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ABSTRACT 
 
For standard industrial process control systems, blocks in a control loop are executed periodically. 
That is, the sampling data is fed to control blocks by sensors at a fixed rate. At the same rate, control 
blocks do some calculations on the inputs and send out commands to actuators. This paradigm works 
well with reliable wireline networks, such as Fieldbus and ProfiBus. However, it is a justified 
assumption that part of the wired networks will be replaced by wireless networks. With wireless 
networks, we shall expect intermittent communication losses. In this paper, we first identify the poor 
dynamic response of the standard PID algorithms in the case of lost communications. An enhanced 
PID algorithm is proposed to improve the dynamic response under these conditions.  When there is no 
communication loss, the enhanced PID block acts exactly the same as a standard PID block.  Lost data 
is compensated by the integral component in the enhanced PID block. When communications are 
reestablished, the derivative component in the enhanced PID block eliminates possible spikes in the 
output. We evaluate the enhanced PID algorithm under several wireless scenarios. The results 
demonstrate the advantages of the enhanced PID algorithm. 
 
 
1. INTRODUCTION 
 
A modern process control system is often structured as shown in Figure 1 [1]. As illustrated in this 
figure, sensors and actuators are connected to controllers via control networks, such as Fieldbus [2] 
and Profibus [4]. A sensor provides measurements and status of a physical property, e.g. the flow in a 
pipe associated with the process. Based on the measurement from sensors, the controller determines 
any adjustment in the actuators that is needed to maintain the process at a target value, i.e., the 
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setpoint. The control loop is executed periodically at a rate fast enough to correct any unwanted 
deviations in the process.  

Controller
Control Network

Actuator

Sensor

 

Figure 1. A process control system 
 
In some applications, it is desirable to replace the wireline control networks with wireless networks [5, 
6]. Some justifiable reasons include cost reduction and enhanced control. As a consequence, many 
standard efforts for wireless control are being actively pursued. For example, ZigBee is a wireless 
standard mainly targeted for industrial manufacturing and office automation. ZigBee Specification 
V1.0 was ratified in late 2004 and ZigBee compliant products are readily available on the market [7]. 
ISA [3] also has a very active wireless standard committee SP100. Suffice to say that wireless process 
control is becoming a reality. 
 

In contrast to non-wireless control systems, communications in a wireless control system are 
inherently unreliable. This unreliability may be caused by interferences, power failures and 
environmental factors such as lightening storms.  Unfortunately, current control strategies are based on 
the assumption of reliable communications. In standard process control systems, a missed IO 
communication is considered an error. Usually, a control loop is configured with a maximum number 
of lost IO communications, after which the loop declares failure and the values are set according to the 
fail-safe configuration.  

Therefore, unreliable communications presents a very challenging problem for standard control 
paradigms.  Consider a PID block with inputs from a wireless channel. Suppose the inputs are lost at 
time t1 and reestablished at time t2. The derivative component of the PID would cause a spike in the 
output at t2. Also, from t1 to t2, the reset component may windup based on the error that existed at time 
t1. 

In this paper, we focus on the most widely used control blocks – PID blocks. We revise the calculation 
of the integral and derivative components of PID algorithms by detecting missed communications and 
compensate for it proactively. Simulation results on several wireless scenarios prove the superiority of 
the enhanced PID algorithm. 
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The rest of this paper is organized as follows. Section 2 analyzes the shortcomings of the standard PID 
block in dealing with intermittent communication losses. Section 3 describes the enhanced PID 
algorithm. Experiments and results are presented in Section 4. Section 5 concludes this paper. 

2. The standard PID algorithm 

PID is the most widely used control algorithm in industrial process control [9]. As shown in Figure 2, 
the controller compares the process variable (PV) with a reference setpoint (SP). The error is then 
processed to calculate a new output to bring the PV back to its desired SP [10].  

PID stands for “proportional, integral and derivative” components of the algorithm. Each of the three 
components performs a different task and has a different effect on the functioning of a system. Their 
outputs are summed up to produce the system output. 

Though there are many variations of PID algorithms, in its non-interacting form without rate limiting 
and all actions based on error, the equation for standard PID algorithm is  

⎥⎦
⎤

⎢⎣
⎡ ++= ∫ dt

tdeKtdteKteKOutput DIP
)()()()(  

KP, KI and KD are the proportional, integral and derivative gains, respectively. 

