Sequential logic

The building blocks, flip-flops,

used to construct devices that

store data and counters.

4 Computer arithmetic

The representation of numbers in

a computer and the arithmetic

used by digital computers.

5 The instruction set
architecture

In this chapter we introduce the

computer’s instruction set

architecture (ISA), which

describes the low-level

programmer’s view of the

computer.The ISA defines the

type of operations a computer

carries out.We are interested in

three aspects of the ISA: the

nature of the instructions, the

resources used by the

instructions (registers and

memory), and the ways in which

the instructions access data

(addressing modes).The 68K

microprocessor is used to

illustrate the operation of a real

device.

6 Assembly language
programming

Having introduced the basic

operations that a computer can

carry, the next step is to show

how they are used to construct

entire programs.We look at how

the 68K processor uses machine-

level instructions to implement

some simple algorithms.

7 Structure of the CPU

Having described what a

computer does, the next step is

to show how it operates. Here we

examine the internal organization

of a computer and demonstrate

how it reads instructions from

memory, decodes them, and

executes them.

8 Other processors

We have used the 68K to

introduce the CPU and assembly

language programming. Here we

provide a brief overview of two

other processors: a simple 8-bit

microcontroller and a 32-bit RISC

processor.

Beginning a course with the computer’s instruction set gives you a better idea of what a

computer does in terms of its capabilities. Once you know what a computer does, you can look

inside it and explain how it implements its machine code operations.

In the previous edition of Principles of Computer Hardware I began with the internal

organization of a computer and explained the steps involved in the execution of an instruction.

Later we looked at the nature of instructions. In this edition I’ve reversed the order and we begin

with the instruction set and leave the internal organization of the computer until later. This

sequence enables students to take lab classes early in the semester and build up practical

experience by writing assembly language programs.

We begin this chapter by introducing the notion of computer architecture, the instruction

set, and the structure of a computer.We describe a real processor, the Motorola 68K.

This processor is a contemporary of the Intel 8086 but has a more sophisticated

architecture and its instruction set is easier for students to understand.This processor

has evolved like the corresponding Intel family and its variants are now called the

ColdFire family.

the 1960s and IBM’s 360 series mainframes. Each mainframe
had the same architecture, but the performance varied from
model to model. By adopting a common architecture for all
members of the 360 series, users were able to upgrade a
model and still use the same software.

An object can be viewed in more than one way. Consider
the airline pilot. Passengers see the pilot as an agent responsi-
ble for transferring them from one airport to another. The

204 Chapter 5 The instruction set architecture

5.1 What is an instruction set
architecture?

An instruction set architecture (ISA) is an abstract model of a
computer that describes what it does, rather than how it does
it. You could say that a computer’s architecture is its func-
tional definition. The notion of an architecture dates back to

THE ASSEMBLER

An assembly language program starts off as a text file written by a programmer (or created by

a compiler).An assembler takes the text file together with any library functions required by

the program and generates the binary code that the target executes.

The addresses of code and data generated by the assembler are not absolute (i.e. actual), but

refer to the locations with respect to the start of the program.Another program called a linker

takes one or more code modules generated by the assembler, puts them together, and creates

the actual addresses of data in memory.The output of the linker is the binary that can be exe-

cuted by the actual computer.This mechanism allows you to write a program in small chunks

and to put them together without having to worry about addresses in the different chunks.

pilot’s crew sees them as a colleague with whom they relate at
the personal level. The pilot’s doctor sees a complex biologi-
cal mechanism. It’s exactly the same with computers—you
can view them in different ways.

Suppose you run a spreadsheet on a computer. As far as
you’re concerned, the machine is a spreadsheet machine that
behaves exactly as if it were an electronic spreadsheet doing
nothing other than spreadsheet calculations. You could con-
struct an electronic device to directly handle spreadsheets, but
no one does. Instead they construct a computer and run a
program to simulate a spreadsheet.

Figure 5.1 illustrates how a computer can be viewed in differ-
ent ways. The outer level is the applications layer that the end
user sees. This level provides a virtual spreadsheet or any
other user-application because, to all intents and purposes,
the machine looks like a spreadsheet machine that does noth-
ing else other than implement spreadsheets.

A spreadsheet, a word processor, or a game is invariably
implemented by expressing its behavior in a high-level lan-
guage such as C or Java. You can view a computer as a
machine that directly executes the instructions of a high-level
language. In Fig. 5.1 the layer below the application level is
the high-level language layer.

It’s difficult to construct a computer that executes a high-
level language like C. Computers execute machine code, a
primitive language consisting of simple operations such as
addition and subtraction, Boolean operations, and data
movement. The statements and constructs of a high-level
language are translated into sequences of machine code
instructions by a compiler. The machine code layer in Fig. 5.1
is responsible for executing machine code; it’s this layer that
defines the computer’s architecture.

Figure 5.1 shows two layers between the machine level and
high-level language levels. The assembly language level sits on

5.1 What is an instruction set architecture? 205

ARCHITECTURE AND ORGANIZATION

Architecture describes the functionality of a system, whereas

organization describes how it achieves that functionality.

Consider the automobile as a good example of the distinction

between architecture and organization.The architecture of an

automobile covers its steering, acceleration, and braking. An

automobile’s gearbox is part of its organization rather than its

architecture.Why? Because the gearbox is a device that

facilitates the operation of an automobile—it is there only

because we can’t create engines that drive wheels directly.

Digital
logic

Machine level

Assembly
Language

Microprogram

Operating
system

High-level
language

Application

Hardware/software
interface

Word processor
Database
Game

C
Java
LISP

Windows
Unix

Figure 5.1 Machine levels and virtual architectures.

top of the machine level and represents the human-readable
form of the machine code; for example, the binary
string 00000010100000010001000000000011 might be the
machine code instruction represented in assembly language
as MOVE D2,D1 (move the number in register D2 to the
register D1).1

To say that assembly language is just a human-readable
version of machine code is a little simplistic. An assembly lan-
guage contains facilities that make it easier for a human to
write a program. Moreover, an assembly language allows you
to determine where data and code is loaded into memory. We
will not use sophisticated assembly language mechanisms
and it is reasonably true to say that assembly language
instructions are human-readable versions of the strings of 1s
and 0s that represent the machine-code binary instructions.
The conventions we will adopt in the structure and layout of
assembly language programs are, normally, those of the
Motorola assembler.

In Fig. 5.1 there is an additional layer between the assembly
language layer and the high-level language layer called the operat-
ing system level. Strictly speaking, this layer isn’t like the other lay-
ers. The operating system runs on top of the machine code and
assembly language layers and provides facilities required by
higher-level layers (e.g. memory management and the control of
peripherals such as the display and disk drives).

Below the machine-level layer is the microprogram layer. A
heavy line separates the machine level and microprogram
layers because you can access all the layers above this line. The
two innermost layers (microprogram and digital logic) are
not accessible to the programmer.

The microprogram layer is concerned with the primitive
operations that take place inside the computer during the
execution of a machine code operation. For example, a MOVE
D2,D1 machine-level instruction might be interpreted by
executing a sequence of micro-operations inside the com-
puter. These micro-operations transfer information between
functional units such as registers and buses. The sequences of
micro-operations that interpret each machine level instruc-
tion are stored in firmware within the computer. Firmware is
the term for read-only memory containing programs or
other data that controls the processor’s operation. Firmware
cannot normally be modified, although modern systems can
update their firmware from time to time.

Some modern computers don’t have a microprogram layer.
If an instruction set is very regular and all instructions involve
a simple, single-step operation, there is no need for a micro-
program to translate instructions into primitive operations.
Where there’s a simple relationship between the binary code
of an instruction and what it does, the microprogram layer
directly translates a machine-level instruction into the control
signals required to implement the instruction.

The innermost level of the computer is the digital logic level
which consists of the gates, flip-flops, and buses. At this level

the individual logic elements are hardwired to each other by
fixed connections. You can’t program or modify the behavior
of components at this level. This statement isn’t strictly true.
Programmable logic elements whose functionality can be
modified do exist; for example, it is possible to reconfigure
internal connections using the same technology found in
flash memory. In the future we may incorporate such comp-
onents in processors to enable manufacturers to update a
processor’s instruction set or to fix hardware bugs.

You could, in fact, go even deeper into the hierarchy of
Fig. 5.1 because there is a physical layer below the digital logic
layer. This physical layer is concerned with the individual
transistors and components of the computer that are used to
fabricate gates, registers, and buses. Below the physical layer
exists the individual atoms of the transistors themselves.
We’re not interested in the physical layer and the atomic
layers, because that’s the province of the semiconductor
engineer and physicist. In this chapter we are concerned with
the machine-level and microprogram layers.

5.2 Introduction to the CPU

Before we look at what a CPU does or how it works, it is
important to understand the relationship between the CPU,
the memory, and the program. Let’s take a simple program to
calculate the area of a circle and see how the computer deals
with it. In what follows the computer is a hypothetical
machine devoid of all the complications associated with real-
ity. Throughout this section we assume that we are operating
at the machine level.

The area of a circle, A, can be calculated from the
formula A � �r2. When people evaluate the area of a circle,
they automatically perform many of the calculations at a sub-
conscious level. However, when they come to write programs,
they must tell the computer exactly what it must do, step by
step. To illustrate this point, take a look at the expression �r2.
We write r2, but we mean a number, which we have given the
symbol r, multiplied by itself. We never confuse the symbol r
with the value that we give to r when we evaluate the expres-
sion. This may seem an obvious point, but students some-
times have great difficulty when they encounter the concepts
of an address and data in assembly language. Although
people never confuse the symbol for the radius (i.e. r) and its
value, say 4 cm, you must remember that an address (i.e. the
place where the value of r is stored) and data (i.e. the value
of r) are both binary quantities inside the computer.

206 Chapter 5 The instruction set architecture

1 Throughout this chapter we adopt the convention used by the 68K
microprocessor that the rightmost register in an instruction is the desti-
nation operand (i.e. where the result goes). To help you remember this,
we will use a bold face to indicate the destination operand.

Figure 5.2 illustrates the relationship between the
program, memory, and processor. The memory has been
divided into five parts: program, constants, variables, input,
and output. The program is composed of the sequence of
operations to be carried out, or executed. The constants
(in this case there is only one—�) are numbers used by
the program but which do not change during its execution.
The variables represent numbers created and modified by the
program. When the program squares r, it reads the value of
the number in the memory location it has called r, squares it,
and puts the result back in the same location. Thus the
original value of r is lost. If the programmer wishes to retain
the original value of r, rather than by overwriting it with r2,
memory locations must be reserved for both r and r2.

Although the variables (i.e. the values held in memory
locations) are often numerical quantities, there is no reason
why this must always be so. For example, the variables used by
a word processor are the letters and symbols of the text being
manipulated. Indeed, it is perfectly possible for the variable to
be another program. That is, one program can operate on, or
modify, another program.

A program must be able to communicate with the outside
world, otherwise all its efforts are to no effect.We have labeled
two memory locations in Fig. 5.2 input and output. Reading
from the input location causes information to be taken from
an input device (say a keyboard) and writing to the output
location causes information to be moved from the computer
to an output device (say a display). Treating input and output
as memory locations is not entirely fictional—we’ll later
discover that many computers really do perform all
input/output transactions via the memory by means of a
mechanism called memory-mapped I/O.

The processor may either read data from a memory loca-
tion or write data to a memory location. Of the five regions of
memory described above, three are read-only, one is write-
only, and one can be read from or written to.

5.2.1 The memory and registers

We now introduce two important concepts. The first is the
notion of a memory that holds programs and data. The
second concept is the algebraic notation we use to define
operations taking place within a computer.

Figure 5.3 illustrates the so-called random access memory
system (i.e. RAM). This memory appears as a block of
sequential locations, each of which contains a data element.
Each location has a unique address that defines the location
of the data; for example, in Fig. 5.3 we can say that location
number 5 contains the value 7.

The memory in Fig. 5.3 is interfaced to the rest of the
computer via three buses (i.e. information paths). The
address bus is a one-way path from the computer to the
memory, which specifies the location of the memory element
being accessed. The data bus is a bidirectional (i.e. two-way)
data path along which data flows into memory when it is
stored and out of memory when it is retrieved. The control
bus includes signals that control the operation of the
memory (e.g. read data or write data commands).

Registers

A register is a storage device that holds a word exactly like a
memory location. In principle, there’s no difference between
a location in memory and a register because they both do
the same thing. The real difference is one of accessibility.
Registers are located within the CPU and can be accessed
faster than memory locations. Moreover, there are few regis-
ters in a computer and millions of address locations, which
means that you need far fewer bits to specify a register than a
memory location. For example, the 68K has eight data regis-
ters and an instruction requires 3 bits to specify which one of
the eight registers is to be used by an instruction. If you spec-
ify a memory location, you need 32 bits to select one out of
232 possible locations.

5.2 Introduction to the CPU 207

External
system

Memory

Program

get r
square r
multiply r2 by π
output the result

Constants

π

INPUT

OUTPUT

Variables

A
r

Processor
(CPU)

read

read

read

read

write

write Figure 5.2 The relationship

between the memory,

processor, and program.

Registers are not a necessary component of computers—
we could use memory to store all variables and temporary
data. Registers exist because they are required to construct
practical computers. We could not build cheap, fast, and
effective computers without registers.

Registers are used as temporary storage places to hold fre-
quently used data. Much of a computer’s activity is of the
form copy data from a memory location to a register, operate on
the data in the register, send the data back to memory. This
sequence involves a lot of moving data from one place to
another place.

The size of a register (its width in bits) is normally the same
size as memory locations and the size of the arithmetic and
logical operations in the CPU. If you have a computer with
32-bit words, they are held in 32-bit memory locations and
32-bit registers and are processed by 32-bit adders, and so on.

Some registers are said to be visible and some are invisible
to the programmer. In this chapter we are interested only in
programmer-visible registers. A register is visible if it can be
directly accessed by the programmer though a computer
operation. A register is invisible if it is required for internal
operations but cannot be directly accessed by the program-
mer. The 68K’s visible register set consists of

● eight 32-bit data registers (D0 to D7)
● eight 32-bit address registers (pointers) (A0 to A7)
● a 16-bit status register (SR)
● a 32-bit program counter (PC).

The address and data registers are used by the programmer
to hold temporary data. The status register defines the
processor’s current operating mode and keeps track of things
like the carry-out when you do addition. The program
counter contains the location of the next instruction to be
executed and, therefore, keeps track of where the computer is
up to in a program.

5.2.2 Register transfer language

Throughout this book we adopt shorthand called register
transfer language (RTL) to help us to explain how the CPU
operates. RTL is an algebraic notation that describes how
information is accessed from memories and registers and
how it is operated on. You should appreciate that RTL is just a
notation and not a programming language.

RTL uses variables like algebra or computer languages; for
example, one or more letters (or letters followed by numbers)
to denote registers or storage locations.

It’s very important to distinguish between a memory loca-
tion and its contents. RTL uses square brackets to indicate the
contents of a memory location; for example, the expression

is interpreted as the contents of memory location 6 contains the
value 3. If we were using symbolic names, we might write

When dealing with registers, we use their name rather than
an address; for example,

A left or backward arrow (←) indicates the transfer of data.
The left-hand side of an expression denotes the destination of
the data defined by the source of the data defined on the right-
hand side of the expression. For example, the expression

indicates that the contents of the program counter (PC) are
transferred (i.e. copied) into the memory address register
(MAR). The program counter is the register that holds the
location (i.e. address) of the next instruction to be executed.
The MAR is a register that holds the address of the next item
to be read from memory or written to memory. Note that the
contents of the PC are not modified by this operation.

208 Chapter 5 The instruction set architecture

Figure 5.3 The random

access memory system.

Processor

Address

Address port

Address bus

Data port

Data bus

Control bus

Data

Control
signals

Memory system

Address
(location 4)

Memory cell
containing the
value 3

7

3

15

20

3

7

3

8

8

42

12

19

0

1

2

3

4

5

6

7

8

9

10

11The control bus
determines the
direction of information
transfer

The operation

means copy the contents of memory location 5 to location 3.
In previous editions of this book we used the notation
[M(5)] to indicate the contents of memory location 5. We
have simplified the notation because the meaning of the
notation [5] is clear and it’s easier to read than [M(5)].

If we were writing a program, memory locations 3 and 5
would have been given symbolic names, say, x and y, respec-
tively. A symbolic name is the name given to a number by the
programmer—people like to deal with meaningful names
rather than, say, the actual numeric addresses of data in
memory. The operation [3]←[5] tells us what’s happening
at the micro level—at the high level this operation might be
written in the rather more familiar form

Consider the RTL expression

which indicates that the number in the PC is increased by 4;
that is, the contents of the program counter are read, 4 is
added, and the result is copied into the PC.

Suppose the computer executes an operation that stores
the contents of the PC in location 2000 in the memory. We
can represent this action in RTL as

Occasionally, we wish to refer to the individual bits of a
register or memory location. We will do this by means of the
subscript notation (p:q) to mean bits p to q inclusive; for
example if we wish to indicate that bits 0 to 7 of a 32-bit reg-
ister are set to zero, we write2

Numbers are assumed to be decimal, unless indicated oth-
erwise. Computer languages adopt conventions such as
0x12AC or $12AC to indicate hexadecimal values. In RTL we
will use a subscript; that is, 12AC16.

As a final example of RTL notation, consider the following
RTL expressions.

The first example states that memory location 20 contains
the value 6. The second example states that the number 6 is
copied or loaded into memory location 20. The third example
indicates that the contents of memory location 6 are copied
into memory location 20. The last example reads the contents
of location 6, adds 3 to it, and stores the result in location 20.
The RTL symbol ‘←’ is equivalent to the assignment symbol
in high-level languages. Remember that RTL is not a

computer language; it is a notation used to define computer
operations.

Later in this chapter we use the 68K’s processor’s assembly
language. The typographic conventions in an assembly
language differ from those of RTL. We use RTL to define the
meaning of assembly language instructions. Consider the
following examples.

5.2.3 Structure of the CPU

Figure 5.4 provides a more detailed view of the central
processing unit and memory system. The same memory
system stores both the program and the data acted on or
created by the program. It isn’t necessary to store both the
program and data in the same memory. However, for largely
economic reasons, most computers do store programs and
data in a single memory system. Such computers are called
von Neumann machines in honor of John von Neumann.

A computer is a black box that moves information from
one point to another and processes the information as it goes
along. By information we mean the data and the instructions
held inside the computer. Figure 5.4 shows two information-
carrying paths between the CPU and its memory. The lower
path (dark blue) with the single arrowhead from the memory
to the CPU indicates the route taken by the computer’s pro-
gram. The CPU reads the sequence of commands that make
up a program one by one from its memory.

The upper path (light blue in Fig. 5.4) with arrows at
both its ends transfers data between the CPU and memory. The
program being executed controls the flow of information along
the data path. This data path is bidirectional, because data can

5.2 Introduction to the CPU 209

Processor Instruction RTL definition
family mnemonic

Figure 5.4 The general-purpose digital computer.

2 In the previous editions of this book, we used the notation
[R3(0:7)] to indicate bits 0 to 7 of R3. However, by using the
subscript [R3(0:7)]we make it easier to indicate a register’s subsection.

Central
processing
unit
(CPU)

Input

Program
Output

Memory

Data

flow in two directions.During a write cycle data generated by the
program flows from the CPU to the memory where it is stored
for later use. During a read cycle the CPU requests the retrieval
of a data item that is transferred from the memory to the CPU.

Suppose the instruction ADD X,Y,Z corresponding to the
operation X � Y � Z is stored in memory.3 The CPU must
first fetch this instruction from memory and bring it to the
CPU. Once the CPU has analyzed or decoded the instruction,
the CPU has to get the values of X and Y from memory. The
actual values of X and Y are read from the memory and sent to
the CPU. The CPU adds these values and sends the result, Z,
back to memory for storage. Remember that X,Y, and Z are
symbolic names for the locations of data in memory.

Few computers are constructed with two independent
information paths between the CPU and its memory as
Fig. 5.4 suggests. Most computers have only one path along
which information flows between the CPU and its memory—
data and instructions have to take turns flowing along this
path. Two paths are shown in Fig. 5.4 simply to emphasize
that there are two types of information stored in the memory
(i.e. the instructions that make up a program and the data
used by the program). Indeed, forcing data and instructions
to share the same path sometimes creates congestion on
the data bus between the CPU and memory that slows the
computer down. This effect is called the von Neumann
bottleneck.

5.3 The 68K family

Anyone introducing computer architecture and the ISA has to
make an important choice: should the target architecture used
to illustrate the course be a real machine or a hypothetical
teaching machine? A hypothetical machine reduces the stu-
dent’s learning curve because you can simplify it. A real

machine is harder to learn, but it does illustrate the real-world
constraints faced by its designer.

There’s no perfect solution to this dilemma. We’ve chosen
a real machine, the 68K, to introduce an assembly language
and machine-level instructions. The 68K is a classic CISC
processor and is easer to understand than the Pentium family
because the 68K has a more regular instruction set. Another
reason for using the 68K processor to illustrate the ISA is its
interesting architectural features.

The architecture of a processor is defined by its register set,
its instruction set, and its addressing modes (the way in which
the location of data in memory is specified). Figure 5.5
describes the 68K’s register set. There are eight data registers
used to hold temporary variables, eight address registers used
to hold pointers to data, a status register, and a program
counter, which determines the next instruction to be executed.

Data registers are 32 bits wide and but can be treated as if
they were 8 or 16 bits wide. Address registers always hold 32-
bit values and are always treated as 32-bit registers that hold
two’s complement values. However, you can perform an
operation on the low-order 16 bits of an address register and
the result will be sign-extended to 32 bits automatically.

5.3.1 The instruction

We now look at the instructions executed by the 68K proces-
sor. There has been remarkably little progress in instruction
set design over the last few decades and computers do today
almost exactly what they did in the early days.4 Much of the

210 Chapter 5 The instruction set architecture

RISC AND CISC PROCESSORS

Processors fall into two classes: CISC (complex instruction set

computer) and RISC (reduced instruction set computer).

Intel’s Pentium and Motorola’s 68K families are CISC

processors with large, irregular instruction sets. CSIC

processors can perform operations directly on the contents of

memory locations, whereas RISC processors perform

operations only on the contents of registers.

The acronym RISC is misleading. Before the advent of RISC

technology, processors had complex and elaborate instruction

sets with instruction lengths varying from 16 bits to 80 bits.

These processors are retrospectively called CISCs. RISC instruc-

tions are the same length with few variations in their formats.

Until the mid-1970s the notation of a RISC processor didn’t

exist. IBM investigated ways of accelerating computer perfor-

mance in the 1970s and the computers incorporating IBM’s

acceleration techniques later become known as RISCs.The

term RISC was coined in the early 1980s by John Hennessey

at Stanford University.

RISC processors have lots of on-chip registers and do not

allow you to perform operations directly on data in memory.

You have to load data into a register, process it, and then store

it in memory. For this reason, RISC processors are also called

load/store processors.

The goal of RISC processor design was to execute an aver-

age of one instruction per clock cycle by overlapping the exe-

cution of consecutive instructions (i.e. starting executing the

next instruction before the current instruction has finished). In

order to do this, it is necessary that there is a simple relation-

ship between the bit pattern of an instruction and what the

instruction does.

3 Strictly speaking, we should write this operation in RTL as [X] ←
[Y]� [Z] to demonstrate that X,Y, and Z refer to memory locations.

4 An exception to this is multimedia technology. Processors such as
Intel’s Pentium family introduced a special instruction to handle the type
of data used in audio and video processing (e.g. the MMX instruction set).

progress over the last six decades has been in computer tech-
nology, organization, and implementation rather than in
computer architecture.

Computer instructions are executed sequentially, one by
one in turn, unless a special instruction deliberately changes
the flow of control or unless an event called an exception
(interrupt) takes place.

The structure of instructions varies from machine to
machine. The format of an instruction running on a Pentium is
different to the format of an instruction running on a 68K
(even though both instructions might do the same thing).
Instructions are classified by type (what they do) and by the
number of operands they take.The three basic instruction types
are data movement which copies data from one location to
another, data processing, which operates on data, and flow con-
trol, which modifies the order in which instructions are exe-
cuted. Instruction formats can take zero, one, two, or three
operands.Consider the following examples of instructions with
zero to three operands. In these examples operands P, Q, and

R may be memory locations or registers. The two-address
instruction is in blue because that is the format used by the 68K.

Let’s begin with three operands because it’s intuitively easy
to understand. A three-address computer instruction can be
written

where operation defines the nature of the instruction,
source1 is the location of the first operand, source2 is the
location of the second operand, and destination is the
location of the result. The instruction ADD P,Q,R adds P and
Q to get R (remember that we really means that the instruc-
tion adds the contents of location P to the contents of loca-
tion Q and puts the sum in location R). Having reminded you
that when we mention a variable we mean the contents of the
memory location or register specified by that variable, we will
not emphasize it again.

Modern microprocessors don’t implement three-address
instructions exactly like this. It’s not the fault of the instruc-
tion designer, but it’s a limitation imposed by the practicali-
ties of computer technology. Suppose that a computer has a
32-bit address that allows a total of 232 bytes of memory to be
accessed. The three address fields, P, Q, and R would each be
32 bits, requiring 3 � 32 � 96 bits to specify operands.
Assuming a 16-bit operation code (allowing up to 216 � 65 536
instructions), the total instruction size would be

5.3 The 68K family 211

32 bits

16 bits

8 bits

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

A7 SP

SR

PC

CCR

The eight data registers
hold scratchpad
information and are used
by data processing
instructions. You can treat
data registers as 8-bit,
16-bit, or 32-bit entities.

The eight address registers
hold 32-bit address or pointers.
Address registers take part
only in 32-bit operations and
are used only in accessing
data.

Note that address register
A7 is the system stack
pointer because it points to
the top of the stack.

The program counter
contains the address of
the next instruction to
be executed.

The status register contains information about
the state (operating mode) of the computer. Figure 5.5 The 68K register set.

Operands Instruction Effect
Three ADD P,Q,R Add P to Q and put the result in R

Two ADD P,Q Add P to Q and put the result in Q

One ADD P Add P to an accumulator

Zero ADD Add the top two items on the stack

96 � 16 � 112 bits or 14 bytes. Figure 5.6(a) illustrates a
hypothetical three-address instruction.

Computer technology developed when memory was very
expensive indeed. Implementing a 14-byte instruction was
not cost effective in the 1970s. Even if memory had been
cheap, it would have been too expensive to implement 112-
bit-wide data buses to move instructions from point to point
in the computer. Finally, main memory is intrinsically slower
than on-chip registers.

The modern RISC processor allows you to specify three
addresses in an instruction by providing three 5-bit operand
address fields. This restriction lets you select from one of only
32 different operands that are located in registers within the
CPU itself.5 By using on-chip registers to hold operands, the
time taken to access data is minimized because no other stor-
age mechanism can be accessed as rapidly as a register. An
instruction with three 32-bit operands requires 3 � 5 bits to
specify the operands, which allows a 32-bit instruction to use

the remaining 32 � 15 � 17 bits to specify the instruction, as
Fig. 5.6(b) demonstrates. Figure 5.7 illustrates the operation
of an instruction with three register addresses.

We’ll use the ADD instruction to add together four values
in registers R2, R3, R4, and R5. In the following fragment of
code, the semicolon indicates the start of a comment field,
which is not part of the executable code. This code is typical
of RISC processors like the ARM.

212 Chapter 5 The instruction set architecture

Op-code Destination
address

Source 1
address

Source 2
address

16 bits 32 bits 32 bits 32 bits

112 bits

(a) Format of a hypothetical instruction with three address fields

Op-code
Destination
register

Source 1
register

Source 2
registerControl bits

5 bits 5 bits 5 bits17 bits

32 bits

(b) Format of a hypothetical instruction with a register-to-register architecture

The op-code and control
bits together define the
instruction. The op-code
selects the class of
instruction and the
control bits select
options that specify how
the instruction operates.

The instruction ADD R1,R2,R3 in

memory is read by the computer and

interpreted.The computer reads

registers R2 and R3 to obtain the two

source operands, sends these operands

to the adder in the ALU, and then

writes the sum from the adder to

register R1.

Registers

Adder

R0

R1

R2

R3

R4

Memory

ADD R1,R2,R3

Figure 5.7 Implementing a three-address instruction.

Figure 5.6 Possible three-address instruction formats.

5 I will use RISC very loosely to indicate the class of computers that
have a register-to-register architecture such as the ARM, MIPS,
PowerPC, and SPARC. The Motorola 68K and the Intel Pentium are not
members of this group.

ADD R1,R2,R3 ;R1 = R2 � R3
ADD R1,R1,R4 ;R1 � R1 � R4
ADD R1,R1,R5 ;R1 � R1 � R5

� R2 � R3 � R4 � R5

Two-address machines

A CISC machine like the 68K has a two-address instruction
format. Clearly, you can’t execute P � Q � R with two
operands.You can execute Q ← P � Q. One operand appears
twice, first as a source and then as a destination. The opera-
tion ADD P,Q performs the operation [Q] ← [P] � [Q]. The
price of a two-operand instruction format is the destruction,
by overwriting, of one of the source operands.

Most computer instructions can’t directly access two
memory locations. Typically, the operands are either two reg-
isters or one register and a memory location; for example, the
68K ADD instruction can be written

Instruction RTL definition Mode

ADD D0,D1 [D1]←[D1]+[D0] Register to register

ADD P,D2 [D2]←[D2]+[P] Memory to register

ADD D7,P [P] ←[P] +[D7] Register to memory

The 68K has seven general-purpose registers, D0 to D7; there
are no restrictions on the way in which you use these
registers; that is, if you can use Di you can also use Dj for any
i or j from 0 to 7.

One-address machines

A one-address machine specifies one operand in the instruction.
The second operand is a fixed register called an accumulator,
which doesn’t have to be specified. For example, the operation
one-address instruction ADD P means [A] ← [A] � [P].
The notation [A] indicates the contents of the accumulator.
A simple operation R � P � Q can be implemented by the
following fragment of 8-bit code (from a 6800 processor).

Eight-bit machines of the Intel 8080 and Motorola 6800
eras have one-address architectures. As you can imagine,

8-bit code is verbose because you have to load data into the
accumulator, process it, and then store it to avoid it being
overwritten by the next data processing instruction.

One-address machines are still widely used in embedded
controllers in low-cost, low-performance systems such as
toys. We look at an 8-bit processor in Chapter 9.

Zero-address machines

A zero-address machine doesn’t specify the location of
an operand because the operand’s location is fixed. A
zero-address machine uses a stack, which is a data structure in
the form of a queue where all items are added and removed from
the same end. An ADD instruction would pop the top two items
off the stack,add them together,and push the result on the stack.
Although stack machines have been implemented to execute
languages like FORTH, processors with stack-based architec-
tures have been largely confined to the research lab. There is one
exception. The language JAVA is portable because it is complied
into bytecode, which runs on a stack machine, which is simu-
lated on the real target machine.We will return to the stack later.

68K instruction format

We will look at 68K instruction in detail when we’ve covered
more of the basics. The 68K has a two-address instruction
format. An operand may be a register or a memory location.
The following are valid 68K instructions.

5.3 The 68K family 213

REGISTER-TO-REGISTER ARCHITECTURES

Computers act on data in registers or memory locations. Many

data processing operations operate on two operands; for

example, X � Y or X�Y or X⋅Y or Z ⊕ Y.These operations are

said to be dyadic because they require two operands.The

result of such a dyadic operation generates a third operand,

called the destination operand; for example, Z � A � B.

First-generation microprocessors of the 1970s and 1980s

allowed one source operand to be in memory and one

source operand to be in a register in the CPU.A separate desti-

nation address was not permitted, forcing you to use one of

the source operands as a destination.This restriction means

that one of the source operands is destroyed by the

instruction.

A typical two-address instruction is ADD D0,P. This adds

the contents of memory location P to the contents of register

D0 and deposits the result in location P.The original contents

of P are destroyed.

Register-to-register architectures permit operations only on

the contents of on-chip registers such as ADD R1,R2, R3.The

source or destination of an operand is never a memory loca-

tion. Consequently, registers must first be loaded from mem-

ory and the results of an operation transferred to memory.

Register to register

Memory to register

Register to memory
The only memory to
memory operation

Only one operand
required for the clear
instruction

Instruction RTL definition

Consider the 68K’s ADD instruction ADD $00345678,
D2. This instruction performs the operation [D2]←
[D2]� [34567816]. The two source operands provide the
addresses: one address is a memory location and the other a
data register. This instruction format is sometimes called
‘one-and-a-half address’ because you can specify only a hand-
ful of registers.

CISC processors use variable-length instructions. The
minimum 68K instruction size is 16 bits and instructions can
be constructed by chaining together successive 16-bit values in
memory. For example, the 68K is one of the few processors to
provide a memory-to-memory MOVE instruction that supports
absolute 32-bit addressing. You can write MOVE $12345678,
$ABCDDCBA, which takes 10 consecutive bytes in memory and
moves the contents of one memory location to another.

Subword operations

First-generation microprocessors had 8-bit data wordlengths
and operations acted on 8-bit values to produce 8-bit results.
When 16-bit processors appeared, operations were applied to
16-bit values to create 16-bit results. However, the byte did not
go away because some types of data such as ASCII-encoded
characters map naturally on to 8-bit data elements.

If you wish to access bytes in a 16- or 32-bit processor, you
need special instructions. The Motorola 68K family deals with
8-bit, 16-bit, and 32-bit data by permitting most data process-
ing instructions to act on an 8-bit or a 16-bit slice of a register
as well as the full 32 bits. RISC processors do not (generally)
support 8- or 16-bit operations on 32-bit registers, but they do
support 8-bit and 16-bit memory accesses.

Suppose a processor supports operations that act on a
subsection of a register. This raises the interesting ques-
tion, ‘What happens to the bits that do not take part in
the operation?’ Figure 5.8 demonstrates how we can handle
operations shorter than 32 bits. Assume that a register is
partitioned as Fig. 5.8(a) demonstrates. In this example, we
are going to operate on data in the least-significant byte.

We can do three things, as Fig. 5.10(b) and (c) demon-
strates. In (b) the bits not acted on remain unchanged—this
is the option implemented by the 68K when it operates on
data registers. In (c) the bits that do not take part in the oper-
ation are cleared to zero. In (d) the bits that do not take part
in the operation are set to the value of the most-significant
bit (the sign bit) of the bits being operated on. This option
preserves the sign of two’s complement values. Most proces-
sors implement options (c) or (d).

RISC processors like the ARM do not allow general data
processing operations on fever than 32 bits. However, they do
support 8-bit and 16-bit load instructions with a zero or sign
extension.

The 68K calls 32-bit values longwords, 16-bit values words,
and 8-bit values bytes. Motorola’s terminology is not univer-
sal. Others use the term word to mean 32 bits and halfword to
means 16 bits. The 68K is an unusual processor because it
allows variable size operations on most of its data processing
instructions. By appending .B after an instruction, you per-
form an operation on a byte. Appending .W performs the
operation on a 16-bit word and appending .L performs the
operation on a 32-bit longword. Omitting a size suffix selects
a 16-bit default. Consider the following.

214 Chapter 5 The instruction set architecture

(a) This represents the data before
the operation. An operation takes
place on a slice of the register.

(b) The simplest arrangement
(implemented by the 68K) is to
leave bits not taking part in the
operation unchanged.

(c) Some processors perform an
operation on a subsection of a
register and clear all bits not taking
part in the operation to zero.

SS S S S S

0 0 0 0 0

(d) If the data in a register is
a signed integer, it is necessary
to expand the number by sign,
extending it to 32 bits after the
operation.

Data to be modifiedUnused bits

No change

Figure 5.8 Extending data.

5.3.2 Overview of addressing modes

A key concept in computing in both high- and low-level lan-
guages is the addressing mode. Computers perform opera-
tions on data and you have to specify where the data comes
from. The various ways of specifying the source or destina-
tion of an operand are called addressing modes.

We can’t discuss instructions, the ISA, or low-level pro-
gramming until we have introduced three fundamental
concepts in addressing:

● Absolute addressing (the operand specifies the location
of the data)

● Immediate addressing (the operand provides the
operand itself)

● Indirect addressing (the operand provides a pointer
to the location of the data).

In absolute addressing you specify an operand by providing
its location in memory or in a register. For example, ADD
P,D1 uses absolute addressing because the location of the
operand P is specified as a memory location.Another example
of absolute addressing is the instruction CLR 1234, which
means set the contents of memory location 1234 to zero.

When you specify a data register as an operand, that is also
an example of absolute addressing, although some call it reg-
ister direct addressing.

In immediate addressing the operand is an actual value
rather than a reference to a memory location. The 68K
assembler indicates immediate addressing by prefixing the
operand with the ‘#’ symbol; for example, ADD #4,D0means
add the value 4 to the contents of register D0 and put the
result in register D0. Immediate addressing lets you specify a
constant, rather than a variable. This addressing mode is

called immediate because the constant is part of the instruc-
tion and is immediately available to the computer. The
addressing mode is also called immediate because the
operand is immediately available from the instruction and
you don’t have to fetch it from memory or a register. When
you specify the absolute address of a source operand, the
computer has to get the address from the instruction and
then read the data at that location.

Indirect addressing specifies a pointer to the actual
operand, which is invariably in a register. For example, the
instruction, MOVE (A0),D1 first reads the contents of regis-
ter A0 to obtain a pointer that gives you the address of
the operand. Then it reads the memory location specified by
the pointer in A0 to get the actual data. This addressing mode
requires three memory accesses; the first is to read the
instruction to identify the register containing the pointer, and
the second is to read the contents of the register to get the
pointer, the third is to get the desired operand at the location
specified by the pointer.

You can easily see why this addressing mode is called indi-
rect because the address register specifies the operand indi-
rectly by telling you where it is, rather than what it is.
Motorola calls this mode of address register indirect address-
ing, because the pointer to the actual operand is in an address
register. Figure 5.9 illustrates the effect of executing the oper-
ation MOVE (A0),D0.

In Fig. 5.9 address register A0 points to a memory location;
that is, the value it contains is the address of an operand in
memory. In this case A0 contains 1234 and is, therefore,
pointing at memory location 1234. When the instruction
MOVE (A0),D0 is executed, the contents of the memory
location pointed at by A0 (i.e. location 1234) are copied
into data register D0. In this example, D0 will be loaded
with 3254.

5.3 The 68K family 215

DATA AND ADDRESS REGISTERS

The 68K has eight data registers, D0 to D7. It also has eight

address registers, A0 to A7. Data and address registers are

similar. Both types of registers are 32 bits wide.The principal

difference between these registers lies in their function.A data

register holds any data (including addresses).An address register

is used only to hold the address of an operand in memory.

All data processing operations can be applied to any data

register, but not to all address registers.Address registers take

part in operations only of relevance to the processing of

addresses.

All data registers are equal in the sense that you can use

any one in any way.This is not true of address registers.You

can use A0 to A6 in any way you want but A7 is special.A7 has

a system function called the stack pointer.Address register A7

points to the top of the system stack (the place where subrou-

tine return addresses are stored).

Why do we implement this addressing mode? Consider the
following two operations.

MOVE (A0),D0 ;copy the item pointed at by A0 into D0
ADD.L #2,A0 ;increment A0 to point to the next item

The first operation loads D0 with the 16-bit element pointed
at by address register A0. The second instruction increments
A0 by 2 to point to the next element. The increment is 2
because the elements are 2 bytes (i.e. 16 bits) wide and
successive elements are 2 bytes apart in memory.

Address register indirect addressing allows you to step
though an array or table of values accessing consecutive ele-
ments. Suppose we have a table of 20 consecutive bytes that
we have to add together. We can write

The first three instructions set up the initial
values. We load A0 with the address of the
numbers. The location has the symbolic name
‘Table’. The # symbol precedes ‘Table’ because
A0 is being loaded with the address table and
not the contents of that address. Data register D0
is used to hold the sum of the numbers and is
cleared prior to its first use. Finally, we put the
number 20 into D1 to count the elements as we
add them.

The body of the code is in blue. The first
instruction fetches the byte pointed at by A0

and adds it to the running total in D0 and the second instruc-
tion points to the next byte element in the list. Note that when
we increment the pointer we use a longword operation
because all pointers are 32 bits.

The last part of the program decrements the element count
by one and then branches back to ‘Next’ if we haven’t reached
zero. We look at the branching operations in more detail later.

The three addressing modes form a natural progression.
Consider their definitions in RTL.

216 Chapter 5 The instruction set architecture

Figure 5.9 Address register indirect addressing.

Address register A0 is a pointer.
It contains the value 1234 and,
therefore, points to address location
1234. If you use A0 to access memory,
you will access location 1234.

Executing a MOVE (A0),D0 instruction

A0

1234 1232

1234 3254

1236

Pointer

Memory

D0

The effect of MOVE (A0),D0
 is [D0] ← [[A0]]

Addressing mode Assembly RTL Memory
form accesses

Immediate addressing MOVE #4,D1 [D1]←4 1

Absolute addressing MOVE P,D1 [D1]←[P] 2

Indirect addressing MOVE (A1),D1 [D1]←[[A1]] 3

IMPORTANT POINTS

The fragment of code to add the 20 numbers is, in principle,

very straightforward. However, it contains aspects that many

beginners find confusing. Indeed, I would say that probably

90% of the errors made by beginners are illustrated by this

fragment of code. Consider the following points.

1. Data register D0 is used to hold the running total.At the

machine level, registers and memory locations are not set

to zero before they are used.Therefore, the programmer

must initialize their contents either by clearing them or by

loading a value into them.

2. We are working with byte-wide data elements throughout.

Therefore all operations on data in this problem have a .B
suffix.All operations on pointers have an .L suffix. Do not

confuse operations on a pointer with operations on the

data elements at which they point!

3. Understand the meaning of the # symbol, which indicates

a literal value. MOVE 1234,D0 puts the contents of mem-

ory location 1234 in register D0. MOVE #1234,D0 puts

the number 1234 in D0.This is the single most common

mistake my students make.

4. An address register used to hold a pointer has to be loaded

with the value of the pointer. This value is a memory

location where the data lies. If the symbolic name for the

address of a table is PQR, then you point to PQR with

MOVE.L #PQR,A0.You are putting an actual address in

A0 and not the contents of a memory location.

Figure 5.10 illustrates these three addressing modes
graphically.

5.4 Overview of the 68K’s
instructions

We now look at the type of operations that the 68K and
similar processors carry out on data. Here we are interested in
general principles. In the next chapter we demonstrate how
the instructions can be used. A typical two-operand
memory-to-register instruction has the format

and is interpreted as [D0] ← [D0] � [P]. The source
operand appears first (left to right), then the destination
operand. Instructions can be divided into various categories.
For our current purposes, we will consider the following
broad categories.

Data movement These instructions copy data from one
place to another; for example, from memory to a register or
from one register to another.

Arithmetic Arithmetic instructions perform operations on
data in numeric form. In this chapter we assume data is either
a signed or an unsigned integer.

Logical A logical operation treats data as a string of bits and
performs a Boolean operation on these bits; for example,
11000111 AND 10101010 yields 10000010.

Shift A shift instruction moves the bits in a register one or
more places left or right; for example, shifting 00000111 one
place left yields 00001110.

Bit A bit instruction acts on an individual bit in a register,
rather than the entire contents of a register. Bit instructions
allow you to test a single bit in a word (for 1 or 0), to set a bit,
to clear a bit, or to flip a bit into its complementary state.

Compare These instructions compare two operands and set
the processor’s status flags accordingly; for example, a
compare operation allows you to carry out the test.

Control Control instructions modify the flow of control; that
is, they change the normal sequential execution of instructions
and permit instructions to be executed out of order.

5.4.1 Status flags

Before we continue we have to introduce the notion of the proces-
sor status register because its contents can be modified by the
execution of most instructions. The processor status register
records the outcome of an instruction and it can be used to imple-
ment conditional behavior by selecting one of two courses of
action. Some processors call this register a condition code register.

5.4 Overview of the 68K’s instructions 217

Figure 5.10 The three addressing modes.

MOVE 1234,D1

MOVE #4,D1

MOVE (A0),D1

4

D1

D1

D1

A0

Memory

Pointer Operand

Literal addressing
The operand is part
the instruction.

Absolute addressing
The operand is a register
or memory location.

Indirect addressing
The operand is specified
by a pointer. In this case
pointer is in A0.

Memory

Operand 1234

Conditional behavior is the feature of computer languages that
lets us implement high-level language operations such as

or

A processor register contains at least four bits, Z, N, C, and
V, whose values are set or cleared after an instruction has been
executed. These four flags, or status bits, and their interpreta-
tions are as follows.

Z-bit Set if the result of the operation is zero.
N-bit Set if the result is negative in a two’s complement

sense; that is, the leftmost bit is zero.
C-bit Set if the result yields a carry-out.
V-bit Set if the result is out of range in a two’s complement

sense.

Typical CISC processors update these flags after each
operation (see box for more details).

Consider the following example using 8-bit arithmetic.
Suppose D0 contains 001101012 and D1 contains 011000112.
The effect of adding these two values together with
ADD D0,D1 would result in

The result is 100110002, which is deposited in D1. If we inter-
pret these numbers as two’s complement values, we have added
two positive values and got a negative result. Consequently, the
V-bit is set to indicate arithmetic overflow. The result is not
zero, so the Z-bit is cleared. The carry-out is 0. The most-
significant bit is 1, so the N-bit is set. Consequently, after this
operation C � 0, Z � 0, N � 1, V � 1.

5.4.2 Data movement instructions

The most frequently executed computer operation is data
movement. The data movement instruction is incorrectly

named because the one thing it does not do is move data. Data
movement instructions copy data; for example, the instruc-
tion MOVE Y,X copies the contents of Y to X but does not
modify the value of Y. You could say that a data movement
instruction is a data propagate or data copy instruction.

Some processors have a load instruction, a store instruc-
tion, and a move instruction. A load copies data from mem-
ory to a register, a store copies data from a register to memory,
and a move instruction copies data from one register to
another. As we already know, the 68K has a single MOVE
instruction, which copies data from anywhere to anywhere.

There are other types of move operation; for example, the
68K has an exchange instruction that swaps the contents of
two registers; for example,

EXG D1, A2 has the effect [A2]←[D1]; [A1]←[A2]

The purpose of the semicolon in the above RTL indicates
that the two operations happen simultaneously.

5.4.3 Arithmetic instructions

Arithmetic operations are those that act on numeric data (i.e.
signed and unsigned integers). Table 5.1 lists the 68K’s arith-
metic instructions. Let’s look at these in detail.

Add The basic ADD instruction adds the contents of two
operands and deposits the result in the destination operand.
One operand may be in memory. There’s nothing to stop you
using the same source operand twice and writing ADD D0,D0
to load D0 with the value of 2 � [D0].

All addition and subtraction instructions update the con-
tents of the condition code register unless the destination
operand is an address register.

Add with carry The add with carry instruction, ADC, is
almost the same as the ADD instruction. The only different is
that ADC adds the contents of two registers together with
the carry bit; that is, ADC D0,D1 performs [D1]←[D1] �

[D0] � C, where C is the carry bit generated by a previous
operation.

218 Chapter 5 The instruction set architecture

CONDITION CODE FLAGS

One of the biggest variations between processor families is

the treatment of condition code flags . There are three aspects

to the way in which these flags are updated.

Update always The condition code flags are updated after

each and every instruction has been executed.

Update sometimes The condition code flags are updated

after some instructions have been executed but not others.

Generally the flags are updated after instructions that might

be used in a comparison such as ‘is � � Y’ but not after

instructions that perform routine housekeeping tasks.

Update on demand The condition code register is updated

only when the programmer requires it. This mode is indicated

by appending a suffix to an instruction to indicate an update

flags request.

The 68K updates its status bits after most instructions

are executed.You simply have to learn which instrucion

update the flags and which don’t. Instructions that affect

the flow of control such as subroutine calls and instructions

that act on address registers do not update the conditon

code flags.

This instruction is used in extended or compound arith-
metic. Suppose you wish to add two 64-bit numbers using
the 32-bit 68K. Assume that the most-significant 32 bits of X
are in D0 and the least-significant 32 bits are in D1, and the
most-significant 32 bits of Y are in D2 and the least-signifi-
cant bits are in D3. We can perform the 64-bit addition
X � Y by

Multiplication Unfortunately, two’s
complement arithmetic works only for
addition and subtraction; that is, you
don’t have to use a different addition
operation for unsigned and signed inte-
gers. The same is not true for multipli-
cation and division. If you are using
unsigned integers you have to do multi-
plication one way and if you are using
signed two’s complement integers you
have to do multiplication in a different
way. Consequently, the 68K has two
multiplication (and division) instruc-
tions and you have to choose the one to
reflect the type of numbers you are
using. MULU multiplies two unsigned
integers and MULSmultiplies two signed
integers.

The 68K’s multiplications do not
provide the same flexibility as the 68K’s

addition instructions. You can multiply
only two 16-bit integers to get a 32-bit

result (remember that multiplying two n-bit values yields a
2n-bit product). The operation MULU D0,D1 performs the
operation

Division The 68K’s division instructions are a little more
complicated because division results in a quotient plus a
remainder; for example, 17 � 3 � 5 remainder 2. The 68K

5.4 Overview of the 68K’s instructions 219

Table 5.1 The 68K’s arithmetic instructions.

Figure 5.11 Extended addition.

C

+

Most-significant word Least-significant word

Xupper

Yupper

Xlower

Ylower

Zupper Zlower

The two lower words are
added to generate a sum
and a carry out.

The two higher words are
added together with any
carry bit generated from
adding the low-order words.

In this example we use ADD.L to add the two low-order 32-
bit words. Remember that the .L suffix indicates a 32-bit
operation. An addition records any carry bit generated by the
addition and moves it to the C-bit. The following instruction
ADC adds the high-order longwords together with any carry
that was generated by adding the low-order longwords.
Figure 5.11 illustrates the addition Z � X � Y where X, Y,
and Z are 64-bit values and the addition is to be performed
with 32-bit arithmetic. Each of the operands is divided into
an upper and lower 32-bit word.

Subtract The subtract instruction subtracts the source
operand from the destination operand and puts the result in
the destination register; for example, SUB D0,D1 performs
[D1]←[D1] � [D0]. A special subtraction operation that
facilitates multiple length subtraction,SBC D0,D1, performs
the action [D1]←[D1]�[D0] � C (the carry bit is also
subtracted from the result).

divides a 32-bit value by a 16-bit value to produce a 16-bit
quotient and a 16-bit remainder. In order to avoid using an
instruction with three operands, the quotient and remainder
are packed in the same register. For example, DIVU D0,D1
divides the 32-bit contents of D1 by the 16-bit lower-order
16-bit word in D0 and puts the 16-bit quotient in the low-
order word of D1 and the 16-bit remainder in the high-order
word of D1. We can express this as

If D0 contains 4 and D1 contains 1234516, the operation
DIVU D0,D1 results in D1 � 000148D116. Consider the fol-
lowing fragment of code where we divide P by Q and put the
quotient in D2 and the remainder in D3.

This code is more complex than you would think and
demonstrates the pitfalls of assembly language. First we have to
remember that P is a 32-bit value and that Q is a 16-bit value.
The divide instruction divides a 32-bit value by a 16-bit value.

Because we get the quotient and remainder in D1, we have to
split them and copy them to D2 and D3 respectively. A MOVE
instruction always operates on the low-order word in a register,
which means that we don’t have to worry about the remainder
bits in bits 16 to 31 of D1 when we copy the quotient. However,
because D2 is a 32-bit register, we should ensure that the upper
order bits are zero before we do the transfer.We use CLR.L to set
all the bits of D2 to zero before transferring the 16-bit quotient.

We can use the SWAP instruction, which exchanges the
upper and lower order words of a register to get the remain-
der in the low-order 16-bits of D1 before we transfer the
remainder to D3.

When writing 68K instructions, you always have to ask
yourself ‘How? many bits are we operating on?’ and ‘What are
we going to do about the bits not taking part in the operation’.
Some processors take away that choice; for example, the ARM
and similar RISC processors require that all operations be
applied to all bits of a register.

5.4.4 Compare instructions

High-level languages provide conditional constructs of the form

We examine how these constructs are implemented later.
At this stage we are interested in the comparison part of the
above construct, (x �� y), which tests two variables for
equality. We can also test for greater than or less than. The
operation that performs the test is called comparison.

The 68K provides a compare instruction CMP source,
destination,which evaluates [Rd]—[Rs] and updates the
bits in the condition code register accordingly.

A compare instruction is inevitably followed by a branch
instruction that chooses one of two courses of action

depending only on the outcome of the comparison. Here we
simply demonstrate a (compare, branch) pair because we will
soon look at branch instructions in greater detail.

Consider the high-level construct if(x==5)
{x=x+10}

We can write the following fragment of code:

In this example the branch instruction BNE Exit forces a
branch (jump) to the line labeled by Exit if the outcome of
the compare operation yields ‘not zero’.

5.4.5 Logical instructions

Logical operations allow you to directly manipulate the indi-
vidual bits of a word. When a logical operation is applied to
two 32-bit values, the logical operation is applied (in parallel)
to each of the 32 pairs of bits; for example, a logical AND
between A and B would perform ci � ai⋅bi for all values of i.
Table 5.2 illustrates the 68K’s logical operations using an 8-
bit example.

The AND operation is dyadic and is applied to two source
operands. Bit i of the source is ANDed with bit i of the desti-
nation and the result is stored in bit i of the destination. If
[D1] � 110010102, the operation

results in [D1] � 110000002. Remember that the symbol #
indicates a literal or actual operand and the symbol %
indicates a binary value. We can represent this operation
more conventionally as

220 Chapter 5 The instruction set architecture

D2 D1 Operation Processor status flags
10101010 10101010 CMP D1,D2 Z � 1, C � 0, N � 0,V � 0

10101010 00000000 CMP D1,D2 Z � 0, C � 0, N � 1,V � 0

10101010 11000001 CMP D1,D2 Z � 0, C � 1, N � 1,V � 0

The AND operation is used to mask the bits of a word. If
you AND bit x with bit y, the result is 0 if y � 0, and x if y � 1.
A typical application of the AND instruction is to strip the
parity bit off an ASCII-encoded character. That is,

clears bit 7 of D1 to zero and leaves bits 0 to 6 unchanged.
The OR operation is used to set one or more bits of a word

to 1. ORing a bit with 0 has no effect and ORing the bit with
1 sets it. For example, if [D1] � 110010102, the operation

results in [D1] � 111110102.
The EOR operation is used to toggle (i.e. invert) one

or more bits of a word. EORing a bit with 0 has no effect
and EORing it with 1 inverts it. For example, if [D1] �

110010102, the operation

results in [D1] � 001110102.
By using the NOT, AND, OR, and EOR instructions, you

can perform any logical operations on a word. Suppose you
wish to clear bits 0, 1, and 2, set bits 3, 4, and 5, and toggle bits
6 and 7 of the byte in D0. You could write

If [D1] initially contains 010101012, its final contents will
be 101110002. We will look at a more practical application of
bit manipulation after we have covered branch operations in
a little more detail.

5.4.6 Bit instructions

The 68K provides bit instructions that operate on the indivi-
dual bits of a word. Bit instructions are not strictly necessary,
because you can use logical operations to do the same thing.

The 68K’s bit instructions can be used to set, clear, or toggle
(complement) a single bit in a word. Moreover, the bit instruc-
tions also test the state of the bit they have tested and set or clear
the Z-bit of the condition control register accordingly.Consider

5.4 Overview of the 68K’s instructions 221

Table 5.2 The 68K’s logical instructions.

Mnemonic Operation Definition
AND D0,D1 Logical AND [D1] ← [D1] ∧ [D0]
OR D0,D1 Logical OR [D1] ← [D1] ∨ [D0]
EOR D0,D1 Exclusive EOR [D1] ← [D1] ⊕ [D0]
NOT D1 Logical NOT [D1] ← [D1]

Example
11110000 · 10101010 = 10100000

11110000 + 10101010 = 11111010

11110000 ⊕ 10101010 = 01011010

11110000 = 00001111

5.4.7 Shift instructions

A shift operation moves a group of bits one or more places
left or right; for example, consider the following examples

Source After shift left After shift right

00110011 01100110 00011001

11110011 11100110 01111001

10000001 00000010 01000000

Although there are only two shift directions, left and right,
there are several variations on the basic shift operation. These
variations depend on whether we are treating the value being
shifted as an integer or a signed value and whether we include
the carry bit in the shifting.

Shift operations are used to multiply or divide by a power
of 2, to rearrange the bits of a word, and to access bits in
a specific location of a word.

Figure 5.12 illustrates the various types of shift operation.
Suppose the 8-bit value 110010102 is shifted one place right.
What is the new value? A logical shift right operation, LSR
introduces a zero into the leftmost bit position vacated by the
shift and the new value is 011001012.

Arithmetic shifts treat the data shifted as a signed two’s
complement value. Therefore, the sign bit is propagated by
an arithmetic shift right. In this case, the number
110010102 � �54 is negative and, after an arithmetic right
shift, ASR, the new result is 111001012 (i.e. �27).

When a word is shifted right, the old least-significant bit
has been shifted out and ‘lost’. Figure 5.12 shows that this bit
isn’t lost because it’s copied into the carry flag bit.

An arithmetic shift left is equivalent to multiplication by 2
and an arithmetic shift right is equivalent to division by 2.

Some computers allow you to shift one bit position at a
time. Others let you shift any number of bits. The number of
bits to be shifted can be a constant; that is, it is defined in the
program and the shift instruction always executes the same
number of shifts. Some computers let you specify the
number of bits to be shifted as the contents of a register. This
allows you to implement dynamic shifts because you can

change the contents of the register that specifies the number
of shifts. The 68K lets you write LSL #4,D0 to shift the con-
tents of data register D0 left by four places or LSL D1,D0 to
shift the contents of D0 left by the number in D1.

Figure 5.12 also describes circular shifts or rotates. A circ-
ular shift operation treats the data being shifted as a ring with
the most-significant bit adjacent to the least-significant bit.
Circular shifts result in the most-significant bit being shifted
into the least-significant bit position (left shift), or vice versa
for a right shift. No data is lost during a circular shift.
Consider the following examples.

Shift type Before circular shift After circular shift

Rotate left, ROL 11001110 10011101

Rotate right, ROR 11001110 01100111

The last pair of shift operations in Fig. 5.12 are called rotate
though carry. These operations treat the carry bit as part of
the shift operation. A circular shift is performed with the old
carry bit being shifted into the register and the bit lost from
the carry register being shifted into the carry bit. Suppose that
the carry bit is currently 1 and that the 8-bit value 111100002

is to be shifted one place right through carry. The final result

222 Chapter 5 The instruction set architecture

Figure 5.12 The four classes of shift instruction.

C

C

0Operand

Operand

ASL

ASR

MSB

C

C

0

0

Operand

Operand

LSL

LSR

Logical shift left

A zero enters the least-significant bit and the

most-significant bit is copied to the carry flag.

Arithmetic shift left

A zero enters the least-significant bit and the

most-significant bit is copied to the carry flag.

Logical shift right

A zero enters the most-significant bit and the

least-significant bit is copied to the carry flag.

Arithmetic shift right

The old most-significant bit is copied into the new

most-significant bit and the least-significant bit is

copied to the carry flag.

C

C

Operand

Operand

ROL

ROR

C C

C C

Operand

Operand

ROLC

RORC

Rotate left

The most-significant bit is copied into the

 least-significant bit and the carry flag.

Rotate left through carry

The most-significant bit is copied into the carry flag

and the old C-bit copied into the least-significant bit.

Rotate right through carry

The least-significant bit is copied into the C flag

and the old C-bit copied into the most-significant bit.

Rotate right

The least-significant bit is copied into the

most-significant bit and the carry flag.

is 111110002 and the carry bit is 0. A circular shift is a non-
destructive shift because no information is lost (bits don’t fall
off the end).

The 68K’s shift instructions are as follows.

LSL The operand is shifted left by 0 to 31 places. The vacated
bits at the least-significant end of the operand are filled with
zeros.

LSR The operand is shifted right 0 to 31 places. The vacated
bits at the most-significant end of the operand are filled with
zeros.

ASL The arithmetic shift left is identical to the logical
shift left.

ASR The operand is shifted right 0 to 31 places. The vacated
bits at the most-significant end of the operand are filled with
zeros if the original operand was positive, or with 1s if it was
negative (i.e. the sign-bit is replicated). This divides a number
by 2 for each place shifted.

ROL The operand is rotated by 0 to 31 places left. The bit
shifted out of the most-significant end is copied into the
least-significant end of the operand. This shift preserves all
bits. No bit is lost by the shifting.

ROR The operand is rotated by 0 to 31 places right. The bit
shifted out of the least-significant end is copied into the
most-significant end of the operand. This shift preserves all
bits. No bit is lost by the shifting.

ROXL The operand is rotated by 0 to 31
places left. The bit shifted out of the most
significant end of the operand is shifted
into the C-bit. The old value of the C-bit is
copied into the least-significant end of the
operand; that is, shifting takes place over 33 bits (i.e. the
operand plus the C-bit).

ROXR The operand is rotated by 0 to 31 places right. The bit
shifted out of the least-significant end of the operand is
shifted into the C-bit. The old value of the C-bit is copied into
the most-significant end of the operand; that is, shifting takes
place over 33 bits (i.e. the operand plus the C-bit).

Shift operations can be used to multiply or divide a num-
ber by a power of two. They can be used for several other pur-
poses such as re-arranging binary patterns; for example,
suppose register D2 contains the bit pattern 0aaaaxxxbbbb2

and we wish to extract the xxx field (we’re using 12-bit arith-
metic for simplicity). We could write

If we want to ensure that we just have the xxx field, we can use
a logical AND to clear the other bits by

5.4.8 Branch instructions

A branch instruction modifies the flow of control and causes
the program to continue execution at the target address speci-
fied by the branch. The simplest branch instruction is the
unconditional branch instruction, BRA target, which
always forces a jump to the instruction at the target address.
In the following fragment of code, the BRA Here instruction

forces the 68K to execute next the instruction on the line
which is labeled by Here.

5.4 Overview of the 68K’s instructions 223

2000
2004
2008
200c
2010
2014

1000
1004
1008
100C
1010
1014
1018
101C
1020
1024
1028
102C
1030
1034
1038
103C
1040
1044

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9

Instruction 10

Instruction 11

Instruction 12

Instruction 13

Instruction 14

Instruction 15

Instruction 16

Instruction 17

Instruction 18

Instruction N
Instruction N + 1

Instruction N + 2

Instruction N + 3

Instruction N + 4

Instruction N + 5

The branch instruction forces the
instruction at 2000 to be executed
next.

BRA 2000

BRA 1040

Figure 5.13 The unconditional branch.

Figure 5.13 demonstrates how an unconditional branch
can modify the flow of control. In this example, execution
continues sequentially from instruction 1 to instruction 8,
which is BRA 2000 (branch to instruction N at location
200016). The address of the first instruction is 100016 and each
instruction takes 4 bytes. Execution then continues with the
instruction at location N. Instruction N � 5 is BRA 1040

(branch to instruction 17 at location 104016) and a change of
flow takes place again.

The most important feature of any computer is its abil-
ity to implement conditional behavior by carrying out a
test and then branching on the result of the text.
Figure 5.14 demonstrates the flow of control with a condi-
tional branch.

Instruction 8 is BEQ 2000 and is interpreted
as ‘branch to instruction N if the last result was
zero, otherwise continue’. Consequently, there
is a fork at instruction 8 between the path if the
last result was not zero and a path (to instruc-
tion N) if the result was zero.

We can imagine that the test for zero leads
to the execution of code block 1 or code block
2. At the end of code block 2 a branch back to
the main stream of instructions is made.

Let’s look at this conditional behavior in
high-level language. Consider the following
example of the high-level construct

if (x == 3) then y = 4

We can translate this construct into the
following 68K code.

CMP #3,D1 ;(x == 3)?
BNE exit ;if x is not 3 then leave
MOVE #4,D2 ;if x is 3 then y = 4

exit ...

The instruction CMP #3,D1 compares the
contents of register D1 with the literal 3 by
evaluating [D1] � 3 and setting the status
flags. If the result of the operation is zero, the
Z-bit is set to 1. If the result is not zero (i.e.
D1 does not contain 3), the Z-bit is set to 0.

The key instruction is BNE exit, which
means ‘branch on not zero to the instruction
labeled exit’. The effect of this instruction is
to test the Z-bit of the status flags and then
branch to the instruction with the label ‘exit’
if Z � 0 (i.e. D1 is not 3). If D1 is 3, Z � 1,
the branch is not taken, and the MOVE #4,D2
instruction is executed.

The 68K provides 16 branch instructions of
the form BCC where CC defines the branch condition. These
16 conditions, described in Table 5.3, are virtually the same

as those provided by many other microprocessors. We will see
what the 4 bits in the first column mean later.

Let’s look at another application of conditional branching.
You can implement a loop construct in the following way

MOVE #20,D0 ;load the loop counter D0 with 20
Next . ;body of loop

.

.
SUB #1,D0 ;decrement loop counter
BNE Next ;repeat until loop count = zero

Let’s look at another example of the use of branching.
Suppose A and B are two n-component vectors. As we have
already stated, the inner product of A and B is the scalar value
s � A⋅B � a1⋅b1 � a2⋅b2 � a3⋅b3 . . . an⋅bn. We can now
write the code

224 Chapter 5 The instruction set architecture

2000
2004
2008
200c
2010
2014

1040
1044

Instruction 17

Instruction 18

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

1000
1004
1008
100C
1010
1014
1018
101C

Instruction 9

Instruction 10

Instruction 11

Instruction 12

Instruction 13

Instruction 14

Instruction 15

Instruction 16

1020
1024
1028
102C
1030
1034
1038
103C

Instruction N
Instruction N + 1

Instruction N + 2

Instruction N + 3

Instruction N + 4

Instruction N + 5

TrueFalse

Block 1 Block 2

When instruction 8 is executed,
the next instruction is at 1020 if
the condition is false and 2000 if the
condition is true.

BEQ 2000

B 1040

Figure 5.14 The conditional branch.

carry set/higher or same

Mnemonic Condition Flags

C = 1

not equal Z = 0

equal Z = 1

carry clear/lower C = 0

negative N = 1

positive or zero N = 0

overflow set V = 1

overflow clear V = 0

higher than (signed) (C = 1).(Z = 0)

lower or same (signed) (C = 0)+(Z = 1)

greater than or equal (signed) N = V

less than (signed) N ≠ V

greater than (signed) (Z = 0).(N = V)

less than or equal (signed) (Z = 1)+(N ≠ V)

Table 5.3 The 68K’s conditional branches.

Subroutine calls

A subroutine is a piece of code that is called and executed and
a return is made to the calling point. Subroutines are very
important because they implement the function or procedure
at the high-level language level. We look at subroutines in
more detail in the next chapter. Here we are interested only in
the principle of the subroutine call and return.

Figure 5.15 demonstrates the subroutine call. Code is exe-
cuted sequentially until a subroutine call is encountered. The
current place in the code sequence is saved and control is then
transferred to the subroutine; that is, the first instruction in
the subroutine is executed and the processor continues exe-
cuting instructions in the subroutine until a return instruc-
tion is encountered. Then, control is transferred back to the
point immediately after the subroutine call by retrieving the
saved return address.

Figure 5.16 illustrates this concept with a simple subroutine
called ABC that calculates the value of 2x2 (where x is a 16-bit
value passed in D0). This subroutine is called by the instruction
BSR ABC (branch to subroutine), and a return from subroutine
is made by an RTS (return from subroutine) instruction.

Figure 5.17 displays the program of Fig. 5.16 in the form of
a memory map and demonstrates the flow of control
between the calling program and the subroutine ABC.

Figure 5.18 extends the example in Fig. 5.15 by demon-
strating a multiple call. We have used the instruction
BSR ABC to implement the subroutine
call. The main body of the code calls
subroutine ABC. At the end of the sub-
routine, a return instruction makes a
return to the instruction following the
calling point. As you can see, the subrou-
tine is called from two different places
and yet a return is made to the correct
point in each case.

In chapter 6 we look at how assembly
language programs are constructed. We
will also look at a data structure called
the stack, which is used to hold subrou-
tine return addresses.

5.4 Overview of the 68K’s instructions 225

Code

Subroutine

Call

Return

MOVE.W #4,D0

BSR ABC

ABC MULU D0,D0
ASL.L #1,D0
RTS

Set up a parameter in D0

The subroutine call

The subroutine

Return point
(next instruction after
the subroutine)

Return from subroutine

Body of the code

Subroutine call
Return from subroutine

MOVE.W #4,D0

MULU D0,D0

ASL.L #1,D0

BSR ABC Subroutine

Return

ABC

RTS

Figure 5.15 The subroutine call.

Figure 5.16 The subroutine.

Figure 5.17 Memory map of a subroutine call and flow of control.

■ SUMMARY

We have introduced the CPU and its native language, the

assembly language, which is a human-readable representation

of machine code. Unfortunately, assembly languages are not

portable; each family of microprocessors has its own unique

assembly language that is incompatible with any other

processor.You can run a C program on most computers with a C

compiler.A program written in Pentium assembly language will

run only on machines with a Pentium at their core.

We introduced the concept of an architecture, the assembly

language programmer’s view of the computer in terms of its

functionality rather than performance or implementation.To

illustrate the characteristics of an architecture we selected the

elegant 68K processor, which is, paradoxically, simpler than

many of its contemporaries while, at the same time,

incorporating a number of sophisticated facilities such as the

ability to shift an operand as part of a data processing

instruction and the ability to execute an instruction only if

certain conditions are met (predication).

An architecture consists of a set of instructions, a set of

resources (the registers), and the addressing modes used to

access data.

In this chapter we have laid the foundations for the next

chapter where we look at how programs can be constructed to

run on the instruction set architecture we introduced here.

■ PROBLEMS

5.1 What’s the difference between an assembly language and

machine code? In order to answer this question fully, you should

use the Internet to find out more about assemblers.

5.2 Books and articles on the computer make a clear distinction

between architecture and organization. Do you think that this is a

useful distinction? Can you think of other areas (i.e. non-computer

example) where such a distinction would be appropriate?

5.3 What are the advantages and disadvantages of dividing a

computer’s registers into data and address registers like the 68K?

5.4 What are the relative advantages and disadvantages of one-

address, two-address, and three-address instruction formats?

5.5 What’s a register-to-register

architecture and why is such an

architecture also called a load and store

computer?

5.6 What are the three fundamental

addressing modes? Are they all

necessary? What is the minimum number

of addressing modes required? Can you

think of other possible addressing

modes?

5.7 The 68K has two add instructions:

ADD and ADC.What is the difference

between them? If the processor lacked

an ADC instruction, how would you

synthesize it (i.e. what other instructions would you use to

achieve the same effect)?

5.8 The 68K has an exchange register pair instruction, EXG.

Why would you want such an instruction?

5.9 The SWAP Di instruction swaps the upper- and lower-order

words of data register Di.Why would you want such an

instruction? If the 68K’s instruction set lacked a SWAP, how

would you swap the two halves of a data register?

5.10 Why are so many variations on a shift operation provided

by the 68K and many other processors?

5.11 What is the largest memory space (i.e. program) that can

be addressed by processors with the following number of

address bits?

(a) 12 bits

(b) 16 bits

(c) 24 bits

(d) 32 bits

(e) 48 bits

(f) 64 bits

5.12 The von Neumann stored program computer locates

program and data in the same memory.What are the

advantages and disadvantages of a system with a combined

program and data memory?

5.13 The gear lever is part of an automobile’s organization

rather than its architecture.Are the brakes part of a car’s

architecture or organization?

5.14 What does the RTL expression [100]←[50]+2 mean?

5.15 What does the RTL expression [100]←[50+2]+2
mean?

5.16 What is an operand?

5.17 In the context of an instruction register, what is a field?

5.18 What is a literal operand?

5.19 What is the effect on the C-,V-, Z-, and N-bits when the

following 8-bit operations are carried out?

5.20 Some microprocessors have one general-purpose data

register, some two, some eight, and so on.What determines the

226 Chapter 5 The instruction set architecture

Subroutine

N

M

ABC

First call to subroutine

Second call to subroutine

Return from subroutine

Return from subroutine

BSR ABC

BSR ABC
Return

Figure 5.18 Multiple subroutine calls.

number of such general-purpose data registers in any given

computer?

5.21 What is the difference between a dedicated and a general-

purpose computer?

5.22 What is a subroutine and how is it used?

5.23 What is the so-called von Neumann bottleneck?

5.24 For the following memory map explain the meaning of the

following RTL expressions in plain English.

5.25 Suppose a problem in a high-school algebra text says ‘Let

x � 5’.What exactly is x? Answer this question from the point

of view of a computer scientist.

5.26 In the context of a CPU, what is the difference between a

data path and an address path?

5.27 Why is the program counter a pointer and not a counter?

5.28 What’s the difference between a memory location and a

data register?

5.29 Does a computer need data registers?

5.30 Some machines have a one-address format, some a

two-address format, and some a three-address format; for

example,

What are the relative merits of each of these instruction formats?

(a)

(b)

(c)

(d)

(e)

(f)

5.31 What is the difference between the C, Z,V, and N flags in a

computer’s status register (or condition code register)?

5.32 What is the difference between machine code and

assembly language?

5.33 What is the advantage of a computer with many registers

over one with few registers?

5.34 Translate the following algorithm into assembly language.

IF X > 12 THEN X � 2*X�4 ELSE X � X � Y

5.35 For the memory map below, evaluate the following

expressions, where [N] means the contents of the memory

location whose address is N.All addresses and their contents are

decimal values.

5.4 Overview of the 68K’s instructions 227

00 12

01 17

02 7

03 4

04 8

05 4

06 4

07 6

08 0

09 5

10 12

11 7

12 6

13 3

14 2

(a) [7] (f) [[9] � [2]]

(b) [[[4]] (g) [[5] � [13] � 2 * [14]]

(c) [[[0)]]] (h) [0)] * 3 + [1] * 4

(d) [2 � 10] (i) [9] * [10]

(e) [[9] � 2]

5.36 The most frequently executed class of instruction is the

data move instruction.Why is this?

6Assembly language programming

CHAPTER MAP

6.1 Structure of a 68K assembly
language program

Figure 6.1 provides the listing of a simple assembly language
program written to run on the 68K cross-assembler. This
program implements the high-level language operation
R�P�Q (where variables P � 2 and Q � 4). Few rules gov-
ern the layout of a 68K assembly language program. The left-
most column is reserved for user-defined labels—in this case,
P, Q, and R. If a line begins with an asterisk in the first col-
umn, the assembler ignores the rest of the line. You put an
asterisk in column 1 to create a comment. Another rule is that

the mnemonic and its operand must be separated by at least
one space and that no embedded spaces may be located
within either the mnemonic or operand fields.

Recall that numbers prefixed by the $ symbol are hexadec-
imal, whereas numbers prefixed by % indicate that the fol-
lowing number is expressed in binary form; for example, the
following three instructions

5 The instruction set
architecture

Chapter 5 introduces the

computer’s instruction set

architecture, which defines the

low-level programmer’s view of

the computer and describes the

type of operations a computer

carries out.We are interested in

three aspects of the ISA: the

nature of the instructions, the

resources used by the

instructions (registers and

memory), and the way in which

the instructions access data

(addressing modes).

6 Assembly language
programming

Having introduced the basic

operations that a computer can

carry out, the next step is to

show how instructions are used

to construct entire programs.We

introduce the 68K’s

programming environment via a

simulator that runs on a PC and

demonstrate how to implement

some basic algorithms.

7 Structure of the CPU

Now we know what a computer

does, the next step is to show

how it operates. In Chapter 7 we

examine the internal

organization of a computer and

demonstrate how it reads

instructions from memory,

decodes them, and executes

them.

8 Other processors

We have used the 68K to

introduce the CPU and assembly

language programming. Here we

provide a brief overview of some

of the features of other

processors.

INTRODUCTION

We introduced the processor and its machine-level language via the 68K CISC processor in the previous

chapter. Now we demonstrate how 68K assembly language programs are written and debugged.

Because assembly language programming is a practical activity, we provide a 68K cross-assembler

and simulator with this book. Previous editions of this book used the DOS-based Teesside simulator.

In this edition we use a more modern Windows-based system called Easy68K.We provide a copy of

the EASy68K simulator on the CD accompanying this book, as well as a copy of the Teesside

simulator and its documentation for those who wish to maintain compatibility with earlier editions.

Both simulators run on a PC and allow you to execute 68K programs.You can execute a program

instruction by instruction and observe the effect of each instruction on memory and registers as it

is executed.

are equivalent. The assembler translates each of these into
exactly the same machine code.

6.1 Structure of a 68K assembly language program 229

Figure 6.2 shows the structure of a typical 68K instruction.
Instructions with two operands are always written in the
form source, destination, where source is where the
operand comes from and destination is where the result
goes to.

6.1.1 Assembler directives

Assembly language statements are divided into executable
instructions and assembler directives.An executable instruction
is translated into the machine code of the target microproces-
sor and executed when the program is loaded into memory. In
the example in Fig. 6.1, the executable instructions are

We’ve already encountered the first three instructions. The
last instruction, STOP #$2700, terminates the program by
halting further instruction execution. This instruction also
loads the 68K’s status register with the value 270016, a special
code that initializes the 68K. We use this STOP instruction to
terminate programs running on the simulator.

An assembler directive tells the assembler something it needs
to know about the program; for example, the assembler direc-
tive ORG means origin and tells the assembler where instruc-
tions or data are to be loaded in memory. The expression
ORG $1000 tells the assembler to load instructions in memory

THE 68K ARCHITECTURE REVIEW

The 68K has 16 general-purpose 32-bit user accessible

registers. D0 to D7 are data registers and A0 to A7 are address

registers.An address register holds a pointer and is used in

address register indirect addressing.The only instructions that

can be applied to the contents of address registers are add,

subtract, move, and compare. Operations on the contents of

an address register always yield a 32-bit value whereas

operations on data registers can be 8, 16, or 32 bits.

Most 68K instructions are register to register, register to

memory, or memory to register. The following defines some

68K instructions.

Copy the low-order byte in D0 to D1(0:7).

Copy the 16-bit word in memory location ABC to D1(0:15).

Copy the 32-bit value in D0 to the memory location pointed at by address register A0.

Add the low-order byte in register D1 to the contents of memory location ABC.

Subtract 4 from the contents of the byte-wide memory location pointed at by A3.

Add the 32-bit contents of address register A1 to data register D5.

The # symbol indicates the immediate addressing mode; that is, the operand is a literal value.

Figure 6.1 Structure of an assembly

language program.

1 Remember that in the instruction STOP #$2700 the operand
is #$2700. The ‘#’ indicates a literal operand and
the ‘$’ indicates hexadecimal. The literal operand
00100111000000002 is loaded into the 68K’s status
register after it stops. The 68K remains stopped until it it
receives an interrupt.

MOVE P,D0 Copy contents of P to D0
ADD Q,D0 Add contents of Q to D0
MOVE D0,R Store contents of D0 in memory location R
STOP #$2700 Stop executing instructions1

230 Chapter 6 Assembly language programming

Figure 6.3 demonstrates what’s happening when the 68K
program in Fig. 6.1 is assembled by looking at the output pro-
duced by EASy68K. This listing has seven columns. The first
column is a 32-bit value expressed in hexadecimal form,
which contains the current memory address in which
instructions or data will be loaded. The next two columns are
the hexadecimal values of instructions or data loaded into the
current memory location. These are the values produced by
the assembler from instructions, addresses, and data in the
assembly language program. The fourth column contains the
line number that makes it easy to locate a particular line in
the program. The remaining right-hand columns in Fig. 6.3
are the instructions or assembler directives themselves
followed by any comment field.

starting at address 100016. We’ve used the value 100016 because
the 68K reserves memory locations 0 to 3FF16 for a special pur-
pose and 1000 is an easy number to remember.

The second origin assembler directive, ORG $2000, is
located after the code and defines the starting point of the
data area. We don’t need this assembler directive; without it
data would immediately follow the code. We’ve used it
because it’s easy to remember that the data starts at memory
location $2000.

An important role of assembler directives is in reserving
memory space for variables, presetting variables to initial val-
ues, and binding variables to symbolic names. Languages like C
call these operations declaring variables. We will be performing
assembly level actions similar to the following C declarations.

Figure 6.2 Anatomy of an assembly language instruction.

In this fragment of code the operation int z3 � 42;

reserves a 16-bit memory location for the variable called z3
and then stores the binary equivalent of 4210 in that location.
Whenever you use the variable z3 in the program, the com-
piler will automatically select its appropriate address in
memory. All this is invisible to the programmer. The follow-
ing demonstrates the relationship between 68K assembler
directives and the C code.

68K assembler directive C code equivalent

As you can see, the instruction MOVE D0,R is located
on line 12 and is stored in memory location 100C16.
This instruction is translated into the machine code
33C00000200416, where the operation code is 33C016 and the
address of operand R is 0000200416.

The symbol table below the program relates symbolic
names to their value. This information is useful when you are
debugging a program; for example, you can see that variable
P has the address 2000.

The assembler maintains a variable called the location
counter, which keeps track of where the next instruction or data
element is to be located in memory. When you write an ORG
directive, you preset the value of the location counter to that
specified; for example, ORG $1234 means load the following
instruction or data into memory at location 123416. Let’s look as
some of the other assembler directives in this program.

6.1 Structure of a 68K assembly language program 231

The define constant assembler directive DC loads a constant
in memory before the program is executed; that is, it provides a
means of presetting memory locations with data before a
program runs. This directive is written DC.B to store a byte,
DC.W to store a word, and DC.L to store a longword. In the
program of Fig. 6.3, the assembler directive P DC.W 2 places
the value 2 in memory and labels this location ‘P’. Because
this directive is located immediately after the ORG $2000

assembler directive, the integer 2 is located at memory loca-
tion 200016. This memory location (i.e. 200016) can be
referred to as P. When you wish to read the value of P (i.e. the
contents of memory location 200016), you use P as a source
operand; for example, MOVE P,D0. Because the size of the
operand is a word, the value 00000000000000102 is stored in
location 200016. Figure 6.4 demonstrates the effect of this
assembler directive.

The next assembler directive, Q DC.W 4, loads the con-
stant 4 in the next available location—200216. Why 200216

and not 200116? Because the operands are word sized (i.e. 16

bits) and the 68K’s memory is byte addressed. Each word
occupies two bytes—P takes up 200016 and 200116.

The define storage directive (DS) tells the assembler to
reserve memory space and also takes a .B, .W, or .L qualifier.
For example, R DC.W 1 tells the assembler to reserve a word
in memory and to equate the name of the word with ‘R’. The
difference between DC.B N and DS.B N is that the former
stores the 8-bit value N in memory, whereas the latter reserves
N bytes of memory by advancing the location counter by N.

The final assembler directive, END $1000, tells the assem-
bler that the end of the program has been reached and that
there’s nothing else left to assemble. The parameter taken by
the END directive is the address of the first instruction of the
program to be executed. In this case, execution begins with
the instruction at address 100016.

The assembler directive EQU equates a symbolic name to a
numeric value. If you write Tuesday EQU 3, you can use the
symbolic name ‘Tuesday’ instead of its actual value, 3. For
example, ADD #Tuesday,D0 is identical to ADD #3,D0.

Figure 6.3 Assembling a program.

232 Chapter 6 Assembly language programming

EASy68K simulator, which allows you to cross-assemble a 68K
program on a PC and then execute it on a PC. The PC simu-
lates the behavior of a 68K processor and the basic operating
system function required to perform simple input and output

activities such as reading from the
keyboard and writing to the screen.
Figure 6.5 gives a screen dump of a
session with the simulator.

6.1.2 Using the
cross-assembler

The following 68K assembly language
program illustrates what an assembler
does. This program is designed only to
demonstrate the use of assembler direc-
tives; it does not perform any useful

2000

2002

2004

(a) ORG $2000 sets
the location counter
to 2000.

Memory

2000

2002

2004

2000

2002

2004

$0002

(b) P DC.W 2
puts $0002 in the
current location
and moves the
location counter to
the next free location.

Memory Memory

2000 $0002 P

(c) Location $2000
has the symbolic
value P. Using
‘P’ in the program
is the same as using
$2000.

Figure 6.4 The effect of a define constant assembly directive.

Figure 6.5 Output from the Easy68K simulator.

We now provide another example of the use of assembler
directives.

Half the fun in writing assembly language programs is run-
ning and debugging them. In this chapter we will be using the

6.1 Structure of a 68K assembly language program 233

computation. The source program is followed by its assem-
bled listing file. Examine both the source code and listing file,
and try to follow what is happening.

The first column provides the line number. The second
column defines the location in memory into which data and
instructions go. The third column contains the instructions
and the constants generated by the assembler. The remainder
is the original assembly language program. Consider line 8.

The constant stored in memory is TEST�NAME. In line 2
TEST was equated to 6 (i.e. the assembler automatically sub-
stitutes 6 for TEST). But what is ‘NAME’? On line 6, NAME is

used as a label and refers to the location in memory of the
code on this line. This address is $0408. Therefore, the
constant to be stored is 6 � $0408 � $040E. You can see that
this really is the value stored from column 3 in line 8. Note
that line 10 has the location $0418 and not $0417 because all

word and longword addresses must be even. The following
notes will help you understand the assembly process.

The following listing file was produced by a cross-assembler
from the above source code.

234 Chapter 6 Assembly language programming

The simulator system requires an ORG statement at the
beginning of the program to define the point at which code is
loaded into the simulated memory.

You can halt a 68K by executing the STOP #data instruc-
tion, which stops the 68K and loads the 16-bit value data
into its status register. By convention we use the constant
$2700 (this puts the processor in the supervisor mode, turns
off interrupt requests, and clears the condition code flags).

Operations on address registers always yield longword results
because an address register holds a 32-bit pointer. A .W opera-
tion is permitted on an address register but the result is treated
as a two’s complement value and sign-extended to 32 bits.

Because the END address assembler directive terminates
the assembly process, no instructions beyond END point are
assembled.

6.2 The 68K’s registers

The 68K has a byte-addressable architecture. Successive bytes
are stored at consecutive byte addresses 0, 1, 2, 3 . . . , succes-
sive words are stored at consecutive even addresses 0, 2, 4,
6, . . . , and successive 32-bit longwords are stored at addresses

BEGINNER’S ERRORS

1. Embedded data

You should not locate data in the middle of a section of code.

The microprocessor executes instructions sequentially and will

regard embedded data as instructions. Put data between the

end of the executable instructions of a program and the END
assembler directive as the following demonstrates.

Although this code is legal, it is not good practice (for the

beginner) to mix code and data.

2. Initialization

I saw a program beginning with the operation

MOVE.B (A0),D0 which loads D0 with the byte pointed at

by address register A0. It failed because the student had not

defined an initial value of A0.You have to set up A0 before you

can use it or any other variable by, for example,

3. Subroutine call

You call a subroutine with a BSR or a JSR instruction.This is

the only way you call a subroutine.You cannot call a

subroutine with a conditional branch (e.g. BEQ, BNE, BCC,

etc.).

The only way that you can locate data in the middle of a pro-

gram is by jumping past it like this:

MOVE.B D3,D4 The last instruction
STOP #$2700 This stops the 68K dead in its tracks

Data1 DC.B ’This is data’
Test DS.B 4 Save 4 bytes of storage

END $400 The END directive is that last item in a program

MOVE.B D3,D4 An instruction
BRA Continue Jump past the data

Data1 DC.B ’This is data’ Put the string here
Test DS.B 4 Save 4 bytes of storage
Continue ADD.B #1,D6 Back to the instructions...

LEA Table,A0 A0 points to “Table”
.
MOVE.B (A0),D0 Pick up a byte from Table
.

Table DC.B 1,2,3,7,2 Here’s the table

4. Misplaced END directives

The END directive indicates the end of the program. No

instruction or assembler directive may be placed after the END
directive.The END must be followed by the address of the first

instruction to be executed.

6.2 The 68K’s registers 235

0, 4, 8, Figure 6.6 illustrates how the 68K’s memory space
is organized.

Figure 6.6 poses an interesting question. If you store a
32-bit longword at, say, memory location $1000, where do
the 4 bytes go? For example, if the longword is $12345678,
does byte $12 go into address $1000 or does byte $78 go into
address $1000?

The 68K stores the most-significant byte of an operand at
the lowest address (in this case $12 is stored at $1000). This
storage order is called Big Endian (because the ‘big end’ of a
number goes in first). The term Big Endian has been bor-
rowed from Gulliver’s Travels. Intel processors are Little
Endian and store bytes in the reverse order to the 68K
family.

The 68K stores the most-significant byte of a word in bits
d08 to d15 at an even address and the least-significant byte in
bits d00 to d07 at an odd address. Executing MOVE.W
D0,1234, stores bits d00 to d07 of D0 at byte address 1235
and bits d08 to d15 of D0 at byte address 1234. To avoid con-
fusion between registers and bits, we use ‘D’ to indicate a reg-
ister and ‘d’ to indicate a bit. We introduced the 68K’s
registers in the previous chapter; now we examine some
of their features. In Fig. 6.6 we’ve labeled the individual bytes
of the 16-bit and 32-bit memory space in blue to demon-
strate that the most-significant byte of a word or longword is
at the low address.

6.2.1 Data registers

The 68K has eight general-purpose data registers, numbered
D0 to D7.Any operation that can be applied to data register Di
can also be applied to Dj. No special-purpose data registers
are reserved for certain types of instruction. Some micro-
processors do not permit all instructions to be applied to each

of their registers. In such cases, learning assembly language is
rather like learning to conjugate irregular foreign verbs.

The 68K’s data registers are written D0 to D7. To refer to
the sequence of consecutive bits i to j in register Dn we write
Dni:j. For example, we indicate bits 8 to 31, inclusive, of D4 by
D4(8:31). This notation is an extension of RTL and is not part
of the 68K’s assembly language.

When a byte operation is applied to the contents of a data
register, only bits d00 to d07 of the register are affected.
Similarly, a word operation affects bits d00 to d15 of the regis-
ter. Only the lower-order byte (word) of a register is affected
by a byte (word) operation. For example, applying a byte
operation to data register D1 affects only bits 0 to 7 and leaves
bits 8 to 31 unchanged. CLR.B D1 forces the contents of D1
to XXXXXXXXXXXXXXXXXXXXXXXX00000000, where
the Xs represent the old bits of D1 before the CLR.B D1 was
executed. If [D1] � $12345678 before the CLR.B D1, then
[D1] � $12345600 after it.

Further examples should clarify the action of byte, word,
and longword operations. In each case we give the 68K form
of the instruction and its definition in RTL. We use slice nota-
tion to indicate a range of bits.

Figure 6.6 The 68K’s memory

space.

Assembly from RTL definition

If the initial contents of D0 and D1 are $12345678 and
$ABCDEF98, respectively, the ADD operation has the follow-
ing effects on the contents of D1 and the carry bit, C.

236 Chapter 6 Assembly language programming

you use an address register to calculate the location of the
next number in the series.

Because the contents of an address register are considered
to be a pointer to an item in memory, the concept of separate
independent fields within an address register is quite mean-
ingless. All operations on address registers yield longword
values. You can apply a .L operation to an address register
but not a .B operation. No instruction may operate on the
low-order byte of an address register. However, word opera-

tions are permitted on the contents of
address registers because the 16-bit result
of a .W operation is automatically sign-
extended to 32 bits. For example, the oper-
ation MOVEA.W #$8022,A3 has the
effect:

The 16-bit value $8022 is sign extended to $FFFF8022.
Similarly, MOVEA.W #$7022,A3 has the effect:

The concept of a negative address may seem strange. If you
think of a positive address as meaning forward and a negative
address as meaning backward, everything becomes clear.
Suppose address register A1 contains the value 1280. If
address register A2 contains the value �40 (stored as the
appropriate two’s complement value), adding the contents of
A1 to the contents of A2 by ADDA.L A1,A2 to create a com-
posite address results in the value 1240, which is 40 locations
back from the address pointed at by A1.

We conclude with an example of the use of address
registers. Address register A0 points to the beginning of a
data structure made up of 50 items numbered from 0 to 49.
Each of these 50 items is composed of 12 bytes and data
register D0 contains the number of the item we wish

The state of the carry bit and other bits of the CCR are
determined only by the result of operations on bits 0–7 for a
byte operation, by the result of operations on bits 0–15 for a
word operation, and by the result of operations on bits 0–31
for a longword operation.

One of the most common errors made by 68K program-
mers is using inconsistent size operations on a data register, as
the following example demonstrates.

MNEMONICS FOR OPERATIONS ON ADDRESS REGISTERS

Although some of the operations that can be applied to the

contents of data registers can also be applied to the contents

of address registers, the 68K’s assembler employs special

mnemonics for operations that modify the contents of an

address register. The following examples illustrate some of

these mnemonics. In each case, the destination operand is an

address register

Some assemblers for the 68K permit only the use of the ADD
mnemonic for both ADD.W A1,D1 and for ADD.W D1,A1.

Other assemblers demand that the programmer write ADDA.W
D1,A1 and will reject ADD.W D1,A1. The purpose of forcing

programmers to write MOVEA,ADDA, and SUBA instead of

MOVE, ADD, and SUB when specifying address registers as

destinations is to remind them that they are dealing with

addresses and that these addresses are

treated differently to data values (e.g.

because of sign extension). Practical applica-

tions of the 68K’s address registers are pro-

vided when we discuss addressing modes.

This example implements the operation IF ([XYZ]–5)�

12 THEN But note that the operand XYZ is created as a
byte value and yet it is compared with a word value. This frag-
ment of code might work correctly sometimes if the contents
of bits 8 to 15 of D0 are zero. However, if these bits are not
zero, this code will not operate correctly.

6.2.2 Address registers

An address register holds the location of a variable. Registers
A0–A6 are identical in that whatever we can do to Ai, we can
also do to Aj. Address register A7 is also used as a stack
pointer to keep track of subroutine return addresses. We
describe the use of the stack point in detail later in this
chapter.

Address registers sometimes behave like data registers. For
example, we can move data to or from address registers and
we can add data to them. There are important differences
between address and data registers; operations on address
registers don’t affect the status of the condition code register.
If you are in the process of adding up a series of numbers, you
shouldn’t have to worry about modifying the CCR every time

6.3 Features of the 68K’s instruction set 237

processing operations, you can perform any data manipula-
tion you require. However, the 68K provides some special-
purpose data movement instructions to generate more
compact and efficient code. The following three instructions
provide enhanced data movement capabilities.

The EXG instruction is intrinsically a longword opera-
tion that exchanges the contents of two registers (see
Fig. 6.8(a)). EXG may be used to transfer the contents of an

Figure 6.7 Using an

address register to access

a data element.

to access. Figure 6.7 illustrates this data structure. Suppose
we need to put the address of this item in A1. In what
follows use the operation MULU #n,D0, which multiplies the
16-bit low-order word in D0 by n and puts the 32-bit product
in D0.

We need to find
where the required
item falls within
the data structure.
In order to do this
we multiply the
contents of D0 by 12 (because each item takes up 12 bytes).
Then we add this offset to the contents of A0 and deposit the
result in A1. That is,

6.3 Features of the 68K’s
instruction set

We’ve already described the 68K’s basic operations. We now
introduce some of the 68K’s other instructions and demon-
strate how they are used and what happens as they are exe-
cuted on a simulator.

6.3.1 Data movement instructions

The MOVE instruction is the most common data movement
instruction. Indeed, by using a MOVE in conjunction with data

Name

Exchange

Swap
Load effective address

Assembly form RTL definition

address register into a data register and vice versa. SWAP
exchanges the upper- and lower-order words of a given data
register. The LEA (load effective address) instruction gener-
ates an address and puts it in an address register.

Let’s write a program that executes some of these data
movement instructions and then use the simulator to observe
what happens as we trace through it. This program is just a
random selection of data movement instructions—it doesn’t
actually do anything.

238 Chapter 6 Assembly language programming

We are going to use the simulator to run this program and
observe the contents of the simulated 68K’s registers as the
instructions are executed one by one. Figure 6.9 displays the
contents of the simulated computer’s registers immediately
after the program is loaded.2 Note that the 68K has two A7
address registers labeled SS and US in all simulator output.
SS is the supervisor state stack pointer A7 and US is the user
state stack pointer A7. When the 68K is first powered up, the

supervisor stack pointer is selected (we will discuss the differ-
ence between these later). Throughout this chapter, all refer-
ences to the stack pointer refer to the supervisor stack pointer,

This source file produces the following listing file when
assembled.

2 This is the output from the Teesside simulator, which is a text-based
simulator unlike EASy68K which is Windows based. This text uses both
simulators. EASy68K is better for running programs in a debug mode, the
Teesside simulator is better for creating files that can be used in a book.

6.3 Features of the 68K’s instruction set 239

SP (i.e.A7). In Fig. 6.9, PC defines the current value of the pro-
gram counter, SR the status register containing the 68K’s CCR,
and X, N, Z, V, and C are the CCR’s flag bits.

The last line of the block of data in Fig. 6.9 is the
mnemonic of the next instruction to be executed. Because the
simulator doesn’t use symbolic names, all addresses, data val-
ues, and labels are printed as hexadecimal values. In Fig. 6.9,
the program counter is pointing at location 40016 and the
instruction at this address is MOVE.L #$12345678,D0.

We now execute this program, instruction by instruction.
The purpose of this exercise is to demonstrate the use of the
simulator and to show how each instruction affects the 68K’s
internal registers as it is executed. To help you appreciate what
is happening, registers that have changed are depicted in blue.

Figure 6.9 Structure of the output from

the simulator.

The first instruction, MOVE.L #$12345678,D0, has been
executed. The only registers that have changed are D0 and the
program counter. The PC has increased by 6 because the
instruction had a 2-byte op-code and a 4-byte immediate
value. The shortest 68K instruction is 2 bytes and the longest
is 10 bytes. The next instruction to be executed, MOVE.B
D0,D1, copies the low-order byte of D0 to D1.

240 Chapter 6 Assembly language programming

As you can see, only the least-significant byte of D0 has
been copied to D1. The next two instructions, MOVE.W

D0,D2 and MOVE.L D0,D3, demonstrate the transfer of a
word and a longword, respectively.

The next instruction,EXG D0, A0, exchanges the contents of
a pair of registers to give

The SWAP instruction swaps the upper and lower order
words of a data register.

The MOVEA.L Data,A1 and LEA Data,A1 instructions
have the following effects.

6.3 Features of the 68K’s instruction set 241

AMOVEA.L Data,A1 instruction loads address register A1
with the contents of the operand Data, whereas LEA Data,
A1 loads A1 with the address of the operand (the significance
of this will become clear later). We now look at instructions
that do more than move data from one place to another.

6.3.2 Using arithmetic operations

We’ve already encountered arithmetic instructions. Now we
demonstrate their use by writing a program to calculate
Z � (X2 � Y2)/(X � Y) where X and Y are 16-bit unsigned
integers. The 68K provides 16-bit x 16-bit multiplication
with a 32-bit product. The following program uses unsigned
multiplication and division (MULU and DIVU). We will
assume that X and Y are positive values and that X � Y.

Remember that you can’t perform a memory-to-memory
subtraction—you have to load one of the operands onto a
data register. We assemble this program to create a listing file.

3 The DIVU D2,D1 instruction divides the 32-bit value in D1 by the
16-bit value in D2. The 16-bit quotient is placed in the low-order word of
D1 and the 16-bit remainder is placed in the upper-order word of D1.

242 Chapter 6 Assembly language programming

We can use the simulator to run this program line by line
and observe its execution. If we examine memory initially,
we get.

The first six digits 000500 give the first memory location
on the line, and the following 16 pairs of digits give the con-
tents of 16 consecutive bytes starting at the first location.
Location 50016 contains 3216 � 50, and location 50216 con-
tains 0C16 � 12. These values were set up by the two DC.W
(define constant) assembler directives.

The state of the system prior to the execution of the first
instruction is

We are going to step through this program a line at a time
and display the contents of the registers as we execute each
instruction. Values that change are displayed in blue to make
the program easier to follow.

The instruction MOVE.W $0500,D0 has been executed
and the contents of memory location 50016 have been copied
into data register D0.

We have just executed MULU D0,D0 and the contents of D0
is 9C416. This is 50 � 50 � 2500 � 9C416.

6.3 Features of the 68K’s instruction set 243

We have now calculated X2 � Y2 and deposited the result
in data register D1.

At this stage D1 contains C16
2 � 12 � 12 � 144 � 9016.

The 68K instruction DIVU D2,D1 divides the 32-bit con-
tents of data register D1 by the lower-order 16 bits in data
register D2. The result is a 16-bit quotient in the lower-order
word of D1 and a 16-bit remainder in the upper-order word
of D1. That is, A5416/9C416 � 4516 remainder 1616. The con-
tents of D1 are $00160045.

Next Page

244 Chapter 6 Assembly language programming

The MOVE.W D1,$0504 stores the low-order 16-bit result
in D1 in memory location 50416 (i.e. Z). We’ve used a
wordlength operation and have discarded the remainder in
the upper-order word of D1. Now we look at the contents of
memory location 500 onward.

000500 00 32 00 0C 00 45 00 00 00 00 00 00 00 00 00 00.

As you can see, memory location 50416 now contains the
integer result of (502 � 122)(50 � 12) � 4516 � 69.

6.3.3 Using shift and logical operations

We now demonstrate the use of shift and logical operations.
Logical shifts enable you to extract specific bits in a word.
Consider an 8-bit byte in D0 with the format xxyyyzzz, where
the xs, ys, and zs are three groups of bits that have been
packed into a byte. Suppose we wish to extract the three ys
from this byte.

logical operation AND.B #%00000111,D0 to get 00000yyy
in D0.

By using the NOT, AND, OR, and EOR instructions, you can
perform any logical operations on a word. Suppose you wish
to clear bits 0, 1, and 2, set bits 3, 4, and 5, and toggle bits 6 and
7 of the byte in D0. You could write

If [D0] initially contains 01010101, its final contents will
be 10111000. We will look at a more practical application of
bit manipulation after we have covered branch operations in
a little more detail.

6.3.4 Using conditional branches

You can’t write programs without using the conditional
branches required to implement loops and other control
constructs. We now look at the branch again and demonstrate

SHIFT OPERATIONS—A REMINDER

The assembly language forms of the 68K’s shift instructions are

The integer n indicates the number of places to be shifted.

These instructions can be applied to bytes, words, and long-

words. If you shift a word by more than one place, the end

value of the carry bit is determined by the final shift. Consider

the following examples:

11001100 LSL.B #1,D0 10011000
11001100 LSR.B #1,D0 01100110

11001100 ASL.B #1,D0 10011000
11001100 ASR.B #1,D0 11100110

1010111100001100 ASR.W #3,D0 1111010111100001
0011100001111101 ASR.W #4,D0 0000001110000111

11001110 ROL.B #1,D0 10011101
11001110 ROR.B #1,D0 01100111
11110000 ROL.B #2,D0 11000011

Initial contents of D0 Operation Final contents of D0

The first instruction LSR.B #3,D0 shifts xxyyyzzz right
to get 000xxyyy in D0. We remove the xs by means of the

its use. Consider the following example of an addition fol-
lowed by a branch on negative (minus).

Previous Page

6.3 Features of the 68K’s instruction set 245

Both these fragments of code have the same effect as far as
the BMI ERROR is concerned. However, the second case might
prove confusing to the reader of the program who may well
imagine that the state of the CCR prior to the BMI ERROR is
determined by the EXG D3,DA instruction.

Example 1 Suppose you want to write a subroutine to con-
vert a 4-bit hexadecimal value into its ASCII equivalent.

The operation SUB D1,D2 subtracts the contents of D1
from D2, deposits the results in D2, and updates the condi-
tion code register accordingly.

When the BMI instruction is executed, the branch is taken
(the THEN part) if the N-bit of the CCR is set because the
addition gave a negative result. The
branch target is the line labeled by ERROR
and the intervening code between BMI
ERROR and ERROR . . . is not executed.

If the branch is not taken because the
result of SUB D1,D2 was positive, the
code immediately following the BMI

ERROR is executed. This code corresponds
to the ELSE part of the IF THEN ELSE
construction.

Unfortunately, there’s an error in this example. Suppose
that the subtraction yields a positive result and the ELSE part
is executed. Once the ELSE code has been executed, we fall
through to the THEN part and execute that too, which is not
what we want to do. After the ELSE part has been executed, it’s
necessary to skip round the THEN part by means of an BRA
instruction. The unconditional branch instruction, BRA

EXIT forces the computer to execute the next instruction at

Figure 6.10 Flow of control for an IF . . . THEN . . . ELSE construct.

JOIN

Start

IF

THEN ELSE

true false

SUB D1,D2
BMI ERROR
.) ELSE part
.)
BRA EXIT Skip past the THEN part

ERROR .)
.) THEN part
.)

EXIT

ASCII character Hexadecimal value Binary value

0 30 0000

1 31 0001

2 32 0010

3 33 0011

4 34 0100

5 35 0101

6 36 0110

7 37 0111

8 38 1000

9 39 1001

A 41 1010

B 42 1011

C 43 1100

D 44 1101

E 45 1110

F 46 1111

Table 6.1 Relationship between ISO/ASCII characters and hexa-

decimal values.

EXIT and skips past the ‘ERROR’ clause. Figure 6.10 demon-
strates the flow of control for this program.

Remember we said earlier that not all the 68K’s instruc-
tions affect the CCR. For example, consider the following two
examples.

246 Chapter 6 Assembly language programming

Table 6.1 illustrates the relationship between the binary
value of a number (expressed in hexadecimal form) and its
ASCII equivalent (also expressed in hexadecimal form). For
example, if the internal binary value in a register is
00001010, its hexadecimal equivalent is A16. In order to
print the letter ‘A’ on a terminal, you have to transmit the
ASCII code for the letter ‘A’ (i.e. $41) to it. Once again,
please note that there is a difference
between the internal binary repre-
sentation of a number within a com-
puter and the code used represent the
symbol for that number. The number
six is expressed in 8 bits by the binary
pattern 00000110 and is stored in the
computer’s memory in this form. On
the other hand, the symbol for a six
(i.e. ‘6’) is represented by the binary
pattern 00110110 in the ASCII code.
If we want a printer to make a mark on paper corresponding
to ‘6’, we must send the binary number 00110110 to
it. Consequently, numbers held in the computer must
be converted to their ASCII forms before they can be
printed.

From Table 6.1 we can derive an algorithm to convert a
4-bit internal value into its ASCII form. A hexadecimal value
in the range 0 to 9 is converted into ASCII form by adding
hexadecimal 30 to the number. A hexadecimal value in the
range $A to $F is converted to ASCII by adding hexadecimal
$37. If we represent the number to be converted by HEX and
the number to be converted by ASCII, we can write down a
suitable algorithm in the form

The CMP source, destination subtracts the source
operand from the destination operand and sets the flag bits of
the CCR accordingly; that is, a CMP is the same as a SUB except
that the result is not recorded.

Example 2 Consider the following algorithm.

We perform two tests after the comparison CMP.B D0,D1.
One is a BNE and the other a BGE. We can carry out the two
tests in succession because there isn’t an intervening instruc-
tion that modifies the state of the CCR.

Although conditional tests performed by high-level
languages can be complex (e.g. IF X�Y�Z� 3t), the condi-
tional test at the assembly language level is rather more basic
as this example demonstrates.

Templates for control structures

We now represent some of the control structures of
high-level languages as templates in assembly language. A
template is a pattern or example that can be modified to suit
the actual circumstances. In each of the following examples,
the high-level construct is provided as a comment to the
assembly language template by means of asterisks in the
first column. The condition tested is [D0] � [D1] and the
actions to be carried out are Action1 or Action2. The
templates can be used by providing the appropriate test
instead of CMP D0,D1 and providing the appropriate
sequence of assembly language statements instead of
Action1 or Action2.

We can rewrite the algorithm as

This algorithm can be translated into low-level language as

6.3 Features of the 68K’s instruction set 247

248 Chapter 6 Assembly language programming

The case number I stored in D0 must be multiplied by 4
before it can be added to the address in A0. This action is
necessary because the cases numbers are consecutive integers
0, 1, 2, 3 while the addresses of the case handlers are consecu-
tive longword addresses (i.e. A0 � 0, A0 � 4, A0 � 8, . . .).

Putting it all together

Consider a system with eight single-bit inputs (P, Q, R, S, T, U,
V, W) and eight single-bit outputs (A, B, C, D, E, F, G, H). We’re
not interested in the details of input/output techniques here
and assume that reading a memory location whose address is
INPUT loads the values of P to W into a data register. Similarly,
writing the contents of a data register to memory location
OUTPUT sets up the eight output bits A to H. The formats of
the input and output control words are defined in Fig. 6.11.

Suppose that a system has to implement the following
control operation.

We have to translate this algorithm into 68K code.
The above action involves the testing of three bits of INPUT
(P, Q, and S), and then setting or clearing two bits of
OUTPUT (C and E). The bits of OUTPUT not involved in
the algorithm must not be affected in any way by operations
on bits C and E.

Let’s look again at the compare instruction,CMP, that com-
pares two operands and sets the bits of the CCR accordingly.
CMP.B #%0001000,D0 compares the contents of D0 with
the value 000100002 by evaluating [D0] � 00010000. The
result is discarded, leaving the contents of D0 unaffected by
the CMP operation. Only the bits of the CCR are modified. If
D0 contains 00010000, the subtraction yields zero, setting

the Z (zero) flag of the CCR. The following operation,
BEQ TRUE, results in a branch to the instruction whose address
is labeled TRUE. Comparison instructions are of the form
CMP source,destination. The difference between CMP
Di,Dj and SUB Di,Dj is that the former evaluates Di � Dj

Memory

INPUT

OUTPUT

P Q R S T U V W

A B C D E F G H

8 bits

Figure 6.11 The memory map of two input/output ports.

6.4 Addressing modes 249

and throws away the result, whereas the latter evaluates
Di � Dj and puts the result in Dj.

The label FALSE is a dummy label and is not in any way
used by the assembly program. It merely serves as a reminder
to the programmer of the action to be taken as a result of the
test being false. At the end of this sequence is an instruction
BRA EXIT. A BRA (branch) is equivalent to a GOTO in a high-
level language and causes a branch round the action taken if
the result of the test is true.

6.4 Addressing modes

Addressing modes include all the ways of specifying the loca-
tion of an operand used by an instruction. We encountered
the fundamental addressing modes, absolute, immediate, and
address register indirect, in the previous chapter. Now we
demonstrate how some of these are used in assembly lan-

guage programming and introduce a wealth of variations on
address register indirect, addressing.

6.4.1 Immediate addressing

Application of immediate addressing

As an arithmetic constant

This sequence of instructions is equivalent to the high-level
language construct NUM � NUM � 22 and increases the value
in memory location NUM by 22. That is, [NUM]←[NUM] �

22. The 68K can, in fact, add an immediate operand to a
memory location directly without using a data register by

POINTS TO REMEMBER

The assembly language symbol % indicates that the following

number is interpreted as a binary value and the symbol $

means that the following number is interpreted as a

hexadecimal value. AND.B #%11000000,D0 tells you much

more than the hexadecimal and decimal forms of the operand,

AND.B #$C0,D0 and AND.B #192,D0, respectively.

The symbol # informs the assembler that the following

value is not the address of a memory location containing the

operand, but the actual operand itself. AND.B
#%11000000,D0 means calculate the logical AND

between the binary value 11000000 and the contents of D0.

If we had made a mistake in the program and had written

AND.B %11000000,D0 (rather than AND.B
#%11000000,D0), the instruction would have ANDed D0

with the contents of memory location %11000000

(i.e. location 192).

REVIEW OF IMMEDIATE ADDRESSING

The symbol # is not part of the instruction. It is a message to

the assembler telling it to select that code for MOVE that uses

the immediate addressing mode. Don’t confuse the symbol #

with the symbols $ or %.The $ indicates only that the following

number is hexadecimal and the % indicates that the following

Assembly language form RTL form Name

MOVE 1234,D0 [D0]← [1234] absolute addressing
MOVE #1234,D0 [D0]← 1234 immediate addressing
ADD 1234,D0 [D0]← [D0]+[1234] absolute addressing
ADD #1234,D0 [D0]← [D0]+1234 immediate addressing

Immediate addressing allows the programmer to specify a

constant as an operand.The value following the op-code in an

instruction is not a reference to the address of an operand but

is the actual operand itself. The symbol # precedes the

operand to indicate immediate addressing.The four instructions

below demonstrate how absolute and immediate addressing

modes are represented in assembly language and in RTL.

number is binary.The instructions MOVE #25,D0,

MOVE #$19,D0, and MOVE #%00011001,D0 have identical

effects.

Immediate addressing is used when the value of the

operand required by an instruction is known at the time the

program is written; that is, it is used to handle constants as

opposed to variables. Immediate addressing is faster than

absolute addressing, because only one memory

reference is required to read the instruction during the fetch

phase.When the instruction MOVE #5,D0 is read from

memory in a fetch cycle, the operand, 5, is available

immediately without a further memory access to

location 5, to read the actual operand.

250 Chapter 6 Assembly language programming

means of the special add immediate instruction ADDI. For
example, ADDI #22,NUM adds the constant value 22 to the
contents of the location called NUM.

In a comparison with a constant
Consider the test on a variable, NUM, to determine whether it
lies in the range 7 � NUM � 25.

As a method of terminating loop structures.
A typical loop structure in both Java and C is illustrated
below.

such as N�1, the assembler evaluates it and replaces it by the
calculated value—in this example #N�1 is replaced by 11. We
use the comparison with N � 1, because the counter is
incremented before it is tested. On the last time round the
loop, the variable I becomes N � 1 after incrementing and the
branch to NEXT is not taken, allowing the loop to be
exited. This loop construct can be written in a more elegant
fashion, but at this point we’re interested only in the applica-
tion of immediate addressing as a means of setting up
counters.

6.4.2 Address register indirect
addressing

In address register indirect addressing, the operand is
specified indirectly via the contents of a pointer register. RISC
processors allow any register to act as a pointer, whereas the
68K reserves address registers for this function. The box
provides a review of this addressing mode.

Using address register indirect addressing

to access a table

Figure 6.12 demonstrates how you’d add up a sequence
of numbers using ADD.B (A0), D0. The computer reads
the contents of address register A0 (i.e. 100016) and then reads
the contents of memory location 100016 (i.e. 25). This
operand is then added to the contents of D0.

SPECIAL 68K IMMEDIATE OPERATIONS

The 68K provides three instructions with immediate source

operands, which allow you to perform an operation directly on

the contents of a memory location.These operations can be

called data-to-memory and are indicated by appending an I
to the instruction mnemonic.The three instructions with this

facility are ADDI, SUBI, and CMPI. Consider

The high-level language FOR construct may readily be trans-
lated into 68K assembly language. In the following example,
the loop counter is stored in data register D0.

At the end of the loop, the counter is incremented by
ADD #1,D0. The counter, D0, is then compared with its
terminal value by CMP #N�1,D0. If you write an expression

We can add 100 numbers by means of address register indi-
rect addressing in the following way. This isn’t efficient
code—we’ll write a better version later.

6.4 Addressing modes 251

REVIEW OF ADDRESS REGISTER INDIRECT ADDRESSING

Register indirect addressing specifies the address of an

operand by the contents of an address register. The diagram

illustrates the effect of MOVE.B (A0),D0 when

[A0] � 100016. The computer first reads the contents of

address register A0 and then reads the contents of memory

pointed at by A0.The contents of A0 are 1000, so the

processor reads the contents of memory location 1000 to get

the actual operand, 25.

The following instructions illustrate address register

indirect addressing and provide RTL definitions for the

action to be carried out, together with a plain language

description.

Some texts call this addressing mode indexed addressing or

modifier-based addressing.The manufacturers of the 68K

reserve the term indexed addressing to indicate a particular

variant of address register indirect addressing in which the

effective address of an operand is calculated by adding the

contents of two registers.

Address register
A0 points to the location
of the operand

A0

D0

1000

0FFE

0FFF

1000

1001

1002

1003

1004
This is the
location pointed
at by A0.1005

25

25

MOVE (A0),D0 [D0] ← [[A0]] Move the contents of the memory pointed at by A0 to D0

MOVE D1,(A2) [[A2]] ← [D1] Move the contents of D1 to the location pointed at by A2

ADD (A1),D2 [D2] ← [D2] + [[A1]] Add the contents of the location pointed at by A1 to the
contents of D2

MOVE (A1),(A2) [[A2]] ← [[A1]] Move the contents of the location pointed at by A1 to the
location pointed at by A2

Assembly language RTL definition Description

The pointer in address register A0 is incremented by 2 on each
pass round the loop—the increment of 2 is required because the

memory elements are words and each word occupies 2 bytes in
memory. We can express this program in a more compact way.

252 Chapter 6 Assembly language programming

4 The LEA or load effective address instruction loads an address regis-
ter with an address. The effect of LEA NUM1,A0 is to load A0 with the
address NUM1 (and not the contents of NUM1). This instruction is
equivalent to MOVEA.L #NUM1,A0. The LEA instruction doesn’t
require a # symbol to indicate a literal operand because the source
operand is always an address.

The 68K’s decrement and branch instruc-
tion DBRA D1, LOOP implements a loop. This
instruction subtracts 1 from the contents of D1
and branches back to the line labeled by LOOP.
If, however, D1 is decremented and goes from 0
to �1, the loop is not taken and the next instruc-
tion in sequence is executed. Because the branch
terminates on �1 rather than 0, loading D1 with
N causes DBRA D1,LOOP to execute N�1 times.

Address register indirect addressing with displacement

A more general form of the 68K’s address register indirect
addressing mode is called the address register indirect address-
ing mode with displacement. The effective address is written

d16(Ai), where d16 is a 16-bit constant and Ai an address
register. The effective address of an operand is calculated by
adding the contents of the address register specified by
the instruction to the signed two’s complement constant that
forms part of the instruction. Figure 6.13 illustrates how the
effective address is calculated for the instruction
MOVE.B 4(A0),D0. Some 68K simulators permit you to
write either MOVE.B 4(A0),D0 or MOVE.B (4,A0),D0.

We can define MOVE d16(A0),D0 in RTL as
[D0]←[d16 � [A0]], where d16 is a 16-bit two’s comple-
ment value in the range �32K to 32K. This constant is called
a displacement or offset because it indicates how far the
operand is located from the location pointed at by A0.
The displacement can be negative; for example;
MOVE.B -4(A0),D0 specifies an operand 4 bytes back from
the location pointed at by A0.

Why would you wish to use this addressing mode?
Consider the data structure of Fig. 6.14 where three variables
P, Q, and R, have consecutive locations on memory. If we load
address register A0 with the address of the first variable, P, we

can access each variable via the pointer
in A0.

In this fragment of code we define
the displacements P, Q, and R as 0, 1,
and 2, respectively.

0FFE

0FFF

1000

1001

1002

1003

1004

1005

Address register A0 points
at memory location 1000

A0

D0

12

37

25

Initial value of D0

Final value of D0

1000

The effect of
ADD.B (A0),D0
when A0 contains 1000,
D0 contains 12 and
memory location 1000
contains 25.

Figure 6.12 Using address register indirect addressing.

A0

1000
0FFF

1000

1001

1002

1003

1004

0

1

2

Offset with respect
to A0

P

Q

R

Figure 6.14 Using address register indirect addressing with

displacement.

A0

1000

D0

Displacement = + 4

0FFE
0FFF
1000
1001
1002
1003
1004
100515

Effect of MOVE.B 4(A0),D0
The location accessed
is 4 bytes on from that
pointed at by A0

Offset

+0

+1

+2

+3

+4

Figure 6.13 An illustration of address register indirect

addressing with displacement.

6.4 Addressing modes 253

This code adds two numbers and stores their sum in
memory. But where in memory? The location of the three
numbers is Block � P, Block � Q, and Block � R, respec-
tively. Because the value of Block can be changed by the pro-
grammer, we can locate the variables P, Q, and R in any three
consecutive locations anywhere in memory. Why would we
want to do that? If we access variables by specifying their
location with respect to a pointer, we can move the program
about in memory without having to recalculate all addresses.

Using address register indirect addressing with

displacement

Let’s look at an example of this addressing mode that involves
vectors. A vector is composed of a sequence of components;
for example, the vector X might be composed of four elements
x0, x1, x2, x3. One of the most common of all mathematical
calculations (because it crops up in many different areas—
particularly graphics) is the evaluation of the inner or scalar
product of two vectors. Suppose A and B are two n-compo-
nent vectors; the inner product S, of A and B, is given by

If A � (1, 3, 6) and B � (2, 3, 5), the inner product S is
given by 1 ⋅ 2 � 3 ⋅ 3 � 6 ⋅ 5 � 41. Consider the case in which
the components of vectors A and B are 16-bit integers.

S � �ai · bi � a0 · b0 � a1 · b1 � … � an�1 · bn�1

The instruction MULU <ea>,Dimultiplies the 16-bit word
at the effective address specified by <ea> by the lower-order
word in Di. The 32-bit longword product is loaded into
Di(0:31).MULU operates on unsigned values and uses two 16-bit
source operands to yield a 32-bit destination operand. As the
68K lacks a clear address register instruction, we have to use
either MOVEA.L #0,A0 or the faster SUBA.L A0,A0 to
clear A0.

Note the instruction CMPA.L #2*N,A0 containing the
expression 2*N, which is automatically evaluated by the
assembler. The assembler looks up the value of N (equated to
$10) and multiples it by 2 to get $20. Consequently, the
assembler treats CMPA.L #2*N,A0 as CMPA.L #$20,A0.

Variations on a theme

The 68K supports two variations on address register indirect
addressing. One is called address register indirect addressing
with predecrementing and the other is called address register
indirect addressing with postincrementing. The former
addressing mode is written in assembly language as �(Ai)

and the latter (Ai)�. Both these addressing modes use
address register indirect addressing to access an operand
exactly as we’ve described. However, the postincrementing
mode automatically increments the address register after it’s
been used, whereas the predecrementing mode automatically
decrements the address register before it’s used. Figure 6.15

demonstrates the operation
ADD.B(A0)�,D0. This
instruction adds the contents of
the location pointed at by A0
(i.e. P) to the contents of data
register D0. After A0 has been
used to access P, the value of A0
is incremented to point at the
next element, Q.

Address register indirect
addressing is used to access
tables. If we access an item by
MOVE.B (A0),D0, the next
item (i.e. byte) in the table can
be accessed by first updating
the address pointer, A0, by
ADDA #1,A0 and then repeat-
ing the MOVE.B (A0),D0. The
68K’s automatic postincre-
menting mode increments an
address register after it has been
used to access an operand. This
addressing mode is indicated by
(Ai)�. Consider the following
examples of address register
indirect addressing with post
incrementing.

Before After

A0

P

Q

P

Q

N

D0 D0

A0 N–1

N

N +1

N +1

Effect of MOVE.B(A0)+,D0

(a) Initially, address register A0 points
at element P in memory which is accessed
and loaded into D0.

(b) After accessing elementP, A0 is incremented
to point at the next element, Q.

N–1

N

N+1

Figure 6.15 Address register indirect addressing with postincrementing.

254 Chapter 6 Assembly language programming

� (Ai), where the contents of Ai are decremented before
they are used to access the operand at the address pointed at
by Ai. As above, the predecrement is by 1, 2, or 4, depending
on whether the operand is a byte, word, or longword,
respectively.

Predecrementing and postincrementing are complemen-
tary operations because one undoes the other. Suppose we
use MOVE D3,�(A2) to store the contents of D3 on a
stack in memory. MOVE D3,�(A2) decrements A2
and then copies D3 to the top of the stack pointed at by
A2. After this instruction has been executed, A2 is
pointing to the top item on the stack. We can remove
D3 from the stack and put it in D5 by executing MOVE

The pointer register is automatically incremented by 1 for
byte operands, 2 for word operands, and 4 for longword
operands. Consider the following examples.

The 68K provides a predecrementing address register
indirect addressing mode with the assembly language form

(A2)�, D5. Postincrementing leaves A2 pointing to the new
top item on the stack.

Examples of register indirect

addressing with postincrementing

Let’s revisit the program to add together 100 numbers stored
in consecutive locations.

LEGAL AND ILLEGAL ADDRESSING MODES

Because of the real-world constraints imposed by the encoding

of instructions and the design of the chips themselves, not all

possible variations on addressing modes are supported. Both

the predecrementing and postincrementing addressing modes

illegal—postdecrementing not allowed
illegal—offset not allowed with postincrementing
legal
illegal—preincrementing not allowed
legal

The instruction ADD.W (A0)�, D0 adds the number
pointed at by A0 to the contents of D0 and then moves the
pointer to point to the next number in the sequence.

Let’s look at another example of this postincrementing
addressing mode. Suppose we have a table of N unsigned
integer bytes and wish to locate the value of the largest. The
number of bytes is less than 256. A simple pseudocode algo-
rithm to do this is

don’t support an offset in the calculation of an effective

address; that is, only (Ai)� and �(Ai) are legal.To make this

clear, we present several 68K instructions—some of these

represent legal and some represent illegal addressing modes.

Assembly language form RTL definition

6.4 Addressing modes 255

This pseudocode uses the notation numberi to indicate the
ith element in a sequence. We can express this in 68K assem-
bly language as

If we use MOVE.B (A0)�, D0, the contents of address
register A0 incremented to 100116 after the character
located at 1000 has been accessed and we are ready to access

T

h

e

s

t

r

i

n

g

null

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

100A

Address register

1000A0

This string begins in memory
location 1000 and extends
to location 100A.

Figure 6.16 Example of a string.

the next character in the string. Consider the following
example.

Counting characters Suppose we want to count the
number of characters in the string pointed at by address
register A0 and return the string length in D3. The string is
terminated by the null character, which is included in the
character count.

At the end of this code, address register A0 will be pointing
at the next location immediately following the string. We can
rewrite this fragment of code.

Addressing modes and strings

A string is a sequence of consecutive characters. We will
assume the characters are 8-bit ASCII-encoded values. It’s
necessary to indicate a string’s size in order to process it. You
could store a string as n, char_1, char_2, . . . , char_n, where n
is the length of the string. For example, the ASCII-encoded
string ‘ABC’ might be stored in memory as the sequence $03,
$41, $42, $43.

You can also use a special termi-
nator or marker to indicate the end
of a string. Of course, the termina-
tor must not occur naturally in the
string. If the terminator is the null
byte, the string ‘ABC’ would be
stored as the sequence $41, $42, $43, $00. Some strings use the
terminator $0D because this is the ASCII code for a carriage
return.

The address of a string in memory is usually of the first
character in the string. Figure 6.16 shows a 10-character
string located at location 100016 in memory and terminated
by a null byte (i.e. 0).

Most microprocessors don’t permit direct operations on
strings (e.g. you can’t compare two strings using a single
instruction). You have to process a string by using byte oper-
ations to access individual characters, one by one. The char-
acters of a string can be accessed by means of address register
indirect addressing. In Fig. 6.16, address register A0 contains
the value 100016, which is the address or location of the first
character in the string.

The operation MOVE.B (A0),D0 copies the byte pointed
at by the contents of address register A0 into data register D0.
Applying this instruction to Fig. 6.16 would copy the charac-
ter ‘T’ into data register D0 (the actual data loaded into D0 is,
of course, the ASCII code for a letter ‘T’).

256 Chapter 6 Assembly language programming

The new instruction, TST, tests an operand by comparing
it with zero and setting the flag bits in the CCR accordingly.

Counting A’s Suppose we want to count the number of times
‘A’ occurs in a string that starts at address Find_A.

The instruction CMP.B #’A’,D0 compares the contents
of D0 (i.e. the last character read from the string) with the
source operand, #’A’. The # symbol means the actual value
and the ‘A’ means the number whose value is the ASCII code
for the letter A. If you omit the # symbol, the processor will
read the contents of memory location 4116 (because
‘A’ � 4116). Because the MOVE instruction sets the CCR, we
can test for the terminator as soon as we pick up a character,
as the following code demonstrates.

T

h

e

S

t

r

i

n

g

null

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

100A

Address register

1000A0

This string begins in memory
location 1000 and extends
to location 100A.

T

h

e

S

t

r

i

n

g

null

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

200A

Address register

2000A1

This string begins in memory
location 2000 and extends
to location 200A.

Figure 6.17 Comparing two

strings.

Comparing strings Suppose we wish to test whether two
strings are identical. Figure 6.17 shows two strings in mem-
ory. One is located at 100016 and the other at 200016. In this
case both strings are identical.

In order to compare the strings we have to read a character
at a time from each string. If, at any point, the two characters
do not match, the strings are not identical. If we reach two
null characters, the strings are the same. A0 points at one
string and A1 points at the other.We will set D7 to a zero if the
strings are not the same, and one if they are the same.

6.4 Addressing modes 257

T

h

e

t

e

s

t

null

Address register

A0

The string contains three
spaces between ‘The’ and
‘test’

T

h

e

Address register

A1 t

e

s

t

null

(a) Register A0 points
to the source string.

(b) Register A1 points
to the destination string.
We move only the first
space in a group.

Figure 6.18 Removing spaces from a string.

We read characters from the string and copy them to their
destination until a space is encountered.The first space encoun-
tered is copied across. We continue to read characters from the
source string but do not copy them across if they are further
spaces. This algorithm requires some care. If we are searching
for multiple spaces, we will move one character beyond the
space because of the autoincrementing addressing mode.
Therefore, we have to adjust the pointer before continuing.

Figure 6.19 demonstrates the operation of this algorithm.
By the way, there is a flaw in this program. What happens if
the end of the string is a space followed by a null? How can
you fix the problem?

Removing spaces A common string manipulation problem is
the removal of multiple spaces in text. If you enter a command
into a computer like delete X, Y, Z the various component parts
(i.e. fields) of the command are first analyzed. A command line
processor might remove multiple spaces before processing the
command. Figure 6.18 shows how we might go about dealing
with this problem.On the left, the string has three spaces.On the
right, the same string has been rewritten with only one space.

Because the final string will be the same size or shorter than
the original string, we can simply move up characters when we
find a multiple space. We can use two pointers, one to point at
the original string and one to point at the final string.

Next Page

258 Chapter 6 Assembly language programming

Indexed addressing

The 68K provides a variant on the address register indirect
addressing mode called indexed addressing, which uses two
registers to calculate the effective address of an operand. The
assembly language form of the effective address is written
d8(Ai,Xj), where d8 is an 8-bit signed constant forming
part of the instruction,Ai is one of the eight address registers,
and Xi is either one of D0–D7 or A0–A7. The effective
address is calculated from the expression d8�[Ai]�[Xi]; for
example, CLR 28(A3,D6) clears the contents of the
location whose effective address is given by the contents of A3

plus the contents of D6 plus 28, that is, [28 � [A3] �

[D6]] ← 0. Note that modern 68K assemblers permit
you to write either TUESDAY(A0,D0) or (TUESDAY,

A0,D0).
Indexed addressing is a variation on address register indi-

rect addressing. Instead of using one pointer register, the
effective address is given by the sum of the contents of two
registers and a displacement. The displacement in indexed
addressing lies in the range �128 to �127, whereas the
displacement in address register indirect addressing is
�32K to �32K. Indexed addressing can be used to access
two-dimensional tables in which the location of an element is
specified by its row and its column position.

Figure 6.20 illustrates MOVE.B Offset(A0,D0),D1. You
can regard A0 as pointing at the beginning of a data structure.
In this example, we’ve shown three blocks of data. By adding
the contents of D0 to A0 we can select a specific data block in
the structure. In the example of Fig. 6.20, the contents of D0
would be 6 (if each data block occupied 3 bytes).

By adding a constant to the effective address created by
adding the two registers, we can access a particular element of
one of the data blocks. In Fig. 6.20, the offset is 1.

Consider a data structure representing a diary that consists
of several weeks, each of which is divided into 7 days. An item
of data is accessed by locating the head of the data structure,
counting off the appropriate number of weeks, and then
accessing the required day. If the location of the array in
memory is called DIARY and we wish to access the location
corresponding to Tuesday of week five, we need to access
location DIARY � (WEEK-1)*7 � Tuesday. If Tuesday � 2,
the location of the required element is DIARY � (5�1) *

7 � 2 � DIARY � 30.
The data structure can be accessed using indexed address-

ing by loading A0 with DIARY and D0 with the location of the

X

X

X

X

X

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

A0

A0

A0

A0

A0

A0

A1

A1

A1

A1

A1

A1

Source string Destination string

Figure 6.19 Deleting multiple spaces.

A0

D0

D1

Offset

Data block 1

Data block 2

Data block 3

A0 points to the head
of a data structurer.

D0 selects a given
data block in the structure.

The offset selects an
item within a data block.

Figure 6.20 Indexed addressing—executing

MOVE.B Offset(A0,D0),D1.

Previous Page

6.4 Addressing modes 259

start of the desired week, and then using the desired day as a
constant as demonstrated in the following fragment of code.

PC

D0

MOVE d16(PC),D0

Address
[PC] + d16

PC

d16

The operand is
d16 bytes from
instruction.

Figure 6.21 Program counter relative addressing—the effect of

MOVE d16(PC),D0.

d16(PC), for example, the operation ‘Load data register D0
relative’ is written

MOVE d16(PC),D0

and is defined as [D0] ← [[PC] � d16]. As before, d16 is
a 16-bit two’s complement offset that is normally written in
symbolic form and whose value is calculated by the assem-
bler. Figure 6.21 demonstrates the relationship between the
PC, the instruction, and the operand address. Figure 6.21 is
slightly simplified because the 68K’s program counter is
automatically incremented by 2 after the instruction fetch
phase.

Relative addressing lets you write position-independent
code (PIC), which avoids absolute addresses. The machine
code version of a program written in PIC is independent of
the physical location of the program in memory. You can

6.4.3 Relative addressing

Before we introduce this addressing mode, we’ll pose a prob-
lem. Consider the operation MOVE $1234,D0, which spec-
ifies the absolute address $1234 as a source operand location.
If you were to take the program containing this instruction
and its data and locate it in a different region of memory,
would it work? No. Why not? Because the data accessed by the
instruction is no longer in location $1234. The only way to
run this program is to change all operand addresses to their
new locations. Relative addressing provides a means of relo-
cating programs without changing addresses.

Relative addressing is similar to address register indirect
addressing because the effective address of an operand is
given by the contents of a register plus a displacement.
However, relative addressing uses the program counter to cal-
culate the effective address rather than an address register;
that is, the location of the operand is specified relative to the
current instruction. The syntax of a 68K relative address is

move (i.e. relocate) PIC programs in memory without mod-
ifying them. MOVE 36(PC),D0 means load data register D0
with the contents of the memory location 36 locations on
from this instruction. It doesn’t matter where the operation
MOVE 36(PC),D0 lies in memory, because the data associ-
ated with it will always be stored in the 36th location follow-
ing the instruction.

Calculating the displacement required by an instruction
using program counter relative addressing is difficult.
Fortunately, you never have to perform this calculation—the
assembler does it for you. Consider the following example.

Let’s assemble this code and see what happens.

260 Chapter 6 Assembly language programming

The address of operand Value1 is $0000040E (as a 32-bit
longword). The instruction on line 2, MOVE.B Value1,D0,
contains an opcode ($1039) and the absolute address of the
operand ($0000040E).

Now look at the instruction on line 3, MOVE.B

Value1(PC),D1. The opcode is $123A and the operand is
the 16-bit value $0006. When the 68K reads an instruction,
the program counter is automatically incremented by 2. Once
MOVE.B Value1(PC),D1 has been read from memory, the
program counter is incremented by 2 from $00000406 to
$00000408. If we add the offset $0006 to $00000408, we get
$0000040E, which is the address of the operand Value1.

You can use relative addressing for source operands, but
not for destination operands. You can specify where an
operand comes from but not where it is going to by means of
relative addressing (this restriction is a 68K design decision
and not a fundamental limitation). The instructions MOVE
12(PC),D3 and ADD 8(PC),D2 are legal instructions,
whereas MOVE D3,12(PC) and ADD D2,8(PC) are illegal.

We can write completely position-independent code for
the 68K by loading the address of the operand into an address
register using position-independent code and then using
address register indirect addressing to access operands in
memory. We use the LEA (load effective address) instruction to
load an address into an address register. Note that the instruc-
tions MOVEA.L #Temp7,A0 and LEA Temp7,A0 are equiva-
lent. Consider the following examples of this instruction.

Relative branching

We’ve already met the branch instructions (e.g. BEQ, BNE),
which can force a branch to the target address. What we
haven’t said is that the target address is expressed relative to
the current value of the program counter. Most microproces-
sors have a relative branching mode in which the destination
of a branch instruction is expressed with reference to the cur-
rent address in the program counter. Figure 6.22 illustrates
relative addressing by means of a memory map; Fig. 6.22(a)
illustrates the instruction BRA XYZ, Fig. 6.22(b) shows how
the instruction is encoded, and Fig. 6.22(c) shows a jump
instruction that performs the same function with an absolute
address.

Figure 6.22(a) illustrates BRA XYZ, where XYZ is the target
address. The machine code form (Fig. 6.22(b)), shows that
the offset corresponding to XYZ is stored as 4 because the tar-
get address is 4 bytes beyond the end of the branch instruc-
tion. Remember that the program counter is automatically
incremented by two after the BRA instruction is read during
an instruction fetch. The programmer doesn’t have to worry
about short and long branches, or about calculating the
branch offset. If you write BRA ABC, the assembler computes
the offset as ABC � [PC] � 2. Figure 6.22(c) demonstrates
the JMP XYZ instruction, which uses an absolute address; that
is, XYZ is stored as $1006.

The offset used by a relative branch is an 8-bit signed two’s
complement number in the range �128 to �127. As 2 is

The following fragment of code demonstrates how the
LEA instruction can be used to support position independ-
ent code.

When the instruction LEA Value1(PC),A0 is assembled,
the assembler takes the value of Value1 and subtracts the
current value of the program counter from it to evaluate the
offset required by the instruction.

We now look at one of the most important applications of
program counter relative addressing, relative branching.

automatically added to the PC at the start of an instruction,
relative branching is possible within the range �126 to �129
bytes from the start of the current instruction (i.e. the

branch). The 68K also supports a long branch with a 16-bit
offset that provides a range of �32K to �32K bytes.

Figure 6.22 also illustrates the importance of relative
branching in the production of position-independent code.
The program containing the instruction BRA XYZ can be
relocated merely by moving it in memory, whereas the

6.4 Addressing modes 261

program containing JMP XYZ must be modified if it is
relocated.

The following program moves a block of data from one
region of memory to another and provides examples of both rel-
ative branching and relative addressing. The first location of the
block to be moved is FROMand the first location of its destination
is TO. The number of words to be moved is given by SIZE.

tion is $00 0410 and the address of the operation
MOVE (A0)�,,(A1) � is $00 040C. We therefore have to
branch four locations from the start of the BNE, or six loca-
tions from the end of the BNE. As the CPU always increments
the PC by 2 at the start of a branch, the stored offset is
�6. In two’s complement form this is $FA (the code is
$66FA).

Figure 6.22 Absolute and

relative branching.

In Fig. 6.23 the instruction BNE REPEAT causes a branch
backwards to instruction MOVE(A0)�,(A1)� in the event
of the zero bit in the CCR not being set. From the memory
map of Fig. 6.23, we see that the address of the branch opera-

Note how we use relative addressing to load the address of
the source and destination blocks into address registers A0
and A1, respectively. This program can be assembled to give
the following.

262 Chapter 6 Assembly language programming

6.5 The stack

We now look at one of the most important data structures in
computer science, the stack, and describe the facilities pro-
vided by the 68K to support the stack (we provided a basic
introduction in the previous chapter). A stack is a last-
in-first-out queue with a single end, where items are added or
removed. Unlike a conventional first-in-first-out queue
(FIFO), the stack has only one end. The stack expands as
items are added to it and contracts as they are removed. Items
are removed from the stack in the reverse order to which they
are entered. The point at which items are added to, or
removed from, the stack is called the top of stack (TOS). The
next position on the stack is referred to as next on stack
(NOS). When an item is added to the stack it is said to be

pushed on to the stack, and when an item is removed from the
stack it is said to be pulled (or popped) off the stack.

Figure 6.24 presents a series of diagrams illustrating the
operation of a stack as items A, B, C, D, and E, are added to it
and removed from it.

Before we look at the stack’s role in subroutines, we must
mention the stack-based architecture that has been imple-
mented by some special-purpose computers and by some
experimental machines. Suppose a computer can transfer
data between memory and the stack and perform monadic
operations on the top item of the stack, or dyadic operations
on the top two items of the stack. A dyadic operation (e.g. �,
*, AND, OR) removes the top two items on the stack and
pushes the result of the operation.

Figure 6.25 shows how an ADD instruction is executed by a
stack-based computer. Figure 6.25(a) demonstrates a system

When LEA FROM(PC),A0
is executed, the PC contains
00000402. The offset ‘FROM’
is 0BFE. These are added
to get 00000402 + 0BFE =
00001000, which is loaded
into A0

Figure 6.23 Moving a block of data in memory.

RELATIVE ADDRESSING—A SUMMARY

Relative addressing is used to specify the location of an

operand with respect to the program counter. This addressing

mode means that code and its data can be moved in memory

without having to recompute operand addresses because the

data is the same distance from the code it accesses

irrespective of where the code is located. Relative addressing

is also used with branch instructions because the target

address is expressed as the number of bytes from the current

instruction.

6.5 The stack 263

with four data elements on the stack. When the ADD is exe-
cuted, the element at the top of the stack is pulled
(Fig. 6.25(b)) and sent to the adder. The next element (i.e. C,
the old NOS) is now the new TOS. In Fig. 6.25(c) the element
at the top of stack is pulled and sent to the adder. Finally, the
output of the adder, D � C, is pushed onto the stack to create
a new TOS.

Note how this ADD instruction doesn’t have an operand
unlike all the instructions we’ve described so far. A stack-
based computer has so-called addressless instructions
because they act on elements at the top of the stack.

The following example illustrates the evaluation of the
expression (A � B)(C � D) on a hypothetical stack-based
computer. We assume that the instruction PUSH pushes the
contents of D0 onto the stack,ADD, SUB, and MULU all act on
the top two items on the stack, and PULL places the top item
on the stack in D0.

on the stack in the way we’ve just described (e.g. ADD, SUB,
MULU), special-purpose microprocessors have been designed
to support stack-based languages. The 68K implements
instructions enabling it to access a stack, although it’s not a

stack machine. Pure stack machines
do exist, although they have never
been developed to the same extent as
the two-address machines like the
68K and Pentium.

6.5.1 The 68K stack

A hardware stack can be implemented
as a modified shift register. When
such a stack is implemented in hard-

ware, the addition of a new item to the top of stack causes all
other items on the stack to be pushed down. Similarly, when
an item is removed from the stack, the NOS becomes TOS
and all items move up.

(a) Initial state of the stack with four items.

(c) Second element pulled off the stack.

(b) First element pulled off the stack.

(d) Result pushed on the stack.

A

New top of stack

Figure 6.25 Executing an ADD operation on a stack machine.

(i) Pull C. (j) Pull B. (k) Pull A.

Figure 6.24 The stack.

Figure 6.26 represents the state of the stack at various
stages in the procedure. The number below each diagram
corresponds to the line number in the program. Although the
68K and similar microprocessors do not permit operations

264 Chapter 6 Assembly language programming

Microprocessors don’t implement a stack in this way and
the items already on the stack don’t move as new items
are pushed and old ones pulled. The stack is located in a
region of the main store and a stack pointer points to the
top of the stack. This stack pointer points at the top of
stack as the stack grows and contracts. In some micro-
processors, the stack pointer points to the next free location
on the stack, whereas in others, it points to the current top
of stack.

Figure 6.27 demonstrates how the program illustrated in
Fig. 6.26 is executed by a computer with a stack in memory
and a stack pointer, SP.

The 68K doesn’t have a special system stack pointer—it
uses address register A7. We call A7 the system stack pointer
because the stack pointed at by A7 stores return addresses
during subroutine calls. Assemblers let you write either A7 or
SP; for example, MOVE.W D0,(A7) and MOVE.W D0,(SP)
are equivalent. The 68K can maintain up to eight stacks

simultaneously, because all its address registers can be used as
stack pointers.

In what follows, we use the 68K’s stack pointer to illustrate
the operation of a stack. You might expect the assembly lan-
guage instruction that pushes the contents of D0 on the stack
to be PUSH D0, and the corresponding instruction to pull an
item from the stack and put it in D0 to be PULL D0. Explicit
PUSH and PULL instructions are not provided by the 68K.You
can use address register indirect with predecrementing
addressing mode to push, and address register indirect with
postincrementing addressing mode to pull.

Figure 6.28 illustrates the effect of a PUSH D0 instruction,
which is implemented by MOVE.W D0,�(SP), and PULL
D0, which is implemented by MOVE.W (SP)�,D0. The 68K’s
stack grows towards lower addresses as data is pushed on it;
for example, if the stack pointer contains $80014C and a
word is pushed onto the stack, the new value of the stack
pointer will be $80014A.

D

)(C – D)

Figure 6.26 Executing a

program on a stack machine.

Memory

Step 9 Step 10 Step 11

A+B

(C+D)
Figure 6.27 Executing the

program of Fig. 6.26 on a

machine with a stack pointer.

THE TWO 68K STACK POINTERS

The 68K has two A7 registers and, therefore, two system stack

pointers. One A7 is the supervisor stack pointer and is

associated with the operating system.The other is the user

stack pointer and is associated with programs running under

the operating system.The operating system controls the

allocation of the computer’s resources (memory and I/O), and

is protected from errors caused by the less reliable user

programs.A stack pointer dedicated solely to the operating

system prevents user programs accessing and possibly

corrupting the operating system’s stack. Only one of these

two A7s is accessible at a time, because the 68K is either

running an operating system or it isn’t.

6.5 The stack 265

The 68K’s push operation MOVE.W D0,��(SP) is defined
in RTL as

and the 68K’s pull operation MOVE.W (SP)�,D0 is
defined as

Push and pull operations use word or longword operands.
A longword operand automatically causes the SP to be
decremented or incremented by 4. Address registers A0 to A6
may be used to push or pull byte, .B, operands—but not the

system stack pointer, A7. The reason for this restriction is
that A7 must always point at a word boundary on an even
address (this is an operational restriction imposed by the
68K’s hardware).

The 68K’s stack pointer is decre-
mented before a push and incremented
after a pull. Consequently, the stack
pointer always points at the item at the
top of the stack; for example,
MOVE (SP)�,D3 pulls the top item off
the stack and deposits it in D3. Note
that MOVE (SP),D3 copies the TOS
into D3 without modifying the stack
pointer.

When the stack shrinks after a
MOVE.W (SP)�, D0 operation, items
on the stack are not physically deleted;
they are still there in the memory until
overwritten by, for example, a
MOVE.W D0,�(SP) operation.

The stack can be used as a temp-
orary data store. Executing a
MOVE.W D0,�(SP) saves the contents
of D0 on the stack, and executing a
MOVE.W (SP)�,D0 returns the con-
tents of D0. The application of the stack
as a temporary storage location avoids
storing data in explicitly named mem-
ory locations. More importantly, if fur-
ther data is stored on the stack, it does
not overwrite the old data.

The 68K has a special instruction
called move multiple registers (MOVEM),
which saves or retrieves an entire group
of registers. For example MOVEM.L
D0�D7/A0�A7,� (A7) pushes all
registers on the stack pointed at by A7.
The register list used by MOVEM is writ-
ten in the form Di�Dj/ Ap�Aq and

Figure 6.28 The 68K’s stack.

(b) State of the stack after pushing a
 word by MOVE.W D0,–(A7).

N – 4

N + 8

N – 4

N – 2

N

N + 2

N + 4

N + 6

N + 8

Top of stackA7 A7

Stack

(a) Snapshot of the 68K's stack.

N N – 2

Stack pointer

Registers D0 to D5
and A2 to A5 are
dumped on the stack

Memory Memory

Stack pointer

Stack pointer

Top of stackA7

A7

2200 2200

21DC

(a) Initial state of stack.
(b) State of stack after MOVEM.L D0–D5/
A2–A5,–(A7).

D0

D1

D2

D3

D4

D5

A2

A3

A4

A5

21DC

21E0

21E4

21E8

21EC

21F0

21F4

21F8

21FC

2200

Figure 6.29 The 68K’s stack.

266 Chapter 6 Assembly language programming

specifies data registers Di to Dj inclusive and address registers
Ap to Aq inclusive. Groups of registers are pulled off the stack
by, for example, MOVEM.L (A7)�, D0�D2/D4/A4�A6.
The most important applications of the stack are in the
implementation of subroutines (discussed in the following
section) and in the handling of interrupts. When autodecre-
menting is used, registers are stored in the order A7 to A0
then D7 to D0 with the highest numbered address register
being stored at the lowest address. Figure 6.29 illustrates the
effect of MOVEM.L D0�D5/A2�A5,�(A7).

6.5.2 The stack and subroutines

A subroutine is called by the instruction BSR <label>orJSR
<label>, where BSR means branch to subroutine and JSR

means jump to subroutine. The difference between BSR and
JSR is that BSR uses a relative address and JSR an absolute
address. Remember that the programmer simply supplies the
label of the subroutine and the assembler automatically calcu-
lates the appropriate relative or absolute address. To call a sub-
routine ABC, all we have to do is write either BSR ABC or JSR
ABC. The BSR is preferred to JSR because it permits the use of
position-independent code. The range of branching with BSR is
�32 kbytes to �32 kbytes from the present instruction. JSR

uses an absolute address and cannot therefore be used to gen-
erate position-independent code. JSRmay use an address reg-
ister indirect address; for example, JSR (A0) calls the
subroutine whose address is in A0.

Using subroutines—an example

We now look at an example of how subroutines are used. The
following program inputs text from the keyboard and stores
successive characters in a buffer in memory until an @ sym-
bol is typed. When an @ is encountered, the text is displayed
on the screen. In this simple example, we don’t test for buffer
overflow.

In this example we use the character input and output
mechanisms built into both EASy68K and the Teesside 68K
simulators. All I/O is performed by means of a TRAP #15
instruction, which is a call to the operating system. We have’t
yet covered the 68K’s TRAP instructions, but all we need say
here is that a TRAP calls a function that forms part of the
computer’s operating system. Before the TRAP is executed,
you have to tell the O/S what operation you want by putting a
parameter in data register D0. A ‘5’ indicates character input
and a ‘6’ indicates character output. When a character is
input, it is deposited in D1. Similarly, the character in D1 is
displayed by the output routine.

We can express the algorithm is pseudocode as follows.

SIMULATED INPUT AND OUTPUT

Microprocessors cannot perform input operations from the

keyboard or display data on the screen.To do that requires an

operating system, peripherals, and their drivers.

In order to allow the assembly language programmer to

write programs that do have input or output operations,

simulators provide an I/O mechanism. Both EASy68K and the

Teesside simulator use the 68K’s TRAP #15 instruction.This

instruction is a request to the operating system to provide a

facility such as input or output. Because there are many

operations that the operating system can perform, you need

to tell the operating system what you want. EASy68K and the

Teesside simulator use data register D0 to hold a parameter

that defined the requested operation; for example, if you load

D0 with 5, the request is for input.

This I/O mechanism is specific to EASy68K and the Teesside

simulator. It is part of their environment and will not work

with any other 68K system.

6.5 The stack 267

In the following program, the BUFFER is a region of memory
reserved for the data to be stored.

When an RTS instruction is encountered at the end of a
subroutine, the longword address on the top of the stack is

The instruction CMP.B #’@’,D1 compares the contents
of the lower-order byte of data register D1 with the byte
whose ASCII code corresponds to the symbol @. The instruc-
tion LEA BUFFER(PC),A0 generates position-independent
code because it calculates the address of the buffer relative to
the program counter. Had we written LEA BUFFER,A0, the
code would not have been position independent.

pulled and placed in the program counter in order to force a
return to the calling point. The following code is produced
by assembling this program. We will need this output
when we trace the program (in particular the addresses
of the subroutines and the return addresses of subroutine
calls).

268 Chapter 6 Assembly language programming

The following trace output demonstrates the flow of
control as subroutine calls and subroutine returns are
made—when you read the trace, look at the program counter
and the stack pointer (A7 � SS). Remember that the PC is
incremented between 2 and 10 bytes after each instruction.

We’ve set A0 to point to the buffer for input data. The next
instruction calls the subroutine to input a character. Note the
change in the PC to $428.

Having got the input (in this case Z) in D1, we return from
the subroutine. Watch the program counter again. It is
currently $42E and will be replaced by $408 (i.e. the address
of the instruction after the subroutine call.

6.5 The stack 269

We now store the character in D1 in memory and
increment the pointer in A0.

We test the character in D1 for equality with ‘@’ � $40 and
then branch back to $0404 if we haven’t input an ‘@’.

We haven’t, so we continue by reading another character.

To avoid more tracing, we’ll jump ahead to the point at
which a ‘@’ has been input in D0.

270 Chapter 6 Assembly language programming

Because D1 contains the ASCII code for ‘@’, the test for equal-
ity will yield true and we will not take the branch back to $0404.

The next instructions reset the pointer to the top of the
buffer, read a character, and compare it to ‘@’.

If it isn’t an ‘@’, we will print it by calling the output routine.

Next Page

6.5 The stack 271

In this case we have branched to address $0430.

Note the change in the value of the PC following the RTS.

And so on . . .

We call the operating system with the TRAP. Note that the
contents of D1 will be printed as the ASCII character Z. Then
we return to the body of the program.

6.5.3 Subroutines, the stack, and
parameter passing

In order for a subroutine to carry out its function, it is almost
always necessary to transfer data between the calling program
and the subroutine.Up to now we have passed data to and from
the subroutine via data registers. In the previous example, we
called the subroutine GET_CHAR to input a character from the
keyboard. When this subroutine is invoked by the operation
BSR GET_CHAR, a branch is made to the entry point of the sub-
routine. This subroutine reads the keyboard until a key is

pressed. A return to the calling point is made with the ASCII
code of the character in data register D1.

You can even use the C-bit in the CCR to pass informa-
tion from a subroutine to its calling program; for example,
to indicate an error state. Suppose a subroutine has been
called to read data from a terminal and the terminal is faulty
or not switched on. By setting the carry bit prior to a return
from subroutine, the calling program can be informed that
an error exists as the following fragment of a program
demonstrates.

Previous Page

272 Chapter 6 Assembly language programming

You can avoid using the stack pointer by copying it to
another address register with LEA (A7),A0. Now you can
use A0 to get the parameters; for example, P1 can be loaded
into D1 by MOVE.W 6(A0),D1. The offset 6 is required
because the parameter P1 is buried under the return address
(4 bytes) and P1 (2 bytes). Similarly, P2 can be loaded into D2
by MOVE.W 4(A0),D2.

After returning from the subroutine with RTS, the contents of
the stack pointer are [A7] � 4, where A7 is the value of the stack
pointer before P1 and P2 were pushed on the stack. The stack
pointer can be restored to its original value or cleaned up by exe-
cuting LEA 4(A7),A7 to move the stack pointer down by two
words. Note that LEA 4(A7),A7 is the same as ADD.L #4,A7.

P1 and P2 are, of course, still in the same
locations in memory but they will be over-
written as new data is pushed on the stack.

By using the stack to pass parameters to
a subroutine, the subroutine may be inter-

rupted and then used by the interrupting program without
the parameters being corrupted. As the data is stored on the
stack, it is not overwritten when the subroutine is interrupted
because new data is added at the top of the stack, and then
removed after the interrupt has been serviced.

Let’s look at another example of parameter passing in detail.
In the following program two numbers are loaded into D0 and
D1, and then the contents of these registers are pushed on the
stack. A subroutine, AddUp, is called to add these two numbers
together. In this case the result is pushed on the stack.We’ve used
blue to highlight code that performs the parameter passing.

You can’t use registers to transfer large quantities of data to
and from subroutines, due to the limited number of registers.
You can pass parameters to a subroutine by means of a mail-
box in memory. Consider the following.

Such a solution is poor, because the subroutine can’t be
interrupted or called by another program. Any data stored in
explicitly named locations could be corrupted by the inter-
rupting program (see the box on interrupts). Let’s look at
how data is transferred between a subroutine and its calling
program by many high-level languages.

Passing parameters on the stack

An ideal way of passing information between the subroutine
and calling program is via the stack. Suppose two 16-bit
parameters, P1 and P2, are needed by the subroutine
ABC(P1,P2). The parameters are pushed on the stack
immediately before the subroutine call by the following code:

The state of the stack prior to the subroutine call and
immediately after it is given in Fig. 6.30. Note that the return
address is a longword and takes up two words on the stack.

On entering the subroutine, you can retrieve the parame-
ters from the stack in several ways. However, you must never
change the stack pointer in such a way that you move it down
the stack. Consider Fig. 6.30(c) where the stack pointer is
pointing at the return address. If you add 4 to the stack
pointer, it will point to parameter P2 on the stack. You can
now get P2 with, say,MOVE.W (A7),D0. However, the return
address is no longer on the stack (it’s still there in memory

above the top of the stack). If an interrupt occurs or you call
a subroutine, the new return address will be pushed on the
top of the stack overwriting the old return address. Never
move the stack pointer below the top of stack.

6.5 The stack 273

If we assemble this program, we get the following.

Figure 6.30 Passing parameters on the stack (all values on the stack are words or longwords).

THE INTERRUPT

An interrupt is a method of diverting the processor from its

intended course of action, and is employed to deal with errors

and external events that must be attended to as soon as they

occur.Whenever a processor receives an interrupt request

from a device, the processor finishes its current instruction and

then jumps to the program that deals with the cause of the

interrupt.After the interrupt has been serviced, a return is

made to the point immediately following the last instruction

before the interrupt was dealt with.The return mechanism of

the interrupt is almost identical with that of the subroutine—

the return address is saved on the stack.

Suppose a subroutine is intrerrupted during the course of its

execution. If the interrupt-handling routine also wishes to use

the same subroutine (yes, that’s possible), any data stored in

explicitly named memory locations will be overwritten and

corrupted by the re-use of the subroutine. If the data had been

stored in registers and the content of the registers pushed on

the stack by the interrupt-handling routine, no data in the

subroutine would have been lost by its re-use.After the sub-

routine has been re-used by the interrupt-handling routine, the

contents of the registers stored on the stack are restored and a

return from interrupt is made with the state of the registers

exactly the same as at the instant the interrupt was serviced.

Interrupts may originate in hardware or software.A

hardware interrupt may occur when you move the mouse.

A software interrupt may occur when you perform an illegal

operation or even when you generate one with a TRAP #15
instruction.

274 Chapter 6 Assembly language programming

Figure 6.31 shows the state of the stack at various points
during the execution of this program. We will now load the
program and trace it line by line.

Figure 6.31 The state of the

stack during the execution of a

program.

Note the five new entries to the right of the register display.
These lines display the five longwords at the top of the stack.
Each line contains the stack address, the longword in that
address, and the address with respect to the current stack
pointer.

6.5 The stack 275

Note how the instruction MOVE.W D0,� (SP) has mod-
ified the stack. The top of the stack is no longer $1000, but
$0FFE. You can also see that the contents of D0.W (i.e. 0001)
has been pushed on the stack.

At this point the return address, $00000414, has been
pushed on the stack and the stack pointer is now pointing at
$00000FF8.

276 Chapter 6 Assembly language programming

The result 1 � 2 � 3 is in data register D3, and the stack
pointer is the same as its starting value $1000. Passing a para-
meter to a subroutine by value is easy. Getting a result back
from the subroutine is trickier, as we’ll soon see.

Passing parameters by reference

We have passed a parameter by value to the subroutine by
pushing a copy of its value on the stack. There are two copies
of the parameter, the original in the calling program and its
copy on the stack. If a parameter is passed by value, changing
it within the subroutine doesn’t change its value in the calling
program—as the next example demonstrates.

6.5 The stack 277

This program calls a subroutine to swap two numbers,
A and B, which are first pushed on the stack in the main pro-
gram. In subroutine SWAP the two parameters are retrieved
from their locations on the stack and swapped over. Once a
return from subroutine is made and the stack cleaned up, the
parameters on the stack are lost. Parameters A and B in the
main program were never swapped.

The following is the assembled version of this program and
Fig. 6.32 provides snapshots of memory and registers during
the execution of the code.

In this case, there is only one copy of the parameter. We repeat
the example in which we added two numbers together, and, this
time, pass the parameters to the subroutine by reference.

The following program introduces a new instruction,
push effective address PEA, which pushes an address in the
stack; for example, the operation PEA PQR pushes the address
PQR on the stack. The instruction PEA PQR is equivalent to
MOVE.L #PQR,�(A7).

You can pass a parameter to a subroutine by reference by pass-
ing its address on the stack. This is, you don’t say ‘Here’s a para-
meter’. Instead you say, ‘Here’s where the parameter is located’.

278 Chapter 6 Assembly language programming

We can now run this program line by line. Note
how the addresses of the variables are pushed on the stack
and then loaded in address registers in the subroutine.

Figure 6.32 Example of parameter passing by reference.

We will use the simulator command MD 500 to view the
data area. Initially it contains the two 16-bit constants
1 and 2.

6.5 The stack 279

The operation PEA $0500 has pushed the address
$00000500 on the stack and moved the stack pointer up by 4.

Next Page

280 Chapter 6 Assembly language programming

If we look at memory again, we will find that the sum of X
and Y has been stored in location Z.

We have passed the parameters by reference. In practice, a
programmer would pass parameters that aren’t changed in
the subroutine by value, and only pass parameters that are to
be changed by reference.

6.6 Examples of 68K programs

We now put together some of the things we’ve learned about
the 68K’s instruction set and write a simple program to

String T H I S T H A T T H E N T H E O T H E R

Substring T H E N T H E

Step Matches T H I S T H A T T H E N T H E O T H E R

1 5 T H E N T H E

2 0 T H E N T H E

3 0 T H E N T H E

4 1 T H E N T H E

5 0 T H E N T H E

6 6 T H E N T H E

7 0 T H E N T H E

8 0 T H E N T H E

9 1 T H E N T H E

10 0 T H E N T H E

11 8 T H E N T H E

12 0 T H E N T H E

13 0 T H E N T H E
Figure 6.33 Matching a string

and a substring.

implement a text matching algorithm that determines
whether a string contains a certain substring. The problem

can be solved by sliding the substring along
the string until each character of the sub-
string matches with the corresponding

character of the string, as illustrated in Fig. 6.33.
The string starts at address $002000 and is terminated by a

carriage return (ASCII code $0D). The substring is stored at
location $002100 onwards and is also terminated by a car-
riage return. In what follows, the string of characters is
referred to as STRING, and the substring as TEXT.

We will construct a main program that calls a subroutine,
MATCH, to scan the string for the first occurrence of the

Previous Page

6.6 Examples of 68K programs 281

substring. Because STRING and TEXT are both strings of con-
secutive characters, we will pass them to MATCH by reference.
The subroutine should return the address of the first character

in the string matching the first character of the substring. This
address is to be returned on the stack. If the match is unsuc-
cessful, the null address, $00000000, is pushed on the stack.

282 Chapter 6 Assembly language programming

6.6.1 A circular buffer

Many computers can’t process data as they receive it; the
data is placed in a store until it’s ready for use by the com-
puter. This store is a buffer and is analogous to a doctor’s
waiting room. The number of people in the waiting room
increases as new patients enter and decreases as patients are
treated by the doctor. Consider a 68K-based system with a
software module that is employed by both input and output
routines, and whose function is to buffer data. When it’s
called by the input routine, it adds a character to the buffer.
When it’s called by the output routine, it removes a charac-
ter from the buffer. Below are the operational parameters of
the subroutine.

● Register D0 is to be used for character input and output.
The character is an 8-bit value and occupies the lowest-order
byte of D0.

● Register D1 contains the code 0, 1, or 2 on entering the
subroutine.

● Code 0 means clear the buffer and reset all pointers.

● Code 1 means place the character in D0 into the buffer.

● Code 2 means remove a character from the buffer and place it
in D0.

● We assume that a higher-level module ensures that only one of
0, 1, or 2 is passed to the module (i.e. invalid operation codes
cannot occur).

● The location of the first entry in the buffer is at $010000 and
the buffer size is 1024 bytes. Pointers and storage may be placed
after the end of the buffer.

● If the buffer is full, the addition of a new character overwrites
the oldest character in the buffer. In this case, bit 31 of D0 is set
to indicate overflow and cleared otherwise.

● If the buffer is empty, removing a new character results in the
contents of the lower byte of D0 being set to zero and its most-
significant bit set.

● Apart from D0, no other registers are to be modified by calling
the subroutine.

The first step in solving the problem is to construct a dia-
gram (Fig. 6.34) to help us visualize the buffer. Figure 6.34
shows the memory map corresponding to the buffer.A region
of 1024 bytes ($400) is reserved for the buffer together with
two 32-bit pointers. IN_ptr points to the location of the next
free position into which a new character is to be placed and
OUT_ptr points to the location of the next character to be
removed from the buffer. At the right-hand side of the dia-
gram is the logical arrangement of the circular buffer. This
arrangement provides the programmer with a better mental
image of how the process is to operate.

The first level of abstraction in pseudocode is to determine
the overall action the module is to perform. This can be writ-
ten as follows.

At this, the highest level of abstraction, we have provided
no indication of how any action is to be carried out and the
only control structure is the selection of one of three possible
functions. The next step is to elaborate on some of these
actions.

Figure 6.34 The circular buffer.

Start 010000

End 0103FF

 010400

 010404

 010408

1024-byte
buffer

IN_ptr

OUT_ptr

Count

(a) Buffer memory map.

Start

End

OUT_ptr IN_ptr

Direction of
pointer movement

(b) Logical arrangement of buffer.

6.6 Examples of 68K programs 283

ving character and the pointer to the output must be moved
to reflect this.

Sometimes it is helpful to draw a simplified picture of the
system to enable you to walk through the design. Figure 6.35
shows a buffer with four locations. Initially, in state (a), the
buffer is empty and both pointers point to the same location.
At state (b), a character is entered, the counter incremented,
and the input pointer moved to the next free position. States
(c) to (e) show the buffer successively filling up to its maxi-
mum count of 4. If another character is now input, as in state
(f), the oldest character in the buffer is overwritten.

It is not necessary to rewrite the entire module in pseudocode.
We will concentrate on the input and output routines and then
begin assembly language coding.Because the logical buffer is cir-
cular while the physical buffer is not, we must wrap the physical
buffer round. That is, when the last location in the physical
buffer is filled, we must move back to the start of the buffer.

The pseudocode is now fairly detailed. Both the module
selection and the initialization routines are complete. We still
have to work on the input and output routines because of the
difficulty in dealing with the effects of overflow and under-
flow in a circular buffer.

We can determine the state of the buffer by means of a
variable, Count, which indicates the number of characters in
the buffer. If Count is greater than zero and less than its max-
imum value, a new character can be added or one removed
without any difficulty. If Count is zero, the buffer is empty
and we can add a character but not remove one. If Count is
equal to its maximum value and therefore the buffer is full,
each new character must overwrite the oldest character as
specified by the program requirements. This last step is tricky
because the next character to be output (the oldest character
in the buffer) is overwritten by the latest character. Therefore,
the next character to be output will now be the oldest survi-

284 Chapter 6 Assembly language programming

The program design language has now done its job and we
can translate the routines into the appropriate assembly
language.

Figure 6.35 Operation of the

circular buffer.(d) Count = 3 (e) Count = 4 (f) Count = 2

6.6 Examples of 68K programs 285

Now that we’ve designed and coded the buffer, the next
step is to test it. The following code is the assembled circular
buffer program with the necessary driver routines. The pro-
gram inputs two characters at a time, and implements an
8-byte buffer. The first character of a pair is the control char-
acter (i.e. 0 � initialize, 1 � input, and 2 � output). For

example, to initialize the buffer you type 0X, where X is any
character. If you type 1Y, the character Y is stored in the next
free place in the buffer. If you type 2Z, the next character to be
output is displayed. After each operation, the contents of the
buffer are printed and the current value of the variable count
displayed.

286 Chapter 6 Assembly language programming

6.6 Examples of 68K programs 287

the assembly language syntax of the 68K instruction into the

RTL notation that defines the action of the instruction.

(a) MOVE 3000,4000 (g) MOVE (A0),D3
(b) MOVE D0,D4 (h) MOVE #12,(A0)
(c) MOVE 3000,D0 (i) MOVE (A1),(A2)
(d) MOVE D0,3000 (j) ADD D2,D1
(e) MOVE #4000,D4 (k) ADD #13,D4
(f) MOVE #4000,5000 (l) ADD (A3),1234

6.2 Explain why the following assembly language and RTL

constructs are incorrect.

(a) MOVE D3,#4 (d) [D3] ← A0 + 3
(b) MOVE [D3],D2 (e) [D3] ← #3
(c) MOVE (D3),D2 (f) 3 ← [D3]

6.3 Create a simple 68K program called ADDER.Your program

should add together the numbers 6, 4, 12, 16, 17, and 50.The

program is to be assembled with the 68K cross-assembler and

then run on the 68K simulator (either Easy68K or the Teesside

assembler/simulator). Run the binary file you have created in

the simulation mode.

6.4 Give examples of valid 68K assembly language instructions

that use

(a) register-to-register (c) memory-to-register

addressing addressing

(b) register-to-memory (d) memory-to-memory

addressing addressing

6.5 The following 68K assembly language program illustrates

what an assembler does and is designed only to illustrate some

points. The source program is followed by its assembled listing.

Examine both the source code and listing file, and try to follow

what is happening.

This example concludes our overview of 68K assembly
language programming. We have only touched the surface of
this topic. Real assemblers are far more complex and include
facilities to design large programs such as the separate com-
pilation of modules. However, our intention was never to cre-
ate an assembly language programmer; it was to give you
some insight into how machine-level instructions are used to
achieve high-level actions.

■ SUMMARY

In this chapter we’ve looked at how you can use a

microprocessor’s instruction set to write simple

programs.

This is not an assembly language programming text and we

cannot delve deeply into assembly language programming.We

have, however, demonstrated that the assembly language

programmer has to appreciate the programming environment

that requires the use of assembly directives to allocate memory

space for variables and constants.

We have examined some of the 68K’s instructions and

demonstrated how to write a program. More importantly, we

have looked at the addressing modes supported by the 68K and

shown how data structures like lists, tables, and arrays can be

accessed.

Finally, we have introduced the stack used by the 68K to keep

track of subroutine return addresses and have demonstrated

how the stack can be used to pass parameters to and from a

subroutine.

■ PROBLEMS

6.1 Describe the action of the following 68K assembly language

instructions in RTL (register transfer language). That is, translate

288 Chapter 6 Assembly language programming

(e) What is the effect of the ‘�’ in the effective address

(A0)�?

(f) What is the effect of the ‘�’ in the effective

address -(A0)?

(g) Why ’ADDA.L #4, A0’, but ‘ADD.L #4, D0’?

6.10 What is wrong with the following fragment of 68K assem-

bly language (the error is one of semantics)?

The following code was produced by a 68K cross-assembler

from the above source code.

6.6 By means of a memory map explain the effect of the

following sequence of 68K assembly language directives.

6.7 What would the following 68K assembly

language fragment store at address $1002?

6.8 What is wrong with each of the following 68K assembly

language operations?

(a)

(b)

(c)

(d)

(e)

(f)

(g)

6.9 Answer the following questions about 68K assembler

conventions.

(a) What is the effect of the assembler directive ORG $400?

(b) What is the effect of the assembler directive DS.W 20?

(c) What is the effect of the assembler directive DC.W 1234?

(d) What is the effect of the assembler directive DC.W $1234?

6.11 Translate the following fragment of high-level language

into 68K assembly language.

Assume that T and X are in memory.Write a program to imple-

ment this fragment of code and run it on the 68K simulator.

Select your own values for variables T and X. Use the simulator’s

trace mode to observe the behavior of the program.

6.12 Translate the following fragment of high-level language into

68K assembly language. Use a 68K simulator to test your program.

6.13 The 68K can operate with byte, word, and longword

operands.What does this mean? Which type of operand do you

use in any particular circumstance?

6.6 Examples of 68K programs 289

6.14 Explain what the following 68K program does. Use the 68K

simulator to test your observations.

6.15 A sequence, or string of 1-byte ASCII characters is stored

at memory location $600 onward.A second sequence of equal

length is stored at memory location $700 onward. Each

sequence ends with the character $0D (i.e. the ASCII value for a

carriage return).Write a 68K assembly language program to

determine whether or not these two strings are identical. If they

are identical, place the value $00 in data register D0. If they are

not, place the value $FF in D0.

Use the 68K cross-assembler and simulator to write the

program and test it.

Modify your program to use the simulator’s character input

routine to input the two strings into memory.The simulator’s

character input code that puts a byte into D1 is

6.16 A sequence of ASCII-encoded characters is stored at mem-

ory location $600 onwards and is terminated by a $0D.Write a

program to reverse the order of the sequence (i.e. the first value

at location $600 will now be $0D, which was the old end of the

string).

Use the 68K simulator to input a string and print it in reverse

order.

