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A New Approach to Digital PID Controller Design this third variable can be exactly determined. By sweeping or gridding
over the third variable, the complete stabilizing set can be determined
L. H. Keel, J. I. Rego, and S. P. Bhattacharyya constructively. The solution shows that the stabilizing set for any plant,

when itis nonempty, consists of unions of convex polygons in the space
Abstract—in this note, we present a new approach to the problem of of the PID gams'. . . .

designing a digital proportional-integral-derivative (PID) controller for a ) The aforementlone_d solution IEChn'qu_e IS eXtende_d to solve two pre-
given but arbitrary linear time invariant plant. By using the Tchebyshev  Viously unsolved design problems. The first problem is related to dead-
representation of a discrete-time transfer function and some new results beat control wherein one places all closed loop characteristic roots at
on root counting with respect to the unit circle, we show how the digital - the origin so that the transients are zeroed out in a finite number of
PID stabilizing gains can be determined by solving sets of linear inequali- g0 ¢ |1y general, deadbeat control is not possible using PIDs and a rea-
ties in two unknowns for a fixed value of the third parameter. By sweeping . o
or gridding over this parameter, the entire set of stabilizing gains can be sonable goal is to place the closed loop characteristic roots as close to
recovered. The precise admissible range of this parameter can be predeter- the origin as possible so that the transient error decays quickly. Such
mined. This solution is attractive because it answers the question of whether designs have been advocated in the literature on sampled data control
there exists a stablll;lng solutlon‘or not and in case stab_lllzatl(_)n is possible systems (see specifically [15, p. 292]). We show how the stabilization
the entire set of gains is determined constructively. Using this character- . . . . .
ization of the stabilizing set we present solutions to two design problems: so_lutlc_)n obtained by u_s can be exploited to_ give a constructive deter-
1) maximally deadbeat design, where we determine for the given plant, the mination of such “maximally” deadbeat designs. The second problem
smallest circle within the unit circle wherein the closed loop system charac- involves the determination of the maximum delay in the loop that a
teristic roots may be placed by PID control and 2) maximal delay tolerance,  given plant under PID control can be made to tolerate. We show how

where we determine, for the given plant the maximal-loop delay that can o) | <1ition can also be extended to determine this maximum delay for
be tolerated under PID control. In each case, the set of controllers attaining

the specifications is calculated. lllustrative examples are included. a given plant.

Index Terms—Peadbeat control, digital PID controller, stability,
Tchebyshev representation. Il. TCHEBYSHEV REPRESENTATION ANDROOT CLUSTERING

The stabilization results to be developed later in the note require
us to determine the complex plane image of polynomials and rational
functions on a circle of radius centered at the origin.

There is renewed interest in proportional-integral-derivative (PID)
controllers (see [1], [2]) because of two reasons. First, they are extén- Tchebyshev Representation of Real Polynomials and Rational
sively used in applications in all industries (see [3], [4, Ch. 6]). Secondunctions
despite the existenc_e of some resu_lts [f5], [6] modern optirr_1a| control| et us consider a polynomidP(z) = a, =" + -+ + ao with real
methods are not suitable to deal Wlth. fixed structure aqd fixed ordggefiicients. The image d?( =) evaluated on the upper half of the circle
controllers (see [7, p. 3]). Thus, there is much that remains to be d%‘peof radiusp, centered at the origin is
to modernize PID design methods. »

Here, we develop some new results on discrete time PID controllers. {P(z) 2= pe’?, 0<6< w} . (1)
First, the complex plane image of a real polynomial or rational func- .
tion over a circle of radiug centered at the origin, is determined andt IS Well known ([8, p. 71]) that, with: = — cos ¥,
expressgd in terms of.Tchebyshev polynomials [8]. In [9], TghebyshevP(peje) =R(u,p)+jVI=w2T(u,p) =: Po(u, p) )
polynomials are used in robust control problems related to discrete time
systems. They have also been used to develop a discrete time verdibgare
of Foster’s theorem and subsequently used to give necessary and suf-
ficient conditions for Schur stability [10], [11]. In this note, a formula
is first developed for root counting with respect to circular regions in
terms of this Tchebyshev representation. This formula which differs T(u,p) = ansu(u, p)Fan-15n—1(t;p)+-+arsi(u,p)
from the root counting formulas given in[12], [13] is an extension of 4
an initial result presented in [14], and constitutes the generalization of
Hermite Bieler type results for Schur stability. Using these results, we
show how the PID controller can be reparametrized so that the stabi<k (w.p) = p*ci(u), si(u,p) = p*si(u),  k=0,1,2...
lizing set is obtained as the solution of sets of linear inequalities in tv%

