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A New Approach to Digital PID Controller Design

L. H. Keel, J. I. Rego, and S. P. Bhattacharyya

Abstract—In this note, we present a new approach to the problem of
designing a digital proportional-integral-derivative (PID) controller for a
given but arbitrary linear time invariant plant. By using the Tchebyshev
representation of a discrete-time transfer function and some new results
on root counting with respect to the unit circle, we show how the digital
PID stabilizing gains can be determined by solving sets of linear inequali-
ties in two unknowns for a fixed value of the third parameter. By sweeping
or gridding over this parameter, the entire set of stabilizing gains can be
recovered. The precise admissible range of this parameter can be predeter-
mined. This solution is attractive because it answers the question of whether
there exists a stabilizing solution or not and in case stabilization is possible
the entire set of gains is determined constructively. Using this character-
ization of the stabilizing set we present solutions to two design problems:
1) maximally deadbeat design, where we determine for the given plant, the
smallest circle within the unit circle wherein the closed loop system charac-
teristic roots may be placed by PID control and 2) maximal delay tolerance,
where we determine, for the given plant the maximal-loop delay that can
be tolerated under PID control. In each case, the set of controllers attaining
the specifications is calculated. Illustrative examples are included.

Index Terms—Deadbeat control, digital PID controller, stability,
Tchebyshev representation.

I. INTRODUCTION

There is renewed interest in proportional-integral-derivative (PID)
controllers (see [1], [2]) because of two reasons. First, they are exten-
sively used in applications in all industries (see [3], [4, Ch. 6]). Second,
despite the existence of some results [5], [6] modern optimal control
methods are not suitable to deal with fixed structure and fixed order
controllers (see [7, p. 3]). Thus, there is much that remains to be done
to modernize PID design methods.

Here, we develop some new results on discrete time PID controllers.
First, the complex plane image of a real polynomial or rational func-
tion over a circle of radius� centered at the origin, is determined and
expressed in terms of Tchebyshev polynomials [8]. In [9], Tchebyshev
polynomials are used in robust control problems related to discrete time
systems. They have also been used to develop a discrete time version
of Foster’s theorem and subsequently used to give necessary and suf-
ficient conditions for Schur stability [10], [11]. In this note, a formula
is first developed for root counting with respect to circular regions in
terms of this Tchebyshev representation. This formula which differs
from the root counting formulas given in[12], [13] is an extension of
an initial result presented in [14], and constitutes the generalization of
Hermite Bieler type results for Schur stability. Using these results, we
show how the PID controller can be reparametrized so that the stabi-
lizing set is obtained as the solution of sets of linear inequalities in two
variables for a fixed value of the third variable. The admissible range of
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this third variable can be exactly determined. By sweeping or gridding
over the third variable, the complete stabilizing set can be determined
constructively. The solution shows that the stabilizing set for any plant,
when it is nonempty, consists of unions of convex polygons in the space
of the PID gains.

The aforementioned solution technique is extended to solve two pre-
viously unsolved design problems. The first problem is related to dead-
beat control wherein one places all closed loop characteristic roots at
the origin so that the transients are zeroed out in a finite number of
steps. In general, deadbeat control is not possible using PIDs and a rea-
sonable goal is to place the closed loop characteristic roots as close to
the origin as possible so that the transient error decays quickly. Such
designs have been advocated in the literature on sampled data control
systems (see specifically [15, p. 292]). We show how the stabilization
solution obtained by us can be exploited to give a constructive deter-
mination of such “maximally” deadbeat designs. The second problem
involves the determination of the maximum delay in the loop that a
given plant under PID control can be made to tolerate. We show how
our solution can also be extended to determine this maximum delay for
a given plant.

II. TCHEBYSHEVREPRESENTATION ANDROOT CLUSTERING

The stabilization results to be developed later in the note require
us to determine the complex plane image of polynomials and rational
functions on a circle of radius� centered at the origin.