The simulator’s character output code that prints the byte in

D1 is

6.17 The following program contains both syntax and semantic

errors.What is the difference between these two types of error?

Locate both types of error.

290 Chapter 6 Assembly language programming

6.18 Examine the following fragment of pseudocode and its

translation into 68K assembly language.Work through this code

and ensure that you understand it. Is the program correct? Can

you improve it?

6.19 Write a 68K program to run on the simulator, which

● inputs a single ASCII-encoded numeric character
● converts the character into binary numeric form
● inputs and converts a second character
● adds the two numbers
● converts the numeric result into character form
● prints the result as ASCII characters.

If the input characters are 5 and 7, the displayed result

should be 12.

6.20 Write a program to arrange a sequence of eight numbers

in descending order.You can store the numbers in memory

before the program is executed by means of the DC.B assem-

bler directive. For example

There are many ways of performing this sorting operation. One

of the simplest is to search the list for the largest number and

put it at the top of the list, then do the same to the remaining

numbers, and so on. Use the 68K simulator to test your

program.

6.21 Why is it best to pass parameters to and from a subrou-

tine by means of the stack?

6.22 Write a subroutine to carry out the operation X*(Y�Z),

where X,Y, and Z are all wordlength (i.e. 16-bit) values.The three

parameters, X,Y, and Z, are to be passed on the stack to the

procedure.The subroutine is to return the result of the

calculation via the stack. Remember

that the 68K instruction MULU
D0,D1 multiplies the 16-bit

unsigned integer in D0 by the 16-bit

unsigned integer in D1 and puts the

32-bit product in D1.

Write a subroutine, call it, and

pass parameters X,Y, and Z on the

stack.Test your program by using

the 68K simulator’s debugging

facilities.

6.23 Write a subroutine ADDABC
that performs the operation

C � A � B.Variables A, B, and C are

all word (i.e. 16-bit) values.Test your

program on the 68K simulator.

Your calling code and subroutine

should have the following

features.

● Parameters A and B should be

passed on the stack to the

procedure by reference (i.e. by

address).

● Because parameters A and B are

adjacent in memory, you need pass

only the address of parameter A to

the subroutine (because the

address of parameter B is 2 bytes

on from parameter A).

● Parameter C should be passed back to the calling program on

the stack by value.

● Before you call the subroutine, make room on the stack for the

returned parameter (i.e. parameter C).

● After calling the subroutine, read the parameter off the stack

into data register D0 (i.e. D0 should end up containing the

value of A�B).

● The subroutine ADDABC must not corrupt any registers.

Save all working registers on the stack on entry to the

subroutine and restore them before returning from the

subroutine.

● When you write your code, preset the stack pointer to a

value like $1500 (by using either MOVEA.L #$1500, A7
or LEA $1500, A7). Doing this will make it easier to follow

the movement of the stack while your program is

running.

● Make certain that you are operating with the correct operand

sizes! Use .W for data values and .L for addresses/pointers.

● Some of the important instructions you might need are

provided below. Make sure you understand exactly what they

do.

6.6 Examples of 68K programs 291

This is not an easy or trivial problem.You will need to draw a

map of the stack at every stage and take very great care not to

confuse pointers (addresses) and actual parameters.

6.24 Suppose you wish to pre-load memory with the value

1234 before executing a program.Which of the following opera-

tions is correct?

(a) DC.B #1234
(b) DC.W 1234
(c) DC.W #1234
(d) DS.B $1234
(e) MOVE.W #1234,Location

6.25 Which of the following defines MOVE.B (A2)�, D3?

(a) D3 ← [[A2]]; [A2] ← [A2] + 1
(b) [D3] ← [[A2]]; [A2] ← [A2] + 1
(c) D3] ← [[A2]]; [A2] ← [A2] + 1
(d) [A2] ← [A2] + 1; [D3] ← [A2];

6.26 Which of the following statements is true when a parameter

is passed to a subroutine by reference (i.e. not by value).

(a) The parameter can be put in an address register.

(b) The address of the parameter can be put in an address

register.

(c) The address of the parameter can be pushed on the stack.

(d) The parameter can be pushed on the stack.

(e) Parts (a) and (d) are correct.

(f) Parts (b) and (c) are correct.

6.27 Consider the following code:

MOVE.W X,-(A7) Push X
MOVE.L Y,-(A7) Push Y
BSR PQR Call PQR
Clean_up Clean up the stack

(a) Why do you have to clean up the stack after returning from

the subroutine?

(b) What code would you use to clean up the stack?

(c) Draw a memory map of the stack immediately before exe-

cuting the RTS in the subroutine PQR.

6.28 Write an assembly language program to reverse the bits

of a byte.

6.29 Explain why the following assembly language and RTL

constructs are incorrect

(a) MOVE D4,#$64
(b) MOVE (D3),D2
(c) [D3] ← A0 + 3
(d) [D3] ← #3

6.30 The 68K has both signed and unsigned conditional

branches.What does this statement mean?

6.31 You cannot (should not?) exit a subroutine by jumping out

of it by means of a branch instruction.You must exit it with an

RTS instruction.Why?

6.32 Assume that a string of ASCII characters is located in

memory starting at location $2000.The string ends with the

character ‘Z’. Design and write a 68K assembly language pro-

gram to count the number of ‘E’s, if any, in the string.

6.33 Express the following sequence of 68K assembly language

instructions in register transfer language and explain in plain

English what each instruction does.

(a) LEA 4(A2),A1
(b) MOVEA.L A3,A2
(c) MOVE.B (A1),D3
(d) MOVE.B #5,(A1)
(e) BCS ABC
(f) MOVE.B (A1)+,-(A3)

6.34 The following fragment of 68K assembly language has

several serious errors. Explain what the errors are. Explain how

you would correct the errors.

Your program should be of the general form

292 Chapter 6 Assembly language programming

6.35 Suppose you are given an algorithm and asked to design

and test a program written in 68K assembly language. How

would you carry out this activity? Your answer should include

considerations of program design and testing, and the necessary

software tools.

6.36 Suppose that D0 contains $F12C4689 and D1 contains

$211D0FF1.What is the result of

(a) ADD.B D0,D1
(b) ADD.W D0,D1
(c) ADD.L D0,D1

In each case, give the contents of D1 after the operation and

the values of the C, Z, N, and V flags.

6.37 Suppose that A0 contains $F12CE600.What is the result

of

(a) ADDA.L #$1234,A0
(b) ADDA.W #$1234,A0
(c) ADDA.W #$4321,A0

6.38 What is the effect of the following code?

CLR D0
MOVE.B D0,D1
MOVE.B #10,D2

XXX ADD.B D2,D0
ADD.B #1,D1
ADD.B D1,D0
SUB.B #1,D2
BNE XXX
STOP #$2700

7Structure of the CPU

CHAPTER MAP

5 The instruction set
architecture

The computer’s instruction set

architecture (ISA) describes the

low-level programmer’s view of

the computer and defines the

type of operations a computer

carries out.We are interested in

three aspects of the ISA: the

nature of the instructions, the

resources such as registers and

memory used by the instructions,

and the ways in which the

instructions access data

(addressing modes).

6 Assembly language
programming

Chapter 6 builds on the previous

chapter by demonstrating how

instructions are used to

construct entire programs.We

introduce the programming

environment via a simulator that

runs on a PC and demonstrate

how to implement some basic

algorithms.

7 Structure of the CPU

Chapters 5 and 6 describe what a

computer does; in this chapter

we show how a computer

converts an instruction op-code

into the actions that implement

the op-code.We build on some

of the material we covered in the

section on digital logic. In this

chapter we demonstrate how a

computer is organized internally

and how it reads instructions

from memory, decodes them,

and executes them.

8 Accelerating
performance

The previous chapter described

the structure of a simple

computer. Here we describe how

the performance of computers

can be increased by overlapping

the execution of instructions

(pipelining).We also look at

cache memory and introduce

parallel processing.

INTRODUCTION

In Chapters 2 and 3 we introduced combinational and sequential logic elements and

demonstrated how to build functional circuits. In Chapters 5 and 6 we introduced the instruction

set architecture and low-level programming.This chapter bridges the gap between digital circuits

and the computer by demonstrating how we can construct a computer from simple circuits; that

is, we show how a computer instruction is interpreted (i.e. executed).

We begin by describing the structure of a simple generic CPU. Once we see how a computer

operates in principle, we can look at how it may be implemented.We describe the operation of a

very simple one-and-a-half address machine whose instructions have two operands; one in

memory and one a register. Instructions are written in the form ADD A,B that adds A to B and

puts the result in B. Either A or B must be a register.

Some readers will read this introduction to the CPU before the previous two chapters on

assembly language programming. Consequently, some topics will be re-introduced.

Instead of introducing the computer all at once, we will keep things simple and build up a CPU

step by step.This approach helps demonstrate how an instruction is executed because the

development of the computer broadly follows the sequence of events taking place during the

execution of an instruction. In the next chapter we will find that this computer is highly simplified;

real computers don’t execute an instruction from start to finish.Today’s computers overlap the

execution of instructions.As soon as one instruction is fetched from memory, the next instruction

is fetched before the previous instruction has completed its execution.This mechanism is called

pipelining and we examine it more closely in the next chapter.

294 Chapter 7 Structure of the CPU

7.1 The CPU

A von Neumann stored program digital computer operates by
reading instructions from memory and executing them one
by one in sequence. If you wish to evaluate X2 � 1 on a 68K
processor where X is a memory location, you may write

We now demonstrate how instructions like MOVE. W X,DO

are read from memory and how the sequence of actions that
implement this operation are carried out inside the CPU.

Because the CPU is such a complex device, we have
decided to walk through the execution of an instruction, step

by step, on a very primitive hypothetical computer. We
begin with the address paths that are used to locate the next
instruction to be executed.

7.1.1 The address path

Figure 7.1 provides the block diagram of part of a CPU. In
this diagram only the address paths and the paths needed to
read an instruction from memory are shown for clarity. We
have omitted most of the data paths required to execute
instructions to avoid clutter. Address paths are shown in blue
and data paths are in light blue.

The address paths are the highways along which addresses
flow from one part of the CPU to another. An address repre-
sents the location of a data element within the memory. There
are three types of information flow in a computer: address,

Address of the
next instruction

The first stage in the execution of
any instruction is to fetch it from
memory. The program counter
contains the address of the next
instruction to be executed

Instruction
address

The contents of the
PC are incremented
each time it is used

Instruction
op-code

When you read an instruction,
it is moved to the instruction
register where it is decoded

When you read from memory,
the contents of the memory
location accessed are loaded
into the MBR

The main memory or
immediate access store
contains both instructions
and data

PC MAR

Address

Memory

Data

MBRMemory buffer register

Data paths

Address paths

Memory address register

Incrementer

Program counter

IR Op-code

Control unit

Control signals

Address

Clock

A HYPOTHETICAL COMPUTER

Anyone describing the internal operation of a computer

must select an architecture and an organization for their

target machine.We have two choices: register to memory

or register to register. The register-to-memory model fits

the architecture of processors like the Pentium and 68K,

whereas the register-to-register model corresponds to

processors like the ARM, which we introduce later.When

describing the internal structure of a computer, we could

describe either a system that executes an instruction to

completion before beginning the next instruction, or a

computer that overlaps or pipelines the execution of

instructions.

I have decided to begin this chapter with the description

of a register-to-memory, non-pipelined processor.

A non-pipelined organization is easier to describe than

one that overlaps the execution of instructions.

Figure 7.1 The CPU’s address paths.

7.1 The CPU 295

data, and control. Data comprises the instructions, constants,
and variables that are stored in memory and registers.
Control paths comprise the signals that trigger events,
provide clocks, and control the flow of data and addresses
throughout the computer.

7.1.2 Reading the instruction

Before the CPU can execute an instruction, the instruction
must first be brought to the CPU from the computer’s
memory. We begin our description of the way in which a
program is executed with the CPU’s program counter (also
called instruction counter or location counter). The expression
program counter is a misnomer. The program counter contains
the address of the next instruction in memory to be executed
and it doesn’t count programs or anything else.

The program counter points to the next instruction to be
executed. If, for example, [PC] � 1234 (i.e. the PC contains
the number 1234), the next instruction to be executed is to be
found in memory location 1234.

Fetching an instruction begins with the contents of the
program counter being moved to the memory address
register (i.e. [MAR] ← [PC]). Once the contents of the pro-
gram counter have been transferred to the memory address
register, the contents of the program counter are incremented
and moved back to the program counter; that is,

At the end of this operation, the program counter points to
the next instruction while the current instruction is being
executed. The program counter in incremented by 4 rather
than 1 because many of today’s high-performance computers
have 32-bit instructions. Computers are byte-addressed but
have 32-bit architectures; that is, they can address individual
bytes in memory, although instructions and data normally
fall on 32-bit (i.e. 4-byte) boundaries.1

The memory address register (MAR), holds the address of
the location in the memory into which data is being written in

a write cycle, or from which data is being read in a read cycle.
At this stage, the MAR contains a copy of the (previous) con-
tents of the PC. When a memory read cycle is performed, the
contents of the memory location specified by the MAR are read
from the memory and transferred to the memory buffer register
(MBR). We can represent this read operation in RTL terms as

We interpret the expression [[MAR]] as the contents of the
memory whose address is given by the contents of the MAR. The
memory buffer register is a temporary holding place for data
received from memory in a read cycle, or for data to be trans-
ferred to memory in a write cycle. Some texts refer to the
MBR as the memory data register (MDR). At this point in the
execution of an instruction, the MBR contains the bit pattern
of the instruction to be executed.

The instruction is next moved from the MBR to the
instruction register (IR) where it is divided into two fields.
One field in the IR contains the operation code (op-code) that
tells the CPU what operation is to be carried out. The other
field, called the operand field, contains the address of the data
to be used by the instruction. The operand field can also
provide a constant to be employed by the operation code
when immediate or literal addressing is used. Note that we
are assuming a one-address instruction format.

The control unit (CU) takes the op-code from the instruc-
tion register together with a stream of clock pulses and
generates signals that control all parts of the CPU. The time
between individual clock pulses is in the range 0.3 ns to 100 ns
(i.e. 3 � 10�10 to 10�7s). The control unit is responsible for
moving the contents of the program counter into the MAR,
executing a read cycle, and moving the contents of the MBR
to the IR. Later we look at the control unit in more detail and
demonstrate how it goes about interpreting an op-code.

CONSTANTS, VARIABLES, POINTERS—A REMINDER

A constant or literal is a value that does not change during the

execution of a program. Its value is set at compile time or

assemble time. Literal addressing is used to handle constants.

A variable is a value that changes during the execution of

a program.

A pointer is a variable that contains the address of a

variable; that is, a pointer points to a variable in memory.

An address register is a pointer register.

The following code implements the expression X � 5 �Y � Z3

and illustrates the nature of constants, variables, and pointers.

1 Remember that the 68K has variable-length instruction and its PC
is incremented by 2, 4, 6, 8, or 10; that is instruction fall on 16-bit
boundaries For the purpose of this chapter, we assume that instructions
are all 4 bytes long.

296 Chapter 7 Structure of the CPU

All instructions are executed in a two-phase operation
called a fetch–execute cycle. During the fetch phase, the
instruction is read from memory and decoded by the control
unit. The fetch phase is followed by an execute phase in which
the control unit generates all the signals necessary to execute
the instruction. Table 7.1 describes the sequence of opera-
tions taking place in a fetch phase. In Table 7.1 FETCH is a
label that serves to indicate a particular line in the sequence of
operations. The notation IR(op-code) means the operation-
code field of the instruction register.

7.1.3 The CPU’s data paths

Now that we’ve sorted out the fetch phase, let’s see what else
we need to actually execute instructions. Figure. 7.2 adds new
data paths to the simplified CPU of Fig. 7.1, together with an
address path from the address field of the instruction register
to the memory address register. Other modifications to
Fig. 7.1 included in Fig. 7.2 are the addition of a data register,
D0, and an arithmetic and logical unit, ALU.

The data register called D0 holds temporary results during
a calculation. You need a data register in a one-address
machine because dyadic operations with two operands such
as ADD X,D0 take place on one operand specified by the
instruction and the contents of the data register. This instruc-
tion adds the contents of memory location X to the contents
of the data register and deposits the result of the addition in
the data register, destroying one of the original operands.

The arrangement of Fig. 7.2 has only one general-purpose
data register, which we’ve called D0 for compatibility with the
68K we used in the previous chapters. Some first-generation
8-bit microprocessors had only one general-purpose data
register, which was called the accumulator.

We can represent an ADD X,D0 instruction2 by the RTL
expression

The arithmetic and logic unit (ALU) is the workhorse of
the CPU because it carries out all the calculations. Arithmetic
and logical operations are applied either to the contents of
the data register or MBR alone, or to the contents of the data
register and the contents of the MBR. The output of the ALU
is fed back to the data register or to the MBR.

Two types of operation are carried out by the ALU—arith-
metic and logical. The fundamental difference between arith-
metic and logical operations is that logical operations don’t
generate a carry when bit ai of word A and bit bi of B are oper-
ated upon. Table 7.2 provides examples of typical arithmetic
and logical operations. A logical shift treats an operand as a
string of bits that are moved left or right. An arithmetic shift
treats a number as a signed two’s complement value and
propagates the sign bit during a right shift. Most of these
operations are implemented by computers like the 68K,
Pentium, and ARM.

Having developed our computer a little further, we can
now execute an elementary program. Consider the high-level
language operation P � Q � R. Here the plus symbol means
arithmetic addition. The assembly language program
required to carry out this operation is given below.
Remember that P, Q, and R are symbolic names that refer to
the locations of the variables in memory.

THE INSTRUCTION REGISTER

A modern RISC processor like the ARM, which we introduce

in Chapter 9 has a 32-bit instruction register which is

sufficient for an op-code and three register addresses;

for example, ADD R1, R2, R3. Processors like the Pentium

and 68K have very complex variable-length instruction

formats and you cannot use a simple fixed-length

instruction register. The processor has to fetch the first

16 bits of an instruction from memory, decode it, and

execute successive fetches to assemble the rest of the

instruction.

Table 7.1 The FETCH phase expressed in register transfer language.

2 A machine with a single accumulator does not need to specify it explic-
itly; for example, an 8-bit microprocessor may use ADD P to indicate add
the contents of P to the accumulator. We write ADD P,DO and make D0
explicit to be consistent with the notation we used for 68K instructions.

3 We have defined explicit LOAD and STORE operations to be
consistent with the CPU we construct later in this chapter. The 68K uses
a single MOVE operation to indicate LOAD and STORE

LOAD Q,D0 Load data register D0 with the contents of
memory location Q3

ADD R,D0 Add the contents of memory location R to data
register D0

STORE D0,P Store the contents of data register D0 in memory
location P

7.1 The CPU 297

Figure 7.2 The CPU’s address and data paths.

Operand address
to memory address
register

Instruction read
from memory

Output from
ALU goes to
D0 or MBR

Arithmetic and
logic units performs
data processing
operations

Data is transmitted
to the ALU where it
is operated on

Address of next
location to be
accessed

Data read from
memory or to be
written to memory

PC MAR

IR Op-code

Control unit

Address

Clock

MBR

Data paths

Address paths

Control signals

Address

Memory

Data

Memory address register

Incrementer

Program counter

Memory buffer register

Data register D0

A

B

ALUf(A,B)

The one-address machine requires a rather
cumbersome sequence of operations just to
carry out the simple action of adding two num-
bers. If we had a computer with a three-address
format, we could have written

ADD Q,R,P Add the contents of Q to the con-
tents of R and put the result in P

Three-address machines are potentially4 faster
than one-address machines, because they can do
in one instruction things that take other machines
three operations. However, the power of three-
address machines can be achieved only by means
of a more complex and expensive CPU and mem-
ory system.

We can demonstrate how the CPU operates
by examining the execution of ADD R, D0 in
terms of register transfer language. Table 7.3

Operation Class Typical mnemonic

Addition Arithmetic ADD

Subtraction Arithmetic SUB

Negation Arithmetic NEG

Multiplication Arithmetic MULU

Division Arithmetic DIVU

Divide by 2 Arithmetic ASR

Multiply by 2 Arithmetic ASL

AND Logical AND

OR Logical OR

NOT Logical NOT

EOR Logical EOR

Shift left Logical LSL

Shift right Logical LSR

Table 7.2 Typical arithmetic and logical operations.

298 Chapter 7 Structure of the CPU

gives the sequence of operations carried out during the fetch
and execute phases of an ADD R, DO instruction. These oper-
ations tell us what is actually going on inside the computer.

During the fetch phase the op-code is fed to the control
unit by CU ← [IR(op-code)] and used to generate all the
internal signals required to perform the addition—this
includes programming the ALU to do addition by adding
together the data at its two input terminals to produce a sum
at its output terminals.

Operations of the form [PC] ← [MAR] or [D0] ← [D0]

� [MBR] are often referred to as microinstructions. Each
assembly level instruction (e.g. LOAD,ADD) is executed
as a series of microinstructions. Microinstructions and
microprogramming are the province of the computer
designer. In the 1970s some machines were user-micropro-
grammable; that is, you could define your own instruction
set. We take a further look at microinstructions later in this
chapter.

7.1.4 Executing conditional
instructions

So far, we’ve considered the architecture of the single-instruction
single-data CPU capable of executing programs in a purely

sequential mode; that is, the computer can execute only a
stream of instructions, one by one in strict order. We covered
conditional behavior in the previous chapter and we require
a means of implementing instructions such as BEQ Target
(branch on zero flag set to Target).

The computer in Fig. 7.2 lacks a mechanism for making
choices or repeating a group of instructions. To do this, the
CPU must be able to execute conditional branches or jumps
such as BEQ XYZ. We’ve already met the branch that forces
the CPU to execute an instruction out of the normal
sequence. The block diagram of Fig. 7.3 shows the new
address and data paths required by the CPU to execute con-
ditional branches.

Three items have been added to our computer in Fig. 7.3:

● a condition code register, CCR

● a path between the CCR and the control unit

● a path between the address field of the instruction register
and the program counter.

Move the contents of the PC to the MAR

Increment the contents of the PC

Read the current instruction from the memory

Move the contents of the MBR to the IR

Move the op-code from the IR to the CU

Move the operand address to the MAR

Read the data from memory

Perform the addition

Move the output of ALU to the data register

Operations sharing the same line are executed simultaneously. ALU ← [MBR] and ALU ← [D0] are executed simultaneously.

Table 7.3 Expressing the FETCH/EXECUTE cycle for an ADD instruction in RTL.

MICROPROGRAMMING

The terms microprogram, microprogramming, microcode,

microinstruction, and micro-operation have nothing to do

with microprocessor or microcomputer.A micro-operation

is the smallest event that can take place within a computer;

typical micro-operations are the clocking of data into

a register, a memory read operation, putting data on a bus,

or adding two numbers together.

A microprogram consist of a sequence of microinstructions

that, when executed, implement a machine-level instruction.

For example, the machine-level or macro-level operation

ADD P,D0 can be implemented by executing a sequence

of micro-operations.The instructions that comprise a

microprogram are called microcode.

4 A three-address machine is faster than a machine with register-
to-register instructions only if the access time of memory is comparable
to the access time of register. Memory takes much longer to access than
internal registers and, therefore, a three-address machine is not currently
practical.

7.1 The CPU 299

The condition code register or processor status register takes
a snapshot of the state of the ALU after each instruction has
been executed and records the state of the carry, negative,
zero, and overflow flag bits. A conditional branch instruc-
tion interrogates the CCR’s current state. The control unit
then either forces the CPU to execute the next instruction
in series or to branch another instruction somewhere in
the program. Let’s look at the details of the conditional
branch.

The CPU updates the bits of its condition code register
after it carries out an arithmetic or a logical operation to
reflect the nature of the result. The following is a reminder of
the operations of the condition code bits.

C � carry Set if a carry was generated in the last operation.
The C-bit is, of course, the same as the carry bit in the carry
flip-flop.

Z � zero Set if the last operation generated a zero
result.

N � negative Set if the last result generated a negative result.

V � overflow Set if the last operation resulted in an arith-
metic overflow; that is, an operation on one or two two’s com-
plement values gave a result that was outside its allowable
range (an arithmetic overflow occurs during addition if the
sign bit of the result is different from the sign bit of both
operands).

The IR's operand field
provides the branch
target address

The control units uses the
CCR output to decide whether
to execute the next instruction
or to force a branch

The word in the CCR indicates whether the
last operation gave a zero or a negative result
or whether a carry was generated

Detail of the
ALU's result are
sent to the CCR

The arthimetic and
logic unit performs
data processing
operations

The next instruction may be the
next instruction in sequence
or the instruction at the branch
target address

PC MAR

Address

Memory

Data

MBR

Memory buffer register

Data register D0

Condition code register

Memory address register

Incrementer

Program counter

IR Op-code

Control unit

Control signals

Address

Clock

CCR

program flow control paths

A

B

ALUf(A,B)

Figure 7.3 Information paths in the CPU and conditional instructions.

300 Chapter 7 Structure of the CPU

The condition code register is connected to the control
unit, enabling instructions to interrogate the CCR. For exam-
ple, some instructions test whether the last operation per-
formed by the central processor yielded a positive result, or
whether the carry bit was set, or whether arithmetic overflow
occurred.

There’s no point in carrying out an interrogation unless
the results are acted upon. We need a mechanism that does
one thing if the result of the test is true and does another
thing if the result of the test is false.

The final modification included in Fig. 7.3 is the addition
of a path between the operand field (i.e. target address) of the
instruction register and the program counter. It’s this feature
that enables the computer to respond to the result of its inter-
rogation of the CCR.

A conditional branch instruction tests a bit of the CCR and,
if the bit tested is clear, the next instruction is obtained from
memory in the normal way. But if the bit tested is set, the next
instruction is obtained from the location whose target address
is in the instruction register. In the above description we said
that a branch is made if a certain bit of the CCR is set; equally
a branch can be made if the bit is clear (branches can also be
made on the state of several CCR bits).

The precise way in which conditional branches are actu-
ally implemented inside the computer is discussed later
when we deal with the design of the control unit. Branch
operations can be expressed in register transfer language in
the form

Typical machine-level conditional operations expressed
in RTL are

1. Branch on carry clear (jump to the target address if the
carry bit in the CCR is 0)
BCC target: IF [C]=0 THEN [PC]←[IR(address)]

2. Branch on equal (jump to the target address if the Z-bit
in the CCR is 1)
BEQ target: IF [Z]=1 THEN [PC]←[IR(address)]

An example of a conditional branch is as follows.

7.1.5 Dealing with literal operands

The CPU of Fig. 7.2 assumes all instructions (e.g. ADD and
BEQ etc.) refer to an operand somewhere within the CPU’s

memory. Sometimes we wish to use instructions such as ADD
#12,D0, where the source operand supplies the actual value
of the data being referred to by the op-code part of the
instruction. Although the symbol ‘#’ appears as part of
the operand when this instruction is written in mnemonic
form, the assembler uses a different op-code code for
ADD #literal,D0 than it does for ADD address,D0.

The instruction ADD.B #12,D0 is defined in RTL as

Figure 7.4 shows that an additional data path is required
between the operand field of the IR and the data register and
ALU to deal with literal operands. In fact, the architecture of
Fig. 7.4 can execute any computer program. Any further
modifications to this structure improve the CPU’s perfor-
mance without adding any fundamentally new feature.

Figure 7.5 completes the design of the computer. We
have added a second general-purpose data register D1 and a
pointer register A0. In principle, there is nothing stopping us
adding any number of registers. As you can see, three buses, A,
B, and C are used to transfer data between the registers and
ALU.

The structure of Fig. 7.5 can implement instructions with
more complex addressing modes than the simple direct
(absolute) addressing we have used so far; for example MOVE
(A0),D1 can be implemented by the following sequence of
micro-operations.

Subtract X from contents of D0
If the result was zero then branch to
Last, otherwise continue

Target address of branch (if taken)

Move source operand address to MAR
Read the actual operand from memory
Copy data to D1

This sequence has been simplified because, you will see
from Fig. 7.5, that there is no direct path between register A0
and the MBR. You would have to put the contents of A0 onto
bus A, pass the contents of bus A through the ALU to bus C,
and then copy bus C to the MAR. We will return to this theme
when we look at the detailed design of computers.

We have now demonstrated the flow of information that
takes place during the execution of a single address computer
instruction. In the next section we reinforce some of the
things we have covered by showing how you can simulate a
computer architecture in C.

7.2 Simulating a CPU

One way of learning how a processor operates is to build one.
We present a program in C that simulates a very simple 8-bit
CPU. In order to make the simulator as accessible to as many
readers as possible, we have written the simulator in C but

7.2 Simulating a CPU 301

Figure 7.4 Modifying the CPU to deal with literal operands.

The operand field of the
IR is fed to the data
register or ALU to provide
a literal operand

The literal from the
instruction register
can by loaded into
the data register

The literal from the
instruction register can
be supplied to the ALU

PC MAR

Address

Memory

Data

MBR

CCR

Memory buffer register

Data register D0

Condition code register

Memory address register

Incrementer

Program counter

IR Op-code

Control unit

Operand

Control signals

Literal data paths

Clock

A

B

ALUf(A,B)

Literal to ALU

have avoided all but C’s most basic elements. All data types
are 8 bits and the only C constructs we use are the while, the
if...then...else, and the switch constructs, which
select one of several courses of action.

We are going to construct two simulators—the first
is a very primitive CPU with an 8-bit instruction that
simply demonstrates the fetch/execute cycle, and the
second is not too dissimilar to typica first-generation 8-bit
microprocessors.

7.2.1 CPU with an 8-bit
instruction

Our first computer has a single data register (i.e.
accumulator) called D0 and all instructions are
memory to register apart from the store and the

branch instructions. Only the store instruction performs a
write to memory.

Choosing an instruction set requires many compromises;
for example, if the number of bits in an instruction is fixed,
increasing the number of different instructions reduces the
number of bits left for other functions such as addressing
modes or register selection.

We can define an instruction set for our primitive 8-bit
machine as

Instruction Mnemonic RTL definition

Load D0 from memory LDA N [D0] ← [N]

Store D0 in memory STA N [N] ← [D0]

Add memory to D0 ADD N [D0] ← [D0]+[N]

Branch to location N BRA N [PC] ← N

If [D0] = 0 then branch to N BEQ N IF[D0]=0 THEN [PC]← N

302 Chapter 7 Structure of the CPU

We have provided only five instructions because these are
illustrative of all instructions. This computer has an 8-bit
instruction format that includes both the op-code and the
operand. If we chose a 3-bit op-code (eight instructions) and
a 4-bit operand (a 16-bit
memory), the remaining bit
can be used to specify the
addressing mode (absolute
or literal). Real 8-bit micro-
processors solve the prob-
lem of instruction set design
by using 1 byte to provide an
operation code and then 0,
1, or 2 succeeding bytes to
provide an operand.

Path between
operand field of
IR and bus A to
literals

The output from
the ALU is fed via
bus C to the registers

PC MAR

Address

Memory

Data

MBR

Bus C

Bus B

Bus A

CCR

Memory buffer register

Data register D0

Data register D1

Address register A0

Condition code register

Memory address register

Incrementer

Program counter

Op-code Address

Control unit

Control signals

Clock

A

B

ALU
f(A,B)

Figure 7.5 Processor with multiple registers.

Figure 7.6 defines the structure of an 8-bit instruction for
our simulated machine.

The first step in constructing a simulator is to describe the
action of the computer in pseudocode.

7.2 Simulating a CPU 303

We can now write a program
to implement this algorithm. The
following fragment of code is largely self-explanatory.

The instruction in the 8-bit instruction register (IR) is
decoded by the three operations

C allows you to operate on individual bits of a byte; for
example, the operator �� n performs a right shift by n bits.
The opcode is obtained from the three most-significant bits of
the IR by shifting right five times.A bitwise logical AND can be
performed between a variable and a hexadecimal value; for
example IR & 0x0F ANDs the IR with 000011112 to extract
the operand bits in the four least-significant bit positions.

Once we’ve extracted the addressing mode (bit 4 of the
instruction register) with amode � (IR & 0x10) �� 4, we
can calculate the source operand for the load and add instruc-
tion by

The following listing provides the C code for this CPU
simulator.

Figure 7.6 Format of an 8-bit instruction.

OperandOp-code

Addressing mode
0 = absolute
1 = literal (immediate)

7 6 5 4 3 2 1 0

000 = LDA
001 = STA
010 = ADD
011 = BRA
100 = BEQ

8-bit instruction format

304 Chapter 7 Structure of the CPU

This multibyte instruction format is used by 8-bit and
16-bit microprocessors. Indeed, the 68K has one 10-byte
instruction.

The architecture of this computer is memory to register or
register to memory; for example, it supports both ADD D0,M
andADD M,D0 instructions. In addition to the direct and lit-
eral addressing modes, we have provided address register
indirect addressing with a single A0 register. We have also

provided program counter relative addressing (discussed in
the next chapter) in which the operand is specified with
respect to the current value of the program counter; for

example, MOVE D0,12(PC) means store the con-
tents of data register D0 12 bytes on from the loca-
tion pointed at by the program counter.

The instruction itself is divided into four fields,
as Fig. 7.7 demonstrates. A 4-bit op-code in bits 7,
6, 5, 4 provides up to 16 instructions. A 2-bit
addressing mode in bits 1, 0 selects the way in
which the current operand is treated. When the
addressing mode is 00, the operand provides the
address of the data to be used by the current
instruction. When the addressing mode is 01 the

operand provides the actual (i.e. literal) operand. Modes 10
and 11 provide indexed and program counter relative
addressing respectively (i.e. the operand is added to the A0
register or the PC, respectively).

Bit 2 of the instruction is a direction bit that determines
whether the source operand is in memory or is provided by
the data register; for example, the difference between
MOVE D0,123 and MOVE 123,D0 is determined by the value
of the direction bit.

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Instruction Operand

Op-code

Addressing mode

Direction

00 = absolute
01 = literal (immediate)
10 = indexed
11 = PC relative

0 = register to memory
1 = memory to register

Bit 3
not used

Figure 7.7 Format of the CPU’s instruction.

Most of the work done in the simulator takes place in the
switch construct at the end of this program where each
instruction is interpreted.

7.2.2 CPU with a 16-bit instruction

We now describe a CPU that is much closer to the architec-
ture of typical 8-bit microprocessors. The simulator uses an
8-bit memory with 256 locations. Each instruction occupies
two consecutive memory locations—an 8-bit instruction
followed by an 8-bit operand. This arrangement provides us
with a much richer instruction set than the previous
example. However, each fetch cycle requires two memory
accesses. The first access is to fetch the op-code and the sec-
onds to fetch the operand; that is;

Copy contents of the PC to the MAR
Increment contents of the PC
Read the instruction from memory
Move the instruction to the IR
Save the op-code

Copy contents of the PC to the MAR
Increment contents of the PC
Read the operand from memory
Move the operand to the IR
Save the operand

7.2 Simulating a CPU 305

We can express the basic fetch cycle and decode instruction
phase in C as

Each instruction is executed by means of the switch
construct. Note that the CCR has only a zero flag (it
would have been more complex to have provided a C- and
V-bit). The following provides the complete code for the
processor.

306 Chapter 7 Structure of the CPU

7.2 Simulating a CPU 307

Now that we have examined the sequence of events
that take place during the execution of an instruction,
the next step is to demonstrate how the binary code
of an instruction is translated into the actions that

implement the instruction. In the next two sections we
describe two different types of control unit; the micropro-
grammed control unit and the so-called random logic control
unit.

308 Chapter 7 Structure of the CPU

7.3 The random logic control unit

We’ve demonstrated how you can write a program using
assembly language instructions. We’ve shown how an assem-
bly language instruction can be reduced to the flow of infor-
mation between registers and functional units in a CPU.
We’ve shown how register, counters, and logical units can be
created from primitive gates and flip-flops. What’s left?

What we have not yet demonstrated is how a binary pat-
tern such as, say, 11011011101010012 can be turned into the
sequence of operations that causes a machine-level operation
like ADD $A9,D0 to be executed. We now make good this
omission and complete the final link in the chain between
gate and computer.

There are two ways of transforming an instruction into the
operations that interpret it. One is to create the logic that
directly transforms instructions into control signals. The
other is to design a special computer that takes a machine-
level instruction as a program and generates control signals
as an output. We first describe the random logic unit, which
uses gates and flip-flops to generate control signals.

When engineers design a random logic control unit (RALU)
they ask ‘What sequence of microinstructions is needed

When clocked

a register latches

data from the bus

F0 and F1 select the ALU

function and CALU clocks

the ALU output into the

ALU register

Each tri-state buffer

puts data on the bus

when enabled

The inputs to the ALU

are fro register D0

and the system bus

The output of the ALU is a

function of inputs P and Q

and is determined by control

signals F0 and F1. The result

is latched into the ALU

register by CALU

Read
Data out

Data in

Write
Memory

Address

R

CMAR

CIR

CPC

GPC

EPC

CDO

GDO

EDO

CALU GALU

EALU

CMBR

GMSR

GMBR

GIR

EIR

EMBR

EMSR

W

F0

F1

System bus

Bus

P

Q

ALU register ALU

f(P, Q)

MAR

MBR

IR

PC

D0

Figure 7.8 Structure of a single-bus CPU.

to execute each machine code instruction and what logic
elements do we need to implement them?’ In other words,
designers resort to the Boolean techniques we described in
Chapter 2. The word random in the expression random logic
element is employed in a specific sense and implies that the
arrangement of gates from which the control unit is con-
structed varies widely from computer to computer. The same
microprogrammed control unit can readily be adapted to suit
many different computers with relatively little modification,
whereas the random logic control unit is dedicated to a spe-
cific CPU and cannot easily be modified.

7.3.1 Implementing a primitive CPU

Before designing a random logic control unit, let’s look at the
structure of a very simple CPU in order to determine what
control signals we need to synthesize. Figure 7.8 illustrates a
computer with a single bus that is connected to all registers
and the memory. This arrangement reduces the amount of
logic required to implement the processor, but it is inefficient
because only one word at a time can be copied from a source
to a destination. The ALU has two inputs P and Q. The P
input comes only from data register D0 and the Q input

7.3 The random logic control unit 309

comes only from the system bus. Note that this structure
allows the memory to transfer data directly to or from any
register; that is, all data does not have to pass through
the MBR.

The memory receives the address of the location to be
accessed directly from the MAR, whose output is perma-
nently connected to the memory’s address input. A dedicated
connection between the MAR and memory is possible
because the memory never receives an address input from a
source other than the memory address register. A permanent
connection removes the need for bus control circuits.

Two data paths link the memory to the system bus. In a
read cycle when memory control input R is asserted, data is
transferred from the memory to the system bus via tri-state
gate GMSR. During a memory write cycle when memory con-
trol input W is asserted, data is transferred from the system
bus directly to the memory.

The MBR, data register, program counter, and instruction
register are each connected to the system bus in the same way.
When one of these registers wishes to place data on the bus,
its tri-state gate is enabled. Conversely, data is copied into a
register from the bus by clocking the register. The instruction
register (IR) receives data from the memory directly, without
the data having to pass through the MBR.

The ALU receives data from two sources, the system bus
and data register D0, and places its own output on the system
bus. This arrangement begs the question, ‘If the ALU gets
data from the system bus how can it put data on the same bus
at the same time it is receiving data from this bus?’ Figure 7.8
shows that the ALU contains an internal ALU register. When

this register is clocked by CALU, the output from the ALU
is captured and can be put on the system bus by enabling
gate GALU.

Table 7.4 defines the 16 control signals in Fig. 7.8.
Instruction decoding takes an instruction and uses it to create
a sequence of 16-bit signals that control the system in Fig. 7.8.

The ALU is controlled by a two-bit code, F1, F0, which
determines its functions as defined in Table 7.5. These opera-
tions are representative of real instructions, although a prac-
tical ALU would implement, typically, 16 different functions.

In order to keep the design of a random logic control unit
as simple as possible, we will construct a 3-bit operation code
giving a total of eight instructions. This instruction set
defined in Table 7.6 presents a very primitive instruction set
indeed, but it does include the types of instruction found in
real first-generation processors. We have defined explicit
LOAD and STORE instructions rather than a single MOVE
instruction which does the work of both LOAD and STORE.

Having constructed an instruction set, we define each
of the instructions in terms of RTL and determine the

Signal number Signal Type Operation

1 R Memory control Read from memory

2 W Memory control Write to memory

3 CMAR Register clock Clock data into MAR

4 CMBR Register clock Clock data into MBR

5 CPC Register clock Clock data into program counter

6 CIR Register clock Clock data into instruction register

7 CD0 Register clock Clock data into data register

8 CALU Register clock Clock data into ALU register

9 EMSR Bus control Gate data from the memory onto the bus

10 EMBR Bus control Gate data from the MBR onto the bus

11 EIR Bus control Gate operand from IR onto the bus

12 EPC Bus control Gate program counter onto the bus

13 ED0 Bus control Gate data register onto the bus

14 EALU Bus control Gate ALU function register onto the bus

15 F0 ALU control Select ALU function bit 0

16 F1 ALU control Select ALU function bit 1

Table 7.4 The control signals in the CPU of Fig. 7.8.

F1 F0 function

0 0 add P to Q

0 1 subtract Q

1 0 increment Q

1 1 decrement Q

Table 7.5 Decoding the ALU control code, F0, F1.

310 Chapter 7 Structure of the CPU

Op-code Mnemonic Operation

Instruction Op-code Operations (RTL) Control actions

Fetch [MAR] ← [PC] EPC = 1 CMAR

[IR] ← [[MAR]] R = 1, EMSR = 1, C IR

[ALU] ← [PC] EPC = 1, F1,F 0 = 1,0, CALU

[PC] ← [ALU] E ALU = 1 CPC

LOAD 000 [MAR] ← [IR] E IR = 1 CMAR

[D0] ← [[MAR]] R = 1, E MSR = 1, CD0

STORE 001 [MAR] ← [IR] E IR = 1 CMAR

← [D0] E D0 = 1 W = 1

ADD 010 [MAR] ← [IR] E IR = 1 CMAR

[MBR] ← [[MAR]]

 [[MAR]]

R = 1, E MSR = 1, CMBR

[ALU] ← [MBR] E MBR = 1, F1,F 0 = 0,0, CALU

[D0] ← [ALU] E ALU = 1 CD0

SUB 011 [MAR] ← [IR] E IR = 1 CMAR

[MBR] ← [[MAR]] R = 1, E MSR = 1, CMBR

[ALU] ← [MBR] E MBR = 1, F1,F 0 = 0,1, CALU

[D0] ← [ALU] E ALU = 1 CD0

INC 100 [MAR] ← [IR] E IR = 1 CMAR

[MBR] ← [[MAR]] R = 1, E MSR = 1, CMBR

[ALU] ← [MBR] E MBR = 1, F1,F 0 = 0,1, CALU

[[MAR]] ← [ALU] E ALU = 1 W = 1

DEC 101 [MAR] ← [IR] E IR = 1 CMAR

[MBR] ← [[MAR]] R = 1, E MSR = 1, CMBR

[ALU] ← [MBR] E MBR = 1, F1,F 0 = 1,1, CALU

[[MAR]] ← [ALU] E ALU = 1 W = 1

BRA 110 [PC] ← [IR] E IR = 1 CPC

BEQ 111 IF Z = 1 THEN

 [PC] ← [IR]

E IR = 1 IF Z = 1 THEN CPC

Note that N is the operand field used by the instruction.

Table 7.6 A primitive instruction set for the CPU of Fig. 7.8.

Table 7.7 Interpreting the instruction set of Table 7.6 in RTL and microinstructions.

sequence of operations neces-
sary to carry them out on the
computer in Fig. 7.8. Table 7.7
gives the micro-operations for
each instruction including the
fetch phase. The symbol Z is
the zero-flag bit from the
CCR, which is assumed to be
part of the ALU.

7.3 The random logic control unit 311

[MAR] ← [IR] EIR = 1 CMAR Copy operand address to MAR
[D0] ← [[MAR]] R = 1, EMSR = 1, CD0 Read memory and copy to D0

Instruction Operations (RTL) Control actions

R W CMAR CMBR CPC CIR CD0 CALU EMSR EMBR EIR EPC ED0 EALU F1 F0

Fetch [MAR] ← [PC] 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

[IR] ← [[MAR]] 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

[ALU] ← [PC] 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

[PC] ← [ALU] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

LOAD [MAR] ← [IR] 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

[D0] ← [[MAR]] 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

STORE [MAR] ← [IR] 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

[[MAR]]← [D0] 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

ADD [MAR] ← [IR] 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

[MBR] ← [[MAR]] 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

[ALU] ← [MBR] 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

[D0] ← [ALU] 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

SUB [MAR] ← [IR] 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

[MBR] ← [[MAR]] 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

[ALU] ← [MBR] 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1

[D0] ← [ALU] 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

INC [MAR] ← [IR] 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

[MBR] ← [[MAR]] 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

[ALU] ← [MBR] 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

[[MAR]]← [ALU] 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

DEC [MAR] ← [IR] 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

[MBR] ← [[MAR]] 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

[ALU] ← [MBR] 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1

[[MAR]]← [ALU] 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

BRA [PC] ← [IR] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

BEQ IF Z = 1 THEN

[PC] ← [IR] 0 0 0 0 Z 0 0 0 0 0 1 0 0 0 0 0

Table 7.8 Interpreting the micro-operations of Table 7.7 as microinstructions.

Consider the load D0 from memory operation; this requires
the following two steps:

We have to send the operand address in the instruction reg-
ister to the memory address register by enabling the GIR gate
and then clocking the data into the memory address register.

Then we have to put the memory in read mode, put the data
from the memory onto the bus by enabling the GMSR gate, and
finally capture the data in D0 by clocking register D0.

Table 7.7 tells us what signals have to be asserted to execute
the two operations required to interpret LOAD N. Table 7.8

312 Chapter 7 Structure of the CPU

gives all the signals in the form of a 16-component vector;
that is, the two vectors are

0010000000100000 and
1000000010001000

Figure 7.9 shows the timing of the execution phase of this
instruction. We have included only five of the 16 possible
control signals because all the other 12 signals remain inac-
tive during these two micro-operations.

7.3.2 From op-code to operation

In order to execute an instruction we have to do two things.
The first is to convert the 3-bit op-code into one of eight
possible sequences of action and the second is to cause these
actions to take place.

Figure 7.10 shows how the instructions are decoded and is
similar in operation to the 3-line to 8-line decoder described
in Chapter 2. For each of the eight possible three-bit
op-codes, one and only one of the eight outputs is placed in
an active-high condition. For example, if the op-code corres-
ponding to ADD (i.e. 010) is loaded into the instruction
register during a fetch phase, the ADD line 2 from the AND
gate array is asserted high while all other AND gate outputs
remain low.

It’s no good simply detecting and decoding a particular
instruction. The control unit has to carry out the sequence of
microinstructions that will execute the instruction. To do this

we require a source of signals to trigger each of the microin-
structions. A circuit that produces a stream of trigger signals
is called a sequencer. Figure 7.11 provides the logic diagram of
a simplified eight-step sequencer.

The outputs of three JK flip-flops arranged as a 3-bit
binary up-counter counting 000, 001, 010, . . . ,111, are con-
nected to eight three-input AND gates to generate timing sig-
nals T0 to T7. Figure 7.12 illustrates the timing pulses created
by this circuit. Note that the timing decoder is similar to the
instruction decoder of Fig. 7.11. As not all macroinstructions
require the same number of microinstructions to interpret
them, the sequencer of Fig. 7.11 has a reset input that can be
used to reset the sequencer by returning it to state T0.

The sequencer of Fig. 7.11 is illustrative rather than practi-
cal, because, as it stands, the circuit may generate spurious
timing pulses at the timing pulse outputs due to the use of an
asynchronous counter. All outputs of an asynchronous
counter don’t change state at the same instant and therefore
the bit pattern at its output may pass through several states (if
only for a few nanoseconds) before it settles down to its final
value. Unfortunately, these transient states or glitches may last
long enough to create spurious timing signals, which, in turn,
may trigger undesired activity within the control unit.A solu-
tion to these problems is to disable the output of the timing
pulse generator until the counter has settled down (or to use
a synchronous counter).

The next step in designing the control unit is to combine
the signals from the instruction decoder with the timing sig-
nals from the sequencer to generate the actual control signals.

Figure 7.13 shows one possible approach.
There are nine vertical lines in the decoder

of Fig. 7.13 (only three are shown). One
vertical line corresponds to the fetch phase
and each of the other eight lines is assigned to
one of the eight instructions. At any instant
one of the vertical lines from the instruction
decoder (or fetch) is in a logical one state,
enabling the column of two-input AND gates
to which it is connected. The other inputs to
the column of AND gates are the timing
pulses from the sequencer.

As the timing signals, T0 to T7, are gener-
ated, the outputs of the AND gates enabled by
the current instruction synthesize the control
signals required to implement the random
logic control unit. The output of each AND
gate corresponding to a particular microin-
struction (e.g. CMAR) triggers the actual
microinstruction (i.e. micro-operation). As
we pointed out earlier, not all macroinstruc-
tions require eight clock cycles to execute
them.

Clock data into D0

Capture data in D0

Put operand on bus

Read operand

Capture [IR] in MAR

Put [IR] on bus

Enable memory to bus

Read memory

Enable IR to bus

Clock data into MAR

Micro-operation 1
Send IR to MAR

Micro-operation 2
Read memory,
latch into D0

CD0

EMSR

CMAR

EIR

R

Clock

Fetch phase Fetch phaseExecute

Figure 7.9 Timing of the execute phase of a LOAD N instruction.

7.3 The random logic control unit 313

Figure 7.10 The instruction decoder.

000 LOAD N,D0

001 STORE D0,N

010 ADD N,D0

111 BEQ N

Operand address N

3 op-code bits

The 3-bit op-code
is decoded into
eight operations

Bit 0Bit 1Bit 2

T
0

T
1

T
2

T
7

J

K

Q

Q

CLRCLRCLR

C C C

J

K

Q

Q

J

K

Q

Q

1 1 1

1 1 1

Clock

Clear counter
to state T

0

Eight timing pulses

(Only 4 outputs
shown for simplicity)

Figure 7.11 The timing pulse

generator (sequencer).

Figure 7.12 The outputs from the timing pulse

generator.

One machine cycle (eight clock states)

T

T

T

T

T

T

T

T

0

1

2

3

4

5

6

7

314 Chapter 7 Structure of the CPU

Each microinstruction is activated by one or more control
signals from the nine columns of AND gates. Figure 7.14
shows the array of OR gates that combine the outputs
from the AND gates to generate the control signals. The inputs
from these OR gates come from the nine columns of AND
gates.

The fetch–execute flip-flop

So far we have devised a mechanism to interpret each
macroinstruction but have not looked at how we implement
the two-phase fetch–execute cycle. As the control unit is

always in one of two states (fetch or execute), an RS flip-flop
provides a convenient way of switching from one state to
another. When Q � 0 the current operation is a fetch phase,
and when Q � 1 an execute phase is being performed.
Figure 7.15 is an extension of Figure 7.13 and demonstrates
how the instruction decoder is enabled by the Q output of
the fetch–execute flip-flop, and the fetch decoder by the Q

_

output.
At the end of each fetch phase, a clock pulse from the tim-

ing generator sets the fetch–execute flip-flop, permitting the
current op-code to be decoded and executed. The timing-
pulse generator is reset at the end of each fetch. At the end of
each execute phase, the fetch–execute flip-flop is cleared and
the sequencer reset, enabling the next fetch phase to begin.

Table 7.9 shows how the machine-level instructions can be
represented in terms of both timing signals and microin-
structions. Note that we’ve included the micro-operation
[MAR] ← [IR] in the fetch phase.

The microinstructions are the enable signals to the bus
drivers, the register clocks, the ALU function select bits, the
memory controls (R and W), and the reset and set inputs of
the fetch–execute flip-flop. For each of the microinstructions
we can write down a Boolean expression in terms of the
machine-level instruction and the sequence of timing pulses.
For example, consider expressions for EMBR, EIR, and CMAR.

We should note, of course, that this CPU and its micropro-
gram are very highly simplified and illustrate the nature of
the random logic CU rather than its exact design.

 CMAR � Fetch · T0 � Fetch · T4

 EIR � Fetch · T4 � BRA · T0 � BEQ · T0

 EMBR � ADD· T1 � SUB· T1 � INC· T1 � DEC· T1

Figure 7.14 The OR gate array used to generate the actual

microinstructions.

FETCH

Op-code Op-code

T0 T0

T1

T0

T1
T1

T2

T3

EPC=1, CMAR EIR=1, CMAR

ED0=1, W=1

EIR=1, CMAR

R=1, EMSR=1, CIR R=1, EMSR=1, CD0

EALU=1, CPC

EPC=1, F1, F0=1, 0, CALU

EXECUTE

Figure 7.13 Combining control

signals.

E

E

E

E

C

C

C

C

E F

F

C

E

C

MBR

MSR

IR

PC

PC

MAR

MBR

IR

D0 0

1

D0

ALU

ALU

R

W

7.4 Microprogrammed control units 315

Figure 7.15 The fetch–execute flip-flop.

At the end of each
operation the last
timing pulse is used
to reset the
feth–execute flip-flop

Control
signals to
the OR gate
array

T0 T0

T1 T1

T0

T1

T2

T3

T4

Select fetch
phase

Select fetch
phase

Op-code
(from IR)

Select execute
phase

EXECUTE

FETCH

Other
reset
inputs R Q

QS

Fetch–execute
flip-flop

In the next section we look at how the design of a control
unit can be simplified by putting the sequence of micro-
operations in a table and then reading them from a table,
rather than by synthesizing them in hard logic.

7.4 Microprogrammed
control units

Before we describe the microprogrammed control unit, let’s
remind ourselves of the macro-level instruction, micro-level
instruction, and interpretation. The natural or native lan-
guage of a computer is its machine code whose mnemonic
representation is called assembly language. Machine-level
instructions are also called macroinstructions. Each macroin-
struction is executed by means of a number of primitive
actions called microinstructions. The process whereby a
macroinstruction is executed by carrying out a series of
microinstructions is called interpretation.

Let’s begin with another simple computer. Consider
Fig. 7.16. The internal structure of this primitive CPU differs
slightly from that of Fig. 7.8 because there’s more than one
bus. The CPU in Fig. 7.16 includes the mechanisms by which
information is moved within the CPU. Each of the registers
(program counter, MAR, data register, etc.) is made up of
D flip-flops. When the clock input to a register is pulsed, the

data at the register’s D input terminals is transferred to its
output terminals and held constant until the register is
clocked again. The connections between the registers are by
means of m-bit wide data highways, which are drawn as a sin-
gle bold line. The output from each register can be gated onto
the bus by enabling the appropriate tri-state buffer. We have
used a multiplexer, labeled MPLX, to select the program
counter’s input from either the incrementer or the operand
field of the instruction register. The multiplexer is controlled
by the 1-bit signal Mux, where Mux � 0 selects the incre-
menter path, and Mux � 1 selects the branch target address
from the address/operand field of the instruction register,
IRaddress.

Suppose our computer performs a fetch–execute cycle in
which the op-code is ADD N,D0. This instruction adds the
contents of the memory location specified by the operand
field N to the contents of the data register (i.e. D0) and
deposits the result in D0. We can write down the sequence of
operations that take place during the execution of ADD not
only in terms of register transfer language, but also in terms
of the enabling of gates and the clocking of flip-flops.
Table 7.10 illustrates the sequence of microinstructions exe-
cuted during the fetch–execute cycle of an ADD instruction. It
should be emphasized that the fetch phase of all instructions
is identical and it is only the execute phase that varies
according to the nature of the op-code read during the fetch
phase.

316 Chapter 7 Structure of the CPU

7.4.1 The microprogram

Imagine that the output of the control unit in Fig. 7.16 con-
sists of 10 signals that enable gates G1 to G10, the PC input
multiplexer, two signals that control the memory, and five
clock signals that pulse the clock inputs of the PC, MAR,
MBR, IR, and D0 registers. Table 7.11 presents the 17 outputs
of the control unit as a sequence of binary values that are gen-
erated during the fetch and execute phases of an ADD instruc-
tion. We have not included the ALU function signals in this
table.

When the memory is accessed by E � 1, a memory read or
write cycle may take place. The R/W

–
(i.e. read/write) signal

determines the nature of the memory access when E � 1.
When R/W

–
� 0 the cycle is a write cycle, and when R/W

–
� 1

the cycle is a read cycle.

If, for each of the seven steps in Table 7.11, the 17 signals
are fed to the various parts of the CPU in Fig. 7.16, then the
fetch–execute cycle will be carried out. Real microprogram-
med computers might use 64 to 200 control signals rather
than the 17 in this example. One of the most significant dif-
ferences between a microinstruction and a macroinstruction
is that the former contains many fields and may provide
several operands, while the macroinstruction frequently
specifies only an op-code and one or two operands.

The seven steps in Table 7.11 represent a micro-
program that interprets a fetch phase followed by an ADD
instruction.

We have demonstrated that a macroinstruction is inter-
preted by executing a microprogram, which comprises a
sequence of microinstructions. Each of the CPU’s instruc-
tions has its own microprogram. We now look at the

Instruction Time Memory Gate enables Register clocks ALU Fetch–execute

R W MBR IR PC D0 MSR ALU MAR MBR IR PC D0 ALU F1 F0 R S

Fetch T0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 X X 0 0

T1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 X X 0 0

T2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0

T3 0 0 0 0 0 0 0 1 0 0 0 1 0 0 X X 0 0

T4 0 0 0 1 0 0 0 0 1 0 0 0 0 0 X X 0 1

LOAD T0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 X X 1 0

STORE T0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 X X 1 0

ADD T0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 X X 0 0

T1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

T2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 X X 1 0

SUB T0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 X X 0 0

T1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

T2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 X X 1 0

INC T0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 X X 0 0

T1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

T2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 X X 1 0

DEC T0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 X X 0 0

T1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

T2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 X X 1 0

BRA T0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 X X 1 0

BEQ T0 0 0 0 1 0 0 0 0 0 0 0 Z 0 0 X X 1 0

Table 7.9 The interpretation of machine code instructions.

7.4 Microprogrammed control units 317

Step Register transfer language Operations required

1 [MAR] ← [PC] enable G1, clock MAR

1a INC ← [PC]

2 [PC] ← INC Mux = 0, clock PC

3 [MBR] ← [[MAR]] enable memory, R/W=1, enable G3 enable G9, clock MBR

4 [IR] ← [MBR] enable G4, clock IR

4a CU ← [IR(op-code)]
5 [MAR] ← [IR(address)] enable G2, clock MAR

6 [MBR] ← [[MAR]] enable memory, R/W=1, enable G3, enable G9, clock MBR

7 ALU ← [MBR] enable G4, set ALU function to add

7a ALU ← [D0] enable G7

7b [D0] ← ALU enable G8, clock data register D0

Note 1 Where there is no entry in the column labeled ‘Operations required’, that operation happens automatically. For example, the output

of the program counter is always connected to the input of the incrementer and therefore no explicit operation is needed to move

the contents of the PC to the incrementer.

Note 2 Any three-state gate not explicitly mentioned is not enabled.

Note 3 Steps 1, 1a are carried out simultaneously, as are 4, 4a and 7, 7a, 7b.

Table 7.10 Interpreting a fetch–execute cycle for an ADD N,D0 instruction in terms of RTL.

Copy bus A
to IR

Copy bus A
to bus C

Literal
path

Branch
path

PC

IR

Clock
PC

Clock
MAR

Clock
MBR

Clock
D0

Clock
PC

Control
units

Control signals

Q

Q
Q

Q

D

Q
D

Q
D

D
D

MPLX

Mux

E

R/W
Incrementer

G1

G2

G10

G8

G9

G3

G4

G5

G6

G7

MAR

Data

Address

Memory

in out

MBR

D0

Bus C

Bus B

Bus A

F1 F2 F3

C
A

B
ALU

Figure 7.16 Controlling the flow of

information in a computer.

318 Chapter 7 Structure of the CPU

microprogram itself and consider the hardware required to
execute it. The microprogram is executed by the same type of
mechanism used to execute the macroprogram (i.e., machine
code) itself. This is a good example of the common expres-
sion wheels within wheels.

Figure 7.17 describes the basic structure of a micropro-
grammed control unit that has a microprogram counter, a
microprogram memory, and a microinstruction register (this
structure is typical of the 1980s). The microinstruction

address from the microprogram counter is applied to the
address input of the microprogram memory and the data
output of the memory fed to the microinstruction register.
As we’ve said, the structure of the control unit that executes
the macroinstruction is very much like the structure of the
CPU itself. However, there is one very big difference between
the macroinstruction world and the microinstruction
world—the microinstruction register is very much longer
than the macroinstruction register and the microinstruction’s

Step Gate control signals and MPLX control Memory Register clocks

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Mux E R/W PC MAR MBR D0 IR

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

3 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0

4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

6 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0

7 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0

Table 7.11 Control signals generated during the fetch and execution phases of an ADD instruction.

Next micro-
instruction
address

Load
control

Condition
select CPU control field

Microprogram memory

Address

Data

Instruction register

Address mapper Incrementer

Microprogram counter

Branch on zero

Branch on not zero

Branch never (logical zero)

Branch always (logical one)

Control signals
to other parts
of the CPU

Microinstruction register

AddressOperation code

Clock

MultiplexerBranch condition These signals
are from the ALU
in the CPU

This is part of the CPU

Figure 7.17 The micro-

programmed control unit.

7.4 Microprogrammed control units 319

structure is much more complex that of the macro-
instruction.

Information in the microinstruction register is divided
into four fields: next microinstruction address field, micro-
program counter load control field, condition select field,
and CPU control field. Most of the bits in the microinstruc-
tion register belong to the CPU control field, which controls
the flow of information within the CPU by enabling tri-state
gates and clocking registers as we’ve described; for example,
all the control signals in Table 7.11 belong to this field. Our
next task is to describe one of the principal differences
between the micro- and macroinstruction. Each microin-
struction is also a conditional branch instruction that deter-
mines the location of the next microinstruction to be
executed. We will now explain how microinstructions are
sequenced.

7.4.2 Microinstruction sequence
control

If the microprogram counter were to step through the micro-
program memory in the natural sequence, 0, 1, 2, 3, . . . etc., a
stream of consecutive microinstructions would appear in the
microinstruction register, causing the CPU to behave in the
way described by Table 7.11. The CPU control bits of each
microinstruction determine the flow of information within
the CPU. However, just as in the case of the macroprogram
control unit, it is often necessary to modify the sequence in
which microinstructions are executed. For example, we
might wish to repeat a group of microinstructions n times, or
we may wish to jump from a fetch phase to an execute phase,
or we may wish to call a (microinstruction) procedure.

Microinstruction sequence control is determined by the
three left-hand fields of the microinstruction register in
Fig. 7.17, enabling the microprogram counter to implement
both conditional and unconditional branches to locations
within the microprogram memory. We shall soon see that
this activity is necessary to execute macroinstructions such as
BRA, BCC, BCS, BEQ, etc.

In normal operation, the microprogram counter steps
through microinstructions sequentially and the next micro-
program address is the current address plus one. By loading

the contents of the next microinstruction address field of the
current microinstruction field into the microprogram
counter, a branch can be made to any point in the micropro-
gram memory. In other words each microinstruction deter-
mines whether the next microinstruction is taken in
sequence or whether it is taken from the next address field of
the current microinstruction. The obvious question to ask is,
‘What determines whether the microprogram counter con-
tinues in sequence or is loaded from the next microinstruc-
tion address field of the current microinstruction?’

The microprogram load control field in the microinstruc-
tion register tells the microprogram counter how to get the
next microinstruction address. This next address can come
from the incrementer and cause the microprogram to con-
tinue in sequence. The next address can also be obtained
from the address mapper (see below) or from the address in
the next microinstruction address field of the microinstruc-
tion register.

The condition select field in the microinstruction register
implements conditional branches at the macroinstruction
level by executing a conditional branch at the microinstruc-
tion level. In the simplified arrangement of Fig. 7.17, the con-
dition select field directly controls a 4-to-1 multiplexer that
selects one of four flag bits representing the state of the CPU.
These flag bits are obtained from the ALU and are usually the
flag bits in the condition code register (e.g. Z, N, C, V). The
condition select field selects one of these flag bits for testing
(in this example only the Z-bit is used). If the output of the
multiplexer is true, a microprogram jump is made to the
address specified by the contents of the next microinstruc-
tion address field, otherwise the microprogram continues
sequentially. In Fig. 7.17 two of the conditions are obtained
from the CCR and two bits are permanently true and false. A
false condition implies branch never (i.e. continue) and a true
condition implies branch always (i.e. goto).

To emphasize what we’ve just said, consider the hypotheti-
cal microinstruction of Fig. 7.18. This microinstruction is
interpreted as:

where PC indicates the microprogram counter.
A conditional branch at the macroinstruction level (e.g.

BEQ) is interpreted by microinstructions in the following

IF Z = 1 THEN [PC] ← ADD3 ELSE [PC] ← [PC] + 1

Location of the
next microinstruction
to execute if a branch
is taken

This field determines where
the next microinstruction
address comes from

This field selects the
condition to be tested
when making a
conditional branch

This field provide the CPU control
signals that select source and
destination registers, control buses,
and determine the ALU function

ADD3 Conditional Branch on zero

Next address field Load control Conditional select CPU control fields

Figure 7.18 Structure of a

microinstruction.

320 Chapter 7 Structure of the CPU

way. The condition select field of the microinstruction selects
the appropriate status bit of the CCR to be tested. For exam-
ple, if the macroinstruction is BEQ the Z-bit is selected. The
microprogram counter load control field contains the
operation ‘branch to the address in the microinstruction reg-
ister on selected condition true’. Thus, if the selected condi-
tion is true (i.e. Z � 1), a jump is made to a point in the
microprogram that implements the corresponding jump in
the macroprogram. If the selected condition is false (i.e.
Z � 0), the current sequence of microinstructions is termi-
nated by the start of a new fetch–execute cycle.

Implementing the fetch–execute cycle

The first part of each microprogram executed by the control
unit corresponds to a macroinstruction fetch phase that ends
with the macroinstruction op-code being deposited in the
instruction register. The op-code from the instruction regis-
ter is first fed to the address mapper, which is a look-up table
containing the starting address of the microprogram for
each of the possible op-codes. That is, the address mapper
translates the arbitrary bit pattern of the op-code into the
location of the corresponding microprogram that will exe-
cute the op-code.After this microprogram has been executed,
an unconditional jump is made to the start of the micropro-
gram that interprets the macroinstruction execute phase, and
the process continues.

7.4.3 User-microprogrammed
processors

Before the advent of today’s powerful microprocessors, engi-
neers in the 1980s requiring high performance sometimes
constructed their own microprogrammed computers; that is,
the engineer designed a CPU to their own specifications. This
was fun because you could create your own architecture and
instruction set. On the other hand, you ended up with a com-
puter without an off-the-shelf operating system, compilers,
or any of the other tools you take for granted when you use a
mainstream CPU.

At the heart of many of these systems was the bit-slice com-
ponent, which provided a middle path between microcom-
puter and mainframe. Bit-slice components, as their name
suggests, are really subsections of a microprocessor that can
be put together to create a custom CPU. For example, a 64-bit
computer is made by putting together eight 8-bit bit-slice
chips.

Bit-slice components are divided into two types corre-
sponding to the functional division within the microproces-
sor (i.e. the microprogram control and ALU). By using
several ALU and microprogram controller bit-slices plus

some additional logic and a microprogram in ROM, a CPU
with a user-defined instruction set and wordlength may be
created. Of course, the designer doesn’t have to construct a
new CPU out of bit-slice components. You can emulate an
existing microprocessor or even add machine-level instruc-
tions to enhance it.

Figure 7.19 describes a typical bit-slice arithmetic logic
unit that can generate one of eight functions of two inputs R
and S. These functions vary from R plus S to the exclusive
NOR of R and S. The values of R and S may be selected from
a register file of 16 general-purpose data registers, an external
input, a Q register, or zero.

The bit-slice ALU is controlled (i.e. programmed) by a
9-bit input, which selects the source of the data taking part in
an arithmetic or logical operation, determines the particular
operation to be executed, and controls the destination
(together with any shifting) of the result. Typical ALU
operations are

[R7] ← [R7] + [R1]
[R6] ← [R6] - [R5]
[R9] ← [R9]⋅[R2]
[R7] ← [R7] + 1

An arithmetic unit of any length (as long as it is a multiple
of 4) is constructed by connecting together bit-slice ALUs.
Designers can use the ALU’s internal registers in any way they
desire. For example, they may choose to implement eight
addressable data registers, two stack pointers (described
later), two index registers, a program counter, and three
scratchpad registers. Flexibility is the most powerful feature
of bit-slice microprocessors.

This description of the microprogrammed control unit is
highly simplified. In practice the microprogram might
include facilities for dealing with interrupts, the memory
system, input/output, and so on.

One of the advantages of a microprogrammed control unit
is that it is possible to alter the content of the microprogram
memory (sometimes called the control store) and hence
design your own machine-level instructions. In fact it is per-
fectly possible to choose a set of microprograms that will exe-
cute the machine code of an entirely different computer. In
this case the computer is said to emulate another computer.
Such a facility is useful if you are changing your old computer
to a new one whose own machine code is incompatible with
your old programs. Emulation applies to programs that exist
in binary (object) form on tape or disk. By writing micropro-
grams (on the new machine) to interpret the machine code of
the old machine, you can use the old software and still get the
advantages of the new machine.

One of the greatest problems in the design of a bit-slice
computer lies in the construction and testing of the

7.4 Microprogrammed control units 321

microprogram. You can, or course, write a program to
emulate the bit-slice processor on another computer. A pop-
ular method of developing a microprogram is to replace the
microprogram ROM with read/write memory and to access
this memory with a conventional microprocessor. That is, the
microprogram memory is common to both the bit-slice
system and the microprocessor. In this way, the microproces-
sor can input a microprogram in mnemonic form, edit it,
assemble it, and then pass control to the bit-slice system. The
microprocessor may even monitor the operation of the
bit-slice system.

Such a microprogram memory is called a writable
control store and once a writable control store was
regarded as a big selling point of microprogrammed
minicomputers and mainframes. However, we have already
pointed out that a microprogrammable control store is
of very little practical use due to the lack of applications

software. Even if a computer user has the expertise to design
new microprogrammed macroinstructions, it is unlikely that
the system software and compilers will be able to make use of
these new instructions. Finally, RISC technology (as we shall
see) does not use microprogramming and interest in micro-
programming is much less than it once was.

In the next chapter we look at how the performance of
computers can be enhanced by three very different tech-
niques. We begin with a brief introduction to the RISC revo-
lution of the 1970s and 1980s and show how processors with
regular instruction sets lend themselves to pipelining (the
overlapping of instruction execution). We also look at cache
memory and explain how a small quantity of very-high-speed
random access memory can radically improve a computer’s
performance. Finally, we describe the multiprocessor—a
system that uses more than one processing unit to accelerate
performance.

Output data selector

ALU data source selector

R S

8-function ALU

Y

Sign

Zero
C

V

N
Z

Carry

Overflow

Logical zero

A F

Carry_in

Data output to memory
address register or
memory data register

0 A B D Q

RAM
16 addressable registers

B data
output

A data
output

Data input

RAM shifter

Literal data from
control unit or
main store

4-bit register
selects inputs
from control
unit Q register

F Q

Q shifter

Bit slice control functions:
ALU control, source and
destination control

RAM0 RAM3

Q0 Qn

Figure 7.19 The micro-

programmed ALU.

322 Chapter 7 Structure of the CPU

■ SUMMARY

We have taken a step back from the complex CPU

architecture we described in the previous chapters and

have looked at how a simple processor can read an instruction

from memory, decode it, and execute it.We did this by

considering the sequence of events that takes place when

an instruction is executed and the flow of information

within the computer.

In principle, the computer is a remarkably simple device.The

program counter contains the address of the next instruction to

be executed.The computer reads the instruction from memory

and decodes it.We have demonstrated that a typical instruction

requires a second access to memory to fetch the data used by

the instruction.

We have demonstrated how a simple computer that

can execute only instructions that load and store data

or perform arithmetic operations can implement the

conditional behavior required for loop and if . . . then . . .

else constructs.

The second part of this chapter looked at two ways of

implementing a computer’s control unit. We started with a

simple computer structure and demonstrated the control signals

required to implement several machine-level instructions.Then

we showed how you can use relatively simple logic and a timing

sequencer to generate the signals required to interpret an

instruction.

Random logic control units are faster than their micro-

programmed counterparts. This must always be so because the

random logic control unit is optimized for its particular

application. Moreover, a microprogrammed control unit is

slowed by the need to read a microinstruction from the

microprogram memory. Memory accesses are generally

slower than basic Boolean operations.

Microprogramming offers a flexible design.As the micro-

program lives in read-only memory, it can easily be modified at

either the design or the production stage.A random logic

control unit is strictly special purpose and cannot readily be

modified to incorporate new features in the processor

(e.g. additional machine-level instructions), and sometimes it

is difficult to remove design errors without considerable

modification of the hardware.

The highpoint of microprogramming was the early 1970s

when main memory had an access time of 1–2 �s and the

control store used to hold microprograms had an access

time of 50–100 ns. It was then sensible to design complex

machine level instructions that were executed very rapidly as

microcode.Today, things have changed and memories with

access times of below 50 ns are the norm rather than the

exception. Faster memory makes microprogramming less

attractive because hard-wired random logic control units

execute instructions much more rapidly than microcoded

control units. Today’s generation of RISC (reduced instruction

set computers) and post-RISC architectures are not

microprogrammed.

■ PROBLEMS

7.1 Within a CPU, what is the difference between an address

path and a data path?

7.2 In the context of a machine-level instruction, what is an

operand?

7.3 What is a literal operand?

7.4 How does a computer ‘know’ whether an operand in its

instruction register is a literal or a reference to memory (i.e. an

address)?

7.5 Why is the program counter a pointer and not a

counter?

7.6 Explain the function of the following registers in a CPU:

(a) PC

(b) MAR

(c) MBR

(d) IR

7.7 What is the CCR?

7.8 Does a computer need data registers?

7.9 Some microprocessors have one general-purpose data

register, some two, some eight, and so on.What do you think

determines the number of such general-purpose data registers

in any given computer?

7.10 What is the significance of the fetch–execute cycle?

7.11 What is the so-called von Neumann bottleneck?

7.12 Design a computer (at the register and bus level) to

implement a zero address instruction set architecture.

7.13 In the context of CPU design, what is a random logic

control unit? What is the meaning of the word random in this

expression?

7.14 What is a microprogrammed control unit?

7.15 Microprogramming has now fallen into disfavor.Why do

you think this is so?

7.16 For the computer structure of Fig. 7.20, state the

sequence of micro-operations necessary to carry out the

following instruction.Assume that the current instruction is in

the IR.

ADDsquare D0, D1

This instruction reads the contents of register D0, squares that

value, and then adds it to the contents of register D1.The result

7.4 Microprogrammed control units 323

is put in register D1.The function codes F2,F1, and F0 are given

below.

7.17 For the structure of Fig. 7.20 write a microprogram to

implement the operation

D1=[A]+[B]+[C]+1

Assume that only one operand,A, is required by the instruction

and that operands B and C are in the next consecutive two

memory locations, respectively.

7.18 For the architecture of the hypothetical two-bus

computer of Fig. 7.20, derive a microprogram to carry out the

operation

MOVE D0,[D1]

This operation copies the contents of register D0 into the

memory location whose address is given by the contents of

register D1.

You should describe the actions that occur in plain English

(e.g. ‘Put data from this register on the B bus’) and as a sequence

of events (e.g. Read � 1, EMSR). The table in Question 16 defines

the effect of the ALU’s function code.All data has to pass

through the ALU to get from bus B to bus A.

Note that the ALU has two input latches. Data has to be

loaded into these latches before an ALU operation takes place.

This computer has
two internal buses
A and B.

All registers capture
data from a bus when
they are clocked.

All tri-state gates can
put data on a bus when
they are enabled.

The function of the ALU
is controlled by inputs
F2, F1, F0.

This memory is controlled
by a read signal and a
write signal.

The ALU performs an
operation on one or both
its P and Q inputs
depending on the state
of its control inputs.

Data iputs for the ALU
come from two registers,
latch1 and latch 2.

Abus B bus

Read

Write

CMAR

GMAR

EMBR

CMBR

CIR
GIR

EIR

CPC
GPC

EPC

CD0

GD0

ED0

CD1

GD1

ED1

CB_to_A

CALU

EALU

EB_to_A

CL1

CL2

GMSR

EMSR

Data out

Data in

Main store

Address

MAR

MBR

IR

PC

D0

D1

Latch 1

Latch 2

F2, F1, F0

P

Q

ALU

Function
select

f(P, Q)

Figure 7.20 A microprogrammed CPU.

F2 F1 F0 Operation

0 0 0 Copy P to F F = P

0 0 1 Add P to Q F = P + Q

0 1 0 Subtract Q from P F = P – Q

0 1 1 Add 1 to P F = P + 1

1 0 0 Add 1 to Q F = Q + 1

1 0 1 Multiply P by Q F = Q x 1

324 Chapter 7 Structure of the CPU

7.19 For the computer of Fig. 7.20, what is the effect of the

following sequence of micro-operations?

Your answer should explain what each of the micro-

operations does individually.You should also state what

these actions achieve collectively; that is, what is the effect

of the equivalent assembly language operation?ED0 = 1, CL1
ED0 = 1, CL2
F2,F1,F0 = 0,0,1, EALU, CMBR
EMBR = 1, CL1
ED0 = 1, CL2
F2,F1,F0 = 0,0,1, EALU, CD1

8Accelerating performance

CHAPTER MAP

6 Assembly language
programming

Assembly language programming

is concerned with the way in

which individual machine-level

instructions are used to construct

entire programs.We introduce

the programming environment

via a simulator that runs on a PC

and demonstrate how to

implement basic algorithms.

7 Structure of the CPU

Chapter 7 demonstrates how a

computer is organized internally

and how it reads instructions

from memory, decodes them,

and executes them.We look at

the fetch–execute cycle and

demonstrate how both random

logic and microprogrammed

control units operate

8 Accelerating
Performance

The previous chapter describes

how a computer works in

principle; now we examine some

of the techniques used to make

the computer operate faster.We

begin by discussing how we can

measure computer performance

and then describe how the

performance of computers has

been enhanced by pipelining, the

use of cache memory, and

parallel processing.

9 Processor families

We have used the 68K to

introduce computer architecture

because of its elegance and

simplicity. However, students

should appreciate that there are

many computer architectures

available. Here we introduce two

alternatives to the 68K.We look

at a simple 8-bit microcontroller

found in consumer products and

a high-performance RISC

processor.

INTRODUCTION

We want faster computers. In this chapter we examine three very different ways in which we can

take the conventional von Neumann machine described in the last chapter and increase its

performance with little or no change in the underlying architecture or its implementation.1

The development of the computer comprises three threads: computer architecture, computer

organization, and peripheral technology.Advances in each of these threads have contributed to

increasing the processing power of computers over the years.The least progress has been made in

computer architecture and the programming model of a modern microprocessor would probably

not seem too strange to someone who worked with computers in the 1950s.They, would, however,

be astonished by developments in internal organization such as pipelining and instruction-level

parallelism. Similarly, someone from the 1940s would be utterly amazed by the development of

peripherals such as disk and optical storage. In 1940 people were struggling to store hundreds or

thousands of bits, whereas some home computers now have storage capacities of about 241 bits.

We look at the way in which three particular techniques have been applied to computer design

to improve throughput.We begin with pipelining, a technique that increases performance by

overlapping the execution of instructions. Pipelining is the electronic equivalent of Henry Ford’s

production line where multiple units work on a stream of instructions as they flow through a

processor.We then look at the way in which the apparent speed of memory has been improved

by cache memory, which keeps a copy of frequently used data in a small, fast memory. Finally,

we provide a short introduction to multiprocessing where a problem can be subdivided into

several parts and run on an array of computers.

Before discussing how we speed up computers, we need to introduce the notion of computer

performance.We need to be able to measure how fast a computer is if we are to quantify the

effect of enhancements.

1 Although we introduce some of the factors that have made computers
so much faster, we can’t cover the advances in semiconductor physics and
manufacturing technology that have increased the speed of processors,
improved the density of electronic devices, and reduced the power con-
sumption per transistor. These topics belong to the realm of electronic
engineering.

8.1 Measuring performance

How do we measure performance? The answer is quite
simple—‘With difficulty’. A computer’s performance is a
measure of its throughput2 or the time to execute a program.
However, because performance depends on the computer’s
operating system, disk drives, memory, cache memory, bus
structure, architecture, internal processor organization, and
clock rate, it is very difficult to compare two computer
systems. When you do compare systems, just what are you
actually comparing?

There are many ways of measuring a computer’s perfor-
mance. A technique widely used in the computer industry
is the benchmark. A benchmark is a figure-of-merit, which is
usually the time taken to execute a set of programs. These
benchmark programs are chosen to mimic the type of work
that will be performed by the computer. A common bench-
mark is called SPEC and was devised by a vender-indepen-
dent organization that serves the computer industry. A
computer’s SPEC benchmark is calculated by running a
series of different tasks (i.e. programs) on the computer
under test and then dividing the time each task takes by the
time the same program takes on a reference machine. These
figures constitute a set of normalized execution times. The
geometric mean3 of the individual normalized times is then
taken to provide a single benchmark for the computer: its
SPEC-mark. The SPEC benchmark tests the entire system
including CPU, cache, memory, buses, and system software.
Suppose a machine executes programs A, B, and C in 45, 20,
and 60 s, respectively. If, say, the times for these targets on the
reference machine are 60, 25, and 50 s, the normalized times
are 0.75, 0.80, and 1.10, respectively, corresponding to a
benchmark of 0.87.

Although the speed of a machine is dependent on all its
components including the hardware, we are first going to
look at the CPU and neglect the contribution to performance
made by memory, I/O, and software. Considering only the
CPU, we can say that the time taken to execute a program is
given by the expression

Texecute � Ninst � 1/Winst � CPI � Tcyc

Texecute is the time taken to execute a program, Ninst, is the num-
ber of instructions in the program, Winst is the work carried out
per instruction, CPI is the average number of clock cycles per
instruction, and Tcyc is the clock period. Each of these terms
plays a role in the equation and each of them is determined by
a different factor in the computer design process.

Ninst tells us how many instructions we need to implement
the program. The size of a program is dependent on both the
architecture of the processor and the algorithm used to solve
the problem. This term is also dependent on the efficiency
of the compiler because some compilers generate more

compact code than others. The Ninst term is determined by
the programmer and compiler writer.

The Winst term4 tells us how much computation an instruc-
tion performs and is a function of the CPU’s architecture.
A simple architecture has a low value of Winst, because many
instructions are required to perform a certain action. A com-
plex architecture has a high value of Winst because individual
instructions perform quite sophisticated operations. Consider
the 68020’s BFFFO (bit field find first one) instruction, which
scans an arbitrary sequence of 1 to 32 bits and returns the
location of the first bit in the string that is set to 1; for example,
the instruction BFFFO (A0){63:23},D0 scans the string of
23 bits pointed at by address register A0. This 23-bit-wide
string starts at 63 bits from the most-significant bit of the
byte pointed at by A0. The position of the first bit in this string
set to 1 (plus the string offset 63) is loaded into register D0.
Without this instruction you’d need a handful of primitive
machine-level instructions to implement it. The value of a
processor’s Winst term is determined by the computer architect.

The CPI (cycles per instruction) term depends on the
internal organization of the computer and expresses how
many clock cycles are needed to execute an instruction.
First- and second-generation processors had large CPI
values. Modern RISC processors are much better with CPIs
approaching the ideal value, 1. Some processors, called super-
scalars, have multiple processing units and execute instruc-
tions in parallel; these have CPIs less than unity. This term is
determined by the chip designer.

All digital operations take an integer number of clock
cycles. The Tcyc term expresses the processor’s clock speed,
which is determined both by device physics and the internal
organization of the chip.

We derived the expression Texecute � Ninst � 1/Winst �

CPI � Tcyc to demonstrate that the speed of a CPU is deter-
mined by the combined efforts of the programmer, compiler
writer, computer architect, chip designer, and semiconductor
physicist. It is important to appreciate that a processor’s clock
speed cannot be used to compare it with a different micro-
processor; for example, you cannot directly compare an AMD
processor with an Intel processor on the basis of clock speed
alone because the internal organizations of these two processor
families are radically different.

8.1.1 Comparing computers

Before we describe ways of speeding up computers, we need
to explain why we have to be able to compare the speeds of

326 Chapter 8 Accelerating performance

2 The term ‘throughput’ implies the number of programs that can be
executed in a given time.

3 The geometric mean of n numbers is the n-th root of their product.
4 This is a made-up term. It would be very difficult to create a parameter

that defines the work done by an instruction. I’ve included it here to
demonstrate that some instructions are more powerful than others.

different computers. Broadly speaking, there are three types
of computer user. The first is the home or small business user;
the second is the large corporate user such as the bank,
hospital, government agency, or university; the third is the
specialist such as the aircraft designer, weather forecaster, or
nuclear physicist. Members of each of these groups have to
select the computers they use; a process that requires an
understanding of performance.

The domestic or small business user falls into one of two
classes: the casual user and the sophisticated user. The casual
user is someone who knows little of computing and who is
very much at the mercy of advertising and personal advice.
Casual users lack the training to understand computer litera-
ture and may well select a computer on spurious advertising
claims. Fortunately, the increasing performance of comput-
ers means that almost anything they buy will be satisfactory
for most purposes. The sophisticated user will look at reviews
published in popular computing magazines and read the
detailed specifications of any computer they are thinking of
buying. Reviews in the popular computing press may use
suites of programs such as computer games, the type of pro-
grams that many users will run.

The corporate buyer of computers is in a different
situation. They may be buying thousands of computers for an
organization where it’s possible to set down criteria by which
the competing computers can be judged. For example, sup-
pose two computers are contenders for a large contract but
computer A uses an AMD processor and computer B uses an
Intel processor. These processors have, essentially, the same
architectures but radically different internal organizations.
How do you decide which to buy if, say, professor A costs $50
more that processor B and A’s manufacture claims it has a
better performance?

The situation with high-end personal computers and
workstations is more complex. Here, the machine is being
used to perform massive amounts of computing and it is very
important to specify the best machine. Performance becomes
a critical issue.

We begin our discussion of accelerating computer perfor-
mance with the notion of pipelining. Before we do that, we
need to say a little about the RISC revolution, which spear-
headed the drive toward performance.

8.2 The RISC revolution

Microprocessor manufacturers looked anew at processor
architectures in the 1980s and started designing simpler,
faster machines. Some designers turned their backs on the
conventional complex instruction set computer (CISC) and
started producing reduced instruction set computers (RISCs).
By the mid-1990s some of these RISC processors were con-
siderably more complex than the CISCs they replaced. This
isn’t a paradox. The RISC processor is not really a cut-down
computer architecture—it represents a new approach to
architecture design. In fact, the distinction between CISC and
RISC is now so blurred that all modern processors incorpo-
rate RISC features even if they are officially CISCs.

From the introduction of the microprocessor in the mid-
1970s to the mid 1980s there was an almost unbroken trend
towards more and more complex architectures. Some micro-
processor architectures developed like a snowball rolling
downhill; each advance in the chip fabrication process
allowed designers to add more to the microprocessor’s cen-
tral core. Intel’s 8086 family illustrates this trend particularly
well, because Intel took their original 16-bit processor and
added more features in each successive generation. This
approach to chip design leads to cumbersome architectures
and inefficient instruction sets, but it has the tremendous
commercial advantage that the end users don’t have to buy
new software when they use the latest reincarnation of a
microprocessor. Intel’s 8086 appeared in the 1970s and yet
the Pentium 4 that powers many of today’s PCs is a direct
descendent of the 8086.

Although processors were advancing in terms architec-
tural sophistication in the late 1970s, a high price was being
paid for this progress in terms of efficiency. Complex instruc-
tions required complex decoders and a lot of circuitry to
implement. There was no guarantee that these instructions
would be used in actual programs. An instruction such as
ADD R1,R2 is relatively easy to decode and interpret. You
simply clock R1 and R2 on to buses to the ALU, select the ALU
function for addition, and then clock the output from the
ALU into R1. Couldn’t be simpler.

Consider the implementation of the 68K instruction MOVE
(12,A2,D0),(A1)�. Although this instruction copies

8.2 The RISC revolution 327

RISC—REDUCED OR REGULAR?

What does the R in RISC stand for? The accepted definition of

RISC is reduced instruction set computer. First-generation

experimental RISC processors were much simpler devices than

existing CISC processors like the Intel 8086 family or the

Motorola 68K family. These RISCs had very simple instruction

set architectures with limited addressing modes and no

complex special-purpose instructions.

However, as time passed, RISC instruction sets grew in

complexity; by the time the PowerPC was introduced, it had

more variations on the branching instruction than some CISCs

had instructions. However, RISC processors are still character-

ized by the regularity of their instruction sets; there are very

few variations in the format of instructions.

data from A to B, it is not easy to implement. The source
operand is in the memory location given by
12 � [A2] � [D0]. The processor has to extract the constant
12 and the register identifiers A2 and D0 from the op-code.
Two registers have to be read and their values added to the lit-
eral 12 to get the address used to access memory (i.e. there is
a memory access cycle to get the source operand). The value
at this location is stored at the destination address pointed at
by address register A1. Getting the destination address
requires more instruction decoding and the reading of regis-
ter A1. Finally, the destination operand uses autoincrement-
ing, so the contents of register A1 have to be incremented by
2 and restored to A1. All this requires a large amount of work.

A reaction against the trend toward greater complexity
began at IBM with their 801 architecture and continued at
Berkeley where David Patterson and Divid Ditzel coined the
term RISC to describe a new class of architectures that
reversed earlier trends in microcomputer design. RISC archi-
tectures redeploy to better effect some of the silicon real
estate used to implement complex instructions and elaborate
addressing modes in conventional microprocessors of the
68K and 8086 generation.

Those who designed first-generation 8-bit architectures in
the 1970s were striving to put a computer on a chip, rather
than to design an optimum computing engine. The designers
of 16-bit machines added sophisticated addressing modes
and new instructions and provided more general-purpose
registers. The designers of RISC architectures have taken the
design process back to fundamentals by studying what many
computers actually do and by starting from a blank sheet (as
opposed to modifying an existing chip á la Intel).

Two factors that influenced the architecture of first- and
second-generation microprocessors were microprogram-
ming and the complex instruction sets created to help pro-
grammers. By complex instructions we mean operations like
MOVE 12(A3,D0),D2 and ADD (A6)+,D3.

Microprogramming achieved its highpoint in the 1970s
when ferrite core memory had a long access time of 1 �s or
more and semiconductor high-speed random access mem-
ory was very expensive. Quite naturally, computer designers
used the slow main store to hold the complex instructions
that made up the machine-level program. These machine-
level instructions are interpreted by microcode in the much
faster microprogram control store within the CPU. Today,
main stores use semiconductor memory with an access time
of 40 ns or less and cache memory with access times below

5 ns. Most of the advantages of microprogramming have
evaporated. The goal of RISC architectures is to execute an
instruction in a single machine cycle. A corollary of this state-
ment is that complex instructions cannot be executed by pure
RISC architectures. Before we look at RISC architectures
themselves, we provide an overview of the research that led to
the hunt for better architectures.

8.2.1 Instruction usage

Computer scientists carried out extensive research over a
decade or more in the late 1970s into the way in which com-
puters execute programs. Their studies demonstrated that
the relative frequency with which different classes of instruc-
tions are executed is not uniform and that some types of
instruction are executed far more frequently than others.
Fairclough divided machine-level instructions into eight groups
according to type and compiled the statistics described by
Table 8.1. The mean value represents the results averaged over
both program types and computer architecture.

The eight instruction groups are

● data movement

● program modification (i.e. branch, call, return)

● arithmetic

● compare

● logical

● shift

● bit manipulation

● input/output and miscellaneous.

This data demonstrates that the most common instruction
type is the data movement primitive of the form P � Q in a
high-level language or MOVE Q,P in a low-level language.
The program modification group which includes conditional
and unconditional branches together with subroutine calls
and returns, is the second most common group of instruc-
tions. The data movement and program modification groups
account for 74% of all instructions. A large program may
contain only 26% of instructions that are not data movement
or program modification primitives. These results apply to
measurements taken in the 1970s and those measurements
were the driving force behind computer architecture devel-
opment; more modern results demonstrate similar trends as
Table 8.2 shows.

328 Chapter 8 Accelerating performance

Instruction group 1 2 3 4 5 6 7 8

Mean value 45.28 28.73 10.75 5.92 3.91 2.93 2.05 0.44

Table 8.1 Frequency of instruction usage (very old data).

An inescapable inference from such results is that proces-
sor designers might be better employed devoting their time to
optimizing the way in which machines handle instructions in
groups one and two, than in seeking new powerful instruc-
tions that are seldom used. In the early days of the micro-
processor, chip manufacturers went out of their way to
provide special instructions that were unique to their prod-
ucts. These instructions were then heavily promoted by the
company’s sales force. Today, we can see that their efforts
should have been directed towards the goal of optimizing the
most frequently used instructions. RISC architectures have
been designed to exploit the programming environment in
which most instructions are data movement or program
control instructions.

Constants, parameters, and local storage

Another aspect of computer architecture that was investi-
gated was the optimum size of literal operands (i.e. con-
stants). Tanenbaum reported the remarkable result that 56%
of all constant values lie in the range �15 to �15 and that
98% of all constant values lie in the range �511 to �511.
Consequently, the inclusion of a 5-bit constant field in an
instruction would cover over half the occurrences of a literal.
RISC architectures have sufficiently long instruction lengths
to include a literal field as part of the instruction that caters
for the majority of literals.

Programs use subroutines heavily and an effective archi-
tecture should optimize the way in which subroutines are
called, parameters are passed to and from subroutines, and
workspace provided for local variables created by sub-
routines. Research showed that in 95% of cases 12 words of
storage are sufficient for parameter passing and local storage;
that is, an architecture with 12 words of on-chip register stor-
age should be able to handle all the operands required by most
subroutines without accessing main store. Such an arrangement

reduces the processor-memory bus traffic associated with
subroutine calls.

8.2.2 Characteristics of
RISC architectures

We begin by summarizing the characteristics of a classic RISC
architecture of the 1980s. These characteristics don’t define
the RISC architecture; they are general attributes of proces-
sors that were called RISC.

1. RISC processors have sufficient on-chip memory in the
form of registers to overcome the worst effects of the
processor–memory bottleneck. On-chip memory can be
accessed more rapidly than off-chip main store.

2. RISC processors have three-address, register-to-register
architectures. Instructions are of the form OPERATION
Ra,Rb,Rc, where Ra, Rb, and Rc are general-purpose reg-
isters.

3. Because subroutine calls are so frequently executed, RISC
architectures facilitate the passing of parameters between
subroutines.

4. Instructions that modify the flow of control (e.g. branch
instructions) are implemented efficiently because they
comprise about 20 to 30% of a typical program.

5. RISC processors don’t attempt to implement infrequently
used instructions. Complex instructions waste space on a
chip. Moreover, the inclusion of complex instructions
increases the time taken to design, fabricate, and test a
processor.

6. RISC processors aim to execute on average one instruc-
tion per clock cycle. This goal imposes a limit on the max-
imum complexity of instructions.

7. A corollary of point 6 is that an efficient architecture
should not be microprogrammed, as microprogramming
interprets an instruction by executing microinstructions.
In the limit, a RISC processor is close to a micropro-
grammed architecture in which the distinction between
machine cycle and microcycle has vanished.

8. An efficient processor should have a single instruction for-
mat. A typical CISC processor has variable-length instruc-
tions (e.g. from 2 to 10 bytes). By providing a single
instruction format, the decoding of an instruction into its
component fields can be performed by a minimum level
of decoding logic. A RISC’s instruction length should be
sufficient to accommodate the operation code field and
one or more operand fields. Consequently, a RISC proces-
sor may not utilize memory space as efficiently as a con-
ventional CISC microprocessor.

8.2 The RISC revolution 329

Benchmark Branch Integer Load Store

008.espresso 22.9% 46.8% 21.1% 5.3%

022.li 20.7% 34.2% 25.6% 15.5%

023.eqntott 27.9% 42.8% 27.0% 0.9%

026.compress 19.5% 53.8% 17.6% 9.0%

072.sc 23.5% 40.1% 20.1% 10.7%

085.gcc 21.1% 42.0% 21.7% 11.1%

average 22.1% 39.7% 23.8% 10.7%

Note: The PowerPC is a RISC machine with a load/store architecture. All data

processing operations act on internal registers. The only memory accesses are

via loads and stores.

Table 8.2 Instruction usage figures for the PowerPC processor.5

5 From IBM’s Power PC compiler writer’s guide Appendix C.

We now look at two of the fundamental aspects of the
RISC architecture—its register set and pipelining. Multiple
overlapping register windows have been implemented to
reduce the need to transfer parameters between subroutines.
Pipelining is a mechanism that permits the overlapping of
instruction execution (i.e. internal operations are carried out
in parallel). Note that many of the features of RISC pro-
cessors are not new. They have been employed long before the
advent of the microprocessor. The RISC revolution happened
when all these performance-enhancing techniques were
brought together and applied to microprocessor design.

The Berkeley RISC, SPARC, and MIPS

Although the CISC processors came from the large semicon-
ductor manufacturers, one of the first RISC processors came
from the University of California at Berkeley.6 The Berkeley
RISC was not a commercial machine, but it had a tremen-
dous impact on the development of other RISC architectures.
Figure 8.1 describes the format of a Berkeley RISC instruc-
tion. Each of the 5-bit operand fields permits one of 32 inter-
nal registers to be accessed.

The Scc field determines whether the condition code bits
are updated after the execution of an instruction; if Scc � 1,
the condition code bits are updated after an instruction. The
source 2 field uses an IM (immediate mode) bit to select one
of two functions. When IM � 0, bits 5 to 12 are zeros and bits
0 to 4 provide the second source operand register. When
IM � 1, the second source operand is a literal and bits 0 to 12
provide a 13-bit constant (i.e. immediate value).

Because five bits are allocated to each operand field, it fol-
lows that this RISC has 25 � 32 internal registers. This last
statement is emphatically not true, because the Berkeley
RISC has 138 user-accessible general-purpose internal regis-
ters. The reason for the discrepancy between the number of
registers directly addressable and the actual number of regis-
ters is due to a mechanism called windowing, which gives the
programmer a view of only a subset of all registers at any
instant.

The Berkeley RISC and several other RISC processors
hardwire register R0 to zero. Although this loses a register
because you can’t change the contents of R0, it gains a con-
stant. By specifying register R0 in an instruction, you force
the value zero; for example,ADD R1,R1,R2 implements MOVE
R1,R2.

The experimental Berkeley led to the development of
the commercial SPARC processor (Scalable Processor
ARChitecture) by Sun Microsystems. SPARC is an open
architecture and is also manufactured by Fujitsu. Similarly, a
RISC project at Stanford led to the design of another classic
RISC machine, the MIPS. Figure 8.2 illustrates the format of
the MIPS instruction, which has three basic formats, a regis-
ter-to-register format for all data processing instructions, an
immediate format for either data processing instructions
with a literal or load/store instructions with an offset, and a
branch/jump instruction with a 26-bit literal that is con-
catenated with the six most-significant bits of the program
counter to create a 32-bit address.

Register windows

An important feature of the Berkeley RISC architecture is the
way in which it allocates new registers to subroutines; that is,
when you call a subroutine, you get some new registers.
Suppose you could create 12 registers out of thin air each
time you call a subroutine. Each subroutine would have its
own workspace for temporary variables, thereby avoiding
relatively slow accesses to main store. Although only 12 or so
registers are required by each invocation of a subroutine, the
successive nesting of subroutines rapidly increases the total
number of on-chip registers assigned to subroutines. You
might think that any attempt to dedicate a set of registers to
each new procedure is impractical, because the repeated call-
ing of nested subroutines will require an unlimited amount
of storage.

Although subroutines can be nested to any depth, research
has demonstrated that on average subroutines are not nested
to any great depth over short periods. Consequently, it is

330 Chapter 8 Accelerating performance

32 bits

SccOp-code

7 bits 1 bit

Destination Source 1

Source 2

5 bits 5 bits 5 bits9 bits

0

1

0 0 0 0 0 0 0 0

i12 i11 i10 i9 i8 i7 i6 i5

s4 s3 s2 s1 s0

 i4 i3 i2 i1 i0

IM

04523 1213141819242531

Figure 8.1 Format of the Berkeley

RISC instruction.

6 It would be unfair to imply that RISC technology came entirely from
academia. As early at 1974 John Cocke was working on RISC-like archi-
tectures at IBM’s Thomas J. Watson Research Center. The project was
called ‘801’ after then number of the building in which the researchers
worked. Cocke’s work led to IBM’s RISC System/6000 and the PowerPC.

feasible to adopt a modest number of local register sets for a
sequence of nested subroutines.

Figure 8.3 provides a graphical representation of the exe-
cution of a program in terms of the depth of nesting of sub-
routines as a function of time. The trace goes up each time a
subroutine is called and down each time a return is made.
Even though subroutines may be nested to considerable
depths, there are long runs of subroutine call that do not
require a nesting level of greater than about five.

An ingenious mechanism for implementing local variable
work space for subroutines was adopted by the Berkeley
RISC. Up to eight nested subroutines could be handled using
on-chip work space for each subroutine. Any further nesting
forces the CPU to dump registers to main memory. Before we
demonstrate the Berkeley RISC’s windowing mechanism, we
describe how the memory used by subroutines can be divided
into four types.

Global space is directly accessible by all subroutines that hold
constants and data that may be required from any point

within the program. Most conventional microprocessors
have only global registers.

Local space is private to the subroutine. That is, no other sub-
routine can access the current subroutine’s local address
space from outside the subroutine. Local space
is employed as temporary working space by the current
subroutine.

Imported parameter space holds the parameters imported by
the current subroutine from its parent. In RISC terminology
these are called the high registers.

Exported parameter space holds the parameters exported by
the current subroutine to its child. In RISC terminology these
are called the low registers.

Consider the following fragment of C code. Don’t worry if
you aren’t a C programmer—the fine details don’t matter.
What we are going to do is to demonstrate the way in which
memory is allocated to parameters. The main program
creates three variables x, y, and z. Copies of x and y are passed

8.2 The RISC revolution 331

Figure 8.2 Format of the MIPS instruction.

32 bits

Source SOp-code

6 bits

FunctionShift amount

5 bits 6 bits5 bits

05610111516

Destination

5 bits

2021252631

5 bits

Source T
R-type instruction
(register to register)

I-type instruction
(register with
immediate operand)

J-type instruction
(jump to target)

Source S

Target

Op-code

Op-code

Immediate valueSource T

Time

Nesting
depth

During this period
the depth of nesting
does not vary widely

Depth of nesting

Call

Return

During this period the depth of nested
function calls is not great.

Figure 8.3 Depth of subroutine nesting as

a function of time.

Suppose that the processor is currently
using the ith window set. A special-pur-
pose register, called the window pointer
(WP), indicates the current active win-
dow. In this case the WP contains the
value i. Each window is divided into four
parts as described by Table 8.3.

All windows consist of 32 addressable
registers, R0 to R31. A Berkeley RISC
instruction of the form ADD R3,R12,R25
implements [R25] ← [R3] � [R12],
where R3 is within the window’s global
address space, R12 is within its import from
(or export to) parent subroutine space, and
R25 is within its local address space. RISC
arithmetic and logical instructions always
involve 32-bit values (there are no 8-bit or

16-bit operations).
Whenever a subroutine is invoked by an instruction of the

form CALLR Rd,address, the contents of the window
pointer are incremented by 1 and the current value of the
program counter saved in register Rd of the new window. The
Berkeley RISC does not employ a conventional stack in exter-
nal main memory to save subroutine return addresses.

Once a new window has been invoked (in Fig. 8.3 this is
window i), the new subroutine sees a different set of registers
to the previous window. Global registers R0 to R9 are an
exception since they are common to all windows. Window
R10 of the child subroutine corresponds to (i.e. is the same
as) window R26 of the calling (i.e. parent) subroutine. The

Memory

x

y

Function main

return address

old frame pointer

sum

diff

x

y
Parameters passed on the stack

Function calc with local workspace
Stack pointer

Frame pointer

to the function (i.e. subroutine) calc. The result is returned
to the main program and assigned to z. Figure 8.4 illustrates a
possible memory structure for the program.

Parameters x, y, and z are local to function main, and
copies of x and y are sent to function calc as imported para-
meters. We will assume that copies of these parameters are
placed on the stack before calc is called. The value returned
by function calc is an exported parameter, and sum and
diff are local variables in calc.

332 Chapter 8 Accelerating performance

Figure 8.4 Parameter space.

Windows and parameter passing

One reason for the high frequency of data movement opera-
tions is the need to pass parameters to subroutines and to
receive them from subroutines. The Berkeley RISC architec-
ture improves parameter passing by means of multiple over-
lapped windows. A window is the set of registers visible to the
current subroutine. Figure 8.5 illustrates the structure of the
RISC’s overlapping windows.

Register name Register type

R0 to R9 The global register set is always accessible

R10 to R15 Six registers used by the subroutine to receive

parameters from its parent and to pass results

back to its parent

R16 to R25 10 local registers accessed only by the current

subroutine that cannot be accessed directly by any

other subroutine

R26 to R31 Six registers used by the subroutine to pass

parameters to and from its own child (i.e., a

subroutine called by itself).

Table 8.3 Berkeley RISC register types.

total number of registers required to implement the Berkeley
windowed register set are

10 global � 8 � 10 local
� 8 � 6 parameter transfer registers � 138 registers

Although windowed register sets are a good idea, there are
flaws and only one commercial processor implements win-
dowing, the SPARC. The major problem with windows is that

the number of registers is finite. If there are more nested calls
than register sets, then old register sets have to be moved from
windowed registers to main store and later restored. When all
windowed registers are in use, a subroutine call results in regis-
ter overflow and the system software has to intervene. Register
sets also increase the size of a task’s environment. If the operat-
ing system has to switch tasks or deal with an exception, it may
be necessary to save a lot of program context to main store.

8.2 The RISC revolution 333

Global registers can be
accessed by any subroutine

Local registers R16 to R25
are unique to each window
and can't be accessed from
other windows

Registers R26 in window i
is the same as register R10
in window i+1. the group of
6 registers overlap

R10i–1

R10i

R15i

R16i

R25i

R26i

R31i

R15i–1

R25i–1

R26i–1

R31i–1

R10i+1

R15i+1

R16i+1

R25i+1

R26i+1

R31i+1

Local

R16i–1

0

9

Window i–1

Window i–1

Local

Window i Window i+1

Window i+1

R0 R0 R0

R9 R9 R9

Local

Figure 8.5 Berkeley windowed register sets.

The Berkeley RISC instruction set

Although the Berkeley RISC is not a commercial computer,
we briefly look at its instruction set because it provides a tem-
plate for later RISC-like processors such as the MIPS, the
SPARC, and the ARM. The instruction set is given below. The

effect of most instructions is self-explanatory. As you can see,
instructions have a three-operand instruction format and the
only memory operations are load and store. In the absence of
byte, word, and longword operations, this RISC includes
several memory reference operations designed to access

334 Chapter 8 Accelerating performance

Register to register operations

AND Rs,S2,Rd logical
OR Rs,S2,Rd logical
XOR Rs,S2,Rd exclusive
ADD Rs,S2,Rd add
ADDC Rs,S2,Rd add with carry
SUB Rs,S2,Rd subtract Rd = Rs – S2
SUBC Rs,S2,Rd subtract with borrow Rd = S2 - Rs
SUBI Rs,S2,Rd subtract reverse
SUBCI Rs,S2,Rd subtract reverse with borrow
SLL Rs,S2,Rd shift left logical
SRA Rs,S2,Rd shift right arithmetic
SRL Rs,S2,Rd shift right logical

Load instructions

LDXW (Rx)S2,Rd load long
LDXHU (Rx)S2,Rd load short unsigned
LDXHS (Rx)S2,Rd load short signed
LDXBU (Rx)S2,Rd load byte unsigned
LDXBS (Rx)S2,Rd load byte signed
LDRW Y,Rd load relative long
LDRHU Y,Rd load relative short unsigned
LDRHS Y,Rd load relative short signed
LDRBU Y,Rd load relative byte unsigned
LDRBS Y,Rd load relative byte signed

Store instructions

STXW Rm,(Rx)S2 store long
STXH Rm,(Rx)S2 store short
STXB Rm,(Rx)S2 store byte
STRW Rm,Y store relative long
STRH Rm,Y store relative short
STRB Rm,Y store relative byte

Control transfer instructions

JMPX COND,(Rx)S2 conditional jump
JMPR COND,Y conditional relative jump
CALLX Rd,(Rx)S2 call and change window
CALLR Rd,Y call relative and change window
RET COND,(Rx)S2 return and change window
CALLI Rd call an interrupt
RETI COND,(Rx)S2 return from interrupt

Miscellaneous instructions

LDHI Rd,Y load immediate high
GETLPC Rd load PC into register
GETPSW Rd load PSW into register
PUTPSW Rm put contents of register Rm in PSW

This is a very simple
instruction processing set of
operations covering logical,
arithmetic, and shift
operations.

Load instructions use address
relative addressing. There are
32-bit, 16-bit, and 8-bit
versions.

Store instructions use
address register indirect
addressing and are available
for 8-, 16-, and 32-bit stores.

These are the subroutine call
and return instructions.
Note that program counter
relative adddressing is
supported.

These perform special
register accesses to the PC
and processor status register.

8-, 16-, and 32-bit values (bytes, half words, and words,
respectively).

Load and store instructions use register indirect
addressing with a constant and a pointer; for example, LDXW
(Rx)S2,Rd loads destination register Rd with the 32-bit
value at the address pointed at by register Rx plus offset S2.
The value of the second source operand S2 is either a register
or a literal. Because register R0 is always zero, we can write
LDXW (R0)S2,R3 to generate LDXW S2,R3.

8.3 RISC architecture and pipelining

Historically, the two key attributes of RISC architectures are
their uniform instruction sets and the use of pipelining to
increase throughput by overlapping instruction execution.
We now look at pipelining.

Figure 8.6 illustrates the machine cycle of a hypothetical
microprocessor executing an ADD R1,R2,R3 instruction.
Imagine that this instruction is executed in the following five
phases.

Instruction fetch Read the instruction from the system
memory and increment the program counter.

Instruction decode Decode the instruction read from mem-
ory during the previous phase. The nature of the instruction
decode phase is dependent on the complexity of the instruc-
tion encoding. A regularly encoded instruction might be
decoded in a few nanoseconds with two levels of gating
whereas a complex instruction format might require ROM-
based look-up tables to implement the decoding.

Operand fetch The operand specified by the instruction is
read from the system memory or an on-chip register and
loaded into the CPU. In this example, we have two operands.

Execute The operation specified by the instruction is
carried out.

Operand store The result obtained during the
execution phase is written into the operand destination.
This may be an on-chip register or a location in external
memory.

Each of these five phases may take a specific time (although
the time taken is an integer multiple of the system’s master
clock period). Some instructions may require phases; for
example, the CMP R1,R2 instruction, which compares R1
and R2 by subtracting R1 from R2, does not need an operand
store phase.

The inefficiency in the arrangement of Fig. 8.6 is clear.
Consider the execution phase of an instruction. This takes
one-fifth of an instruction cycle leaving the instruction exe-
cution unit idle for the remaining 80% of the time. The same
applies to the other functional units of the processor that
also lie idle for 80% of the time. A technique called pipelining
can be employed to increase the effective speed of the
processor by overlapping the various stages in the
execution of an instruction. For example, when a pipelined
processor is executing one instruction, it is fetching the next
instruction.

The way in which a RISC processor implements pipelining
is described in Fig. 8.7. Consider the execution of two
instructions. At time i instruction 1 begins execution with its
instruction fetch phase. At time i�1 instruction 1 enters its
instruction decode phase and instruction 2 begins its instruc-
tion fetch phase. This arrangement makes sense because it
ensures that the functional units in a computer are used more
efficiently.

Figure 8.8 illustrates the execution of five instructions in a
pipelined system. We use a four-stage pipeline for the rest of
this section because RISC processors don’t need an instruc-
tion decode phase because their encoding is so simple. As you
can see, the total execution time is eight cycles. After instruc-
tion 4 has entered the pipeline, the pipeline is said to be full
and all stages are active.

Pipelining considerably speeds up a processor. Suppose an
unpipelined processor has four stages and each operation
takes 10 ns. It takes 4 � 10 ns � 40 ns to execute an instruc-
tion. If pipelining is used and a new instruction enters the
pipeline every 10 ns, a completed instruction leaves the
pipeline every 10 ns. That’s a speed up of 400% without
improving the underlying semiconductor technology.

Consider the execution of n instructions in a processor
with an m-stage pipeline. It will take m clock cycles for the
first instruction to be competed. This leaves n � 1 instruc-
tions to be executed at a rate of one instruction per cycle. The
total time to execute the n instructions is, therefore,
m � (n � 1) cycles.

If we do not use pipelining, it takes n ⋅ m cycles to
execute n instructions, assuming that each instruction is

8.3 RISC architecture and pipelining 335

Figure 8.6 Instruction execution.

Instruction
fetch

Instruction
decode

Operand
fetch

Execute Operand
Store

One instruction

ADD R1,R2,R3 Decode this instruction into “ADD” and registers 1, 2, 3

ADD R1,R2,R3 Read this instruction from memory

ADD R1,R2,R3 Read operands R2 and R3 from the register file

ADD R1,R2,R3 Add the two operands together

ADD R1,R2,R3 Store the result in R1

IF ID OF E OS

IF

ID

OF

E

OS

executed in m phases. The speedup due to pipelining is,
therefore,

Let’s put some numbers into this equation and see what
happens when we vary the values of n (the code size) and m
(the number of stages in the pipeline). Table 8.4 gives the
results for m � 3, 6, and 12 with instruction blocks ranging
from 4 to 1000 instructions.

Table 8.4 demonstrates that pipelining produces a speedup
that is the same as the number of stages when the number of
instructions in a block is large. Small blocks of instructions

S �
n · m

m � (n � 1)

running on computers with large pipelines do not demon-
strate a dramatic performance improvement; for example, a
12-stage pipeline with four-instruction blocks has a speedup
ratio of 3.2 rather than 12. We will return to the implications
of this table when we’ve introduced the notion of the pipeline
hazard.

8.3.1 Pipeline hazards

Table 8.4 demonstrates that pipelining can provide a substan-
tial performance acceleration as long at the block of instruc-
tions being executed is much longer than the number of

336 Chapter 8 Accelerating performance

Instruction 1 is fetched while
instruction 2 is being decoded.

Instruction
1

Time i
time

Time i +1 Time i +1 Time i +1 Time i +1 Time i +1

Instruction
2

Instruction
fetch

Instruction
fetch

Operand
fetch

Operand
fetch

Execute

Execute

Operand
store

Operand
store

Instruction
decode

Instruction
decode

Figure 8.7 Pipelining and

instruction overlap.

Figure 8.8 Pipelining and instruction overlap.

In time slot 3, instruction 1
is being executed, instruction 2
is in the operand fetch phase,
and instruction 3 is being fetched
from memory

In time slot 4, instruction 1
is being completed, just as
instruction 4 is being fetched
from memory. At this point, all
stages are active and a new
instruction is completed every cycle

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8

Instruction
fetch

Instruction
fetch

Operand
fetch

Operand
fetch

Execute

Execute

Operand
store

Operand
store

Instruction
fetch

Operand
fetch

Execute Operand
store

Instruction
fetch

Operand
fetch

Execute Operand
store

Instruction
fetch

Operand
fetch

Execute Operand
store

stages in the pipeline. Unfortunately, machine code is divided
into blocks with breaks between blocks that have come to be
known as hazards (hazards possibly a misnomer) or pipeline
stalls. We are interested in two types of hazard, the bubble
created by branch instructions and the data dependency
caused by certain combinations of instructions.

A pipeline is an ordered structure that thrives on regularity.
At any stage in the execution of a program, a pipeline contains
components of two or more instructions at varying stages in
their execution. Consider Fig. 8.9 in which a sequence of
instructions is being executed in a pipelined processor. The
second instruction, i, enters the pipeline and begins execution.
Let’s assume that this is a simple unconditional branch
instruction,BRA N. The branch instruction enters the pipeline
during its fetch phase. In the next clock cycle, any operands
required by the branch instruction are fetched and the next
instruction in sequence is dragged into the pipeline. In the
next phase the branch instruction is executed and
another instruction brought into the pipeline.
However, when the branch instruction is exe-
cuted, the program counter is reloaded with the
branch target address, in this case N.

Because the program counter is loaded with a new value
when the processor encounters a branch instruction, any

instructions loaded into the pipeline immediately following
the branch are not executed. All the work performed by the
pipeline on these instructions must be thrown away, because
the instructions are not executed. When data in a pipeline is
rejected or the pipeline is held up by the introduction of idle
states, we say that a bubble has been introduced. Of course,
the longer the pipeline the more instructions that must be
rejected once the branch is encountered.

Because program control instructions are so frequent, any
realistic processor using pipelining must do something to
overcome the problem of bubbles caused by this class of
instructions. The Berkeley RISC reduces the effect of bubbles
by refusing to throw away the instruction immediately fol-
lowing a branch; that is, the instruction immediately after a
branch is always executed. Consider the effect of the follow-
ing sequence of instructions:

8.3 RISC architecture and pipelining 337

Block size Three-stage Six-stage 12-stage

pipeline pipeline pipeline

4 2.0000 2.6667 3.2000

8 2.4000 3.6923 5.0526

20 2.7272 4.8000 7.7419

100 2.9411 5.7143 10.810

1000 2.9940 5.9701 11.8694

� 3.0000 6.0000 12.0000

Table 8.4 Pipelining efficiency as a function of pipeline length

and block size.

IF

IF

IF

IF

IF

IF

OF

OF

OF

OF

OF

OF

OE

OE

OE

OE

OE

OE

OS

OS

OS

OS

OS

OS

Four-stage pipeline

i + 1

i – 1

i + 2

Instruction i is
BRA N and the next
instruction should be
fetched from address
N rather than i+1.

N + 1

Bubble
These two instructions
are not executed

i

N

IF = instruction fetch
OF = operand fetch
E = operand execute
OS = operand store

Figure 8.9 The pipeline

bubble.

The processor calculates R5 � R2 � R4 before executing
the branch. This sequence of instructions is most strange to

the eyes of a conventional assembly language programmer,
who is not accustomed to seeing an instruction executed after
a branch has been taken.

Unfortunately, it’s not always possible to arrange a pro-
gram in such a way as to include a useful instruction immedi-
ately after a branch. Whenever this happens, the compiler
must introduce a no operation (NOP) instruction after the
branch and accept the inevitability of a bubble. This mecha-
nism is called a delayed jump or a branch-and-execute

Figure 8.10 is a computed branch whose target address is cal-
culated during the execute phase of the instruction cycle.

8.3.2 Data dependency

Another problem caused by pipelining is data dependency in
which an instruction cannot be executed because it requires a
result from a previous operation that has not yet left the
pipeline. Consider the following sequence of operations.

338 Chapter 8 Accelerating performance

Fetch i – 1

Fetch i+1

Fetch i+2

Fetch N

Fetch i

OF

OF

OF

OF

OF

OE

OE

OE

OE

OE

OS

OS

OS

OS

OS

BRA N

This instruction is executed out of sequence

This instruction
is not executed

This instruction
is at the branch
target address Figure 8.10 Delayed branch.

Figure 8.11 Data dependency.

Instruction 3 has to wait for the
previous instruction to save R5

Operand R5 is saved only
at thispoint

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9

IF OF E OS

IF

IF

OF E OS

IF OF E OS

OF E OS

Get R2,R3

Get R2,R4

Get R7,R5 Sub R7–R5 R6=R7–R5

Add R2,R3

Add R2,R4

R1= R2+R3

R5= R2+R4

ADD R1,R2,R3

ADD R5,R2,R4

Get R3,R4 AND R3,R4 R2= R3,R4AND R2,R2,R3

SUB R6,R7,R5

Bubble

technique. Figure 8.10 demonstrates how a RISC processor
implements a delayed jump. The branch described in

These instructions are executed sequentially. However, a
problem arises when the third instruction,SUB R6, R7, R5,

is executed on a pipelined machine. This instruction uses R5,
which is calculated by the preceding instruction, as a source
operand. Clearly, the value of R5 will not have been stored by
the previous instruction by the time it is required by the
current instruction. Figure 8.11 demonstrates how data
dependency occurs.

Figure 8.11 demonstrates that the pipeline is held up or
stalled after the fetch phase of instruction 3 for two clock
cycles. It is not until the end of time slot 5 that operand R5 is
ready and execution can continue. Consequently a bubble
must be introduced in the pipeline while an instruction waits
for its data generated by the previous instruction.

Figure 8.12 demonstrates a technique called internal for-
warding designed to overcome the effects of data dependency.
The example provided corresponds to a three-stage pipeline
like the RISC. The following sequence of operations is to be
executed.

Instruction 2 generates a destination operand R5 that is
required as a source operand by the next instruction. If the
processor were to read the source operand requested by
instruction 3 directly from the register file, it would see the
old value of R5. By means of internal forwarding the proces-
sor transfers R5 from instruction 2’s execution unit directly
to the execution unit of instruction 3 (see Fig. 8.12).

In this example, instruction 4 uses an operand generated
by an instruction 1 (i.e. the contents of register R1). However,
because of the intervening instructions 2 and 3, the destina-
tion operand generated by instruction 1 has time to be

1.
2.

3.

4.

written into the register file before it is read as a source
operand by instruction 4.

8.3.3 Reducing the branch penalty

If we’re going to reduce the effect of branches on the perfor-
mance of RISC processors, we need to determine the effect of
branch instructions on the performance of the system.
Because we cannot know how many branches a given pro-
gram will contain, or how likely each branch is to be taken, we
have to construct a probabilistic model for the system. We will
make the following assumptions.

1. Each non-branch instruction is executed in one cycle.

2. The probability that a given instruction is a branch is pb.

3. The probability that a branch instruction will be
taken is pt.

4. If a branch is taken, the additional penalty is b cycles.

5. If a branch is not taken, there is no penalty.

The average number of cycles executed during the execu-
tion of a program is the sum of the cycles taken for non-
branch instructions, plus the cycles taken by branch
instructions that are taken, plus the cycles taken by branch
instructions that are not taken.

If the probability of an instruction being a branch is pb, the
probability that an instruction is not a branch is 1�pb

because the two probabilities must add up to 1. Similarly, if pt

is the probability that a branch will be taken, the probability
that a branch will not be taken is 1�pt.

The total cost (i.e. time) of an instruction is

8.3 RISC architecture and pipelining 339

Figure 8.12 Internal forwarding.

Although this operation uses
register R1 as a source operand that
was generated by instruction 1, there
is no need for infernal forwarding
because R1 was stored in time slot 4

In this case, R5 is
forwarded directly to the
execution unit where it
is needed in the next cycle

internal forwarding

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7

Fetch 1 OF OE OS

Fetch 2 OF OE OS

Fetch 3 OF OE OS

Fetch 4 OF OE OS

ADD R1,R2,R3

ADD R5,R2,R4

ADD R6,R7,R5

ADD R2,R1,R4

� 1 � pb ·pt ·b.

Tave � (1 � pb) ·1 � pb ·pt ·(1 � b) � pb ·(1 � pt) ·1

The expression, 1 � pb
.pt

.b, tells us that the number of
branch instructions, the probability that a branch is taken,
and the overhead per branch instruction all contribute to the
branch penalty. We are now going to examine some of the
ways in which pb

.pt
.b can be reduced.

Branch prediction

If we can predict the outcome of the branch instruction
before it is executed, we can start filling the pipeline with
instructions from the branch target address if the branch is
going to be taken. For example, if the instruction is BRA N, the
processor can start fetching instructions at locations N,
N � 1, N � 2 etc., as soon as the branch instruction is
fetched from memory. In this way, the pipeline is always filled
with useful instructions.

This prediction mechanism works well with an uncondi-
tional branch like BRA N. Unfortunately, conditional branches
pose a problem. Consider a conditional branch of the form
BCC N (branch to N on carry bit clear). Should the RISC
processor make the assumption that the branch will not be
taken and fetch instructions in sequence, or should it make
the assumption that the branch will be taken and fetch
instruction at the branch target address N?

Conditional branches are required to implement various
types of high-level language construct. Consider the follow-
ing fragment of high-level language code.

The first conditional operation compares J with K. Only the
nature of the problem will tell us whether J is often less than K.

The second conditional in this fragment of code is pro-
vided by the FOR construct, which tests a counter at the end
of the FOR and then decides whether to jump back to the
body of the construct or to terminate the loop. In this case,
you could bet that the loop is more likely to be repeated than
exited. Some loops are executed thousands of times before
they are exited. Therefore, it might be a shrewd move to look
at the type of conditional branch and then either fill the
pipeline from the branch target if you think that the branch
will be taken, or fill the pipeline from the instruction after the
branch if you think that it will not be taken.

If we attempt to predict the behavior of a system with two
outcomes (branch taken or branch not taken), there are four
possibilities.

1. Predict branch taken and branch taken—successful outcome.

2. Predict branch taken and branch not taken—unsuccess-
ful outcome.

3. Predict branch not taken and branch not taken—success-
ful outcome.

4. Predict branch not taken and branch taken—unsuccess-
ful outcome.

Suppose we apply a branch penalty to each of four these
possible outcomes. The penalty is the number of cycles
taken by that particular outcome, as Table 8.5 demonstrates.
For example, if we think that a branch will not be taken and
get instructions following the branch and the branch is actu-
ally taken (forcing the pipeline to be loaded with instructions
at the target address), the branch penalty in Table 8.5 is c
cycles.

We now need to calculate the average penalty for a partic-
ular system. To do this we need more information about the
system. The first thing we need to know is the probability that
an instruction will be a branch (as opposed to any other cat-
egory of instruction). Assume that the probability that an
instruction is a branch is pb. The next thing we need to know
is the probability that the branch instruction will be taken, pt.
Finally, we need to know the accuracy of the prediction. Let pc

be the probability that a branch prediction is correct. These
values can be obtained by observing the performance of real
programs. Figure 8.13 illustrates all the possible outcomes of
an instruction. We can immediately write

(1 � pb) � probability that an instruction is not a branch
(1 � pt) � probability that a branch will not be taken
(1 � pc) � probability that a prediction is incorrect

These equations are obtained by using the principle that if
one event or another must take place, their probabilities must
add up to unity. The average branch penalty per branch
instruction, Cave, is therefore

� c ·pt ·(1 � pc) � d ·(1 � pt) ·pc

Cave � a ·(pt ·pc) � b ·(pt � 1) ·(1 � pc)

� d(pbranch_predicted_not_taken_and_not_taken)

� c(pbranch_predicted_not_taken_but_taken)

� b(pbranch_predicted_taken_but_not_taken)

Cave � a(pbranch_predicted_taken_and_taken)

340 Chapter 8 Accelerating performance

Prediction Result Branch penalty

Branch taken Branch taken a

Branch taken Branch not taken b

Branch not taken Branch taken c

Branch not taken Branch not taken d

Table 8.5 The branch penalty.

The average number of cycles taken by a branch
instruction is Cave

. pb

We can make two assumptions to help us to simplify the
first expression. The first is that a � d � N (i.e. if the predic-
tion is correct the number of cycles is N). The other simplifi-
cation is that b � c � B (i.e. if the prediction is wrong the
number of cycles is B). The average number of cycles per
branch instruction is therefore

There are several ways of implementing branch prediction
(i.e. increasing the value of pc). Two basic approaches are
static branch prediction and dynamic branch prediction. Static
branch prediction makes the assumption that branches are
always taken or never taken. Because observations of real
code have demonstrated that branches have a greater than
50% chance of being taken, the best static branch prediction
mechanism would be to fetch the next instruction from the
branch target address as soon as the branch instruction is
detected.

A better method of predicting the outcome of a branch is
by observing its op-code, because some branch instructions
are taken more or less frequently than other branch instruc-
tions. Using the branch op-code to predict that the branch
will or will not be taken results in a 75% accuracy. An exten-
sion of this technique is to devote a bit of the op-code to the

static prediction of branches. This bit is set
or cleared by the compiler depending on
whether the compiler estimates that the
branch is most likely to be taken. This
technique provides branch prediction
accuracy in the range 74 to 94%.

Dynamic branch prediction techniques
operate at run-time and use the past
behavior of the program to predict its
future behavior. Suppose the processor
maintains a table of branch instructions.
This branch table contains information
about the likely behavior of each branch.
Each time a branch is executed, its out-

come (i.e. taken or not taken) is used to update the entry in
the table. The processor uses the table to determine whether
to take the next instruction from the branch target address
(i.e. branch predicted taken) or from the next address in
sequence (branch predicted not taken).

Single-bit branch predictors provide an accuracy of over
80% and 5-bit predictors provide an accuracy up to 98%.
A typical branch prediction algorithm uses the last two
outcomes of a branch to predict its future. If the last two out-
comes are X, the next branch is assumed to lead to outcome
X. If the prediction is wrong it remains the same the next time
the branch is executed (i.e. two failures are needed to modify
the prediction). After two consecutive failures, the prediction
is inverted and the other outcome assumed. This algorithm
responds to trends and is not affected by the occasional single
different outcome.

8.3.4 Implementing pipelining

We demonstrated how the fetch–execute cycle operated at the
logic level in Chapter 7. Now we show how the basic model is
extended to incorporate pipelining.

In principle, pipelining is straightforward. Information is
passed though a system (e.g. a logic unit or a memory) and
then captured in a latch at the output of the system on the
next clock cycle. Once the information has been captured in a
latch, it can be held constant and used by the next processing
stage.

Consider the highly simplified pipelined processor of
Fig. 8.14 (we have omitted all but the basic detail—there is no
data memory or facilities for dealing with literal operations
and conditional behavior).

We are going to look at the operation of Fig. 8.14 cycle by
cycle using the timing diagram of Fig. 8.15. All data is latched
on the rising edge of a clock signal. Assume that the first cycle
is timeslot T0 and that the program counter contains the
address of instruction i at the start of T0.

8.3 RISC architecture and pipelining 341

1 – pb

1 – pt

1 – pc

1 – pc

pb

pt

pc

pc

Instruction
not branch

Branch
instruction

Branch
taken

Branch not
taken

a

b

c

d

Predict taken
branch taken

Predict taken
branch not taken

Predict not taken
branch taken

Predict not taken
branch not taken

Figure 8.13 Branch prediction.

� c ·(1 � pt) ·(1 � pc) � d ·(1 � pt) ·pc).

� pb ·(a ·(pt ·pc) � b ·pt ·(1 � pc)

� N ·(1 � pt) ·pc) � pb ·(N ·pc � B ·(1� pc)).

pb ·(N ·pt ·pc � B ·pt ·(1�pc) � B ·(1� pt) ·(1 � pc)

342 Chapter 8 Accelerating performance

ACCESSING EXTERNAL MEMORY

CISC processors have a wealth of addressing modes that can

be used with memory reference instructions.The 68K

implements ADD D0,ADD D0,� (A5) which adds the contents of D0

to the top of the stack pointed at by A5 and then pushes the

result on to this stack. Designers of the Berkeley RISC

restricted the way in which it accesses external memory.

The Berkeley RISC permits only two types of reference to

external memory: a load and a store. Similarly, it provides a

limited number of addressing modes with which to access an

operand. It’s not hard to find the reason for these restrictions

on external memory accesses—an external memory reference

takes longer than an internal operation.

Consider a LOAD (Rx)S2, Rd which implements

[Rd]←[[Rx] � S2]. The diagram demonstrates a

possible sequence of actions performed during the

execution of this instruction. In the source operand

fetch phase, Rx is read from the register file to calculate

the effective address of the operand.The processor can’t

progress beyond the execute phase to the store operand

phase, because the operand has not been read from the main

store.A bubble is introduced in the pipeline until the operand

has been read from memory. Because memory accesses

introduce bubbles into the pipeline, they are avoided wherever

possible.

The effective address in the program counter relative mode

is given by

where PC represents the contents of the program counter and

S2 is an offset as above.

These addressing modes provide zero, one, or two pointers,

and a constant offset. If you wonder how we can use an

addressing mode without a pointer register, recall that R0

contains the constant zero.There is a difference between

addressing modes permitted by load and store operations.A

load instruction permits the second source, S2, to be either an

immediate value or a second register, whereas a store instruc-

tion permits S2 to be a 13-bit immediate value only.

The Berkeley RISC instruction has two formats.The short

immediate format provides a 5-bit destination, a 5-bit source

1 operand and a 14-bit short source 2 operand.The short

immediate format has two variations: one that specifies

a 13-bit literal for source 2 and one that specifies a 5-bit

source 2 register address. Bit 13 is used to specify whether the

source 2 operand is a 13-bit literal of a 5-bit register pointer.

The long immediate format provides a 19-bit source

operand by concatenating the two source operand fields.

The Berkeley RISC implements two addressing

modes: indexed and program counter relative.All other

addressing modes must be synthesized from these two

primitives. The effective address in the indexed mode is

given by

where Rx is the index register (one of the 32

general purpose registers) and S2 is an offset. The

offset can be either a general-purpose register or a 13-bit

constant.

Thirteen-bit and 19-bit immediate fields may sound a little

strange at first sight. However, because 13 � 19 � 32, RISC

permits a full 32-bit value to be loaded into a window register

in two operations.A typical microprocessor might take the

same number of instruction bits to perform the same action

(i.e. a 32-bit operation code field followed by a 32-bit literal).

The following describes some of the addressing modes that

can be synthesized from the RISC’s basic addressing modes.

Conditional instructions do not require a destination address

and therefore the 5 bits, 19 to 23, normally used to specify a

destination register are used to specify the condition (one of

16 because bit 23 is not used by conditional instructions).

Fetch i

Fetch i +1

Fetch i + 2 OF OE

Calculate operand
address

Bubble due to external
memory access

Load instruction
OS

OF OE OSMemory access

OF OE OS

1. Absolute addressing EA � 13-bit offset: implemented by setting Rx � R0 � 0, S2 � 13-bit constant

2. Register indirect EA � [Rx]; implemented by setting S2 � R0 � 0

3. Indexed addressing EA � [Rx] � Offset implemented by setting S2 � 13-bit constant (i.e. offset)

4. Two-dimensional addressing EA � [Rx] � [Ry] implemented by setting S2 � [Ry] (LOAD instructions only)

8.3 RISC architecture and pipelining 343

During cycle T0 the output of the program counter interro-
gates the program memory and instruction i is read from
memory.

When the next clock pulse appears at the beginning of
cycle T1, instruction i is latched in the instruction register and
held constant for a clock cycle. The program counter is incre-
mented and instruction i � 1 is read from memory. The
instruction in the instruction register is decoded and used to
read its two source operands during cycle T1.

At the end of cycle T1, the two source operands for instruc-
tion i appear at the operand latches (just as instruction i � 1
appears at the IR).

During cycle T2, the operands currently in the operand
latches are processed by the ALU to produce a result that is
captured by the result latch at the beginning of cycle T3. At
this point, instruction i has been executed. Note that in time

slot T2, the program counter contains the address of instruc-
tion i � 2 and the instruction register contains the op-code
for instruction i � 1.

In Fig. 8.14 there is a block marked T delay in the path
between the op-code field of the IR and the ALU, and a block
marked 2T delay between the destination field of the op-code
and the register file. These delays are necessary to ensure that
data arrives at the right place at the right time. For example,
the operand data that goes to the ALU passes through the
operand latches, which create a one-cycle delay. Consequently,
the op-code has to be delayed for a cycle to avoid the data
for instruction i getting to the ALU at the same time as the
op-code for instruction i � 1.

During cycle T3 the result of instruction i from the ALU is
latched into the register file. In cycle T3, instruction i � 3 is in
the program counter, instruction i � 2 is in the instruction

PC
Instruction
memory

Clock

Registers

S1 flip-flop

S2 flip-flop

Result
flip-flopALU

D Result
Op-code

Source 1

Source 2

Destination

Op-code

2T delay

+

4
T delay

IR

S1

S2 O2

O1

Op

Stage 1 Stage 2 Stage 3

Read instruction from memory Fetch source operands Calculate result

Stage 4

Store result

Operand
latches

Figure 8.14 Using latches to

implement pipelining.

Figure 8.15 Timing diagram for a

pipelined computer.
Read instruction

Instruction i in IR

Read operands Generate result Latch result

Clock

PCoutput

IRoutput

Source
operands

Result
(ALU output)

Time slot T0 Time slot T1 Time slot T2 Time slot T3

i

i

i

i

i –1

i –1

i –1

i +1

i +1

i +1

i +1

i +2

i +2

i +2

i +3

i +3

i +4

344 Chapter 8 Accelerating performance

register, instruction i � 1 is being executed, and the result of
instruction i is being written back into the register file. A new
instruction is completed (or retired) on each further clock
pulse.

There is little point in increasing the speed of the process-
ing if memory cannot deliver data and instructions when
they are needed. This is a particularly critical issue in com-
puter design because memory speed has not kept up with
processor speed. In the next section we look at how the effect-
ive speed of main store can be increased.

8.4 Cache memory

We now look at the cache memory that can dramatically
increase the performance of a computer system at relatively
little cost.

Cache memory provides system designers with a way of
exploiting high-speed processors without incurring the cost
of large high-speed memory systems. The word cache is pro-
nounced ‘cash’ or ‘cash-ay’ and is derived from the French
word meaning hidden. Cache memory is hidden from the
programmer and appears as part of the system’s memory
space. There’s nothing mysterious about cache memory—it’s
simply a quantity of very-high-speed memory that can be
accessed rapidly by the processor. The element of magic
stems from the ability of systems with a tiny cache memory
(e.g. 512 kbytes of cache memory in a system with 2 Gbytes
of DRAM) expecting the processor to make over 95% of its
accesses to the cache rather than the slower DRAM.

First-generation microprocessors had truly tiny cache
memories; for example, 256 bytes. Up to the mid-1990s,
cache sizes of 8 to 32 kbytes were common. By the end of the
1990s, PCs had internal on-chip caches of 128 kbytes and
external second-level caches of up to 1 Mbyte and in 2004
on-chip cache memories of 2 Mbytes and up to 4 Gbytes of
main store.

Cache memory can be understood in everyday terms by its
analogy with a diary or notebook used to jot down telephone
numbers. A telephone directory contains hundreds of thou-
sands of telephone numbers and nobody carries a telephone
directory around with them. However, lots of people have a
notebook with a hundred or so telephone numbers that they
keep with them. Although the fraction of all possible tele-
phone numbers in someone’s notebook might be less than
0.01%, the probability that their next call will be to a number
in the notebook is high because they frequently call the same
people. Cache memory operates on exactly the same prin-
ciple, by locating frequently accessed information in the
cache memory rather than in the much slower main memory.
Unfortunately, unlike the personal notebook, the computer
cannot know, in advance, what data is most likely to be
accessed. You could say that computer caches operate on a
learning principle. By experience they learn what data is most
frequently used and then transfer it to the cache.

The general structure of a cache memory is provided in
Fig. 8.16. A block of cache memory sits on the processor’s
address and data buses in parallel with the much larger main
memory. The implication of parallel in the previous sentence
is that data in the cache is also maintained in the main mem-
ory. To return to the analogy with the telephone notebook,
writing a friend’s number in the notebook does not delete
their number in the directory.

Cache memory relies on the same principle as the note-
book with telephone numbers. The probability of accessing
the next item of data in memory isn’t a random function.
Because of the nature of programs and their attendant data
structures, the data required by a processor is often highly
clustered.This aspect of memories is called the locality of refer-
ence and makes the use of cache memory possible (it is of
course the same principle that underlies virtual memory).

A cache memory requires a cache controller to determine
whether the data currently being accessed by the CPU resides
in the cache or whether it must be obtained from the main

The address from the
CPU interrogates both
the cache and main
memory

If the data is in the cache,
it is fetched from there rather
than the main store

Typically 64 Kbytes to 2 Mbytes

Typically 64 Mbytes to 4Gbytes

Data bus

Main store
Address bus

Data

Address

CPU

Cache
controller

Cache
memory

Hit

Figure 8.16 Structure of a

cache memory.

8.4 Cache memory 345

memory. When the current address is applied to the cache
controller, the controller returns a signal called hit, which is
asserted if the data is currently in the cache. Before we look at
how cache memories are organized, we will demonstrate
their effect on a system’s performance.

8.4.1 Effect of cache memory on
computer performance

A key parameter of a cache system is its hit ratio (h), which
defines the ratio of hits to all accesses. The hit ratio is deter-
mined by statistical observations of a real system and cannot
readily be calculated. Furthermore, the hit ratio is dependent
on the specific nature of the programs being executed. It is
possible to have some programs with very high hit ratios and
others with very low hit ratios. Fortunately, the effect of local-
ity of reference usually means that the hit ratio is very high—
often in the region of 95%. Before calculating the effect of a
cache memory on a processor’s performance, we need to
introduce some terms.

Access time of main store tm

Access time of cache memory tc

Hit ratio h
Miss ratio m
Speedup ratio S

The figure of merit of a computer with cache is called the
speedup ratio, which indicates how much the cache acceler-
ates the memory’s access time. The speedup ratio is defined as
the ratio of the memory system’s access time without cache to
its access time with cache.

N accesses to a system without cache memory requires Ntm

seconds. N accesses to a system with cache requires
N(htc � mtm) seconds; that is, the time spent in accessing the
cache plus the time spent accessing the main memory multi-
plied by the total number of memory accesses.We can express
m in terms of h as m � (1 � h), because if an access is not a
hit it must be a miss. Therefore the total access time for a sys-
tem with cache is given by N(htc � (1 � h)tm).

The speedup ratio is therefore given by

We can introduce a new parameter, k, which defines the
ratio of the access time of cache memory to main memory.
That is, k � tc/tm. Typical values for tm and tc might be 50 ns
and 10 ns, respectively, which gives a value for k of 0.2.
Therefore,

S �
tm/tm

htc/tm � ((1 � h)tm/tm)
�

1
hk � (1 � h)

S �
Ntm

N(htc � (1 � h)tm)
�

tm

htc � (1 � h)tm

Figure 8.17 provides a plot of S as a function of the hit ratio
(h). As you might expect, when h � 0 and all accesses are
made to the main memory, the speedup ratio is 1. Similarly,
when h � 1 and all accesses are made to the cache the
speedup ratio is 1/k. The most important conclusion to be
drawn from Fig. 8.17 is that the speedup ratio is a sensitive
function of the hit ratio. Only when h approaches about 90%
does the effect of the cache memory become really signific-
ant. This result is consistent with common sense. If h drops
below about 90%, the accesses to main store take a dis-
proportionate amount of time and accesses to the cache have
little effect on system performance.

Life isn’t as simple as these equations suggest. Computers
are clocked devices and run at a speed determined by the
clock. Memory accesses take place in one or more whole clock
cycles. If a processor accesses main store in one clock cycle,
adding cache memory is not going to make the system faster.
If we assume that a computer has a clock cycle time tcyc, and
accesses cache memory in p clock cycles (i.e. access
time � ptcyc) and main store in q clock cycles, its speedup
ratio is

If q � 4 and p � 2, the speedup ratio is given by
1/(2h/4 � 1 �h) � 2/(2 � h).

In practice, we are more concerned with the performance
of the entire system. A computer doesn’t spend all its time
accessing memory. The following expression gives a better
picture of the average cycle time of a computer because it
takes into account the number of cycles the processor spends
performing internal (i.e. non-memory reference) operations.

taverage=Finternal
. Ntcyc+FMemory

. tcyc(tcache + (1 – h)(tcache + tdelay))

�
q

ph � (1 � h)

S �
tm

htc � (1 � h)tm

�
qtcyc

phtcyc � (1 � h)tcyc

This figure assumes k = 0.2
The maximum value of S is 1/k

Cache memory is effective
only at high hit ratios

5

4

3

2

1

0
0 0.5 1.0

Hit ratio (h)

Speedup
ratio (S)

Figure 8.17 Speedup as a function of hit ratio.

346 Chapter 8 Accelerating performance

where
FInternal � fraction of cycles the processor spends doing inter-

nal operations
N � average number of cycles per internal operation
tcyc � processor cycle time
FMemory� fraction of cycles processor spends doing memory

accesses
tdelay � additional penalty clock cycles required caused by a

cache miss
h � hit ratio
tcache � cache memory access time (in clock cycles)

Note that, by convention, the main memory access time is
given by the number of cycles to access cache plus the addi-
tional number of cycles (i.e. the penalty) to access main store.
If we put some figures into this equation, we get

� 16 ns � 26 ns

� 42 ns

The effect of cache memory on the performance of a com-
puter depends on many factors including the way in which
the cache is organized and the way in which data is written to
main memory when a write access takes place. We will return
to some of these considerations when we have described how
cache systems are organized.

8.4.2 Cache organization

There are at least three ways of organizing a cache memory—
direct-mapped, associative-mapped, and set associative-
mapped cache. Each of these systems has its own
performance:cost trade-off.

Direct-mapped cache

The easiest way of organizing a cache memory employs direct
mapping, which relies on a simple algorithm to map data
block i from the main memory into data block j in the cache.
For the purpose of this section we will regard the smallest
unit of data held in a cache as a line that is made up of typ-
ically two or four consecutive words. The line is the basic unit
of data that is transferred between the cache and main store
and varies between 4 and 32 bytes.

Figure 8.18 illustrates the structure of a highly simplified
direct-mapped cache. As you can see, the memory space is
divided into sets and the sets into lines. This memory is com-
posed of 32 words and is accessed by a 5-bit address bus from

� �0.9 � 1 � 0.1(1 � 3)�
taverage � 40% � 2 � 20 ns � 60% � 20 ns

the CPU. For the purpose of this discussion we need only
consider the set and line (as it doesn’t matter how many
words there are in a line). The address in this example has a
2-bit set field, a 2-bit line field, and a 1-bit word field. The
cache memory holds 22 � 4 lines of two words. When the
processor generates an address, the appropriate line in
the cache is accessed. For example, if the processor generates
the 5-bit address 101002, word 0 of line 2 in set 2 is accessed.

A glance at Fig. 8.18 reveals that there are four possible
lines numbered two—a line 2 in set 0, a line 2 in set 1, a line 2
in set 2, and a line 2 in set 3. In this example the processor
accessed line 2 in set 2. The obvious question is, ‘How does
the system know whether the line 2 accessed in the cache is
the line 2 from set 2 in the main memory?’

Figure 8.19 shows how a direct-mapped cache resolves the
contention between lines. Each line in the cache memory has
a tag or label, which identifies which set this particular line
belongs to. When the processor accesses line 2, the tag
belonging to line 2 in the cache is sent to a comparator. At the
same time the set field from the processor is also sent to
the comparator. If they are the same, the line in the cache is
the desired line and a hit occurs.

If they are not the same, a miss occurs and the cache must
be updated. The old line 2 from set 1 is either simply dis-
carded or rewritten back to main memory depending on how
the updating of main memory is organized.

2 bits 2 bits 1 bit

The line address
selects the same
line (line 2) in each
of the four sets

A line in the
cache may
come from one
of the four sets

Line 2

Line 2

Line 2

Line 2

Line 0

Line 1

Line 3

Line 0

Line 1

Line 3

Line 0

Line 1

Line 3

Line 0

Line 1

Line 3

Main store
Set Line Word

Cache memory

Line 0

Line 1

Line 2

Line 3

Set 0

Set 1

Set 2

Set 3

5-bit address from CPU

Figure 8.18 The direct-mapped cache.

8.4 Cache memory 347

Figure 8.20 provides a skeleton structure of a direct-
mapped cache memory system. The cache memory itself is
nothing more than a block of very-high-speed random access
read/write memory. The cache tag RAM is a fast combined
memory and comparator that receives both its address and
data inputs from the processor’s address bus. The cache tag
RAM’s address input is the line address from the processor
that is used to access a unique location (one for each of the
possible lines). The data in the cache tag RAM at this location
is the tag associated with that location. The cache tag RAM
also has a data input that receives the tag field from the
processor’s address bus. If the tag field from the processor
matches the contents of the tag (i.e. set) field being accessed,
the cache tag RAM returns a hit signal.

As Fig. 8.20 demonstrates, the cache tag RAM is nothing
more than a high-speed random access memory with a built-
in data comparator. Some of the major semiconductor
manufacturers have implemented single-chip cache tag
RAMs.

The advantage of the directly mapped cache is almost self-
evident. Both the cache memory and the cache tag RAM are
widely available devices which, apart from their speed, are no
more complex than other mainstream devices. Moreover, the
direct-mapped cache requires no complex line replacement
algorithm. If line x in set y is accessed and a miss takes place,
line x from set y in the main store is loaded into the frame for
line x in the cache memory and the tag set to y. That is, there
is no decision concerning which line has to be rejected when
a new line is to be loaded.

Another important advantage of direct-mapped cache is
its inherent parallelism. Because the cache memory holding
the data and the cache tag RAM are entirely independent,
they can both be accessed simultaneously. Once the tag has
been matched and a hit has occurred, the data from the cache
will also be valid (assuming the two cache data and cache tag
memories have approximately equal access times).

The disadvantage of direct-mapped cache is almost a
corollary of its advantage. A cache with n lines has one
restriction—at any instant it can hold only one line num-
bered x. What it cannot do is hold a line x from set p and a line
x from set q. This restriction exists because there is one page
frame in the cache for each of the possible lines. Consider the
following fragment of code:

This fragment of code reads data and compares it with
another string until a match is found. Suppose that the
Get_data routine is in set x, line y and that part of the
Compare routine is in set z, line y. Because a direct-mapped
cache can hold only one line y at a time, the frame cor-
responding to line y must be reloaded twice for each path
through the loop. Consequently, the performance of a direct-
mapped cache can sometimes be poor. Statistical measure-
ments on real programs indicate that the very poor

Tag field
indicates
ownership
of the line

Data field of
cache
memory

Set address
used to check
tag at current
line

Word selects the
word in a line

Line address
selects a line
in the cache

2 bits 2 bits 1 bit

Line 0

Line 0

Line 1

Line 2

Line 3

Line 0

Line 1

Line 2

Line 3

Line 0

Line 1

Line 2

Line 0

Line 3

Line 3

Line 1

Line 2

Line 1

Line 2

Line 3

Main store

Set 0

Set 1

Set 2

Set 3

5-bit address from CPU

Set Line Word

Cache memory

0

3

3

2

Figure 8.19 Resolving contentions between

lines in a direct-mapped cache.

348 Chapter 8 Accelerating performance

worst-case behavior of direct-mapped caches has no signific-
ant impact on their average behavior.

Suppose a cache is almost empty and most of its lines have
not yet been loaded with active data. Certain lines may have
to be swapped out of the cache frequently because data in the
main store just happens to share the same line numbers. In
spite of this objection to direct-mapped cache, it is very
popular because of its low cost of implementation and high
speed.

Associative-mapped cache

One way of organizing a cache memory that overcomes the
limitations of direct-mapped cache is described in Fig. 8.21.
Ideally, we would like a cache that places no restrictions on
what data it can contain. The associative cache is such a
memory.

An address from the processor is divided into three fields:
the tag, the line, and the word. Like the direct-mapped cache,
the smallest unit of data transferred into and out of the cache
is the line. Unlike the direct-mapped cache, there’s no pre-
determined relationship between the location of lines in the
cache and lines in the main memory. Line p in the memory
can be put in line q in the cache with no restrictions on the
values of p and q. Consider a system with 1 Mbyte of main
store and 64 kbytes of associatively mapped cache. If the size
of a line is four 32-bit words (i.e. 16 bytes), the main memory
is composed of 220/16 � 64K lines and the cache is composed
of 216/16 � 4096 lines. Because an associative cache permits
any line in the main store to be loaded into one of its lines,
line i in the associative cache can be loaded with any one of
the 64K possible lines in the main store. Therefore, line i

requires a 16-bit tag to uniquely label it as being associated
with line i from the main store.

When the processor generates an address, the word bits
select a word location in both the main memory and the
cache. Unlike the direct-mapped cache memory, the line

Main store

Cache
memory

Address

Data

Hit

CPU

0

1

2

3

=

Cache tag
memory

Line address
Line and word
address

Set address

Tag associated
with the line
being accessed

A hit occurs if the tag associated
with the currently addressed line
read from the cache tag RAM
matches the set address from
the CPU

line tag

Address bus

Figure 8.20 Implementation

of direct-mapped cache.

The tag from the
address bus is
compared with all
tags in the cache
simultaneously

A line in the cache may
come from any line in
the main store

Cache memory

Main store

Line 0

Line 1

Line 2

Line 3

Line n

Tag

Tag word

Tag

Tag

Tag

Tag

Tag

Address from CPU

Figure 8.21 Associative-mapped cache.

8.4 Cache memory 349

address from the processor can’t be used to address a line in
the associative cache. Why? Because each line in the direct-
mapped cache can come only from one of n lines in the main
store (where n is the number of sets). The tag resolves which
of the lines is actually present. In an associative cache, any of
the 64K lines in the main store can be located in any of the
lines in the cache. Consequently, the associative cache
requires a 16-bit tag to identify one of the 216 lines from the
main memory. Because the cache’s lines are not ordered, the
tags are not ordered and cannot be stored in a simple look-up
table like the direct-mapped cache. In other words, when the
CPU accesses line i, it may be anywhere in the cache or it may
not be in the cache.

Associative cache systems employ a special type of mem-
ory called associative memory. An associative memory has an
n-bit input but not necessarily 2n unique internal locations.
The n-bit address input is a tag that is compared with a tag
field in each of its locations simultaneously. If the input tag
matches a stored tag, the data associated with that location is
output. Otherwise the associative memory produces a miss
output. An associative memory is not addressed in the same
way that a computer’s main store is addressed. Conventional
computer memory requires the explicit address of a location,
whereas an associative memory is accessed by asking,‘Do you
have this item stored somewhere?’

Associative cache memories are efficient because they
place no restriction on the data they hold. In Fig. 8.21 the tag
that specifies the line currently being accessed is compared
with the tag of each entry in the cache simultaneously.
In other words, all locations are accessed at once.
Unfortunately, large associative memories are not yet cost
effective. Once the associative cache is full, a new line can be
brought in only by overwriting an existing line that requires
a suitable line replacement policy (as in the case of virtual
memories).

Set associative-mapped cache

Most computers employ a compromise between the direct-
mapped cache and the fully associative cache called a set asso-
ciative cache. A set associative cache memory is nothing more
than multiple direct-mapped caches operated in parallel. The
simplest arrangement is called a two-way set associative
cache and consists of two direct-mapped cache memories so
that each line in the cache system is duplicated. For example,
a two-way set associative cache example has two line 5s and
it’s possible to store one line 5 from set x and one line 5
from set y.

If the cache has n parallel sets, an n-way comparison is per-
formed in parallel against all members of the set. Because n in
small (typically 2 to 16), the logic required to perform the
comparison is not complex.

Figure 8.22 describes the common four-way set associa-
tive cache. When the processor accesses memory, the

appropriate line in each of four direct-mapped caches is
accessed simultaneously. Because there are four lines, a
simple associative match can be used to determine which
(if any) of the lines in cache are to supply the data. In
Fig. 8.22 the hit output from each direct-mapped cache is
fed to an OR gate, which generates a hit if any of the caches
generate a hit.

Level 2 cache

The memory hierarchy can be expanded further by dividing
the cache memory into a level 1 and a level 2 cache. A level 1
cache is normally located on the same chip as the CPU itself;
that is, it is integrated with the processor. Over the years,
level 1 caches have grown in size as semiconductor technol-
ogy has advanced and more memory devices can be inte-
grated on a chip. A level 2 cache was once invariably located
off the processor chip but modern high-performance
devices have on-chip level 1 and level 2 caches. By 2005 Intel
Pentium processors were available with 2 Mbyte level 2
caches.

When the processor makes a memory access, the level 1
cache is first searched. If the data isn’t there, the level 2 cache
is searched. If it isn’t in the level 2 cache, the main store is
accessed. The average access time is given by

where hL1 and hL2 are the hit rates of the level 1 and level 2
caches, and tc1 and tc2 are the access times of the L1 and L2
caches, respectively.

Consider a system with a hit ratio of 0.90, a single-level
cache access time of 4 ns, and a main store access time of
50 ns. The speedup ratio is given by 1/(hk � 1 � h) � 5.81.

� (1 � hL1)(1 � hL2)tmemory

tave � hL1tc1 � (1 � hL1)hL2tc2

Cache 1 Cache 2 Cache 3 Cache 4

Address from CPU

Composite hit

Hit Hit Hit Hit

Each of the
caches is direct
mapped

A hit occurs if any one
of the four caches
responds to an access

Figure 8.22 Set associative-mapped cache.

(about 5 to 30% of memory accesses). If we take into account
the action taken on a miss during a read access and on a miss
during a write access, the average access time for writethough
memory is given by

where w is the fraction of write accesses and tl is the time
taken to reload the cache on a miss. The (1 � h)(1 � w)tl

term is the time taken to reload the cache on a read access and
(1 � h)wtc represents the time taken to access the cache on a
write miss. This equation is based on the assumption that
writes occur infrequently and therefore the main store has
time to store writethrough data between two successive write
operations.

Another aspect of cache memories that has to be taken into
account in sophisticated systems is cache coherency. As we
know, data in the cache also lives in the main memory. When
the processor modifies data it must modify both the copy in
the cache and the copy in the main memory (although not
necessarily at the same time). There are circumstances when
the existence of two copies (which can differ) of the same
item of data causes problems. For example, an I/O controller
using DMA might attempt to move an old line of data from
the main store to disk without knowing that the processor has
just updated the copy of the data in the cache but has not yet
updated the copy in the main memory. Cache coherency is
also known as data consistency.

8.5 Multiprocessor systems

One way of accelerating the performance of a computer with-
out resorting to either new technology or to a new architec-
ture is to use a multiprocessor system; that is, you take two or
more CPUs and divide the work between them. Here we
introduce some basic concepts of multiprocessing hardware
and the topology of multiprocessors.

The speedup ratio, Sp, of a multiprocessor system using p
processors is defined as Sp � T1/Tp, where T1 is the time taken
to perform the computation on a single processor and Tp is
the time taken to perform the same computation on p pro-
cessors. The value of Sp must fall in the range 1
 Sp
 p. The
lower limit on Sp corresponds to a situation in which the par-
allel system cannot be exploited and only one processor can
be used. The upper limit on Sp corresponds to a problem that
can be divided equally between the p processors. The effi-
ciency, Ep, of a multiprocessor system is defined as the ratio
between the speedup factor and the number of processors;
that is Ep � Sp/p � T1/pTp. The efficiency, Ep, must fall in the
range 1 (all processors used fully) to 1/p (only one processor
out of p used).

Whenever I think of multiprocessing I think of air travel.
Suppose you want to get from central London to downtown

tave � htc � (1 � h)(1 � w)tl � (1 � h)wtc

350 Chapter 8 Accelerating performance

Suppose we add a level 2 cache to this system and that the
level 2 cache has a hit ratio of 0.7 and an access time of 8 ns.
In this case, the access time is

tave �hL1tc1�(1�hL1)hL2tc2�(1�hL1)(1�hL2)
tmemory�0.9�4�0.1�0.7�8�0.1�0.3�50�5.66 ns

The speedup ratio with a level 2 cache is
50 ns/ 5.66 ns � 8.83.

8.4.3 Considerations in cache design

Apart from choosing the structure of a cache system and the
line replacement policy, the designer has to consider how
write cycles are to be treated. Should write accesses be made
only to the cache and then the main store updated when the
line is replaced (a writeback policy)? Should the main mem-
ory also be updated each time a word in the cache is modified
(a writethrough policy)? The writethrough policy allows the
cache to be written to rapidly and the main memory updated
over a longer span of time (if there is write buffer to hold
the data until the bus becomes free). A writethrough
policy can lead to more memory write accesses than are
strictly necessary.

When a cache miss occurs, a line of data is fetched from the
main store. Consequently, the processor may read a byte from
the cache and then the cache requires a line of, say, 8 bytes
from the main store. As you can imagine, the cost of a miss on
an access to cache carries an additional penalty because an
entire line has to be filled from memory. Fortunately, modern
memories, CPUs, and cache systems support a burst-fill
mode in which a burst of consecutive data elements can be
transferred between the main store and cache memory. Let’s
look at cache access times again.

If data is not in the cache, it must be fetched from memory
and loaded in the cache. If tl is the time taken to reload the
cache on a miss, the effective average access time is given by

The term (1 � h)tl is the additional time required to
reload the cache following each miss. This expression can be
rewritten as

The term (tl � tm) corresponds to the time taken to access
main memory and to load a line in the cache following a miss.
However, because both accessing the element that caused the
miss and filling the cache take place in parallel, we can note
that tl � tm and simplify the equation to get

The performance of cache memory systems is also deter-
mined by the relative amounts of read and write accesses and
the different ways in which read and write cache accesses are
treated. Relatively few memory accesses are write operations

tave � htc � (1 � h)tl

tave � htc � (1 � h)(tl � tm)

tave � htc � (1 � h)tm � (1 � h)tl

8.5 Microprocessor systems 351

Manhattan. The time taken is the sum of the time to travel to
Heathrow airport, the check-in time, the transatlantic jour-
ney, the baggage reclaim time, and the time to travel from JFK
to downtown Manhattan. The approximate figures (in
hours) are 0.9 � 1.5 � 6.5 � 0.5 � 1 � 10.4. Suppose you
now decide to speed things up and travel across the Atlantic
in a supersonic aircraft that takes only 3 hours; the new times
are 0.9 � 1.5 � 3 � 0.5 � 1 � 6.9 hours. The speedup ratio
between these two modes of travel is 10.4/6.9 � 1.51.
Increasing the speed of the aircraft by a factor of 2.17 has
resulted in a speedup ratio of only 1.51, because all the other
delays have not been changed.

The same problem affects multiprocessing—the speedup
ratio is profoundly affected by the parts of a problem that
cannot be computed in parallel. Consider, for example, the
product (P � Q)(P � Q). The operations P � Q and P�Q
can be carried out simultaneously in parallel, whereas their
product can be carried out serially only after P � Q and
P � Q have been evaluated.

Figure 8.23 shows how a task may have components that
must be executed serially, Ps, and tasks that can be executed in

parallel, Pp. If each task in Fig. 8.23 requires t seconds, the
total time required by a serial processor is 8t. Because three
pairs of tasks can be carried out in parallel, the total time
taken on a parallel system is 4t.

Suppose a task consists of a part that must be computed
serially and a part that can be computed by processors in par-
allel. Let the fraction of the task executed serially be f and the
fraction executed in parallel be (1 � f). The time taken to
process the task on a parallel processor is f T1 � (1 � f) T1/p,
where t is the time required to execute the task on a single
processor and p is the number of processors. The speedup
ratio is Sp � T1/(fT1 � (1 � f)T1/p) � p/(1 � (p � 1)f).
This equation is Amdahl’s law and tells us that increasing the
number of processors in a system is futile unless the value of
f is very low.

Figure 8.24 demonstrates the relationship between the
speedup ratio, S(f), and f (the fraction of serial processing)
for a system with 16 processors. The horizontal axis is
the fraction of a task that is executed in parallel, 1 � f. As
you can see, the speedup ratio rises very rapidly as 1 � f
approaches 1.

Ps Ps

Pp

Pp

Pp Pp

Pp

Pp

Start End

Parallel process

Serial process

If each process takes t seconds, the total time taken is 4t

Figure 8.23 Executing a task in serial and

parallel.

–0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4

8

12

16

S(
f)

0

20

–0.2 1
1–f

Figure 8.24 The effect of f on the speedup ratio

(p � 16).

You can’t just plug an extra processor into an existing sys-
tem to convert it into a multiprocessor. The global implica-
tions for the system hardware and its software are not trivial,
because the individual processors have to share the available
resources (i.e. memory and input/output). An effective mul-
tiprocessor system must be able to allocate resources to con-
tending processors without seriously degrading the
performance of the system.

Some multiprocessor systems are termed reconfigurable,
because the structure of the hardware itself can be modified
by the operating system. For example, the way in which mem-
ory is distributed between the individual processors or the
paths between the processors can be changed dynamically
under software control. Similarly, interrupt handling can be
dynamically partitioned between the various processors to
maximize efficiency. We do not discuss reconfigurable archi-
tectures further here.

Although the architecture of a stored-program computer
(i.e. a von Neumann machine) can be defined quite precisely,
there is no similar definition of a multiprocessor system.
Multiprocessor systems come in many different flavors and a
configuration suitable for one particular application may be
useless for another. The only really universal characteristic
common to all multiprocessor systems is that they have more
than one processor. We shall soon examine the various classes
of multiprocessor system.

Multiprocessor systems design is not easy; there are a lot
of factors to take into account; for example, the distribution
of tasks between processors, the interconnection of the
processors (i.e. the topology of the multiprocessor system),
the management of the memory resources, the avoidance of
deadlock, and the control of input/output resources.
Deadlock occurs when two or more processors cannot
continue because each is blocking the other.

The distribution of tasks between processors is of crucial
importance in selecting the architecture of the processor sys-
tem itself. In turn, the distribution of tasks is strongly deter-
mined by the nature of the problem to be solved by the
computer. In other words, the architecture of a multipro-
cessor system can be optimized for a certain type of problem.
Conversely, a class of programs that runs well on one multi-
processor system may not run well on another.

A classic problem that can be solved by multiprocessing
belongs to the world of air-traffic control. A radar system
receives a periodic echo from the targets (i.e. aircraft) being
tracked. Each echo E, is a function of the bearing, � and
distance or range, r, of the target. Due to noise and imperfec-
tions in the system, there is an uncertainty or error, �, associ-
ated with each echo. A new echo is received every few
millisecond. Given this stream of inputs, Er, �,� � �r, �,�, the
computer connected to the radar receiver has to calculate the
current positions of the targets and then estimate the future
track of each target and report any possible conflicts. Such a

system requires very large amounts of computer processing
power with relatively little I/O activity or disk access.
Obviously it is reasonable to try to solve the problem by
means of multiprocessing. For example, as one processor is
updating a target’s current position, another processor can be
calculating its future position.

The preceding problem is described as classic, because it is
so well suited to multiprocessing. There are several ways of
allocating the mathematics involved in the radar calculations
to the various processors. It is, unfortunately, much less easy
to decompose a general task into a number of subtasks that
can be run in parallel. Often it is necessary for the program-
mer to write programs in such a way that they involve the
greatest amount of parallel activity. Other problems well
suited to parallel processing are the simulation of complex
dynamic systems such as the atmosphere or the motion of
liquids.

8.5.1 Topics in multiprocessor systems

A key parameter of a multiprocessor system is its topology,
which defines how the processors are arranged with respect
to each other and how they communicate. A more important
parameter of a multiprocessor system is the degree of cou-
pling between the various processors. We will discuss proces-
sor coupling first and then look at multiprocessor topologies.

Processors with facilities for exchanging large quantities of
data very rapidly are said to be tightly coupled. Such com-
puters share resources like buses or blocks of memory. The
advantage of tightly coupled systems is their potential speed,
because one processor doesn’t have to wait long periods of
time while data is transferred from another. Their disadvan-
tage arises from the complexity of the hardware and software
necessary to coordinate the processors. If they share a bus or
memory, an arbiter is needed to determine which processor is
permitted to access the resource at any time.

Although not a problem associated entirely with multi-
processors, the avoidance of deadlock must feature in the
design of some classes of multiprocessor. Deadlock describes
the situation in which two tasks are unable to proceed
because each task holds something needed by the other. In a
real-time system, the sequential tasks (i.e. the software)
require resources (memory, disk drives, I/O devices, etc.),
whereas in a multiprocessor system these resources are
required by the individual processors.

Every multiprocessor system, like every single-processor
system, has facilities for input or output transactions. We
therefore have the problem of how I/O transactions are to be
treated in a multiprocessor system. Does each processor have
its own I/O arrangements? Is the I/O pooled between the
processors, with each processor asking for I/O facilities as
they are needed? Finally, is it possible to dedicate one or more
processors solely to the task of I/O processing?

352 Chapter 8 Accelerating performance

In a similar vein, the designer of a multiprocessor may
need to construct an appropriate interrupt-handling system.
When an I/O device interrupts a processor in a single-proces-
sor system, there is not a lot to decide. Either the processor
services the interrupt or it is deferred. In a multiprocessor
system we have to decide which processor will service an
interrupt, which in turn begs the question, ‘Do we pool inter-
rupts or do we allocate certain types of interrupt to specific
processors?’ If interrupts are pooled, the interrupt-handling
software must also be pooled, as processor A must deal with
an interrupt from device X in exactly the same way that
processor B would deal with the same interrupt. In addition
to interrupts generated by I/O devices, it is possible for one
processor to interrupt another processor.

Like any other computer, the multiprocessor requires an
operating system. There are two basic approaches to the
design of operating systems for multiprocessors. One of the
simplest arrangements is the master–slave operating system
in which a single operating system runs on the master proces-
sor and all other processors receive tasks that are handed
down from the master. The master–slave operating system is
little more than the type of operating system found in con-
ventional single-processor systems.

The distributed operating system provides each processor
with its own copy of the operating system (or at least a
processor can access the common operating system via
shared memory). Distributed operating systems are more
robust than their master–slave counterparts because the fail-
ure of a single processor does not necessarily bring about a
complete system collapse.

The problems we have just highlighted serve to emphasize
that a multiprocessor system cannot easily be built in a vac-
uum. Whenever we are faced with the design of a multi-
processor system, it is necessary to ask, ‘Why do we need the
multiprocessor system and what are its objectives?’ and then
to configure it accordingly. In other words, almost all design
aspects of a multiprocessor system are very much problem
dependent.

8.5.2 Multiprocessor organization

Although there is an endless variety of multiprocessor archi-
tectures, we can identify broad groups whose members have
certain features in common. One possible approach to the
classification of multiprocessor systems, attributed to
Michael J. Flynn, is to consider the type of the parallelism (i.e.
architecture or topology) and the nature of the interpro-
cessor communication. Flynn’s four basic multiprocessor
architectures are referred to by the abbreviations SISD,
SIMD, MISD, and MIMD and are described later. However,
before continuing, we must point out that Flynn’s topological
classification of multiprocessor systems is not the only one
possible, as multiprocessors may be categorized by a number

of different parameters. One broad classification of multi-
processors depends on the processor’s relationship to mem-
ory and to other processing elements. Multiprocessors can be
classified as processor to memory (P to M) structures or as
processing element to processing element (PE to PE) struc-
tures. Figure 8.25 describes these two structures. A P to M
architecture has n processors, an interconnection network,
and n memory elements. The interconnection network allo-
cates processor X to memory Y. The more general PE to PE
architecture uses n processors, each with its own memory,
and permits processor element X to communicate with PE Y
via an interconnection network. The multiprocessors
described in this chapter best fit the PE to PE model.

SISD (single instruction single data-stream)

The SISD machine is nothing more than the conventional
single-processor system. It is called single instruction because
only one instruction is executed at a time, and single data-
stream because there is only one task being executed at any
instant.

SIMD (single instruction multiple data-stream)

The SIMD architecture executes instructions sequentially,
but on data in parallel. The idea of a single instruction oper-
ating on parallel data is not as strange as it may sound.
Consider vector mathematics. A vector is a multicomponent
data structure; for example, the four-component vector A
might be 0.2, 4.3, 0.2, 0.1. A very frequent operation in most
branches of engineering is the calculation of the inner product
of two n-component vectors, A and B:

s � A.B � aibi

For example, if A is (1, 4, 3, 6) and B is (4, 6, 2, 3), the inner product
A.B is 1 � 4 � 4 � 6 � 3 � 2 � 6 � 3 � 4 � 24 � 6 � 18 � 52.
The inner product can be expressed as single operation (i.e.
s � (A.B), but involves multiple data elements (i.e. the
{aI
.bi}. Such calculations are used extensively in computer

graphics and image processing. One way of speeding up the
calculation of an inner product is to assign a processor to the
generation of each of the individual elements, the {ai

.bi}.The
simultaneous calculation of ai

. bi for i � 1 to n requires
n processors, one for each component of the vector.

Such an arrangement consists of a single controller that
steps through the program (i.e. the single instruction-stream)
and an array of processing elements (PEs) acting on the com-
ponents of a vector in parallel (i.e. the multiple data-stream).
Often, such PEs are number crunchers or high-speed ALUs,
rather than the general-purpose microprocessors we have
been considering throughout this text.

The SIMD architecture, or array processor, has a high per-
formance/cost ratio and is very efficient, as long as the task
running on it can be decomposed largely into vector opera-
tions. Consequently, the array processor is best suited to the

8.5 Microprocessor systems 353

354 Chapter 8 Accelerating performance

air-traffic control problem discussed earlier, to the processing
of weather information (this involves partial differential
equations), and to computerized tomography where the out-
put of a body scanner is processed almost entirely by vector
arithmetic. As the SIMD architecture is generally built
around a central processor controlling an array of special-
purpose processors, the SIMD architecture is not discussed in
any further detail here. However, we provide an example of a
SIMD architecture to illustrate one of its applications.