Mder (u) andsy (u I polynomials in satisfying th i
variables for a fixed value of the third variable. The admissible rangeg cc(u) ands () are real polynomials in satisfying the recursive

|. INTRODUCTION

(uw,p) = ancn(t, p)+an—1cn—1(u,p)+---+aici(u, p)+ao
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fori = 1,2. Then, it is easy to show that Lemma 2: Let Q(z) = (Pi(z))/(P:(z)) where the real polyno-
mials P, (z) andP»(z) havei, andi- roots, respectively, in the interior

R(u,p)
( N . ) of the circleC, and no roots on the circle. Then
,- Ri(u, p)Ra(u, p)+(1 — u”)Ti(u, p)To(u, p)
oy _ ) I . . )
Qpe’”) = RZ(u, p)+(1 — u2)T2(u. p) A [¢Q(0)] = 7(i1 —iz) = Ati [0Qc (u)].
T(u,p)
N NVI=wZ(Ti(w. p)Ro(u, p)— Ry (. p) T (u, p)) B. Root Counting and Tchebyshev Representation
J RZ2(u,p)+(1—u?)T2(u,p) Let us begin with a real polynomid?(z) and its Tchebyshev repre-
=: Q.(u,p). (6) sentationPc (u, p) = R(u, p)++/1 — v?T (u, p) as developed before.

Henceforth, let 3%, ..., t; denote the real distinct zeros &{u, p)
This representation will be needed in a later section on the solutiongfyqg multiplicity, fOI’u € (—1,1), ordered as follows:
the maximally deadbeat problem. '
1<t <ta < o <t <41

B. Interlacing Conditions for Root Clustering and Schur Stability
Suppose also that(u, p) hasp zeros att = —1 and letf* (x,) denote

The formulas of the last section can be used to derive conditions {k;th derivative tof () evaluated at = zo. Let us also define
root clustering in circular regions, that is for the roots to lie strictly

within a circle of radiug. For Schur stability we simply take = 1. -1 ifx<0
As before letP’(z) be a real polynomial of degreeand Sgriz] =40 ifa=0
P(pe") = R(8, p) + jT(8, p) = R(u,p) + VT = wZT(u,p) (7) - b el
We begin with the following.
whereu = —cos 8, andR(u, p) andT(u, p) are real polynomials of  Theorem 2: Let P(z) be a real polynomial with no roots on the
degreer andn — 1, respectively, inu, for fixed p. circle C, and suppose th&(u, p) hasp zeros atuw = —1. Then, the

Theorem 1: P(z) has all its zeros strictly withidf,, if and only if  number of roots of P(z) in the interior of the circl&, is given by
1) R(u,p) hasn real distinct zeros;,i = 1,2, ---,nin(=1,1); 1
2) T(u,p) hasn — 1 real distinct zerog;, j = 1,2,---,n —1 = ngn[T(”)(—l,p)] (Sgn[R(-1, p)]
in (—1,1);
3) the zeros; andt; interlace +2 Z 1)/ Sgn[R(t;. p)] + (—1)’°+ISgn[R(+1,p)]> )
—l<m <t <r<ta < oo <ty <7 < +1L.
Proof: Recall thatP(pe’®) = R(8, p) + jT(4, p) and defind;,

Proof: Lett; = —cosaj,a; € (0,7),j=1,2,....n—1o0r . _ 1,---,k throught; = _cosel,fore € [0,7]. Letdy := 0,
a; = —cos 't j=1,2,....,n—=1 ay=0,an=m to 1= —17and9k+l := m, and note thatthe;,i =0,1...,k+ 1 are
) . ) zeros ofT'(f, p). The proof depends on the following elementary and
and letd; = —cos™ ri,i =1.2,...,n, 0 € (0,7). easily verified facts which are first stated. (In the followitig, denotes

Then, (ao, a1, -+, ) are then + 1 zeros ofT(6.p) = 0and the point immediately to the right o).
(61, B2, -+, Bn_1) are then zeros ofR(4, p) = 0. The condition (c) )
means thaty; and3; satisfy: @) A [¢(9)] = i
(0) AT [6(8)] = AG [#(0)] + Ay [6(8)] + - + AF, [5(6)]