A. Tchebyshev Representation of Real Polynomials and Rational
Functions

Let us consider a polynomialP (z) = anz
n + � � � + a0 with real

coefficients. The image ofP (z)evaluated on the upper half of the circle
C� of radius�, centered at the origin is

P (z) : z = �e
j�
; 0 � � � � : (1)

It is well known ([8, p. 71]) that, withu = � cos �,

P (�ej�) =R(u; �)+j
p
1�u2T (u; �) = : Pc(u; �) (2)

where

R(u; �) = ancn(u; �)+an�1cn�1(u; �)+� � �+a1c1(u; �)+a0

T (u; �) = ansn(u; �)+an�1sn�1(u;�)+� � �+a1s1(u; �)

and

ck(u; �) = �
k
ck(u); sk(u; �) = �

k
sk(u); k = 0; 1; 2 . . .

andck(u) andsk(u) are real polynomials inu satisfying the recursive
relations

sk(u) = � c0k(u)

k
; k = 1; 2; . . . (3)

ck+1(u) = � uck(u)� (1� u
2)sk(u); k = 1; 2; . . . (4)

and are known as the Tchebyshev polynomials of the first and second
kind, respectively. The complex plane image ofP (z) asz traverses the
upper half of the circleC� can be obtained by evaluatingPc(u; �) asu
runs from�1 to+1.

Now, letQ(z) be a ratio of two real polynomialsP1(z) andP2(z).
We compute the image ofQ(z) onC� and write it as the corresponding
Tchebyshev representationQc(u; �) as follows. Let

Pi(z)j
z=��u+j�

p
1�u

= Ri(u; �) + j
p
1� u2Ti(u; �) (5)
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for i = 1; 2. Then, it is easy to show that

Q(�ej�) =

R(u;�)

R1(u; �)R2(u; �)+(1� u2)T1(u; �)T2(u; �)

R2
2(u; �)+(1� u2)T 2

2 (u; �)

+j

p
1�u2

T (u;�)

(T1(u; �)R2(u; �)�R1(u; �)T2(u; �))

R2
2(u; �)+(1�u2)T2

2 (u; �)

= : Qc(u; �): (6)

This representation will be needed in a later section on the solution of
the maximally deadbeat problem.

B. Interlacing Conditions for Root Clustering and Schur Stability

The formulas of the last section can be used to derive conditions for
root clustering in circular regions, that is for the roots to lie strictly
within a circle of radius�. For Schur stability we simply take� = 1.
As before letP (z) be a real polynomial of degreen and

P (�ej�) = �R(�; �) + j �T (�; �) = R(u; �) + j
p
1� u2T (u; �) (7)

whereu = � cos �, andR(u; �) andT (u; �) are real polynomials of
degreen andn � 1, respectively, inu, for fixed �.

Theorem 1: P (z) has all its zeros strictly withinC� if and only if

1) R(u; �) hasn real distinct zerosri, i = 1; 2; � � � ; n in (�1,1);
2) T (u; �) hasn � 1 real distinct zerostj , j = 1; 2; � � � ; n � 1

in (�1,1);
3) the zerosri andtj interlace

�1 < r1 < t1 < r2 < t2 < � � � < tn�1 < rn < +1:

Proof: Let tj = � cos�j , �j 2 (0; �), j = 1; 2; . . . ; n� 1 or

�j = � cos�1 tj ; j = 1; 2; . . . ; n� 1 �0 = 0; �n = �

and let�i = � cos�1 ri, i = 1; 2; . . . ; n, �i 2 (0; �).
Then,(�0; �1; � � � ; �n) are then + 1 zeros of �T (�; �) = 0 and

(�1; �2; � � � ; �n�1) are then zeros of�R(�; �) = 0. The condition (c)
means that�i and�j satisfy:

0 = �0 < �1 < �1 < �2 < � � � < �n�1 < �n = �: (8)