Figure 8.26 demonstrates the application of a SIMD architec-
ture to image smoothing—an operation performed on images
to remove noise (we discuss image processing further when
we introduce computer graphics).7 In this example, an image
from a noisy source such as a spacecraft camera is smoothed
or filtered to yield a relatively noise-free image. Consider an
input array, I, of 512 � 512 pixels, which is to be smoothed to
produce an output array S.

A pixel is an 8-bit unsigned integer representing one of 256
gray levels from 0 (white) to 255 (black). Each pixel Si,j in the
smoothed array, S, is the average of the gray levels of its eight
nearest neighbors. By averaging the pixels in this way, the
effects of noise bursts are reduced. The neighbors of Si,j in the
input array are Ii�1,j�i, Ii�1,j, Ii�1,j�1, Ii,j�1, Ii,j�1, Ii�1,j-1, Ii�1,j and
Ii�1,j�1. The top, bottom, and left- and right-edge pixels of S
are set to zero, because their corresponding pixels in I do not
have eight adjacent neighbors.

The following example demonstrates how this smoothing
algorithm operates. The left-hand array represents the near
neighbors of a pixel before it is smoothed. The right-hand
array shows the pixel after smoothing. As you can see the
value 6 has been reduced to 3.2.

2 3 3 2 3 3
2 6 3 2 3.2 3
2 1 2 2 1 2

Before smoothing After smoothing

If the smoothing algorithm were performed serially, it
would be necessary to compute the value for each of the
512 � 512 pixels by looking at its eight nearest neighbors.
Parallel processing allows us to process groups of pixels at the
same time.

Assume that an SIMD array has 1024 processing elements
(PEs), logically arranged as an array of 32 � 32 PEs as shown
in Fig. 8.26. Each PE stores a 16 � 16 pixel sub-image block
of the 512 � 512 pixel image I. For example, PE0 stores a
16 � 16 pixel sub-image block composed of columns 0 to 15
and rows 0 to 15; PE1 stores the pixels in columns 16 to 31 of
rows 0 to 15, etc. Each PE smoothes its own subimage, with all

Processor
0

Memory
0

Memory
1

Memory
2

Memory
n –1

Memory
0

Memory
1

Memory
2

Memory
n –1

Processor
1

Processor
2

Processor
n –1

Processor
0

Processor
1

Processor
2

Processor
n –1

Interconnection network

Interconnection network

(a) Processor to memory multiprocessor organization (P to M).

(b) Processing element to processing element multprocessor organization (PE to PE).

Figure 8.25 Processor to

memory, and processor to

processor structures.

7 Example from Large-scale Parallel Processing Systems,
Microprocessors and Microsystems, January 1987, by Howard J. Siegel
et al. pp. 3–20.

8.5 Microprocessor systems 355

PEs operating on their subimages concurrently. At the edges
of each 16 � 16 subimage, data must be transferred between
adjacent PEs in order to calculate the smoothed value. The
necessary data transfers for PEj are shown in Fig. 8.26.
Transfers between different PEs can take place simultan-
eously. For example, when PEj�1 sends its upper right corner
pixel to PEj, PEj can send its own upper right corner pixel to
PEj � 1, and so on.

To perform a smoothing operation on a 512 � 512 pixel
image by the parallel smoothing of 1024 subimage blocks of
16 � 16 pixels, 256 parallel smoothing operations are
executed. However, the neighbors of each subimage edge pixel
must be transferred between adjacent PEs and the total num-
ber of parallel data transfers required is (4 � 16) � 4 � 68
(i.e. 16 for each of the top, bottom and left- and right-side
edges). The corresponding serial algorithm needs no data
transfers between PEs but 5122 � 264 144 smoothing calcu-
lations must be executed. If no data transfers were needed,
the parallel algorithm would be faster than the serial algo-
rithm by a factor of 262 144/256 � 1024. If the inter-PE data
transfer time is included and it is assumed that each parallel
data transfer requires at most as much time as one smoothing
operation, then the time factor improvement is
262 144/(256 � 68) � 809.

The last step in the smoothing process is to set the edge
pixels of S to zero. This creates an additional (although negli-
gible) overhead, which is to enable only the appropriate PEs
when the zero values are stored for these edge pixels (only
enabled PEs execute the instructions broadcast to the PEs).
Serially, this would require (4 � 512) � 4 � 2044 parallel
stores. The SIMD architectures can be implemented by
means of arrays of relatively primitive processing elements

(e.g. ALUs). It is not usually necessary to make each process-
ing element as complex as a CPU.

MISD (multiple instruction single data-stream)

The MISD architecture performs multiple operations con-
currently on a single stream of data and is associated with the
pipeline processor. We described the concept of the pipeline
when we introduced the RISC processor. The difference
between a MISD pipeline and a RISC pipeline is one of scale.

In multiprocessor terms, the various processors are
arranged in line and are synchronized so that each processor
accepts a new input every t seconds. If there are n processors,
the total execution time of a task is n . t seconds. At each epoch,
a processor takes a partially completed task from a down-
stream processor and hands on its own task to the next
upstream processor. As a pipeline processor has N processors
operating concurrently and each task may be in one of the N
stages, it requires a total of N . t � (K � 1) time slots to
process K tasks. The MISD architecture is not suited to mul-
tiprocessor systems based on general-purpose microproces-
sors. MISD systems are highly specialized and require
special-purpose architectures; they have never been devel-
oped to the same extent as SIMD and MIMD architectures.

MIMD (multiple instruction multiple data-stream)

The MIMD architecture is really the most general-purpose
form of multiprocessor system and is represented by systems
in which each processor has its own set of instructions oper-
ating on its own data structures. In other words, the pro-
cessors are acting in a largely autonomous mode. Each
individual processor may be working on part of the main task
and does not necessarily need to get in touch with its

512
pixels

512
pixels

PE0

PE32

PE992

PE1023

PE32PE1

PEj

PEj

16 pixels

16 pixels
1 pixel 1 pixel

1 pixel 1 pixel

16
pixels

16
pixels

16 pixels

16 pixels

Detail showing inter-PE data transfer

Figure 8.26 Using a SIMD architecture in image processing.

356 Chapter 8 Accelerating performance

neighbors until it has finished its subtask. The PE to PE archi-
tecture described in Fig. 8.25 can be thought of as a generic
MIMD machine.

Because of the generality of the MIMD architecture, it can
be said to encompass the relatively tightly coupled arrange-
ments to be discussed shortly and the very loosely coupled
geographically distributed LANs. Figure 8.27 provides a
graphical illustration of the classification of multiprocessor
systems according to E. T. Fathi and A. M. Krieger (Multiple
Microprocessor Systems: What, Why and When, Computer,
March 1983, pp. 23–32).

8.5.3 MIMD architectures

Although the array processor or the pipeline processor is
likely to be constructed from very special units, the more gen-
eral MIMD architecture is much more likely to be built from
widely available off-the-shelf microprocessors. Therefore, the
major design consideration in the production of such a mul-
tiprocessor concerns the topology of the system, which
describes the arrangement of the communications paths
between the individual processors.

Figures 8.28 to 8.32 depict the five classic MIMD topo-
logies. Multiprocessor structures are described both by their
topology and by their interconnection level. The level of inter-
connection is a measure of the number of switching units
through which a message must pass when going from

processor X to processor Y. The four basic topologies are the
unconstrained topology, the bus, the ring, and the star,
although, of course, there are many variants of each of these
pure topologies.

The unconstrained topology

The unconstrained topology is so called because it is a
random arrangement in which a processor is linked directly
to each processor with which it wishes to communicate
(Fig. 8.28(a)). The unconstrained topology is not practicable
for any but the simplest of systems. As the number of pro-
cessors grows, the number of buses between processors
becomes prohibitive. Figure 8.28(b) shows the limiting case
of this topology, called the fully connected topology, because
each processor is connected to each other processor. The
advantage of the unconstrained topology system is the very
high degree of coupling that can be achieved. As all the buses
are dedicated to communication between only two proces-
sors, there is no conflict between processors waiting to access
the same bus.

The bus topology

The bus (Fig. 8.29) is the simplest of topologies because each
processor is connected to a single common data highway—
the bus. The bus is a simple topology; not least because it
avoids the problem of how to route a message from processor
X to processor Y. All traffic between processors must use the

von Neumann
machines

Overlapped
operations

Multi-ALU

SISD

Serial

Computers

MISD

Pipeline
processors

SIMD

Array
processors

Associative
processors

MIMD

Tightly
coupled

Moderately
coupled

Loosely
coupled

Multiprocessor
systems

Distributed
systems

Computer
networks

Parallel

Figure 8.27 Multiprocessor

categories.

(a) The unconstrained topology. (b) The fully connected topology. Figure 8.28 The unconstrained topology.

8.5 Microprocessor systems 357

bus. The disadvantage of the bus as a method of implement-
ing a multiprocessor system lies in the problem of controlling
access to the bus. As only one processor at a time can use the
bus, it is necessary to design an arbiter to determine which
processor may access the bus at any time. Arbitration
between two or more contending processors slows down the
system and leads to bottlenecks. A bus offers a relatively high
degree of coupling but is more suitable for schemes in which
the quantity of data exchanged between the individual
processors is small.

The symmetric multiprocessor is a practical realization of a
bus-based multiprocessor. In a system with symmetric multi-
processing, all processors are of equal priority and each
processor is given access to the common bus in sequence.
Symmetric multiprocessing is used on PCs and the Pentium
family implements mechanisms to support symmetric multi-
processing. However, it is not a scalable technology and the
symmetric multiprocessors are limited to about eight
processors.

The ring topology

The ring topology of Fig. 8.30 is arranged so that each pro-
cessor is connected only to its two nearest neighbors. One
neighbor is called the upstream neighbor and the other the
downstream neighbor. A processor receives information
from its downstream neighbor and passes it on to its
upstream neighbor. In this way, information flows round the
ring in one direction only and a packet of information passes
through each of the processors in the ring. The information

passed to a processor contains a destination address. When a
processor receives a packet, it checks the address and, if the
packet address corresponds to the processor’s own address,
the processor reads the packet. Similarly, a processor is able to
add packets of its own to the stream of information flowing
round the ring.

The ring topology offers certain advantages for some
classes of loosely coupled multiprocessor networks and rep-
resents one of the most popular forms of local area network.
It is less widely used as a method of interconnecting proces-
sors in a tightly-coupled MIMD architecture. A ring network
is vulnerable to a break in the ring. Some systems employ a
double ring that does not fail if one of the rings fails.

The star topology

The star topology of Fig. 8.31 employs a central processor as
a switching network, rather like a telephone exchange,
between the other processors that are arranged logically (if
not physically) around the central node. The advantage of the
star is that it reduces bus contention, as there are no shared
communication paths, moreover, the star does not require
the large number of buses needed by unconstrained
topologies.

On the other hand, the star network is only as good as its
central node. If this node fails, the entire system fails.
Consequently, the star topology does not display any form of
graceful degradation. The central network must be faster
than the nodes using its switching facilities if the system is to
be efficient. In many ways, both the ring and the star topo-
logies is are better suited to local area networks, where the
individual signal paths are implemented by serial data chan-
nels, rather than by the parallel buses of the tightly-coupled
multiprocessor.

The hypercube topology

An n-dimensional hypercube multiprocessor connects
N � 2n processors in the form of an n-dimensional binary
cube. Each corner (vertex or node) of the hypercube consists
of a processing element and its associated memory. Because
of the topology of a hypercube, each node is directly

Bus

Figure 8.29 The bus topology.

Figure 8.30 The ring topology.

Central
node

Figure 8.31 The star topology.

358 Chapter 8 Accelerating performance

connected to exactly n other neighbors. Figure 8.32 illustrates
the hypercube for n � 1, 2, 3, and 4.

Each processor in a hypercube has an n-bit address in the
range 0 . . . 00 to 1 . . . 11 (i.e. 0 to 2n � 1) and has n nearest
neighbors with an address that differs from the node’s address
by only 1 bit. If n � 4 and a node has an address 0100, its four
nearest neighbors have addresses 1100, 0000, 0110, and 0101.

A hypercube of dimension n is constructed recursively by
taking a hypercube of dimension n � 1, prefixing all its node
addresses by 0, and adding to this another hypercube of
dimension n � 1 whose node addresses are all prefixed by 1.
In other words, a hypercube of dimension n can be subdivided

into two hypercubes of dimension n�1, and these two sub-
cubes can, in turn, be divided into four subcube of dimension
n�2 and so on.

The hypercube is of interest because is has a topology that
makes it relatively easy to map certain groups of algorithm
onto the hypercube. In particular, the hypercube is well
suited to problems involving the evaluation of fast Fourier
transforms (FFTs)—used in sound and video signal pro-
cessing. The first practical hypercube multiprocessor was
built at Caltech in 1983. This was called the Cosmic Cube and
was based on 64 8086 microprocessors plus 8087 floating
point coprocessors.

11

111

101
10

110

100

0110

00

010

000

01

011

001

0 1

(a) Hypercube with n = 1.

(b) Hypercube with n = 2.

(c) Hypercube with n = 3.

(d) Hypercube with n = 4.

0100

0111

0011

00010000

0010

0101

1110 1111

1100 1101

1010 1011

10011000

Figure 8.32 The hypercube.

8.5 Microprocessor systems 359

Hybrid topologies

In addition to the above pure network topologies, there are
very many hybrid topologies, some of which are described in
Fig. 8.33 to 8.36. Figure 8.33(a) and (b) both illustrate the
dual-bus multiprocessor, although this topology may be
extended to include any number of buses. In Fig. 8.33(a) the
processors are split into two groups, with one group con-
nected to bus A and one connected to bus B. A switching unit
connects bus A to bus B and therefore allows a processor on
one bus to communicate with a processor on the other. The
advantage of the dual-bus topology is that the probability of
bus contention is reduced, because both buses can be oper-
ated in parallel (i.e. simultaneously). Only when a processor
connected to one bus needs to transfer data to a processor on
the other does the topology become equal to a single-bus
topology.

The arrangement of Fig. 8.33(b) also employs two buses,
but here each processor is connected directly to both buses
via suitable switches. Two communication paths always exist

between any pair of processors, one using bus A and one
using bus B. Although the provision of two buses reduces the
bottleneck associated with a single bus, it requires more con-
nections between the processors and the two buses and more
complex hardware is needed to determine which bus a
processor is to use at any time.

The crossbar network

Another possible topology, described in Fig. 8.34, is the so-
called crossbar switching architecture, which has its origin in
the telephone exchange where it is employed to link sub-
scribers to each other.

The processors are arranged as a single column (processors
Pc1 to Pcm) and a single row (processors Pr1 to Prn). That is,
there are a total of m � n processors. Note that the processors
may be processing elements or just simple memory elements.
Each processor in a column is connected to a horizontal bus
and each processor in a row is connected to a vertical bus.
A switching network, Sr,c, connects the processor on row r to

Bus A

Bus A

Bus B

Bus B

PE

PE PE PE PE

PE PE

(a) Twin-bus multiprocessor with a switch between buses.

(b) Twin-bus multiprocessor with dual bus access from each processor.

Processing element
or memory element

S

PE PE PE

PE PE PE PE

Figure 8.33 The dual-bus

multiprocessor.

360 Chapter 8 Accelerating performance

the processor on column c. This arrangement requires m � n
switching networks for the m � n processors.

The advantage of the crossbar matrix is the speed at which
the interconnection between two processors can be set
up. Furthermore, it can be made highly reliable by
providing alternative connections between nodes, should
one of the switch points fail. Reliability is guaranteed only
if the switches are failsafe and always fail in the off or no-
connection position.

If the switches at the crosspoints are made multiway
(vertical to vertical, horizontal to horizontal or horizontal, to
vertical), we can construct a number of simultaneous path-
ways through the matrix. The provision of multiple pathways
considerably increases the bandwidth of the system.

In practice, the crossbar matrix is not widely found in gen-
eral-purpose systems, because of its high complexity.
Another penalty associated with this arrangement is its
limited expandability. If we wish to increase the power of the
system by adding an extra processor, we must also add
another bus, together with its associated switching units.

The binary tree

An interesting form of multiprocessor topology is illustrated
in Fig. 8.35. For obvious reasons this structure is called a
binary tree, although I am not certain whether it is really
a special case of the unconstrained topology of Fig. 8.26, or a
trivial case of the star topology (using three processors),
repeatedly iterated! Any two processors (nodes) in the tree
communicate with each other by traversing the tree right to
left until a processor common to both nodes is found, and
then traversing the tree left to right. For example, Fig. 8.35

shows how processor P0110 communicates with processor
P0100, by establishing backward links from P0110 to P01 and
then forward links from P01 to P010 to P0100.

The topology of the binary tree has the facility to set up
multiple simultaneous links (depending on the nature of
each of the links), because the whole tree is never needed to
link any two points. In practice, a real system would imple-
ment additional pathways to relieve potential bottlenecks
and to guard against the effects of failure at certain switching
points. The failure of a switch in a right-hand column, for
example, P0010, causes the loss of a single processor, whereas
the failure of a link at the left-hand side, for example, P0,
immediately removes half the available processors from the
system.

Cluster topology

Figure 8.36 illustrates the cluster topology, which is a hybrid
star–bus structure. The importance of this structure lies in its
application in highly reliable systems. Groups of processors
and their local memory modules are arranged in the form of
a cluster. Figure 8.36 shows three processors per cluster in an
arrangement called triple modular redundancy. The output
of each of the three processors is compared with the output of
the other two processors in a voting network. The output of
the voting circuit (or majority logic circuit) is taken as two
out of three of its inputs, on the basis that the failure of a
single module is more likely than the simultaneous failure of
two modules.

The design of a clustered triple modular redundancy
system is not as easy as might be first thought. One of the
major problems associated with modular redundancy arises

Pr1

S1,1 S1,2 S1,3 S1,4

S2,4

S3,4S3,3S3,2

S2,2 S2,3S2,1

S3,1

Pc1

Pc2

Pc3

Pr2 Pr3 Pr4

Row of processors

Column of
processors

Switch between
row 1 and column 2

In this example
processor Pr1 is
connected to
processor Pc2.

Figure 8.34 The crossbar switching

network.

8.5 Microprocessor systems 361

from a phenomenon called divergence. Suppose that three
identical processors have identical hardware and software
and that they receive identical inputs and start with the same
initial conditions at the same time; therefore, unless one
processor fails, their outputs are identical, as all elements of
the system are identical.

In actual fact, the above statement is not entirely true. In
order to create truly redundant systems, each of the three
processors in a cluster must have its own independent clock
and I/O channels. Therefore, events taking place externally
will not be seen by each processor at exactly the same time. If
these events lead to conditional branches, the operation of a
processor in the cluster may diverge from that of its neigh-
bors quite considerably after even a short period of opera-
tion. In such circumstances, it becomes very difficult to tell
whether the processors are suffering from divergence or
whether one of them has failed.

The problem of divergence can be eliminated by providing
synchronizing mechanisms between the processors and by
comparing their outputs only when they all wish to access the
system bus for the same purpose. Once more it can be seen

that, although the principles behind the design of multi-
processor systems are relatively straightforward, their
detailed practical design is very complex due to a consider-
able degree of interaction between hardware and software. As
we have already pointed out, topologies for multiprocessor
systems are legion.

Coupling

Up to now we have been looking at the topology of multi-
processor systems with little or no consideration of the nuts
and bolts of the actual connections between the processors.
Possibly more than any other factor, the required degree of
coupling between processors in a multiprocessor system
determines how the processors are to be linked. A tightly
coupled multiprocessor system passes data between pro-
cessors either by means of shared memory or by allowing one
processor to access the other processor’s data, address, and
control buses directly. When shared memory, sometimes
called dual-port RAM, is employed to couple processors, a
block of read/write memory is arranged to be common to
both processors. One processor writes data to the block and

P0000

P0100

P0010

P0110

P0001

P0101

P0011

P0111

P000

P001

P00

P0

P01

P010

P011

Processor P0100
communicates with
processor P0110.

Figure 8.35 The binary tree topology

Switch Switch

M MM MM M

P PP PP P
Processor

Memory

Bus Figure 8.36 The cluster topology.

the other reads that data. Data can be transferred as fast as
each processor can execute a memory access.

The degree of coupling between processors is expressed in
terms of two parameters: the transmission bandwidth and the
latency of the interprocessor link. The transmission band-
width is defined as the rate at which data is moved between
processors and is expressed in bits/s. For example, if a micro-
processor writes a byte of data to an 8-bit parallel port every
1 �s, the bandwidth of the link is 8 bits/1 �s or 8 Mbits/s.
However, if a 32-bit port is used to move words at the same
rate, the bandwidth rises to 32 Mbits/s.

The latency of an interprocessor link is defined as the time
required to initiate a data transfer. That is, latency is the time
that elapses between a processor requesting a data transfer
and the time at which the transfer actually takes place. A high
degree of coupling is associated with large transmission
bandwidths and low latencies. As might be expected, tightly
coupled microprocessor systems need more complex hard-
ware than loosely coupled systems.

■ SUMMARY

It’s taken a concerted attempt to make computers run as fast as

they do today.This chapter has demonstrated three ways in

which the performance of the computer has been enhanced

over the years.We have concentrated on three aspects of

computer acceleration: pipelining to improve the throughput of

the CPU, cache memory to reduce the effective access time of

the memory system, and increased parallelism to improve

performance without modifying the instruction set

architecture.

The movement towards RISC processors in the 1980s was

driven by a desire to exploit instruction level parallelism by

overlapping, or pipelining, the execution of instructions.We have

seen how pipelining can be very effective with an n-stage

pipeline providing an n-fold increase in performance—in theory.

In practice, the ultimate performance of pipelined architectures

is degraded by the branch penalty and data dependency.

Instructions that alter the flow of control (branches, subroutine

calls, and returns) throw away the instructions that are already

in the pipeline.

The second part of this chapter introduced the cache

memory, which can radically improve the performance of a

computer system for relatively little cost. Cache memory uses a

small amount of high-speed memory to hold frequently used

data. Cache memory is effective because most programs may

have large program or data sets but, for 80% of the time, they

access only 20% of the data.We looked at how the performance

of cache memory can be calculated and how cache memory is

organized.We described the three forms of cache organization:

directly mapped, associative, and set associative. Direct-mapped

cache is easy to design but is limited by its restriction on what

data can be stored.Associative memory provides the optimum

performance in theory but is impossible to construct and you

have to implement an algorithm to replace old data once the

cache is full. Set associative cache is only slightly more complex

than direct-mapped cache and achieves a performance close to

associative cache.

The final part of this chapter introduced the multiprocessor,

which uses two or more computers operating in parallel to

improve performance.The speedup ratio of a parallel processor

(i.e. multiprocessor) is the ratio of the time taken by one pro-

cessor to solve a task to the time taken by p processors to

solve the same task. Ideally the speedup factor is p. However,

Amdahl’s law states that the speedup ratio in a multiprocessor

system with p processors is given by p/(1 � (p � 1)f), where f is

the fraction of the code that is executed serially.

We introduced the topology of multiprocessor systems,

which describes the way the individual processors are inter-

connected. Multiprocessor topologies like the hypercube, the

crossbar switching network, and the binary tree are well suited

for solving particular classes of problem. However, a class of

problem that is well suited to one type of topology may be ill

suited to a different type of topology.

■ PROBLEMS

8.1 The power of computers is often quoted in MIPS and

megaflops. Some computer scientists believe that such fig-

ures of merit are, at best, misleading and, at worst, down-

right dishonest.Why?

Why can’t you compare two different processors on the

basis of their clock speeds? Surely, a processor with a 4 GHz

clock is twice as fast as a processor with a 2 GHz clock.

8.2 What are the characteristics of a CISC processor?

8.3 The most frequently executed class of instruction is the

data move instruction.Why is this? What are the implica-

tions for computer design?

8.4 The 68020 microprocessor has a BFFFO (bit field find first

one) bit-field instruction.This instruction scans a string of

up to 32 bits at any point in memory (i.e. the string does

not have to start on any 8-bit boundary) and returns the

location of the first bit set to 1 in the instruction. For exam-

ple, BFFFO (A0){D1:D2},D0 takes the byte at the

address pointed at by address register A0 and locates the

start of the bit string at the number of bits in D1 away from

the most-significant bit at this address. The string, whose

length is in register D2, is scanned and the location of the

first 1 is deposited in D0 (this is a simplified description of

the BFFFO instruction).

In order to demonstrate the complexity of a BFFFO

instruction, write the equivalent 68K assembly language

code to implement BFFFO (A0){D1:D2},D0.

8.5 The Berkeley RISC has a 32-bit architecture and yet provides

only a 13-bit literal.Why is this and does it really matter?

8.6 What are the advantages and disadvantages of register

windowing?

8.7 Some RISC processors with 32 registers, r0 to r31, force

register r0 to contain zero.That is, if you read the contents

of r0, the value returned is always 0.Why have the design-

ers wasted a register by making it read-only and perma-

nently setting its content to 0?

362 Chapter 8 Accelerating performance

8.5 Microprocessor systems 363

8.8 What is pipelining and how does it increase the

performance of a computer?

8.9 Consider the expression

(A�1)(A�2)(A�B)(A�B�C)(A�B�C�1)

(A�B�C�1)(D�E)(A�B)(A�B�C)

Assuming a simple three-operand format with instruc-

tions ADD, SUB, MULT, and DIV (and that all data is in

registers), write the assembly language code to implement

this expression with the minimum data dependency

(assuming that dependency extends to the next

instruction only).

8.10 The code of a computer is examined and it is found that,

on average, for 70% of the time the runlength between

instructions that change the flow of control is 15 instruc-

tions. For the remainder of the time, the runlength is 6

instructions. Other cases can be neglected.

This computer has a five-stage pipeline and no special

techniques are used to handle branches.

What is the speedup ratio of this computer?

8.11 A pipeline is defined by its length (i.e. the number of

stages that can operate in parallel).A pipeline can be short

or long.What do you think are the relative advantages of

long and short pipelines?

8.12 What is data dependency in a pipelined system and how

can its effects be overcome?

8.13 RISC architectures don’t permit operations on operands in

memory other than load and store operations.Why?

8.14 The average number of cycles required by a RISC to exe-

cute an instruction is given by

where

the probability that a given instruction is a branch is pb

the probability that a branch instruction will be

taken is pt

if a branch is taken, the additional penalty is b cycles

if a branch is not taken, there is no penalty

pe is the effective probability of a branch (pb.pt)

The efficiency of a pipelined computer is defined as the

average number of cycles per instruction without branches

divided by the average number of instructions with

branches.This is given by 1/Tave.

Draw a series of graphs of the average number of cycles

per instruction as a function of pe for b � 1, 2, 3, and 4.The

horizontal axis is the effective probability of a branch

instruction and ranges from 0 to 1.

8.15 What is branch prediction and how can it be used to

reduce the so-called branch penalty in a pipelined system?

8.16 A computer has main memory with an access time of

60 ns and cache memory with an access time of 15 ns. If

the average hit ratio is 92%, what is the maximum theo-

retical speedup ratio?

8.17 A computer has main memory with an access time of

60 ns and cache memory with an access time of 15 ns.The

Tave � 1 � pbptb � peb

computer has a 50 Mhz clock and all operations require at

least two clock cycles. If the hit ratio is 92%, what is the

theoretical speedup ratio for this system?

8.18 A computer has main memory with an access time of

60 ns and cache memory with an access time of 15 ns.The

computer has a 50 Mhz clock and all operations require

two clock cycles. On average the computer spends 40% of

its time accessing memory and 60% performing internal

operations (an internal operation is a non-memory

access). If the hit ratio is 92%, what is the speedup ratio

for this system?

8.19 What is the fundamental limitation of a direct-mapped

cache?

8.20 How can the performance of a direct-mapped cache

memory be improved?

8.21 A computer has main memory with an access time of

50 ns and cache memory with an access time of 10 ns.The

cache has a line size of 16 bytes and the computer’s mem-

ory bus is 32 bits wide.The cache controller operates in a

burst mode and can transfer 32 bytes between cache and

main memory in 80 ns.Whenever a miss occurs the cache

must be reloaded with a line. If the average hit ratio is

90%, what is the speedup ratio?

8.22 What is cache coherency and why is it important only in

sophisticated systems?

8.23 What are the similarities and differences between mem-

ory cache and so-called disk cache?

8.24 For the following ideal systems, calculate the hit

ratio (h) required to achieve the stated speedup

ratio S.

(a) tm � 60 ns tc � 10 ns S � 1.1

(b) tm � 60 ns tc � 10 ns S � 1.5

(c) tm � 60 ns tc � 10 ns S � 3.0

(d) tm � 60 ns tc � 10 ns S � 4.0

8.25 Draw a graph of the speedup ratio for an ideal system for

k � 0.5, k � 0.2, k � 0.1 (plot the three lines on the same

graph). The value of k defines the ratio of cache to main

store access times (tc/tm).

8.26 What is the meaning of speedup ratio and efficiency in the

context of multiprocessor systems?

8.27 In a multiprocessor with p processors, the ideal speedup

factor is p and the efficiency is 1. In practice, both of these

ideal values are not achieved.Why?

8.28 What is Amdahl’s law and why is it so important? Is it the

same as ‘the law of diminishing returns’?

8.29 If a system has 128 processors and the fraction of code

that must be carried out serially is 0.1, what is the speedup

ratio of the system?

8.30 A computer system has 32 microprocessors and the frac-

tion of code that is carried out serially is 5%. Suppose you

wish to run the same code on a system with 24 proces-

sors.What fraction of the code may be executed serially to

maintain the same speedup ratio?

364 Chapter 8 Accelerating performance

8.31 In the context of a multiprocessor system, define the

meaning of the following terms.

(a) Topology

(b) Deadlock

(c) Tightly coupled

(d) Arbitration

(e) Latency

8.32 What are the relative advantages and disadvantages of the

unconstrained topology, the bus, and the ring multi-

processor topologies?

8.33 A fully connected multiprocessor topology is one in which

each of the p processors is connected directly to each of

the other processors. Show that the number of connec-

tions between processors is given by p(p � 1)/2.

9.1 Instruction set architectures
and their resources

All mainstream computer architectures have remarkably simi-
lar architectures.Differences between families are often a matter
of detail rather than substance. Before we look at competing
families, we list some of the differences between processors.

9.1.1 Register sets

Microprocessors use registers to hold temporary data. The
more registers you have, the less you need to access slower
external memory. More registers require more silicon to
implement them and more bits to specify them in an
instruction. Consequently, early microprocessors had very
few registers. Modern processors such as Intel’s Itanium have

9Processor architectures

CHAPTER MAP

6 Assembly language
programming

Chapter 6 shows how

machine-level instructions are

used to construct entire

programs.We introduce the

programming environment via a

simulator that runs on a PC and

demonstrate how to implement

basic algorithms in assembly

language.

7 Structure of the CPU

Here, we show how a computer

is organized internally and how

it reads instructions from

memory, decodes them, and

executes them.

8 Enhancing
performance

Chapter 8 describes some of the

techniques we can use to make

the computer work faster.We

examine how the performance

of computers has been enhanced

by pipelining, the use of cache

memory, and parallel processing.

9 Processor
architectures

Any course on computer

architecture has to concentrate

on a specific microprocessor

because students don’t have

time to learn the details of

several architectures.We used

the 68K to teach computer

architecture because of its

elegance and simplicity. Students

should appreciate that many

computer architectures are

available. Here we provide an

overview of two alternatives to

the 68K: a simple microcontroller

found in consumer products and

a high-performance RISC

processor.

INTRODUCTION

When we introduced the CPU and assembly language programming, we were forced to limit the

discussion to one processor to avoid confusing readers by presenting a range of different processor

architectures. Because students should at least appreciate some of the differences between

architectures, we now look at two variations on the von Neumann architecture.We begin with the

microcontroller, which is a descendant of the first-generation 8-bit microprocessor. Our aim is

only to provide students with an idea of how the instruction set of a microcontroller differs from

that of more sophisticated architectures like the 68K.

The second processor to be introduced here is the ARM, a high-performance RISC processor. This

device has a 32-bit architecture with the characteristics of traditional RISC processors like MIPS

but which has some very interesting architectural facilities.We look at the ARM in greater detail

than the microcontroller and provide development tools on the disk accompanying this text.

This chapter is not essential reading in for all computer architecture courses—but it is worth

skimming though just to appreciate some of the architectural differences between processors.

large register sets (the Itanium has 128 general-purpose
64-bit registers).

Processors with few registers use special instructions to
indicate the register such as LDX or LDY to specify load the X
or Y register. Processors with many registers number their
registers sequentially and implement instructions such as
ADD R1, R2,R3.

9.1.2 Instruction formats

We have already seen that computer architectures can be
specified by the number of operands used by the instruction;
for example,

or more of the operands must be a register; that is, memory-
to-memory operations are not generally permitted.

The three-address format is used by RISC processors such
as MIPS, the PowerPC, and the ARM. Real processors require
three register addresses. Typically, the only memory accesses
permitted by RISC processors are load and store.

9.1.3 Instruction types

The instruction sets of most computers are very similar. All
processors have arithmetic, logical, shift, data transfer, data
movement, and program flow control instructions. Some
processors have a richer instruction set than others; for

366 Chapter 9 Processor architectures

WHY DO WE HAVE DIFFERENT PROCESSOR FAMILIES?

Life would be simpler if there were only one microprocessor.

All software would be compatible across all platforms and

manufacturers would compete on price and performance

rather than the architecture itself.

Different professor families exist for various reasons. First,

competing companies working independently of each other

developed the microprocessor. Trade secrets and product

confidentiality guaranteed that processors from, for example,

Intel, Motorola, and TI would be different. Developments in

technology also help create diversity. First-generation

processors were 8-bit machines because it was not

economically feasible to create 16- and 32-bit processors in

the 1970s.Technological progress forced companies to

jump from 8-bit processors to 16-bit processors. Some

companies moved from register-to-memory architectures to

register-to-register architectures to exploit developments in

computer organization such as pipelining. Finally, economics

required that some processors be cheap and cheerful

whereas others could command premium prices because of

their power.

The zero address format doesn’t require operand addresses
because operations are applied to the element or elements
at the top of the stack. This format is used only by some
calculators designed for arithmetic operations and some
experimental processors; for example, performing the opera-
tion (Y � Z) ·X might be implemented by the following
hypothetical code

Format Typical operation Description

Zero address ADD Pull the top two words off the stack, add them, and push the result.
One address ADD P Add the contents of memory location P to the accumulator
Two address ADD R1,P Add the contents of memory location P to register R1
Three address ADD R1,R2,R3 Add the contents of register R2 to register R3 and put the result in register R1

Push X Save X on the stack
Push Y Save Y on the stack (stack = Y, X)
Push Z Save Z on the stack (stack = Z, Y, X)
ADD Pull top two elements Z and Y, add them, and push the result Y+Z (stack = Y+Z, X)
MUL Pull top two elements Y+Z and X, multiply them and push the result (Y+Z) · X.

The one-address format was adopted by first-generation
processors and is still used by microcontrollers.

The two-address instruction format is used by the main-
stream CISC processors such as the 68K or the Pentium. This
is often called a ‘one-and-a-half-address’ format because one

The trend to complex instruction sets in the 1980s led to
instructions such as the 68020’s BFFFOwhich scans a sequence
of bits and returns the location first bit that was set to 1. Such
complex instructions appeared to be dying out with the advent
of the high-speed, streamlined RISC architectures of the 1980s.

example, a processor may not include a multiplication
instruction, which means that you have to write a routine to
perform multiplication by shifting and adding.

Some processors have instructions that are not necessary;
for example,one processor might implement CLR D0 to load the
contents of D0 with 0, whereas another processor may require
you to write MOVE #0,D0 or SUB D0,D0 to do the same thing.

In recent years, the trend towards simplicity has reversed
with the advent of the so-called SIMD (single instruction,
multiple data) instruction. Such an instruction acts on multi-
ple data elements at the same time; for example, a 64-bit
register may contain eight 8-bit bytes that can be added in
parallel to another eight bytes at the same time. These
instructions are used widely in multimedia applications
where large numbers of data elements representing sound or
video are processed (e.g. Intel’s MMX extensions).

9.1.4 Addressing modes

An important element of an instruction set is the addressing
mode used to access operands. First-generation microproces-
sors used absolute addressing, literal addressing, and indexed
(register indirect) addressing. The generation of 16- and
32-bit CISC processors widened addressing, modes by
providing a richer set of indexed addressing modes; for exam-
ple, the 68K provided autoincrementing with (A0)�, and
double indexing with a literal displacement with 12(A0,D0).

9.1.5 On-chip peripherals

Microprocessor families also differ in terms of the facilities
they offer. The processor intended for use in workstations or
high-end PCs is optimized for performance. Peripherals such
as I/O ports and timers are located on the motherboard.

A microcontroller intended of use in an automobile, cell
phone, domestic appliance, or toy is a one-chip device that
contains a wealth of peripherals as well as the CPU itself. For
example, a microcontroller may contain an 8-bit CPU, ran-
dom access memory, user-programmable read-only mem-
ory, read/write RAM, several timers, parallel and serial I/O
devices, and even analog-to-digital converters. The micro-
controller can be used to implement a complete computer
system costing less than a dollar.

We look at two processors. We begin with the 68HC12
microcontroller to demonstrate what an embedded con-
troller looks like. Then we introduce the ARM, a RISC
processor with a simple instruction set and some interesting
architectural features.

9.2 The microcontroller

One of the first major competitors to Intel’s 8080 8-bit
microprocessor was the Motorola 6800, which has a signifi-
cantly simpler register model than the 8080. The 6800 has a
single 8-bit accumulator and 16-bit index register, which lim-
its its performance because you have to load the accumulator,
perform a data operation, and then store the result before you
can reuse the accumulator.

First-generation microprocessors had 16-bit program
counters that supported only 64 kbytes of directly address-
able memory. Although 64 kbytes is tiny by today’s
standard’s, in the mid-1970s 64 kbytes was considered as
positively gigantic.

Motorola later introduced the 6809, an architecturally
advanced 8-bit processor, to overcome the deficiencies of the
6800. Unfortunately, the 6809 appeared just as the 68K was
about to enter the market; few wanted a super 8-bit processor
when they could have a 16- or 32-bit device.1

Motorola created a range of microcontrollers aimed at the
low-cost high-volume industrial microcontroller market. We
are going to describe the architecture of the popular 8-bit

9.2 The microcontroller 367

1 ‘Better late than never’. No way! Motorola seems to have been very
unlucky. The high-performance 68K with a true 32-bit architecture lost
out to Intel’s 16-bit 8086 when IBM adopted the Intel architecture
because IBM couldn’t wait for the 68K. Similarly, the 6809 appeared just
as the world of high-performance computing was moving from 8 bits to
16/32 bits.

MICROCONTROLLER FAMILIES

High-performance microcomputers are like jet aircraft;

their development costs are so high that there are relatively few

different varieties.The same is not true of microcontrollers and

there are more members of microcontroller families than

varieties of salad dressing. Because microcontrollers are a very-

low-cost circuit element, they have been optimized for very

specific applications.You can select a particular version of a

microcontroller family with the RAM, ROM, and I/O you require

for your application.

The generic Motorola microcontroller families are as follows.

6800 This was the original 8-bit Motorola microprocessor. The

6800 is not a microcontroller because it lacks internal

memory and peripherals.

6805 Motorola’s 6805 was their first microcomputer with an

architecture very similar to the 6800. It was initially aimed at

the automobile market.

68HC11 The 68HC11 is one of the best-selling

microcontrollers of all time. It has a 6800-like architecture but

includes ROM, RAM, and peripherals.

68HC12 The 68HC12 is an extension of the 68HC11. It has

more instructions, enhanced addressing modes and some

16-bit capabilities.

68HC16 The 68HC16 has a 16-bit architecture

and is an enhanced 68HC12 rather than a new

architecture.

368 Chapter 9 Processor architectures

VFP

BKGD

EXTAL

XTAL
RESET

PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7

VDD×2

VSS×2

VSSX×2

VDDX×2

POWER FOR
INTERNAL
CIRCUITRY

POWER FOR
I/O DRIVERS

32-KBYTE FLASH EEPROM/ROM

1-KBYTE RAM

768-KBYTEPROM

 CPU12

SMODN/TAGHI PERIODIC INTERRUPT

CCPWATCHDOG

CLOCK MONITOR

BREAK POINTS

SINGLE-WIRE

BACKGROUND

DEBUG MODULE

LITE

INTEGRATION

MODULE

(LIM)

P
O

R
T

 E

MULTIPLEXED ADDRESS/DATA BUS

DDRA DDRB

PORT BPORT A

WIDE
BUS

NARROWBUS

D
A

T
A

7
D

A
T

A
1

5
D

A
T

A
1

4
D

A
T

A
1

3
D

A
T

A
1

2
D

A
T

A
1

1
D

A
T

A
1

0
D

A
T

A
9

D
A

T
A

8

A
D

D
R

1
5

A
D

D
R

1
4

A
D

D
R

1
3

A
D

D
R

1
2

A
D

D
R

1
1

A
D

D
R

1
0

A
D

D
R

9

A
D

D
R

8

D
A

T
A

6
D

A
T

A
5

D
A

T
A

4
D

A
T

A
3

D
A

T
A

2
D

A
T

A
1

D
A

T
A

0

D
A

T
A

7
D

A
T

A
6

D
A

T
A

5
D

A
T

A
4

D
A

T
A

3

D
A

T
A

2
D

A
T

A
1

D
A

T
A

0

A
D

D
R

7
A

D
D

R
6

A
D

D
R

5
A

D
D

R
4

A
D

D
R

3

A
D

D
R

2
A

D
D

R
1

A
D

D
R

0

P
A

7
P
A

6
P
A

5
P
A

4
P
A

3

P
A

2
P
A

1
P
A

0

P
B

7
P
B

6
P
B

5
P
B

4
P
B

3

P
B

2
P
B

1
P
B

0

ATD

CONVERTER

TIMER AND

PULSE

ACCUMULATOR

AN0 PAD0

P
O

R
T

 A
D

PAD1
PAD2
PAD3
PAD4
PAD5
PAD6
PAD7

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7

PS0

PS3

PS2

PS1

RxO

TxO

I/O

I/O

PS4

PS7

PS6
PS5

SDI/MISO

CSSS

SCK
SDO/MOSI

PP0

PP3
PP2
PP1

PW0

PW3
PW2
PW1

I/O

I/O
I/O
I/O

I/O

I/O
I/O

I/O
I/O

PP4

PP7

RxCAN
TxCAN

RxCAN
TxCAN

PP6
PP5

PCAN2

PCAN5
PCAN6

PCAN4
PCAN3

D
D

R
T

D
D

R
S

D
D

R
P

D
D

R
C

A
N

P
O

R
T

 C
A

N
P
O

R
T

 P
P
O

R
T

 S
P
O

R
T

 T

IOC0
IOC1
IOC2
IOC3
IOC4

CC7

IOC5
IOC6
PAI

AN1
AN2
AN3
AN4
AN5
AN6
AN7

VSSA

VDDA

VRL

VRH

VSSA

VDDA

VRL

VRH

SCI

I/O

I/O

I/O

SPI

PWM

msCAN

XIRQ
IRQ/VPP
R/W

LSTRB/TAGLO
ECLK

PIPE0/M0DA
PIPE1/M0DB
DBE

Figure 9.1 The MC68HC12

structure.

M68HC12, which is object code compatible with Motorola’s
8-bit MC68HC11 but with more sophisticated addressing
modes and 16-bit arithmetic capabilities.

Before we look at microcontroller register sets, we will say
a few words about one of the differences between the Intel-
style processors and Motorola-style processors. The bits of an
instruction are precious, because we wish to cram as many
different instructions into an 8-bit instruction set as possible.
Intel processors reduce the number of bits required to specify
a register by using dedicated registers. For example, if arith-
metic operations can be applied only to one accumulator, it’s
not necessary to devote op-code bits to specifying the register.
On the other hand, this philosophy makes life difficult for
programmers who have to remember what operations can be
applied to what registers. Moreover, programmers with lim-
ited registers have to spend a lot of time moving data between
registers.

Motorola-style processors employed fewer specialized
registers than Intel-style processors. This approach reduced
the number of different instructions, because more bits have
to be devoted to specifying which register is to take part in an
operation. Equally, it makes it easier to write assembly
language code.

9.2.1 The M68HC12

In this chapter we are interested in the instruction set
architecture of microprocessors. The MC68HC12 microcon-
troller family provides an interesting contrast with the 68K
because of its simplicity and its similarity to first-generation
8-bit microprocessors. We are not able to discuss the
microprocessor’s most important features—its on-chip
peripherals that let you implement a complete computer in
one single chip. Figure 9.1 provides an indication of the

MC68HC12’s capabilities. The microcontroller contains
both read–write memory for scratchpad storage and flash
EPROM to hold programs and fixed data. There is a wealth of
input and output ports, serial interfaces, and counter timers.
Such a chip can be used to control a small system (e.g. a
digital camera or a cell phone) with very little additional
hardware.

Figure 9.2 illustrates a user register model of the
M68HC12 microcomputer family. Unlike the first 8-bit
processors, it has two general-purpose 8-bit accumulators A
and B. The inclusion of a second accumulator reduces the

number of accesses the M68HC12 has
to make to the main store. The two
8-bit accumulators, A and B, can be
concatenated to create a single 16-bit
data accumulator D, where D(0:7) � A,
D(8:15) � B. Because the D register can
take part in 16-bit operations (albeit to
limited extent), it can be used for some
of the applications that would nor-
mally require a 16-bit pointer register
(e.g. X, Y, SP).

We’ve covered sufficient computer
architecture and assembly language to
write a simple program in M68HC12
code that you can follow with little dif-
ficult. In what follows, A and B are 8-bit
registers and X is a 16-bit pointer.
The following are some M68HC12
instructions.

9.2 The microcontroller 369

WHAT’S IN A NAME? PART I

You access variable locations in memory by means of a

pointer-based addressing mode.The register that supplies

the address of an operand was called a modifier register.

Some microprocessors call these registers index register,

the term used by Motorola in its microcontroller

literature.

The 68K family provides eight 32-bit pointer registers

called address registers, although their function is identical to

that of index registers. The 68k family has an addressing mode

that uses the sum of two pointer registers to provide an

effective address; for example, MOVE(A0,D2),D7.

Motorola calls this addressing mode Indexed addressing.

The 8-bit condition code register contains
 the processor's staus flags (e.g. N-, C-, V-,
 and N-bits)

The 16-bit program counter contains the
address of the next instruction to be
executed.

The 16 bit stack pointer is used to manage
 the system stack holds subroutine return
 and interrupt retur addresses.

The two 16-bit X and Y registrs are pointer
registers (called index registers) that are
userd to access momory.

The 68HC12 has two 8-bit accumulators
that can be concated to create a single
16-bit D-register.

15 0

00 77

15 0

15 0

15 0

15 0

7 0

Accumulator D

Accumulator A Accumulator B

Index register X

Index register Y

Stack pointer

Program counter

CCR

Figure 9.2 The M68HC12 register set.

Assembly form Description in words RTL description

LDX #P Load X register with a literal [X] ← P

STX P Store X register in P [P] ← [X]

LDAB P Load B register [B] ← [P]

LDAA 0,X Load A register indexed [A] ← [[X]]

INX Increment X register by 1 [X] ←[X] � 1

STAA 0,X Store A register indexed [[X]] ← [A]

DECB Decrement B register [B] ← [B] � 1

BNE P Branch on not zero IF [Z]=1 [PC] ← [PC] � P

Note how the 8-bit mnemonic combines the operation
and the operand; for example, INX increments the X register
and INCA and INCB increment the A and B accumulators.
The M68HC12 uses load and store mnemonics to move data
between memory and registers, rather than the 68K’s more
generic MOVE instruction; for example,LDX and STX load and
store data in the X register.

Eight-bit code uses variable-length instructions. Common
operations like INCA are encoded as a single byte. The
equivalent operation, ADDA #1, takes two bytes—one for the
op-code and one for the literal.

Consider the following fragment of M68HC12 code,
which uses two pointers, the X and Y registers, to copy a string
from its source to its destination.

This fragment of code is not too difficult to understand. All
you have to remember is that one of the operands is specified
by the mnemonic (e.g. A, B, X, or Y registers).

M68HC12 addressing modes

The M68HC12 has 16-bit pointer registers and can address up to
64 kbytes of memory. Memory addressing modes are absolute

(the operand is specified by a
16-bit address), literal (either
an 8-bit or a 16-bit offset), and
indexed. Table 9.1 illustrates
the M68HC12’s addressing
modes.

The M68HC12’s indexed
addressing modes are partic-
ularly extensive. Like the
68K, indexed addressing with
both a literal and a variable

offset is supported. Auto-incrementing and -decrementing
modes are provided; indeed both pre- and postdecrementing
and pre- and postincrementing modes are supported. Note
that the increment size is user selectable in the range 1 to 8.

370 Chapter 9 Processor architectures

WHAT’S IN A NAME? PART II

Modern RISC processors and the 68K family have lots of

internal registers that use sequential alpha-numeric names

such as D0–D7,A0–A7, and R0–R31.

Microcontrollers have few general-purpose registers and use

special names; for example, the A and B accumulators or the X

and Y index registers.The operation load accumulator A might be

written LDAA and load accumulator B might be written LDAB.

Operations such as increment and decrement are imple-

mented by the 68K as additions and subtractions by ADD
#1,D0 or SUB#4,A2. Microcontrollers avoid an explicit lit-

eral by using increment and decrement; for example, INX
increments the contents of the M68HC12’s X index register.

Typical M68HC2 mnemonics that apply to a specific

register are

INX increment X register INY increment Y register

DEX decrement X register DEY decrement Y register

LDX load X register LDY load Y register

STX store X register STY store Y register

LDS load stack pointer STS store stack pointer

TXS transfer X register to stack pointer TSX transfer stack pointer to X register

Assembly language RTL form Comment

LDAA #d8 [A] ← d8 Literal addressing

LDAA EA [A] ← [EA] Absolute addressing

LDAA d8,X [A] ← [[X] � d8] Indexed addressing with an 8-bit offset

LDAA d16,X [A] ← [[X] � d16] Indexed addressing with a 16-bit offset

LDAA B,X [A] ← [[X] � [B]] Indexed addressing with a variable 8-bit offset

LDAA D,X [A] ← [[X] � [D]] Indexed addressing with a variable 16-bit offset

LDAA 1,�X [X] ← [X]�1; [A] ← [[X]] Indexed addressing with predecrement

LDAA 1,X� [A] ← [[X]]; [X] ← [X]�1 Indexed addressing with postdecrement

LDAA 1,�X [X] ← [X]�1; [A] ← [[X]]] Indexed addressing with preincrement

LDAA 1,X� [A] ← [[X]]; [X] ← [X]�1 Indexed addressing with postincrement

LDAA [d16,X] [A] ← [[d16 � [X]]]; Memory indirect addressing with index register and offset

LDAA [D,X] [A] ← [[[D] � [X]]]; Memory indirect addressing with two index registers

Table 9.1 The M68HC11’s indexed addressing modes (you can replace A by B and X by Y).

9.2 The microcontroller 371

Operation RTL definition Mnemonic

Arithmetic group

Add M to A [A] ← [A] � [EA] ADDA

Add M to A [B] ← [B] � [EA] ADDB

Add M to D [D] ← [D] � [EA] ADDD

Add B to X [X] ← [X] � [B] ABX

Add B to Y [Y] ← [Y] � [B] ABY

Add B to A [A] ← [A] � [B] ABA

Add M to A with carry [A] ← [A] � [EA] � [C] ADCA

Add M to B with carry [B] ← [B] � [EA] � [C] ADCB

Subtract M from A [A] ← [A] � [EA] SUBA

Subtract M from B [B] ← [B] � [EA] SUBB

Subtract M from D [D] ← [D] � [EA] SUBD

Subtract B from A [A] ← [A] � [B] SBA

Subtract M from A with carry [A] ← [A] � [EA] � [C] SBCA

Subtract M from B with carry [B] ← [B] � [EA] � [C] SBCB

Clear M [EA] ← 0 CLR

Clear A [A] ← 0 CLRA

Clear B [B] ← 0 CLRB

Negate M [EA] ← 0 � [EA] NEG

Negate A [A] ← 0 � [A] NEGA

Negate B [B] ← 0 � [B] NEGB

Multiply A by B [D] ← [A] � [B] MUL

Compare A with M [A] � [EA] CMPA

Compare B with M [B] � [EA] CMPB

Compare D with M [D] � [EA] CMPD

Compare A with B [A] � [B] CBA

Test M [EA] � 0 TST

Test A [A] � 0 TSTA

Test B [B] � 0 TSTB

Sign extend [B] into [D] IF [B7]= 1 THEN SEX

[A(0:7)]=11111111

ELSE [A(0:7)]=0

Table 9.2 (Continues)

Unusually, the MC68HC12 provides a memory indirect
addressing mode. The operation LDDA [12, X] adds 12 to
the contents of the X register to create a pointer. The memory
location at that address is accessed to yield a second 16-bit
pointer. This pointer is used to access the target operand.
Memory indirect addressing allows you to index into a table
of pointers which can be useful when implementing two-
dimensional data structures.

The M68HC12 has a full complement of pointer register
transfer instructions. Pointer registers can be pushed on the
stack or pulled off it. The stack operation uses a 2-byte
instruction, the second byte specifying the list of registers to
be pulled or pushed. It is also possible to push multiple regis-
ters on the stack with one instruction.

M68HC12 instruction set

Table 9.2 lists some of the M68HC12’s mnemonics and indi-
cates the actions carried out by the instructions (note that M
is a memory location). All we need here is an indication of the
types of operation performed by these computers. The
M68HC12 microprocessor is reasonably complete in its data
movement, arithmetic, logical, shift, and branch instructions.
Complex arithmetic operations such as multiply or divide
except for the M68HC12’s unsigned 8-bit multiply instruc-
tion are absent.

Eight-bit microprocessors offer very effective ways of
manipulating character-oriented data, implementing
input/output operations, and designing embedded

372 Chapter 9 Processor architectures

Table 9.2 (Continued)

Operation RTL definition Mnemonic

Decrement and increment group

Decrement M [EA] ← [EA] � 1 DEC

Decrement A [A] ← [A] � 1 DECA

Decrement B [B] ← [B] � 1 DECB

Decrement S [S] ← [S] � 1 DES

Decrement X [X] ← [X] � 1 DEX

Decrement Y [Y] ← [Y] � 1 DEY

Increment M [EA] ← [EA] � 1 INC

Increment A [A] ← [A] � 1 INCA

Increment B [B] ← [B] � 1 INCB

Increment S [S] ← [S] � 1 INS

Increment X [X] ← [X] � 1 INX

Increment Y [Y] ← [Y] � 1 INY

Logical group

Bit A with M [A].[EA] BITA

Bit B with M [B].[EA] BITB

AND A with M [A] ← [A].[EA] ANDA

AND B with M [B] ← [B].[EA] ANDB

Complement M [EA] ← [EA] COM

Complement A [A] ← [A] COMA

Complement B [B] ← [B] COMB

EOR A with M [A] ← [A] ⊕ [EA] EORA

EOR B with M [B] ← [B] ⊕ [EA] EORB

OR A with M [A] ← [A] � [EA] ORAA

OR B with M [B] ← [B] � [EA] ORAB

Shift and rotate group

Arithmetic shift M left ASL

Arithmetic shift A left ASLA

Arithmetic shift B left ASLB

Arithmetic shift M right ASR

Arithmetic shift A right ASRA

Arithmetic shift B right ASRB

Logical shift M left LSL

Logical shift A left LSLA

Logical shift B left LSLB

Logical shift M right LSR

Logical shift A right LSRA

Logical shift B right LSRB

Rotate M left ROL

Rotate A left ROLA

Rotate B left ROLB

Rotate M right ROR

Rotate A right RORA

Rotate B right RORB

9.2 The microcontroller 373

Table 9.2 (Continued)

Operation RTL definition Mnemonic

Data movement group

Exchange register pair [Ri] ← [Rj]; [Rj] ← [Ri] EXG

Load A with M [A] ← [EA] LDA

Load B with M [B] ← [EA] LDB

Load D with M [D] ← [EA] LDD

Store A in M [EA] ← [A] STA

Store B in M [EA] ← [B] STB

Store D in M [EA] ← [D] STD

Transfer reg j to reg i [Ri] ← [Rj] TFR

Transfer B to A [A] ← [B] TAB

Transfer A to B [B] ← [A] TBA

Push A on system stack [SP] ← [SP]�1;[[SP]] ← [A] PSHSA

Push B on system stack [SP] ← [SP]�1;[[SP]] ← [B] PSHSB

Push register list on system stack PSHS

Push register list on user stack PSHU

Pull A off system stack [A] ← [[SP]];[SP] ← [SP]�1 PULSA

Pull B off system stack [B] ← [[SP]];[SP] ← [SP]�1 PULSB

Pull register list off system stack PULS

Pull register list off user stack PULU

Branch group

Branch on equal IF [Z]= 0 THEN [PC]←[PC]� T BEQ

Branch on not equal IF [Z]= 1 THEN [PC]←[PC]� T BNE

Branch unconditionally [PC] ← [PC] � address BRA

Branch to subroutine [SP] ← [SP]�2;

[[SP]] ← [PC];

[PC] ← [PC]�d8 BSR

Jump [PC] ← address JMP

Jump to subroutine [SP] ← [SP]�2;

[[SP]] ← [PC];

[PC] ← address JSR

Return from interrupt RTI

Return from subroutine [PC] ← [[SP]]; [SP] ← [SP]�2 RTS

Pointer register load, store, and manipulation group

Add A to X [X] ← [X] � [A] ABX

Decrement X [X] ← [X] � 1 DEY

Decrement stack pointer [S] ← [S] � 1 DES

Increment Y [X] ← [X] � 1 INX

Increment X [Y] ← [Y] � 1 INY

Increment stack pointer [S] ← [S] � 1 INS

Load X with M [X] ← [EA] LDX

Load Y with M [Y] ← [EA] LDY

Load stack pointer with M [SP] ← [EA] LDS

Load user SP with M [U] ← [EA] LDU

Store X in M [EA] ← [X] STX

Store Y in M [EA] ← [Y] STY

374 Chapter 9 Processor architectures

Table 9.2 (Continued)

Operation RTL definition Mnemonic

Store stack pointer in M [EA] ← [S] STS

Store user SP in M [EA] ← [U] STU

Transfer SP to M [X] ← [S] TSX

Transfer X to SP [S] ← [X] TXS

Transfer A to X [X] ← [A] TAX

Transfer X to A [A] ← [X] TXA

Transfer A to Y [Y] ← [A] TAY

Transfer Y to A [A] ← [Y] TYA

Load X with EA [X] ← EA LEAX

Load Y with EA [Y] ← EA LEAY

Load system SP with EA [S] ← EA LEAS

Load user SP with EA [U] ← EA LEAU

Compare X with M [X] � [EA] CMPX

Compare Y with M [Y] � [EA] CMPY

Compare system SP with M [S] � [EA] CMPS

Compare user SP with M [U] � [EA] CMPU

CCR manipulation group

Clear carry [C] ← 0 CLC

Set carry [C] ← 1 SEC

Clear interrupt [I] ← 0 CLI

Set interrupt [I] ← 1 SEI

Clear overflow [V] ← 0 CLV

Set overflow [V] ← 1 SEV

Set decimal mode SED

Clear decimal mode CLD

Transfer A to CCR [CCR] ← [A] TAP

Transfer CCR to A [A] ← [CCR] TPA

AND CCR with M [CCR] ← [CCR] AND [EA] ANDCC

OR CCR with M [CCR] ← [CCR] OR [EA] ORCC

Push CCR PHP

Pull CCR PLP

Table 9.2 Summary of the MC68HC12 instruction set.

controllers. They are rather less effective when asked to per-
form numeric operations on floating point data or when they
attempt to compile programs
in modern high-level
languages.

The MC68HC12’s instruc-
tion set is conventional with
just a few special instructions intended to accelerate some
applications; for example, instructions are provided to
extract the maximum and minimum of two values. Consider
the following example, which compares the memory location
pointed at by the X register and the unsigned contents of the

16-bit D register and puts the larger value in the memory
location or D register.

Similarly,EMIND 0, X puts the lower of the memory loca-
tion and the D register in the D register.

Consider the following fragment of code, which uses the
8-bit signed minimum function and indexed addressing with
postincrementing to find the minimum value in a four-
element vector.

EMAXM 0,X [[X]] ← max([[X]],[D]) maximum value in memory
EMAXD 0,X [D] ← max([[X]],[D]) maximum value in D register

Sample MC68HC12 code

In many ways, MC68HC12 code is not too dissimilar to 68K
code; it’s just rather more verbose. The lack of on-chip registers
means that you have to frequently load one of the two accumu-
lators from memory, perform an operation, and then restore
the element to memory. The following example demonstrates a
program to find the maximum of a table of 20 values.

9.3 The ARM—an elegant RISC
processor

One of the strongest arguments made by the supporters of
RISC processors in the 1980s was that they were easy to design
and fabricate. From 1983 onward Acorn Computers created a
series of chips solidly based on RISC principles, which
demonstrated the proof of this statement. The same company
later set up Advanced RISC Machines, of Cambridge, UK, to

9.3 The ARM—an elegant RISC processor 375

LDX #List ;X register points to List
LDAA #$FF ;dummy minimum in A register
MINA 1,X+ ;min(A,List1) in A
MINA 1,X+ ;min(A,List2) in A
MINA 1,X+ ;min(A,List3) in A
MINA 1,X+ ;min(A,List4) in A. We now have the smallest element

N EQU 64 ; size of table

LDAA #0 ; clear A
STAA Maximum ; set up dummy maximum value of 0
LDX #Table+N-1 ; X points to the end of the table
LDAB #N-1 ; register B is the element counter set to count down

Next LDAA Maximum ; get the current largest value
CMPA 0,X ; compare maximum with tablei
BLE TstLast ; IF new not bigger then test for end
LDAA 0,x ; ELSE update maximum
STAA Maximum

TsTLast DEX ; Decrement table pointer
DBNE B,Next ; Decrement loop count in B, branch if not zero

Maximum db 0 ; memory location to hold array max
Table db 7,2,5,3,... ; dummy data

develop further generations of RISC processors (called the
ARM family). In 1998 the company was floated on the stock
market and became ARM Ltd. We are going to use the ARM
processor to illustrate the RISC philosophy because it is easy to
understand and it incorporates some interesting architectural
features.

CLR D0 ; D0 contains the maximum – preset to 0
LEA Table,A0 ; A0 points to table
MOVE.B #N-1,D1 ; D1 is the loop counter (set to size – 1)

Next CMP.B D0,(A0)+ ; Test the next element
BLE TsTLast ; If not larger than check for end
MOVE.B -1(A0),D0 ; IF bigger then record new largest element

TsTLast DBRA D1,Next ; Repeat until all done

The following code presents the core of a 68K version of
this program. Notice that it is more compact.

9.3.1 ARM’s registers

Like most mainstream RISC architectures, the ARM is a
32-bit machine with a register-to-register, three-operand
instruction set. First-generation ARMs supported 32-bit
words and unsigned bytes, whereas later members of the
ARM family provide 8-bit signed bytes and 16-bit signed
and unsigned half-words. The ARM processor doesn’t
implement delayed branches and therefore the instruction
following a branch is not automatically executed.

All operands are 32 bits wide, except for some multiplication
instructions that generate a 64-bit product in two registers, and
byte and halfword accesses (64-bit and halfword accesses are
available only on some members of the ARM family). The
ARM has 16 user-accessible general-purpose registers called r0
to r15 and a current program status register (CPSR), that’s
similar to the condition code register we’ve described earlier.

The ARM doesn’t divide registers into address and data
registers like the 68K—you can use any register as an address
register or a data register. Most 32-bit RISC processors have
32 general-purpose registers, which require a 5-bit operand
field in the instruction. By reducing the number of bits in an
instruction used to specify a register, the ARM has more bits
available to select an op-code. The ARM doesn’t provide lots
of different instructions like a CISC processor. Instead, it pro-
vides flexibility by allowing instructions to do two or more
things at once (as we shall soon see). In some ways, the ARM
is rather like a microprogrammed CPU.

The ARM’s registers are not all general purpose because
two serve special purposes. Register r15 contains the program
counter and register r14 is used to save subroutine return
addresses. In ARM programs you can write pc for r15 and lr
(link register) for r14.

Because r15 is as accessible to the programmer as any other
register, you can easily perform computed gotos; that is,
MOV pc, r10 forces a jump to the address in register r10.

By convention, ARM programmers reserve register r13 as a
stack pointer, although that is not mandatory.

The ARM has more than one program status register
(CPSR—see Fig. 9.3). In normal operation the CPSR
contains the current values of the condition code bits
(N, Z, C, and V) and eight system status bits. The I and F bits
are used to disable interrupt requests and fast interrupt
requests, respectively. Status bits M0 to M4 indicate the
processor’s current operating mode. The T flag is imple-
mented only by the Thumb-compatible versions of the ARM
family. Such processors implement two instruction sets, the
32-bit ARM instruction set and a compressed 16-bit Thumb
instruction set.2

When an interrupt occurs, the ARM saves the pre-exception
value of the CPSR in a stored program status register (there’s
one for each of the ARM’s five interrupt modes).

The ARM runs in its user mode except when it switches to
one of its other five operating modes. These modes corres-
pond to interrupts and exceptions and are not of interest to
us in this chapter. Interrupts and exceptions switch in new
r13 and r14 registers (the so-called fast interrupt switches in
new r8 to r14 registers as well as r13 and r14). When a mode
switch occurs, registers r0 to r12 are unmodified. For our cur-
rent purposes we will assume that there are just 16 user-
accessible registers r0 to r15. Figure 9.3 describes the ARM’s
register set.

The current processor status register is accessible to the pro-
grammer in all modes. However, user-level code can’t modify
the I, F, and M0 to M4 bits (this restriction is necessary to
enable the ARM to support a protected operating system).
When a context switch occurs between states, the CPSR is
saved in the appropriate SPSR (saved processor state register).
In this way, a context switch does not lose the old value of
the CPSR.

Summary of the ARM’s register set

● The ARM has 16 accessible 32-bit registers called r0 to r15.
● Register r15 acts as the program counter, and r14 (called the

link register) stores the subroutine return address.
● You can write PC for r15 in ARM assembly language, lr for

r14, and sp for r13.
● By convention, register r13 is used as a stack pointer.

However, there is no hardware support for the stack
pointer.

● The ARM has a current program status register (CPSR),
which holds condition codes.

● Some registers are not unique because processor exceptions
create new instances of r13 and r14.

● Because the return address is not necessarily saved on the
stack by a subroutine call, the ARM is very fast at imple-
menting subroutine return calls.

As most readers will have read the chapter on the CISC
processor and are now familiar with instruction sets and

376 Chapter 9 Processor architectures

SHADOW REGISTERS

When an interrupt occurs, a processor is forced to suspend the

current program and to carry out a task defined by the

operating system.This means that registers being used by the

pre-interrupt program might be overwritten by the

interrupting program.

A simple solution is for interrupt handlers to save data in

registers, use the registers, and then restore the data before

returning from the interrupt. This process takes time.

Some devices like the ARM provide shadow registers. These

are copies of a register that are associated with an

interrupt.When an interrupt occurs and the processor

handles it, an old register is ‘switched out’ and a new one

switched in.When the interrupt has completed, the old

register is switched in again. In this way, no data has to be

moved.

2 The ARM’s Thumb mode is designed to make the processor look
like a 16-bit device in order to simplify memory circuits and bus design
in low-cost applications such as cell phones.

addressing modes, we provide only a short introduction to the
ARM’s instruction set before introducing some of its develop-
ment tools and constructing simple ARM programs.

9.3.2 ARM instructions

The basic ARM instruction set is not, at first sight, exciting. A
typical three-operand register-to-register instruction has the
format

and is interpreted as [r1] ← [r2] � [r3]. Note the order
of the operands—the destination appears first (left to right),
then the first source operand, and finally the second source
operand. Table 9.3 describes some of the ARM’s data process-
ing instructions.

The ARM has a reverse subtract; for example, SUB r1,r2,
r3 is defined as [r1] ← [r2] � [r3], whereas the reverse
subtract operation RSB r1, r2, r3 is defined as [r1]←
[r3] � [r2]. A reverse subtract operation is useful because
you can do things like

The bit clear instruction BIC performs the operation
AND NOT so that BIC r1,r2,r3 is defined as [r1]
←[r2]• . Consider the effect of BIC r1,r2,r3 on
operands [r2] � 11001010 and [r3] � 11110000. The
result loaded into r1 is 00001010 because each bit in the sec-
ond operand set to 1 clears the corresponding bit of the first
operand.

The multiply instruction, MUL, has two peculiarities. First,
the destination (i.e. result) register must not be the same as
the first source operand register; for example, MUL r0,r0,

r1 is illegal whereas MUL r0,r1,r0 is legal. Second, the MUL
instruction may not specify an immediate value as the second
operand.

The multiply and accumulate instruction MLA performs a
multiplication and adds the result to a running total. It has
the four-operand form MLA Rd,Rm,Rs,Rn. The RTL defini-
tion of MLA is

The result is truncated to 32 bits.

[Rd] ← [Rm] � [Rs] � [Rn]

[r3]

9.3 The ARM—an elegant RISC processor 377

User
registers

Supervisor
registers

Abort
registers

Undefined
registers

Interrupt
registers

Fast interrupt
registers

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r19

r11

r12

r13

r14

r15=PC

r0

r1

r2

r3

r4

r5

r6

r7

r8_FIQ

r9_FIQ

r19_FIQ

r11_FIQ

r12_FIQ

r13_FIQ

r14_FIQ

r15=PC

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r19

r11

r12

r13_IRQ

r14_IRQ

r15=PC

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r19

r11

r12

r13_undef

r14_undef

r15=PC

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r19

r11

r12

r13_abort

r14_abort

r15=PC

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r19

r11

r12

r13_SCV

r14_SCV

r15=PC

Processor status register

31 30 29 28 27 26 25 24 23 ... 9 8 7 6 5 4 2 1 03

N Z C V I F T M4 M3 M2 M0 M1

Condition
flag bits

Interrupt control bits

Gray registers
are banked

Figure 9.3 The ARM’s register set.

note how the normal order of the source operands is reversed

The ARM has two compare instructions. The conventional
CMP Rn, Rs evaluates [Rn] � [Rd] and sets the condition
codes in the CPSR register. The compare negated instruc-
tion, CMN Rn,Rs, also performs a comparison, except that
the second operand is negated before the comparison
is made.

The ARM has a test equivalence instruction, TEQ Rn,Rs,
which tests whether two values are equivalent. If the two
operands are equivalent, the Z-bit is set to 1. This instruction
is very similar to the CMP, except that the V-bit isn’t modified
by a TEQ.

The test instruction, TST Rn,Rs, tests two operands by
ANDing their operands bit by bit and then setting the condi-
tion code bits. The TST instruction allows you to mask out
bits of the operand you wish to test. For example, if r0 con-
tains 0 . . . 00011112, the effect of TST r1,r0 is to mask the
contents of r1 to four least-significant bits and then to
compare those bits with 0.

The ARM’s built-in shift mechanism

ARM data processing instructions can combine an arith-
metic or logical operation with a shift operation. The shift is
applied to operand 2 rather than the result. For example, the
ARM instruction

shifts the 32-bit operand in register r3 left by four places
before adding it to the contents of register r2 and depositing
the result in register r1. In RTL terms, this instruction is
defined as

Figure 9.4 illustrates the format of a data processing
instruction. As you can see, the encoding of an ARM instruc-
tion follows the general pattern of other RISC architectures:
an opcode, some control bits, and three operands. Operands
Rn and Rd specify registers. Operand 2 in bits 0 to 11 of the

378 Chapter 9 Processor architectures

Mnemonic Operation Definition

ADD Add [Rd] ← Op1 � Op2

ADC Add with carry [Rd] ← Op1 � Op2 � C

SUB Subtract [Rd] ← Op1 � Op2

SBC Subtract with carry [Rd] ← Op1 � Op2 � C � 1

RSB Reverse subtract [Rd] ← Op2 � Op1

RSC Reverse subtract with carry [Rd] ← Op2 � Op1 � C � 1

MUL Multiply [Rd] ← Op1 � Op2

MLA Multiply and accumulate [Rd] ← Rm � Rs � Rn

AND Logical AND [Rd] ← Op1 ∧ Op2

ORR Logical OR [Rd] ← Op1 ∨ Op2

EOR Exclusive OR [Rd] ← Op1 ⊕ Op2

BIC Logical AND NOT [Rd] ← Op1 ∧ Op2

CMP Compare Set condition codes on Op1 � Op2

CMN Compare negated Set condition codes on Op1 � Op2

TST Test Set condition codes on Op1 ∧ Op2

TEQ Test equivalence Set condition codes on Op1 ⊕ Op2

MOV Move [Rd] ← Op2

MVN Move negated [Rd] ← Op2

LDR Load register [Rd] ← [M]

STR Store register [M] ← [Rd]

LDM Load register multiple Load a block of registers from memory

STM Store register multiple Store a block of registers in memory

SWI Software interrupt [PC] ← [r14], [PC] ← 8, enter supervisor mode

Table 9.3 The ARM data processing and data move instructions.

op-code in Fig. 9.4 selects either a third register or a literal.
The ARM’s designers use this field to provide a shift function
on all data processing instructions.

When bit 25 of an op-code is 0, operand 2 both selects a
second operand register and a shift operation. Bits 5 to 11
specify one of five types of shift and the number of places to
be shifted. The shifts supported by the ARM are LSL (logical
shift left), LSR (logical shift right), ASR (arithmetic shift
right), ROR (rotate right), and RRX (rotate right extended by
one place). The RRX shift is similar to the 68K’s ROXL (rotate
right extended) in which the bits are rotated and the carry bit
is shifted into the vacated position. These shifts are similar to
the corresponding 68K shifts and are defined as:

shifts the second operand in r3 three places left to multiply it
by 8. This value is added to operand 1 (i.e. r3) to generate
8 � R3 � R3 � 9 � R3. However, instructions such as
ADD r3, r3, r3, LSL #3 take an extra cycle to complete
because the ARM can read only two registers from the regis-
ter file in a single cycle.

This ability to scale operands is useful when dealing with
tables. Suppose that a register contains a pointer to a table
of 4-byte elements in memory and we wish to access ele-
ment number i. What is the address of element i? The
address of the ith element is the pointer plus 4 � i. If we
assume that the pointer is in register r0 and the offset is in
r1, the pointer to the required element, r2, is given by

9.3 The ARM—an elegant RISC processor 379

EXPLICIT CONDITION CODE REGISTER UPDATING

The 68K automatically updates the CCR register after most

operations.The ARM and several other RISC processors allow

the programmer to update the condition codes only when

needed.

If an ARM instruction has the suffix ‘S’, the CPSR is

updated—otherwise it is not; for example, ADDS r3,r1,r2

adds r1 to r2, puts the result in r3, and sets the condition code

flags accordingly.

However, ADD r3,r1,r2 performs exactly the same

addition but does not update the condition codes in the CPSR.

Bit 20 of an instruction, the S-bit, is used to force an update of

the condition code register, CPSR.

If bit 25 is zero
operand 2 is a
shifted register.

31 28 27 26 25 24 21 20 19 16 15 12 11 0

cond op-code operand 20 0 # S Rn Rd

0

11

number of shifts shifts Rm0

7 6 5 3 04 Figure 9.4 Format of the

ARM’s data processing

instructions.

LSL The operand is shifted left by 0 to 31 places. The vacated bits at the least-significant end of the
operand are filled with zeros.

LSR The operand is shifted right 0 to 31 places. The vacated bits at the most-significant end of the
operand are filled with zeros.

ASL The arithmetic shift left is identical to the logical shift left. This multiplies a number by
2 for each shift.

ASR The operand is shifted right 0 to 31 places. The vacated bits at the most-significant end of the
operand are filled with zeros if the original operand was positive, or with 1s if it was negative (i.e. the
sign-bit is replicated). This divides a number by 2 for each place shifted.

ROR The operand is rotated by 0 to 31 places right. The bit shifted out of the least-significant end is
copied into the most-significant end of the operand. This shift preserves all bits. No bit is lost by the
shifting.

RRX The operand is rotated by one place right. The bit shifted out of the least-significant end of the
operand is shifted into the C-bit. The old value of the C-bit is copied into the most-significant end of
the operand; that is, shifting takes place over 33 bits (i.e. the operand plus the C-bit).

You can use this shifting facility to perform clever short
cuts; for example, suppose you want to multiply the contents
of r3 by 9. The operation

[r0] � 4 � [r1]. In ARM assembly language, we can load
this pointer into r2 by

ADD r2,r0,r1, LSL #2

We have been able to scale the offset by 4 (because
each integer requires 4 bytes) before adding it to r0 in a
conventional way. This instruction performs the operation
[r2] ← [r0] � [r1] � 4.

The ARM permits dynamic shifts in which the number of
places shifted is specified by the contents of a register. In this
case the instruction format is similar to that of Fig. 9.4, except
that bits 8 to 11 specify the register that defines the number of
shifts, and bit 4 is 1 to select the dynamic shift mode. If regis-
ter r4 specifies the number of shifts, we can write

which has the RTL definition [r1] ← [r2] � [r3] � 2[r4]

How do you shift an operand itself without using a data
processing operation such as an addition? You can apply a
shift to the source operand of the move instruction; for
example,

9.3.3 ARM branch instructions

One of the ARM’s most interesting features is that each
instruction is conditionally executed. Bits 28 to 31 of each
ARM instruction provide a condition field
that defines whether the current instruc-
tion is to be executed—see Table 9.4.

The 16 conditions described in Table 9.4 are virtually the
same as those provided by many other microprocessors. One
condition is the default case always and means that the cur-
rent instruction is to be executed. The special case never is
reserved by ARM for future expansion and should not be
used. In order to indicate the ARM’s conditional mode to the
assembler, all you have to do is to append the appropriate
condition to a mnemonic. Consider the following example in
which the suffix EQ is appended to the mnemonic ADD to get

ADDEQ r1,r2,r3

The addition is now performed only if the Z-bit in the CPSR
is set. The RTL form of this operation is

Consider the high-level expression

If we assume, that x, y, p, q, and r are in
registers r0, r1, r2, r3, and r4, respectively,
we can express this algorithm as

The ARM’s ability to make the execution of each instruction
conditional makes it easy to write compact code. Consider
the following extension of the previous example

380 Chapter 9 Processor architectures

; shift the contents of r1 left twice and copy result to r0

; multiply [r1] by 64 and copy result to r0

; divide [r1] by 4 and copy result to r0

Op-code bits 31-28 Mnemonic prefix Condition Flags

0000 EQ equal Z � 1

0001 NE not equal Z � 0

0010 CS/HS carry set/higher or same C � 1

0011 CC/LO carry clear/lower C � 0

0100 MI negative N � 1

0101 PL positive or zero N � 0

0110 VS overflow set V � 1

0111 VC overflow clear V � 0

1000 HI higher than (signed) (C � 1) . (Z � 0)

1001 LS lower or same (signed) (C � 0) � (Z � 1)

1010 GE greater than or equal (signed) N � V

1011 LT less than (signed) N � V

1100 GT greater than (signed) (Z � 0) . (N � V)

1101 LE less than or equal (signed) (Z � 1) � (N V)

1110 AL always (default) don’t care

1111 NV never (do not use) none

Table 9.4 The ARM’s condition codes.

There is, of course, nothing to stop you combining condi-
tional execution and shifting because the branch and shift
fields of an instruction are independent. You can write

which is interpreted as

The following example from Steve Furber demonstrates
the ARM’s ability to generate very effective code for the
construct

Assume that a is in register r0, b is in register r1, c is in reg-
ister r2, d is in register r3, and e is in register r4.

In this example, the first instruction, CMP r0,r1, compares
a and b. The next instruction,CMPEQ r2,r3, performs a com-
parison only if the result of the first line was true (i.e. a � b).

8-bit literal is N and the 4-bit alignment is n in the range 0 to 12,
the value of the literal is given by N � 22n. Note that the scale
factor is 2n. This mechanism is, of course, analogous to the way
in which floating point numbers are represented. Scaling is
performed automatically by the assembler. If you write

This assembler deals with the out-of-range literal by scaling
it. That is, the assembler converts a literal into an alignment
and a literal (when that is possible).

Summary of data processing instructions

The ARM’s instruction set is both simple and powerful. It’s sim-
ple because instructions are regular and the instruction set is
very small. The instruction set is powerful because you can

apply three attributes to each instruction. You can
choose whether to update the condition codes by
appending an S to the op-code. You can make the
instruction’s execution conditional by appending

the condition to the instruction. You can specify a register or a
literal as operand 2 and then shift the operand before it is used.
Consider the following examples:

9.3 The ARM—an elegant RISC processor 381

Op-code Operation

update flags

update flags

update flags

The third line, ADDEQ r4, r4,#1, is evaluated only if the
previous line was true (i.e. c � d). The third line adds the literal
1 to r4 to implement the e ← e � 1 part of the expression.

9.3.4 Immediate operands

ARM instructions can specify an immediate operand as well as
a register. Figure 9.5 demonstrates how an immediate operand
is encoded. When bit 25 of an instruction is 0, the ARM spec-
ifies a register for use as operand 2. When bit 25 is 1, the 12-bit
operand 2 field could provide a 12-bit literal. But it doesn’t.
Those who designed the ARM argued
that range is more important than preci-
sion and provided an 8-bit literal in the
range 0 to 255 that can be scaled to pro-
vide a 32-bit value.

In Fig. 9.5 the four most-significant bits
of the operand 2 field specify the literal’s
alignment within a 32-bit frame. If the

9.3.5 Sequence control

The ARM implements a conventional branching mechanism
using the conditions described in Table 9.4. For example, the
instruction BEN LOOP forces a branch if the Z-bit of the con-
dition code register (i.e. CPSR) is clear. The branch instruc-
tion is encoded in 32 bits, which includes an 8-bit op-code
and a 24-bit signed offset, which is added to the contents of
the program counter. The signed offset is a 26-bit value,
which is stored as a word offset in 24 bits because ARM

31 28 27 26 25 24 21 20 19 16 15 12 11 0

cond op-cone operand 20 0 # S Rn Rd

11 78 0

1 alignment 8-bit literal

If bit 25 is one
operand 2 is a
shifted register.

Figure 9.5 Format of the ARM’s instructions with immediate operands.

instructions are word aligned on a 32-bit boundary.
Consequently, the byte and halfword parts of the offset do
not have to be stored as they will always be zero.

The simple unconditional branch has the single-letter
mnemonic B, as the following demonstrates

You can implement a loop construct in the following way

This fragment of code is exactly like that of many CISC
processors, but note that you have to explicitly update the
condition codes when you decrement the loop counter with
SUBS r0,r0,#1.

The ARM also implements a so-called branch with link
instruction, which is similar to the subroutine call. A branch
operation can be transformed into a ‘branch with link’ instruc-
tion by appending L to its mnemonic. Consider the following

BL Next ;branch to “Next” with link

The ARM copies the program
counter held in register r15 into
the link register r14. That is,
the branch with link preserves
the return address in r14. We
can express this instruction in
RTL as

The value loaded into r14 is actually [PC] � 4 because
the PC actually points to the instruction being fetched into
the pipeline, rather than the instruction being currently
executed.

A return from subroutine is made by copying the saved
value of the program counter to the program counter. You
can use the move instruction, MOV, to achieve this:

Because the branch with link instruction can be
made conditional, the ARM implements a full set of
conditional subroutine calls. You can write, for example,

The mnemonic BLLT is made up of B (branch
unconditionally), L (branch with link), and LT (execute on
condition less than).

9.3.6 Data movement and
memory reference
instructions

ARM processors support register-to-reg-
ister operations and load and store operations between regis-
ters and memory. The ARM implements two instructions that
copy data from one register to another (or a literal to a regis-
ter). MOV ri,rj copies the contents of register rj into register
ri.MVN ri,rj copies the logical complement of the contents of
register rj into register ri. The logical complement is calculated
by inverting its bits (i.e. it’s the one’s complement rather than
the arithmetic two’s complement).

TheMOV instruction can be used conditionally and combined
with a shifted literal. Consider the following examples.

The ARM provides a move instruction
that lets you examine or modify the con-
tents of the current processor status register

(CPSR). The operation MRS Rd,CPSR copies the value of
the CPSR into general register Rd. Similarly, MSR_f CPSR,
Rm copies general register Rm into the CPSR (note that bits
28, 29, 30, and 31 of the CPSR holds the V, C, Z, and N flags,
respectively). This instruction is privileged and can’t be exe-
cuted in the user mode (to prevent users changing to a pri-
vileged mode).

Loading an address into a register

Up to now, we have assumed that an address is already in a
register. We cannot load a 32-bit literal value into a register
because 32-bit literals aren’t supported and the ARM doesn’t
implement multiple-length instructions.However,we can load
an 8-bit literal shifted by an even power of 2 into a register.

The ARM assembly language programmer can use the ADR
(load address into register) instruction to load a register with

382 Chapter 9 Processor architectures

Clear r0

update condition codes

the 1's complement of 0 is 111…1

complement the bits of r0

MOV PC,r14 ;copy r14 to r15 (restore the program counter)

Because the subroutine return address is stored in r14
rather than on the stack in external memory, the ARM’s sub-
routine call and return mechanism is very fast indeed.
However, you have to be careful not to accidentally overwrite
the return address in r14. Moreover, if a subroutine calls
another subroutine, you have to save the previous return
address in r14 on the stack.

a 32-bit address; for example,

loads the contents of register r0 with the 32-bit address
‘table’. The ARM assembler treats the ADR as a pseudo
instruction and then generates the code that causes the appro-
priate action to be carried out. The ADR instruction attempts
to generate a MOV, MVN, ADD, or SUB instruction to load the
address into a register.

Figure 9.6 demonstrates how the ARM assembler treats an
ADR instruction. We have used ARM’s development system to
show the source code, the disassembled code, and the regis-
ters during the execution of the program (we’ll return to this
system later).As you can see, the instruction ADR r5,table1
has been assembled into the instruction ADD r5,pc,0x18,
because table1 is 1816 bytes onward from the current con-
tents of the program counter in r15. That is, the address
table1 has been synthesized from the value of the PC plus
the constant 1816.

The ARM assembler also supports a similar pseudo opera-
tion. The construct LDR rd,� value is used to load value
into register rd. The LDR
pseudo instruction uses

the MOV or MOV instructions, or it places the constant in
memory and uses program counter relative addressing to
load the constant.

Accessing memory

The ARM implements two flexible memory-to-register and
register-to-memory data transfer operations, LDR and STR.
Figure 9.7 illustrates the structure of the ARM’s memory ref-
erence instructions. Like all ARM instructions, the memory
access operations LDR and STR have a conditional field and
can, therefore, be executed conditionally.

The ARM’s load and store instructions use address register
indirect addressing to access memory. ARM literature refers to
this as indexed addressing. Any of the ARM’s 16 registers can
act as an address (i.e. index) register.

Bit 20 of the op-code determines whether the instruction is
a load or a store, and bit 25, the # bit, determines the type
of the offset used by indexed addressing. Let’s look at some of
the various forms of these instructions. Simple versions of the
load and store operations that provide indexing can be written

9.3 The ARM—an elegant RISC processor 383

This is the

ADR

instruction in

the source

code

This is the
actual code
stored in
memory

Figure 9.6 Effect of the ADR pseudo instruction.

We can summarize these three forms as

Let’s look at Fig. 9.7 in greater
detail. The base register, rn, acts as a
memory pointer (much like other

RISC processors) and the U-bit defines whether the final
address should be calculated by adding or subtracting the

These addressing modes correspond exactly to the 68k’s
address register indirect addressing modes MOVE.L (A1),D0
and MOVE.L D2,(A3), respectively.

The simple indexed addressing mode can be extended by
providing an offset to the base register; for example,

The ARM goes further and permits the off-
set to be permanently added to the base regis-
ter in a form of auto-indexing (rather like the
68K’s predecrementing and postin-
crementing addressing modes).
This mode is indicated by using the
! suffix as follows:

In this example, the effective address of the operand is
given by the contents of register r1 plus the offset 8. However,

the pointer register is also incremented by 8. By modifying
the above syntax slightly, we can perform post-indexing by
accessing the operand at the location pointed at by the base
register and then incrementing the base register, as the fol-
lowing demonstrates.

384 Chapter 9 Processor architectures

31 28 21 26 25 24 23 22 21 20 19 16 15 12 11

Condition 0 1 # U B W L rbase rtransfer Offset

0

P

Source/destination register

Base register

Data direction (Load/store)
0 = store in memory
1 = load into register

Pointer update (Write-back)
0 = don't write back adjusted pointer
1 = write back adjusted pointer

Operand size (Byte/word)
0 = word access
1 = byte access

Pointer direction (Up/down)
0 = decrement pointer
1 = increment pointer

Pointer adjust (Pre/post-increment)
0 = post-index operation: use pointer then adjust
1 = pre-index operation: adjust pointer then use pointer

0

1

immediate offset

register-based offset

11 0

11 0

0

7 6 5 4 3

12-bit immediate value

shift length type register

Figure 9.7 Format of the ARM’s memory reference instructions.

Next Page

offset. The B-bit can be set to force a byte operation rather
than a word. Whenever a byte is loaded into a 32-bit register,
bits 8 to 31 are set to zero (i.e. the byte is not sign-extended).

The P- and W-bits control the ARM’s auto-indexing
modes. When W � 1 and P � 1, pre-indexed addressing is
performed. When W � 0, P � 0, post-indexed addressing is
performed.

Consider the following example, which calculates the total
of a table of bytes terminated by zero.

There is no clear register instruction so you use
SUB r2,r2,r2 or MOV r2,#0.

EXAMPLE

The example consolidates some of the things we’ve
learned. Let’s calculate the inner product of two n-component
of vectors A and B; that is, s � A • B � a1 • b1 � a2 • b2 �

a3 • b3 � . . . � an • bn. The code is as follows.

This block of ARM RISC code is not too dissimilar to the
corresponding 68k CISC code.

All ARM processors can operate with 32-bit values.
The ARMv4 also supports byte and halfword (i.e. 16-bit)
operations. A 16-bit unsigned word can be loaded into a
register and stored in memory, or a 16-bit or 8-bit value

9.3 The ARM—an elegant RISC processor 385

can be loaded and sign-extended. Typical load/store
instructions are

LDHR Load unsigned halfword (i.e., 16 bits)
LDRSB Load signed byte
LDHSH Load signed halfword
STHR Store halfword

9.3.7 Using the ARM

We are now going to look at ARM’s development system,
which allows you to write programs in assembly language,
assemble them, and then run the programs. The software
needed to carry out these operations is provided on the CD
that accompanies this book. This software consists of three
parts: an assembler, a linker (which generates binary code),

The ARM assembler

All assembly languages and their assemblers are roughly sim-
ilar (there isn’t the same difference between the 68K and the

and a simulator (which lets you execute the binary code on a
PC). Let’s begin with its assembly language.

Previous Page

ARM assembly languages as there is between, for example,
Pascal and LISP). Most assemblers follow the layout

label mnemonic operand comment

There are, however, differences in the conventions they
employ and in the way in which assembler directives are
implemented. Figure 9.8 shows a simple ARM assembly lan-
guage program (which does nothing other than manipulate a
few numbers).

As you can see, the program in Fig. 9.8 begins with the
assembler directive

AREA TestProg, CODE, READONLY

This directive provides the name of the section of code and
describes its properties. The ENTRY directive on the next line
provides the code’s unique entry point. An END directive ter-
minates the code.

We have used the software interrupt, SWI, an operating
system call to terminate the program.

Once a program has been written, you can assemble it with
the ARM assembler. An ARM assembly language program
has the extension .s. If the program is called ARMtest1.s,
you enter the command (from the DOS prompt)

armasm -g ARMtest1.s

Assembling the program produces an object file called
ARMtest1.o. The ARM development system requires that a
program be linked before you can execute its code. Linking is
performed in both high-level language compilation and low-
level language assembly and involves bringing together

separately compiled/assembled units of code. To link the
object file generated by the assembler you enter

armlink ARMtest1.o -o ARMtest1

The command armlink takes the object file ARMtest1.o
and creates an executable file ARMtest1.

Now that we’ve created the binary code, we can run it in the
debugger that can be called from DOS or from Windows.
We’ve used the Windows version (see Fig. 9.9).

After invoking the simulator, we’ve loaded the program
ARMtest1 and opened a window that displays the disassem-
bled source code and shows the contents of the registers. In
Fig. 9.8 we have stepped through the program line by line by
clicking on the single-step icon. The program has ended with
an error message caused by the SWI instruction. Note the
values of the registers. We are now going to provide a tutorial
on the use of the ARM development system. The full develop-
ment system provides a very powerful set of tools and is avail-
able from ARM Ltd. Here we are interested only in writing an
assembly language program and observing its execution.

Using the ARM development system

Let’s go through the steps necessary to develop and debug a
program written in ARM assembly language. We begin by
writing a simple program to determine whether a given string
is a palindrome or not. A palindrome is a string that reads the
same from left to right as from right to left—in this example
the string is ‘ANNA’. All we have to do is to remove a character
from each end of the string and compare this pair of charac-
ters. If they are the same the string might be a palindrome; if

386 Chapter 9 Processor architectures

MULTIPLE REGISTER MOVEMENT

The ARM supports a powerful set of multiple register

movement instructions that allow you to copy any subset of

the ARM’s 16 registers to or from memory.

Memory can be treated as a stack that can grow up or

down.We do not go into the details of these instructions here.

However, the instruction

copies registers r2 to r5 and r7 to r10 inclusive from memory,

using r1 as a pointer with auto-indexing.

AREA defines a unit of

code or data; in this

case called ‘TestProg’

CODE defines a block

of program and

READ ONLY defines

the block as readonly

ENTRY defines the

point at which

execution begins

 AREA TestProg, CODE, READONLY
 ENTRY

Start MOV r0,#1
 MOV r1,#2
 ADD r2,r1,r0
 MOV r3,r2,LSL #4
 ADD r4,r2,r3,LSL #3

 SWI 0x123456
 END

Figure 9.8 Structure of an ARM

assembly language program.

they differ the string isn’t a palin-
drome. We then repeat the same
operation on the remaining string
(i.e. substring), and so on. If we
reach the middle of the string, the
string is a palindrome.

The algorithm to determine
whether a string is a palindrome
requires at least three variables. We
need a pointer to the character at the left-hand end of the
string, a pointer to the character at the right-hand end of the
string, and a flag that indicates whether the string is a palin-
drome or not.

The following fragment of pseudocode provides a
first-level solution to the problem. The variables
left_pointer and right_pointer point at the charac-
ters at the ends of the string currently being examined and
Palindrome is true if the string is a palindrome and false
otherwise. We begin by assuming that the string is a palin-
drome and set the flag palindrome false if ever a pair of
characters don’t match.

The only tricky part of this problem is determining when
we reach the middle. Consider the palindromes ABCCBA
and ABCBA. The first palindrome has an even number of
letters and the second an odd number of letters. Consider the
following:

9.3 The ARM—an elegant RISC processor 387

Figure 9.9 Running the simulator.

Single step

control

Step Even length Pointers at Odd Pointers at

end of test length end of test

1 ABCCBA ABCBA

2 ABCCBA ABCBA

3 ABCCBA Left_pointer ABCBA Left_pointer

= right_pointer + 1 = right_pointer

The code we wrote to scan the palindrome automatically
updates the pointers when they are used to fetch characters (e.g.
the left pointer is used and updated by LDRB r3, [r0],#1 and
the right pointer is updated by LDRB r3,[r1],#-1)

This means that both pointers are updated during the

388 Chapter 9 Processor architectures

again LDRB r3,[r0],#1 ;get left hand character and update pointer
LDRB r4,[r1],#-1 ;get right hand character and update pointer
CMP r3,r4 ;compare characters the at ends of the string
BNE notpal ;if characters different then fail
.
. ;test for middle of string
.
BNE again ;if middle not found then repeat

waspal ;end up here if string is palindrome
notpal MOV pc,lr ;return from subroutine

CMP r0,r1 ;if r2 = r1 then odd length palindrome
BEQ waspal ;if same then exit with palindrome found
ADD r2,r0,#1 ;copy left pointer to r2 and move right
CMP r2,r1 ;if r2 = r1 then even length palindrome
BEQ waspal ;if same then exit with palindrome found

The middle of the string is located when either the left
pointer is one less than the right pointer or the left pointer is
equal to the right pointer.

We can easily write a fragment of code that scans the string.
In the following code (written in the form of a subroutine),
register r0 points to the left-hand end of the string and regis-
ter r1 points to the right hand end of the string. Remember

character-fetch operations and therefore we have to take
account of this when comparing the pointers). We can fix the
problem in three ways: update the pointers only after the test for
the middle, take copies of the pointers and move them back
before comparing them, or perform a new test on the copies for
left_ pointer � right_pointer � 2 and left_pointer�

right_pointer�1 . We will use the first option to get

We can test for the middle of a string in the following way:

that the ARM instruction LDRB r3,[r0],#1 means ‘load
register r3 with the byte pointed at by r0 and add 1 to the
contents of r0’.

The following code provides the complete program to test
a string.We begin by scanning the string (which is terminated
by a 0) to find the location of the right-hand character. The
subroutine either returns 0 in r10 (not palindrome) or 1 (is
palindrome).

9.3 The ARM—an elegant RISC processor 389

Note the three lines of code labeled by stop. I copied the
code from ARM’s literature because it offers a means of
halting program execution by calling an operating system
function. Other versions of the ARM simulator may require
different termination mechanisms. You can always terminate
a program by implementing an infinite loop:

Finish B Finish

Having written the program (using an ASCII editor), we
assemble it with the command ARMASM. If the program is
called PROG1.s, it is assembled by

ARMASM -g PROG1.s

The assembly process produces a new object file called
PROG1.o. The ‘-g’ option generates debugging information
for later use. If no errors are found during the assembly
phase, the object code must be linked to produce the binary
code that can be executed by an ARM processor (or simulated
on a PC). The command used to link a program is ARMLINK.
In this case we write

ARMLINK PROG1.o -o PROG1

The linker creates a new file called PROG1, which can be
loaded into the ARM simulator.

Once we have created a file to run, we can call the
Windows-based ARM debugger by clicking on the ADW icon
(assuming you’ve loaded ARM’s package on your system).
This loads the development system and creates the window
shown in Fig. 9.10. By selecting the File item on the top
toolbar, you get a pull-down menu whose first item is Load
image (see Fig. 9.11). Clicking on Load image invokes the
window used to open a file and lists the available files (see
Fig. 9.12). In this case, we select the file called Prog1.
Figure 9.13 shows the situation after this program has been
loaded.

The Execution window in Fig. 9.13 shows the code
loaded into the debugger. Note that the ARM development
system creates a certain amount of header code in addition
to your program. We are not interested in this code.
Figure 9.13 shows address 0 � 00008008 highlighted—this
is the point at which execution is to begin (i.e. the initial
value of the program counter). However, you can also start

390 Chapter 9 Processor architectures

Figure 9.10 The initial window after loading the ARM debugger.

Figure 9.11 The File pull-down menu.

9.3 The ARM—an elegant RISC processor 391

Figure 9.12 Loading a program into the simulator.

Figure 9.13 The screen after loading prog1.

the program by setting a breakpoint to 0 � 8080 and then
running the code to the breakpoint. Doing this executes the
start up code and then stops simulation at the appropriate
point.

We can view other windows beside the Execution
window. In Fig. 9.14 we have selected the View command
on the top toolbar and have chosen Registers from
the pull-down list to give a second pull-down list of
registers.

Figure 9.15 shows the debugger with the register window
active. You can modify the contents of any register in this
window by double clicking on the appropriate register.
Figure 9.16 shows how the current contents of a register
appear in a Modify Item window. In this diagram the PC
contains 0 � 00008008, which we alter to 0 � 00008080 (the
address of the start of prog1). This address (i.e. 8080) is a fea-
ture of the ARM development system I used.

Figure 9.17 shows the state of the system after the PC has
been reloaded. As you can see, the code that we originally
entered is now displayed.

In Fig. 9.17 we have resized the windows to make best use
of the available space in order to see as much as possible of the

program’s comment field (without losing the Registers
window). The first instruction to be executed is highlighted.

We can now begin to execute the program’s instructions to
test whether a string is a palindrome. There are several ways
of running a program in the ARM debugger; for example, we
can run the whole program until it terminates, execute a group
of instructions, or execute a single instruction at a time. If you
click on the step-in icon on the toolbar, a single instruction at
a time is executed. The effect of program execution can be
observed by monitoring the contents of the registers in the
Registers window.

In Fig. 9.18 we have begun execution and have reached the
second instruction of the subroutine ‘pal’. In Fig. 9.19 we
have executed some more instructions and have reached line
number 25 in the code.

Let’s return to the View pull-down menu on the tool bar to
display more information about the program. In Fig. 9.20 we
have pulled down the menu and in Fig. 9.21 we have selected
the Disassembly mode and have been given the disassem-
bly address window.

Figure 9.22 shows the Disassembly window. You can see
the contents of the memory locations starting at 0 � 00008080.

392 Chapter 9 Processor architectures

Figure 9.14 Selecting the set of registers to view.

9.3 The ARM—an elegant RISC processor 393

Figure 9.15 Viewing the ARM’s registers.

Figure 9.16 Reloading the simulated PC.

394 Chapter 9 Processor architectures

Figure 9.17 The system after resetting the PC.

Figure 9.18 The situation after executing several instructions.

9.3 The ARM—an elegant RISC processor 395

Figure 9.19 The situation after executing part of the subroutine pal.

Figure 9.20 Using the View function to select the Disassembly display

396 Chapter 9 Processor architectures

Figure 9.21 Selecting the point at which to start disassembly.

Figure 9.22 The disassembled code.

9.3 The ARM—an elegant RISC processor 397

We’ve used two improvements. The first is to use r10 (the
success/fail flag) to test for the terminator at the end of the
string. In this way, we begin the sub-
routine with [r10] � 0 and save an
instruction. The major change is in the
test for the middle of the string. If we
automatically increment the left
pointer and decrement the right
pointer when they are used, we will
have one of two situations when we
reach the middle. If the string is even,
the left and the right hand pointers will
have swapped over. If the string is odd, the two pointers will be
pointing at the same character. The code subtracts the left
pointer from the right pointer and stops on zero or negative.

Further simplification

Steve Furber at Manchester University pointed out that the
code can be simplified even further. Look at the way I handled
a return if the string wasn’t a palindrome.

pal LDRB r3,[r0],#1 ;get left hand character
LDRB r4,[r1],#-1 ;get right hand character
CMP r3,r4 ;compare the ends of the string
MOVNE pc,lr ;if not same then return
CMP r0,r1 ;compare pointers
BMI pal ;not finished
MOV r10,#1
MOV pc,lr ;return (success)

Note that the symbolic labels are displayed, although the text
string is interpreted as instructions.

Simplifying the code

We can simplify the code we’ve developed to test for a palin-
drome; that’s one of the advantages of writing a program in
assembly language. The following provides an improved ver-
sion (without the header, data, and termination mechanism,
which don’t change).

We test two characters and then branch to notpal if they
aren’t the same. From notpal, we perform a return by plac-
ing the return address in the link register into the pc. Steve
uses conditional execution to combine these two instruc-
tions; that is,

CMP r3,r4 ;compare the ends of the string
BNE notpal ;if different then fail
.
.

notpal MOV pc,lr ;return

CMP r3,r4 ;compare the ends of the string
MOVNE pc,lr ;if not same then return

Steve’s final version is

■ SUMMARY

When we first introduced the computer, we used Motorola’s

68K as a teaching vehicle because it is both powerful and easy

to understand. In this chapter, we have looked at two contrast-

ing microprocessors; a simple 8-bit device used in devices rang-

ing from toys to cell phones, and a more sophisticated 32-bit

RISC processor, the ARM.

The 8-bit M68HC12 looks very much like the first-generation

processors that go back to the late 1970s.These

processors have relatively few internal registers and

you have only two general-purpose accumulators.

However, their processors have a wealth of on-chip

I/O ports, which means that they provide a single-

chip solution to many computing problems.

398 Chapter 9 Processor architectures

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

The ARM processor is a 32-bit machine with a register-

to-register (or load/store) architecture with instructions like

ADD r1, r2,r3.We introduced the ARM because it has some

very interesting features. The program counter is one of the

processor’s general-purpose registers, which means that the pro-

grammer can access the PC like any other register. This feature

can be exploited in returning from a subroutine because you can

transfer the return address to the PC without having to perform

a memory access.

Another feature of the ARM is its ability to shift the second

operand as part of a normal data processing instruction.This

mechanism provides a limited degree of parallel processing

because you can execute two instructions at once (provided one

is a shift).

One of the most interesting features of the ARM is its condi-

tional execution, where an instruction is executed only if a con-

dition is met.This facility makes it possible to generate very

compact code.

■ PROBLEMS

9.1 What are the advantages and disadvantages of

microprocessor wordlengths that are not powers of 2

(e.g. 12 bits and 24 bits)?

9.2 We said that all processors permit register-to-memory,

memory-to-register, and register-to-register moves, whereas

few microprocessors permit direct memory-to-

memory moves.What are the advantages and dis-

advantages of direct memory-to-memory moves?

9.3 Some computers have a wide range of shift

operations (e.g. logical, arithmetic, and rotate). Some computers

have very few shift operations. Suppose that your computer had

only a single logical shift left operation. How would you synthe-

size all the other shifts using this instruction and other appropri-

ate operations on the data?

9.4 Some microprocessors implement simple unconditional

procedure (i.e. subroutine) calls with a BSR (branch to subrou-

tine) instruction. Other microprocessors have a conditional

branch to subroutine instruction that let’s you call a subroutine

conditionally.What are the relative merits and disadvantages of

these two approaches to instruction design?

9.5 Some registers in a microprocessor are part of its architec-

ture which is visible to the programmer, whereas other registers

belong to the processor’s organization and are invisible to the

programmer. Explain what this statement means.

9.6 The MC68HC12 instruction set of Table 9.2 has a very large

number of instructions. Design a new instruction set that per-

forms the same operations but uses fewer instruction types (e.g.

employ a MOVE instruction to replace many of the 6809’s exist-

ing data transfer instructions).

9.7 What are the relative advantages and disadvantages of vari-

able-length instructions (in contrast with fixed-length instructions).

9.8 In what significant ways does the ARM differ from the 68K?

9.9 Most RISC processors have 32 user-accessible registers,

whereas the ARM has only 16.Why is this so?

9.10 Construct an instruction set that has the best features of a

CISC processor like the 68K and a RISC processor like the ARM.

Write some test programs for your architecture and compare

them with the corresponding pure 68K and ARM programs.

9.11 All ARM instructions are conditional, which means that

they are executed only if a defined condition is met; for exam-

ple, ADDEQ means ‘add if the last result set the zero flag’.

Explain how this feature can be exploited to produce very

compact code. Give examples of the use of this feature to

implement complex conditional constructs.

9.12 What is the effect of the following ARM instructions?

9.13 The ARM has a wealth of move multiple register instruc-

tions, which copy data between memory and several registers.

The load versions of these instructions are

What do these instructions do? You will need to look up ARM

literature to answer this question.

9.14 How are subroutines handled in ARM processors?

9.15 Implement a jump table in ARM assembly language.A

jump table is used to branch to one of a series of addresses

stored in a table. For example, if register r3 contains the value i,

a jump (i.e. branch) will be made to the address of the ith entry

in the table. Jump tables can be used to implement the case or

switch construct in high-level languages.

9.16 Consider the fragment of C-code if (p � � 0)
q � q11; else q � q*4;

How can conditional execution be exploited by the compiler for

this code?

9.17 A 32-bit IEEE floating point number is packed and con-

tains a sign bit, biased exponent, and fractional mantissa.Write

an ARM program that takes a 32-bit IEE floating point number

and returns a sign-bit (most significant bit of r1), a true expo-

nent in r3, and a mantissa with a leading 1 in register r3.

Write a program to convert an unsigned 8-digit decimal inte-

ger into a 32-bit IEEE floating point number.The 8-digit decimal

integer is stored at the memory location pointed at by r1 and

the result is to be returned in r2.The decimal number is right

justified and leading digits are filled with zeros; for example,

1234 would be stored at 00001234.

LDMIA, LDMIB, LDMDA, LDMDB, LDMFD, LDMFA, LDMED, LDMEA

10Buses and input/output mechanisms

CHAPTER MAP

9 Processor
architectures

Chapter 9 provides a brief

overview of two contrasting

processors; the purpose of this

chapter is to expose students to

the range of processors that are

available to the designer.

10 Buses and input/
output mechanisms
This chapter deals with

input/output techniques.We are

interested in how information is

transferred between a computer

and peripherals, and between the

peripherals themselves.We look

at internal buses, which link

devices within the computer and

external buses, which link remote

devices such as printers with the

computer.We also describe two

peripheral interface components

that perform I/O operations

autonomously by performing

many of the activities required to

move data between a computer

and external peripherals.

11 Computer peripherals
The power of a computer is much

a function of its peripherals as its

data processing capabilities.We

examine several peripherals

found in a typical PC such as the

keyboard, display, printer, and

mouse, as well as some of the

more unusual peripherals that,

for example, can measure how

fast a body is rotating.

12 Computer memory
Information isn’t stored in a

computer in just one type of

storage device; it’s stored in

DRAM and on disk, CD-ROM,

DVD, and tape.This chapter

examines the operating principles

and characteristics of the storage

devices found in a computer.

INTRODUCTION

Computers receive data from a wide variety of sources such as the keyboard and mouse, the

modem, the scanner, and the microphone. Similarly, computers transmit data to printers,

displays, and modems. Computer peripherals can be discussed under two headings. The first

is the techniques or strategies whereby information is moved into and out of a computer

(or even within the computer). The second is the peripherals themselves; their characteristics,

operating modes, and functions. We first look at the way in which information is moved

into and out of the computer and in the next chapter we describe some important

peripherals.

We begin with the bus, the device that distributes information within a computer and between

a computer and external peripherals.We describe both high-speed parallel buses and slower,

low-cost buses such as the USB bus that connects keyboards and similar devices to the computer.

We introduce a very unusual bus, the IEEE488 bus, which illustrates many important aspects of

I/O technology.

The middle part of this chapter looks at the strategies used to implement I/O such as programmed

I/O and interrupt-driven I/O.

This chapter concludes with a description of two peripheral chips that automate the

transmission of data between a computer and peripheral. One interface chip handles parallel

data and the other serial data. The precise details of these chips are not important. Their

operating principles are because these chips demonstrate how a lot of the complexity

associated with input and output transactions can be moved from the CPU to an interface.

10.1 The bus

We’ve examined the internal structure and operation of the
computer’s central processing unit. The next step is to show
how the computer communicates with the outside world.
In this chapter we look at how information gets into and out
of a computer; in the next chapter we turn our attention to
devices like the printer and the display that are connected to
the computer.

This chapter begins with the bus that distributes informa-
tion both within a computer and between a computer and
external devices. We then demonstrate how the CPU imple-
ments input and output transactions—the CPU doesn’t
dirty its hands with the fine details of input/output (I/O)
operations. The CPU hands over I/O operations to special-
purpose interface chips; for example, the computer sends
data to one of these chips and logic within the chip handles
the transfer of data between the chip and the external device.
We describe the operation of two typical interface chips—
one that handles I/O a byte (or a word) at a time and one that
handles I/O a bit at a time.

10.1.1 Bus architecture

A bus is used by the processor and peripherals to move data
from point to point in a computer. An important feature
of some buses is their ability to allow several devices with
different characteristics to communicate with each other
over a common highway.

Figure 10.1 illustrates a generic computer bus that is
composed of several sub-buses; there’s a data transfer bus that
transfers data between the CPU and memory or peripherals,
an arbitration bus that allows one or more CPUs to request

access to the bus, and an interrupt bus that deals with requests
for attention from peripherals. The data transfer bus is, itself,
composed of sub-buses; for example, there’s an address bus
to communicate the address of the memory location being
accessed, a data bus to carry data between memory and CPU,
and a control bus, which determines the sequence of opera-
tions that take place during a data transfer.

Buses are optimized for their specific application; for
example, speed (throughput), functionality, or cost (e.g. the
USB bus). A computer such as the PC may have several buses.
Figure 10.2 illustrates the structure of a PC with buses that
are linked by bridges (i.e. circuits) that control the flow
of traffic between buses that might have widely different
parameters.

In Fig. 10.2 a system bus links together the processor and
its memory. This is the fastest bus in the system because the
computer cannot afford to wait for instructions or data from
memory. The system bus is connected to a local bus that deals
with data transfers between slower devices such as audio
subsystems or interfaces to external peripherals. A logic
system that may be as complex as a CPU is used to connect
the system bus to the local bus.

10.1.2 Key bus concepts

Before we look at buses in greater detail, we need to introduce
concepts that are intimately bound up with the way in which
both buses and other I/O mechanisms control the flow of
data. The most important concept is that of the open- and
closed-loop data transfer.

Irrespective of the strategy by which data is moved
between the processor and peripheral, all data transfers fall
into one of two classes: open-ended or closed-loop. In an open-
ended I/O transaction the data is sent on its way and its safe

400 Chapter 10 Buses and input/output mechanisms

Arbitration bus

Interrupt bus

Data transfer bus
transfers information between
CPU and memory

The data transfer bus
consists of three
sub-buses

System bus

Address

Data

Control

Figure 10.1 Structure of a generic bus.

reception assumed. Open-ended data transfers correspond to
the basic level of service offered by the mail system. A letter is
written and dropped into a mailbox. The sender believes that
after a reasonable delay, the letter will be received. However,
the sender doesn’t know whether the letter was received.

In many circumstances the open-ended transfer of data is
perfectly satisfactory. The probability of data getting lost or
corrupted is very small and its loss may be of little importance.
If Aunt Mabel doesn’t get a birthday card, the world doesn’t
come to an end. Consider now the following exchange of
information between a control tower and an aircraft.

Approach control ‘Cherokee Nine Four Six November
cleared for straight in approach to runway 25. Wind 270
degrees 10 knots. Altimeter 32 point 13. Report field in sight.’

Aircraft ‘Straight in runway 25. 32 point 13. Cherokee Nine
Four Six November.’

The aircraft acknowledges receipt of the message and reads
back any crucial data (i.e. the identification of the runway
is 25 and the altimeter pressure setting is 32.13 inches of
mercury). This data transfer demonstrates the operation of
a closed-loop system. In the computer world, a closed-loop
data transfer simply indicates that data has been received
(the data itself isn’t read back).

Open-loop data transfer

Figure 10.3 illustrates an open-loop data transfer between
a computer and a peripheral. Figure 10.3(a) shows a computer
and peripheral with a data path and a 1-bit control signal,
DAV, Fig. 10.3(b) gives a timing diagram for an open-loop
write in which data is sent from the computer to the peripheral,
and Fig. 10.3(c) provides a transaction of protocol diagram
that presents the sequence of actions in the form of messages.

At point A data from the computer becomes valid (the
shading before point A indicates that the data is invalid).
At point B the computer asserts the DAV (data valid) control
signal to indicate that the data from the computer is valid.
The peripheral must read the data before it vanishes at point
D. DAV is negated at point C to inform the peripheral that
the data is no longer valid. This data transfer is called open
loop because the peripheral doesn’t communicate with the
CPU and doesn’t indicate that it has received the data.

Closed-loop data transfer

In a closed-loop data transfer, the device receiving the data
acknowledges its receipt. Figure 10.4 illustrates a closed-loop
data transfer between a computer and peripheral. Initially,
the computer (i.e. originator of the data) makes the data
available and then asserts data DAV at point B to indicate that
the data is valid just as in an open-loop data transfer. The
peripheral receiving the data sees that DAV has been asserted,
indicating that new data is ready. The peripheral asserts its
acknowledgement, DAC (data accepted), at point C and reads

10.1 The Bus 401

Processor Video

System bus

Scanner Audio

Local Bus

Bridge

Cache

memory
Main

memory

The system bus is fast
because it has to handle
CPU to memory transfers

The local bus handles
slower data transfers
between the CPU
and peripherals

The bridge allows
signals on one bus
to be transferred
to another bus.

Figure 10.2 A system with multiple buses.

(a) Physical arrangement.

(c) Transaction (protocol) diagram.

(b) Timing diagram.

A B Ctime

Data valid

D

Data
Computer Peripheral

DAV

Computer

A

B

C

D

DAV

Data

1

0

Peripheral
Data

DAV asserted

DAV negated
Data removed time

Data
invalid

Data
available

Data is
valid

Data
removedDAV tells the peripheral

that data is valid

Figure 10.3 Open-loop data

transfer between computer

and peripheral.

the data. The data accepted signal is a reply to the computer
informing it that the data has been accepted. Once the data
has been read by the peripheral, the DAV and DAC signals
may be negated and the data removed. This sequence of
events is known as handshaking. Apart from indicating the
receipt of data, handshaking also caters to slow peripherals,

because the transfer is held up until the peripheral indicates
its readiness by asserting DAC.

Figure 10.5 shows how the handshaking process can be
taken a step further in which the acknowledgement is itself
acknowledged,to create a fully interlocked data transfer.The term
fully interlocked means that each stage in the handshaking

402 Chapter 10 Buses and input/output mechanisms

(a) Physical arrangement

(c) Transaction (protocol) diagram

Computer

A

B

E

F

C

D time

Data

DAV asserted

DAV negated

Data removed

DAC asserted

DAC negated

Peripheral

(b) Timing diagram
Time

FEDCB

Data validData

DAV
1

0

1

0
DAC

Data is
valid

Data
available

Asserted

Negated

Asserted

Negated
Data
accepted

A

Data

DAV

DAC

Computer Peripheral

Figure 10.4 Closed-loop data transfer between computer and peripheral

(b) Transaction (protocol) diagram(a) Timing diagram

Data valid

Computer

A

B

E

F

C

D time

Data

DAV asserted

DAV negated

Data removed

DAC asserted

DAC negarted

Peripheral

Time
FEDCB

Data

DAV
1

0

1

0
DAC

Data is
valid

Data
available

Data
accepted

Data accepted
negated

Data is
removed

Data valid
negated

A

Figure 10.5 Fully interlocked handshaking.

procedure can continue only when the previous stage has
been acknowledged. At point A in Fig. 10.5 the data becomes
valid and at point B the transmitter asserts DAV indicating
the availability of data. At C the receiver asserts DAC indicat-
ing that DAV has been observed and the data accepted. So far
this is the same procedure as in Fig. 10.4.

The transmitter sees that DAC is asserted and de-asserts
(i.e. negates) DAV at D, indicating that data is no longer valid
and that it is acknowledging that the receiver has accepted
the data. Finally, at E the receiver de-asserts (i.e. negates) DAC
to complete the cycle, and to indicate that it has seen the
transmitter’s acknowledgement of its receipt of data.

The difference between the handshaking and fully inter-
locked handshaking of Figs. 10.4 and 10.5 should be stressed.
Handshaking merely involves an acknowledgement of data,
which implies that the assertion of DAV is followed by the
assertion of DAC. What happens after this is undefined. In
fully interlocked handshaking, each action (i.e. the assertion
or negation of a signal) takes place in a strict sequence
that ends only when all signals have finally been negated.
Interlocked handshaking is a two-way process because the
receiver acknowledges the assertion of DAV by asserting DAC
whereas the transmitter acknowledges the assertion of DAC
by negating DAV. Moreover, because fully interlocked hand-
shaking also acknowledges negations, it is said to be delay
insensitive.

Many real systems employing closed-loop data transfers
make the entire handshaking sequence automatic in the
sense that it is carried out by special-purpose hardware. The
computer itself doesn’t get involved in the process. Only if
something goes wrong does the processor take part in the
handshaking.

How fast should an interface operate? As fast as it can—any
faster and it wouldn’t be able to keep up with the data—any
slower and it would waste time waiting for data. Unfortunately,
most real interfaces don’t transfer data at anything like an
optimum speed. In particular, data can sometimes arrive so
fast that it’s impossible to process one element before the next
is received.

Doctors have a similar problem. If a doctor took exactly m
minutes to treat a patient and a new patient arrived every m
minutes, all should be well. However, even if patients arrive
on average every m minutes and a consultation takes on

average m minutes, the system wouldn’t work because some
patients arrive at approximately the same time. Doctors have
solved this problem long ago by putting new patients in a
waiting room until they can be dealt with. Sometimes the
waiting room becomes nearly full when patients enter more
rapidly than average.

The solution used by doctors can be applied to any I/O
process. Data is loaded into a FIFO (first-in first-out) memory
that behaves almost exactly like a waiting room. Data arrives at
the memory’s input port and is stored in the same sequence
in which it arrives. Data leaves the memory’s output port when
it is required. Like the doctor’s waiting room, the FIFO can fill
with data during periods in which data arrives faster than it can
be processed. It’s up to the designer to provide a FIFO with
sufficient capacity to deal with the worst case input burst. There
is, however, one significant difference between the FIFO and
the waiting room. FIFOs aren’t littered with piles of battered
10-year-old copies of National Geographical. Saving data in a
store until it is required is called buffering and the FIFO store is
often called a buffer. Some interfaces incorporate a buffer into
their input or output circuits to control the flow of data.

Bus terminology

Bus technology has its own vocabulary. Before we continue it’s
necessary to introduce some of the concepts and terminology
associated with computer buses.

Arbitration Arbitration is a process whereby a device on the
bus competes with other devices for control of the bus and
is granted access to the bus. A simple bus-based system with
only one processor and no other bus master doesn’t require bus
arbitration because the CPU permanently controls the bus.

Backplane Parallel buses fall into two groups: passive back-
planes and motherboards. A motherboard is a printed circuit
board that includes the CPU and its associated circuitry; for
example, the motherboard found in the PC. A backplane
contains the bus and slots (sockets) into which modules such
as memory cards, processors, and peripherals can be plugged.
The backplane is passive because it provides information
paths but not functionality; that is, there is no CPU or other
subsystem on the backplane. A backplane is more versatile
than a motherboard and is generally found in commercial or
professional systems.

10.1 The Bus 403

HANG UPS

In data transfers with handshaking, a problem arises when the

transmitter asserts DAV, but DAC isn’t asserted by the receiver

in turn (because the equipment is faulty or the receiver is not

switched on).When the transmitter wishes to send data, it

starts a timer concurrently with the assertion of DAV. If the

receiver doesn’t assert DAC after a given time has passed, the

operation is aborted.The period of time between the start of

an action and the declaration of a failure state is called a

timeout.

When a timeout occurs, an interrupt (see Section 10.2.2) is

generated, forcing the computer to take action. In a poorly

designed system without a timeout mechanism, the

non-completion of a handshake causes the transmitter to

wait for DAC forever and the system is then said to hang up.

Bandwidth The bandwidth of a bus is a measure of its
throughput, the rate at which data is transmitted over the
bus. Bandwidth is normally expressed in bytes/s and is pro-
portional to the width of the data bus; for example, if an 8-bit
data bus can transfer 200 Mbytes/s, increasing the bus’s width
to 64 bits increases the bandwidth to 1.6 Gbytes/s.

Bus architecture Just as we speak about processor architecture
or memory architecture, we can refer to a bus’s architecture.
The architecture of a bus (by analogy with the CPU) is an
expression of its functionality and how it appears to the user.
Bus architecture includes a bus’s topology, its data exchange
protocols, and its functionality such as its arbitration and
interrupt-handling capabilities.

Bus contention When two or more devices attempt to
access a common bus at the same time, bus contention takes
place. This situation is resolved by arbitration, the process
that decides which of the contenders is going to gain access to
the bus.

Bus driver Logic systems are wired to bus lines via
gates. Special gates called bus drivers have been designed to
interface the CPU to a bus or other logic. A bus driver is a dig-
ital circuit with the added property that its output terminal
can provide the necessary voltage swing and current neces-
sary to drive a bus up to a 1 state or down to a 0 state. Bus dri-
vers are required because of the electrical characteristics of
bus lines.

Bus master A bus master is a device that can actively take
control of a bus and use it to transfer data. CPUs are bus
masters. A bus slave, on the other hand, is a device that is
attached to a bus but which can only be accessed from a bus
master. A bus slave cannot initiate a bus access.

Bus protocol A bus is defined by the electrical characteristics
of its signals (i.e. what levels are recognized as 1s and 0s) and
the sequence of signals on the various lines of the bus used to
carry out some transaction. The rules governing the sequenc-
ing of signals during the exchange of data are known as a
protocol.

Bus termination A bus can be quite long and extend the
width of a computer system. Signals put on the bus propagate
along the bus at close to the speed of light (the actual speed is
given by the electrical properties of the bus lines and insulators
between them). When a pulse reaches the end of a bus, it may
be reflected back towards its source just like a wave that hits
the side of a swimming pool. If you place a terminating net-
work across the ends of a bus, it can absorb reflections and
stop them bouncing from end to end and triggering spurious
events.

Bus topology The topology of a bus is a description of the
paths that link devices together.

Latency A bus’s latency is the time the bus takes to respond
to a request for a data transfer. Typically, a device requests the
bus for a data transfer (or a burst of data transfers) and then
waits until the bus has signaled that it is ready to perform
the transfer. This waiting period is the bus’s latency.

Motherboard A motherboard is similar to a backplane
because it contains a bus and sockets that accept modules
such as memory and peripherals. The difference between a
backplane and motherboard is that the motherboard is
active; it contains a processor and control logic. Modern PCs
have such sophisticated motherboards that they can operate
without any cards plugged into the system bus because the
motherboard implements I/O, sound, and even the video
display.

Multiplexed bus Some data transfer buses have separate
address and data sub-buses; that is, the address bus sends
the location of the next word to be accessed in memory and
the data bus either transmits information to the memory
in a write cycle or receives information in a read cycle.
Some computer buses use the same lines to carry both
addresses and data. This arrangement, called multiplexing,
reduces the number of lines required by the bus at the
expense of circuit complexity. A multiplexed bus works
in two or more phases; an address is transmitted on the
common address/data lines and then the same lines are
used to transfer data.

10.1.3 The PC bus

You might think it would be easier to wire peripherals and
memory directly to a PC’s own address and data bus. Indeed,
some single-board microcontrollers do take this approach.
Connecting the processor to memory and peripherals is not
viable in sophisticated systems for several reasons. First, a
processor chip cannot provide the electrical energy to drive
lots of memory or peripheral chips. Second, a bus can be
standardized and equipment from different manufacturers
plugged into it. Third, if we didn’t have buses, all interface
circuits would have to be modified whenever a new processor
were introduced.

A bus makes a computer system independent of processor,
memory, or peripheral characteristics and allows independent
development of CPU or processor technology.

The history of the IBM PC and its clones is as much the
history of its bus as its central processing unit. Indeed, the
PC’s bus structure has advanced more radically than its

404 Chapter 10 Buses and input/output mechanisms

10.1 The Bus 405

1980

Width

64

32

16

8

Serial

1990 2000

PCI-X

PCI-X

AGPPCI

PCI

VESAEISAMCA

MCAISA

ISA

2004
Time

PCI
express

Figure 10.6 PC bus history.

processor architecture. Figure 10.6 describes some of the
steps along the path of the PC’s bus architecture.

When the PC was first created, its bus was very limited
in terms of its speed, width, and functionality. The original
XT bus supported the Intel 8088, a processor with a 16-bit
internal architecture and an 8-bit external data bus. The
XT bus operated with a 4.77 MHz clock and could access
1 Mbytes of memory. The 8088 was soon replaced by the
8086, a processor with an identical architecture but with
a true 16-bit data bus. A new version of the PC with a
16-bit bus called ISA (Industrial Standard Architecture,)
was created.

As performance increased, the ISA bus rapidly became
obsolete and was replaced by three competing buses forcing
PC users to choose between one of these mutually incompat-
ible systems. IBM produced its high-performance propriety
Micro Channel Architecture bus, which was protected by
patents. This bus died because it was uncompetitive. Two
other PC buses were the VESA and EISA buses.

In 1992 Intel announced the PCI (peripheral interconnect)
bus to provide higher performance, to provide a path for
future expansion, and to gain control of the bus market. The
PCI 2.0 bus was 32 bits wide and had a speed of 33 MHz. The
original PCI 2.0 specification was replaced by the PCI 2.1
specification and the PCI bus was so successful that it rapidly
replaced all other buses in PCs.1

In 2004 the PCI express bus was introduced. This is a major
departure from conventional backplane buses because it
uses a pair of serial data paths operating at 2.5 Gbytes/s in
each direction. Such a pair of buses is called a lane and the
PCI express may use multiple lanes to increase the overall
data rate.

Figure 10.7 illustrates the structure of the PCI bus in a
typical PC system. The processor bus is also called the host
bus, or in PC terminology, the front side bus. The logic system
that connects the processor bus to the PCI bus is called a
north bridge. The circuits that implement inter-bus interfaces
in a PC environment have come to be known colloquially
as chipsets.

Figure 10.8 describes Intel’s 875 chipset, which uses an
82875 MCH chip to provide a north bridge interface between
the processor and memory and AGP (the advanced graphics
card slot that provides a fast dedicated interface to a video
card) and an ICH5 chip, which provides an interface to the
PCI bus, LAN, and other subsystems. This chipset provides
much of the functionality that was once provided on plug-in
PCI cards such as an audio interface, a USB bus interface, and
a LAN interface.

The PCI bus operates at clock speeds of 33 or 66 MHz
and supports both 32- and 64-bit systems. Data can be
transferred in an efficient high-speed burst mode by sending
an address and then transferring a sequence of data bytes.
A 64-bit-wide bus operating at 66 MHz can transfer data at
a maximum rate of 66 � 8 � 528 Mbytes/s.

The PCI supports arbitration; that is, a PCI card can take
control of the PCI bus and access other cards on the PCI bus.

We now look at the IEEE488 bus, which was designed for
use in professional systems in commercial environments such

1 Computer buses did not originate in the PC world. Professional
systems had long since used standardized computer buses such as
Motorola’s VMEbus or the Multibus.

406 Chapter 10 Buses and input/output mechanisms

South bridge

133 Mbytes/s

Main memory

150 Mbytes/s

North bridge
AGP video port

2.0 Gbytes/s
6.4 Gbytes/s

6.4 Gbytes/s

(for compatibility with
older systems)

Pentium 4

processor

AGP8X

Serial ATA ports

LAN interface

Legacy ATA100

BIOS interface

RAID interface

USB 2.0 ports

6 channel audio

PCI busICH5

DDR
82875P

MCH

Figure 10.8 The Intel 875 PCI chipset.

This high-speed bus
operates at the same
rate as the CPU.

The PCI bus is used
to provide an interface
to plug-in cards.

The legacy bus is used to
support older peripherals
(obsolete today).

Processor

Processor bus

Memory bus DRAM

PCI bus

Audio
SCSI

controller

LAN

adapter

ISA bridge

ISA bus

ISA device ISA device

Host to PC

bridge

Cache

memory

Figure 10.7 The PCI bus in a PC.

as instrumentation and control. Some students may omit this
section because the IEEE488 bus is very specialized—we have
included it because it illustrates several important aspects
of bus design and operation.

10.1.4 The IEEE 488 bus

The IEEE 488 bus dates from 1967 when the Hewlett Packard
Company began to look for a standard bus to link together
items of control and test instrumentation2 in automatic test
environments in industry. We cover it here because it has two
interesting facets. First, it implements an unusual patented
three-line data transfer protocol. You have to have a license
from the patent holders to use the IEEE 488 bus. Second, it
transmits control messages in two ways: via special control
signals and via encoded data messages.

Figure 10.9 illustrates the relationship between the IEEE
bus, the IEEE interface, and the devices that communicate
with each other via the bus. As this diagram demonstrates,
the IEEE standard covers only the bus and the interfaces but
not the devices connected to the interfaces. This distinction is
important because we shall soon discover that the IEEE bus
implements different communication methods between
devices and between interfaces.

The IEEE bus supports three types of device: the con-
troller, the talker, and the listener. A talker (transmitter) can
put data on the bus, a listener (receiver) can read data from
the bus, and a controller is a device that manages the bus and
determines which device may talk and which may listen. Only
one controller may be active at any given time. An active con-
troller can give up control of the bus by permitting another
controller to take control. In general, the controller is part of
the host computer on which the applications program is
being run. Furthermore, this computer invariably has the
functions of controller, talker, and listener.

At any instant only one talker can send messages over the
IEEE bus, although several listeners may receive the messages
from the talker. The ability to support a single talker and mul-
tiple listeners simultaneously demonstrates a fundamental
difference between typical backplane buses and the IEEE bus.
Backplane buses transfer data between a master and a single
slave, whereas the IEEE bus is able to transfer data between a

master (talker) and several slaves (listeners) in a broadcast
mode of operation.

The IEEE bus uses 16 information lines that are divided
into three distinct groups—the data bus, the data bus
control lines and the bus management lines (see Fig. 10.9).
The data lines, carry two types of information: bus control
information and information sent from one bus user to
another. The IEEE bus supports the following three data
transmission modes.

1. A byte of user data is called a multiline message and is
transmitted over the 8-bit data bus. The message doesn’t
directly affect the operation of the bus itself or the IEEE
bus interface and its meaning depends only on the nature
of the devices sending and receiving it.

2. A byte of IEEE bus interface control information can be
transmitted over the data bus. Control information acts
on the interfaces in the devices connected to the bus or
affects the operation of the devices in some predetermined
fashion defined in the IEEE 488 standard.

3. A single bit of information can be transmitted over one of
the five special-purpose bus management lines. Certain
bus management lines may be used concurrently with the
operations on the data bus.

Information flow on DIO1 to DIO8 is managed by three
control lines, NRFD, DAV, and NDAC (i.e. not ready for data,
data available, and not data accepted). All data exchanges
between a talker and one or more listeners are fully interlocked,
and, if a talker is sending information to several listeners,
the data is transmitted at a rate determined by the slowest
listener. The operation of the three data bus control lines is
controlled by the bus interfaces in the devices connected to
the bus, and is entirely transparent to the user.

The bus management lines, IFC, ATN, SRQ, REN, and
EOI, perform functions needed to enhance the operation of

10.1 The Bus 407

LEGACY DEVICES

The term legacy device describes facilities that were

incorporated in all PCs but which have now become largely

obsolete. For example, the ISA bus is obsolete. However,

because there are many ISA cards such as modems still in

existence, some PCs contain both PCI and ISA buses to

enable users to keep their old modem cards. As time passes,

fewer and fewer systems have ISA buses.

Similarly, the growth of the high-performance and flexible

USB interface has largely rendered the traditional serial

and parallel PC interfaces used by modems and printers

unnecessary. These interfaces are also called legacy

devices and are omitted from many modern high-

performance PCs.

2 The IEEE standard was introduced in 1976 and revised in 1978. An
updated version of the standard IEEE 488.2 includes changes to the soft-
ware environment but no significant modifications to the underlying
physical layer. The IEEE 488 bus is known by several names: the General
Purpose Interface Bus (GPIB), the Hewlett Packard Instrument Bus
(HPIB) the, IEC 625-1 bus, the ANSI MC1-1 bus, or, more simply, the
IEEE bus.

408 Chapter 10 Buses and input/output mechanisms

Data bus
DIO1-8

Device byte
transfer control
(handshake)

General
interface
management

DAV

NRFD

NDAC

This device may be a
talker or listener

Data transfer
management

DIO1-8

Controller

DIO1-8

DIO1-8

Talker

Listener

Host

CPU

IEEE bus

interface

Bidirectional

transceivers

DIO1-8

IFC

ATN

SRQ Bus control

REN

EOI

Device connected to the bus

Figure 10.9 The IEEE 488 bus.

the bus. In a minimal implementation of the IEEE 488 bus,
only ATN is absolutely necessary. The functions of the bus
management lines are summarized as follows.

ATN (attention) The ATN line distinguishes between data
and control messages on the eight data lines. When ATN is
true (i.e. electrically low), the information on DIO1 to DIO8

is interpreted as a control message. When ATN is false
(i.e. electrically high) the message is a device-dependent
message from a talker to one or more listeners. The expression
device-dependent data means that the data is in a format that
has a meaning only to the device using the IEEE bus. Only the
controller can assert the ATN line (or the IFC or REN lines).

IFC (interface clear) The controller uses the IFC line to
place the bus in a known state. Asserting IFC resets the IEEE
bus interfaces but not the devices connected to them. After an
IFC message has been transmitted by a controller for at least
100 ms, any talker and all listeners are disabled and the serial
poll mode (if active) is aborted.

SRQ (service request) The SRQ line performs the same role
as an interrupt request and is used by a device to indicate to
the controller that it wants attention. The controller must
perform a serial poll to identify the device concerned, using a
specified protocol.

REN (remote enable) The REN line is used by the controller
to select between two alternative sources of device control.
When REN is true a device is controlled from the IEEE bus,
and when false it is controlled locally. In general, local control
implies that the device is operated manually from its front
panel. The REN line allows a device to be attached to the IEEE
bus, or to be removed from it. In the world of automated
testing, the assertion of REN turns a manually controlled
instrument into one that is remotely controlled.

EOI (end or identify) The EOI line serves two, mutually
exclusive, purposes. Although the mnemonic for this line is
EOI, it is frequently written END (end) or IDY (identify),
depending on the operation being carried out. When asserted
by a talker, END indicates the end of a sequence of device-
dependent messages. When a talker is transmitting a string of
device-dependent messages on DIO1 to DIO8, the talker
asserts EOI concurrently with the last byte to indicate that
it has no more information to transmit. When asserted by
the controller in conjunction with the ATN line, the EOI line
performs the identify (IDY) function and causes a parallel
poll in which up to eight devices (or groups of devices) may
indicate simultaneously whether they require service.

Data transfer

Data transfers on the IEEE data bus, DIO1 to DIO8, are
interesting because they involve a patented three-line, fully

interlocked handshaking procedure. The signals used by
the IEEE bus are all active-low, with an electrically high level
representing a negated level and an electrical low level repre-
senting an asserted level. Active-low signal levels make it
possible to take advantage of the wired-OR property of the
open-collector bus driver (i.e. if any open-collector circuit
pulls the line down to ground, the state of the line is a logical
one). The definitions of the three signals controlling data
movement on the IEEE bus are as follows.

DAV (data valid) When true (i.e. electrically low), DAV
indicates to a listener or listeners that data is available on the
eight data lines.

NRFD (not ready for data) When true, NRFD indicates that
one or more listeners are not ready to accept data.

NDAC (Not Data Accepted) When true, NRFD indicates that
one or more listeners have not accepted data.

The timing diagram of a data transfer between a talker and
several listeners is given in Fig. 10.10. Suppose the bus is
initially quiet with no transmitter activity and that three active
receivers are busy and have asserted NRFD to inform the
transmitter that they are busy. In this state, the NRFD line will
be pulled down by open-collector bus drivers into a logical
one state (remember that the IEEE bus uses negative logic in
which the true or asserted state is the electrically low state).

When one of the listeners becomes free, it releases (i.e.
negates) its NRFD output. The negation of NRFD by a listener
has no effect on the state of the NRFD line, as other listeners
are still holding it down. This situation is shown by dotted
lines in Fig. 10.10. When, at last, all listeners have released
their NRFD outputs, the NRFD line is negated, signifying
that the listeners are all not ‘not ready for data’—that is, they
are ready for data. Now the talker can go ahead with a data
transfer.

The talker places data on DIO1 to DIO8 and asserts DAV.
As soon as the listeners detect DAV asserted, they assert
NRFD to indicate that they are once more busy.

10.1 The Bus 409

DI01-D108

(Talker)

2.4 V

2.4 V

2.4 V

0.8 V

0.8 V

0.8 V

2.4 V

0.8 V

NRFD

(Listener)

0

All devices
ready for
data

Last device
accepts data

Arrival of new
data stops some
devices being ready1

0

1

0

1

NDAC

(Listener)

DAV

(Talker)

Figure 10.10 The three-wire

handshake.

Meanwhile, the listeners assert their NDAC outputs
electrically low to indicate that they have not accepted data.
When a listener detects that DAV has been asserted, it reads
the data off DIO1 to DIO8 and negates its NDAC output.
That is, if its ‘not data’ accepted output is negated, then it
must be signifying data accepted.

Because all listeners must negate their NDAC outputs
before the NDAC line can rise to an electrical high state, the
talker does not receive a composite data-accepted signal until
the last listener has released NDAC. The talker terminates the
data transfer cycle when it releases DAV and the receivers
release NDAC in turn.

Configuring the IEEE bus

Before the IEEE bus can be used by the devices connected
to it, the controller must first assign one device as a talker and
one or more devices as listeners The controller communicates
with all other devices either by uniline messages (asserting
one of the bus management lines), or by multiline messages
(asserting ATN and transmitting a message via DIO1 to
DIO8). Multiline messages can be further subdivided into
those intended for all devices (universal commands) and
those intended for specific devices (addressed commands).
Remember that all messages use only 7 bits of an 8-bit byte,
enabling 7-bit ISO characters to be assigned to the control
messages.

Three multiline messages are used by the controller to
configure talkers and listeners on the bus: MLA (my listen
address), MTA (my talk address), and MSA (my secondary
address). Consider first the action of the MLA command.
Before a device may listen to device-dependent traffic on
the bus, it must be addressed to listen by the controller. The
31 my listen address codes from 00100000 to 00111110 select
31 unique listener addresses. Each listener has its own address,
determined either at the time of its manufacture or by
manually setting switches, generally located on its rear panel.

By sending a sequence of MLAs, a group of devices can
be configured as active listeners. The 32nd listener address,
00111111, has a special function called unlisten (UNL).
Whenever the UNL command is transmitted by the controller,
all active listeners are disabled.An unlisten command is issued
before a string of MLAs to disable any listeners previously
configured for some other purpose.

Having set up the listeners, the next step is to configure a
talker, which is done by transmitting an MTA. There are
31 my talk address codes from 01000000 to 01011110. As only
one device can be the active talker at any given time, the act
of issuing a new MTA has the effect of automatically disabling
the old (if any) talker. The special code 01011111 is called UNT
(untalk) and deactivates the current talker. Once a talker
and one or more listeners have been configured, data can be
transmitted from the talker to the listener(s) at the rate of
the slowest device taking part in the exchange and without

the aid (or intervention) of the controller. The format and
interpretation of this data is outside the scope of the IEEE 488
standard, but, as we have said, is frequently represented by
ISO (ASCII) characters. Note that the controller is acting as
an intermediary between talkers and listeners, in contrast
to other buses in which potential talkers and listeners are
usually autonomous.

Serial and parallel polling

Like many other buses, the IEEE 488 bus provides facilities
for devices to request service from controllers (i.e. an inter-
rupt mechanism). The IEEE bus supports two forms of
supervisor request—the serial poll and the parallel poll,
although the parallel poll cannot strictly be classified as an
interrupt.

A device connected to the IEEE bus can request attention
by asserting the SRQ (service request) bus management line.
The controller detects the service request and may respond
by initiating a serial poll. A service request, in IEEE bus
terminology, corresponds to an interrupt request in conven-
tional computer terminology. As the controller does not know
which device initiated the service request, it must poll all
devices sequentially. The recommended sequence of actions
that should be carried out by the controller in response to a
service request is

After entering the serial poll mode the controller transmits
successive talk addresses (MTAs) and examines the service
messages from each of the devices addressed to talk, until an
affirmative response is obtained.The controller ends the polling
sequence by an SPD (serial poll disable) command.

A parallel poll is initiated by the controller and involves
several devices concurrently. The controller sets up the
parallel poll by assigning individual data bus lines to devices
(or groups of devices). For example, device 5 may be told
to respond to a parallel poll by asserting DIO3. Then, the
controller initiates the parallel poll and the configured
devices respond.

The controller asserts the ATN and IDY (identify) lines
simultaneously to carry out a parallel poll.Whenever the IEEE
bus is in this state with ATN and IDY asserted, the predeter-
mined devices place their response outputs on the assigned
data lines and the controller then reads the contents of the
data bus. A parallel poll can be completed in only a few
microseconds unlike the serial poll.

410 Chapter 10 Buses and input/output mechanisms

10.1.5 The USB serial bus

First-generation PCs suffered from poor connectivity. PCs
had an RS232C serial port for modems and a parallel port for
printers. All external systems had to be interfaced to these
relatively slow interfaces that had not been designed to be
flexible. You could plug a special card into the PC’s mother-
board to support a particular interface or use the expensive
SCSI bus designed for hard-disk interfaces.

Two of the greatest advances in PC technology were the
USB interface and the plug-and-play philosophy. The USB, or
universal serial bus, interface is a low-cost plug and socket
arrangement that allows you to connect devices from printers
and scanners to digital cameras and flash-card readers to a PC
with minimal effort. Moreover, the USB is expandable—you
can connect a USB port to a hub and that hub can provide
other USB connectors. A processor with a USB port lets you
connect up to 127 devices to the computer. Plug-and-play
allows the device connected to the USB port to negotiate with
the operating system running on the host and to supply the
necessary drivers and set-up parameters.

The first-generation USB implementation supported a data
rate of 11 Mbps whereas the USB 2.0 replacement that emerged
in 2000 supports data transfer rates of 1.5, 12, and 480 Mbps.

A USB connector has four pins. Two provide a 5 V power
supply and two transmit the data. The power supply can be
used by a USB device as long as its power requirements are
modest. This arrangement allows devices like keyboards, mice,
flashcard readers, etc. to be connected to a USB port without
the need for their own power supply or batteries.

Data on the USB is transmitted differentially, that is, the
signal on the two data lines is transmitted as the pair (�0.1 V
�0.1 V) or (–0.1 V,�0.1 V) so that the information content
lies in the potential difference between the data terminals,
which is either 0.2 V or –0.2 V. Information encoding is called
NRZ1 (non-return to zero 1) where the voltage between the
data lines is unchanged to transmit a 1 and it is switched to
transmit a 0; that is, information is transmitted by switching
polarity whenever there is a 0 in the data stream.

Information is transmitted without a reference clock
leaving the receiver to extract data from the incoming stream
of pulses. If you transmit a long string of 1s, there are no
transitions in the data stream from which you can extract
timing information. Consequently, whenever six 1s are
transmitted, a 0 is automatically transmitted to force a data
transition to help create a synchronizing signal. If you recover
six 1s, you know the next bit must be a 0 and you simply drop
it. This mechanism is called bit stuffing.

The individual bits transmitted across the USB bus are
grouped into units called packets or frames. Figure 10.11
illustrates four of the 10 USB packets. Packets begin with a
synchronizing field followed by a packet identification field,
Packet identition (PID) Field, which defines the type of the

current packet. Packets are terminated by an end-of-packet
(EOP) field.

Other packet fields in Fig. 10.11 are the data field used to
transport applications-oriented data between the host computer
and USB device, and the CRC field, which is used to detect
retransmission errors. The ENDP field defines the packet’s
endpoint, which provides a destination (one of four) for the
packet within a USB device. This arrangement allows the
USB to treat packets as belonging to four different types
of stream or pipe. The four pipes supported by the USB are
the default or control pipe, the bulk pipe used for raw data
transmission, the interrupt pipe, and the isochronous pipe
for streaming video or audio. Note that each pipe consists of
two pipes in opposite directions for host-to-USB device and
USB device-to-host data transfers.

Most data transfers use the bulk data pipe where informa-
tion is sent in units of up to 64 bytes. Isochronous data transfers
provide a guaranteed bandwidth that is needed for video
or audio links. These data transfers don’t use error checking
because there’s nothing that can be done if an error occurs in
a real-time video or audio stream.

Setting up the USB

The universal serial bus is a dynamic system that can adapt to
changing circumstances; that is, you can hot-plug devices
into the USB bus at any time without powering down and
you can remove devices from the bus at any time.

When a device is plugged into the USB, the host detects that
a new device has been connected and then waits 100 ms to
ensure that the new device has had time to be properly inserted
and powered up. The host then issues a reset command
to place the new device in its default state and allow it to
respond to address zero (the initial default address).

10.1 The Bus 411

Sync

Token packet

Data packet

Handshake packet

Start-of-frame packet

Sync

Sync PID EOP

Sync PID Frame number CRC EOP

PID Data CRC EOP

PID ENDP CRC EOPAddress

Figure 10.11 USB packets.

The host then asks the newly connected device for the first
64 bytes of its device descriptor. Each USB device is able to
supply a device descriptor that defines the device to the host
processor; for example, the descriptor includes information
about the product and its vendor, its power requirements, the
number of interfaces it has, endpoint information, and so on.
Once the full device descriptor has been transmitted, the host
is able to communicate with the USB device using the appro-
priate device drivers. The host can now assign an address to
the new device.

10.2 I/O fundamentals

Computer I/O covers several topics because input and output
transactions involve the host processor, its software, and the
peripherals sending or receiving data. We can divide I/O into
three areas.

1. The strategy by which data is moved into or out of the
computer.

2. The interface circuit that actually moves the data into or
out of the computer.

3. The input/output devices themselves that convert data
into a form that can be used by an external system or that
take data from the outside world and convert it into a form
that can be processed digitally. Data may be converted into
an almost infinite number of representations, from a close
approximation to human speech to a signal that opens or
closes a valve in a chemical factory. Input/output devices
are frequently called peripherals.

The difference between these three aspects of I/O can
be illustrated by two examples. Consider first a computer
connected to a keyboard and an LCD display. Data is moved
into or out of the computer by a strategy called programmed

data transfer. Whenever the computer wants to send data to
the display, an instruction in the program writes data into the
output port that communicates with the display. Similarly,
when the computer requires data, an instruction reads data
from the input port connected to the keyboard. The term port
indicates a gateway between the computer and an external
I/O device. Programmed data transfer or programmed I/O
represents the strategy by which the information is moved
but tells us nothing about how the data is moved—that is
handled by the interface between the computer and external
peripheral. In this example the keyboard and display are the
I/O devices proper (i.e. peripherals).

Consider data that’s sent from a computer to a remote
display terminal (see Fig. 10.12). When the computer sends
data to its output port, the output port transmits that data
to the display. The output port is frequently a sophisticated
integrated circuit whose complexity may approach that
of the CPU itself. Such a semi-intelligent device relieves the
computer of the tedious task of communicating with the
LCD display directly, and frees it to do useful calculations.

The connection between a computer and a display may
consist of a twisted pair (two parallel wires twisted at regular
intervals). Because the data written into the output port by
the CPU is in parallel form, the output port must serialize the
data and transmit it a bit at a time over the twisted pair to the
display. Moreover, the output port must supply start and stop
bits to enable the display to synchronize itself with the stream
of bits from the computer. Chapter 14 deals in more detail
with serial data transmission. We can now see that the output
port is the device that is responsible for moving the data
between the processor and the peripheral.

The display terminal is the output device proper. It accepts
serial data from the computer, reconstitutes it into a parallel
form, and uses the data to select a character from a table
of symbols. The symbols are then displayed on a screen.
Sometimes the transmitted character performs a control

412 Chapter 10 Buses and input/output mechanisms

Transmission path

Display

Display controller

Serial to parallel

converter

Serial data
1

0
Parallel to serial

converter

The program

Computer

MOVE.B data, D0
MOVE.B D0, output

t
Figure 10.12 Relationship

between a computer and a

peripheral.

function (e.g. carriage return, line-feed, or backspace) that
determines the layout of the display.

Figure 10.13 illustrates the relationship between the CPU,
the peripheral interface chip, and the peripheral device itself.
As you can see, the peripheral interface chip looks just like a
memory location to the CPU (i.e. you read or write data to
it). However, this chip contains specialized logic that allows it
to communicate with the peripheral.

The way in which a block of data is written to a disk drive
provides another example of the relationship between I/O
strategy, the I/O interface, and the peripheral. It’s impractical
to use programmed data transfers for disk I/O because that is
too slow. The I/O strategy most frequently used is direct
memory access (DMA) in which the data is transferred from
the computer’s memory to a peripheral, or vice versa, without
passing through the CPU’s registers. The CPU tells the DMA
hardware to move a block of data and the DMA hardware gets
on with the task, allowing the CPU to continue its main func-
tion of information processing. This strategy (i.e. DMA)
requires special hardware to implement it.

An interface chip called a DMA controller (DMAC) is
responsible for moving the data between the memory and the
peripheral. The DMAC provides addresses for the source or
destination of data in memory, and informs the peripheral
that data is needed or is ready. Furthermore, the DMAC must
grab the computer’s internal data and address buses for the
duration of a data transfer. Data transfer by DMA must be
performed while avoiding a conflict with the CPU for the
possession of the buses. In this example the peripheral is a
disk drive—a complex mixture of electronics and high-preci-
sion mechanical engineering designed to store data by locally
affecting the magnetic properties of the surface of a disk
rotating at a high speed.

10.2.1 Programmed I/O

Programmed I/O takes place when an instruction in the pro-
gram performs the data transfer; for example, a programmer
writes MOVE.B Keyboard,D0 to read a byte of data from
the keyboard and puts it in D0. Some microprocessors have
special instructions that are used only for I/O; for example,

when a microprocessor executes an OUT 123 operation, the
contents of a data register are placed on the data bus. At the
same time the number 123 is placed on the eight least-
significant bits of the address bus and a pulse is generated on
the system’s I/O write line. Each of the I/O ports in such a
system monitors the address lines. When an I/O interface sees
its own address together with a read-port or a write-port
signal, the interface acts on that signal and executes an I/O
data transfer.

Memory-mapped I/O

Many microprocessors lack explicit I/O instructions like the
OUT �port� we’ve just described and have no special input
or output instructions whatsoever. Microprocessors without
special I/O instruction must use memory-mapped I/O in
which the processor treats interface ports as an extension to
memory. That is, part of the CPU’s normal memory space is
dedicated to I/O operations and all I/O ports look exactly like
normal memory locations.

Memory-mapped I/O ports are accessed by memory refer-
ence instructions like MOVE D0,IO_PORT (to output data)
and MOVE IO_PORT,D0 (to input data). A disadvantage of
memory-mapped I/O is that memory space available to
programs and data is lost to the I/O system.

Figure 10.14 describes the organization and memory map
of an I/O port. An output port located at address 800016 is
connected to a display device. Data is transmitted to the dis-
play by storing it in memory location 800016. As far as the
processor is concerned, it’s merely storing data in memory.
The program in Table 10.1 sends 128 characters (starting at
200016) to the display. Note that we’ve provided both conven-
tional comments and RTL definitions of the instructions.

The numbers in the right-hand column in Table 10.1 give
the time to execute each instruction in microseconds, assum-
ing a clock rate of 8 MHz. To output the 128 characters takes
approximately 128 � (8 � 8 � 8 � 10)/8 � 544 �s, which is
a little over 1⁄2 thousandth of a second. Data is transferred at a
rate of one character per 41⁄4 �s.

Although the program in Table 10.1 looks as if it should
work, it’s unsuited to almost all real situations involving pro-
grammed output. Most peripherals connected to an output

10.2 I/O fundamentals 413

Figure 10.13 Relationship

between a computer and a

peripheral.
Part of the computer

Control bus

 Peripheral sideCPU side

An external device

Peripheral
bus

Peripheral

device
Data bus

Peripheral

interface chip

Peripheral

interface chip

Address bus

CPU

port are slow devices and sending data to them at this rate
would simply result in almost all the data being lost. Some
interfaces can deal with short bursts of high-speed data
because they store data in a buffer; they can’t deal with a
continuous stream of data at high speeds because the buffer
fills up and soon overflows.

You can deal with a mismatch in speed between the
computer and a peripheral by asking the peripheral if it’s
ready to receive data, and not sending data to it until it is ready
to receive it. That is, we introduce a software handshaking
procedure between the peripheral and the interface.

Almost all memory-mapped I/O ports occupy two or more
memory locations. One location is reserved for the actual data
to be input or output, and one holds a status byte associated
with the port. For example, let 800016 be the location of the
port to which data is sent and let 800216 be the location of
the status byte. Suppose that bit 0 of the status byte is a 1 if
the port is ready for data and a 0 if it is busy. The fragment of
program in Table 10.2 implements memory-mapped output
at a rate determined by the peripheral. The comments at
the beginning of the program describe the data transfer in
pseudocode.

414 Chapter 10 Buses and input/output mechanisms

To peripheral

Output lines

Output portMemoryCPU

Data Data

Data bus

DataAddress Address Address

Memory map

Program

Data

Output port
008003

008000

002000

0020FF

0007FF

000400

000000
Address bus

Figure 10.14 Memory

mapped I/O.

Table 10.1 A hypothetical example of a programmed output transfer.

The program in Table 10.2 is similar to the previous
example in Table 10.1 except for lines 8 to 12 inclusive. In line
8 an address register, A2, is used to point to the status byte of
the interface at address 800216. In line 10 the status byte of
the interface is read into D2 and masked down to the least-
significant bit (by the action of AND.B #1,D2 in line 11).
If the least-significant bit of the status byte is zero, a branch
back to line 10 is made by the instruction in line 12. When the
interface becomes free, the branch to WAIT is not taken and
the program continues exactly as in Table 10.1.

Lines 10, 11, and 12 constitute a polling loop, in which the
output device is continually polled (questioned) until it
indicates it is free, allowing the program to continue. A slow
mechanical printer might operate at 30 characters/second, or
approximately 1 character per 33 000 �s. Because the polling
loop takes about 3 �s, the loop is executed 11 000 times per
character.

Operating a computer in a polled input/output mode is
grossly inefficient because so much of the computer’s time is
wasted waiting for the port to become free. If the micro-
computer has nothing better to do while it is waiting for a
peripheral to become free (i.e. not busy) polled I/O is per-
fectly acceptable. Many first-generation PCs, were operated
in this way. However, a more powerful computer working in
a multiprogramming environment can attend to another task
program during the time the I/O port is busy. In this case a
better I/O strategy is to ignore the peripheral until it is ready
for a data transfer and then let the peripheral ask the CPU
for attention. Such a strategy is called interrupt-driven I/O.

Note that all the I/O strategies we are describing use
memory-mapped I/O.

By the way, if you are designing a computer with memory-
mapped I/O and a memory cache,3 you have to tell the cache
controller not to cache the port’s status register. If you don’t
do this, the cache memory would read the status once, cache
it, and then return the cached value on successive accesses to
the status. Even if the status register in the peripheral
changes, the old value in the cache is frozen.

10.2.2 Interrupt-driven I/O

A computer executes instructions sequentially unless a jump
or a branch is made. There is, however, an important excep-
tion to this rule called an interrupt, an event that forces the
CPU to modify its sequence of actions. This event may be
a signal from a peripheral (i.e. a hardware interrupt) or an
internally generated call to the operating system (i.e. a software
interrupt). The term exception describes both hardware and
software interrupts.

Most microprocessors have an active-low interrupt
request input, , which is asserted by a peripheral to
request attention. The word request implies that the interrupt
request may or may not be granted. Figure 10.15 illustrates
the organization. of a system with a simple interrupt-driven
I/O mechanism.

IRQ

10.2 I/O fundamentals 415

Table 10.2 Using the polling loop to control the flow of data.

3 Cache memory is very fast memory that contains a copy of frequently
accessed data. We looked at cache memory in Chapter 8.

In Figure 10.15 an active-low interrupt request line connects
all peripherals to the CPU. A peripheral asserts its output
when it requires attention. This system is analogous to the
emergency handle in a train. When the handle is pulled in one
of the carriages, the driver knows that a problem has arisen but
doesn’t yet know who pulled the handle. Similarly, the CPU
doesn’t know which peripheral caused the interrupt or why.

When the CPU detects that its input has been asserted,
the following sequence of events takes place.

● The CPU finishes its current instruction because micro-
processors cannot be stopped in mid-instruction. Individual
machine code instructions are indivisible and must always
be executed to completion.4

● The contents of the program counter and the processor
status word are pushed onto the stack. The processor status
must be saved because the interrupt routine will almost
certainly modify the condition code bits.

● Further interrupts are disabled to avoid an interrupt being
interrupted (we will elaborate on this partially true state-
ment later).

● The CPU deals with the interrupt by executing a program
called an interrupt handler.

● The CPU executes a return from interrupt instruction at
the end of the interrupt handler. Executing this instruction
pulls the PC and processor status word off the stack and
execution then continues normally—as if the interrupt had
never happened.

Figure 10.16 illustrates the sequence of actions taking place
when an interrupt occurs. In a 68K system the processor
status word consists of the system byte plus the condition
code register. The system byte is used by the operating system
and interrupt processing mechanism.

IRQ

IRQ
Interrupt-driven I/O requires a more complex program

than programmed I/O because the information transfer takes
place not when the programmer wants or expects it, but when
the data is available. The software required to implement
interrupt-driven I/O is frequently part of the operating system.
A fragment of a hypothetical interrupt-driven output routine
in 68K assembly language is provided in Table 10.3. Each time
the interrupt handling routine is called, data is obtained from
a buffer and passed to the memory-mapped output port at
$008000. In a practical system some check would be needed
to test for the end of the buffer.

Because the processor executes this code only when a peri-
pheral requests an I/O transaction, interrupt-driven I/O is very
much more efficient than the polled I/O we described earlier.

Although the basic idea of interrupts is common to most
computers, there are considerable variations in the precise
nature of the interrupt-handling structure from computer to
computer. We are now going to look at how the 68K deals
with interrupts because this microprocessor has a particularly
comprehensive interrupt handling facility.

Prioritized interrupts

Computer interrupts are almost exactly analogous to inter-
rupts in everyday life.Suppose two students interrupt me when
I’m lecturing—one with a question and the other because they
feel unwell. I will respond to the more urgent of the two
requests. Once I’ve dealt with the student who’s unwell, I
answer the other student’s question and then continue my
teaching. Computers behave in the same way.

416 Chapter 10 Buses and input/output mechanisms

Figure 10.15 Interrupt organization.

Interrupt request to CPU

Memory

Port

Data register

Status register

IVR

IRQ

CPU

Address bus

Data bus

IRQ

Informs CPU that the
peripheral wants attention

I want attention

Interrupt registers
are read by the CPU
to determine the
peripheral's status

4 This statement is not true of all microprocessors. It is possible to
design microprocessors that can save sufficient state information to inter-
rupt an instruction and then continue from the point at which execution
had reached.

Most computers have more than one interrupt request input.
Some interrupt request pins are connected to peripherals
requiring immediate attention (e.g. a disk drive), whereas
others are connected to peripherals requiring less urgent
attention (e.g. a keyboard). For the sake of accuracy, we
should point out that the processor’s interrupt request input
is connected to the peripheral’s interface, rather than the
peripheral itself. If the disk drive is not serviced when its data
is available, the data will be lost because it will be replaced by
new data. In such circumstances, it is reasonable to assign a
priority to each of the interrupt request pins.

The 68K supports seven interrupt request inputs, from
, the most important, to , the least important.

Suppose an interrupt is caused by the assertion of and
no other interrupts are pending. The interrupt on willIRQ3

IRQ3
IRQ1IRQ7

be serviced. If an interrupt at a level higher than occurs,
it will be serviced before the level 3 interrupt service routine
is completed. However, interrupts generated by or

will be stored pending the completion of ’s service
routine.

The 68K does not have seven explicit to
interrupt request inputs (simply because such an arrange-
ment would require seven precious pins). Instead, the 68K
has a 3-bit encoded interrupt request input, to .
The 3-bit value on to reflects the current level of
interrupt request from 0 (i.e. no interrupt request) to 7 (the
highest level corresponding to). Figure 10.17 illustrates
some of the elements involved in the 68K’s interrupt handling
structure. A priority encoder chip is required to convert an
interrupt request on to into a 3-bit code in IPL0IRQ7IRQ1

IRQ7

IPL2IPL0
IPL2IPL0

IRQ7IRQ1

IRQ3IRQ2
IRQ1

IRQ3

10.2 I/O fundamentals 417

Interrupt handling

routine

Interrupt handlingNormal processing

Interrupt

Stack before

interrupt

Stack after

interrupt

SP

Stack

Stack

Return

Status

Old TOS

SP

TOS

Stack processor statusand return address

Save working
registers

Restore working
registersRestore PC and

processor status

Figure 10.16 Interrupt

sequence.

Table 10.3 A simple interrupt handler.

to . The priority encoder automatically prioritizes inter-
rupt requests and its output reflects the highest interrupt
request level asserted.

The 68K doesn’t automatically service an interrupt request.
The processor status byte in the CPU in Fig. 10.17 controls the
way in which the 68K responds to an interrupt. Figure 10.18
describes the status byte in more detail. The 3-bit interrupt
mask field in the processor status byte, I2, I1, I0, determines
how the 68K responds to an interrupt. The current interrupt
request is serviced if its level is greater than that of the inter-
rupt mask; otherwise the request is ignored. For example,
if the interrupt mask has a current value of 4, only interrupt
requests on to will be serviced.IRQ7IRQ5

IPL2 When the 68K services an interrupt, the interrupt mask
bits are reset to make them equal to the level of the interrupt
currently being serviced. For example, if the interrupt mask
bits were set to 2 and an interrupt occurred at level , the
mask bits would be set to 5. Consequently, the 68K can now
be re-interrupted only by interrupt levels 6 and 7. After the
interrupt has been serviced, the old value of the processor
status byte saved on the stack, and therefore the interrupt
mask bits, are restored to their original level.

Non-maskable interrupts

Microprocessors sometimes have a special interrupt request
input called a non-maskable interrupt request. The term

IRQ5

418 Chapter 10 Buses and input/output mechanisms

Data bus

Address bus

Vector 255

Peripheral Peripheral

IVECIVEC

IRQ IACK IRQ IACK

Encoded
interrupt
request
input

Function code
indicates type
of bus cycle.
1,1,1 = IACK
cycle

In an IACK cycle the
CPU puts the level
of the IACK on the
address bus

Interrupt mask
bits set the level
below which
interrupts will
not be processed

I want attention

You've got it

Interrupt
acknowledge
outputs to
peripherals

IVEC is returned
by a peripheral to
acknowledge on
interrupt

Interrupt request
inputs from
peripherals

68000 microprocessor

IPL0

IPL1

IPL2

FC0

IACK

encoder

IACK1

IACK2

IACK3

IACK4

IACK5

IACK6

IACK7

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

Memory

Stack pointer

Reset vector

Processor status byte

I2 I1 I0

Priority

encoder

FC1

FC2

A01

A02

A03

Figure 10.17 The 68K’s interrupt structure.

non-maskable means that the interrupt cannot be turned off
(i.e. delayed or suspended) and must be serviced immediately.
Non-maskable interrupts are necessary when the interrupt is
caused by a critical event that must not be missed; for example,
an interruption of the power supply. When power is lost, the
system still functions for a few milliseconds on energy stored
in capacitors (devices found in all power supplies). A non-
maskable interrupt generated at the first sign of a power loss
is used to shut down the computer in an orderly fashion so
that it can be restarted later with little loss of data and no
corruption of disk files.

A second application of non-maskable interrupts is in real-
time systems. Suppose that the temperature and pressure at
various points in a chemical process must be measured peri-
odically. If these points aren’t polled on a programmed basis,
a stream of regularly spaced non-maskable interrupts will do
the trick. At each interrupt, the contents of a counter register
are updated and, if a suitable span of time has elapsed, the
required readings are taken.

The 68K reserves its level 7 interrupt () as a non-
maskable interrupt, because an interrupt on is always
serviced by the 68000. If a level 7 interrupt is currently being
serviced by the 68K, a further active transition on (i.e. a
high-to-low edge) results in the 68K servicing the new level 7
interrupt.

IRQ7

IRQ7
IRQ7

Vectored interrupts

Following the detection and acceptance
of an interrupt, the appropriate interrupt-
handling routine must be executed. You
can test each of the possible interrupters,
in turn, to determine whether they were
responsible for the interrupt. This opera-
tion is called polling and is the same
mechanism used for programmed I/O.

We now look at how the 68K deals
with the identification of an interrupt
request that came from one of several
possible devices. However, before we
do this it’s instructive to consider how

first-generation microprocessors performed the task of
isolating the cause of an interrupt request.

Figure 10.19 shows the structure of a memory-mapped
I/O port with a data port at address 800016 and a status byte
at location 800216. We have defined 3 bits in the status byte:

● RDY (ready) indicates that the port is ready to take part in a
data transaction

● IRQ indicates that the port has generated an interrupt

● ERR indicates that an error has occurred (i.e. the input or
output is unreliable).

The RDY bit of a peripheral is tested until it is ready to take
part in an I/O transaction. A system with interrupt-driven
I/O and device polling waits for an interrupt and then reads
the IRQ bit in the status register of each peripheral. This techn-
ique is fairly efficient as long as there are few devices capable
of generating an interrupt.

Because the programmer chooses the order in which the
interfaces are polled following an interrupt, a measure of pri-
oritization is built into the polling process. However, a well-
known law of the universe states that when searching through
a pile of magazines for a particular copy, the desired issue is
always at the opposite end to the point at which the search
was started. Likewise, the device that generated the interrupt
is the last device to be polled. A system with polled interrupts
could lead to the situation in which a device requests service

10.2 I/O fundamentals 419

Interrupt mask
(an interrupt is serviced
only if it is at a higher level
than the interrupt mask)

The user-mode (application)
programmer can access only
these bits in the CCR part
of the status register.

Trace bit

Supervisor bit
(this bit reflects the
state of the CPU)
S = 0 user mode
S = 1 supervisor mode

Status byte (used by operating system) Condition code register

T S I2 I1 I0 N X Z V C

Figure 10.18 The 68K’s

status word.

Ready flag
set if this device
is ready to take
part in an I/O
transaction

Interrupt flag
set if this device
generated an
interrupt

Errot status
set to indicate error

8000

8002 RDY IRQ ERR Status byte

Data portPeripheral data

Memory map

15 8 7 0

Figure 10.19 A memory-mapped data and status port.

420 Chapter 10 Buses and input/output mechanisms

Interrupt vector
supplied on data bus
in IACK cycle

The interrupt vector
is used to access the
address of the level
6 interrupt-handling
routine in memory

The function
code 1,1,1
indicates an
IACK

0 0 1 = 1 1 0
level 6 IRQ

High during
IACK cycle

Interrupt request
at level 6

Interrupt acknowledge
at level 6

Interrupt vector
register supplies
interrupt vector
during IACK cycle

4 × 4016 =10016

Data bus

Address bus

00001234

Interrupt

vector

table10016

Peripheral

IVEC 4016

123416 Interrupt handler

IRQ IACK

68K microprocessor

IPL0

IPL1

IPL2

1

0

0

0

1

1

FC0

E

3-line to

8-line

decoder

IACK1

IACK2

IACK3

IACK4

IACK5

IACK6

IACK7

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

Memory

IACK at

level 6

Priority

encoder

FC1
FC2

A01

A02

A03

Figure 10.20 Responding to a level 6 vectored interrupt.

but never gets it. We next demonstrate how some processors
allow the peripheral that requested attention to identify itself
by means of a mechanism called the vectored interrupt.

In a system with vectored interrupts the interface itself
identifies its interrupt-handling routine, thereby removing
the need for interrupt polling. Whenever the 68K detects an
interrupt, the 68K acknowledges it by transmitting an inter-
rupt acknowledge (called IACK) message to all the interfaces
that might have originated the interrupt.

The 68K uses function code outputs, FC0, FC1, FC2, to
inform peripherals that it’s acknowledging an interrupt (see
Fig. 10.17). These three function code outputs tell external
devices what the 68K is doing. For example, the function code
tells the system whether the 68K is reading an instruction or
an operand from memory. The special function code 1,1,1
indicates an interrupt acknowledge.

Because the 68K has seven levels of interrupt request,
it’s necessary to acknowledge only the appropriate level of

interrupt. It would be unfair if a level 2 and a level 6 interrupt
occurred nearly simultaneously and the interface requesting
a level 2 interrupt thought that its interrupt was about to be
serviced.The 68K indicates which level of interrupt it’s acknow-
ledging by providing the level on the three least-significant
bits of its address bus (A01 to A03). External logic detects FC0,
FC1, FC2 � 1, 1, 1 and uses A01 to A03 to generate seven inter-
rupt acknowledge signals to .

After issuing an interrupt request, the interface waits for an
acknowledgement on its input. When the interface
detects asserted, it puts out an interrupt vector number
on data lines d00 to d07. That is, the interface responds with a
number ranging from 0 to 255. When the 68K receives this
interrupt vector number, it multiplies it by 4 to get an entry
into the 68K’s interrupt vector table; for example, if an inter-
face responds to an IACK cycle with a vector number of 100,
the CPU multiplies it by 4 to get 400. In the next step, the 68K
reads the contents of memory location 400 to get a pointer to
the location of the interrupt-handling routine for the inter-
face that initiated the interrupt. This pointer is loaded into
the 68K’s program counter to start interrupt processing.

Because an interface can supply one of 256 possible vector
numbers, it’s theoretically possible to support 256 unique
interrupt-handling routines for 256 different interfaces. We
say theoretically, because it’s unusual for 68K systems to
dedicate all 256 vector numbers to interrupt handling. In
fact, the 68K itself uses vector numbers 0 to 63 for purposes
other than handling hardware interrupts (these vectors are
reserved for other types of exception).