D= <1 <a1 <P < < Bt <y =1, (8)
Conditions 1)-3) imply that the plot dP(pe’?) for 6 € [0, 7] turns © AZZH [o( H'_)] - §Sgn[ ( -0)] (San[R(#:.p)
counterclockwise through exactyn quadrants and this condition is —Sgn[R(eiH, p)]) ,i=0,1,...,k
equivalent taP(z) havingn zeros inside the circlé, . VVVY (d) Sgn[T ((,:r, p)] = —Sgn[T (9:;1 )] i=0,1,-- .k
lll. ROOT COUNTING FORMULAS (e) Sgn[T(0", p)] = Sgn[T(P)(—l,p)}
A. Phase Unwrapping and Root Distribution () Sgn[R(6:,p)] = Sgn[R(ti,p)], i =0,1,---, k.

Let¢p () := ArgP(pe’?) denote thephaseof P(z) evaluated at  Using (a)—(f), we have
z = pe’? and IetAzf [#r(#)] denote the net change in onwrapped

phaseof P(pe’?) as# increases fron¥, to .. Similarly notation :Af [o(6)] )
applies to the rational functiof (=) with Tchebyshev representation =Ap" [0(0)] +--- + A, [6(9)] Dby (a) and (b)
Qc(u,p):letoq. (u) = ArgQc(u, p) denote the phase ¢fc(u, p) =T £sgn[T(0", p)] (Sgn[R(0. p)] — Sgn[R(6:.
andAj2[¢q, (u)] the net change in or unwrapped phaséjef(u, p) 2 {SanlZ ~ g J]r( on| f))] gn{(61.)])
asu increases fromu; to u.. + -+ Sgn[T(#;, p)] (Sgn[R (b, p)]

Lemma 1: Let P(z) have: roots in the interior of the circl€, and — Sgn[ . p)])} by (c)

no roots on the circle. Then

= Tsgn[T (0%, )] {(SGn[R(0. )] ~ San[R 6. p)])
AZ [op(8)] = wi.

— (Sgn[R (61.p)] — Sgn[R (62.p)]) + -+ + (-1)*

Proof: From geometric considerations it is easily seen that each x (Sgn[R (#x. p)] — Sgn[R(, p)] )} by (d)
interior root contribute@ to A3"[¢,(4)] and, therefore, because of (0)
the symmetry of roots about the real axis the interior roots contribute = §Sgr{T (=1, )] {Sgn[R(0,p)] — 2Sgn[R(6:.p)]
w10 Adlor (0] A + 2Sgn[R(62,p)] + - + (~1)"Sgn[R(61. )]

We state the corresponding result for a rational function. The proof . B
is similar to the previous lemma and is omitted. +(-1)"" sgn[R(x. P)]} by (e)
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= ngn[T(”)(—L P)] {Sgn[R(-1, p)] — 2Sgn[R(t1, p)]
+2Sgn[R(t2, p)] + -+ + (=1)*2Sgn[R(ts. p)]
+H(=1)* ' Sgn[R(+1.p)]} by ()

from which the result follows. VVVY

689

Multiplying the characteristic polynomial by * N (z '), we have

2715(2)_7\7(371) =(z - 1)D(;/)N(271)
+(Koz+ K, + Koz D)N(z)N(z"H).

The previously derived result can now be extended to the case of ¢ing the Tchebyshev representations, we have

tional functions. Let)(z) = (Pi(z))/(FP(z)) wherePi(z),i = 1,2
are real rational functions. LeR;(u,p) + jv1 — u?Ti(u,p), i =
1,2 denote the Tchebyshev representationsgdf:), i = 1,2 and

Qc(u, p) denote the Tchebyshev representatiof)¢f ) on the circle

C,. Let R(u, p), T'(u, p) be defined by

R(u,p) = Ri(u, p)Re(u, p) + (1 = u*)Ti (u, p)T2(u, p)
T(u,p) =T1(u,p)Ra(u, p) — Bi(u, p)T(u,p).

Suppose thdf' (u, p) hasp zeros ai = —1 and lett; - - - t;, denote the

real distinct zeros df'(u, p) of odd multiplicity ordered as follows:
1<ty <ta <+ <t < +1.