In its digital form, the software implementation of the PID algorithm is based on the sampled data for 
its PV being provided on a periodic basis.  

When there is no communication loss, PID, once configured for the process it controls, keeps the 
process in a steady state. Figure 3(a) shows the PID reaction to a process disturbance. 

Before time t0 the PID output (out) is kept at a constant value to maintain pv at the sp value. At t0 a 
drop of PV is observed due to process disturbances. To correct the drop, the PID increases its output. 
At time t2, pv comes back at sp, and out is stabilized at some value that is slightly bigger than its 
original value to compensate the disturbance. As is shown in Figure 3(a), out is the sum of three parts: 
P, I, and D. 

PID 
Controller Process － 

measured process variable 

setpoint error 

Figure 2. PID block 

output 
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2.1 Input communication lost 

Now consider what would happen to each component of out if the communication from the sensor 
input is lost between times t1 and t2. For the PID block, the measured pv value remains the same as at 
time t1 during this period, shown in Figure 3(b,c,d). 

Figure 3(b) shows the proportional gain P. Since the measured pv and sp remains the same, the 
proportional gain is constant from t1 to t2. Figure 3(c) shows the integral part I. Since pv and sp 
remains the same, the error remains the same, so the integral part is a linear increasing line from t1 to t2. 
Figure 3(d) shows the derivative part D. Since pv and sp remains the same, the error remains the same, 
so the derivative stays 0 from t1 to t2. As a result, out of the PID block is a linear increasing line from t1 
to t2, shown in Figure 3(b,c,d). This destabilizes the process. The longer the communication is lost, the 
bigger deviation pv is from sp. 

Once the communication is reestablished at t2, PID is back to normal. However, since the derivative 
part calculated at time t2 is based on the difference of measured pv’s between t2 and one period before 
t2, we shall expect a spike for the derivative part. This is because the pv value at t1 is used as the pv 
value at one period before t2. The value of pv at t2 could be significantly different from the pv value at 
t1. Since pv changes between time t1 and t2, we expect the derivative spike even bigger. Due to sudden 
changes of the proportional and derivative parts, the value of out will have a big impulse before and 
after t2. 

2.2 Output communication lost 

We continue to analyze how standard PID behaves if output communication is lost between t1 and t2. 
Here we assume there are no other disturbances and input communication is OK. 

Figure 3. Standard PID block with lost input  
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Since t1 the actuator will stay with the out value of t1 until t2 when a new out value is received from the 
PID. This will cause the measured pv to eventually reach sp and then overshoot a little bit, shown in 
Figure 4(b,c,d). The P, I, and D components are all calculated based on the current pv, shown in Figure 
4(b,c,d). This is as good as we could expect from PID. The only drawback is that the actuator gets a 
bump in the out value, from the one calculated at t1 to the one calculated at t2. 

2.3 Both input and output communication lost 

When both input and output communications are lost, the PID behaves the same as when only input 
communication is lost in Figure 3. The only difference is that when communication is reestablished at 
t2, the actual pv is different. In this case pv strays less as the actuator output stays constant. Similarly, 
the actuator receives a bump in the out value. 

3. The enhanced PID algorithm 

The underlying assumption in the digital implementation of the PID algorithm above is that the 
algorithm is executed on a periodic basis. When the input containing the measurement is lost, the 
calculated reset action may not be appropriate [1]. When later on a new measurement gets through, the 
calculated derivative action may produce a spike in the output. If a PID block continues to execute 
using the last process variable, the output will continue to move based on the reset tuning and error 
between the last measured process variable and the setpoint. If the control block is only executed when 
a new measurement is communicated, then this could delay control response to setpoint changes and 
feedforward action on measured disturbances. Also, when control is executed, calculating the reset 
contribution based on the scheduled period of execution or on the time since the last contribution may 
result in changes that increase process variability [1].  

In [1], we proposed an enhanced PI algorithm to reduce wireless communications between sensors and 
controllers without impacting the control performance significantly. Based on that work, we further 
improve the derivative part and apply the new algorithm to address communication losses. 

Figure 4. Standard PID block with lost output  
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To provide best control when measurements are not updated on a periodic basis, the PID may be 
restructured to reflect the reset and derivative contributions for the expected process response since the 
last measurement update. One means of doing this is illustrated in Figure 5. 