The 68K multiplies the vector number by 4 because each
vector number is associated with a 4-byte pointer in memory.

IACK
IACK

IACK7IACK0

The interrupt vector table itself takes up 4 � 256 � 1024
bytes of memory. Figure 10.20 illustrates the way in which the
68K responds to a level 6 vectored interrupt.

Daisy-chaining

The vectored interrupt scheme we’ve just described has a
flaw. Although there are 256 interrupt vector numbers, the
68K supports only seven levels of interrupt. A mechanism
called daisy-chaining provides a means of increasing the
number of interrupt levels by linking the peripherals together
in a line.When the CPU acknowledges an interrupt, a message
is sent to the first peripheral in the daisy chain. If this peri-
pheral doesn’t require attention, it passes the IACK down the
line to the next peripheral.

Figure 10.21 shows how interrupt requesters at a given
priority level are prioritized by daisy chaining. Each periph-
eral has an input and an output. The

pin of a peripheral is wired to the pin
of the peripheral on its right. Suppose an interrupt request
at level 6 is issued and acknowledged by the 68K. The inter-
face at the left-hand side of the daisy chain closest to the
68K receives the signal first from the CPU. If this
interface generated the interrupt, it responds with an inter-
rupt vector. If the interface did not request service, it passes
the IACK signal to the device on its right. That is,
is passed out on . The signal ripples down
the daisy chain until a device responds with an interrupt
vector.

Daisy-chaining interfaces permit an unlimited number of
interfaces to share the same level of interrupt and each inter-
face to have its own interrupt vector number. Individual

IACKIACK–OUT
IACK–IN

IACK

IACK–INIACK–OUT
IACK–OUTIACK–IN

10.2 I/O fundamentals 421

IACK_IN IACK_INIACK_IN IACK_OUT IACK_OUT IACK_OUT

BYPASS2 BYPASS3BYPASS1

IRQ

P3

IRQ

P2

IRQ

IRQ to CPU

P1

IF P1 has not requested service, P1

asserts BYPASS1 and passes

IACK_IN out on IACK_OUT

to other peripherals lower down

the chain

Figure 10.21 Daisy-chaining

interrupts at the same level of

priority.

interfaces are prioritized by their position with respect to the
CPU. The closer to the CPU an interface is, the more chance
it has of having its interrupt request serviced in the event of
multiple interrupt requests at this level.

10.3 Direct memory access

The third I/O strategy, called direct memory access (DMA),
moves data between a peripheral and the CPU’s memory
without the direct intervention of the CPU itself. DMA
provides the fastest possible means of transferring data
between an interface and memory, as it requires no CPU
overhead and leaves the CPU free to do useful work. DMA is
complex to implement and requires a relatively large amount
of hardware. Figure 10.22 illustrates the operation of a system
with DMA.

DMA works by grabbing the data and address buses from
the CPU and using them to transfer data directly between the
peripheral and memory. During normal operation of the
computer in Fig. 10.22, bus switch 1 is closed and bus switches
2 and 3 are open. The CPU controls the buses, providing an
address on the address bus and reading data from memory or
writing data to memory via the data bus.

When a peripheral wishes to take part in an I/O transac-
tion it asserts the TransferRequest input of the DMA
controller (DMAC). In turn, the DMA controller asserts
DMArequest to request control of the buses from the CPU;
that is the CPU is taken offline. When the CPU returns
DMAgrant to the DMAC, a DMA transfer takes place.
Bus switch 1 is opened and switches 2 and 3 closed. The
DMAC provides an address to the address bus and hence to

the memory. At the same time, the DMAC provides a
TransferGrant signal to the peripheral, which is then able to
write to, or read from, the memory directly. When the DMA
operation has been completed, the DMAC hands back con-
trol of the bus to the CPU.

A real DMA controller is a very complex device. It has
several internal registers with at least one to hold the address
of the next memory location to access and one to hold the
number of words to be transferred. Many DMACs are able
to handle several interfaces, which means that their registers
must be duplicated. Each interface is referred to as a channel
and typical single-chip DMA controllers handle up to four
channels (i.e. peripherals) simultaneously.

Figure 10.23 provides a protocol flowchart for the sequence
of operations taking place during a DMA operation. This figure
shows the sequence of events that takes place in the form of
a series of transactions between the peripheral, DMAC, and
the CPU.

DMA operates in one of two modes: burst mode or cycle
stealing. In the burst mode the DMA controller seizes the
system bus for the duration of the data transfer operation (or
at least for the transfer of a large number of words). Burst
mode DMA allows data to be moved into memory as fast as
the weakest link in the chain memory/bus/interface permits.
The CPU is effectively halted in the burst mode because it
cannot use its data and address buses.

In the cycle steal mode described by Fig. 10.24, DMA
operations are interleaved with the computer’s normal
memory accesses. As the computer does not require access to
the system buses for 100% of the time, DMA can take place
when they are free. This free time occurs while the CPU is busy
generating an address ready for a memory read or write cycle.

422 Chapter 10 Buses and input/output mechanisms

TransferGrant

TransferRequest

Control register

Address register

AddressAddress DataAddress Data

CPU Memory

DMArequest

DMAgrant

DMA controller

(DMAC)

Enable

DMA

Enable CPU

Data bus

Address bus

Bus switch 2Bus switch 1 Bus switch 3

Enable

DMA

Byte count

Data

Peripheral

(e.g. disk)

Figure 10.22 Input/Output

by means of DMA.

When the system clock is low, the CPU doesn’t need
the buses, so the DMAC grabs them and carries out a data
transfer. When the clock goes high the CPU carries out its
normal memory access cycle. DMA by cycle stealing is said to
be transparent because the transfer is invisible to the com-
puter and no processing time is lost. A DMA operation is ini-
tiated by the CPU writing a start address and the number of
words to be transferred into the DMAC’s registers. When the
DMA operation has been completed, the DMAC generates an
interrupt, indicating to the CPU that the data transfer is over
and that a new one may be initiated or results of the current
transfer made use of.

In systems with a cache memory, DMA can take place
in parallel with normal CPU activity; that is, the CPU can
access data and code that’s been cached while the I/O inter-
face is copying data between a peripheral and the main
memory.

10.4 Parallel and serial interfaces

Having described how I/O transactions can be programmed,
be interrupt driven, or use DMA, we now look at typical
interfaces between the CPU and the outside world. These
devices look like a block of memory locations to the CPU and
implement the protocol required to communicate with the
external system. Although we describe two actual devices,
the general principles apply to all interface devices. Readers
not interested in the fine details of I/O systems may skip this
section.

The first interface to be described is the peripheral interface
adapter, which transfers data between an external system and
a processor, and the second interface is the asynchronous
communications adapter, which transfers data on a single-bit
serial highway. These devices are typical first-generation

10.4 Parallel and serial interfaces 423

Transfer data

Grant data transfer

Grant DMA cycle

Request DMA cycle

Time

Request data transfer

PeripheralDMA controllerCPU

Figure 10.23 Protocol

flowchart for a DMA

operation.

Figure 10.24 DMA by cycle stealing.

DMA data DMA dataData bus CPU data CPU data

CPU addressCPU address DMA addressDMA addressAddress bus

System clock

One machine cycle One machine cycle

circuits with 8-bit data interfaces allowing them to be used
with 8-bit processors.

10.4.1 The parallel interface

The peripheral interface adapter (PIA) is an integrated circuit
with two independent 8-bit ports. It contains all the logic
needed to control the flow of data between an external periph-
eral and a computer. A port’s eight pins may be programmed
individually to act as inputs or outputs; for example, an 8-bit
port can be configured with two input lines and six output
lines. The PIA can automatically perform handshaking with
devices connected to its ports.

Figure 10.25 gives a block diagram of the PIA from which
it can be seen that the two I/O ports, referred to as the A side
and the B side, appear symmetrical. In general this is true,
but small differences in the behavior of these ports are
described when necessary. Each port has two control pins
that can transform the port from a simple I/O latch into a
device capable of performing a handshake or initiating inter-
rupts, as required.

The interface between the PIA and the CPU is conven-
tional; the PIA’s CPU-side looks like a block of four locations
in RAM to the CPU. CPU-side pins comprise a data bus
and its associated control circuits. Two register-select pins RS0
and RS1 are connected to the lower-order bits of the CPU’s
address bus and discriminate between the PIA’s internal
registers.

The PIA has two independent interrupt request outputs,
one for each port. When the PIA is powered up, the contents
of all its internal registers are put in a zero state. In this
mode the PIA is in a safe state with all its programmable pins
configured as inputs. It would be highly dangerous to permit
the PIA to assume a random initial configuration, because
any random output signals might cause havoc elsewhere.

To appreciate how the PIA operates, we have to understand
the function of its six internal registers. The PIA has two
peripheral data registers (PDRA and PDRB), two data-direction
registers (DDRA, and DDRB), and two control registers (CRA
and CRB). The host computer accesses a location within
the PIA by putting the appropriate 2-bit address on register
select lines RS0 and RS1. Because RS0 and RS1 can directly

424 Chapter 10 Buses and input/output mechanisms

CB1
control

CB1

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

CB2

CA1

CA2

CB2
control

IRQ
B2

IRQ
B1

7 6 5 4

Control register B (CRB)

Output register B

3 2 1 0

7 6 5 4 3 2 1 0

d7 d6 d5 d4 d3 d2 d1 d0

Output register A

7 6 5 4 3 2 1 0

d7 d6 d5 d4 d3 d2 d1 d0

DDR
B

CA1
control

Interrupt status
register A

Data direction
register A (DDRA)

Data direction
register B (DDRB)

Interrupt status
register B

Peripheral
interface A

Peripheral
interface B

CA2
control

IRQ
A2

IRQ
A1

CPU side
interface

Chip-select
and

read-write
control

Data bus
buffers

Data bus

7 6 5 4

Control register A (CRA)

3 2 1 0
DDR

A

Figure 10.25 Structure of the PIA.

distinguish between only four of the six internal registers, we
need a means of accessing the other registers. The PIA uses bit
2 in the control registers (CRA2 or CRB2) as a pointer to
either the data register or the data-direction register.
Table 10.4 demonstrates how this arrangement works.

Register select input RS1 determines which of the two 8-bit
I/O ports of the PIA is selected and RS0 determines whether
the control register or one of the pair of registers formed by the
peripheral data register and the data register, is selected. The
control registers can always be unconditionally accessed
when RS0 � 1, but to select a peripheral data register or a
data-direction register, bit 2 of the appropriate control regis-
ter must be set or cleared, respectively.

The peripheral data registers provide an interface between
the PIA and the outside world. When one of the PIA’s 16 I/O
pins is programmed as an input, data is moved from that pin
through the peripheral data register onto the CPU’s data bus
during a read cycle. Conversely, when acting as an output, the
CPU latches a 1 or 0 into the appropriate bit of the peripheral
data register to determine the state of the corresponding
output pin.

The data-direction registers determine the direction of data
transfer at the PIA’s I/O pins. Writing a zero into bit i of
DDRA configures bit i of the A side peripheral data register as
an input. Conversely, writing a one into bit i of DDRA con-
figures bit i of the A side peripheral data register as an output.
The pins of the PIA’s A side or B side ports may be defined as
inputs or outputs by writing an appropriate code into DDRA
or DDRB, respectively. The PIA’s I/O pins can be configured
dynamically and the direction of data transfer altered during
the course of a program. The DDR’s bits are cleared during a
power-on-reset to avoid accidentally forcing any pin into an
output mode.

Table 10.5 demonstrates how side A of a PIA memory-
mapped at address $80 0000 is configured as an input and
side B as an output. The registers are accessed at $80 0000,
$80 0002, $80 0004, and $80 0006. Consecutive addresses
differ by 2 rather than 1 because the 68K’s data bus is 16 bits
wide (2 bytes) whereas the PIA is 8 bits wide.

Once the PIA has been configured, data can be read from
side A of the PIA into data register D0 by a MOVE.B PDRA,D0
instruction, and data may written into side B by writing to the
PIA with a MOVE.B D0,PDRB instruction.

10.4 Parallel and serial interfaces 425

RS1 RS0 CRA2 CRB2 Location selected Address

0 0 1 X Peripheral data register A BASE

0 0 0 X Data direction register A BASE

0 1 X X Control register A BASE�2

1 0 X 1 Peripheral data register B BASE�4

1 0 X 0 Data direction register B BASE�4

1 1 X X Control register B BASE�6

X � don’t care
BASE � base address of the memory-mapped PIA

RS0 � register select 0 RS1 � register select 1
CRA2 � bit 2 of control register A CRB2 � bit 2 of control register B

Table 10.4 The register selection scheme of the PIA.

Table 10.5 Configuring

a PIA.

Controlling the PIA

The control registers control the special-purpose pins associated
with each port of the PIA. Pins CA1 and CA2 control the flow of
information between the peripheral’s A side and the PIA by pro-
viding any required handshaking between the peripheral and
PIA. Similarly, side B has control pins CB1 and CB2.

The bits of control register A (CRA) can be divided into
four groups according to their function. Bits CRA0 to CRA5
define the PIA’s operating mode (Fig. 10.26). Bits CRA6 and
CRA7 are interrupt status bits that are set or cleared by the
PIA itself. Bit CRA6 is interrupt request flag 1 (IRQA1),
which is set by an active transition at the CA1 input pin.
Similarly, CRA7 corresponds to the IRQA2 interrupt request
flag and is set by an active transition at the CA2 input pin. We
now examine the control register in more detail.

CA1 control Bits CRA0 and CRA1 determine how the PIA
responds to a change of level (0-to-1 or 1-to-0) at the CA1
control input. The relationship between the CA1 control
input, CRA0, CRA1, and the interrupt flag IRQA1 is
described in Table 10.6. CRA1 determines the sense (i.e. up or
down) of the transition on CA1 that causes the CRA7 inter-
rupt flag (i.e. IRQA1) to be set. CRA0 determines whether an
active transition on CA1 generates an interrupt request by
asserting the output. CA1 can be used as an auxiliary
input if bit CRA0 is clear, or as an interrupt request input if
bit CRA0 is set.

Whenever an interrupt is caused by an active transition on
CA1, the interrupt flag in the control register, IRQA1, is set
and the output pin goes low. After the CPU has read
the contents of peripheral data register A, interrupt flag

IRQA1 is automatically reset. In a typical applica-
tion of the PIA, CA1 is connected to a peripheral’s
RDY output so that the peripheral can request
attention when it is ready to take part in a data
transfer.

For example, if CRA1, CRA0 is set to 0, 1, a neg-
ative (falling) edge at the CA1 control input sets the
IRQA1 status flag in control register CRA to 1, and
the PIA’s interrupt request output is asserted
to interrupt the host processor. CRA1 determines
the sense of the transition on CA1 that sets the
interrupt flag status and CRA0 determines
whether the PIA will interrupt the host processor
when the interrupt flag is set.

Data direction access control (CRA2) When regis-
ter select input RS0 is 0, the data-direction access
control bit determines whether data-direction regis-
ter A or peripheral data register A is selected. When
the PIA is reset, CRA2 is 0 so that the data-direction
register is always available after a reset.

CA2 control (CRA3, CRA4, CRA5) The CA2 con-
trol pin may be programmed as an input that gener-
ates an interrupt request in a similar way to CA1, or
it may be programmed as an output. Bit 5 of the
control register determines CA2’s function. If bit 5 is
0, CA2 is an interrupt request input (Table 10.7)
and if bit 5 is 1, CA2 is an output (Table 10.8).
Table 10.7 demonstrates that the behavior of CA2,
when acting as an interrupt-request input, is
entirely analogous to that of CA1.

When CA2 is programmed as an output with
CRA5 � 1 it behaves in the manner defined in
Table 10.8.

1. Case 1 (CRA5 � 1, CRA4 � 0, CRA3 � 0). This
is the handshake mode used when a peripheral is
transmitting data to the CPU via the PIA. A tim-
ing diagram of the action of the handshake mode
of CA2 is given in Fig. 10.27, together with an

IRQA

IRQA

IRQA

426 Chapter 10 Buses and input/output mechanisms

CA1CA2IRQA

Interrupt request

to CPU

Handshake controls

to peripheral

8-bit data bus

0

CA1controlCA2controlIRQA2IRQA1 DDRA

1234567

Figure 10.26 Structure of the PIA’s side A control register.

CRA1 CRA0 Transition of CA1 IRQA1 interrupt Status of side A

control input flag status interrupt request

0 0 negative edge set on negative edge masked

0 1 negative edge set on negative edge enabled

1 0 positive edge set on positive edge masked

1 1 positive edge set on positive edge enabled (asserted)

Table 10.6 Effect of CA1 control bits.

CRA5 CRA4 CRA3 Transition of CA2 IRQA2 interrupt Status interrupt

control input flag status request

0 0 0 negative edge set on negative masked

edge

0 0 1 negative edge set on negative enabled

edge (asserted)

0 1 0 positive edge set on positive masked

edge

0 1 1 positive edge set on positive enabled

edge (goes low)

Table 10.7 Effect of CA2 control bits when CRA5 � 0 (note that E is the

PIA’s clock).

explanation of the steps involved. In handshake mode
CA2 goes high whenever a peripheral has data ready for
reading and remains high until the CPU has read the data
from the PIA’s data register.

2. Case 2 (CRA5 � 1, CRA4 � 0, CRA3 � 1). This is the
autohandshaking mode and is illustrated in Fig. 10.28. CA2
automatically produces a single pulse at a low level after
the side A peripheral data register has been read by the
CPU. Because the peripheral receives a pulse on CA2 after
the CPU has read the PIA, the peripheral knows that its
data has been received and that the PIA is ready for
new data.

3. Case 3 (CRA5 � 1, CRA4 � 1, CRA3 � 0). In this mode
CA2 is set low and remains in that state until CRA3 is set.
That is, CA2 is cleared under program control.

10.4 Parallel and serial interfaces 427

Case CRA5 CRA4 CRA3 Output CA2

0 1 0 0 Low on the falling edge of the High when interrupt flag bit CRA7 is set

E clock after a CPU read side A by an active transition of CA1 input

data operation

1 1 0 1 Low on the falling edge of E after High on the negative edge of the first E

a CPU read side A data operation pulse occurring during a deselect state

2 1 1 0 Low when CRA3 goes low as a Always low as long as CRA3 is low.

result of a CPU write to CRA. Will go high on a CPU write to CRA that

changes CRA3 to a 1

3 1 1 1 Always high as long as CRA3 is High when CRA23 goes high as a result

high.Will be cleared on a CPU of a CPU write to CRA

write to CRA that clears CRA3

Table 10.8 Effect of CA2 control bits when CRA5 � 1.

B C

At A the peripheral causes an active
transition on CA1. This tells the
CPU that data is available.

At B the PIA responds to the transition
on CA1 by setting CA2 high.

At C the PIA brings CA2 low after the
CPU has read the data. This tells the peripheral
that the data has been accepted.

A

PIA clock

CA1 interrupt

request input

CA2

output

CA2

CA1
PIA

Following a read side-A

data operation

CA2

CA1
PIA

CA2

CA1
PIA

Peripheral

Peripheral

Peripheral

Figure 10.27 The PIA

input handshake mode

(case 0 in Table 10.8).

Figure 10.28 The PIA autohandshake input mode.

Goes low after a read
A side data instruction Goes high on the negative

edge of the next E clock
after the read data side
A instruction

Clock

This is the handshake pulse
CA2 control

output

(normally high)

4. Case 4 (CRA5 � 1, CRA4 � 1, CRA3 � 1). Now CA2 is
set to a high level and remains in that state until CRA3 is
cleared. Cases 3 and 4 demonstrate the use of CA2 as an
additional output, set or cleared under program control.

10.4.2 The serial interface

We now describe the serial interface device that connects a
computer to a modem or a similar device. Although the serial
interface was once used to connect PCs to a wide range of
external peripherals, the USB and FireWire interfaces have
largely rendered the serial interface obsolete in modern PCs.

Serial data transmission is used by data transmission sys-
tems that operate over distances greater than a few meters
and Chapter 14 will have more to say on the subject of data
transmission. Here we’re more interested in the asynchronous
communications adapter (ACIA) interface, which connects a
CPU to a serial data link.

The serial interface transfers data into and out of the CPU
a bit at a time along a single wire; for example, the 8-bit value
101100012 would be sent in the form of eight or more pulses
one after the other. Serial data transfer is slower than the par-
allel data transfer offered by a PIA, but is inexpensive because
it requires only a single connection between the serial inter-
face and the external world (apart from a ground-return).

We are not concerned with fine details of the ACIA’s inter-
nal operation, but rather in what it does and how it is used to
transmit and receive serial data. When discussing serial trans-
mission we often use the term character to refer to a unit of
data rather than byte, because many transmission systems are
designed to transmit information in the form of ISO/ASCII-
encoded characters.

Figure 10.29 demonstrates how a 7-bit character is trans-
mitted bit by bit asynchronously. During a period in which

no data is being transmitted from an ACIA, the serial output
is at a high level, which is called the mark condition. When a
character is to be transmitted, the ACIA’s serial output is put
in a low state (a mark-to-space transition) for a period of one
bit time. The bit time is the reciprocal of the rate at which
successive serial bits are transmitted and is measured in Baud.
In the case of a two-level binary signal, the Baud corresponds
to bits/s. The initial bit is called the start bit and tells the
receiver that a stream of bits, representing a character, is
about to be received. If data is transmitted at 9600 Baud, each
bit period is 1/9600 � 0.1042 ms.

During the next seven time slots (each of the same dura-
tion as the start bit) the output of the ACIA depends on the
value of the character being transmitted. The character is
transmitted bit by bit. This data format is called non-return to
zero (NRZ) because the output doesn’t go to zero between
individual bits. After the character has been transmitted, a
further two bits (a parity bit and a stop bit) are appended to
the end of the character.

At the receiver, a parity bit is generated locally from the
incoming data and then compared with the received parity
bit. If the received and locally generated parity bits differ, an
error in transmission is assumed to have occurred. A single
parity bit can’t correct an error once it has occurred, nor
detect a pair of errors in a character. Not all serial data trans-
mission systems employ a parity bit error detector.

The stop bit (or optionally two stop bits) indicates the end
of the character. Following the reception of the stop bit(s),
the transmitter output is once more in its mark state and is
ready to send the next character. The character is composed
of 10 bits but contains only 7 bits of useful information.

The key to asynchronous data transmission is that once the
receiver has detected a start bit, it has to maintain synchroniza-
tion only for the duration of a single character. The receiver
examines successive received bits by sampling the incoming

428 Chapter 10 Buses and input/output mechanisms

One character

7 data bits

7 data bits

T

Space

Space

Start

bit

1 1 1 10 0 0

Parity bit

Stop

bit

0

Mark

Example: Letter M = 1001101 (even parity)

Mark

Parity

bit

Start
bit

Stop
bit

Figure 10.29 Format of

an asynchronous serial

character.

signal at the center of each pulse. Because the clock at the
receiver is not synchronized with the clock at the transmitter,
each received data bit will not be sampled exactly at its center.

Figure 10.30 provides the internal arrangement of a typical
ACIA, a highly programmable interface whose parameters
can be defined under software control. The ACIA has a single
receiver input pin and a single transmitter output pin.

The ACIA’s Peripheral side pins

The ACIA communicates with a peripheral via seven pins,
which may be divided into three groups: receiver, transmitter,
and modem control. At this point, all we need say is that the
modem is a black box that interfaces a digital system to the
public switched telephone network and therefore permits
digital signals to be transmitted across the telephone system.
A modem converts digital signals into audio (analog) tones.
We’ll look at the modem in more detail in Chapter 14.

Receiver The receiver part of the ACIA has a clock input and
a serial data input. The receiver clock is used to sample the
incoming data bits and may be 64, 16, or 1 times that of the
bit rate of the received data; for example, an ACIA operating
at 9600 bits/s might use a 16� receiver clock of 153 600 Hz.
The serial data input receives data from the peripheral to
which the ACIA is connected. Most systems require a special
interface chip between the ACIA and the serial data link to
convert the signal levels at the ACIA to the signal levels found
on the data link.

Transmitter The transmitter part of the ACIA has a clock
input from which it generates the timing of the transmitted
data pulses.

Modem control The ACIA communicates with a modem or
similar equipment via three active-low pins (two inputs and

one output). The ACIA’s request to send () output may be
set or cleared under software control and is used by the ACIA
to tell the modem that it is ready to transmit data to it.

The two active-low inputs to the ACIA are clear-to-send
() and data-carrier-detect (). The input is a sig-
nal from the modem to the ACIA that inhibits the ACIA from
transmitting data if the modem is not ready (because the tele-
phone connection has not been established or has been bro-
ken). If the input is high, a bit is set in the ACIA’s status
register, indicating that the modem (or other terminal equip-
ment) is not ready for data.

The modem uses the ACIA’s input to tell the ACIA
that the carrier has been lost (i.e. a signal is no longer being
received) and that valid data is no longer available at the
receiver’s input. A low-to-high transition at the input
sets a bit in the status register and may also initiate an inter-
rupt if the ACIA is so programmed. In applications of the
ACIA that don’t use a modem, the and inputs are
connected to a low level and not used.

The ACIA’s internal registers

The ACIA has four internal registers: a transmitter data regis-
ter (TDR), a receiver data register (RDR), a control register
(CR), and a status register (SR). Because the ACIA has a sin-
gle register-select input RS, only two internal registers can be
directly accessed by the CPU. Because the status and receiver
data registers are always read from, and the transmitter data
register and control register are always written to, the ACIA’s
R/W

—
input distinguishes between the two pairs of

registers. The addressing arrangement of the ACIA is given in
Table 10.9.

The control register is a write-only register that defines the
operational properties of the ACIA, particularly the format of

DCDCTS

DCD

DCD

CTS

CTSDCDCTS

RTS

10.4 Parallel and serial interfaces 429

Receiver
control

Transmitter
control

Receiver data register

Control register

Status register

Transmitter data register

7 6

RIE TX control Word select Clock control

5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

d7 d6 d5 d4 d3 d2 d1 d0

7 6 5 4 3 2 1 0

Serial interface

TxD

CTS

RTS

IRQ

RxD

RxCIk

DCD

TxCIk

Transmitter shift register

Transmitter control

Interrupt logic

Receiver control

Synchronizing logic

Receiver
shift register

Receiver
clock generator

Parity check
generator

Clock
generator

Parity
generator

d7 d6 d5 d4 d3 d2 d1 d0

CPU side
interface

Chip-select
and

read-write
control

Data bus
buffers

IRQ OVRN PE FE CTS DCD TDRE RDRE

Figure 10.30 Organization

of the ACIA.

the transmitted or received data. Table 10.10 defines the con-
trol register’s format. The counter division field, CR0 and
CR1, determines the relationship between the transmitter and
receiver bit rates and their respective clocks (Table 10.11).

When CR1 and CR0 are both set to one, the ACIA is reset
and all internal status bits, with the exception of the CTS and
DCD flags, are cleared. The CTS and DCD flags are entirely
dependent on the signal level at the respective pins. The ACIA

is initialized by first writing ones into bits CR1 and CR0 of the
control register, and then writing one of the three division
ratio codes into these positions. In the majority of systems
CR1 � 0 and CR0 � 1 for a divide by 16 ratio.

The word select field, CR2, CR3, CR4, defines the format of
the received or transmitted characters. These three bits allow the
selection of eight possible arrangements of number of bits per
character, type of parity, and number of stop bits (Table 10.12).
For example, if you require a word with 8 bits, no parity, and 1
stop bit, control bits CR4, CR3, CR2 must set to 1, 0, 1.

The transmitter control field, CR5 and CR6, determines
the level of the request to send () output, and the genera-
tion of an interrupt by the transmitter portion of the ACIA.
Table 10.13 gives the relationship between these controls bits
and their functions. can be employed to tell the modem
that the ACIA has data to transmit.

The transmitter interrupt mechanism can be enabled or
disabled depending on whether you are operating the ACIA in
an interrupt-driven or in a polled data mode. If the transmit-
ter interrupt is enabled, a transmitter interrupt is generated
whenever the transmitter data register (TDR) is empty, signi-
fying the need for new data from the CPU. If the ACIA’s clear-
to-send input is inactive-high, the TDR empty flag bit in the
status register is held low, inhibiting any transmitter interrupt.

The effect of setting both CR6 and CR5 to a logical one
requires some explanation. If both these bits are high, a break
(space level) is transmitted until the bits are altered under
software control. A break can be used to generate an interrupt
at the receiver because the asynchronous format of the serial
data precludes the existence of a space level for more than
about 10 bit periods.

The receiver interrupt enable field consists of bit CR7
which, when clear, inhibits the generation of interrupts by the
receiver portion of the ACIA. Whenever bit CR7 is set, a
receiver interrupt is generated by the receiver data register
(RDR) flag of the status byte going high, indicating the pres-
ence of a new character ready for the CPU to read. A receiver
interrupt can also be generated by a low-to-high transition at
the data-carrier-detect () input, signifying the loss of a
carrier. CR7 is a composite interrupt enable bit. It is impossi-
ble to enable either an interrupt caused by the RDR being
empty or an interrupt caused by a positive transition on the

pin alone.DCD

DCD

RTS

RTS

430 Chapter 10 Buses and input/output mechanisms

RS R/W
—

Type of register ACIA register

0 0 Write only Control

0 1 Read only Status

1 0 Write only Transmitter data

1 1 Read only Receiver data

Table 10.9 Register selection scheme of the ACIA.

7 6 5 4 3 2 1 0

Receive Transmitter control Word select Counter division

interrupt

enable

Table 10.10 Format of the ACIA’s control register.

CR1 CR0 Division ratio

0 0 �1

0 1 �16

1 0 �64

1 1 Master reset

Table 10.11 Relationship between CR1, CR0, and the division ratio.

CR4 CR3 CR2 Word length Parity Stop bits Total bits

0 0 0 7 Even 2 11

0 0 1 7 Odd 2 11

0 1 0 7 Even 1 10

0 1 1 7 Odd 1 10

1 0 0 8 None 2 11

1 0 1 8 None 1 10

1 1 0 8 Even 1 11

1 1 1 8 Odd 1 11

Table 10.12 The word select bits.

CR6 CR5 RTS Transmitter interrupt

0 0 Low Disabled

0 1 Low Enabled

1 0 High Disabled

1 1 Low Disabled—a break level is placed on

the transmitter output

Table 10.13 Function of transmitter control bits CR5, CR6.

Configuring the ACIA

The following 68000 assembly language listing demonstrates
how the ACIA is initialized before it can be used to transmit
and receive serial data.

Bit 1—transmitter data register empty (TDRE) This flag is
the transmitter counterpart of RDRF. A logical 1 in TDRE
indicates that the contents of the transmitter data register
(TDR) have been transmitted and the register is now ready for

new data. The IRQ bit is
also set whenever the
TDRE flag is set if the trans-
mitter interrupt is enabled.
The TDRE bit is 0 when
the TDR is full, or when the

input is high, indicat-
ing that the terminal equip-
ment is not ready for data.
The fragment of code
below demonstrates how
the TDRE flag is used when
the ACIA is operated in a
polled output mode.

CTS

10.4 Parallel and serial interfaces 431

The status register The
status register has the
same address as the
control register, but is
distinguished from it by
being a read-only regis-
ter. Table 10.14 gives the
format of the status
register. Let’s look at the
function of these bits.

Bit 0—receiver data
register full (RDRF)
When set the RDRF bit
indicates that the
receiver data register is full and a character has been received.
If the receiver interrupt is enabled, the interrupt request flag,
bit 7, is also set whenever RDRF is set. Reading the data in the
receiver data register clears the RDRF bit. Whenever the
input is high, the RDRF bit remains at a logical zero, indicat-
ing the absence of any valid input.

The RDRF bit is used to detect the arrival of a character
when the ACIA is operated in a polled input mode.

DCD

Bit 2—data carrier detect (DCD) The DCD bit is set when-
ever the input is high, indicating that a carrier is not
present. The pin is normally employed only in conjunc-
tion with a modem. When the signal at the input makes
a low-to-high transition, the DCD bit in the status register is
set and the IRQ bit is also set if the receiver interrupt is
enabled. The DCD bit remains set even if the input

returns to a low state. To clear the DCD
bit, the CPU must read the contents of
the ACIA’s status register and then the
contents of the data register.

Bit 3—clear to send (CTS) The CTS bit
directly reflects the status of the ACIA’s

input. A low level on the input
indicates that the modem is ready for
data. If the CTS bit is set, the transmitter
data register empty bit is inhibited
(clamped at zero) and no data may be
transmitted by the ACIA.

CTSCTS

DCD

DCD
DCD

DCD

Bit 4—framing error (FE) The FE bit is set whenever a
received character is incorrectly framed by a start bit and a
stop bit.A FE is detected by the absence of the first stop bit and
indicates a synchronization (timing) error, a faulty transmis-
sion, or a break condition. The FE flag is set or cleared during
receiver data transfer time and is present throughout the time
that the associated character is available.

Bit 5—receiver overrun (OVRN) The OVRN flag bit is set
when a character is received, but hasn’t been read by the CPU
before a subsequent character is
received. The new character over-
writes the previous character,
which is now lost. Consequently,
the OVRN bit indicates that one
or more characters in the data
stream have been lost.
Synchronization is not affected by
an overrun error—the error is
caused by the CPU not reading a
character, rather than by a fault in
the transmission process. The
overrun bit is cleared after reading
the data from the RDR or by a
master reset. Modern ACIAs usu-
ally have FIFO buffers to hold sev-
eral characters to give the CPU
more time to read them.

Bit 6—parity error (PE) The PE is
set whenever the received parity
bit does not agree with the parity
bit generated locally at the receiver
from the preceding data bits. Odd
or even parity may be selected by
writing the appropriate code into
bits 2, 3, and 4 of the control regis-
ter. If no parity is selected, then
both the transmitter parity gener-
ator and the receiver parity
checker are disabled. Once a PE
has been detected and the PE bit
set, it remains set as long as a char-
acter with a PE is in the receiver data register.

Bit 7—interrupt request (IRQ) The IRQ bit is a composite
interrupt request flag because it is set whenever the ACIA

wishes to interrupt the CPU, for whatever reason. The IRQ
bit may be set by any of the following:

● receiver data register full (SR bit 0 set)

● transmitter data register empty (SR bit 1 set)

● DCD bit set (SR bit 2).

Whenever IRQ � 1 the ACIA’s pin is forced active-
low to request an interrupt from the CPU. The IRQ bit is
cleared by a read from the receiver data register or a write to
the transmitter data.

Programming the ACIA

We are now going to look at a more complete program that
uses some of the ACIA’s error-detecting facilities when
receiving data.

IRQ

432 Chapter 10 Buses and input/output mechanisms

7 6 5 4 3 2 1 0

IRQ PE OVRN FE CTS DCD TDRE RDRF

Table 10.14 Format of the ACIA’s control register.

So far we’ve examined how information in digital form
is read by a computer, processed in the way dictated by a
program and then output in digital form. We haven’t yet

considered how information is converted between real-world
form and digital form. In the next chapter we describe some
of the most frequently used computer interfaces such as the
keyboard, the display, and the printer.

■ SUMMARY

A computer is not just a device that executes instructions; it

is a complete system with subsystems that process data,

store data, and move data between the computer and

outside world.

In this chapter we began by examining the bus, the data

highway that moves information between a computer’s

various parts. There is not, in fact, a single bus. Like CPUs,

buses have developed over the years and different computers

use different buses. Even within a computer there may be a

family of buses, each of which is optimized for a specific

application.

We have described the characteristics of a computer bus and

introduced some of the members of the bus family. As well as

the conventional parallel bus, we’ve looked at the USB serial bus

used to provide a low-cost high-performance solution to the

interconnection of peripherals ranging from the keyboard to the

printer or scanner.

We have also looked at the IEEE488 bus that was designed for

use in a computer-controlled automated laboratory environ-

ment.This bus incorporates some very interesting principles

such as the ability to transfer data between groups of devices

with very different characteristics. In particularly, it is able to

send data between serial devices simultaneously using a

three-wire handshake that ensures the transfer does not

continue until each device has completed the data transfer.

Moreover, it uses two different methods of sending control

messages to devices connected to the bus. One method

uses encoded messages on the 8-bit data bus and the other

method used single-line control signals on a special

control bus.

There are three broad strategies for moving information onto

or out of a computer. One is called programmed I/O in which

the programmer copies data to or from the peripheral directly

by means of appropriate instructions in the program. One is

called interrupt driven I/O in which an external device requests

a data transfer when it is ready and then the operating system

handles the transfer. The third technique is called direct memory

access in which a subsystem that is almost as complex as the

CPU itself takes over and transfers data directly between the

peripheral and memory.We have looked at how all these three

I/O strategies are implemented and their advantages and

disadvantages.

The final part of this chapter described two special-purpose

integrated circuits that are designed to facilitate the transfer of

data between a computer and external peripherals such as

modems and printers. Both these devices control the flow of

information between the computer and peripheral. One, the

parallel interface, uses handshaking to sequence the flow of

information and the other, the serial device, uses flow control

signals between the peripheral and external modem.

■ PROBLEMS

10.1 Why is the bus such an important element of a computer

system?

10.2 Why do computers use families of buses rather than a

single bus?

10.3 In the context of buses, what is the meaning of arbitration?

10.4 It takes 1 �s for a computer to take control of a 64-bit

bus. Suppose it takes 20 ns to set up a data transfer and 40 ns to

terminate a transfer and that a transfer consists of sending eight

64-bit values in 32 ns.What is the average data rate in bytes/s

that this bus can support?

10.5 What is the difference between an open-loop and a

closed-loop data transfer?

10.6 What is special (different) about the IEEE 488 bus

three-wire data handshake?

10.7 What factors determine the ultimate rate at which data

can be transported by a bus?

10.8 Although most microprocessors implement

memory-mapped I/O, are there any advantages in

implementing dedicated I/O mechanisms with dedicated I/O

instructions and appropriate control signals?

10.9 What is an input/output strategy, as opposed to and

input/output device?

10.10 What is programmed I/O?

10.11 Define the meaning of the following terms in the context

of I/O operations.

(a) Port

(b) Peripheral

(c) FIFO

(d) Handshake

(e) Interlocked handshake

(f) Polling loop

10.12 What is the difference between an unintelligent I/O

device (e.g. a flip-flop) and an intelligent I/O device

(e.g. a PIA)?

10.13 Why does the CPU have to save the processor

status (i.e. status byte and CCR) before responding to

an interrupt?

10.14 What is a non-maskable interrupt and how is it used?

10.15 Explain how daisy-chaining can be used to improve the

way in which interrupts are handled in a system with many

peripherals.

10.16 What is the role of the 68K’s interrupt mask in its

prioritized interrupt handling system?

10.17 What is a prioritized interrupt?

10.18 What is a vectored interrupt?

10.19 To what extent are interrupts and subroutines the same

and to what extent do they differ?

10.20 In a particular computer, the overhead involved in an

interrupt call is 5 �s and the overhead involved in a return

from interrupt is 6 �s. Suppose that this computer executes

10.4 Parallel and serial interfaces 433

10 instructions/�s. How many instructions can be used in an

interrupt handling routine if the overall interrupt handling

efficiency is to be greater than 70%?

10.21 What is DMA and why is it so important in high

performance systems?

10.22 What are the advantages and disadvantages of

memory-mapped I/O in comparison with dedicated I/O that

uses special instructions and signals?

10.23 The PIA has six internal registers and two register select

lines. How does the PIA manage to select six registers with only

two lines?

10.24 Can you think of any other way of implementing a

register select scheme (other than the one used by the PIA)?

10.25 In the context of the PIA, what is a data direction register

(DDR), and how is it used?

10.26 How does the PIA use its CA1 and CA2 control lines to

implement handshaking?

10.27 How are the characters transmitted over a serial data link

divided into individual characters and bits?

10.28 What are the functions of the ACIA’s and

inputs?

10.29 What is the difference between a framing error and an

overrun error?

10.30 The 68K’s status register (SR) contains the value $2601.

How is this interpreted?

CTSDCD

434 Chapter 10 Buses and input/output mechanisms

11Computer peripherals

CHAPTER MAP

9 Processor
architectures

Chapter 9 provides a brief

overview of contrasting

processors; its purpose is to

expose students to some of the

processors that are available to

the designer.

10 Buses and input/
output mechanisms

Chapter 10 deals with

input/output techniques and

shows how information is

transferred between a computer

and its peripherals.We look at

internal buses that link devices

within the computer and

external buses that link remote

devices such as printers with the

computer.

11 Computer peripherals

The power of a computer is as

much a function of its peripherals

as of its data processing

capabilities. Chapter 11

introduces some of the

peripherals you’d find in a typical

PC such as the keyboard, display,

printer, and mouse, as well as

some of the more unusual

peripherals that, for example, can

measure how fast a body is

rotating.

12 Computer memory

Information isn't stored in a

computer in just one type of

storage device; it’s stored in

DRAM, on disk, on CD-ROM, DVD

and on tape. Chapter 12

examines the operating principles

and characteristics of the storage

devices found in a computer.

INTRODUCTION

Humans communicate with each other by auditory and visual stimuli; that is, we speak, gesticulate,

write to each other, and use pictures.You would therefore expect humans and computers to

communicate in a similar way. Computers are good at communicating visually with people; they

can generate sophisticated images, although they are rather less good at synthesizing natural-

sounding speech. Unfortunately, computers can’t yet reliably receive visual or sound input directly

from people. Hardware and software capable of reliably understanding speech or recognizing visual

input does not yet exist—there are systems that can handle speech input and systems that can

recognize handwriting, but the error rate is still too large for general-purpose use.1 Consequently,

people communicate with computers in a different way than they communicate with other people.

The keyboard and video display are the principal input and output devices used by personal

computers. The terms input and output refer here to the device as seen from the CPU; that is, a

keyboard provides an output, which, in turn, becomes the CPU’s input.

The CRT (cathode ray tube) display is an entirely electronic device that’s inexpensive to produce.

It is cheap because it relies on semiconductor technology for its electronics and on tried-and-tested

television technology for its display. By 2000 the more compact but expensive LCD panel was

beginning to replace the CRT display. Less than 4 years later, the trend had accelerated and large, high-

quality, high-resolution LCD displays were widely available. By 2005 CRT displays were in decline.

This chapter looks at keyboards, pointers, displays, and printers.We also look at input devices

that do more than communicate with people; we show how physical parameters from

temperature and pressure to the concentration of glucose in blood can be measured.

The second part of this chapter demonstrates how the digital computer interacts with the

analog world by converting analog values into digital representations and vice versa.At the end of

this chapter we provide a very brief insight into how a computer can be used to control real-world

analog systems with the aid of digital signal processing (DSP).

1 You can buy speech recognition programs but they have to be
trained to match a particular voice. Even then, their accuracy is less than
perfect. Similarly, hand-held computers provide handwriting recogni-
tion provided you write in a rather stylized way.

11.1 Simple input devices

We begin this chapter by introducing some of the simplest
computer peripherals, the input devices used by personal
computers. We describe both the keyboard and the pointing
device.

11.1.1 The keyboard

The keyboard is an efficient interface—especially if you’re a
professional typist entering text at 60 words/minute.
Sometimes the keyboard provides a poor interface; for exam-
ple, you can’t easily use it to control a flight simulator.

Figure 11.1 illustrates the layout of the ubiquitous
QWERTY keyboard. The term QWERTY isn’t an acronym
but the sequence of letters on the back row of characters on a
keyboard. When the first mechanical typewriters were
constructed, the sequence of letters was chosen to reduce the
probability of letters jamming. If ‘t’ and ‘h’ were next to each
other, typing ‘the’ would sometimes cause the letters ‘t’ and ‘h’
to collide and jam. The anti-jamming property of the
QWERTY keyboard is optimum only for the English
language.

Because today’s keyboards are electronic with no moving
parts except the keys themselves, there’s no longer any need
for a QWERTY layout. You could devise a much better layout
for the keys that would make it easier to type by reducing the
distance a typist’s fingers have to move. Indeed, a keyboard
was developed in the 1920s to make it easier to type English.
Studies demonstrate that a typist using a Dvorak keyboard
can achieve a 10 to 15% improvement. The Dvorak is biased
in favor of right-handed typists. However, so many typists
and programmers have been trained on the QWERTY
keyboard, that it would be difficult to retrain them to use a

new layout. The Dvorak keyboard has therefore failed to
topple the QWERTY standard.

Some systems designed for infrequent computer users and
non-typists have a simple ABCDE keyboard in which the keys
are laid out in alphabetic order—this keyboard makes it easy
for users to locate keys, but prevents experienced users enter-
ing data rapidly (because they will have been trained on a
QWERTY layout).

A radically different form of keyboard is the chord key-
board, which has only a few (typically 4 or 5) keys. You enter
a letter by hitting a subgroup of keys simultaneously; it’s
rather like using Morse code or Braille. The chord keyboard is
very small indeed and can be used with one hand. Chord key-
boards have found a niche market for people who operate in
cramped spaces or for those who want a pocket-sized device
that they can use to make notes as they move about.
Figure 11.2 illustrates the structure of the cord keyboard.

Special purpose keys

In order to provide the total number of keys necessary for
efficient computer operation a keyboard would have to be
gigantic. In practice, most keys have a multiple function; that
is, the meaning of a given key can be modified by pressing
another key at the same time. The shift key selects lower case
characters as the default mode and upper case characters
when it’s pressed at the same time as a letter. The shift key also
selects between pairs of symbols that share the same key
(e.g. : and ;, @ and ‘, � and � , etc.) and between numbers
and symbols (e.g. 4 and $, 5 and %, 8 and *, etc.).

Although the layout of the letters and numbers on a
QWERTY keyboard is standard throughout the English-
speaking world, the layout of other keys (e.g. symbols) is
not—in particular, there is a difference between keyboards
designed for use in the USA and those designed for use in the

436 Chapter 11 Computer peripherals

Figure 11.1 Layout of the QWERTY keyboard.

UK. Consequently, software has to be configured for the
specific version of the keyboard currently in use.

Computer keyboards also include a control (ctrl) key,
which behaves like a shift key and gives a key a different
meaning when control is pressed at the same time. Computer
texts indicate the act of pressing the control key and, say, the
letter D at the same time by the notation CTRL-D.

Why do we need all these special keys? When we commu-
nicate with a computer we need to provide it with two types
of information. One type of information is the data the com-
puter is going to process (e.g. the text entered into a word
processor, or a booking entered into an airline’s database).
The other type of information entered into a computer is the
commands that you want it to execute. Suppose that you are
entering text into a word processor and wish to save the file.
You can’t simply type Save file because the computer cannot
distinguish between the command you want to carry out and
the words you are entering into the document. By typing, for
example, CTRL-S, you are telling the computer unambigu-
ously that you are entering the command to save a file.2

PC keyboards also provide an alternative (alt) key to give
yet another set of meanings to the keys. Consequently, you
can enter a key unshifted, on with shift, control, alternative,
or any combination of the three function-modifier keys. In
addition to the shift, control, and alternative keys, the PC
keyboard contains 12 function keys labeled F1 to F12 that
perform special functions; e.g. function key F1 is normally
used to invoke a program’s ‘Help’ function. Finally, keyboards
have several dedicated keys like home, end, PgDn, PgUp, Del,
Ins, and so on.

Computer displays invariably have a cursor—a marker on
the screen indicating the currently active position; that is, if
you enter a character, it will appear at the position indicated
by the cursor. Cursors can be vertical or horizontal lines,
small blocks, highlighted text, or even reversed text (i.e. white

on black). Modern applications frequently make use of
several different types of cursor; for example, a solid line
indicates where text can be entered, an arrow points at a
command, and a cross indicates the edge of a picture or a
table. Cursors sometimes blink because human vision can
more easily detect a change in a static picture). Computer
keyboards also contain cursor control keys that move the cur-
sor on the screen up, down, left, or right, by one unit—either
a character position horizontally or a line position vertically.

Several technologies can be used to detect a keystroke
(e.g. mechanical, magnetic, capacitive, etc.). The difference
between keyboards is often a matter of cost and personal
preference—some typists prefer to hear a satisfying click
when they depress a key, others don’t. Important keys like
enter, shift, control, and space are often made larger than
other keys to make it easy to hit them. If you are a real sadist,
keyboard design is just for you because you can guarantee a
maximum level of user misery by locating a key that has
a potentially destructive function (e.g. delete text) next to a
normal key such as the space bar. Good practice would ensure
that it is difficult to enter a potentially fatal command by acci-
dent. Consider the following two examples of safe operation:
you can’t start a VCR recording without pressing two buttons
simultaneously, and the master engine switches in some air-
craft are under a metal bar that blocks access to the switch to
ensure that you can’t switch an engine off accidentally.

Character codes

The ASCII code for the upper-case letter3 we call ‘A’ is
010000012. In order to convert this computer representation
of ‘A’ into the actual letter ‘A’ on paper we have to use a periph-
eral called a printer. Similarly, we have to strike a key on a
keyboard with the symbol ‘A’ on it in order to get the code
010000012 into the computer. We now look at peripherals in
typical personal computers that input and output data—
beginning with the keyboard. Following the keyboard we
describe the video display and printer, respectively. This
chapter concludes with some of the interfaces associated with
computers used in more general applications.

The switch

A keyboard is composed of two parts, a set of keys that detect
the pressure of a finger and an encoder, which converts the out-
put of a key into a unique binary code representing that key.

The keyswitch, which detects the pressure of a finger, called
a keystroke, is often a mechanical device (see Fig. 11.3(a).
A typical keyswitch contains a plunger that is moved by a finger

11.1 Simple input devices 437

Figure 11.2 Layout of the cord keyboard.

2 The Windows environment has much reduced the need for special-
purpose keys because you can use a ponting device to pull down a menu
and select the required option.

3 A character as represented on paper or a screen is called a glyph.
A, A, and A are all glyphs.

against the pressure of a spring. As it moves down, the
plunger forces two wires together to make a circuit—the
output of this device is inherently binary (on or off). A small
stainless steel snap-disk located between the plunger and base
of the switch produces an audible click when bowed down-
wards by the plunger. A similar click is made when the
plunger is released. This gives depressing a keyswitch a
positive feel because of its tactile feedback.

Figure 11.3(b) describes the membrane switch, which
provides a very-low-cost mechanical switch for applications
such as microwave oven control panels. A thin plastic
membrane is coated with a conducting material and spread
over a printed circuit board. Either by forming the plastic
membrane into slight bubbles or by creating tiny pits in the
PCB, it is possible to engineer a tiny gap between contacts on
the PCB and the metal-coated surface of the membrane.
Pressure on the surface of the membrane due to a finger
pushes the membrane against a contact to close a circuit. The

membrane switch can be hermetically sealed for ease of
cleaning and is well suited to applications in hazardous or
dirty environments (e.g. mines). Equally, the membrane
switch suffers all the disadvantages of other types of low-cost
mechanical switch.

Another form of mechanical switch employs a plunger
with a small magnet embedded in one end. As this magnet is
pushed downwards, it approaches a reed relay composed of
two gold-plated iron contacts in a glass tube. These contacts
become magnetized by the field from the magnet, attract
each other, and close the circuit (Fig. 11.3(c)). Because the
contacts are in a sealed tube, the reed relay is one of the most
reliable types of mechanical switches.

Non-mechanical switches

Non-mechanical switches have been devised to overcome
some of the problems inherent in mechanical switches. Three
of the most commonly used non-mechanical switches are the

438 Chapter 11 Computer peripherals

THE DEBOUNCED SWITCH

Direction

of motion

Plunger

Contacts Press
MagnetConductor-coated

membrane

Spring

(a) The switch.

PCB Contacts ContactsGlass tube

(b) The membrane switch. (c) The reed relay.

Figure 11.3 The mechanical switch: (a) basic switch, (b) membrane switch, (c) reed relay.

5 V

QR

S Q

5 V

gnd

Gate
G1

Gate
G2

Bounce
ON1

0

1
Q

switch

0

ON

OFF

OFF

Although the mechanical switch has some excellent ergonomic properties, it has

rather less good electrical properties. In particular, the contacts get dirty and

make intermittent contact or they tend to bounce when brought together,

producing a series of pulses rather than a single, clean make.This effect is called

contact bounce.You can eliminate the effects of contact bounce by connecting

the switch to the S input of an RS flip-flop.When the switch first closes, the flip-

flop is set and its Q output goes high. Even if the contacts bounce and S goes low,

the Q output remains high.

Hall-effect switch, the elastomeric switch, and the capacitive
switch. The Hall-effect switch consists of a magnet that is
pushed against the force of a spring towards a Hall cell. The
Hall cell is a semiconductor device through which a steady
current flows. When a magnetic field is applied at right angles
to the current, a voltage is produced across the terminals of
the cell at right angles to both the magnetic field and the
current flow. Figure 11.4 illustrates the operation of such a
switch. By detecting the Hall-effect voltage due to the mag-
netic field you can generate a digital output corresponding to
the state ‘switch-open’ or ‘switch-closed’. The Hall-effect
switch does not suffer from contact bounce, but is relatively
expensive.

The capacitive switch relies on the change in capacitive
coupling between two metallic contacts when a finger is
pressed against them. The great advantage of a capacitive
switch keyboard is its extremely low cost and small size
because it is often nothing more than a printed-circuit board
with contacts etched on the surface. Some capacitive switches
use a single contact to sense a keystroke and rely on the capac-
itive coupling between the contact and ground via the finger.

Unfortunately, the capacitive switch keyboard has no tac-
tile feedback and is rather unpleasant to use. Designers can
get round the lack of tactile feedback by providing audio
feedback. Each time a keystroke is made, a short audio bleep
is sounded from a loudspeaker. The capacitive switch is
found in some very-low-cost PCs, in television touch-
sensitive tuners, and in professional equipment that must
be hermetically sealed for operation in hazardous
environments.

Elastomeric switches employ certain types of material that
change their electrical resistance when subjected to pressure.
When a finger is pressed against the material, the drop in its
electrical resistance is detected by a suitable interface. This
type of switch lacks any tactile feedback and its feel is said to
be mushy and ill defined.

The keyboard encoder

The conversion of a keystroke into its ISO/ASCII-encoded
equivalent can be performed by a special purpose chip called
a keyboard encoder. Figure 11.5 illustrates the operation of
such a chip, which contains all the circuitry necessary to
convert a signal from an array of switches into a binary
code together with a strobe (i.e. a pulse that indicates a
new character).

Figure 11.5 demonstrates how the keyboard encoder oper-
ates. Eight horizontal lines are connected to the pins of an
8-bit output port. Similarly, eight vertical lines are connected
to an 8-bit input port. A switch is located at each of the
8 � 8 � 64 cross-points between horizontal and vertical
lines. When a key is pressed, a connection is made between
the vertical line and the corresponding horizontal line. As
long as no key is pressed, there is no connection between any

vertical and any horizontal line. If a switch is pressed we can
determine which key it was by determining its row and its
column.

The eight vertical input lines are each terminated in a resis-
tor connected to �5 V, so that these lines are pulled up to a
high level. That is, if a byte were read from the input port, it
would be 11111111. Suppose now the output port puts the
binary value 11111110 onto its eight output lines, as illus-
trated in Fig. 11.6. If the CPU reads from its input port with,
say, the top right-hand key pressed, it will see 11111110. If the
next key to the left on the same row is pressed it will see
11111101. Pressing a key on the topmost row causes a 0 to be
read into the vertical position corresponding to that key.
Pressing a key in any other row has no effect on the data read.

The CPU next outputs the byte 11111101 and reads the
input lines to interrogate the second row of keys. This process
is continued cyclically with the CPU outputting 11111110,
11111101, 11111011, 11110111 . . . to 01111111, as the 0 is
shifted one place left each time. In this way all eight rows of
the switch matrix are interrogated one by one. The assembly
language program in Table 11.1 gives an idea of the software
necessary to operate the keyboard.

11.1 Simple input devices 439

Magnet

Magnetic field

Semiconductor

Hall voltage

Current i

Figure 11.4 The Hall-effect switch.

Output port

Input port

64 push-button

switches

Pull-up

resistors

+5 V

d0

d1

d2

d3

d4

d5

d6

d7

d7 d6 d5 d4 d3 d2 d1 d0

Figure 11.5 Structure of the keyboard encoder.

11.1.2 Pointing devices

Although the keyboard is excellent for inputting text, it can’t
be used efficiently as a pointing device to select an arbitrary
point on the screen. PCs invariably employ one of three
pointing devices: the joystick, the mouse, and the trackball
(Fig. 11.7). Portable computers normally use either an eraser
pointer or a trackpad as a pointing device in order to conserve
space.

The joystick is so called because it mimics the pilot’s
joystick. A joystick consists of a vertical rod that can be
moved simultaneously in a left–right or front–back direction.
The computer reads the position of the stick and uses it to
move a cursor on the screen in sympathy. You don’t look at
the joystick when moving it; you look at the cursor on the

440 Chapter 11 Computer peripherals

Table 11.1 Reading data by scanning a keyboard.

Output port
0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1 1 1 1 1 1 1 0

d7 d6 d5 d4 d3 d2 d1 d0

d0

d1

d2

d3

d4

d5

d6

d7

MSB

MSB

LSB

LSB

+5 V

Pull-up
resistors

Input port sees
11111110

This button is pushed
and the corresponding
input bit pulled low

Figure 11.6 State of the keyboard encoder with one key pressed.

screen. Without this visual feedback between the hand
and the eye, people would not be able to use this, or similar,
pointing devices. Joysticks and mice have one or more
buttons that can be used to enter commands. The joystick is
well suited to computer games.

Although the joystick is similar to the mouse and trackball,
there is one difference. When the mouse is not being moved,
there is no signal from them and the computer unambigu-
ously interprets this as no input. However, the joystick
continually transmits a position, which means that it is very
difficult to centralize or neutralize its output. Consequently,
joysticks often have a dead zone around their neutral position.
Until you move the joystick out of the dead zone, the cursor
on the screen doesn’t move.

The mouse

The mouse, invented by Douglas Engelbart in 1964, is the
PC’s most popular pointing device. A mechanical mouse
consists of a housing that fits comfortably in the hand and a
ball that rotates in contact with the surface of a desk—you
could say that a mouse is a larger version of the ball-point
pen. As the mouse is dragged along the desk, the ball rotates.
Circuits in the mouse translate the ball’s movement into a
signal that can be read by the computer.

When the computer receives a signal from the mouse, the
signal is processed and used to move a cursor on the screen.
The software that controls the mouse may allow you to

modify the mouse’s sensitivity; that is,
you can determine how much the cur-
sor moves for a given movement of the
mouse.

A modern mouse is comfortable to
hold and can be used to move the
cursor rapidly to any point on the
screen. Once the mouse is at the cor-
rect point, you depress one of two but-
tons that fit naturally under your
fingers as you move the mouse. Some
versions of the mouse have one or
three buttons. Pressing a button
activates some predefined applica-
tion-dependent function on the
screen. Typical mouse-based systems
require you to click the button once to
select an application (i.e. highlight it)
and twice to launch an application (i.e.
run it). Clicking a button twice in this
way is called double-clicking and is
not always easy to perform because the
interval between the clicks must fall
within a given range.

Figure 11.8 demonstrates the princi-
ple of an opto-mechanical mouse.4 As the ball rotates due to
the friction between itself and the desk, its motion is resolved
into two axes by means of the rollers located at right angles to
each other. If the mouse is moved upwards or from left to
right, only one roller rotates. If the mouse is moved diago-
nally both rollers rotate and their relative speed is a function
of the diagonal angle.

Each roller is connected to a shaft that rotates an optical
encoder (i.e. an opaque disc with holes in its surface). The
rotation of the encoder interrupts a beam of light between an
LED and a detector. Each pulse is fed to the computer and by
adding up the number of pulses received, it is possible to
determine how far the mouse has moved along that axis. In
practice, two beams of light are necessary because a single
beam would make it impossible to determine whether the
mouse was moving in a positive or a negative direction. A sec-
ond detector is required to produce a quadrature signal that
is out of phase with the main signal. If the ball is rotated one
way, the quadrature signal leads the main signal and if the
rotation is reversed the quadrature signal lags the main
signal.

An entirely optical mouse doesn’t rely on a moving ball.
First-generation optical mice used a special pad with a fine
grid of horizontal and vertical lines. This mouse reflects a

11.1 Simple input devices 441

(a) The mouse. (b) The joystick.

(c) The Trackball.

Figure 11.7 Pointing devices.

4 It is called opto-mechanical because it has moving parts but uses
optical techniques to sense the position of a rotating disk.

light beam off the grid and counts the number of horizontal
and vertical lines crossed as the mouse moves about the pad.

An optical mouse does not require intimate contact and
friction with the surface, although it does require that the
surface have an optical texture—you can’t use a mirror. The
resolution of an optical mouse is higher then that of a
mechanical mouse.5

Second-generation optical mouse technology uses a
light-emitting diode to illuminate the surface underneath the
mouse. Light reflected back from the surface is picked up and
focused on a sensor array (Fig. 11.9). The image from the
array consists of a series of pixels. As the mouse moves, the
image changes unless the surface beneath the mouse is blank.
A special-purpose signal-processing chip in the mouse com-
pares consecutive surface images and uses the difference
between them to calculate the movement of the mouse in the
x and y planes. A new image is generates once every 1/2000 s.
This type of optical mouse has no moving parts to wear out
or become clogged with dust. The second-generation optical
mouse is a miracle of modern engineering because it has an
image sensing system, an image processing system, and a
computer interface in a package that sells for a few dollars.

The joystick

The joystick is a low-cost pointing device found largely in
games applications. Its principal advantage over the mouse or
trackball is that it can provide three motion axes—the con-
ventional left–right and up–down axes, plus a twist or rotate
axis that you can control by rotating the joystick.

Figure 11.10 illustrates the operation of the joystick, which
uses two potentiometers to sense the position of the control
column. A potentiometer consists of a thin film of a partially
conducting material and a metallic contact (the slider) that
can move along the thin film. Mechanical linkages between
the joystick and potentiometers move the arms of the two slid-
ers. The potentiometers employ a fixed resistance (i.e. the thin

442 Chapter 11 Computer peripherals

Figure 11.8 Operation of the optical mouse.

Mirror

Image sensor

Base plate

Surface

LED

Figure 11.9 The optical mouse.

MODERN MICE

Nothing stands still in the world of the PC.The humble mouse

has developed in three ways. Its sensing mechanism has

developed from crude mechanical motion sensors to precise

optical sensors. Its functionality has increased with the

addition of two buttons (left click and right click) to permit

selection followed by a third button and a rotating wheel that

let you scroll through menus or documents. Some mice let you

move the wheel left or right to provide extra capacities. Finally,

the mouse interface has changed from the original PS2 serial

interface to the USB serial interface to wireless interfaces that

allow cordless mouse operation.

The gyro mouse is the most sophisticated of all computer

mice and is both cordless and deskless.You can use it in space

simply by waving it about (as you might do when giving a pre-

sentation to an audience). The gyro mouse employs solid-

state gyroscopic sensors to determine the mouse’s motion in

space. Consequently, you are not restricted to dragging it

across a surface.

5 The resolution of a mouse is the minimum distance you need to
move it for the output to change. The resolution of a typical optical
mouse is 800 dpi, which means that the mouse generates 800 steps when
you move it one inch and it can detect a movement of 1/800 inch.

Main

output

(a) Ball and disk arrangement

(b) Detecting the direction of motion

Quadrature

output

Time

The time difference

between the main and

quadrature outputs determines

the direction of rotation.

LED
Dal

Phototransistor

film) that has a constant voltage across its two terminals. If the
resistance is linear, the voltage at any point along the resistance
is proportional to its distance from its end. Consequently, the
slider supplies an analog voltage output that is an approxi-
mately linear function of its position. Two analog-to-digital
converters are needed to transform the two analog outputs
into X and Y digital position inputs required by the computer.

A joystick usually has a dead zone of up to 10% of its full-
scale output about its neutral position. The dead zone is a
property of a joystick’s construction, which means that small
movements of the joystick about its central neutral position
generate no change in its X and Y outputs. This effect has the
advantage that the joystick produces a null output in its
‘hands off ’ neutral position and is unaffected by small move-
ments. However, a dead zone makes it harder to make precise
movements when the joystick is near to its neutral position.

Joysticks can be produced using non-contact technology
such as optical or even magnetic sensing and it is now possi-
ble to obtain high-precision joysticks. Indeed, some commer-
cial aircraft such as the Airbus 320 have removed the
conventional control column or yoke and have replaced it by
a side-mounted joystick that they call a sidestick.

Another innovation in joystick design is the addition of
force feedback. In first-generation aircraft, the control column
directly moved the ailerons and elevators by wire links. As the
aircraft flew faster, the force needed to move the control
column grew and it could be quite difficult to maneuver an
aircraft at high speeds unless you were very strong. When
hydraulics were used to move control surfaces, the pilot
didn’t need the same effort at high speeds. Unfortunately,
making large control inputs at high speeds can put an aircraft
in a maneuver that breaks it up. Hydraulic systems were
designed that gave the pilot an artificial feel; as the speed
increases and the forces on the aircraft grow, it becomes
increasingly harder to move the control column. Replacing
the control column with a joystick in a fly-by-wire computer-
controlled aircraft removes the natural tactile feedback

between the aircraft and pilot. The force feedback joystick
combines a joystick with motors or solenoids that generate a
computer-controlled force on the joystick as you move it.
Now, the computer can restore the tactile feedback lacking in
conventional joysticks.

The trackball

A trackball is an upside-down mouse—it remains stationary
on the desk and you rotate a 1� to 4� ball to move the cursor
on the screen. Unlike the mouse, the trackball requires no
desk space and can be fitted on the keyboard of a laptop
portable. Trackballs are often built into electronic equipment
that requires an operator to select a point on a screen (e.g. a
target on a radar screen).

Other input devices

Two other input sensors worth mentioning are the eraser tip
pointer (or pointing stick) and trackpad used by some laptop
computers. The eraser tip pointer is a tiny joystick that juts
out of a keyboard. It is operated like a joystick except that
it doesn’t move. It senses pressure and uses a pressure-to-
voltage converter to move the cursor. The track pad consists
of a small flat region that senses the position of a finger and
uses the finger as if it were a mouse. Both these devices are not
as precise as the mouse and are used simply because they
require no desk space.

Three other pointing devices are the touch screen, the
light-pen, and the tablet. The touch screen, found on all
PDAs, uses a display coated with transparent conductors to
detect the location of a finger on the surface of the screen.
Some touch screens sense the finger’s position by ultrasonic
or infra-red beams. The touch screen can be used as an input
device simply by touching the point you want to activate.
A typical system displays a menu of commands. Touch-
sensitive screens are still relatively expensive and are found
only in specialized applications. The finger is a rather course
pointer and cannot be used as precisely as a mouse or joystick
(PDAs require the use of a pencil-like stylus). Touch screens
are useful when the operator has no computer experience
whatsoever (e.g. a user-controlled guide in a shopping mall)
or when the system must be hermetically sealed (e.g. in
potentially explosive atmospheres).

The light-pen uses a stylus with a light-sensitive device in
its tip. When placed against the computer’s screen, the light-
pen sends a signal to the computer when the beam passes
under it. The light-pen is just a much more precise form of
the touch screen and is cheaper to implement. Sophisticated
algorithms can be used to convert the light-pen’s movement
over the screen (i.e. handwriting) into an ASCII-encoded text
format for internal storage and manipulation. Unfortunately,
it’s not easy to convert the output from a light-pen into text,
because the way in which one person writes, say, a letter ‘a’, is
often different from the way another person writes it.

11.2 CRT, LED, and plasma displays 443

Slider connected to

joystick by mechanical

linkages

X motion Y motion
+V supply

–V supply

Y-axis
output

X-axis
output

Figure 11.10 Operation of the joystick.

The document scanner was once a very expensive device
and has now become a very-low-cost but high-precision
input device. A document is placed on a glass sheet that forms
the top of a largely empty box. A light source on tracks is
moved along the length of the document and photo sensors
read light intensity along a scan line. The scanner is able to
create a high-resolution color image of the document being
scanned (typically 2400 dpi). Indeed, the accuracy of some
document scanners is sufficient to give national mints a
headache because of the potential for forgery. Some bank-
notes are designed with color schemes that are difficult to
copy precisely by document copiers.

11.2 CRT, LED, and plasma displays

General-purpose computers communicate with people via a
screen, which may be a conventional CRT or a liquid crystal
display. We begin by describing the cathode ray tube (CRT)
display that lies at the heart of many display systems. A CRT
is little more than a special type of the vacuum tube that was
once used in all radios and TVs before they were replaced by
transistors.

The way in which human visual perception operates is
important to those designing displays; for example, we can
see some colors better than others, we cannot read text if it is
too small nor can we read it rapidly if it is too large. Colors
themselves are described in terms of three parameters: hue is
determined by the wavelength of the light, saturation is deter-
mined by the amount of white light present in the color, and
intensity is determined by the brightness of the light. Objects
on a screen are viewed against background objects—the
luminosity of an object in comparison with its background is
called its contrast. All these factors have to be taken into
account when designing an effective display.

Figure 11.11 describes the construction of the cathode ray
tube (CRT).6 It is a remarkably simple device that uses a tech-
nology discovered early in the twentieth century. The CRT is
a glass tube from which all the air has been removed. A wire
coil, called a heater, is located at one end of the CRT and
becomes red-hot when a sufficiently large current flows
through it—exactly like the element in an electric fire. The
heater raises the temperature of a cylinder, called the cathode,
which is coated with a substance that gives off electrons when
it is hot. The negatively charged electrons leaving the surface
of the cathode are launched into space unimpeded by air
molecules because of the high vacuum in the CRT.

When the negatively charged electrons from the CRT’s
cathode boil off into space, they don’t get very far because
they are pulled back to the positively charged cathode. To
overcome the effect of the positive charge on the cathode, the
surface and sides of the glass envelope at the front of the CRT
are coated with a conducting material connected to a very
high positive voltage with respect to the cathode. The high
positive voltage (over 20 000 V attracts electrons from the
cathode to the screen. As the electrons travel along the length
of the CRT, they accelerate and gain kinetic energy. When
they hit phosphors coating the front of the screen, their energy
is dissipated as light. The color and intensity of the light
depend on chemical characteristics of the phosphor coating
and the speed and quantity of the electrons. For the time
being, we will assume that the composition of the phosphor
gives out a white light; that is, the display is black and white or
monochrome.

The beam of electrons from the cathode flows through a
series of cylinders and wire meshes located near the cathode.
Using the principle that like charges repel and unlike charges

444 Chapter 11 Computer peripherals

Glass envelope
Cathode

Grid Focus
electrodes

Electron
beam

Deflection coils

Conductive coating

Phosphor
coating

Heater

Figure 11.11 Structure of the CRT.

6 The cathode ray tube was originally invented in Germany by Karl
Braun in 1910 and later developed by Vladimir Zworykin in 1928.

attract, various electrical potentials are applied to these
cylinders and meshes to control the flow of the beam from the
cathode to the screen and to focus the electrons to a tight
spot—the smaller the spot, the better the resolution of the dis-
play. The cathode and focusing electrodes are called a gun.

A wire mesh called a control grid is placed in the path of the
electron beam and connected to a negative voltage with
respect to the cathode. The stronger the negative voltage on
the grid, the more the electrons from the cathode are
repelled, and the fewer get through to the screen. By changing
or modulating the voltage on the grid, the number of elec-
trons hitting the screen and, therefore, the brightness of the
spot, can be controlled.

11.2.1 Raster-scan displays

Two scanning coils at right angles (called a yoke) are placed
around the neck of the CRT. Passing a current through one
coil creates a magnetic field that deflects the beam along the
horizontal axis and passing a current through the other coil
causes a deflection along the vertical axis. These coils let you
deflect the beam up–down and left–right to strike any point
on the screen.

The magnetic field in the coil that deflects the beam in the
horizontal axis is increased linearly to force the spot to trace
out a horizontal line across the face of the CRT. This line is
called a scan line or a raster. When the beam reaches the right-
hand side, it is rapidly moved to the left-hand edge, ready for
the next horizontal scan.

While the beam is being scanned in the horizontal direc-
tion, another linearly increasing current is applied to the
vertical deflection coils to move the beam downward. The rate
at which the beam moves vertically is a fraction of
the rate at which it moves horizontally. During the time it
takes the beam to scan from top to bottom, it makes hundreds
of scans in the horizontal plane. A scan in the vertical axis is
called a frame. Figure 11.12(a) shows the combined effects of
the fast horizontal and slow vertical scans—eventually, the
beam covers or scans the entire surface of the screen.

As the beam scans the surface of the screen, the voltage on
the grid is varied to change the brightness of the spot to draw
an image. Figure 11.12(b) demonstrates how the letter ‘A’ can
be constructed by switching the beam on and off as it scans
the screen. The scanning process is carried so rapidly that the
human viewer cannot see the moving spot and perceives a
continuous image. Typically, the horizontal scan rate is in the
region of 31 000 lines/s and the vertical scan rate is 50 to
100 fields/s. We will return to the scanning process later when
we describe the system used to store images.

The simplest CRT screen would be a hemisphere, because
any point on its surface is a constant distance from the focus-
ing mechanism. Such a screen is unacceptable, and, over the
years, the CRT screens have become both flatter and squarer

at the cost of ever more sophisticated focusing mechanisms.
The CRT’s screen is not square; its width:height or aspect
ratio is the same as a television, 4:3.

The CRT is an analog device employing electrostatic and
electromagnetic fields to focus an electron beam to a point on
a screen. The engineering problems increase rapidly with the
size of the screen and large CRTs are difficult to construct and
expensive. The weight of the CRT also increases dramatically
with screen size. In the early 1990s the cost of a 17-inch screen
was about four times that of a 14-inch screen and a 19-inch
screen cost over 10 times as much as a 14-inch screen. The
CRT was one of the last components of the computer to expe-
rience falling prices. However, by the late 1990s the price of
CRTs had dramatically fallen; not least because of competi-
tion with LCD displays. By 2003, the LCD was beginning to
replace the CRT in domestic TV displays.

11.2.2 Generating a display

The next step is to explain how an image is generated.
Figure 11.13 provides a more detailed description of the raster-
scan display based on the CRT. A sawtooth waveform is applied
to the vertical scan coils of a CRT to cause the spot to move from
the top of the screen to the bottom of the screen at a constant
linear rate. When the spot reaches the bottom of the screen, it
rapidly flies back to the top again. At the same time, a second
sawtooth waveform is applied to the horizontal scanning coils
to cause the beam to scan from the left-hand side to the right-
hand side before flying back again.A negative pulse is applied to
the grid during the flyback period to turn off the beam.

As the beam is scanned across the surface of the screen,
passing every point, the voltage on the grid can be changed to
modify the spot’s brightness. Although at any instant a TV
screen consists of a single spot, the viewer perceives a com-
plete image for two reasons. First, the phosphor coating con-
tinues to give out light for a short time after the beam has
struck it, and, second, a phenomenon called the persistence of
vision causes the brain to perceive an image for a short time
after it has been removed.

11.2 CRT, LED, and plasma displays 445

Raster scan

One frame

(a) The raster scan display. (b) Modulating the beam

 to create an image.

Figure 11.12 The raster scan.

A raster-scan display system can be constructed by
mapping the screen onto memory. As the beam scans the
physical display screen, the corresponding location in the
computer memory is interrogated and the resulting value
used to determine the brightness of the spot. Figure 11.14
provides a highly simplified arrangement of a system that
generates an n column by m row display.

In Fig. 11.14 a clock called a dot clock produces pulses at the
dot rate (i.e. it generates a pulse for each dot or pixel on the

display).The dot clock is fed into a divide-by-n circuit that pro-
duces a single pulse every time n dots along a row are counted.
It also produces a dot number in the range 0, 1, 2, . . . n � 1.
The output of the divide-by-n circuit is a pulse at the row (i.e.
raster) rate, which is fed to a divide-by-m circuit.

The output of the divide-by-m circuit is a pulse at the
frame rate (i.e. a pulse for each complete scan of the screen).
This pulse is fed to the CRT’s control circuits and is used to
lock or synchronize the scanning circuits in the CRT unit with

the dot clock. The divide-by-m circuit
produces an output in the range 0, 1,
2, m � 1 corresponding to the current
row. The column and row address
combiner takes the current column
and row addresses from the two
dividers and generates the address of
the corresponding pixel in the video
memory. The pixel at this address is
fed to the CRT to either turn the beam
on (a white dot), or to turn the beam
off (no dot).

A real display system differs from
that of Fig. 11.14 in several ways.
Probably the most important compo-
nent of the display generator is the

446 Chapter 11 Computer peripherals

TV DISPLAYS

Dot rate Line rate Field rate

Line number

(row address)

Dot number

(column address)

Dot

clock
Divide by n Divide by m Sync to CRT

Screen

n columns
Video to CRT

Address

Row and column

address combiner

Video memory

Data

m' rows

Figure 11.14 The display controller.

Because the computer display grew out of the television, let’s

look at some of the details of a TV display. In the USA a TV

image uses 60 vertical scans a second and each vertical scan

(called a field) is composed of 2621/2 lines.A frame is made up

of two consecutive fields containing 2621/2 odd-numbered

lines and 2621/2 even-numbered lines. The total number of

lines per frame is 2 � 2621/2 � 525. In Europe there are 50

vertical scans a second and each vertical scan is composed

of 3121/2 lines. The total number of lines per frame is

2 � 3121/2 � 625.

A display composed of consecutive fields of odd and even

lines is called an interlaced display and is used to reduce

the rate at which lines have to be transmitted. However,

interlaced displays are effective only with broadcast TV and

generate unacceptable flicker when used to display text in a

computing environment.

Vy Vx

Brightness

CRT

Grid

Deflection

coils Screen
Raster track

One frame

t

Vertical scan
circuit

Horizontal
scan circuit

t

Figure 11.13 Details of the raster-scan display.

video memory (sometimes called VRAM), which holds the
image to be displayed. Figure 11.15 shows the structure of a
dual-ported video memory. We call this memory dual ported
because it can be accessed by both an external CPU and the
display generator simultaneously. The CPU needs to access
the video memory in order to generate and modify the image
being displayed.

One of the problems of video display design is the high rate
at which its pixels are accessed. Consider a super VGA display
with a resolution of 1024 � 768 pixels and a refresh rate
(frame rate) of 70 Hz. In one second, the system must access
1024 � 768 � 70 � 55 050 240 pixels. The time available to
access a single pixel is approximately 1/55 000 000 s � 18 ns,
which is too short for typical video memory. In practice even
less time is available to access pixels, because some time is lost
to left- and right-hand margins and the flyback.

A practical video display system reads a group of pixels
from video memory at a time and then sends them to the
CRT one at a time. Figure 11.15 shows how the video mem-
ory performs this operation. The address from the display
generator selects a row of pixels that are loaded into a shift
register once per row clock. This arrangement means that the
video memory is accessed by the display generator only once
per row, rather than once per pixel. Consequently, the mem-
ory doesn’t require such a low access time. The individual
pixels of a row are read out of the shift register at the dot (i.e.
pixel) rate. A shift register is capable of much higher speed
operation than a memory.

Modern display systems permit more sophisticated
images than the simple on/off dot displays of a few years ago.
Several video memories (called planes) are operated in
parallel, with each memory plane contributing one bit of
the current pixel. If there are q memory planes, the q bits
can be fed to a q-bit digital-to-analog converter to generate
one of 2q levels of brightness (i.e. a gray scale), or they can be
used to select one of 2q different colors (we discuss color later).

PC display systems

You can integrate a PC’s display electronics onto the mother-
board or you can locate the display subsystem on a plug-in

board. High-performance computers use a plug-in display
card because a card can be optimized for video applications.
Figure 11.16 illustrates the organization of a typical display
card. Because it’s necessary to transfer large volumes of data
between the CPU and the video display, PCs have a special
interface slot that provides a very-high-speed data bus
between the display card and the CPU; this is called the
AGP bus.

It is impossible to cover display cards in any depth in this
book. They are very complex devices that contain their own
massively powerful special-purpose processors with 128-bit-
wide internal buses. These processors free the host processor
on the motherboard from display processing.

The video display memory forms part of the display card
and is not normally part of the processor’s memory space.
This means that video and processor memory can be accessed
in parallel. Some low-cost computers integrate the video con-
troller on the motherboard and use system memory for dis-
play memory.

The original PC display was 640 � 480 pixels. Over the
years, the average size of mainstream PC displays has
increased. By the 1990s most PCs had 1024 � 768 displays
and Web applications frequently used 800 � 600 display for-
mats. Today, displays with resolutions of 1280 � 1024 are
common and some LCD displays have a resolution of
1600 � 1200.

In practical terms, a 640 � 480 display can present a page
of rather chunky text. A SXGA display with 1600 � 1200 pix-
els can display two word-processed pages side by side.
Figure 11.17 illustrates the growth in the size (resolution) of
displays for the PC.

11.2.3 Liquid crystal and plasma
displays

For a long time, the CRT remained the most popular display
mechanism. The late 1980s witnessed the rapid growth of a
rival to the CRT, the liquid crystal display or LCD. By the
mid-1990s color LCD displays were widely found in laptop

11.2 CRT, LED, and plasma displays 447

Address of

next group

of pixels

Display generator

address

Dot clock

Address

Data Video memory

Shift register Video DAC
Video to CRT

Video address

CPU

Shift clock

Figure 11.15 The video memory.

BIOS

Dedicated

video

processor

Video memory

Figure 11.16 The video display card.

portables. First-generation LCDs had a resolution of
640 � 480 pixels and they cost much more than CRTs. The
800 � 600 pixel displays were rapidly replaced by the 14-inch
1024 � 768 pixel display. By 2004 top-of-the-range LCDs
had 21-inch screens with resolutions of 1600 � 1200 pixels.

In order to understand how LCDs operate, we need to
introduce polarization. Light is a form of electromagnetic
radiation that shares some of the properties of waves;
for example, the vibration of a light wave is at right angles

to the direction of its propagation. Light from an incandes-
cent bulb is composed of large numbers of individual light
waves, all arranged with their axes of vibration at random.
Such light is said to be unpolarized because the vibrations do
not favor a specific axis. If the vibrations are all along the
same axis, the light is polarized. When light passes through a
polarizing filter, only light whose axis of vibration has a cer-
tain angle is transmitted through the filter. The polarization
of light and the polarizing filter can be used as the basis of
a display system—all you need is a material that can be
polarized on demand.

Unlike the molecules in a solid crystal, which are arranged
in a fixed pattern, the molecules of a liquid are arranged
at random. Liquid crystals are liquid but their molecules have a
preferred alignment; that is, they are liquids that share some of
the properties of solids. The intermolecular forces between
molecules in a liquid crystal are not the same in all directions.

The molecules are arranged at random in
one plane but are organized or structured
in another plane. You can imagine a liquid
crystal as sheets or layers of molecules
where the orientation of molecules within
individual layers is random.

Figure 11.18 illustrates a liquid crystal
cell where the liquid crystal film is placed
between two plates. Each plate has a series
of ridges scored on it that cause the long,
rod-like molecules of the liquid crystal to
align with the ridges. The two plates in
Fig. 11.18 are crossed so that the molecules
gradually rotate through 90� between the
top and bottom surfaces. The polariza-
tion of light passing though such a struc-
ture is rotated by 90�.

A particular group of substances
known as nematic liquid crystals are affected by an electric
field. When an electric field is applied to a nematic liquid
crystal, the molecules twist or rotate under the influence of
the field. Figure 11.19 illustrates the same arrangement in
which an electric field has been applied across the plates. This
field overcomes the preferred alignment of the molecules.

The polarization of light passing though such a twisted liquid
crystal is either unmodified or rotated through 90�, depending
on whether a field is applied across the liquid crystal.

448 Chapter 11 Computer peripherals

POLARIZING MATERIAL

The polarizing materials we use today were first produced by

Edwin Land in 1932. Dr Land embedded crystals of idoquinine

sulfate in a transparent film.These crystals are all oriented in

the same direction and form a grating that allows only light

polarized in a specific direction to pass though the film. If you

place two crossed polarizing films in series with one rotated at

90� with respect to the other, no light passes through the pair,

because one filter stops the passage of vertically polarized light

and the other stops the passage of horizontally polarized light.

Dr Land marketed his filters under the trade name Polaroid

and later went on to develop the instant picture camera that

took pictures and developed the film while in the camera.

Alignment at top

Alignment at bottom

The liquid crystal is sandwiched
between two surfaces with parallel
ridges. The crystals align with these
ridges

Because the ridges are at right angles,
the liquid crystal molecules gradually
rotate through 90° between top
and bottom plates

Figure 11.18 The LCD cell with no applied field.

VGA 640 × 480

SVGA 800 × 600

XGA 1024 × 768

SXGA 1280 × 1024

UXVGA 1600 × 1200

Figure 11.17 Video display formats.

The liquid crystal display mimics the behavior of the CRT;
that is, it creates a pixel that can be switched on or off. All we
have to do is to make a sandwich of a polarizing substance
and a liquid crystal—light will pass through it if the liquid
crystal is polarized in the same plane as the polarizing mater-
ial. Otherwise, the two polarizing filters block the transmis-
sion of light.

We now have all the ingredients of a flat panel display: a
polarizing filter that transmits light polarized in one plane
only and a liquid crystal cell that can rotate the polarization
of light by 90� (or more) electronically. Figure 11.20 demon-
strates the structure and operation of a single-pixel LCD cell.

In Fig. 11.20 light is passed first through a polarizer
arranged with its axis of polarization at 0�, then through the
liquid crystal, and finally through a second polarizer at 90�. If
the liquid crystal does not rotate the plane of polarization of
the light, all the light is blocked by the second polarizer. If,
however, an electrostatic field is applied to the two electrodes,
the liquid crystal rotates the polarization of the light by 90� and
the light passes through the second polarizer. Consequently, a
light placed behind the cell will be visible or invisible.

An entire LCD display is made by creating rows and
columns of cells like those of Fig. 11.20. Each cell is selected
or addressed by applying a voltage to the row and the column
in which it occurs. The voltage is connected to each cell by
depositing transparent conductors on the surface of the glass
sandwich that holds the liquid crystals.

Because an LCD cell can be only on or off, it’s impossible to
achieve directly different levels of light transmission (i.e. you
can display only black or white). However, because you can
rapidly switch a cell on and off, you can generate intermedi-
ate light levels by modulating the time for which a cell trans-
mits light. Typical LCDs can achieve 64 gray levels.

LCD displays can be operated in one of two modes. The
reflective mode relies on the ambient light that falls on the
cell, whereas the transmissive mode uses light that passes
through the cell. Ambient light displays have a very low con-
trast ratio (i.e. there’s not a lot of difference between the on
state and the off state) and are often difficult to read in poor
light, but they do consume very little power indeed.

Reflective LCD displays are found in pocket calculators,
low-cost toys, and some personal organizers. Displays operat-
ing in a transmissive mode using back-lighting are easier to

read, but require a light source (often a
fluorescent tube) that consumes a con-
siderable amount of power. Ultimately,
it’s the power taken by this fluorescent
tube that limits the life of a laptop com-
puter’s battery.

Plasma displays

Plasma technology was invented in the
1960s. The plasma display uses a flat
panel that shares many similarities with
the LCD display. Both displays consist
of an array of pixels that are addressed
by x, y coordinates. The LCD cell uses a
liquid crystal light-gate to switch a beam

11.2 CRT, LED, and plasma displays 449

Direction of
the field

Alignment of ridges at top

Alignment of ridges at bottom

When an electric field is applied
between the plates, the liquid crystal
molecules change their alignment and
line up in the direction of the field

Figure 11.19 The LCD cell with an applied electric field.

Light Light

Cell Electrode

V = 0 V = Polarize

Polarizing filter 0°

(a) The liquid crystal cell has no effect on the

light passing through it. The polarizing filters

stop light passing through them.

(b) The liquid crystal cell rotates the polarization

of the light by 90°. This allows the light to pass

through the lower polarizing filter.

Polarizing filter 90°

Nematic liquid crystal

Polarizing filter 0°

Polarizing filter 90°

Nematic liquid crystal

Figure 11.20 Displaying a

pixel.

of light on or off, whereas the plasma panel uses a tiny flores-
cent light to generate a pixel.

Each pixel in a plasma display is a tiny neon light. A cell
(i.e. pixel) contains a gas at a low pressure. Suppose a voltage
can be applied to a pair of electrodes across the cell.At low volt-
ages, nothing happens. As the voltage increases, electrons are
pulled off the atoms of the gas in the cell by the electric field.As
the voltage increases further, these electrons collide with other
atoms and liberate yet more electrons. At this point an
avalanche effect occurs and a current passes through the cell.

The passage of a current through the gas in a cell generates
light or UV radiation. First-generation plasma display panels
used cells containing neon, which glows orange-red when
energized. By about 2000 color plasma panels were beginning
to appear; these use cells with phosphors, which glow red,

green or blue when bombarded by UV light. By 2003 plasma
panel production was rapidly increasing and plasma panels
offered a realistic alternative to large CRT displays.

Plasma technology offers significant advantages over LCD
technology; in particular, plasma displays have a higher con-
trast ratio (i.e. the ratio of black to white) and plasma panels
are brighter because they operate by generating light rather
than by gating it through filters and a liquid crystal.

Figure 11.21 illustrates the structure of a plasma cell. The
display is constructed from two sheets of glass separated by a
few hundred microns. Ribs are molded on one of the plates to
provide the cell structure. The phosphors that define the
colors are deposited on the surface of the glass sheet. When
the unit is assembled it is filled with xenon at low pressure.

A display is initiated by applying a voltage across two elec-
trodes to break down the gas and start the discharge. Once the

cell has been activated, a lower voltage is
applied to the keep-alive electrode to main-
tain the discharge.

Although plasma panels have advantages
over LCD displays, they also have disadvan-
tages. They consume more power than LCDs,
which can cause problems with unwanted
heat. The phosphors gradually degrade and
the display slowly loses its brightness over a
few years. Finally, the individual cells sufferer
a memory effect. If a cell is continuously ener-
gized for a long time, it can lose some inten-
sity. This means that a static picture can be
burnt onto the screen; you see this effect with

plasma displays in airports where the
ghostly details of some flights are perma-
nently burnt onto the screen.

The contrast ratio of a display is the
ratio of the lightest and darkest parts of
the display. Although many regard the
plasma panel as having a better contrast
ratio than an LCD, the situation is more
complicated. Contrast ratio is affected
not only by the transmissivity of an LCD
or the on/off light ratio of a plasma cell,
but also by ambient light. Figure 11.22
gives the contrast ratios of LCDs and
plasma displays as a function of ambient
light. This demonstrates that the plasma
display is far superior in a dark room but
is less good in bright light.

11.2.4 Drawing lines

Having come so far in describing display
systems, we’d just like to demonstrate
how dots are transformed into lines by

450 Chapter 11 Computer peripherals

Face plate

Back plate

Phosphor

Data electrode

Electrode

Discharge
Rib Rib

Figure 11.21 The plasma display cell.

Dark

room

Living

room
Office Outdoors

Contrast

ratio

500

400

300

200

100

10 100

Plasma

display

LCD

1000

Ambient illumination (cc/mm2)

10 000

Figure 11.22 Contrast LDC and plasma displays.

software. There are two types of image: the bit-mapped image
and the parameterized image. All images in the video memory
are bit mapped in the sense that each pixel in the display cor-
responds to a pixel in the video memory (strictly speaking,
perhaps we should use the term pixel mapped). Photographs
and TV pictures are examples of bit-mapped images.

A parameterized image is defined in terms of an algorithm;
for example, you might describe a line as running from point
(�4, 12) to point (30, 45), or as the equation y � 4x � 25 for
�9 � x � 70. The graphics software is responsible for taking
the parameterized image and converting it into a bit-mapped
image in the display’s memory. We now look at the parame-
terized image because it can be specified with relatively few
bits and it can easily be manipulated.

Figure 11.23 demonstrates how a line is mapped onto a
display by evaluating the equation of the line and then select-

ing every pixel that passes through the line. In a practical sys-
tem, relatively few pixels will lie exactly on the line and it is
necessary to select pixels close to the line.

Jack Bresenham invented a classic line-drawing algorithm
in 1965. A straight line can be expressed as ay � bx � c,
where x and y are variables, and a, b, and c constants that
define the line. The line’s slope is given by b/a and the point at
which the line goes through the x origin is given by y � c/a.
For the sake of simplicity, consider a line that goes through
the origin, so that ay � bx, where a � 1 and b � �0.5.
Figure 11.24 illustrates how the line corresponding to this
equation goes through some pixels (shown black in
Fig. 11.24). All other pixels are either above or below the line.
If the equation of the line is rearranged in the form
ay�bx � 0, the pixels above the line (light in Fig. 11.24) sat-
isfy the relation ay�bx � 0, and those below the line (dark in
Fig. 11.24) satisfy the relation ay�bx � 0.

11.2 CRT, LED, and plasma displays 451

ORGANIC DISPLAYS

Conventional electronics uses semiconductors fabricated from

silicon or compounds such as gallium arsenide. Organic

semiconducting materials have been discovered that have

many interesting properties. Unfortunately, organic

semiconducting materials are often difficult to work with.

They suffer from low electron and hole mobility and are

limited to low-speed applications. From a manufacturing

standpoint, they are sensitive to high temperatures, cannot be

soldered into conventional circuits, and degrade when

exposed to atmospheric moisture and oxygen.

On the other hand, organic electronics have remarkable

commercial potential. They offer the promise of flexible,

paper-thin circuits and displays because they can be deposited

on flexible plastic foils rather than the heavy and fragile glass

surfaces required by LCDs. OLEDs (organic light-emitting

diodes) have far lower power consumption than LCDs.

The OLED pioneered by Kodak in the mid-1980s, is already

in large-scale production.The first applications of this

technology were in automobile instrument panels, digital

watches, and small, low-power displays in mobile phones.

The OLED uses organic materials that have weak intermole-

cular bonds that give them the properties of both semicon-

ductors and insulators. The organic molecules of an OLED are

sandwiched between conductors (anode and cathode).When

a current flows through the molecules of the OLED, electron

and hole charge carriers recombine to give off light in a

process called fluorescence.

OLEDs can be constructed in the form of TOLEDs

(transparent OLEDs) for use in automobile or aircraft wind-

shields to provide ‘head-up’ displays, or in the form of

FOLEDs (flexible OLEDs), which can be bent or rolled into

any shape.

By vertically stacking TOLEDs in layers with each

layer having a different color, you can create the SOLED

(stacked OLED), which forms the basis of a multicolor

display.

Figure 11.23 Drawing a line.

y

x

y = 0.5x

A pixel above the line

A pixel on the line

A pixel below the line

Figure 11.24 The equation of a straight line.

The Bresenham algorithm draws lines with a slope
m � b/a in the range 0 to 1. This algorithm evaluates the sign
of ay�bx at regular intervals. By monitoring the sign of the
function, you can determine whether you are above or below
the line. The line is drawn from its starting point from, say,
left to right. Suppose we select a pixel somewhere along this
line. Bresenham’s algorithm tells us how to go about selecting
the next pixel. Figure 11.25 demonstrates that the new pixel is
selected to be either the pixel directly to the right of the
current pixel or the pixel both above and to the right of
the current pixel.

The algorithm evaluates the value of the function at the mid-
point between the two candidates for the new pixel along the
line. The pixel selected to be the next pixel is the one that lies
closest to the line, as Fig. 11.25 demonstrates. The details of the
Bresenham algorithm are more complex than we’ve described.
The algorithm must handle lines that don’t pass through the
origin and lines that don’t have slope in the range 0 to 1.

The following fragment of pseudocode implements the
Bresenham line-drawing algorithm. Assume that a straight
line with a slope between 0 and 1 is to be drawn from x1, y1 to

x2, x2. At each step in drawing the line we increment the value
of the x coordinate by x_step. The corresponding change in
y is x_step * (y2 � y1)/(x2 � x1).

The Bresenham algorithm eliminates this calculation by
either making or not making a fixed step along the y axis.

If the line’s slope is greater than 1, we can use the same
algorithm by simply swapping x and y.

Antialiasing

The Bresenham and similar algorithms
generate lines that suffer from a step-like
appearance due to the nature of the line-
following mechanism. These steps are
often termed jaggies and spoil the line’s
appearance. The effect of finite pixel
size and jaggies is termed aliasing, a
term taken from the world of signal
processing to indicate the error intro-
duced when analog signals are sampled
at too low a rate to preserve fidelity.
Figure 11.26 demonstrates how we can

reduce the effects of aliasing.
The antialiasing technique in Fig. 11.26 uses pixels

with gray-scale values to create a line that appears less jagged
to the human eye.A pixel that is on the line is made fully black.
Pixels that are partially on the line are displayed as less than
100% black. When the human eye sees the line from a dis-
tance, the eye–brain combination perceives a line free of jag-
gies. That is, the brain averages or smoothes the image.

Now that we’ve looked at how images are created on a
screen, we examine how they are printed on paper.

11.3 The printer

The printer produces a hard-copy output from a computer by
converting digital information into marks on paper. Because
printers rely on precisely machined moving mechanical

452 Chapter 11 Computer peripherals

Next pixel

Line

Line

Midpoint Midpoint

Current pixel Next pixel

Current pixel

(a) Select next pixel up and right. (b) Select next pixel right.

Figure 11.25 Searching along a line.

Figure 11.26 Improving a line by antialiasing.

parts, they are less reliable than the purely electronic devices
such as CRT and LCD displays.

Like all the other subsystems of a PC, the printer has seen a
remarkable drop in its price over the last three decades. In
1976 a slow, unreliable dot matrix printer cost about $800
and by 2005 you could buy a laser printer for $150 and a
photo-quality inkjet printer for about $60.

Printers come in a wider range than other display devices
because there are more printer technologies. Mechanical
printers must perform the following basic functions.

1. Move the paper to a given line.

2. Move the print-head to a given point along a line.

3. Select a character or symbol to be printed.

4. Make a mark on the paper corresponding to that
character.

The first and last of these functions are relatively easy
to explain and are dealt with first. Depending on the
application, paper is available in single sheet, continuous roll,
or fan-fold form. Paper can be moved by friction feed, in
which the paper is trapped between a motor-driven roller
and pressure rollers that apply pressure to the surface of the
paper. As the roller (or platen) moves, the paper is dragged
along with it. An alternative paper feeding mechanism is the
tractor or sprocket feed where a ring of conical pins round
the ends of the platen engage in perforations along the
paper’s edge. As the platen rotates, the paper is accurately and
precisely pulled through the printer. The rise of the PC has
seen the decline of fan-fold paper. Today’s printers found in
the home or small office use plain paper. Some banks and
similar institutions still employ fan-fold paper to print state-
ments (and other pre-printed forms).

11.3.1 Printing a character

Printers are described by the way in which marks on the
paper are made; for example, the matrix printer, the inkjet
printer, and the laser printer. The earliest method of marking
paper used the impact of a hard object against an ink-coated
ribbon, to make an imprint in the shape of the object. This is
how the mechanical office typewriter operates. The tremen-
dous reduction in the cost of laser and inkjet printers in the
early 1990s rendered impact printers obsolete, except in
specialized applications.

Non-impact printers form characters without physically
striking the paper. The thermal printer employs special paper
coated with a material that turns black or blue when heated to
about 110�C. A character is formed by heating a combination
of dots within a matrix of, typically, 7 by 5 points. Thermal
printers are very cheap, virtually silent in operation, and are
used in applications such as printing receipts in mobile ticket

dispensers. A similar printing mechanism uses black paper
coated with a thin film of shiny aluminum. When a needle
electrode is applied to the surface and a large current passed
through it, the aluminum film is locally vaporized to reveal
the dark coating underneath.

Another method of printing involves spraying a fine jet of
ink at the paper. As this technique also includes the way in
which the character is selected and formed, it will be dealt
with in detail later.

The hardware that actually prints the character is called the
print head. There are two classes of print head: the single print
head and the multiple print head found in line printers.
Typewriters employ a fixed print head and the paper and
platen move as each new character is printed. A fixed print
head is unsuitable for high-speed printing, as the platen and
paper have a large mass and hence a high inertia, which
means that the energy required to perform a high-speed car-
riage return would be prohibitive. Because the mass of the
print head is very much less than that of the platen, most
printers are arranged so that the paper stays where it is and
the print head moves along the line.

One way of moving the print head is to attach it to a nut on
a threaded rod (the lead screw). At the end of the rod is a step-
ping motor, which can rotate the rod through a fixed angle at
a time. Each time the rod rotates the print head is moved left
or right (depending on the direction of rotation). In another
arrangement the print head is connected to a belt, moved by
the same technique as the paper itself. The belt passes
between two rollers, one of which moves freely and one of
which is controlled by a stepping motor.

11.3.2 The inkjet printer

Inkjet printers were originally developed for professional
applications and the technology migrated to low-cost PC
applications. The original continuous inkjet owes more to the
CRT for its operation than the impact printer. A fine jet of ink
is emitted from a tiny nozzle to create a high-speed stream of
ink drops. The nozzle is vibrated ultrasonically so that the ink
stream is broken up into individual drops. As each drop
leaves the nozzle it is given an electrical charge, so that the
stream of drops can be deflected electrostatically, just like the
beam of electrons in a CRT. By moving the beam, characters
can be written on to the surface of the paper. The paper is
arranged to be off the central axis of the beam, so that when
the beam is undeflected, the ink drops do not strike the paper
and are collected in a reservoir for re-use.

Continuous inkjet printers are high-speed devices, almost
silent in operation, and are used in high-volume commercial
applications. The original inkjet printer was very expensive
and was regarded with suspicion because it had suffered a
number of problems during its development. In particular,

11.3 The printer 453

they were prone to clogging of the nozzle. Many of the early
problems have now been overcome.

Drop-on-demand printing

The modern drop-on-demand inkjet printer is much simpler
than its continuous jet predecessor. In fact, it’s identical to a
dot matrix printer apart from the print head itself. The print
head that generates the inkjet also includes the ink reservoir.
When the ink supply is exhausted the head assembly is
thrown away and a new head inserted. Although this looks
wasteful, it reduces maintenance requirements and increases
reliability. Some inkjet printers do have permanent print
heads and just change the ink cartridge.

In the 1980s inkjet printers had maximum resolution of
300 dpi (dots per inch) and by the late 1990s inkjet printers
with resolution of over 1400 dpi were available at remarkably
low cost. In 2004 you could buy inkjet printers with a resolu-
tion of 5700 dpi that could print photographs that were
indistinguishable from conventional color photographs.
Later we will look at the color inkjet printer, which created
the mass market in desktop digital photography.

The drop-on-demand print head uses multiple nozzles, one
for each of the dots in a dot matrix array. The head comes into
contact with the paper and there’s no complex ink delivery
and focusing system. The holes or capillary nozzles through
which the ink flows are too small to permit the ink to leak out.

Ink is forced through the holes by creating a shock wave in the
reservoir that expels a drop of ink though the nozzle to
the paper.

One means of creating a shock wave is to place a thin film of
piezoelectric crystal transducer in the side of the reservoir (see
Fig. 11.27(a)). When an electronic field is applied across a
piezoelectric crystal, the crystal flexes. By applying an electrical
pulse across such a crystal in a print head, it flexes and creates
the shock wave that forces a single drop of ink through one of
the holes onto the paper (see Fig. 11.27(b)). Note that there is a
separate crystal for each of the holes in the print head.

454 Chapter 11 Computer peripherals

Exit point

Ink reservoir

Piezoelectric
transducer

Ink
drop Transducer

flexes and
expels ink
drop

(a) Structure of head assembly

(only one nozzle shown).

(b) Voltage pulse applied to

transducer to eject a drop

of ink.

Figure 11.27 Structure of the ink jet.

OLD PRINTER TECHNOLOGIES

Dot matrix printer A dot matrix printer forms characters from

a matrix of dots in much the same way as a CRT.The dots are

generated by a needle pressing an inked ribbon onto the paper

or the needles may be used with spark erosion techniques or

may be replaced by heating elements in a thermal printer.The

dot matrix printer was very popular in the 1970s and 1980s

when it offered the only low-cost means of printing.

Cylinder, golf-ball and daisy-wheel printers The cylinder print

head is a metallic cylinder with symbols embossed around it.The

ribbon and paper are positioned immediately in front of the

cylinder, and a hammer is located behind it.The cylinder is

rotated about its vertical axis and is moved up or down until the

desired symbol is positioned next to the ribbon.A hammer,

driven by a solenoid, then strikes the back of the cylinder, forcing

the symbol at the front onto the paper through the inked ribbon.

The golf-ball head was originally used in IBM electric

typewriters. Characters are embossed on the surface of a

metallic sphere.The golf-ball rotates in the same way as a

cylinder, but is tilted rather than moved up or down to access

different rows of characters. The golf-ball is propelled towards

the ribbon and the paper by a cam mechanism, rather than by

a hammer striking it at the back.

The daisy-wheel printer has a disk with slender petals

arranged around its periphery.An embossed character is

located at the end of each of these spokes.The wheel is made

of plastic or metal and is very lightweight, giving it a low

inertia.A typical daisy wheel has 96 spokes, corresponding to

the upper and lower case subsets of the ISO/ASCII code.

The daisy wheel rotates in the vertical plane in front of the

ribbon.As the wheel rotates, each of the characters passes

between a solenoid-driven hammer and the ribbon.When the

desired character is at a print position, the hammer forces the

spoke against the ribbon to mark the paper.

Line printer A line printer prints a whole line of text at one go.

Line printers are expensive, often produce low quality output,

and are geared to high-volume, high-speed printing.

A metal drum extends along the entire width of the paper

in front of the ribbon.The character set to be printed is

embossed along the circumference of the drum.This character

set is repeated, once for each of the character positions, along

the drum.A typical line printer has 132 character positions

and a set of 64 characters.As the drum rotates, the rings of

characters pass over each of the 132 print positions, and a

complete set of characters passes each printing point once per

revolution.A mark is made on the paper by a hammer hitting

the paper and driving it into the head through the ribbon. By

controlling the instant at which the hammer is energized, any

particular character may be printed.As there is one hammer

per character position, a whole line may be printed during the

course of a single revolution of the drum.

Some inkjet printers employ a fine wire behind the nozzle
to instantaneously heat the ink to 300�C, well above its boil-
ing point, which creates bubble that force out a tiny drop.
These printers are called bubble jet printers.

Although inkjet printers are capable of high resolution
with over 1000 dpi, the ink drops spread out on paper due to
the capillary action of fibers on the paper’s surface (this effect
is called wicking). Specially coated paper considerably
reduces the effect of wicking, although such paper is expen-
sive. Canon’s photo paper has a four-layered structure with a
mirror-finished surface. The outer surface provides an
ink-absorption layer, consisting of ultrafine inorganic
particles. By instantly absorbing the ink, this layer prevents
ink from spreading and preserves the round ink dots. The
second layer reflects light. The third layer is the same material
used in conventional photographic paper. The bottom layer
is a back coating, which counteracts the stresses placed on the
paper by the upper layers, to prevent curling.

11.3.3 The laser printer

The dot matrix printer brought word processing to the masses
because it produced acceptable quality text at a low cost. The
laser printer has now brought the ability to produce high-quality
text and graphics to those who, only a few years ago, could
afford no more than a medium-quality dot matrix printer. In
fact, the quality of the laser printer is sufficiently high to enable
a small office to create artwork similar to that once produced by
the professional typesetter; that is, desktop publishing (DTP).

The laser printer is just a photocopier specially modified to
accept input from a host computer. The principle of the pho-
tocopier and the laser printer is both elegant and simple. At

the heart of a laser printer lies a precisely machined drum,
which is as wide as the sheet of paper to be printed. The secret
of the drum lies in its selenium coating.7 Selenium is an
electrical insulator with an important property—when
selenium is illuminated by light, it becomes conductive.

A photocopier works by first charging up the surface of the
drum to a very high electrostatic potential (typically 1000 V
with respect to ground). By means of a complex arrangement
of lenses and mirrors, the original to be copied is scanned by a
very bright light and the image projected onto the rotating
drum. After one rotation, the drum contains an invisible
image of the original document. If the image is invisible we are
entitled to ask ourselves, ‘What form does this image take?’
Black regions of the source document reflect little light and
the corresponding regions on the drum receive no light. The
selenium coating in these regions is not illuminated, doesn’t
become conducting, and therefore retains its electrical charge.

Light regions of the document reflect light onto the drum,
causing the coating to become conducting and to lose its
charge. In other words, the image on the drum is painted with
an electrostatic charge, ranging from high voltage (black) to
zero voltage (white).

One of the effects of an electrostatic charge is its ability to
attract nearby light objects. In the next step the drum is
rotated in close proximity to a very fine black powder called
the toner. Consequently, the toner is attracted to those parts
of the drum with a high charge. Now the drum contains a
true positive image of the original. The image is a positive
image because black areas on the original are highly charged
and pick up the black toner.

11.3 The printer 455

XEROGRAPHY

Xerography has a long history. In 1935 a patent attorney,

Carlton Chester, had an idea for a cheap copying process that

didn’t require the wet and messy chemicals then used in

photography.While looking for a dry process that allowed

photocopying, Chester turned his attention to the

phenomenon of photoconductivity (i.e. the relationship

between light and the electrical conductivity of materials). He

was awarded a patent on electrophotography in 1937.

Chester’s first experiments used a metal plate covered with

sulfur (a photoconductive material).The sulfur was electrically

charged by rubbing it, and then a glass plate was placed over it.

Chester wrote on the glass. In the next step, a bright light was

shone on the assembly for several seconds.The effect of the

light was to cause the sulfur to conduct and permit the electro-

static charge to leak away to the metal plate under the sulfur.

The glass was removed and a fine power dusted on the sul-

fur-coated plate.This powder clung to the regions that

retained their charge because they hadn’t been illuminated by

the light (i.e. the writing). Finally, a sheet of waxed paper was

placed on the powder-covered plate and pressed against it.

A copy of the writing on the glass plate was now impressed

on the wax paper.

It took until 1944 for Chester to find someone who was

interested in his invention—the Battelle Memorial Institute.

Battelle’s scientists rapidly discovered that selenium had far

better photoconductive properties than sulfur and that a

fine-pigmented resin could easily be fused onto the surface of

paper to create the copy.

Battelle develop the process further in conjunction with the

Haloid Company.They decided that Chester’s electrophotog-

raphy was too cumbersome a term and asked a professor of

Greek to come up with a better name. He suggested ‘dry

writing’ because the process did not involve liquids. The

corresponding Greek word was xerography. Haloid changed its

name to Haloid Xerox in 1958 and then to the Xerox

Corporation in 1961.

7 Modern drums don’t use selenium; they use complex organic sub-
stances that have superior photo-electric properties.

The drum is next rotated in contact with paper that has an
even higher electrostatic charge. The charge on the paper
causes the toner to transfer itself from the drum to the paper.
Finally, the surface of the paper is heat-treated to fix the toner
on to it. Unfortunately, not all toner is transferred from the
drum to the paper. Residual toner is scraped off the drum by
rotating it in contact with a very fine blade. Eventually, the
drum becomes scratched or the selenium no longer functions
properly and it must be replaced. In contrast with other print-
ers, the laser printer requires the periodic replacement of
some of its major components. Low-cost laser printers some-
times combine the drum and the toner, which means that the
entire drum assembly is thrown away once the toner has been
exhausted. This approach to printer construction reduces the
cost of maintenance while increasing the cost of consumables.

Unlike the photocopier, the laser printer has no optical
imaging system. The image is written directly onto the
drum by means of an electromechanical system. As the drum
rotates, an image is written onto it line by line in very much the
same way that a television picture is formed in a cathode ray
tube.

Figure 11.28(a) illustrates the organization of the laser
scanner and Fig. 11.28(b) provides details of the scanning
mechanism. A low-power semiconductor laser and optical
system produces a very fine spot of laser light. By either vary-
ing the intensity of the current to the laser or by passing the
beam through a liquid crystal whose opacity is controlled
electronically (i.e. modulated), the intensity of the light spot
falling on the drum can be varied.

The light beam strikes a multi-sided rotating mirror. As the
mirror turret rotates, the side currently in the path of the light
beam sweeps the beam across the surface of the selenium-
coated drum. By modulating the light as the beam sweeps

across the drum, a single line is
drawn. This scanning process is
rather like a raster-scan mechanism
found in a CRT display. After a line
has been drawn, the next mirror in
the rotating turret is in place and a
new line is drawn below the previ-
ous line, because the selenium
drum has moved by one line.

The combined motions of the
rotating mirror turret and the
rotating selenium drum allow the
laser beam to scan the entire sur-
face of the selenium drum. Of
course, the optical circuits required
to perform the scanning are very
precise indeed. The resolution
imposed by the optics and the
laser beam size provided low-cost
first-generation laser printers with a
resolution of about 300 dots per
inch.Such a resolution is suitable for
moderately high-quality text but
is not entirely suitable for high-
quality graphics. Second-generation
laser printers with resolutions of
600 or 1200 dpi became available in
the mid-1990s.

Not all laser printers employ the
same optical arrangement, because
the rotating mirror turret is
complex and requires careful
alignment. An alternative tech-
nique designed by Epson uses an
incandescent light source behind

456 Chapter 11 Computer peripherals

Cleaning blade

(removes unused toner)

Corona wire

(chares drum)

Light from

optical system

Toner

(a)

(b)

Mirror

Heater

Drum

Modulator

Laser light

source

Feeder paper

hopper

Printed paper

hopper

Rotating mirror drum

Drum

Direction

of scan

Figure 11.28 The laser printer.

a stationary liquid crystal shutter. The liquid crystal shutter
has a linear array of 2000 dots, each of which can be turned
on and off to build up a single line across the drum. By writ-
ing a complete line in one operation, the only major moving
part involved in the scanning process is the photosensitive
drum itself. Technically, a laser printer without a laser scan-
ner isn’t really a laser printer. However, the term laser printer
is used to describe any printer that generates an image by
using an electrostatic charge to deposit a fine powder (the
toner) on paper.

Other ways of avoiding the complex rotating drum mirror
turret are a linear array of light-emitting diodes (LEDs) in an
arrangement similar to the liquid crystal shutter, or a CRT
projection technique that uses a CRT to project a line onto
the photosensitive drum.

Laser printers can print dot-map pictures; that is, each
pixel of the picture is assigned a bit in the printer’s memory.
A linear resolution of 300 dpi requires 300 �300 � 90 000
dots/square inch. A sheet of paper measuring 11 inches by
8 inches (i.e. 88 square inches) can hold up to 88 � 90
000 � 7 720 000 dots or just under 1 Mbyte of storage.

Having introduced the principles of monochrome displays
and printers, we are going to look at how color displays and
printers are constructed.

11.4 Color displays and printers

It’s been possible to print color images for a long time,
although color printers were astronomically expensive until
relatively recently. Low-cost printers began to appear in the
early 1990s (largely based on inkjet technology) although the
quality was suitable only for draft work. By the late 1990s
high-quality low-cost color printers were widely available

and the new term photorealistic was coined to describe that
they were almost able to match the quality of color pho-
tographs. Before we discuss color printers we need to say a
little about the nature of color.

11.4.1 Theory of color

Light is another type of electromagnetic radiation just like
X-rays and radio waves. The eye is sensitive to electromag-
netic radiation in the visible spectrum and light waves of dif-
ferent frequencies are perceived as different colors. This
visible spectrum extends from violet to red (i.e. wavelengths
from 400 nm to 700 nm). Frequencies lower than red are
called infra-red and higher than violet are called ultra-violet.
Both these frequencies are invisible to the human eye,
although they play important roles in our life.

A single frequency has a pure color or hue and we perceive
its intensity in terms of is brightness. In practice, we see few
pure colors in everyday life. Most light sources contain visible
radiation over a broad spectrum. If a light source contains
approximately equal amounts of radiation across the
entire visual spectrum we perceive the effect as white light.
In practice light often consists of a mixture of white light
together with light containing a much narrower range of fre-
quencies. The term saturation describes the ratio of colored
light to white light; for example, pink is unsaturated red at
about 700 nm plus white light. An unsaturated color is some-
times referred to as a pastel shade.

Most light sources contain a broad range of frequencies
(e.g. sunlight and light from an incandescent lamp). Sources
that generate a narrow band of visible frequencies are gas dis-
charge lamps and LEDs; for example, the sodium light used
to illuminate streets at night emits light with two very closely
spaced wavelengths at about 580 nm (i.e. yellow).

11.4 Color displays and printers 457

COLOR TERMINOLOGY

Hue This describes the color of an object. The hue is largely

dependent on the dominant wavelength of light emitted from

or reflected by an object.

Saturation This describes the strength of a color.A color may

be pure or it may be blended with white light; for example,

pink is red blended with white.

Luminance This measures the intensity of light per unit area

of its source.

Gamma This expresses the contrast range of an image.

Color space This provides a means of encoding the color.The

following color spaces are used to define the color of objects.

RGB The red, green, blue color space defines a color as the

amount of its red, blue, and green components. This color

space is based on the additive properties of colors.

CMY The cyan, magenta, yellow color space is used in

situations in which color is applied to a white background

such as paper. For example, an object appears yellow

because it absorbs blue but reflects red and green. Suppose

you wanted to create blue using a CMY color space. Blue is

white light with red and green subtracted. Because green is

absorbed by cyan and red is absorbed by magenta, combin-

ing cyan and magenta leads to the absorption of green and

red; that is, blue.

HSB The HSB model defines light in the way we perceive it

(H � hue or color, S � saturation, B � brightness or intensity).

Pantone matching system This is an entirely arbitrary and a

proprietary commercial system.A very large number of colors

are defined and given reference numbers.You define a color

by matching it against the colors in the Pantone system.

Whatever jumble of frequencies the eye detects, the brain
perceives a single color. Suppose a particular light source con-
tains the colors red and green. We don’t see these two colors,
we perceive a single color whose frequency is intermediate
between red and green; that is, we see yellow. By mixing vari-
ous quantities of the three primary colors red, green, and blue
we can create any other color. Moreover, because we can add
red, green, and blue to create white light, we can control the
level of saturation.

11.4.2 Color CRTs

The majority of general-purpose computers employ color
displays—partially because we see the world in color, and
partially because we already have color TV and the cinema. In
principle the operation of a color CRT is very simple as
Fig. 11.29 demonstrates. The color CRT is similar to a mono-
chrome CRT. Instead of having a single gun assembly, the
color CRT has three gun assemblies, one for each of the pri-
mary colors red, green, and blue (Fig. 11.29(a)). The focusing
system aims each beam at the same spot on the screen and the
three beams are deflected in unison by the scanning coils.

The key to the color CRT is the shadow mask located
immediately in front of the screen. The shadow mask is made of
metal and has a very large number of tiny holes punched in it
(Fig. 11.29(b)). Millions of tiny dots of phosphor are deposited
behind the shadow mask on the surface of the CRT’s screen.
These phosphors are arranged as triplets. One dot produces a

green light when bombarded by
electrons, one a red light, and one a blue
light. Because of the geometry of the
shadow mask, the phosphor dots on the
screen, and the electron guns, the elec-
tron beam from the green gun can hit
only green phosphors (the red and blue
phosphors are shielded by the shadow
mask). The same is true for beams from
the other two guns. Some CRTs employ
a different type of shadow mask; for
example, the trinitron shadow mask
employs vertical stripes rather than dots
to generate a brighter image.

By applying three independent con-
trol voltages to each of the three guns,
you can control the intensities of each
of the beams. Consequently, you can
control the intensity of each of the
three pixels—red, green, and blue. Any
color can be generated by adding suit-
able intensities of green, red, and blue
light, and, therefore, the human eye
sees each pixel not as three different
colors, but as a single color.

Figure 11.30 illustrates the interface between a color CRT and
a computer which lets you generate a large number of colors
specified by relatively few bits. The output of the video memory
specifies the current pixel’s attributes. In the example of
Fig. 11.30, the pixel is defined by an 8-bit integer that provides
one of 28 � 256 possible values. The 8-bit pixel value is sent to a
look-up table that produces one of 256 12-bit outputs; that is,
each of the 256 locations contains a 12-bit value. Each 12-bit
output is divided into three 4-bit fields representing the pri-
mary colors red, green, and blue. In turn, each of these 4-bit val-
ues is fed to a DAC to generate one of 24 � 16 levels of
brightness. This system can select 1 of 16 levels of red,
1 of 16 levels of green, and 1 of 16 levels of blue. The pixel can
therefore have any one of 16 � 16 � 16 � 4096 values
(i.e. colors).

An 8-bit pixel code from the video memory can perform
the apparently impossible act of selecting one of 4096 differ-
ent pixels. The paradox is resolved by the nature of the look-
up table. It has 256 entries, each of which can select one of
4096 colors; that is, at any instant the look-up table allows the
display to address 256 colors out of a palette of 4096 colors.
The look-up table is loaded with the values appropriate to the
application being run.

Because the surface of the screen is made up of dots, the res-
olution of a color CRT is limited—the smallest element that
can be displayed on the screen is a single dot. The resolution of
color CRTs is often specified in terms of the pitch or distance
between clusters of the three dots. Typical CRT resolutions lie

458 Chapter 11 Computer peripherals

Blue gun

Green

GreenBlue

Blue
Red Red

Shadow mask

Red gun

Green gun

(a) Three independent electron guns produce

three electron beams.

(b) Each beam hits only its own phosphors.

Figure 11.29 Generating a color image.

8-bit pixel

value

Video memory

system

Look-up

table

4 bits

4 bits

4 bits

4-bit DAC

Red

4-bit DAC

Green

4-bit DAC

Blue

Red signal

to CRT

Green signal

to CRT

Blue signal

to CRT

256 entries each holding

a 12-bit value

Figure 11.30 The color look-up table.

in the range 0.28 to 0.31 mm. Table 11.2 provides relates
image size to resolution for some popular configurations.

Color LCDs

Color LCDs operate on a similar principle to the color CRT
and generate a color pixel from three cells with three primary
colors. The individual cells of a color LCD display include
red, green, or blue filters to transmit light of only one color.
As in the case of the color CRT, the three primary colors are
clustered to enable other colors to be synthesized by combin-
ing red, green, or blue. Color LCD displays are divided into
two types: active and passive. Both active and passive displays
employ the same types of LCD cells—the difference lies in the
ways in which the individual cells of a matrix are selected.

The so-called passive liquid crystal matrix of Fig. 11.31
(this arrangement applies to both monochrome and color
displays) applies a large pulse to all the cells (i.e. pixels) of a
given row. This pulse is marked 2V in Fig. 11.31 and is cur-
rently applied to row 2. A smaller pulse that may be either
positive or negative is applied to each of the columns in the
array. The voltage from the row and the column pulses are
applied across each cell in a row, and are summed to either

polarize the cell or to leave it unpolarized.
This arrangement displays an entire row of
pixels at a time. Once a row has been drawn, a
pulse is applied to the next row, and so on.

Each cell is connected to one row line and
to one column line. In Fig. 11.32 a pulse of
level 2V is applied to one terminal of all the
cells in row 2 of the matrix. A pulse of
level �V or �V is then applied in turn to
each of the column cells, 0, 1, 2, and 3. The
voltage across each cell in the matrix must be
either 0 (neither row nor column selected), V
(row selected with �2V, column selected
with �V), or 3V (row selected with �2V, col-
umn selected with �V). The matrix is
designed so that the 3V pulse across a cell is
sufficient to polarize the liquid crystal and
turn the cell on.

The passive matrix suffers from cross-talk
caused by the pulse on one row leaking into
cells on adjacent rows. Furthermore, if the
matrix has m rows, each row is driven (i.e.
accessed) for only 1/m of the available time.
These limitations produce a display that has
low contrast, suffers from smearing when mov-
ing images are displayed, and has a less bright
image than the TFT active matrix alternative
to be described next. Although passive
matrix displays were popular in the 1990s,
improvements in active matrix manufacturing
technology have rendered them obsolete.

11.4 Color displays and printers 459

Monitor size Image size Resolution Dots

(pixels) per inch

15-inch 270 � 200 mm 640 � 480 60

800 � 600 75

1024 � 768 96

17-inch 315 � 240 mm 640 � 480 51

800 � 600 63

1024 � 768 85

21-inch 385 � 285 mm 640 � 480 42

800 � 600 52

1024 � 768 85

1280 � 1024 84

1600 � 1200 106

Table 11.2 Monitor size, image size, and resolution.

The voltage across this cell is

2V – V = V

The voltage across this cell is

2V + V = 3V

Selected cells

+V

2V

row 0

row 1

row 2

col 0 col 1 col 2 col 3

row 3

–V

Figure 11.31 The passive matrix.

Column line

Row line TFT TFT TFT

TFT TFT TFT

Cell Cell Cell

Cell

Cell Cell Cell

Detail

Transistor

switch

Figure 11.32 The active matrix.

A better arrangement is the active matrix of Fig. 11.32; the
cell structure is exactly the same as that of a passive display,
only the means of addressing a cell is different. A transistor,
which is simply an electronic switch, is located at the junction of
each row and column line; that is, there is one transistor for
each cell. The transistor can be turned on or off by applying a
pulse to its row and column lines. However, the electrical
capacitance of each cell is able to store a charge and maintain
the cell in the on or off condition while the matrix is address-
ing another transistor. That is, a transistor can be accessed and
turned on or off, and that transistor will maintain its state until
the next time it is accessed. The active matrix array produces a
sharper and more vivid picture. The lack of cross-talk between
adjacent cells means that the active matrix suffers less smearing
than the passive array equivalent.

The transistors that perform the switching are not part of a
silicon chip but are laid down in thin films on a substrate—
hence the name TFT (thin film transistor). It takes
3 � 1024 � 768 thin film transistors to make a XVGA active
matrix display, and, if just a few of these transistors are faulty,
the entire display has to be rejected. The manufacturing yield
of good arrays is not 100%, which means that the cost of a
TFT active matrix array is considerably higher than the
passive equivalent.

11.4.3 Color printers

Color printers don’t employ the same RGB (red, green, blue)
principle used by the color CRT. Suppose we look at an object
that we call red, which is illuminated by white light. The red
object absorbs part of the white light and reflects some of the
light to the observer. If all the light is reflected we call the
object white and if all the light is absorbed we call the object
black. However, if all frequencies are absorbed except red, we
call if the object red. In other words, if we wish to print images
we have to consider what light is absorbed rather than what
light is generated (as in a CRT).

The RGB model is called additive because a color is created
by adding three primary colors. The CMY (cyan, magenta,
yellow) color model used in printing is called subtractive
because a color is generated by subtracting the appropriate
components from white light. Cyan (blue–green) is the
absence of red, magenta the absence of green, and yellow the
absence of blue. Mixing equal amounts of cyan, magenta, and
yellow subtracts all colors from white light to leave black. To
create a color such as purple the printer generates a pattern of

magenta and cyan dots. The saturation can be controlled by
leaving some of the underlying white paper showing through.

Adding the three subtractive primaries together doesn’t
produce a satisfactory black; it creates a dark muddy looking
color.Although the human eye is not terribly sensitive to slight
color shifts, it is very sensitive to any color shift in black (black
must be true black). Printers use a four-color model CMYK,
where K indicates black. Including a pure black as well as the
three subtractive primaries considerably improves the image.

Printing color is much more difficult than displaying it on
a CRT. Each of the red, green, and blue beams can be modu-
lated to create an infinite range of colors (although, in
practice, a digital system is limited to a finite number of
discrete colors). When you print an image on paper, you have
relatively little control over the size of the dot. Moreover, it’s
not easy to ensure that the dots created from the different
subtractive primaries are correctly lined up (or registered).
You can generate different levels or shades of a color by dither-
ing (a technique that can also be applied to black and white
printers to create shades of gray).

Dithering operates by dividing the print area into an array
of, say, 2-by-2 matrices of 4 dots. Figure 11.33 provides a sim-
ple example of dithering in black and white. Because the dots
in the matrices are so small, the eye perceives a composite
light level and the effect is to create one of five levels of gray
from black to white.

Dithering isn’t free. If you take a 3 � 3 matrix to provide
10 levels of intensity, the effective resolution of an image is
divided by three; for example, a 300 dpi printer can provide a
resolution of 300 dpi or a resolution of 100 dpi with a 10-level
gray scale. In other words, there’s a trade-off between resolu-
tion and the range of tones that can be depicted.

The principle of dithering can be extended to error diffusion
where dots are placed at random over a much larger area than
the 2 by 2 matrix. This technique is suited to printing areas of
color that require subtle changes of gradation (e.g. skin tones).

An alternative approach to dithering that provides more
tones without reducing resolution is to increase the number
of colors. This technique was introduced by some manufac-
turers to provide the photorealism required to print the out-
put from digital cameras. One enhanced subtractive inkjet
printer uses six inks: cyan, magenta, yellow, light magenta,
light cyan, and black. The lighter colors make it possible to
render skin tones more realistically. Another printer uses
cyan, magenta, yellow, two types of black, plus red and blue.

Color inkjet printers

The color inkjet printer is virtually the same as the black and
white counterpart. The only difference lies in the multiple
heads. Typical color printers use a separate black cartridge
and a combined color cartridge. Because the head and ink
reservoirs form a combined unit, the cartridge has to be
thrown away when the first of the color inks runs out. Some

460 Chapter 11 Computer peripherals

0% black 25% black 50% black 75% black 100% black

Figure 11.33 Dithering.

printers use separate print heads and reservoirs and only the
ink cartridge need be replaced.

Inkjet printer ink can be dye based or pigment based. A dye
is a soluble color dissolved in a solvent and is used by most
printers. A pigment is a tiny insoluble particle that is carried in
suspension. Pigment-based inks are superior to dyes because
pigments are more resistant to fading and can provide more
highly saturated colors. Pigment-based inks have less favorable
characteristics from the point of view of the designer; for
example, the pigments can separate out of the liquid.

Inkjet printers can be prone to banding, an effect where
horizontal marks appear across the paper due to uneven ink
distribution from the print head.

Apart from its cost, the advantage of color inkjet printing
is the bright, highly saturated colors. However, good results
can be achieved only with suitable paper. The type of plain
paper used in laser printers gives poor results. The drops of
ink hit the paper and soak into its surface to mix with adja-
cent drops. This mixing effect reduces the brightness and
quality of the colors.

By about 2000, advances in inkjet printing, ink technology,
and inkjet papers and the advent of the digital camera had
begun to wipe out the large photographic industry based on
traditional silver halide photographic paper, the optical camera,
and the developing, enlarging, and printing process. Moreover,
the availability of digital-image processing programs such as
Photoshop gave amateurs a level of control over the photo-
graphic image that only professionals had a few years ago.

Thermal wax and dye sublimation printers

The thermal wax printer is rather like the dot matrix printer
with heat-sensitive paper. The print head extends the length
of the paper and contains a matrix of thousands of tiny pixel-
size heaters. Instead of a ribbon impregnated with ink, a sheet
of material coated with colored wax is placed between the
head and the paper. When the individual elements are heated
to about 80�C, the wax is melted and sticks to the paper. An
entire line of dots is printed at a time. The paper must make
three or more passes under the print head to print dots in
each of the primary (subtractive) colors. The sheet contain-
ing the wax consists of a series of bands of color.

Dye sublimation is similar to the thermal wax technique
but is more expensive and is capable of a higher quality result.
Electrical elements in the print head are heated to 400�C,
which vaporizes the wax. These special waxes undergo
sublimation when heated; that is, they go directly from the
solid state to the gaseous state without passing through
the liquid state.

By controlling the amount of heating, the quantity of wax
transferred to the paper can be modified making it possible to
generate precise colors without having to resort to techniques
such as dithering. Unlike the thermal wax process, which
deposits drops of wax on the paper, dye sublimation

impregnates the paper with the wax. Dye sublimation can
create very-high-quality images on special paper. The cost of
the consumables (waxed sheets and special paper) make sub-
limation printing much more expensive than inkjet printing.

The phase-change printer

The phase-change printer falls somewhere between the inkjet
printer and the thermal wax printer. The basic organization is
that of the inkjet printer. The fundamental difference is that
the print head contains a wax that is heated to about 90�C to
keep it in liquid form. The wax is bought in the form of sticks,
which are loaded into the print head.

The print head itself uses a piezo-electric crystal to create a
pressure wave that expels a drop of the molten wax onto the
paper. The drops freeze on hitting the paper, causing them to
adhere well without spreading out. You can print highly satu-
rated colors on plain paper. Because the paper is covered with
lumpy drops, some phase-change printers pass the paper
through pressure rollers to flatten the drops.

The color laser

Color laser printers are almost identical to monochrome
printers. Instead of using a black toner, they use separate
toners in each of the subtractive primary colors. The image is
scanned onto a drum using a toner with the first primary
color and then transferred to paper. The same process is
repeated three more times using a different color toner after
each scan. Advances in color laser technology have produced
color lasers that cost as much today in real terms as mono-
chrome lasers did a decade ago. However, the consumables
for color lasers (i.e. three tones plus a block tone) are still
expensive.

11.5 Other peripherals

We’ve looked at several peripherals found in a personal com-
puter. We now describe some of the peripherals that can be
connected to a digital computer. Computers are used mainly
in embedded control systems—the PC is just the tip of a very
large iceberg. Embedded controllers take information from
the outside world, process it, and control something. We
begin by looking at some of the sensors that can measure
properties such as temperature and pressure.

11.5.1 Measuring position and
movement

The most fundamental measurement is that of position; for
example, the position of the gas pedals in a car or the position
of the arm in a crane. Position is measured either as rotation
(i.e. the position of a dial or knob) or as a linear, position (i.e.
the position along a line).

11.5 Other peripherals 461

Figure 11.34(a) describes a simple position transducer
called the potentiometer, which can measure linear or angular
movement. An arm or wiper moves along the surface or a
resistor with a voltage of V between its ends. The voltage
picked up by the sliding arm is proportional to its position
along the resistor, The potentiometer is cheap, gives a large
electrical output that is easy to measure, but is unreliable
because it wears out due to friction. Another position
transducer uses a magnetic field. Figure 11.34(b) demon-
strates a transformer where one coil generates a magnetic field
and the other coil detects it. The amount of magnetic field
picked up is dependent on the position of the magnetic core.

Measuring very small distances requires a device that gen-
erates a signal when it moved by even the tiniest amount. The
strain gauge consists of a zigzag path of wire embedded in a
substrate such as plastic. When the strain gauge is deformed
by bending, the resistance of the wire increases slightly
because it has been stretched. The change in resistance in
response to strain is usually very small indeed—the resistance
of a 200 � strain gauge might change by only a few millionths
of an ohm. A strain gauge might be bonded to, say, the wing
of an aircraft to measure how much it flexes in flight.

An alternative to the resistive strain gauge employs the
piezo-electric effect; certain crystals generate a voltage across
their faces when they are flexed.

A modern form of the pressure sensor is constructed with
semiconductor technology. Four resistors are deposited on a
1 mm diameter wafer of silicon in the form of a bridge. When
the silicon flexes due to stress, the voltage across two of the ter-
minals changes. If one side of the wafer is adjacent to a vacuum
(created beneath the silicon disk during the manufacturing
process), the device measures the absolute pressure on the
other side. This type of pressure transducer is very versatile and
can measure very tiny pressures or very high pressures. It is
used in some electronic engine management systems to mea-
sure the manifold pressure, which is required to calculate
engine power and to control optimum spark timing.

Velocity can be measured either indirectly by measuring
the rate of change of position, or more directly with a

transducer or tachometer. A simple means of measuring
velocity is to measure the speed of a magnet traveling down a
long coil because the voltage generated is proportional to the
velocity of the magnet. A tachometer measures speed of rota-
tion (e.g. the speed of a car’s wheels) by either an optical disc
or a toothed wheel and proximity sensor (see Fig. 11.35).

You can measure the speed of a liquid or a gas by placing a
turbine in the path of the liquid and then using a tachometer
to measure the speed of the turbine. Figure 11.36 describes an
alternative flowmeter that measures the flow rate of a liquid
or gas by using the pressure differential between a pipe and a
constriction.

An interesting flow rate device is the thermal anemometer. If
your coffee is too hot, you blow on it because the forced airflow
carries heat away from the coffee. The thermal anemometer
uses a heater in a tube though which a gas is flowing. If the tem-
perature of the heating element is kept constant, it requires
more current to keep the heater at a constant temperature as
the gas flow increases. By measuring the current being supplied
to the heater, you can determine the gas flow.

Finally, you can measure the rate of flow of a liquid by
ultrasonic techniques, which are non-invasive and do not
require direct contact with the fluid. A beam of ultrasound is

462 Chapter 11 Computer peripherals

(a) The angle-sensing potentiometer. (b) The magnetic position sensor.

Wiper
0 V

+V

Vout

Resistor

Three coils
Primary

coil

AC source

Secondary

coil

High permeability

nickel iron core Output

Figure 11.34 Position transducers.

Toothed metallic

wheel

Shaft connecting

to rotating device
Magnetic core

Coil

Output signal

Figure 11.35 The tachometer.

directed through the pipe into the flowing liquid. You can
measure the rate of flow either by determining the transit
time of the ultrasound beam or by measuring the Doppler
frequency shift in the sound reflected by particles and bub-
bles in the liquid. This is the technique used by ultrasound
scanners to measure the flow of blood within the heart.

11.5.2 Measuring temperature

One of the most common sensors is the temperature probe.
The everyday temperature transducer is the thermometer,
which converts the temperature into the length of a column
of liquid. Mercury or alcohol in a glass bulb expands with
temperature and is driven up a fine transparent tube against
a scale calibrated in degrees.

Computers don’t measure temperature via the thermal
expansion of a liquid. There are several ways of converting
temperature into a voltage that can be measured by an ana-
log-to-digital converter. The first is the thermoelectric effect in
which two wires of dissimilar metals are connected together
to form a thermocouple (e.g. copper and constantan, or
chromel and alumel). If the junction between the wires is
heated, a voltage appears across it (about 50 � V/�C). This
technique is used to measure a wide range of temperatures;
for example, a platinum/platinum–rhodium alloy thermo-
couple can measure furnace temperatures up to 1500�C. The
thermocouple operating range is about �270�C to 2300�C,

although no single thermocouple can
cover this whole range.

Figure 11.37 illustrates the struc-
ture of a temperature-compensated
thermocouple where the potential
difference between a junction com-
posed of chromel and alumel alloy
wires is measured. Because these two
wires must be connected to the mea-
suring system, two further junctions
are used and put in an ice bath to pro-
vide a reference junction.

The output of a thermocouple is
not a linear function of temperature.
Thermocouple manufacturers pub-
lish algorithms and the associated
coefficients to convert the output of a
thermocouple into an accurate tem-
perature.

Another temperature-measuring
technique uses the resistance of a
metal that changes with tempera-
ture. A platinum resistance tempera-
ture detector (RTD) has a resistance
of 10 � that changes by 0.385%/�C.

The RTD is more linear than the thermocouple but is
unsuited to the measurement of temperatures over about
800�C.

Semiconductor devices, called thermistors, have an electrical
resistance that varies with temperature. These devices are very
sensitive to small changes in temperature. The temperature
coefficient is negative so that the thermistor conducts more as
the temperature rises. Because of their high sensitivity (e.g. a
change of 100 �/�C) thermistors can be used to measure tem-
perature precisely over a small range. Unfortunately, the ther-
mistor cannot be used above about 200� C.

Another temperature-measuring element is the band-gap
device, which employs a semiconductor junction (i.e. the region
between two differently doped8 areas of silicon in a transistor).
The band-gap detector operates over a relatively narrow range
of temperatures but can provide an accuracy of 0.1�C. All the
temperature sensors we’ve just described can be made very
small indeed (e.g. 1 mm or less across).

Yet another means of measuring temperature exploits the
radiation from a body. Any body whose temperature is above
absolute zero radiates energy in the infra-red region of the spec-
trum. Figure 11.38 gives the radiation intensity produced by an
ideal object, called a black body, as a function of temperature
and radiation wavelength. A perfect black body generates

11.5 Other peripherals 463

Flow of

gas or

liquid

Pressure

differential

Throat

(constriction)
ExitExtrance

Figure 11.36 The Venturi flowmeter.

Digital

output

to CPU

Analog-to-

digital converter

Copper

Copper Chromel

Alumel

Temperature-

measuring junction

Ice bath Compensating

junctions

Figure 11.37 Temperature-compensated thermocouple.

8 Doping a semiconductor refers to the addition of an element in
amounts as low as one part in 106 to change the semiconductor’s electri-
cal properties.

radiation proportional to the fourth power of the body’s tem-
perature (Stefan’s law) and the wavelength of the radiation with
the greatest amplitude falls as the temperature rises (Wein’s law).
Once the temperature rises sufficiently, the radiation falls into
the visible band and we say that the object has become red hot.

Real materials don’t have ideal black body radiation char-
acteristics. If the emissivity9 of a body is less than that of a
black body, it is called a gray body. If the emissivity varies with
temperature, it is called a non-gray body.

The temperature of a body can be measured by examining
the radiation it radiates. This temperature measurement
technique is non-contact because it does not affect or disturb
the temperature of the object whose temperature is being
recorded. Moreover, you can measure the temperature of
moving objects. In recent years this technique has been used
to measure human body temperatures by measuring the
radiation produced inside the ear.

11.5.3 Measuring light

Light intensity has been measured for hundreds of years.When
it was noticed that compounds of silver and iodine darken on

exposure to light, the effect was quickly exploited to create
photography. In the early 1900s Max Planck suggested that
light consists of individual packets containing a discrete
amount of energy called photons. When a photon hits an atom,
an electron may be knocked out of its orbit round the nucleus.
If this atom is metallic, the movement of electrons generates a
current that flows in the metal. Some light detectors operate by
detecting the flow of electrons when light interacts with the
atoms of a material.

The photodiode is a semiconductor photosensor compris-
ing a junction between two differently doped regions of
silicon. The photons of light falling on the junction create a
current in the device. These devices are sensitive to light in
the region 400 nm to 1000 nm (this includes infra-red as well
as visible light). Another means of measuring light intensity
exploits the photovoltaic effect in silicon and selenium.

Light intensity can also be measured by the photoresistor.
Certain substances such as cadmium sulfide change their
electrical resistance when illuminated.

11.5.4 Measuring pressure

The effect of pressure or stress on a
material is to deform it by compres-
sion or expansion, an effect we call
strain. Strain is defined as the change
in length per unit length. We can
measure stress (pressure) from the
effect of the strain it causes.

11.5.5 Rotation sensors

If you sometimes feel you’re going
round in circles, a rotation sensor can
at least confirm it. At first sight it’s
hard to imagine a sensor that can tell
you how fast something is turning.

One way of measuring rotation is
to exploit the mechanism that creates
the World’s weather patterns—the
Coriolis force. Air at the equator is

heated by the sun and flows north and south. Figure 11.39
shows the direction of flowing to the north. It doesn’t travel
due north. Let’s consider what happens to the northward-
moving stream of air. The Earth rotates on its north–south
axis once every 24 hours. Because the circumference of the
Earth is 24 000 miles, the Earth is moving at 1000 mph at the
equator. And so is the air above the equator because the Earth
drags the air around with it.

464 Chapter 11 Computer peripherals

9 Emissivity is the ratio of a body’s radiation at a given frequency to
the radiation given off by a perfect black body at the same temperature.
A material-like rock may have an emissivity of 0.9, whereas a metal might
have an emissivity of 0.1.

Rotation away from the

equator (600 mph)

Air flowing north from

the equator is deflected

to the west

Rotation at equator

(1000 mph)

N

S

W

Figure 11.39 The Coriolis force.

E
n

er
g
y
 o

u
tp

u
t

Black body radiation

Wavelength (nm)

0 200 400 600

220K

240K

260K

280K

300K

800 1000 1200 1400 1600

Figure 11.38 Radiation emitted by an ideal black body.

The circumference of the Earth gets less as you move away
from the equator and the speed at which the Earth’s surface
moves reduces. If you live in the USA you’re moving at about
600 mph. The stream of air flowing north from the equator it
is also moving west to east at 1000 mph (because that’s the
speed it had at the equator). Because the rotational speed of
the Earth drops as you go north, an observer on the ground
sees the air deflected toward the east. That is, the air appears to
come from the south-west. Because it takes a force to deflect
an object, we say that the wind has been deflected by a force
called the Coriolis force (this force does not actually exist).

Figure 11.40 demonstrates how the Coriolis force is used to
measure the rate of rotation of a body. A triangular prism has
three piezoelectric transducers bonded to its sides. A piezo-
electric crystal flexes when a voltage is applied across its face;
equally a voltage is generated when it is flexed (i.e. the piezo-
electric effect is reversible). An alternating voltage is applied
to one of the transducers to create a high-frequency sound
wave that propagates through the prism. The two facing
piezoelectric transducers convert the vibrations into two
equal alternating voltages when the prism is stationary.

When the prism rotates the vibrations spread out from the
transducer through the medium that is rotating. The motion
of the vibrations and the motion of the rotating prism inter-
act and the direction of the vibrations is altered by the
Coriolis force. Consequently, the two sensors don’t pick up
equal amounts of vibration in a rotating prism. The differ-
ence between the outputs of the sensors can be used to
generate a signal whose amplitude depends on the rate of
rotation. Figure 11.40 illustrates the effect of a left rotation.

The output from the left transducer
(a) is greater than that from right
transducer (b).

You might wonder who would
want to sense rotation. As in many
other areas of electronics, the intro-
duction of a new device often leads to
applications that couldn’t have been
imagined in the past. Low-cost rota-
tion sensors can be used in automatic
applications to follow the motion of
the car. If you know how far the car
has traveled (from the odometer) and
the angular velocity (from which you
can calculate the angular position),
you can work out where the car is (if
you know its initial position). This
technology can be used to provide
in-car navigation systems—especially
when coupled with GPS. Another
application of a rotation sensor is in
stabilizing platforms; for example, the

video camera. By detecting the motion of the camera, you can
move the image sensor or lens in the opposite direction to
obtain a stable image free of camera shake and jitter.

11.5.6 Biosensors

One of the greatest revolutions in the late twentieth
Century was biotechnology, which may eventually dwarf
the computer revolution. If computers are to be used in
biotechnology systems, it’s necessary to be able to detect bio-
logical parameters electronically. Until relatively recently, the
only way of measuring a biological quantity such as the level
of glucose or oxygen in blood was to take a sample and send
it to a laboratory for chemical analysis. In circumstances
where time is critical such as during an operation, a know-
ledge of a biological parameter like the blood oxygen level is
vital.

It’s difficult to describe biosensors in a few paragraphs
because it requires an understanding of biochemical reac-
tions. Here, we describe only the underlying principles. The
first biosensor was developed by Clark in the 1950s to meas-
ure the amount of dissolved oxygen in blood.

Suppose you connect two electrodes to a voltage supply
and immerse them in a liquid (see Fig. 11.41(a)). A current
will flow between the electrodes if there’s a means of trans-
porting electrons. Unfortunately, blood contains many mole-
cules capable of carrying a charge and their combined effect
would swamp the current carried by oxygen molecules.
Clark’s solution was to surround the electrodes with a plastic
gas-permeable membrane (a form of molecular sieve). Now
only oxygen is able to pass through the membrane and carry

11.5 Other peripherals 465

Piezoelectric transducer

(picks up the vibrations)

Prism

Piezoelectric transducer

(picks up the vibrations)

Piezoelectric transducer

(generates sound waves) Oscillator

Comparator

Output

(proportional to

speed of rotation)

(a) Left channel greater than reference. (b) Right channel greater than reference.

Figure 11.40 Exploiting the Coriolis effect to measure rotation.

a charge between the electrodes. By measuring the current
flow you can determine the oxygen concentration
(Fig. 11.41(b)) in the liquid surrounding the cell.

This technique can be extended to detect more exotic
molecules such as glucose. A third membrane can be used to
surround the membrane containing the electrodes. Between
the outer and inner membranes is a gel of glucose oxidase
enzyme that reacts with glucose and oxygen to generate glu-
conic acid. The amount of glucose in the liquid under test is
inversely proportional to the amount of oxygen detected
(Fig. 11.41(c)).

Because these techniques were developed in the 1960s the
number of detectors has vastly increased and the size of the
probes reduced to the point at which they can be inserted
into veins.

11.6 The analog interface

We now look at analog systems and their interface to the
digital computer. In an analog world, measurable quantities
are not restricted to the binary values 0 and 1; they may

take one of an infinite number of val-
ues within a given range. For example,
the temperature of a room changes
from one value to another by going
through an infinite number of incre-
ments on its way. Similarly, air pres-
sure, speed, sound intensity, weight,
and time are all analog quantities.
When computers start to control their
environment, or generate speech or
music, or process images, we have to
understand the relationship between

the analog and digital worlds.
We first examine analog signals and demonstrate how they

are captured and processed by a digital computer. Then we
look at the hardware that converts analog signals into digital
form, and digital values into analog signals.

A full appreciation of the relationship between and analog
and digital signals and the transformation between them
requires a knowledge of electronics; this is particularly true
when we examine analog-to-digital and digital-to-analog
converters. Readers without an elementary knowledge of
electronics may wish to skip these sections.

11.6.1 Analog signals

In Chapter 2 we said that a signal is said to be analog if it falls
between two arbitrary levels, Vx and Vy, and can assume any
one of an infinite number of values between Vx and Vy. If the
analog signal, V(t), is time dependent, it is a continuous func-
tion of time, so that its slope, dV/dt, is never infinite, which
would imply an instantaneous change of value. Figure 11.42
illustrates how both an analog voltage and a digital voltage
vary with time.

466 Chapter 11 Computer peripherals

Silver anode Noble metal

cathode
Gas permeable

membrane
Glucose oxidase

(a) A current flows between two

electrodes in a cell.

(b) The electrodes are enclosed by

a membrane that is permeable

to oxygen.

(c) A second permeable mem-

brane surrounds the inner

membrane. Glucose oxidase

gel fills the space between

the membranes. Figure 11.41 The biosensor.

The analog signal

is continuous in

time and value

The digital signal

is discrete in

time and value

Time Time0

1

V(t)V(t)

Figure 11.42 Analog and digital signals.

Analog signals are processed by analog circuits. The princi-
pal feature of an analog circuit is its ability to process an ana-
log signal faithfully, without distorting it—hence the
expression hi-fidelity. A typical analog signal is produced at
the output terminals of a microphone as someone speaks
into it. The voltage varies continuously over some finite
range, depending only on the loudness of the speech and on
the physical characteristics of the microphone. An amplifier
is used to increase the amplitude of this time-varying signal
to a level suitable for driving a loudspeaker. If the voltage gain
of the amplifier is A, and the voltage from the microphone
V(t), the output of the amplifier is equal to A � V(t). The out-
put signal from the amplifier, like the input, has an infinite
range of values, but within a range A times that of the signal
from the microphone.

Because digital signals in computers fall into two ranges
(e.g. 0 to 0.4 V for logical 0 and 2.4 to 5.0 V for logical 1 levels
in LS TTL logic systems), small amounts of noise and cross-
talk have no effect on digital signals as long as the noise is less
than about 0.4 V. Life is much more difficult for the analog
systems designer. Even small amounts of noise in the millivolt
or even microvolt region can seriously affect the accuracy of
analog signals. In particular, the analog designer has to worry
about power-line noise and digital noise picked up by analog
circuits from adjacent digital circuits.

11.6.2 Signal acquisition

At first sight it might appear that the analog and digital
worlds are mutually incompatible. Fortunately a gateway
exists between the analog and digital worlds called quantiza-
tion. The fact that an analog quantity can have an infinite
range of values is irrelevant. If somebody says they will arrive
at 9.0 a.m., they are not being literal—9.0 a.m. exists for an

infinitesimally short period. Of course, what they really mean
is that they will arrive at approximately 9.0 a.m. In other
words, if we measure an analog quantity and specify it to a
precision sufficient for our purposes (i.e. quantization), the
error between the actual analog value and its measured value
is unimportant. Once the analog value has been measured, it
exists in a numeric form that can be processed by a computer.

The conversion of an analog quantity into a digital value
requires two separate operations; the extraction of a sample
value of the signal to be processed and the actual conversion
of that sample value into a binary form. Figure 11.43 gives the
block diagram of an analog signal acquisition module. As the
analog-to-digital converter (ADC) at the heart of this mod-
ule may be rather expensive, it is not unusual to provide a
number of different analog channels, all using the same ADC.
The cost of an ADC also depends on its speed of conversion.

Each analog channel in Fig. 11.43 begins with a transducer
that converts an analog quantity into an electrical value.
Transducers are almost invariably separate from the signal
acquisition module proper. Sometimes the transducer is a
linear device, so that a change in the physical input produces
a proportional change in the electrical output. All too often,
the transducer is highly non-linear and the relationship
between the physical input and the voltage from the trans-
ducer is very complex; for example, the output of a trans-
ducer that measures temperature might be V � V0e

t/kT. In
such cases it is usual to perform the linearization of the input
in the digital computer after the signal has been digitized. It is
possible to perform the linearization within the signal acqui-
sition module by means of purely analog techniques.

The electrical signal from the transducer is frequently very
tiny (sometimes only a few microvolts) and must be amplified
before further processing in order to bring it to a level well
above the noise voltages present in later circuits. Amplification

11.6 The analog interface 467

Physical

variable

Physical

variable

Physical

variable

Transducer Amplifier Filter

Analog signal processing

(n channels)

Channel 1

Transducer Amplifier Filter Channel 2

Transducer Amplifier Filter Channel n

n-channel

analog

multiplexer

Sample

and hold

circuit

Analog-

to-digital

converter

dm–1

d2

d1

d0

START

SAMPLE

Channel select

System

control

logic

Digital

output

STOP

Control

input

Figure 11.43 An analog signal acquisition module.

is performed by an analog circuit called an op-amp (opera-
tional amplifier). Some transducers have an internal amplifier.

After amplification comes filtering, a process designed to
restrict the passage of certain signals through the circuit.
Filtering blocks signals with a frequency above or below a
cut-off point; for example, if the signal from the transducer
contains useful frequency components only in the range 0 to
20 Hz (as one might expect from, say, an electrocardiogram),
it is beneficial to filter out all signals of a higher frequency.
These out of band signals represent unwanted noise and have
no useful effect on the interpretation of the electrocardio-
gram. Moreover, it is necessary for the filter to cut out all fre-
quencies above one-half the rate at which the analog signal is
sampled. The reasons for this are explained later.

The outputs of the filters are fed to an electronic switch
called a multiplexer, which selects one of the analog input
channels for processing. The multiplexer is controlled by the
digital system to which the signal acquisition module is con-
nected. The only purpose of the multiplexer is to allow one
analog-to-digital converter to be connected to several inputs.

The analog output of the multiplexer is applied to the input
of the last analog circuit in the acquisition module, the sample
and hold (S/H) circuit. The sample and hold circuit takes an
almost instantaneous sample of the incoming analog signal and
holds it constant while the analog-to-digital converter (ADC) is
busy determining the digital value of the signal.

The analog-to-digital converter (ADC) transforms the
voltage at its input into an m-bit digital value, where m varies

from typically 4 to 16 or more. Several types of analog-
to-digital converter are discussed at the end of this section.
We now look at the relationship between the analog signal
and the analog-to-digital conversion process.

Signal quantization

Two fundamental questions have to be asked when consider-
ing any analog-to-digital converter. Into how many levels or
values should the input signal be divided and how often
should the conversion process be carried out? The precise
answer to both these questions requires much mathematics.
Fortunately, they both have simple conceptual answers and in
many real situations a rule-of-thumb can easily be applied.
We look at how analog signals are quantized in value and then
how they are quantized or sampled in time.

When asked how much sugar you want in a cup of coffee,
you might reply: none, half a spoon, one spoon, one-and-
a-half spoons, etc. Although a measure of sugar can be
quantized right down to the size of a single grain, the practi-
cal unit chosen by those who add sugar to coffee is the
half-spoon. This unit is both easy to measure out and offers
reasonable discrimination between the quanta (i.e. half-
spoons). Most drinkers could not discriminate between, say,
13/27 and 14/27 of a spoon of sugar. As it is with sugar, so it is
with signals. The level of quantization is chosen to be the
minimum interval between successive values that carries
meaningful information. You may ask, ‘Why doesn’t everyone
use an ADC with the greatest possible resolution?’ The answer

is perfectly simple. The cost of an ADC
rises steeply with resolution. A 16-bit
ADC is very much more expensive
than an 8-bit ADC (assuming all other
parameters to be equal). Therefore,
engineers select the ADC with a resolu-
tion compatible with the requirements
of the job for which it is intended.

Let’s look at an ideal 3-bit analog-to-
digital converter that converts a voltage
into a binary code. As the analog input
to this ADC varies in the range 0 V to
7.5 V, its digital output varies from 000
to 111. Figure 11.44 provides a transfer
function for this ADC.

Consider the application of a linear
voltage ramp input from 0.0 V to 7.5 V
to this ADC (a ramp is a signal that
increases at a constant rate). Initially
the analog input is 0.0 V and the digi-
tal output 000. As the input voltage
rises, the output remains at 000 until
the input passes 0.5 V, at which point
the output code jumps from 000 to
001. The output code remains at 001

468 Chapter 11 Computer peripherals

Binary code

Analog

input

000

001

0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 6.5 7.0 7.55.54.53.5

010

011

100

101

110

111

Analog

input (V)

d0
d1
d2

Analog-

to-digital

converter

3-bit

output

Initially, the input is 0 V

and the output code 000

When the input reaches 0.5 V,

the output code jumps to 001

The maximum

change of input

required to produce

a 1 bit change in the

output is 1.0 V

Figure 11.44 The transfer function of an ideal 3-bit A/D converter.

until the input rises above 1.5 V. Clearly, for each 1.0 V change
in the input, the output code changes by one unit.
Figure 11.44 shows that the input can change in value by up
to 1 V without any change taking place in the output code.

The resolution of an ADC, Q, is the largest change in its
input required to guarantee a change in the output code and is
1.0 V in this example. The resolution of an ADC is expressed
indirectly by the number of bits in its output code, where
resolution � Vmaximum/2n � 1. For example, an 8-bit ADC
with an input in the range 0 V to �8.0 V has a resolution of
8.0 V/255 � 0.03137 V � 31.37 mV. Table 11.3 gives the basic
characteristics of ADCs with digital outputs ranging from 4 to
16 bits. The figures in Table 11.3 represent the optimum values
for perfect ADCs. In practice, real ADCs suffer from imperfec-
tions such as non-linearity, drift, offset error, and missing
codes, which are described later. Some ADCs are unipolar and
handle a voltage in the range 0 to V and some are bipolar and
handle a voltage in the range �V/2 to �V/2.

The column labeled value of Q for 10 V FS in Table 11.3
indicates the size of the step (i.e. Q) if the maximum input of
the ADC is 10 V. The abbreviation ‘FS’ means full-scale.

Figure 11.45 provides a graph of the difference or error
between the analog input of a 3-bit ADC and its digital out-
put. Suppose that the analog input is 5.63 V. The correspond-
ing digital output is 110, which represents 6.0 V; that is, the
digital output corresponds to the quantized input, rather
than the actual input. The difference between the actual input
and the idealized input corresponds to an error of 0.37 V.
Figure 11.45 shows that the maximum error between the
input and output is equal to Q/2. This error is called the
quantization error.

The output from a real ADC can be represented by the out-
put from a perfect ADC whose input is equal to the applied
signal plus a noise component. The difference between the
input and the quantized output (expressed as an analog
value) is a time-varying signal between �Q/2 and �Q/2 and
is called the quantization noise of the ADC.

Because the quantization noise is a random value, engineers
characterize it by its RMS (root mean square)—the RMS value

expresses the power of the signal. The RMS value of a signal is
obtained by squaring it, taking the average, and then taking
the square root of the average. The RMS of the quantization
noise of an analog-to-digital converter is equal to Q/ .
Increasing the resolution of the converter reduces the ampli-
tude of the quantization noise as Table 11.3 demonstrates.

A figure-of-merit of any analog system is its signal-to-noise
ratio, which measures the ratio of the wanted signal to the
unwanted signal (i.e. noise). The signal-to-noise ratio (SNR)
of a system is expressed in units called decibels, named after
Graham Bell, a pioneer of the telephone. The SNR ratio of
two signals is defined as 20log(Vsignal/Vnoise). The signal-
to-noise ratio of an ideal n-bit ADC is given by

SNR (in dB) = 20log(2nQ)/Q/
� 20log(2n) � 10log(12)
� 6.02n + 10.8

This expression demonstrates that the signal-to-noise
ratio of the ADC increases by 6.02 dB for each additional bit
of precision. Table 11.3 gives the signal-to-noise ratio of
ADCs from 4 to 16 bits. An 8-bit ADC has a signal-to-noise
ratio similar to that of some low-quantity audio equipment,
whereas a 10-bit ADC approaches the S/N ratio of high-
fidelity equipment.

Another figure-of-merit of an analog system is its dynamic
range. The dynamic range of an ADC is given by the ratio of
its full-scale range (FSR) to its resolution, Q, and is expressed
in decibels as 20log(2n) � 20nlog2 � 6.02n. Table 11.3 also
gives the dynamic range of the various ADCs. Once again you
can see that a 10- to 12-bit ADC is suitable for moderately
high-quality audio signal processing. Because of other
impairments in the system and the actual behavior of a real
ADC, high-quality audio signal processing is normally done
with a 16-bit ADC.

Sampling a time-varying signal

What is the minimum rate at which a signal should be
sampled to produce an accurate digital representation of it?

�12

�12

11.6 The analog interface 469

Resolution (bits) Discrete states Binary weight Value of Q for 10 V FS SNR (dB) Dynamic range (dB)

4 16 0.0625 0.625 V 34.9 24.1

6 64 0.0156 0.156 V 46.9 36.1

8 256 0.00391 39.1 mV 58.1 48.2

10 1024 0.000977 9.76 mV 71.0 60.2

12 4096 0.000244 2.44 mV 83.0 72.2

14 16 384 0.0000610 610 �V 95.1 84.3

16 65 536 0.0000153 153 �V 107.1 96.3

Table 11.3 The performance of ideal analog-to-digital converters.

We need to know the minimum rate at which a signal must be
sampled, because we want to use the slowest and cheapest
ADC that does the job we require.

Intuitively, we would expect the rate at which a signal must
be sampled to be related to the rate at which it is changing; for
example, a computer controlling the temperature of a swim-
ming pool might need to sample the temperature of the water
once every 10 minutes. The thermal inertia of such a large
body of water doesn’t permit sudden changes in temperature.
Similarly, if a microcomputer is employed to analyze human
speech with an upper frequency limit of 3000 Hz, it is reason-
able to expect that the input from a microphone must be
sampled at a much greater rate than 3000 times a second,
simply because in the space of 1/3000 second the signal can
execute a complete sine wave.

A simple relationship exists between the rate at which a sig-
nal changes and the rate at which it must be sampled if it is
to be reconstituted from the samples without any loss of
information content. The Sampling Theorem states ‘If a

continuous signal containing no frequency components
higher than fc is sampled at a rate of at least 2fc, then the orig-
inal signal can be completely recovered from the sampled
value without distortion’. This minimum sampling rate is
called the Nyquist rate.

The highest frequency component in the signal means just
that and includes any noise or unwanted signals present
together with the desired signal. For example, if a signal con-
tains speech in the range 300 to 3000 Hz and noise in the
range 300 to 5000 Hz, it must be sampled at least 10 000 times
a second. One of the purposes of filtering a signal before
sampling it is to remove components whose frequencies are
higher than the signals of interest, but whose presence would
nevertheless determine the lower limit of the sampling rate.

If a signal whose maximum frequency component is fc,
is sampled at less than 2fc times a second, some of the high-
frequency components in it are folded back into the spectrum of
the wanted signal. In other words, sampling a speech signal in
the range 300 to 3000 Hz containing noise components up to

470 Chapter 11 Computer peripherals

Binary code

111

110

101

100

011

010

001

000

+Q/2

–Q/2

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Analog

input (V)

Analog

input (V)

Quantization error

Maximum negative

quantization error

Zero quantization

error

Figure 11.45 The error

function of an ideal 3-bit A/D

converter.

5000 Hz at only 6000 times a second would result in some of
this noise appearing within the speech band. This effect is called
frequency folding and, once it has occurred, there is no way in
which the original, wanted, signal can be recovered.

Figures 11.46 and 11.47 illustrate the effect of sampling an
analog signal at both below and above the Nyquist rate. In Fig.
11.46 the input signal consists of a band of frequencies from
zero to fc, sampled at a rate equal to fs times a second, where fs

is greater than 2fc. The spectrum of the sampled signal contains
components in the frequency range fs�fc to fs � fc that do not
fall within the range of the input signal. Consequently, you can
recover the original signal from the sampled signal.

In Fig. 11.47 the input signal has a maximum frequency
component of fc and is sampled at fsi, where fs � 2fc. Some
energy in the region fs � fc to fc falls in the range of the input
frequency and is represented by the gray region in
Fig. 11.47. This situation results in frequency folding and a loss
of information; that is, you cannot recover the original
information from the sampled signal.

The classic example of sampling at too low a rate is the
wagon wheel effect seen in movies. A cine film runs at 24
frames/s and each frame samples the image. If the spokes of
a rotating wheel are sampled (i.e. photographed) at too low
a rate, the wheel appears to move backward. Why? Suppose a
wheel rotates 10� clockwise between each frame. The eye

11.6 The analog interface 471

Amplitude

(V)

Amplitude

(V)

Frequency (f)

(a) Spectrum of input signal. (b) Spectrum of sampled signal.

 fc fc fs– fc fs+fcfs
Frequency (f)

Figure 11.46 Sampling a signal at more than the Nyquist rate.

Amplitude

(V)

Amplitude

(V)

Frequency (f)

(a) Spectrum of input signal. (b) Spectrum of sampled signal

(shaded region indicates overlap in spectra).

 fc fcfs– fc fs+fcfs
Frequency (f)

Figure 11.47 Sampling a signal at slightly less than the Nyquist rate.

perceives this as a clockwise rotation. Now suppose the wagon
is moving rapidly and the wheel rotates 350� between each
frame. The eye perceives this as a 10� counterclockwise rotation.

It is difficult to appreciate the full implications of the sam-
pling theorem without an understanding of the mathematics
of sampling and modulation. However, all we need say here is
that the overlap in spectra caused by sampling at too low a
frequency results in unwanted noise in the sampled signal.

Another way of looking at the relationship between a sig-
nal and its sampling rate is illustrated by Figs 11.48 and 11.49.
Figure 11.48(a) gives the continuous input waveform of an
analog signal and Fig. 11.48(b) its sampled form. These sam-
pled amplitudes are, of course, stored in a digital computer
numerically. Figure 11.48(c) shows the output of a circuit,
called a filter, fed from the digital inputs of Fig. 11. 48(b). The
simplest way of describing this circuit is to say that it joins up
the dots of the sampled signal to produce a smooth output. As
you can see, the reconstituted analog signal is virtually a copy
of the original analog signal.

Figure 11.49 is similar to Fig. 11.48, except that the input sig-
nal is sampled at less than 2fc. A glance at the sampled values of
Fig. 11.49(b) is enough to show that much of the detail in the
input waveform has been lost. When this sampled signal is
reconstituted into a continuous signal (Fig. 11.49(c)) its fre-
quency is not the same as the input signal. The erroneous signal

of Fig. 11.49(c) is called an alias. Once more, it must be stressed
that if frequencies greater than 1/2 fs appear in the input signal
they can play havoc with the results of sampling.

Most signal acquisition modules have low-pass filters with
a sharp cut-off frequency to attenuate signals and noise
outside the band of interest. As it is impossible to construct a
perfect filter that passes frequencies in the range 0 to fc and

which attenuates all frequencies above fc infinitely, it is usual
to sample a signal at a much greater rate than 2fc in order to
reduce the effects of aliasing to an acceptable level. Typically,
a signal may be sampled at up to five times the rate of its
maximum frequency component.

Aperture time

As well as the sampling frequency, we also have to think about
the time taken by the sampling process itself. Signals of interest
are time dependent. One question we should ask is, ‘What
happens if a signal changes while it is being measured?’
Figure 11.50 illustrates the problem of trying to measure a
dynamic quantity where the quantization process takes ta sec-
onds, which is called the aperture time. The term aperture time
suggests an analogy with the camera—a image is captured
when the camera’s aperture (i.e. shutter) is open and any move-
ment of the subject blurs the image. During the aperture time,
the input voltage being measured changes by �V, where �V is
given by

The value of dV/dt is the slope of the graph. The change in
the input, �V, is called the amplitude uncertainty. A perfect,
instantaneous digitizer has a zero aperture time and �V � 0,
resulting in a spot-sample of the input.

Suppose we apply a linearly rising ramp voltage to the
input of an analog-to-digital converter that has a full-scale
range of 5 V. Let’s imagine that the input changes by 5 V in
100 ms, corresponding to a rate-of-change of 5 V in 0.1 s �

50 V/s. If the analog-to-digital converter takes 1 ms to per-
form a conversion, we can calculate the amount by which the
input changes while it’s being converted.

� 1 � 10�3 � 50 V/s � 0.05 V
�V � ta · dV(t)/dt � 1 ms � 50 V/s

ta · dV
dt

472 Chapter 11 Computer peripherals

(a) Input signal.

V

t

t

t

V

V

The input is sampled less
than twice per cycle

The output is a highly
distorted version of
the input.

(b) Sampled signal.

(c) Reconstituted signal.

Figure 11.49 The aliasing effect (fs � 2fc).

Figure 11.50 The effect of a finite measurement time on the

A/D conversion process.

Input

voltage

δV

V

ta

t

During the time
that the input
is sampled, it
changes by δV

Aperture time defines the
period required to measure
the signal

(a) Input signal.

(b) Sampled signal.

V

V

V

t

t

t

(c) Reconstituted signal.

Figure 11.48 Sampling at fs � 2fc.

That is, the input changes by 0.05 V during the period that
the A/D conversion is taking place. Consequently, there’s lit-
tle point in using an ADC with a resolution of better than
0.05 V. This resolution corresponds to 1 in 100, and a 7-bit
ADC would be suitable for this application.

In order to get a feeling for the importance of aperture
time, let’s consider a data acquisition system in processing
human speech. Suppose a system with an 8-bit analog-to-
digital converter is required to digitize an input with an upper
frequency limit of 4000 Hz. We need to know the maximum
aperture time necessary to yield an accuracy of one least sig-
nificant bit in the digitized output. Assuming a sinusoidal
input, V(t) � Vsin 	t, the amplitude uncertainty is given by

The differential of sin 	t is 	cos 	t, where 	 is defined as
2�f. The maximum rate-of-change of V(t) occurs at the zero-
crossing of the waveform when t � 0 (i.e. the maximum value
of cos 	t is 1). Therefore, the worst case value of �V is

and

We can substitute 1/256 for �V/V and 4000 Hz for f in the
above equation to calculate the desired aperture time as
follows:

An aperture time of 0.146 �s (i.e. 146 ns) is very small,
although not too small to be achieved by the some ADCs.
Fortunately, we can use a sample and hold circuit to capture a
sample of the input and hold it constant while a relatively
slow and cheap ADC performs the conversion. Of course,
even a sample and hold circuit is itself subject to the effects of
aperture uncertainty. Although an aperture time of 1 �s is

ta � 1/(256 � 2 � 3.142 � 4000) s � 0.146 �s

�V/V � 1/256 � ta2�f � ta � 2 � 3.142 � 4000

�V/V � ta ·� � ta ·2� ·f

�V � ta ·V ·�

�V � ta · d(V sin �t)/dt � ta ·� ·V · cos �t

relatively small for an analog-to-digital converter, a sample
and hold circuit can achieve an aperture time of 50 ns with
little effort. We look at the sample and hold circuit in more
detail later.

11.6.3 Digital-to-analog conversion

Beginning with digital-to-analog converters (DACs) may
seem strange. It’s more logical to discuss analog-to-digital
(ADC) conversion first and then deal with the inverse
process. There are two reasons for disregarding this natural
sequence. The first is that the DAC is less complex than the
corresponding ADC, and the second is that some analog-to-
digital converters, paradoxically, have a digital-to-analog
converter at their heart.

Conceptually, the DAC is a simple device. To convert a
binary value into analog form, all we have to do is to generate
an analog value proportional to each bit of the digital word
and then add these values to give a composite analog sum.
Figure 11.51 illustrates this process. An m-bit digital signal is
latched by m D flip-flops and held constant until the next
value is ready for conversion. The flip-flops constitute a
digital sample and hold circuit. Each of the m bits operates an
electronic switch that passes either zero or Vi volts to an
analog adder, where Vi is the output of the ith switch. The
output of this adder is

The m{di} in this equation represent binary values 0 or 1
and the {Vi} represent binary powers of the form (1, 1/2, 1/4,
1/8, . . .).