Theorem 3: Let Q(z) = (Pi(2))/(P(z)) whereP;(z),i = 1,2

are real polynomials withy andi, zeros, respectively, inside the circle

C, and no zeros on it. Then
. 1
iv = i2 = 5Sgn[T") (=1, p)] (Sgn (1, p)]

k
+2) (=1)’Sgn[R(t;, p)] + <—1>"‘“sgn[R<+1.p>]> . (10

=1

Proof: The proof is based on the representatio®ef(u, o) de-

veloped in (6). Since the denominator of (6) is strictly positive for

TSN == (w4 1Py (u) — (1 — u”)Py(u)
— (Ko + K2)u — K] Ps(u)
+ V1 —u? [=(u+ 1)Ps(u)
+Pi(u) 4+ (K> — Ko)P3(u)]
= R(u, Ko, K, K>)
+ V1 — 2T (u, Ko, K>).

Now, let K5 := K. — K, and rewrite R(u, Ko, K1, K2) and
T(u, Ko, K2) as follows:

R(u, Ko, K1, Ko) =—(u+1) Py (u)— (1—u”) Py (u)
— [(2[{2 —IX’3)U,— 11,1] Ps (’lt)
T(u,K3) =Pi(u)—(u+1)Pa(u)+ K3 Ps(u).

(14)
(15)

We observe the parameter separation previously achi&edppears
only in the imaginary part and’y, K>, K5 appear linearly in the real

part. Thus, by applying root counting formulas to the rational func-
tion on the left, and imposing the stability requirement yields linear

inequalities in the parameters for fixéd. The solution is completed
by sweeping over the range &f; for which an adequate number of
real rootst;, exist. We illustrate with an example.

u € [—1,+1], it follows that the phase unwrapping can be computed Example 1:

from the numerator. The rest of the proof is similar to the proof for the 1

polynomial case and is left to the reader. VVV G(z) = 2 _0925
Then

IV. PARAMETER SEPARATION AND STABILIZATION WITH
PID CONTROLLERS

Consider the control system in unity feedback configuration wherein

the plant is a represented by its discrete time transfer function =

(N(2))/(D(z))with N(z), D(z) being polynomials with real coeffi-

Rp(u) =2u” —1.25, Tp(u)=—2u, Rxn(u)=1, Tx(u)=0
Pi(u) =2u” —1.25, Py(u)=—2u, Ps(u)=1.

cients and with degre®(z) = n and degreeV(z) < n. The closed Recall (14). Sincé&+(z) is of order 2 and”'(z), the PID controller, is

loop system is stable iff the characteristic polynomial, denotet] by,

of order 2, the number of roots 6f =) inside the unit circle is required

is Schur stable. The general formula of a discrete PID controller, usifyP€ 4 for stability. From Theorem 2

backward differences to preserve causality, is

z Ky, z-1
z—1+ T =
(Kp+ KT+ 52) 2 + (-Kp — 252) =+ 5P
2(z—=1) ’

C(z)=Kp+ K,T-

Therefore, we can use

_ G2+ Kz + Ky

C(z) = o) (11)
where
Kp= —Ki - 2K, K=ot fiths I;l + R
Kp = KoT. (12)
The characteristic polynomial becomes
8(z) = 2(z = 1)D(2) + (K22” + K1z + Ko) N(z). (13)

I, —io = (i5 + Z',Nr) — (l =+ 1) (16)
—_— ——

i1 i2

whereis andi, are the numbers roots 6fz) and the reverse poly-
nomial of N(z), respectively, and is the order ofN(z). Since the
requiredis is 4,in, = 0, andl = 0, i1 — i2 is required to be 3. To
illustrate the example in detail, we first fik; = 1.3. Then, the real
roots ofT'(u, K3) in (—1, 1) are—0.4736 and-0.0264. Furthermore,
SgriT(-1)] = 1, and from Theorem 2; — i> = 3 requires that

%Sgn[T(—l)] (Sgn[R(—1)] — 2Sgn[R(—0.4736)]
) +2Sgn[R(—0.0264)] — Sgn[R(1)]) = 3.
In this example, we have SigR(¢;)], i = 0,1,2,3, and each

Sign R(-)] may assume the valuel or —1 since 0 is excluded as we
are testing for stability. This leads 23 = 16 possible strings which

need to be tested. In general, it is easy to devise a sorting algorithm to
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Fig. 1. Stability regions inK, K>, K3), and & p, K, K p) spaces.