As shown in Figure 5, the reset/rate contributions (integral/derivative parts of the PID) are determined 
based on the use of a new value flag from the communications stack, the same idea as in [1]. To 
account for the process response, the filter output is calculated in the following manner when a new 
measurement is received: 
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Since the last communicated actuator position as reflected in the feedback of actuator position is used 
in the integral calculation, this automatically compensates for any loss in the output communicated to 
the downstream element.  

The derivative part for this example (rate limiting not applied) is determined by the following equation: 

Process 

Figure 5. The enhanced PID algorithm application 
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Consider the contribution of the derivative part when the inputs are lost for several periods. When the 
communication is reestablished, eN  - eN-1 in the equation above would be the same for the original and 
modified algorithms. However, for the standard PID algorithm, the divisor in the derivative part would 
be the period, while that in the new algorithm is the elapsed time between two successfully received 
measurements. It is obvious that the modified algorithm would produce smaller derivative action than 
the standard PID algorithm. 

There are two major problems with standard PID algorithm when dealing with communication losses: 
continued execution during communication loss, and sudden output change when communication is 
reestablished. The enhanced PID algorithm solves these problems by only computing the integral and 
derivative components when communication is established and incorporating actuator feedback into 
the reset calculation. 

4. Experiments and Results 

We carried out several experiments to validate our algorithm. First, we prove that the new algorithm 
will produce the same result as the regular algorithm when the communication is reliable. Then, the 
revised algorithm is shown to have better performance than the existing PID algorithm when 
communications are unreliable. 

4.1 Experimental Setup 

We create two simple PID control loops, as shown in Figure 6.  

PROC_1 and PROC_2 are two identical processes, each of which consists of a second order process 
with a delay of 1 second and time constants of 6 seconds and 3 seconds.  

The modified PID algorithm is implemented in PIDPLUS, and PID2 is a standard PID block. The 
parameters for PID2 are determined by testing it with a tuning application, which suggests a gain of 
0.85, a reset of 10.71 and a rate of 1.71. Then the tuning parameters of PIDPLUS are set the same as 
PID2. PIDPLUS is configured to utilize the BKCAL_IN value for the reset components.  

The process variable communication is simulated by the COM_IN_1 and COM_IN_2 block, which are 
controlled by COM_STATUS_IN. If COM_STATUS_IN is set to 1, block COM_IN_1 and 
COM_IN_2 relay measurements accurately. Otherwise, the two blocks drop the measurements. The 
same logic is applied to the output using COM_OUT_1, COM_OUT_2 and COM_STATUS_OUT. 
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Figure 6. Experimental Setup 

By changing the external setpoint and introducing some disturbances that impact each PID and 
associated process equally, we can evaluate the performance of the two PID blocks. The performance 
of the two PID blocks is collected in the PERFORMANCE block. The metrics used in this paper is 
Integral Absolute Error (IAE). 

The scan rate for all blocks is set to 0.2 second. Initially, the uncontrolled disturbance 
(DISTURBANCE) to the processes is 20. 

4.2 Reliable Communications 

To simulate the case of reliable communications, we set both COM_STATUS_IN and 
COM_STATUS_OUT to 1. SP is changed from 50 to 60. The result is shown in the left part of Figure 
7 (from time 11:10 to 11:11).  

The curve of AI1/OUT.CV matches nicely with that of AI2/OUT.CV, and AO1/SP.CV matches nicely 
with AO2/SP.CV. Therefore, we conclude that the two PID blocks work in the same way when the 
communication is reliable. 

4.3 Unreliable Communications  

To study the effect of unreliable communications on the two PID blocks, we consider two cases: 
unreliable input and unreliable output. 

4.3.1 Unreliable Input 
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During the period of lost inputs, the last communicated process variable is maintained and used in the 
PID blocks. We first experiment with changing setpoints. The result is shown in the right part of 
Figure 7, where SP is decreased from 60 to 50. 

When the input channel is shut down, the error between the setpoint and process variable fed to PID 
blocks is a constant. For the standard PID block, PID2, the integral part would keep integrating, which 
explains the linear decreasing of AI2/OUT and AO2/SP. However, as it has a flag for missed 
communications, PIDPLUS would simply freeze the reset component during loss of communication, 
which explains the level-off in AO1/SP during lost communications. Since  
AO1 is given a constant value, the process variable of PROC_1 approaches the setpoint gradually, as 
shown by AI1/OUT. 