Figure 11.52 gives a possible (but not practical) implemen-
tation of a digital-to-analog converter. The total current
flowing into the inverting terminal of the operational amplifier
is equal to the linear sum of the currents flowing through the
individual resistors (the panel describes how the operational

V � d0V0 � d1V1 � . . . � dm�1Vm�1

11.6 The analog interface 473

m-bit latch

Switch

Analog
adder

Analog
output

Switch

Switch

D

C

Q

D

C

Q

D

C

Q

Parallel
digital
input

d0

d1

dm–1

Vm–1

V1

V0

Latch
Figure 11.51 The digital-

to-analog converter.

amplifier works). As each of the resistors in Fig. 11.52 can be
connected to ground or to a precisely maintained reference
voltage, Vref, the current flowing through each resistor is either
zero or Vref/2

iR, where i � 0, 1, 2, . . . , m�1. The total current
flowing into the operational amplifier is given by

Vref

R �
m�1

i�0

dm�i�1

2i

where di represents the state of the ith switch. The voltage at
the output terminal of the operational amplifier is given by

Real digital-to-analog converters implement the m
switches, typically, by field-effect transistors (a field-effect
transistor behaves as a fast electronic switch—the voltage at

� … � d0 � 2�m]
Vo � � 2Vref � Rf /R � [dm�1 � 2�1 � dm�2 � 2�2

474 Chapter 11 Computer peripherals

Figure 11.52 A possible implementation of the D/A converter.

m digital
switches

R 2R

Rf

Vref

dm–1 dm–2 dm–3 d0

Vo

Analog
output

Operational
amplifier

–

+

4R 2m–1R

1

0

1

0

1

0

1

0

THE OPERATIONAL AMPLIFIER

The operational amplifier is a simple circuit that is widely used

in many applications. In the figure below, an amplifier has two

input terminals, one called the inverting input marked

by ‘�’ and one called the non-inverting input marked by ‘�’.

The output of the amplifier is �AVi, where Vi is the voltage

difference between the two input terminals and A is its gain

(amplification).

To analyze the operational amplifier, all you need know is

Ohm’s law, which states ‘the current i flowing through a resis-

tor R is given by V/R, where V is the voltage across the ends of’

the resistor

From the diagram we can immediately write down

and

If we assume that the current flowing into the inverting

terminal of the amplifier is zero (approximately true in

practice), we have i1 � i2. That is

We can substitute for Vi � �Vout/A in this equation to get

(Vin � Vi)/R1 � (Vi � Vout)/R2

Vout � �AVi

i2 � (Vi � Vout)/R2

i1 � (Vin � Vi)/R1

Re-arranging this equation gives

In a practical operational amplifier, the gain of the amplifier, �A,

approaches infinity and (1 � R2/R1)/A approaches zero.

Therefore we can write the gain of the operational amplifier as

This remarkable result shows that the gain is dependent

only on the value of the components R1 and R2 and not on the

amplifier itself (as long as the value of A is very large).

Vin

Vout

R1

i1 Vi

i2

R2

gain
–A

–

+

Vout/Vi � � R2/R1

Vout/Vin � � R2/R1/(1 � (1 � R2/R1)/A)

(Vin � Vout/A)/R1 � (�Vout/A � Vout)/R2

its gate determines whether the path between the other two
terminals is open or closed). By switching the control gate of
these transistors between two logic levels, the resistance
between their source and drain terminals is likewise switched
between a very high value (the off or open state) and a very
low value (the on or closed state). A perfect field-effect tran-
sistor switch has off and on values of infinity and zero, respec-
tively. Practical transistor switches have small but finite
on-resistances that degrade the accuracy of the DAC.

Although the circuit of Fig. 11.52 is perfectly reasonable
for values of m below six, larger values create manufacturing
difficulties associated with the resistor chain. Suppose a
10-bit DAC is required. The ratio between the largest and
smallest resistor is 210:1 or 1024:1. If the device is to be
accurate to one LSB, the precision of the largest resistor must
be at least one-half part in 1024, or approximately 0.05%.
Manufacturing resistors to this absolute level of precision is
difficult and costly with thin-film technology, and virtually
impossible with integrated circuit technology.

The R–2R ladder

An alternative form of digital-to-analog converter is given in
Fig. 11.53, where the DAC relies on the R–2R ladder
(pronounced R two R). This DAC is so called because all
resistors in the ladder have either the value R or 2R. Although
it’s difficult to produce highly accurate resistors over a wide
range of values, it is much easier to produce pairs of resistors
with a precise 2:1 ratio in resistance.

As the current from the reference source, Vref, flows down
the ladder (from left to right in Fig. 11.53), it is divided at each
junction (i.e. the node between the left R, right R, and 2R resis-
tors) into two equal parts, one flowing along the ladder to the
right and one flowing down the 2R shunt resistor. The net-
work forms a linear circuit and we can apply the Superposition
Theorem. This theorem states that, in a linear system, the effect
is the sum of all the causes. Consequently, the total current

flowing into the inverting terminal of the operational ampli-
fier is equal to the sum of all the currents from the shunt (i.e.
2R) resistors, weighted by the appropriate binary value.

A digital-to-analog converter based on the R–2R ladder
has three advantages over the type described in Fig. 11.54.

1. All resistors have a value of either R or 2R, making it easy
to match resistors and to provide a good measure of
temperature tracking between resistors. Furthermore, the
residual on-resistance of the transistor switches can
readily be compensated for.

2. By selecting relatively low values for R in the range
2.5 k� to 10 k�, it is both easy to manufacture the DAC
and to achieve a good response time because of the low
impedance of the network.

3. Due to the nature of the R–2R ladder, the operational
amplifier always sees a constant impedance at its input,
regardless of the state of the switches in the ladder, which
improves the accuracy of the operational amplifier circuit.

The R–2R ladder forms the basis of many commercially
available DACs. Real circuits are arranged slightly differently
to that of Fig. 11.53 to reduce still further the practical prob-
lems associated with a DAC.

DACs based on the potentiometric network

Another form of digital-to-analog converter is called the
potentiometric or tree network. Figure 11.54 describes a 3-bit
arrangement of such a network where a chain of n resistors is
placed in series between the reference supply and ground.
The value of n is given by 2m, where m is the resolution of the
DAC. In the example of Fig. 11.54, m � 3 and n � 8. An 8-bit
DAC requires 256 resistors in series. The voltage between
ground and the lower end of the ith resistor is given by

V � VrefiR/nR � Vrefi/n for i � 0 to n � 1.

11.6 The analog interface 475

Figure 11.53 The R–2R ladder D/A converter.

Vref

Isb d0 d1 d2 dm–1

R

1

0

1

0

1

0

2R 2R 2R

Vo

–

+
Operational
amplifier

Analog
output

R R R Rf2R

The value of the resistors, R, does not appear in this equa-
tion. All that matters is that the resistors are of equal value.
Because the flow of current through the resistors is constant,
the effects of resistor heating found in some forms of R–2R
ladder are eliminated.

The switch tree serves only to connect the input terminal
of the operational amplifier to the appropriate tap (i.e. node)
in the resistor network. In fact, this switching network is
nothing but an n:1 demultiplexer. Moreover, because the
switches do not switch a current (as in the case of the R–2R
network), the values of their on and off resistances are rather
less critical.

A DAC based on a switch tree is also inherently monotonic.
That is, as the digital input increases from 00 . . . 0 to 11 . . . 1,
the analog output always increases for each increment in the
input.

Before we look at analog-to-digital converters, we need to
say something about errors in digital-to-analog converters.

Errors in DACs

Real DACs differ from the ideal DACs described above.
Differences between input code and output voltages are

caused by errors that originate in the DAC’s analog circuits.
Figures 11.55 to 11.59 give five examples of errors in DACs.
We have drawn the outputs of Figs 11.55 to 11.59 as straight
lines for convenience—in practice they are composed of steps
because the input is a binary code.

In Fig. 11.55, the DAC’s output voltage differs from its ideal
value by a constant offset. If the input is a binary value X, the
output is equivalent to that of a perfect DAC plus a constant
error signal e; that is Vout � KX � e. A constant error is easy to
deal with because it can be trimmed out by adding a compensat-
ing voltage of equal magnitude but of opposite sign to the error.

476 Chapter 11 Computer peripherals

Vref

R

R

R

R

R

R

R

R

gnd

S00

S01

S02

S03

S04

S05

S06

S07

S13

S12

S11

S10

S21

S20

Tree network
of switches

Operational
amplifier

Analog
output

Vo

–

+

Figure 11.54 The tree-

network D/A converter.

Vout

Offset

Actual output

Ideal output

For any given code
the output voltage has
a constant offset error.

X
(input code)

Figure 11.55 The constant offset error.

corrected by passing the DAC’s output through an amplifier
with a gain factor of l/k.

Real DACs suffer from both offset and gain errors as illus-
trated in Fig. 11.57. The combined offset and gain errors can
both be removed separately by injecting a negative offset and
passing the output of the DAC through a compensating
amplifier as we’ve just described.

A more serious error is the non-linear response illustrated
in Fig. 11.58 where the change in the output, Q, for each step
in the input code is not constant. The error between the input
code and the output voltage is a random value. Non-linear
errors cannot easily be corrected by simple circuitry. Many
DACs are guaranteed to have a maximum non-linearity less
than one-half Q, the quantization error; i.e. the DAC’s output
error is always less than Q/2 for any input.

Figure 11.59 illustrates a non-monotonic response, a form
of nonlinearity in which the output voltage does not always
increase with increasing input code. In this example, the ana-
log output for the code 011 is less than that for the code 010.
Non-monotonic errors can be dangerous in systems using
feedback. For example, if an increasing input produces a
decreasing output, the computer controlling the DAC may
move the input in the wrong direction.

Analog-to-digital converters suffer from similar errors to
DACs—only the axes of the graphs in Figs 11.55 to 11.59 are
changed. An interesting form of an ADC error is called the
missing code where the ADC steps from code X to code X � 2
without going through code X � 1. Code X � 1 is said to be a
missing code, because there is no input voltage that will gener-
ate this code. Figure 11.60 demonstrates the transfer function
of an ADC with a missing code. As the input voltage to the
ADC is linearly increased, the output steps through its codes
one by one in sequence. In Fig. 11.60 the output jumps from
010 to 100 without passing through 011.

11.6.4 Analog-to-digital conversion

Although converting a digital value into an analog signal is
relatively easy, converting an analog quantity into a digital
value is rather more difficult. In fact, apart from one special

11.6 The analog interface 477

Figure 11.56 The gain error.

For any given input code
the error in the output
voltage is proportional
to the input code.

V
(output voltage) Actual output

Ideal output

Output error

X
(input code)

Vout

Ideal output

Actual output

X
(input code)

For any given input code
the error in the output
voltage is proportional
to the input code plus
a constant offset.

Vout
Actual output

Ideal output

X
(input code)

The error between the
input code and the
output code is non-linear

Vout

The error between the
input code and the
output code is non-linear
and non-monotonic.

Input code 011
produces a lower
output than code 010

X
(input code)000

001 010

011

100

101

110

111
Actual output

Ideal output

As the input voltage increases,
the output steps through the
codes 000 to 111. However, in
this case, the output step from
010 to 100 misses the code 011.
There is no input voltage that
generates the code 011.

X
(output code)

Actual output

Missing code

Vin

111

110

101

100

011

010

001

000

Figure 11.58 The non-linear error.

Figure 11.59 Non-monotonicity.

Figure 11.60 The missing code.

Figure 11.57 The combined effect of offset and gain errors.

Figure 11.56 illustrates a gain error in which the difference
between the output of the DAC and its ideal value is a linear
function of the digital input. In this case, if the ideal output is
Vout � KX, the actual output is given by Vout � k � KX, where
k is the gain error (ideally k � 1). The gain error can be

type of A/D converter, analog-to-digital conversion is per-
formed in a roundabout way. In this section, we describe
three types of A/D converter: the parallel converter (the only
direct A/D converter), the feedback converter, and the inte-
grating converter.

Before we describe ADCs in detail, we look
at the sample and hold circuit used to freeze
time-varying analog signals prior to their
conversion. This circuit is sometimes called a
follow and hold circuit. We mentioned this
circuit when we discussed aperture time.

The sample and hold circuit

Like many other analog circuits, the sample
and hold (S/H) circuit is simple in principle
but very complex in practice. The divergence
between theory and practice stems from the
effect of second-or even third-order non-
linearities of analog circuits. Such problems
don’t affect digital circuits.

Figure 11.61 gives the circuit of a sample
and hold amplifier. Readers without a back-
ground in electronics may skip the details of
this circuit’s operation—all it does is to
charge a capacitor to the same level as the
input signal, and then connect the capacitor
to its output terminals. For a short time, the
voltage on the capacitor remains constant,
allowing the ADC to perform a conversion
with a relatively constant input.

If we forget the diode bridge and regard the
input resistor, R, as being directly connected
to the inverting terminal of the operational
amplifier, we have a simple inverting buffer
with unity gain (see Fig. 11.62(a)). That is,
Vout � �Vin. Assume also that the capacitor

C has negligible effect on the circuit.
The diode bridge in Fig. 11.61 acts as an on/off switch that

either connects the analog input to the inverting terminal of
the op-amp via R, or isolates the inverting terminal from the
input. When the switch is in the closed position, the S/H

478 Chapter 11 Computer peripherals

Analog
input

Vin

Vhold

R

R

C

Operational
amplifier

–

+

Diode bridge

gnd

Vo
Analog
output

The circuit acts as
an electronic switch
controlled by Vhold.

The output follows the input
when Vhold is 0 or holds (freezes)
the input when Vhold = 1.

Figure 11.61 The sample

and hold circuit.

Analog
input

Vin

Vin

Vo
Analog
output

Vo
Analog
output

Vo
Analog
output

–

+

–

+

–

+

Analog
input

Operational
amplifier

Operational
amplifier

Operational
amplifier

R

R
R

C

The diode bridge
is a switch that can
be opened or
closed electronically.

The output is
a copy of the
input.

The capacitor
holds the output
constant.

R

C

gnd

gnd

gnd

(a) Equivalent circuit.

(b) Equivalent circuit when switch closed.

(c) Equivalent circuit when switch open.

Figure 11.62 Operation of the sample and hold circuit.

circuit operates in its sample mode and Vout � �Vin

(Fig. 11.62(b)); that is, the output follows the input. At the
same time, the capacitor, C, is charged up to the output volt-
age because its other terminal is at ground potential (the
inverting terminal of the op-amp is a virtual ground).

When the diode bridge switch is opened, the output of the
op-amp is held constant by the charge on the capacitor
(Fig. 11.62(c)). The charge stored in the capacitor will even-
tually leak away and the output will fall to zero. However, in
the short term the output remains at the level the input was in
at the instant the diode bridge switch was opened.

Figure 11.63 illustrates the timing parameters of a sample
and hold amplifier. When the diode switch is closed and the
circuit goes into its sample mode, the capacitor begins to
charge up to the level of the input. The period in which the
capacitor is charged is called the acquisition time and is about
3 �s for a low-cost S/H circuit. The output now tracks the input
up to the maximum slew rate of the S/H circuit.Slew rate defines
the fastest rate at which the output of a circuit can change.

When the S/H circuit is switched into its hold mode and the
diode switch turned off, there’s a finite delay during which the
capacitor is disconnected from the input called the aperture

uncertainty time. We’ve already met this parameter, which
defines the period during which the input must not change
by more than, say, a least-significant bit. Aperture times vary
from about 50 ns to 50 ps, or less. One pico second (ps), is
10�12 seconds.

In the hold mode, the capacitor discharges and the output
begins to droop. Droop rates vary, typically, between 5 �V/�s
and 0.01 �V/�s. The parameters of the S/H circuit are often
interrelated and optimizing one parameter may degrade the
values of other parameters.

Sample and hold circuits are vital when analog-to-digital
converters with appreciable conversion times are to be con-
nected to time-varying inputs. Sample and hold circuits must
sometimes be used with digital-to-analog converters. A sam-
ple and hold circuit can be fed from a DAC and used to turn
the sequence of analog values from the DAC into a continu-
ous analog signal. In this mode the S/H circuit is called a zero-

order hold filter and its output
consists of steps between the analog
values see Fig. 11.64. Another advan-
tage of the S/H circuit is that it
deglitches the DAC and removes any
spikes in its output.

Now that we have described how
an analog signal can be captured, the
next step is to show how it can be
converted into a digital value.

The parallel analog-to-digital

converter

The parallel A/D converter is called the flash converter
because of its great speed of conversion when compared with
the two indirect techniques described later. It works by
simultaneously comparing the analog input with 2m � 1
equally spaced reference voltages. Figure 11.65 illustrates a
3-bit flash A/D converter (real flash ADCs are typically 6- to
8-bit devices). A chain of 2m equal-valued resistors forms a
tapped potentiometer between two reference voltages. The
voltage between consecutive taps in the chain of resistors dif-
fers by 1/2m of the full-scale analog input. Each of the 2m � 1
taps is connected to the inverting input of a high-speed dif-
ferential comparator, whose output depends on the sign of
the voltage difference between its two inputs. The non-
inverting inputs of the comparators are all wired together and
connected to the analog input of the ADC. The output of the
ith comparator in Fig. 11.65 is given by

For any given analog input voltage, the outputs of the com-
parators, whose reference input is below that of the analog
input to be converted into digital form, are at a logical 1 level.
All other outputs are at a logical 0. The seven outputs are fed

sign (Vin � Vrefi/8).

11.6 The analog interface 479

Input

Output

Sample

time

time

time

1

0Hold

V

V

Sample

Acquisition

Follow Droop

Aperture time

Figure 11.63 Timing details of the sample and hold circuit.

Digital signal

DAC
Analog pulses

Analog output

Hold clock

Filtered analog outputAnalog pulses

V

t t

V

Sample

and hold

circuit

Figure 11.64 The sample and hold circuit as a filter.

to a priority encoder that generates a 3-bit output correspond-
ing to the number of logical 1s in the input.

The parallel A/D converter is very fast and can digitize ana-
log signals at over 30 million samples per second. High con-
version rates are required in real-time signal processing in
applications such as radar data processing and image process-
ing. As an illustration of the speeds involved consider digitiz-
ing a television picture. The total number of samples required
to digitize a TV signal with 500 pixels/line in real-time is

samples � pixels per line � lines per field � fields per second
� 500 � 3121/2 � 50 � 7812500 samples per

second (UK)
� 500 � 2651/2 � 60 � 7875500 samples per

second (USA)

Because the flash converter requires so many comparators,
it is difficult to produce with greater than about 8-bit preci-
sion. Even 6-bit flash ADCs are relatively expensive.

The feedback analog-to-digital converter

The feedback analog-to-digital converter, paradoxically, uses
a digital-to-analog converter to perform the required conver-
sion. Figure 11.66 illustrates the basic principle behind this

class of converter. A local digital-to-analog converter trans-
forms an m-bit digital value, D � d0, d1, . . . , dm�1, into an
analog voltage, Vout. The value of the m-bit digital word D is
determined by the block labeled control logic in one of the
ways to be described later.

Vout from the DAC is applied to the inverting input of an
operational amplifier and the analog input to be converted is
applied to its non-inverting input. The output of the opera-
tional amplifier corresponds to an error signal, Ve, and is
equal to A times (Vout � Vin), where A is the gain of the
amplifier. This error signal is used by the control logic

480 Chapter 11 Computer peripherals

Analog
input

Vin

Vref

R

R

7-line
to 3-line
encoder

3-bit latch Digital output

Latch output

d0

d1

d2

R

R

–

+

–

+

–

+

–

+

–

+

–

+

–

+

R

R

R

R

gnd

The chain of
resistors creates
7 reference
voltages between
0 and Vref.

The binary output of
the encoder is the
3-bit value of the highest
input that is true.

Figure 11.65 The flash AID

converter.

The control logic uses
the error signal to generate
an m-bit digital value

Error signal

Analog input

Control logic

m-bit
digital
output

Local digital-
to-analog
convertor

Vin Ve

Vout

dm–1

d1
d0

–

+

Figure 11.66 The feedback ADC.

network to modify the digital data, D, to minimize the error
signal A(Vout � Vin). When the difference between Vin and
Vout is less than that between two quantized signal levels
(i.e. Q), the conversion process is complete.

In plain English, the digital signal is
varied by trial and error until the
locally generated analog voltage is as
close to the analog input as it is possi-
ble to achieve. The next step is to
examine ways of implementing this
trial and error process.

The ramp converter

The simplest feedback A/D converter
is the ramp converter of Fig. 11.67,
which uses a binary counter to gener-
ate the digital output, D. Initially, the
binary counter is cleared to 0. A new
conversion process starts with the
resetting of the RS flip-flop. When Q
goes high following a reset, the AND
gate is enabled and clock pulses are
fed to the m-bit binary up-counter.
These pulses cause the output of the
counter, D, to increase monotonically
from zero (i.e. 0, 1, 2, . . . , 2m�1).

The output from the counter is
applied to both an m-bit output latch
and a D/A converter. As the counter is
clocked, the output of the local D/A
converter ramps upwards in the
manner shown in the timing diagram
of Fig. 11.68. The locally generated
analog signal is compared with the
input to be converted in a digital
comparator, whose output is the sign
of the local analog voltage minus the
input; that is, sign(Vout � Vin). When
this value goes positive, the flip-flop
is set. At the same time, its Q– output
goes low, cutting off the stream of
clock pulses to the counter and its Q
output goes high, providing an
End_of_conversion (EOC) out-
put and latching the contents of the
binary counter into the output
latches.

The ramp feedback A/D converter
has a variable conversion time. If the
analog input is close to the maximum

(i.e. full-scale) value, approximately 2m clock pulses are
required before the locally generated analog signal reaches
the unknown input. The maximum conversion time of an
8-bit ADC is 256 times the DAC’s settling time plus associ-
ated delays in the comparator and counter. The ramp feed-
back converter produces a biased error in its output, because
the counter stops only when the local DAC output is higher

11.6 The analog interface 481

Analog input Comparator

sign(Vout – Vin)–

+

Vin

Vout

S

Start count

Stop count

Enable

counter

End of count

Q

R

Q

m-bit DAC

m-bit binary
up counter

Reset
Clock

START

End of conversion

Output

latches
Digital
output
(m bits)

Latch

START = R
1

0

1

0

1

0

1

Vout

Conversion phase Hold result Next conversion

Vin

0

1

0

1

0

Clock

Count clock
(gated clock)

Comparator
output = S

EOC = Q

Q
(gate clock)

Figure 11.67 The ramp feedback ADC.

Figure 11.68 Timing diagram of a ramp feedback ADC.

than the input to be converted. This local analog value is not
necessarily closest to the true digital equivalent of the analog
input. The advantage of the ramp A/D converter is its sim-
plicity and low hardware cost.

The tracking converter is a ramp converter with the addi-
tion of a bidirectional (i.e. up/down) counter and slightly
more complex control logic. At the start of each new conver-
sion process, the comparator determines whether the analog
input is above or below the feedback voltage from the local
DAC. If the analog input is greater, the counter is clocked up
and if it is lower the counter is clocked down. Thus, the
counter ramps upwards or downwards until the output of the

comparator changes state, at which point the analog input is
said to be acquired by the converter. Figure 11.69 demon-
strates the operation of this type of convertor by showing
how three successive conversions are performed.

If the analog input is constant, the conversion time of the
counter is effectively zero once the input has been initially
acquired. As long as the input changes slowly with respect
to the rate at which the output of the local DAC can
ramp upward or downward, the tracking counter faithfully
converts the analog input into the appropriate digital output.
If the analog input rapidly changes rapidly, the local analog
voltage may not be able to track the input and acquisition
is lost.

The tracking A/D converter is most useful when the input
is changing slowly and is highly auto-correlated. Human
speech represents such a signal. If the converter is subject to

essentially random inputs (e.g. it is fed
from a multiplexer), it offers little or no
advantage over a ramp converter.

The successive approximation

converter

Intuitively, it would seem reasonable to
take very large steps in increasing the
analog signal from the local DAC early
in the conversion process, and then to
reduce the step size as the conversion
proceeds and the local analog voltage
approaches the analog input. Such an
A/D converter is known as a successive
approximation A/D converter and uses
a binary search algorithm to guarantee
an m-bit conversion in no more than
m iterations (i.e. clock cycles).

The structure of a successive
approximation D/A converter is ade-
quately illustrated by the generic feed-
back converter of Fig. 11.67. Only the
strategy used to generate successive
steps makes the successive approxima-

tion converter different from a ramp converter. At the start of
a new conversion process, the digital logic sets the most-sig-
nificant bit (MSB), of the input of the local D/A converter to
a logical 1 level and all other bits to 0 (i.e. D � 1000 . . . 0). In
other words, the first guess is equal to one-half the full-scale
output of the converter.

If the analog input is greater than half the full-scale output
from the local D/A converter, the MSB is retained at a logical
1 level, otherwise it is cleared. On the second iteration, the
next most significant bit (i.e. dm�2 in an m-bit word) is set to
a logical 1 and retained at 1 if the output of the D/A converter
is less than the analog input, or cleared if it is not. This process
is repeated m times until the LSB of the D/A converter has

482 Chapter 11 Computer peripherals

V (t)

End of
conversion 1

Start of
conversion 1

Start of
conversion 2

Start of
conversion 3

t

End of
conversion 2

End of
conversion 3

Figure 11.69 The ramp converter using an up/down counter.

Code Input (V)

Input 0.64 V

Locally generated
voltage

Iteration 1 Iteration 2 Iteration 3 Iteration 4

1111 0.9375

1110 0.8750

1101 0.8125

1100 0.7500

1011 0.6875

1010 0.6250

1001 0.5625

1000 0.5000

0111 0.4375

0110 0.3750

0101 0.3125

0100 0.2500

0011 0.1875

0010 0.1250

0001 0.0625

0000 0.0000

Figure 11.70 The operation of a successive approximation A/D converter.

been set and then retained or cleared. After the LSB has been
dealt with in this way, the process is at an end and the final
digital output may be read by the host microprocessor.

Figure 11.70 illustrates the operation of a 4-bit successive
approximation A/D converter whose full-scale input is nom-
inally 1.000 V. The analog input to be converted into digital
form is 0.6400 V. As you can see, a conversion is complete
after four cycles.

Figure 11.71 provides another way of looking at the suc-
cessive approximation process described in Fig. 11.70.

Figure 11.71 takes the form of a decision tree that shows every
possible sequence of events that can take place when an ana-
log signal is converted into a 4-bit digital value. The path
taken through the decision tree when 0.6400 V is converted
into digital form is shown by a heavy line.

Figure 11.72 illustrates the structure of a 68K-controlled
successive approximation A/D converter. The microprocessor
is connected to a memory mapped D/A converter that
responds only to a write access to the lower byte of the base
address chosen by the address decoder. The analog output

11.6 The analog interface 483

Start First cycle Second cycle Third cycle Fourth cycle

0100

0110

1000

1100

1010

1110

1111

Code

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

1101

1011

0010

0001

0011

0101

0111

1001

Bit set and tested 1 2 3 4

DAC output (V) 0.5000 0.7500 0.6250 0.6875

Analog I/P � DAC O/P �0.1400 �0.1100 �0.0150 �0.0475

Bit pattern at start of current cycle 1000 1100 1010 1011

Bit retained Yes No Yes No

DAC output after iteration 1000 1000 1010 1010

Figure 11.71 The decision tree for a successive approximation ADC.

484 Chapter 11 Computer peripherals

of the converter is compared with the unknown analog input
in a comparator, whose output is gated onto data line D15,
whenever a read access is made to the upper byte of the base
address. The software to operate the A/D converter of
Fig. 11.72 is

Figure 11.74 shows how the output from the integrator,
Vout, ramps upward linearly during phase 2 of the conversion
process. At the start of phase 2, a counter is triggered that
counts upwards from 0 to its maximum value 2n � 1. After a
fixed period T1 � 2n/fc where fc is the frequency of the

The integrating analog-to-digital converter

The integrating, or more specifically, the dual-slope integrat-
ing analog-to-digital converter, transforms the problem of
measuring an analog voltage into the more tractable problem
of measuring another analog quantity—time. An integrating
operational amplifier circuit converts the analog input into a
charge stored on a capacitor, and then evaluates the charge by
measuring the time it takes to discharge the capacitor. The
block diagram of a dual-slope integrating A/D converter is
given in Fig. 11.73 and its timing diagram in Fig. 11.74.

A typical integrating converter operates in three phases:
auto-zero, integrate the unknown analog signal, and integrate
the reference voltage. The first phase, auto-zero, is a feature of
many commercial dual-slope converters, which reduces any
offset error in the system. As it isn’t a basic feature of the dual-
slope process, we won’t deal with it here. During the second
phase of the conversion, the unknown analog input linearly
charges the integrating capacitor C. In this phase, the input of
the electronic switch connects the integrator to the voltage to
be converted, Vin.

converter’s clock, the counter overflows (i.e. passes its maxi-
mum count). The electronic switch connected to the integra-
tor then connects the integrator’s input to �Vref, the negative
reference supply. The output of the integrator now ramps
downwards to 0, while the counter runs up from 0.
Eventually, the output of the integrator reaches zero and the
conversion process stops—we’ll assume that the counter con-
tains M at the end of this phase.

Readers without a knowledge of basic electronics may skip
the following analysis of the dual slope integrating ADC.
At the end of phase 2 the capacitor is charged up to a level

The voltage rise during the second phase is equal to the fall
in the third phase because the output of the integrator begins
at zero volts and ends up at zero volts. Therefore, the follow-
ing equation holds:

1
CR
� t2

t1

Vin dt �
1

CR
� t3

t2

Vref dt

1
CR
�Vin dt

11.6 The analog interface 485

Assuming that t1 � 0, t2 � 2n/fc,
t3 � t2 � M/fc, we can write

or

This remarkable result is depen-
dent only on the reference voltage and
two integers, 2n and M. The values of
C and R and the clock frequency, fc, do
not appear in the equation. Implicit in
the equation is the condition that fc is
constant throughout the conversion
process. Fortunately, this is a reason-
able assumption even for the simplest
of clock generators.

The dual-slope integrating A/D con-
verter is popular because of its very low
cost and inherent simplicity.Moreover, it
is exceedingly accurate and can provide
12 or more bits of precision at a cost
below that of 8-bit ADCs. Because this
converter requires no absolute reference
other than Vref, it is easy to fabricate the
entire device in a single integrated circuit.

The conversion time is variable and
takes 2n � M clock periods in total.
A 12-bit converter with a 1 �s clock has
a maximum conversion time of
2 � 2n/fc seconds, because the maxi-
mum value of N is 2n. Using these fig-
ures, the maximum conversion time is
equal to 2 � 4096 � 1 �s, or 8.192 ms,
which is very much slower than most
forms of feedback A/D converter.

Because the analog input is inte-
grated over a period of 2n/fc seconds,
noise on the input is attenuated.
Sinusoidal input signals, whose peri-
ods are submultiples of the integra-
tion period, do not affect the output
of the integrator and hence the mea-
sured value of the input. Many high-
precision converters exploit this
property to remove any noise at the
power line frequency. Integrating
converters are largely used in instru-
mentation such as digital voltmeters.

Vin �
VrefM

2n

Vin2n

fc

�
VrefM

fc

1
CR�Vint	

0

2n/fc

�
1

CR�Vreft	
2n/fc

2n/fc

� M/fc

Analog input
Vin

VoutDatad00–d07

A01–A23

d15

Sign (Vin – Vout)

DTACK

Address
decoder

Memory map
16 bits

don’t care

d15

MSB
read-only

LSB
write-only

d14d08 d07 d00

68K
CPU

R/W

LDS

UDS

AS

Memory-mapped
digital-to-analog
converter

CS

Write

Read

0 if Vin >Vout–

+

Analog
input Electronic switch

Integrator

Comparator

C

R
–

–

+
+

Vin

Vint

Vcomp
Vref

gnd

Switch
control

Control logic

Counter

Clock

Digital output

START

EOC
(end of conversion)

Figure 11.72 The circuit of a successive approximation A/D converter.

Figure 11.73 The integrating A/D converter.

Now that we’ve described how analog signals can be cap-
tured, processed, and then used to generate an analog output,
we provide in insight into some of the things a computer can
do with analog signals.

11.7 Introduction to digital
signal processing

Digital signal processing (DSP) forms an entire branch of
electronics covering electronic circuits, mathematics, and
computer science. Here we explain why DSP is so important
by looking at just two areas: control systems and audio signal
processing. We set the scene by describing an early mechani-
cal analog control system before looking at the principles of
digital control systems. The final part of this section describes
DSP that is used in control systems and sound and video pro-
cessing systems.

Control systems have been used for a long time; for exam-
ple, the governor used to keep the speed of stream engines

constant during the nineteenth cen-
tury. Figure 11.75 shows the shaft of a
steam engine driving a vertical spin-
dle. Two arms connected to the spin-
dle by pivots carry counterweights at
the ends of the arms. The arms are
pivoted and are free to swing outward
as the spindle rotates.

As the spindle rotates, the counter-
weights move outward. In everyday
life people use the term centrifugal
force to describe the tendency of a
body following a curved path to fly
outward. Centrifugal force doesn’t
exist. Any moving body tends to con-
tinue in a straight line. In order to
force a body to follow a curved path
(e.g. an orbit), a force is necessary to
pull it toward the center. This force is
called centripetal force.

In Fig. 11.75 the force of gravity on the counterweights pro-
vides the centripetal force that pulls the counter-
weights inward. This situation is analogous to camber in a road
bend—tilting the car inward provides the centripetal force
required to pull the car round the bend without skidding.

The position of the counterweights in Fig. 11.75 depends
on the speed at which the spindle rotates. As the arms con-
nected to the counterweights move in and out, they control a
valve that regulates the flow of stream to the engine. Below a
certain speed, the valve is open and more steam is fed to the
engine to cause it to speed up. As the spindle rotates faster, the
counterweights fly further out until the valve begins to close
and the flow of steam is reduced. Eventually equilibrium is
reached and the spindle rotates at a constant speed.

This control mechanism employs negative feedback,
because an increase in the speed is used to decrease the flow of
steam and hence the engine’s speed. Similar mechanisms were
used to provide aircraft with autopilots long before the age of
the microprocessor. Today, the digital computer has replaced
the governor. The speed of a spindle can be read with great
precision and fed to a computer. The computer processes the
speed according to a suitable algorithm and generates the con-
trol signals that determine the spindle’s speed.

Modern digital control systems are everywhere; for exam-
ple, an automobile measures the external air pressure, the
manifold pressure, the external air temperature, the speed of
the engine, and the position of the gas pedal to determines
the optimum amount of fuel to inject into each cylinder.

11.7.1 Control systems

Analog-to-digital and digital-to-analog conversion tech-
niques are found in process control applications. Consider

486 Chapter 11 Computer peripherals

C

GDirection of
rotation

C = centripetal force
required to pull the
counterweight
inward.

G =force of gravity
pulling the counter-
weight down.

Figure 11.75 The mechanical governor.

START

Vint

t1 t2 t3

t1 t2 t3

t

t

t

Vcomp

1

0

Phase 1
auto-zero

Phase 2
integrate input

Phase 3
integrate reference

Figure 11.74 Timing diagram of an integrating A/D converter.

the automatic pilot of an aircraft. At any instant the location
and altitude of an aircraft is measured, together with its per-
formance (heading, speed, rate of climb, rate of turn, and
engine power). All these values are converted into digital
form and fed into a computer that determines the best posi-
tion for the throttle, elevator, aileron, and rudder controls.
The digital output from the computer is applied to digital-to-
analog converters, whose analog outputs operate actuators
that directly move the appropriate control surfaces.

Figure 11.76 describes a primitive control system. The
input is an analog value that is digitized and processed by the
computer. Real control systems are often much more sophis-
ticated than that of Fig. 11.76—consider the problem of over-
shoot. Suppose you apply a new demand input to a system
such as banking an aircraft’s wings. The aircraft rolls into the
bank and attempts to attain the angle requested. However, the
mechanical inertia of the aircraft might cause it to roll past
(i.e. overshoot) the point it was aiming for. A practical con-
trol system should also take account of rapidly changing con-
ditions.

Let’s look at how control systems have evolved from the sim-
plest possible mechanisms. The crudest control mechanism is
found in central heating systems where the desired tempera-
ture or setpoint is obtained from a control unit on the wall. The
demand input is compared with the actual temperature
measured by a sensor. If it is colder than the setpoint, the heater
is turned on. Otherwise the heater is turned off.

Figure 11.77 demonstrates the operation of such a system.
The temperature of the room rises and eventually the heater
is turned off. Because of the heater’s thermal inertia the
room, the temperature will continue to rise after the current
has been cut off. Eventually, the room begins to cool and the
heater is turned on and the temperature starts rising again.

This type of on–off control system is also called a bang–bang
control system to indicate its crude approach—bang the sys-
tem goes on and bang it goes off. There is no intermediate
point between on and off, and the room is never at the correct
temperature because it’s either slightly too hot or too cold.

A better method of controlling the temperature of a room
is to measure the difference between the desired temperature
and the actual temperature and use this value to determine
how much power is to be fed to the heater. The colder the
room, the more power sent to the heater. If the room is close
to its desired temperature, less power if fed to the heater. This
is an example of a proportional control system. As the room
temperature approaches its desired setpoint value, the power
fed to the heater is progressively reduced; that is, the current
supplied to the heater is K(tsetpoint � troom).

The proportional control system can be improved further
by taking into account changes in the variable you are trying to
control. Suppose you’re designing a camera with an automatic
focusing mechanism for use at sporting events. The camera
measures the distance of the subject from the camera using the
difference between the current point of focus and the desired
point of focus to drive the motor that performs the focusing.

Suppose the subject suddenly changes direction, speeds up,
or slows down. A proportional control system can’t deal with
this situation well. If the subject is in focus and then begins
accelerating away, a proportional control signal can’t apply a
large correction until the target is out of focus. What we need
is a control signal that doesn’t depend on the magnitude of the
error but on the rate at which the error is changing.

A differential control system uses the rate of change of the
error as a control signal; for example, a camera with auto-
focusing can use any rapid change in the subject’s position to
control the focusing motor—even if the subject is approxi-
mately in focus and there’s no proportional error. A differen-
tial control system must also incorporate proportional
control because if the subject were out of focus but not mov-
ing there would be no differential feedback signal.

If we call the error between the setpoint in a control system
and its output e, the control input in a proportional plus deriv-
ative (i.e. differential) control system is given by

where K1 and K2 are the proportional and derivative control
coefficients, respectively.

Even this control algorithm isn’t perfect. Suppose you
design a radar-controlled docking system for two spacecraft.
One craft can track the other by using both proportional

y � K1e � K2de/dt,

11.7 Introduction to digital signal processing 487

Compound
input

Error
signal

x e K System

Feedback path

Output
y

Sensor

Control

Comparator Heater

Temperature

Set point

Heater
time

time

On

Off

Figure 11.77 The on–off control system.

Figure 11.76 The control system.

control and derivative control to minimize the difference
between their trajectories. However, once their trajectories
are closely (but not exactly) matched, there is neither a pro-
portional error signal nor a derivative error signal to force
exact tracking. What we need is a mechanism that takes
account of a persistent small error.

An integral control system adds up the error signal over a
period of time. The integral correction term is K3 ∫edt Even
the smallest error eventually generates a control signal to fur-
ther reduce the error. Integral control ensures that any drift
over time is corrected.

A high-performance controller might combine propor-
tional control, rate-of-change control, and integral control as
Fig. 11.78 demonstrates. This system is called a PID (propor-
tional, integral, and derivative) controller. In Fig. 11.78 the
box marked differentiator calculates the rate of change of the
system output being controlled.

The equation for a PID can be expressed in the form

The control signal y now depends and the size of the error
between the desired and actual outputs from the controller,
the rate at which the error is changing, and the accumulated
error over a period.

We can’t go into control theory here but we should men-
tion several important points. Designing a PID system is not
easy. You have to choose the amounts of proportional, deriv-
ative, and integral feedback as well as the time constant of the
integrator. If the system is not correctly designed it can
become unstable and oscillate.

In the final part of this section we look at how digital sig-
nals are processed by the computer.

11.7.2 Digital signal processing

Let’s begin with a simple example of signal processing.
Suppose music from a microphone is quantized, converted
into a sequence of digital values by an ADC, fed into a com-
puter, and stored in an array, M. We can read consecutive
digital values from the array and use a DAC to convert them
into an analog signal that is fed to a loudspeaker. Consider the
following algorithm.

y � K1e � K2de/dt � K3�e dt

488 Chapter 11 Computer peripherals

Figure 11.78 The derivative and integral control system.

FOR i � 1 TO k DO
Output � Mi

ENDFOR

The digitally stored music is reconverted
into analog form by sending it to the output
port connected to a DAC. This algorithm
does nothing other than retrieve the stored
music. In the next example, the samples
from the array are amplified by a scalar fac-

tor A. By changing the value of A, the amplitude (i.e. the
loudness) of the music can be altered. Now we have a digital
volume control with no moving parts that can be pro-
grammed to change the sound level at any desired rate.

FOR i � 1 TO k DO
Output � A * Mi

ENDFOR

We can average consecutive samples to calculate the loud-
ness of the signal and use it to choose a value for A. The fol-
lowing expression shows how we might average the loudness
over a period of k samples.

Suppose we choose the scale factor A to make the average
power of the signal approximately constant. When the music
is soft, is the volume is increased, and when it is loud, the vol-
ume is decreased. This process is called compressing the music
and is particularly useful for listeners with impaired hearing
who cannot hear soft passages without turning the volume
up so far that loud passages are distorted.

In the next example, the signal fed to the loudspeaker is
composed of two parts. Mi represents the current value,
and B�Mi�j the value of the signal j samples earlier, scaled
by a factor B. Normally the factor B is less than unity.
Where do we get a signal plus a delayed, attenuated value?
These features are found in an echo and are of interest to
the makers of electronic music. By very simple processing,
we are able to generate echoes entirely by digital tech-
niques. Analog signal processing requires complex and
inflexible techniques. Synthesizing an echo by analog tech-
niques requires you to first convert the sound into vibra-
tion by a transducer. A spring is connected to the
transducer and the acoustic signal travels down it to a
microphone at the other end. The output of the micro-
phone represents a delayed version of the original signal—
the echo. The length of the delay is increased by using a
longer spring. In the digital version, simply modifying the
value of j changes the delay.

FOR i � i+1 TO k DO
Output= Mi � B * Mi-j

ENDFOR

Loudness �
1
k
�

k�1

i�0
mi

2

Feedback

Feedback

Feedback

Command
input

Integrator

Amplifier System
Output

Differentiator

The final example of signal processing represents the linear
transversal equalizer that implements a general-purpose dig-
ital filter. In audio terms, a digital filter acts as tone controls or
an equalizer. We are going to look at this topic in a little more
detail next.

FOR i � 1 TO k DO
a � K4 * Mi-4
b � K3 * Mi-3
c � K2 * Mi-2
d � K1 * Mi-1
e � K0 * Mi
Output � a � b � c � d � e

ENDFOR

The output is a fraction of the current sample plus
weighted fractions of the previous four samples. Let’s look at
this operation in a little more detail.

Digital filters

An important application of digital signal processing is the
digital filter. A digital filter behaves like an analog filter—it
can pass or stop signals whose frequencies fall within certain
ranges. Consider an analog signal, X, that has been digitized
and its successive values are

x0, x1, x2, x3, . . . , xi�1, xi, xi+1, . . .

Now suppose we generate a new sequence of digital values,
Y, whose values are y0, y1, y2, . . . , where,

An element in the output series, yi, is given by a fraction of
the current element from the input series C0�xi plus a fraction
of the previous element C1�xi �1 of the input series.
Figure 11.79 illustrates this operation. The symbol Z �1 is
used to indicate a 1-unit delay (i.e. the time between two suc-
cessive samples of a signal). In other words the operation
xi Z

�1 is equivalent to delaying signal xi by one time unit—
similarly Z�2 delays xi by two time units. This notation
belongs to a branch of mathematics called Z transforms.

yi � C0 ·xi � C1 ·xi�1

Let’s give see what happens when we give the filter coeffi-
cients C0 the value 0.6 and C1 the value 0.4, and make the
input series X � 0, 0, 1, 1, 1, 1, . . . 1, which corresponds to a
step function. The output sequence is given by

y0 � 0.6 � x0 � 0.4 � x�1 � 0.6 � 0 � 0.4 � 0.0 � 0.0
y1 � 0.6 � x1 � 0.4 � x0 � 0.6 � 0 � 0.4 � 0.0 � 0.0
y2 � 0.6 � x2 � 0.4 � x1 � 0.6 � 1 � 0.4 � 0.0 � 0.6
y3 � 0.6 � x3 � 0.4 � x2 � 0.6 � 1 � 0.4 � 1.0 � 1.0
y4 � 0.6 � x4 � 0.4 � x3 � 0.6 � 1 � 0.4 � 1.0 � 1.0

The output sequence is a rounded or smoothed step func-
tion (i.e. when the input goes from 0 to 1 in one step, the out-
put goes 0.0, 0.6, 1.0). This type of circuit is called a low-pass
filter because sudden changes in the input sequence are
diminished by averaging consecutive values. Real digital fil-
ters have many more delays and coefficients. Consider the
output of a filter with four delay units given by

If we use this filter with coefficients 0.4, 0.3, 0.2, 0.1 and
subject it to a step input, we get

y0 � 0.4 � x0 � 0.3 � x�1 � 0.2 � x�2 � 0.1 � x�3

� 0.4 � 0 � 0.3 � 0 � 0.2 � 0 � 0.1 � 0 � 0.0
y1 � 0.4 � x1 � 0.3 � x0 � 0.2 � x�1 � 0.1 � x�2

� 0.4 � 1 � 0.3 � 0 � 0.2 � 0 � 0.1 � 0 � 0.4
y2 � 0.4 � x2 � 0.3 � x1 � 0.2 � x0 � 0.1 � x�1

� 0.4 � 1 � 0.3 � 1 � 0.2 � 0 � 0.1 � 0 � 0.7
y3 � 0.4 � x3 � 0.3 � x2 � 0.2 � x1 � 0.1 � x0

� 0.4 � 1 � 0.3 � 1 � 0.2 � 1 � 0.1 � 0 � 0.9
y4 � 0.4 � x4 � 0.3 � x3 � 0.2 � x2 � 0.1 � x1

� 0.4 � 1 � 0.3 � 1 � 0.2 � 1 � 0.1 � 1 � 1.0

In this case, the output is even more rounded (i.e. 0.0, 0.4,
0.7, 0.9, 1.0).

A more interesting type of filter is called a recursive filter
because the output is expressed as a fraction of the current
input and a fraction of the previous output. In this case, the
output sequence for a recursive filter with a single delay unit
is given by

Figure 11.80 shows the structure of a recursive filter.
Suppose we apply the same step function to this filter that we
used in the previous examples. The output sequence is given by

y0 � 0.6 � x0 � 0.4 � y�1 y0 � 0.6 � 0 � 0.4 � 0 � 0.0
y1 � 0.6 � x1 � 0.4 � y0 y1 � 0.6 � 0 � 0.4 � 0 � 0.0
y2 � 0.6 � x2 � 0.4 � y1 y2 � 0.6 � 1 � 0.4 � 0 � 0.6
y3 � 0.6 � x3 � 0.4 � y2 y3 � 0.6 � 1 � 0.4 � 0.6 � 0.84
y4 � 0.6 � x4 � 0.4 � y3 y4 � 0.6 � 1 � 0.4 � 0.84 � 0.936
y5 � 0.6 � x5 � 0.4 � y4 y5 � 0.6 � 1 � 0.4 � 0.936 � 0.9744
y6 � 0.6 � x6 � 0.4 � y5 y6 � 0.6 � 1 � 0.4 � 0.9744 � 0.98976
y7 � 0.6 �x7 �0.4 �y6 y7 � 0.6�1�0.4�0.98976 � 0.995904

yi � C0 ·xi � C1 ·yi�1.

yi � C0 ·xi � C1 ·xi�1 � C2 ·xi�2 � C3 ·xi�3 � C4 ·xi�4

11.7 Introduction to digital signal processing 489

Delay element

Input sequence

Coefficient

Output sequence

Summer

yi

xi Z –1

C0 C1

Figure 11.79 The digital filter.

Figure 11.81 plots the input and output series for the
recursive filter of Fig. 11.80. As you can see, the output series
(i.e. the yi) rises exponentially to 1. The effect of the operation
C0 � xi � C1 � yi � 1 on a digital sequence is the same as that of
a low-pass analog filter on a step signal. You can see that the
recursive digital filter is more powerful than a linear digital
filter. By changing the constants in the digital equation we can
change the characteristics of the digital filter. Digital filters
are used to process analog signals and to remove noise.

The opposite of a low-pass filter is a high-pass filter, which
passes rapid changes in the input sequence and rejects slow
changes (or a constant level). Consider the recursive digital
filter defined by

All we have done is change the sign of the constant C1 and
subtracted a fraction of the old output from a fraction of the
new input. In this case, a constant or slowly changing signal is
subtracted from the output. Consider the previous example
with a step input and coefficients C0 � 0.6 and C1 � 0.4:

y0 � 0.6 � x0�0.4 � y�1 y0 � 0.6 � 0�0.4 � 0 � 0.0
y1 � 0.6 � x1�0.4 � y0 y1 � 0.6 � 0�0.4 � 0 � 0.0
y2 � 0.6 � x2�0.4 � y1 y2 � 0.6 � 1�0.4 � 0 � 0.60
y3 � 0.6 � x3�0.4 � y2 y3 � 0.6 � 1�0.4 � 0.6 � 0.36
y4 � 0.6 � x4�0.4 � y3 y4 � 0.6 � 1�0.4 � 0.36 � 0.4176
y5 � 0.6 � x5�0.4 � y4 y5 � 0.6 � 1�0.4 � 0.4176 � 0.43296
y6 � 0.6 �x6�0.4 �y5 y6 � 0.6 �1�0.4 �0.43296 � 0.426816
y7 � 0.6 �x7�0.4 �y6 y7 � 0.6 �1�0.4 �0.426816 � 0.42927

In this case the step function dies away as Fig. 11.82
demonstrates.

Correlation

One of the most important applications of digital signal
processing is the recovery of very weak signals that have
been corrupted by noise. Signals received from satellites and
deep space vehicles are often so weak that there is
considerably more noise than signal—anyone listening to
such a signal on a loudspeaker would hear nothing
more than the hiss of white noise. Modern signal processing
techniques enable you to extract signals from noise when
the signal level is thousands of times weaker than the noise.

yi � C0 ·xi � C1 ·yi�1.

The technique used to recover signals from noise is called
correlation. We met correlation when we discussed the wave-
forms used to record data on disks—the more unalike the
waveforms used to record 1s and 0s, the better. Correlation is
a measure of how similar two waveforms or binary sequences
are. Correlation varies from �1 to 0 to �1. If the correlation
is � 1, the signals are identical. If the correlation is 0, the two
signals are unrelated. If the correlation is �1, one signal is the
inverse of the other.

Two signals can be correlated by taking successive samples
from each of the series, multiplying the pairs of samples, and
then averaging the sum of the product. Consider now the cor-
relation function of two series X � x0, x1, x2, x3, x4 and Y �

y0, y1, y2, y3, y4.
The correlation between X and Y is given by 1/5(x0 � y0, �

x1 � y1, � x2 � y2, � x3 � y3).
An example of the use of correlation is the effect of rain-

fall in the mountains on crop growth in the plain. Simply
correlating the sequence of rainfall measurements with
crop growth doesn’t help because there’s a delay between
rainfall and plant growth. We can generate several correla-
tion functions by correlating one sequence with a

490 Chapter 11 Computer peripherals

Input sequence

xi yi

yi = C0 xi + C1yi–1

C0

C1

Z –1

Output sequence

Figure 11.80 The recursive digital filter.

1.0
V

Input

Output

time

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8

Figure 11.81 Response of the filter of Fig. 11.80 to a step input.

Output

Input

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8

time

Output

Figure 11.82 Response of a high-pass filter to a step input.

delayed version of the other sequence. Now we have a
sequence of correlation functions that depend on the
delay between the sequences, and we can express the kth
correlation value as

Suppose that X � 1, 2, 3, �1, 4, 2, 0, 1 and Y � 0, 0, 1, �1,
0, 1, 1, 0, 0, 0:

C0 � 1 �0 � 2 �0� 3 �1 � �1 ��1 � 4 �0 � 2 �1 � 0 �1 � 1 �0 � 6

C1 � 1�0 � 2�1 � 3-1 � �1�0 � 4�1 � 2�1 � 0�0 � 1�0 � 5

C2 � 1�1 � 2��1 � 3�0 � 1�1 � 4�1 � 2�0 � 0�0 � 1�0 � 4

These results don’t seem very interesting until we apply this
technique to a real situation. Suppose a transmitter uses the
sequence 0.25, �0.5, 1.0, �0.5, 0.25 to represent a logical 1;
that is a 1 is transmitted as the sequence of values 0.25, �0.5,
1.0, �0.5, 0.25. Suppose we receive this signal without noise
and correlate it with the sequence representing a 1. That is,

C0 � 0.25 � 0.25 � �0.5 � �0.50 � 1 � 1.0
� �0.5 � �0.5 � 0.25 � 0.25

� 1.625
C1 � 0.25 � 0.00 � �0.5 � 0.25

� 1 � �0.5 � �0.5 � 1.0 � 0.25 � �0.5 � 0.0 �0.25
� �1.25

C2 � 0.25 � 0.00 � �0.5 � 0.00 � 1 � 0.25 � �0.5 � �0.5
� 0.25 � 1.0 � 0.0 � �0.5 � 0.0 � 0.25

� 0.75

As you can see, the greatest correlation factor occurs
when the sequence is correlated with itself. If the sequence

Ck � �xi · yi�k

is corrupted by. samples of random noise, the noise is not
correlated with the sequence and the correlation function
is low. Noisy data from, say a satellite, is correlated with the
same sequence used to generate the data. This operation is
performed by correlating the incoming data with the
appropriate sequence and varying the delay k. A sequence
of correlation values are recorded and compared with a
threshold value. If the correlation is above the threshold, it
is assumed that the sequence is present in the received
signal.

Here we have done little more than mention a few examples
of digital signal processing. The techniques we have described
can be used in both the audio and visual domains. Processing
the signals that represent images allows us to, for example,
sharpen blurred images or to remove noise from them, or to
emphasize their edges.

■ SUMMARY

In this chapter we’ve looked at some of the many

peripherals that can be connected to a computer.We began

with the two most important peripherals from the point of

view of the average PC user, the input device (keyboard and

mouse) and the output device (CRT, LCD, and plasma display).

We have looked at the construction of input/output devices

and have described how printers work. In particular, we have

demonstrated how computers handle color displays.

Some devices receive or generate analog signals.We have

examined how analog signals from sensors are processed by the

computer.We have provided a brief discussion of how analog

signals can be converted into digital form and vice versa and the

problems of sampling a time-varying signal.

11.7 Introduction to digital signal processing 491

THE KALMAN FILTER

The Kalman filter, which was introduced in the early 1960s,

provides a spectacular application of digital filtering.This filter

was proposed by Rudolf Emil Kalman who was born in

Budapest but emigrated to the USA from Hungary during the

Second World War.A Kalman filter takes a time-varying signal

corrupted by noise and predicts the future value of the signal;

that is, it can eliminate some of the effects of noise. Kalman

filters have been applied to a wide range of systems from

space vehicles to medical systems.

The mathematics of Kalman filters belongs in advanced

courses in control theory.All we can do here is mention some

of the underlying concepts.A dynamic system that varies with

time can be described by state variables. For example, you can

write xi� 1 � axi, where xi � 1 represents the state of the

system at time I � 1, xi represents the system at time I, and a

characterizes the behavior of the system. In practice, the state

equation is given by xi � 1 � axi, � wi, where wi represents a

random noise component.

The Kalman filter lets you predict (i.e. make a best guess)

the next state of the system when the system is affected by

random noise and the measurements themselves are also

affected by noise. Suppose you design an aircraft’s autopilot

to enable it to follow the ground from a very low level. The

height of the aircraft about the ground is measured by radar

techniques. However, the successive readings from the radar

altimeter are corrupted by random noise, which means that

any particular reading can’t be relied on. Furthermore, succes-

sive altimeter readings can’t just be averaged because the ter-

rain itself is undulating.

If the ith estimate of the aircraft’s height is hI, the Kalman

filter evaluates:

The underscore under hi and hi � 1 indicates that these

are estimated values.The current value of h is obtained

from the previous estimate, hi � 1, plus the new data, xi.

The coefficient of the filter, a, is a function of i; that is, the

coefficient varies with time.The recursive nature of the

Kalman filter means that trends in the input are taken into

account.

hi � ai hi�1 � (1 � ai)xi

We have also briefly introduced some of the devices that

enable us to control the World around us: temperature, pressure,

and even rotation sensors.

■ PROBLEMS

11.1 Why are mechanical switches unreliable?

11.2 Imagine that keyboards did not exist (i.e. you are free from

all conventional design and layout constraints) and you were

asked to design a keyboard for today’s computers. Describe the

layout and functionality of your keyboard.

11.3 Why are optical mice so much better than mechanical

mice?

11.4 A visual display has a resolution of 1600 � 1200 pixels. If

the display is updated at 60 frames a second, what is the aver-

age rate at which a pixel must be read from memory?

11.5 Most displays are two-dimensional. How do you think

three-dimensional displays can be constructed? Use the

Internet to carry out your research.

11.6 How do dot printers (for example, the inkjet printer)

increase the quality of an image without increasing the number

of dots?

11.7 What is the difference between additive and subtractive

color models?

11.8 Use the Internet or a current computer magazine to

calculate the ratio of the cost of a 17-inch monitor to a basic

color printer.What was the value of this ratio 12 months ago?

11.9 Why does an interlaced CRT monitor perform so badly

when used as a computer monitor?

11.10 Describe, with the aid of diagrams, how an integrating

analog-to-digital converter operates. Explain also why the

accuracy of an integrating converter depends only on the

reference voltage and the clock.

11.11 What is a tree network (when applied to DACs) and what

is its advantage over other types of DAC (e.g. the R–2R ladder).

11.12 A triangular-wave generator produces a signal with a

peak-to-peak amplitude of 5 V and a period of 200 �s. This

analog signal is applied to the input of a 14-bit A to D converter.

(a) What is the signal-to-noise ratio that can be achieved by

the converter?

(b) What is the minimum input change that can be reliably

resolved?

(c) For this signal explain how you would go about calculating

the minimum rate at which it must be sampled.

11.13 What is a sample and hold circuit and how is it used in

ADC systems?

11.14 One of the most important applications of microproces-

sors in everyday systems is the controller. Describe the structure

of a three-term PID (proportional, integral, derivative) control

system and explain how, for example, it can be used in tracking

systems.

11.15 Find further examples of the use of digital signal

processing.

11.16 What is the meaning of x0, x1, x2, x3, x4, . . . , xI, . . . , xn in

the context of digital filter.

11.17 A digital filter is defined by the equation yn � 0.2�xn

� 0.1 � xn � 1 � 0.4 � yn � 1 � 0.3 � yn � 2 where yn is the nth

output and xn is the nth input.

(a) What is the meaning of this equation in plain English?

(b) What is the difference between yn and yn�1?

(c) How is the above equation represented diagrammatically?

(d) Does the above equation represent a recursive filter?

(e) Describe the circuit elements in the diagram.

(f) If the input sequence x0, x1, x2, x3, x4, . . . is 0.0, 0.1, 0.2, 0.3,

0.4, . . . , what is the output sequence?

(g) What does this filter do?

11.18 A recursive digital filter is described by the expression

where the output of the filter is the sequence y0, y1, y2, . . . ,

yn � 1, yn and the input is the sequence x0, x1, . . . , xn � 1, xn. The

terms c0, c1, and c2 are filter coefficients with the values

c0 � 0.4, c1 � 0.1, and c2 � 0.3.

(a) What is the meaning of a recursive filter?

(b) Draw a block diagram of the structure of this filter (note

that the delay element is represented by Z � 1).

(c) Draw a graph of the output sequence from this filter

corresponding to the input sequence given by the step

function 0, 0, 1, 1, 1, 1, . . . 1.

(d) In plain English, what is the effect of this filter on the step

input?

11.19 Why is speech not used more widely as a form of

computer input?

11.20 Suppose that speech were used as a form of computer

input. Do you think that all languages would have the same

degree of accuracy (i.e. the number of errors in the input

stream) or would some languages work better with speech

recognition software than others?

yn � c0 ·xn � c1 ·xn�1 � c2 ·yn�1

492 Chapter 11 Computer peripherals

12Computer memory

CHAPTER MAP

10 Buses and
input/output
mechanisms

Chapter 10 deals with

input/output techniques and

shows how information is

transferred between a computer

and its peripherals.We look at

internal buses that link devices

within the computer and external

buses that link remote devices

such as printers with the

computer.

11 Peripherals computer

The power of a computer is as

much a function of its

peripherals as of its data

processing capabilities.

Chapter 11 introduces some of

the peripherals found in a typical

PC such as the keyboard, display,

printer, and mouse, as well as

some of the more unusual

peripherals that, for example, can

measure how fast a body is

rotating.

12 Computer memory

Having described the structure

and operation of the CPU, we now

look at how data is stored.

Information isn’t stored in a

computer in just one type of

storage device; it’s stored in DRAM

and on disk, CD-ROM, DVD, and

tape.There is such a large range of

storage devices and technologies

because each storage mechanism

is ideal for some tasks but not

others. Here we look at both high-

speed immediate access

semiconductor technology and

the much slower magnetic and

optical secondary storage systems

used to archive data.

13 The operating system

Chapter 13 provides a brief

overview of the software that

controls the computer’s interface

and the way in which it accesses

memory—the operating system.

INTRODUCTION

Memory systems are divided into two classes: immediate access memory and secondary

storage.We begin with the high-speed immediate access main store based on semiconductor

technology and demonstrate how memory components are interfaced to the CPU.Then we

look at magnetic and optical secondary stores that hold data not currently being processed by

the CPU. Secondary stores have gigantic capacities but are much slower than immediate access

stores.

Over the years, memory systems have been subject to three trends, a reduction in their cost, an

increase in their capacity, and an increase in their speed. Figure 12.1 (from IBM) demonstrates just

how remarkably memory costs have declined over a decade for both semiconductor and magnetic

memory. Fifteen years has witnessed a reduction of costs by three orders of magnitude.

12.1 Memory hierarchy

Computer memory systems are not homogeneous. The
various memory devices in a typical PC may use four or more
different technologies, each with its own properties. For
example, internal registers within the CPU itself are built
with semiconductor technology and have access times of the
order of one nanosecond, whereas the hard disks that holds
programs and data use magnetic technology and are millions
of times slower.

A computer may have registers, cache memory, flash
memory, a floppy disk, a hard disk, a CD ROM, and a DVD.
Some computers even have tape storage systems. If all
these devices store data, why do we need so many of them? As
in every aspect of life, economics plays a dominant role in
memory systems design. The characteristics a computer
designer would like to see in a memory device are often
mutually exclusive. The ideal memory has the following
characteristics.

High speed A memory’s access time should be very low,
preferably 0.1 ns, or less.

Small size Memory should be physically small. Five hundred
thousand megabytes (i.e. 500 Gbytes) per cubic centimeter
would be nice.

Low power The entire memory system should run off a watch
battery for 100 years.

Highly robust The memory should not be prone to errors;
a logical one should never spontaneously turn into a logical
zero or vice versa. It should also be able to work at tempera-
tures of �60�C to 200�C in dusty environments and tolerate

high levels of vibration—the military are very keen on this
aspect of systems design.

Low cost Memory should cost nothing and, ideally, should be
given away free with software (e.g. buy Windows 2015® and
get the 500 Gbytes of RAM needed to run it free).

Figure 12.2 illustrates the memory hierarchy found in
many computers. Memory devices at the top of the hierarchy
are expensive and fast and have small capacities. Devices at
the bottom of the hierarchy are cheap and store vast amounts
of data, but are abysmally slow. This diagram isn’t exact
because, for example, the CD-ROM has a capacity of

494 Chapter 12 Computer memory

DRAM/Flash

HDD DRAM Flash

Mobile/server HDD

Desktop HDD

1990
0.0001

P
ri

ce
/M

b
y
te

 (
$

)

0.001

0.01

0.1

1

10

100

1995 2000

Year

2005 2010

1" HDD

Figure 12.1 The downward

trend in memory cost

(from IBM).

Optical storage systems

are smaller than magnetic

storage (600 Mbytes to 14 Gbytes)

Capacity

low
1000 bytes

512 kbytes

1 Mbytes

500 Gbytes

1000 Gbytes

(1 Tbyte)slow 100 s

100 ms

10 ms

50 ns

5 ns

1 ns

Speed

fast

high

Registers

O
n

-ch
ip

In
 th

e
 co

m
p

u
te

r

E
xte

rn
a
l

Main store

Hard disk (magnetic)

Random access
memory

Serial
access
memory

CD-ROM and DVD (optical)

Tape (magnetic)

Cache

Figure 12.2 Memory hierarchy.

600 Mbytes and (from the standpoint of capacity) should
appear above hard disks in this figure.

Internal CPU memory lies at the tip of the memory hierar-
chy in Fig. 12.2. Registers have very low access times and are
built with the same technology as the CPU. They are expen-
sive in terms of the silicon resources they take up, limiting the
number of internal registers and scratchpad memory within
the CPU itself. The number of registers that can be included
on a chip has increased dramatically in recent years.

Immediate access store holds programs and data during
their execution and is relatively fast (10 ns to 50 ns). Main
store is implemented as semiconductor static or dynamic
memory. Up to the 1970s ferrite core stores and plated wire
memories were found in main stores. Random access mag-
netic memory systems are now obsolete because they are
slow, they are costly, they consume relatively high power, and
they are physically bulky. Figure 12.2 shows the two types of
random access memory, cache and main store.

The magnetic disk stores large quantities of data in a small
space and has a very low cost per bit. Accessing data at a par-
ticular point on the surface is a serial process and a disk’s
access time, although fast in human terms, is orders of mag-
nitude slower than immediate access store. A disk drive can
store 400 Gbytes (i.e. �238 bytes) and has an access time of
5 ms. In the late 1990s an explosive growth in disk technology
took place and low-cost hard disks became available with
greater storage capacities than CD-ROMs and tape systems.

The CD-ROM was developed by the music industry to
store sound on thin plastic disks called CDs (compact disks).
CD-ROM technology uses a laser beam to read tiny dots
embedded on a layer within the disk. Unlike hard disks,
CD-ROMs use interchangeable media, are inexpensive, and
store about 600 Mbytes, but have longer access times than

conventional hard disks. The CD-ROM is used to distribute
software and data. Writable CD drives and their media are
more expensive and are used to back up data or to distribute
data. The CD-ROM was developed into the higher capacity
DVD in the 1990s.

Magnetic tape provides an exceedingly cheap serial access
medium that can store 1000 Gbytes on a tape costing a few
dollars. The average access time of tape drives is very long in
comparison with other storage technologies and they are
used only for archival purposes. Writable CDs and DVDs
have now replaced tapes in many applications.

By combining all these types of memory in a single com-
puter system, the computer engineer can get the best of all
worlds. You can construct a low-cost memory system with a
performance only a few percent lower than that of a memory
constructed entirely from expensive high-speed RAM. The
key to computer memory design is having the right data in
the right place at the right time. A large computer system may
have thousands of programs and millions of data files.
Fortunately, the CPU requires few programs and files at any
one time. By designing an operating system that moves data
from disk into the main store so that the CPU always (or
nearly always) finds the data it wants in the main store, the
system has the speed of a giant high-speed store at a tiny frac-
tion of the cost. Such an arrangement is called a virtual
memory because the memory appears to the user as, say, a
400 Gbyte main store, when in reality there may be a real
main memory of only 512 Mbytes and 400 Gbytes of disk
storage. Figure 12.3 summarizes the various types of memory
currently available.

Before we begin our discussion of storage devices proper,
we define memory and introduce some of the terminology
and underlying concepts associated with memory systems.

12.1 Memory hierarchy 495

Figure 12.3 Classes of memory.

Primary
(random access)

Secondary
(sequential access)

Memory

Semiconductor

Volatile Volatile Volatile

None None

Nonvolatile Nonvolatile

Obsolete Obsolete

Floppy disk Rewritable CD

Rewritable DVD

DVDHard disk

Tape

Bubble CD-ROMEPROM

Flash EPROM

EEPROM

Static RAM

DRAM

Ferrite core

Nonvolatile Nonvolatile

Magnetic Magnetic Optical

12.2 What is memory?

Everyone knows what memory is, but it’s rather more
difficult to say exactly what we mean by memory. We can
define memory as the long- or short-term change in the phys-
ical properties of matter caused by an event. For example, ice
forms on a pond during a spell of cold weather and remains
for a short time after the weather gets warmer. The water has
changed state from a liquid to a solid under the influence of a
low temperature and now remembers that it has been cold,
even though the temperature has risen above freezing point.
To construct a computer memory, we have to choose a prop-
erty of matter that can be modified (i.e. written) and later
detected (i.e. read).

Without human memory we wouldn’t be able to follow a
movie, because anything that happened prior to the current
point in time would have vanished. As we watch the movie,
optical signals from the retina at the back of the eye cause
changes within the brain—the event has passed but its effect
remains. The movie itself is yet another memory device. The
photons of light once generated by a scene alter the chemical
structure of a thin coating of silver compounds on a film of
plastic.

The von Neumann stored program computer is based on
the sequential execution of instructions. Clearly, the program
must be stored if the individual instructions are to be carried
out one after the other. Furthermore, as computation yields
temporary values, memory is needed to hold them. Such
memory is called immediate access memory because it must be
able to access its contents at the same rate the CPU executes
instructions.

Programs not currently being executed have to be stored
somewhere. Secondary storage devices hold vast amounts
of information cheaply but cannot retrieve data at anything
like the rate at which a computer executes instructions.
Immediate access stores are approximately 1 000 000 times
faster than secondary stores.

Because digital logic devices operate on binary signals, it’s
reasonable to expect computer memories to behave in a
similar fashion. Memory systems store information in binary
form by exploiting a two-valued property of the storage
medium.

The most important requirements of a memory element
are that it must be able to assume one of two stable states, and
that an energy barrier must separate these states; that is, it
must require energy to change the state of the memory. If
there were no energy barrier separating the states, it would
be possible for a stored binary value to change its state at
the least provocation. In the case of a piece of string, it
requires a considerable energy input either to tie a knot or to
untie it.

12.3 Memory technology

Memory systems employ a wider range of technologies than
any other component of a digital computer. Each technology
has advantages and disadvantages; for example, cost, speed,
density (bits/mm3), power consumption, physical size, and
reliability. We now provide a brief overview of some of these
memory technologies.

12.3.1 Structure modification

We can store information by modifying the structure, shape,
or dimensions of an object. Three decades ago this storage
technology was found in punched cards and paper tape
systems that use the there/not-there principle in which
holes are made or not made in paper. The gramophone
record is a structural memory that stores analog informa-
tion by deforming the sides of a spiral groove cut into the
surface of a plastic disk.At any instant the analog information
is a function of the depth of the cut in the side of the
groove. The CD-ROM and DVD are structural memories
because information is stored as a string of dots on a sheet of
plastic.

12.3.2 Delay lines

Superman used a neat trick to view the past—he just zoomed
away from Earth at a speed faster than light and then viewed
past events from their light, which had been streaming away
from the Earth at a constant speed of 300 000 km/s. A stream
of photons moving through space represents the memory of
the event. We can call this spatial memory because data is
stored as a wave traveling through a medium. Early comput-
ers converted data into ultrasonic sound pulses traveling
down tubes filled with mercury. When the train of pulses
representing the stored binary sequence travels from one
end of the tube to the other end, it is detected, amplified,
and then recirculated. This type of memory is also called
a delay-line memory and is no longer found in digital
computers.

12.3.3 Feedback

Data can be stored in an electronic device by means of
feedback like the flip-flop, which is held in a stable logical state
by feeding its output back to its input. Modern semiconduc-
tor devices based on feedback have a very low access time and
are found in cache memory systems. Semiconductor mem-
ory based on feedback can be designed to consume very little
power. Such memory is used in portable systems.

496 Chapter 12 Computer memory

12.3.4 Charge storage

Dynamic memory devices store data as an electrical charge.
If a conductor is electrically insulated from its surroundings,
it can be given an electrical charge. Binary information
is stored by regarding one state as electrically charged and
the other state as not charged. The insulation prevents
the charge from rapidly draining away. Such a memory

element is known as a capacitor and was used in one of
the World’s first computers. (In 1946, Dr F. C. Williams
used a cathode ray tube to store a bit as a charge on the
screen. Tom Kilburn worked with Williams at Manchester
University to extend the CRT store to 2048 bits in 1947.)
The most popular form of immediate memory found in
today’s PCs and workstations, DRAM, employs charge
storage.

12.3 Memory technology 497

MEMORY TECHNOLOGY—SOME DEFINITIONS

Memory cell A memory cell is the smallest unit of information

storage and holds a single 0 or 1. Memory cells are grouped

together to form words.The location of each cell in the

memory is specified by its address.

Capacity A memory’s capacity is expressed as the quantity of

data that it can hold. Sometimes the capacity of a memory

device is quoted in bits and sometimes in bytes.We use the

convention that 1K � 210 � 1024 and 1M � 220 � 1 048 576.

Some manufacturers use the convention that 1K � 1000

and 1M � 1 000 000. Note that 1G (gigabyte) � 230 and

1T (terabyte) � 240.

Density The density of a memory system is a measure of how

much data can be stored per unit area or per unit volume; that

is density � capacity/size.

Access time A memory component’s most important parameter

is its access time, which is the time taken to read data from a

given memory location, measured from the start of a read cycle.

Access time is the time taken to locate the required memory cell

within the memory array plus the time taken for the data to

become available from the memory cell.We should refer to read

cycle access time and write cycle access time because some

devices have quite different read and write access times.

Random accessWhen memory is organized so that the access

time of any cell within it is constant and is independent of the

actual location of the cell, the memory is said to be random

access memory (RAM); that is, the access time doesn’t depend

where the data being accessed is located.This means that the

CPU doesn’t have to worry about the time taken to read a word

from memory because all read cycles have the same duration. If

a memory is random access for the purpose of read cycles, it is

invariably random access for the purpose of write cycles.The

term RAM is often employed to describe read/write memory

where data may be read from the memory or written into it (as

opposed to read-only memory).This usage is incorrect, because

random access indicates only the property of constant access

time.The dialed telephone system is a good example of random

access system in everyday life.The time taken to access any

subscriber is constant and independent of their physical location.

Serial access In a serial or sequential access memory, the time

taken to access data is dependent on the physical location of

the data within the memory and can vary over a wide range

for any given system. Examples of serial access memories are

magnetic tape transports, disk drives, CD drives, and shift

registers. If data is written on a magnetic tape, the time taken

to read the data is the time taken for the section of tape

containing the data to move to the read head.This data might

be 1” or 2400 ft from the beginning of the tape.

Bandwidth The bandwidth of a memory system indicates the

speed at which data can be transferred between the memory

and the host computer and is measured in bytes/second or

bits/second. Bandwidth is determined by the access time of

the memory, the type of data path between the memory and

the CPU, and the interface between the memory and CPU.

Latency Bandwidth indicates how fast you can transfer data once

you have the data to transfer. Latency refers to the delay between

beginning a memory access and the start of the transfer.

Volatile memory Volatile memory loses its stored data

when the source of power is removed. Most semiconductor

memories are volatile, although devices such as EPROM and

flash memory are non-volatile. Memories based on magnetism

are non-volatile because their magnetic state doesn’t depend

on a continuous supply of power.

Read-only memory The contents of a read-only memory

(ROM) can be read but not modified under normal operating

conditions. Read-only memories are non-volatile and are

used to hold system software. Flash memory is a form of

erasable ROM that can be written to.This is also called

read-mostly memory and is used in compact flash cards in

digital cameras.

Static memory Once data has been written into a static

memory cell, the data is stored until it is either altered by

over-writing it with new data, or by removing the source of

power if the memory is volatile.

Dynamic memory Dynamic memories (DRAMs) store data as

an electronic charge on the inter-electrode capacitance of a

field effect transistor. The charge gradually leaks away and the

data is lost after a few milliseconds. Dynamic memories have

to restore the charge on the capacitors every 2 to 16 ms in an

operation known as memory refreshing. DRAMs are much

cheaper than static memories of the same capacity.

12.3.5 Magnetism

The most common low-cost, high-capacity storage
mechanism uses magnetism. An atom consists of a nucleus
around which electrons orbit. The electrons themselves have
a spin that can take one of two values, called up and down.
Electron spin generates a magnetic field and the atom can be
in one of two possible magnetic states. Atoms themselves are
continually vibrating due to thermal motion. In most sub-
stances, the spin axes of the electrons are randomly oriented,
because of the stronger thermal vibrations of the atoms and
there is no overall magnetic effect. A class of materials exhibit
ferromagnetism, in which adjacent electrons align their spin
axes in parallel. When all the atoms in the bulk material are
oriented with their spins in the same direction, the material
is magnetized. Because we can magnetize material with its
electron spins in one of two states and then detect these
states, magnetic materials are used to implement memory.
Up to the 1960s, immediate access memories stored data in
tiny ferromagnetic rings called ferrite cores (hence the term
core stores). Ferrite core stores are virtually obsolete today
and the most common magnetic storage device is the
hard disk.

12.3.6 Optical

The oldest mechanism used to store data is optical
technology. Printed text is an optical memory because
ink modifies the optical (i.e. reflective) properties of the
paper. The same mechanism stores digital information in
barcodes. More recently, two technologies have been
combined to create high-density optical storage devices.

The laser creates a tiny beam of light that illuminates a
correspondingly tiny dot that has been produced by
semiconductor fabrication techniques. These dots store
information rather like the holes in punched cards and
paper tape.

12.4 Semiconductor memory

Semiconductor random access memory is fabricated on
silicon chips by the same process used to manufacture micro-
processors. Without the availability of low-cost semiconduc-
tor memory, the microprocessor revolution would have been
delayed had microprocessors used the slow, bulky, and
expensive ferrite core memory of 1960s and 1970s main-
frames. The principal features of semiconductor memory are
its high density and ease of use.

12.4.1 Static semiconductor
memory

Static semiconductor memory is created by fabricating an
array of latches on a single silicon chip. It has a very low access
time, but is about four times more expensive than dynamic
memory because it requires four transistors per bit unlike the
DRAM’s cell, which uses one transistor. Static RAM is easy to
use from the engineer’s point of view and is found in small
memories. Some memory systems use static memory devices
because of their greater reliability than dynamic memory.
Large memories are constructed with dynamic memory
because of its lower cost.

Figure 12.4 illustrates a 4M CMOS
semiconductor memory. The acronym
CMOS means complementary metal
oxide semiconductor and indicates the
semiconductor technology used to
manufacture the chip. The 4M denotes
the memory’s capacity in bits; that is,
222 bits. Power is fed to the memory via
its Vss and Vcc pins.

The chip in Fig. 12.4 is interfaced to
the computer via its 32 pins, of which
19 are the address inputs needed to
select one of 219 � 524 288 (i.e. 512K)
unique locations. Eight data lines
transfer data from the memory during
a read cycle and receive data from
the processor during a write cycle.
Electrical power is fed to the chip
via two pins. The three control

498 Chapter 12 Computer memory

CS enables a read or write access
OE enables the data bus drivers

Memory control

inputs

19 lines select

one of 219

locations

Data is fed into or

received from the RAM

on its 8-bit data bus

R/W selects a read or a write cycle

Address bus

0 V +5 V

VssA0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

D0
D1
D2
D3
D4
D5
D6
D7

Data bus

CS Chip select

Output enable

Read/write

OE

R/W

Memory

Vcc

Figure 12.4 The 512K � 8 static RAM.

pins, , and R/ determine the operation of the
memory component as follows.

WCS, OE

12.4 Semiconductor memory 499

MEMORY ORGANIZATION

Memory components are organized as n words by m bits

(the total capacity is defined as m � n bits). Bit-organized

memory components have a 1-bit width; for example, a

bit-organized 256K chip is arranged as 256K locations each of

one bit. Some devices are nibble organized; for example, a

256K chip can be arranged as 64K locations, each containing

4 bits. The device in Fig. 12.4 is byte organized as 512K words

of 8 bits and is suited to small memories in microprocessor

systems in which one or two chips may be sufficient for

all the processor’s read/write memory requirements.

Pin Name Function

Chip select When low, selects the chip
for a memory access

R/ Read/not write When high R/ indicates a
read cycle; when low it
indicates a write cycle

Output enable When low in a read cycle,
allows data to be read from the
chip and placed on the data bus

OEOE

WW

CSCS

In order for the chip to take part in a read or write
operation, its pin must be in a low state. Whenever is
inactive-high, the memory component ignores all signals at
its other pins. Disabling the memory by turning off its inter-
nal tri-state bus drivers permits several memories to share the
same data bus as long as only one device is enabled at a time.
The R/ input determines whether the chip is storing the
data at its eight data pins (R/ � 0), or is transferring data
to these pins (R/ � 1). The output enable pin, , turns
on the memory’s tri-state bus drivers during a read cycle and
off at all other times. Some chips combine with and
R/ so that the output data buffers are automatically
enabled when and R/ � 1.

Address decoding and read/write electronics is located on
the chip, simplifying the design of modern memory systems.
Figure 12.5 demonstrates how this device can be connected
to a CPU. Because the chip is 8 bits wide (i.e. it provides 8 bits
at a time), two chips would be connected in parallel in a sys-
tem with a 16-bit data bus, and four chips in a system with a
32-bit data bus.

The CPU’s data bus is connected to the memory’s data
pins and the CPU’s address bus is connected to the mem-
ory’s address pins. The memory’s , R/ , and control
inputs are connected to signals from the block labeled
‘Control logic’. This block takes control signals from the CPU
and generates the signals required to control a read or a write
cycle.

OEWCS

WCS � 0
W

CSOE

OEW
W

W

CSCS

Suppose the memory device is connected to a CPU with
a 32-bit address bus that can access 232 locations. This
RAM has 19 address inputs and provides only a fraction
of the address space that the CPU can access (i.e. 512 kbytes
out of 4 Gbytes). Extra logic is required to map this block of
RAM onto an appropriate part of the processor’s address
space. The high-order address lines from the CPU (in this
case, A19 to A31) are connected to a control logic block that
uses these address lines to perform the mapping operation.
Essentially, there are 4G/512K � 232/219 � 213 slots into
which the RAM can be mapped. We’ll explain how this is
done later.

12.4.2 Accessing memory—timing
diagrams

The computer designer is interested in the relationship
between the memory and the CPU. In particular, the memory
must provide data when the CPU wants it, and the CPU must
provide data when the memory wants it. The engineer’s
most important design tool is the timing diagram. A timing
diagram is a cause-and-effect diagram that illustrates the
sequence of actions taking place during a read or write cycle.
The designer is concerned with the relationship between
information on the address and data buses, and the memory’s
control inputs. Figure 12.6 shows the simplified timing
diagram of a static RAM memory chip during a read cycle.

The timing diagram illustrates the state of the signals
involved in a memory access as a function of time. Each sig-
nal may be in a 0 or a 1 state and sloping edges indicate a
change of signal level. The timing diagram of the address bus
appears as two parallel lines crossing over at points A and B.
The two parallel lines mean that some of the address lines
may be high and some low; it’s not the actual logical values of
the address lines that interest us, but the time at which the
contents of the address bus become stable for the duration of
the current memory access cycle. We haven’t drawn the R/
line because it must be in its electrically high state for the
duration of the entire read cycle.

Let’s walk through this diagram from left to right.At point A
in Figure 12.6, the contents of the address bus have changed
from their previous value and are now stable; that is, the old

W

address from the CPU has been replaced by a new address.
Because logic transitions from 0 to 1 or 1 to 0 are never
instantaneous, changes of state are depicted by sloping lines.
Some timing diagrams use the high-to-low transition of
as the principal reference point.

Between points A and B the address bus contains the
address of the memory location currently being read from.
During this time the address from the CPU must not change.
The time between A and B is the minimum cycle time of the
memory. If the minimum cycle time is quoted as 50 ns,
another memory access cannot begin until at least 50 ns after
the start of the current cycle.

Consider the operation of the memory component in a
read cycle. The CPU first puts out an address on its address
bus. The higher-order address lines from the CPU cause

CS

a chip-select output of the address decoder
in the control logic to be asserted and to
select a memory component as described
in Fig. 12.5. At point C in Figure 12.6 the
memory’s active-low chip select input, ,
goes low and turns on the three-state bus
driver outputs connected to the data pins.
Up to point E the contents of the data bus
are represented by a single line mid-way
between the two logic levels. This conven-
tion indicates that the data bus is floating
and is disconnected from the data output
circuits of the memory.

When a low level on turns on the memory’s three-state
output circuits at point E, the data bus stops floating and data
appears at the output terminals. Sufficient time has not yet
elapsed for the addressed memory word to be located and its
contents retrieved. Consequently, the contents of the data bus
between points E and F are not valid and cannot be used. At
point F the data is valid and the time between points A and F
is called the chip’s read access time.

At the end of the read cycle at point B, the contents of the
address bus change. Because of propagation delays in the
chip, the data at its output pins does not change until a guar-
anteed minimum time has elapsed. This delay is called the
data hold time and is the duration between points B and D.

The write cycle

A static RAM’s write cycle is similar to its read cycle, except
that R/ must be in a low state, and data placed on the chip’sW

CS

CS

500 Chapter 12 Computer memory

Select block 1

High-order
address
lines

Low-order
address
lines

Select block 2

Select read or write

Enable data output in read cycle

Output enable switches
on tri-state bus drivers in
a write cycle

R/W determines whether the
current cycle is a read or a write
cycle

Chip select determines whether
the chip takes part in a memory cycle

The control logic uses address and control
signals from the CPU to control access to
individual memory chips

Address bus

Address Data Address Data Address Data

CPU

Address

R/W R/W R/WDS

DS

R/W

Control
logic

R/W

OE

CS1

CS2

CS CSOE OE

Memory
block 1

Memory
block 2

Data bus

Figure 12.5 Interfacing

memory components

to a CPU.

Bus floating
Data valid

Data becomes
valid at point F

CS goes low to
access the memory

Address valid

New address
valid at point A

Data from
memory

Address
from CPU

1

0

1

0
CS

C

Read access time < 50 ns

Read cycle time > 50 ns

time

Data hold

time

B

D

A

E F
1

0

Figure 12.6 Timing diagram of the read cycle of a static RAM.

data input lines by the CPU. Figure 12.7 shows the write-cycle
timing diagram of a static RAM. We haven’t provided
timing (we’ll assume that output enable is inactive-high
throughout the write cycle).

During the write cycle described by Fig. 12.7, data from
the CPU is presented to the memory at its data inputs, R/
is set low for a write access, and asserted. Data is latched
into the memory cell by the rising edge of the R/ input.
The critical timing parameters in a write cycle are the
duration of the write pulse width (i.e. the minimum time
for which R/ must be low) and the data setup time
with respect to the rising edge of R/ . Data setup time is
the time for which data must be present at the input
terminals of a memory before the data is latched into the
memory.

W
W

W
CS

W

OE

12.4.3 Dynamic memory

The immediate access store of the typical PC
is fabricated with dynamic random access
read/write memory (DRAM), which stores
1 bit of information in a single transistor
memory cell. In 2000 a typical DRAM
had a capacity of 64 Mbits organized as
16M � 4 bits and by 2004 128-Mbit chips
were becoming standard.

Data in a dynamic memory cell is stored
as an electrical charge on a terminal of a
field-effect transistor. This charge generates
an electrostatic field that modifies the flow of
current between the transistor’s other two
terminals. A dynamic memory chip contains
all the electronics needed to access a given

cell, to write a one or a zero to
it in a write cycle, and to read
its contents in a read cycle.

Figure 12.8 illustrates the
internal arrangement of a
16M � 4 dynamic memory
chip (i.e. the chip has 16M
locations each holding 4 bits).
You might think that a
16M � 4-bit DRAM requires
24 address lines,because it takes
24 address lines to access 16M
locations (i.e. 224 � 16M). In
order to reduce the size of the
DRAM’s package, its address
bus is multiplexed; that is, an
address is input in two halves.

One half of the address is called the row address and the other
half is called the column address. A DRAM requires two control
signals to handle the address: a row address strobe (), which
captures the row address and a column address strobe (),
which captures the column address.

Multiplexing the address bus increases the complexity of
the interface between the DRAM and the CPU. As the
16M � 4 memory component contains only 4 bits in each of
its 16M addressable locations, 16 of these chips are required
to construct a 64-bit wide memory module.

The electrical charge on the transistor in a memory cell
gradually leaks away and the cell loses its stored data. A typi-
cal dynamic memory cell is guaranteed to retain data for up
to 16 ms after it has been written. In order to retain data for
longer than 16 ms, data must be rewritten into every cell peri-
odically in an operation called refreshing. In practice, simply
accessing a memory cell refreshes it (and all cells in the same
row). The need to refresh dynamic memories periodically
increases the complexity of the CPU-DRAM interface.

CAS
RAS

12.4 Semiconductor memory 501

Figure 12.7 Timing diagram of the write cycle of a static RAM.

Bus floating
Data valid

R/W goes low to write
data to the memory

CS goes low to
access the memory

Address valid
Address
from CPU

Data from
CPU

1

0

1

0

1

0
CS

C

D G

Data setup time Data hold

time

A

E F

B

time

Write cycle time > 50 ns

R/W

1

0

RAS CAS

Timing and control

Column decode

Sense amplifiers

512K array

512K array

16

12

12

Column-

address

buffers

A0

A1

A11

Row-

address

buffers

11

16

4

4

4

4
R
O
W

D
e
c
o
d
e

512K array

512K array

512K array 512K array

I/O

buffers

Data-
in

reg.

Data-
out
reg.

DQ1–DQ4

•
•
•

•
•
•

•
•
•

•
•
•

W OE

Figure 12.8 The internal organization of a 16M � 4 dynamic RAM.

The DRAM read cycle

We now describe the generic DRAM
memory component. Although several
variations on the standard DRAM have
been introduced to improve access time,
they all have the same basic memory cell—
only the access mechanism and timing have
changed. We provide a box at the end of this
section that highlights some of the DRAM
variations.

Figure 12.9 provides the simplified
timing diagram of a DRAM read cycle with
224 addressable locations. Note that there
are two address traces. One trace describes
the address from the CPU and the other the
address at the DRAM’s address inputs.
A read cycle starts with the row address of
the current memory location being applied
to the address inputs of the DRAM. An
address multiplexer in the memory control
system transmits bits A00 to A11 from the
CPU to address inputs A0 to A11 at the
DRAM. The chip’s row address strobe ()
is then asserted active-low to latch the row address into the
chip (point A in Fig. 12.9).

The next step is to switch over the address from row to
column (point B) and apply the column address to the chip.
In this case, address lines A12 to A23 from the CPU are con-
nected to address lines A0 to A11 at the DRAM. The column
address strobe () is asserted at point C to capture the col-
umn address. At this point, the entire 24-bit address has been
captured by the DRAM and the address bus plays no further
role in the read cycle. The data in the cell accessed by the
address appears on the data-output line after a delay of typi-
cally 30 to 70 ns from the point at which went active low
(point D). A read cycle ends when the first of either or

returns inactive high.
Figure 12.9 shows the role of the CPU’s R/ signal, which

must go high before is asserted and remain high for the
rest of the cycle. Note that many DRAM designers write
rather than R/ .

The dynamic RAM’s cycle time is longer than its access
time because internal operations take place within the
DRAM before another access can begin. A DRAM might have
an access time of 30 ns and a cycle time of 60 ns. Cycle time is
important because it places a limitation on the speed of the
system.

Figure 12.10 indicates the organization of dynamic
memory control logic. The DRAM control must carry out
the address multiplexing and generate the necessary
and signals. You can obtain much of the logicCAS

RAS

W
W

CAS
W

CAS
RAS

RAS

CAS

RAS
needed to implement a dynamic memory controller on a
single chip.

The DRAM write cycle

A DRAM write cycle, described in Fig. 12.11, is similar to a
read cycle except that the DRAM’s R/ input must go low
before goes low, and the data to be stored in the
addressed cell must be applied to the data-in line.

The timing of the DRAM’s address and the and
signals are the same in both read and write cycles. However, in
a write cycle the data from the CPU must be available and the
R/ control signal must be low before the DRAM’s
input is asserted (some DRAMs support other write modes).

Refreshing DRAM

A DRAM memory cell must be periodically rewritten if its
data is not to be lost. DRAMs are designed so that you don’t
have to refresh cells individually. Accessing a row simultane-
ously refreshes all cells in that row. A typical refresh controller
performs all row refresh cycles every 16 ms.

All that needs be done to refresh a DRAM is to assert
while is high. This mode is called -before-
refresh to distinguish it from a normal read or write access
when goes low after . The DRAM automatically
generates row refresh addresses internally. The DRAM
refresh logic stops the processor and carries out a burst of
refresh cycles at a time.

RASCAS

RASCASRAS
CAS

CASW

CASRAS

CAS
W

502 Chapter 12 Computer memory

Figure 12.9 Timing diagram of the read cycle of a dynamic RAM.

Address valid

Capture
row
address

Capture
column
address

Data
becomes
valid

Data valid

End of read cycle
when RAS or CAS
goes high

Multiplex
address
from row
to column

Address
from CPU

Address
at DRAM

RAS

CAS

R/W

Data from
DRAM

A B C D E

1

0

1

0
Row address Column address

1

0

1

0

1

0

1

0

DRAM reliability

Dynamic memory suffers from two
peculiar weaknesses. When a memory
cell is accessed and the inter-electrode
capacitor charged the dynamic memory
draws a very heavy current from the
power supply causing a voltage drop
along the power supply lines. This volt-
age drop can be reduced by careful lay-
out of the circuit of the memory system.
Another weakness of the dynamic
memory is its sensitivity to alpha parti-
cles. Semiconductor chips are encapsu-
lated in plastic or ceramic materials that
contain tiny amounts of radioactive
material. One of the products of
radioactive decay is the alpha particle
(helium nucleus), which is highly ioniz-
ing and corrupts data in cells through
which it passes.

12.4 Semiconductor memory 503

Figure 12.10 Controlling the dynamic memory.

Control from
CPU DRAM control signals

derived from CPU
control outputs

The multiplexer feeds
either the row address
or the column address
to the DRAM

CPU

Address

DS R/W

Row

address

Column

address
Address

multiplexer

MPLX

control

RAS

MPLX

CAS
Clock

Timing and control

Switch

RAS CAS R/W

DRAM

address

DRAM array

R/W must be low

and data valid before

CAS goes active-low

Address
from CPU

Address
at DRAM

Data from
CPU

1

0

1

0

1

0

1

0

1

0

1

0

Address valid

Row address Column address

Data valid

R/W

CAS

RAS

Figure 12.11 The write-cycle timing diagram of a dynamic RAM.

DRAM ORGANIZATION

DRAM chips are fabricated by the same technology as CPUs and

encapsulated in a ceramic or plastic material. These small packages and

then soldered onto printed circuit boards that can be plugged into PCs.

PCs once used SIMMs (single in-line memory modules) with 72 pins

that supported 32-bit data buses.Today, the SIMM has been replaced by

the 168-pin dual in-line (DIMM) module that supports modern 64-bit

data buses. DIMMs are available as 1 Gbyte modules.

When an alpha particle passes through a DRAM cell, a soft
error occurs. An error is called soft if it is not repeatable (i.e.
the cell fails on one occasion but has not been permanently
damaged). The quantity of alpha particles can be reduced by
careful quality control in selecting the encapsulating mater-
ial, but never reduced to zero. By the way, all semiconductor
memory is prone to alpha-particle errors—it’s just that DRAM
cells have a low stored energy/bit and are more prone to these
errors than other devices.

A random soft error that corrupts a bit once a year in a PC
is an irritation. In professional and safety-critical systems
the consequences of such errors might be more severe. The
practical solution to this problem lies in the type of error-
correcting codes we met in Chapter 3. For example, five check
bits can be appended to a 16-bit data word to create a 21-bit
code word. If one of the bits in the code word read back from
the DRAM is in error, you can calculate which bit it was and
correct the error.

504 Chapter 12 Computer memory

DRAM FAMILIES

Over the years, the access time of DRAMs has declined, but

their performance has improved less than that of the CPU.

Manufacturers have attempted to hide the DRAM’s

relatively poor access time by introducing enhanced DRAM

devices.

Fast page mode DRAM (FPD) This variation lets you

provide a row address and then access several data elements

in the same row just by changing the column address.Access

time is reduced for sequential addresses.

Extended data out DRAM (EDO) An EDO provides a

small improvement by starting the next memory access

early and thereby reducing the overall access time by

about 15%.

Synchronous DRAM (SDRAM) The SDRAM is operated in a

burst mode and several consecutive locations are accessed

sequentially; for example 5-1-1-1 SDRAM provides the first

data element in five clock cycles but the next three elements

are provided one clock cycle after each other.

Double data rate synchronous DRAM (DDR DRAM) This is a

version of SDRAM where the data is clocked out on both the

rising and falling edges of its clock to provide twice the data

transfer rate.

LIMITS TO MEMORY DENSITY

Since their introduction in the 1960s, the density of

semiconductor memories has steadily grown. Semiconductor

memories have grown from a capacity of 16 bytes to

256 Mbytes, a growth of 224 in three decades. Unfortunately,

such progress can’t continue because there are limits to

memory density. Consider the following factors.

Feature size Semiconductor devices are manufactured by a

process that involves a step called photolithography. Silicon is

coated with a photosensitive material and an image projected

onto the surface.This image is developed and used to create

the transistors that make up the memory. If you can create a

smaller image, you can make smaller transistors and therefore

build memories with more cells on a silicon chip.The smallest

feature that can be etched on the silicon is, of course, gov-

erned by the smallest line that can be projected.The minimum

width of a line projected onto the silicon is determined by the

wavelength of the light used by the projector, because a beam

of light spreads out due to an effect called diffraction. Even

blue light with its short wavelength cannot generate features

small enough for modern chips. Today, electron beams are

used to draw features on the silicon.

Quantum mechanical effects One of the consequences

of quantum mechanics is that an object can spontaneously

penetrate a barrier without having the energy to go through it.

The probability of penetrating a barrier depends on the

barrier’s width and the size of the object—the thinner the

barrier the more likely the penetration. If the insulators that

separate one transistor from another in a memory become too

thin, electrons will be able to tunnel spontaneously through

the insulators.

Statistical nature of a current An electrical current is com-

posed of a flow of electrons. In normal systems the number of

electrons flowing in a circuit is staggeringly large. If memories

are made smaller and smaller, the number of electrons flowing

will diminish.At some point, the random nature of a current

flow will have to be taken into account.

Energy It requires a finite amount of energy to change a

memory cell from one state to another. However, the mini-

mum amount of energy that can be used in switching is lim-

ited by quantum mechanics (i.e. there is a fixed minimum level

of energy that can be used to perform switching).

Power It requires energy to operate a microcircuit. Energy

consumption has two problems: source (important if the

equipment is battery operated) and dissipation. Getting rid

of heat is one of the factors limiting the complexity of

silicon-based circuits.

12.4.4 Read-only semiconductor
memory devices

As much as any other component, the ROM (read-only
memory) was responsible for the growth of low-cost PCs in
the 1980s when secondary storage mechanisms such as disk
drives were still very expensive. In those days a typical operat-
ing system and BASIC interpreter could fit into an 8- to
64-kbyte ROM. Although PCs now have hard disks, ROMs
are still found in diskless palm-top computers and personal
organizers. All computers require read-only memory to store
the so-called bootstrap program that loads the operating sys-
tem from disk when the computer is switched on (called the
BIOS (basic input/output system)).

ROMs are used in dedicated microprocessor-based con-
trollers. When a microcomputer is assigned to a specific task,
such as the ignition control system in an automobile, the soft-
ware is fixed for the lifetime of the device. A ROM provides
the most cost-effective way of storing this type of software.

Semiconductor technology is well suited to the production
of high-density, low-cost, read-only memories. We now
describe the characteristics of some of the read-only memo-
ries in common use: mask-programmed ROM, PROM,
EPROM, flash EPROM, and EEPROM.

Mask-programmed ROM

Mask-programmed ROM is so called because its contents
(i.e. data) are permanently written during the manufacturing
process. A mask (i.e. stencil) projects the pattern of connec-
tions required to define the data contents when the ROM is
fabricated. A mask-programmed ROM cannot be altered
because the data is built into its physical structure. It is the
cheapest type of read-only semiconductor memory when
manufactured in bulk. These devices are used only when
large numbers of ROMs are required because the cost of
setting up the mask is high. The other read-only memories
we describe next are all user programmable and some are
reprogrammable.

PROM

A PROM (programmable read-only mem-
ory) can be programmed once by the user
in a special machine. A transistor is a
switch that can pass or block the passage of
the current through it. Each memory cell
in a PROM contains a transistor that can
be turned on or off to store a 1 or a 0. The
transistor’s state (on or off) is determined
by the condition of a tiny metallic link that
connects one of the transistor’s inputs to a
fixed voltage. When you buy a PROM, it is
filled with all 1s because each link forces

the corresponding transistor into a 1 state. A PROM is pro-
grammed by passing a current pulse to melt it and change the
state of the transistor from a 1 to a 0. For obvious reasons,
these links are often referred to as fuses. A PROM cannot be
reprogrammed because if you fuse a link it stays that way. The
PROM has a low access time (5 to 50 ns) and is largely used as
a logic element rather than as a means of storing programs.

EPROM

The EPROM is an erasable programmable read-only memory
that is programmed in a special machine. Essentially, an
EPROM is a dynamic memory with a refresh period of tens
of years. Data is stored in an EPROM memory cell as an
electrostatic charge on a highly insulated conductor. The
charge can remain for periods in excess of 10 years without
leaking away.

We don’t cover semiconductor technology, but it’s worth
looking at how EPROMs operate. All we need state is that
semiconductors are constructed from pure silicon and that
the addition of tiny amounts of impurities (called dopants)
changes the electrical characteristics of silicon. Silicon doped
with an impurity is called n-type or p-type silicon depending
on how the impurity affects the electrical properties of the
silicon.

Figure 12.12 illustrates an EPROM memory cell consisting
of a single NMOS field effect transistor. A current flows in the
N� channel between the transistor’s positive and negative
terminals, Vdd and Vss. By applying a negative charge to a gate
electrode, the negatively charged electrons flowing through
the channel are repelled and the current turned off. The tran-
sistor has two states: a state with no charge on the gate and a
current flowing through the channel, and a state with a
charge on the gate that cuts off the current in the channel.

A special feature of the EPROM is the floating gate that
is insulated from any conductor by means of a thin layer of
silicon dioxide—an almost perfect insulator. By placing or not
placing a charge on the floating gate, the transistor can by
turned on or off to store a one or a zero in the memory cell.

12.4 Semiconductor memory 505

Vgg

Vss Vdd

n+ inplant

Silicon dioxide insulator

Silicon select gate

Silicon floating gate

p-type inplant

p-type silicon substrate

n+ inplant

Figure 12.12 The structure of an EPROM memory cell.

If the floating gate is entirely insulated, how do we put a
charge on it in order to program the EPROM? The solution is
to place a second gate close to the floating gate but insulated
from it. By applying typically 12 to 25 V to this second gate,
some electrons cross the insulator and travel to the floating
gate (in the same way that lightning crosses the normally
non-conducting atmosphere).

You can program an EPROM, erase it, and reprogram it
many times. Illuminating the silicon chip with ultra-violet
light erases the data stored in it. Photons of ultra-violet light
hit the floating gate and cause the stored charge to drain away
through the insulator. The silicon chip is located under a
quartz window that is transparent to ultra-violet light.

EPROMs are suitable for small-scale projects and for
development work in laboratories because they can be pro-
grammed, erased, and reprogrammed by the user. The disad-
vantage of EPROMs is that they have to be removed from a
computer, placed under a ultra-violet light to erase them, and
then placed in a special-purpose programmer to reprogram
them. Finally, they have to be re-inserted in the computer.
EPROMs have largely been replaced by flash EPROMs.

Flash EPROM

The most popular read-only memory is the flash EPROM,
which can be erased and reprogrammed electronically. Until
recently, typical applications of the flash EPROM were the
personal organizers and system software in personal comput-
ers (e.g. the BIOS in PCs). Today, the flash EPROM is used to
store images in digital cameras and audio in MP3 players.
When flash memories first appeared, typical capacities were
8 Mbytes. By 2005 you could buy 12-Gbyte flash memories.

The structure of an EPROM memory cell and a flash
EPROM cell are very similar. The difference lies in the thick-
ness of the insulating layer (silicon oxynitride) between the
floating gate and the surface of the transistor. The insulating
layer of a conventional EPROM is about 300 Å thick, whereas
a flash EPROM’s insulating layer is only 100 Å thick. Note
that 1 Å � 1 � 10�10 m (or 0.1 nanometers).

When an EPROM is programmed, the charge is trans-
ferred to the floating gate by the avalanche effect. The voltage
difference between the gate and the surface of the transistor
causes electrons to burst through the oxynitride insulating
layer in the same way that lightning bursts through the
atmosphere. These electrons are called hot electrons because
of their high levels of kinetic energy (i.e. speed). The charge
on the floating gate is removed during exposure to ultra-
violet light which gives the electrons enough energy to cross
the insulating layer.

A flash EPROM is programmed in exactly the same way
as an EPROM (i.e. by hot electrons crashing through the
insulator). However, the insulating layer in a flash EPROM is
so thin that a new mechanism is used to transport electrons
across it when the chip is erased. This mechanism is known as

Fowler–Nordheim tunnelling and is a quantum mechanical
effect. When a voltage in the range 12 to 20 V is applied across
the insulating layer, electrons on the floating gate are able to
tunnel through the layer, even though they don’t have enough
energy to cross the barrier.

A flash EPROM is divided into sectors with a capacity of
typically 1024 bytes. Some devices let you erase a sector or the
whole memory and others permit only a full chip erase. Flash
EPROMs can’t be programmed, erased, and reprogrammed
without limit. Repeated write and erase cycles eventually
damage the thin insulating layer. Some first-generation flash
EEPROMs are guaranteed to perform only 100 erase/write
cycles, although devices are now available with lifetimes of at
least 10 000 cycles.

EEPROM

The electrically erasable and reprogrammable ROM (EEPROM
or E2PROM) is similar to the flash EPROM and can be
programmed and erased electrically. The difference between
the EEPROM and the flash EPROM is that the flash EPROM
uses Fowler–Nordheim tunneling to erase data and hot elec-
tron injection to write data, whereas pure EEPROMs use the
tunneling mechanism to both write and erase data. Table 12.1
illustrates the difference between the EPROM, flash EPROM,
and EEPROM.

EEPROMs are more expensive than flash EPROMs and gen-
erally have smaller capacities. The size of the largest state-of-the-
art flash memory is usually four times that of the corresponding
EEPROM. Modern EEPROMs operate from single 5 V supplies
and are rather more versatile than flash EPROMs. Like the flash
memory, they are read-mostly devices, with a lifetime of 10 000
erase/write cycles. EEPROMs have access times as low as 35 ns
but still have long write cycle times (e.g. 5 ms).

The differences between a read/write RAM and an EEPROM
are subtle. The EEPROM is non-volatile, unlike the typical
semiconductor RAM. Second, the EEPROM takes much
longer to write data than to read it. Third, the EEPROM can
be written to only a finite number of times. Successive erase
and write operations put a strain on its internal structure and
eventually destroy it. Finally, EEPROM is much more expen-
sive than semiconductor RAM. The EEPROM is found in
special applications where data must be retained when the
power is off. A typical application is in a radio receiver that
can store a number of different frequencies and recall them
when the power is re-applied.

12.5 Interfacing memory to a CPU

We now look at how the semiconductor memory
components are interfaced to the microprocessor. Readers
who are not interested in microprocessor systems design may
skip this section.

506 Chapter 12 Computer memory

12.5.1 Memory organization

A microprocessor operates on a word of width w bits and
communicates with memory over a bus of width b bits.
Memory components of width m bits are connected to the
microprocessor via this bus. In the best of all possible worlds,
the values of w, b, and m are all the same. This was often true
of 8-bit microprocessors, but is rarely true of today’s high-
performance processors. Consider the 68K microprocessor,
which has an internal 32-bit architecture and a 16-bit data
bus interface. When you read a 32-bit value in memory, the
processor automatically performs two 16-bit read cycles.
The programmer doesn’t have to worry about this, because

the memory accesses are carried out automatically. Memory
components are normally 1, 4, or 8 bits wide. If you use
4-bit-wide memory devices in a 68K system, you have to
arrange them in groups of four because a memory block
must provide the bus with 16 bits of data. Figure 12.13 shows
the organization of 8-bit, 16-bit, and 32-bit systems.

A memory system must be as wide as the data bus. That is,
the memory system must be able to provide an 8-bit bus with
8 bits of data, a 16-bit bus with 16 bits of data, and a 32-bit
bus with 32 bits of data, etc. Consider the following examples.

Example 1 An 8-bit computer with an 8-bit bus uses
memory components that are 4 bits wide. Two of these

12.5 Interfacing memory to a CPU 507

Device EPROM Flash EPROM EEPROM

Normalized cell size 1.0 1.0 to 1.2 3.0

Programming mechanism Hot electron injection Hot electron injection Tunneling

Erase mechanism Ultra-violet light Tunneling Tunneling

Erase time 20 minutes 1 s 5 ms

Minimum erase Entire chip Entire chip (or sector) Byte

Write time (per cell) �100 �s �100 �s 5 ms

Read access time 200 ns 200 ns 35 ns

Table 12.1 Programmable EPROM differences.

Figure 12.13 CPU, bus, and

memory organization.

This memory must be able

to supply 16 bits of data.

This memory must be able

to supply 8 bits of data.

This memory must be able

to supply 32 bits of data.

8-bit CPU

(e.g. MC6805)

16-bit CPU

(e.g. 68K)

32-bit CPU

(e.g. 68020)

8-bit data path

16-bit data path

32-bit data path

16-bit memory

32-bit memory

An 8-bit bus transfers 8 bits of

data at a time (i.e. a byte)

An 16-bit bus transfers 16 bits

(i.e. 2 bytes) of data at a time

An 32-bit bus transfers 32 bits

(i.e. 4 bytes) of data at a time

8-bit

memory
D0 to D7

D0 to D15

D0 to D31

devices are required to supply 8 bits of data; each chip
supplies 4 bits.

Example 2 The amount of data in a block of memory, in
bytes, is equal to the width of the data bus (in bytes) multi-
plied by the number of locations in the block of memory. A
16-bit computer with a 16-bit bus uses memory components
that are 1 bit wide. Sixteen of these devices are required to
supply 16 bits of data at a time.

Example 3 An 8-bit computer uses memory components
organized as 64K � 4 bits; that is, there are 64K � 216 differ-
ent addressable locations in the chip. Two of these chips are
required to provide the CPU with 8 data bits. The total size of
the memory is 64 kbytes.

Example 4 A 16-bit computer uses memory components
that are 64K � 4 bits. Four of these chips must be used to
provide the CPU with 16 bits of data. Therefore, each of the
64K locations provide 16 bits of data or 2 bytes (i.e. each of
the 4 chips provides 4 of the 16 bits). The total size of the
memory is 2 bytes � 64K � 128 kbytes.

Example 5 A 16-bit computer uses 64K � 16-bit memory
components, Only one of these chips is required to provide
16 bits of data (2 bytes). Therefore, each chip provides
2 � 64K � 128 kbytes.

Figure 12.14 demonstrates memory organization by show-
ing how three 16-bit-wide blocks of memory can be con-
structed from 4-bit-wide, 8-bit-wide, and 16-bit-wide
memory components.

12.5.2 Address decoders

If the memory in a microprocessor system were constructed
from memory components with the same number of
uniquely addressable locations as the processor, the problem
of address decoding would not exist. For example, an 8-bit
CPU with address lines, A00 to A31, would simply be con-
nected to the corresponding address input lines of the mem-
ory component. Microprocessor systems often have memory
components that are smaller than the addressable memory
space. Moreover, there are different types of memory: read/
write memory, read-only memory, and memory-mapped
peripherals. We now look at some of the ways in which mem-
ory components are interfaced to a microprocessor.

In order to simplify the design of address decoders we will
assume an 8-bit microcontroller with a 16-bit address bus

spanned by address lines A0 to A15. We are not going to use the
68K because it has a 23-bit address bus, a 16-bit data bus, and
special byte selection logic. These features of the 68K make it
more powerful than earlier 8-bit processors, but they do get
in the way of illustrating the basic principles. We provide
several 68K-based examples later in this chapter.

Consider the situation illustrated by Fig. 12.15, in which
two 1K � 8 memory components are connected to the
address bus of an 8-bit microprocessor. This processor has
16 address lines, A0 to A15. Ten address lines, A0 to A9, from the
CPU are connected to the corresponding address inputs of
the two memory components, M1 and M2. Whenever a loca-
tion (one of 210 � 1K) is addressed in M1, the corresponding
location is addressed in M2. The data outputs of M1 and M2
are connected to the system data bus. Because the data out-
puts of both memory devices M1 and M2 are connected
together, the data bus drivers in the memory components
must have tri-state outputs. That is, only one of the memory
components may put data onto the system data bus at a time.

Both memory devices in Fig. 12.15 have a chip-select input
(for block 1 and for block 2). Whenever the chip-
select input of a memory is active-low, that device takes part
in a memory access and puts data on the data bus if R/ � 1.
When or is inactive (i.e. in a high state) the appro-
priate data bus drivers are turned off, and no data is put on
the data bus by that chip.

Let be made a function of the address lines A10 to A15,
so that . Similarly, let

be a function of the same address lines, so that
. Suppose we choose

functions f1 and f2 subject to the constraint that there are no
values of A15, A14, A13, A12, A11, A10 that cause both and

to be low simultaneously. Under these circumstances, the
conflict between M1 and M2 is resolved, and the memory
map of the system now contains two disjoint 1K blocks of
memory. There are several different strategies for decoding
A10 to A16 (i.e. choosing functions f1 and f2). These strategies
may be divided into three groups: partial address decoding,
full address decoding, and block address decoding.

Partial address decoding

Figure 12.16 demonstrates how two 1 kbyte blocks of mem-
ory are connected to the address bus in such a way that both
blocks of memory are never accessed simultaneously. The
conflict between M1 and M2 is resolved by connecting CS1

CS2
CS1

CS2 � f2(A15, A14, A13, A12, A11, A10)
CS2

CS1 � f1(A15, A14, A13, A12, A11, A10)
CS1

CS2CS1
W

CS2CS1

508 Chapter 12 Computer memory

4K × 4 4K × 4 4K × 4 4K × 4

1M × 8

4K locations of 16 bits = 8 kbytes

1M locations of 16 bits = 2 Mbytes

64K locations of 16 bits = 128 kbytes

1M × 8

64K × 16 Figure 12.14 16-bit

memory organization.

directly to A15 of the system address bus and by connecting
to A15 via an inverter. M1 is selected whenever A15 � 0,

and M2 is selected whenever A15 � 1. Although we have dis-
tinguished between M1 and M2 for the cost of a single
inverter, a heavy price has been paid. Because A15 � 0 selects
M1 and A15 � 1 selects M2, it follows that either M1 or M2
will always be selected. Although the system address bus
can specify 216 � 64K unique addresses, only 2K different

CS2
locations can be accessed. Address lines A10 to A14 take no
part in the address-decoding process and consequently have
no effect on the selection of a location within either M1
or M2.

Figure 12.17 gives the memory map of the system corre-
sponding to Fig. 12.16. Memory block M1 is repeated 32
times in the lower half of the memory space and M2 is
repeated 32 times in the upper half of the memory space

12.5 Interfacing memory to a CPU 509

A0 to A9 select

one of 210 = 1024

possible locations

in the memory

Low to select M2
Low to select M1

A15
A14

A9

A1
A0

Address

Memory

block M1

Memory

block M2

Address Address

CPU CS1 CS2

16-bit address

bus

1K × 8 1K × 8

Data Data Data

Data bus

A0 A1 A0 A1 A0 A1A9 A9A9 A14A15

Figure 12.15 Connecting two 1 kbyte

memories to a 16-bit address bus.

EXAMPLE 1

An 8-bit microprocessor with a 16-bit address bus

accesses addresses in the range 101xxxxxxxxxxxxx2

(where bits A15, A14, A13 marked 101 are selected by the

address decoder and the xs refer to locations within the

memory block).

What range of addresses does this block correspond to?

How big is this block?

The lowest address is 10100000000000002 and the highest

address is 10111111111111112.This corresponds to the range

A00016 to BFFF16.

Three address lines are decoded to divide the address space

spanned by A0 to A15 into eight blocks. The size of one block is

64K/8 � 8K.You could also calculate the size of the block

because you know it is spanned by 13 address lines and

213 � 8K.

EXAMPLE 2

An 8-bit microprocessor with a 16-bit address bus addresses a

block of 32 kbytes of ROM.

(a) How many memory components are required if the

memory is composed of 8 kbyte chips?

(b) What address lines from the processor select a location in

the 32 kbyte ROM?

(c) What address lines have to be decoded to select

the ROM?

(d) What is the range of memory locations provided by each

of the chips (assuming that the memory blocks are

mapped contiguously in the region of memory space

starting at address 000016)?

(a) The number of chips required is (memory block)/

(chip size) � 32K/8K � 4.

(b) Each chip has 8K � 213 locations, which are

accessed by the 13 address lines A0 to A12 from the

processor.

(c) Address lines A0 to A12 from the CPU select a location in

the chip leaving A13 to A15 to be decoded.

(d) The memory blocks are

000016 to 1FFF16

200016 to 3FFF16

400016 to 5FFF16

600016 to 7FFF16.

because the five address lines A10 to A14 take no part in address
decoding. In this section, all addresses will be given in hexa-
decimal form (we don’t need to use a subscript).

The penalty paid when a partial address-decoding scheme
is employed is that it prevents full use of the microprocessor’s
address space and frequently makes it difficult to expand the
memory system at a later date.

Full address decoding

A microprocessor system has full address decoding when
each addressable location within a memory component is

accessed by a single address on the system’s address bus; that
is, all the microprocessor’s address lines are used to access
each physical memory location, either by specifying a given
memory device or by specifying an address within it. Full
address decoding represents the ideal but is sometimes
impractical because it may require an excessive quantity of
hardware to implement it. We will design an address decoder
for the pervious example of a system with two 1K blocks of
memory. Address lines A0 to A9 select a location in one of the
memory components, leaving A10 to A15 to be decoded.
Suppose we select M1 when A15, A14, A13, A12, A11, A10 � 0, 0,
0, 0, 0, 0 and M2 when A15, A14, A13, A12, A11, A10 � 0, 0, 0, 0, 0,
1. These address values correspond to the 1K address blocks
0000 to 03FF and 0400 to 07FF. Figure 12.18 demonstrates
how we might perform the address decoding with random
logic.

Block address decoding

Block address decoding is a compromise between partial
address decoding and full address decoding. It avoids the
inefficient memory usage of partial address decoding, by
dividing the memory space into blocks or pages. Block
address decoding is implemented by dividing the processor’s
address space into a number of equal-sized blocks. This
operation is easy to perform because you can use commonly
available logic devices to carry out this function.

In a typical application of block address decoding, an 8-bit
microprocessor’s 64K memory space is divided into four
blocks of 16K. A 2-line to 4-line decoder logic element
converts the two high-order address lines, A15 and A14, into
four lines. Each of these four lines is associated with one of
the binary states of address lines A15 and A14. The four out-
puts of this address decoder are used as the chip-select inputs
of memory components. The advantage of block address
decoding is that no memory component can occupy a
memory space larger than a single block. In practice, real

510 Chapter 12 Computer memory

M1 is selected when

A15 = 0

M2 is selected when

A15 = 1

Low-order address

lines select a

location in the RAM

Address line A15 is used to select block M1 or block M2

A10 to A14

not used

A0 to A9

CPU

Address Address Address

Data Data

Memory

block M1
Memory

block M2

1K × 8

CS1 CS2

1K × 8

Data

Data bus

A15
A14

A9

A1
A0

A0 A1 A0 A1 A9 A0 A1 A9A9 A14A15

Figure 12.16 Resolving

contention by partial address

decoding.

Figure 12.17 The memory map corresponding to Fig. 12.16.

0000

03FF
0400

07FF
0800

0FFF

7800

0BFF
0C00

7BFF
7C00

7FFF
8000

83FF
8400

FBFF
FC00

FFFF

87FF

F800

1K M1

M1

M1

M1

M1

M1

M2

M2

M2

M2 is repeated 32 times

in the 32K memory space

8000 to FFFF

M1 is repeated 32 times

in the 32K memory space

0000 to 7FFF

M2

microprocessor systems often employ a combination of
partial address decoding, full address decoding, and block
address decoding. You can further decode these 16K blocks
and divide the memory space between several peripheral
devices. Figure 12.19 describes how this arrangement might
be implemented.

Decoding using m-line to n-line decoders

The problems of address decoding can be greatly diminished
by means of data decoders that decode an m-bit binary input
into one of n outputs, where n � 2m. Table 12.2 gives the
truth table of the 74138, a typical 3-line to 8-line decoder.
This decoder has active-low outputs, making it especially

suitable for address-decoding applications, because the
majority of memory components have active-low chip-select
inputs. Because the 74138 has three enable inputs (two
active-low and one active-high) it is particularly useful when
decoders are to be connected in series, or when the enable
inputs are to be connected to address lines in order to reduce
the size of the block of memory being decoded.

Consider an example of address decoding in an 8-bit
microprocessor system using the 74138 3-line to 8-line
decoder. A microprocessor system is to be designed with
16 kbytes of ROM in the range 0000 to 3FFF using 4-kbyte
EPROMs and 8 kbytes of read/write memory in the range
4000 to 5FFF using a single 8-kbyte chip. Provision must
be made for at least eight memory-mapped peripherals in the
256 byte range 6000 to 60FF.

The first step is to work out what address lines have to be
decoded to select each memory block. We can do this in two
ways. First, if we know the size of the block we can calculate
how many address lines are required to select it out of all pos-

sible blocks of the same size. Consider
the 8K RAM block. The memory
space is 64K, so there are 64K/8K � 8
blocks. Because 8 � 23, the three
high-order address lines have to be
decoded. Alternatively, we can write
down the first and last addresses
in the block and note which address
values are common to all locations;
that is,
4000 � 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5FFF � 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

As you can see, only the three high-
order address lines are common to
every location within this memory
block.

Table 12.3 gives the address table
for this system and shows how one
74LS138 divides the memory space
into eight 4K blocks. A second

decoder subdivides one of these blocks to provide memory
space for the peripherals. Figure 12.20 gives a circuit diagram
of the address decoder and Figure 12.21 illustrates its mem-
ory map. It is easy to see the advantages of block address
decoding. First, RAM, ROM, or peripheral devices can be
added without further alterations to the address-decoding
circuitry by employing the unused outputs of the three
decoders. Second, the system is flexible. By modifying the
connections between the decoder circuits and the memory
components they select, the effective address of those mem-
ory components may be altered.

Note how we’ve selected the 8K block of RAM in
Fig. 12.20. Because the RAM is selected if either of the two 4K
blocks selected by 4 or 5 is selected, we can OR (in nega-
tive logic terms) 4 and 5 to select the RAM. Because theYY

YY

12.5 Interfacing memory to a CPU 511

Asserted for addresses in

the 1K range 0000 to 03FF

Asserted for addresses in

the 1K range 0400 to 07FF

A15

A14

A13

A12

A11

A10

CS1

CS2

A15

A14

A13

A12

A11

A10

Figure 12.18 A full address decoder for two 1K memory

blocks of Fig. 12.16.

Select block 0

0000 to 3FFF
A15,A14 = 0,0

Select block 1

4000 to 7FFF
A15,A14 = 0,1

Select block 2

8000 to BFFF
A15,A14 = 1,0

Select block 3

C000 to FFFF
A15,A14 = 1,1

0000

3FFF
4000

7FFF
8000

BFFF
C000

FFFF

64 kbytes

of memory

space

(a) Memory map. (b) Circuit of simple block address decoder.

16 kbyte blockSelected by

A15,A14 = 00

Selected by

A15,A14 = 01

Selected by

A15,A14 = 10

Selected by

A15,A14 = 11

A15

A14

Figure 12.19 Dividing 64K memory space into 4 blocks.

peripherals don’t occupy a 4K block, we have used address
lines A8 to A11 to select a second 3-line to 8-line decoder that
decodes the peripheral address space.

Address decoding with the PROM

Address decoding is the art of generating a memory compo-
nent’s chip-select signal from the high-order address lines.
An alternative to logic synthesis techniques is the program-
mable read-only memory (PROM) look-up table. Instead of
calculating whether the current address selects this or that
device, you just read the result from a table. The PROM was a
popular address decoder because of its low access time and its

ability to perform most of the address decoding with a single
chip. The PROM address decoder saves valuable space on the
microprocessor board and makes the debugging or modifica-
tion of the system easier. Because PROMs consume more
power than modern devices, they’ve largely been replaced by
CMOS programmable array logic devices.

The PROM’s n address inputs select one of 2n unique
locations. When accessed, each of these locations puts a word
on the PROM’s m data outputs. This word is the value of the
various chip-select signals themselves; that is, the processor’s
higher-order address lines directly look up a location in the
PROM containing the values of the chip selects.

512 Chapter 12 Computer memory

Enable inputs Control inputs Outputs

1 2 3 C B A 0 1 2 3 4 5 6 7

1 1 0 X X X 1 1 1 1 1 1 1 1

1 1 1 X X X 1 1 1 1 1 1 1 1

1 0 0 X X X 1 1 1 1 1 1 1 1

1 0 1 X X X 1 1 1 1 1 1 1 1

0 1 0 X X X 1 1 1 1 1 1 1 1

0 1 1 X X X 1 1 1 1 1 1 1 1

0 0 0 X X X 1 1 1 1 1 1 1 1

0 0 1 0 0 0 0 1 1 1 1 1 1 1

0 0 1 0 0 1 1 0 1 1 1 1 1 1

0 0 1 0 1 0 1 1 0 1 1 1 1 1

0 0 1 0 1 1 1 1 1 0 1 1 1 1

0 0 1 1 0 0 1 1 1 1 0 1 1 1

0 0 1 1 0 1 1 1 1 1 1 0 1 1

0 0 1 1 1 0 1 1 1 1 1 1 0 1

0 0 1 1 1 1 1 1 1 1 1 1 1 0

Table 12.2 Truth table of a 74138 3-line to 8-line decoder.

YYYYYYYYEEE

Device Size Address Range A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

ROM1 4K 0000–0FFF 0 0 0 0 x x x x x x x x x x x x

ROM2 4K 1000–1FFF 0 0 0 1 x x x x x x x x x x x x

ROM3 4K 2000–2FFF 0 0 1 0 x x x x x x x x x x x x

ROM4 4K 3000–3FFF 0 0 1 1 x x x x x x x x x x x x

RAM 8K 4000–5FFF 0 1 0 x x x x x x x x x x x x x

P1 32 6000–601F 0 1 1 0 0 0 0 0 0 0 0 x x x x x

P2 32 6020–603F 0 1 1 0 0 0 0 0 0 0 1 x x x x x

.

P8 32 60E0–60FF 0 1 1 0 0 0 0 0 1 1 1 x x x x x

Table 12.3 Address table of a microprocessor system.

Let’s look at a very simple example of a PROM-
based address decoder. Table 12.4 describes a
16-location PROM that decodes address lines A12

to A15 in an 8-bit microcomputer. Address lines
A12 to A15 are connected to the PROM’s A0 to A3

address inputs. Whenever the CPU accesses its
64K memory space, the contents of one (and only
one) of the locations in the PROM are read.
Suppose that the processor reads the contents of
memory location E124. The binary address of
this location is 11100001001001002 whose four
higher-order bits are 1110. Memory location
1110 in the PROM is accessed and its contents
applied to the PROM’s data pins D0 to D7 to give
the values of the eight chip selects to . In
this case, the device connected to D5 (i.e.) is
selected. Figure 12.22 demonstrates how the
PROM-based address decoder is used. This is a
simplified diagram-in practice we would have to
ensure that the PROM was enabled only during a
valid memory access (for example, by using the
processor’s data strobe to enable the decoder).

Table 12.4 divides the CPU’s memory
space into 16 equal-sized blocks. Because
the processor has a 64 kbyte memory space,
each of these blocks is 64K/16 � 4 kbytes.
Consequently, this address decoder can
select 4-kbyte devices. If we wanted to select
devices as small as 1 kbyte, we would
require a PROM with 64 locations (and six
address inputs). If you examine the D4
() output column, you find that there
are two adjacent 0s in this column. If the
processor accesses either the 4K range 6000
to 6FFF or 7000 to 7FFF, goes low.
We have selected an 8K block by putting a 0
in two adjacent entries. Similarly, there are
four 0s in the column to select a
4 � 4K � 16K block.

As we have just observed, the PROM can
select blocks of memory of differing size.
In a system with a 16-bit address bus, a
PROM with n address inputs (i.e. 2n bytes)
can fully decode a block of memory with a
minimum size of 216/2n � 216�n bytes.
Larger blocks of memory can be decoded by
increasing the number of active entries (in
our case, 0s) in the data column of the
PROM’s address/ data table. The size of the
block of memory decoded by a data output
is equal to the minimum block size multi-
plied by the number of active entries in the
appropriate data column.

CS5

CS4

CS4

CS5
CS7CS0

12.5 Interfacing memory to a CPU 513

This decoder divides the
lower 32 kbytes of memory
into eight 4K blocks.

Select signals
to memory
and peripherals.

This decoder divides the
region 6000 to 60FF into
eight 256-byte blocks.

Address lines from
the CPU used by the
address decoder

A11

A14

Y0

Y1

Y2
Y3

Y4
Y5

Y6

Y7

Y0

Y1

Y2
Y3

Y4
Y5

Y6

Y7

A13

A12

A15

A10

A9
A8

A7
A6
A5

0

1 E

E

E

E

C
B
A

E
E

A

B

C
0000

1000

2000

6000
Peripheral 1

ROM1

ROM2

ROM3

ROM4

RAM

Peripheral 2

Peripheral 3

Peripheral 4

Peripheral 5

Peripheral 6

Peripheral 7

Peripheral 8

6020

6040

6060

6080

60A0

60C0

60E0

3000

4000

5000

6000

7000

Address space
for which A15 = 0

ROM1 Selected by Y0

Selected by Y1

Selected by Y2

Selected by Y3

Selected by Y4

Selected by Y5

Selected by Y6

Peripheral 1

Peripheral 2

Peripheral 3

Peripheral 4

Peripheral 5

Peripheral 6

Peripheral 7

Peripheral 8

Unused

ROM2

ROM3

ROM4

Unused

8K RAM

Peripheral
space

Address space
for which A15 = 1

32 kbytes
(unused)

FFFF

8000

7000

6000

6000

6020

6040

6060

6080

60A0

60C0

6100

60E0

6FFF

5000

4000

3000

2000

1000

0000

Figure 12.20 Circuit of an address decoder for Table 12.3.

Figure 12.21 Memory map for the system of Table 12.3

and Fig. 12.20.

Today, the systems designer can also use programmable
logic elements such as PALs and PLAs to implement address
decoders. Moreover, modern microprocessors now include
sufficient RAM, flash EPROM, and peripherals on-chip to
make address decoding unnecessary.

The structure of 68K-based memory systems

To conclude this section on memory organization, we look at
how memory components are connected to a 68K micro-
processor with its 16-Mbyte memory space and 16-bit data
bus. Because the 68K has 16 data lines d00 to d15, memory

514 Chapter 12 Computer memory

Inputs Outputs

A15 A14 A13 A12 CPU name

A3 A2 A1 A0 PROM name D0 D1 D2 D3 D4 D5 D6 D7

Range

0 0 0 0 0000 to 0FFF 0 1 1 1 1 1 1 1

0 0 0 1 1000 to 1FFF 1 0 1 1 1 1 1 1

0 0 1 0 2000 to 2FFF 1 1 0 1 1 1 1 1

0 0 1 1 3000 to 3FFF 1 1 1 0 1 1 1 1

0 1 0 0 4000 to 4FFF 1 1 1 1 1 1 1 1

0 1 0 1 5000 to 5FFF 1 1 1 1 1 1 1 1

0 1 1 0 6000 to 6FFF 1 1 1 1 0 1 1 1

0 1 1 1 7000 to 7FFF 1 1 1 1 0 1 1 1

1 0 0 0 8000 to 8FFF 1 1 1 1 1 1 1 1

1 0 0 1 9000 to 9FFF 1 1 1 1 1 1 1 1

1 0 1 0 A000 to AFFF 1 1 1 1 1 1 1 1

1 0 1 1 B000 to BFFF 1 1 1 1 1 1 1 1

1 1 0 0 C000 to CFFF 1 1 1 1 1 0 1 1

1 1 0 1 D000 to DFFF 1 1 1 1 1 0 1 1

1 1 1 0 E000 to EFFF 1 1 1 1 1 0 1 1

1 1 1 1 F000 to FFFF 1 1 1 1 1 0 1 1

Table 12.4 Address decoding with a PROM.

CS7CS6CS5CS4CS3CS2CS1CS0

Figure 12.22 Simplified

circuit of a PROM-based

decoder corresponding to

Table 12.4.

Address bus

Address

Address

PROM

D0

CS2

CS1

CS0

CS CS

CS3

CS4

CS5

CS6

CS7

D1
D2

D3

D4

D5

D6
D7

Address AddressData Data Data

CPU

Memory

device 1

Memory

device 2

Data bus

High-order
address
lines

The PROM’s data
outputs directly
provide chip-select
signals

Select signals to
other memory
devices.

The PROM takes the high-order
bits of the address bus and uses
them to index into a table. The
contents of the table are the
chip-select signals.

blocks must be 16 bits wide in order to support both word
and byte accesses. The address bus is not composed of 24
address lines A23 to A00, but 23 address lines A23 to A01. These
address lines select a 16-bit word (i.e. 2 bytes), rather than a
single byte. Two control signals, (upper data strobe) and

(lower data strobe), distinguish between the upper and
lower bytes of a 16-bit word, respectively.

Figure 12.23 shows the arrangement of a 68K-based
system. If the 68K accesses a byte on data lines d00 to d07, it
asserts data strobe . If the 68K accesses a byte on data lines
d08 to d15, it asserts data strobe . If the 68K accesses a word
on d00 to d15, it asserts both and simultaneously.
This mechanism provides a pseudo A00 (i.e. asserted,

negated � A00 � 1, and negated, asserted �

A00 � 0). By means of its two data strobes and 23-bit address
bus, the 68K can address a word and then access either of
the bytes at the word address or both bytes at this address.
The byte on data lines d00 to d07 is at the odd address and the
byte on data lines d08 to d15 is at the even address.

UDSLDSUDS
LDS

UDSLDS
UDS

LDS

LDS
UDS

12.6 Secondary storage

Secondary storage describes storage with a relatively large
access time that is used to hold large quantities of data. The
term secondary store is synonymous with disk drives, tape
transports, and optical storage.

In the last few years, storage capacities have increased
at up to 100% a year. Figure 12.24 illustrates the growth in
disk capacity for three disk form factors (i.e. physical disk
size).

12.6.1 Magnetic surface recording

We first examine the nature of the ferromagnetic materials
used to store data. The origin of magnetism lies in the motion
of electrons in their orbits—an electron orbiting a nucleus
generates a magnetic field and the atom behaves like a tiny

12.6 Secondary storage 515

Figure 12.23 Dealing with

byte and word accesses in a

68K-based system.

Address
A01 to A23

Address Data Address Data

Address bus

Data bus

Data
d00 to d15

d08 to d15 d00 to d07

68K CPU

LDS UDS

Asserted for
d08 to d15

The address bus uses
A01 to A23 to select
a word (2 bytes)

Big endian data with
the high byte at the
low address

The LDS and UDS data
strobes select the lower,
upper, or both bytes of the
word currently accessed

Asserted for
d08 to d15

CS

CS CS

Select upper byte

Memory
(upper byte)

Memory
(lower byte)

Select low byte

From
address
decoder

EXAMPLE 3

Draw an address decoding table to satisfy the following 68K memory map

RAM1 00 0000 to 00 FFFF

RAM2 01 0000 to 01 FFFF

I/O_1 E0 0000 to E0 001F

I/O_2 E0 0020 to E0 003F

Address lines

Device Range 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RAM1 00 0000 to 00 FFFF 0 0 0 0 0 0 0 0 x x x x x x x x x x x x x x x x

RAM2 01 0000 to 01 FFFF 0 0 0 0 0 0 0 1 x x x x x x x x x x x x x x x x

I/O_1 E0 0000 to E0 001F 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x

I/O_2 E0 0020 to E0 003F 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 x x x x x

516 Chapter 12 Computer memory

EXAMPLE 4

A 68K microprocessor system implements the following memory blocks:

(a) 1 Mbyte of ROM using 256K x 16-bit chips

(b) 8 Mbytes of DRAM using 2M x 4-bit chips

Construct a suitable address-decoding table and design an address decoder for this system.

A 16-bit-wide chip provides 2 bytes of data per location.Therefore, a single 256K x 16-bit ROM provides 512 kbytes of data.

We need two of these chips to provide 1-Mbyte.A 1-Mbyte block of data contains 220 bytes and is spanned by address lines A00 to A19.

In a 68K-based system address lines A20 to A23 must be decoded to select this block.Assume that the block of ROM is located at

address 00 0000 and that A23,A22,A21,A20 � 0, 0, 0, 0.This 1-Mbyte block is composed of two 512-kbyte sub-blocks.Therefore one

of these sub-blocks is selected when A19 � 0 and the other when A19 � 1.

The 8 Mbytes of DRAM are spanned by A00 to A22 (i.e. 223 bytes).This block of memory must be on an 8-Mbyte boundary

(i.e. 00 0000 or 80 0000 in a 68K-based system). Because 00 0000 is occupied by ROM, we’ll put the DRAM at 80 0000 for which

A23 � 1.This block is composed of 2M-location by 4-bit-wide devices. Four 4-bit-wide chips are required to provide 16 bits

(2 bytes) of data.The amount of data provided by these four chips per location is 2M locations � 2 bytes � 4M.We need two

of these sub-blocks to get 8 Mbytes.The first sub-block is selected by A22 � 0 and the second by A22 � 1.

00 0000

0F FFFF

1 Mbyte

ROM

8 Mbytes

DRAM

FF FFFF

80 0000

1 Mbyte ROM requires two

512K × 16 chips.

256K × 16

2M × 4 2M × 4 2M × 4 2M × 4 4 Mbytes

4 Mbytes

8 Mbytes

2M × 4 2M × 4 2M × 4 2M × 4

256K × 16 512 Kbytes

512 Kbytes

1 Mbyte

16 bits

The next step is to construct an address-decoding table.A memory block must be on a boundary equal to its own size.The fol-

lowing address decoding table shows address lines A23 to A00.Although the 68K lacks an A00 line, it’s easier to add an A00 line to

the table so that we can operate in bytes.

Device Range A23 A22 A21 A20 A19 A18 . . . A00

ROM 1 00 0000 to 07 FFFF 0 0 0 0 0 x . . . x

ROM 2 08 0000 to 0F FFFF 0 0 0 0 1 x . . . x

DRAM 1 80 0000 to BF FFFF 1 0 x x x x . . . x

DRAM 2 C0 0000 to FF FFFF 1 1 x x x x . . . x

If you didn’t treat the 8-Mbyte block of DRAM as a single block, but as two separate 4 Mbyte blocks, you could put each of these

4-Mbyte sub-block on any 4 Mbyte boundary.The following address decoding table is also a legal solution.

Device Range A23 A22 A21 A20 A19 A18 . . . A00

ROM 1 00 000 to 07 FFFF 0 0 0 0 0 x . . . x

ROM 2 00 000 to 0F FFFF 0 0 0 0 1 x . . . x

DRAM 1 40 000 to 07 FFFF 0 1 x x x x . . . x

DRAM 2 80 000 to BF FFFF 1 0 x x x x . . . x

magnet. In most matter the magnetic effects of electron spin
are overcome by the stronger force generated by the thermal
vibration of the atoms that prevents magnetic interaction
between adjacent atoms.

In ferromagnetic materials such as iron there is a stronger
interaction between electron spins, which results in the
alignment of electrons over a region called a domain. Domains
range from 1 �m to several centimeters in size. Because the
electron spins are aligned within a domain, the domain

exhibits a strong spontaneous magnetization and behaves like
a tiny magnet with a North Pole at one end and a South Pole at
the other end. Within a large piece of ferromagnetic material,
the magnetic axes of individual domains are arranged at
random and there is no overall magnetic field in the bulk
material.

Suppose we thread a wire through a hole in a ring (called a
toroid) of a ferromagnetic material and pass a current, i,
through the wire. The current generates a vector magnetic

12.6 Secondary storage 517

EXAMPLE 5

Design an address decoder using a PROM to implement the following 68K memory map.

(a) 4 Mbytes ofROM at address 00 0000 using 1M � 8-bit chips

(b) 8 Mbytes of RAM at address 80 0000 using 4M � 4-bit chips

(c) 1 Mbyte of RAM at address 60 0000 using 512K � 8-bit chips

We begin by working out the sub-blocks of memory required from the size of the specified memory components.

(a) A pair of 1M � 8-bit chips gives 2 Mbytes. We need two sub-blocks to get 4 Mbytes.

(b) Four 4M � 4-bit chips gives 8 Mbytes. This provides all our needs.

(c) A pair of 512K � 8-bit chips gives 1 Mbyte. This provides all our needs.

Address decoding table

Device Range A23 A22 A21 A20 A19 A18 . . . A00 Size

ROM 1 00 0000 to 1F FFFF 0 0 0 x x x . . . x 2 Mbytes

ROM 2 20 0000 to 3F FFFF 0 0 1 x x x . . . x 2 Mbytes

RAM 1 80 0000 to FF FFFF 1 x x x x x . . . x 8 Mbytes

RAM 2 60 0000 to 6F FFFF 0 1 1 0 x x . . . x 1 Mbyte

Each line in the PROM must select a block equal to the smallest block to be decoded; that is, 1 Mbyte.The PROM must

decode A23 to A20. In the following table, D0 from the PROM selects ROM1, D1 selects ROM2, D2 selects RAM2, and D3

selects RAM1.

Device Range A23 A22 A21 A20 D0 D1 D2 D3

ROM1 ROM2 RAM2 RAM1

ROM 1 00 0000 to 0F FFFF 0 0 0 0 0 1 1 1

ROM 1 10 0000 to 1F FFFF 0 0 0 1 0 1 1 1

ROM 2 20 0000 to 2F FFFF 0 0 1 0 1 0 1 1

ROM 2 30 0000 to 3F FFFF 0 0 1 1 1 0 1 1

unused 40 0000 to 4F FFFF 0 1 0 0 1 1 1 1

unused 50 0000 to 5F FFFF 0 1 0 1 1 1 1 1

RAM2 60 0000 to 6F FFFF 0 1 1 0 1 1 0 1

unused 70 0000 to 7F FFFF 0 1 1 1 1 1 1 1

RAM 1 80 0000 to 8F FFFF 1 0 0 0 1 1 1 0

RAM 1 90 0000 to 9F FFFF 1 0 0 1 1 1 1 0

RAM 1 A0 0000 to AF FFFF 1 0 1 0 1 1 1 0

RAM 1 B0 0000 to BF FFFF 1 0 1 1 1 1 1 0

RAM 1 C0 0000 to CF FFFF 1 1 0 0 1 1 1 0

RAM 1 D0 0000 to DF FFFF 1 1 0 1 1 1 1 0

RAM 1 E0 0000 to EF FFFF 1 1 1 0 1 1 1 0

RAM 1 F0 0000 to FF FFFF 1 1 1 1 1 1 1 0

518 Chapter 12 Computer memory

EXAMPLE 6

A memory board in a 68K-based system with a 16-bit data bus has 1 Mbyte of RAM composed of 128K � 8 RAM chips located at

address C0 0000 onward. The board also has a block of 256 kbytes of ROM composed of 128K � 8 chips located at address D8

0000. Design an address decoder for this board.

Two byte-wide RAM chips span the 16-bit data bus.The minimum block of memory is 2 � 128K � 256 kbytes accessed by

address lines A17 to A00.We require 1 Mbyte of RAM, or four 256 kbyte blocks.Address lines A19 to A18 select a block and A23 to A20

select a Mbyte block out of the 16 possible 1 Mbyte blocks (A23 to A20 � 1100).The ROM is implemented as a single 256-kbyte

block using two 128-kbyte chips. The following table can be used to construct a suitable decoder.

Device A23 A22 A21 A20 A19 A18 A17 . . . A01 A00 Address range

RAM1 1 1 0 0 0 0 x . . . x x C0 0000 to C3 FFFF

RAM2 1 1 0 0 0 1 x . . . x x C4 0000 to C7 FFFF

RAM3 1 1 0 0 1 0 x . . . x x C8 0000 to CB FFFF

RAM4 1 1 0 0 1 1 x . . . x x CC 0000 to CF FFFF

ROM 1 1 0 1 1 0 x . . . x x D8 0000 to DB FFFF

EXAMPLE 7

Design an address decoder that locates three block of memory in the following ranges: 00 0000 to 7F FFFF, A0 8000 to A0 8FFF,

and F0 0000 to FF FFFF.

Address range A23 to A20 A19 to A16 A15 to A12 A11 to A8 A7 to A4 A3 to A0 Block size

000000 to 7FFFFF First location 0000 0000 0000 0000 0000 0000 8 Mbytes

Last location 0111 1111 1111 1111 1111 1111 spanned by 22 lines

A08000 to A08FFF First location 1010 0000 1000 0000 0000 0000 4 kbytes

Last location 1010 0000 1000 1111 1111 1111 spanned by 12 lines

F00000 to FFFFFF First location 1111 0000 0000 0000 0000 0000 1 Mbyte

Last location 1111 1111 1111 1111 1111 1111 spanned by 20 lines

From the table, you can see that the first block is selected by address line A23, the second block by address lines A23 to A12, and

the third block by address lines A23 to A20.

EXAMPLE 8

The following address decoding PROM selects three blocks of memory in a 68K-based system. How large is each block and what

address range does it occupy?

CPU address line A23 A22 A21 CS2 CS1 CS0

PROM address line A2 A1 A0 D2 D1 D0

0 0 0 0 1 1

0 0 1 1 1 1

0 1 0 1 0 1

0 1 1 1 0 1

1 0 0 1 1 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 0

The PROM decodes the 68K’s three highest-order address lines A23 to A21. These address lines partition the 68K’s 16-Mbyte

address space into eight 2-Mbyte blocks. CS2 selects the 2-Mbyte block for which A23,A22,A21 � 0, 0, 0.This is the address space

00 0000 to 1F FFFF. CS1 selects two 2-Mbyte blocks for which A23,A22 � 0, 1.This is the 4-Mbyte address space 40 0000 to

7F FFFF. CS0 selects the four 2-Mbyte blocks for which A23 � 1.This is the 8-Mbyte address space 80 0000 to FF FFFF.

field, H, in the surrounding space, where H is proportional to
i. A magnetic field, B, is produced inside the ring by the
combined effects of the external field, H and the internal
magnetization of the core material. A graph of the relation-
ship between the internal magnetic field B and the external
magnetic field H for a ferromagnetic material is given in
Figure 12.25. This curve is called a hysteresis loop.

Suppose that the external field round the wire is initially
zero; that is, H � 0 because the current flowing through the
wire, i, is zero. Figure 12.25 demonstrates that there are two
possible values of B when H � 0: �Bi and �Br. These two
states represent a logical one and a logical zero. The suffix r in
Br stands for remnant and refers to the magnetism remaining
in the ring when the external field is zero. Like the flip-flop,

this magnetic material has two stable states
and can remain in either of the states indefi-
nitely. Unlike the flip-flop, the ferromagnetic
material is a non-volatile store and requires
no power source to retain data.

Assume that initially the ferromagnetic
material is magnetized in a logical zero state
and has an internal field �Br. If a negative
external field is applied (i.e. negative i, there-
fore negative H), the value of the internal
magnetization B goes slightly more negative
than �Br and we move towards point P in
Fig. 12.25. If H is now reduced to zero, the
remnant magnetization returns to �Br. In
other words, there is no net change in the
state of the ferromagnetic material.

Now consider applying a small positive
internal field H. The internal magnetization
is slightly increased from �Br and we move

along the curve towards point Q. If the external magnetiza-
tion is reduced we move back to �Br. However, if H is

increased beyond the value
�Hm, the magnetization of
the material flips over at Q,
and we end up at point R.
When we reduce the external
field H to zero, we return
to �Br and not to �Br. If
the material is initially in a
negative state, increasing
the external magnetization
beyond Hm causes it to
assume a positive state. A
magnetic field of less than
Hm is insufficient to change
the material’s state.

Similarly, if the ferromagnetic material is in a one state
(�Br), a positive value of H has little effect, but a more nega-
tive value of H than �Hm will switch the material to a zero
state (�Br).

The switching of a ferromagnetic material from one state
to another is done by applying a pulse with a magnitude
greater than Im to the wire. A pulse of �Im always forces the
material into a logical one state, and a pulse of �Im forces it
into a logical zero state.

The hysteresis curve can readily be explained in terms of the
behavior of domains. Figure 12.26 shows a region of a ferro-
magnetic material at three stages. At stage (a) the magnetic
material is said to be in its virgin state with the domains
oriented at random and has no net magnetization. This corre-
sponds to the origin of the hysteresis curve, where H � 0 and
B � 0.

12.6 Secondary storage 519

1000

100

10

1

0.1
94 95 96 97 98 99 2000

Availability year

HDD roadmap

H
D

D
 C

ap
ac

it
y
 (

G
b
y
te

s)

01 02 03 04 05 06

2.5 in
ch

3.5 inch form factor

1.0 inch

conusm
er based

4.5 Gbyte

1.2 Gbyte

9.1 Gbyte

5.1 Gbyte

8.1 Gbyte

25 Gbyte

60 Gbyte

80 Gbyte

36 Gbyte Server
15K RPM

0.34 Gbyte Microdrive

1 Gbyte Microdrive

4 Gbyte
Microdrive

1 inch profile 10K RPM
146 Gbyte Server
180 Gbyte Desktop 7200 RPM

Figure 12.24 The increase in disk capacity (from Hitachi Global

Storage Technologies, San Jose Research Centre).

Magnetic field H
due to current i

Magnetic field B
in the material

Magnetic material

Wire carrying
current i

H

(a) Magnetic core. (b) Hysteresis curve that relates internal field B to external field H.

B
S

R

–Hm

–Bm

–Br

+Br

+Bm

B

+Hm
H

External

magnetic field

Internal

magnetic field

P

Q

i

Figure 12.25 The hysteresis curve.

At stage (b) an external magnetic field has been applied
and some of the domains have rotated their magnetic axes to
line up with the external field. As the external field is
increased, more and more domains flip over, and there comes
a point where the domains already aligned with the external
field reinforce it, causing yet more domains to flip over. This
process soon develops into an avalanche as the internal field
rapidly builds up, and all domains are aligned with the exter-
nal field. At this point, stage (c), the bulk material is fully
magnetized and is said to be saturated.

The precise form of the hysteresis
or B–H curve of Fig. 12.25 differs
from one magnetic material to
another. The best B–H curve for the
purpose of storing data is square,
so that the transition from one state
to another (i.e. from �Br to �Br)
takes place for an infinitesimally
small change in H. Such a magnetic
material is said to have a square-loop
B–H characteristic. Magnetic materi-
als displaying strong hysteresis effects
are called hard, whereas those dis-
playing little are called soft. Now that

we’ve described the basic principles of magnetization, we
look at how it is applied in practice.

Magnetizing a flat surface

The operating principles of disk drives, tape transports, and
VCRs are the same: the former records data on a flat platter
coated with a magnetic material, whereas the latter records
data on a thin band of flexible plastic coated with magnetic
material. Figure 12.27 illustrates the generic recording
process—the same model serves both disk and tape systems.

The write head used to store data consists of a ring of high-
permeability soft magnetic material with a coil wound round
it. High permeability means that the material offers a low
resistance to a magnetic field. The material of the write head
is magnetically soft and doesn’t have a square-loop hysteresis;
that is, it doesn’t exhibit residual magnetization.

The most important feature of the write head is a tiny air
gap in the ring. When a current flows in the coil a magnetic
flux is created within the ring. This flux flows round the core,
but when it encounters the air gap, it spreads out into the sur-
rounding air as illustrated in Fig. 12.28; this external field is
called a fringing field.

Because the head is close to the recording medium, the
magnetic field round the air gap passes through the magnetic
material coating the backing. If this field is strong enough, it
causes the domains within the coating to become aligned
with the field from the head. Because the magnetic surface is
moving, a continuous strip of surface is magnetized as it
passes under the write head. If the direction of the current in
the coil is changed the field reverses and the magnetic parti-
cles in the coating are magnetized in the opposite direction.
Figure 12.29 shows how the domains in the surface material
might be magnetized (north–south or south–north) after
passing under the write head. We have also plotted the
current in the write head on the same figure.

As time has passed, engineers have produced greater and
greater packing densities (about 10 Gbits per square inch in
1995 and 100 Gbits per square inch by 2004). One of the
improvements is due to the composition of the magnetic

520 Chapter 12 Computer memory

(a) No external field—

magnetization of domains at random.

(b) Weak external field applied—

magnetization of some domains

rotate.

(c) Strong external field applied—

magnetization of domains aligned

in same direction.

Figure 12.26 The behavior of domains.

i
Coil

Read/write head

Magnetic coating

Non-magnetic substrate

Direction of

movement

Magnetic

field
Gap

Figure 12.27 Surface recording.

Air gap

The magnetic flux

bulges out at the air

gap in the head

Magnetic flux

in the head

Figure 12.28 The air gap.

medium used to store data. The size of the particles has been
reduced and their magnetic properties improved. Some tapes
employ a thin metallic film, rather than individual particles.
Metal oxide coatings are about 800 �m thick with oxide par-
ticles approximately 25 �m by 600 �m with an ellipsoidal
shape. A thin film coating is typically only 100 �m thick.

Reading data

A first-generation read head was essentially the same as a
write head (sometimes a single head serves as a both a read
and a write head). When the magnetized material moves past
the gap in the read head, a magnetic flux is induced in the
head. The flux, in turn, induces a voltage across the terminals
of the coil that is proportional to the rate of change of the
flux, rather than the absolute value of the magnetic flux itself.
Figure 12.30 shows the waveforms associated with writing
and reading data on a magnetic surface. The voltage from the
read head is given by

K is a constant depending on the physical parameters of the
system and � is the flux produced by the moving magnetic
medium. Because the differential of a constant is zero, only
transitions of magnetic flux can be detected. The output from
a region of the surface with a constant magnetization is zero,
making it difficult to record digital data directly on tape or disk.

12.6.2 Data encoding techniques

Now that we’ve described the basic process by which informa-
tion is recorded on a magnetic medium, we are going to look
at some of the ways in which digital data is encoded before it is
recorded. Magnetic secondary stores record data serially, a bit
at a time, along the path described by the motion of the mag-
netic medium under the write head. Tape transports have
multiple parallel read/write heads and record several parallel
tracks simultaneously across the width of the tape.

v(t) � K d�/dt
You can’t transmit the sequence of logical 1s and 0s to be

recorded directly to the write head. If you were to record a
long string of 0s or 1s by simply saturating the surface at �Br

or �Br, no signal would be received during playback. Why?
Because only a change in flux creates an output signal. A
process of encoding or modulation must first be used to trans-
form the data pattern into a suitable code so that the recorded
data is always changing even if the source is all 1s or 0s.
Similarly, when the information is read back from the tape it
must be decoded or demodulated to extract the original dig-
ital data. The actual encoding/decoding process chosen is a
compromise between the desire to pack as many bits of data
as possible into a given surface area while preserving the
reliability of the system and keeping its complexity within
reasonable bounds.

Let’s look as some of the possible recording codes (begin-
ning with a code that illustrates the problem of recording
long strings of 1s and 0s). However, before we can compare

12.6 Secondary storage 521

i (current in coil round write head)

+lm

–lm

0

Region magnetized S–N Region magnetized N–S Region magnetized S–N

Substrate

time

Figure 12.29 The magnetized

layer.

Write
current

Recorded
flux

time

time

time

Read
voltage

+V

–V

+I

+B r

–Br

–I

Figure 12.30 Read/write waveforms.

various encoding techniques we need to describe some of the
parameters or properties of a code. In what follows the term
flux reversal indicates a change of state in the recorded mag-
netic field in the coating of the tape or disk. Simply reversing
the direction of the current in the write head causes a flux
reversal. Some of the criteria by which a recording code may
be judged are described in the box.

Return-to-zero encoding

Return-to-zero (RZ) recording requires that the surface be
unmagnetized to store a zero and magnetized by a short pulse
to store a 1. Because no signal is applied to the write head
when recording a 0, any 1s already written on the tape or disk
are not erased or overwritten. Return-to-bias recording (RB)
is a modification of RZ recording in which a 0 is recorded by
saturating the magnetic coating in one direction and a 1 by
saturating it in the opposite direction by a short pulse of the
opposite polarity.

Figure 12.31 illustrates the principles of return-to-bias
recording and playback. A negative current in the write head
saturates the surface to �Br. A positive pulse saturates the
surface to �Br to write a 1. The pulse width used depends on

the characteristics of the head and the magnetic medium. A
wide pulse reduces the maximum packing density of the
recorded data and is wasteful of tape or disk surface but is
easy to detect, whereas a very narrow pulse is harder to detect.

Data is read from the disk/tape by first generating a data
window, which is a time slot during which the signal from the
read head is to be sampled. The signal from the read head is
sampled at the center of this window. A sequence of 0s gener-
ates no output from the read head and there is no simple way
of making sure that the data window falls exactly in the mid-
dle of a data cell. For this reason return-to-bias is said to be
non-self-clocking. The worst-case efficiency of RB recording is
50% (when the data is a string of 1s) and its noise sensitivity
is poor. RB recording is not used in magnetic recording.

Non-return to zero encoding

One of the first widely used data encoding techniques was
modified non-return to zero or NRZ1. Each time a 1 is to be
recorded, the current flowing in the head is reversed. When
reading data each change in flux is interpreted as a 1.
Figure 12.32 illustrates NRZ1 recording which requires a
maximum of one flux transition per bit of stored data giving

522 Chapter 12 Computer memory

ENCODING CRITERIA

Efficiency A code’s storage efficiency is defined as the

number of stored bits per flux reversal and is expressed in

percent.A 100% efficiency corresponds to 1 bit per flux

reversal.

Self-clocking The encoded data must be separated into

individual bits.A code that provides a method of splitting the

bits off from one another is called self-clocking and is highly

desirable.A non-self-clocking code provides no timing

information and makes it difficult to separate the data stream

into individual bits.

Noise immunity An ideal code should have the largest

immunity to noise and extraneous signals. Noise is caused by

imperfections in the magnetic coating leading to drop-outs

and drop-ins.A drop-out is a loss of signal caused by missing

magnetic material and a drop-in is a noise pulse.Another

source of noise is cross-talk, which is the signal picked up by

the head from adjacent tracks. Cross-talk is introduced because

the read/write head might not be perfectly aligned with the

track on the surface of the recording medium. Noise can also

be caused by imperfect erasure. Suppose a track is recorded

and later erased. If the erase head didn’t pass exactly over the

center of the track, it’s possible that the edge of the track

might not have been fully erased.When the track is rerecorded

and later played back, a spurious signal from the unerased

portion of the track will be added to the wanted signal.

0Serial data

to be recorded

Current in

write head

Voltage in read head

during playback

Data window during

which state of signal

from head is decoded

0 0 01 1 1 1

Figure 12.31 Return-to-bias recording.

0Serial data

to be recorded

Current in

write head

Voltage in read head

during playback

Data window during

which state of signal

from head is decoded

1 0 0 01 1 1

Figure 12.32 Non-return to zero one recording (NRZ1).

it an optimum packing density of 100%. NRZ1 isn’t
self-clocking and it’s impossible to reliably retrieve a long
string of 0s.

Phase encoding

Several codes are based on phase or Manchester encoding,which
was once widely used by magnetic tape transports. A flux tran-
sition is located at the center of each bit cell: a low-to-high tran-
sition indicates a 1 and a high-to-low transition a 0. Because
there’s always a flux transition at the center of each data cell, a
clock signal can be derived from the recorded data and therefore
this encoding technique is self-clocking.A stream of alternate 1s
and 0s requires one flux transition per bit, whereas a stream of
1s or 0s requires two flux changes per bit.

Fig. 12.33 illustrates how the sequence 01010011 is phase
encoded. Phase encoding has a low efficiency of 50% because
up to two transitions per bit is required. Because up to two
flux transitions are required per bit, the maximum recorded
frequency is twice that of NRZ1 at an equivalent bit density.
Phase encoding has a good immunity to noise. Phase encod-
ing is widely used in digital data transmission systems as well
as magnetic recording systems.

Modified frequency modulation

Modified frequency modulation, (MFM) (also called Miller
encoding and double density recording) became a standard for
the recording of data on floppy disks. MFM is 100% efficient
and needs only one flux transition per bit.

Figure 12.34 demonstrates how a data stream may be
divided conceptually into two separate signals: a timing sig-
nal consisting of a pulse at each cell boundary, and a data
signal consisting of a pulse at the center of each data cell
containing a 1.

A data pulse is placed at the center of each cell containing a
1. The clock pulses at the boundary of the cells are deleted,
but with one exception. Whenever two 0s are to be recorded
in succession, a clock pulse is placed between them (see
Fig. 12.34). Because the maximum gap between flux transi-
tions is no more than 2T, where T is the width of a data cell,
MFM is self-clocking.

Group codes and RLL codes

An encoding technique found in both magnetic disk and tape
stores is the group code, which gained popularity in the early
1970s when IBM first adopted it for their tape systems.
Simple coding schemes assign a particular waveform to each
bit to be recorded, which proves incompatible with some of
the requirements of an optimum code. A group code takes n
bits to represent an m-bit source word, where n � m.
Although there are 2n possible code words, only 2m of these 2n

values are used to create 2m different waveforms for recording
on the tape or disk. Waveforms with poor characteristics can
be removed from the code words to be stored on the tape or
disk; that is, only the best waveforms are used to store data.
The 4/5 group code in Table 12.5 uses 5 bits to encode 4 bits

12.6 Secondary storage 523

0Serial data

to be recorded

Current in

write head

Voltage in read head

during playback

Data window during

which state of signal

from head is decoded

1 0 0 01 1

A 1 is recorded

as a positive transition

A 0 is recorded

as a negative transition

1

A data pulse

indicates a 1

A clock pulse is

placed between

two 0s

A pulse at the boundary

between two 0s ensures a

clock signal

Serial data

to be recorded

Clock pulses

Data pulses

Deleted clock pulses

Combined clock

and data pulses

Current in write head

during recording

Voltage from read

head during playback

Data window during

which state of signal

from head is decoded

0 0 0 01 1 1 1

Figure 12.34 Modified frequency modulation (MFM).

Figure 12.33 Phase encoded

recording (PE).

of data. The algorithm that maps the 4 bits of data onto the
5-bit group code to be recorded avoids the occurrence of
more than two 0s in succession. This group code and a self-
clocking modification of NRZ1 guarantees at least one flux
transition per three recorded bits.

Another class of recording codes are the RLL or run-length
limited codes. Instead of inserting clock pulses to provide
timing information as in MFM recording, RLL codes limit
the longest sequence of 0s that can be recorded in a burst.
Because the maximum number of 0s in succession is fixed,
timing circuits can be designed to reliably locate the center of
each bit cell. A run-length limited code is expressed as Rm,n,
where m defines the minimum number of 0s and n the max-
imum number of 0s between two 1s.

A typical RLL code is RLL 2,7 which means that each 1 is
separated from the next 1 by two to seven 0s. In RLL a maxi-
mum of four 0s may precede a 1 and three 0s may follow a 1.
Because RLL records only certain bit patterns, the source data
must be encoded before it can be passed to the RLL coder; for
example, the source pattern 0011 would be converted to
00001000.

Figure 12.35 illustrates the RLL 2,7 encoding algorithm.
You take the source code and use its bits to locate a terminal
node on the tree. Suppose the source string is 0010110 . . .
The first bit is zero and we move down the zero branch from
Start. The second bit is 0 and we move down the 0 branch to
the next junction. The third bit is 1 and we move to the next
junction. The fourth bit is 0 and we move along the 0 branch.
This is a terminal node with the value 00100100; that is, the
encoded value of the input sequence 00100.

The next bit in the input sequence is 1 and we move from
Start along the 1 branch. The second bit is 1 and that leads us to
a terminal node whose output code is 1000. This process con-
tinues until we reach the end of the input code and each group
of 2, 3, or 4 input bits have been replaced by a terminal value.

12.7 Disk drive principles

We now look at the construction and characteristics of the
disk drive. The hard disk stores data on the surface of a flat,
circular, rigid platter of aluminum coated with a thin layer of
magnetic material.1 Hard disks vary in size from 8 inches
(obsolete) to 31⁄2 and 51⁄4 inches (PCs) to 1.3 to 21⁄2 inches (lap-
tops and portable devices). The platter rotates continually
about its central axis in much the same way as a black vinyl
disk on the turntable of a gramophone (for readers old
enough to remember the days before the CD). The rotational
speed of disks in PCs was 3600 rpm, although 7200 rpm is
now common and some disks rotate at 15 000 rpm.

The read/write head is positioned at the end of an arm
above the surface of the disk. As the disk rotates, the
read/write head traces a circular path called a track around
the disk. Digital information is stored along the concentric
tracks (Fig. 12.36). Data is written in blocks called sectors
along the track. Track spacing is of the order of 120 000
tracks/inch. As time passes, track spacing will continue to
improve, whereas the speed of rotation will not grow at any-
thing like the same rate.

Figure 12.37 illustrates the structure of a disk drive. A sig-
nificant difference between the vinyl record and the magnetic

524 Chapter 12 Computer memory

Input code Output code

0000 11001

0001 11011

0010 10010

0011 10011

0100 11101

0101 10101

0110 10110

0111 10111

1000 11010

1001 01001

1010 01010

1011 01011

1100 11110

1101 01101

1110 01110

1111 01111

Table 12.5 ANSI X3.54 4/5 group

code.

1000

0100

100100

001000

000100

00100100

0001000

1

1

1

Suppose the input code is
1100101011

This is re-arranged as
11 0010 011

The output is
1000001001000010001

1

0

0

Start

Example

0

0

1

0

0

Figure 12.35 RLL 2,7 encoding algorithm.

1 Some modern platters are made of glass because of its superior
mechanical properties such as a low coefficient of thermal expansion.

disk is that the groove on the audio disk is physically cut into
its surface, whereas the tracks on a magnetic disk are simply
the circular paths traced out by the motion of the disk under
the read/write head. Passing a current through the head mag-
netizes the moving surface of the disk and writes data along
the track. Similarly, when reading data, the head is moved to
the required track and the motion of the magnetized surface
induces a tiny voltage in the coil of the read head.

A precision servomechanism called an actuator moves
or steps the arm holding the head horizontally along a radius
from track to track. An actuator is an electromechanical
device that converts an electronic signal into mechanical
motion. Remember the difference between the magnetic disk

and the gramophone record. In the former the tracks are
concentric and the head steps from track to track, whereas in
the latter a continuous spiral groove is cut into the surface
of the disk and the stylus gradually moves towards the center
as the disk rotates. The actuator in Fig. 12.37 is a linear actua-
tor and is no longer used in hard disks.

Modem disk drives use a rotary head positioner to move the
read/write heads rather than the linear (in and out) position-
ers found on earlier hard disk drives. Figure 12.38 shows how
a rotary head positioner called a voice coil actuator rotates an
arm about a pivot, causing the head assembly to track over
the surface of the disks. A voice coil is so called because it
works like a loudspeaker. A current is passed through a coil

12.7 Disk drive principles 525

HISTORY OF DISK DRIVES

The first high-speed magnetic storage devices were magnetic

drums where data was recorded on the surface of a rotating

cylinder. Magnetic drums were used in Manchester

University’s Mark 1 computer in 1948. In 1950 ERA built the

world’s first commercially produced computer for the USA

navy, the ERA 1101, which used a magnetic drum to store

over 1 million bits.

In 1956 IBM introduced its 305 RAMAC (Random Access

Method of Accounting and Control) computer, which

incorporated the first disk drive.The RAMAC’s disk drive stored

5 million 7-bit characters on 50 24-inch rotating disks.

In the 1960s IBM invented the first disk drive with

removable storage media and in 1973 IBM shipped their first

Winchester disk drive.The Winchester disk drive is the

forerunner of all today’s hard disk drives.

In 1980 Seagate Technology introduced the ST506, the

first disk drive for PCs.This was a 51⁄4 inches disk drive with a

capacity of 5 Mbytes.

Disk

Sector

Track

A sector is the smallest unit

of data that can be written to

or read from a disk

Figure 12.36 Structure of a disk.

Rotation

Disk
Track

(path of the disk

under the head)
Spindle

(driven by

a motor)

Read/write

head

The actuator moves

the head assembly

in or out to select a

given track

Actuator

Figure 12.37 Principle of the disk drive.

positioned within a strong magnetic field provided by a
permanent magnet. The current in the coil generates a mag-
netic field, causing the coil to be attracted to, or repelled by,
the fixed magnet, moving the pivoted arm. The multiple head
arrangement of Fig. 12.38 means that the hard disk can access
the same track on several surfaces simultaneously. These
tracks form a cylinder.

The characteristics of disk drives vary from manufac-
turer to manufacturer and are being improved on at an
immense rate. A high-performance disk drive of the late
1990s had a rotational speed of 5400 rpm (i.e. 90 revolutions
per second), a capacity of 9 Gbytes (approximately 1036 bits),
and an average seek time of 8 ms (seek time is the time
taken to locate a given track) and could transfer data to the
computer at over 10 Mbytes per second. A decade earlier, a
typical hard disk in a PC had a capacity of 20 Mbytes and an
access time of over 70 ms. During the 1990s, average disk
storage densities were increasing at a phenomenal rate of
about 70% per year compounded. The improvement in
access time and data rate over the same period grew at a more
modest 7% per year. By 2005 disk drives with a capacity of
500 Gbytes were available and the standard drive speed was
7200 rpm.

Prior to the mid-1990s, disk drives were expensive items
that often cost more than the CPU and main memory. Even
today, a high-capacity, fast, state-of-the-art hard disk is one
of the most expensive components in a computer. The cost of
a disk drive lies in its complex and precise mechanical
structure. Manufacturers have reduced the effective cost per
megabyte of disk drives by stacking two or more disks on a
common spindle and using multiple heads as described by
Fig. 12.39. A drive might have three disks with six surfaces
and six heads that move together when driven by the com-
mon actuator. The motion of the heads over the correspond-
ing tracks on each of the surfaces describes a cylinder.

The parameters of a rigid disk are impressive. The mag-
netic layer is about 2000 atoms deep and the read/write head
is positioned 0.01 �m above the surface of the platter. On top
of the magnetic layer is a lubricating layer of a fluorocarbon
that is about one molecule thick. The structure of the heads
themselves is quite complex. They must not only have the
correct electrical and magnetic properties, but also the cor-
rect mechanical properties. If the head were actually in phys-
ical contact with the disk surface, the abrasive magnetic
coating would soon wear it out because its velocity over the
surface of the disk is of the order of 140 mph at 15 000 rpm.

The head is mounted in a holder called a slipper positioned
above the disk at about 0.01 �m from the surface. We cannot
directly achieve such a level of precision with current engi-
neering technology. However, by exploiting the head’s aero-
dynamic properties it can be made to fly in the moving layer
of air just above the surface of the disk.

When an object moves, the air near its surface, called the
boundary layer, moves with it. At some distance above the sur-
face the air is still. Consequently a velocity gradient exists
between the surface and the still air.At a certain point above the
disk’s surface, the velocity of the air flowing over the head gen-
erates enough lift to match the pressure of the spring pushing
the head towards the disk. At this point, the head is in equilib-
rium and floats above the disk. Modern slippers fly below
10 � 10�9m (i.e. 0.01 �m) and have longitudinal grooves cut
in them to dump some of the lift. The precision of a modern
slipper is so great that the acid in a fingerprint caused by care-
less handling can destroy its aerodynamic contour.

526 Chapter 12 Computer memory

Read/write head
Actuator shift

Actuator arm

Magnet

Voice coil When a current flows through
the voice coil, it is either attracted
to the magnet or repelled
(depending on the direction of
the current). One end of an arm
is connected to the voice coil and
the other end of the arm carries
the read/write heads. The arm is
pivoted on a shaft so that the
heads move across the disk and
the voice coil moves in or out.

Figure 12.38 A head assembly

positioning mechanism.

Figure 12.39 Structure of a the disk drive.

Disk drive

housing

Control electronics

Four platters

Read/write

head

Actuator

The height at which the head flies above the surface of the
disk is related to the surface finish or roughness of the mag-
netic coating. If the magnetic material is polished, the surface
to head gap can be reduced by 50% in comparison with an
unpolished surface.

Occasionally, the head hits the surface and is said to crash.
A crash can damage part of the track and this track must be
labeled bad and the lost data rewritten from a back-up copy
of the file.