Conditions 1)–3) imply that the plot ofP (�ej�) for � 2 [0; �] turns
counterclockwise through exactly2n quadrants and this condition is
equivalent toP (z) havingn zeros inside the circleC�. 555

III. ROOT COUNTING FORMULAS

A. Phase Unwrapping and Root Distribution

Let �P (�) := ArgP(�ej�) denote thephaseof P (z) evaluated at
z = �ej� and let��

� [�P (�)] denote the net change in orunwrapped
phaseof P (�ej�) as � increases from�1 to �2. Similarly notation
applies to the rational functionQ(z) with Tchebyshev representation
QC(u; �): let �Q (u) = ArgQC(u; �) denote the phase ofQC(u; �)
and�u

u [�Q (u)] the net change in or unwrapped phase ofQC(u; �)
asu increases fromu1 to u2.

Lemma 1: LetP (z) havei roots in the interior of the circleC� and
no roots on the circle. Then

��
0 [�P (�)] = �i:

Proof: From geometric considerations it is easily seen that each
interior root contributes2� to �2�

0 [�P (�)] and, therefore, because of
the symmetry of roots about the real axis the interior roots contribute
i� to ��

0 [�P (�)]. 555
We state the corresponding result for a rational function. The proof

is similar to the previous lemma and is omitted.

Lemma 2: Let Q(z) = (P1(z))=(P2(z)) where the real polyno-
mialsP1(z) andP2(z) havei1 andi2 roots, respectively, in the interior
of the circleC� and no roots on the circle. Then

��
0 [�Q(�)] = �(i1 � i2) = �+1

�1 [�Q (u)] :

B. Root Counting and Tchebyshev Representation

Let us begin with a real polynomialP (z) and its Tchebyshev repre-
sentationPC(u; �) = R(u; �)+

p
1� u2T (u; �) as developed before.

Henceforth, let 31t1; . . . ; tk denote the real distinct zeros ofT (u; �)
of odd multiplicity, foru 2 (�1; 1), ordered as follows:

�1 < t1 < t2 < � � � < tk < +1:

Suppose also thatT (u; �) hasp zeros atu = �1 and letf i(x0) denote
theith derivative tof(x) evaluated atx = x0. Let us also define

Sgn[x] =
�1 if x < 0

0 if x = 0

1 if x > 0:

We begin with the following.
Theorem 2: Let P (z) be a real polynomial with no roots on the

circle C� and suppose thatT (u; �) hasp zeros atu = �1. Then, the
number of rootsi of P (z) in the interior of the circleC� is given by

i =
1

2
Sgn T (p)(�1; �) (Sgn[R(�1; �)]

+2

k

j=1

(�1)jSgn[R(tj ; �)] + (�1)k+1Sgn[R(+1; �)] : (9)

Proof: Recall thatP (�ej�) = �R(�; �)+ j �T (�; �) and define�i,
i = 1; � � � ; k throughti = � cos �i, for �i 2 [0; �]. Let �0 := 0,
t0 := �1 and�k+1 := �, and note that the�i, i = 0; 1 . . . ; k + 1 are
zeros of�T (�; �). The proof depends on the following elementary and
easily verified facts which are first stated. (In the following,�+i denotes
the point immediately to the right of�i).

(a)��
0 [�(�)] = �i

(b) ��
0 [�(�)] = ��

0 [�(�)] + ��

� [�(�)] + � � �+��
� [�(�)]

(c) �
�

� [�(�)] =
�

2
Sgn �T �+i ; � Sgn �R(�i; �)

�Sgn �R(�i+1; �) ; i = 0; 1; . . . ; k

(d) Sgn �T �+i ; � = �Sgn �T �+i+1; � ; i = 0; 1; � � � ; k
(e) Sgn �T (0+; �) = Sgn T (p)(�1; �)

(f) Sgn �R(�i; �) = Sgn[R(ti; �)] ; i = 0; 1; � � � ; k:
Using (a)–(f), we have

�i =��
0 [�(�)]

=��
0 [�(�)] + � � �+��

� [�(�)] by (a) and (b)

=
�

2
Sgn �T (0+; �) Sgn �R(0; �) � Sgn �R(�1; �)

+ � � �+ Sgn �T (�+k ; �) Sgn �R(�k; �)

� Sgn �R(�; �) by (c)

=
�

2
Sgn �T 0+; � Sgn �R(0; �) � Sgn �R (�1; �)

� Sgn �R (�1; �) � Sgn �R (�2; �) + � � �+ (�1)k

� Sgn �R (�k; �) � Sgn �R(�; �) by (d)

=
�

2
Sgn[T (p)(�1; �)] Sgn �R(0; �) � 2Sgn �R(�1; �)

+ 2Sgn �R(�2; �) + � � �+ (�1)kSgn �R(�k; �)

+(�1)k+1Sgn �R(�; �) by (e)
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=
�

2
Sgn T (p)(�1; �) fSgn[R(�1; �)]� 2Sgn[R(t1; �)]

+2Sgn[R(t2; �)] + � � �+ (�1)k2Sgn[R(tk; �)]

+(�1)k+1Sgn[R(+1; �)] by (f)

from which the result follows. 555
The previously derived result can now be extended to the case of ra-

tional functions. LetQ(z) = (P1(z))=(P2(z)) wherePi(z), i = 1; 2
are real rational functions. LetRi(u; �) + j

p
1� u2Ti(u; �), i =

1; 2 denote the Tchebyshev representations ofPi(z), i = 1; 2 and
QC(u; �) denote the Tchebyshev representation ofQ(z) on the circle
C�. LetR(u; �), T (u; �) be defined by

R(u; �) =R1(u; �)R2(u; �) + (1� u2)T1(u; �)T2(u; �)

T (u; �) =T1(u; �)R2(u; �)�R1(u; �)T (u; �):

Suppose thatT (u; �) hasp zeros atu = �1 and lett1 � � � tk denote the
real distinct zeros ofT (u; �) of odd multiplicity ordered as follows:

�1 < t1 < t2 < � � � < tk < +1:

Theorem 3: Let Q(z) = (P1(z))=(P2(z)) wherePi(z), i = 1; 2
are real polynomials withi1 andi2 zeros, respectively, inside the circle
C� and no zeros on it. Then

i1 � i2 =
1

2
Sgn T (p)(�1; �) (Sgn[R(�1; �)]

+2

k

j=1

(�1)jSgn[R(tj ; �)] + (�1)k+1Sgn[R(+1; �)] : (10)

Proof: The proof is based on the representation ofQC(u; �) de-
veloped in (6). Since the denominator of (6) is strictly positive for
u 2 [�1;+1], it follows that the phase unwrapping can be computed
from the numerator. The rest of the proof is similar to the proof for the
polynomial case and is left to the reader. 555

IV. PARAMETER SEPARATION AND STABILIZATION WITH

PID CONTROLLERS

Consider the control system in unity feedback configuration wherein
the plant is a represented by its discrete time transfer functionG(z) =
(N(z))=(D(z)) with N(z),D(z) being polynomials with real coeffi-
cients and with degreeD(z) = n and degreeN(z) � n. The closed
loop system is stable iff the characteristic polynomial, denoted by�(z),
is Schur stable. The general formula of a discrete PID controller, using
backward differences to preserve causality, is

C(z) =KP +KIT � z

z � 1
+
KD

T
� z � 1

z

=
KP +KIT + K

T
z2 + �KP � 2K

T
z + K

T

z(z � 1)
:

Therefore, we can use

C(z) =
K2z

2 +K1z +K0

z(z � 1)
(11)

where

KP = �K1 � 2K0 KI =
K0 +K1 +K2

T
KD =K0T: (12)

The characteristic polynomial becomes

�(z) = z(z � 1)D(z) + K2z
2 +K1z +K0 N(z): (13)