When communications are re-established, the input process variables to PIDPLUS/PID2 reflect the 
true measurement provided by AI1/AI2, respectively. For PID2, AI2/OUT is very low compared to the 
setpoint, which causes a sharp spike in AO2 by the derivative part of PID2 at the moment 
communications are re-established. For PIDPLUS, AI1/OUT is close to the setpoint, and that small 
deviation is further evened out by the divisor used in the derivative part of the new algorithm. Thus 
both AI1 and AO1 transit to their steady states smoothly.  

 

Figure 7. Lost Inputs coupled with a setpoint change 

The different behaviors of the two PID bocks are further proved by the performance data. In a duration 
of 121 seconds, the IAE for PIDPLUS is 169, while that for PID2 is 372.  
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Figure 8. Lost Inputs coupled with unmeasured disturbances 

We also test the two PID blocks with unmeasured disturbances. The DISTURBANCE is increased 
from 20 to 30. The result curves are shown in Figure 8. The behavior of PID2 is the same as in Figure 
7, which can be explained by the same reason for Figure 7. For PIDPLUS, the reset component is 
maintained constant during the loss of communications. Thus AO1 is kept the same output value, 
which in turn produces the same AI1 value. When the input communications resume, PIDPLUS starts 
to change its output (AO1/SP) to bring AI1/OUT back to the setpoint. During the time (196 seconds), 
the IAE for PIDPLUS is 333, and that for PID2 is 366. 

4.3.2 Unreliable Output 

In this case, we examine the behaviors of the two PID blocks in two scenarios too: setpoint changes 
and uncontrolled disturbances. 

For setpoint changes, we first change the setpoint from 50 to 60, when the communication is reliable. 
Then, after the processes settle at the setpoint 60, the setpoint is changed back to 50, and the output 
channels are cut off. Figure 9 shows the resulting curves. 

When the communication is lost, the outputs of PIDPLUS/PID2 are equal. Since the two controlled 
processes are the same, the values of AI1.OUT and AI2.OUT follow the same curve. When the 
communication is reestablished, the input errors for PIDPLUS and PID2 are the same. However, the 
divisor in the derivative part of PIDPLUS is much bigger than that in PID2, which explains the sharper 
spike in the curve for AO2/OUT. During the transition period, the IAE for PIDPLUS is 190, while that 
for PID2 is 196. 
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Again, we test the two blocks by introducing uncontrolled disturbance to the processes. The 
DISTURBANCE is changed from 20 to 30. The results are shown in Figure 10. 

 

Figure 9. Missed Outputs with a setpoint change 

The curves in Figure 10 look similar to their counterparts in Figure 9 and they can be explained the 
same way as above. We also notice that the improvement of PIDPLUS over PID2 is more pronounced 
in Figure 10 than in Figure 9. This is because at the time of communication reestablishment, the input 
errors to the PID blocks are bigger in Figure 10 than in Figure 9.  

During the transition period (158 seconds) in Figure 10, the IAE for PIDPLUS is 267, while that for 
PID2 is 388. 

5. Comments and Conclusions 

Using actuator feedback for smooth output transition is not a new idea. The Foundation standard 
already defines back-calculate-in/out links to smoothen transition during start up. Certain control 
systems continue to use this link after startup. 

PID blocks in modern control systems have status flags for data values. In this way a data value could 
be tagged with communication lost status. Some systems provide fail-safe mechanism by making use 
of this flag. For example, Foundation Fieldbus standard allows a limited number of communication 
failures, after which error is declared and the block enters failure state. This in turn forces the actual 
block mode to manual during communication failure. This approach alleviates the problem associated 
with communication loss but does not eliminate them. The proposed modifications to the PID to 
compensate for communication loss differs in that we explicitly address communication failures and 
take advantage of the related information. 
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Figure 10. Missed Outputs with unmeasured disturbances 

Current control designs assume periodic samplings. However, this assumption does not hold in a 
wireless environment. In this paper, in order to cope with possible measurement lost, we propose a 
modified PID algorithm. The enhanced algorithm acts in the same manner as the standard PID 
algorithm when the communication is reliable. When it detects any communication lost, this algorithm 
can smoothen possible spikes in the output. We validate the new algorithm with several experiments in 
industrial DCS. 
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