The disk controller (i.e. the electronic system that controls
the operation of a disk drive) specifies a track and sector and
either reads its contents into a buffer (i.e. temporary store) or
writes the contents of the buffer to the disk. Some call a disk
drive a random access device because you can step to a given
track without first having to read the contents of each track.
Disk drives are sequential access devices because it is neces-
sary to wait until the desired sector moves under the head
before it can be read.

12.7.1 Disk drive operational
parameters

Disk drive users are interested in three parameters: the total
capacity of the system, the rate at which data is written to or
read from the disk, and its average access time. In the late
1990s typical storage capacities were 14 Gbytes, data rates
were several Mbytes/s and average access times from 8 ms to
12 ms. By the end of the century, data densities had reached
10 Gbits/in2 and track widths of the order of 1 �m. In 2004

data densities had reached 100 Gbits/in2 and it was thought
that densities would increase by a factor of 10 to yield
1 Tbits/in2 within a decade.

Access time

A disk drive’s average access time is composed of the time
required to step to the desired track (seek time), the time taken
for the disk to rotate so that the sector to be read is under the
head (latency), the time for the head to stop vibrating when it
reaches a track (settle time), and the time taken to read the data
from a sector (read time). We can represent access time as

The average time to step from track to track is difficult
to determine because the modern voice coil actuated head
doesn’t move at constant velocity and considerations such as
head settling time need to be taken into account. Each seek
consists of four distinct phases:

● acceleration (the arm is accelerated until it reaches
approximately half way to its destination track)

● coasting (after acceleration on long seeks the arm moves at
its maximum velocity)

● deceleration (the head must slow down and stop at its
destination)

● settling (the head has to be exactly positioned over the
desired track and any vibrations die out).

Designing head-positioning mechanisms isn’t easy. If you
make the arm on which the head is mounted very light to

taccess � tseek � tlatency � tsettle � tread

12.7 Disk drive principles 527

WINCHESTER DISK DRIVES

Hard disk drives in the early 1980s found in compact,

low-cost minicomputers and high-performance

microprocessor systems were often called Winchester disks.

The generic term Winchester describes a wide range of small

disk drives and there appears to be no single feature that

makes a drive a Winchester. The term is associated with IBM

and some say it’s related to the town of Winchester. Most say

it’s a reference to the 30–30 Winchester rifle because the

original drive had two spindles, each holding 30 Mbytes.

Winchester technology was originally applied to 14-inch disks

and then extended to 8-51⁄4-31⁄2-and the 21⁄2-inch drives

found in laptop computers.Although modern drives

incorporate the features of the original Winchester drives, the

term Winchester is seldom used today.

As the recording density increased and inter-track spacing

reduced, it became increasingly necessary to ensure that the

head flies exactly over the track it is accessing.This led to

increasingly complex head-positioning mechanisms and their

associated electronics.Winchester technology solved the

problem of head tracking by making the disks, read/write

heads, and positioner, an integral unit. Earlier large hard drives

had replaceable disk packs.Winchester disks cannot be

changed so the problem of trying to follow a track on a disk

written by another unit doesn’t arise. Because the head disk

assembly requires no head alignment, the track spacing can be

reduced and the storage density increased.The Winchester

disk drive is a sealed chassis that stops the entry of dirt and

dust. Most drives have a small hole in the unit protected by an

air filter to equalize internal and external air pressures.As the

disk rotates in a clean environment, the flying height of the

head can be reduced, and the recording density increased.

Unlike earlier hard disk drives, it is not necessary to retract

the heads beyond the outer rim of the disks when the unit is

not in use. Because the heads fly only when the disks are

rotating and aren’t retracted when the disk is stationary, it’s

necessary to allocate a portion of the disk’s surface as a

landing area.That is, the heads are permitted to come into

contact with (i.e. land on) a part of the disk where data is not

stored. In order to make this possible it is necessary to

lubricate the surface of the disk. Such disks must be brought

up to speed (and stopped) as quickly as possible to reduce the

time for which the heads are in contact with the disks.

improve the head assembly’s acceleration, the arm will be too
flimsy and twist. If you make the arm stiffer and heavier, it
will require more power to accelerate it.

The average number of steps per access depends on the
arrangement of the data on the disk and on what happens to
the head between successive accesses. If the head is parked at the
periphery of the disk, it must move further on average than if it
is parked at the center of the tracks. Figure 12.40 shows a file
composed of six sectors arranged at random over the surface of
the disk. Consequently, the head must move from track to track
at random when the file is read sector by sector.

A crude estimate of the average stepping time is one-third
the number of tracks multiplied by the time taken to step
from one track to the adjacent track. This figure is based on
the assumption that the head moves a random distance from
its current track to its next track each time a seek operation
is carried out. If the head were to be retracted to track 0 after
each seek, the average access time would be half the total
number of tracks multiplied by the track-to-track stepping
time. If the head were to be parked in the middle of the tracks
after each seek, the average access time would be 1/4 of the
number of tracks multiplied by the track-to-track stepping
time. These figures are valid only for older forms of actuators.

Very short seeks (1 to 4 tracks) are dominated by head sett-
ling time. Seeks in the range 200 to 400 tracks are dominated
by the constant acceleration phase and the seek time is pro-
portional to the square root of the number of tracks to step
plus the settle time. Long seeks are dominated by the constant
velocity or coasting phase and the seek time is proportional
to the number of tracks.

A hard disk manufacturer specifies seek times as minimum
(e.g. 1.5 ms to step one track), average (8.2 ms averaged over
all possible seeks), and maximum (17.7 ms for a full stroke
end-to-end seek). These figures are for a 250 Gbyte Hitachi
Deskstar.

The access time of a disk is made up of its seek time and the
time to access a given sector once a track has been reached

(the latency). The latency is easy to calculate. If you assume
that the head has just stepped to a given track, the minimum
latency is zero (the sector is just arriving under the head).
The worst case latency is one revolution (the head has just
missed the sector and has to wait for it to go round). On aver-
age, the latency is 1/2 trev, where trev is the time for a single rev-
olution of the platter. If a disk rotates at 7200 rpm, its latency
is given by

An important parameter is the rate at which data is
transferred to and from the disk. If a disk rotates at R revolu-
tions per minute and has s sectors per track, and each sector
contains B bits, the capacity of a track is B � s bits. These
B� s bits are read in 60/R seconds giving a data rate of
B� s/(60/R) � B � sR/60 bits/s. This is, of course, the actual
rate at which data is read from the disk. Buffering the data in
the drive’s electronics allows it to be transmitted to the host
computer at a different rate.

The length of a track close to the center of a disk is less than
that of a track near to the outer edge of the disk. In order to
maximize the storage capacity, some systems use zoning in
which the outer tracks have more sectors than the inner
tracks.

Modern disk drives must be tolerant to shock (i.e. acceler-
ation caused by movement such as a knock or jolt). This
requirement is particularly important for disk drives in
portable equipment such as laptop computers. Two shock
parameters are normally quoted. One refers to the tolerance
to shock when the disk is inoperative and the other to shock
while the disk is running. Shock can cause two problems. One
is physical damage to the surface of the disk if the head
crashes into it (this is called head slap). The other is damage
to data structures if the head is moved to another track dur-
ing a write operation. Shock sensors can be incorporated in
the disk drive to detect the beginning of a shock event and
disable any write operation in progress.

1
2

� 1/(7200�60) � 0.00417 s � 4.17 ms

528 Chapter 12 Computer memory

Sector

Track

Link between

sectors

In a random access file, each
sector in the file has a pointer to
the next sector. This means that
sectors can be read one-after-
another without having to read all
sectors. However, it is necessary
to perform a new seek between
each read.

Modern disk systems read sectors
before they are needed and store
them in a buffer.

Figure 12.40 The arrangement

of the sectors of a file.

An important parameter of the disk drive is its mean time
between failure (MTBF), which is the average time between
failures. The MTBF ranges from over 1 000 000 hours for
large drives to 100 000 hours for smaller and older drives. A
100 000-hour MTBF indicates that the drive can be expected
to operate for about 111⁄2 years continually without failure—a
value that is longer than the average working life of a PC.

A disk with a MTBF of 1 000 000 hours can be expected to
run for over 100 years.

12.7.2 High-performance drives

Several technologies have been used to dramatically increase
the performance of disk drives. Here we discuss two of them:

12.7 Disk drive principles 529

THE DISK ELECTRICAL INTERFACE

A disk drive’s electrical interface defines the way in which it

communicates with the host computer.When hard disk drives

first appeared, data was transferred between the computer

and drive in the form it was to be written or read (i.e. the raw

digital pulses). Disk drives were unintelligent and lacked

sophisticated control systems.The signal processing

electronics was located on an interface card in the computer.

All signal processing is now carried out by circuits located

inside the disk drive housing.

Disk drives are described in terms of the interface between

drive and the computer; for example, IDE (integrated drive

electronics), serial ATA (AT attachment), or SCSI (small

computer system interface).

The first interface for disks in PC systems was the ST-506

from Seagate technologies, which used two ribbon cables to

connect an unintelligent disk to a controller card in the PC.

This bus was replaced by the ESDI interface (an improved

version of ST-506) in the mid-1980s.

The IDE (integrated drive electronics) interface was the first

high-performance PC disk interface introduced in 1986 to

support disks up to 528 Mbytes at rates up to 3 Mbytes/s. In

the late 1990s the E-IDE (enhanced IDE) interface was

designed to handle disks up to 9.4 Gbytes and data rates up to

20 Mbytes/s. Over the years, the IDE interface has been devel-

oped and some of its variants are called ATA,ATA/ATAPI, EIDE,

ATA-2, Fast ATA,ATA-3, Ultra ATA, and Ultra DMA.

IDE is little more than a parallel data highway that copies

data between the PC’s AT bus and the disk drive.The drive

control electronics is now located where it belongs, in the

disk drive.

The general-purpose small computer systems interface

(SCSI) connects up to eight independent disk drives or similar

peripherals to a computer. SCSI interfaces are associated with

high-performance computers and a special controller is

required to operate the SCSI bus.The SCSI-1 standard,

adopted in 1986, defines how data is transferred over the SCSI

bus.As in the case of the IDE interface, the SCSI standard has

been amended to provide a higher level of performance.The

original SCSI interface had an 8-bit data path and operated

at 2 Mbps (2 million bits/s).A new standard, SCSI-2, was

introduced in 1990 to provide synchronous data transfers at

10 Mbps.A SCSI-2 option called wide SCSI provides a

16-bit data path and a maximum transfer rate of 20 Mbps.

The SCSI-3 standard now supports data rates up to

80 Mbps.

In 2002 the Serial ATA interface was introduced into

PCs.This interface is a serial version of the IDE interface

which very much simplifies the integration of hard drives into

a PC because a serial connector is less bulky than an IDE’s

bulky ribbon connector. In 2004 a second-generation

serial interface with a data rate of 300 Mbps was

introduced.

AUDIO VISUAL DRIVES

In the mid-1990s three things happened to PCs; their speed

increased to the point at which they could process audio and

video signals, the capacity of hard disks became sufficient to

store over an hour of video, and computing entered an

audio-visual age. Conventional drives suffer from data

discontinuity when there is a short gap during a stream of

data. Data processing applications require a low average

access time and it doesn’t matter if there are infrequent short

gaps in the data stream.When data represents sound or

moving images, the ear or the eye can detect even tiny

interruptions.

Because data elements are very small, tiny imperfections in

the magnetic media cause errors in the data stream when

data is read from a disk. Powerful error-correcting codes are

used to protect the stored data. On readback, the data from

the disk is processed and errors automatically corrected.A

conventional disk might take 800 ms to recover from an error.

Disk manufacturers created the so-called audio-visual (A/V)

drive which employs the same storage technology as

conventional drives, but uses high-speed error-correction

hardware and algorithms.

As the density of bits on platters has increased, the thermal

characteristics (i.e. expansion or contraction with temperature

changes) of the disk and read/write mechanism have become

more important.Temperature changes affect the head’s ability

to follow a track. Some disk drives include thermal calibration

that periodically compensates for temperature changes.This

calibration takes place every few minutes and is invisible to

the user. However, it does cause an interruption of about 0.1 s

in the data flow.A/V disks perform thermal calibration intelli-

gently and delay calibration if a data request is pending. If

thermal calibration is taking place and data is requested, the

drive reschedules the recalibration process and immediately

begins to access the data.

magnetoresistive head technology and partial response
maximum likelihood data demodulation (PRML).2 Figure 12.41
shows the increase in areal densities for IBM disk drives since
1980 and the recent growth rate made possible largely
through the use of magnetoresistive heads.

The magnetoresistive head

The ultimate performance of a disk drive using the tradi-
tional read head we described earlier is limited because the
recording head has to perform the conflicting tasks of writing
data on the disk and retrieving previously written data. As the
bit patterns recorded on the surface of disks have grown
smaller, the amplitude of the signal from the read head has
been reduced making it difficult for the drive’s electronics to
identify the recorded bit patterns. You can increases the read
signal enough to determine the magnetic pattern recorded on
the disk by adding turns around the magnetic core of the
head because the read signal is proportional to the number of
turns. However, increasing turns also increases the head’s
inductance—the resistance of a circuit to a change in the

current flowing through it. A high
inductance limits the frequency with
which the current reversals can occur
during write operations.

Magnetoresistive head technology
uses separate read and write heads.
An inductive head, optimized for
writing information, is integrated
with a magnetoresistive structure
optimized for reading. Each of the
two elements can be optimized to
perform its particular function—
reading or writing data

A magnetoresistive head operates
in a different way to conventional
read heads. In a conventional head, a
change in magnetic flux from the
disk induces a voltage in a coil. In a
magnetoresistive head, the flux
modifies the electrical resistance of a

conductor (i.e. more current flows through the conductor
when you apply a voltage across it). Lord Kelvin discovered
this phenomenon, called anisotropic magnetoresistance, in
1857. The read element of an MR head consists of a minute
stripe of a permalloy material (a nickel-iron compound,
NiFe) placed next to one of the write element’s magnetic pole
pieces. The electrical resistance of the permalloy changes by a
few percent when it is placed in a magnetic field. This change
in the material’s resistance allows the MR head to detect the
magnetic flux transitions associated with recorded bit pat-
terns. During a read operation, a small current is passed
through the stripe of resistive material. As the MR stripe is
exposed to the magnetic field from the disk, an amplifier
measures the resulting voltage drop across the stripe.

In the 1980s a phenomenon called the giant magnetoresis-
tive effect was discovered which provided a much greater
sensitivity than the conventional magnetoresistivity. By 1991

530 Chapter 12 Computer memory

PROGRESS

In 1980 IBM introduced the world’s first 1 Gbyte disk drive,

the IBM 3380, which was the size of a refrigerator, weighed

550 pounds, and cost $40 000. In 2000 IBM introduced a

1-Gbyte microdrive, the world’s smallest hard disk drive with a

platter that’s about the size of an American quarter.

In 2002 IBM dropped out of the disk drive

market and merged its disk drive division with

Hitachi to create HGST (Hitachi Global Storage

Technologies).

106

105

104

103

102

A
re

al
 d

en
si

ty
 m

eg
ab

it
s/

in
2

10

10–1

10–2

10–3

60 70 80

Production year

90 2000 10

1

First thin film head

IBM RAMAC (first hard disk drive)

3375

First MR head
Corsair

First GMR head

Superparamagnetic

effect

Deskstar 16GP

Perpendicular

RecordingTravelstar 80GN

Deskstar 180GXP

Microdrive II Ultrastar 146Z10

100% CGR

Future areal

density

progressFirst AFC media
Travelstar 30 GN

60% CGR

25% CGR

HGST disk drive products

Industry lab demos

HGST disk drives w/AFC

Demos w/AFC

35 million X

increase

HGST areal density perspective

Figure 12.41 Data density as a function of time (from HGST).

2 A description of PRML is beyond the scope of this book. PRML
encoding places pulses so close together that the data from one pulse
contains interference from adjacent pulses. Digital signal processing
algorithms are used to reconstruct the original digital data.

IBM was exploiting the effect in their drives. This technology
became known as GMR and the GMR head is now the stan-
dard in high-performance disk drives.

12.7.3 RAID systems

RAID (redundant array of inexpensive disks) technology
combines separate disk drives into a single system. In the
1980s and 1990s low-capacity disks were relatively cheaper
than their high-capacity counterparts—due to the low cost of
mass-produced disk drives targeted at the PC market. It was
more cost effective to create a large memory system by using
several low-capacity drives than by using a single high-
capacity drive.

In 1987 Garth Gibson, Randy H. Katz, and David A.
Patterson at the University of California in Berkeley devised
RAID technology using low-cost disk drives to create a large
and reliable disk store. There are several variations of the
RAID technologies called RAID 0, RAID 1, RAID 2, . . . ,
RAID 5. We discuss only RAID 1, RAID 3, and RAID 5
systems here.

RAID 0 systems provide performance enhancement rather
than increasing fault tolerance. The data stream is split into
blocks and distributed between the drives in a RAID array.

RAID 1 systems connect two hard drives to a single disk
controller to provide disk mirroring. Two copies are made of
all files and each copy can be read independently of the other.
Read access time is improved because the controller can
obtain data from the first drive that has it ready. RAID 1 sys-
tems improve reliability because there are two copies of each
file. If the probability of one drive failing is p (where p �� 1),
the probability of both drives failing is p2, which greatly
enhances reliability. RAID 1 technology is inefficient because
the amount of disk space required is doubled.

RAID 3 technology transfers data in parallel to multiple
disks. RAID 3 systems have n data disks and a separate parity
disk (n is typically 4). Data in a RAID 3 system is said to be

striped so that a stripe is sent in parallel to each of the n drives.
A parity byte (generated across the n stripes) is stored on the
parity disk. If an error occurs in any of the stripes, the missing
data can be regenerated from the parity information. An
error in a data block of one of the disks can be detected by the
error-detecting code used whenever data is stored on disk.

Let’s illustrate the RAID 3 system with a simple example,
where P represents a parity bit across bits (i.e. disks) 1 to 4.
Table 12.6 shows four stripes across the five disks. The value
of stripe 1 is 0100 and its even parity bit is 1, which is stored
on the parity disk number 5.

Suppose disk drive 3 in the array fails to give the situation
in Table 12.7. The error-detecting codes on disk 3 indicate
that the data has been corrupted but cannot tell you what the
data should have been. However, because we still have the
data on disks 1, 2, and 4 and the parity disk, we can recon-
struct the missing data. For example, stripe 2 is 11?00. In
order to maintain correct parity the missing bit must be 0 and
the corrected stripe is 11000. RAID 3 systems require that the
heads of the disk be synchronized.

Another popular implementation of RAID technology is
the RAID 5 array, which is similar to a RAID 3 array because
n drives are used to store stripes of data and one is used to
store a parity stripe. However, the stripes in a RAID 5 system
are sectors rather than bytes and the parity stripes are distributed

12.7 Disk drive principles 531

SUPERPARAMAGNETISM

Recording density increased by several orders of magnitude

over a few years. However, such increases cannot continue

because of the physical limitations of magnetic materials.

Suppose we decide to scale magnetic media down and make

the magnetic particles half their previous size. Halving the size

of particles increases the areal density by 4 because you halve

both length and width. Halving the size reduces the volume of

a particle by 8; in turn this reduces the magnetic energy per

particle by a factor of 8.

In a magnetic material, particles are aligned with the

internal field. However, thermal vibrations cause the magnetic

orientation of the particles to oscillate and some particles can

spontaneously reverse direction. Reducing a particle’s size can

dramatically increase its tendency to spontaneously change

state.According to an IBM paper, halving the size of particles

can change the average spontaneous flux reversal time form

100 years to 100 ns! When particle sizes are so small that they

spontaneously lose their magnetization almost instanta-

neously, the effect is called superparamagnetism.The limit

imposed by superparamagnetism is of the order of 100

Gbits/in2. Fortunately, techniques involving the use of com-

plex magnetic structures have been devised to delay the onset

of superparamagnetism by at least an order of magnitude of

areal density.

Stripe Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

bit 1 bit 2 bit 3 bit 4 P

1 0 1 0 0 1

2 1 1 0 0 0

3 0 1 1 1 1

4 1 0 1 0 0

Table 12.6 Principle of the RAID 3 array.

across the array rather than stored on a specific drive. RAID 5
systems are more suited to smaller blocks of data (e.g. in net-
work systems) and are simpler because they don’t require the
read/write heads of each of the drives to be synchronized.

Both RAID 3 and RAID 5 systems can tolerate the
complete failure of one of the disks in the array. When that
happens, their error-correcting property vanishes although
the array can operate (assuming no further errors) until a
new drive is swapped in. The operator can pull out the failed
drive and plug in a spare drive to keep the system running
smoothly.

By the way, the mean time between failures of an array of
disks is less than that of a single disk. If you have five drives,
it’s five times more likely that one of them will fail over a given
period than if you had just one drive. However, the use of
redundancy (i.e. the ability to tolerate a single failure) in a
RAID system more than compensates for the increased prob-
ability of a single disk failure because two disks have to fail to
bring the system down.

Parameters of a disk drive

Table 12.8 describes the characteristics of a disk drive that
represented the state of the art in 2004. We can be fairly
confident that within 1 or 2 years its capacity will become
commonplace and within 5 years its capacity will be well
below that of newer drives. Equally, we can be confident that
its access time and many of its other characteristics will not
change much over a 5-year time span.

12.7.4 The floppy disk drive

The floppy disk is a removable secondary storage medium
that can be transported between systems. Floppy disks have
long access times and low capacities and are almost obsolete.
Better removable magnetic media such as the Zip drive,
writable optical storage, and the flash EPROM USB pen
drive have replaced the floppy disk. We cover the floppy disk
drive partially for historical reasons and partially because it
demonstrates magnetic recording principles well.

The floppy disk drive is an IBM invention dating back to
the 1960s, when it was first used to load microcode into

IBM’s 370 computers and later to store information in the
IBM 3740 Data Entry System. The original floppy disk was
made of plastic coated with a magnetic material enclosed in
an 8-inch square protective envelope. The 8-inch floppy disk
was replaced by the 51⁄4-inch minifloppy disk, which was
replaced by the 31⁄2-inch floppy disk, which comes in a more
robust rigid plastic case. The capacity of an 8-inch floppy
disk was 300 kbytes and the capacity of a first-generation
51⁄2-inch floppy disk was 80 Kbytes; 31⁄2-inch floppies store
1.44 Mbytes (some have capacities of 2.88 Mbytes). Such
tiny capacities mean that the floppy disk drive can be used
only to copy small files such as text and emails or device
drivers. Many modern PCs no longer provide floppy disk
drives.

Floppy disks rotate at 360 rpm, about 5% the speed of a
hard disk drive, to reduce the frictional heating of the disk in
its envelope. This gives a rotational latency of 166 ms.

A 31⁄2-inch floppy disk’s read/write head is moved to the
desired track by a stepping mechanism. The head positioned
over the disk accesses its surface through a sliding metal win-
dow in a 31⁄2-inch disk. Floppy drives use two heads to record
data on both sides of the disk. The head in a floppy disk
comes into contact with the surface. In order to prevent
undue wear on the head and the disk’s surface, the drive
motor may be stopped after a period of disk inactivity.

The 31⁄2-inch 1.44 Mbyte floppy disk has 80 0.115 mm wide
tracks of 18 sectors spaced at 135 tracks per inch. Data is
recorded at an average density of about 17000 bits/in. The
capacity is expressed as formatted capacity and represents the
data available to users. It does not include data that performs
housekeeping tasks such as labeling the track and sector
number of each sector stored on the disk. In hard disk terms
this capacity is tiny indeed.

532 Chapter 12 Computer memory

Stripe Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

bit 1 bit 2 bit 3 bit 4 P

1 0 1 ? 0 1

2 1 1 ? 0 0

3 0 1 ? 1 1

4 1 0 ? 0 0

Table 12.7 Correcting an error in a RAID 3 array.

Configuration Parallel-ATA (Serial-ATA)

Interface Ultra ATA/133 (SATA 2

3 Gbytes/s)

Capacity 500 Gbytes/s

Platters 5

Heads 10

Data buffer 16 Mbytes (SATA 2 version)

Rotational speed 7200 rpm

Maximum media transfer rate 817 Mbytes/s

Interface data transfer rate 133 Mbytes/s

(3 GBytes/s SATA2)

Sustained data rate 61.8 to 31 Mbytes/s

(depends on zone)

Average read seek time 8.5 ms

Non-recoverable hard error rate 1 in 1014

Operating shock (duration 2 ms) 55 G

Table 12.8 Parameters of the Deskstar 7K500.

12.7.5 Organization of data on disks

Having described the principles of magnetic recording sys-
tems we now briefly explain how data is can be arranged on a
disk. This section provides an overview but doesn’t describe a
complete system in detail. Although there is an almost infi-
nite number of ways in which digital data may be organized
or formatted on a disk, two systems developed by IBM have
become standard: the IBM 3740-compatible single-density
recording and the IBM System 34-compatible double-density
recording.

A disk must be formatted before it can be used by writing
sectors along the tracks in order to let the controller know
when to start reading or writing information. Formatting
involves writing a series of sector headers followed by empty
data fields that can later be filled with data as required.

Figure 12.42 describes the structure of a track formatted
according to the IBM 34 format double-density system. Gaps
are required between data structures to allow for variations in
the disk’s speed and time to switch between read and write
operations. The disk drive is a mechanical device and doesn’t
rotate at an exactly constant speed. Consequently, the exact
size of a sector will be slightly different each time you write it.
Second, the drive electronics needs a means of locating the
beginning of each sector.

A track consists of an index gap followed by a sequence of
sectors. The number and size of sectors varies from operating
system to operating system. Each sector includes an identity
field (ID field) and a data field. The various information units
on the disk are separated by gaps. A string of null bytes is
written at the start of the track followed by an index address
mark to denote the start of the current track. The address
mark is a special byte, unlike any other. We’ve already seen
that the MFM recording process uses a particular algorithm
to encode data. That is, only certain recorded bit patterns are
valid. By deliberately violating the recording algorithm and
recording a bit pattern that does not conform to the set of

valid patterns, uniquely identifiable bit patterns can be cre-
ated to act as special markers. Such special bit patterns are
created by omitting certain clock pulses.

The sectors following the index gap are made up of an ID
(identification) address mark, an ID field, a gap, a data field,
and a further gap. The ID field is 7 bytes long including
the ID address mark. The other 6 bytes of the address field
are the track number, the side number (0 or 1), the sector
address, the sector length code, and a 2-byte cyclic redun-
dancy check (CRC) code. The 16-bit CRC provides a power-
ful method of detecting an error in the sector’s ID field and
is the 16-bit remainder obtained by dividing the polynomial
representing the field to be protected by a standard generator
polynomial.

The beginning of the data field itself is denoted by one of
two special markers: a data address mark or a deleted data
address mark (these distinguish between data that is active
and data that is no longer required). Following the data
address mark comes a block of user data (typically 128 to
1024 bytes) terminated by a 16-bit CRC to protect the data
field from error. The data field is bracketed by two gaps to
provide time for the write circuits in the disk to turn on to
write a new data field and then turn off before the next sector
is encountered. Gap 2 must have an exact size for correct
operation with a floppy disk controller, whereas gaps 1, 3, and
4 are simply delimiters and must only be greater than some
specified minimum.

Disk data structures

The large-scale structure of information on disks belongs
to the realm of operating systems. However, now that
we’ve come so far we should say something about files.
Conceptually, we can imagine that a filing system might
require three data structures: a list of sectors available to the
filing system (i.e. the free sectors), a directory of files, and the
files themselves.

12.7 Disk drive principles 533

Index address
mark

Gap 4 Gap 1

ID
address
mark

ID
address
mark

CRC
(2 bytes)

256 bytes user data
Track
address

Side
number

Sector
number

Sector
length

CRC
(2 bytes)

Gap 2 Gap 3 Gap 2 Gap 3Record 1
ID field

Record 1
data field

Record 2
ID field

Record 2
data field

Record 2Record 1

Figure 12.42 Structure of a track.

The free sector list

A simple method of dealing with the allocation of sectors to
files is to provide a bit-map (usually in track 0, sector 1). Each
bit in the bit-map represents one of the sectors on the disk
and is clear to indicate a free sector and set to indicate an
allocated sector. Free means that the sector can be given to a
new file and allocated means that the sector already belongs to
a file. If all bits of the bit-map are set, there are no more free
sectors and the disk is full. Figure 12.43 illustrates the free
sector list.

Suppose the disk file manager creates a file. It first searches
the bit-map for free sectors, and then allocates the appropri-
ate number of free sectors to the new file. When a file is
deleted, the disk file manager returns the file’s sectors to the
pool of free sectors simply by clearing the corresponding bits
in the bit-map. The sectors comprising the deleted file are not
overwritten when the file is deleted by the operating system.

You can recover so-called deleted files as long
as they haven’t been overwritten since they
were removed from the directory and their sec-
tors returned to the pool of free sectors.

There’s little point in storing data on a disk
unless it can be easily accessed. To achieve this
objective, a data structure called a directory
holds information about the nature of each file
and where the file can be found. Information
in directories varies from the file name plus the
location of the first sector of the file to an

extensive description of the file including attributes such as
file ownership, access rights, date of creation, and date of last
access.

The sectors of a file can be arranged as a linked list in which
each sector contains a pointer to the next sector in the list as
Fig. 12.44 demonstrates. The final sector contains a null
pointer because it has no next sector to point to. Two bytes are
required for each pointer; one for the track number and one
for the sector number. The advantage of a linked list is that
the sectors can be randomly organized on the disk (random-
ization occurs because new files are continually being created
and old files deleted).

Linked lists create sequential access files rather than ran-
dom access files. The only way of accessing a particular sector
in the file is by reading all sectors of the list until the desired
sector is located. Such a sequential access is, of course, highly
inefficient. Sequential access files are easy to set up and a
sequential file system is much easier to design than one that
caters for random access files.

534 Chapter 12 Computer memory

PROBLEM

A 31⁄2-inch floppy disk drive uses two-sided disks and records

data on 80 tracks per side. A track has nine sectors and each

holds 512 bytes of data. The disk rotates at 360 rpm, the

seek time is 10 ms track to track, and the head settling time

is 10 ms. From the above information calculate the

following.

(a) The total capacity of the floppy disk in bytes.

(b) The average rotational latency.

(c) The average time to locate a given sector assuming that

the head is initially parked at track 0.

(d) The time taken to read a single sector once it has been

located.

(e) The average rate at which data is moved from the disk to

the processor during the reading of a sector. This should

be expressed in bits per second.

(f) The packing density of the disk in terms of bits per inch

around a track located at 3 inches from the center.

(a) Total capacity � sides � tracks � sectors �
bytes/sector � 2 � 80 � 9 � 512 � 737 280 bytes

(called 720 Kbyts).

(b) Average rotational latency � 1⁄2 period of revolution

360 rpm corresponds to 360/60 � 6 revolutions per

second one revolution � 1/6 second

average latency is therefore 1/12 second � 83.3 ms.

(c) Average time to locate sector � latency � head settling

time � seek time � 83.3 ms � 10 ms � 80/2 � 10 ms

(d) In one revolution (1/6 second), nine sectors pass under

the head.Therefore, time to read one sector is

1/6 � 1/9 � 18.52 ms.

(e) During the reading of a sector, 512 bytes are read in

18.52 ms.The average data rate is the number of bits

read divided by the time

taken � (512 � 8)/0.01852 � 221 166 bits/s.

(f) Packing density � total number of bits divided by track

length � 9 � 512 � 8/(2 � 3.142 � 1.5) � 1955.4 bits/in.

Track 1 sector 2
allocated Track 1 sector 6

unallocated
Three contiguous
unallocated sectors

Each bit in the list determines
whether the corresponding
sector is free or has been allocated

1 0 0 0 01 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0

Sector 1 Sector 2 Sector 3

Free sector list
in track 0 sector 1

Figure 12.43 Free sector list.

As time passes and files are created, modified, and deleted,
files on a disk may become very fragmented (i.e. the locations
of their sectors are, effectively, random). Once the sectors of a
file are located at almost entirely random points on the disk,
disk accesses become very long because of the amount of
head movement required. Defragmentation programs are
used to clean up the disk by reorganizing files to make
consecutive logical sectors have consecutive addresses. We
now briefly describe the structure of the filing system used by
MS-DOS.

The MS-DOS file structure

MS-DOS extends the simple bit-map of Fig. 12.43 to a linked
list of clusters, where each cluster represents a group of sec-
tors. DOS associates each entry in a file allocation table (FAT),
with a cluster of two to eight sectors (the size of the clusters is
related to the size of the disk drive). Using a cluster-map
rather than a bit-map reduces both the size of the map
and the number of times that the operating system has to
search the map for new sectors. However, the cluster-map
increases the granularity of files because files are forced to
grow in minimum increments of a whole cluster. If sectors
hold 1024 bytes, four-sector clusters mean that the minimum
increment for a file is 4 � 1024 bytes � 4 Kbytes. If the disk
holds many files, the total wasted space can be quite large.

Each entry in the FAT corresponds to an actual cluster of
sectors on the disk. Figure 12.45 illustrates the structure of a
FAT with entries 4 to 9 corresponding to clusters 4 to 9.
Assume that a file starts with cluster number 4 and each clus-
ter points to the next cluster in a file. The FAT entry corres-
ponding to the first cluster contains the value 5, which
indicates that the next cluster is 5. Note how entry 6 contains
the value 8 indicating that the cluster after 6 is 8. Clusters
aren’t allocated sequentially, which leads to the fragmenta-
tion we described earlier. Figure 12.45(b) shows the physical
sequence of clusters on the disk corresponding to this FAT.
We have used lines with arrows to show how clusters are con-
nected to each other. Figure 12.45(c) shows how the operat-
ing system sees the file as a logical sequence of clusters.

Cluster 9 in the FAT belonging to this file contains the
value FFFF16, which indicates that this is the last cluster in a
file. Another special code used by DOS, FFF716, indicates that
the corresponding cluster is unavailable because it is
damaged (i.e. the magnetic media is defective). The FAT is
set up when the disk is formatted and defective sectors
are noted. The first two entries in a file allocation table
provide a media descriptor that describes the characteristics
of the disk.

When MS-DOS was designed, 12-bit FAT entries were suf-
ficient for disks up to 10 Mbytes. A 16-bit FAT, called FAT16,

12.7 Disk drive principles 535

Figure 12.44 Linked list of

sectors.

Each sector points
to the next sector
in the chain

Sector 1,1

Sector 2,3 Sector 2,4 Sector 2,7

1,2

Sector 1,2

1,3

Sector 1,3

2,3

2,4 2,7 0,0

End

(a) The file allocation table. (b) Physical arrangement of clusters.

(c) Logical arrangement of clusters.

Sector cluster

Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

3

4

5

6

7

8

9

A

5
6
8
9
7

FFFF

Figure 12.45 The file allocation table.

can handle entries for disks above 10 Mbytes. The maximum
size disk that can be supported is the number of clusters
multiplied by the number of sectors per cluster multiplied
by the number of bytes per sector. Because the FAT16 system
supports only 65 525 clusters, the maximum disk size is lim-
ited (assuming a limit on the size of sectors and clusters).
These figures demonstrate how rapidly the face of computing
changed in the 1990s—a 10 Mbyte hard disk was once
considered large, whereas today it’s difficult to find a disk
less than about 80 Gbytes (apart from in some portable
systems). The rapid growth in disk capacity forced Microsoft
to adopt a 32-bit FAT with Windows NT and later releases of
Windows 95. FAT32 allows the operating system to handle
disks up to 2 terabytes.

DOS storage media hold four types of data element. The
first element is called the boot record and identifies the oper-
ating system, and structure of the disk (number of sectors
and clusters, size of clusters) and can provide a boot program
used when the system is first powered up). Following the boot
sector are two FATs (one is a copy of the other provided for
security). After the FATs a root directory provides the details
of the files. These details include the file name, the file char-
acteristics (when created etc.) and the address of the file’s first
cluster in the FAT. The remainder of the disk is allocated to
the files themselves.

12.8 Optical memory technology

Optical storage is the oldest method of storing information
known to humanity. Early systems employed indentations in
stone or pottery that were eventually rendered obsolete by
flexible optical storage media such as papyrus and later
paper.

Up to the 1980s, general-purpose digital computers used
magnetic devices to store information. Optical storage sys-
tems were not widely used until the 1990s, because it was dif-
ficult to perform all the actions required to store and to
retrieve data economically until improvements had been
made in a wide range of technologies.

The optical disk or CD-ROM dramatically changed sec-
ondary storage technology and made it possible to store large
quantities of information on a transportable medium at a
low cost. A CD-ROM can store over 500 Mbytes of user data
on one side of a single 120 mm (4.72 in) disk which is equiv-
alent to around 200 000 pages of text. The optical disk is a
rigid plastic disk, (Fig. 12.46), whose surface contains a long
spiral track. The track is laid down on a clear polycarbonate
plastic substrate inside the disk and is covered with a trans-
parent plastic protective layer.Like the magnetic disk, informa-
tion is stored along a track in binary form. Unlike the

536 Chapter 12 Computer memory

THE RISE OF OPTICAL TECHNOLOGY

● 1980—James T. Russell develops the principle of optical

storage in 1980.

● 1982—Philips and Sony release the first CD designed to

store about 650 Mbytes of audio information (74 minutes).

● 1988—The CD-R format that defines writable CDs is

defined.

● 1996—DVD emerges. DVD is almost identical to the CD but

stores information more efficiently.

● 1997—A consortium of manufacturers release CD-RW,

a re-writable CD.

● 2002—Release of high-speed DVD recording standards

4 � DVD-R and 4 � DVD-RW.

1.2 mm
125 nm

Acrylic protection
lable

Back of disk

Aluminum reflector

Top surface

Polycarbonate disk

(a) View of CD. (b) Cross-section of CD.

Figure 12.46 The optical disk system.

magnetic disk, the track in an optical disk is
a continuous spiral (like that of a gramo-
phone record). The spiral on a CD begins at
the innermost track and spirals outward,
whereas the track on a gramophone record
begins at the edge and spirals inward.

Although the principles of the optical
disk are almost trivial, the details of its oper-
ation are very complex. The fundamental
problems of optical storage are reliability,
detecting the presence of tiny dents called
pits on the surface of the disk, optically
tracking the reflective elements, and
encoding/decoding the data.

12.8.1 Storing and reading
information

An optical disk stores information by means of dots along a
track. Figure 12.47 shows how a beam of light produced by a
semiconductor laser is focused onto the surface of the track
and a photosensitive transistor detects the light reflected back
from the surface.

To give you an idea of the precision involved, the objective
lens is positioned about 1 mm above the surface of the disk
and the depth of focus of the spot is 2 �m. The lens must be
positioned to an accuracy of about one millionth of a meter
above the disk.

The amount of light reflected back from a laser depends on
the height of the reflecting surface on the disk. The base of
this reflecting surface is called the land and indentations in it
are known as pits (when viewed from above the disk).

Data is recorded as a series of variable length pits along a
spiral track at a 1.6 �m constant pitch. A CD has 20 000
tracks and a track is 30 times narrower than a single human
hair. The pits and land are coated onto a substrate and cov-
ered with a protective transparent layer. The disk is produced
by stamping from a master disk that is, itself, produced by the
same type of technology employed to fabricate microproces-
sors. It’s expensive to make one CD-ROM, but very cheap to
make thousands. Indeed, by the late 1990s CD-ROMs were
used to distribute advertising material and software from
Internet service providers so freely that computer magazines
were full of readers’ letters asking what they should do with
all these unwanted CDs.

Light from the laser is focused first through an objective
lens and then by the air-disk interface onto the pits and land
as Fig. 12.48 demonstrates. This arrangement means that
the spot of light on the surface is very much larger (by three
orders of magnitude) than the pits. Consequently, surface
imperfections and dust particles don’t interfere with the
read-back process. In other words, you can tolerate a speck of
dust on the surface of a CD that’s over 100 times larger than

the pit on which the beam is focused without getting a read
error. By the way, many CD users put a CD down with the
clear side up because they think the clear side must be
protected. That’s not so. The side with the pits and lands is
covered with a thin 0.02 mm protective coating and is more
vulnerable to scratches than the clear side.

In order to understand how data from a CD is read, you
have to know something about the nature of laser light. The
individual light waves in light from the sun or from a lamp
are incoherent or random; that is, the light source is com-
posed of a very large number of random waves. Light from a
laser is coherent and all the waves are synchronized—they go up
and down together. If you take two laser beams with identical
frequencies and shine them on the same spot the beams add
up. If the beams are in phase (i.e. the light waves go up and
down at the same time) the resulting spot will be four times

12.8 Optical memory technology 537

Metalized surface

Quarter-wave
place

Polarizing
beam splitter

Laser diode

Collimating lens

Objective lens Protective plastic

Detector

The size of the spot on the
disk surface is far greater
than the spot on the
reflecting layer.

Protective layer

Polycarbonate

Objective lens

t = 1.6 mm

d

θ

Figure 12.47 Structure of CD optics.

Fig. 12.48 Focusing on the pits and land.

as bright (not twice as bright because the beam’s energy is the
square of its amplitude). However, if the beams are 180� out
of phase with one wave going up as the other goes down, the
waves will cancel and the spot will disappear.

When light from the laser hits the land (i.e. the area
between the pits), the light is reflected back and can be
detected by a sensor. When the light from the laser hits a pit,
about half falls on the pit and the other half on the land
around the pit (see Fig. 12.49). The height of the pit is
approximately 0.13 �m above the surrounding land so that
light that hits the land has to travel an extra 2 � 0.13 �m fur-
ther to get to the detector. However, 0.13 �m corresponds to
1/4 of the wavelength of the light in the plastic medium and
the light reflected back from around a pit travels 1/2 wave-
length further than the light reflected from the top of a pit.
The light from the pit and light reflected from the surround-
ing land destructively interfere and the light waves cancel
each other out. A change in the level of light intensity
reflected from the surface of the disk represents a change
from land to pit or from pit to land. Figure 12.50 shows the
structure of the pits and land in more detail.

The spot of laser light that follows a track should be as
small as possible in order to pack as many pits and therefore
data onto the disk as possible. The minimum size of the spot
is determined by a number of practical engineering consider-
ations. The resolution (i.e. the smallest element that can be
seen) of the optical system is determined by the wavelength of
the laser light (780 nm) and the numerical aperture of the
objective lens (0.45). Numerical aperture (NA) is defined as
lens diameter divided by the focal length and is a measure of
a lens’s light-gathering power. The value of 0.45 is a compro-
mise between resolution and depth of focus. Increasing the
resolution and hence storage capacity makes it harder to
focus the beam on the disk. These values of wavelength and
NA provide a minimum resolution of 1 �m. Note that there
is sometimes confusion about the wavelength of the laser
light. The wavelength is 780 nm in air, but when the laser

beam travels through the plastic material of the disk its
wavelength is reduced to 500 nm.

The sizes of the pits are such that half the energy of the spot
falls on a pit and half falls onto the land. The reflected energy
is ideally zero if the light from the pits and land interfere
destructively. The optimum separation of the pits is deter-
mined by the wavelength of the light used by the laser.

The data stored on the CD-ROM has to be encoded to
achieve both maximum storage density and freedom
from errors. Moreover, the encoding technique must be self-
clocking to simplify the data recovery circuits. Figure 12.51
illustrates the basic encoding scheme chosen by the designers
of the CD-ROM. The length of the pits themselves is modu-
lated and the transition of a pit to land (or from land to pit)
represents a one bit.

The source data is encoded so that each 8-bit byte is
transformed into a 14-bit code. Although there are 214 �

16 384 possible 14-bit patterns, only 28 � 256 of these
patterns are actually used. The encoding algorithm chooses
14-bit code words that do not have two consecutive 1s sepa-
rated by less than two 0s. Moreover, the longest permitted run
of 0s is 10. These two restrictions mean that the 14-bit code
has 267 legal values, of which 256 are actually used. The
14-bit codes corresponding to the first 10 8-bit codes are
given in Table 12.9.

The groups of 14-bit code words are not simply joined end
to end, but are separated by three so-called merging bits. The
function of the merging bits is to ensure that the encoding
rules are not violated when the end of one group is taken in
conjunction with the start of the next. These merging bits
carry no useful data and are simply separators. The following
example demonstrates the need for merging bits.

Source data: 0010 1000

These two patterns generate the sequence ..00101000 . . .
Note how the end of the first group and the start of the
second group create the forbidden pattern 101 that has a
1 separated from another 1 by less than two 0s. We can solve
the problem by inserting the separator 000 between the
groups to get

Encoded data: 00100001000

538 Chapter 12 Computer memory

Laser
beam

Laser
beam

In phase
In phase

Out of phase

D
ec

te
ct

or

D
ec

te
ct

or

Output

Land

Polycarbonate

Pit λ/4

No output

Figure 12.49 Light reflected from a CD.

0.5 microns Pit

1.6 microns

Land

Figure 12.50 Organization of the track with land/pits.

Three 0s (i.e. merging bits) have been inserted between the
two code words to eliminate the possibility of a forbidden
sequence of bits.

Another factor in the choice of the pattern of bits to be
used as the merging bits is the need to keep the average
lengths of the track and land along the surface of the tracks
equal. This restriction is necessary because the CD drive’s
focusing and tracking mechanism uses the average energy
reflected from the surface and, therefore, it is necessary to
avoid changes in average energy due to data dependency.

The channel clock derived from the signal recovered from
the pits and land is 4.3218 MHz because this is the maximum
rate of change of signal from the pits and land at the standard
CD scanning speed of 1.3 m/s. The bit density is 1.66 bits/�m
or 42 kbits/inch. At a track pitch of 1.6 �m this corresponds
to 6 � 108 bits/in2 or 106 bit/mm2.

Because of the way in which pits are laid down to the very
high mechanical precision required by the system, it’s impos-
sible to avoid large numbers of errors. We therefore have to
employ powerful error-correcting codes to nullify the effect
of the errors. Due to the complexity of these codes, all we can
do here is to describe their characteristics. Note that the
encoding mechanism for data is different to that for audio
information because data requires more protection.
Consequently, a CD stores fewer bytes of used digital data
than audio data.

The Cross Interleaved Reed–Solomon code (CIRC) takes
groups of 24 bytes of data and encodes them into groups of
32 bytes. Information is interleaved (spread out over the sur-
face of a track) so that a burst of errors at one physical loca-
tion affects several code groups. The following hypothetical
example should clarify this concept. Suppose data is recorded
in groups of 4 bytes a1a2a3a4 b1b2b3b4 c1c2c3c4 d1d2d3d4 and
that a group is not corrupted unless 2 bytes are lost in a group
(because of some form of error-correcting mechanism).
Because errors tend to occur in groups (because of, say,
a scratch), large amounts of data will be lost. If we interleave
the bytes, we might get a1b1c1d1 a2b2c2d2 a3b3c3d3 a4b4c4d4. In
this case, if we lose 2 consecutive bytes, we will be able to cor-
rect the error because the bytes are from different groups.

One of the differences between the CD used to store audio
information and the CD-ROM used by computers is that the
latter employs an extra layer of encoding to reduce further
the undetected error rate to one in 1013 bits. Moreover, the
sophisticated CIRC encoding makes it possible to correct an
error burst of up to 450 bytes (which would take up 2 mm of
track length). The capacity of a CD-ROM is 553 Mbytes of
user data (an audio CD can store 640 Mbytes of sound).

The spiral track of the CD-ROM is divided into individu-
ally addressable sectors. The address of a sector is expressed
absolutely with respect to the start of the track and is in the

12.8 Optical memory technology 539

8-bit source data

14-bit encoded data

Data with merging bits 00010010000010010 000 001 100

00010010000010

11101000 11100010 1110101110111010

10010001000010

0100001001000010000100100010000100010001000010010010000100000100001000001000000000010

10010001000010

00010000100100

00010000100100

00100000100001

00100000100001

Data stream

NRZ encoding

Disk surface

Merging bits ensure that coding rules are not violated at group ends

24-bit sync pattern

Pits on the disk

Each source byte is encoded as a 14-bit value

Figure 12.51 Encoding data on an optical disk.

Source data bits Encoded bits

0 00000000 01001000100000

1 00000001 10000100000000

2 00000010 10010000100000

3 00000011 10001000100000

4 00000100 01000100000000

5 00000101 00000100010000

6 00000110 00010000100000

7 00000111 00100100000000

8 00001000 01001001000000

9 00001001 10000001000000

10 00001010 10010001000000

Table 12.9 Converting 8-bit values to a 14-bit code.

form of minutes, seconds, and blocks from the start (this for-
mat is the same as that of the audio CD). A sector or block
is composed of 12 synchronizing bytes (for clock recovery),
a 4-byte header that identifies the sector, a block of 2048 bytes
of user data and 288 auxiliary bytes largely made up of the
error-correcting code.

Because the size of the pits is constant and they are
recorded along a spiral on a disk, the number of pits per rev-
olution must vary between the inner and outer tracks.
Contrast this with the magnetic disk, in which the bit density
changes between inner and outer tracks because the bits must
be smaller on inner tracks if there are to be the same number
as in outer tracks.

A consequence of constant-size pits is that the speed of the
disk depends on the location of the sector being read (i.e. the
disk moves with a constant linear velocity, rather than a con-
stant angular velocity). If the pits have a constant length,
there are more pits around an outer track and therefore the
disk must rotate slowly to read them at a constant rate. As the
read head moves in towards the center, the disk must speed
up because there are fewer pits around the circumference.
First-generation CD-ROMs (and audio CDs) spin at between
about 200 and 500 rpm. As you might imagine, this arrange-
ment severely restricts the access time of the system.
Moreover, the relatively heavy read head assembly also
reduces the maximum track-to-track stepping time. These
factors together limit the average access time of a CD-ROM
to in the region of 100 to 200 ms (an order of magnitude
worse than hard disks). We used the expression track-to-
track stepping, even through the track is really a continuous
spiral. When in the seek mode, the head steps across the spi-
ral and reads an address block to determine whether it has
reached the correct part of the spiral. As the technology used
to manufacture CD drives improved through the 1990s, drive
speeds were increased. Speeds went up from twice to 32 times
the nominal CD rotation speed by the end of the 1990s and
average access times dropped to 80 ms.

12.8.2 Writable CDs

When the CD drive first appeared, it was a read-only mecha-
nism. Today, CD drives are available that can write data to a
CD once only (CD-R), or write to CDs that can be erased and
rewritten (CD-RW).

Some CD write mechanisms simply ablate (i.e. blast
away) the surface of a non-reflecting layer of material above
a reflecting background to create a pit. Others employ a
powerful laser to melt a region of a coating of tellurium to
create a pit. Another writable disk uses an organic dye within
a layer in the disk. When the dye is hit by a laser during the
write operation, the dye’s optical properties are modified.
The write laser has a power of 30 mW, which is about
six times more powerful than the laser used to read data from
a CD.

You can create true read/write optical storage systems
that write data onto the disk, read it, and then erase it in
order to write over it again. Clearly, any laser technology
that burns or ablates a surface cannot be used in an
erasable system. Erasable CDs exploit two fundamental
properties of matter, its optical properties and its magnetic
properties.

Figure 12.52 illustrates the principle of an erasable CD.
The CD substrate is prestamped with the track structure and
the track or groove coated with a number of layers (some are
for the protection of the active layer). The active layer uses a
material like terbium iron cobalt (TeFeCo), which changes the
polarization of the reflected laser light. The magnetization of
the TeFeCo film determines the direction of the reflected
light’s polarization.

Initially the film in Fig. 12.52(a) is subjected to a uniform
magnetic field to align the TeFeCo molecules and therefore
provide a base direction for the polarization of the reflected
light. This base can be thought of as a continuous stream of
zero bits. During the write phase (Fig. 12.52(b)) a short
pulse of laser light hits the surface and heats the film

540 Chapter 12 Computer memory

CD SPEED

The speed at which a CD rotates was determined by the

conflicting requirements of the technology at the time the

CD was first manufactured and the desire to store as much

data as possible. Because the CD was originally devised to

store audio information, its duration was set as 74 minutes to

allow von Karajan’s Beethoven’s Ninth Symphony to go on a

single CD.

First-generation CDs operated in real time; if it took

74 minutes to play a symphony, the disk took 74 minutes to

read.When CDs began to be used to store data, it was not

convenient to wait up to about 74 minutes to load a program.

Advances in technology allowed the disks to spin faster to

read data in less time.A CD reader described as 8X can read

data eight times faster than a standard drive. Modern CDs

have read speeds of over 50 that of an audio disk, although

such a sustained increase in speed is rarely achieved in

practice.

Write speeds and rewrite speeds have also increased; for

example, in 2004 a writable and re-writable CD drive

might be described as 52 � 32 � 52; that is, it has a

52X read speed, a 52x write speed, and a 32x rewrite

speed.

changing its magnetic properties. When the surface is heated
up to 300�C, the surface reaches its Curie point and loses the
magnetization. By simultaneously activating an electromag-
net under the surface of the disk, the direction of the film’s
magnetization can be reversed with respect to the base
direction when the laser is switched off and the material
cools. This action creates a 1 state. As the spot cools down
(Fig. 12.52(c)), the drop in temperature fixes the new
direction of magnetization.

The disk is read by focusing a weaker polarized beam on
the disk and then detecting whether the reflected beam was
rotated clockwise or counterclockwise (Fig. 12.52(d)). The
same laser can be used for both reading and writing; the read
power is much less than the write power.

To erase a bit, the area that was written to is pulsed once
again with the high power laser and the direction of
the magnetic field from the electromagnet reversed to write
a zero.

High-capacity magneto-optical disks use a rugged
polycarbonate disk platter mounted inside an enclosed car-
tridge that can store over 9 Gbytes of data. Table 12.10

describes the characteristics of a typical magneto-optical
disk drive.

The greatest physical difference between optical disks is the
reflectivity of the surface; CD-ROMs are 70% reflective,
CD-R 65%, and CD-RW about 20%.

High-capacity optical storage and the DVD

Not very long ago, the 600 Mbyte 51⁄4 inch CD-ROM was
the state of the art. Progress in everything from laser tech-
nology to head-positioning to optical technology soon
meant that the CD-ROM was no longer at the cutting edge
of technology. Like all the other parts of the computer, the
CD-ROM has evolved. In the late 1990s a new technology
called the DVD-ROM (digital versatile disk) appeared. The
DVD-ROM has a minimum capacity six times that of a
CD-ROM and a potential capacity much more than that.
Part of the driving force behind the development of the
DVD-ROM was to put feature-length movies in digital
video form on disk.

The DVD-ROM looks like a conventional CR-ROM and
the underlying technology is exactly the same. Only the
parameters have changed. Improvements in optical tracking
have allowed the track spacing to be reduced and hence the
length of the track to be considerably increased. DVD tracks
are 0.74 �m apart (conventional CD-ROMs use 1.6 �m
spacing). Lasers with shorter wavelengths (635 nm) have
permitted the use of smaller pits.

12.8 Optical memory technology 541

(a) All molecules aligned.

Applied field

(b) Reverse field applied and spot heated by a laser beam.

(c) Laser removed. Direction of magnetization of spot reversed.

(d) Magnetization changes optical properties of surface.

Laser beamLaser beam

Laser beam

Figure 12.52 Principle of the rewritable optical disk.

Transfer rate

Burst transfer rate 3.0 Mbytes/s (async., max.)

10.0 Mbytes/s (sync., max.)

Sustained transfer 6.14 Mbytes/s to 3.07 Mbytes/s

rate (9.1 Gbyte/media)

5.84 Mbytes/s to 2.87 Mbytes/s

(8.6 Gbyte/media)

Speed

Access Time 25 ms (avg.)

Latency 8.3 ms (avg.)

Rotational speed 3600 rpm

Buffer memory 8 Mbytes

Reliability

MTBF 100 000 POH

MSBF 750 000 Cycles

MTTR 30 minutes

Bit error rate 10�17 bits

Table 12.10 Characteristics of a magneto-optical disk drive.

The DVD-ROM can be double-sided, which instantly
doubles its data capacity. Moreover, by using semitransparent
layers, it is possible to have several optical layers within the
disk. Focusing the laser on a particular layer accesses data in
that layer. Other layers are out of focus.

Just as writable CDs have been developed, it is possible to
buy writable DVDs. Unfortunately, several mutually incom-
patible technologies were developed nearly simultaneously
forcing consumers to select a particular system (a similar
situation existed in the early days of the VCR until the VHS
format swept away its competitors). By 2004 DVD manufac-
turers were selling drives that were compatible with most of
the available formats. Table 12.11 describes the differences

between CDs and DVDs and Table 12.12 highlights the
improvements in DVD technology.

Writable DVDs

In principal, writable DVDs are implemented in the same
way as writable CDs. You modify the pit/land structure by a
laser beam that either modifies the disk’s magnetic or optical
properties. Unfortunately, the DVD industry has not settled
on a single writable disk standard due to competing eco-
nomic, technical, and political (industrial) pressures. There
are five basic standards for recordable DVDs: DVD-R,
DVD-RW, DVD�R, DVD�RW, and DVD-RAM.

The write-once standards are DVD-R and DVD�R. These
use a laser to change the optical properties of a material by burn-
ing pits on a dye layer within the disk. The rewritable standards,
DVD-RW and DVD�RW, use a laser to reversibly change the
optical properties of a material by changing, for example, its
state between crystalline (reflective) and amorphous (dull).

The DVD-R and DVD�R formats compete against each
other; the differences between them lie principally in the struc-
ture of the data on the disk. The most widely compatible for-
mat is DVD-R (in particular, it’s compatible with the DVD
players and with old DVD drives in PCs). In recent years, many
DVD drives are able to handle a range of different formats by
changing the laser properties to suit the actual media and the
read/write software to suit the required data structures.

Another rewritable DVD is DVD-RAM, which uses DVDs
with a pattern pressed onto the surface. DVD-RAM was orig-
inally designed for random access data storage by computers.

542 Chapter 12 Computer memory

Feature DVD CD

Disc diameter 120 mm 120 mm

Disc thickness 1.2 mm 1.2 mm

Track pitch 0.74 �m 1.6 �m

Track density 34 ktracks/in 16 ktracks /in

Bit density 96 kbits/in 43 kbits/in

Data rate 11 Mbits/s 1.2 to 4.8 Mbits/s

Data density 3.28 Gbits/in2 0.68 Gbits/in2

Minimum pit length 0.40 �m 0.834 �m

Laser wavelength 635 to 650 nm (red) 780 nm (infrared)

Numerical aperture of 0.60 0.45

Single layer data capacity 4.7 Gbytes 0.68 Gbytes

Reference speed 4.0 m/s 1.2 m/s

Reference user data rate 1108 kbytes/s Mode 1: 153.6 kbytes/s

Signal modulation method 8/16 modulation 8/14 modulation

Table 12.11 Comparison of CD and DVD.

Parameter CD DVD Improvement

factor

Bit length 0.277 �m 0.13 �m 2.1

Track pitch 1.6 �m 0.74 �m 2.16

Data area 8605 mm2 8759 mm2 1.02

Modulation efficiency 17/8 16/8 1.06

Error correction loss 34% 13% 1.32

Sector overhead 8.2% 2.6% 1.07

Total increase 7

Table 12.12 Improvements in the efficiency of DVD in terms of

data density.

Sector address information is molded into the side of the
track. DVD-RAM is the most incompatible of the DVD
recordable formats (i.e. fewer drives read DVD-RAM than
other recordable formats).

All types of DVD reserve a control area at the inside
edge of the track that contains the disk’s identification. This
mechanism allows the drive to identify the type of medium
currently loaded.

■ SUMMARY

The von Neumann machine needs memory to store programs

and data. Lots of memory.As computer technology has

advanced, the size of user programs and operating systems has

more than kept up. In the early 1980s a PC with a 10 Mbyte

hard disk was state of the art. Today, even a modest utility might

require over 10 Mbytes and a high-resolution digital camera is

quite happy to create 5 Mbyte files when operating in it RAW

(uncompressed) mode.

In this chapter we have looked at the computer’s memory

system.We began with a description of the characteristics

of fast semiconductor memory and then moved on to

characteristics of slower but much cheaper secondary storage.

Today, there is a bewildering number of memory technologies.

We have briefly covered some of them: from semiconductor

dynamic memory to devices based on magnetism to optical

storage technology. Memory technology is important because,

to a great extent, it determines the way in which we use

computers. Faster CPUs make it possible to process data rapidly,

enabling us to tackle problems like high-speed, real-time graphics.

Faster, denser, and cheaper memories make it possible to store

and process large volumes of data. For example, the optical disk

makes it possible to implement very large on-line databases.

Low-cost high-capacity hard disks now enable people to carry

more than 80 Gbytes of data in a portable computer or over

400 Gbytes in a desktop machine. In just two decades the

capacity of hard disks in personal PCs has increased by a factor

of 40 000.

■ PROBLEMS

12.1 Why is memory required in a computer system?

12.2 Briefly define the meaning of the following terms

associated with memory technology:

(a) random access

(b) non-volatile

(c) dynamic memory

(d) access time

(e) EPROM

(f) serial access

12.3 What properties of matter are used to store data?

12.4 A computer has a 64-bit data bus and 64-bit-wide

memory blocks. If a memory access takes 10 ns, what is the

bandwidth of the memory system?

12.5 A computer has a 64-bit data bus and 64-bit-wide

memory blocks. The memory devices have an access time of

35 ns.A clock running at 200 MHz controls the computer and all

operations take an integral (i.e. whole number) of clock cycles.

What is the effective bandwidth of the memory system?

12.6 What is the purpose of a semiconductor memory’s C
_
S
_

(chip select) input?

12.7 A dynamic RAM chip is organized as 64M � 4 bits.

A memory composed of 1024 Mbytes is to be built with these

chips. If each word of the memory is 64 bits wide, how many

chips are required?

12.8 What are the principal characteristics of random access

and serial access memory?

12.9 Why is all semiconductor ROM RAM but not all

semiconductor RAM ROM?

12.10 If content addressable memory (CAM) could be manufac-

tured as cheaply as current semiconductor memories, what impact

do you think it would have on computers? We haven’t covered

CAM in this text—you’ll have to look it up.

12.11 What is flash memory and why is it widely used to store

a PC’s BIOS (basic input/output system)?

12.12 Use a copy of a current magazine devoted to personal

computing to work out the cost of memory today (price per

megabyte for RAM, hard disk, flash memory, CD ROM, and

DVD).

12.13 Give the size (i.e. the number of addressable locations) of

each of the following memory blocks as a power of 2.The blocks

are measured in bytes.

(a) 4K (b) 16K

(c) 2M (d) 64K

(e) 16M (f) 256K

12.14 What address lines are required to span

(i.e. address) each of the memory blocks in the previous prob-

lem? Assume that the processor is byte addressable and has 24

address lines A00 to A23.What address lines must be decoded to

select each of these blocks?

12.15 What is an address decoder and what role does it carry

out in a computer?

12.16 A computer’s memory can be constructed from memory

components of various capacities (i.e. total number of bits) and

organizations (i.e. locations x width of each location). For each

of the following memory blocks, calculate how many of the

specified memory chips are required to implement it.

Memory block Chip organization

(a) 64 kbytes 8K � 8

(b) 1 Mbyte 32K � 4

(c) 16 Mbytes 256K � 8

12.17 What is partial address decoding and what are its

advantages and disadvantages over full address

decoding?

12.8 Optical memory technology 543

12.18 An address decoder in an 8-bit microprocessor with

16 address lines selects a memory device when address

lines A15,A14,A13,A11 � 1, 1, 0, 1.What is the size of the

memory block decoded and what range of addresses

does it span (i.e. what are the first and last addresses in this

block)?

12.19 An address decoder in a 68K-based microprocessor

selects a memory device when address lines

A23,A22,A21,A20 � 1, 1, 0, 1.What is the size of the memory

block decoded and what range of addresses does

it span (i.e. what are the first and last addresses in

this block)?

12.20 Design address decoders to implement each of the

following 68K address maps. In each case, the blocks of memory

are to start from address $00 0000.

(a) 4 blocks of 64 kbytes using 32K � 8-bit chips

(b) 8 blocks of 1 Mbyte using 512K � 8-bit chips

(c) 4 blocks of 128 kbytes using 64K � 8-bit chips

12.21 A memory system in a 68K-based computer includes

blocks of ROM, static RAM, and DRAM.The sizes of these three

blocks are

ROM: 4 Mbytes

SRAM: 2 Mbytes

DRAM: 8 Mbytes

These memory blocks are implemented with the following

memory components:

ROM: 1M � 16-bit chips

SRAM: 512K � 8-bit chips

DRAM: 4M � 4-bit chips

(a) Show how the blocks of memory are organized in

terms of the memory devices used to implement

them.

(b) Draw a memory map for this system and indicate the start

and end addresses of all blocks.

(c) Draw an address decoding table for this

arrangement.

(d) Design an address decoder for this system using

simple logic gates logic.

(e) Construct an address decoder using a PROM for this system

and design a decoding table to show its contents.

12.22 A computer’s memory system is invariably

non-homogeneous.That is, it is made up of various types of

storage mechanism, each with its own characteristics.

Collectively, these storage mechanisms are said to form a

memory hierarchy. Explain why such a memory hierarchy is

necessary, and discuss the characteristics of the memory

mechanisms that you would find in a modern

high-performance PC.

12.23 In the context of memory systems, what is the meaning

of hysteresis?

12.24 Can you think of any examples of the effects of

hysteresis in everyday life?

12.25 Why does data have to be encoded before it can be

recorded on a magnetic medium?

12.26 Explain how data is recorded using PE encoding and draw

a graph of the current in the write head generated by the data

stream 10101110.

12.27 A disk is a serial (sequential) access device that can

implement random access files. Explain this apparent contradic-

tion of terminology.

12.28 How do the following elements of a track-seek time

affect the optimum arrangement of data on a disk: acceleration,

coasting, deceleration, and settling?

12.29 What is an audio-visual drive and how does it differ from

a conventional hard drive?

12.30 What are the advantages of the SCSI interface over the

IDE interface?

12.31 What are the limits on ultimate performance of the

following.

(a) The hard disk.

(b) The floppy disk.

(c) The CD-ROM.

12.32 What are the operational characteristics of the

serial access devices found in a PC? Use one or more of the

magazines devoted to the PC to answer this question.

12.33 An image consists of 64 columns by 64 rows of pixels.

Each pixel is a 4-bit 16-level gray-scale value.A sequence of

these images is stored on a hard disk. This hard disk rotates at

7200 rpm and has 64 1024-byte sectors per track.

(a) Assuming that the images are stored sequentially, how fast

can they be transferred from disk to screen?

(b) If the images are stored randomly throughout the disk, what

is the longest delay between two consecutive images if the

disk has 1500 tracks and the head can step in or out at a

rate of one track per millisecond.

12.34 A hard disk drive has 10 disks and 18 surfaces

available for recording. Each surface is composed of 200 con-

centric tracks and the disks rotate at 7200 rpm. Each track is

divided into 8 blocks of 256 32-bit words.There is one

read/write head per surface and it is possible to read the 18

tracks of a given cylinder simultaneously.The time to step from

track to track is 1 ms (10�3 s). Between data transfers the head

is parked at the outermost track of the disk.

Calculate the following.

(a) The total capacity in bits of the disk drive.

(b) The maximum data rate in bits/second.

(c) The average access time in milliseconds.

(d) The average transfer rate when reading 256 word blocks

located randomly on the disk.

(e) If the disk has a 3-inch diameter and the outermost track

comes to 1 inch from the edge of the disk

calculate the recording density (bits/in) of the

544 Chapter 12 Computer memory

innermost and the outermost tracks. The track

density is 200 tracks/in.

12.35 Derive an expression for the average distance moved by

a head from one cylinder to another (in terms of the number of

head movements). Movements are made at random and the

disk has N concentric cylinders

numbered from 0 to N�1 with the innermost cylinder num-

bered 0.Assume that when seeking the next

cylinder, all cylinders have an equal probability of

being selected. Show that the average movement approaches

N/3 for large values of N. Hint: Consider the Kth cylinder and

calculate the number of steps needed to move to the Jth cylin-

der where J varies from 0 to (N�1).

12.36 A floppy disk drive has the following parameters:

sides: 2

tracks: 80

sectors/track: 9

bytes/sector: 1024

rotational speed: 360 rpm

track-to-track step time: 1 ms

Using the above data, calculate the following.

(a) total capacity of the disk.

(b) average time to locate a sector.

(c) time to read a sector once it has been located.

(d) data transfer rate during the reading of a

sector.

12.37 Why does a floppy disk have to be formatted before data

can be written to it? How do you think that sector size affects

the performance of a disk system?

12.38 What is a CRC?

12.39 Several books state that if you get the interleave factor

of a disk wrong, the operating system’s performance will be dra-

matically degraded.Why?

12.40 What are the advantages of MS-DOS’s file allocation

table (FAT) over the free-sector bit-map and linked list

of sectors.

12.41 Interpret the meaning of the following extract from a FAT.

1 2

2 4

3 7

4 FFFF

5 6

6 8

7 5

8 FFFF

9 FFF7

12.42 Why are gaps required when a data structure is set up on

a floppy disk during formatting?

12.43 Why are error-detecting systems so important in

secondary storage systems (in comparison with primary storage

systems)?

12.44 What are the advantages of a magnetoresistive head

over a thin-film head?

12.45 Use the Internet to find the properties of today’s large

hard disk drives.

12.46 SMART technology is used to predict the failure of a

hard disk. To what extent can this technology be applied to

other components and subsystems in a computer?

12.47 The speed (access time) of semicouductor devices has

increased dramatically over the past few decades. However, the

access time of hard discs has failed to improve at the same rate.

Why is this so?

12.48 A magnetic tape has a packing density of 800 characters

per inch and an interblock gap of 1⁄2 inch and is filled with

records. Each contains 400 characters. Calculate the fraction of

the tape containing useful data if the records are written as

(a) single record blocks

(b) blocks containing four records

12.49 Data is recorded on magnetic tape at 9600 bpi along

each track of nine-track tape. Information is organized as blocks

of 20 000 bytes and an interblock gap of 0.75 in is left between

blocks. No information is recorded in the interblock gaps.What

is the efficiency of the storage system?

12.50 An engineer proposes to use a video recorder (VCR) to

store digital data.Assume that the useful portion of each line

can be used to store 256 bits.What is the storage capacity of a

1-hour tape (in bits), and at what rate is data transferred? A TV

picture is transmitted as 525 lines, repeated 30 times per sec-

ond in the USA and 625 lines, repeated 25 times per second in

the UK.

12.51 Do standards in memory technology help or hinder

progress?

12.52 Does magnetic tape have a future as a secondary storage

medium?

12.53 What are the relative advantages and disadvantages of

magnetic and optical storage systems?

12.54 Why is a laser needed to read the data on a CD-ROM?

12.55 Why is it relatively harder to write data on a CD than to

read it?

12.56 Discuss the ethics of this argument: Copying software

ultimately benefits the manufacturer of the copied

software, because it creates a larger user base for the software

and, in turn, creates new users that do pay for the software.

12.57 Data is recorded along a continuous spiral on a CD-ROM.

Data is read from a CD-ROM at a constant bit rate (i.e. the num-

ber of bits/s read from the CD-ROM is constant).What implica-

tions do you think that this statement has for both the designer

and the user of a CD-ROM?

12.57 A disk platter has bit density of 1000 bits/mm2. Its

innermost track is at a radius of 2 cm, its outermost

12.8 Optical memory technology 545

track at a radius of 5 cm.What is the total capacity of

the disk if we assume a uniform bit density and no data over-

head?

12.59 How fast does a hard disk have to rotate in order

for its stored energy to be equivalent to its own weight in TNT?

Assume a 31⁄2-inch aluminum platter. Note: the energy density

of TNT is 2175 J/g and the energy of rotation of a disk is 1⁄2I�2

and I � mr2 where m is the disk’s mass, r its radius, and � its

rotational velocity in radians per second.

12.60 When a ‘1’ is recorded on a disk drive and the analog

signal read back from the read head, the resulting sampled

signal is 0.0, 0.4, 1.0, 0.4, 0.0, where the signal is sampled every T

seconds. If a ‘0’ is recorded, the sampled signal is

0.0, �0.4, �1.0, �0.4, 0.0. Suppose the binary string 011010 is

written to the disk and each bit is transmitted at T-second

intervals.What signal would be read back from the disk

corresponding to 011010 if the signal were sampled every T

seconds?

546 Chapter 12 Computer memory

13The operating system

CHAPTER MAP

12 Memory

Chapter 12 describes a

computer’s memory system.

Information isn’t stored in a

computer in just one type of

storage device; it’s stored in

DRAM and on disk, CD-ROM,

DVD, and tape.We look at both

high-speed immediate access

semiconductor technology and

the much slower magnetic and

optical secondary storage

systems used to archive data.

13 The operating system

The operating system performs

two functions. It provides a user

interface and controls the

processor’s hardware.An

operating system manages the

memory system and allocates

memory space to tasks.The

operating system also controls

I/O via the interrupt mechanism

and performs multiprocessing

(running more than one program

at the same time).We briefly

look at the operating system

because it is the point at which

hardware and software meet.

14 Computer
communications

Computers communicate with

each other to share resources

such as printers and data or to

increase performance by dividing

a job between them. In Chapter 14

we look at the background to

computer communications, the

way in which messages are sent

from point to point, and the

protocols or rules that govern

the exchange of data.

INTRODUCTION

We now look at one of the most important components of a modern computer, the operating

system. Operating systems can be very large programs indeed (e.g. 100 Mbytes). Some might argue

that a section on operating systems is out of place in an introductory course on computer hardware.

We include this topic here for two reasons. First, the operating system is intimately connected with

the hardware that it controls and allocates to user programs. Second, some students may not

encounter the formal treatment of operating systems until later in their studies.

We begin with an overview of operating systems and then concentrate on three areas in which

hardware and software overlap: multitasking, exception handling, and memory management.

Multitasking permits a computer to run several programs at the same time. Exception handling

is concerned with the way in which the operating system communicates with user applications

and external hardware. Memory management translates addresses from the computer into the

actual addresses of data within the CPU’s memory system.

Before continuing, we need to make a comment about terminology.The terms program and job

are used synonymously in texts on operating systems and mean the same thing. Similarly, the

terms task and process are also equivalent.A process (i.e. task) is an instance of a program that

includes the code, data, and volatile data values in registers. The ability of a computer to execute

several processes concurrently is called multitasking or multiprogramming. However, the term

multiprocessing describes a system with several processors (CPUs) that run parts of a process in

parallel.

13.1 The operating system

The relationship between an operating system and a computer
is similar to the relationship between a conductor and an

orchestra. The great conductor is a celebrity who gets invited to
take part in talk shows on television and is showered with soci-
ety’s highest awards.And yet the conductor doesn’t add a single
note to a concert. The importance of conductors is well

known—they co-ordinate the players. A good conductor
knows the individual strengths and weaknesses of players and
can apply them in such a way as to optimize their collective
performance.

An operating system is the most important piece of software
in a computer system. Its role is to co-ordinate the functional
parts of the computer to maximize the efficiency of the system.
We can define efficiency as the fraction of time for which the
CPU is executing user programs. It would be more accurate if
we were to say that the operating system is designed to remove
inefficiency from the system. Suppose a program prints a docu-
ment. While the printer is busy printing the document, the
CPU is idling with nothing to do. The operating system would
normally intervene to give the CPU something else to do while
it’s waiting for the printer to finish.

A second and equally important role of the operating system
is to act as the interface between the user and the computer.
Programmers communicated with first-generation operating
systems via a job control language (JCL), which looked rather
like any other conventional computer language. Today’s oper-
ating systems such as Microsoft’s Windows provide an inter-
face that makes use of a WIMP (windows, icons, mouse, and
pointer) and GUI (graphical user interface) environment.

From the user’s point of view an operating system should
behave like the perfect bureaucrat; it should be efficient, help-
ful, and, like all the best bureaucrats, should remain in the
background. A poorly designed operating system, when
asked to edit a file, might reply ‘ERROR 53’. A really good
operating system would have replied, ‘Hi. Sorry, but my disk
is full. I’ve noticed you’ve got a lot of backup copies, so if you
delete a couple I think we’ll be able to find room for your file.
Have a nice day’. Raphael A. Finkel, in his book An Operating
System’s Vade Mecum’ (Prentice-Hall, 1988) calls this aspect
of an operating system the beautification principle, which he
sums up by ‘. . . an operating system is a collection of algo-
rithms that hides the details of the hardware and provides a
more pleasant environment’.

548 Chapter 13 The operating system

Figure 13.1 shows how the components of the operating
system relate to each other and to the other programs that
run under the operating system’s supervision. The diagram is
depicted as a series of concentric circles for a good reason—
programs in the outer rings use facilities provided by pro-
grams in the inner rings. At the center of the circle lies the
scheduler, which switches from one task to another in a multi-
tasking environment. The scheduler is smaller than pro-
grams in the outer ring such as database managers and word
processors. A scheduler is often said to be tightly coded
because it uses a small amount of code optimized for speed.

Sophisticated operating systems employ hardware and
software mechanisms to protect the important inner rings
from accidental or illegal access by other components. If a
user task corrupts part of the kernel, the operating system
may crash and the system halts.

Not all computers have an operating system. A computer
used as a controller in, for example, a digital camera may not
need an operating system (although complex embedded
controllers do have operating systems). Whenever functions
normally performed by an operating system are required,
they are incorporated into the program itself.

13.1.1 Types of operating system

Operating systems can be divided into categories: single-
user, batch mode, demand mode, real-time, and
client–server. The distinction between operating system
classes can be vague and a real operating system may have
attributes common to several classes. We now briefly
describe the various types of operating system (although the
modern high-performance PC and the local area network
have rendered some of them obsolete).

The single-user operating system (e.g. MS-DOS) allows
only one user or process to access the system at a time. First-
generation mainframe operating systems worked in a batch-
mode. Jobs to be executed were fed into the computer,
originally in the form of punched cards. Each user’s program

began with job control cards telling the operat-
ing system which of its facilities were required.
The operating system scheduled the jobs accord-
ing to the resources they required and their pri-
ority, and eventually generated an output.

Batch mode operation is analogous to a dry
cleaning service. Clothes are handed in and are
picked up when they’ve been cleaned. Batch-
mode operating systems accepted jobs on
punched card (or magnetic tape). The disadvant-
age of batch mode systems is their lengthy turn
around time. It was frustrating in the 1970s to
wait 5 hours for a printout only to discover that
the job didn’t run because of a simple mistake in
one of the cards.

Operating system interface

Disk file manager

Scheduler

User applications

Figure 13.1 Hierarchical model of an operating system.

13.1 The operating system 549

MODERN OPERATING SYSTEMS

It is unfair to imply that an operating system only coordinates

the hardware and provides a user interface. Modern operating

systems include components that could be regarded as

applications programs; for example,Windows incorporates a web

browser called Internet Explorer.Web browsers can be obtained

from more than one supplier and installed as user applications.

By incorporating a function such as a web browser, an

operating system like Windows can provide a consistent

user interface across applications. Moreover,Windows

achieves a constant look and feel across the operating

system, Microsoft’s web browser, and Microsoft’s

applications.

MS-DOS

When IBM was creating the PC in 1890, Bill Gates was

approached to supply a simple operating system. Bill

Gates came up with MS-DOS (Microsoft Disk Operating

System), which was loosely based on a first-generation

microprocessor operating system called CP/M. MS-DOS

allowed you to create, list, delete, and manipulate files

on disk.

MS-DOS was released as MS-DOS 1.0 in 1981 and devel-

oped by stages to become MS-DOS 6.22 in 1994. Future

developments were not necessary because the market for a

command line operating system dried up when graphical

operating systems like Windows became available.

The final version of DOS, 7.0, was released in 1995 when it

was incorporated in Windows 95.

LINUX AND WINDOWS

There are three major operating systems in the PC world.

The vast majority of PCs use Microsoft’s Windows or Linux

(a public domain version of UNIX).The Apple Mac uses OS X

(which is a variation of Linux).

Microsoft’s Windows has been developed since it first

appeared in 1995. It is easy to use and has been responsible

for bringing computing to the non-computer-specialist

masses.Windows is relatively expensive, costing about 20% of

the PC’s hardware.

Linux is an open-source, public domain operating system

developed by Linus Tovalds. Tovalds created Linux by

extending Andy Tannenbaum’s mini operating system Minix.

Modern versions of Linux now have a Windows-style

front end.

Demand mode operating systems allow you to access
the computer from a terminal, which was a great improve-
ment over batch mode operation because you can complete
each step before going on to the next one. Such an
arrangement is also called interactive because the
operating system and the user are engaged in a dialogue.
Each time the user correctly completes an operation, they
are informed of its success and invited to continue by
some form of prompt message. If a particular command
results in an error, the user is informed of this by the operat-
ing system and can therefore take the necessary corrective
action.

Real-time operating systems belong to the world of
industrial process control. The primary characteristic of a
real-time operating system is that it must respond to an
event within a well-defined time. Consider a computer-
controlled petrochemical plant. The conditions at many
parts of the plant are measured and reported to the computer
on a regular basis. Control actions must be taken as condi-
tions in the plant change; for example, sudden build-up of
pressure in a reaction vessel cannot be ignored. The com-
puter running the plant invariably has a real-time operating

system that responds to interrupts generated by external
events.

Real-time operating systems are found wherever the
response time of the computer must closely match that of
the system it is controlling. Real-time operating systems are
so called because the computer is synchronized with what
people call clock time. Other operating systems operate in
computer time. A job is submitted and its results delivered
after some elapsed time. There is no particular relationship
between the elapsed time and the time of day. The actual
elapsed time is a function of the loading of the computer
and the particular mix of jobs it is running. In a real-time
system the response time of the computer to any stimulus is
guaranteed.

Modern multimedia systems using sound and video are
also real-time systems—not least because a pause in a video
clip while the computer is carrying out another process is
most disconcerting. Real-time operating system technology
has had a strong influence on the way in which processors
have developed; for example, Intel’s multimedia extensions
(MMX) added special-purpose instructions to the Pentium’s
instruction set to handle video and sound applications.

Some modern operating systems are called client–server
and run on distributed systems. A client–server system may
be found in a university where each user has their own com-
puter with a CPU, memory, and a hard disk drive, linked to a
server by a local area network. Processes running on one of
the terminals are called client processes and are able to make
requests to the server. The operating system is distributed
between the client and the server. A client on one host can use
the resources of a server on another host.

13.2 Multitasking

Multitasking is the ability of a computer to give the impres-
sion that it can handle more than one job at once. A computer
cannot really execute two or more programs simultaneously,
but it can give the impression that it is running several pro-
grams concurrently. The following example demonstrates
how such an illusion is possible.

Consider a game of simultaneous chess where a first-class
player is pitted against several weaker opponents by stepping
from board to board making a move at a time. As the master
player is so much better than their opponents, one of the
master’s moves takes but a fraction of the time they take. The

players share the illusion that they have a single opponent of
their own.

The organization of a game of simultaneous chess can
readily be applied to the digital computer. All we need is a
periodic signal to force the CPU to switch from one job to
another and a mechanism to tell the computer where it was
up to when it last executed a particular job. The jobs are
referred to as tasks or processes and the concept of executing
several processes together is called multiprogramming or
multitasking.A process is a program together with its associated
program counter, stack, registers, and any resources it’s using.

Before we look at how multitasking is implemented we dis-
cuss some of its advantages. If each process required only CPU
time, multitasking would have little advantage over running
processes consecutively (at least in terms of the efficient use of
resources). If we re-examine simultaneous chess, we find that
its success is based on the great speed of the master player
when compared with that of their opponents. While each
player is laboriously pondering their next move, the master
player is busy making many moves.

A similar situation exists in the case of computers. While
one task is busy reading information from a disk drive and
loading it into memory or is busy printing text on a printer,
another task can take control of the CPU. A further advantage

550 Chapter 13 The operating system

HISTORY OF WINDOWS

Microsoft’s first version of Windows, version 1.0, was released

in 1985.This was a graphical version of Microsoft’s command-

line MS-DOS operating system.Version 2.0 appeared in 1987

and provided better windows management facilities.

Windows 3.0 was released in 1990 and was Microsoft’s first

really successful GUI-based operating system.This version

made better use of the processor’s memory management

mechanisms.

Windows 95 and 98 (released in 1995 and 1998 respect-

ively) continued the development of Microsoft’s GUI techno-

logy. Changes were incremental rather than revolutionary; for

example,Windows 95 provided support for long file names

(rather than the old ‘6.3’ DOS format, which restricted names

to six characters).Windows 98 provided a better integration of

operating system and Internet browser as well as the beginning

of support for peripherals such as the universal serial bus, USB.

Microsoft released Windows ME (Millennium Edition) in 2000.

This was the end of the line for Microsoft’s operating systems

that began with Windows 3.0. ME provided further modest

improvements to Windows 98 such as the incorporation of a

media player and a system restore mechanism. ME was regarded

as unstable and bug ridden and was not a significant success.

Microsoft launched a separate range of graphical operating

systems; first NT in 1993 (New Technology) and then

Windows 2000.These were regarded as professional operating

systems, targeted at corporate users. NT (and later Windows

2000) used underlying 32-bit binary code rather than the

16-bit code of DOS and earlier versions of Windows.Windows

NT also introduced the NTFS file system that was far more

sophisticated and reliable than the FAT system used by

MS-DOS and early versions of Windows.

Windows XP was launched in 2001 and brought together

Microsoft’s previous two lines (Windows 98 aimed at the PC

user and Windows 2000 aimed at the corporate user).Windows

XP may be thought of as a mature version of Windows in the

sense that it used true 32-bit code, supported the NTFS file

management mechanism, and provided extensive support for

multimedia applications, new high-speed interfaces, and local

area networks.There are two versions of XP.The standard ver-

sion, XP home, is intended for the small-scale user and XP pro-

fessional is aimed at the corporate and high-performance user.

XP professional supports remote processing (using the system

via an Internet connection) and symmetrical multiprocessing

(systems with more than one CPU).

The Windows operating system became the target of many

malware writers (malware includes computer viruses, worms,

Trojan horses, and spyware). Microsoft has had to keep up

with malware writers by continually releasing updates to close

the loopholes exploited by, for example, virus writers. In late

2004 Microsoft released its Service pack 2 to update XP.This

service pack included a firewall to prevent illegal access from

the Internet.

of multiprogramming is that it enables several users to gain
access to a computer at the same time.

Consider two processes, A and B, each of which requires a
several different activities to be performed during the course
of its execution (e.g. video display controller, code execution,
disk access, etc.). The sequence of activities carried out by
each of these two processes as they are executed is given in
Fig. 13.2. Note that VDT1 and VDT2 are two displays.

If process A were allowed to run to completion before
process B were started, valuable processing time would be
wasted while activities not involving the CPU were carried
out. Figure 13.3 shows how the processes may be scheduled to
make more efficient use of resources. The boxes indicate the
period of time for which a given resource is allocated to a par-
ticular process. For example, after process A has first used the
CPU, it accesses the disk. While the disk is being accessed by
process A, process B can use the processor.

The fine details of multiprogramming operating systems
are beyond the scope of an introductory book. However, the
following principles are involved.

1. The operating system schedules a process in the most
efficient way and makes best use of the facilities available.
The algorithm may adapt to the type of jobs that are run-
ning, or the operator may feed system parameters into the
computer to maximize efficiency.

2. Operating systems perform memory management. If
several processes run concurrently, the operating system
must allocate memory space to each of them. Moreover,
the operating system should locate the processes in
memory in such a way as to make best possible use of the
memory. The operating system must also protect one task
from unauthorized access to another.

3. If the CPU is to be available to one process while another
is accessing a disk or using a printer, these devices must be

capable of autonomous operation. That is, they must
either be able to take part in DMA (i.e. direct memory
access) operations without the active intervention of the
CPU, or they must be able to receive a chunk of high-
speed data from the CPU and process it at their leisure.

One of the principal problems a complex multitasking
operating system has to overcome is that of deadlock. Suppose
process A and process B both require CPU time and a printer
to complete their activity. If process A has been allocated the
CPU and the printer by the operating system, all is well and
process B can proceed once process A has been completed.
Now imagine the situation that occurs when process A
requests both CPU time and the printer but receives only the
CPU, and process B makes a similar request and receives the
printer but not the CPU. In this situation both processes have
one resource and await the other. As neither process will give
up its resource, the system is deadlocked and hangs up indef-
initely. Much work has been done on operating system
resource allocation algorithms to deal with this problem.

13.2.1 What is a process?

A task or process is a piece of executable code. Each process
runs in an environment made up of the contents of the pro-
cessor’s registers, its program counter, its status register (SR),
and the state of the memory allocated to this process. The
environment defines the current state of the process and tells
the computer where it’s up to in the execution of a process.

At any instant a process is in one of three states: running,
runnable, or blocked. Figure 13.4 provides a state diagram for a
process in a multitasking system. When a process is created,
it is in a runnable state waiting its turn for execution.
When the scheduler passes control to the process, it is running
(i.e. being executed). If the process has to wait for a system
resource such as a printer before it can continue, it enters the
blocked state. The difference between runnable and blocked is
simple—a runnable process can be executed when its turn
comes; a blocked process cannot enter the runnable state until
the resources it requires become free.

13.2.2 Switching processes

We now outline the way in which process switching
uses two mechanisms described earlier—the inter-
rupt and the stack. A clock connected to the CPU’s
interrupt request input generates a pulse, say, every
0.01 seconds.At the moment the interrupt occurs, the
information that defines the process is in the CPU
(i.e. processor status word, program counter, and
registers in use).This information is called the process’s
context or volatile portion. An interrupt saves the pro-
gram counter and machine status on the stack, and
makes a jump to the interrupt handling routine.

13.2 Multitasking 551

CPU

time

CPUCPU CPUVDT2VDT2VDT1VDT1

Process A Process B

DiskDisk

Figure 13.2 Example of computing without multitasking.

Process A Process A Process AProcess B

Process A

CPU

Disk Process B

Process B

Process A

Process B

Process A

Slot 1 Slot 2

Resource Activity

Slot 3 Slot 4 Slot 5 Slot 6

time

VDT2

VDT1

Figure 13.3 Applying multitasking to the system of Fig. 13.2.

At the end of the interrupt handling routine an RTE (return
from exception) instruction is executed and the program then
continues from the point at which it was interrupted.

The 68K’s RTE instruction is similar to its RTS (return from
subroutine) instruction. When a subroutine is called, the
return address is pushed on the stack. When an exception
(i.e. interrupt) is generated, both the return address and the

current value of the processor status word (containing the
CCR) are pushed on the stack. The RTE instruction restores
both the program counter and the status word. Consequently,
an exception doesn’t affect the status of the processor.

Suppose now that the interrupt handling routine modifies
the stack pointer before the return from exception is executed.
That is, the stack pointer is changed to point at another
process’s volatile portion. When the RTE is executed, the value
of the program counter retrieved from the stack isn’t that
belonging to the program being executed just before the inter-
rupt. The value of the PC loaded by the return from exception
belongs to a different process that was saved earlier when
another program was interrupted—that process will now be
executed.

Figure 13.5 demonstrates the sequence of events taking
place during process switching. Initially process A at the top
of Fig. 13.5 is running. At time T, the program is interrupted
by a real-time clock and control passed to the scheduler in the
operating system. The arrow from the program to the sched-
uler shows the flow of control from process A to the operat-
ing system. The scheduler stores process A’s registers,
program counter, and status in memory. Process switching is
also called context switching because it involves switching

552 Chapter 13 The operating system

Resource becomes
available

My turn to run

Time allocation complete

Waiting for a
resource

Runnable Running

Blocked

Figure 13.4 State diagram of a process in a multitasking system.

Restore registers
of next process

Restore registers
of next process

Save registers of
current process

Save registers of
current process

Select next process

Select next process

Interrupt

Interrupt

Interrupt

The scheduler saves the current
process's context (i.e. volatile
portion) and invokes a new process.

time = T + 2t

time = T + t

time = T

Time

Scheduler

Operating systemUser tasks

Process A

Process B

Process B

Scheduler

Figure 13.5 Switching

processes.

from the volatile portion of one process to the volatile
portion of another process. The scheduler component of
the operating system responsible for switching processes is
called the first-level interrupt handler.

In Fig. 13.5 an interrupt occurs at T, T � t, T � 2t, . . . , and
every t seconds switching takes place between processes A and
B. We have ignored the time required to process the interrupt.
In some real-time systems, the process-switching overhead is
very important.

Figure 13.6 demonstrates how process switching works. Two
processes, A and B, are located in memory. To keep things sim-
ple, we will assume that the regions of memory allocated to
these processes do not change during the course of their execu-
tion. Each process has its own stack, and at any instant the stack
pointer may be pointing to either A’s stack or B’s stack.

In Fig. 13.6(a) process A is running and process A’s stack
pointer SPA is pointing at the top of the stack. In Fig. 13.6(b)

a process-switching interrupt has occurred and the contents
of the program counter and machine status have been
pushed onto the stack (i.e. A’s stack). For the sake of simpli-
city Fig. 13.6 assumes that all items on the stack occupy a
single location.

In Fig. 13.6(c) the operating system has changed the con-
tents of the system stack pointer so that it is now pointing at
process B’s stack (i.e. the stack pointer is SPB). Finally, in
Fig. 13.6(d) the operating system executes an RTE and process
B’s program counter is loaded from its stack, which causes
process B to be executed. Thus, at each interrupt, the operat-
ing system swaps the stack pointer before executing an RTE
and a new process is run.

A more realistic operating system maintains a table of
processes to be executed. Each entry in the table is a task con-
trol block (TCB), which contains all the information the
operating system needs to know about the process. The TCB

13.2 Multitasking 553

SPA

SPA

Task A's stack Task A's stack

Task B's stack

(b) Task A interrupted.(a) Task A running.

Task A status word

Task A return address

Task B status word

Task B return address

Task B status word

Task B return address

Task B's stack

Task B

SPB

SPB

Task A

Task A

Task B

Task A's stack

Task B's stack

(d) Task B running.(C) Stack pointer modified by OS.

Task A status word

Task A return address

Task A status word

Task A return address

Task A's stack
Task A

Task B status word

Task B return address

Task B's stack

Task B

Task A

Task B

Figure 13.6 Process switching

and the stack.

includes details about the process’s priority, its maximum
run time, and whether or not it is currently runnable (as well
as its registers).

Figure 13.7 illustrates the structure of a possible task con-
trol block. In addition to the process’s environment, the TCB
contains a pointer to the next TCB in the chain of TCBs; that
is, the TCBs are arranged as a linked list. A new process is
created by inserting its TCB into the linked list.

Some operating systems allow processes to be priorit-
ized so that a process with a high priority will always be
executed in preference to a process with a lower priority.
A runnable process is executed when its turn arrives

(subject to the limitations of priority). If the process
is not runnable (i.e. blocked), it remains in the computer but
is bypassed each time its turn comes. When the process is to
be run, its run flag is set and it will be executed next time
round.

13.3 Operating system support
from the CPU

We now describe how a processor supports operating
system functions. It’s possible to design processors that are
protected from certain types of error or that provide hard-
ware support for multitasking. First-generation 8-bit micro-
processors didn’t provide the operating systems designer
with any special help. Here, we concentrate on the 68K family
because it provides particularly strong support to operating
systems.

At any instant a processor can be in one of several states or
levels of privilege; for example, members of the 68K family
provide two levels of privilege. One of the 68K’s states is called
the supervisor state and the other the user state. The operating
system runs in the supervisor state and applications programs

554 Chapter 13 The operating system

PRE-EMPTIVE MULTITASKING

There are two versions of multitasking.The simplest version

is called non-pre-emptive multitasking or

co-operative multitasking.When a task runs, it executes

code until it decides to pass control to another task.

Co-operative multitasking can lead to system crashes when

a task does not relinquish control.

In pre-emptive multitasking, the operating system forces

a task to relinquish control after a given period.

Memory requirement

Registers

Program counter

Process priority

Process status

Pointer to next process

Process name

Process 3

Memory requirement

Registers

Program counter

Process priority

Process status

Pointer to next process

Process name

Process 2

Memory requirement

Registers

Program counter

Process priority

Process status

Pointer to next process

Process name

Process 1

To next process
in TCB chain

The task control blocks
are arranged as a linked list

Fig. 13.7 The task control block.

running under the control of the operating system run in the
user state. We will soon see that separating the operating sys-
tem from user applications makes the system very robust and
difficult to crash. When an applications program crashes
(e.g. due to a bug), the crash doesn’t affect the operating sys-
tem running in its protected supervisor environment.

13.3.1 Switching states

Let’s start from the assumption that the supervisor state used
by the operating system confers first-class privileges on the
operating system—we’ll find out what these privileges are
shortly. When the processor is running in its user state, any
interrupt or exception forces it into its supervisor state. That
is, an exception causes a transition to the supervisor state
and, therefore, calls the operating system.

Figure 13.8 illustrates two possible courses of action that
may take place in a 68K system when an exception is generated.
Both these diagrams are read from the top down. In each case,
the left-hand side represents user or applications programs
running in the user state and the right-hand side represents the
operating system running in the supervisor state.

In Fig. 13.8(a) a user program is running and an exception
occurs (e.g. a disk drive may request a data transfer). A jump is
made to the exception handler that forms part of the operating
system. The exception handler deals with the request and a
return is made to the user program. However, the exception
might have been generated by a fatal error condition that arises
during the execution of a program. Figure 13.8(b) shows the
situation in which an exception caused by a fatal error occurs.
In this case, the operating system terminates the faulted user
program and then runs another user program.

Figure 13.8(a) and (b) show user programs and the operat-
ing system existing in separate compartments or environ-
ments. We now explain why user programs and the operating
system sometimes really do live in different universes. In sim-
ple 68K-based systems, the processor’s supervisor and user
state mechanisms aren’t exploited, and all code is executed in
the supervisor state. More sophisticated systems with an oper-
ating system do make good use of the 68K’s user and super-
visor state mechanisms.

When power is first applied to the 68K, it automatically
enters its supervisor state. This action makes sense, because
you would expect the operating system to initially take con-
trol of the computer while it sets everything up and loads the
user processes that it’s going to run.

The three questions we’ve now got to answer are the
following.

● How does the 68K know which state it’s in?
● How is a transition made from one state to another?
● What does it matter anyway?

The answer to the first question is easy—the 68K uses a flag
bit, called an S-bit, in its status register to indicate what state
it’s currently operating in. If S � 1, the processor is in its
supervisor state and if S � 0, the processor is in its user state.
The S-bit is located in bit 13 of the 16-bit status register (SR).
The lower-order byte of the status register is the condition
code register (CCR). The upper byte of the status register
containing the S-bit is called the system byte and defines the
operating state of the processor.

The second question we asked was ‘How is a transition
made from one state to another?’ The state diagram in
Fig. 13.9 describes the relationship between the 68K’s user

13.3 Operating system support from the CPU 555

New
task

Task killed

Exception

Exception

Return

Return

(b) The operating system kills the current task

and starts another.

(a) Program execution continues

after an exception.

Exception

handler

Exception

handler

User state User stateSupervisor state Supervisor state

Figure 13.8 Taking

action after an

exception.

and supervisor states. Lines with arrows indicate transitions
between states (text against a line explains the action that
causes the transition). Figure 13.9 shows that a transition
from the supervisor state to the user state is made by clearing
the S-bit in the status register. Executing a MOVE #0, SR

instruction clears the S-bit (and the other bits) of the status
byte and puts the 68K in the user state. You could clear only
the S-bit with the instruction ANDI #$DFFF,SR.

When the operating system wishes to execute an applica-
tions program in the user state, it clears the S-bit and executes
a jump to the appropriate program; that is, the operating sys-
tem invokes the less privileged user state by executing an
instruction that clears the S-bit to 0.

Figure 13.9 demonstrates that once the 68K is running in its
user state, the only way in which a transition can be made to
the supervisor state is by means of an exception—any excep-
tion.A return can’t be made to the supervisor state by using an
instruction to set the S-bit to 1. If you could do this, anyone
would be able to access the supervisor state’s privileged fea-
tures and the security mechanism it provides would be worth-
less. Let’s say that again—a program running in the user state
cannot deliberately invoke the supervisor state directly.

Suppose a user program running in the user state tries
to enter the privileged supervisor state by executing
MOVE $2000, SR to set the S-bit.Any attempt by the user state
programmer to modify the S-bit results in a privilege viola-
tion exception. This exception forces the 68K into its supervisor
state, where the exception handler deals with the problem.

We can now answer the third question—what’s the benefit
of the 68K’s two-state mechanism? Some instructions such as
STOP and RESET can be executed only in the supervisor state

and are said to be privileged. The STOP instruction brings the
processor to a halt and the RESET acts on external hardware
such as disk drives. You might not want the applications pro-
grammer to employ these powerful instructions that may
cause the entire system to crash if used inappropriately. Other
privileged instructions are those that operate on the system
byte (including the S-bit) in the status register. If the applica-
tions programmer were permitted to access the S-bit, they
could change it from 0 (user state) to 1 (supervisor state) and
bypass the processor’s security mechanism.

If the 68K’s user/supervisor mode mechanism were lim-
ited to preventing the user-state programmer executing cer-
tain instructions, it would be a nice feature of the processor,
but of no earth-shattering importance. The user/supervisor
state mechanism has two important benefits; the provision of
dual stack pointers and the support for memory protection.
These two features protect the operating system’s memory
from either accidental or deliberate modification by a user
application. We now describe how the 68K’s supervisor state
protects its most vital region of memory—the stack.

13.3.2 The 68K’s two stacks

Most computers manage subroutine return addresses by
means of a stack. The processor’s stack pointer points to the
top of the stack and the stack pointer is automatically updated
as items are pushed onto the stack or are pulled off it. When a
subroutine is called by an instruction like BSR XYZ, the address
immediately after the subroutine call (i.e. the return address) is
pushed on the stack. The final instruction of the subroutine,
RTS (return from subroutine), pulls the return address off the
stack and loads it in the program counter.

If you corrupt the contents of the stack by overwriting the
return address or if you corrupt the stack pointer itself, the
RTS will load an undefined address into the program
counter. Instead of making a return to a subroutine’s calling
point, the processor will jump to a random point in memory
and start executing code at that point. The result might lead
to an illegal instruction error or to an attempt to access non-
existent memory. Whatever happens, the program will crash.

Consider the following fragment of very badly written
code that contains a serious error. Don’t worry about the fine
details—it’s the underlying principles that matter.
Remember that the 68K’s stack pointer is address register A7.

556 Chapter 13 The operating system

Supervisor

state

User

state

Any exception

Any exception

S 0

Figure 13.9 Switching between user and supervisor states.

The programmer first pushes the 16-bit parameter in data
register D3 onto the stack by means of MOVE.W D3,(A7), and
then calls a subroutine at location Sub_X. Figure 13.10(a)
illustrates the state of the stack at this point. As you can see, the
stack contains the 16-bit parameter (one word) and the 32-bit
return address (two words) on top of the buried parameter.

When the subroutine is executed, the programmer attempts
to retrieve the parameter from the stack by first stepping past
the 4-byte return address on the top of the stack. The instruc-
tion ADDA.L #4,A7 adds 4 to the stack pointer to leave it
pointing at the required parameter (Figure 13.10(b)). This is a
terrible way of accessing the parameter because you should
never move the stack pointer down the stack when there are
valid items on the stack above the stack pointer—do remember
that we’re providing an example of how not to do things.

The programmer then reads the parameter from the stack by
means of the operation MOVE.L (A7)�,D0. This instruction
pulls a longword off the stack and increments the stack pointer
by the size of the operand (four for a longword) (Fig. 13.10(c)).
Because the stack pointer has been moved down by first step-
ping past the return address and then pulling the parameter off
the stack, it must be adjusted by six to point to the subroutine’s
return address once more (i.e. a 4-byte return address plus a
2-byte parameter) (Fig. 13.10(d)). Finally, the return from
subroutine instruction RTS) pulls the 32-bit return address off
the stack and loads it in the program counter.

This fragment of code fails because it contains a serious
error. The parameter initially pushed on the stack was a 16-bit
value, but the parameter read from the stack in the subroutine
was a 32-bit value. The programmer really intended to
write the instruction MOVE.W (A7)�,D0 rather than
MOVE.L (A7)�,D0; the error in the code is just a single letter.
The effect of this error is to leave the stack pointer pointing
at the second word of the 32-bit return address, rather than
the first word.The SUBA.L #6,A7 instruction was intended to
restore the stack pointer to its original value. However, because
the stack pointer is pointing 2 bytes above the correct return
address, the RTS instruction loads the program counter with

an erroneous return address resulting in a jump to a random
region of memory. We have demonstrated that this blunder
not only gives the wrong result, but also generates a fatal error.
We now demonstrate how the user/supervisor mechanism
helps us to deal with such a situation.

The 68K’s user and supervisor stack pointers

There’s very little the computer designer can do to prevent pro-
gramming errors that corrupt either the stack or the stack
pointer. What the computer designer can do is to limit the
effects of possible errors. Members of the 68K family approach
the problem of stack security by providing two identical stack
pointers—each of which is called address register A7 (see
Fig. 13.11). However, both stack pointers can’t be active at the
same time because either one or the other is in use (it’s a bit like
Clark Kent and Superman—you never see them together).

One of the 68K’s two stack pointers is called the supervisor
stack pointer (SSP) and is active whenever the processor is in the
supervisor state. The other stack pointer, the user stack pointer

13.3 Operating system support from the CPU 557

Parameter

Return
address

Parameter

Return
address

Parameter

Return
address

Parameter

Return
address

0

2

4

6

0

2

4

6

SP 0

2

4

6

SP

0

2

4

6

SP

SP

(d) State of the stack

after adjusting the

stack pointer.

(c) State of the stack

after incorrectly reading

the parameters.

(b) State of the stack

after adjusting the SP.

(a) State of the stack

after subroutine call.

Figure 13.10 The effect of an error on the stack.

Supervisor
stack pointer

Selected in supervisor
state when S = 1

Selected in user state
when S = 0

User stack pointer User stack

Supervisor stack

USP

SSP

Figure 13.11 The 68K’s two stack pointers.

(USP) is active when the processor is in the user state. Because
the 68K is always in either the user state or the supervisor state,
only one stack pointer is available at any instant. The supervisor
stack pointer is invisible to the user programmer—there’s no
way in which the user programmer can access the supervisor
stack pointer. However, the operating system in the supervisor
state can use privileged instruction MOVE USP,Ai and MOVE

Ai,USP to access the user stack pointer.
Let’s summarize what we’ve just said. When the 68K is

operating in its supervisor state, its S-bit is 1 and the super-
visor stack pointer is active. The supervisor stack pointer points
at the stack used by the operating system to handle its sub-
routine and exception return addresses. Because an exception
sets the S-bit to 1, the return address is always pushed on the
supervisor stack even if the 68K was running in the user
mode at the time of the exception. When the 68K is operating
in its user state, its S-bit is 0 and the user stack pointer is
active. The user stack pointer points at the stack used by the
current applications program to store subroutine return
addresses.

Consider the previous example of the faulty applications
program running in the user state (see Fig. 13.11). When the
return from subroutine instruction is executed, an incorrect
return address is pulled off the stack and a jump to a random
location made. An illegal instruction exception will eventu-
ally occur when the processor tries to execute a data pattern
that doesn’t correspond to a legal op-code. An illegal instruc-
tion exception forces a change of state from user to super-
visor mode. The illegal instruction exception handler runs in
the supervisor state, whose own stack pointer has not been
corrupted. That is, the applications programmer can corrupt
their own stack pointer and crash their program, but the
operating system’s own stack pointer will not be affected by
the error. When a user program crashes, the operating system
mounts a rescue attempt.

You may wonder what protects the supervisor stack
pointer. Nothing. It is assumed that a well constructed and
debugged operating system rarely corrupts its stack and
crashes (at least in comparison with user programs and pro-
grams under development).

The 68K’s two-stack architecture doesn’t directly prevent
the user programmer from corrupting the contents of the
operating system’s stack. Instead, it separates the stack used
by the operating system and all exception-processing soft-
ware from the stack used by the applications programmer by
implementing two stack pointers. Whatever the user does in
their own environment cannot prevent the supervisor step-
ping in and dealing with the problem.

Use of two stacks in process switching

Earlier in this chapter we described the notion of multitask-
ing. The 68K’s two stack pointer mechanism is particularly

useful in implementing multitasking. Each user program has
its own private stack. When the process is running, it uses the
USP to point to its stack. When the process is waiting or
blocked, its own stack pointer is saved alongside the other ele-
ments of its volatile portion (i.e. environment) in its task
control block.

The supervisor stack pointer is used by the operating sys-
tem to manage process switching and other operating system
functions. In this way, each application can have its own user
stack pointer and the operating system’s stack can be sep-
arated from the user processes.

Suppose an applications program (i.e. process) is running
and a process-switching interrupt occurs. A jump is made to
the scheduler, the S-bit is set, the supervisor stack pointer
becomes active, and the return address and status word are
saved on the supervisor stack.

The CPU’s address and data registers plus its PC and status
register hold information required by the interrupted
process. These registers constitute the process’s volatile por-
tion. The scheduler saves these registers on the supervisor
stack. You can use MOVEM.L D0-D7/A0-A6,-(A7) to push
registers D0 to D7 and A0 to A6 onto the stack pointed at by
A7.1 We don’t save A7 because that’s the supervisor stack
pointer. We do need to save the user stack pointer because
that belongs to the process. We can access the USP by MOVE
USP,A0 and then save A0 on the supervisor stack with the
other 15 registers (PC and SR).

Having saved the last process’s volatile portion, the sched-
uler can go about its job of switching processes. The next step
would be to copy these registers from the stack to the
process’s entry in its task control block. Typically, the sched-
uler might remove the process’s volatile environment from
the top of the supervisor stack and copy these registers to the
process’s task control block.

The scheduler can now locate the next process to run
according to an appropriate algorithm (e.g. first-come-first-
served, highest priority first, smallest process first, etc.). Once
the next process has been located it can be restarted by copy-
ing the process’s registers from the TCB to the supervisor
stack and then pulling the registers off the stack immediately
before executing an RTE instruction. Note that restoring a
process’s volatile environment is the mirror image of saving a
process’s volatile environment.

The behavior of the task-switching mechanism can be
expressed as pseudocode.

558 Chapter 13 The operating system

1 The 68K instruction MOVEM.L A0-A3/D2-D4-(A7) pushes regis-
ters A0 to A3 and D2 to D4 on the stack pointed at by A7. The mnemonic
MOVEM means move multiple and lets you copy a group of registers onto
the stack in one operation.MOVEM.L (A7)�,A0-A3/D2-D4performs the
inverse operation and pulls seven registers off the stack and restores them
to A0 to A3 and D2 to D4.

We represent this algorithm in the following 68K program.
In order to test the task-switching mechanism, we’ve created a
dummy environment with two processes. Process 1 prints the
number 1 on the screen whenever it is executed.Process 2 prints
the sequence 2, 3, 4, . . . , 9, 2, 3, . . . when it is called. If we allow
each process to complete one print cycle before the next process
is called, the output should be 12131415 18191213 . . .

In a real system, a real-time clock might be used to period-
ically switch tasks. In our system we use a TRAP #0 instruction
to call the task switcher. This instruction acts like a hardware
interrupt that is generated internally by an instruction in the
program (i.e. the program counter and status registers are

pushed on the supervisor stack and a jump is made to the
TRAP #0 exception handling routine whose address is in
memory location $00 0080.

The program is entered at $400 where the supervisor stack
pointer is initialized and dummy values loaded into A6 and
A0 for testing purposes (because much of the program
involves transferring data between registers, the stack, and
task control blocks, it’s nice to have visible markers when you
are debugging a program by single-stepping it).

We have highlighted the body of the task switcher. The
subroutine NEW selects the next process to run. In this case,
there are only two processes and the code is as follows.

13.3 Operating system support from the CPU 559

560 Chapter 13 The operating system

Let’s look at how task switching takes place. When an
exception takes place (in this case a TRACE #0 exception), the
program counter (return address) and status register are
pushed on the supervisor stack to give the situation of
Fig. 13.12(a).

The first instruction in the process switcher, MOVEM.L
A0-A7/D0-D7,-(SP) pushes all the 68K’s address and data
registers on the supervisor stack. Together with the PC and
SR, we now have the process’s entire volatile environment on
the stack. Well, not entirely. Remember that the 68K has a
user stack pointer. So, we copy it into A1 and then put it in the
‘A7’ slot on the stack (thereby overwriting the copy of the
supervisor stack pointer in that slot).

Status

PC

Status

PC 2 + 4 = 6 bytes

16 x 4 = 64 bytes

(a) State of the stack

after TRAP #0.

(b) State of the stack

after pushing registers.

D0
.
D7
A0
.
A7

SP

SP

Figure 13.12 Use of the stack during process switching.

The next step is to copy all these registers to the task control
block pointed at by CURRENT (the variable that points to the
active TCB). This operation saves the current task’s volatile
portion.

The task control block is changed by calling NEW to find the
next task. The registers saved in the TCB are then copied to
the stack and then restored from the stack to invoke the new
process.

Now that we’ve described the 68K’s user and supervisor
modes and the role of exceptions in process switching, we can
introduce one of the most important aspects of an operating
system, memory management.

13.4 Memory management

We’ve assumed that the computer’s central processing unit
generates the address of an instruction or data and that this
address corresponds to the actual location of the data in
memory.For example, if a computer executes MOVE $1234,D0,
the source operand is found in location number 123416

in the computer’s random access memory. Although this
statement is true of simple microprocessor systems, it’s not
true of computers with operating systems such as UNIX
and Windows. An address generated by the CPU doesn’t
necessarily correspond to the actual location of the data in
memory. Why this is so is the subject of this section.

Memory management is a general term that covers all the
various techniques by which an address generated by a CPU
is translated into the actual address of the data in memory.
Memory management plays several roles in a computer sys-
tem. First, memory management permits computers with
small main stores to execute programs that are far larger than
the main store.2 Second, memory management is used in
multitasking operating systems to make it look as if each
process has sole control of the CPU. Third, memory manage-
ment can be employed to protect one process from being cor-
rupted by another process. Finally, memory management, in

conjunction with the operating system, deals with the alloca-
tion of memory to variables.

If all computers had an infinite amount of random access
memory, life would be much easier for the operating system
designer. When a new program is loaded from disk, you can
place it immediately after the last program you loaded into
memory. Moreover, with an infinitely large memory you never
have to worry about loading programs that are too large for the
available memory. In practice, real computers may have too
little memory. In this section we are going to look at how
the operating system manages the available memory.

Figure 13.13(a) demonstrates multitasking where three
processes, A, B, and C are initially in memory. This diagram
shows the location of programs in the main store. In
Fig. 13.13(b) process B has been executed to completion and
deleted from memory to leave a hole in the memory. In
Fig. 13.13(c) a new process, process D, is loaded in part of the
unused memory and process A deleted. Finally, in Fig. 13.13(d)
a new process, process E, is loaded in memory in two parts
because it can’t fit in any single free block of memory space.

A multitasking system rapidly runs into the memory alloca-
tion and memory fragmentation problems described by
Fig. 13.13. Operating systems use memory management to
map the computer’s programs onto the available memory
space. Memory management is carried out by means of
special-purpose hardware called a memory management unit
(MMU) (see Fig. 13.14). Today’s sophisticated micropro-
cessors like the Pentium include an MMU on the same chip as
the CPU. Earlier microprocessors often used external MMUs.

The CPU generates the address of an operand or an instruc-
tion and places it on its address bus. This address is called a log-
ical address—it’s the address that the programmer sees. The
MMU translates the logical address into the location or phys-
ical address of the operand in memory. Figure 13.14 shows how

13.4 Memory management 561

Task A

Task B unused

unused

unused

unused

Task C

Task A

Task C Task C

Task D

Task E

Task E is split
into two parts

Task E

Task D

Task C

(a) Three tasks
 occupy memory.

(b) Task B deleted
 and its
 memory freed.

(c) Task A deleted
 and task D
 started.

(d) Task E in two
 parts.

Figure 13.13 Memory

fragmentation in a multitasking

environment.

2 Running programs larger than the actual immediate access memory
was once very important when memory cost a fortune and computers
had tiny memory systems.

the logical address 1234567816 address from the CPU gets
mapped onto the physical address ABC67816.

The logical address consists of two parts, a page address and
a word address. In the previous example, page 1234516 gets
translated into page ABC16 and the word address 67816 remains
unchanged. Figure 13.15 illustrates the relationship between
word address and page address for a very simple computer sys-
tem with four pages of eight words (i.e. 4 � 8 � 32 locations).

The logical address from the CPU in Fig. 13.15 consists of
a 2-bit page address that selects one of 22 � 4 pages, and a
3-bit word address that provides an offset (or index) into the
currently selected page. A 3-bit offset can access 23 � 8 words

within a page. If, for example, the CPU generates the address
101102, location 6 on logical page 2 is accessed.

In a system with memory management the 3-bit word
address from the CPU goes directly to the memory, but the
2-bit page address is sent to the memory management unit (see
Fig. 13.16). The logical page address from the CPU selects an
entry in a table of pages in the MMU as Fig. 13.16 demon-
strates. Suppose the processor accesses logical page 2 and the
corresponding page table entry contains the value 3. This
value (i.e. 3) corresponds to the physical page address of the
location being accessed in memory; that is, the MMU has
translated logical page 2 into physical page 3. The physical

562 Chapter 13 The operating system

Page number Address on page

Logical

address

Memory

management

unit

Physical

address

MemoryCPU

Logical page
number

The MMU translates a
logical page address into
a physical page address

Physical page
number

Physical
address

Word address (address on page)

Figure 13.14 The memory management unit.

Offset 6

word 0

Page 0

Page 1

Page 2

Page 3

word 1
word 2
word 3
word 4
word 5
word 6
word 7

5-bit address

2-bit page
address

3-bit word
address

The page number
selects page 2

The offset 6 selects
word 6 on the page

2 6

Figure 13.15 The structure of paged memory.

5-bit logical address

2-bit page
address

3-bit word
address

Logical
page 2 The offset 6 selects

word 6 on the page

Physical
page 3

2 6

Physical memory

Page 0

Page 1

Page 2

Page 3

word 0
word 1
word 2
word 3
word 4
word 5
word 6
word 7

Logical
page

Physical
page

0

1

2

3

0

2

3

1

MMU

Figure 13.16 Mapping logical onto physical pages.

address corresponds to the location of the actual operand in
memory. If you compare Figs 13.15 and 13.16 you can see that
the same logical address has been used to access two different
physical addresses.

Why should the operating system take an address from the
processor and convert it into a new address to access physical
memory? To answer this question we have to look at how pro-
grams are arranged in memory. Figure 13.17 shows the struc-
ture of both logical memory and physical memory during the
execution of processes A, B, C, and D. As far as the processor
is concerned, the processes all occupy single blocks of address
space that are located consecutively in logical memory
(Fig. 13.17(a)).

If you examine the physical memory (Fig. 13.17(b)), the
actual processes are distributed in real memory in an
almost random fashion. Processes B and C are split into non-
consecutive regions and two regions of physical memory are
unallocated. The logical address space seen by the processor is
larger than the physical address space—process D is currently
located on the hard disk and is not in the computer’s RAM.
This mechanism is called virtual memory.

A processor’s logical address space is composed of all the
addresses that the processor can specify. If the processor has a
32-bit address, its logical address space consists of 232 bytes.
The physical address space is the memory and its size
depends on how much memory the computer user can
afford. We will soon see how the operating system deals with
situations in which the processor wishes to run programs that
are larger than the available physical address space. The func-
tion of the MMU is to map the addresses generated by the
CPU onto the actual memory and to keep track of where data
is stored as new processes are created and old ones removed.
With an MMU, the CPU doesn’t have to worry about where
programs and data are actually located.

Consider a system with 4-kbyte logical and physical pages
and suppose the processor generates the logical address
88123416. This 24-bit address is made up of a 12-bit logical
page address 88116 and a 12-bit word address 23416. The 12
low-order bits (23416) define the same relative location
within both logical and physical address pages. The logical
page address is sent to the MMU, which looks up the corre-
sponding physical page address in entry number 881 in the
page table. The physical page address found in this location is
passed to memory.

Let’s look at the way in which the MMU performs map-
ping. Figure 13.18 demonstrates how the pages or frames of
logical address space are mapped onto the frames of physical
address space. The corresponding address mapping table is
described in Table 13.1. Notice that logical page 3 and logical
page 8 are both mapped onto physical page 6. This situation
might arise when two programs share a common resource
(e.g. a compiler or an editor). Each program thinks that it has
a unique copy of the resource, although both programs access
a shared copy of the resource.

13.4.1 Virtual memory

We’ve already said that a computer can execute programs
larger than its physical memory. In a virtual memory system
the programmer sees a large array of physical memory (the
virtual memory), which appears to be entirely composed of
high-speed main store. In reality, the physical memory is
composed of a relatively small high-speed RAM and a much
larger but slower disk store. Virtual memory has two advant-
ages. It allows the execution of programs larger than the
physical memory would normally permit and frees the pro-
grammer from worrying about choosing logical addresses
falling within the range of available physical addresses.
Programmers may choose any logical address they desire for
their program and its variables. The actual addresses selected
by a programmer don’t matter, because the logical addresses
are automatically mapped into the available physical memory
space as the operating system sees fit.

The means of accomplishing such an apparently impos-
sible task is called virtual memory and was first used in the Atlas
computer at the University of Manchester, England in 1960.
Figure 13.19 illustrates a system with 10 logical address pages
but only five physical address pages. Consequently, only 50%
of the logical address space can be mapped onto physical
address space at any instant. Table 13.2 provides a logical page
to physical page mapping table for this situation. Each entry
in the logical address page table has two entries: one is the
present bit, which indicates whether the corresponding page
is available in physical memory and the other is the logical
page to physical page mapping.

Part of a program that’s not being used resides on disk.
When this code is to be executed, it is copied from disk to the

13.4 Memory management 563

Task D is not in
RAM—it's on disk

CPU memory space

Task A

Task B

Task C

Task C

Task C

Task A

Task B

Task B

unused

unused

Task D

Actual memory space

Hard disk

(a) Logical address space. (b) Physical address space.

Figure 13.17 Logical and physical address space.

computer’s immediate access memory. Sometimes it’s
impossible to fit all the program (and the data required by the
program) in main memory. Consequently, only part of the
program can be loaded into random access memory. The
operating system divides the program into pages and loads
some of these pages into its random access memory. As pages
are loaded, the operating system updates the page table in the
MMU so that each logical page can be mapped onto the cor-
responding physical page in RAM.

Consider what happens when a program that resides par-
tially in memory and partially on disk is executed. When the
processor generates a logical address, the memory manage-
ment unit reads the mapping table to look up the corres-
ponding physical page address. If the page is present in
RAM, a logical to physical address translation takes place and

the information is accessed. However, if the logical page is
currently not in RAM, an address translation cannot take
place. In this case, the MMU sends a special type of interrupt
to the processor called a page fault.

When the processor detects a page fault, the operating sys-
tem intervenes and copies a page of data from the disk to the
random access memory. Finally, the operating system updates
the page-mapping table in the MMU and reruns the faulted
memory access. This arrangement is called virtual memory
because the processor appears to have a physical memory as
large as its logical address space.

Virtual memory works effectively only if, for most of the
time, the data being accessed is in physical memory.
Fortunately, accesses to programs and their data are highly
clustered. Operating systems designers speak of the 80:20
rule—for 80% of the time the processor accesses only 20% of
a program. Note that the principles governing the operation

564 Chapter 13 The operating system

Logical address space Physical address space

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Logical page Physical page

Figure 13.18 Mapping logical address

space onto physical address space.

Logical page Physical page

0 2

1 5

2 8

3 6

4 3

5 4

6 0

7 1

8 6

9 9

Table 13.1 Logical to physical address map-

ping table corresponding to Fig. 13.18.

Logical address space Physical address space

Physical page

Logical page

0

1

2

3

4

0

1

2

3

4

5

6

7

8

9

Figure 13.19 A system where physical address space � logical

address space.

of virtual memory are, essentially, the same as those
governing the operation of cache memory (described later).

When a page fault is detected, the operating system trans-
fers a new page from disk to physical memory and over-
writes a page in physical memory. If physical memory is full,
it’s necessary to discard an existing page. The most sensible
way of selecting an old page for removal is to take the page
that is not going to be required in the near future.
Unfortunately, this scheme is impossible to implement. A
simple page replacement algorithm is called the not-
recently-used algorithm, which is not optimum but it is very
easy to implement.

When a new page replaces an old page, any data in the old
page frame that has been modified since it was created must be
written back to disk. A typical virtual memory system clears a
dirty bit in the page table when the page is first created.
Whenever the processor performs a write operation to an
operand on this page, the dirty bit is set. When this page is
swapped out (i.e. overwritten by a new page), the operating

system looks at its dirty bit. If this bit is clear, nothing need be
done; if it is set, the page must be copied to disk.

Virtual memory allows the programmer to write programs
without having to know anything about the characteristics of
real memory and where the program is to be located.

13.4.2 Virtual memory and the
68K family

Members of Motorola’s 68K family are well suited to virtual
memory technology. We’ve already stated that the 68K’s archi-
tecture provides mechanisms to support operating systems.
The 68K’s protected state when S � 1 separates operating sys-
tem and application level programs (aided by the dual stack
pointer mechanism). 68K processors have a function control
output that tells an external system such as a memory manage-
ment unit whether the CPU is executing an instruction in the
user or the supervisor state.

Figure 13.20 illustrates the dialogue that takes place
between the CPU, the memory management unit (MMU),
and the memory system during a read or a write cycle. The
MMU is configured by the operating system when the com-
puter is first powered up. The operating system sets up logical
address to physical address translation tables and defines the
type of access that each page may take part in (we’ll see the
reason for this shortly).

At the start of a memory access the CPU generates a logical
address and sends it to the MMU together with the control
signals that define the type of the access (i.e. read or write,
program or data, user or supervisor mode). If the location
being accessed is not currently in the main store or is an ille-
gal access, the MMU sends an error message to the CPU to
abort the current access and to begin exception processing
and error recovery. An illegal access occurs when a process
attempts to write to a page that has been designated read-
only, or when a user program is attempting to access a page
assigned to supervisor space and the operating system.

13.4 Memory management 565

Logical page Present bit Physical page

0 1 0

1 1 3

2 0

3 1 1

4 0

5 0

6 1 2

7 1 4

8 0

9 0

Table 13.2 Logical to physical address mapping table

corresponding to Fig. 13.19.

Here's an address Access memory

The MMU translates
a logical address into
a physical address. If a
translation is not possible,
the MMU informs the CPU
that the current access
can't be completed.

Start

MMU MEMORY

(main store)

Physical address

Error
Address Check the

addressillegal
Address
ok

CPU

Logical address

Figure 13.20 Dialogue between

the CPU, MMU, and memory.

By dividing memory space into regions of different charac-
teristics, you can provide a considerable measure of security.A
user program cannot access memory space belonging to the
operating system, because an attempt to access this memory
space would result in the MMU generating an interrupt. Not
only does the processor protect the supervisor stack pointer
from illegal access by a user program, the 68K and MMU com-
bination protects the supervisor stack (and any other address
space allocated to the supervisor) from illegal access.

Figure 13.21 illustrates the structure of a memory man-
agement system in a 68K-based computer that checks
whether the address space currently being accessed is legal.
Each entry in the MMU’s page translation table contains the
details about the page’s access rights. Whenever the 68K
performs a memory access, it indicates the type of access on
its function code output pins (e.g. user/supervisor,
code/data). For example, the 68020 may say ‘I’m operating
in the user state performing a read access to data with a log-
ical address 1234567816’. The MMU compares the CPU’s
function code and the read/write signal with the informa-
tion in the currently accessed page in its mapping table. If
the access is legal, a memory access takes place. If either the
corresponding physical page is not in memory or the access
is illegal, a page fault is generated and a signal returned to
the 68K’s bus error input. In terms of the previous example,
the logical address 1234567816 might generate a page
address 1234516. If this page is in the MMU and it can be
accessed by a user-mode write, a logical-to-physical page
translation can take place.

A bus error is a special type of exception and the 68K calls
the appropriate handler in the operating system to deal with
it. A missing physical page results in the operating system

copying a page from disk to main store and then updating the
MMU. An illegal access would probably result in the offend-
ing process being suspended.

The 68K’s user/supervisor modes, exception-handling
facilities, and memory management make it a very robust
processor. Errors in a user program that would otherwise
bring the system to a halt force a switch to the 68K’s super-
visor state and allow the operating system to either repair the
damage or to terminate the faulty program. The memory
management mechanism protects the operating system from
illegal access by applications programs and even protects one
user program from access by another.

Memory management in real systems

In reality, memory management is a very complex mechan-
ism, even though the underlying concepts are very simple.
The picture we have just presented is very simplified because
we’ve omitted the detail.

A real memory management system does not normally
have a single page table; it would be a too big. If we have a
32-bit virtual address and an 8 kbyte page, the number of bits
used to specify a logical page is 32 � 13 � 19. This arrange-
ment would require a page table with 219 entries.

Figure 13.22 demonstrates how a real system solves the
page table problem by means of a hierarchical table search.
The 10 most-significant bits of the virtual address access a
first-level table. The output of the first-level table is a pointer
to a second-level table that is indexed into by 9 bits from the
virtual address. This table provides that actual physical page
number. A multilevel table scheme allows us to use the first-
level table to point to, for example, different processes, and
the second-level table to point to the pages that make up each

566 Chapter 13 The operating system

CPU access type:

Error signal
(page fault)

Address from
CPU selects
memory space

Control signals
from CPU select
space type

Error
signal

Read/write
Program/data
User/supervisor

68K CPU

Logical
address

Data bus

Address bus

Memory

management

unit (MMU)

Control signals

Main store

Space type

MMU mapping
table

Bus error Function code

Figure 13.21 Memory space matching hardware.

13.4 Memory management 567

Figure 13.22 Multiple levels of page tables.

Page
table
base

32-bit virtual address

Page number

10 bits

19 bits 13 bits

Main memory

Target operand

Physical address

19 bits

2nd level
page table

1st level
page table

Select
2nd level
table

13 bits9 bits

Page offset

MALWARE

Memory management is an important line of defense against

errors that occur when an application accesses memory space

not allocated to it. Some programs deliberately perform

operations that are unintended by the computer user; these

are collectively called malware and include viruses, worms,

Trojan horses, and spyware.

People who would never dream of going into the street and

assaulting a passer-by will quite cheerfully release programs

via the Internet that create havoc on people’s computers; they

will destroy a child’s homework, modify patient records in a

hospital, or delete a photographer’s images.They use the

excuse that they are testing people’s computer security (even

Bonnie and Clyde never claimed that they were testing bank

security) or they say that they are leading an attack on

Microsoft’s evil empire.

A virus is a program that has strong analogies with

biological viruses because it replicates itself, spreads

autonomously, mutates, and can damage its host.A virus is

introduced into a host via the Internet or via an infected

program on a floppy disk, flash memory, or CD/DVD.

A virus must be an executable program in order for it to

run and to replicate itself. In the PC world, a virus may have

the extension .exe or .pif. However, one of the strengths of

modern computer applications is the use of scripting

languages and macros that allow a user program to respond

to its environment. These facilities are employed by virus

writers to embed viruses in data used by applications

programs such as e-mails.

Viruses can be injected by ingenious techniques such as

buffer overflow.A buffer is a region of memory used to store

data. Buffer overflow occurs when the data takes more space

than that allocated by the buffer. By exploiting buffer overflow

you can fill a region of memory with code (rather than data)

and then transfer control to that code to activate the virus.

Some processors now contain hardware mechanisms to

prevent the execution of such code.

Commercially available antivirus programs are

widely available to scan memories for the signature of a

virus (a signature is the binary sequence left behind when

the code of a virus is compressed rather like a cyclic

redundancy code). Some viruses are polymorphic and

mutate as they spread, making it difficult to detect their

signature.

A Trojan horse is a program that appears harmless but

which carries out a task unknown to the user.A worm is a

program that exploits the Internet and spreads from computer

to computer generating so much traffic that the Internet can

be dramatically slowed.

Spyware is a class of program that may spread like a virus or

may be introduced as part of another program. Spyware

monitors your surfing habits (or even accesses to personal

data) and sends this information to a third party.

process. Performing a logical-to-physical address translation
to locate a physical page address is called a table walk.

The arrangement of Fig. 13.22 requires 210 level-one pages
and 29 level-two pages; that is, 3 � 29 pages. A single-level
page table would require 219 pages.

The price paid for a memory management system (espe-
cially one with multilevel tables) is the time it takes to per-
form an address translation. Practical memory mapping is
possible only because very few table accesses take place. Once
a sequence of logical-to-physical address mappings have
been performed the address translation is cached in a transla-
tion look aside buffer (TLB). The next time the same logical
page address appears, the corresponding page address is read
from the TLB to avoid a table walk. Because of the way data
and programs are structured, address translations mainly
take place using the TLB.

■ SUMMARY

The operating system is a unique topic in computer science

because nowhere else does hardware and software so closely

meet.Although most computers today see the operating system

as the GUI and the file manager, there is another part of the

operating system that lies hidden from the user. This is the

kernel that performs process switching in a multitasking system

and allocates logical address space to the available memory.

In this chapter we have shown how the multitasking can be

implemented by saving one process’s volatile portion and then

restoring another task by loading its volatile portion in the

processor’s registers.

One of the most important functions carried out by

operating systems is the management of the memory.We have

shown how logical addresses in the program can be mapped

onto locations in the immediate access memory.We have also

looked at the 68K’s user/supervisor mode facility and described

how it can be used to create secure operating systems.

■ PROBLEMS

13.1 What is an operating system?

13.2 What is the difference between a modern operating

system and a typical operating system from the 1970s?

13.3 What is the difference between operating systems on

large and small computers?

13.4 WIMP-based operating systems have largely replaced JCL-

based operating systems on PCs. Do JCL-based operating

systems such as Microsoft’s DOS 6 and UNIX have any

advantages over WIMP-based systems?

13.5 Is it necessary for a CPU to support interrupts in order to

construct an operating system?

13.6 A process in a multitasking system can be in one of three

states: running, runnable, or blocked.What does this statement

mean and what are the differences between the three states?

13.7 What is a process control block and what is the minimum

amount of information that it must store?

13.8 What are the 68K’s user and supervisor states and why

have they been implemented?

13.9 Explain why the stack is such an important data structure

and how stack errors can cause the system to crash.

13.10 The 68K provides a greater degree of protection from

user (applications) errors by implementing two stack pointers.

Explain how this protection mechanism works.

13.11 If two stack pointers are a good thing (i.e. the 68K’s user

and supervisor stack pointers), can you see advantages in having

two PCs or two sets of data registers, and so on?

13.12 What is the difference between a physical address and a

logical address?

13.13 When a new physical page is swapped into memory, one

of the existing pages has to be rejected. How is the decision to

reject an existing page made?

13.14 What is the difference between virtual memory and

cache memory?

13.15 Write a program in 68K assembly language that

periodically switches between two processes (assume these are

fixed processes permanently stored in memory).

13.16 What is the difference between pre-emptive and

non-pre-emptive operating systems? Are the various Windows

operating systems pre-emptive?

13.17 What is malware? How has it developed over the last

few years?

13.18 What hardware facilities in a computer can be used to

defeat the spread of malware?

568 Chapter 13 The operating system

14Computer communications

CHAPTER MAP

13 Operating systems
The Operating system controls

all the processor’s hardware.An

operating system is responsible

for actions ranging from

providing a user interface to

managing the memory

subsystem, controlling I/O via

the interrupt mechanism, and

supporting multitasking.We look

at the operating system because

it is the point at which hardware

and software meet.

14 Computer
communication
Computers communicate with

each other to share resources

such as printers and data. In this

chapter we look at the way in

which messages are sent from

point to point, and the protocols

or rules that govern the exchange

of data.

INTRODUCTION

Two of the greatest technologies of our age are telecommunications and computer engineering.

Telecommunications is concerned with moving information from one point to another.We take

the telecommunications industry for granted. If you were to ask someone what the greatest

technological feat of 1969 was, they might reply, ‘The first manned landing on the moon.’You

could say that a more magnificent achievement was the ability of millions of people half a million

kilometers away to watch events on the moon in their own homes.

It’s not surprising that telecommunications and computer engineering merged to allow

computers to communicate and share resources. Until the 1990s developments in

telecommunications didn’t greatly affect the average person in the same way that computer

technology had revolutionized every facet of life. Better communications meant lower telephone

bills and the cell phone.

Computer networks began as part of a trend towards distributed computing with

multicomputer systems and distributed databases. From the 1970s onward computer networks

were implemented to allow organizations such as the military, the business world, and the

academic communities to share data. Easy access to the Internet and the invention of the browser

created a revolution almost as big as the microprocessor revolution of the 1970s.The success of

the Internet drove developments in communications equipment.

This chapter examines the way in which computers communicate with each other, concentrating

more on the hardware-related aspects of computer communication than the software.

We begin with a short history of communications, concentrating on the development of long-

distance signaling systems.We then introduce the idea of protocols and standards, which play a

vital role in any communications system. Simply moving data from one point to another isn’t the

whole story. Protocols are the mutually agreed rules or procedures enabling computers to

exchange data in an orderly fashion. By implementing a suitable protocol we ensure that the data

gets to its correct destination and deal with the problems of lost or corrupted data.

The next step is to examine how digital data in serial form is physically moved from one point

to another.We look at two types of data path, the telephone network and the RS232C interface

that links together computers and peripherals. Two protocols for the transmission of serial data are

14.1 Background

It’s expensive to construct data links between computers sep-
arated by distances ranging from the other side of town to the
other side of the World. There is, however, one network that
has spanned the globe for over 50 years, the public switched
telephone network (PSTN). Some even refer to the PSTN by
the acronym POTS (plain old telephone system). The tele-
phone network doesn’t provide an ideal solution to the link-
ing of computers, because it was not originally designed to
handle high-speed digital data.

During the 1980s a considerable change in the way com-
puters were used took place. The flood of low-cost microcom-
puters generated a corresponding increase in the number of
peripherals capable of being controlled by a computer. It is
now commonplace to connect together many different com-
puters and peripherals on one site (e.g. a factory), enabling
data to be shared, control centralized, and efficiency
improved. Such a network is called a local area network (LAN).

When the PC became popular, low-cost hardware and
software were used to link PCs to the global network, the
Internet. By the late 1990s networks were no longer
the province of the factory or university—any school child

with a PC at home could access NASA’s database to see pic-
tures of the latest space shots before they got on the evening
news. Moreover, the child didn’t need to know anything
about computer science other than how to operate a mouse.

Figure 14.1 illustrates the concept of a computer network
with two interconnected local area networks. A network
performs the same function as a telephone exchange and
routes data from one computer to another. The LANs in
Fig. 14.1 might be used to share data in, for example, a uni-
versity environment. The local area networks are themselves
connected to the telephone system via hardware called a
modem. Figure 14.1 also demonstrates that a single computer
can be connected to the other networks via the PSTN.

A LAN let’s you communicate with a mainframe on a
distant site or with one of the many microprocessors and
peripherals on your own site. The local area network has
made possible the paperless office in which people pass
memos to each other via the network.

Figure 14.2 describes the type of network that you might
now see in a school, a small office, or a home. A wireless
gateway is connected to a PC via a cable. The gateway has a
connection to a cable modem that provides a high-speed link
to the Internet via a cable network. The gateway uses wireless

570 Chapter 14 Computer communications

briefly examined—a character-oriented protocol that treats data as blocks of ASCII-encoded

characters and a bit-oriented protocol that treats data as a continuous stream of bits.

The next part of this chapter is devoted to local area networks and describes the features of

some of the LANs in current use.An important aspect of LANs is the way in which the computers

and peripherals are able to share the same network without apparent conflict. The final topic in

this chapter is the wide area network (WAN) that connects computers together over distances

longer than about a mile—WANs are used to implement the Internet.

GROWTH IN HOUSEHOLDS WITH MULTIPLE PCs

When the first edition of this text appeared,

computer communications was very much a

corporate affair. Only the rich communicated

with each other. By the time the third edition

appeared, the PC had become popular and

the Internet and World Wide Web were used

by people at home. Connections to the

Internet were mainly via the public switched

telephone network, although a lucky few had

broadband connections via cable or the

telephone using ASDL.

Today, high-speed connections to the

Internet are commonplace and many homes

have several PCs. Each member of the

household may have their own PC and some

may have laptop PCs with wireless networks.

This means that many home users now have

their own private local area networks; by

1999 25% of US households had more than

one PC and this figure was expected to reach

50% by 2005.

The growth in PC ownership is driven by

several factors. More and more people are

moving from being computer literate to

being computer experts capable of

maintaining complex systems.

The cost of computing has declined in real

terms and the performance of hardware

has continued to increase.The

market has been driven by computer

games and domestic entertainment

such as home theatre and the rise

of the DVD, the camcorder, and the

digital camera.

extending over a relatively large
area such as a number of separate
sites or even part of a city.

A LAN is private A LAN belongs to
the owner of the site on which it is
operated and does not use public
data transmission equipment
such as the telephone network.
Therefore, the owner of the LAN
doesn’t have to comply with the
very complex legal restrictions and
obligations associated with a pub-
lic network. A LAN on one site can
be connected to a LAN on another
site by means of the PSTN. The
interface between the LAN and the
PSTN is called a gateway. A gate-
way is an interconnection between
two or more separate networks.

A LAN offers a high data rate The
rate at which information can be transmit-
ted across a physical channel depends on
the length and the electrical properties of
the transmission path. LANs have relatively
short transmission paths and often use
coaxial cable or a twisted pair, permitting
data rates up to 100 Mbits/s. This data
rate is very much greater than the
9600 to 56 kbits/s supported by telephone
channels.

A LAN is reliable Most LANs are relatively
simple systems with a coaxial cable connect-
ing the various nodes of the network. There
are no complex switching systems like those
associated with telephone networks. LANs
are reliable because they link systems over
short distances and aren’t subject to the
types of interference that plague the long-

haul transmission paths of the telephone network.
Furthermore, the LAN does not employ the fault- and noise-
prone mechanical or electronic message-switching techniques
associated with the telephone system. A well-designed LAN
should offer a very long MTBF (mean time between failure)
and a short MTTR (mean time to repair) if it does fail.A repair
may involve little more than replacing one of the nodes that
has failed. LANs are designed so that the failure of a single
node has no effect on the performance of the system.

A LAN is cheap LANs have been devised to connect low-cost
systems and therefore the use of expensive technology or
transmission media can’t be tolerated. LANs are not only
cheap, but require little labor in their installation. One of the
most clearly defined trends to emerge from the microprocessor

14.1 Background 571

LAN

PC

PC PC

PC

PC

PC
PC

PC

PC

LAN

PCPCPC

PSTN
PSTN

Modem Modem

Modem

Modem

Figure 14.1 The network.

Power
supply unit

Wireless gateway

 Modem

 PC

Laptop

Internet

Figure 14.2 The modern small-office network.

technology to connect one or more laptop computers to the
base machine and the Internet.

14.1.1 Local area networks

Local area networks have changed the face of modern com-
puting. The high performance and low cost of today’s LAN
makes it feasible for even the smallest organizations to link
together all their computers and allied digital equipment.
Some of the key features of a LAN are as follows.

A LAN is local The term local implies a single site—even if
the site is very large. The site may be a laboratory, a factory,
or an entire complex of factories. The term MAN (metropoli-
tan area network) has been coined to indicate a network

world is the tendency for the price of anything associated with
microprocessors to fall dramatically as time passes. If low-cost
microprocessor systems are to be linked, the local area network
chosen to do this must be cost effective.

A LAN is fair to the users A LAN should offer all its nodes full
connectivity, which means that any given node should be able
to communicate with any other node. Equally, each node
should have the same access rights to the transmission
medium, so that all nodes have the same probability that their
message will be delivered across the network.1

The nodes of a LAN should be equal When we say that all
nodes should be equal we mean that they should have the
same software and the same hardware. A corollary of this
statement is that it should be possible to add a new node to an
existing system without modifying the software at all the
other nodes.

14.1.2 LAN network topology

The topology of a network describes the way in which the
individual users of the network are linked together. There are
four basic topologies suitable for use in a LAN: the uncon-
strained topology, the star network, the bus, and the ring.
These topologies are the same topologies used to implement
the multiprocessor systems we introduced in Chapter 8.

The unconstrained network

The most general topology is the unconstrained network of
Fig. 14.3 where individual nodes are connected together in an

arbitrary fashion. Additional links can be provided to reduce
bottlenecks where heavy traffic passes between groups of
nodes. Further nodes and links can readily be added without
disturbing the existing hardware. The road network of most
countries is an unconstrained topology, with new roads being
added when and where necessary.

The disadvantage of the unconstrained topology is that a
decision must be made at each node on the best way to route
a message to its destination. In terms of the analogy with the
road system, the driver must have a road map to enable them
to drive from one place to another. A message cannot just be
transmitted from one node to each other node to which it is
connected, as this would lead to the message being multiplied
at each node and propagated round the network forever.

572 Chapter 14 Computer communications

Figure 14.3 The unconstrained topology.

1 The fairness criterion exists only at levels 1 and 2 of the ISO model
for OSI. A higher level may limit the scope of a particular node’s access
rights. We discuss the ISO model for OSI later.

COMMUNICATIONS HARDWARE

A few years ago, most computer users employed only one

piece of communications equipment; the modem, which links

computers to the telephone network.The modem itself was

invariably an external device that connected to a PC via its

serial RSC32C interface.

Today, modems are often internal devices that plug into a

PC’s motherboard. Indeed, many modem laptops come with

an internal modem as standard.

Today’s PCs are designed to connect to local area networks.

The computer uses a network interface card (NIC), to

connect to a bus called an Ethernet. Each NIC has its own

unique fixed internal address created at the time of

the card’s manufacture.This is a physical address that

identifies the computer within the network, but it is

not the address by which the computer is known

externally.

Some modern network interface cards use wireless

communications,Wi-Fi, to allow computers, laptops, and even

printers to operate over a range of between 10 m and 100 m.

Large networks require devices to amplify signals on them.

The repeater is a device that simply links two segments of a

large network together. The router simply passes information

unchanged from one segment to another.

Some organizations might have multiple networks.A bridge

is a device that links two different networks. If a computer on

a network sends data to another device on the same network,

the bridge takes no part in the communication. If, however,

the message is intended for a device on another network, the

bridge passes the message between the networks. The address

examined by a bridge is the unique media access address

given to each physical node in a network.The bridge operates

at the data link layer level of a network.

The router is an even more sophisticated network device

because it can link different types of network that may be

separated by a communications path.The bridge simply

detects information whose destination is on another network

and passes it on, whereas a router has to be able to

communicate with different types of network with different

protocols.A router operates at the network level and can

connect networks with different data link level protocols.

Routers are able to reformat packets of information before

transmitting then to another network.

Instead, each node must have its own road map and make a
decision on which link the message is to be transmitted on
the way to its destination.

Calculating the best route through the network for each
message has the computational overhead of working out
routing algorithms. Furthermore, whenever a new link or
node is added to the network, the routing information must
be changed at each node. Figure 14.4 shows how a message
may be routed through an unconstrained topology. We will
return to the topic of routing.

The star network

Figure 14.5 shows how the star network routes all messages
from source to destination via one central node and elimin-
ates the need for nodes to make routing decisions. The star
has a simple topology and has advantages when the network’s
physical topology matches its logical topology. Clearly, there
are circumstances where the nodes are distributed in such a
way that the links between some of the nodes and the central
node are economically unviable.

The star network has two obvious disadvantages. As all
messages pass through the central node, the loss of the central
node brings down the network. Other networks may offer
degraded but useful service if part of the network fails.
Furthermore, because all traffic passes through the central
node, it must be capable of working at a sufficiently high
speed to handle all nodes to which it is connected.

The bus

The bus topology is illustrated in Fig. 14.6. Both the bus and
the ring are attempts to minimize the complexity of a net-
work by both removing a special-purpose central node and
the need for individual nodes to make routing decisions.

In a bus all nodes are connected to a common data highway.
The bus may be a single path linking all nodes. A more general
form of bus consists of several interlinked buses and is called an
unrooted tree. When a message is put on the bus by a node, it
flows outwards in all directions and eventually reaches every
point in the network.The bus has one topological and one prac-
tical restriction. Only one path may exist between any two
points, otherwise there would be nothing to stop a message
flowing round a loop forever. The practical limitation is that the
bus cannot exceed some maximum distance from end to end.

The principal problem faced by the designers of a bus is how
to deal with a number of nodes wanting to use the bus at the
same time. This is called bus contention and is dealt with later.

The ring

Figure 14.7 illustrates the ring topology, in which the nodes
are connected together in the form of a ring. Like the bus, this
topology provides a decentralized structure, because no
central node is needed to control the ring. Each node simply
receives a message from one neighbor and passes it on to

its other neighbor. Messages flow in one direction round
the ring.

The only routing requirement placed on each node is that
it must be able to recognize a message intended for itself. The
ring does not suffer from contention like the bus topology.

14.1 Background 573

Destination

Source

Figure 14.4 Routing a message through an unconstrained topology.

Figure 14.5 The star topology.

Figure 14.6 The bus topology.

Figure 14.7 The ring topology.

However, a node on the ring has the problem of how to inject
a new message into the existing traffic flow.

A ring is prone to failure because a broken link makes it
impossible to pass messages all the way round the ring. Some
networks employ a double ring structure with two links
between each node. If one of the links is broken it is possible
for the ring to reconfigure itself and bypass the failure.

14.1.3 History of computer
communications

Before we describe computer networks, it’s instructive to
take a short look at the history of data transmission. Some
think that electronics began in the 1960s or even later.
Telecommunications predates the electronic digital com-
puter by over a century and its history is just as exciting as the
space race of the 1960s. Key players were engineers every bit
as great as Newton or Einstein.

At the beginning of the nineteenth century, King
Maximilian in Bavaria had seen how the French visual sema-
phore system helped Napoleon’s military campaigns. In 1809
Maximilian asked the Bavarian Academy of Sciences to look
for a way to communicate over long distances. As a result,
Samuil T. von Sömmering designed a crude telegraph that
used a conductor (one for each character) that required 35
parallel wires. How was information transmitted in a
pre-electronic age? If you pass electricity through water con-
taining a little acid the electric current breaks down the water
into oxygen and hydrogen. Sömmering’s telegraph worked by
detecting the bubbles that appeared in a glass tube containing
acidified water when electricity was passed through it.
Sömmering’s telegraph wasn’t exactly suited to high-speed
transmission—but it was a start.

Hans C. Oersted made the greatest leap forward in elec-
trical engineering in 1819 when he discovered that an electric
current creates a magnetic field round a conductor.
Conversely, a moving magnetic field induces an electric
current in a conductor.

A major driving force behind early telecommunications
systems was the growth of the rail network. A system was
required to warn stations down the line that a train was arriv-
ing. Charles Wheatstone and Charles William Cooke

invented a telegraph in 1828 that used the magnetic field
round a wire to deflect a compass needle. By 1840 a 40-mile
stretch between Slough and Paddington in London had been
linked using the Wheatstone and Cooke telegraph.

Figure 14.8 illustrates the operation of a different type of
telegraph that produces a sound rather than the deflection of
compass needles. When the key is depressed, a current flows
in the circuit magnetizes the iron core inside the coil, and
energizes the solenoid. The magnetized core attracts a small
iron plate that produces an audible click as it strikes the core.
Information is transmitted to this type of telegraph in the
form of the Morse code.

Samuel Morse constructed his code from four symbols: the
dot, the dash (whose duration is equal to three dots), the
space between dots and dashes, and the space between words.
Unlike simple codes, the Morse code is a variable length code.
The original Morse key didn’t send a ‘bleep’—a dot was the
interval between two closely spaced clicks and a dash the
interval between two more widely spaced clicks. In other
words, the operator had to listen to the space between clicks.

In 1843 Morse sent his assistant Alfred Vail to the printer’s
to count the relative frequencies of the letters they were using
to set up their press. Morse gave frequently occurring letters
short codes and infrequently occurring letters were given long
symbols; for example, the code for E is • and Q is — —• —.
It’s interesting to note that the Morse code is relatively close to
the optimum Huffman code for the English language.

The very first long-distance telecommunications networks
were designed to transmit digital information from point
to point (i.e. on–off telegraph signals). Information was
transmitted in binary form using two signal levels
(current � mark, no current � space). The transmitter was
the Morse key and the receiver was the Morse telegraph.

The first long-distance data links

We take wires and cables for granted. In the early nineteenth
century, plastics hadn’t been invented and the only materials
available for insulation and waterproofing were things like
asphaltum. In 1843 a form of rubber called gutta percha was
discovered and was used to insulate the signal-carrying path
in cables. The Atlantic Telegraph Company created an insu-
lated cable for underwater use containing a single copper

574 Chapter 14 Computer communications

Iron core

Coil

Iron

Telegraph line

Spring

Battery Morse key

Figure 14.8 The telegraph.

conductor made of seven twisted strands, surrounded by
gutta percha insulation. This cable was protected by 18
surrounding iron wires coated with hemp and tar.

Submarine cable telegraphy began with a cable crossing
the English Channel to France in 1850. Alas the cable failed
after only a few messages had been exchanged. A more
successful attempt was made the following year.

Transatlantic cable laying from Ireland began in 1857 but
was abandoned when the strain of the cable descending to
the ocean bottom caused it to snap under its own weight. The
Atlantic Telegraph Company tried again in 1858. Again, the
cable broke after only 3 miles but the two cable-laying ships
managed to splice the two ends. After several more breaks
and storm damage, the cable reached Newfoundland in
August 1857.

It soon became clear that this cable wasn’t going to be a
commercial success because the signal was too weak to detect
reliably (the receiver used the magnetic field from current in
the cable to deflect a magnetized needle). The original voltage
used to drive a current down the cable was approximately
600 V. So, they raised the voltage to about 2000 V to drive
more current along the cable. Such a high voltage burned
through the primitive insulation, shorted the cable, and
destroyed the first transatlantic telegraph link after about
700 messages had been transmitted in 3 months.

In England, the Telegraph Construction and Maintenance
Company developed a new 2300-mile-long cable weighing
9000 tons, which was three times the diameter of the failed
1858 cable. Laying this cable required the largest ship in the
world. After a failed attempt in 1865 a transatlantic link was
established in 1866.

During the nineteenth century the length of cables
increased as technology advanced. It soon became apparent
that signals suffer distortion during transmission. The 1866
transatlantic telegraph cable could transmit only eight words
per minute. By the way, it cost $100 in gold to transmit
20 words (including the address) across the first transatlantic
cable.

A sharply rising pulse at the transmitter end of a cable is
received at the far end as a highly distorted pulse with long
rise and fall times. The sponsors of the transatlantic cable
project were worried by the effect of this distortion and the
problem was eventually handed to William Thomson at the
University of Glasgow.

Thomson was one of the nineteenth century’s greatest sci-
entists who published more than 600 papers. He developed
the second law of thermodynamics and created the absolute
temperature scale. The unit of temperature with absolute
zero at 0 K is called the kelvin in his honor—Thomson later
became Lord Kelvin. Thomson worked on the dynamical
theory of heat and carried out fundamental work in hydro-
dynamics. His mathematical analysis of electricity and
magnetism covered the basic ideas for the electromagnetic

theory of light. I’m not certain what he did in his spare time.
One of Thomson’s most quoted statements that still applies
today was:

I often say when you can measure what you are speaking about and
express it in numbers, you know something about it, but when you can-
not measure it, when you cannot express it in numbers, your knowledge
of it is of a meager and unsatisfactory kind.

In 1855 Thomson presented a paper to the Royal Society
analyzing the effect of pulse distortion, which became the
cornerstone of what is now called transmission line theory.
The cause of the problems investigated by Thomson lies in
the physical properties of electrical conductors and insula-
tors. At its simplest, the effect of a transmission line is to
reduce the speed at which signals can change state.
Thomson’s theories enabled engineers to construct data links
with much lower levels of distortion.

Origins of the telephone network

In 1872 Alexander Graham Bell who had recently emigrated
to the USA started work on a method of transmitting several
signals simultaneously over a single line. Bell’s project was
called the harmonic telegraph. This project failed, but it did
lead to the development of the telephone in 1876. Note that
development of the telephone is a complex story and Bell is
no longer recognized as the sole inventor of the telephone.

A network designed to transmit intelligible speech
(as opposed to hi-fi) must transmit analog signals in the
frequency range 300 to about 3300 Hz (i.e. the so-called
voice-band). Consequently, the telephone network now link-
ing millions of subscribers across the World can’t be used
to directly transmit digital data that requires a bandwidth
extending to zero frequency (i.e. d.c.). If the computer had
been invented before the telephone, we wouldn’t have had
this problem. Transmission paths that transmit or pass sig-
nals with frequency components from d.c. to some upper
limit are called baseband channels. Transmission paths that
transmit frequencies between a lower and an upper
frequency are called bandpass channels.

Digital information from computers or peripherals must
be converted into analog form before it is transmitted across
a bandpass channel such as the PSTN. At the receiving end of
the network, this analog signal is reconverted into digital
form. The device that converts between digital and analog
signals over a data link is called a modem (i.e.
modulator–demodulator). Ironically enough, all the long-
haul links on modern telephone networks now transmit dig-
ital data, which means that the analog signal derived from the
digital data must be converted to digital form before trans-
mission over these links. It is probable that the PSTN will
become entirely digital and speech will be converted to digi-
tal form within the subscriber’s own telephone. Indeed, the
only analog link in many telephone systems is just the

14.1 Background 575

connection between the subscriber and the local exchange.
This link is sometimes called the last mile.

Although the first telegraph systems operated from point
to point, the introduction of the telephone led to the devel-
opment of switching centers, or telephone exchanges. The
first-generation of switches employed a telephone operator
who manually plugged a subscriber’s line into a line con-
nected to the next switching center in the link. By the end of
the nineteenth century, the infrastructure of the computer
networks was already in place.

In 1897 an undertaker called Almon Strowger invented the
automatic telephone exchange that used electromechanical
devices to route calls between exchanges. When a number
was dialed, a series of pulses were sent down the line to a
rotary switch. If you dialed, for example 5, the five pulses
would move a switch five steps to connect you to line number
five, which routed your call to the next switching center.
Consequently, when you called someone the number you
dialed depended on the route though the system. A system
was developed where each user could be called with the same
number from anywhere and the exchange would automati-
cally translate this number to the specific numbers required
to perform the routing. Mechanical switching was gradually
replaced by electronic switching and the pulse dialing that
actually operated the switches gave way to the use of tones
(i.e. messages to the switching computers).

By the time the telegraph was well established, radio was
being developed. James Clerk Maxwell predicted radio waves
in 1864 following his study of light and electromagnetic
waves. Heinrich Hertz demonstrated the existence of radio
waves in 1887 and Guglielmo Marconi is credited with being
the first to use radio to span the Atlantic in 1901.

In 1906 Lee deForest invented the vacuum tube amplifier.
Without a vacuum tube (or transistor) to amplify weak
signals, modern electronics would have been impossible
(although primitive computers using electromechanical
devices could have been built without electronics).

The telegraph, telephone, and vacuum tube were all steps
on the path to the development of computer networks. As
each of these practical steps was taken, there was a corre-
sponding development in the accompanying theory (in the
case of radio, the theory came before the discovery).
Table 14.1 provides a list of some of the most significant dates
in the early development of long-distance communications
systems.

Computer communications is a complex branch for com-
puting because it covers so many areas. A programmer drags
an icon from one place to another on a screen. This action
causes the applications program to send a message to the
operating system that might begin a sequence of transactions
resulting in data being retrieved from a computer half way
around the World. Data sent from one place to another has to
be encapsulated, given an address, and sent on its way. Its
progress has to be monitored and its receipt acknowledged. It
has to be formatted in the way appropriate to the transmis-
sion path. All these actions have to take place over many dif-
ferent communications channels (telephone, radio, satellite,
and fiber optic cable). Moreover, all the hardware and soft-
ware components from different suppliers and constructed
with different technologies have to communicate with each
other.

The only way we can get such complex systems to work is
to create rules or protocols that define how the various
components communicate with each other. In the next
section we look at these rules and the bodies that define them.

14.2 Protocols and computer
communications

Communication between two computers is possible
provided that they employ standard hardware and software
conforming to agreed standards. Much of computer

576 Chapter 14 Computer communications

BANDWIDTH AND COMMUNICATION

If a signal conveys information, it must change over time.The

minimum amount of information carried by a signal is the bit,

which has two values, true and false or 1 and 0.When we

change the state or level of the signal, we transmit a new

value. Transmission speed is defined by both the number of

changes in signal level we transmit per second and the number

of different signal levels used to represent data.We can use

signals with more that two valid levels. Consider the following

example.

In the second case, each of the symbols A, B, C, D carries

two bits of information because the symbol is one out of four,

rather than one out of two. If symbols are transmitted at the

same rate in each case, the four-level signal transmits

information at twice the rate of a single level system.

Data rate is defined as the number of times a signal can be

switched per second multiplied by the number of bits needed to

encode all the levels that the signal can assume. Suppose a signal

can have 16 different values or levels and is transmitted as 2400

symbols (values) per second, the data rate is 2400 � 4 � 9600

bits per second. Note that the switching rate (2400 in this case)

is called the Baud rate after the

French communications pioneer.

1 0 1 1 1 0 1 0 0 0 binary signal (two levels 0 and 1)

A C B B A D A D D C four-level signal (four levels A � 00, B � 01, C � 10, and D � 11)

communications is concerned with how computers go about
exchanging data, rather than with just the mechanisms used
to transmit data. Therefore, the standards used in computer
communications relate not only to the hardware parts of a
communication system (i.e. the plugs and sockets connecting
a computer to a transmission path, the transmission path
itself, the nature of the signals flowing along the transmission
path), but to the procedures or protocols followed in trans-
mitting the information.

Most readers will have some idea of what is meant by a
standard, but they may not have come across the term

protocol as it is used in computer communications. When any
two parties communicate with each other (be they people or
machines), they must both agree to abide by a set of unam-
biguous rules. For example, they must speak the same lan-
guage and one may start speaking only when the other
indicates a readiness to listen.

Suppose you have a bank overdraft and send a check to
cover it. If after a few days you receive a threatening letter
from the manager, what do you conclude? Was your check
received after the manager’s letter was sent? Has one of your
debits reached your account and increased the overdraft? Was

14.2 Protocols and computer communications 577

1837 Charles Wheatstone patents the electric telegraph.

1844 Samuel Morse demonstrates a Baltimore to Washington, DC, telegraph link.

1847 An inelastic latex called gutta percha is discovered. It serves as a reliable insulator in water.

1850 Morse patents his telegraph.

1858 First transatlantic telegraph.

1861 First USA transcontinental telegraph cable begins service.

1864 James C. Maxwell predicts electromagnetic radiation.

1868 First successful transatlantic telegraph cable completed between UK and Canada.

1874 Jean-Maurice-Emile Baudot invents a division multiplexing scheme for telegraphs.

1875 Typewriter invented.

1876 Alexander Graham Bell patents the telephone.

1887 Heinrich Hertz discovers radio waves and verifies Maxwell’s theory.

1906 Lee deForest invents the vacuum tube triode (an amplifier).

1915 USA transcontinental telephone service begins between New York and San Francisco.

1920s Catalina Island telephone service to mainland via radio system.

1921 Radio telephone calls between England and Norway implemented.

1927 First commercial transatlantic radio telephone service begins.

1945 Arthur C. Clarke proposes using Earth-orbiting satellite as a communications relay.

1947 The transistor invented at Bell laboratories.

1948 Claude Shannon publishes his work on information theory (related to channel capacity).

1949 High-performance submarine cable developed by AT&T using polyethylene and butyl rubber dielectric.

1956 First transatlantic telephone cables.A total of 102 repeater (vacuum tube) amplifiers were used.

1957 USSR launches first satellite, Sputnik 1.

1962 First television satellite launched,Telstar 1.

1965 First commercial communications satellite launched, Early Bird (INTELSAT 1).

1966 Fiber optics first proposed.

1971 First large-scale computer network,ARPANET, comes into service.

1970s ALOHA local area network developed for the Hawaiian islands.

1973 Bob Metcalfe develops the Ethernet.

1980 OSI 7-layer reference model (for networks) adopted.

1980 Bell Systems develop fiber optic cables.

1988 First fiber optic transatlantic cable.

1993 IPv4 � (Internet protocol version 4) developed as the backbone of the Internet.

1990s By the end of the 1990s, 56K bps modems were widely available for use over the PTSN.

1997 The introduction of WiFi and the IEEE 802.11 standard.

Table 14.1 Key dates in the early developments in telecommunications.

the check lost in the post? This confusion demonstrates that
the blind transmission of information can lead to unclear
and ill-defined situations. It is necessary for both parties to
know exactly what messages each has, and has not, received.
We need a set of rules to govern the interchange of letters.

Such a set of rules is called a protocol and, in the case of
people, is learned as a child. When computers communicate
with each other, the protocol must be laid down more for-
mally. If many different computers are to communicate with
each other, it is necessary that they adhere to standard proto-
cols that have been promulgated by national and interna-
tional standards organizations, trade organizations, and
other related bodies.

In the 1970s and 1980s the number of computers and
the volume of data to be exchanged between computers
increased dramatically. Manufacturers were slow to agree on
and to adopt standard protocols for the exchange of data,
which led to incompatibility between computers. To add
insult to injury, it was often difficult to transfer data between
computers that were nominally similar. Computers frequently
employed different dialects of the same high-level language
and formatted data in different ways, encoded it in different
ways, and transmitted it in different ways. Even the builders
of the Tower of Babel had only to contend with different lan-
guages. The development of standard protocols has much
improved the situation.

The issue of standardization arises not only in the world of
computer communications. Standardization is an important
part of all aspects of information technology. For example,
the lack of suitable standards or the non-compliance with
existing standards has a dampening effect on the progress of
information technology. Independent manufacturers do not
wish to enter a chaotic market that demands a large number
of versions of each product or service produced to cater for all
the various non-standard implementations. Similarly, users
do not want to buy non-standard equipment or services that
do not integrate with their existing systems.

14.2.1 Standards bodies

If a computer user in Middlesbrough, England accesses a
computer in Phoenix, Arizona the two computers must
cooperate. The commands and data sent by one computer
must be recognized and complied with by the other com-
puter. The protocols governing the communications process
are formalized in a document called a standard. All aspects of
the communications system must be standardized—from the
communications protocol to the nature of the signals on the
communications path to the plugs and sockets that connects
the computer to the network.

How do the components of a network get standardized?
There are two types of standards. One is the de facto or indus-
trial standard that’s imposed by a manufacturer. Microsoft’s

Windows operating system is an example of an industrial stan-
dard. The success of Windows has encouraged its adoption as a
standard by most PC manufacturers and software houses.

The other type of standard is a national or international
standard that has been promulgated by a recognized body.
There are international standards for the binary representa-
tion of numbers. When the decimal number nine is transmit-
ted over a network, it is represented by its universally agreed
international standard, the binary pattern 00111001.

The world of standards involves lots of different parties
with vested interests at local, national, and international
levels. A standard begins life in a working party in a profes-
sional organization such as the Institute of Electrical and
Electronic Engineers (IEEE) or the Electronic Industries
Association (EIA). The standard generated by a professional
body is forwarded to the appropriate national standards body
(e.g. the American National Standards Institute (ANSI) in the
USA, the British Standards Institute (BSI) in the UK, or DIN
in Germany). The standard may reach the International
Standards Organization (ISO) made up of members from the
World’s national standards organizations.

14.2.2 Open systems and standards

The International Standards Organization (ISO) has con-
structed a framework for the identification and design of
protocols for existing or for future communications systems.
This framework enables engineers to identify and to relate
together different areas of standardization. The OSI frame-
work doesn’t imply any particular technology or method of
implementing systems.

This framework is called the Reference Model for Open
Systems Interconnection (ISO model for OSI) and refers to an
open system, which, in the ISO context, is defined as

a set of one or more computers together with the software, peripherals,
terminals, human operators, physical processes and means of data
transfer that go with them, which make up a single information
processing unit.

The expression open system means a system that is open to
communication with other open systems. A system is open
only if it employs agreed protocols when it communicates
with the outside world. It does not have to employ standard
protocols for communications within the system itself. An
analogy with an open system is a television receiver because it
is open to the reception of sound and pictures from trans-
mitters using the agreed protocol (e.g. 525 lines/frame,
60 fields/s, NTSC color in the USA or 625 lines/frame,
50 fields/s, PAL color in the UK). A pocket calculator is a
closed system because it is unable to receive inputs from
other systems.

The ISO reference mode isolates the specific functions per-
formed by the communications system from all other aspects
of the system. Once these functions have been isolated, you

578 Chapter 14 Computer communications

can devise standards for them. In this way, any manufacturer
can produce equipment or software that performs a particu-
lar function. If designers use hardware and software con-
forming to well-defined standards, they can create an
information transmission system by putting together all the
necessary parts. These parts may be obtained from more than
one source. As long as their functions are clearly defined and
the way in which they interact with other parts is explicitly
stated, they can be used as the building blocks of a system.

Figure 14.9 illustrates the structure of the ISO reference
model for OSI, where two parties, A and B, are in communi-
cation with each other. The ISO model divides the task of
communicating between two points between seven layers of
protocol. Each layer carries out an action or service required
by the layer above it. The actions performed by any given
layer of the reference model are precisely defined by the ser-
vice for that layer and require an appropriate protocol for the
layer between the two points that are communicating. This
view conforms to current thinking about software and is
strongly related to the concept of modularity.

In everyday terms, consider an engineer in one factory who
wishes to communicate with an engineer in another factory.

The engineer in the first factory describes to an assistant the
nature of some work that is to be done. The assistant then
dictates a letter to a secretary who, in turn, types the letter and
hands it to a courier. Here, the original task (i.e. communi-
cating the needs of one engineer to another) is broken down
into subtasks, each of which is performed by a different
person. The engineer doesn’t have to know about the actions
carried out by other people involved in the exchange of data.
Indeed, it does not matter to the engineer how the informa-
tion is conveyed to their counterpart.

In the ISO model, communication between layers within a
system takes place between a layer and the layers immediately
above and below it. Layer X in System A communicates
only with layers X � 1 and X � 1 in System A (see Fig. 14.9).
Layer 1 is an exception, because there’s no layer below it.
Layer 1 communicates only with layer 2 in A and with the
corresponding layer 1 in B at the other end of the communi-
cations link. In terms of the previous analogy, the secretary
who types the letter communicates only with the assistant
who dictates it and with the courier who transports it.
Fig. 14.10 illustrates this example in terms of ISO layers,
although this rather simple example doesn’t correspond
exactly to the ISO model. In particular, layers 3 to 6 are repre-
sented by the single layer called assistant.

Another characteristic of the ISO model is the apparent or
virtual link between corresponding layers at each end of the
communication channel (this link is also called peer to peer).
Two corresponding layers at two points in a network are
called peer subsystems and communicate using layer proto-
cols. Therefore, a message sent by layer X at one end of the
link is in the form required by the corresponding layer X at
the other end. It appears that these two layers are in direct
communication with each other, as they are using identical
protocols. In fact, layer X at one end of the link is using the
layers below it to transmit the message across the link. At the
other end, layer 1 and higher layers process the message until
it reaches layer X in the form it left layer X at the other end of
the link. Returning to our analogy, the secretary at one
factory appears to communicate directly with the secretary at
the other factory, because the language used in the letter is
appropriate to the task being performed by the two
secretaries.

We now look at the functions performed by the seven
layers of the ISO reference model for open systems interconnec-
tion, starting with the uppermost layer, the application layer.

The application layer

The highest layer of the ISO reference model is the application
layer, which is concerned with protocols for applications pro-
grams (e.g. file transfer, electronic mail). This layer represents
the interface with the end user. Strictly speaking, the OSI ref-
erence model is concerned only with communications and
does not represent the way in which the end user employs the

14.2 Protocols and computer communications 579

Station A Station B

Virtual link

Virtual link

Virtual link

Virtual link

Virtual link

Virtual link

Virtual link

Level 3
Network layer

Level 2
Data link layer

Level 1
Physical layer

Level 1
Physical layer

Level 2
Data link layer

Level 3
Network layer

Level 7
Application layer

Level 7
Application layer

Level 6
Presentation layer

Level 6
Presentation layer

Level 5
Session layer

Level 5
Session layer

Level 4
Transport layer

Level 4
Transport layer

Figure 14.9 The basic reference model for open systems

interconnection.

information. The protocol observed by the two users in
the application layer is determined entirely by the nature of
the application. Consider the communication between two
lawyers when they are using the telephone. The protocol used
by the lawyers is concerned with the semantics of legal jargon.
Although one lawyer appears to be speaking directly to
another, they are using another medium involving other pro-
tocols to transport the data. In other words, there is no real
person-to-person connection but a virtual person-to-person
connection built upon the telephone network.

Another example of an application process is the operation
of an automatic teller at a bank. The operator is in communi-
cation with the bank and is blissfully ignorant of all the tech-
nicalities involved in the transaction. The bank asks the user
what transaction they wish to make and the user indicates the
nature of the transaction by pushing the appropriate button.
The bank may be 10 m or 1000 km away from the user. The
details involved in the communication process are entirely
hidden from the user; in the reference model the user is
operating at the applications level.