Multiplying the characteristic polynomial byz�1N(z�1), we have

z�1�(z)N(z�1) = (z � 1)D(z)N(z�1)

+(K2z +K1 +K0z
�1)N(z)N(z�1):

Using the Tchebyshev representations, we have

z�1�(z)N(z�1) =� (u+ 1)P1(u)� (1� u2)P2(u)

� [(K0 +K2)u�K1]P3(u)

+ j
p
1� u2 [�(u+ 1)P2(u)

+P1(u) + (K2 �K0)P3(u)]

=R(u;K0; K1; K2)

+ j
p
1� u2T (u;K0; K2):

Now, let K3 := K2 � K0 and rewriteR(u;K0; K1; K2) and
T (u;K0; K2) as follows:

R(u;K0; K1; K2) =�(u+1)P1(u)�(1�u2)P2(u)
�[(2K2�K3)u�K1]P3(u) (14)

T (u;K3) =P1(u)�(u+1)P2(u)+K3P3(u): (15)

We observe the parameter separation previously achieved:K3 appears
only in the imaginary part andK1, K2, K3 appear linearly in the real
part. Thus, by applying root counting formulas to the rational func-
tion on the left, and imposing the stability requirement yields linear
inequalities in the parameters for fixedK3. The solution is completed
by sweeping over the range ofK3 for which an adequate number of
real rootstk exist. We illustrate with an example.

Example 1:

G(z) =
1

z2 � 0:25
Then

RD(u) = 2u2 � 1:25; TD(u)=�2u; RN(u)=1; TN (u)=0

P1(u) = 2u2 � 1:25; P2(u)=�2u; P3(u)=1:

Recall (14). SinceG(z) is of order 2 andC(z), the PID controller, is
of order 2, the number of roots of�(z) inside the unit circle is required
to be 4 for stability. From Theorem 2

ii � i2 = (i� + iN )

i

� (l+ 1)

i

(16)

wherei� andiN are the numbers roots of�(z) and the reverse poly-
nomial ofN(z), respectively, andl is the order ofN(z). Since the
requiredi� is 4, iN = 0, andl = 0, i1 � i2 is required to be 3. To
illustrate the example in detail, we first fixK3 = 1:3. Then, the real
roots ofT (u;K3) in (�1, 1) are�0.4736 and�0.0264. Furthermore,
Sgn[T (�1)] = 1, and from Theorem 2,i1 � i2 = 3 requires that

1

2
Sgn[T (�1)] (Sgn[R(�1)]� 2Sgn[R(�0:4736)]

+2Sgn[R(�0:0264)]� Sgn[R(1)]) = 3:

In this example, we have Sign[R(tj)], j = 0; 1; 2; 3, and each
Sign[R(�)] may assume the value+1 or�1 since 0 is excluded as we
are testing for stability. This leads to24 = 16 possible strings which
need to be tested. In general, it is easy to devise a sorting algorithm to
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Fig. 1. Stability regions in (K ,K ,K ), and (K ,K ,K ) spaces.

pick out the feasible strings. Here, we have only one valid sequence
satisfying the aforementioned equation, namely

Sgn[R(�1)] Sgn[R(�0:4736)] Sgn[R(�0:0264)]
1 �1 1

Sgn[R(1)] 2(i1 � i2)

�1 6:

From this valid sequence, we have the following set of linear inequali-
ties:

�1:3+K1+2K2 >0 � 0:9286+K1+0:9472 < 0

1:1286+K1+0:0528K2 >0 � 0:2+K1 � 2K2 < 0:

This set of inequalities characterize the stability region in (K1, K2)
space for the fixedK3 = 1:3. By repeating this procedure for the range
of K3, we obtain the the stability region shown in the left of Fig. 1.
Consider the following relation:

KP

KI

KD

=

�2 �1 0
1

T

1

T

1

T

T 0 0

K0

K1

K2

=

�2 �1 0
1

T

1

T

1

T

T 0 0

0 1 �1

1 0 0

0 1 0

K1

K2

K3

:

Using this relation, we plot the stabilizing region in (KP , KI , KD)
space in the right of Fig. 1.

Remark 1: From (16) and Theorem 2, it is clear that a necessary
condition for stabilization is thatT (u;K3) must have two real zeros
in (�1, 1). In this example, this specifies the admissible range ofK3

to be (�0.75, 1.5). In a like manner, the range ofK3 can always be
predetermined from the requirement on the number of real roots of
T (u;K3).

Remark 2: An alternative approach to determine the stabi-
lizing set is via D-decomposition. In this approach, one sets
�(ej�; KP ; KI ; KD) = 0 and determines the corresponding solution
surfaces in the (KP , KI , KD) space. These surfaces partition this
space into disjoint open regions each with a fixed number of roots in
the interior of the unit circle. The stabilizing regions will then have to
be picked out by testing an arbitrary point from each region. On the
other hand, our approach directly determines the stabilizing regions.

V. MAXIMALLY DEADBEAT CONTROL VIA PID CONTROLLERS

An important design technique in digital control is deadbeat control
wherein one places all closed-loop poles at the origin. If this is used in
conjunction with integral control the tracking error is zeroed out in a
finite number of sampling steps. Deadbeat control requires in general
that we be able to control all the poles of the system. However, such
a pole placement design is in general not possible when a lower order
controller is used. Thus, we are motivated to design a PID controller
that places the closed-loop poles as close to the origin as possible. The
transient response of such a system will decay out faster than any other
design and therefore the fastest possible convergence of the error under
PID control will be achieved.

The design scheme to be developed will attempt to place the closed
loop poles in a circle of minimum radius�. LetS� denote the set of PID
controllers achieving such a closed loop root cluster. We show below
howS� can be computed for fixed�. The minimum value of� can be
found by determining the value�� for which S� = � but S� 6= �,
� > ��.

Now, let us again consider the PID controller

C(z) =
K2z

2 +K1z +K0

z(z � 1)
(17)

and the characteristic polynomial

�(z) = z(z � 1)D(z) + (K2z
2 +K1z +K0)N(z): (18)

Note that

D(z)j
z=��u+j�

p
1�u

=RD(u; �)+j
p
1�u2TD(u; �)

N(z)j
z=��u+j�

p
1�u

=RN (u; �)+j
p
1�u2TN(u; �)

and

N(�2z�1)j
z=��u+j�

p
1�u

=N(z)j
z=��u�j�

p
1�u

=RN(u; �)�j
p
1�u2TN(u; �):

We now evaluate

�
2
z
�1
�(z)N(�2z�1) = �

2
z
�1
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Fig. 2. Stability regions with� = 0:275 and closed-loop poles of the selected PID gains.

Fig. 3. Maximally deadbeat design and arbitrary stabilization.

� z(z � 1)D(z) + (K2z
2 +K1z +K0)N(z)

�(z)

N(�2z�1)

over the circleC�

�
2
z
�1
�(z)N(�2z�1)

z=��u+j�
p
1�u

= � �
2(�u+ 1)P1(u; �)

� �
3(1� u

2)P2(u; �)� (K0 +K2�
2)

��u�K1�
2
P3(u; �)

+ j
p
1� u2 �

3
P1(u; �)� �

2(�u+ 1)P2(u; �)

+(K2�
2 �K0)�P3(u; �)

where

P1(u; �) =RD(u; �)RN(u; �) + (1� u
2)TD(u; �)TN (u; �)

P2(u; �) =RN(u; �)TD(u; �)� TN (u; �)RD(u; �)

P3(u; �) =R
2
N (u; �) + (1� u

2)T 2
N(u; �):

By letting

K3 := K2�
2 �K0 (19)

we have

�
2
z
�1
�(z)N(�2z�1)

z=��u+j�
p

1�u

= � �
2(�u+ 1)P1(u; �)

� �
3(1� u

2)P2(u; �)� (2K2�
2 �K3)

��u�K1�
2
P3(u; �)

+ j
p
1� u2 �

3
P1(u; �)� �

2(�u+ 1)P2(u; �)

+K3�P3(u; �)] :

To determine the set of controllers achieving root clustering inside
a circle of radius�, we proceed as before: FixK3, use the root
counting formulas of Section IV, develop linear inequalities inK2,
K3 and sweep over the requisite range ofK3. This procedure is then
performed as� decreases until the set of stabilizing PID parameters
just disappears. The following example illustrates this scheme.