pick out the feasible strings. Here, we have only one valid sequence V. MAXIMALLY DEADBEAT CONTROL VIA PID CONTROLLERS
satisfying the aforementioned equation, namely

Sgn[R(—1)] Sgn[R(—0.4736)] Sgn[R(—0.0264)] Whe_rein one p_Iac_es all closed-loop poles gt the orig_in. If this is usz_ad in
1 1 1 conjunction with integral control the tracking error is zeroed out in a

finite number of sampling steps. Deadbeat control requires in general

Sgn[R(1)] 2(iy —i2) that we be able to control all the poles of the system. However, such

-1 6. a pole placement design is in general not possible when a lower order

An important design technique in digital control is deadbeat control

controller is used. Thus, we are motivated to design a PID controller
From this valid sequence, we have the following set of linear inequathat places the closed-loop poles as close to the origin as possible. The
ties: transient response of such a system will decay out faster than any other

L34+ K +2K, >0 —0.92864+ K, 40.9472 <0 PID control will be achieved.

design and therefore the fastest possible convergence of the error under

1.1286+ K14+0.0528 K, >0 —0.2+K; — 2K, < 0. The design scheme to be developed will attempt to place the closed

loop poles in a circle of minimum radiys LetS, denote the set of PID

This set of inequalities characterize the stability regionfin (K2) controllers achieving such a closed loop root cluster. We show below

space for the fixed's = 1.3. By repeating this procedure for the rangehow S, can be computed for fixeg. The minimum value op can be

of K53, we obtain the the stability region shown in the left of Fig. 1found by determining the valye* for which S, = ¢ butS, # ¢,
Consider the following relation: p>pt.

Now, let us again consider the PID controller

Kp -2 -1 0 Ko
Eol=|\z 1 7||K Koz + Kz + Ko
Kb T 0 0] |K Ce)=—"—r"7 (17)
-2 -1 0 1 -1 K
=|+ + F|]/1 0 0 K, | . and the characteristic polynomial
T 0 0 1 0 K,
o _ o o 8(2) = 2(z = 1)D(2) + (K22° + K12z + Ko)N(2). (18)
Using this relation, we plot the stabilizing region iN¢, K7, Kp)
space in the right of Fig. 1. N Note that
Remark 1: From (16) and Theorem 2, it is clear that a necessary
condition for stabilization is thaf'(u«, K3) must have two real zeros _ . , P e
in (=1, 1). In this example, this specifies the admissible rangk of D(‘()|z:—ﬂ‘u,+.]'ﬂ\/1—1:,2 =Rp(u,p)+jV1i=u?Tp(u.p)
to be (0.75, 1.5). In a like manner, the range Bf can always be N(z)| e =R (u,p)+j- /—l—’LLQTN('u‘,p)
predetermined from the requirement on the number of real roots ofd FETputiV i
T(u, K3). an

Remark 2: An alternative approach to determine the stabi-
lizing set is via D-decomposition. In this approach, one sets N(,?:~" _ — =N(z , ,
§(e’’, Kp,K;,Kp) = 0 and determines the corresponding solution R Vi Oepimspizam
surfaces in the Xp, K;, Kp) space. These surfaces partition this = Ry (u, p)=jvV1=u?Tx(u,p).
space into disjoint open regions each with a fixed number of roots in
the interior of the unit circle. The stabilizing regions will then have tdVe now evaluate
be picked out by testing an arbitrary point from each region. On the
other hand, our approach directly determines the stabilizing regionsp®z~"6(z)N(p*z~") = p° 2~
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Closed loop poles with selected PID gains

0.5
01,
¥C0.05 e g (0] R R R EN
performancefr_egion =
-0.5 :
-0.5 0 0.5
real
K 03 03 Kp
Fig. 2. Stability regions withh = 0.275 and closed-loop poles of the selected PID gains.
Maximally deadbeat response Responses with arbirary stabilizing PID
2 T T T T T
TI:1 SRR .......... .......... ..........
=1 =1
o Q
=] 5
o o
: ; 05 : : :
10 15 20 0 5 10 15 20
time time

Fig. 3. Maximally deadbeat design and arbitrary stabilization.