The presentation layer

The application layer in one system passes information to the
presentation layer below it and receives information back
from this layer. Recall that a layer at one end of a network
can’t communicate directly with the corresponding layer at
the other end. Each layer except one communicates with only
the layer above it and with the layer below it. At one end of the
communications system the presentation layer translates
data between the local format required by the application
layer above it and the format used for transfer. At the other
end, the format for transfer is translated into the local format
of data for the application layer. By format we mean the way
in which the computer represents information such as char-
acters and numbers.

Consider another analogy. A Russian diplomat can phone
a Chinese diplomat at the UN, even though neither speaks
the other’s language. Suppose the Russian diplomat speaks to
a Russian-to-English interpreter who speaks to an English-
to-Chinese interpreter at the other end of a telephone link,
who, in turn, speaks to the Chinese diplomat. The diplomats
represent the applications layer process and talk to each other
about political problems. They don’t speak to each other
directly and use a presentation layer to format the data before
it is transmitted between them. The Chinese-to-English and
English-to-Russian translators represent the presentation
layer.

This analogy illustrates an important characteristic of the
OSI reference model. The English-to-Chinese translator may
be a human or a machine. Replacing one with the other has
no effect on the application layer above it or on the informa-
tion transfer layers below it. All that is needed is a mechanism
that translates English to Chinese, subject to specified perfor-
mance criteria.

The presentation layer’s principal function is the transla-
tion of data from one representation to another. This layer
performs other important functions such as data encryption
and text compression.

The session layer

Below the presentation layer sits the session layer. The session
layer organizes the dialogue between two presentation layers.
It establishes, manages, and synchronizes the channel
between two application processes. This layer provides dia-
logue control of the type, ‘Roger, over’, in radio communica-
tions, and the mechanisms used to synchronize application
communications (but synchronization actions must be initi-
ated at the application layer). The session layer resolves colli-
sions between synchronization requests. An example is
‘. . . did you follow that? . . .’, ‘. . . then I’ll go over it again.’

The transport layer

The four layers below the session layer are responsible for car-
rying the message between the two parties in communica-
tion. The transport layer isolates the session and higher layers
from the network itself. It may seem surprising that four lay-
ers are needed to perform such an apparently simple task as
moving data from one point in a network to another point.
We are talking about establishing and maintaining connec-
tions across interlinked LANs and wide area networks with,
possibly, major differences in technology and performance—
not just communications over a simple wire. The reference
model covers both LANs and WANs that may involve com-
munication paths across continents and include several dif-
ferent communications systems. Figure 14.11 shows how the
ISO model for OSI caters for communications systems with
intermediate nodes.

580 Chapter 14 Computer communications

Level 2
Typist

Level 1
Courier

Level 1
Courier

Level 2
Typist

Real connection

Level 7
Engineer

Level 7
Engineer

Level 3–6
Assistant

Level 3–6
Assistant

Figure 14.10 Illustrating the concept of layered protocols.

The transport layer is responsible for the reliable transmis-
sion of messages between two application nodes of a network
and for ensuring that the messages are received in the order in
which they were sent. The transport layer isolates higher lay-
ers from the characteristics of the real networks by providing
the reliable economic transmission required by an applica-
tion independent of the characteristics of the underlying
facilities (for example, error detection/correction, multiplex-
ing to reduce cost, splitting to improve throughput, and mes-
sage reordering). The transport layer doesn’t have to know
anything about how the network is organized.

Packet switching networks divide information into units
called packets and then send them across a complex network
of circuits. Some packets take one route through the network
and others take another. Consequently, it is possible for pack-
ets to arrive at their destination out of sequence. The trans-
port layer must assemble packets in the correct order, which
involves storing the received out-of-sequence packets until
the system is ready for them.

The network layer

The network layer serves the transport layer above it by con-
veying data between the local transport layer and the remote
transport layer. The network layer is system dependent unlike

the layers above it. Complex communications systems may
have many paths between two points. The network layer
chooses the optimum path for a message to cross the network
or for the establishment of a virtual connection. As an anal-
ogy, consider the postal system. Mail sent to a nearby sorting
office might be directed to a more distant sorting office if the
local office is congested and cannot cope with the volume of
traffic. Similarly, in a data transmission network, transmis-
sion paths are chosen to minimize the transit time of packets
and the cost of transmission.

The data link layer

The data link layer establishes an error-free (to a given prob-
ability) connection between two adjacent points in a net-
work. Information may be transmitted from one end of a
network to the other end directly or via intermediate nodes in
a series of hops. The data link layer at one node receives a
message from the network layer above it and sends it via
the physical layer below it to the data link layer at the adja-
cent node.

The data link layer also detects faulty messages and auto-
matically asks for their retransmission. Protocols for the data
link layer and the physical layer below it were the first proto-
cols to be developed and are now widely adopted. Data link

14.2 Protocols and computer communications 581

Station A

Virtual link

Virtual link

Virtual link

Virtual link

Intermediate node Intermediate node

Level 3
Network layer

Level 2
Data link layer

Level 1
Physical layer

Level 5
Session layer

Level 4
Transport layer

Station B

Level 3
Network layer

Level 2
Data link layer

Level 1
Physical layer

Level 5
Session layer

Level 4
Transport layer

Level 7
Application layer

Level 6
Presentation layer

Level 7
Application layer

Level 6
Presentation layer

Level 3
Network layer

Level 2
Data link layer

Level 1
Physical layer

Level 1
Physical layer

Level 2
Data link layer

Level 3
Network layer

Figure 14.11 Networks with

intermediate nodes between

end stations.

layer protocols cover many different technologies: LANs
(for example Ethernet-type networks using CMSA/CD) and
WANs (for example X.25). Systems often divide this layer
into two parts, a higher level logical link control (LLC) and a
lower level medium access control (MAC).

The physical layer

The lowest layer, the physical layer, is unique because it pro-
vides the only physical connection between any two points in
a network. The physical layer is responsible for receiving the
individual bits of a message from the data link layer and for
transmitting them over some physical medium to the adja-
cent physical layer, which detects the bits and passes them to
the data link layer above it. The physical layer ensures that bits
are received in the order they are transmitted.

The physical layer handles the physical medium (e.g. wire,
radio, and optical fiber) and ensures that a stream of bits gets
from one place to another. The physical layer also imple-
ments the connection strategy. There are three fundamental
connection strategies. Circuit switching establishes a perma-
nent connection between two parties for the duration of the
information transfer. Message switching stores a message tem-
porarily at each node and then sends it on its way across the
network. Circuit switching uses a single route through the
network, whereas in message switching different messages
may travel via different routes. Packet switching divides a mes-
sage into units called packets and transmits them across the
network. Packet switching doesn’t maintain a permanent
connection through the network and is similar to message
switching.

Packet switching comes in two forms, the datagram and
the virtual circuit. A datagram service transmits packets

independently and they have to be reassembled at their des-
tination (they may arrive out of order). A virtual circuit first
establishes a route through the network and then sends all
the packets, in order, via this route. The difference between
circuit switching and a virtual circuit is that message
switching requires a connection for the duration of the con-
nection, whereas the virtual circuit can be used by other
messages.

The service offered by the physical layer is a best effort ser-
vice because it doesn’t guarantee reliable delivery of messages.
Information sent on the physical medium might be lost or
corrupted in transit because of electrical noise interfering
with the transmitted data. On radio or telephone channels
the error rate may be very high (1 bit lost in 103 transmitted
bits), whereas on fiber optic links it may be very low (1 bit lost
in 1012). Layers on top of the physical layer deal with imper-
fections in this layer. The physical communication path may
be copper wires, optical fibers, microwave links, or satellite
links.

Remember that the ISO reference model permits modifi-
cations to one layer without changing the whole of a network.
For example, the physical layer between two nodes can be
switched from a coaxial cable to a fiber optic link without any
alterations whatsoever taking place at any other level. After
all, the data link layer is interested only in giving bits to, or
receiving them from, the physical layer. It’s not interested in
how the physical layer goes about its work.

Standards and the ISO reference model for OSI

Figure 14.12 shows how actual standards for the layers of the
reference model have grown. This figure is hourglass shaped.
The bottom is broad to cater for the many low-level protocols

582 Chapter 14 Computer communications

MESSAGE ENCAPSULATION

Data

Transport layer header

Network layer header Transport layer header Data Trailer

Data Trailer

(a) Data at the applications layer

(b) Data at the transport layer

(c) Data at the network layer

How do layered protocols deal with messages? In short, a

higher layer wraps up a message from a lower layer in its own

data structure.

The figure demonstrates how information is transported

across a network by means of a system using layered

protocols. In (a) we have the application-level data that is to

be transmitted from one computer to another. For the sake of

simplicity, we’ll assume that there aren’t any presentation or

session layers. The applications layer passes the data to the

transport layer, which puts a header in front of the data and a

trailer after it. The data has now been encapsulated in the

same way that we put a letter into an envelope.The header

and trailer include the address of the sender and the

receiver.

The packet from the transport layer is handed to the

network layer which, in turn, adds its own header and trailer.

This process continues all the way down to the physical layer.

Now look at the process in reverse.When a network later

receives a packet from the data link layer below it, the network

layer strips off the network layer header and trailer and uses

them to check for errors in transmission and to decide how to

handle this packet. The network layer then hands the packet to

the transport later about it, and so on.

System and network management

File tansfer

Videotex syntax

CCITT message
Encryption

ISO/CCITT session protocol

ISO/CCITT transport protocol

Connectionless mode

Bridges

Gateway (public to private)

User-defined syntax

Business data exchange Electronic funds transfer
Application layer standards

Job transfer
Virtual terminal

Command languages

X.25

Lap B
HDLC

CSMA/CD Token ring
V24

Tokenbus

Physical layer standards

RS232
RS499 X24/X21

SDLC LLC

BSC

Figure 14.12 Standards for

the layers of the basic

reference model.

introduced to deal with diverse types of channel, technology,
and network, whereas the middle is narrow because it’s desir-
able to have as few protocols as possible to move information
around a network. The top is wide because it reflects the great
range of applications of LANs.

The ISO reference model for OSI isn’t quite as popular
today as it was in the 1980s. It was anticipated that most stan-
dards for networks would fit within the OSI framework. That
hasn’t happened. Many of today’s standards are propriety
(ad hoc or industrial) and don’t conform closely to the OSI
model. Some of the current standards such as the Internet
TCP/IP protocol are layered even if the layers don’t corre-
spond exactly to the seven layers we’ve just described.
Figure 14.13 shows the Internet protocol stack alongside the
ISO reference model.

Because this text is devoted to the hardware aspects of
computers, we look more closely at the bottom two layers of the
reference model—the physical layer and the data link layer.

14.2 Protocols and computer communications 583

Level 2
Data link layer

Level 1
Physical layer

Network
access protocol

(a) ISO protocol stack. (b) Internet protocol stack.

Level 7
Application layer

Level 6
Presentation layer

Level 5
Session layer

Application layer

Level 4
Transport layer

Level 3
Network layer

Transmission
control

Internet
protocol

Figure 14.13 ISO and Internet layers.

14.3 The physical layer

Figure 14.14 illustrates the physical links connecting together
two stations, User A and User B. A station is a point in a
network that communicates with another point in the net-
work. Alternative words for station are node, receiver, trans-
mitter, or host. Before we can consider the factors influencing
the design of a physical channel, it’s necessary to look at the
function it performs.

A physical channel is the actual transmission path connect-
ing two stations and may be a wire link, a radio link, or any
other suitable medium. A logical channel is an apparent trans-
mission path linking two stations but which may not actually
exist. Of course, a logical channel is made up of one or more
physical channels operating in tandem. However, the charac-
teristics of a logical channel may be very different from those
of the physical channels of which it is composed.

We can describe a physical channel under three headings:

● the signal path itself

● the mechanical interface to the signal path

● the functionality of the channel.

The signal path is concerned with the way in which data is
to be transmitted electronically over a channel and the nature
of the signal flowing across the channel must be defined; for
example, we must ask what signal levels constitute logical 1s
and logical 0s.

A second and less obvious consideration concerns the
mechanical arrangement of the link. What type of plugs and
sockets does it use to connect the node with the transmission
path? Standard connectors are as vital as standard signal
levels, if the equipment at the end of a link is to be readily
interchangeable with equipment from several different
manufacturers.

The third aspect of a physical layer link of importance is its
functionality. In other words, what does the channel do apart
from transmit data? The telephone channel, for example, not
only permits voice signals to be sent from one subscriber to

another, but also transmits the dialing pulses or tones needed
to set up the connection between the subscribers. In the same
way, a serial data link must normally include provision for
carrying supervisory signals or messages that take part in
controlling the data link.

Some describe a fourth component of the physical layer
that they call the procedural aspect. The procedural aspect
governs the sequence of events that take place when a channel
is set up, maintained, and closed. We include the procedural
element of a standard in the functional element.

14.3.1 Serial data transmission

Although we introduced serial data transmission when we
covered computer interfaces, we have included a short section
on serial transmission here because we are interested in other
aspects. Ideally, information should be moved from one com-
puter to another a word at a time, with all the m bits of a word
transmitted simultaneously. An m-bit parallel data highway
requires m wires to carry the data, and two or three additional
wires to control the flow of information. Parallel links are fea-
sible only for computers separated by up to several meters.

Networks transmit data serially a bit at a time and require
only two lines—one to carry the data and one to act as the
ground return. Remember that a voltage has a meaning only
when specified with respect to some reference point such as the
ground. If a single path links two points, data can be moved in
only one direction at a time. Fiber optic links require a single
fiber, whereas radio links don’t need a physical connection.

Multiplexing signals

A problem facing those who wish to transmit information
over long distances is the cost of the physical transmission
path. Whether it’s the cost of constructing a line of telegraph
poles from coast to coast in the nineteenth century or the cost
of launching a satellite today, long-distance communications
channels don’t come cheap. Consequently, engineers have
done everything they can to squeeze the last drop of capacity

out of a communications channel.
The information-carrying capacity

of a channel is determined by two
parameters—its bandwidth and the
level of noise (i.e. unwanted signals)
on the channel. If you have a channel
that’s transporting less data than its
maximum capacity permits, you are
not using it fully.

The efficient use of a communica-
tions channel can be increased by a
technique called multiplexing in which
two or more streams of information
share the same channel. Figure 14.15(a)

584 Chapter 14 Computer communications

Logical channel

Physical channel

Modem

Modem

User A User B

DCE

DCE

Telephone
link

Telephone
link

T T

Radio
link

Radio
link

Satellite

Figure 14.14 The physical channel.

14.3 The physical layer 585

HALF- AND FULL-DUPLEX CHANNELS

Single transmission
path

Dual transmission
paths

(a) Half-duplex transmission.

(b) Full-duplex transmission.

A

A

B

B

There are three types of transmission paths between stations.The

most basic transmission path is called simplex and permits the

transmission of information in one direction only; that is, there’s a

single transmitter at one end of the transmission path and a

single receiver at the other end with no reverse flow of

information.The other two arrangements are more interesting

and are called half duplex and full duplex, respectively and are

illustrated below.A half-duplex data link transmits information

in only one direction at a time (i.e. from A to B or from B to A).

Two-way transmission is achieved by turning round the

channel.

The radio in a taxi represents a half-duplex system. Either

the driver speaks to the base station or the base station speaks

to the driver. They can’t have a simultaneous two-way

conversation.When the driver has finished speaking, they say

‘over’ and switch the radio from transmit mode to receive

mode. On hearing ‘over’, the base station is switched from

receive mode to transmit mode.

A full-duplex data link permits simultaneous transmission in

both directions.The telephone channel is an example of a full-

duplex system, because you can both speak and listen at the

same time. Some data transmission systems use the

telephone network in a half-duplex mode.

High-speed switch
(multiplexer)

Communications
channel

High-speed switch
(demultiplexer)

Transmitter 1 Receiver 1

Receiver 2

Receiver 3

Receiver 4

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Transmitter 2

Transmitter 3

Transmitter 4

Transmitter 1 Modulator 1

Modulator 2

Modulator 3

Modulator 4

Demodulator 1

Demodulator 2

Demodulator 3

Demodulator 4

Transmitter 2

Transmitter 3

Transmitter 4

(a) Time-division muiltiplexing.

(b) A time-division multiplexed signal consists of a sequence of time slots.

(c) Frequency-division multiplexing.

(d) A frequency-division multiplexed signal consists a series of frequency bands.

time

Channel 1 Channel 2 Channel 3 Channel 4 Channel 1 Channel 2 Channel 3 Channel 4

Communications
channel

+

Frequency

Amplitude

Channel
1

Channel
2

Channel
4

Channel
3

Figure 14.15 Time- and frequency-division multiplexing.

demonstrates time division multiplexing (TDM) in which the
output of several transmitters are fed to a communications
channel sequentially. In this example, the channel carries a
burst of data from transmitter 1 followed by a burst of data
from transmitter 2, and so on. At the receiving end of the link,
a switch routes the data to receiver 1, receiver 2, . . . , in order.

If the capacity of the channel is at least four times that of
each of the transmitters, all four transmitters can share the
same channel. All that’s needed is a means of synchronizing
the switches at both ends of the data link.

A simple TDM system gives each transmitter (i.e.channel) the
same amount of time whether it needs it or not. Such an
arrangement leads to an inefficient use of the available band-
width. Statistical time division multiplexing allocates time slots
only to those channels that have data to transmit. Each time slot
requires a channel number to identify it, because channels aren’t
transmitted sequentially.Statistical multiplexing is very effective.

Figure 14.15(c) demonstrates an alternative form of multi-
plexing called frequency division multiplexing, FDM. In this
case the bandwidth of the channel is divided between the four
transmitters. Unlike in TDM each transmitter has continuous
Half- and Full-duplex Channels access to the channel but it has
access to only one-quarter of the channel’s bandwidth.

We’re already familiar with frequency division multiplex-
ing. All a radio station does is to change the frequency
range of speech and music signals to a range that can be
transmitted over the airwaves. A radio receiver filters out one
range of frequencies from all the other frequencies and then
converts them back to their original range.

Suppose that the bandwidth of the data from each trans-
mitter extends from 0 to 20 kHz and the communications
link has a bandwidth of 80 kHz. The output of the first trans-
mitter is mapped onto 0 to 20 kHz (no change), the output of
the second transmitter is mapped onto 20 to 40 kHz, the out-
put of the third transmitter is mapped onto 60 to 60 kHz, and
so on. A device that maps one range of frequencies onto
another range of frequencies is called a modulator (we will
have more to say about modulators when we introduce the
modem later in this chapter).

At the receiver end of the link, filters separate the incoming
signal into four bands and the signals in each of these bands are
converted back to their original ranges of 0 to 20 kHz.In practice
it is necessary to leave gaps between the frequency bands because
filters aren’t perfect. Moreover, a bandpass channel doesn’t usu-
ally start from a zero frequency.A typical FDM channel might be
from, say, 600 MHz to 620 MHz in 400 slices of 50 kHz each.

586 Chapter 14 Computer communications

SYNCHRONIZING SIGNALS

Serial data transmission begs an obvious question. How is the

stream of data divided up into individual bits and the bits

divided into separate words? The division of the data stream

into bits and words is handled in one of two ways:

asynchronously and synchronously.

We met asynchronous serial systems when we described

the ACIA. In an asynchronous serial transmission system the

clocks at the transmitter and receiver responsible for dividing

the data stream into bits are not synchronized.When the

transmitter wishes to transmit a word, it places the line in a

space state for one bit period.When the receiver sees this

start bit, it knows that a character is about to follow.The

incoming data stream can then be divided into seven bit peri-

ods and the data sampled at the center of each bit. The

receiver’s clock is not synchronized with the transmitter’s

clock and the bits are not sampled exactly in the center. If the

receiver’s clock is within approximately 4% or so of the trans-

mitter’s clock, the system works well.

If the duration of a single bit is T seconds, the length of a

character is given by the start bit plus seven data bits plus the

parity bit plus the stop bit � 10T.Asynchronous transmission

is clearly inefficient, because it requires 10 data bits to trans-

mit 7 bits of useful information. Several formats for asynchro-

nous data transmission are in common use; for example, eight

data bits, no parity, one stop bit.

Two problems face the designer of a synchronous serial sys-

tem. One is how to divide the incoming data stream into indi-

vidual bits and the other is how to divide the data bits into

meaningful groups.We briefly look at the division of serial

data into bits and return to the division of serial data into

blocks when we introduce bit-oriented protocols.

If the data stream is phase encoded, a separate clock can be

derived from the received signal and the data extracted.The

diagram shows a phase-encoded signal in which the data signal

changes state in the center of each bit cell.A low-to-high tran-

sition signifies a 1 and a high-to-low transition signifies a 0.

Data

Phase-encoded

data

1 0 1 0 0 01 1 1

14.4 The PSTN

The most widely used transmission path for wide area
digital data networks is the telephone system—often called
the public switched telephone network (PSTN) to distinguish
it from private networks. We first discuss some of the
characteristics of the telephone network and then describe
the modem used to interface digital equipment to the
network.

14.4.1 Channel characteristics

One way of characterizing a telephone channel is to apply a
sine wave (Fig. 14.16) to the transmitter end of a telephone
link and then to measure its amplitude at the receiver. The
gain of the telephone channel is expressed as a logarithm; that
is, 10log10(Po/Pi), where Pi is the transmitted power level and
Po the received power level. The unit of gain is the decibel
(in honor of Bell) and is positive if the signal is amplified (i.e.
Po � Pi) and negative if the signal is attenuated (i.e. Po � Pi).
In a system without amplifiers, the gain is always less than 1.

By varying the frequency of the sine wave and recording
the gain of the channel for each frequency, the relationship
between the gain of the channel and the transmitted fre-
quency can be derived. Such a graph is called the ampli-
tude–frequency distortion characteristic of the channel

(see Fig. 14.17). The frequency axis is invariably plotted on
a logarithmic scale. An ideal channel has a flat frequency
response over all the frequencies of interest; that is, the gain
should not vary with frequency. A similar type of graph is
used to characterize hi-fi equipment. Figure 14.17 describes
the frequency response of a hypothetical ideal telephone
channel. The attenuation of the channel in its passband is
referred to as a 0 dB level (i.e. a gain of unity) and attenuation
at other frequencies is measured with respect to this value.

Figure 14.17 demonstrates that some frequencies are
transmitted with little attenuation but that frequencies below
the lower cut-off point fl and above the upper cut-off point fu

are severely attenuated. Most telephone channels are not as
well behaved as the ideal channel of Fig. 14.17. The passband
between fl and fu is not usually flat and the passband may
sometimes be very much less than 300 Hz to 3300 Hz.
Although most of the energy in human speech is below
3300 Hz, certain sounds have significant energy components
above this frequency; for example, a cut-off point of 3300 Hz
makes it very difficult to distinguish between the sibilant
sounds ‘f ’ and ‘s’.

Figure 14.17 doesn’t tell the whole story. Signals suffer not
only from amplitude–frequency distortion but also from
phase distortion. Any signal can be decomposed into a series
of sine waves and cosine waves of different frequencies. Phase
distortion is related to the time delay experienced by the var-
ious sine and cosine waves making up a particular digital
sequence. When a pulse sequence travels along a cable, its
component sine and cosine waves suffer different delays.
These signals at the receiving end of the network add up to
produce a waveform with a different shape to the one that
was originally transmitted. The phase distortion introduced
by a telephone channel distorts the shape of transmitted
pulses, making it difficult to distinguish between signals rep-
resenting 0s and 1s. A device called an equalizer can be used to
overcome some of the effects of the amplitude and phase dis-
tortion introduced by a telephone channel.

Figure 14.18 defines the limits of acceptance of attenua-
tion–frequency distortion for a telephone channel between a
single transmitter and receiver. The shaded area represents

the forbidden region of unacceptable atten-
uation. If a real telephone channel has an
amplitude–frequency distortion character-
istic that falls outside the envelope of
Fig. 14.18, the telephone company should
try to correct the faulty line or equipment.

You might think that any signal can be
transmitted across a telephone channel, as
long as its frequency components fall
within the envelope described by Fig. 14.18.
In practice, there are restrictions on the
nature of a transmitted signal because the
channel is used to carry more than user

14.4 The PSTN 587

Amplitude

Time

One sine wave, period T

Figure 14.16 The sine wave.

Relative
amplitude (dB)

–3

0

fI

300
fu

3300

Passband

Frequency (Hz)

Figure 14.17 Characteristics of the telephone network.

data. The analog channel provided by the PSTN is a linear
channel in the sense that its output is the sum of all the inputs
to the channel. This means that you can transmit two signals
in different parts of the channel’s bandwidth and then sepa-
rate them at the receiver. Digital systems don’t have this prop-
erty—it’s not generally possible to add two digital signals
together at one end of a channel and then separate them at
the other end.

Because analog channels can transmit
more than one signal simultaneously, the
PTTs have allocated certain parts of the
telephone channel’s bandwidth to signal-
ing purposes. Human speech doesn’t con-
tain appreciable energy within these
signaling bands and a normal telephone
conversation doesn’t affect the switching
and control equipment using these fre-
quencies.

A consequence of the use of certain fre-
quencies for signaling purposes is that data
transmission systems mustn’t generate sig-
nals falling within specified bands.
Figure 14.19 shows the internationally
agreed restriction on signals transmitted by
equipment connected to the PSTN.

Any signals transmitted in the ranges 500 to 800 Hz and
1800 to 2600 Hz must have levels 38 dB below the maximum
in-band signal level.

14.4.2 Modulation and data transmission

We are now going to look at a topic called modulation, the
means of modifying signals to make them suitable for trans-
mission over a particular channel.

Signals and modulation

A telephone channel can transmit signals within its pass band
but can’t transmit digital pulses that are
composed of sine waves with an infinite
range of frequencies. If a sequence of binary
signals were presented to one end of a tele-
phone network, some of the sine waves
making up the binary pulses would be atten-
uated. Because the telephone network does
not attenuate each frequency component
equally, the sine waves at the receiving end
of the network would not add up to produce
the same waveform that was presented to
the transmitting end. The digital signals
would be so severely distorted that they
would be unrecognizable at the receiving
end of the circuit.

Because the telephone network can transmit voice-band sig-
nals in the range 300 to 3300 Hz, various ways of converting
digital information into speech-like signals have been investi-
gated. Figure 14.20 shows how the digital data can be used to
change, or modulate, the amplitude of a sine wave in sympathy
with a digital signal. This technique is known as amplitude
modulation or AM. The equipment needed to generate such a
signal is called a modulator, and that required to extract the
digital data from the resulting signal is called a demodulator.

588 Chapter 14 Computer communications

Relative
attenuation (dB)

250 300 800 2400 3400 3600
Frequency (Hz)

+1.7

+0.9

0

–0.9

The two shaded regions represent
the forbidden zone. Signals may
not fall in these regions.

Figure 14.18 Limits of acceptance for attenuation–frequency distortion.

500

0

–10

–20

–30

–40
1000 1500 2000 2500 3000

Relative
attenuation (dB)

Frequency (Hz)

Figure 14.19 Restriction on energy content of transmitted

signals.

Data

Modulated signal

0 0 1 0 1 1 0

Time

Figure 14.20 Amplitude modulation.

The interface between a computer and a
telephone system is called a modem
(modulator-demodulator). Because AM is
more sensitive to noise than other modula-
tion techniques, it is not widely used in data
transmission.

Instead of modulating a sine wave by
changing its amplitude, it’s possible to
change its frequency in sympathy with the
digital data. In a binary system, one fre-
quency represents one binary value and a
different frequency represents the other.
Figure 14.21 shows a frequency modulated
(FM) signal. FM is widely used because it
has a better tolerance to noise than AM (i.e.
it is less affected by various forms of inter-
ference). As two frequencies are used to
represent the two binary states, frequency
modulation is sometimes referred to as fre-
quency shift keying (FSK).

Figure 14.22 illustrates phase modulation
(PM), where the phase of the sine wave is
changed in sympathy with the digital signal.
PM is widely used and has fairly similar
characteristics to FM. If the phase change
corresponding to a logical 1 is 180�, and 0�

(no change) corresponds to a logical 0, 1 bit
of information can be transmitted in each
time slot (Fig. 14.22). If, however, the phase
is shifted by multiples of 90�, 2 bits at a time
can be transmitted (Fig. 14.23).

High-speed modems

Modems operate over a wide range of bit
rates. Until the mid 1990s most modems
operated between 300 bps to 9600 bps. Low
bit rates were associated with the switched
telephone network where some lines were
very poor and signal impairments reduced
the data rate to 2400 bps or below. The
higher rates of 4800 bps and 9600 bps were
generally found on privately leased lines
where the telephone company offered a
higher grade of service.

The growth of the Internet provided a
mass market for high-speed modems.
Improved modulation techniques and bet-
ter signal-processing technology has had a
massive impact on modem design. By the
mid-1990s, low-cost modems operated at
14.4 kbaud or 28.8 kbaud. By 1998,
modems capable of operating at 56 kbaud
over conventional telephone lines were

14.4 The PSTN 589

Data

Modulated signal

0 0 1 0 1 1 0

Time

Figure 14.21 Frequency modulation.

Data

Modulated signal

0 0 1 0 1 1 0

Time

Figure 14.22 Phase modulation.

Next level 10
advance
phase by 180°

Next level 00
advance
phase by 0°

Next level 11
advance
phase by 270°

Next level 10
advance
phase by 180°

Reference
sine wave

Digital
data

11

10

01

00 Time

Time

Modulated
signal

Figure 14.23 Differential phase modulation.

90� out of phase (90� represents 1⁄4 of 360�—hence quadrature).
Figure 14.24 demonstrates a 32-point QAM constellation in
which each point represents one of 32 discrete signals. A signal
element encodes a 5-bit value, which means a modem with a
signaling speed of 2400 baud can transmit at 12 000 bps.

Figure 14.25 demonstrates that the points in a QAM con-
stellation are spaced equally. Each circle includes the space
that is closer to one of the signal elements than to any other
element. When a signal element is received, the values of S and
C are calculated and the value of the signal element

590 Chapter 14 Computer communications

NOISE

Noise is the generic term for unwanted signals that are added

to the received signal. One source of noise, called thermal

noise, is caused by the random motion of electrons in matter.

Thermal noise appears as the background hiss on telephone,

radio, and TV circuits, and is called Gaussian noise because of

its statistical properties. The amount of thermal noise depends

on the temperature of the system and its bandwidth. Only by

cooling the system or by reducing its bandwidth can we

reduce the effects of thermal noise. Receivers that pick up the

weak signals from distant space vehicles are cooled in liquid

nitrogen to minimize the effects of thermal noise. In general,

the contribution of thermal noise to all other forms of noise is

not usually the limiting factor in terrestrial switched telephone

networks.

Another source of noise is cross-talk picked up from other

circuits due to electrical, capacitive, or magnetic coupling.We

can think of cross-talk as crossed lines. Careful shielding of

cables and isolation of circuits can reduce cross-talk. Impulsive

noise produces the clicks and crackles on telephone circuits

and is caused by transients when heavy loads such as elevator

motors are switched near telephone circuits, lightning, and

dirty and intermittent electrical connections. Impulsive noise

accounts for the majority of transmission errors in telephone

networks. The diagram illustrates impulsive noise.

The signal-to-noise ratio of a channel is defined as

10log10(S/N), where S is the signal power and N the noise

power. Because the signal-to-noise ratio is a logarithmic value,

adding 10 dB means that the ratio increases by a factor of 10.

Signal-to-noise ratio determines the error rate over the channel.

These noises are additive because they are added to the

received signal. Multiplicative noise is caused by multiplying the

received signal by a noise signal.The most common

multiplicative noise is phase jitter caused by random errors in the

phase of the clock used to sample the received signal.All these

sources of noise make it harder to distinguish between signal

levels in a digital system.

CHANNEL CAPACITY

A channel has a finite bandwidth that limits its switching

speed.The maximum data rate is given by 2B ⋅ log2L, where B

is the channel’s bandwidth and L is the number of signal levels.

If the bandwidth is 3000 Hz and you are using a signal with

1024 discrete signal levels, the maximum data rate is

2 � 3000 � log21024 � 6000 � 10 � 60 kbps.This figure

relates the capacity of a noiseless channel to its bandwidth.

You can increase a channel’s capacity by using more signal

levels. Claude Shannon investigated the theoretical capacity

of a noisy channel in the late 1940s and showed that its

capacity is limited by both its bandwidth and the

noise level. Shannon proved that the theoretical

capacity of a communications channel is given by

B • log2(1 � S/N), where B is the bandwidth, S is the

signal power, and N is the noise power.A telephone

line with a bandwidth of 3000 Hz and a signal-to-

noise ratio of 30 dB has a maximum capacity of

3000 � log2(1 � 1000) � 29 900 bps.

Shannon’s theorem provides an absolute limit that

can’t be bettered. Modern modems can apparently do

better than theory suggests by compressing data

before transmission. Moreover, the noise on

telephone lines tends to be impulsive or bursty, whereas the

theoretical calculations relating channel capacity to noise

assume that the noise is white noise (e.g. thermal noise). By

requesting the retransmission of data blocks containing errors

due to noise bursts, you can increase the average data rate.

When the transmitted signal reaches the receiver, some of

its energy is echoed back to the transmitter. Echo cancellers at

the ends of a telephone channel remove this unwanted signal.

If they are poorly adjusted, the receiver gets the transmitted

signal plus a time-delay and distortion of the data.

Amplitude

White noise
(thermal noise)

Impulsive noise

Time

available for the price of a 1200 bps modem only a decade
earlier.

High-speed modems operate by simultaneously changing
the amplitude and phase of a signal. This modulation tech-
nique is called quadrature amplitude modulation (QAM). A
QAM signal can be represented mathematically by the expres-
sion S ⋅ sin(�t) � C ⋅ (�t), where S and C are two constants.
The term quadrature is used because a sine wave and a cosine
wave of the same frequency and amplitude are almost identi-
cal. The only difference is that a sine wave and a cosine wave are

determined. If noise or other impair-
ments cause a point to be shifted (i.e.
there are errors in the received values of
constants S and C), an error doesn’t
occur unless the values of S and C move
the received point outside a circle.
Figure 14.26 shows how amplitude and
phase errors modify the position of a
point in the QAM constellation.

14.4.3 High-speed
transmission over the PSTN

The backbone of the POTS (plain old
telephone system) is anything but
plain. Data can be transmitted across

the World via satellite, terrestrial microwave links, and fiber
optic links at very high rates. The limitation on the rate at
which data can be transmitted is known as the last mile; that
is, the connection between your phone and the global net-
work at your local switching center.

ISDN

A technology called integrated services digital network (ISDN)
was developed in the 1980s to help overcome the bandwidth
limitations imposed by the last mile. ISDN was intended for
professional and business applications and is now available to
anyone with a PC. There are two variants of ISDN—basic
rate services and primary rate services. The basic rate service
is intended for small businesses and provides three fully
duplex channels. Two of these so-called B channels can carry
voice or data and the third D channel is used to carry control
information. B channels operate at 64 kbps and the D chan-
nel at 16 kbps.

ISDN’s early popularity was due to its relatively low cost
and the high quality of service it offers over the telephone line.
You can combine the two B channels to achieve a data rate of
128 kbps. You can even use the D channel simultaneously to
provides an auxiliary channel at 9.6 kbps. Note that ISDN can
handle both voice and data transmission simultaneously.

Several protocols have been designed to control ISDN
systems.V.110 and V.120 are used to connect an ISDN commu-
nications devices to high-speed ISDN lines. ISDN took a long
time from its first implementation to its adoption by many
businesses. However, newer technologies plus cable networks
have been devised to overcome the last mile problem and ISDN
did not become as commonplace as some had anticipated.

ADSL

If there’s one thing you can guarantee in the computing
world, it’s that yesterday’s state-of-the-art technology will the
current standard and a new state-of-the-art technology will
emerge. Just as ISDN was becoming popular in the late 1990s,

14.4 The PSTN 591

By changing the amplitude

and phase of a sine wave

and a cosine wave by fixed

amounts, their sum

generates 32 discrete points,

each of which represents a

5-bit binary value.

S

C

There are 32 possible
signal values. Each
point represents a 5-bit
binary code.

Figure 14.24 The 32-point QAM constellation.

Figure 14.25 The packing of points in a QAM constellation.

Amplitude

Amplitude
difference

Time

Phase
difference

(a) Phase and amplitude difference.

(b) Effect of phase ad amplitude
errors on a QAM signal.

Amplitu
de

Phase

Figure 14.26 Effect of errors on a QAM point.

592 Chapter 14 Computer communications

0 to 4 kHz
(conventional
PSTN bandwidth)

Amplitude

4 kHz
Frequency

1.1 MHz

Figure 14.27 Dividing a 1.1 MHz bandwidth into 4 kHz slots.

MODEM STANDARDS

a system called asymmetric digital subscriber line (ADSL) was
being developed as a new high-speed last mile system.

As we’ve said, telephone lines have a bandwidth of 3000
Hz, which limits the maximum rate at which data can be
transmitted. In fact, the twisted wire pair between your home
and the telephone company has a much higher bandwidth.
The bandwidth of a typical twisted pair less than about 3
miles is over 1 MHz.

Asymmetric digital subscriber line technology exploits the
available bandwidth of the local connection. The bandwidth
of the telephone link is divided into a number of 4 kHz slices
as Fig. 14.27 demonstrates. The first slice from 0 to 4 kHz rep-
resents the conventional telephone bandwidth. Frequencies
between 4 kHz and 24 kHz aren’t used in order to provide a
guard band to stop the higher frequencies interfering with
conventional telephone equipment.

The spectrum between 24 kHz and 1.1 MHz is divided
into 249 separate 4 kHz channels in the same way as the FM
band is divided into slots for broadcasting stations. A data
signal is assigned one of these slices and its spectrum tailored
to fit its allocated 4 kHz slot. At the other end of the link, the
signal in that 4 kHz slot is converted back into the data signal.
Until recently it was very difficult to perform these opera-
tions. The advent of low-cost digital signal processing has
made it much easier to process signals (i.e. to shift their range
of frequencies from one band to another).

The characteristics of these slots vary with frequency; for
example, there is a greater attenuation of signals in slots close
to 1.1 MHz. The terminal equipment is able to use the better

channels to carry high data rates and to allocate the higher
frequency channels to slower bit rates.

14.5 Copper cable

The majority of transmission paths are composed of twisted
pairs, coaxial cable, radio links, or fiber optic links. A twisted
pair is nothing more than two insulated wires that are twisted
around each other. Why are the wires twisted? A wire acts as
an antenna and picks up signals (i.e. interference). If two
wires are intertwined, a signal induced in one wire is can-
celled by the signal induced in the other wire. Twisted pairs
are used to transport signals over relatively short distances;
for example, a twisted pair connects a telephone to its local
exchange. Twisted pairs, using RJ-45 telephone-style connec-
tors, are used in some LANs.

In the USA, modem standards were dominated by the Bell

System’s de facto standards. Outside the USA, modem

standards were determined by the International Consultative

Committee on Telegraphy and Telephony (CCITT). Over time,

CCITT standards became dominant when high-speed modems

were introduced.

Early modems operated at data rates of 75, 300, 600, 1200,

2400, 4800, and 9600 baud. Modern modem rates are 14 400,

19 200, 28 800, 36 600, and 56 000 baud. Modem standards

define the following.

● Modulation method Low-and medium speed

modems use frequency modulation. High-speed modems

employ phase modulation and QAM (quadrature amplitude

modulation).

● Channel type Some modems operate in a half-duplex

mode, permitting a communication path in only one

direction at a time. Others support full-duplex operation

with simultaneous, two-way communication. Some systems

permit a high data rate in one direction and a low data rate

in the other, or reverse, direction.

● Originate/answerThe originating modem is at the end of the

channel that carried out the dialing and set up the channel.The

answer modem is at the end of the channel that receives the

call. Many modems can both originate calls and answer calls, but

some modems are answer-only and cannot originate a call.

Originate and answer modems employ different frequencies to

represent 1 s and 0 s.

● Asynchronous/synchronous An asynchronous data

transmission system transmits information as, typically, 8-

bit characters with periods of inactivity between characters.

A synchronous system transmits a continuous stream of bits

without pauses, even when the bits are carrying no user

information.

Examples of modem standards

● CCITT V.32 2400 baud, 4800 or 9600 bps, QAM

● CCITT V.33 2400 baud, 14 400 bps, QAM

● CCITT V.34 2400 baud, 28 800 bps, QAM

● CCITT V.90 56 000 bps (this standard uses analog transmis-

sion in one direction and digital in the other)

14.5 Copper cable 593

Coaxial cable consists of an inner conductor entirely sur-
rounded by an outer conductor and is the type of cable used
to connect televisions to antennas. Between the two conduc-
tors lies an insulating material called a dielectric. Sometimes
the outer conductor is braided or woven from fine copper
wire and sometimes it’s a solid conductor. Figure 14.28 illus-
trates the structure of coaxial cable (often abbreviated to co-
ax), whose thickness may vary between 5 and 25 mm. Coaxial
cables can operate at high data rates over 100 Mbits/s and are
used over short to medium distances. Coaxial cable can

transmit voice-band telephone signals
(permitting up to 10 000 channels per
cable), cable television signals and digital
signals in many local area networks.
Transmission over distances greater than
1 km is achieved by feeding the signal into
an amplifier (called a repeater) and regen-
erating it before sending it on its way
down the coaxial cable.

14.5.1 Ethernet

The Ethernet was proposed by Robert
Metcalfe in the early 1970s. Metcalfe

joined the Xerox Corporation and developed the Ethernet
(the name comes from the ether, a medium that was once
thought to fill all space). Xerox formed a consortium with
DEC and Intel who approached the IEEE and proposed the
Ethernet as a standard.

The physical layer of the Ethernet was originally used a
baseband coaxial cable with phase-encoded data at
10 Mbits/s. All nodes are connected to the bus, subject to two
conditions. There is a restriction on the length of the bus and
a loop must not exist between any two points on the bus.
Figure 14.29 describes the Ethernet’s topology. Ethernet data
is transmitted is discrete packets or bursts of data.

Cross-section
of coaxial cable.

The diameters of the conductors (d and D)
together with the dielectric constant of the
insulator between the conductors determine
the electrical characteristics of the cable.

Coaxial cable consists of
four tubes:
1. inner conductor
2. dielectric insulator
3. outer conductor
4. outer insulator (sheath)

Outer
conductor

Outer
insulator

Inner
conductor

Dielectric Outer
conductor

Outer insulator
(i.e. casing)

Inner
conductor

Insulator
(dielectric)

d D

Figure 14.28 Coaxial cable.

RS232C PHYSICAL LAYER PROTOCOL

The first universal standard for the physical layer was published

in 1969 by the Electronic Industry Association (EIA) and is

known as RS232C (Recommended Standard 232 version C).

This standard was intended for links between modems and

computers but was adapted to suit devices such as printers.

RS232 specifies the plug and socket at the modem and the

digital equipment (i.e. their mechanics), the nature of the

transmission path, and the signals required to control the

operation of the modem (i.e. the functionality of the data link).

In the standard, the modem is known as data

communications equipment (DCE) and the digital equipment

to be connected to the modem is known as data terminal

equipment (DTE).

The following control signals implement most of the

important functions of an R232 DTE to DCE link.

Request to send (RTS) is a signal from the DTE to the DCE.

When asserted, RTS indicates to the DCE that the DTE wishes

to transmit data to it.

Clear to send (CTS) is a signal from the DCE to the DTE and,

when asserted, indicates that the DCE is ready to receive data

from the DTE.

Data set ready (DSR) is a signal from the DCE to the DTE

that indicates the readiness of the DCE.When this signal is

asserted, the DCE is able to receive from the DTE. DSR

indicates that the DCE (usually a modem) is switched on and is

in its normal functioning mode (as opposed to its self-test

mode).

Data terminal ready (DTR) is a

signal from the DTE to the DCE.When

asserted, DTR indicates that the DTE is

ready to accept data from the DCE. In

systems with a modem, it maintains

the connection and keeps the channel

open. If DTR is negated, the

communication path is broken. In everyday terms, negating

DTR is the same as hanging up a phone.

DTE

Terminal Modem

RS232
data link

Modem ComputerPSTN

DCE DCE DTENetwork

Non-digital signals

Because RS232 was intended for DTE to DCE links, its

functions are very largely those needed to control a modem.

Such a bus network introduces the problem of contention.
No two nodes can access the same channel simultaneously
without their messages interfering destructively with each
other. When two messages overlap in time, the event is called
a collision and both messages are lost.

The simplest solution to bus contention is for a node to go
ahead and transmit a message when it wants. This approach
assumes that the bus is only occasionally busy. If another
node is transmitting at the same time or joins in before the
message is finished, both messages are lost. If the node that
sent the message doesn’t receive an acknowledgement within
a timeout period, it assumes that its message has been
corrupted in transmission.

When a message from a node collides with a message from
another node, both messages are lost. If the duration of a mes-
sage is T seconds and two messages just collide, the total time

lost is up to 2T seconds. Assuming that the
probability of a station wanting to transmit
a packet has a Poisson distribution, it can be
shown that the maximum throughput of
this system approaches 18% of the maxi-
mum channel capacity. A Poisson distribu-
tion is a statistical model of events such as
the rate at which people use the telephone.

The simplest form of contention control
is to let the transmitters retransmit their
messages. Unfortunately, such a scheme
wouldn’t work, because the competing
nodes would keep retransmitting the

messages and these would keep getting scrambled.The problem
of collisions in a bus network is identical to that of two people
approaching the same revolving door together—they can’t both
get in, they step back, and advance together causing a collision,
so they step back again, advance together, collide,

A better strategy on detecting a collision is to back off or wait
a random time before trying to retransmit the frame. It is
unlikely that the competing nodes would reschedule the trans-
missions for the same time. Networks operating under this
form of contention control are well suited to bursty traffic; that
is, the arrangement works as long as the average traffic density
is very low (much less than the maximum capacity of the bus).
If the amount of traffic rises, there comes a point where colli-
sions generate repeat messages that generate further collisions
and further repeats, and the system eventually collapses.

The contention control mechanism can be improved by
forcing a node to listen to the bus before trying to send its

594 Chapter 14 Computer communications

All nodes (stations) are
connected to the
common bus.

Bus

Node

Figure 14.29 The bus.

STANDARDS AND CABLES

During the late 1970s it became apparent that the introduction

of a large number of ad hoc protocols for LANs would have a

bad effect on the computer industry. In 1980 the IEEE

established its Standards Project 802 to provide a framework

for LAN standards.The 802 committee set itself

the goal of designing a standard for the new LANs

that would take account of existing and

prospective technology, and the needs of LAN

users.The 802 committee didn’t intend to

produce standards for all seven layers of the ISO

reference model, but limited themselves to

standards for the physical and data link layers.

While the IEEE was organizing its 802 project,

the Ethernet LAN was rapidly becoming a de facto

standard for contention buses and therefore the

IEEE had to incorporate it in their work.At the same time,

engineers were involved in a vigorous debate about the relative

merits of buses and rings as LAN topologies.The IEEE 802

committee reflected the nature of the real world, so they

devised a set of standards that took account of both bus and

ring topologies.They wanted the greatest happiness for the

greatest number of people.The IEEE 802 draft standard includes

standards for an Ethernet bus, a token ring, and a token bus.The

diagram illustrates the scope of the 802 standards.

The Ethernet’s 10 Mbps data rate is low by today’s

standards.A new standard, IEEE 802.3u, operating at 100 Mbps

was ratified in 1995, and work began on a Gigabit Ethernet in

the late 1990s. In March 1996, the IEEE 802.3 committee

approved the 802.3z Gigabit Ethernet Standardization project.

802.1

802.2 Logical link control

Data-link layer

Logical link control

(LLC)

Medium access control

(MAC)

Physical layer

802.3
Ethernet

802.4
Token
bus

802.5
Token
ring

frame. Obviously, if one node is already in the process of
sending a message, other nodes are not going to attempt to
transmit. A collision will occur only if two nodes attempt to
transmit at nearly the same instant. Once a node has started
transmitting and its signal has propagated throughout the
network, no other node can interrupt. For almost all systems
this danger zone, the propagation time of a message from one
end of the network to the other, is very small and is only a tiny
fraction of the duration of a message.

The contention mechanism adopted by Ethernet is called
Carrier Sense Multiple Access with Collision Detect
(CSMA/CD). When an Ethernet station wishes to transmit a
packet, it listens to the state of the bus. If the bus is in use, it
waits for the bus to become free. In Ethernet terminology this

is called deference. Once a station has started transmitting it
acquires the channel, and after a delay equal to the end-to-
end round trip propagation time of the network, a successful
transmission without collision is guaranteed.

14.6 Fiber optic links

The very first signaling systems used optical technology—the
signal fire, the smoke signal and later the semaphore. Such
transmission systems were limited to line-of-sight operation
and couldn’t be used in fog. From the middle of the nine-
teenth century onward, electrical links have made it possible
to communicate over long distances independently of
weather conditions.

Today, the confluence of different technologies has, once
again, made it possible to use light to transmit messages.
Semiconductor technology has given us the laser and light-
emitting diode (LED), which directly convert pulses of elec-
tricity into pulses of light in both the visible and infrared
parts of the spectrum. Similarly, semiconductor electronics
has created devices that can turn light directly into electricity
so that we can detect the pulses of light from a laser or LED.
The relatively new science of materials technology has given
us the ability to create a fine thread of transparent material
called an optical fiber. The optical fiber can pipe light from its
source to its detector just as the coaxial cable pipes electronic
signals from one point to another.

Seemingly, light must be transmitted in a straight line and
therefore can’t be used for transmission over paths that turn
corners or go round bends. Fortunately, one of the properties

of matter (i.e. the speed of
light in a given medium)
makes it possible to transmit
light down a long thin cylin-
der of material like an optical
fiber. Figures 14.30(a) and (b)
demonstrate the effect of a
light beam striking the surface
of an optically dense material
in a less dense medium such as
air. Light rays striking the sur-
face at nearly right angles to
the surface pass from the
material into the surrounding
air after being bent or refracted
as Fig. 14.30(a) demonstrates.
The relationship between
the angle of incidence θ2 and
the angle of refraction θ1 is
cos(θ2)/ cos(θ1) � index of
refraction.

14.6 Fiber optic links 595

CABLE TERMINOLOGY

The physical dimensions, the electrical or optical

characteristics, and the connectors of the cables used to

implement the physical medium of an Ethernet connection

have been standardized. Some of the common standards

are as follows.

10Base2 10 Mbps thin Ethernet cable (similar to TV

antenna cable).

10BaseT 10 Mbps switched Ethernet cable. Used with

Ethernet routers and hubs.The cable is similar

to telephone cable with the same RJ45 jack

plug.

100BaseT 100 Mbps Ethernet cable using twisted pair

cable (similar to 10BaseT).

100BaseF 100 Mbps fiber Ethernet cable.

Medium n1

Medium n1

Medium n1

Medium n2

Refracted ray
θ2 < θc

Reflected ray
θ2>θc

θ1

θ2

θ2

θ2 θ2

θ2

θ2

Medium of refractive
index n1

Medium of refractive
index n1

Medium of refractive
index n2

Medium of refractive
index n2

(a) θ2<θc Incident ray leaves the fiber.

(c) Propagation of a ray along a fiber by repeated total internal reflection.

(b) θ2>θc Incident ray experiences
total internal reflection.

Figure 14.30 Total internal reflection.

Light rays striking the surface at a shallow angle suffer total
internal reflection and are reflected just as if the surface (i.e. the
boundary between the optically dense material and the air)
were a mirror. The critical angle, θC, at which total internal
reflection occurs, is a function of the refractive index of the
material through which the light is propagated and the surface
material at which the reflection occurs. The same phenome-
non takes place when a diver looks upward. Total internal
reflection at the surface of the water makes the surface look
like a mirror. Figure 14.30(c) demonstrates how light is prop-
agated along the fiber by internal reflections from the sides.

By drawing out a single long thread of a transparent mater-
ial such as plastic or glass, we can create an optical fiber as illus-
trated in Fig. 14.31. The optical fiber consists of three parts:

● the core itself that transmits the light

● a cladding that has a different index of reflection to the core
and hence causes total internal reflection at its interface with
the core

● a sheath that provides the optical fiber with protection and
mechanical strength.

The diameter of the optical fiber is very small indeed—
often less than 100 �m. Sometimes there is an abrupt junc-
tion between the core and cladding (a step-index fiber) and
sometimes the refractive index of the material varies contin-
uously from the core to the cladding (a graded index fiber).
Graded index fibers are difficult to produce and therefore
more expensive than step-index fibers, but they offer lower
attenuation and a higher bandwidth.

Fiber optic links can be created from many materials but a
fiber drawn from high-quality fused quartz has the least
attenuation and the greatest bandwidth (e.g. the attenuation
can be less than 1 db/km). The bandwidth of fiber optic links
can range from 200 MHz to over 10 GHz (109 Hz) which
represents very high data rates indeed.

There are several types of optical fiber, each with its own
special properties (e.g. attenuation per km, bandwidth, and
cost). Two generic classes of optical fiber are the multimode
and single-mode fibers. Multimode fibers operate as
described by bouncing the light from side to side as it travels
down the fiber. Because a light beam can take many paths
down the cable, the transit time of the beam is spread out and
a single pulse of light is received as a considerably broadened
pulse. Consequently, a multimode fiber cannot be used at
very high pulse rates.

A single-mode fiber has a diameter only a few times that of
the wavelength of the light being transmitted (a typical diam-
eter is only 5 �m). As a single-mode fiber does not support
more than one optical path through the fiber, the transmitted
pulse is not spread out in time and a very much greater band-
width can be achieved.

The advantages of a fiber optic link (Fig. 14.32), over cop-
per cable and radio technologies are as follows.

Bandwidth The bandwidth offered by the best fiber optic
links is approximately 1000-fold greater than that offered by
coaxial cable or microwave radio links.

Attenuation High-quality optical fibers have a lower attenu-
ation than coaxial cables and therefore fewer repeaters are
required over long links such as undersea cables.

Mechanics The optical fiber itself is truly tiny and therefore
lightweight. All that is needed is a suitable sheath to protect it
from mechanical damage or corrosion. It is therefore cheaper
to lay fiber optic links than coaxial links.

Interference Fiber optic links are not affected by electromag-
netic interference and therefore they do not suffer the effect
of noise induced by anything from nearby lightening strikes
to cross-talk from adjacent cables. Furthermore, because they
do not use electronic signals to convey information, there’s
no signal leakage from an optical fiber and therefore it’s much
harder for unauthorized persons to eavesdrop.

14.7 Wireless links

Wireless links transmit information through the ether and
don’t require a physical medium to be laid down between the
transmitter and receiver. Wireless links are characterized by

596 Chapter 14 Computer communications

Cladding
Sheath

Core

Figure 14.31 The optical fiber.

Source-to-fiber
connector

Fiber-to-detector
connector

Receiver
module

Output
signalInput

signal

Transmitter
module

Fiber-to-fiber
connector

Optical cable

Figure 14.32 The fiber optic

link.

the frequency of the radio signals used to transport data and
whether or not they are terrestrial or satellite links. Table 14.2
illustrates a portion of the electromagnetic spectrum used to
transmit information.

Signals in the frequency range 100 kHz to about 1000 MHz
(i.e. 1 GHz) are used for terrestrial radio and television broad-
casting. Frequencies above 1 GHz are called microwaves and are
used for applications ranging from radar to information trans-
mission to heating. Microwaves have two important properties:
they travel in straight lines and they can carry high data rates.

Because microwaves travel in straight lines, the Earth’s cur-
vature limits direct links to about 100 km or so (depending
on the terrain and the height of the transmitter and receiver
dishes). Longer communication paths require repeaters—
microwaves are picked up by an antenna on a tower, ampli-
fied, and transmitted to the next tower in the chain. Few
industrial cities are without some tall landmark festooned
with microwave dishes.

Since the late 1960s satellite microwave links have become
increasingly more important.A satellite placed in geostationary
orbit 35 700 km above the equator takes 24 hours to orbit the
Earth. Because the Earth itself rotates once every 24 hours, a
satellite in a geostationary orbit appears to hang motionless in
space and remain over the same spot. Such a satellite can be
used to transmit messages from one point on the Earth’s surface
to another point up to approximately 12 000 km away, as
illustrated in Fig. 14.33.

Theoretically three satellites each separated by 120� could
completely cover a band around the Earth. However,
receivers at extreme limits of reception would have their
dishes pointing along the ground at a tangent to the surface of
the Earth. As the minimum practical angle of elevation is
about 5�, satellites should not be more than about 110� apart
for reliable operation. Data is transmitted up to the satellite
on the uplink frequency, regenerated, and transmitted down
again at the downlink frequency (the uplink frequency is

higher than the downlink frequency). Table 14.3 describes
some of the frequency bands used by satellites. Suitable
microwave or coaxial links transmit data from a local source
to and from the national satellite terminals.

Satellites are used to transmit television signals, telephone
traffic, and data signals. Data signals can be transmitted at
rates greater than 50 Mbps, which is many times faster than
that offered by the public switched telephone network but
rather less than that offered by the fiber optic link (and much
less than that offered by the super data highways). Satellite
links can be replaced by fiber optic links. The advantage of the
satellite is its ability to broadcast from one transmitter to
many receivers.

Satellite systems are very reliable. The sheer size of the
investment in the satellite and its transport vehicle means that
engineers have spent much time and energy in designing reli-
able satellites. Unfortunately, a satellite doesn’t have an infinite
life span. Its solar power panels gradually degrade due to the
effects of the powerful radiation fields experienced in space,
and it eventually runs out of the fuel required by its rocket jets
to keep it pointing accurately at the surface of the Earth.

Satellites operate mostly in the 1 to 10 GHz band.
Frequencies below 1 GHz are subject to interference from
terrestrial sources of noise and the atmosphere attenuates fre-
quencies above 10 GHz. Satellite users have to take account of
a problem imposed by the length of the transmission path
(about 70 000 km). Microwaves traveling at the speed of light
(300 000 km/s) take approximately 250 ms to travel from the
source to their destination. Consequently it is impossible to
receive a reply from a transmission in under 0.5 s. Data trans-
mission modes using half duplex become difficult to operate
due to the long transit delay and the large turnaround time.
Satellite data links are better suited to full-duplex operation.

High geosynchronous orbits are not the only option avail-
able. Figure 14.34 shows that satellites can be placed in one of
three types of orbit. Satellites in low and medium Earth orbits

14.7 Wireless links 597

Frequency band Name Typical applications

3 to 30 kHz Very low frequency (VLF) Long-range navigation, submarine communications

30 to 300 kHz Low frequency (LF) Navigational aids and radio beacons

300 to 3000 kHz Medium frequency (MF) Maritime radio, direction finding, commercial AM radio

3 to 30 MHz High frequency (HF) Short-wave broadcasting, transoceanic ship and aircraft

communication, telegraph, facsimile

30 to 300 MHz Very high frequency (VHF) FM radio, air traffic control, police, taxi, and utilities

0.3 to 3 GHz Ultra-high frequency (UHF) UHF television, navigational aids, cell phones

3 to 30 GHz Super-high frequency (SHF) Microwave links, radar, satellite communications

30 to 300 GHz Extra-high frequency (EHF)

Note: kHz = kilohertz = 103 Hz, MHz = megahertz = 106 Hz, GHz = gigahertz = 109 Hz.

Table 14.2 The radio frequency spectrum.

appear to move across the sky, which means that when your
satellite drops below the horizon you have to switch the link
to another satellite. Low Earth orbits require lots of satellites
for reliable communications, but the latency is very low.
Fewer satellites are required to cover the World from medium
Earth orbits and the latency is about 0.05 to 0.14 s.

14.7.1 Spread spectrum technology

Although a radio signal is transmitted at a specific frequency,
the signal does, in fact, occupy a range of frequencies because
of the modulation process. For example, an AM signal trans-
mitted at frequency fc, occupies the frequency range fc � fm to
fc � fm, where fm is the maximum modulating frequency.

A problem with transmitting on a single frequency is the
vulnerability of the radio link; the signal can be easily observed
and it can be jammed. In the Second World War attempts were
made to control torpedoes by radio links. It was clear that using
a single frequency would not be a good idea because it could be
jammed by transmitting another signal at the same frequency.
A solution to the problem of jamming was suggested by Hedy
Lamarr and George Antheil; they proposed changing the fre-
quency of the transmitter and receiver in synchrony to avoid
transmitting on a single frequency. A clockwork-driven fre-
quency selector could be used in both the transmitter and
receiver to change frequency every few seconds.

Antheil and Lamar’s proposal was not put into practice until
the early 1960s when the US military implemented it to provide

598 Chapter 14 Computer communications

Band Frequency range Characteristics

L-band 1.53 to 2.7 GHz Signals penetrate buildings and structures. Low power transmitters required

Ku-band 11.7 to 17.8 GHz Signals penetrate some structures. High data rates possible

Ka-band 18 to 31 GHz There is a lot of available unallocated spectrum and very high data rates are

possible. The signals have little penetrating power and are attenuated by rain

Table 14.3 Frequencies used in satellite communications.

35 700 km

Earth Diameter of the
Earth (6400 km)

Period
of satellite
orbit is
24 hours

Transmission delay (265 ms)

35 700 km

Satellite in
geostationary
orbit

(a) Organization of a satellite link.

(b) The geostationary orbit.

(d) The satellite's field of view is approximately one-third of the Earth's surface.

(c) The time delay in sending a message between
two ground stations.

Exchange

Statellite

Exchange

Telephone

A B

Figure 14.33 The satellite link.

secure radio links. The frequency changes (or hops) were made
as a random sequence using electronics rather than mechanical
switching. Because the frequency of the transmitted signal
rapidly varies over a finite range within a band, the signal energy
is distributed throughout the band. Consequently, the system is
often called spread spectrum technology.

An advantage of spread spectrum technology is that the
wireless link is less susceptible to interference. If an interfer-
ing signal is at a constant frequency, it will affect the received
signal only when the interfering and data signal frequencies
coincide. Moreover, if you have several spread spectrum
frequencies occupying the same band at the same time, inter-
ference will take place only when the two or more frequencies
are the same at the same time.

The frequency 2.4 GHz has now been allocated to spread
spectrum signals2 and IEEE standard 802.11 was developed
to provide a short-range data commutations facility for lap-
tops and similar devices. The standard uses the same type of
collision control mechanism as the Ethernet.

Fourteen channels in the 2.4 GHz band are reserved for the
802.11 systems. Each channel is separated by 5 MHz. However,
these channels indicate only the center frequency used by a
transmitter–receiver pair. An actual wireless link uses a band-
width of 30 MHz and, therefore, takes up five channels.

14.8 The data link layer

Now that we’ve looked at some of the ways in which bits are
moved from one point to another by the physical layer, the

next step is to show how the data link layer handles entire
messages and overcomes imperfections in the physical layer.
We are going to look at two popular protocols for the data
link layer—a bit-oriented protocol and a protocol used by the
Internet.

14.8.1 Bit-oriented protocols

A bit-oriented protocol handles pure binary data (i.e. strings
of 1s and 0s or arbitrary length). Binary data can be a core
dump, a jpeg image, a program in binary form, a floating
point number, and so on. When the data is stored in a pure
binary form it’s apparently impossible to choose any particu-
lar data sequence as a reserved marker or flag, because that
sequence may also appear as valid data. We explain how the
high-level data link control protocol (HDLC) delivers any
pattern of bits between two nodes in a data link by means of
a technique called bit stuffing.

The key to understanding the HDLC protocol is the HDLC
frame, the smallest unit of data that can be sent across a net-
work by the data link layer. Frames are indivisible in the sense
that they cannot be subdivided into smaller frames, just as an
atom can’t be divided into other atoms. However, a frame is
composed of several distinct parts just as an atom is made up
of neutrons, protons and electrons. Figure 14.35 illustrates
the HDLC format of a single frame.

14.8 The data link layer 599

Orbit 22 300 miles
(35 700 km).
Latency 0.24 s

Orbit 6250 to 13 000 miles
(10 000 km to 20 000 km).
Latency 0.06 to 0.14 s

Orbit 500 to 1500 miles
(800 km to 2400 km).
Lateny 0.03 s

Low Earth orbit

Medium Earth orbit

Geosynchronous
Earth orbit

You are
here

Figure 14.34 Satellite orbits.

2 The 2.4 GHz band is shared by other users such a Bluetooth, baby
monitors, and cordless phones.

Each frame begins and ends with a unique 8-bit flag,
01111110. Whenever a receiver detects the sequence
01111110, it knows that it has located the start or the end of a
frame. An error in transmission may generate a spurious flag
by converting (say) the sequence 01101110 into 01111110. In
such cases, the receiver will lose the current frame. Due to the
unique nature of the flag, the receiver will automatically
resynchronize when the next opening flag is detected.

HDLC puts no restrictions whatsoever on the nature of the
data carried across the link. Consequently, higher levels of the
reference model can transmit any bit sequence they wish
without affecting the operation of the data link layer. The

only binary sequence that may not appear in a stream of
HCLD data is the frame opening or closing flag 01111110.

A simple scheme called zero insertion and deletion or bit stuff-
ing ensures that HDCL data is transparent. Figure 14.36 shows
how bit stuffing operates. Data from the block marked trans-
mitter is passed to an encoder marked zero insertion that oper-
ates according to a simple algorithm. A bit at its input is passed
unchanged to its output unless the five preceding bits have all

been 1s. In the latter case, two bits are
passed to the output: a 0 followed by the
input bit. As an example consider the
sequence 010111111011 containing the
forbidden flag sequence. If the first bit is
the leftmost bit, the output of the encoder
is 0101111101011.

The bit-insertion mechanism guaran-
tees that any binary sequence can appear in
the input data but a flag sequence can’t
occur in the output data stream because
five 1s are always terminated by 0. Flags
intended as frame delimiters are appended
to the data stream after the encoding block.

At the receiving end of the link, open-
ing and closing flags are detected and
removed from the data stream by the flag

removal circuit. The data stream is then passed to the block
marked zero deletion for decoding, which operates in the
reverse way to zero insertion: if five 1s are received in succes-
sion, the next bit (which must be a 0) is deleted. For example,
the received sequence 0101111101011111000 is decoded as
01011111101111100.

Now that we’ve described how a data stream is divided into
individual bits and the bits into frames, the next step is to
look at the HDLC frame. Figure 14.35 demonstrates that the
HDLC frame is divided into five logical fields: an address
field, a control field, an optional information field, and a
frame check sequence (FCS).

600 Chapter 14 Computer communications

Flag Flag

01111110 Address 01111110Control Information FCS

The information field
is optional

Figure 14.35 The HDLC frame format.

Zero
insertion

Flag
insertion

Flag removal
(detection of
start of frame)

Zero
deletion

Data link
ReceiverTransmitter + + ++

Example

Data to be transmitted

Data to be transmitted

Transmitted frame

0 0 0 0 0 01 111 1 11111111111111111111 1 1

Opening
flag

Closing
flag

Inserted zeros

0111111 11 11 1 111 11 1111 1 11 11 1 11 1111111111100 0 0 0 000 00 0 0 0

Figure 14.36 Bit insertion and deletion.

HISTORY OF WI-FI

1997 IEEE Standard 802.11 specifies a wireless LAN using

2.4 GHz with data rates of 1 and 2 MHz.Apple computer

provides the first operating system to support Wi-Fi

(called AirPort).

1999 Standard 802.11b with a data rate of 11 Mbits/s is

finalized.The maximum actual data rate is approximately

5 Mbits/s. This was the first Wi-Fi standard to become widely

accepted and it paved the way for low-cost wireless

networks.

1999 The 802.11a standard operates at 5 GHz and provides

a maximum raw data rate of 54 MHz, corresponding to a prac-

tical user data rate of about 20 Mbits/s. Radio waves at 5 GHz

are more readily absorbed than those at 2.4 GHz and 802.11a-

based systems have not achieved the same success at 802.11b.

2002 Intel’s Centrino chipset had a remarkable effect on

the wireless LAN market. Centrino consists of a low-power

CPU, an interface chip, and an 802.11b chip.This chipset was

used in countless laptops to provide portability with low-

power consumption on Wi-Fi LAN connectivity.

2003 Standard 802.11g combines the lower frequency

advantage of 802.11b and the modulation rate of 802.11a to

provide a raw bit rate of 54 Mbits/s in the 2.4 MHz band.

Equally importantly, it is backward compatible with 802.11b.

By the end of 2003, companies were producing tri-mode Wi-Fi

adaptors capable of accessing 802.11a/b/g networks.

Address field

The data link layer protocol may operate in one of several
modes. Figure 14.37 illustrates the master–slave mode, where
one station is the master station and all the other stations con-
nected to the master are called slaves. In the master–slave
mode only the master may send messages when it wishes. A
slave is not permitted to transmit until it is invited to do so by
the master.

The HDLC’s address field provides the address of the slave.
The master doesn’t need an address because there’s a unique
master. When a master sends a frame, the address field
identifies the slave for which the frame is intended. If the slave
is transmitting a frame, the address is its own, identifying
itself to the master.

Any slave receiving a frame whose address doesn’t match
its own address ignores the message. Unlike humans, com-
puters don’t listen to third-party traffic.

The address field is 8 bits wide permitting 127 slaves to be
directly identified. If the least-significant bit of the address
field bit is a logical 0, the following byte is an extension of the
address field. If the least-significant bit of the extension
address is also a 0, the following byte is a further extension of
the address. This arrangement permits an infinitely extend-
able address field.

Two special-purpose addresses are defined. The address
11111111 is a global address indicating that the frame is a
broadcast intended for all stations on the network. The null
address 00000000 causes the frame to be ignored by all
stations! A null address is included for test purposes.

Control field

The 8-bit control field determines the type of the frame being
transmitted and controls the flow of messages across the data
link layer. Table 14.4 defines the three types of control field
used by an HDLC frame. We have numbered the control field
bits 1 to 8 (bit 1 is the least-significant bit) with the least-sig-
nificant bit on the left to conform to the HDLC standard.

The two least-significant bits of a C-field define one
of three types of frame: I-frame, S-frame or U-frame.

An I-frame or information frame contains an information
field and is used to transport data from a higher level layer
than the data link layer.

The S-frame or supervisory frame controls the flow of
information on the link. Typical functions include acknowl-
edging I-frames or requesting the retransmission of frames
lost during transmission. There are four types of S-frame, the
type is indicated by the two bits labeled ‘S’ in Table 14.4. We
shall look more closely at the S-frame later.

The unnumbered frame (U-frame) provides control func-
tions not available with the I- or C-frames. U-frames perform
functions like setting up or changing the operating mode
of the data link layer and connecting or disconnecting
two stations.

All three types of control field have a dual-purpose
poll/final (P/F) bit. When transmitted by a master station, this
is called a poll bit (P-bit) and indicates that the master is ask-
ing the secondary station for a response. Recall that in the
master–slave mode, the secondary station cannot transmit

14.8 The data link layer 601

All communication is between a slave and the master.

Direct slave-to-slave communication is not permitted.

Data link

Slave

Slave

Slave

Slave

Master

Figure 14.37 Master–slave transmission with HDLC.

THE MAC

The MAC or media access control is the address of a

physical node in a computer network. In a PC the MAC is

the address of the NIC (network interface card) or the

wireless card.This address is unique and defines that

particular card (no other card in the World has the

same MAC).

A MAC is a 12-digit hexadecimal number (i.e. 48 bits

giving 248 possible unique addresses). MAC addresses are

often printed on the back of a NIC, for example,

00:50:BA:BD:12:C9 belongs to one of my interface cards.

The first half of the MAC address defines the node’s

manufacturer, which is D-Link in this case.

The MAC address is used by the data link layer to

access nodes connected to the physical network.This is

not to be confused with the IP (Internet protocol) address,

which is a logical address identifying nodes across the entire

Internet.

Frame 1 2 3 4 5 6 7 8

type

I frame 0 N(S) P/F N(R)

S frame 1 0 S S P/F N(R)

U frame 1 1 M M P/F M M M

N(S) = send sequence number

N(R) = receive sequence number

P/F = poll/final bit

SS = two supervisory bits

MMMMM = five modifier bits

Table 14.4 The format of the HDLC control field.

until it is invited to do so by the master. A control field with
P/F � 1 sent by the master indicates such an invitation.

When a control field is sent by a secondary station, the P/F
bit is defined as a final bit and, when set, indicates that the
current field is the last frame of the series. In other words, a
slave sets P/F to 1 when it has no more frames to send.

The state variables N(S) and N(R) in the control field are
3-bit numbers in the range 0 to 7 that define the state of the
system at any instant. N(S) is called the send sequence number
and N(R) is called the receive sequence number.

Only I-frames contain a send sequence number to label
the current information frame; for example, if N(S) � 101
the frame is numbered 5. When this frame is received the
value of N(S) is examined and compared with the previous
value. If the previous value was 4, the message is received
in sequence. But if the value was not 4, an error has
occurred. The sequence count is modulo 8, so that it goes
67012345670 Consequently, if eight messages are lost,
the next value of N(S) will apparently be correct.

The receive sequence number, N(R), is available in both S
and I control fields. N(R) indicates the number of the next I-
frame that the receiver expects to see; that is, N(R) acknowl-
edges I-frames up to and including N(R) � 1. Suppose station
A is sending an I frame to B with N(S) � 3 and N(R) � 6.
This means that frame A is sending frame number 3 and has
safely received frames up to 5 from B.A expects to see an infor-
mation frame from B with the value of N(S) equal to 6.

By means of the N(R) and N(S) state variables, it’s impos-
sible to lose a frame without noticing it, as long as there are
not more than seven outstanding I-frames that have not been
acknowledged. If eight or more frames are sent, it is impossi-
ble to tell whether a value of N(R) � i refers to frame i or to
frame i � 8. It is up to the system designer to ensure that this
situation never happens. We will soon look at how N(S) and
N(R) are used in more detail.

FCS field

Recall that the data link layer is built on top of an imperfect
physical layer. Bits transmitted across a physical medium may
become corrupted by noise with a 1 being transformed to a 0
or vice versa. The error rate over point-to-point links in a local
area network may be of the order of 1 bit lost in every 1012 bits.
Error rates over other channels may be much worse than this.

HDLC provides a powerful error-detection mechanism.
At the receiver, the bits of the address field, control field, and
I-field are treated as the coefficients of a long polynomial,
which is divided by a polynomial called a generator. The
HDLC protocol uses the CCITT generator
10001000000100001 or x16 � x12 � x5 � 1. The result of the
division yields a quotient (which is thrown away) and a 16-bit
remainder, which is the 16-bit FCS appended to the frame.

At the receiver, the message bits forming the A-, C-, and
I-fields are also divided by the generator polynomial to yield

a locally calculated remainder. The calculated remainder is
compared with the received remainder in the FCS field. If
they match, the frame is assumed to be valid. Otherwise the
frame is rejected.

You may wonder how the FCS is detected, because the I-
field may be of any length and no information is sent to indi-
cate its length directly. In fact, the FCS field cannot be
detected. The receiver assembles data until the closing flag
has been located and then works backward to identify the
FCS and the I-field.

HDLC message exchange

The HDLC protocol supports several configurations. Here we
consider only the unbalanced master–slave mode (NRM)
where a slave may initiate transmission only as a result of
receiving explicit permission from the master.

Before we continue, it’s necessary to define the four mes-
sages associated with a supervisory frame. Table 14.5 shows
how the four S-frames are encoded.

The RR (receiver ready) frame indicates that the station
sending it is ready to receive information frames and is equiv-
alent to saying,‘I’m ready.’ The REJ (reject) frame indicates an
error condition and usually implies that one or more frames
have been lost in transmission. The REJ frame rejects all
frames, starting with the frame numbered N(R). Whenever a
station receives an REJ frame, it must go back and retransmit
all messages after N(R)�1. Sending all these messages is
sometimes inefficient, because not all frames in a sequence
may have been lost.

The RNR (receiver not ready) frame indicates that the
station is temporarily unable to receive information frames.
RNR is normally used to indicate a busy condition (e.g. the
receiver’s buffers may all be full). The busy condition is
cleared by the transmission of an RR, REJ, or SREJ frame.
An I-frame sent with the P/F bit set also clears the busy
condition.

The selective reject (SREJ) frame rejects the single frame
numbered N(R) and is equivalent to ‘Please retransmit frame
number N(R)’. The use of SREJ is more efficient than REJ,
because the latter requests the retransmission of all frames
after N(R) as well as N(R).

602 Chapter 14 Computer communications

Control bit

1 2 3 4 5 6 7 8 S-frame type

1 0 0 0 P/F ← N(R) → RR receiver ready

1 0 0 1 P/F ← N(R) → REJ reject

1 0 1 0 P/F ← N(R) → RNR receiver not ready

1 0 1 1 P/F ← N(R) → SREJ selective reject

Table 14.5 The format of the S-frame.

Figure 14.38 demonstrates a sequence of HDLC frame
exchanges between A (the master) and B (the slave) in a half-
duplex mode. Each frame is denoted by type, N(S),N(R),
P/F, where type is I, RR, REJ, RNR, or SREJ. Typical HDLC
frames are

Type N(S), N(R)P/F

I, 5, 0 I-frame, N(S) � 5, N(R) � 0,
I, 5, 0, P I-frame, N(S) � 5, N(R) � 0, poll bit set by master
REJ,, 4, F S-frame, N(S) � 4, reject, final bit set by slave

Note that a double comma indicates the absence of an
N(S) field.

Initially in Fig. 14.38, the master station sends three
I-frames. The poll bit in the third frame is set to force a
response from the slave. The slave replies by sending two
I-frames that are terminated by setting the F bit of the C-field.
If the slave had no I-frames to send, it would have responded
with RR,,3,F. The values of N(S) and N(R) are determined by
the sender of the frame.

The master sends two more I-frames, terminated by a poll
bit. The first frame (I,3,2) is corrupted by noise and rejected
by the receiver. When the slave responds to the poll from the
master, it sends a supervisory frame, REJ,,3,F, rejecting the I-
frame numbered 3 and all succeeding frames. This causes the
master station to repeat the two frames numbered N(S) � 3
and N(S) � 4.

When the master station sends an I-frame numbered
I,5,2,P, it also is corrupted in transmission and rejected by the
receiver. The secondary station cannot respond to this polled

request. When the master sends a message with P � 1, it
starts a timer. If a response is not received within a certain
period, the timeout, the master station takes action. In this
case, it sends a supervisory frame (RR,,2,P) to force a
response. The secondary station replies with another super-
visory frame (REJ,,5,F) and the master then repeats the lost
message.

A selective reject frame, SREJ,,N(R), rejects only the mes-
sage whose send sequence count is N(R). Therefore,
SREJ,,N(R) is equivalent to ‘Please repeat your message with
N(S) � N(R).’ If a sequence of messages are lost, it is better to
use REJ,,N(R) and have N(R) and all messages following
N(R) repeated.

Figure 14.39 shows the operation of an HDLC system
operating in full-duplex mode, permitting the simultaneous
exchange of messages in both directions.

We have explained only part of the HDLC data link layer
protocol. Unnumbered fields are used to perform operations
related to the setting up or establishing of the data link layer
channel and the eventually clearing down of the channel.

14.8.2 The Ethernet data link layer

Figure 14.40 describe an Ethernet packet that consists of six
fields. The 8-byte preamble is a synchronizing pattern used to
detect the start of a frame and to derive a clock signal from it.
The preamble consists of 7 bytes of alternating 1s and 0s
followed by the pattern 10101011. Two address fields are
provided, one for the source and one for the destination.
A 6-byte (48-bit) address allows sufficient address space for
each Ethernet node to have a unique address.

14.8 The data link layer 603

Computer A

Noise

Noise
Timeout

Computer B

I,0,0

I,1,0

I,2,0,P

I,0,3

I,1,3,F

I,3,2

I,4,2,P

REJ,,3,F

I,3,2

I,4,2

I,5,2

I,5,2,p

RR,2,p

REJ,,5,F

A message is denoted by

type,N(S),N(R),P/F. For example, I,3,0,P

indicates an information frame numbered 3,

with an N(R) count of 0, and the poll bit set

indicating that a response is required. Note

that message 3 from A (i.e. I,3,2) is lost.

Therefore, when A sends the message

I,4,2,P with the poll bit set, B responds with

REJ,,3,F. This indicates that B is rejecting

all messages from A numbered 3 and

above. The F bit is set denoting that B has no

more messages to send to A.

Figure 14.38 An example of

an HDLC message exchange

sequence.

The type field is reserved for use by higher level layers to
specify the protocol. The data field has a variable length,
although the size of an Ethernet packet must be at least 64
bytes. The data field must be between 46 and 1500 bytes. The
final field is a 4-byte cyclic redundancy checksum (CRC) that
provides a very powerful error-detecting mechanism.

Figure 14.41 describes the format of a packet conforming to
the IEEE’s 802.3 standard, which is very similar to the
original Ethernet packet. The preamble and start-of-frame
delimiter are identical to the corresponding Ethernet
preamble. The principle difference is that the 802.3 packet has
a field that indicates the length of the data portion of the frame.

The 802.3 protocol covers layer 1 of the OSI reference
model (the physical layer) and part of the data link layer

called the medium access control (MAC). The IEEE 802 stan-
dards divide the data link layer into a medium access layer
and a logical link control (LLC).

14.9 Routing techniques

How does a message get from one point in a network to its
destination? Routing in a network is analogous to routing in
everyday life. The analogy between network and computer
routing is close in at least one sense—the shortest route isn’t
always the best. Drivers avoid highly congested highways.
Similarly, a network strives to avoid sending packets along a
link that is either congested or costly.

604 Chapter 14 Computer communications

• A sends a frame I,0,0 (information frame

 numbered 0, A is expecting a frame from B

 numbered 0).

• A sends frame I,1,0 (information frame numbered

 1, A is still expecting a frame from B numbered 0).

• A sends frame I,2,0. This frame is corrupted by

 noise and is not correctly received by B.

• B sends frame I,0,2 (information frame numbered

 0, B is expecting a frame from A numbered (2).

 Note that because A's frame I,2,0 has been lost,

 B is still expecting to see a frame from B labeled

 with N(S) = 2.

• A sends I,3,0,P (information frame numbered 3,

 A is expecting a frame numbered 0 from B). A is

 also polling B for a response. At this point A does

 not know that its previous message has been

 lost, and A has not yet received B's last

 message.

• B sends a reply to A's poll. This is REJ,,2,F

 indicating that all A's messages numbered 2 and

 above have been rejected. The final bit, F, is set

 indicating that B has nothing more to send at the

 moment.

• A now sends I,2,1 (information frame 2, and A is

 expecting to see a frame from B numbered 1).

 This frame is a repeat of A's information frame

 numbered 2, which was lost earlier.

Computer A
(master)

Computer B
(slave)

I,0,0

I,1,0

I,0,2

REJ,,2,F

I,2,0

I,2,1

I,3,1
I,1,3,F

I,4,2,P

I,5,2

I,6,2

RR,,6

I,2,7

I,3,7,F
I,7,2

I,0,4,P

RR,,1

I,4,1

I,5,1

I,1,6 I,6,1

I,2,6,P

I,6,3,F

I,3,0,P

Noise

Noise

Figure 14.39 HDLC full-duplex transmission.

Preamble
(8 bytes)

Destination
address (6 bytes)

Source
address (6 bytes)

Type
(2 bytes)

Data
(variable)

CRC
(4 bytes)

Figure 14.40 Ethernet packet format.

Preamble
(7 bytes)

STD
(1 byte)

Destination
address (6 bytes)

Source
address (6 bytes)

Type
(2 bytes)

Data
(variable)

CRC
(4 bytes)

Figure 14.41 IEEE 802.3

packet format.

14.9 Routing techniques 605

CHARACTER-ORIENTED PROTOCOLS

Character-oriented protocols belong to the early days of data

communication.They transmit data as ASCII characters using

special 7-bit characters for formatting and flow control. For

example, the string ‘Alan’ is sent as a sequence of four 7-bit

characters 1000001001101110000110111011.This string of

bits is read from left to right, with the leftmost bit

representing the least-significant bit of the ‘A’.We need a

method of identifying the beginning of a message. Once this

has been done, the bits can be divided into groups of seven (or

eight if a parity bit is used) for the duration of the message.

The ASCII synchronous idle character SYN (00101102) denotes

the beginning of a message.The receiver reads the incoming

bits and ignores them until it sees a SYN character. The

following demonstrates the use of the SYN character.

On the left we have provided three consecutive

characters with spaces between successive charac-

ters. On the right we’ve removed spaces to show the

bit stream. Case 1 shows how the SYN is detected.

This simple scheme is flawed because the end of

one character plus the start of the next may look like

a SYN character. Case 2 shows how a spurious SYN

might be detected.To avoid this problem, two SYN

characters are transmitted sequentially. If the receiver

does detect a SYN, it reads the next character. If this

is also a SYN the start of a message is assumed to have been

located, otherwise a false synchronization is assumed and the

search for a valid SYN character continued (case 3).

Character-oriented protocols provide point-to-point

communication between two stations. Like all data link layer

protocols, they both control the flow of information (message

sequencing and error recovery) and they set up and maintain

the transmission path.

A consequence of reserving special characters for control

functions is that the transmitted data stream must not

contain certain combinations of bits, as these will be

interpreted as control characters. Fortunately, there are ways

of getting round this problem by using an escape character

that modifies the meaning of following characters.

The diagram below shows the format of a BiSync frame, a

protocol originally devised by IBM.The SOH, STX, and ETC

characters denote start of header, start of text, and end of

text, respectively.

A BiSync frame header keeps track of the data by giving it a

sequence number and providing a means of sequencing and

acknowledging frames.

Character sequence Bit sequence

Case 1 0101100 0010110 0100111 010110000101100100111

Case 2 0100010 1101101 0100111 010001011011010100111

Case 3 0101100 0010110 0010110 010110000101100010110

SYN

SOH Address

STX Text ETX

Control AcknowledgementBlock sequence number

SYN SOH Header STX ETX BCCText

POINT-TO-POINT PROTOCOL (PPP)

The HDLC link layer level protocol was created long before

WANs and the Internet became popular. The PPP protocol

has superseded HDLC in some applications.A PPP frame is

like an HDLC frame. However, a PPP frame includes a 2-byte

field that defines the protocol of the data it is transporting.

The variable-length data field contains the datagram in the

protocol defined by the protocol field.

Figure 14.42 describes a hypothetical network consisting
of six nodes A to F and 10 data links. Suppose you wish to
route a message from F to C. Some of the available routings
are as follows.

F–A–C
F–A–B–C
F–A–D–C
F–E–C
F–E–D–C
F–E–D–A–C
F–E–D–A–B–C
F–E–B–C
F–E–B–A–C
F–E–B–A–D–C

One of the simplest and least efficient ways of implement-
ing routing involves a crude technique called flooding. When
a node wishes to send a message, it sends the message on each
of its links to adjacent nodes. Each node receiving the

message copies the message to all its outgoing links (apart
from the link to the node on which the message was received).

You can now see where the term flooding came from—a
message is replicated at each junction and it soon becomes a
flood or avalanche. Because messages multiply at each node,
you have to provide a means of stopping the process.
Messages are stamped with a best-before-date and deleted by
nodes if they exceed it. Although flooding is the simplest
possible routing strategy it is inefficient because it wastes

FLOW CONTROL MECHANISMS IN RINGS

Three octets

Start delimiter

(a) Token format.

(b) Frame format.

1 octet

Start
delimiter

End
delimiter

Access
control

Frame
control

Destination
address

Source
address

Frame
status

End
delimiter

Data CCS

1 octet 1 octet 1 octet 2 or 6 octets 2 or 6 octets 0 or 5000 octets

Start of frame Body of frame covered by FCS End of frame

4 octets 1 octet 1 octet

Access control End delimiter

bandwidth. Flooding is not normally used by today’s
networks.

Suppose now we apply a cost to each of the routings. This
cost is a figure-of-merit that might be determined by the
reliability of a link, its latency (i.e. delay), or its actual cost (it
might be rented). We have provided a number against each
link in Fig. 14.42 to indicate its cost. If we now apply these
costs to the routines, we get the figure shown in Table 14.6.

Table 14.6 indicates that the cheapest route is F to E to B to C,
which is slightly cheaper than the more direct route F to E to C.

How do you find the cheapest route though the network
and what happens if the cost of a link changes (if every node

606 Chapter 14 Computer communications

A ring network connects all nodes to each other in the form of

a continuous loop. Unlike the nodes of a bus network that

listen passively to data on the bus unless it is meant for them,

the nodes of the ring take on an active part in all data

transfers.When receiving incoming data, a node must test the

packet and decide whether to keep it for itself or to pass it on

to its next neighbor.

Token rings pass a special bit pattern (the token) round the

ring from station to station.The station currently holding the

token can transmit data if it so wishes. If it does not wish to

take the opportunity to send data itself, it passes the token on

round the ring. For example, suppose the token has the special

pattern 11111111, with zero stuffing used to keep the pattern

unique.A station on the ring wishing to transmit monitors its

incoming traffic.When it has detected seven 1s it inverts the

last bit of the token and passes it on.Thus, a pattern called a

connector (11111110) passes on down the ring.The connector

is created to avoid sending the eighth ‘1’, thereby passing on

the token.The station holding the token may now transmit its

data.After it has transmitted its data, it sends a new token

down the ring.As there is only one token, contention cannot

arise on the ring unless, of course, a station becomes antisocial

and sends out a second token. In practice, a practical system is

rather more complex, because arrangements must be included

for dealing with lost tokens.

The IEEE has created a standard for the token ring LAN

called 802.5.Two types of frame are supported—a three-octet

frame and a variable-length frame. Each frame begins and ends

with a starting and ending delimiter, which mark the frame’s

boundaries. The second octet provides access control (i.e. a

token bit, a monitor bit, and priority bits). The short three-

octet frame format is used to pass the control token round the

ring from one node to the next. The IEEE 802.5 standard pro-

vides for prioritization.When a station wishes to transmit data

it waits for a free token whose priority is less than its own.

F

A
C

B

D

E

4

1

2

8

9

7

4

2

4

3

Figure 14.42 Cost of routing in a network.

Route Cost per segment Total cost

F–A–C 4 � 8 12

F–A–B–C 4 � 9 � 4 17

F–A–D–C 4 � 2 � 3 9

F–E–C 1 � 7 8

F–E–D–C 1 � 4 � 3 8

F–E–D–A–C 1 � 4 � 2 � 8 15

F–E–D–A–B–C 1 � 4 � 2 � 9 � 4 20

F–E–B–C 1 � 2 � 4 7

F–E–B–A–C 1 � 2 � 9 � 8 20

F–E–B–A–D–C 1 � 2 � 9 � 2 � 3 17

Table 14.6 The cost of routing a message from node F to C in

Fig. 14.42.

14.9 Routing techniques 607

attempts to use the same link its performance will fall
and increase its cost)? Much research has been carried
out into the routing of messages around complex networks.
Here we can only mention some of the basic concepts
of routing.

14.9.1 Centralized routing

A network with centralized routing used a master station with
a knowledge of the whole network and the best routes
between all nodes. The master station broadcasts the routing
information to the other nodes. Let’s see how this applies to
the example of Fig. 14.42. Table 14.7 provides routing tables
for nodes A to F. In each case we have calculated the cheapest
route and the next node. Table 14.8 summarizes the informa-
tion in Table 14.7 and gives the next node for any destination.

Consider the routing of a message from node A to B. At
node A the router looks up the next destination for a message
consigned to B and sends the packet to node F. Node F
receives this packet and looks up the next node for a packet
bound for B, which is E. At node E the packet is sent on the
best route to D which is direct to B. The packet reaches B
having followed the optimum route A to F to E to B.

14.9.2 Distributed routing

Getting a complete knowledge of a complex network is not
easy. Another way of dealing with routing is to allow each
node to build up its own database for the rest of the network.
Initially each node knows only about its immediate neigh-
bors and the cost to reach them. After a time, a node can
request information from its immediate neighbors about
their neighbors, and so on. Eventually, a complete picture of
the network can be constructed.

The optimum route between any two points in a network
isn’t necessarily constant because the network itself is con-
stantly changing. Nodes are added and removed. Links can be
broken or become hopelessly congested. Maintaining a fixed
table of optimum routes (called static routing) is less efficient
than constantly updating routing information to cope best with
the current conditions. This strategy is called adaptive routing.

14.9.3 IP (Internet protocol)

Although networks were originally developed for highly spe-
cialized applications such as reliable military communications
systems and academic research tools, it’s the Internet that’s
caught people’s attention because of its impact on everyday
life. The Internet began as a development of the US Defense
Advanced Research Projects Agency, (DARPA) in the 1960s.
This project created and developed a small experimental net-
work using packet switching called ARPANET (the ‘D’ for
defense has been dropped from the acronym). Research into
the ARPANET was carried out at many universities and this
network gradually evolved into what we now call the Internet.

The protocol used for ARPANET’s transport layer forms the
basis of Internet’s transmission control protocol (TCP).

The Internet links together millions of networks and indi-
vidual users. In order to access the Internet, a node must use
the TCP/IP protocol (transmission control protocol/Internet
protocol), which corresponds to layers 4 and 3 of the OSI
reference model, respectively. Some of the higher level
protocols that make use of TCP/IP are TELNET (a remote
login service that allows you to access a computer across the
Internet), FTP (file transfer protocol), which allows you to

Node A Node B

Destination Next node Cost Destination Next node Cost

B F 7 A E 7

C D 5 C C 4

D D 2 D E 6

E F 5 E E 2

F F 4 F E 3

Node C Node D

Destination Next node Cost Destination Next node Cost

A D 8 A A 2

B B 4 B E 6

D D 3 C C 3

E B 6 E E 4

F B 7 F E 5

Node E Node F

Destination Next node Cost Destination Next node Cost

A F 5 A A 4

B B 2 B E 3

C B 6 C E 7

D D 4 D E 5

F F 1 E E 1

Table 14.7 Routing tables for nodes A to F.

Source node Destination node

A B C D E F

A F D D F F

B E C E E C

C D B D B B

D A E C E E

E F B B D F

F A E E E E

Table 14.8 Routing matrix (next node table).

608 Chapter 14 Computer communications

Version Header length Service type Datagram length

Identification Flags Fragment offset

Time to live Protocol Header checksum

Source IP address

Destination IP address

Options Padding

Data (up to 64K octets total in IP packet)
Figure 14.43 Structure of the

IP layer packet.

exchange files across the Internet, and SMTM (simple mail
transfer protocol), which provides electronic mail facilities.
Here we provide only an overview of the TCP/IP layers.

Internet’s network layer protocol, IP, routes a packet
between nodes in a network. The packets used by the IP are
datagrams and are handled by appropriate data link layer
protocols—typically Ethernet protocols on LANs and X.25
protocols across public data networks (i.e. the telephone sys-
tem). Figure 14.43 describes the format of an IP packet (or
frame) that is received from the data link layer below it and
passed to the TCP transport layer above it.

IP’s version field defines the version of the Internet proto-
col that created the current packet. This facility allows room
for growth because improvements can be added as the state of
the art improves while still permitting older systems to access
the network. The IP version widely used in the late 1990s was
IPv4, and IPv6 was developed to deal with some of the prob-
lems created by the Internet’s increasing size and to provide
for time-critical services such as real-time video and speech.

The header length defines the size of the header in multi-
ples of 32-bit words (i.e. all fields preceding the data). The
minimum length is five. Because the header must be a multi-
ple of 32 bits, IP’s padding field is used to supply 0 to 3 octets
to force the header to fit a 32-bit boundary. The datagram
length is a 16-bit value that specifies the length of the entire IP
packet, which limits the maximum size of a packet to 64K
octets. In practice, typical IP packets are below 1 kbyte.

The service type field tells the transport layer how the
packet is to be handled; that is, priority, delay, throughput,
and reliability. The service request allows the transport layer
to choose between, for example, a link with a low delay or a
link that is known to be highly reliable.

The flags and fragment offset fields are used to deal with
fragmentation. Suppose a higher level layer uses larger packets
than the IP layer. A packet has to be split up (i.e. fragmented)
and transmitted in chunks by the IP. The fragmentation flags
indicate that an IP packet is part of a larger unit that has to be
re-assembled and the fragment offset indicates where the
current fragment fits (remember that IP packets can be
received out of order).

The time-to-live field corresponds to the packet’s best-
before date and is used to specify the longest time that the
packet can remain on the Internet. When a packet is created,
it is given a finite life. Each time the packet passes a node, the
time-to-live count is decremented. If the count reaches zero,

the packet is discarded. This facility prevents packets circulat-
ing round the Internet endlessly.

The protocol field specifies the higher level protocol that is
using the current packet; for example, the TCP protocol has
the value 6. This facility enables the destination node to pass
the IP packet to the appropriate service.

The header checksum detects errors in the header. Error
checking in the data is performed by a higher level protocol.The
checksum is the one’s complement of the sum of all 16-bit inte-
gers in the header. When a packet is received the checksum is
calculated and compared with the transmitted value. A check-
sum is a very crude means of providing error protection (it’s not
in the same league as the FCS) but it is very fast to compute.

The source and destination IP address fields provide the
address of where the packet is coming from and where it’s
going. We will return to IP addressing later. The options field
is optional and allows the packet to request certain facilities.
For example, you can request that the packet’s route through
the Internet be recorded or you can request a particular route
though the network. Finally, the data field contains the infor-
mation required by the next highest protocol.

IP routing

Both the IP source and destination addresses are 32 bits in
version 4 of the Internet protocol. Version 6 will provide 128-
bit addresses (that’s probably enough to give each of the
Earth’s molecules its own Internet address).

An IPv4 address is unique and permits 232 (over 4000 mil-
lion) different addresses. When specifying an Internet
address it’s usual to divide the 32 bits into four 8-bit fields and
convert each 8-bit field into a decimal number delimited by a
period; for example, the IP address 11000111 10000000
01100000 00000000 corresponds to 199.128.96.0.

Although an IP address provides 232 unique values, it
doesn’t allow up to 4000 million nodes (or users) to exist on
the Internet, because not all addresses are available. An IP
address is a hierarchical structure designed to facilitate the
routing of a packet through the Internet and is divided into
four categories as Fig. 14.44 demonstrates.

Internet addresses have two fields—a network address and
a node address. Class A Internet protocol addresses use a 7-bit
network identifier and then divide each network into 224

different nodes. Class B addresses can access one of 214 � 16K
networks each with 64K nodes, and class C addresses select
one of 212 � 4096 networks with 254 nodes.

14.9 Routing techniques 609

You can easily see how inefficient this arrangement is.
Although only 128 networks can use a class A address, each
network gets 16 million node addresses whether they are
needed or not. Class A and B addresses have long since been
allocated (removing large numbers of unique addresses from
the pool). This leaves only a rapidly diminishing pool of class C
addresses (until the IPv6 protocol becomes more widely used).

The end user doesn’t directly make use of a numeric
Internet address. Logical Internet addresses are written in the
form user@host.department.institution.domain. The way in
which these logical addresses are mapped onto physical
addresses is beyond the scope of this chapter.

Transmission control protocol

TCP performs a level-4 transport layer function by interfacing
to the user and host’s applications processes at each end of the
net.The TCP is rather like an operating system because it carries
out functions such as opening, maintaining, and closing the
channel. The TCP takes data from the user at one end of the net
and hands it to the IP layer below for transmission. At the other
end of the net, the TCP takes data from the IP layer and passes it
to the user. Figure 14.45 describes the transport header.

The source and destination port addresses provide
application addresses. Each node (host) might have several
application programs running on it and each application is
associated with a port. This means you can run several appli-
cations, each using the Internet, on a computer at any instant.

The sequence number ensures that messages can be assem-
bled in sequence because it contains the byte number of
the first byte in the data. The acknowledgement number
indicates the byte sequence number the receiving TCP node
expects to receive and, therefore, acknowledges the receipt of
all previous bytes. This arrangement is analogous to the
HDLC protocol used by layer two protocols.

The offset defines the size of the TCP header and, there-
fore, the start of the data field. The flags field contains 6 bits

that control the operation of the TCP; for example, by indi-
cating the last data segment or by breaking the link. The win-
dow field tells the receiving node how many data bytes the
sending node can accept in return. The checksum provides
basic error correction for the transport layer. The options
field defines TCP options. The padding field ensures that the
header fits into a 32-bit boundary.

The urgent pointer field is used in conjunction with the
URG flag bit. If the URG bit is set, the urgent pointer provides
a 16-bit offset from the sequence number in the current TCP
header. This provides the sequence number of the last byte in
urgent data (a facility used to provide a sort of interrupt facil-
ity across the Internet). The host receiving a message with its
URG bit set should pass it to the higher layers ahead of any
currently buffered data.

Although the TCP protocol forms the backbone of the
Internet, it is rather old and has its origin in the days of the
ARPANET. In particular, the TCP’s error-detecting checksum
is almost worthless because it isn’t as powerful as the data link
layer’s FCS error-detecting mechanism. TCP plus IP headers
are 40 bytes or more and these add a significant overhead to
short data segments.

■ SUMMARY

In this chapter we have provided an overview of some of the

aspects of interest to those involved with computer communica-

tions networks. Computer networks is a subject that is advancing

as rapidly as any other branch of computer science, because it

increases the power of computer systems and exploits many of

today’s growing technologies. It is all too easy to think of com-

puter communications as a hardware-oriented discipline cen-

tered almost exclusively on the transmission of signals from

point A to point B. Modern computer communications networks

have software components that far outweigh their hardware

components in terms of complexity and sometimes even cost. In

this chapter we have introduced the ideas behind the seven

0 8 31

Class A 0 Net ID Host ID
0 1 16

Class B 1 0 Net ID Host ID
0 1 2 24

Class C 1 1 0 Net ID Host ID

0 1 2 3

Class D 1 1 1 0 Multicast address
0 1 2 3 4

Class E 1 1 1 1 0 Reserved for future use
Figure 14.44 Structure of an

IP address.

Source port Destination port

Sequence number

Acknowledgement number

Data offset Reserved Flags Window

Checksum Urgent pointer

Options Padding

Data
Figure 14.45 Structure of TCP

header.

610 Chapter 14 Computer communications

layers of the ISO basic reference model for open systems intercon-

nection and have described protocols for the bottom two layers.

■ PROBLEMS

14.1 If the cost of a computer and all its peripherals is so low

today, why is the field of computer communications expanding

so rapidly?

14.2 What is the meaning of a protocol and why are protocols

so important in the world of communications?

14.3 What is the difference between a WAN and a LAN?

14.4 What is an open system?

14.5 Why has the ISO model for OSI proved so important in

the development of computer communications?

14.6 What are the differences between the transport and net-

work layers of the ISO reference model?

14.7 Why is the physical layer of the OSI model different from

all the other layers?

14.8 What is a virtual connection?

14.9 What are the differences between half-duplex and full-

duplex transmission modes? How is it possible to make a half-

duplex system look like a full-duplex system?

14.10 What is the difference between phase and frequency

modulation?

14.11 What are the types of noise that affect a data link? Which

types of noise are artificial and which are natural? If you were

comparing a satellite link and a telephone link, what do you think

are the effect, type, and consequences of noise on each link?

14.12 What determines the maximum rate at which informa-

tion can be transmitted over a data link?

14.13 Why cannot users transmit any type of signal they wish

(i.e. amplitude, frequency characteristics) over the PSTN?

14.14 What is the difference between DTE and DCE?

14.15 What are the advantages and disadvantages of the fol-

lowing communications media: fibre optic link, twisted pair, and

satellite link?

14.16 Why is a SYN character required by character-oriented

data link, and why is a SYN character not required by a

bit-oriented data link?

14.17 What is bit stuffing and how is it used to ensure

transparency?

14.18 What are the advantages and disadvantages of LANs

based on the ring and bus topologies?

14.19 What is the meaning of CSMA/CS in the context of a

mechanism for handling collisions on a LAN?

14.20 The maximum range of a line-of-sight microwave link, d,

is given by the formula d2 � 2r ⋅ h � h2, where r is the radius of

the Earth and h is the height of the antenna above the Earth’s

surface.This formula assumes that one antenna is at surface

level and the other at height h. Show that this formula is correct.

Hint: it’s a simple matter of trigonometry.

14.21 For each of the following bit rates determine the period

of 1 bit in the units stated.

Bit rate Unit

(a) 100 bps ms

(b) 1 kbps ms

(c) 56 kbps �s

(d) 100 Mbps ns

14.22 Each of the following time values represents 1 bit. For each

value give the corresponding bit rate expressed in the units stated.

Duration Unit of bit rate

(a) 1 s bps

(b) 10 �s kbps

(c) 10 �s Mbps

(d) 15 ns Gbps

14.23 For each of the following systems calculate the bit rate.

(a) 300 baud 2-level signal

(b) 600 baud 4-level signal

(c) 9600 baud 256-level signal

14.24 The ISO reference model has seven layers. Is that too

many, too few, or just right?

14.25 Define an open system and provide three examples of

open systems?

14.26 What are the relative advantages and disadvantages of

satellite links in comparison with fiber optic cables?

14.17 If a signal has a signal-to-noise ratio of 50 dB and the

power of the signal is 1 mW, what is the power of the noise

component?

14.28 For the network of Fig. 14.46 calculate the lowest cost

route between any pairs of nodes.

14.29 Suppose the network of Fig. 14.46 used flooding to route

its packets. Show what would happen if a packet were to be sent

from node F to node C.

14.30 A network has a bandwidth of 3400 Hz and a signal-to-

noise ratio of 40 dB.What is the maximum theoretical data rate

that the channel can support?

14.31 Shannon’s work on the capacity of a channel relates to

so-called white Gaussian noise (e.g. thermal noise). Many tele-

phone channels suffer from impulse noise (switching transients

that appear as clicks). Do you think that (for the same noise

power) such a channel would have a better information-carrying

capacity than predicted by Shannon?

14.32 Why is a checksum error detector so much worse than a

cyclic redundancy code?

A

F

E

D

C

B

4

8

7

5
5

9

6

23

4

Figure 14.46 Routing in a network.

ACKNOWLEDGEMENTS

Few books are entirely the result of one person’s unaided
efforts and this is no exception. I would like to thank all those
who wrote the books about computers on which my own
understanding is founded. Some of these writers conveyed the
sheer fascination of computer architecture that was to change
the direction of my own academic career. It really is amazing
how a large number of gates (a circuit element whose opera-
tion is so simple as to be trivial) can be arranged in such a way
as to perform all the feats we associate computers with today.

I am grateful for all the comments and feedback I’ve
received from my wife, colleagues, students, and reviewers
over the years. Their feedback has helped me to improve the
text and eliminate some of the errors I’d missed in editing.
More importantly, their help and enthusiasm has made the
whole project worthwhile.

Although I owe a debt of gratitude to a lot of people, I would
like to mention four people who have had a considerable

impact.Alan Knowles of Manchester University read drafts of
both the second and third editions with a precision well
beyond that of the average reviewer. Paul Lambert, one of my
colleagues at The University of Teesside, wrote the 68K cross-
assembler and simulator that I use in my teaching. In this
edition we have used a Windows-based graphical 68K
simulator kindly provided by Charles Kelly.

Dave Barker, one of my former students and an excellent
programmer, wrote the logic simulator called Digital Works
that accompanies this book. I would particularly like to thank
Dave for providing a tool that enables students to construct
circuits and test them without having to connect wires
together.

One of the major changes to the third edition was the
chapter on the ARM processor. I would like to thank Steve
Furber of Manchester University (one of the ARM’s design-
ers) for encouraging me to use this very interesting device.

BIBLIOGRAPHY

Logic, Computers Architecture, Computer

Organization

Buchanan, William & Wilson, Austin. (2001) Advanced PC Architecture
Addison-Wesley.

Carpinelli, John, D. (2001) Computer Systems Organization &
Architecture. Addison-Wesley.

Clements, Alan. (1997). Microprocessor Systems Design (3rd edition).
International Thomson Publishing.

Dowd, Kevin. (1993). High Performance Computing.
O’Reilly & Associates Inc., Sebastopol, CA.

Furber, Steve. (1996). ARM System Architecture. Addison-Wesley,
Harlow.

Hamacher, Carl V., Vranesic, Zvonko G., & Zaky, Safwat G. (2002).
Computer Organization (5th edition). McGraw-Hill.

Hayes, John P. (1998). Computer Architecture and Organization
(3rd edition). McGraw-Hill.

Heuring, Vincent P., Jordan, Harry E. (2004). Computer Systems Design
and Architecture (Second edition). Prentice Hall.

Karp Alan H. & Flatt, Horace P. (1990). Measuring Parallel Processor
Performance. Communications of the ACM, Vol. 33, No. 1, May 1990,
pp539–543.

Mano, Morris M. & Kime, Charles R. (2000). Logic and Computer
Design Fundamentals. Prentice Hall.

Null, Linda & Lobur, Julia. (2003). The Essentials of Computer
Organization and Architecture. Jones and Bartlett Computer Science.

Patterson, David A. & Hennessy, John L. (2005). Computer Organization
& Design (3nd edition). Morgan Kaufmann Publishers, San Francisco.

Roth, Charles H. (1992). Fundamentals of Logic Design (4th edition).
West Publishing Company.

Sima, Dezso, Fountain, Terence & Kacsuk, Peter. (1997). Advanced
Computer Architectures—A Design Space approach.
Addison-Wesley.

Skahill, Kevin. (1996). VHDL for Programmable Logic.
Addison-Wesley.

Sloss, Andrew N., Symes, Dominic & Wright, Chris. (2004). ARM
System Developer’s Guide. Elsevier.

Stallings, William. (2006). Computer Organization and Architecture
(Seventh edition). Prentice Hall.

Tanenbaum, Andrew S. (2006). Structured Computer Organization
(Fifth edition). Prentice-Hall International.

Wakerly, John F. (2000). Digital Design (3rd edition). Prentice Hall
International Inc.

Warford, Stanley J. (1999). Computer Systems. Jones and Bartlett
Publishers, Sudbury, MA.

Wilkinson, Barry. (1996). Computer Architecture (2nd edition). Prentice
Hall Europe.

Yarbrough, John M. (1997). Digital Logic Applications and Design. West
Publishing Company.

Operating Systems

Bryant, Randal E. & O’Hallaron, David. (2003). Computer Systems—a
programmer’s perspective. Prentice Hall.

Cooling, Jim E. (1997). Real-time Software Systems. International
Thomson Publishing.

Flynn, Ida M. & McIver McHoes, Ann, (1997). Understanding Operating
Systems (2nd edition). International Thomson Publishing.

Rajkumar, Davis. (2001). Operating Systems—a systematic view.
Addison-Wesley.

Stallings, William. (2002). Operating Systems—Internals and Design
Principles (4th edition). Prentice-Hall International.

Williams, Rob. (2001). Computer Systems Architecture—a networking
approach. Addison-Wesley.

Wolf, Wayne. (2001) Computers as Components. Morgan Kaufmann.

Memory Systems.

Bell, Alan E. (1996). Next-Generation Compact Discs. Scientific
American, July 1996, pp28–37.

Burger, Doug & Goodman, James, R. (1997). Billion-Transistor
Architectures. Computer, September 1997, pp46–48.

Gemmell, James D. et al. (1994). Delay-Sensitive Multimedia on Disks.
IEEE Multimedia, Fall, 1994, pp56–66.

Hewlett-Packard. (1997). Digital Modulation in Communications
Systems—an Introduction. Application Note 1298, Hewlett-Packard
Company.

Hill, Mark D. (1988). A Case for Direct-Mapped Caches. Computer,
December 1988, pp25–39.

Lubell, Peter D. (1995). The Gathering Storm in High-Density Compact
Disks. IEEE Spectrum, August 1995, pp32–37.

Pohlmann, Ken C. (1992). The Compact Disc Handbook. Oxford
University Press, Cambridge.

Prince, Betty (1999). High Performance Memories (Revised edition).
John Wiley & Sons, Ltd., Chichester.

Smith, Alan Jay (1983). Cache Memories. Computing Surveys, Vol. 14,
No. 3, September 1982, pp473–530.

Williams, E. W. (1996). The CD-ROM and Optical Disc Recording
Systems. Oxford University Press, Oxford.

I/O techniques, Peripherals.

Johnson, Barry W. (1987). A Course on the Design of Reliable Digital
Systems. IEEE Transactions on Education, Vol. E-30, No. 1, February
1987, pp27–36.

Kuc, Roman (1999). The Information Age. Thomson learning.
Marven, Craig & Ewers, Gillian. (1996). A Simple Approach to Digital

Signal Processing. John Wiley & Sons, Ltd., Chichester.

Morrison, T. P. (1997). The Art of Computerized Measurement. Oxford
University Press, Oxford.

Schultz, Jerome S. (1991). Biosensors. Scientific American, August 1991,
pp64–69.

Communications

Comer, Douglas E. (2003). Computer Networks and Internets
(4th Edition). Prentice Hall.

Halsall, Fred (1995). Data Communications, Computer Networks and
Open Systems (4th edition). Addison-Wesley.

Shay, William A. (1995). Understanding Data Communications Systems.
International Thomson Publishing.

Stallings, William (2003). Data and Computer Communications,
(Seventh Edition). Prentice Hall.

Tanenbaum, Andrew S. (2002). Computer Networks (Fourth edition).
Prentice Hall.

642 Bibliography

THE HISTORY OF THIS BOOK

Like people, books are born. Principles of Computer Hardware
was conceived in December 1980.At the end of their first semes-
ter our freshmen were given tests to monitor their progress. The
results of the test in my ‘Principles of computer hardware’course
were not as good as I’d hoped, so I decided to do something
about it. I thought that detailed lecture notes written in a style
accessible to the students would be the most effective solution.

Having volunteered to give a course on computer commu-
nications to the staff of the Computer Center during the
Christmas vacation, I didn’t have enough free time to produce
the notes. By accident I found that the week before Christmas
was the cheapest time of the year for vacations. So I went to
one of the Canary Islands for a week, sat down by the pool,
surrounded by folders full of reference material, with a bottle of
Southern Comfort, and wrote the core of this book—number
bases, gates, Boolean algebra, and binary arithmetic. Shortly
afterwards I added the section on the structure of the CPU.

These notes produced the desired improvement in the
end-of-semester exam results and were well received by the
students. In the next academic year my notes were transferred
from paper to a mainframe computer and edited to include
new material and to clean up the existing text.

I decided to convert the notes into a book. The conversion
process involved adding topics, not covered by our syllabus,
to produce a more rounded text. While editing my notes, I
discovered what might best be called the inkblot effect. Text
stored in a computer tends to expand in all directions because
it’s so easy to add new material at any point; for example, you
might write a section on disk drives. When you next edit the
section on disks, you can add more depth or breadth.

The final form of this book took a breadth before depth
approach. That is, I covered a large number of topics rather
than treating fewer topics in greater depth. It was my intention
to give students taking our introductory hardware/architecture
course a reasonably complete picture of the computer system.

The first edition of Principles of Computer Hardware
proved successful and I was asked to write a second edition,
which was published in 1990. The major change between the
first and second editions was the adoption of the 68K micro-
processors as a vehicle to teach computer architecture. I have
retained this processor in the current edition. Although
members of the Intel family have become the standard

processors in the PC world, Motorola’s 68K family of micro-
processors is much better suited to teaching computer archi-
tecture. In short, it supports most of the features that
computer scientists wish to teach students, and just as impor-
tantly, it’s much easier to understand. The 68K family and its
derivatives are widely used in embedded systems.

By the mid-1990s the second edition was showing its age.
The basic computer science and the underlying principles
were still fine, but the actual hardware had changed dramati-
cally over a very short time. The most spectacular progress
was in the capacity of hard disks—by the late 1990s disk
capacity was increasing by 60% per year.

This third edition included a 68K cross-assembler and
simulator allowing students to create and run 68K programs
on any PC. It also added details of interesting microprocessor
architecture, the ARM, which provides an interesting con-
trast to the 68K.

When I used the second edition to teach logic design to my
students, they built simple circuits using logic trainers—boxes
with power supplies and connectors that allow you to wire a
handful of simple chips together. Dave Barker, one of my for-
mer students, has constructed a logic simulator program as
part of his senior year project called Digital Works, which
runs under Windows on a PC. Digital Works allows you to
place logic elements anywhere within a window and to wire
the gates together. Inputs to the gates can be provided manu-
ally (via the mouse) or from clocks and sequence generators.
You can observe the outputs of the gates on synthesized LEDs
or as a waveform or table. Moreover, Digital Works permits
you to encapsulate a circuit in a macro and then use this
macro in other circuits. In other words, you can take gates
and build simple circuits, and take the simple circuits and
build complex circuits, and so on.

I began writing a fourth edition of this text in late 2003.
The fundamental principles have changed little since the
third edition, but processors had become faster by a factor of
10 and the capacity of hard disks has grown enormously. This
new edition is necessary to incorporate some of the advances.
After consultation with those who adopt this book, we have
decided to continue to use the 68K family to introduce the
computer instruction set because this processor still has one
of the most sophisticated of all instruction set architectures.

The CD

The Software Contained on the CD

The enclosed CD contains four major items of software, all of
which run on IBM PCs and their clones. I have tested the
software on several PCs under Windows 98 for the third edition
and under Windows XP for this fourth edition. One item runs
only under DOS.

● A 68000 processor DOS-based cross-assembler and simulator

● A 68000 processor Windows-based editor, cross-assembler
and simulator

● A digital logic simulator

● A simulator for the ARM microprocessor

● Documentation for the 68000 processor family

These items are in separate directories and have appropriate
readme files. You also need Adobe Acrobat Reader to view some
of the information such as the Motorola and ARM’s user
manuals. The CD also contains copies of the Adobe Acrobat
Reader that you can install if you do not already have it.

IT IS IMPORTANT THAT YOU APPRECIATE THAT NONE
OF THE SOFTWARE IS OWNED BY OXFORD UNIVERSITY
PRESS. ALL THE SOFTWARE WAS KINDLY SUPPLIED BY
THIRD PARTIES FOR USE BY THE READERS OF THIS
BOOK.

THIS SOFTWARE IS SUBJECT TO THE INDIVIDUAL
CONDITIONS STATED BY THE APPROPRIATE
COPYRIGHT HOLDERS.

THE SOFTWARE HAS BEEN SUPPLIED TO OUP ON THE
CONDITION THAT IT IS NOT SUPPORTED.

ONE ITEM OF SOFTWARE ON THE CD, WINZIP, IS
SUPPLIED AS A DEMONSTRATION COPY AND MAY NOT
BE USED FOR MORE THAN 21 DAYS WITHOUT PAYMENT.
This software is required only if you cannot unzip the ARM
development software.

The four directories on the CD containing the above items are
● 68Ksim
● Digital
● ArmSim
● 68Kdocs
● Easy68K_4ed

I suggest that you copy 68Kdocs and 68Ksim to your hard disk.
The DOS-based 68K simulator software simply has to be copied
to your system and does not require any installation procedure.
You simply run the appropriate X68K.EXE or E68K.EXE file
from your DOS prompt. The Windows-based 68K simulator
has to be installed.

NOTE When I tested the DOS-based 68K simulator I found
that some of the demonstration files had become “read-only” in
the transfer to the CD. This means that you will get an error
message when you try and assemble them or run them. You can
solve their problem by changing the attribute from read-only to
read/write. this problem affected only the demonstration/test
files.

NOTE The ARM software also includes a substantial amount
of documentation including the ARM Reference Manual in
the subdirectory PDF. Note also that I have already unzipped the
ARM software on the CD and you will be able to find the
documentation in ArmSim\ARM202U\PDF. The documentation
goes well beyond the level of this text and has been included to
allow readers to delve more deeply into the ARM’s architecture.

The digital logic simulator, Digital Works, must be installed on
your system. Similarly, you must unzip the ARM logic simulator
files and install them on your hard disk.

The following is the testing schedule that was used to test this
CD. Further information about the packages can be found in
the CD’s files and in the body of the text.

OUP have set up an online resource centre to support this
book. Its URL is: www.oxfordtextbooks.co.uk/orc/clements4e

I can be contacted by email at a.clements@tees.ac.uk

CD Testing Schedule

This “testing schedule” has been devised to allow my “pre-
release testers” to examine the software on this disk before it is
released with Principles of Computer Hardware. It should also
help other readers to get the software going. This software
contains third-party utilities, simulators, and documentation
(in Adobe’s Portable Document Format).

1. Read the Readme.txt file in the root directory.

2. Install Adobe Acrobat Reader. The CD contains
AdbeRdr70_enu_full.exe that will install Version 7 on a PC
with Windows XP.

You can also install Version 4 Adobe Acrobat Reader (for
compatibility with the 3rd edition of the book) of using
one of the two files ar40eng.exe or rs40eng.exe. The former
is a Windows 95 version and the latter a Windows 98
version.

3. If you have Adobe acrobat Reader already installed or have
just installed it, open the 68Kdocs directory and click on the
68Kprm.pdf file. This should enable you to read Motorola’s
definitive document on the 68000 family.

4. Test the 68K simulator. Open directory 68Ksim and click on
the pdf document sim.pdf. This will open the guide to the
use of the simulator software in Adobe Acrobat Reader.

5. Examine the other .txt files in directory 68Ksim.

6. Use an ASCII text editor to create a file, for example,
TEST.X68 that contains a minimal 68K assembly language
program. (You can use one of the ‘demo’ files provided on
the CD.) Go into the DOS command-line mode on your PC
and assemble the program with the command line X68K
TEST -L.

Note that you MUST not provide the extension .X68 or the
assembly with fail. The extension, -L, is used to generate a
listing file. That is, X68K TEST -L will generate TEST.BIN
(if assembly is successful) and TEST.LIS.

The CD

If assembly succeeds (i.e. there are no errors in your source
code), invoke the simulator from the DOS command line
with the command E68K TEST.

You can test the simulator (if you have read the
documentation) and then exit by using the Q (quit)
command. This takes you back to the DOS command level.
If you run a program that puts you in an infinite loop, you
can get out by hitting the escape key.

NOTE that this directory contains several test files (i.e.
Demo1.bin and Demo2.x68). You can assemble Demo1.x68
with the command X68K DEMO1 -L. You can then run
the binary file with E68K DEOM1. To execute a program in
the simulator type GO followed by a carriage return (i.e., the
“enter” key).

7. Test Digital Works. Open the directory Digital and double
click on dw20_95.exe to install Digital Works into the
directory of your choice. If you change to the directory where
Digital Works is located, double clicking on Digital.exe will
run Digital Works. Note that Digital Works also puts a
command on the Windows 98 Start/Programs menu.

The simplest way of testing Digital Works is to select a gate
my moving the cursor to it and then clicking on that gate’s
icon. Then move the cursor to the work area and then click
again. A copy of the gate should be moved to the work area.

8. Test the ARM simulator. This is the most complex software
on the CD and, for the purpose of The Principles of
Computer Hardware you will be using only a fraction of its
capabilities. Note that the package includes considerable
documentation in Adobe’s PDF format.

You must first install the ARM software. I have provided
202u_w32_v1.zip which is the package I downloaded from
ARM’s university web site. The directory ARM202U was
created by unzipping 202u_w32_v1.zip.

When I tested this package, I first unzipped the files to C:\
which created the directory ‘C:\ARM202U’ containing the
unzipped files and subdirectories. I then changed the name
of the directory to ‘C:\ARM200’ to suit the software’s initial
default paths to its \BIN and \LIB directories.

The following provides an introduction to testing this
software:

a. Put the file clements.s (the test program written by
me and located in directory ARMsim) in
C:\ARM200\BIN.

b. Run the simulator package from Windows by clicking on
Apm.exe in the \BIN directory.

c. Use the Project pull-down menu and select ‘New Project’

d. Give the project a name and save the project in the
C:\ARM200\BIN directory. This will create an ‘Edit
Project’ window that asks for files to include.

e. If you have created a source file with the extension .S
(e.g. CLEMENTS.S) add it to the project and click OK.

I have created CLEMENTS.S for you to test. You should
have copied this to the \BIN directory.

f. Note that the system needs to know where the compiler,
etc., is. Click on ‘Options’ and select ‘Directories’. You
will probably have to give the path of the compiler, etc.
on your own system if you have not used the path
C:\ARM200\BIN.

g. From the Project pull-down menu select ‘Build
name.APJ’, where ‘name’ is the name of the project. You
should get a ‘Build complete’ message if your source
code had no errors.

h. From the Project pull-down menu select ‘Debug
name.APJ’ to enter the debugger/simulator mode.

i. In the debugger you can use the ‘View’ pull-down menu
to see registers, etc. Select the ‘User registers’ menu. This
system loads the program at 8080 hexadecimal. Change
the PC to 8080 by clicking on it.

j. You can now run the code line-by-line with the step into
command (one of the icons on the debugger toolbar).

k. Note—from the “Project” pull-down menu you can edit
your source code.

9. Test the 68K Windows-based simulator. This is a system
created by a team led by Chuck Kelly. The software is available
in the public domain and I would suggest that you obtain the
latest version from the Internet at www.monroeccc.edu/
ckelly/easy68k.htm. The version in this CD has been included
to ensure that all readers have a copy of this software.

a. Click on SetupEASy68K/exe to install EASy68K.
Installation puts the software in a sub-directory
EASy68k (we’ve created this directory on the CD).

b. The sub-directory EASy68k contains several files
including EDIT68k.exe and SIM68k.exe. If you double-
click on EDIT68k.exe, you will invoke a text editor that
uses a template for a 68K assembly language program.
You can type your 68K assembly language into this
template and save it. The EDIT68k program is intuitive
to use and has a ‘Help’ function.

c. You can assemble a program from within the editor.
Select the ‘Project’ tab in the editor window to get the
‘Assemble source’ option. Left-click on this and your
program will be assembled. If you make any errors, you
will have to re-edit the source. If there are no errors, you
can select the ‘Close’ button and exit, or the ‘Execute’
button to enter the simulator.

d. If you select the ‘Execute’ button, the 68K simulator is
invoked. Now you can run the code to its completion or
execute it line-by-line. The simulator displays the 68K’s
register and you can also open memory or stack
windows. The F7 function key can be used to execute
code an instruction at a time.

Last modified on 14 July 2005

The CD

CD-ROM conditions of use and copyrights

Please read these terms before proceeding with the CD installa-
tion. By installing the CD you agree to be bound by these terms,
including the terms applicable to the software described below.

The enclosed CD contains four major items of software, all of
which run on IBM PCs and their clones. One item runs only
under DOS.

● A 68000 cross-assembler and simulator

● A digital logic simulator

● A simulator the ARM microprocessor

● Documentation for the 68000 family

These items are in separate directories and have appropriate
“readme” files. You also need Adobe Acrobat Reader to view
some of the information such as Motorola and ARM’s user man-
uals. The CD also contains a copy of the Adobe Acrobat Reader
that you can install if you do not already have it.

The materials contained on this CD-ROM have been supplied by
the author of the book. Whilst every effort has been made to
check the software routines and the text, there is always the pos-
sibility of error and users are advised to confirm the information
in this product through independent sources.

Alan Clements and/or his licensors grant you a non-exclusive
licence to use this CD to search, view and display the contents of
this CD on a single computer at a single location and to print off
multiple screens from the CD for your own private use or study.
All rights not expressly granted to you are reserved to Alan
Clements and/or his licensors, and you shall not adapt, modify,
translate, reverse engineer, decompile or disassemble any part of
the software on this CD, except to the extent permitted by law.

These terms shall be subject to English laws and the English
courts shall have jurisdiction.

THIS CD-ROM IS PROVIDED ‘AS IS’ WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF SATISFACTORY
QUALITY OR FITNESS FOR A PARTICULAR PURPOSE. IN
NO EVENT SHALL ANYONE ASSOCIATED WITH THIS
PRODUCT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES
RESULTING FROM ITS USE.

THIS SOFTWARE IS SUBJECT TO THE INDIVIDUAL
CONDITIONS STATED BY THE APPROPRIATE COPYRIGHT
HOLDERS WHICH ARE GIVEN BELOW AND ON THE
CD WALLET COVER.

THE SOFTWARE IS NOT SUPPORTED.

ONE ITEM OF SOFTWARE ON THE CD, WINZIP, IS
SUPPLIED AS A DEMONSTRATION COPY AND MAY NOT
BE USED FOR MORE THAN 21 DAYS WITHOUT PAYMENT.
This software is required only if you cannot unzip the ARM
development software.

DIGITAL WORKS 95 VERSION 2.04 is © John Barker 2000.
TERMS OF USE: Digital Works 95 version 2.04 (The Product)
shall only be used by the individual who purchased this book.
The Product may not be used for profit or commercial gain. The
Product shall only be installed on a single machine at any one
time. No part of the Product shall be made available over a
Wide Area Network or the internet. The title and copyright in all
parts of the Product remain the property of David John Baker.
The Product and elements of the Product may not be reverse
engineered, sold, lent, displayed, hired out or copied. It shall only
be installed on a single machine at any one time.
M6800PM/AD—MOTOROLA M68000 FAMILY PROGRAMMERS
REFERENCE MANUAL Copyright of Motorola. Used by
permission.

The Cd

Schedule 2

Shrinkwrap Agreement
End User Licence Agreement for the ARM Software Development Toolkit
2.02u Version 2

IMPORTANT READ CAREFULLY PRIOR TO ANY INSTALLATION OR
USE OF THE SOFTWARE

You are in possession of certain software (“Software”) identified in the
attached Schedule 1. The Software is owned by ARM Limited (“ARM”) or its
licensors and is protected by copyright laws and international copyright
treaties as well as other intellectual property laws and treaties. The Software is
licensed not sold.You were advised, at the time that the Software was provided
to you, that any use, by you, of the Software will be regulated by the terms and
conditions of this Agreement (“Agreement”).

ACCEPTANCE

If you agree with and accept the terms and conditions of this Agreement it
shall become a legally binding agreement between you and ARM Limited and
you may proceed to install, copy and use the Software in accordance with the
terms and conditions of the Agreement.

REJECTION AND RIGHT TO A REFUND

If you do not agree with or do not wish to be bound by the terms and conditions
of this Agreement you may NOT install, copy or use the Software.

TERMS AND CONDITIONS

1. Software Licence Grant

ARM hereby grants to you, subject to the terms and conditions of this
Agreement, a non-exclusive, non-transferable, worldwide licence, solely for
non-commercial purposes, to;
● use and copy the Software identified in Schedule 1 Part A and Schedule 1

Part B;
● incorporate into software application programs that you develop, the

Software identified in Schedule 1 Part B; and
● use the documentation identified in Schedule 1 Part C.

2. Restrictions on Use of the Software

Except for the making of one additional copy of the Software for backup pur-
poses only, copying of the Software by you is limited to the extent necessary
for; (a) use of the Software on a single computer; and (b) incorporation into
software application programs developed by you as permitted under the
terms of this Agreement.

Except to the extent that such activity is permitted by applicable law you shall
not reverse engineer, decompile or disassemble any of the Software identified
in Schedule 1 Part A. If the Software was provided to you in Europe you shall
not reverse engineer, decompile or disassemble any of the Software identified
in Schedule 1 Part A for the purposes of error correction.

You shall only use the Software on a single computer connected to a single
monitor at any one time except that you may use the Software from a common
disc running on a server and shared by multiple computers provided that
one authorised copy of the Software has been licensed for each computer
concurrently using the Software.

You shall not make copies of the documentation identified in Schedule 1 Part B.

You acquire no rights to the Software other than as expressly provided by this
Agreement.

You shall not remove from the Software any copyright notice or other notice
and shall ensure that any such notice is reproduced in any copies of the whole
or any part of the Software made by you.

3. No Support

For the avoidance of doubt, this license to use the Software does not provide you
with any right to receive any support and maintenance in respect of the Software.

4. Restrictions on Transfer of Licensed Rights

The rights granted to you under this agreement may not be assigned, sublicensed
or otherwise transferred by you to any third party without the prior written
consent of ARM. You shall not rent or lease the Software.

5. Limitation of Liability

THE SOFTWARE IS LICENSED “AS IS”. ARM EXPRESSLY DISCLAIMS ALL
REPRESENTATIONS, WARRANTIES, CONDITIONS OR OTHER TERMS,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, SATISFACTORY
QUALITY AND FITNESS FOR A PARTICULAR PURPOSE.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN
NO EVENT SHALL ARM BE LIABLE FOR ANY INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOSS OF
PROFITS) ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE WHETHER BASED ON A CLAIM UNDER CONTACT, TORT
OR OTHER LEGAL THEORY, EVEN IF ARM WAS ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. ARM does not seek to limit or exclude
liability for death or personal injury arising from ARM's negligence and
because some jurisdictions do not permit the exclusion or limitation of
liability for consequential or incidental damages the above limitation relating
to liability for consequential damages may not apply to you.

6. Term and Termination

This Agreement shall remain in force until terminated by you or by ARM.

Without prejudice to any of its other rights if you are in breach of any of the
terms and conditions of this Agreement then ARM may terminate the
Agreement immediately upon giving written notice to you.

You may terminate this Agreement at any time.

Upon termination of this Agreement by you or by ARM you shall stop using
the Software and destroy all copies of the Software in your possession together
with all documentation and related materials.

The provisions of Clauses 5, 6 and 7 shall survive termination of the Agreement.

7. General

This Agreement is governed by English Law.

This is the only agreement between you and ARM relating to the Software and
it may only be modified by written agreement between you and ARM. This
Agreement may not be modified by purchase orders, advertising or other
representation by any person.

If any Clause in this Agreement is held by a court of law to be illegal or
unenforceable the remaining provisions of the Agreement shall not be
affected thereby.

The failure by ARM to enforce any of the provisions of this Agreement, unless
waived in writing, shall not constitute a waiver of ARM’s rights to enforce
such provision or any other provision of the Agreement in the future.

Use, copying or disclosure by the US Government is subject to the restrictions
set out in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227 7013 or subparagraphs (c)(1)
and (2) of the Commercial Computer Software – Restricted Rights at 48 CFR
52.227-19, as applicable.

You agree that you will not export or re-export the Software to any country,
person or entity or end user subject to U.S.A. export restrictions. Restricted
countries currently include, but are not necessarily limited to, Cuba, Iran,
Iraq, Libya, North Korea, Syria and the Federal Republic of Yugoslavia (Serbia
and Montenegro, U.N. Protected Areas and areas of Bosnia and Herzegovina
under the control of Bosnian Serb forces).

I dedicate this edition to all those who have helped me run the IEEE Computer Society’s
International Design Competition since 2001. In particular, I express my gratitude

to the following who have become my friends and mentors.

Andy Bernat
Simon Ellis
Jerry Engle

Robert Graham
David Hennage

Ivan Joseph
Anne Marie Kelly

Kathy Land
Mike Lutz

Fernando Maymi
Stacy Saul

Deborah Scherrer
Janie Schwark
Steve Seidman

READING GUIDE

We’ve already said that this book provides a traditional
introductory course in computer architecture plus additional
material to broaden its scope and fill in some of the gaps left
in such courses. To help students distinguish between fore-
ground and background material, the following guide will
help to indicate the more fundamental components of the
course.

Chapter 2 introduces the logic of computers and deals with
essential topics such as gates, Boolean algebra, and Karnaugh
maps. Therefore this chapter is essential reading.

Chapter 3 introduces sequential circuits such as the counter
that steps through the instructions of a program and demon-
strates how sequential circuits are designed. We first intro-
duce the bistable (flip-flop) used to construct sequential
circuits such as registers and counters. We don’t provide a
comprehensive introduction to the design of sequential cir-
cuits; we show how gates and flip-flops can be used to create
a computer.

Chapter 4 deals with the representation of numbers and
shows how arithmetic operations are implemented. Apart
from some of the coding theory and details of multiplication
and division, almost all this chapter is essential reading.
Multiplication and division can be omitted if the student is
not interested in how these operations are implemented.

Chapter 5 is the heart of the book and is concerned with the
structure and operation of the computer itself. We examine
the instruction set of a processor with a sophisticated
architecture.

Chapter 6 provides an overview of assembly language pro-
gramming and the design of simple 68K assembly language
programs. This chapter relies heavily on the 68K cross-
assembler and simulator provided with the book.You can use
this software to investigate the behavior of the 68K on a PC.

Chapter 7 begins with a description of the functional units
that make up a computer and the flow of data during the exe-
cution of an instruction. We then describe the operation of
the computer’s control unit, which decodes and executes
instructions. The control unit may be omitted on a first read-
ing. Although the control unit is normally encountered in a
second- or third-level course, we’ve included it here for the
purpose of completeness and to show how the computer
turns a binary-coded instruction into the sequence of events
that carry out the instruction.

Chapter 8 is concerned with the quest for performance. We
look at how performance is measured and describe three
techniques used to accelerate processors. All students should
read about the first two acceleration techniques, pipelining
and cache memory, but may omit parallel processing.

Chapter 9 describes two contrasting computer architectures.
Introductory texts on computer architecture are forced to
concentrate on one processor because students do not have
the time to plow through several different instruction sets.
However, if we don’t cover other architectures, students can
end the course with a rather unbalanced view of processors.
In this chapter we provide a very brief overview of several
contrasting processors. We do not expect students to learn
the fine details of these processors. The purpose of this chap-
ter is to expose students to the range of processors that are
available to the designer.

Chapter 10 deals with input/output techniques. We are inter-
ested in the way in which information is transferred between
a computer and peripherals. We also examine the buses, or
data highways, along which data flows. This chapter is essen-
tial reading.

Chapter 11 introduces some of the basic peripherals you’d
find in a typical PC such as the keyboard, display, printer, and
mouse, as well as some of the more unusual peripherals that,
for example, can measure how fast a body is rotating.
Although these topics are often omitted from courses in com-
puter hardware, students should scan this chapter to get some
insight into how computers control the outside world.

Chapter 12 looks at the memory devices used to store data in
a computer. Information isn’t stored in a computer in just
one type of storage device. It’s stored in DRAM and on disk,
CD-ROM, DVD, and tape. This chapter examines the operat-
ing principles and characteristics of the storage devices found
in a computer. There’s a lot of detail in this chapter. Some
readers may wish to omit the design of memory systems (for
example, address decoding and interfacing) and just concen-
trate on the reasons why computers have so many different
types of memory.

Chapter 13 deals with hardware topics that are closely related
to the computer’s operating system. The two most important
elements of a computer’s hardware that concern the operating
system are multiprogramming and memory management.
These topics are intimately connected with interrupt handling

Reading guide vii

and data storage techniques and serve as practical examples of
the use of the hardware described elsewhere. Those who
require a basic introduction to computer hardware may omit
this chapter, although it best illustrates how hardware and
software come together in the operating system.

Chapter 14 describes how computers can communicate with
each other. The techniques used to link computers to create

computer networks are not always covered by first-level texts
on computer architecture. However, the growth of both local
area networks and the Internet have propelled computer
communications to the forefront of computing. For this rea-
son we would expect students to read this chapter even if
some of it falls outside the scope of their syllabus.

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

symbol 249 300

$ symbol 228

% symbol 228

360 series, IBM 204

68K address decoding 516

68K branches 224

68K family 210

68K interrupt structure 418

68K registers 234

68K stack 263

68K, two stacks 556

74138 86 512

74LS139 113

74LS373 112

74LS74 110

74LS95 125

8080 13

A

ABC computer 11

Absolute address 215 260

Accelerating performance 325

Access time 497 499

Access time, disk 527

Accumulator 296 369

Accuracy 182

ACIA 426 586

ACIA format control 430

ACIA organization 429

ACIA status register 431

Acquisition time 479

Active matrix LCD 459

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Actuator 525

Ada Gordon 8

ADC 218 468

ADC, error function 470

ADC, integrating 484

ADC, parallel 479

ADC, performance 469

ADC, potentiometric network 475

ADC, ramp feedback 481

ADC, successive

 approximation 482

ADC, tracking 482

Add with carry 218

ADD 235

ADDA 236

ADDEQ 380

Adder, full 171

Adder, half 170

Adder, parallel 173

Adder, serial 173

Addition, extended 219

Addition, words 173

Additive colors 460

Address decoder 508

Address decoder 68K 516 517 518

Address decoder, PROM 512

Address field, HDLC 601

Address mapper 319

Address mapping table 564 565

Address path 294

Address register indirect 215 216 250

Address register indirect,

 applications 252

Address register indirect, ARM 383

Address register indirect,

 overview 251

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Address register 215 236

Address, absolute 260

Addressing, indexed 251 258

Addressing, predecrementing 254

Addressing, relative 259

Addressing, strings 255

Addressing modes 377

Addressing modes, M68HC12 370

Addressing modes, overview 215

Adjacent, Karnaugh maps 69

ADSL 591

Aiken, Howard 10 12

Air gap 520

Algebra, Boolean 35

Aliasing effect 472

ALOHAnet 15

Alpha particle 504

Alt key 437

Altair 13

ALU 296 309

Amdahl’s law 351

Amplitude modulation 588

Amplitude uncertainty,

 ADC 472

Amplitude-frequency distortion 587 588

Analog interface 466

Analog signal 466

Analog systems, definition 26

Analog to digital conversion 477

Analytical engine 8

AND 221

AND gate 28

AND gate representation 30

Anemometer 462

Angular velocity, CD 540

Antialiasing 452

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Aperture time 472 479

Apple 13

Application layer, OSI 579

Arbiter circuit 119

Arbitration 403

Arbitration, bus 118 400

Architecture, Harvard 10

Arithmetic, complementary 176

Arithmetic, computer 145

Arithmetic, floating point 186

Arithmetic, rules 150

Arithmetic and logic unit 296

Arithmetic instruction 218

Arithmetic operations 241

Arithmetic shift 125

ARM assembler 385

ARM branch 380

ARM data processing

 instructions 378

ARM development system 386

ARM instructions 377

ARM processor 375

ARM shift instructions 378

ARM, memory reference 384

ARPA 14

ARPANET 607

ASCII code 437

ASCII 147 246 222

ASR 222

Assembler 204

Assembler directives 229

Assembler, ARM 385

Assembler, cross 232

Assembly language

 programming 228

Assembly language syntax 228 229

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Associative law 57

Associative memory 21

Associative-mapped cache 348

Asynchronous counter 128 129

Asynchronous system 114

Asynchronous transmission 428

ATA 529

Atanasoff, John 11

ATN (attention) 408

Attenuation 587

Audio visual drive 529

Autohandshaking, PIA 427

Auto-indexing 384

Automatic control 17

Avalanche effect, memory 506

Axioms, Boolean algebra 56 57

B

Babbage, Charles 7 10

Backplane 403

Band-gap device 463

Bandwidth 497 576

Base, number 148

Batch mode OS 548

Baudrate 576

Benchmark 326

BEQ 298

Berkeley RISC 330

Berners-Lee, Tim 15

Best effort service 582

BGE 246

B-H characteristic 529

Biased exponent 183 184

Bidirectional, data path 21

Big Endian 235

Binary arithmetic 169

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Binary tables 170

Binary to decimal conversion 151

Binary to hexadecimal

 conversion 152

Binary tree 360

BIOS 505

Biosensor 465

Bit 146

Bit-mapped image 451

Bit-slice 320 321

Bit insertion 600

Bit instruction 221

Bit stuffing 411 599

Bits required to represent a number 151

Black body 463

Block address decoding 510

Block parity code 160

BNE 224

Boole, George 56

Boolean algebra 35

Boolean algebra, axioms 56 57

Boolean algebra, introduction 56

Boolean algebra, simplifying

 equations 60

Booth’s algorithm 191

Bottleneck, von Neumann 210

Boundary layer 526

BRA 223

Branch, ARM 380

Branch, conditional 224

Branch, relative address 260

Branch, unconditional 223

Branch 68K 224

Branch instruction 223

Branch penalty 339

Branch prediction 340

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Branch with link 382

Bresenham’s algorithm 451

Bridging fault 97

BSET 221

BSR 225 266

BTST 221

Bubble 337

Buffer 88 403

Burst mode DMA 422

Bus 88

Bus, IEEE 488 408

Bus, network 573

Bus, network 594

Bus, PC 404

Bus arbitration 118

Bus architecture 400

Bus contention 404 573

Bus driver 404

Bus error 556

Bus management, IEEE bus 407

Bus master 404

Bus topology 356

Buses 399

Buses, multiple 401

Byte addressable 234

Byte order 235

Byte-wide memory 235

C

Cable 8

Cable, coaxial 593

Cable, copper 592

Cable terminology 595

Cache, associative-mapped 348

Cache, design considerations 350

Cache, direct-mapped 346

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Cache, level 2 349

Cache, set associative-mapped 349

Cache, speedup ratio 345

Cache, tag 347

Cache, writeback 350

Cache memory 344

Cache coherency 350

Cache organization 346

Call, subroutine 225

Canonical expression 35

Capacitive switch 439

Capacity, channel 590

Capacity, disk 526

Carrier sense multiple access 595

CAS-before-RAS refreshing 502

Cathode 444

C-bit 299

CCITT generator, FCS field 602

CCR register 218 379 220 248

 298 300 305

CD 536

CD, land 537

CD, pit 537

CD, track organization 538

CD, writable 540

CD speed 540

Cell, plasma 450

Centralized routine 607

Channel capacity 590

Channel characteristics 587

Chappe, Claude 8

Character 147

Characteristic equation 105

Characteristic equation,

 JK flip-flop 121

Character-oriented protocols 605

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Charge storage, memory 497

Chip select 499

Chord keyboard 436

Circuit, cross-coupled 103

Circuit, sequential 102

Circuit conventions 29

Circuit switching 583

Circuit symbols 31

Circular buffer 282

Circular shift 125 222

CISC 210 214 327

Clear, flip-flop 104

Clear, logic element 110

Clear to send 429 431

Clock skew 116

Clock, level sensitive 112 115

Clocked flip-flops 108 113 115

Closed-loop transfer 400

CLR 220 235

Cluster topology 360

CMOS 498

CMP 220 246 248

CMPA 236

CMPEQ 381

CMY 457 460

Coaxial cable 593

Code, block parity 160

Code, data compressing 161

Code, error correcting 157 158

Code, error detecting 156

Code, Hadamard 160

Code, Hamming 160

Code, Huffman 164

Code, variable length 164

Codes, special purpose 153

Codes, unweighted 154

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Coherent light 537

Collision, networks 594

Color CRT 458

Color displays 457

Color laser 461

Color LCD 459

Color look-up table 458

Color printer 460

Color space 457

Color theory 457

Column address strobe 501

Combinational logic 25

Communications hardware 572

Communications protocols 576

Commutative law 57

Compare instruction 220

Comparing circuits 39

Comparing computers 326

Complementary arithmetic 176

Compression ratio 164

Computer, electromechanical 10

Computer, embedded 17

Computer, mechanical 6

Computer, stored program 19

Computer arithmetic 145

Computer communications

 history 574

Computer communications 569

Computer history 6

Computer memory 493

Computer peripherals 435

Condition code flags 218

Condition code register 245 298

Condition code, RISC 330

Condition codes, ARM 380

Conditional branch 224 244 300 340

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Conditional execution 380

Conditional instruction 298 298 299

Conditional operation 319

Constellation, QAM 591

Contention, networks 594

Context switching 552

Continuous, signals 26

Contrast, LCD and plasma 450

Control field, HDLC 601

Control key 437

Control register, PIA 424

Control signals, control unit 309

Control store 320

Control structures 246

Control systems 486

Control unit, microprogrammed 315

Control unit, random logic 308

Conversion, fraction 152

Copper cable 592

Coriolis force 464

Correlation 490

Counter, asynchronous 128

Counter, decimal 129

Counter, ripple 129

Counter, synchronous 132

CPI 326

CPU, introduction 206

CPU simulator 300

CPU structure 209 293

CPU structure, multiple registers 302

CPU 19

CRC 533 604

Cross assembler 232

Crossbar network 359

Cross-coupled circuit 103

CRT 444 458

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

CSMA/CD 595

CTS 593

Current processor status

 register 376

Curriculum, hardware 2 3

Cursor 437

Cycle stealing DMA 422

Cycle time, memory 500

Cycles per instruction 326

Cyclic redundancy code 533

Cylinder, disk 526

D

D flip-flop 109

D flip-flop, use in registers 110

D flip-flop circuit 110

DAC 473

DAC, basic principles 473

DAC, R-2R 475

DAC errors 476

Daisy chaining 421

Data carried detect 429 431

Data compressing code 161

Data density, disk 530

Data dependency, pipeline 338

Data direction register, PIA 425

Data encoding, recording 521

Data link layer 581 599

Data link layer, Ethernet 603

Data movement instructions 218

Data path 209

Data processor, computer 15 16

Data registers 235

Data setup time 501

Data structures 4

Data transfer, closed-loop 401

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Data transfer, IEEE 488 bus 409

Data transmission 584

Datagram 583

DAV, IEEE bus 409

DBRA 252

DC 229 231

DCE 593

DDR DRAM 504

de Morgan’s theorem 59 63

Dead zone 441 443

Deadlock, multiprocessor 352

Debounced switch 438

decibel 587

Decimal counter 129

Decimal to binary conversion 150

Decimal to hexadecimal

 conversion 151

Decision tree ADC 483

Defect 97

Define constant 231

Define storage 231

Delay line memory 496

Delayed jump 338

Demand mode OS 549

Demultiplexer 84

Device-dependent data 488

Difference engine 7

Differential control 487

Differential phase modulation 589

Differential transmission 411

Digital circuits, testing 96

Digital computer, definition 14

Digital Equipment Corporation 12

Digital filter 489

Digital signal processing 486

Digital signal processing

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

 applications 488

Digital to analog converter, see DAC

Digital Works, 172

Digital Works, binary up counter 130

Digital Works, clock speed 47

Digital Works, connecting

 gates 43

Digital Works, creating a circuit 41

Digital Works, creating a register 111

Digital Works, embedded circuits 50

Digital Works, introduction 40

Digital Works, logic history 47

Digital Works, macro 50 52

Digital Works, pulse generator 131

Digital Works, recording outputs 46

Digital Works, running 45 46

Digital Works, sequence generator 48

Digital Works, tri-state gate 90

Diode bridge 478

Direct memory access 422

Directive, assembler 229

Direct-mapped cache 346

Disc capacity 519 526

Discrete signal 26

Disk, data density 530

Disk, head assembler 526

Disk, Winchester 527

Disk data structures 533

Disk drive history 525

Disk drive principles 524

Disk drive progress 530

Disk interface 529

Disk mirroring 531

Disk shock 528

Displacement, addressing 252

Displacement, relative 259

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Display, color 457

Display, organic 451

Display, raster-scan 445

Display, TV 446

Display controller 446

Distortion, telegraph 9

Distributed routine 607

Distributive law 57

Dithering 460

Division 194

Division 68K 219

Division, by multiplication 195

Division, non-restoring 195

Division, restoring 194

DIVU 219 241 243

DMA 413

Domain, magnetic 517 520

Don’t care condition 77

Dot matrix printer 454

Double precision 185

DRAM control 502

DRAM families 504

DRAM organization 501 503

DRAM read cycle 502

DRAM reliability 503

DRAM write cycle 502

Drawing lines 450

Drive, audio-visual 529

Drop-on-demand printing 454

DS 229

DTE 593

Dual-bus multiprocessor 359

Dual-ported RAM 119

Dual-slope integrator 484

DVD 541

Dvorak keyboard 436

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Dyadic operation 220 262 296

Dye 461

Dye sublimation printer 461

Dynamic branch prediction 341

Dynamic memory 497 501

Dynamic range 469

Dynamic shift 221 380

E

EASy68K 228 231 266

Edge sensitive flip-flop 115 116

Edge-triggered flip-flop, circuit 118

EDVAC 11

EEPROM 506

Effective address 277

Efficiency, multiprocessor 350

Elastomeric switch 439

Electromechanical computer 10

Electromechanical relay 31

Electron spin 498

Electronics 9

Embedded computer 17

Emissivity 464

Encoding criteria 522

Encoding data, CD 539

END 231 234

End around carry 180

ENIAC 11

EOI (end or identify) 409

EOR 221

EOR gate 30 35 36 156

EPROM 505

EPROM operation 506

EQU 231

Equality tester 37

Equalizer 587

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Erasable programmable ROM 505

Error-correcting code 157

Error-detecting code 156

Error diffusion, printing 460

Error function, ADC 470

Errors, assembly language 234

Errors in DACs 476

Ethernet 593

Ethernet, data link layer 603

Exception 415 555 556

Excitation table 132

Execution, conditional 380

EXG 218 237

Exponent 183

Exponent, biased 183

Extended addition 219

Extended data out DRAM 504

F

Faggin, Federico 13

Fast page mode DRAM 504

FAT 535

Fault 97

Fault, OS 555

Fault, undetectable 97

FCS field 602

Feedback ADC 480

Feedback memory 496

Ferrite core 11

Ferromagnetic material 517

Ferromagnetism 498

Fetch cycle 21

Fetch-execute cycle 296 301 320

Fetch-execute, flip-flop 314

Fiber optic links 595

Field (display) 445

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

FIFO 262 403

File allocation table 535

Finite differences 7

Firmware 206

First-level interrupt handler 553

Flags, condition code 218

Flags, status 217

Flash ADC 479 480

Flash EPROM 506

Flat panel display 449

Flip-flop, applications 122

Flip-flop, fetch-execute 314

Flip-flop, JK 120

Flip-flop, T 121

Flip-flops, summary 121

Floating, logic state 90

Floating point addition,

 flowchart 187

Floating point arithmetic 186

Floating point examples 188

Floating point number 181

Floating point, normalization 183

Flooding 605

Floppy disk drive 532

Flow control in rings 606

Flow meter 463

Flyback, display 445

Force feedback, joystick 443

Formatting, disk 533

Forwarding, internal 339

Fowler-Nordheim tunneling 506

Fractional arithmetic 181

Fractional mantissa 185

Fractions 152

Fragmentation, packets 608

Frame (display) 445

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Frame format, HDLC 600

Frame format, token ring 606

Frame pointer 332

Framing error 432

Free sector list 534

Frequency folding 470 471

Frequency-division multiplexing 585

Front side bus 405

Full adder 171

Full adder, circuit 172

Full address decoder 510

Full-duplex 585

Fully interlocked handshaking 402

Function code 68K 420

Function, parameters 332

Fusible link 93

G

Gain error 477

Gate, applications 34

Gate, definition 28

Gate, transmission element 33

Gates 25

Gates, fundamental 28

Geosynchronous orbit 597

Global space, windows 331

Glucose sensor 466

Glyph 437

Gordon, Ada 8

GPS 18

Graded index fiber 596

Gray code 155

Gray code conversion 156

Group codes 522

Guaranteed noise immunity 27

Gyroscopic mouse 442

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

H

Hadamard code 160

Half adder 170

Half adder, circuit 171

Half-duplex 585

Hamming code 160

Hamming distance 154 159

Handshake, software 414

Handshaking 402

Handshaking, PIA 426

Hang up 403

Hardware, curriculum 2 3

Hardware, definition 1

Hardware, teaching 2

Harvard, architecture 10

Harvard, Mark 1 10

Hazards, pipeline 336

HDLC 599

HDLC frame format 600

HDLC full-duplex 604

HDLC message exchange 602

Head assembly, disk 526

Head, magnetoresistive 530

Hexadecimal to binary

 conversion 152

Hierarchical model, operating

 system 548

Hierarchical table search 566

High performance drive 529

High permeability 520

High-speed multiplication 191

High-speed transmission 591

Highpass filter 490

History, computer

 communications 574

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

History, computer 6

Hit, cache 344

Hit ratio 345

Holerith, Herman 10

Hue 457

Huffman code 164 574

Hybrid topology 359

Hypercube topology 357

Hysteresis loop 519

I

I/O, interrupt-driven 415

I/O, memory-mapped 413

I/O fundamentals 412

I/O programmed 412

IACK 420

IAS 11

IBM, history 12

IBM 360 series 204

IC, invention 12

ID field, disk 533

IDE 529

IEEE 488 bus 407

IEEE 488 bus, configure 410

IEEE 802.3 packet format 604

IEEE floating point 183 184

Image smoothing, multiprocessor 354

Immediate access memory 496

Immediate addressing 215 249

Immediate instructions 250

Immediate mode, Berkeley RISC 330

Immediate operand, ARM 381

Impulsive noise 590

Indeterminate state 105

Index register 369

Indexed addressing 251 258 370

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Indirect addressing 215 250

Indivisible instruction 416

Inkjet, color 460

Inkjet paper 455

Inkjet printer 453

Inner product 353

Inner product, ARM 385

Instruction 210

Instruction, arithmetic 218

Instruction, bit 221

Instruction, branch 223

Instruction, data movement 218

Instruction, indivisible 416

Instruction, logical 220

Instruction, reading 295

Instruction, representation 146

Instruction, shift 221

Instruction, variable length 214

Instruction decode 335

Instruction fetch 335

Instruction format 211 212

Instruction format 68K 213

Instruction format, ARM 381 384

Instruction format, MIPS 331

Instruction formats 366

Instruction interpretation 308

Instruction overlap 336

Instruction privileged 556

Instruction register 295 299

Instruction set architecture 203 365

Instruction set architecture

 See also ISA

Instruction set, Berkeley RISC 334

Instruction types 366

Instruction usage 328

Insulating layer, EPROM 506

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Insulation, cables 574

Integral control 488

Integrating ADC 484

Interchangeable media 495

Interlace 446

Interface, disk 529

Interface, memory 499

Interlocked handshaking 403

Internal forwarding 339

International Standards

 Organization 578

Internet protocol 607

Internet protocol stack 583

Internet revolution 14

Internet 607

Interpret, instruction 308 310 312

Interrupt 273 415

Interrupt, level 7 419

Interrupt, non-maskable 418

Interrupt, prioritized 416

Interrupt-driven I/O 415

Interrupt acknowledge 420

Interrupt handler 416 417

Interrupt priority level 418

Interrupt request 415

Interrupt vector 418 420

Interrupt vector table 421

IP routing 608

Irrational number 148

ISA 2 203

ISA, definition 204

ISA bus 405

ISDN 591

ISO 7-bit code 147

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

J

Jacquard, Joseph 7

JK flip-flop 120 132

JK flip-flop, circuit 122

JK flip-flop, state diagram 128

Job control language 548

Joystick 440 442

JSR 266

Jump, delayed 338

K

Kalman filter 491

Karnaugh map, Boolean

 simplification 70

Karnaugh map, don’t care

 condition 77

Karnaugh maps 67

Kelvin, Lord 9 530

Keyboard 436

Keyboard encoder 439

Kilby, Jack St, Clair 12

L

LAN 570

LAN characteristics 571

Land, CD 537

Laser 537

Laser, color 461

Laser printer 455

Latency 404 497

LCD, color 459

LCD, transmissive mode 449

LDC, reflective mode 449

LCD cell 449

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

LEA 237 252 257 260

 262 267 272

Leading bit 185

LED display 444

Left shift register 124

Legal addressing modes 254

Level 2 cache 349

Level 7 interrupt 419

Level sensitive clock 115

Levels of abstraction 204

Light, coherent 537

Light, properties 448

Light, theory 457

Light pen 443

Line, cache 346

Line, scan 445

Line printer 454

Linear velocity, CD 540

Lines, drawing 450

Link register 376

Liquid crystal display 447

Liquid crystal shutter 457

Liquid crystal, twisted 448

Listener, IEEE 488 bus 407

Listing file 233

Literal operand 300

Literal operand, data paths 301

Literal, numeric 249

Little Endian 235

Load, RISC 342

Load control field 319

Load effective address 237

Local space, windows 331

Local storage 329

Locality of reference 344

Logic, combinational 25

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Logic, majority 173

Logic, programmable 91

Logic operations 248

Logic values 27

Logical address 551

Logical address space 563

Logical instruction 220

Logical operations 244

Logical shift 125

Long branch 260

Longword 214

Look-up table 93 191

Loom, weaving 7

Lord Kelvin 575

LSL 222

LSR 222 223

Luminance 457

M

M68HC12 368

MAC 601 604

Machine, von Neumann 20

Machine level 206

Macroinstruction 315

Magnetic core 519

Magnetic disk 495

Magnetic surface recording 515

Magnetic tape 495

Magnetism 498

Magneto-optical disk 541

Magnetoresistive head 530

Mainframe 10

Majority logic 34 173

Malware 567

Manchester encoding 523

Mantissa 183

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Mantissa, fractional 185

MAR 295

Mask, definition 30

Mask-programmed ROM 505

Master-slave flip-flop 115 117

Master-slave flip-flop, circuit 118 122

Master-slave transmission 601

Mauchly, John 11

MBR 295

Mealy machine 134

Measurement, position 461

Measuring light 464

Measuring performance 326

Measuring pressure 464

Mechanical computer 6

Media access control 601

Membrane switch 438

Memory, associative 21

Memory, cache 344

Memory, definition 496

Memory, introduction 21

Memory, timing diagram 499

Memory-mapped I/O 413

Memory access, ARM 383

Memory address register 295

Memory and registers 207

Memory cell 497

Memory class 495

Memory control logic 499

Memory density 497

Memory density, limits 504

Memory hierarchy 493 494

Memory interface 506

Memory interfacing 499

Memory management 561

Memory map 510 513

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Memory organization 507

Memory performance, cache 345

Memory price trends 494

Memory refresh 501

Memory space matching 556

Memory technology 496

Memory to memory 294

Memory width 235

Merging bits 538

Message encapsulation 583

Message exchange, HDLC 602

Metastable state 120

MFM 522

Microcomputer, invention 12 13

Microcontroller 377

Microcontroller families 367

Microinstruction 298 312

Microprogram 206 298 316

Microprogram sequence control 319

Microprogrammed control unit 315 318

Microprogramming 328

Microwave link 597

MIMD architecture 355

Minterm 35 68

MIPS 330

MIPS instruction format 331

MISD architecture 355

Miss ratio 345

Missing code error 477

MITS 13

Mixed logic 32 33 35

m-line to n-line decoder 511

MMU 561 65

Mnemonics, for address

 registers 236

Modem standards 592

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Modem 429 575

Modem, high speed 589

Modified frequency modulation 522

Modulation 521

Modulation, QAM 590

Modulo-2 arithmetic 169

Monitor, resolution 459

Moore machine 134

Morse code 26 574

Motherboard 22

Mouse 441

MOVEA 236

MOVEM 265 266 58 560

MS-DOS 549

MS-DOS files 535

MTBF, disk 529

Multilevel page table 567

Multiline message, IEEE bus 410

Multiple buses 401

Multiplexer 84 111 468

Multiplexer, application 36

Multiplexer, Digital Works 50 53

Multiplexer circuit 34

Multiplexing signals 584

Multiplication 189

Multiplication 68K 219

Multiplication, high speed 191

Multiplication, negative numbers 191

Multiplier circuit 62

Multiply and accumulate 377

Multiprocessor applications 352

Multiprocessor categories 356

Multiprocessor 350

Multiprocessor, symmetric 357

Multiprocessor organization 353

Multitasking 550

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Multitasking, pre-emptive 554

MULU 219 237 241

MVN 382

My listen address 410

My talk address 410

N

NaN 185

NAND gate 31

NAND logic 65

Navigation 6

N-bit 299

NDAC, IEEE bus 409

Negative logic 32

Negative number 175

Nematic liquid crystal 448 449

Nested subroutines 225

Network interface card 572

Network layer 581

Noise 584 590

Noise, quantization 469

Noise immunity 27 522

Non-linear error 477

Non-maskable interrupt 418

Non-restoring division 195

Non-return to zero encoding 522

NOR gate 31

NOR logic 65

Normalization 183

Normalize 186

Not a number 185

NOT gate 31

Noyce, Robler 12

NRDF, IEEE bus 409

Null byte 255

Number, floating point 181

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Number, natural 148

Number, signed 175

Number base 148

Number base, conversion 150

Numeric processor 16

Numerical aperture 537

Nyquist rate 470

O

Octal register 113

Offset error 477

Offset, signed 252

OLED 451

One address machine 213

One’s complement representation 180

ON-off control 487

Op-code interpretation 312

Open Systems Interconnection 578

Open-ended transfer 400

Operand, literal 300

Operand fetch 335

Operand field 295

Operand store 335

Operating system process 551

Operating system 4 547

Operation, dyadic 220

Operation, subword 214

Operational amplifier 473 474

Optical encoder 155

Optical fiber 595 596

Optical memory 498 536

Optical mouse 441

OR 221

OR array 94

OR gate 30

Orbit, satellite 599

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

ORG 230

Organic display 451

Organization, multiprocessor 353

Organization and architecture 205

Originate/answer 592

OSI 578

Output enable 499

Overflow 179

P

Packet switching 581 583

Page fault 564

Page table 564

Paged memory 552

Palindrome 387

Parallel ADC 479

Parallel adder 173

Parallel poll, IEEE bus 410

Parallel to serial converter 124

Parameter passing 271

Parameter space, windows 331 332

Parity codes 158

Parity error, ACIA 432

Partial address decoder 508

Pascal, Bliase 6

Passband 587

Passing parameters 271

Passing parameters by reference 276

Passive matrix 459

Pattern sensitivity 96

PC 295

PC, introduction 22

PC bus 404

PC display 447

PCI bus 405 406

PCI chipset 406

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

PCI express 405

PEA 277 279

Peer subsystem 579

Penalty, branch 339

Performance, measuring 326

Peripheral data register, PIA 424

Peripheral interface adaptor 423

Phase change printer 461

Phase distortion 587

Phase encoding 523

Phase modulation 589

Phosphor 444

Photocopier 455

Photodiode 464

Photoresistor 464

Physical address 551

Physical channel 584

Physical layer 582

Physical layer, networks 584

PIA 424

PIA, handshaking 426

Picture element 148

PID 488

Pigment 461

Pipeline, data dependency 338

Pipeline, implementing 341

Pipeline bubble 337

Pipeline efficiency 337

Pipeline hazards 336

Pipeline stall 337 339

Pipelining speedup 335

Pipelining 114 117 327 335

Pit, CD 537

Pixel 458

Plasma cell 450

Plasma display 444 449

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Plasma display, contrast 450

Platter, magnetic 524

Plug and play 411

Pointer 215 250

Pointing devices 440

Polarization, writable CD 540

Polarizing filter 448

Polarizing material 448

Poll/final bit 601

Polling 419

Polling loop 415

Pop 262

Port 413

Port, status 419

Position independent code 259 266

Position measurement 461

Position transducer 462

Positional notation 148

Positive logic 32

Postincrementing 253

Potentiometric network, DAC 475

PPP protocol 605

Precision 182

Predecrementing 254

Prediction, branch 340

Pre-emptive multitasking 554

Presentation layer 580

Preset, logic element 110

Pressure measurement 464

Principle of duality 59

Printer 452

Printer, color 460

Printer, dot matrix 454

Printer, inkjet paper 455

Printer, inkjet 453

Printer, thermal wax 461

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Printer, thermal 453

Prioritized interrupt 416

Prioritizer circuit 37

Priority encoder 417 480

Privileged instruction 556

Process, in operating system 551

Process, switching 551

Processor status byte 418

Product term 94

Product-of-sums 35

Program counter 295

Program counter, ARM 382

Program counter relative 259

Program counter relative

 addressing 304

Program modification

 instructions 328

Programmable array logic 94

Programmable logic array 93

Programmable logic 91

Programmed I/O 412

Programs status register 376

PROM 505

PROM, address decoder 512

Propagation delay 39 68

Proportional control 487

Propriety standards 583

Protocol, communications 576

Protocols, character oriented 605

Pseudocode 21

PSTN 570 587

Public switched telephone

 network 570

Pull 262

Pulse generator 107 131

Punched card 10

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Push 264

Q

QAM 590

Quad precision 185

Quadtree 167

Quantization 468

Quantization noise 469

QWERTY 10 436

R

R-2R ladder 475

Radar 17

Radio frequency spectrum 597

Radix point 149

RAID systems 531

RAM, cache tag 347

Ramp feedback ADC 481

Random access 497

Random logic control unit 308

Range 182

Raster-scan 445

Rational number 148

Read access time 500

Read cycle 499

Read cycle, DRAM 502

Reading data, magnetic

 recording 521

Read-only memory 91 497

Read-only semiconductor

 memory 505

Real-rime OS 549

Receive sequence number,

 HDLC 602

Recording density 520

Recursive filter 489

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Redundancy 98

Redundant bits 157 163

Reed relay 436

Reference model for OSI 578

Refreshing RAM 502

Register 207

Register, address 236

Register, CCR 218

Register, index 369

Register, link 376

Register, shadow 376

Register, using D flip-flops 110

Register selection, PIA 425

Register set 68K 211 217

Register sets 365

Register to register architecture 213 294

Register transfer language 208

Register window 330

Register windows, parameters 332

Registers 68K 234

Registers, ARM 375

Registers, windowed 333

Relative addressing 259

Relative branch 260

Relay 31

Relay, reed 436

Remnant magnetism 519

Request to send 429

Reset, logic element 110

Resolution, monitor 459

Restoring division 194

Return to zero encoding 522

Return from exception 558

Return to bias recording 522

Return, subroutine 225

Reverse subtract instruction 377

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

RGB 457 460

Ring, network 573

Ring topology 357

Rings, flow control 606

Ripple counter 129

Ripple-carry adder 175

RISC 210 212 327

RISC, Berkeley instruction set 334

RISC, invention 14

RISC characteristics 329

RLL codes 522

ROL 222

ROR 222

Rotary head positioner 525

Rotate through carry 222

Rotation sensor 464

Rounding 188

Router 572

Routine, network 606

Routing techniques 604

Routing, IP 608

Row address strobe 501

ROXL 223

ROXR 223

RR (receiver ready) 602

RS flip-flop 103

RS flip-flop, clocked 108

RS flip-flop, NAND gates 106

RS flip-flops, application 107

RS flip-flop truth table 105

RS232C 593

RTE 558 208 295 298

 225 556

RTS 593

Run length limited encoding 523

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

S

Sample and hold 468 473

Sample and hold circuit 478

Sample and hold timing 479

Sampling signals 469

Sampling theorem 470

Satellite 597

Saturation 457

Sawtooth waveform 445

SBC 22 219

S-bit 68K 555

Scalar product 253

Scheduler 558

Scheduler, OS 553

Scheduler program 559

Schickard, William 7

Schockley, William 12

Scientific notation 182

SCSI 529

Secondary storage 515

Sectors, disk 524 533

Selenium drum 455

Self-clocking 522

Semiconductor memory 498

Send sequence number, HDLC 602

Sensitive path test 97

Sequence control, ARM 381

Sequence control, microprogram 319

Sequence detector 136

Sequencer 312

Sequential circuit operation 104

Sequential logic 101

Sequential logic, definition 102

Serial access 497

Serial adder 173

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Serial data transmission 584

Serial interface 428

Serial poll, IEEE bus 410

Serial to parallel converter 124

Servomechanism 525

Session layer 580

Set, cache 346

Set, flip-flop 104

Set associative-mapped cache 349

Settling time 528

Seven-segment decoder 79

Shadow mask 458

Shadow register 376

Shannon, Claude 56

Shift, arithmetic 125

Shift, ARM 378

Shift, circular 125 222

Shift, dynamic 221

Shift, logical 125

Shift instruction 221

Shift key 436

Shift operations 244

Shift register 122

Shift register, designing 125

Shift register, JK 123

Shift register, left shift 124

Shock, disk 528

Sholes, Christopher 10

Sign and magnitude, mantissa 183

Sign and magnitude

 representation 176

Sign extension 68K 214

Signal acquisition 467

Signal to noise ratio 469

Signals and modulation 586

Signed multiplication 190 219

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Signed numbers 175

Signed offset 252

SIMD architecture 353

Simulating a CPU 300

Simulator 239

Simulator 16 bit 304

Simulator 8-bit 301

Sine wave 587

Single bus CPU 308

Single precision 185

Single-mode fiber 596

SISD architecture 353

Skew, clock 116

Slew rate 479

Soft error 504

Soft magnetic material 520

Software, definition 1

SPARC 330 333

SPEC 326

Special purpose codes 153

Special purpose logic 83

Speedup, multiprocessor 350 351

Speedup, pipelining 335

Speedup ratio, cache 345

Spread spectrum technology 598

Sprite 148

Stack 254 262 272

Stack 68K supervisor state 556

Stack 68K 263

Stack, context switching 552

Stack, subroutine 266

Stack machine 263 366

Stack pointer 264

Stall, pipeline 337 339

Standards 577

Standards, cables 594

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Standards, modem 592

Standards and the OSI model 582

Standards bodies 578

Star network 573

Star topology 357

State diagram 128 136

State diagram 68K 556

State diagram, multitasking

 system 552

State machines 134 136

State table 138

Static branch prediction 341

Static memory 496 497

Statistical encoding 165

Status byte 414

Status byte 68K 418

Status flags 217

Status register 229

Status register, ACIA 431

Steering gates 109

STOP 229

Storage, local 329

Store, RISC 342

Stored computer, overview 19

Strain gauge 462

Strings 255

Strings, comparing 256

Strings, removing spaces 257

Strowger 9

Structure modification, memory 496

Stuck-at fault 97

SUBA 236

Subroutine 225 266

Subroutine, ARM 382

Subroutine nesting 331

Subtractive colors 460

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Subword operation 214

Successive approximation ADC 482

Sum-of-products 35

Sum-of-products, Karnaugh map 71

Superparamagnetism 531

Superscalar 326

Supervisor stack 238 264

Supervisor state 555 556

Surface recording 520

SVGA 448

SWAP 220 237

Switch 437

Switch, debounced 438

Switch, elastomeric 439

Switch, electromechanical 31

Switching processes 551

Switching states 68K 555

SXGA 448

Symbolic name 296

Symmetric multiprocessor 357

SYN character 605

Synchronizing signals 586

Synchronous counter 132

Synchronous DRAM 504

Synchronous system 114

System byte 68K 555

System stack 264

System/360 12

T

T flip-flop 121

Table search 556

Tachometer 462

Talker, IEEEE 488 bus 407

Task control block 553

TCP/IP 607

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Telegraph 8

Telegraph distortion 9

Telephone 9

Telephone network, origins 575

Templates, control structures 246

Ten’s complement arithmetic 176

Test equivalence instruction 378

Testing digital circuits 96

The last mile 591

Theorems, of Boolean algebra 56

Thermal printer 453

Thermal wax printer 461

Thermistor 463

Thermocouple 463

Thermoelectric effect 463

Thermoelectric junction 463

Thin film transistor 460

Three address instruction 211

Three-wire handshake 408

Time-division multiplexing 585

Time-to-live, routing 608

Timing delay 113

Timing diagram, memory 499

Timing diagram, static Ram 500

Timing pulse generator 313

Token rings 606

Toner 455

Topology, bus 356

Topology, cluster 360

Topology, hybrid 359

Topology, hypercube 357

Topology, ring 357

Topology, star 357

Topology, unconstrained 356

TOS 262

Total internal reflection 595

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Track structure 533

Track 524

Trackball 441 443

Tracking ADC 482

Tracking converter 482

Transaction, protocol diagram 401

Transatlantic cable 574

Transducer 467

Transducer, position 462

Transistor, invention 12

Transmission control protocol 609

Transmission delay, satellite 598

Transport layer 580

TRAP 559

Tree, binary 360

Trellis 165

Trigonometry 6

Triple modular redundancy 17

Tri-stage logic 87 113

Truncation 188

Truth table, definition 29

TST 256

TV display 446

Twisted liquid crystal 448

Twisted pair 592

Two address machine 213

Two’s complement, alternative

 view 179

Typewriter 10

U

Unbiased error 188

Unconditional branch 223

Unconstrained technology 356 572

Undetectable fault 97

Unicode 148

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Uniline message, IEEE bus 410

Unit distance code 154

Unlisten 410

Unnumbered frame, SDLC 601

Unpacking 186

Unsigned multiplication 190

Unweighted code 154

Up-counter 128

USB serial bus 411

User microprogrammed 320

User stack 238 264

User stack pointer 558

UXVGA 448

V

Variable length code 164

Variables, local 329

V-bit 299

Vector, interrupt 418 420

VGA 448

VHDL 96

Video DAC 447

Video display card 447

Virtual circuit 583

Virtual memory 563

Visible register 208

Voice coil actuator 525

Volatile memory 497

von Neumann, John 11 20

von Neumann bottleneck 210

von Neumann machine 209

Voting network 17 34

VRAM 447

W

WAN 580

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

White noise 590

Wi-Fi 600

Winchester disk 527

Window, register 330 333

Windows, history 550

Wordlengths, typical 146

Workstation 15

Writable CD 540

Write cycle 500

X

Xerography 455

XGA 448

Z

Z transform 489

Z-bit 299

Zero address machine 213 366

Zilog 13

Zoning 528

Zuse, Konrad 10

APPENDIX: THE 68000
INSTRUCTION SET

This appendix provides details of the 68000’s most important
instructions (we have omitted some of the instructions that
are not relevant to this book).