Example 2: We consider the same plant used in Example 1. Fig. 2
(left) shows the stabilizing set in the PID gain space at� = 0:275.
For a smaller value of�, the stabilizing region in PID parameter space
disappears. This means that there is no PID controller available to push
all closed loop poles inside a circle of radius smaller than 0.275. From
this we select a point inside the region that is:K0 = 0:0048, K1 =
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�0:3195, K2 = 0:6390, andK3 = 0:0435. From the relationship in
(19), we have

KP

KI

KD

=

�1 �2�2 2
1

T

�

T
+ 1

T
�

1

T

0 �2T �T

K1

K2

K3

=

0:3099

0:3243

0:0048

:

Fig. 2 (right) shows the closed-loop poles that lie inside the circle of
radius� = 0:275. The roots are0:2500 � j0:1118 and0:2500 �
j0:0387.

To illustrate further, we select several sets of stabilizing PID param-
eters from the set obtained in Example 1 (i.e.,� = 1) and compare the
step responses between them. Fig. 3 shows that the maximally dead-
beat design produces nearly deadbeat response.

VI. M AXIMUM DELAY TOLERANCE DESIGN

In some control systems an important design parameter is the delay
tolerance of the loop, that is the maximum delay that can be inserted
into the loop without destabilizing it. In digital control a delay ofk
sampling instants is represented byz�k. We use this to determine the
maximum delay that a control-loop under PID control can be designed
to tolerate. This gives the limit of delay tolerance achievable for the
given plant under PID control.

Let the plant beG(z) = (N(z))=(D(z)). We consider the problem
of finding the maximum delayL� such that the plant can be stabilized
by a PID controller. In other words, finding the maximum values ofL�

such that the stabilizing PID gain set for the plant

z�LG(z) =
N(z)

zLD(z)
; for L = 0; 1; . . . ; L� (20)

is not empty. LetSi be the set of PID gains that stabilizes the plant
z�iG(z). Then, it is clear that

\
L
i=0Si stabilizesziG(z) for all i = 0; 1; . . . ; L: (21)

VII. CONCLUDING REMARKS

In this note, we have given a solution to the problem of stabilization
of a digital control system using PID controllers. The solution is com-
plete in the sense that a constructive yes or no answer to whether stabi-
lization is possible, is given and in case it is possible the entire set is de-
termined by solving sets of linear inequalies in two variables obtained
by gridding over the third variable. This approach is akin to the geo-
metric approach to synthesis and design advocated in [16]. These solu-
tion sets open up the possibility of improved and optimal design using
PID controllers. The questions of loop shaping, time domain response
shaping, and robust designs are important candidates for research.
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Stability Analysis of Swarms

Veysel Gazi and Kevin M. Passino

Abstract—In this note, we specify an “individual-based” contin-
uous-time model for swarm aggregation in -dimensional space and
study its stability properties. We show that the individuals (autonomous
agents or biological creatures) will form a cohesive swarm in a finite time.
Moreover, we obtain an explicit bound on the swarm size, which depends
only on the parameters of the swarm model.

Index Terms—Biological systems, multiagent systems, stability analysis,
swarms.

I. INTRODUCTION

For a long time, it has been observed that certain living beings tend
to perform swarming behavior. Examples of swarms include flocks of
birds, schools of fish, herds of animals, and colonies of bacteria. It is
known that such a cooperative behavior has certain advantages such
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