[z = 1)D(z) + (K22” 4+ K1z + Ko)N(2)] N(p*2~")  we have

" PN (N () j—
. < =1 - z= —pu+ty 1—u?2
over the circleC, 0, e
= —p (pu+1)Pi(u,p)
2 —lgr yarg2.—1 — 02 (1 = uHPo(u, p) — [(2K5p* — K-
Pz 8(2)N(p ) i —putip /i p’(1—u”)Pa(u,p) — [(2K2p (3)

- 2
— _ Alpu+ VP () xpu— K] Bo(u-p)

. ST — a2 (3 — 20 .
—p* (1= u®)Py(u.p) = [(Ko + K2p”) HEAGI (" i p) = 7 (pu 1) Patus )
X pu — Klpz] Ps(u,p) +85pPs (u, )]
ST — 2,3 . — 220 ) (4
+J 1’ ;1 [o _Pl(u"p) et P, p) To determine the set of controllers achieving root clustering inside
+(Kap” = Ko)pPs(u,p)] a circle of radiusp, we proceed as before: Fik's, use the root
where counting formulas of Section IV, develop linear inequalitiesiip,
K3 and sweep over the requisite rangelf. This procedure is then
performed ag decreases until the set of stabilizing PID parameters

( = 1 7 (1 — 2 { 7(1 . . . . .
Pi(u,p) = Bp(u, p) B (u, p) + (1 = w”)Ip(u; )T (u, p) just disappears. The following example illustrates this scheme.

Po(u, p) = B (u, p)To(u, p) — Tn(u, p)Rp(u, p) Example 2: We consider the same plant used in Example 1. Fig. 2
Py(u,p) = R (u. p) + (1 — u*)Tx (u, p). (left) shows the stabilizing set in the PID gain space at 0.275.
For a smaller value gf, the stabilizing region in PID parameter space
By letting disappears. This means that there is no PID controller available to push

all closed loop poles inside a circle of radius smaller than 0.275. From
K5 := Kop® — Ko (19) this we select a point inside the region thati§ = 0.0048, Ky =
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—0.3195, K, = 0.6390, and K3 = 0.0435. From the relationship in  [5] D. S. Bernstein and W. M. Haddad, “LQG control with &h., per-

(19), we have formance bound: a Riccati equation approadBEE Trans. Automat.
Contr, vol. 34, pp. 293-305, Mar. 1989.

[6] T.lwasakiand R. E. Skelton, “All fixed ordéf .. controllers: observer-

Kp -1 jQPZ 2 K 0.3099 based structure and covariance bountiSEE Trans. Automat. Contr.
K |=|+ %+4 —5||K|=]03243]. vol. 40, pp. 512-516, Mar. 1995.
Kp 0 pzT _T K, 0.0048 [7] P. Dorato, Analytic Feedback System Design: An Interpolation Ap-

proach Pacific Grove, CA: Brooks Cole, 2000.
[8] G. Pélya and G. Szeg®roblems and Theorems in Analysis [INew
Fig. 2 (right) shows the closed-loop poles that lie inside the circle of York: Springer-Verlag, 1976.
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such that the stabilizing PID gain set for the plant

_—L N\ JV(Z) g *
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is not empty. LetS; be the set of PID gains that stabilizes the plant Stability Analysis of Swarms

27'G(z). Then, it is clear that ) , ,
Veysel Gazi and Kevin M. Passino

Nk S stabilizes:'G(z) foralli = 0,1,..., L. (21)

Abstract—In this note, we specify an “individual-based” contin-
uous-time model for swarm aggregation inn-dimensional space and
study its stability properties. We show that the individuals (autonomous

VII. CONCLUDING REMARKS agents or biological creatures) will form a cohesive swarm in a finite time.
Moreover, we obtain an explicit bound on the swarm size, which depends
In this note, we have given a solution to the problem of stabilizatiashly on the parameters of the swarm model.

ofa d,'g'tal control system using P.ID controllers. The solution is com- Index Terms—Biological systems, multiagent systems, stability analysis,
plete in the sense that a constructive yes or no answer to whether staRkrms.

lization is possible, is given and in case it is possible the entire set is de-

termined by solving sets of linear inequalies in two variables obtained

by gridding over the third variable. This approach is akin to the geo- . INTRODUCTION

metric approach to synthesis and design advocated in [16]. These soly=or 4 |ong time, it has been observed that certain living beings tend
tion sets open up the possibility of improved and optimal design usigg perform swarming behavior. Examples of swarms include flocks of
PID controllers. The questions of loop shaping, time domain responsiggs, schools of fish, herds of animals, and colonies of bacteria. It is
shaping, and robust designs are important candidates for researchynown that such a cooperative behavior has certain advantages such
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