In each case, we have given the definition and assembly
language format of the instruction. We have also provided its
size (byte, word, or longword) and the addressing modes it
takes for both source and destination operands.

Finally, we have included the effect of the instruction on
the 68000’s condition code register. Each instruction either
sets/clears a flag bit, leaves it unchanged, or has an ‘undefined’
effect, which is indicated by the symbols *, -, and U, respec-
tively. A 0 in the CCR indicates that the corresponding bit is
always cleared.

ADD Add binary

Operation: [destination]←[source]�[destination]

Syntax: ADD �ea�,Dn

ADD Dn,�ea�

Attributes: Size�byte, word, longword
Description: Add the source operand to the destination operand and store the result in the destination

location.
Condition codes: X N Z V C

* * * * *

Source operand addressing modes

Destination operand addressing modes

ADDA Add address

Operation: [destination]←[source]�[destination]

Syntax: ADDA �ea�,An

Attributes: Size�word, longword
Description: Add the source operand to the destination address register and store the result in the destination

address register. The source is sign-extended before it is added to the destination; e.g. if we
execute ADDA.W D3,A4where A4�0000010016 and D3.W�800216, the contents of D3 are first

612 Appendix: The 68000 instruction set

sign-extended to FFFF800216 and added to 0000010016 to give FFFF810216, which is
stored in A4.

Application: To add to the contents of an address register and without updating the CCR. Note that
ADDA.W D0,A0 is the same as LEA (A0,D0.W),A0.

Condition codes: X N Z V C

- - - - -
An ADDA operation does not affect the state of the CCR.

Source operand addressing modes

ADDI Add immediate

Operation: [destination]←�literal��[destination]

Syntax: ADDI #�data�,�ea�

Attributes: Size�byte, word, longword
Description: Add immediate data to the destination operand. Store the result in the destination operand.

ADDI can be used to add a literal directly to a memory location. For example,
ADDI.W #$1234,$2000 has the effect [200016] ← [200016]�123416.

Condition codes: X N Z V C

* * * * *

Destination operand addressing modes

ADDQ Add quick

Operation: [destination]←�literal��[destination]

Syntax: ADDQ #�data�,�ea�

Sample syntax: ADDQ #6,D3
Attributes: Size�byte, word, longword
Description: Add the immediate data to the contents of the destination operand. The immediate data must be

in the range 1 to 8. Word and longword operations on address registers do not affect condition
codes and a word operation on an address register affects all bits of the register.

Application: ADDQ is used to add a small constant to the operand at the effective address. Some assemblers per-
mit you to write ADD and then choose ADDQ automatically if the constant is in the range 1 to 8.

Condition codes: X N Z V C

* * * * *
The CCR is not updated if the destination operand is an address register.

Destination operand addressing modes

Appendix: The 68000 instruction set 613

ADDX Add extended

Operation: [destination]←[source]�[destination]�[X]

Syntax: ADDX Dy,Dx

ADDX �(Ay),�(Ax)

Attributes: Size�byte, word, longword
Description: Add the source operand to the destination operand along with the extend bit, and store the result

in the destination location. The only legal addressing modes are data register direct and memory
to memory with address register indirect using predecrementing.

Application: The ADDX instruction is used in chain arithmetic to add together strings of bytes (words or
longwords). Consider the addition of two 128-bit numbers, each of which is stored as four
consecutive longwords.

LEA Number1,A0 A0 points at the first number

LEA Number2,A1 A1 points at the second number

MOVE #3,D0 Four longwords to add

MOVE #$00,CCR Clear the X-bit and Z-bit of the CCR

LOOP ADDX �(A0),�(A1) Add a pair of numbers

DBRA D0,LOOP Repeat until all added

Condition codes: X N Z V C

* * * * *
The Z-bit is cleared if the result is non-zero, and left unchanged otherwise. The Z-bit can be used
to test for zero after a chain of multiple precision operations.

AND AND logical

Operation: [destination]←[source].[destination]

Syntax: AND �ea�,Dn

AND Dn,�ea�

Attributes: Size�byte, word, longword
Description: AND the source operand to the destination operand and store the result in the destination

location.
Application: AND is used to mask bits. If you wish to clear bits 3 to 6 of data register D7, you can execute

AND # %l0000111,D7. Unfortunately, the AND operation cannot be used with an address
register as either a source or a destination operand. If you wish to perform a logical operation
on an address register, you have to copy the address to a data register and then perform the
operation there.

Condition codes: X N Z V C

- * * 0 0

Source operand addressing modes

Destination operand addressing modes

614 Appendix: The 68000 instruction set

ANDI AND immediate

Operation: [destination]←�literal�.[destination]

Syntax: ANDI #�data�,�ea�

Attributes: Size�byte, word, longword
Description: AND the immediate data to the destination operand. The ANDI instruction permits a literal

operand to be ANDed with a destination other than a data register. For example,
ANDI #$FE00,$1234 or ANDI.B #$F0,(A2)�.

Condition codes: X N Z V C

- * * 0 0

Destination operand addressing modes

ANDI to CCR AND immediate to CCR

Operation: [CCR]←�data�.[CCR]

Syntax: ANDI #�data�,CCR

Attributes: Size�byte
Description: AND the immediate data to the condition code register (i.e. the least-significant byte of the

status register).
Application: ANDI is used to clear selected bits of the CCR. For example, ANDI #$FA,CCR clears the

Z- and C-bits, i.e. XNZVC�X N 0 V 0.
Condition codes: X N Z V C

* * * * *
X: cleared if bit 4 of data is zero
N: cleared if bit 3 of data is zero
Z: cleared if bit 2 of data is zero
V: cleared if bit 1 of data is zero
C: cleared if bit 0 of data is zero

ANDI to SR AND immediate to status register

Operation: IF [S]�1

THEN

[SR]←�literal�.[SR]

ELSE TRAP

Syntax: ANDI #�data�,SR

Attributes: Size�word
Description: AND the immediate data to the status register and store the result in the status register. All bits

of the SR are affected.
Application: This instruction is used to clear the interrupt mask, the S-bit, and the T-bit of the SR.

ANDI #�data�,SR affects both the status byte of the SR and the CCR. For example,
ANDI #$7FFF,SR clears the trace bit of the status register, whereas ANDI #$7FFE,SR clears the
trace bit and also clears the carry bit of the CCR.

Condition codes: X N Z V C

* * * * *

Appendix: The 68000 instruction set 615

ASL, ASR Arithmetic shift left /right

Operation: [destination]←[destination] shifted by �count�

Syntax: ASL Dx,Dy

ASR Dx,Dy

ASL #�data�,Dy

ASR #�data�,Dy

ASL �ea�

ASR �ea�

Attributes: Size�byte, word, longword
Description: Arithmetically shift the bits of the operand in the specified direction (i.e. left or right). The shift

count may be specified in one of three ways. The count may be a literal, the contents of a data
register, or the value 1. An immediate (i.e. literal) count permits a shift of 1 to 8 places. If the
count is in a register, the value is modulo 64 (i.e. 0 to 63). If no count is specified, one shift
is made (i.e. ASL �ea� shifts the contents of the word at the effective address one place left).

An arithmetic shift left shifts a zero into the least-significant bit position and shifts the most-
significant bit out into both the X- and the C-bits of the CCR. The overflow bit of the CCR is set if
a sign change occurs during shifting (i.e. if the most-significant bit changes value during shifting).

The effect of an arithmetic shift right is to shift the least-significant bit into both the X- and
C-bits of the CCR. The most-significant bit (i.e. the sign bit) is replicated to preserve the sign
of the number.

Application: ASL multiplies a two’s complement number by 2. ASL is almost identical to the corresponding
logical shift,LSR. The only difference between ASL and LSL is that ASL sets the V-bit of the CCR
if overflow occurs, whereas LSL clears the V-bit to zero. An ASR divides a two’s complement
number by 2. When applied to the contents of a memory location, all 68000 shift operations
operate on a word.

Condition codes: X N Z V C

* * * * *
The X-bit and the C-bit are set according to the last bit shifted out of the operand. If the shift
count is zero, the C-bit is cleared. The V-bit is set if the most-significant bit is changed at any
time during the shift operation and cleared otherwise.

Destination operand addressing modes

616 Appendix: The 68000 instruction set

Bcc Branch on condition cc

Operation: If cc�1 THEN [PC]←[PC]�d
Syntax: Bcc �label�

Sample syntax: BEQ Loop_4
BVC *�8

Attributes: BEQ takes an 8-bit or a 16-bit offset (i.e. displacement).
Description: If the specified logical condition is met, program execution continues at location [PC]�dis-

placement, d. The displacement is a two’s complement value. The value in the PC corresponds
to the current location plus two. The range of the branch is �126 to �128 bytes with an 8-bit
offset, and �32 kbyte to �32 kbyte with a 16-bit offset. A short branch to the next instruction is
impossible, since the branch code 0 indicates a long branch with a 16-bit offset.

BCC branch on carry clear C�
BCS branch on carry set C
BEQ branch on equal Z
BGE branch on greater than or equal N · V� N� · V�
BGT branch on greater than N·V·Z��N�·V�·Z�
BHI branch on higher than C�·Z�
BLE branch on less than or equal Z�N·V��N�·V
BLS branch on lower than or same C�Z
BLT branch on less than N·V��N�·V
BMI branch on minus (i.e. negative) N
BNE branch on not equal Z�
BPL branch on plus (i.e. positive) N�
BVC branch on overflow clear V�
BVS branch on overflow set V

There are two types of conditional branch instruction: those that branch on an unsigned
condition and those that branch on a signed condition; e.g. $FF is greater than $10 when the
numbers are unsigned (i.e. 255 is greater than 16). However, if the numbers are signed, $FF is
less than $10 (i.e.�1 is less than 16).

The signed comparisons are:
BGE branch on greater than or equal
BGT branch on greater than
BLE branch on lower than or equal
BLT branch on less than

The unsigned comparisons are:
BHS BCC branch on higher than or same
BHI branch on higher than
BLS branch on lower than or same
BLO BCS branch on less than

The official mnemonics BCC (branch on carry clear) and BCS (branch on carry set) can be
renamed as BHS (branch on higher than or same) and BLO (branch on less than), respectively.
Many 68000 assemblers support these alternative mnemonics.

Condition codes: X N Z V C
- - - - -

BCLR Test a bit and clear

Operation: [Z]←� bit number� OF [destination]

� bit number� OF [destination]←0
Syntax: BCLR Dn,�ea�

BCLR #�data�,�ea�

Appendix: The 68000 instruction set 617

BRA Branch always

Operation: [PC]←[PC]�d
Syntax: BRA �label�

BRA �literal�

Attributes: Size�byte, word
Description: Program execution continues at location [PC]�d. The displacement, d, is a two’s complement

value (8 bits for a short branch and 16 bits for a long branch). The value in the PC corresponds
to the current location plus two. A short branch to the next instruction is impossible, since the
branch code 0 is used to indicate a long branch with a 16-bit offset.

Application: A BRA is an unconditional relative jump (or goto). You use a BRA instruction to write position
independent code, because the destination address (branch target address) is specified with
respect to the current value of the PC. A JMP instruction does not produce position-independent
code.

Condition codes: X N Z V C
- - - - -

Attributes: Size�byte, longword
Description: A bit in the destination operand is tested and the state of the specified bit is reflected in the condi-

tion of the Z-bit in the condition code. After the test, the state of the specified bit is cleared in the
destination. If a data register is the destination, the bit numbering is modulo 32,allowing bit manip-
ulation of all bits in a data register. If a memory location is the destination, a byte is read from that
location, the bit operation performed using the bit number modulo 8, and the byte written back to
the location. Bit zero refers to the least-significant bit. The bit number for this operation may be
specified either by an immediate value or dynamically by the contents of a data register.

Application: Suppose that the contents of memory location $1234 are 111110102, and the operation
BCLR #4,$1234 is carried out. This instruction tests bit 4. It is a 1 and therefore the Z-bit of
the CCR is set to 0. Bit 4 of the destination operand is cleared and the new contents of $1234 are:
111010102.

Condition codes: X N Z V C
- - * - -
Z: set if the bit tested is zero, cleared otherwise.

Destination operand addressing modes

Data register direct addressing,Dn, uses a longword operand. Other modes use a byte operand.

BSET Test a bit and set

Operation: [Z]← � bit number� OF [destination]
� bit number� OF [destination]←0

Syntax: BSET Dn,�ea�

BSET #�data�,�ea�

Attributes: Size�byte, longword
Description: A bit in the destination operand is tested and the state of the specified bit is reflected in the con-

dition of the Z-bit of the condition code. After the test, the specified bit is set in the destination.
If a data register is the destination then the bit numbering is modulo 32, allowing bit manipula-
tion of all bits in a data register. If a memory location is the destination, a byte is read from that
location, the bit operation performed using bit number modulo 8, and the byte written back to
the location. Bit zero refers to the least-significant bit. The bit number for this operation may be
specified either by an immediate value or dynamically by the contents of a data register.

618 Appendix: The 68000 instruction set

BSR Branch to subroutine

Operation: [SP]←[SP]�4; [[SP]]←[PC]; [PC]←[PC]�d
Syntax: BSR �label�

BSR �literal�

Attributes: Size�byte, word
Description: The longword address of the instruction immediately following the BSR instruction is pushed

on to the system stack pointed at by A7. Program execution then continues at location [PC]�
displacement, d. The displacement is an 8-bit two’s complement value for a short branch, or a
16-bit two’s complement value for a long branch. The value in the PC corresponds to the cur-
rent location plus two. Note that a short branch to the next instruction is impossible, since the
branch code 0 is used to indicate a long branch with a 16-bit offset.

Applicaton: BSR is used to call a procedure or a subroutine. It provides relative addressing (and therefore
position-independent code) and its use is preferable to JSR.

Condition codes: X N Z V C
- - - - -

BTST Test a bit

Operation: [Z]←� bit number� OF [destination]
Syntax: BTST Dn,�ea�

BTST #�data�,�ea�

Attributes: Size�byte, longword
Description: A bit in the destination operand is tested and the state of the specified bit is reflected in the con-

dition of the Z-bit in the CCR. The destination is not modified by a BTST instruction. If a data
register is the destination, then the bit numbering is modulo 32, allowing bit manipulation of all
bits in a data register. If a memory location is the destination, a byte is read from that location
and the bit operation performed. Bit 0 refers to the least-significant bit. The bit number for this
operation may be specified either statically by an immediate value or dynamically by the con-
tents of a data register.

Condition codes: X N Z V C
- - * - -
Z: set if the bit tested is zero, cleared otherwise.

Destination operand addressing modes for BTST Dn,�ea� form

Condition codes: X N Z V C
- - * - -
Z: set if the bit tested is zero, cleared otherwise.

Destination operand addressing mode for BSET Dn,�ea� form

Appendix: The 68000 instruction set 619

CLR Clear an operand

Operation: [destination]←0
Syntax: CLR �ea�

Sample syntax: CLR (A4)�

Attributes: Size�byte, word, longword
Description: The destination is cleared by loading with all zeros. The CLR instruction can’t be used to clear

an address register. You can use SUBA.L A0,A0 to clear A0.
Condition codes: X N Z V C

- 0 1 0 0

Source operand addressing modes

CMP Compare

Operation: [destination]-[source]
Syntax: CMP �ea�,Dn
Sample syntax: CMP (Test,A6,D3.W),D2
Attributes: Size�byte, word, longword
Description: Subtract the source operand from the destination operand and set the condition codes accord-

ingly. The destination must be a data register. The destination is not modified by this
instruction.

Condition codes: X N Z V C
- * * * *

Source operand addressing modes

CMPA Compare address

Operation: [destination]-[source]
Syntax: CMPA �ea�,An
Sample syntax: CMPA.L #$1000,A4

CMPA.W (A2)�,A6
CMPA.L D5,A2

Attributes: Size�word, longword
Description: Subtract the source operand from the destination address register and set the condition codes

accordingly. The address register is not modified. The size of the operation may be specified as
word or longword. Word length operands are sign-extended to 32 bits before the comparison is
carried out.

Condition codes: X N Z V C
- * * * *

Source operand addressing modes

620 Appendix: The 68000 instruction set

CMPI Compare immediate

Operation: [destination]-�immediate data�

Syntax: CMPI #�data�,�ea�

Attributes: Size�byte, word, longword
Description: Subtract the immediate data from the destination operand and set the condition codes accord-

ingly—the destination is not modified.CMPI permits the comparison of a literal with memory.
Condition codes: X N Z V C

- * * * *

Destination operand addressing modes

CMPM Compare memory with memory

Operation: [destination]-[source]
Syntax: CMPM (Ay)�,(Ax)�
Attributes: Size�byte, word, longword
Sample syntax: CMPM.B (A3)�,(A4)�
Description: Subtract the source operand from the destination operand and set the condition codes accord-

ingly. The destination is not modified by this instruction. The only permitted addressing mode is
address register indirect with postincrementing for both source and destination operands.

Application: Used to compare the contents of two blocks of memory. For example:

* Compare two blocks of memory for equality

LEA Source,A0 A0 points to source block
LEA Destination,A1 A1 points to destination block
MOVE.W #Count-1,D0 Compare Count words

RPT CMPM.W (A0)�,(A1)� Compare pair of words
DBNE D0,RPT Repeat until all done
.
.

Condition codes: X N Z V C
- * * * *

DBcc Test condition, decrement, and branch

Operation: IF(condition false)
THEN [Dn]←[Dn]�1 {decrement loop counter}
IF [Dn]��1 THEN [PC] ←[PC]�2 {fall through to next

instruction}
ELSE [PC] ← [PC]�d {take branch}

ELSE [PC]←[PC]�2 {fall through to next instruction}
Syntax: DBcc Dn,�label�

Attributes: Size�word
Description: The DBcc instruction provides an automatic looping facility. The DBcc instruction requires

three parameters: a branch condition (specified by ‘cc’), a data register that serves as the loop
down-counter, and a label that indicates the start of the loop. The DBcc first tests the condition
‘cc’, and if ‘cc’ is true the loop is terminated and the branch back to �label� not taken. The 14
branch conditions supported by Bcc are also supported by DBcc, as well as DBF and DBT

Appendix: The 68000 instruction set 621

(F�false,and T�true).Many assemblers permit the mnemonic DBF to be expressed as DBRA (i.e.
decrement and branch back).

The condition tested by the DBcc instruction works in the opposite sense to a Bcc. For exam-
ple,BCCmeans branch on carry clear, whereas DBccmeans continue (i.e. exit the loop) on carry
clear. That is, the DBcc condition is a loop terminator. If the termination condition is not true, the
low-order 16 bits of the specified data register are decremented. If the result is �1, the loop is not
taken and the next instruction is executed. If the result is not �1, a branch is made to ‘label’. The
label is a 16-bit signed value, permitting a branch range of �32 to �32 kbyte. The loop may be exe-
cuted up to 64K times.

We can use the instruction DBEQ, decrement and branch on zero, to mechanize the high-level
language construct REPEAT...UNTIL.

LOOP ... REPEAT
...
... [D0]:�[D0]�1
...
DBEQ D0,REPEAT UNTIL [DO]��1 OR [Z]�1

Application: Suppose we wish to input a block of 512 bytes of data (the data is returned in register D1). If the
input routine returns a value zero in D1, an error has occurred and the loop must be exited.

LEA Dest,A0 Set up a pointer to the data destination
MOVE.W #511,D0 512 bytes to be input

AGAIN BSR INPUT Get a data value in D1
MOVE.B D1,(A0)� Store it
DBEQ D0,AGAIN REPEAT until D1�0 OR 512 times

Condition codes: X N Z V C
- - - - -

Not affected.

DIVS, DIVU Signed divide, unsigned divide

Operation: [destination]←[destination]/[source]
Syntax: DIVS �ea�,Dn

DIVU �ea�,Dn
Attributes: Size�a longword is divided by a word to give a longword result quotient and remainder.
Description: Divide the destination operand by the source operand and store the result in the destination.

The destination is a longword and the source is a 16-bit value. The result (i.e. destination regis-
ter) is a 32-bit value arranged so that the quotient is the lower-order word and the remainder is
the upper-order word. DIVU performs division on unsigned values and DIVS performs divi-
sion on two’s complement values. An attempt to divide by zero causes an exception. For DIVS,
the sign of the remainder is always the same as the sign of the dividend (unless the remainder is
zero).

Attempting to divide a number by zero results in a divide-by-zero exception. If overflow is
detected during division, the operands are unaffected. Overflow is checked for at the start of
the operation and occurs if the quotient is larger than a 16-bit signed integer. If the upper
word of the dividend is greater than or equal to the divisor, the V-bit is set and the instruction
terminated.

Application: The division of D0 by D1 is carried out by DIVU D1,D0 and results in:

[D0(0:15)]←[D0(0:31)]/[D1(0:15)]

[D0(l6:31)]←remainder

Condition codes: X N Z V C
- * * * 0

622 Appendix: The 68000 instruction set

EOR Exclusive OR logical

Operation: [destination]←[source]�[destination]
Syntax: EOR Dn,�ea�

Sample syntax: EOR D3,�(A3)
Attributes: Size�byte, word, longword
Description: EOR (exclusive or) the source operand with the destination operand and store the result in the

destination location. The source operand must be a data register and the operation
EOR �ea�,Dn is not permitted.

Application: The EOR instruction is used to toggle (i.e. change the state of) selected bits in the operand. For
example, if [D0]�00001111, and [D1]�10101010, the operation EOR.B D0,D1 toggles bits
0 to 3 of D1 and results in [D1]�10100101.

Condition codes: X N Z V C
- * * 0 0

Destination operand addressing modes

EORI EOR immediate

Operation: [destination]←�literal��[destination]
Syntax: EORI #�data�,�ea�

Attributes: Size�byte, word, longword
Description: EOR the immediate data with the contents of the destination operand. Store the result in the

destination operand.
Condition codes: X N Z V C

- * * 0 0

Destination operand addressing modes

EXG Exchange registers

Operation: [Rx]←[Ry];[Ry]←[Rx]
Syntax: EXG Rx,Ry
Sample syntax: EXG D3,D4

EXG D2,A0
EXG A7,D5

Attributes: Size�longword

The X-bit is not affected by a division. The N-bit is set if the quotient is negative. The Z-bit is set
if the quotient is zero. The V-bit is set if division overflow occurs (in which case the Z- and
N-bits are undefined). The C-bit is always cleared.

Source operand addressing modes

Appendix: The 68000 instruction set 623

Description: Exchange the contents of two registers. This is a longword operation because the entire 32-bit
contents of two registers are exchanged. The instruction permits the exchange of address regis-
ters, data registers, and address and data registers.

Application: One application of EXG is to load an address into a data register and then process it using
instructions that act on data registers. Then the reverse operation can be used to return the
result to the address register. Using EXG preserves the original contents of the data register.

Condition codes: X N Z V C
- - - - -

EXT Sign-extend a data register

Operation: [destination]←sign-extended[destination]
Syntax: EXT.W Dn

EXT.L Dn
Attributes: Size�word, longword
Description: Extend the least-significant byte in a data register to a word, or extend the least-significant word

in a data register to a longword. If the operation is word sized, bit 7 of the designated data regis-
ter is copied to bits (8 : 15). If the operation is longword sized, bit 15 is copied to bits (16 : 31).

Application: If [D0]�$12345678, EXT.W D0 results in 1234007816.
If [D0]�$12345678, EXT.L D0 resuIts in 0000567816.

Condition codes: X N Z V C
- * * 0 0

ILLEGAL Illegal instruction

Operation: [SSP]←[SSP]� 4; [[SSP]]← [PC];
[SSP]←[SSP]� 2; [[SSP]]← [SR];
[PC]←Illegal instruction vector

Syntax: ILLEGAL
Attributes: None
Description: The bit pattern of the illegal instruction, 4AFC16, causes the illegal instruction trap to be taken.

As in all exceptions, the contents of the program counter and the processor status word are
pushed on to the supervisor stack at the start of exception processing.

Application: Any unknown pattern of bits read by the 68000 during an instruction read phase would cause
an illegal instruction trap. The ILLEGAL instruction can be thought of as an official illegal
instruction. It can be used to test the illegal instruction trap and will always be an illegal instruc-
tion in any future enhancement of the 68000.

Condition codes: X N Z V C
- - - - -

JMP Jump (unconditionally)

Operation: [PC]← destination
Syntax: JMP�ea�

Attributes: Unsized
Description: Program execution continues at the effective address specified by the instruction.
Application: Apart from a simple unconditional jump to an address fixed at compile time (i.e.JMP label),

the JMP instruction is useful for the calculation of dynamic or computed jumps. For example,
the instruction JMP (A0,D0.L) jumps to the location pointed at by the contents of address

624 Appendix: The 68000 instruction set

JSR Jump to subroutine

Operation: [SP]←[SP]�4; [[SP]]←[PC]
[PC]←destination

Syntax: JSR �ea�

Attributes: Unsized
Description: JSR pushes the longword address of the instruction immediately following the JSR onto the sys-

tem stack. Program execution then continues at the address specified in the instruction.
Application: JSR (Ai) calls the procedure pointed at by address register Ai. The instruction JSR (Ai,Dj)

calls the procedure at the location [Ai]�[Dj], which permits dynamically computed addresses.
Condition codes: X N Z V C

- - - - -

Source operand addressing modes

LEA Load effective address

Operation: [An] ← �ea�

Syntax: LEA �ea�,An
Sample syntax: LEA Table,A0

LEA (Table,PC),A0
LEA (�6,A0,D0.L),A6
LEA (Table,PC,D0),A6

Attributes: Size�longword
Description: The effective address is computed and loaded into an address register.

LEA (�6,A0,D0.W),A1 calculates the sum of address register A0 plus data register D0.W
sign-extended to 32 bits minus 6, and deposits this result in address register A1. The difference
between the LEA and PEA instructions is that LEA calculates an effective address and puts it in
an address register, whereas PEA calculates an effective address in the same way but pushes it on
the stack.

Application: LEA is a very powerful instruction used to calculate an effective address. In particular, the use of
LEA facilitates the writing of position-independent code. For example,LEA(TABLE,PC), A0
calculates the effective address of ‘TABLE’ with respect to the PC and deposits it in A0.
LEA (Table,PC),A0 Compute address of Table with respect to the pc
MOVE (A0),D1 Pick up the first item in the table
. Do something with this item

register A0, offset by the contents of data register D0. Note that JMP provides several addressing
modes, while BRA provides a single addressing mode (i.e. PC relative).

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

Appendix: The 68000 instruction set 625

MOVE D1,(A0) Put it back in the table
.
.

Table DS.W 100

Condition codes: X N Z V C

- - - - -

Source operand addressing modes

LINK Link and allocate

Operation: [SP]←[SP]�4; [[SP]]←[An];
[An]←[SP]; [SP]←[SP]� d

Syntax: LINK An, #�displacement�

Sample syntax: LINK A6, #�12
Attributes: Size�word
Description: The contents of the specified address register are first pushed onto the stack. Then, this address

register is loaded with the updated stack pointer. Finally, the 16-bit sign-extended displacement,
d, is added to the stack pointer. The contents of the address register occupy two words on the
stack. A negative displacement must be used to allocate stack area to a procedure. At the end of
a LINK instruction, the old value of address register An has been pushed on the stack and the
new An is pointing at the base of the stack frame. The stack pointer itself has been moved up by
d bytes and is pointing at the top of the stack frame. Address register An is called the frame
pointer because it is used to reference data on the stack frame. By convention, programmers
often use A6 as a frame pointer.

Application: The LINK and UNLK instructions are used to create local workspace on the top of a procedure’s
stack. Consider the code:

Subrtn LINK A6, #�12 Create a 12-byte workspace
. .

MOVE D3, (�8,A6) Access the stack frame via A6
.
UNLK A6 Collapse the workspace
RTS Return from subroutine

Condition codes: X N Z V C
- - - - - The LINK instruction does not affect the CCR.

LSL, LSR Logical shift left/right

Operation: [destination]←[destination] shifted by�count�

Syntax: LSL Dx,Dy
LSR Dx,Dy
LSL #�data�, Dy
LSR #�data�, Dy
LSL�ea�

LSR�ea�

Attributes: Size�byte, word, longword
Description: Logically shift the bits of the operand in the specified direction (i.e. left or right). A zero

is shifted into the input position and the bit shifted out is copied into both the C- and the

626 Appendix: The 68000 instruction set

Application: If [D3.W]�11001100101011102,LSL.W #5,D3 produces the result 10010101110000002.After
the shift, the X-and C-bits of the CCR are set to 1 (since the last bit shifted out was a 1).

Condition codes: X N Z V C
* * * 0 *

The X-bit is set to the last bit shifted out of the operand and is equal to the C-bit. However, a zero
shift count leaves the X-bit unaffected and the C-bit cleared.

Destination operand addressing modes

MOVE Copy data from source to destination

Operation: [destination]←[source]
Syntax: MOVE �ea�,�ea�

Sample syntax: MOVE (A5),�(A2)
MOVE �(A5),(A2)�
MOVE #$123,(A6)�
MOVE Temp1,Temp2

Attributes: Size�byte, word, longword
Description: Move the contents of the source to the destination location. The data is examined as it is moved

and the condition codes set accordingly. Note that this is actually a copy command because the
source is not affected by the move. The move instruction has the widest range of addressing
modes of all the 68000’s instructions.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

X-bits of the CCR. The shift count may be specified in one of three ways. The count may be a
literal, the contents of a data register, or the value 1. An immediate count permits a shift of 1
to 8 places. If the count is in a register, the value is modulo 64—from 0 to 63. If no count is
specified, one shift is made (e.g. LSL�ea� shifts the word at the effective address one posi-
tion left).

Appendix: The 68000 instruction set 627

Destination operand addressing modes

MOVEA Move address

Operation: [An]← [source]
Syntax: MOVEA�ea�,An
Attributes: Size�word, longword
Description: Move the contents of the source to the destination location, which is an address register. The

source must be a word or longword. If it is a word, it is sign-extended to a longword. The condi-
tion codes are not affected.

Application: The MOVEA instruction is used to load an address register (some assemblers simply employ the
MOVE mnemonic for both MOVE and MOVEA). The instruction LEA can often be used to per-
form the same operation (e.g.MOVEA.L #$1234,A0 is the same as LEA $1234,A0). Take
care because the MOVEA.W #$8000,A0 instruction sign-extends the source operand to
$FFFF8000 before loading it into A0, whereas LEA $8000,A0 loads A0 with $00008000. You
should appreciate that the MOVEA and LEA instructions are not interchangeable. The operation
MOVEA (Ai),An cannot be implemented by an LEA instruction, since MOVEA (Ai),An per-
forms a memory access to obtain the source operand, as the following RTL demonstrates.
LEA (Ai),An �[An]← [Ai]
MOVEA (Ai),An �[An]← [M([Ai])]

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

MOVE to CCR Copy data to CCR from source

Operation: [CCR]← [source]
Syntax: MOVE �ea�,CCR
Attributes: Size�word
Description: Move the contents of the source operand to the condition code register. The source operand is a

word, but only the low-order byte contains the condition codes. The upper byte is neglected.
Note that MOVE �ea�,CCR is a word operation, but ANDI,ORI and EORI to CCR are all
byte operations.

Application: The move to CCR instruction permits the programmer to preset the CCR. For example,
MOVE #0,CCR clears all the CCR’s bits.

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

628 Appendix: The 68000 instruction set

MOVE from SR Copy data from SR to destination

Operation: [destination]← [SR]
Syntax: MOVE SR,�ea�

Attributes: Size�word
Description: Move the contents of the status register to the destination location. The source operand, the sta-

tus register, is a word. This instruction is not privileged in the 68000, but is privileged in the
68010, 68020, and 68030. Executing a MOVE SR,�ea� while in the user mode on these proces-
sors results in a privilege violation trap.

Condition codes: X N Z V C
- - - - -

Destination operand addressing modes

MOVE to SR Copy data to SR from source

Operation: IF [S]�1
THEN [SR]← [source]

ELSE TRAP
Syntax: MOVE �ea�,SR
Attributes: Size�word
Description: Move the contents of the source operand to the status register. The source operand is a word and

all bits of the status register are affected.
Application: The MOVE to SR instruction allows the programmer to preset the contents of the status register.

This instruction permits the trace mode, interrupt mask, and status bits to be modified. For
example, MOVE #$2700,SR moves 00100111 00000000 to the status register, which clears all
bits of the CCR, sets the S-bit, clears the T-bit, and sets the interrupt mask level to 7.

Condition codes: X N Z V C
* * * * *

Source operand addressing modes

MOVE USP Copy data to or from USP

Operation 1: IF [S]�1 {MOVE USP,An form}
THEN [USP]← [An]

ELSE TRAP
Operation 2: IF [S]�1 {MOVE An,USP form}

THEN [An]← [USP]
ELSE TRAP

Syntax 1: MOVE USP,An

Syntax 2: MOVE An,USP

Attributes: Size�longword

Appendix: The 68000 instruction set 629

Description: Move the contents of the user stack pointer to an address register or vice versa. This is a privileged

instruction and allows the operating system running in the supervisor state either to read the con-

tents of the user stack pointer or to set up the user stack pointer.

Condition codes: X N Z V C
- - - - -

MOVEM Move multiple registers

Operation 1: REPEAT
[destination_register]← [source]

UNTIL all registers in list moved
Operation 2: REPEAT

[destination]←[source_register]
UNTIL all registers in list moved

Syntax 1: MOVEM �ea�,�register list�

Syntax 2: MOVEM �register list�,�ea�

Sample syntax: MOVEM.L D0-D7/A0-A6,$1234
MOVEM.L (A5),D0-D2/D5-D7/A0-A3/A6
MOVEM.W (A7)�,D0-D5/D7/A0-A6
MOVEM.W D0-D5/D7/A0-A6,�(A7)

Attributes: Size�word, longword
Description: The group of registers specified by �register list� is copied to or from consecutive

memory locations. The starting location is provided by the effective address. Any combination
of the 68000’s sixteen address and data registers can be copied by a single MOVEM instruction.
Note that either a word or a longword can be moved, and that a word is sign-extended to a long-
word when it is moved (even if the destination is a data register).

When a group of registers is transferred to or from memory (using an addressing mode other
than predecrementing or postincrementing), the registers are transferred starting at the speci-
fied address and up through higher addresses. The order of transfer of registers is data register
D0 to D7, followed by address register A0 to A7.
MOVEM.L D0-D2/D4/A5/A6,$1234 copies registers D0,D1,D2,D4,A5,A6 to

memory, starting at location $1234 (where D0 is stored) and moving to locations $1238,
$123C, … . The address counter is incremented by 2 or 4 after each move according to whether
the operation is moving words or longwords, respectively.

If the effective address is in the predecrement mode (i.e. �(An)), only a register to memory
operation is permitted. The registers are stored starting at the specified address minus two (or
four for longword operands) and down through lower addresses. The order of storing is from
address register A7 to address register A0, then from data register D7 to data register D0. The
decremented address register is updated to contain the address of the last word stored.

If the effective address is in the postincrement mode (i.e. (An)�), only a memory to register
transfer is permitted. The registers are loaded starting at the specified address and up through
higher addresses. The order of loading is the inverse of that used by the predecrement mode and
is D0 to D7 followed by A0 to A7. The incremented address register is updated to contain the
address of the last word plus two (or four for longword operands).

Note that the MOVEM instruction has a side effect. An extra bus cycle occurs for memory
operands, and an operand at one address higher than the last register in the list is accessed. This
extra access is an ‘overshoot’ and has no effect as far as the programmer is concerned. However, it
could cause a problem if the overshoot extended beyond the bounds of physical memory. Once
again, remember that MOVEM.W sign-extends words when they are moved to data registers.

Application: This instruction is used to save working registers on entry to a subroutine and to restore them at
the end of a subroutine.
BSR Example
.
.

630 Appendix: The 68000 instruction set

MOVEQ Move quick (copy a small literal to a destination)

Operation: [destination]← <literal>
Syntax: MOVEQ #<data>,Dn
Attributes: Size � longword
Description: Move the specified literal to a data register. The literal is an eight-bit field within the MOVEQ

op-code and specifies a signed value in the range �128 to �127. When the source operand is
transferred, it is sign-extended to 32 bits. Consequently, although only 8 bits are moved, the
MOVEQ instruction is a longword operation.

Application: MOVEQ is used to load small integers into a data register. Beware of its sign-extension. The two
operations MOVE.B #12,D0 and MOVEQ #12,D0 are not equivalent. The former has the
effect [D0(0 : 7)]←12, whereas the latter has the effect [D0(0 : 31)] ← 12 (with sign-extension).

Condition codes: X N Z V C
- * * 0 0

Example MOVEM.L D0-D5/A0-A3,-(SP) Save registers
.
.
Body of subroutine
.
.
MOVEM.L (SP)�,D0-D5/A0-A3 Restore registers
RTS Return

Condition codes: X N Z V C
- - - - -

Source operand addressing modes (memory to register)

Destinaton operand addressing modes (register to memory)

MULS, MULU Signed multiply, unsigned multiply

Operation: [destination]←[destination] * [source]
Syntax: MULS <ea>,Dn

MULU <ea>,Dn
Attributes: Size�word (the product is a longword)
Description: Multiply the 16-bit destination operand by the 16-bit source operand and store the result in the

destination. Both the source and destination are 16-bit word values and the destination result is
a 32-bit longword. The product is therefore a correct 32-bit product and is not truncated.MULU
performs multiplication with unsigned values and MULS performs multiplication with two’s
complement values.

Application: MULU D1,D2 multiplies the low-order words of data registers D1 and D2 and puts the 32-bit
result in D2.MULU #$1234,D3multiplies the low-order word of D3 by the 16-bit literal $1234
and puts the 32-bit result in D3.

Appendix: The 68000 instruction set 631

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

NEG Negate

Operation: [destination]←0�[destination]
Syntax: NEG <ea>
Attributes: Size�byte, word, longword
Description: Subtract the destination operand from 0 and store the result in the destination location. The dif-

ference between NOT and NEG is that NOT performs a bit-by-bit logical complementation,
whereas NEG performs a 2’s complement arithmetic subtraction. All bits of the condition code
register are modified by a NEG operation; e.g. if D3.B � 111001112, the logical operation
NEG. B D3 results in D3�000110012 (XNZVC�10001) and NOT.B D3 results in D3�

000110002 (XNZVC��0000).
Condition codes: X N Z V C

* * * * * Note that the X-bit is set to the value of the C-bit.

Destination operand addressing modes

NEGX Negate with extend

Operation: [destination]←0�[destination]�[X]
Syntax: NEGX <ea>
Attributes: Size�byte, word, longword
Description: The operand addressed as the destination and the extend bit are subtracted from zero. NEGX is

the same as NEG except that the X-bit is also subtracted from zero.
Condition codes: X N Z V C

* * * * *
The Z-bit is cleared if the result is non-zero and is unchanged otherwise. The X-bit is set to the
same value as the C-bit.

Destination operand addressing modes

NOP No operation

Operation: None
Syntax: NOP
Attributes: Unsized
Description: The no operation instruction NOP performs no computation. Execution continues with the

instruction following the NOP instruction. The processor’s state is not modified by an NOP.

632 Appendix: The 68000 instruction set

NOT Logical complement

Operation: [destination]←[d�e�s�t�i�n�a�t�i�o�n�]
Syntax: NOT <ea>
Attributes: Size � byte, word, longword
Description: Calculate the logical complement of the destination and store the result in the destination. The

difference between NOT and NEG is that NOT performs a bit-by-bit logical complementation,
whereas a NEG performs a two’s complement arithmetic subtraction. Moreover,NEG updates all
bits of the CCR, while NOT clears the V- and C-bits, updates the N- and Z-bits, and doesn’t affect
the X-bit.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

Application: NOPs can be used to introduce a delay in code. Some programmers use them to provide space
for patches—two or more NOPs can later be replaced by branch or jump instructions to fix a
bug. This use of the NOP is seriously frowned upon, as errors should be corrected by reassem-
bling the code rather than by patching it.

Condition codes: X N Z V C
- - - - -

OR OR logical

Operation: [destination]←[source]�[destination]
Syntax: OR <ea>,Dn

OR Dn,<ea>
Attributes: Size � byte, word, longword
Description: OR the source operand to the destination operand and store the result in the destination

location.
Application: The OR instruction is used to set selected bits of the operand. For example, we can set the four

most-significant bits of a longword operand in D0 by executing:
OR.L #$F0000000,D0

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

Destination operand addressing modes

Appendix: The 68000 instruction set 633

ORI OR immediate

Operation: [destination]← <literal>�[destination]
Syntax: ORI #<data>,<ea>
Attributes: Size�byte, word, longword
Description: OR the immediate data with the destination operand. Store the result in the destination

operand.
Condition codes: X N Z V C

- * * 0 0
Application: ORI forms the logical OR of the immediate source with the effective address, which may be a

memory location. For example,
ORI.B #%00000011,(A0)�

Destination operand addressing modes

ORI to CCR Inclusive OR immediate to CCR

Operation: [CCR]← <literal>�[CCR]
Syntax: ORI #<data> ,CCR
Attributes: Size�byte
Description: OR the immediate data with the condition code register (i.e. the least-significant byte of the

status register). The Z flag of the CCR can be set by ORI #$04,CCR.
Condition codes: X N Z V C

* * * * *
X is set if bit 4 of data�1; unchanged otherwise
N is set if bit 3 of data�1; unchanged otherwise
Z is set if bit 2 of data�1; unchanged otherwise
V is set if bit 1 of data�1; unchanged otherwise
C is set if bit 0 of data�1; unchanged otherwise

ORI to SR Inclusive OR immediate to status register

Operation: IF [S]�1
THEN

[SR]← <literal>�[SR]
ELSE TRAP

Syntax: ORI #<data>,SR
Attributes: Size�word
Description: OR the immediate data to the status register and store the result in the status register. All bits of

the status register are affected.
Application: Used to set bits in the SR (i.e. the S, T, and interrupt mask bits). For example,ORI #$8000,SR

sets bit 15 of the SR (i.e. the trace bit).
Condition codes: X N Z V C

* * * * *
X is set if bit 4 of data�1; unchanged otherwise
N is set if bit 3 of data�1; unchanged otherwise
Z is set if bit 2 of data�1; unchanged otherwise
V is set if bit 1 of data�1; unchanged otherwise
C is set if bit 0 of data�1; unchanged otherwise

634 Appendix: The 68000 instruction set

PEA Push effective address

Operation: [SP]←[SP]�4; [[SP]]← <ea>
Syntax: PEA <ea>
Attributes: Size � longword
Description: The longword effective address specified by the instruction is computed and pushed onto the

stack. For example, PEA XYZ would push the address of ‘XYZ’ on to the stack. The difference
between PEA and LEA is that LEA calculates an effective address and puts it in an address regis-
ter, whereas PEA calculates an effective address in the same way but pushes it on the stack.

Application: PEA calculates an effective address to be used later in address register indirect addressing. In par-
ticular, it facilitates the writing of position-independent code. For example, PEA (TABLE,PC)
calculates the address of TABLEwith respect to the PC and pushes it on the stack. This address can
be read by a procedure and then used to access the data to which it points. Consider the example:
PEA Wednesday Push the parameter address on the stack
BSR Subroutine Call the procedure
LEA (4,SP),SP Remove space occupied by the parameter

Subroutine: MOVEA.L (4,SP),A0 A0 points to parameter under return address
MOVE.W (A0),D2 Access the actual parameter - Wednesday
.
RTS

Condition codes: X N Z V C
- - - - -

Source operand addressing modes

ROL, ROR Rotate left/right (without extend)

Operation: [destination]←[destination] rotated by <count>
Syntax: ROL Dx,Dy

ROR Dx,Dy
ROL #<data>,Dy
ROR #<data>,Dy
ROL <ea>
ROR <ea>

Attributes: Size�byte, word, longword
Description: Rotate the bits of the operand in the direction indicated. The extend bit, X, is not included in the

operation. A rotate operation is circular in the sense that the bit shifted out at one end is shifted
into the other end. That is, no bit is lost or destroyed by a rotate operation. The bit shifted out is
also copied into the C-bit of the CCR, but not into the X-bit. The shift count may be specified in
one of three ways: the count may be a literal, the contents of a data register, or the value 1. An
immediate count permits a shift of 1 to 8 places. If the count is in a register, the value is modulo
64, allowing a range of 0 to 63. If no count is specified, the word at the effective address is rotated
by one place (e.g.ROL <ea>).

Appendix: The 68000 instruction set 635

Condition codes: X N Z V C
- * * 0 *

The X-bit is not affected and the C-bit is set to the last bit rotated out of the operand (C is set to
zero if the shift count is 0).

Destination operand addressing modes

ROXL, ROXR Rotate left/right with extend

Operation: [destination]←[destination] rotated by <count>
Syntax: ROXL Dx,Dy

ROXR Dx,Dy
ROXL #<data>,Dy
ROXR #<data>,Dy
ROXL <ea>
ROXR <ea>

Attributes: Size�byte, word, longword
Description: Rotate the bits of the operand in the direction indicated. The extend bit of the CCR is included

in the rotation. A rotate operation is circular in the sense that the bit shifted out at one end
is shifted into the other end. That is, no bit is lost or destroyed by a rotate operation. Since the
X-bit is included in the rotate, the rotation is performed over 9 bits (.B), 17 bits (.W), or 33 bits
(.L). The bit shifted out is also copied into the C-bit of the CCR as well as the X-bit. The shift
count may be specified in one of three ways: the count may be a literal, the contents of a data reg-
ister, or the value 1. An immediate count permits a shift of 1 to 8 places. If the count is in a regis-
ter, the value is modulo 64 and the range is from 0 to 63. If no count is specified, the word at the
specified effective address is rotated by one place (i.e.ROXL <ea>).

Condition codes: X N Z V C
* * * 0 *
The X- and the C-bit are set to the last bit rotated out of the operand. If the rotate count is zero,
the X-bit is unaffected and the C-bit is set to the X-bit.

Destination operand addressing modes

636 Appendix: The 68000 instruction set

RTE Return from exception

Operation: IF [S]�1 THEN
[SR]←[[SP]]; [SP]←[SP]�2
[PC]←[[SP]]; [SP]← [SP]�4

ELSE TRAP
Syntax: RTE
Attributes: Unsized
Description: The status register and program counter are pulled from the stack. The previous values of the SR

and PC are lost. The RTE is used to terminate an exception handler. Note that the behavior of the
RTE instruction depends on the nature of both the exception and processor type. The 68010 and
later models push more information on the stack following an exception than the 68000. The
processor determines how much to remove from the stack.

Condition codes: X N Z V C
* * * * *
The CCR is restored to its pre-exception state.

STOP Load status register and stop

Operation: IF [S]�1 THEN
[SR]← <data>
STOP

ELSE TRAP
Syntax: STOP #<data>
Sample syntax: STOP #$2700

STOP #SetUp
Attributes: Unsized
Description: The immediate operand is copied into the entire status register (i.e. both status byte and CCR are

modified), and the program counter advanced to point to the next instruction to be executed.
The processor then suspends all further processing and halts. That is, the privileged STOP
instruction stops the 68000.

The execution of instructions resumes when a trace, an interrupt, or a reset exception occurs.
A trace exception will occur if the trace bit is set when the STOP instruction is encountered. If an
interrupt request arrives whose priority is higher than the current processor priority, an interrupt
exception occurs, otherwise the interrupt request has no effect. If the bit of the immediate data
corresponding to the S-bit is clear (i.e. user mode selected), execution of the STOP instruction
will cause a privilege violation. An external reset will always initiate reset exception processing.

Condition codes: X N Z V C
* * * * *

Set according to the literal.

RTS Return from subroutine

Operation: [PC]←[[SP]]; [SP]←[SP]�4

Syntax: RTS

Attributes: Unsized

Description: The program counter is pulled from the stack and the previous value of the PC is lost.RTS is used to

terminate a subroutine.

Condition codes: X N Z V C
- - - - -

Appendix: The 68000 instruction set 637

SUB Subtract binary

Operation: [destination]←[destination]�[source]
Syntax: SUB <ea>,Dn

SUB Dn,<ea>
Attributes: Size�byte, word, longword
Description: Subtract the source operand from the destination operand and store the result in the destination

location.
Condition codes: X N Z V C

* * * * *

Source operand addressing modes

SUBA Subtract address

Operation: [destination]←[destination]�[source]
Syntax: SUBA <ea>,An
Attributes: Size�word, longword
Description: Subtract the source operand from the destination operand and store the result in the destination

address register. Word operations are sign-extended to 32 bits prior to subtraction.
Condition codes: X N Z V C

- - - - -

Source operand addressing modes

SUBI Subtract immediate

Operation: [destination]←[destination]�[source]
Syntax: SUBI #<data>,<ea>
Attributes: Size�byte, word, longword
Description: Subtract the immediate data from the destination operand. Store the result in the destination

operand.
Condition codes: X N Z V C

* * * * *

Destination operand addressing modes

Destination operand addressing modes

638 Appendix: The 68000 instruction set

SUBQ Subtract quick

Operation: [destination]←[destination]�[source]
Syntax: SUBQ #<data>,<ea>
Attributes: Size�byte, word, longword
Description: Subtract the immediate data from the destination operand. The immediate data must be in the

range 1 to 8. Word and longword operations on address registers do not affect condition codes.
A word operation on an address register affects the entire 32-bit address.

Condition codes: X N Z V C
* * * * *

Destination operand addressing modes

SUBX Subtract extended

Operation: [destination]←[destination]�[source]�[x]
Syntax: SUBX Dx,Dy

SUBX �(Ax),�(Ay)
Attributes: Size�byte, word, longword
Description: Subtract the source operand from the destination operand along with the extend bit, and store

the result in the destination location. The only legal addressing modes are data register direct and
memory to memory with address register indirect using auto-decrementing.

Condition codes: X N Z V C
* * * * *
Z: Cleared if the result is non-zero, unchanged otherwise. The Z-bit can be used to test for zero
after a chain of multiple precision operations.

SWAP Swap register halves

Operation: [Register(16:31)]←[Register(0:15)];
[Register(0:15)]←[Register(16:31)]

Syntax: SWAP Dn
Attributes: Size�word
Description: Exchange the upper and lower 16-bit words of a data register.
Application: The SWAP Dn instruction enables the higher-order word in a register to take part in word

operations by moving it into the lower-order position. SWAP Dn is effectively equivalent to
ROR.L Di,Dn, where [Di]�16. However,SWAP clears the C-bit of the CCR, whereas ROR sets
it according to the last bit to be shifted into the carry bit.

Condition codes: X N Z V C
- * * 0 0
The N-bit is set if most-significant bit of the 32-bit result is set and cleared otherwise. The Z-bit
is set if 32-bit result is zero and cleared otherwise.

TRAP Trap

Operation: s← 1;
[SSP]←[SSP]�4; [[SSP]]←[PC];
[SSP]←[SSP]�2; [[SSP]]←[SR];
[PC] ←vector

Syntax: Trap #<vector>

Appendix: The 68000 instruction set 639

TST Test an operand

Operation: [CCR]←tested ([operand])
i.e.[operand]�0; update CCR

Syntax: TST <ea>
Attributes: Size�byte, word, longword
Description: The operand is compared with zero. No results is saved, but the contents of the CCR are set

according to the results. The effect of TST <ea> is the same as CMPI #0,<ea> except that
the CMPI instruction also sets/clears the V- and C-bits of the CCR.

Condition codes: X N Z V C
- * * 0 0

Source operand addressing modes

Attributes: Unsized
Description: This instruction forces the processor to initiate exception processing. The vector number used by

the TRAP instruction is in the range 0 to 15 and, therefore, supports 16 traps (i.e. TRAP #0 to
TRAP #15).

Application: TheTRAP instruction is used to perform operating system calls and is system independent. That
is, the effect of the call depends on the particular operating environment. For example, the
University of Teesside 68000 simulator uses TRAP #15 to perform I/O. The ASCII character in
D1.B is displayed by the following sequence.
MOVE.B #6,D0 Set up to display a character parameter in D0
TRAP #15 Now call the operating system

Condition codes: X N Z V C
- - - - -

UNLK Unlink

Operation: [SP]←[An]; [An]←[[SP]]; [SP]←[SP]�4
Syntax: UNLK An
Attributes: Unsized
Description: The stack pointer is loaded from the specified address register and the old contents of the pointer

are lost (this has the effect of collapsing the stack frame). The address register is then loaded with
the longword pulled off the stack.

Application: The UNLK instruction is used in conjuction with the LINK instruction. The LINK creates a
stack frame at the start of a procedure, and the UNLK collapses the stack frame prior to a return
from the procedure.

Condition codes: X N Z V C
- - - - -

	éó?`é$?ÆÌÏ�iØ�äù?�?÷Ù{ä¹Òù
	vmãü2ÅXã !¿ÕB%Øu
	???˝~�?É˛y2îÂ??KÇàNf½ùêl	M°Âñr]Ïêò6
	öËû?˝ü?çâ�ßÇ+�¡ä@W�pãk�“«n[�Ï?åN’GDÝ±@{nµ·?þ&èhn<¢gA5§á^ºqM5Æ%�Ï]ê�CÈ?Q?
	¬ýìCDv7“SÚçéù¸�ˇ¸ÜÍ?Á�ZÂ$ó
	¶Z²Ýû�ì?e§èE?î�ò&?Ï5\xÑKL¸tZ¦,çª5
/:Û?à¼Ï?üÍ@ˇÃ�˝�C?K,B²?ý5ê¶Ï
	ÆòdTF�¸?e?ã7ì«.r�w?êBL�9Ü*%¤?õhá?ÞAqd'�Á?¯çèùSå2¹!a´GãS²mä?Èv<<Ë?ó�+ë×c3??Z¡R
	?è Û �D°!pìÕtÝ6[Bø
³Ð?q?0ÿ˝¾È?î
/Þð§î3ì�æjÜçs©Á'K'X¯?OUÇV<Î˜q?ÃÇº1P´û]soÏh9¤ÉçíÌ?´ �]??èù§�òñ�¸o˛˝î¡Ä? @½4Á,�‘�g?B�2�DJ¾?Åa?:?x
	Ò·çû?Ñ£w&’�;û˙¶Ê??Û¿?l±?W�å?LÌ}N���0ïL+ÆÆr�?3cöÑ?��
Çx?ä¹�_+÷ˆ?U¢c?N¼!

	 ‘�?²©U�� ød�?_���Ê$®?�÷LßÑˆú¼,	?4!ù?˜Ä�?˘s?$áR�?¤XùOj}
	?ëtÐ.´"g¾ü˚õ�}?ôå?ïû?O,1t?_.6´oÅè/Ð?}]9:?eêäm£ø_�
	?²É?dÐ?˙µÛÉ å�¤G?{[?�???¶
»�¬3xÆÈàÚ
ð©
L?Ó½?=�ù	?Ë�Ä?¢r?%~--?õ�?
	5�÷ÉìT¶.¹^Ê?ñ4Ý?E?iL�m	?�?1nX?�ˇ=�x?´�C¿1‘õÞù0=û˛<?Î¼×?Ðˆ$Ö?¹,˘�Ú-ù?x?ø*V
	Ï·?ø~°.pˇ
Ûl<	[¹»b
�ø?-$��Ô?FàÝm]äÇ7S±ˇÑ¹î\lê˘?´Xáù¥Y’D¨?Ö6Qmë`ÙC‘¹sÛ�b1ç? ®à´T�y4Ä ¨Éý¤ø?·?â<"æÀÙË*
D;}??��/l?x��8}z?½W�}è'Ë
	&˛çg‘-å?`¸L˜UCÄ³?uæ%8{§�§·YTEÎÌ�¦EšRl�¢�w�?RÑÛa[9u4*·F<=:û¦úÏfÎõµ?

	áåØÃ©Ü!eg?=sóÁ¡�?GV]4ô§/¨´÷��ñÏ»#o'ñS1“?Ï9 ??o˜?Ø˘?&â4 �?��±¾�õú?¿:@ªP?3Ù¸ÁZ��i<�±
	ô,³��²ýÁ�]¾y�p¡2Ué[˘¹Á_·Ëâ? ÈˇTAË�gp:?©_|��IdXÅ_º“¯?ÙÃQÞÓ38ò£ˇ½ÏØg§kæµÔi&ÃzQ÷¶Ñ?˛¼-?
	5ß¤’"º³yÖùñ?Cz2˘�m�ÖkòF�ún9=}�ü?IÐ!\ÃM/o&â�Ö˘Î
n×»"�©˜^«-»�û�z?�ü�š�Yx¶b+ÂÔv�ÍnÇÜÂ?ÁZ?èù×¾ùF?c˚ü|w/O$\¸÷æ·?@ïp?{Ä¨§Â+˙Å˛?*9Üð<§Ô,�+
	N^ú Õ1Þ«wýÞ
¤2ª"ïu0�
¶?R5Dm�ìS.ü?0?ÊÌ?��Ë?nÁBû¾,§¡ìTuy�ãè?��JzÂ��ÃÒgë?feÙø9?_dÜã?Fk¿?¡5Ò�ABoxò?þ
	a§öï	wS¸ñ?O,²îÜ�½ã%6I};?Å?'Äq?Toè:ÌíHå¹]®é?êÐBXèÚ�?�¨?Ô?Òø¥À�ïÁ{N\üÐëôÔ,¡5CIýõPZ°Rí?4’H ??��?»@“?˚$¼j

	˛¢�=wÉ r R»?‘ÂË5^?êh£"¦n'é
�û’Öá¾�îXU?#Je�ËPõÕ?`��þ
?ü˙?QH?È%ÏÇˇ?}ûÓ
~¢��¯}u�àÖ~R?sßˇ�G
	±·�¾[a’u|È�h˜¶9Aï�¦�ªMi?èN.Xk�-Ò*EÏäô‘Kg˛8˛ªç¡ä���é?
	�òˆ�<L¢3?P'£“Ë??O&cI2MÎ»	��
	ôu˙q«æ�ü.?<q§¨?»àÈÜL}Ó`??fwU?;ËJ�x?-àLMúX?2ò˘Â"Ï¿??Å˜Ag�ÎØ¤Oˆ�óFåI�µV?�±�Íâ2?�k
	öG�«?ºSÇ?½C`·_ˇfˇÁe7%3À÷:+ì¼é¹²³ ?šÒ?·?Õ×5ýÝ?Ûã˜Áé?¹“¥RigÖþ�Ymgè˚æÄ¥&ˆ�©'Óˆæµ�CD

	y��Ë�f°ØH·7zC9�M`w¨þî�“û?ýrü�¬wqéÔ?�Ü¸Å�?ìqf|P:Û“&iÍ�˝?Ø¡Ý<m0VÍù´9‘¹0p˚fûhQ±ÙmO!p^Ö�?dx7ïÝª=$ú�	à_X@®§�S�dlÜÿýo�¦
	î‘ JÓ
D£Ä}'½o˛¹?ô|?KÇ�/ì???0ˇ?B˛?˙ßn q¯SWˇµ4�Y�}R�É`'?ï?§à
	 YvB¯é³�ˇEþ:?· EË¿ôé¼?-k	ëØG04jQñ?:mˇè?,µ¼?&tÀiÌ˚ì��×N�7Ñ�Fª|ÈÎIÍ??

	�ˆ˘öj/_Î??/óÛ @¯û�lÆ:i¹6Èã¯yå]uaþ3u;n8ØÜÛº?×<\¬ÊÊ¶L?åHO¢ºø??²�?3Z@Ó*¡Ü?MN4Õ[�åqÒUqšIeöB N˙g�Å¤Â
/«
	ñWd&_`�Å¬V*˝ß8�
Ý?è[QRÖ?Ç?Â§G?C“ud?ÿØ:û˘å}¹³7ÉðQ�Y??k±?ÀN÷úÈmö,

	ì	é@�&Õ{v‘þ?üõnðÂš©��Å?¬1˘þã?"‘��h»??¢�65Ø«}G³¡µR
	GðÕC ü�¦$?°,jÐ4LTR�ˆbZLâxÁÇ�??ÐelÄ£ñu˝�?Uñô�Ñ©+ÃÜQ¢âMIªä�’
	ÞÌäÚw?
À�G#ív?ÕÐxåÒ˚G¡?[oË9�=ºk�sq�²XZSÅ0§^Ó?éÉÇç<î¦?ÂÊÁ&ÃÏ²dÛ?"�Ò?*àiY?èï3
	}�~ûˇúy�4}??mJý?¦,zÍ ò·�Ä]Ü?��uO�òó?N
Zc�jn79?f ?ÓýµxˆixWKg˘�WR,ÈÛ˜�¸?HÔ¬Á±?óJ§mjDÅ
	ó¤HPWs˚L
�`Q§,é´¶�M8uE$¯´9\?�?8È~�8õôeÞ=DÄn¥?¢"�Gˇ?È§��'
ÓMÁ$Ý˜gY^á?ùó??�ßÐksÝÂ

	ü¨£ÊÐfÚê¶ÔF@HK�Pq#.õK?�÷Áª.Åá¹AìrÏqÈ£C’<�ß?'ºK¹æ!wú¯¢5¿¶YËU?wZ£7ÒÏ.n?ò��Ó?ÿÙããÓÑ.?�˚rY&Sµ?ø
	^]»%½}��L�*�Äóxï/�UU�bE?5wó?:Zš?cÞÙFˇšIš‘?À¾cy:5ZÜ¯,Z¬??~®�R�T
	î?J%³ˆ¹�Q¸¡ßø8«U
	I?v0ÿ&`?
ÎÕ??�uSL�

	?�N��ê¢Lú�§2`˝bÃ?Ic%Þ`?&|˘ww?�í?·§·ðJ�?5-. ¹˝º	"¢“l'òö=?z,�¯¡,¥M#§??J�7è?i?�þ$`d÷uÊ�6¤
	???A²�*½�à?NfTÎ&iD˛;u¹<üš+
	šÛÌø
]?vç08õ?ú�tÛöÌ?PÙ1£!Ã|PNn�^˙ì��2©æÛ?HÏa?¾Ç?¶²¨?�!1æ?ö#�¨F
	!¯

Ð?-µà�šÓ�/~L¼Åúò˘b?G?©ˆ÷�ÚCº`Hjæé¿Ñß=tLÛ
	?˝&ÑqÏv7êÂË»9ÁMÄWÇ?ÇÍX�ÿÉ?<l6K�f?7??��
	�¡�ÛÀàaÆºO?]H@b5h??%£ ÷;û¿=_4?²"�?°}
	ûj÷?-?²?WÈûÍóQ/¬Ü±@M�?�6¢ß{£eZé«<ò74?Y
	ññ#Ôa¥˚˙8»äs¦èR?ü�w?M?ØSÐ±ïö�W¾˙
Lç"R»U¦bê?<ODPb5¯ÒTö.?
	ù#?¤�[ÉPR«�Ê?ñÚYÞÛ7��ç?˘+½!�}˜�õ?DCËÃ·ÓÞ.�µ¢[|±u¾?ÿ«´B?W?ô?ùÝÚQ¢i`q÷êÒˇØæ˘A$ò�½˚fã"|

	:�ªâˇ�3¥F0L÷ÏÒÊ,$6V
sjnÎ´¯?ÿòðö&?£;?�ø�4¦6"Ó?�´˙÷?d?
	˙wâ¿Óm$·xºÔÕm??xJ£ûçP®µø¢�?}¸Ò'°ˇ³o??ûØ~$à˝ÄB9?R�©z_??×=7�8?rd�"ÄÍ£
	-|?? %?$Ñ¿Ô??ˆ®Ê?}/Ç?ÈÒˆ4ï	f�²?ØÛÉ'Ýô?0äs0ê^ï.ÍW�¤
	¦*?�ÊyÇÑCðãh²îd�¦"“�?yÅ˘°¿ù^ýoª§��Õ?Þ`Ïoð�V9O??è/#^0ºú
	6�ê�³h?»˜8À]ú*æîÍº} à6¨ËÔ�É˘µ`ï?#í�×Ê?¦´3$ò|?Hö!¥�˘`{ÁÔß'ñ?ñÿå	pC?�aÕE¯æoAˇxÝ
	Ø???�]�^ÎíTw?ˇwÛò}�pÂ°ÜÞ³Â6Õ˛¶Z~[?è�ÐQ]’´?üÀÎ£?É
ô!�Ûuë?
ùnObZ�1‘SêÊ+šc×¿�g˘˙˙è~¬?sÒ�Ô�+$�?��ÓwyÛâ�Íª;ü˙˚0²«
	»Ä1?J×�M�pZG:¶14dZ�Øìm¹®�9¸˙H¡ïSð°ˇâ-=îÓ
	H:w�§�¹¨“UÆ˛��?3âp1©�S“V1#CdÉ?:½ÖZæUÅÓq;�³�Q5¼ ˇt?pèë
eÚ

	zæw¹gj?Ä% sXMGð?�mSö¡B´ñÜù]Wz%?Ï�ïßÕuäU?Eq°Î8@�ªØF"/‘£çÎS*�qôÒJE©+�ÛS?ø$�?��½?
	jú¾F·E�	Aø�÷Ð�CmT???3¶yN?v�?¾¦×Ô�úò�*ú#£lˆ9˚QÅH¢ð
z?uÀ?o¹7nËÕÎ¼£?ùµæ`=â~��a¹oÓ�§?˛Ì?Á9yíx
	�pl=Ã�?@Õ�fþIm?ãç&ã�?{+�?¤AÊÜHiˇÌçÓ?ô?!Óðc?�Òm`}[¿~Tí??/!g?û,bšù?PÐèUºOSD=ë4àÿx6fi�wãz˚õB6’¼���?¼ÁÄ�+½Ã�?]íþ?./áúÀå�ØÆ©=˝??l~`è?_.?ù]VÅªÂD P?N!k

	?Þ¹ÛüÊ*�ùGöÄ˙?¹|¨Ø�/Å?Ò�??hòµ‘?açì¹Ö¹Zá[á˙D¹£~¿K3É76�ÜÏæþ’»??�?ýÏ£qü˚]?c0WÔäÿ�Åùß
	�?Y £ZEkc?�ì˙üå	þa �?Ù¯Ñ�ûTÕ0¸Ô¥5�+Fè˚�ò=¿ù�Eôð:Â?�b
	��ä®zÞJg??õ$�štÖ?slˆeþ
%ã	·Ê4ñ÷å?$#¡"âÃ?ùQñ1ÉÙ?cûÎ%ô]¸%�i-ÂÀˇï�jˇô˜˘U???dð!ÊEóíXxÚdþDÓoNI?ÖãD?˜ Í@�¡j5å¶©?µ�?ÕKe¬?�?�ºZ&Å˚·²˙o?ì±Ý
	
�Wk®»/Oo˘èìS¤¶Û?;?9m;ìî�¶Xy[Ï×QrP²	ÃMç

	æ?£côÄ`×r‘òeÄ«?Ëö¹?í�°ÀÏãÁ ¯?¦š¯w^Ìvm³{ÌtZÐ?ÒáJÈ9«Ø�¿Á˘ø|ª°r¿?�´?¾?åÒ3Í=âú?’&?µvVÛ�W8’u³È,«»Úxs?[¾ˆ1"ð¢Á��?�‘À´˝[Cb1Z÷«�ø?¶9¹��?÷o
U
	C?˙ên	ak??ô?~ª9��ÃsJs?ßP�P???
Ü�çûN¦Ë½Ú�?Q	˙4gZS?Ë?ïj©q?�äy˙b±Íð§ÿk Ï©î�P?f
	�8?ñùt*?¯òÃróØ‘TÏ‘ê’?�ëÂX'6©?Lß®��-?Ú’?³»��á¡±bÔYÖ\ˆá¨?L�¶ÒÐšÊ?ÈÐ???ù?"yvå??°
ýßïò=?�cÐì~Àlª�¶ÎY�=_7§£�¿;/?ûfÂ&�ø?�ìÚE6§x?�÷zûG�N
“;
	�QÁ?½Õn�?ûü“ÛÌu¦¢7Ö²?Mø	G?á˜BâcÓÇüãvþ�?�~û?Míl˘fñE?ªão��òlüÞ˜Îý³ÚôB¡Å0S5?ê˝¼B³�¶
	ÿÂ?háà9‘N?�·Â??ÿåÄ%ÿmÄîéÿüIºE���ýÈÆâx_?±�?�b@4�._??�?¸Ó/M�ö.Ø6�º²�D¹�ÏÉFšÊÑ|&ç°¢i�ö?¯�?es+"IÐóA
	ªl�?øB!?Fp·� ?±=;Ý??�Ú^G#f%EÕTˆ»Mª’_/j&BT?mü_?h#ûWX¦C%¦’��²+k!Ïü3ñ*2 @+ê8’ê�?fÊ?ýû'ì`=�°æ?ô?%ˇ2¿¯WF¯�é�^rýbÙaõ?eH?ˆ@	ì?¿8§þ�§Ì�oÓW?X¬˝7%Ò6û±Ò à'??}g
e\?ÿ?ˆ?\&ù
	+ÜÚ�?²kð�W¸?O�3uFxL0µ¸?îÒj4’˜s�¾??»4¥æ¦&�h¶z34¡5P|�î�Óè¡Ù´êª�l?ÅØüRÇã?©æ¡ÞÒPÛPùÚ7L-˝ì!c}ôR�;?�'÷è8O�Ê�®��˘Ð�?G?p*¡É+ˇ�ÏpÑ%?«#S?�EÒ�

	E®�Èw�"˛b˜??LÿJ?�TPôT43’�R»'��?è~±æ�½Ôã¼^£?H»¡¤Y÷ä ~	÷�®�?ºÕe¥Z¦\H J¬�
	ÿ²To�®’eNX1	�Ä,?×UÚ³¼‘?�ñ˚ò�r?=k-ÔýïOÑ¤;µ,Ð7
	´ç`#^�ÏWQtu984ªÞ?�°ºç?·z�±í˝õÝD˛éa?�H2�%Hé¢?91D�

	?¢×Ý¶˘Ú[`?ç_¹ý=M˘@úšë¨1¶?`%VQ?cn?Ä£�?gyB
	Ò�Á=õ´?�±?í?Çt7o¹fÚ=ÐˇE{

	e?6qMÉ0ôâ
¯�ÍîX±Æ�?P2�ä?Î?ÓX.qšøFrò¦*‘BÙÓÿBwÿˆ
	??c±JV_»U¤?Â�Æ=Ô�ü
júq#�?Rjç
 ËE?=<?5Ö�˙<&×’Ï?:æºv�r¹?×¬ÚwÂÀ?öÝ+q\4˙-.ºùXL�%±�t�¤S»X�?Xi�N!
	~zî’�Ù¥ø4VZ`qr{WÙ]PyêüjTD7EÛ�d?H�ÕÞj¬s[2Ñ?¿?ÿRö2EÄ?_clp¡?ëþ}Û{�3¡�¨
	úäÚ|X?Û��e?S�?ç¡á�?¦¸“Íyìi»Jþø?òK¾X.ˇ`?��ˆG^
3»ri?ü?Þ�#j?˘?ùÑ�ÈX
	tõ??�e®È7°Å<u1?�n5Ú�paÖé
«³&yÐV˜ñ“ÃPP�<ô?˛y}F#Þ?�×paHs�IA_¬Yý¤˘6"?

	�t�?ÿ?�?'/]oûªì¡Ê"baêp Pjn?P??ø1“~jÅ?a]´?TÄ#4�TØ?y�t˚
????Ïbªÿ¼¸
	ç×:
jµ8}~Ø˝þ�Ãu?�ô5??^ÌwÇ#!#£?C?Ì&ÇZBìj?N_¼�ú
eùü?}p´o?ð?õ�sf;Rí.÷˘ÃÅ‘?à³²ßCÑÀL?Äl�5Ú

	èåÀa^.?£Ê�CC“ú×Å�¨�¾Â¢»½?¤0á¯·¢I?]�½·¿V¹ˇûÍÀ?±Ø??Ë,®VWä�Ë?˛Ìø
	ò¼ð\cµËš£|˜�˘Þ�ÊÖâ5�+óé˘?'ã??h¼îb�_ôå?6ÐélQ?A�?_7S??½þuk“r¾˘?ˇAÛ

	6ò2òëá%ÏÄˆ�?
˙b
	¡�+C��¿Öˇ‘R-Vn??
æ
	?Åx¥EVß}EÕ:¯E-�ñ?äçMwØ.Ö˜�Çg�?o?£týx??Ï/
	 ±*Þ?a1~¡Rû]©çÍ¶èó�#�P×Z¨ý
	ú�ûkò±Ã`ùDÕ˘?/ª?möâe�ó7s?ñ� Ñ
˘l×&ÖEh?8@,æ
	H¿?J¸9¡*\e$í
˛CfÞ?·z?üíÚò2|÷àø�mÁÙ¤˝?�ôVû@úÆ¾÷�Z"ÒÒî[*LÞz:H¯2ñÖz@'å�¨ãýu’²á<ÿã×?=?�$!˛f¥Ö}n?�¾?gúj
f4Å’˚à’¾GÕ<Û&àK6:�ÙÍUª¿“á°?H=dDÎ=?ou£
	»?	�´ËçtOæ�dÛ`EÞOÑ?k�Tm?;2F
T?¸û ?4ûÚ��?r�þx3y?3Söypî³CZê?,bÍó’Ì.SÌ?ä4Bù��qï«É˙i2�Ø7ÏeE&¸ÎC\ß%g§
	ìê?��¿Î�¡�?ñ?J?ç¤�ïHô?1/I¼D? ��+¤?Å³Nz}í5yè£Â$=‘E�àë%‘Ð?51I7Z��\£*/y}Â¢ýßFgÿ¸�êa‘Ýä¸ñy�:3Ä˛¨�
	Q/kw�{Pt:?êÎ
sç�1õN�Þ?<?ë�H"˛IÌ{�ªùIVýk�èâ@�À
??�©ˇ?$ð¢¡?®?kkø.7£¸¶±óÒs˜2XÇbG
	îu�Pz¢&üb“hÛA?öqïAQ§$�_�ˇý{¯^?AÖÛ ’?,?£=pö?Æ�.?¨??�@? À�A�I‘zÙÇÞ

	HL0~»Ê à’´QK&ü£ksp&ýÚ6ä“^uº` ?#?È?î�'æKUþ?åµøˇ
©˙CÇ?^£|?ë ï-QQ

	?±Ìs?F/?˚g6?1Å�&@²¦‘ôÇ²�/�¢‘¼SVÌ�äË$!AÒ$
	?Ö«ì3Z?�?rLØ|hÛs«Î˚Å¶�
sÊ×X˘®©
}£?¹øÉó?6 L¡�¾T˜ÔTCRÅ?ÍÇ0âÐM?X6ü?8`D,��`ˆà»ÎTo�R�??
	?d?i?@ü®×½?qPÆy��zæ©˛�nVÖSòö¥ä‘ÌšK�î?ÏùWv×s	R¥F?Þ@º˙�äÔ×È8y©~?�M7�Zaoá�~"Èßdl|�?vV ‘{�àÏ�è
	�õsS]ÖNqÓU?W@���O ?l?5�ú»r¹?.?Æì¨�û�v|zÍ¤c??=?u??È?0o|ê
óªÇÅ¸;Ç:ÎÞ
ã$’üôúêZ=*æÒn-�yWC ?ã?¦µGA
	8‘�8	ìF?ÿðˆ#ì�À,;\ÈÐ¡?É\³»³î�ˆ�û¾òÝ?�ý?n?ÝÎæV?à£˝jšqÕ ?ï&

	ÿ9MçzNO�Ú¥ayo?ÓÏA©�]ÖÈ,ê?»�úÑæþk·¿~®åÕÈã¥?¡�¼
	ÄáÈ?gÞav�t‘?©&æ?{?~û�e®½µ?a¶SÊ¸ˆ�
]ï}�?Òte??�X¼lÂ²Ë��@bPwÿ?
ÜB+òìm÷nõ??Ô+}�ö�ðÊ¹8/`�Û1’.o@³5�?{	×ÓX«0ô
	’HÎ�?³_Ù?né{jÝù??Æ¸j�??°à³~²}?“�?úó��§ñº&Ð¬µ¹hÎ_êòGJæ?¸??¾Wúb@«�
	íSOUÂ·NE@\�q·a?ÛÕ�Ø`õå}Ý�f}�7?ô?øHVK‘�?ÔÀ¥îõXdºµR@?î��©	å?WD,4a?‘í
	?÷|U?�£OTÆ,BÛqçm
’Çáá‘IÓ^?ÿ2?nÒ?ª�¨ü1ê|ð�7�fÒª?È�6?š�ÐÐïÝp�?Û¬ùZDiW,�ø

	ì1¢ˇ
d[Iëï[îJäMê˝�YwåüÒ±àh6¡6?Ï¬8pyÝ¤º«¨?ˇ
	IÀ¶¾6ø°bé˘I�}Mâ�]CÌ
Ê?æ[?VS��«h�Uˆ©ÇÅRÔH?�“XB"s/Xÿ$ÿ£l5/�É,JlS
	\Åº�× ì? ˆòÂ3Ö1g¹��?"d?�JH8Ï%¾-èþÏÊ<�4??EâodÏm6¢ÔE:�C?¿�QÀ¬-W»êòçg?aîoQ¿<fˆ?¨‘-Ã
	Ó-?Ø3ø9½ßÜ+?��??��:Èº�?¾�£SÖ÷?|1?åÖD¸!
ùÛQ
	?ïî.@“üH	ëu?ÐJ5x?’úséúmW�¿Òà¼jÅS�<H�šó?0-˚A.‘Q±d�âù:
I7@<?*M
õU˙?ËÑ?&aYÑ¿tæ8 ÓÕh?}à’0Ô�ÀAidjÐ0Ìš?Eû<Lðnî§¢F˘åøØn³ÑA?“Ðàõ
	ª?zËfZpsD�IöOÆ�??m?¦Í!�º¢ÄÌ?OíÛö4.JÌd ?˜0Ð?H´Ñ�¿!š5 ðl¢�¤êýhP�¨'/ˆ
	\$4?š$cGjxêD �Îþ®³¯?üšÈ3Êº� �ßüÜ°rá?c¼@gò´˛à�N��½ô»Û?t jÄ_«OëÙý#��ü
Å?¹\˘
¸aU6å]mnÝØþ#uu�Ü%M�G�^×ì=“�ÑpYb7?Ã? �êË

	xAp²w�?ëñ_��Û×!Î?��íˇ?"²?y¶˚\ó\7�ˇ�ö�?ññù3?o�i9¼7ˆ�°b*
	µ´Yêm˚�7�æºI¹?ôN¡?Ä??˚??øøáÛº`@
Î_ØlÒë/?þ´¾¼Ô�ßjk
í¦‘NCÚ	Â¹8
	|�Ìô¿�/EFg˛ß??¶
ÁX/Üàð´^?Ó¢�3?© lðÞ#rN.~‘#ØøÆ?É\¨¡${?1Ñ�g¾[UÓÙ
	=?Q¢G«?û�f¾î�_'Ö˚�-%oPì�<??±G%zu`˜©!ßÅúLš!u]lCÁ%’¦ª?*Öþ|?3[“á?�VO«˙öÌ Zß!Ù��?ý‘|¿µÃAS-Ô3Ôuá?F˛éj
	V©?â?}t??˘4��ú0ñ&2}:¡é/¡Î$Åî?�Ùfýo±bÜg-}˜˝6µçÔVH<RÕk“Åx$ö§�¯ÏPX&n?±a£÷»ˆq

	à?owÕqH}?�7�³ÒúÃË?Â½ªio¹·Ã�u&þA�È?x©ÃÓ:BÍeØ²w%dº?�PØëÐ

	�Â+øÐp{Q?�/?ªå1A?Ci25£Z×U?J˜¤‘û%�X·˛?î?C¼n?ö�Ã�c??K?èª-6\ç?rÎ±šÿ%|½6i²
	È.}°B,��©*?e?Á�?}Ü@-bµà�˝å&u�z:%’ïÒ¨�?è??ÖIÙsk¹D¨cø�fD˙´uÌÞ_«þÆ�?¦
	õ
þº�©Æâ�w�	ˆ3	J·tY�s?¢¦³ÿ¾¸?'â=??Dr°,�}m˝¹ì?Àmð`55¦Û+pè˚+˝?*�¯ê�qª?ûÆ???
Pˇ7.¥¥jÞtæ`?
è¶,D»˙@0%/%ð¶Eø4¼ÿáÇ?÷|¤Â^©

	&ùh¸Ï�}x0`á³ç˙�
	À
;¶õ?˛Ù??1·�zÀÕ11

	�??Å�\W,�
?�Õ«2ië%ù:�Å©˚É’~Ûê�^ÝMÛ�Jy?ab!.˚½¥�
	/R�?:oø&Ve"?à?�·µà ’�Lj˚3
	_O{Í�¦è�
Ä�gðj?õ?@?ÄJ˝8öG½ðˆ�ˇ@½�'fÇ?�¨º�?Ç?3KwìkðJüÃº?Ó�P§ìZöq?%.7¼.?g�Õ���
	�?Ü÷ùgâ�þÌj^§ˆ��E˛=?	J�©#¹ÖØÒ+µ£5!
	?·§}?,]*UÀó�?®�Þèu&9q¬ÇG}á�¢
á$f??¬/í<Ð0¯]
�Ï;tóÁ¹ÀàÀ
	ùy?M?u9h?R?Ù¦å¹i8�ì`
Yâ¨i
ù[2�Ñ¥ðv|ÀDN²?r?pÇ
¥~Ë9Gkû2ÓÀ½.
	j�-?ÔÚ?Âf©¾§x�Á'��óK?_Ä¿%v7$ôˆvUV¼4�º?±??�Çð¸¹l[¤“r?š[rVd±ï�
	¨M¼Æó¨,¼?a�rØ?“�ò?Í	m2çÂ¯èºmíé��¨ÒÃ�ÄNB¸�?�©fÑ"Ý=þ¼R?]�ª ¸�F;?ÄWú?˙Ð	T×cKF¤ö¬ÖØ???Î³DdF?ÞÖê?Þ°˝9�¯âè?=?v?þä??ôÝ-
	A�?�I«÷Ô?²å} ªOÍ??�ÉQêÊú/�ÊÞ�íßd‘êä3/Å?�
;-Us?�?!^©�Î£ˆûb[ìÝ?U%é·�Z‘ú�q?Bô\-Bó???+˛øÿy
Ú£=�ÇÂi
¥?Í/°8¯úZZ�fÛÑo?�â
	âYH·ÿ;˜Ïó{¤×Å
�a$ð�G˘ä?e·?w�� D?Xè¬û{øÝ?ª�ØS+Y ×uu,??Mïí¥oHÍ?n:71?	@ÆÞC?#<saíÑK.ÜkZ|¾Vï$?�?¢ÝöT?{Ôûp?ÊÀQ¨eÜ±8®ðbˆHÙ-?�w�Ò<Ã±?¶�°ÁQ_?�¾© ?ò˚?Í
	ëÆ?Üõ¶ìÙèôKæ??pçEzÔRÑ¡?þQ¬�¦E�’��?=3ÀÓË\Qâ�½?0×B��GøÏ@��«˚öádWÀ'â'Q~ö¡c±�A?»Ffh�hH?4M?tØù��©ì�Z%��?�Ñq‘Ë|´7˜'K�??ÕO�s<
Ñ�K·¢]˝Ør

	D98~S˘tqZ/©lt?�U�a2˙ziG˛?ónÇ?²Ù¯v:íã�±¯îý?¤��6Æš‘?¬ÿ
	�°çÍuL¿þ9ÛèÔ£àéˇ~??ÏG“ÃMY*+d˜�¿k
	¹N8Íù<È??½?˜"C=kùl??Úx!·�Îp8Þ�6tTíVˇr{??Ê�ñë�	

	 ù&åS×j?[x˘à8˙óÉ,?È?`ó"?�D/+d¬˜�?ÇyÞãÙ]¡¿±?KÂÎ�"�J
	�þ2ëþ�¾©?�l±2jr$jºIöøÌ?¢˘oö§%ý�E@¯»Ë
	mx%Ò?ÕêÀ×ÎÅI?u²C?ûS`ªZ’�ê ¾©1bÖj§³t?è“?B?êÊY]?Fbkí�¡
Jãç=Å
	V¢ç?8�%jòY*Íì?]?¬?�N�7?0’u|,?³8[mØ�Y?tc??²?§�6�ÿ\âÙÖie�Çˇ«¶ñ?À?�óPÓ?ï˘M?V�xÿ³ç
	ì?ªQG«��D?š?!gÏc’p[P??�ßÈBB�·š�¾R?áÅÃ?ºÒ¾?m,¨Ð�»??�¦??U�ucb?ßN�bxo�o?ó�ˆ�9�?ì¾wÌQÉI�¶»�

	¤X²dÿÈ?@í??ïâ?�~ú}Y43x�?S?H²?,
ý?ÿ? ¢®&
	cVc?Ý?fér?p2V¿÷HiÇ˝g?èÄ·¢ Y²º�U¹ÔrøÙ�Î][Ó

	_À= µ?äû¤ÖG?±¦åW¢®8Yaü��ê��±Ùìr8s?s
’ÏÔ^Ò?rDÊºË]0�þÓ?
	?=$?éë³&êi«/N¬6m?¢g5�,@´ï�´,ÇÕ?@?Àð¤|<V
	s¡
sê@?�«?�ª
˛²?Ö“Q“!aÑ'O§Ä??�ËÍM³
dQ5nOú�ù?ì·Åt÷ë"� ãËè�

	BÙÂ¹s�`�s%˚ÉI	-’¥±ÆPó
�ðiÖ�=ýªO±

	 �-ÿ˝´¥RäbN?0ò?ï§ìÓ?Ä?ÂLMü� ˘[EÝ?½�=�‘ˆIb¹£à
	§iQqêy?U�@�??�¾óD�?àÔ�1Îclá�LvˆñörIQþm?Ð
	ÿY�¸¬�d±ª§pÿâí}�sF&â�Áˇ¬�U$Åæb:*Kí¥�o?äO?«
	�jù��¹Õ?¾r¸E�üùÈ?A ?m_$5OL“éoùa�A˘ó�n�¬�4�_w?˚?ô<�[�tHÞ
	ˆ:¡Âø�öSæëšxs'.¨úp/uq�ß!ñdYRÇù÷n ’ÁÀ�Àó��#@<¾ð

	TZ��?:åã�]Bý*uF�öÜIÎ�?n6¿?î8éeÒé\ÔôÒ�R
	ºj“@¸ô�˚��?è³¿½Fôæ6`bu;?µØìçä«!³*
?º?µ?l??ö?öoî?~×ð\�µÚ˝©nA�§Éý??põrúgÌ[Ørè˝6Ijà
	ük’ø'!³h$E?�Æ��Ñ°Z©ñ?+�l¾['šéÉ?“�7=÷�j¥"ã Du±�aë
ˆg¯9tM3‘ˇ}cZA
	?º|sA�ÖüÕøÎ±Ñþxz{?G’`ÌôdE?~š?.BFåˇå&?M%6=¨aógA*s!r˙??êö�à�æÛ<?þ}çýë?y

	Üˇí< J¶“*�ôszòÅlo¯öˆ?D¾¬Ô�?/'‘?Â"ôS??¬LS+�?˛ ÌÔ?ÓˆF~^½8ánzu1ÃbIA1Òã.érë¯¦ÚC
	²ðì˚?�á+}?²BFR¨sþ%o£MÓ?%ª�&6˜ÚÚ¦ÅlÛ“mÔ.?˙Lˇ2/ ©!¾ß"ø?"�?ìˆxwÀ˙÷b@è�š~N
Ìò?«:�+hÒæ�Yb[Ë�ö
	ñ�æÃ·˝¾fë\È|ß?ó×$	Å¸Ð¾Þx±�¸©ˇ�zHšf?«?‘�©¸˙np?e?O˚Æë¸ÚÿÏ#o¼uÇ¸ÕL»î�î?·#Nj?“?�2Þî°‘¼Î�ÃDÃÙ�p?�¯
	?�í?píX5Rû?��êû×Ð-å1�R;uºúÚg???Ýø[¦KÆÅ¾0bõ3/��ÀUÊ?1ðWA Q6E{Ó’ÒäNd8¬|eGyÇ???iÉvEñC±ÁÍ¦“=˝²è¹.�	˘rqää.ÂL~0
	?ìÙšm&ÿˆ~£¨é’?�]	�?Þ£Àý=Ì?oüCE|�Ä~Õ‘�ZÑøÒb.^ö??hSt�«°xô?B˚? ?än çÒhië�ì�’�È�˘F�g?à˙ôÿÐ7ô?4%é˝��¡òy}þqx?2?Ó?Þ$G?fr ˘

	©b$ÀÝ%�Ç1¸?·søå�±UéÛ��E<�˚vE?šWVöåˆ¿?Ü6Ù0?É»fj
�˙s³?`Ú˚¹Wß‘Ð��²_ˆØÌß¾!-LõZç

	ª�ðð?Þat?˜qF§ÏQ£áÇ{’Üç<ª]<Aù�?¡Îzû�kc+«_íg˜˙hM�û*ùë?º8
	áut??
G8˝§áR˚"úkÊPu
?a%ð¿ó‘íVñ¥�tè1óÁîGJ’_§qfÏc’�<?s˙©Ë�Àˇ?yö9?§ß·�w??®?ÙsÐ_?ß?¥�¥�ÿ?ùbùëí.�
	OF¿3z�E�o}��ïÈañÒ1¯Üv�ÒÉ;ùé?’Ù?l:é??f·'Ý?Ê‘��ïçU99�ýlÛi
?�3"ˇ©ê?��û&èx�ï˙{¹íèa
øSågä�?ú�[Í®
	�&qÛiJ75’?ÓôVÊJæ��Wð¶b}��g.�ÕÂ�2hLü�·íµdö?¬?Á?^?à�
	¼ÈqÉ3.%?½qêNÁ?�¥spÑ�ò«º'Fsµ=S&Bc“?à˘{Gá�W?ÛØ{ð?�°#¢¶6ui?iÉÜIo4"ü/¸î�i

	?�çjG-˙ªüQ0’˙IáCjÏål?]ÛÅAMÅuà?É˜Á¥ýÊX??®[Ïˇâ|?*f?ùQ$Î?Å??v¥tÒ?Í˚
	?ò�Q÷8vGôîIJ˚èLI6¾�˙¿ö’oøâ?�'1*¤È2öc���Ps�š0þ{y_�˙s?»WXö	U?Äè�

	pü0?zC?��ip|´šbì?˚j“p?Lc.Dö�K˙âsúYÃh[F?È�Æ<Ìt�®�ßGlùÝf}?4~â?wùdåte“u˙1vJ�~¼?·??ö§ÄÁ
?
dÝÀº¹Á

	1’kÉH?8O|?š�Xa?�“Ð
q]în?˝�D^ªKÛ;ˆ¯ �¾]��çrÙw˚��ðm��ÉEnˆ�?~]«û "2^š
	÷å???§!{�AÐýãäcY?Jûˇ"²Â1OÙåKÔøA'�²˚^Å.Ï¹à˙5
	˛?ªaY Þà?òM?ÝÄ??æ�ÌÖ?°*kÅÀÞ˜ ?ÆÚt»YJÇ_Õ?L?éÎ˚¤?M�??�iñSp·¸??“�¼Ãè]R¶d}?Å?47j§fÙÁ
	c§I???�ú®õšHI�ÞìˇÔ??áãe¢Î?�“?ÿ?á!?âsoÔüˆØHIs¼þ�¤ìïd?ÂÛÂ¸Æd?X?
	š�?âü%B�Ú�?AÝÖmpþâ
¶¢'Ì?NkD�k"g8pE?à“.�ryìAÆ±G`{[H¤°�
	�r�ÀVšÒ,ÄAd�4Ü???2D�ì²ÃeL�?ö\˜x??;Cüo�åTm5Åû?xm�Iäm±�j!?UÈìÖ]Lë??ã˙å�Á

	H?.�°¸Í?ýwý?½�bû=xèú:�s¥�?ëÓz?x%
	æ?�çÉ?QÆ�??	�Ì!k2¬·¸˙½:ÿýºw�_¦ît$tÐ×Õ~@j@Å?pq¢�t?þóÿ»p\
	&˙$z¥?¦¥*-#Ú`�«�Ï²hûˇùßz+?JÍljùô?�T&j³?Î¾ÄÐâ??×?7Eåî.&?'à@PÞµ&?
	lTÄjÊÛ“YÈñ˝?'Ê�Y�ªèi!?�CVü˝¬T93§øæ?±�??õZ·“+á±�%?Ú?è?a?»5uÎÉÛøJÊ¬Rš/Ð˝o

	~Æ¢�ÒzðWe¢Æå“é!
	UEò?¶˚Å{?_%��yº"~ä

	?
A.+õî,ôQÔ·˘Ýpö�¢?ìÞ?\?e�"K’ðMs¤\÷<ñU?�½ÿg°Ô!ˇÒZ?�õ¶+/&�º&?í?p�2³‘ºEMÞ?
	PF3?}å³º¾�7k<3âÜ¢oÀ¼˜ò÷Øz?
	7Ø%º;/2?�mìÎHÏx[?/je?qåC¶à?¹ß�Qšïùb¬??è½�³�²<�&È¹Ð?ËÆi´ê?²yÚ+¥9{¼Ê,Ô?»`fÂÀý¶í?Ö¸TÓ?¡�»Á
	?·¨Õ-v?2³õš£6�?xvüH??÷?ÆÂ�¬Ôµ}4ÌÊ[�qÂ¨ï¢´ïä&?®Í“?¢µ4à'C?
	¨?æ˛Úi??Ûe`4¢�&lª‘¨q??êHº¤˙?WuÄÑ?·�Dª?�ÆÝ_RÔ:m;¨sô¸6�¦Ñ5É�?Ú½:
	èÞTX?â�Î�Ætì¿�ß�ÆI® ^~:ÙîîÀ¦û;~ ³
˛?

	?"oÊ�?,Õ?ö?%ñ’úPOÖ¹|Ä?Ì¶??wªdï˜c-ê?½¿6îÎ+P‘ÍàÕÒªZ§?ÊéÚa÷R0ê2?�šÀl
	?�??ÐzèWÎ’	�oˆÞÑÇiR±�	A?�rª#üT?-L0ç\P�äHâ¼?þˇÜ?;?lÁ?"

	Âˇ?Ö@®
P??£ZC¦¢?o°XH?Íï72ˆ7¦ÔO6Y˚ÅÒ˛?ó
	¥»�áS}¸F?�¡
�´?0?5^¹WO<Æ?‘à?�µÖ¼¢»þÂ@F öÐ;°8
	IÁ�+û4ˆ°ÿºˆâ��Ù×�±A�#X?ÓùG‘Fÿ%så¸˙1?%?b-ì±	?ÿ’Õ�@Ìx§X/¢z³Z
	�¨ñ?Äïyº�D¶‘?Ú�~Ç±‘bã²×Óæ@ï�H ~vV˚˘;ý�~/?çöï?�¿µW�³o¯ ˆT?;
	ö?¨%?˝�J?�ö?�G�úkm\&_�ü fÔ�Íg³Û4©|ôV?y|×-³H�¦ãæ0?Ïyò¾?ÔR/Ëê
	ÑÔßnÝ»ö�-+q¬©'ÉxµõnxT??Z?��I2µ	§<�jÌ˙³"�¢y�¤�Ûß~?Ç þöl?n?�?�E
	�±�?wh�!c©É‘Çë?}?Åeï�?³Í˝’9ïñÒ«ÀÞ�Rh%�“?þ£O°aÛàwÒ�Í¿µ

	‘$�FˆÜ?ÉÚÏ�±'E?×Rjþ¹Í^?¸�CÊïûº4JÔL²ûáË?�<«·û÷ÆòÒ�‘#ö¥^Òy;��}_�?�p?3Ó˙

	/ú˛J2?ÍF"?\§® Þ$ñ£ùS˘A�1:˙QÜ�H��¸M?
FE�î0?ÔåFw1r˛.?aë˘t"ÄSÀ9]9ó�Ì,?2®¥eßùG6ñ

	�?®1´ñ��Å&�?^ÎGÓk8è�«¨�x&? Tì£ã?�ÐÓÚØf
	ï:¢[�	vpP©Õ?f?´¦ˆÚ±U“û�ë5¾Ì±Ú.’Jm�?ÅˆP�¼
úóæÑˆ¨GÉóà�ˆ�°?çB78Ã¶
	Lg�ë!a-õbYµíze¯ê�ü¥Z�Æðu,³L�Äûy?Tn�X©é½o¡ù�¥?¨I£Å~�??ß3kÛÝÖÜ
	Ö¥¼?6�ì÷˜ÿ?a<?�Ól˝°:?®Ñ?¸?nÄ
Î��Î³·Ê˙?ãSÊ$?¹8?N?�Õïx
	ãÙtè«IÆ’öìÐ¦1°Æõ�hÊ??ý¨??|¬íõê.³£:l�³Û??H�î?±ð˛�¯�i“¸7
	sÜÞW??s?¿G@ÀÌm?à�Lˇ˙??�9µ|�LÁZ?:3¨aVF~wÎÝh"�¤
	g˙1àU{ÑL£ÉàÚ8ävæg“Ò0Z?2F}ÿ-á�Lh
;N�PT�pÏòý´5#?¤p?
	£ÓB Aˆa˙}5Å®˝aQ??äë§äèÊÉ?ÃÇÀ_yGY,ãØ½5�?o¦z�??dß3~_*\
	E?aô�BßÊç}?1?�
ÎC?èa?fº\Òÿ=WÛ¹¾¶³˜z÷.J÷D´“˚âã Ç`?

	8Ùð�?Y\ás?�÷Ô¥WF
	áˇ?æE?�½Qªßáâ?28î4

	?���Qc˜ø5ù¸<kˇAý¢ËÀõX6?F?��˛Ë?_?dLZÿ˘|£N�T?¯M:�ùÕ^6O?Ö?Îê?Î˙P?�Ñ
	:ëxš»�?¡§ìî2˛7$zëhñJù5É?jä
	Z.^�?3ˆS×?0¨�m�¢±?
ÊÈÆ?êV?s:�&Qâ	sGw�3wD¦Bôí¤IÀÓ.�â\�Z2“Ú�IB?7á�ü9k½˚òul?�½äº??
Â?J?ø©ˆr8k_�˝]Ç?
	?y�Ò§::ÚYBåNnÚíûü?�?9?WØ¾ˆ·èxÉ?±»Èê3Û¸B«ÑãNÆñ˛?Ik9öoJ˚
	¿$Õà?wT˝×-4Ýã[ä]ú??'Û‘{��?Ðï	Ù¡U{2?Am"?¨h.˝Ds6
�zÔ~:ßòR|�ñ?¼mX�

	æ�Va-²�˛æø:mmâF?PjÈÄ�ùûè¢P*Ä;ÎÃÜWGª'Ý_?ô�*j?¨ß7
	'lãý4o¦³þS�ë?�?¹öZA¹Võn§=Ú?s��»ÞÜ±=	Ñ¨§¬ë4
	l
Ø©˘ß?õôìZúð?mÈ=�¬?æ‘*NÌ�?Íl�BåÚì®Ãgu?mß
�i.}ÌS

	¨Äó®u?�Ã�Z¶˘˚Æ ?bæðÖ���?cÓ?�§ñHbGØI¼Î #i�Þ#?¥Épýå²:-¦ü?Nx´]¬‘w�âC˜õ6§r¼R10ËMPpmr
	ÝçM¶U�?!f˘�hÏ¼?�ÙÛ?r»�ã¥P³«Ê�f2�Ã
Ë�éëê�Ñ?ü�»5Ú}Á�YD£I Vš±GJh?<�?
	˚�10æ5"Ê©L=lÌX�ÁkG˛ÎÚ2NS*6=CS�Rã@?1?¬{?µ?u³�Ì½f¤°dQ}k!CÞ?S"b�Ð7ój1T

	?Ïà*¤ë�7Cl'G?XP?ºçj?�|�Õ	K³ðú?�ân-ûæD ½¼²O
p�6Üc©ÖÑàï!Ì?QÕ�0û;#A�3h¥={?Ó"¶�ù?g¹ÈÚ»
	�·ñ, D?cbG8?²�‘�?Ìø�räß"Pûfv¡ä�sK¶þ?«I?çpé�˛ðH2ÉL??D«×½ÐÈ�2+ ~C??G
	ö?1pæa°¥ÓI�Èõ]²,|?Í3�é?]��E˝�OÚIk?ßo+³:NÛ˙?×`f¿?ñø¢#@6æ#ßC³7nð%ˆk¾=?šÁh?xÂ8îìo?�?
	¦?ˇUÑ�Y�§???G¤�?¢è?aü??ZÃ?¦üd¯ñ×±Ýåm????³�?©æä_¿¬�®¸æ§G�_2S§¸áá

	$-U�ü�úÖRÊ?á¨MÄ¯BÎÅI&�·1"I~p[ßo«o¸�?ÕS?ùÃ�
]�=?ùÅìöì^�Aˆdõ˙ÊZ×/»˝õ¥?ûþ#?l-qäËú�7�îÄ?ù?¡!`%ó=¸RJ?ò
	¹!3¼¹\�éßª¼Ü�]e!ÎXõF??êf^Ñí+}Ê?ííáÜ�ÅR��’±Ê&	ëx.?A8˘Á�¹¥4ËÀÜy�?ÏW;¾=?/��U?|�å-½?n?§×ÝJðH

	+§°÷Ì®8xrk{ f#ˇ3Ó;·ÿ}Ö[??Öq± Ãôð??¸1 ²˙�L˜¦âßÙq?˜ÌÀ?š?Yà·ã�©Ïs??QìP�æ2�à Ç?0Ì?+w?�˝AþÉ
	¨xâwÉ7Bd@?ÝYd©QèÎ�ßi?nÍ w¦½p£d?C�Ø[ß×zè,Ó?¿-Fe‘"v·??Âï�µËRÇi�ù$º"OöSB�äbóU?a¥;?¿ëÞ+R¥E?Â·ß*�?¤
Ú�m
ð�T{?æ’Z+XÛA@:Æ���ÛRÎ˘OµáN˛?ô'Øõ?Ù0w?
	1 jmå?¹	y!�ý˜.?jøZê˘*ã
Òöo?ÅË¤$�?7WÎ§7ei¢õÌïWoGRVø{]?3G¸?M��??°ÌaÄíÛÁ’²O�Ó^ØÀ;ï?æÈ2ñ°½‘ñö��Ú?C^Á-gÐãV+?l7Ð ?]�fwfX??ü[?¬?Í
	?4“˝rî£�Wàßaþé\®?ÛBBGê©�Y?¶Å¥�Åè÷ÞT$?÷ ��ÒzË{¯
Ê[u^Äx}µ?d?â
¹v�Ê²¿àªåÍ�Ú9?&}Ù#�’s¡Rc¨ß8¥Êå˜&o^?^?�¶§“?Ù˙791ÎÎˇ_Ý¾?�1x
NI�?A$´@We?FÙ?˛¾íil
	%:;ÖÁ0Þ?�?�?ðõCQoG%�_L?PòYùeFÏx�Ã·Yl$
N�!??�Ç�á0=k�dã?$?@
	<=�ó©3S
òçb^Ü?X‘É?ÅkxZ÷/¹EC?�2á¹�!’??COûç»HS“��}Z?Ø?#J?º?I£±~ZÂ¾ë¯?©

	?�î¼??ˆ
N�À??7îjÖ¢˜ö?'9Ã@Àïpü9r�i�÷?¸¾�Z�?Ö�¿�ÜËIU«Öv�
	?ÐùÀH	¯*2:´±�5ù’�y�¼Èâ`HA��×Q��Ë7þîvÝË<XˆËMË�z÷àËª
	ûÞI?ÿ˙cUm�!?Äá¥�úù]û3övSÖèùÃ¢Ù;?bZ&æêw?cC�±y5??È“ù¾òÃ¹

	1§Û50HÕ?¾àûÁöÖCþ�˙O�ùÂG¼�?#V
	±Ý˘?˝§å¤*ÒfõÂ®?\ lÙÉ`ÊÌ×è?â?ËJ??Y��?©µ�ˆ
	å?ýÀ�Ü˘±�úè��Ë_éNHO?ºÚ?{˙&?�bøÏk%L*Pð?mÞª»?Jó˚¢??ü[?ò�?qF¥6��IhÔ
	"Iqª}��å“,š5dþÆº�V�
�˜M¨	ÐAj	àï°Û¨hn&�ÈQËØö?h-®ÏÓ?GdiUÄ¼&V?DÈÙxNpð˙¿9�r� ï'�¥

	-Kð˘:òdE©&»èÎÑUm5|˝{r]î2_Rÿ°f°Ë~??ì¬½£o?CÚ6?��·U}�Àc�V˛òÅ½˘J Çw?£F'?D�#z8Öäþt}ôãtdè!bëê?dU`?ô3�¢E¬óqöÏM-
	ñ??
ðÓ´	,iˆI�à"qòà?ß¾åÅR�½gÒ´
?"ï�A‘ò??ýé÷Ü²äÓo_þ�/¤¦9K
§õ??Üq�?Ú?BôAä±˘S�H?qg
	[ìUÊD~<?�K¶ ípÚµ¢S?$	˚‘¦"ÈÕ¿;?h¹’hOÖÖù�g�§�R+7Û¡�YõGOÀˇC]�°L�?Ãê.˜’Cºï?hdLTñsZ

	©«?Û�d�éwüÏh?ã+&J�øÂ±
Mù'$A? �˙�ÓÜ�«ÖN=Þ?«�û?©Ò;èë$?ÀQf¡¥
	?35é¤ËÚpÈn:˚??Ë?IÝÿ9?8?«q²¡È ?qR?ÜU;#�ÍÎ?N=0½˘;

	æêÎ˘ô3t5˙ßrZÐ×í4
	?Í¬?v˝£ ¸§	ÒÒ’*L3}
	Øó"õ<?WZn3ÒiQ?N7®Ùô®û	Xà
 %ôö˙pÞ'EO@u�û/�?�¿’Å?¥
	àl÷`í+Î×�¼ ³ NÁãó"##�fý“[
	J´®*g.p�nkà-i?¶Þ!�ÀAÙÂª�
	ð.®d�À4Fýèýó�¡?¼ø’�?�ˇ\óÝg¥Màù?4?â�¶?§Í~õY?˝ÎR
	'&J?\
˚�M§çˇLc.�óã«˛3æ�Ã�´˚yÒ±vR<��3]\àð?ülÏ?"~ ˜‘LÈ?C`q�
	üðd{�x\o3?³§~G©{à¢8â%öøÔ;«?Ä.Ý˝˘ªÝ;É??¹6_*õ?�×@˛]�þ�¯´
	c«£ïQÃH.�Ì	®«÷Öø?¯<�-.®Ih˛do�3ÅölÉ?«%?yÈX¾¢�ÔS�8˜ü°�÷˛k ˛@��?úLý?Ù?ðáÃ’Ó¾Rj?xÄ�YÔ
	C±��î‘°�L-�xM¥?r&¯ÀÑÎ7GG ’{¬ÎM?ÖÄ»æQÙL�®%üÆ�Y¿$r?é8ðÐUNÎª½À�êxÒxK6��Z;,

	U˙«�??�1Ze¤éf?àÙ“TÇ¢�¾µ©Î#?É“¿=?d�¤?:°Ó&;
	D�ÐÒy¿3m`g±Hl.v$8èÉ.ÖÎ�ò×?àUA?�DD˛°öè‘X�??ÄXú�-ã¿TÃ�?�¤"�F¬²ãx˙bÕÊ§sÆz?d
	¨áNAD�k?x8ëÄ��O?\´?«�aÔÔ:v"�Ã‘39¨2ä?
wÐ§°vF¦ÑR;®ì.ÛîÓÈñÏ5ÙÔ;	�.¡À?×mKér?

	?ØõÆ?øZÌ?F?Þ.:úB?ù']ªzÔÛ
jÒ�WAH+H�ê¬ç4+A{¼50?};£v�±?¦HMBØeÈ¾ÄwJWc
	¾ág˝
�&T?& UÆR¼]©·�_ÑX??ÊÇð*?še[,�uT�|1@1NÞ·¨i"A@Ú¯�6Ós¤y�±P.�ø½3ç¶ÑZR
	Í?üüÆ��??Ý9¿“�£?˜s?-Ø?�\?¿ÂÓš!S&ˆÃ´Pdu?ÃÈ?÷îa<*f_¾Ã%ÁD�®šõd2?®
	6¾À¼Öò¤Í?ñØu
"ð[³?Ø?+&[úÆ{DÈ«m½îI_S¯	ÿ×’‘D¢Cx´gQ�å0�Ý,�??ð?kì˝Ü5?åiº�+Ï?

	},?Ý�?Â?È<&�4ç?D�Ý~¢?�ç?èÌ¾¾“û??B=6Ù‘BL
Ó?[E’uµ�gëÒ�
ò? �"Úî?;?�Xpøˆ
	S?VKä0âOë¤�?Ïö?%Úi�×JÞ0ÊÉMÄè’9·Dï?¼nú�døáô�“S
	Ë*1{“�C�˜§?Ð�ÀR?	¦?ç?ÁÖXS?�ä??�ÛÔïUÆë4}?S=6�Wøa-D?¦KMhD_e*˘{?7²Öâà
?�ÒÖ˜[nAOõ?#
	¬´ÉºÝê,"�äÌK?Q
Ù?cÍ�d9?HÿÂñ#\¨‘æ±k£8U�??Å	E PÚJXîÿX?¦¡Ã"ÿ?~ˆ?%÷E_�ÓnY¨xT�µ«%w¢»Õ?}<ï˙\|Ó´

	/
!-?ØP’£×?p�%¤&×èÌh¨¹oßÍ\7x?8z1+0HG˚�®2???
�c�ýoïˆ½b
ÿ±VÊBæÛ]àñh	º}��ke�]Ü

	³˝l‘Ãv^ÍÞ"/ÌL?ý�
	?»JÕ?´Î²Î§Ô?�ÿ�kÞ˛

	?�NN?g.¨�4òác˘?äÄé�jB�ÿ&À¼i˙:ê�ûS�ÏaV?rPäú±zß˙�õ¡$?æÇÓh
	�š?£ò�Kçpà'Þ³@æ?Ý}?ø?j	×?
	$[¡È5ÀqZ˚®ˇ�7NbÊ?Ø¹A*?û¶?Ü¶Â�½ª�Û?n?ÂhÏw??n;W?Ó¿ç’
	ið¡¼\�˘cc[
AðÚJ˙I
]7&�ü¾�ç´m?òú?î�?Q�Äü}��?cô?ð
-

	J+?fÁOÙ2¹$Å?~Ã1êÃJc¡²KãÖáK�ûÆ³]¬?§=F�˙Öç?\��???
	q?Ç[#²-CZB˘üÃ¬³??d_Iöß7�Ö�uõOC$q�˚Þ�ÿÖY<ªá8ìÏ1iZ
	X²?.ô ?p:?h?héV� #rFÊËš*¢*»DÔ,ÚROZ‘ÑãQ?½Pú]¶ïÊdÏçÙ�å	?Úòâê;Àq?¸?¥ÊÊ`˙¨«·ÉBåW�ªå®Ú£?ö`î�¥=?�@?š�?^ü

	y�Ýç??˜§ÍhÝ�¥óš�cÛ?ÖÃ±±¥£ B!çp×?�VÔ?˘4?+Àá?k½�˛ÆöÙò?Ùó�2?Û’?���dd˙HàÍ�KvFj?më�?µ?4�°??4
	k@-¾ëA±½Ë.^}Ï·nVQý�«X�Ø6?ÂJåÔ˝�Z^BìO˙?Ôk]B�5ònN~ð?4Ñ�
?�Ó�¡Í��ÿ6i?z‘³?Tb˝�?¢Få?
?ð˜Geo
	"gÜ‘s#nÞÎ»+]?aÛ,?½?g×Zö�aÖ?}˝ø\Ä½Äð�¼�Ç=?0?Ì?Ï‘JÍÿ
	Â¥^¸B*TJyÔX·“9·6�ëjLo}ÚÏ»|]?aÆ?*ÜK?:�?��V-ýv�ØÝz1BK??$ÐË�±Ó??©;³]`Ý?¥Hí0øi
	6�U˚šýN?§?˚f`?˘?xÌ¨NÓD²?¤’´'eÈûË˝~hM?
 ¶ÏÒî¸�@¡�Nß:¦«�?Ñ5?F�7¶-p?�KÖ��ùÅf�w�[�¨�é§P

	Á?ÓüHÞ’TÜÖ¶8D�Ä½�ãJO²?�?tÈ‘	.'{�9Czþ?Ù�ªöª{ˇˇ??8øN?ÅÊiÃiªHËÈ?oýÓFf9¢ú?×ïCL
	,?ï@3;a-þ«tß=“±ò?=8�?ç`“`9ü�T??ˇ’E?ç?u�˝?Ëo¯V
	Ú½ò˜cH }BÄéÞ��ÁxkA?MDÝy?Ì�,À?y4ó�¾5
Ò?úRL?×È
	
´åˆÞ?±�n_�b=??#ô%w�¥¸ì©üâ?ìvµ�
?¨í4º!È1°Eè�‘�àrßW¯÷'öX?�@Rn˝g7ß�
	�?R�ºYyú?¯v]ë[¬»ç�Í¸LXO-?‘�·�¤"W§iÁ�í$š?8˚�*NC_Ä^?B?

	îÚ÷3�'�®6?Åé¶¼?
ðÀÊø'R®’eÓÇµÚ8/í_??A:f:F˚?³ð®Q ¿"Ë��R�?Ô?Ð�

	
Í?éè??ß
˝ˇ�¥L¡?6�Õ?�î�’ã.|?�‘!Ä?Ì
	gj?ZhU&?“òº�8}øFú˛tL?6¼7ò�pÜ?ý??ZW�<r|˛P"ÂV6?âÀ�Þ?KˇÌ¤?Q“ºÛ?��ã×?5j��u?wÐ<-�rx*þÿ?wpþä˘? ¯k??�÷¥³�{Lü?ó
	by?Üt1ÛGÐ?Îmhf??˘Í�ê.¦?˜¬“¬ÎxwÂÜ
�ˇé?à+'ËÁohÇlµÂh�
	\?Û?·^\ÕãØ	^ð�zË_�Rð=CºèJˆ?�P^ÆÊD �?�ªJ???Ì\C,ˆh?/&??Æ8~
	nõÎ?8;e?p�‘�ûOÈB?^??;Nq¹{sº\Oº£6¡ñK%N?¼Ó O??n?7˝�ê¸˜Ô�]÷YgìUýl˛�¡
	ù"˜æá¤Â«güW?�A?F�rþÐÔz?§ª�â£?ˇk,i˜e?B×|Dšê4«ky6c[u09?R˚ó°Ö#ˆ]ìFÿúCZÈ
å?}Ú÷
	<YÉCr�*?uÃKE×2�Ð?Dˇ�3À ?P:eè¶¡âJélìü�?B�Ø�ZÔ

	õtGhõ?Ö®úÅ±ìÞ�U?Ó??�þ˘×þ®|M'÷êæ¢mFÍk7k¹�?�÷%%¬´å?¥Ø1Õ�R½§mU"GÁšüU¯ë?¸?�oWÇ

	CP,??È?æ;?êmÒ<?<d3���\°9ß¥¥?^-ô??M8?ôÞõq÷Ô?Ü?�$ø©¶çš�¹
	ß.þ2˜2V×^šr˚G«¯�ÎE˛÷!x£@˚��òð«�©?�?	ã"ë¦ûóë]î~CôØ�À?À�ÿzˇRK?`BÓå?`?G?¨Ï1@+�xK
	ðý�ÿ¹TÉPßË³??Yyj?·PÃ9;`<êoÖ?O��WãÂë�˝ôæ�WúM ~v*x?s�°0ç�?ç??Q?�O?Ý?'
	ÓZ$Ó2??�¬Ñ�féOËªë�GpL[v5P¤6KÏ2ëe`ªc×ô·|½wú×#�¨¬Reº9i²?�nä@.�õ�¢`S±ñ0-“?Àp??{�aæ�³?òÈoÔçÍ£�j6u ëDÏÒ]Ø_4f¯«
	cý;t¥9O{˘Y��“eZ]ÚÃ?=?D¨Mnw^˜¬MªåÇf�
E¢Ç?�BC�?g»?P¯ÏÛ$W·Óvÿ÷,¼°Mb�Î<¸ÚeWüˆì‘33˜��?NAG˜
F£¥ª¾,}’ 9Ä¯s©&Z!ÿ¦½ÒG
	»¨ôí&,Ýb?¨+53îB°Í�c¦à	¦Ï~F�Å£i�¼àNKïQjEÀ¸7Ô�ó¸]Ì?Ç¼?Íÿ¨f	`�·ÃìÒ#èZmsÀ�ðÖçáWd0ÞK�¬oº3ó®š±�nv²®}É˝Ù˚tQ??mñ??�êôN
	fpáj+ÖÚçÈÎÇ˚kx??�˝7?Ë-�Cú`WÝ®?�ûr C?��WÌç@??þEˆWÈb?½v6�Kï^�??#/� /0T¢š�	À�öÄTZ/mÄ�ü�Ô�ÀN0˙»’�[´ßµe]PB�Y�ÙÙJ5Õ’X

	72?®å£?ó�âQ�¢ÇÎîä,ôi??’G¸ÑçC6¡?TÕ��¯?«èkþ�˜UÛXkè@?
	?Y{µ]ÐAøe�?˙Ój4f?�Pó&`�Ì˚Zí�å?'GM{!õZ
˙s	®?3ÍPâ3?y?V·
¥?ª?²-?š{˛ê¬¡?°
	2ué³Ú¼‘?
˘·;Q?ª�ç?~Txè¸?÷y?Ü%?`��˜�ÛÄ?÷?y?�? ?rª¿Ù
	�T�IÀpb‘º?˙ö×X??Û,p².�¿�æÞHNÔæ¶DxRyNßeù3Pëôåý?ðz$]Hä
	©?ÛYÁ?�7?§eé$�?ËLHˇØ9ÉR[IÃ��ârøô:vl,L?BàÜÏM7#è�l?a-
	�ÖäM?~â�©öìUw3Õ+??ð÷?�?ä�‘��öÕ?ëö¦°·3=ë0G]òþÂé%j‘tsaó˙A?ßç?úI,
	/?¤ˇ÷Åpd9"béØ?ÆIýo}Ñ\àu"�e1Ö³À?&à˝¥b?�¬?=»rç¾gö`²¹b9
	a\¿¨@
vKN?zI??èe˘kù¹l¢’Ù½;®??¶·*TÏ'Â0S��õÎO+IÆºáP�1��5?FÑÔ
	?öðêXˆû?/°T!‘@�AšF¡D?H:éÞ?Ú}�?âDˆ
Ú�ã¥Û�
Ñ¼L�˝Pü
	|ô��f_ä£�¯Õþ4à�Ìp�i·’D¾8¨É?Tèéb?�?šuÄ©G?ÌRò?\?æa“
	NÏø??ë¹Õ8	
ì¹ðÃ!?5P?�Ä
‘O?,?¾ ½2²¨jZ

	Ïõ[�Ï0÷_T~7â ??x
	?Í²¥ºN?�úÅµ9&²Û÷<ç

	xlH&�˙Õ%±+5Ê£�Ðo6?2]MKº�2~r:´?�wòÊÔFû$?2˚ó¾¹et¦óÝà³µlE
	m¯u ?du/ÕÂ×D¿ß1M,Å
?Bà�+��
	ˆEàÄ˝!©ÅV?mÏ;ˇoD']�?G»Î]A».é�:é·ÐšøÔ?¬�VFí?MÑY^3cFÛÉ/Í·äú|¾�ª÷°øê<hÒÄØø»õ²f {_¶,^Å6�Á¿8±8²ðÔ'i��½�]»Iò^�Fö
	³áª¤?à�¾Rº¼´oúv?¢Á?&x
^e˝3/�fÊt�ÚVÎª�Tx
	ÐVyJ|Y£¾X«?@}*©�¬8Ã5C²bat�iÏo ;ÔÀ%�?R˘/a@ªD£".�´�ÔK?
	ÊÞgLÅã5=9,ù�Þ
ÝôÕÄËVSùzèúøWt?˝?¥¹?˙�;?“I¨óU/×±
	³ÿ�VRÉUu-%ëJñ��-óëà§#“NÉí�óøÒˆ��N1ñ<©h�mC¤? ?
	
\ðFEáîäz8?BK�¿‘Õ2P��/UTÃ��,v?é1�kòÈz�\ˆ} �UF¡�Ä$îkÑ

	yË�`?ˇ¾rø�$·ñˇrë67®�2¡:D�ÆÖa
?¬©]ck?Qò¯’dô
±úÐ
	Ñhï˜£�-ýP¥ãð??���q-7_§Ã?+3¨3HˆdÌ£
	y?0?Ö«�²Ü	ý^+ú®n?ˇˆ<J# +.Ä¦ÕÃHõ|ÕÈ´?ö©�*·cýkç+5×£CÚ|Y’˚�ïË?�TÛ×Ö
	�C�$-f??pà?ä|÷cb���E\H?aLß¶4_˙~?�ÈvÜ¯'~0/?ZF�¯w??Zûb/=S/qFÿ+l�ò
		ð�ÍZ�Ã�˝S?3Ó?ÊSº˚˚i®¢xRÓçËÉVdf3?x“hníïNyg?%fS& Û?lóÒô\Í

	�êY�@êb¯Hµð?û4S;¬ò�PÚ
uÉ´%?
?é’°`ÊÌÑL·�?˚ý�???%!�Ir?Èü�Æy�&�"¢u-ˇr|Ã=
ÁÖ®D˜çí
	ëæþ·X�ä6w¢«íO�·´;pL?+TÀš?ý�Bÿ7Ô|	?0�æh/�¸M
	�2Ó*·�nô�A©?ˆØ¾áÏ˚˚??Ï
P·�ö˚?½»òîk{$è�?P|*âßé©~�ªÿ¢¦ü?0g��U'?7	˝+|�:×Õ?�fß}?tö"E¡[

	D{?i˚F×?µ_L?Ó³�¤_Ï� <LCJÆ%¤ÄgL�?Ø
�ˆ-l.ÎPCª;
	+Æî³Pk¾?*æìÏà¨??°amBìO«½f�Ï¤®�˛ìÿ�øJÓU¢3þ¼áìèP˛n»1¾-æüÓÁ÷äF+�¢ø�??P�æccë�4^?iD\ÄÛ�@IgÙ

	�ô´�¨�hÆ?P!˜ò*+/âÖ«½'tÓùþÌ�±��4ÏYÅ¦/ÁPze?ÆÅËý?´�$ý°�?Ù!CbÃ
	·3?ö {�Û÷@Í?÷l˚?/?Ø6˙ðgUº�g�î˚˝?Áõ�J¡%,˛??JñÅ.öòN
	9¿.?ºm?Ö?Ô’ä4ªYyæ˛,¼©+r¨$ã?¤5OÇèîïûÀ?�w�?“}iÝ?vó;QéCXÊöòÈ�¼düÔû§ÿeÓã¹c?D?UØ2N‘�?ÛÙìÏ� M¡¿˜??|ÞT

	b?Ìéýáê�Ôs¶?¦LJÀ[À½<ÇåË#˚Ü8Ò?lâ0;ò<Zô?´?u?³ØBV
	?9°V�KÝIw˝?9�jÛÒÖ�äñ�’�?Xej*�º˚uÙ;rLÊî Ü?É¨˚˜Ó�Ë�?�a�ÜÊ¡eH]?ærãE!{¬¿êa¶×RæxZ?¨wÊ§è�èÖÐJÕN,=!ú‘Jn�?×öó~ålÜ˜�ý
	EâEj
wÁ?a?ë�¨&??Áü]!?zÂ¼T{zåñW{ð?ÉØ	õþs?»Õˇòõÿ?ÙÔnö/o}Mbnö,3aÀ7nÙÄ2Ñ?¡q?�?±?nÂyÔ4¦Ë�_
	±·M¨JóªôÖ@�UÓ:ù�WÎ?’õ P�Åu?�?û�Ô×U��$?K*T�’kJ\Ñ·äZ

	äóâz¶$g~vˇ�3-�#DÔP´©P¶Ðö¬D?¿Ñu¡?
	Ík-y\D?o5~0úÂ¸ò ?z��ÊKþ¡H�ˆ~&?ú�ñ�0?ÃzÃ?
	çNßç?þ?Ã\®8´��“%b?U?¯?¬XH$Ìd��ec˛?ú;Øfì³F?l�û?éÒÊÈ?’
	0¤ÂçÊã*d�Ó«_NvIˇt±ˇ<º?¢·hÃ�ñI?
?ý�ÈR*�Ræt7ªì}Àúý§ýV4?Öª$˜�˘îu.î®Í0:?{4÷�Æ?-"ÿg<-÷ì
	9-ºÂ+ˆ6AxÄ��Ýk0<¹nªíÏwÙþä˜?Í¤?Ñò|ÔˇÙ,ÔüBËnèry¸�˙˘¶$/�»?3??
	??�??ñ¡??ÿ NÏ?óÜÍ3i~®Lš? Õ?îâà˙÷?˘È�bEº˝�¸¢9s?#?ñ¬©ˇ�z?µãÔ‘2È

	0oà�?Åá�^áO�?«��
	86ÿ�\mÐõøyC¶$\˜?,
	z Mè˝ï�ÉF?;Å1˘š�Ïæ®f}õ?³©à��4�rÂ��º?t*?ÈÙvß˙m|jC�gÑÊ'�îU�çwC?íçgÊþyö �Lþè?iR
	×t�Z<ÇlÃEàÌ¢?¸“Úvz?aN.pÐþ?
	ßs]¶ÃTÈ?Ä?'�þs�ÒÞëö;î8Á±´�
	Ê¤<;�9xE°æºbgé�²PÙ?o��¬§ZÛ!??½µR˝{ï¦8˘"¿Py#?Éü˙?
	?N¹Pî{4’G7{4W6á˘?�c˛¿6Úí4¢Fäè�çz%D’¬?:a\©ù×n*KI
	}e‘Ò÷89ø�/ouIXá?�dNP?¡í5®n?Ñéh?ky�cU?U?FÁ??±#:í`û?"}F?°?ó?x3ÊÍC,I
	Ó¨�?˛5ÇÝúQ4�&
a/µˆÅ˛|�"?Ü?Í?�©]ÏWÞug¶WÀ�Å§i?¦LD’íõq#¦/B²J[·B�tF˛~·�F?
	w¿¨r:z?�ð§,�Ï£ÖòÈ;?xpúsÙ?1?XT©9ÿÜ��}r¨?Ç¡±¼õV-Á@kg

	õJˇÒ�D?i�¥6˘�¸Âe[P9“D¯D¹lF2F«?ûzG\X
	?ÿÌ�â£�Ø<?å£âËO¨???�Éy_{#“£
JûVÔÂ�{¢hÞV¿'P?ök
	˛?F³�%µ	ÑøÑæ6O«¼|'²dù}b˜??â?c«IN? ú¯nu’YÉxWúPè
	nˆ¼ìZïÕ3�?Ú°Úe‘?A¯A9�?Ìø�S˘D�æy??¨Õ:ª?¬XXˇ0CEnJv×¾í²eºîænñNcÞÖâ?r±[
	M�3§¨ø�`�¡Dw˚Oë,µ¦Ý°?¨×Cg�2È?ÉÚ�+âA??��˝q�?¸õàFJö0�jN¶K?¸ï¥Î1J�˙»?½Ü“�

	ë�?]ÎË,bNoˆã?@¹J!T	?#?Ìh´5�|÷¨äp?˙oq?c’Â?ÅT¸G�£^qM©ø
	òÍ˘UöDG%
/fFö?Ïd?�?lù�6~ß£?µrÃ®ÎÓ?áT"˚~êÊ¼?
X�BaÛ�ã¦}??

	ôD‘?'?ÁBIeÛ¾K©Åê?×uÃø¤¼�y®6çÇI�¹:òì�@£Õ�úJvú
	\�¦?,9®Å[qÚ¬?ÐYˇ÷BUm}òV`X�*�:ã?�9¾Ãf�#|b}¯}p
	ß�!`<J???þÎà�õ’¬¬?Ú?úÐ*Ûä??÷¢cîêí}Y/ÓúTZYíÂù#?=ãìwÆIª

	kçjÂ¯˙H?0¸�ðÒ�Â?�áe¶\9?O�?˛Ü½ÿ.ä ??ý~4g¢fÐ˚2SÆ�?6½�O�J_
	iLk¼?âàù3�©?Éà?íÝk�A¸vOA	Õ¢hä
?˙Ò“±ÀXˇ??}Â\�Ö#ÃO.u?Z?s�Ñ9ˇÔ?Vu=
	_««:p§h¹š??£?'D?ÂÑY<��i�Ûaè?\ÍK"�q��þ#ÊÃ�]�¡-¬eÁêâ��QÄø
'ãá;?l?<�
	îûìª�ó8,ò?�HóÝX˘�_J?N}"?e3-Å?ÜñØ;?ê&úl�ö#�J9Ð�?{¼UP!I�¬�´K
	¤6ÈH5�ôÓÙ©³À}¬*?÷˘W7PZ�Ìì³ß¢YrÀðÊ	BçÜHyÊ'~tOtªô

	?:W�÷�ß¢ˆwÌêR~éjs ç�¡Ñ1ôD?èh®{ î?îp'·îS·??^]´5á�+©=?
	á�2?ã/£®Y?Fs½¯\Ù¹ÞWÈÒ§�s?ãY
ýWO�ÏÃ^HÙDÛT~;^˘æIãÏ ÕÊô8lß!?èß�c0Ó?¤Â`?z‘Í
	C‘LÉA/èJ·Ã�¯4VÊ[#$!˚~Í ßfš,Ù?9æ�U?I¯2?�^²�Ø�cV¡LÛU¦?a/
?²¬®¬
	Ó×?{�2ÞsÞiÏ.�],BÔô??þ%�¦?Ks¿¿½ýÃ±\�/nà2VÀ�±??ã?vS��o�ßaÐ«

	§×äa±IKåÇä¡�¹+{®?b�í‘zÍê¤Ch?Ï�&î»��S˛;eÍ£Ùòø`ë��b?ï?:Ë~’
	¼�½ r?ð,µVÐMTW$êUt¾ßÖ�è�Wó�ù?V�âº?Ê�7õu�š?û�S?õÔ?Ô?Ê�½?î¯�ÊêïXv}/{î�ÞÏÈòÇð a¸Ò?næÝ
	96š5Y{�4��k]E˙�í˙M�¿X?M?�íx{�	˛ó1ý�+Ð’ZS}G,�¤b»¼ð¸Ý�'·-k?Á?oOcR4?èÌò
àÌÂˇ?3ó
	FqÚ?aoà?s?6X�uÃ<M˝òÙ LØ¾�«??d.Ýh?8?3E’ˇ?Of?èö¡ºøpvù¢2“,?êø÷ñ
	¶˝?˙'ìU?T?à¼Âf[?ùµcËˆÇ,¶x“W“aÛöLÈÝ¤:F[�?*É?æü�2¾¶öôbðûá@�Ïr¤

	?�0SÍÃÚezu+˙ì;?C
	÷ç-Ò¸f?˙g�y?éÌ3�^´

	ýy/$gÚÚO?�²Ìî¸g?9�§"½ª\Õ65*»«¶sV¢F�?�:µd˜i¢?}t éB¬
	Õ³�?WKÎn9ák££?Ö]˛?RàDs®�ù¢
	x¹STLËíÜUS?? sy�?Pbo+$Àà�˝¦˛ã§m×©?×\[%¸
?Ïaê¡Ò‘oy??
	�˜XM?ÎšO8Q‘š'· �z?3¬�&
?�¶½@�ÏÙ?�ô?éç�Ma
	‘Zú§7ñ¿¢T�xwæv��Õ `ÚT?É ÑT+½�¡ßh�»j�N�?Ü?¾Ë?7�T;*û?ÃJÛÏ2
þÄ
	ðé˝äO��?Hê©ÏëÞ²?�?Ò<ÊW�d`khCé
�*?Ð¸�i�£Kˇ�?š.
Üº8à
	A0Ã�wòØ?Ë?q?I^R;¿�??EblmwÞ&^ÐÝëm?à"`t H¶
	?ˆb?Q¼¶˚Ç<?í%lR��SI@D]þºCf�$»�À?É°HWm3�¸?�˛__¾�géüº3ÁhÄ¢~¨ì ?}j06
	²ç5¨�viµ!°?¥ð1¾Ù°ÔdÛÏæ?�“³?rCk?�îi4Ê{t?R?jxÈÝDíé3#¤Ä,¬4Å
?þj

	i8BhÃæg˙È�4hg?¿i�k~Æ2#?*ˆ´VÕ��???K�®JÏô¿åG&ßZ?	?
	À�~��?Âá0'�T¬�ÙÿDÚÆlòÄÚñþÇ�ï£
èUl6{v4Ü
	��?½?êM?ˆÇë4µ«JmX�ñm?�¢!û×M}âz7?5nq?z1m3¥!
N
	�ëÞ�:æ@?h~?¸Î¡G�_K-í?GšùC˝O/ðÇæº??ˆ¨�e±˚?$b?
	å??�?`}7¯TîÞý¤ÑˆÜ	UoÙº±ou	PøØÂ�?#˜ÀFïˇ\¼v©ÉØK{??G9k×�ÆÍôuÑ

	pBl�?�S�Q�àâ@pÛ<?ûâ3Jˆ˘Úö½Jï®b¨�º�ÊÅU?#Ð�øý¨/0‘ÕÙ@ »�¾Kêïboá.µS·m�Á¾Ñ
	˙#P:	å?ˆ£?i�úúÅ�]6Û§[9g?Q¶¹kËÚ?‘Î!Ï¹ˇëÕ±ã¹�ì?cSfüT^êíÎôf
	¹?=°C?À?îÈ,¸ò6š˙Õ�Ë®l¦‘óvfÞˇc?à¸yNsª©H/?�©‘O�i?ˇRÂ¢éXFI
	1??&Çzq]ºü÷õ
ZR»¶<pZ�5?-�?%�Hñ?H¿º"˜vÓm¬�	�éL7q?Sp??d??

	-·?˙UNú»«?ôT7¸š`E�ãoBYªþÒÓ~ôÑ.˜?öª?Ôßø¼ÅÌ�Î??ô?GX�To Äˇl;,˛º´?3!E³˛.¾x3ˆÎü&�ñíÿ�j#©Q
	òCÿû‘§˛'¢°séédÜ?˝¿�?�~©�PˇN??Ö“Í�¿�<Ï�Âs?|šyè}Î“8«

	e�Ukñ�,?´?·£??7ßBä�??Ï}ˇ§qÔ_X.?HñÁº�u?Ø�
	?±fMñm¯^ûu�®�å^0ÇKNÕM«˙�ø��búÌ*¤J«çÂ;˝[üC?=

	pd5ç“Ä¸ÐuÏ�'�Ñ?Bo\x?ÀZyc?¶a� »:?
	1?:?:??¾ˇ¬®è0áÞ?µü??q�˝˜í???te�Öî;?ça�É?šy¯|�ÇA×“�ö¹<
	u?Mµ¦¦�ˆ-n¹ˆ?N?Dó3ÓÑs??Ð/�QOˆ×ˆh©@=p?eW?Æ�¾@ÃÓ«0×oQ
	}°Ð�’ãS~M“�·qm˛[·ð?"¹?°?d˚Bš©�<?@?Ymx�^s?µ��?f��`??BzÇ?#9L}¼?B?%ÑÚ

	˝ÅqÒ,?KàÞâ˘?³$è?0mˆ?ÿ½˜ú?Õöü?ü?cÃ.HîïZ¨Ö?îÍ.î`T]�.

	«?3»Ýf©D¶˝?§-ª˙4?tþõì-2
,;JÆ???EBøø	f"âèˇGuaÞbÚ4.ú?�Áxk¥ÄÊê¢*�Uc¶
	úv®%¾ªÛævšÖ�³q�°Ï�q?�»	p?@?äõýnå[~×Pú?næ}ðÁDˆ6
	pËFBn¤Jr§ô?ÁpMò�ÍÿbÍNW6aÈB'¨|îÃÔpë*
	$xëC©øG°f?`ÚO?6³QDºÐÊïÑK¥óý��QÝY?Ìk�®à«fÝ??
	X-?f½ébÃaû5dÑ{p?Å¯?`àç?ªuXõ!�¦‘C?2Ð¨µä©š�?£Êud±&�¤K�0��TÑK�¬y�
	Y¢'H�rËG?¿�?rÖ�ÀCùa??šË dþq7?šn½?��òÍ7˚zÆ�¡˙sÜhÕ��ÓâÊsi?k�?0ïtãÛÂWÇ+Ûä?O7½ûó?ü®9Ürè?¾£Q·,°kÇ\Qg¸Ø2
	\hæ×s@ù?¡?gMta?Õ? 2õJ�ýÞ¾EÀÈ˝å$Þ��¢ùG@�?ÁVb˚�'Üro?¼N?�¿s˝/�K?§1?§æ<ð
	ËÓ
§¦ÕñcHËM�¿#š?ÓÉ?˙�èiG’�«??�d?˜øþ!#ê˘H��o¯�[·‘M

	r’ÚÙ`?æ?kÑ��Ê5š-˜?Hc�é˝®}�5w@�^#]ÁCúDáÿ¾�ï¿�
	#¤v�~bk°óïå????:ß“ ÔÎëË?Í�šÆ?i?¡¡TÙ?W?�‘˛?glòý?óÐðl?ËÁÀ:Ñ ?F��9[«rmÓÙï5ðCïðà
	?ÝôÚ&TÌškBÜ
ß²�vmC’áùÀh?¦¡óˆt˝!?ý?½�?oG±�<šÁ;çÜ·î�Û?×?Ë
	.’DiM3?�d©���B2?˜˝of0¶^��NÓÔU�Ç'u`¦«¨Ì¶\?qÂÓ?’
	×°ý?}½^®? ³I¡˝A¶'	aÏ0Ø»ÉfÏfh?±?ïM?@ljîóð·?í�?DÄ�.?ðÌ
	,TÑ1��Ði??!�Ø�cQþâlû7pÈ8ßWà˝Å´ÒöQa?®ì?¢q^&Z˘?î¿¹
	¿h?Çz?Ó¡Î|˘Åì¨k¾¸ ?i
?˜�Àø��M á�è�®ø

	“y!]zÁþSÈy@û×ªºãF�Ë˝b$?�Î??HÉ�l2�¿`A�?@´?ÿº¼?äB
	·˙Lé-ÄwõNÊ³âÔ’sþ§½"bæIÎÀnu?ÏINW�Ú4¿à??Ç?�?%
	¶C÷ôô¦ ˛=ö�šÀéîB¶�˙ÈPQ�^¢?PËO3¯»ª?¦o’¥Z@iÆçbý`*Ñ5È
	@?ô?íÍkÓé¤£?!CË˝ˇ‘�´'pÉî�lˇÞÓû¥^"�b?$ß˚Ê0£`?]lÞH�ç³#²c7gÃ
]?ÈÄWç?2±S?Íée%^m´Õ1�	Ö*ç¤°��ç
,B?çX�ã˝±©E?BÑM¨$íq�?ÕÄæ“ bu��©'_G?[�î?³�
?¦Ãæß~W
	?Âq?÷�9+,˘L�NA?ýÒÑç¥h˚p��8ZÎ?-÷ 3³m ?
jJì±Bª"á

	Ëî?âiR}ûèª�˚iñpÐmvôI�?S%¢F�½ˆ6�£?ˇß{NÛÆ?Õ??Ã?"²˚Ø¼Ï??-&%ßÇr9ˆëÚ�<??ªå
	UÍ%	ûå�æ?k!éa?¶û#K?�?âÄÂ?Æ�³íIïÈZ4ceÏ?®túRfdUn¬¿YN
	?ÃÌù®?SdKuÂùGU�OaTà?î,HN$
ÈÙuc�báûï¶Lu÷X5�TPÊ½no�Î×|
B˛ L\à??�ºSÞZ�m?‘rÇ?ßpéï"?Ø?%Kõ¶§¶^ì§ácýò˝^ë¶?
	.<¾ º³DeÃÂ�ùF?Xu Æ�?˘
ä÷IP*Ô¤ÇáV�We�g�¢+NçyJ?[ˇ

	¬Ì?Ä˚û=v�?îz¿Dé¹¡�rÁ?vâ�¦e¨¯?"T×"+-�?[û?×J?Ó??Ò?÷@,®�ENˆ�Ð,|Ï??Ó©?0@u
	?«Ùl?K�Ç¹÷?9U`8#ö?Þ=?ì�1Á¦�©aÜõ˙må˛?}PÀ?xÊ??È�¼�½YexLp˜B8¹s¥?¤Õ¾/¾Lg"-�f7U
	ß�«VëöÁ?�â$ü%ø"Ü?u-?Ó?’Z¢.l
�k×©Ü;~×?¤màFEFºÌvi¡_u�Ã¯ç�¡Ç§?Nn	ådn �,'˜6�‘OhjâI�Ó?¦YÓþùÐÚ��Â«{Né?#³Y
	3Øçw�?g$ZX»Û®Ðç ó�ä¼¦©�?�ãn»$´þ=?ÆÜÒ?54?J"?Ñ¢/?$AÖðvrô?hÈT"ëúÚÕ°¿k?p§?¹¶¡Áÿ[·ù� §£DDy}\Ö®?úàö:xÜº
N
	ÇÀ´?é¸¯`?w?ä;dr�Ûä¶m?r?¨ºnZ�BÄ¦?gÚçj_Ô��?Ð]ê?E?§�¿�NÊNÝ
	ÉB¼�×ÆÃêÎºSÐ?�iÁMCX?˚�d5xÍ´t¼?Mû�/ÇwRÝ??ûóWh�_M?!’3ò0
è¹²?ÇMY:�çµ?N??ã$]-?&ÄM�9˝W˛BóÇzÕ?ßå³WfÙ1
	ÈGT?fÔSèHÝ@�?Þ²?:h�O?v¹á*˘? ˘?üI�Z�`¿
˜I?�?‘6?[øæUSSØ?C?4??˛D¬mj?AÖ{?´o˝Iå˝ÔÆC¸ë1hôÄ?QÌðÌÐñ{lX©ò¥?t¨a JW

	�r�˘PÅ¥‘Ò÷òµ]©ió�Ü%�×ÜB˜Û»r"oFªVi?à±��·è,³“§š?�_¦x˚£®��:¤iiX�?1�bÜÓˆì?BÃÞW1?«P ´Ö?÷?ö{á<ç?$º
	øNÜ¢�M¹z?°^ºWpßé
eJ?.�P÷±ˇº‘ÜÄ1�Á�?ç?,?Æ¡?Q
	‘?'?J:9¦·Æ�/=Oo?4?ö}ê®�ª?R²|?uàèè¸�kÁ	÷�I? ãûJ÷¶¬���Ï×P�?´õQc??×e
	¿�È��rÇÅÏrß~;�=ý·??;C�yüÉù¾ý PÉ÷«U?~FE��S¾Xç:|�“Oa
	�Q§Ò;ðV©a¿úøväµÌuR½0+�èÛñ7?bí&x¢“À§s=À?bR

	xF?1Ïæ?JTÂê�3.?˙
	L·¡H{´?¡]2?6î¯Ri®1

	8ë3�_ù�}Çûc«ëM“?ÇáH:EÃ¾4�ÅD2Vî];Fi˛?Ò1¨
	Á�OG?�ä7âõÎÄÍÁˇs˙±?¨£ˆcê[g
	åòcO}î6ô?Cˇ¨�°=ý©l]??¤^�¶PÈÈ�þ? Tj¤H?I¶"¦ÿDn
	Dð�?WÔÍå?¹Ã�?Ü|zuKk�Ð2ÑÞ×ck�ÒG¶q˙ªG“G`*¶Gß
	¥ÿo¦üµ4àIR˜Lßé?Ço°±��ÄLÓiVX2 %3Ù�0?B�Ü
£��,æI³
	¤²=|??üJfg�¦.ÊL\Sä?sÑô1
��öw�±Eýcaß?V3?˝Ù?°¦ém�?÷E±½�OX1©"Ú�
	Ä??�?¦=
]K�?Vé½éNñÿÜ?z?+ÊÁ�UÆ�?Ä0?{
	ô?+g�©5ÎÀÞùˆ¼Pq?¯�íÄ©üò?
�±�8ú˝
	?2b�?ð#¯sgõ$?˚+¾í±f%?�?í?Ñˇ#¦ötü#?;�§
§a"�Ã¤
	þ%¸è°·˝6ã˛Vç???Ò¬¸wã��¹sÓ9îàE2é·?
	§±¹Sñ$øK<©?$ˇ,�J��eµ?È`,çD�Àd?

	Ë�Øµä8D??8AV¼˜GIz�ÀxxJ?÷µvê�4#ã¨`×9N¯�š{˙� _ñéÐrñ¶
§
	²�W¢]Ç©D
A1?_¢UK©Ö�Ê³˜??Ã_½¹ÃÙ˙Ç54{�ÍäÍä??? Fo;òdÀ}áHØØ� ã'±_FtÉ#Q~[T2
	?Ñh‘Y?˛'?ˆˇj�ˆKÊ�p7*éêg5ê?c�»?ó?�.‘s¸�Ý0°VfÈ??£j~Ç
ÁFcÐIénÓñ?ËØÒÜ?A�<�¾˜·|�ûë!p??
	È˝SÒ*ì�Vaqhp5�?³?ª���ç?:pÇ˝´�	¥x9è#ù��R?¥“§�ùå˘?

	å/ð˜}v�¬À%å˚ó@f`½? \ì×qfbë½]VF¥,�k@i¯Òýt�¶]�
	?Ïº?Å"iS^Jn¦d¨’ävˆ?î�¾u3˘$�î“@?M?"ûpI î0q×?" Jiz\Ö¶˜?ÝÀ?l?
	��9ìd+�öGa@2²öøâr^�O�f=Ö<�??ÏÄÐ¿Î$°ÿOk¨mQ?�˚GßoÚ?<s�?ú�¶Ã%?
	Öè?-\��Tï�?$¦.�_ó�K�º�?ê�Êù»�:É2V¥ýU�Ä˚ýA¯ª?¹˝j??n
	¯îëÄÿ£Î¡ÞýO²3M�x�s?¾7Ü´[¼��ÆsD#ìÐ�®Wâ�õ¸l?¨?	-»˘³æù’

	,«ô2¾�±TÆ,,˚æã9K	?5ˆexZ?IÊ/2^�ÃÿÐçjà˙ÓcÚ¸3åªË?¢?	t[É£ÙØñäöPÅ:�-6ùèæ5m#Ø���z82D?-"ÜÔºþ6?äâeB9
	‘�ü§Þ?ÝÂô´rˆ[&ys�?fÏ?ÈÓÝºÁA+d�`PÜ�ª?UiLº�O�˛�¹@Þ¿·Øu
˘Ä§:
	5�Eá7tý!?�	Õ#TÊjs4?’N�ÿÄ~?ýE
	�eÓé�‘��¨�Të="w?Äiz5?«ágÄ%hh3
	BÍN¬#á?uPµÝ¢˘XW¿Ý°�ò�MYr¤?�ühoÃÆÂ²ip9¼×£fµ
	Å,!ÿkW�±²�6Psf?3Xm«v#Ü¹�?�XGåø

	Ö¹±Z?æ&æ¬?Å
Zâv*ÂA`íñ¡JWÈ%¤~EÞ²ÙÔZ?Â¬nÓ2¯A¸?VQ¼Cˆ®[Áò3î½?T[Ôf7õÚí'
	�~¶°�Ö=7
�S¦ð±Üy¬÷ßôÄðò¬˙k¾?êÿÿøWºkHM?�Ü²þäub¸l�ý[ÆT�
	Ïê?7v��	yÛ�n3U�æ�%?�É?!jB³tB�^2?\JIÉ?\ CÓø¥?ÜÜ
	a�g?r?¥á±ÓÚOÆ§¦�÷,*?�ã ÷ä&�?.	 �Ù×˚??e9?�ñ*l}?þ:�¼?@��Ê�µt*‘[ôrM�'?Þ
	çj�wQ�ßó7VvX�fê¬ÌhÙ¡"âPª¶«f1�¹¯|Z˛?^c§]ÿˆØ��?³�4�R}{íX¼C?<¡?�˜
	5·G?F¾zJB�ë,õ?ÿ��=ä�¬?¾bèðÃÍz“|Ðöà�õ® ?µ?/y�úAðH:?ÄzâÐ$XÆ?Þ/áJ1?
	�k?��?.�×?ÐfM˙�I~ô¬füñÀü?˘Æ8?�±Æ¾`±�U�æ˚Ìt?FB?¬i8@|õ��è¾Rl¾ MvjÕ?M‘ÌìéZ÷�‘š¯Ý4jÚÑ�˝«Æ�q’`å*?u?ð��¯�F
	«pÙ¸$EÃp°wÑ?˘º��5¢+«ã¼&½äxÇÀi?Á¿�ÝLagòÞ*�´&Ú�SÊ?Âì×Ð²çh7??°Ì/ç?&4éÆ�ÌYwÏ??L1?©
	WÐ ’O?®ABýi¥˝¼ô?�§dû?-kÚXµ~ù?V�?õ�\`2"k?ˆè¤ºÑ»HÍW'·êÓJ5Ã^Ç?rlJVª?»ÞLæÔn40�±Ìé?Q~?¥ß�??I.R½f?˚|	Ú+I¥Ô��

	s�3åW�¬ê??˛@O¶TÁg6“Fú�®înt×îi¤ÝÙf?´7©½Ý??��$+o
	k§ÎÐ×�VÆ·[Lkgr~é��JÜ¯š*K�Y?à¸¯=Ç?Tâ~Õåw#tv,o æ�!l~½o¦ßp
ÆÑ�:»?c? �ö
	HUa·L? ¶M�ÿgñ»{Ù˝Zé�š�]ãÚÝSã?è['X;³wZ[ì^�üöÑ×q®%?\[°è?U�ð¹�tø�?�w«?¼~á�
	Ý*bòµ<ì?ó[Nê�á �Æ~¶?.
Ï	In?ÕC@²&BYS!v¸´1:�Ç

	bUL�Ï�|?W�½³Ü��??˘¿DéqsbÑÄ bè$7Ñ
Ó˜¯jK?y?:g?]Ó??¼ß@:Z�3�¹³�š˜ò?
	ÙËÿJÝ ½y'ÔÔ«ü¸?˘xíÃD¤ß<s�¿š�Ú·üvîâÜS3óK®çî§:k?^N"6�ñºl˜ö�¯?Lš"ã?�
	��ãÜ˛K-î�N�¤A, ˝ä¬�ä ó?ãfÿ?���¹�Úi’ ˆ�ˆ?z�×?Ëß&&3˚!e?-?¬@-�o1˚�^}/YW~H?��á
	`HV!{QûˆNF?¶�2?\ï��?ù²˜±µeXÜ`ˇÐ�ë´çµt�É�ö��??v
	÷B?SéþöQ:ÞW1Ë¡K�ºaHü¡áØ‘ð˚þo˘wìÌ?Ñï¼p6¼sRèóZ�Þß%k¤ée[·"e<¤©˚?Iï$��Y}=L?úìQËµ
	CËsÕ?¶wzÌûj˜��N´MÀ?Ê
�#J˘^6\ýÔ�¾ÕF¿��ôP@§o½?ró?³�;§ê??ý?%¶%[¶Ä“vˇÛ¾Z

	Õ¸�??Î/Í�°�ò}bðCjh?ì©?Ý}1?ÏY�
=Ìy¸�d¸p2¥E±?³0�?Ç?¶2VÛ]
	û,i?ñø¦?ë�?X^?ü¶ÑuBß×£Üˆ|±në!ìoÙ2FúL;ó¼��Ò?Å§S??&1?FVô
�²�`}!¯û˝??ò:^{yÓ³-^?:º	?»
	?·�ÚêF;B?sãu�?g�c£;+99<rý?XE_?vErQ %?w®
	�

	<?ˆO�?s%
W?�÷öÕ|?ïpT;v˛ÅG@‘ ¬$T�¡�&ñ×�9ÂVé?ÂÓ/±U±«Â¡¬µ?B´5wX
	rä«Q*^ªp?|°Æ¬íÖ?î^¸2�4Ct�/Ý:u�2þ¼???¦mçfÉ÷;=ó¼éÃ??×q®�Â‘hZy�<9�˜ï�¡çÍ

	Âîÿ�f’I?ÈG˙¥?î�^[??;
V«`»{±e�?·¡�’�#Y¾	
	Üi?.JÌ}EÌ?�àá˛«¶Ì¡ï:A#¹è2ÓêÎä�
6p?�'+[&�È8qËÿ*?ÿ[ý6�¾ë'õ�˙£?.Hñ:Æš"ê�ò`

	Ï��õ‘Æªõ�5?§»o²°g¿Îä?]�ïÚ-ØÈd°é¼6c“ÿæµ<¿??9È�Ê\�˜Ã;AÌÂ×?˙
	ˆÅNP??ù?��
Å?â�±I©²˜ôvRó�@ZUSw=Æ�3?KµLOêz#G??�¶3Ý³¥dÈ�Jù%�ˇShèÖ5¦ÀÝ?ãVQÅ©
	ý¬wxkšwc?8¬�_ßdKÖˆEC#?nÁÔc_N_?	?·!ht|s Mfú?m?ay-8??LÏ�SW|ªÙà
	³%’?ð¦ØlG?Í?×????#¹Ð˚5�??Ë\m¬Ñ�=«ÐA?yØ,IStª'I?Õ�?OöÉ<§¯¶Ø~½�
	ìÁ¬± �MQìÜú6P?4vÀÆ
±jÔà.’1|{*£{f¤Ñ¬¾?}ZÌ¶3�ù×?z??¤îi?ÝìõjA;Ä+?#ì:[ë

	9=�ú¥ÔèâGnÌüH�G?Ç˜FÞç?Uv�bè
é,Ñ@/7Òp?]?ªE³æ04�?¦6?L�³¿/N?BýÞ
	u�˜«]û��wî?�,?»�fE´}�â=Ü?{«õu?±þCC�kÐz2�s�ÕMÑ?onYºíáÅo
à?ã\;�??˘FÅõ·�=S&�GT»îÓ
	�e�Âøi´?È³¤iR4{£¦˚��ÖLD.í@��?á7*ü{?*FQ£¥
	O�ù?s�ñfÀß?±?¡è¾Þü�?#;��ªº?^??È“4ê±ˆDz$¢Q�õè»÷ªthÞ-£ï~]@ºÉ¡÷Â�3M±mG§??Ë�s??˘?4?Í�va`˙˚Ä[O¥ªo'??,uò¹h�ù
	SÞ?L�1?´�½7��½?;êÏ~˚×g@Ó
u<ðÐþp*?©þïÕÂ�aä�G[à

	ó?�“´êÞpe['}˚�¢ï
	í8?ë´B“X'j¢§,^ù[�*

	?îsÅ':OpV’äµóí@¿ú5y}3ª¶�Ãy°mšù?§Ã˘h�S¨ú4Ú?�dÄ�?G?
	å»Ei?0_X��ÑÇ·?�?æ?â��Ç¥eËÞ
	��?v˝�.û??¿
Ye�?D,˘æï²Ñ»Z�°IJ~V�+Oïã?ªÍ}�?˛¯B9ZQ�
	CÎ_ÞqîK!a2Î§V?Ð$h{?i?T0í/�#?s ?¸Í?O³3i/LIál«?üJïÕY%Í�!�Ë?©·?4??ë

	?Ìˆt©'q9m÷zÝ�èá?�¤J+Z�ésíf5IÏô|Áù_
	°Î?É�ó4?»Øð?T*vy&Éê²�Ká\£âP·�ªÜ˘?Ç´˚RX½�Ò?DR˜JU¾äj
	AüÎ˜?š·Èä_$È�tÌ9ìÉ?Á�ë^Eª¹�$m�®0e?M�z@IÀ�Ù˙�@Ùv�zlY??

	öGH hK\/“Ó¡�÷OZ±ÐåÀ¬?6?òIÄ¨ˆ?O?äÿ�?ê!<.Ã¤Òk�c»M??¥˚ú¯Ê·?;²×éenºÉ�?ï×!óîÐPºL_?ÓR?é�V�b
	R?¿PU�àß¸Y�ù³ÖYh<#{QVOñ?¥âcöÁ�¸?�K?í˙ä�¥?��ª?6´à
	Lg×M?âÓH�£ tf&˛?\7}ò^én?â¦J;£]¦×í�<ì?hVÜ½xÔGI�Ïó¹¼�?kõ�Y
	5vÿÐúÏ?ì�ìã5ì�Ñ‘	5KûP�W¶¶Ú¥?Aµ�?ÁIO?&˙��,ß?è9ÈXr
ÜH¾�ß?þ�ˇ?guqYiÔò?�gÏé¿&»ˆ7XV&811»ôÃ*�¥EM[�¯?�ùÀòsÎý��rˆ�
	Á¬ù£g{M�ç¸¹¼¡tLs´·F¨�L{iÔtÞ²?±R��Ô"IMtÄú*uÓÄ9Ù�»O$övÜs\¸XDÂÐ?ô�?8?·ý£6èZxØ¡&��èUBî²ÇˆÈ+m�õ�·/eÌ

	C¯?!D:ô��äÜmFÁVÌrè˚�¢@˙ºh0+“‘m�ý�®�"�??Ñ“?r]�ø
	"kDùÅ±HÌws�ªiï;HVC�çèa*?�h�¤?“/w?`X<øx¹a¶AS˙
	B?æ?H�h?Oª k??�se¶ý½?�ö˜O ü�ß�îc+»�Vôª�ˆ�7�2ÌT³úcü?ë�Åhîê�äe�£áAàCv�%i?×}{Óä�mˆ
	��áþ˚Jý½¼à·Þ¹¥²e·ˆpó?Ëè�,¢iqß$�r'?¶G_õÞr1?�g?qBSW?t?å¶ø#˚<Þ9C??çò¸��ÔÄàL?�S�Ïn�°=Nl5®

	`µö?�.4NïmØ,?<“’
	�?ˆUàý˛š¯û�xSR�ÇL�

	??Ænþ' ?O³�Î�Å�ª?ÿý?-_1˝ßfÂ'?ð?¶pãÂ?rQ¯�/1êÓøÃñ®�Õ¨?³À�
	�Î?�PéÉ˛?@	î?O~hJ�˛šeÕÔ?ôÚ
	käwï?*òatÝ?��ˆ1?|¦rüèù³º˛p×?ð=?�
	ýÄ?Ph?g¯1ËS�uJøðˆ?ªäW$Þ?Ýt�¦Ö�ÏÕ˚?¶û?zx§=JqüN¦.?"?¾d?7
	Qo?¾¶�˛/Ô?Næ?:¤??ðßàµ�Õb˚¾�ZÊÏ^“�ÑD?�À®_\Àji˙õäæJ�qµ¢ÍYu
	7X¥üM?wm¾¬ªWyS“ã×è}À_Àô¦?xÓ�ð±?¶Ó6¡96þå1 M	ó˝¯â??9ÆÃ??¾�Á?!d�M:?Hy¦h6
	�˛?Ç¾TIwÌG?@�»¿"ìå1e??1¦s??W£
t?ÿ?eâ{sn?f?¤$Ç©w½Y
	?{@l.×ö�--r’?-Gˇ=_Ã7×Ã§Xk�õ�ßé6uª
	ðL½øÕˇ��’¤?˜Õ??Ã ôì'ÛgCêIÂäæ�?��Äíø5

	~ ��Öµ«é ßcõ�0{Iþ`W*#"é!Ø3àyî8a9Qà“f	ÌÃy*?ðll}=&®�³ö�¤@f:?’˙Ö�Ê.šx:Á?�8K?^ãnÞ®+?˚ÖÀ
	ÝV5X5Ô&�Ì?¬ÙK?�¤TÛˆ�¿³�tLÒìî&c#PU¥?°?¼Dc÷ˆ·K Ê¿n�kõ[Ì.ÞJa
ÃOöH°r&�E?é?NA�Ñ??9�P??ÀòBM
	a�ó|�˝?:ÍÅnÀ�?h6	y½?Ö%Ã?�^?�rõùª½?_hû¾§?�?õ/I
ïòz»ÀWÚ¼åØ«$?M�n
�z[?ìë!4d;oÛEð³û=©5

	È?�š‘�ü?º"¡¼wïÃ��yÜÝ�?�Ði?d˜D˘µ]?ñ¼Ë¶??LþFÕÕIW]³Jfë˚Ü}¾	`Çû-èUµg¢®±_Gûôt6!�0öÊä¶Ó??ˇ?
	"¯�ÿF˚º?øõ[C¥˚šèB½*ø?²åÖé˚�x
ù¿Åòk??ú?ÀˆÍ±�Ì=+í
	4�?95}�j¡?�?v«ÐÞ7�m\¸?JZ_ ò“îû]##��?Î�?V˛8²�}ÜËJÊn2P~ÃÄ?P§??¼"¼js�
	¥HîÑXòýî¡Ø��???ïm§�ô?Ö©YjÙ�WX×�¿Cÿ�šˆÑ¡VS*§=¯hº�?JÝîbÀ²bNz?³}
	Êm�»öÙ¼]6i-,ÖE6èäÌË?rˇzÚ?°?Á¹Uªüå2iÜ?i?fÄnÑÕöH A$Ù¥ë£õY?{ºÍ6{Ç��
	ÕüÅ??Ð�üt# °û?¥?É¬S³w�|+Hrq"S.ÇäMÌr'*ˇ,�;4èT?ÑoJÐ^ý?’¹
	l|é¦??â˝üÚÑ<4 é�1åÂ?-÷L?OÈê;š|ÐÙ¬u?Q¾ô%ñ�°
1¬Ø©¢,vQªÇ¹�º
	q?|ˇíPëýQ?NÓJ2Uß¢z¦jˆ®Úëq¯‘?IÌ?3Íå’?¬Ec1’|�?¾¨$|ËÔy·ï�
	Ú˜yûˆ29a&-WSÇª×�NÎµ1hº=®Æ!�é?M�
M�-��sè±l˛±¼în?©?¢??Mn�*�a
	§�!Ð£'É1ô�?��??Æ�E�m[ÁùR�èˇ=.\�°7£Q
T×¬?C"Áu,·Þb?8êxF�
	?ü#a~?br®×"H	êðG˝‘\��Ú¢Ò?	¾U¾®øh�PÎ�e9�j“�-2ì�.V0©° 	\Ø??-òì˚ì:��}¯<Tô\¼��ÎÎ6¿<7y8�9"8BÅ??�??Bñý7ÿ,
�;6i�Q!pm}

	~ÎÜ!�ï´äÕ|@?Ñë[é83?³%Ö¸ÑØ’2¼*ÂÒËÏ�ñ�æ��j�ÂYrq÷’?
	�ñ�»þÅ½.
?«SPvFÞZÞ?
?�ß÷?�’±î¼*g_i[Ò?mÏ˘v@�?¦*¥\?÷ÖÚ²�«Hb?4DÂ!¸
	'�×|»VZâ
¿Â�FI?Ðˆ??B�#??_O#0sø�g˙_�@?£?�øâ�*?X˜=Ïv»˘Ò86Èú àÏ

	:/¸??Ù¬“�?þ�ˇe�pñ3J°wÃ˚?2T�
	G?¡^q?V�æ*“�8Î˚*Õb~%ãK�h�á?�²?à¤%&“F?�ˇ|?îò˘¬?ˆ�}ô["	v˝[5L?à\
	Ý<×,Ñ-%ªéüL�ÞN?C?�+?ð?9ÐPÑk{ý;æch’��˜Á?ÚsÄ�ä=êø˙�ùS¼�H?ÄQÌ?L
?@$¢º?mÜ
Â°?³h!Ì"±&
	Ó�?Nð?!?�&?�?Sv'²ó�.Ý?˜ê³_[‘Ç{ø??Ö!q.²ê_DG\w¶\^çäl??˚˚?'?¹7kR��
	Úÿw#F£îªÊqÁ'÷?Ö˛7U�p±‘4�V�
Òhý?rÅÛ?´˝ý#zí¢§/ô_?2˝*7»è%

	ª�NëH?ÂÌ{?»B?Ú½urYX?¬ýê#ú²u]Ð3«?i�
 +?-?.q@AÛ,fˇik S%å¦¢Ê;'� ?pQS-,Å_?iÛ˙k?mäÜ¦,"� ððûHãñ
	´?¥ç£ vÁ�EÎrJ.«�,,jG²Wÿ+¦\�r
	,?%zÕBÌ�.$¼
pšÒ“ªAu¹�ÜÁkíá-s

	?*nÌ
�b×??ˆ¥ö¥?ªFsù-??A˘k$õ?gÀî˜U
~1
	½Ð˛¿WS¯?˛0â�\�Ä¹�?I÷ÑÉ¼?NY-æËÅ¬

	d¤?È	øé�ÐßL?|&KU·�gq¸²^?Ñ{ÑÝJ¯?ôÝÄ:·ÑÊ�5�?�ï²
	ß??KmÁõ� B

XD¬z|@ô�kÑ?M
ô=E?½Q�!!ø�°üF
	w±°,?ó‘®¥FßAþAÔÅVe?K?�iÌr�ñÅíuÝàÌ�N�Ç¯û¾�6#ñi˝?q?�˚³"ê
æ¡ÍÒ�?u×˜=ß÷

	^ýJ¨µÓbj¸Ù²^72ÈËó]ºÐ8UD˘�Ú¹^?ÙY�
å’??�˙�§äm�]O?T»
	??Ò8�¸�“7æ¾¤a*1dÚa?@ímºýö?þ ´�©�¦Ú¹��Èo�ÇÝk?Ý?F�â�_?�<réó¯
	¶«ÜG/b5}�´#?ËØ�?{?f	[�Z��¨XË�ó&-è¦§CÏ�jj¯¸ÈÕm
	*Õä??�?�9��A§göMR?8Éº«�L�â��¾�QÜÕ˝<ÿ#8?æ/½?�
	?c¶<��ü“ê@�ÄÉ�²\ç%ä?Ü�ü�4˘?�	£ó½'�?9ß
	Nh]ìåX]T?Ðk�èo‘ûd?Çë�B¹òL�ÖðQ?ð³¡õ?Û?�&�
IKüoÙþ¸?à¢1M6v~UW£_´f

	¨ß0E!‘ÍÑû�èK??F"}»t÷vP��çs�²SSyÿÈÒwß˘Î?šÈ	??GË»x?É��âL�¢YÚþxY^èÁnÌJ7GFpˆ

	û�9D«'®ór�s-~ûwÂ2?�iç�« ¥+?�Q¿`ˆßlàdD/Û3ˇSîV±�Fd
	FñV¸ì¯�,´»?åÇL�â�??N?½Ú*ÙˆÜ � ?òˇsã9	iò?˜2šYY#&JÕA�æ
	ìî�ãç§ü�m˜ðd	jyuzQXôV©ô?˜²Q·{¾�çT��b~·×^³Êâ77ä @Õ#¾�Ù
	ªÆ�?˛°7ç�?
?½ˆH[ü?Mn?OÃ¼;¶^lˆìnó?3µ�n?ˆw}cDoG`ñ˝gn;b�Ð¹~-w
	Eú?»³vâÚ?ôZ{$
©“"?�+?L¬˙�ç?ÎM�7¿â�íc4?¢˝
	p´×¥N?˘ßßd<?9µDt÷qÉ¡7?úÛ!�xß8˝«O1'�Þ˛ˇnéð@l;&ôk˘'ö·?<�«Û?ÎwÈ?_Õšt"�ÊÁ/�ó�¬'J

	òÿç*«PÀ�Çw?º,P?!
	nÆÜ?¥BüD?ˆé3EÖ?á?

	l¼z§K?ôÀà¨z?²Ë�
âö¨î¶?EtBÐÕGùþ~Úé
	!Èo»ÕD˛Ò/��NqFô2ÙË?&¶íÊ
�
	??~�Ô�u#·˙ÇgÓé¯Mo�e�Xº3ëªCD�I`XA�¨O��X@5¯%˘!i&Ü?�Q
	?õ<¡õ�þ·O½to78EF {=Ù??"??\Ù_'ÓÁ˚tÞO?Þ�?šX??ô¨	 ¿ªç¼Ê7F«çÕ.n²Eõ�rio�
C
˛³???˝ßôï
Ë˛éþ×ô�?íÿfúaBÃ?]·a?#ýH£%ø
	;ÃýãßxÚ?yÀ'’“˘#©`Ö§�?
	"-ð~:?´˙³·�¸Ë£ˆJÌæ<½?@~b˝b?;
	±�±9ìÒ©�¶�¼±
	�9?¬
	yéÃß
	î8{Æ
	��µ|
	Õ®P?
	îG?
	?I˝ú
	°½F@
	ÎáK¢
	ªÇÓ»
	$¼B
	?M/?
	���¢
	uDp0
	H¾wS
	Ï�^I
	×�ìF
	 �Ö?
	¹D?µ
	ú?¨ï
	ÀÚ?ñ
	g£º2
	§÷£²
	?*@Í
	氻

	ºa|�@²?c'˙?¹²í?Ìz�´?Úcú?LUqLÛêg¼I¾wˇ§gBéhXÏvQ»øy?9¹*Îä?˝?*?Ùeð\�rûüÁ?¯×�

