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Foreword

This 2006 version of SPE’s Petroleum Engineering Handbook is the result of several years of effort by technical editors, copy edi-
tors, and authors. It is designed as a handbook rather than a basic text. As such, it will be of most benefit to those with some experience
in the industry who require additional information and guidance in areas outside their areas of expertise. Authors for each of the more
than 100 chapters were chosen carefully for their experience and expertise. The resulting product of their efforts represents the best
current thinking on the various technical subjects covered in the Handbook.

The rate of growth in hydrocarbon extraction technology is continuing at the high level experienced in the last decades of the 20th
century. As a result, any static compilation, such as this Handbook, will contain certain information that is out of date at the time of pub-
lication. However, many of the concepts and approaches presented will continue to be applicable in your studies, and, by documenting
the technology in this way, it provides new professionals an insight into the many factors to be considered in assessing various aspects
of a vibrant and dynamic industry.

The Handbook is a continuation of SPE’s primary mission of technology transfer. Its direct descendents are the “Frick” Handbook,
published in 1952, and the “Bradley” Handbook, published in 1987. This version is different from the previous in the following ways:

« It has multiple volumes in six different technical areas with more than 100 chapters.

« There is expanded coverage in several areas such as health, safety, and environment.

« |t contains entirely new coverage on Drilling Engineering and Emerging and Peripheral Technologies.
« Electronic versions are available in addition to the standard bound volumes.

This Handbook has been a monumental undertaking that is the result of many people’s efforts. | am pleased to single out the con-
tributions of the six volume editors:

General Engineering—John R. Fanchi, Colorado School of Mines

Drilling Engineering—Robert F. Mitchell, Landmark Graphics Corp.

Facilities and Construction Engineering—Kenneth E. Arnold, AMEC Paragon
Production Operations Engineering—Joe D. Clegg, Shell Oil Co., retired

Reservoir Engineering and Petrophysics—Ed Holstein, Exxon Production Co., retired
Emerging and Peripheral Technologies—Hal R. Warner, Arco Oil and Gas, retired

Itis to these individuals, along with the authors, the copy editors, and the SPE staff, that accolades for this effort belong. It has been
my pleasure to work with and learn from them.
—Larry W. Lake



Preface

General Engineering, Volume | of the new Petroleum Engineering Handbook, has been designed to present
material that is needed by all practicing petroleum engineers. It includes chapters on mathematics, properties of
fluids, rock properties, rock/fluid interactions, economics, the law, and the social context of fossil energy.

The mathematics chapters of this volume are a major departure from previous editions. The mathematical tables
presented in previous editions are now readily available using hand-held calculators or software on desktop comput-
ers. The mathematics chapters present mathematical topics that petroleum engineers need to better understand the
literature and the software they use on a day-to-day basis. Topics such as vibrating systems, ordinary and partial
differential equations, linear algebra and matrices, and Green’s functions are introduced and references are provided
for readers who would like to pursue the topics in more detail.

The discussion of fluid properties covers fluid sampling techniques; properties and correlations of oil, gas,
condensate, and water; hydrocarbon phase behavior and phase diagrams for hydrocarbon systems; and the phase
behavior of water/hydrocarbon systems. Two chapters consider the properties of waxes, asphaltenes, and crude oil
emulsions.

Rock properties and rock/fluid interactions are discussed. The rock properties include bulk rock properties, such
as porosity, elastic rock properties, and rock failure relationships. Measurement techniques and models of single-
phase permeability are then presented, followed by a review of the properties that describe the interaction between
rocks and fluids, notably relative permeability and capillary pressure.

In addition to mathematics, fluid properties, and rock properties, petroleum engineers need to understand
economic and legal issues. Essential aspects of the economic and regulatory environment are addressed in the last
section. A brief review of the role of fossil energy in the 21st century energy mix ends the volume.

I want to thank all of the authors who donated their time and expertise to the preparation of this volume.

—John R. Fanchi
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Chapter 1

Mathematics of Vibrating Systems
Alfred W. Eustes, lll, SPE, Colorado School of Mines

1.1 Introduction

Many mathematical tools can be used to analyze vibrational systems. One of the first mathemat-
ical tools a neophyte engineer learns is calculus. The basics of limits, differentiation, and
integration permeate all of engineering mathematics. This chapter offers a cursory review of
these topics and uses the mathematics of vibrations to demonstrate how the concepts operate.
For more specific information on all these topics, consult relevant sections of this Handbook.

Many of the mathematical tools engineers use to evaluate and predict behavior, such as
vibrations, require equations that have continuously varying terms. Often, there are many terms
regarding the rate of change, or the rate of change of the rate of change, and so forth, with
respect to some basis. For example, a velocity is the rate of change of distance with respect to
time. Acceleration is the rate of change of the velocity, which makes it the rate of change of
the rate of change of distance with respect to time. Determining the solutions to these types of
equations is the basis of differential calculus.

An equation with continuously varying terms is a differential equation. If only one basis is
changing, then it is an ordinary differential equation (ODE); however, if two or more bases are
changing, then it is a partial differential equation (PDE). An ODE uses the notation “d” and a
PDE uses 0 to refer to change.

Understanding differentiation starts with an understanding of limits.

1.1.1 Limits. A graph is a useful method for determining how an equation behaves. The inde-
pendent variable ¢ in Eq. 1.1 determines how the dependent variable y behaves. The operators
and constants in an equation specify this behavior. Fig. 1.1 shows the graph of Eq. 1.1, the
distance of freefall over time with an initial velocity of zero. Down is considered negative in
this equation:

2
_ & 1.1
Yy s (1.1)

The x-axis (abscissa) usually is the independent variable, and the y-axis (ordinate) usually
is the dependent variable; however, many drilling charts hold an exception to this generality, in
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Fig. 1.1—Graph of Eq. 1.1, the equation of free fall on earth.

that their ordinate often is the independent variable, and their abscissa is the dependent one.
An example of such a drilling chart is the depth vs. time graph.

In Fig. 1.1, at the time of 3 seconds, the distance is —96.522 ft. A tangent line to the graph
at 3 seconds is known as the slope (4) of the graph at that point. To quickly estimate the slope
of the tangent, divide the rise (Ay) by the run (Af), as shown in Eq. 1.2:

=y
A= L A e (1.2)
L-t; At

In this case, the tangent y value at 2 seconds is —48.261 ft and at 4 seconds is —241.305 ft.
The slope then is:

_ —241.305- —48.261 _ —193.044 _
4-2 2

A = 06.522. 1oovveeeeeeeeeeeseeeneenn, (1.3)

Because the units in this case are ft/sec, this slope gives the velocity at that point. It is the rate
of change of the distance with respect to time.

A limit is defined as the value of a function at a given point as that point is approached
from either higher or lower values (often referred to as approaching from the left or right,
respectively). The limit (¥) of Eq. 1.1 at 3 seconds is:

—g.i2
Y = lim —
t—3 2

e (1.4)

Y is known as the limit of the function. In this simple case, Y is the same regardless of
whether ¢ approaches 3 from the left or the right. This is not true in all cases, however (e.g.,
with a discontinuous function). In these cases, the limit can be determined analytically. One
can also determine the limit using a graph such as in Fig. 1.1.

Limits have the following properties:

If limf(¢)=P and limg(r)=Q, then lim[f(t) +g)]=P+Q, ccoevevvevevenne.. (1.5)
t—z t—z t—z
lim f(¢) = 1{ lim f(t)} S P, e (1.6)
t—z t—z
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flt) P
Im——=-—=, as long as O 7 0, ccccceevvrevriieceiireeereeereereeeane 1.7
Mmen 0 g as O (D
and
J o .
T RO R A V2 (1.8)
t—zj=0" =0

1.1.2 Derivatives. As noted earlier, the slope of graph of Eq. 1.1 at 3 seconds = —96.522 ft/
sec and is the velocity (v) of free-fall at 3 seconds from release. This value is known as the
first derivative of Eq. 1.1 at the value of 3. It is written as:

iy don_d _dy
£() = D= V= = 06.522 oo, (1.9)

and is defined as:

dy . ft+A)—1f@)

i Altlgo At et ee e ee e ee e —ee e baeenbaeeabaaennn (1.10)

As the limit of the value of Af¢ approaches zero, the solution converges to the first derivative.
Derivatives have the following properties (» = constant).

If y=f1) =r, then i—f=f/(z)=o. .......................................... (1.11)

If y=f{¢) = rt", then % = £ = " e (1.12)

If y=1(t)= sin(rt), then C(li—); = f/(t) =7 COS (7). oo, (1.13)
If y=1(t)= cos (rt), then ((11—); O R N (2 (1.14)
If y=f(r)=e"", then C}i—f = £ = 7€ e (1.15)

If y=1ft)= In(re), then % = f(r) = % ..................................... (1.16)

In the case of Eq. 1.7, where O = 0, L’Hopital’s rule can help find the limit. This is shown
in Eq. 1.17:

lim W _ lim ﬁ, where f(t) =g(1) =0

z%z+g(t) _tﬁz+g(t)
or where f{1) = g(t) = & 9. oo (1.17)
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Other rules regarding differentials are the following.
The linear superposition rule:

J J
If )= 2 £), then £()= X /(). oo (1.18)
j=1"’ j=17
The product rule:
STROE0] = R0+ £SO, (119)

The quotient rule:

i{ﬂz)} 1 d flr) d
g(?)

ar = %Eﬂﬂ— @Eg(ﬂ. ......................................... (1.20)

The chain rule (or function of a function):

dy _dydx
QF T o dp s (1.21)
Multiple differentiations can be shown by
Dy - Ly n=f (o (1.22)
ar | dr 2 s ettt ettt .
and continued differentiations can be shown by
15l L7
{ T R TR s SR ——— (1.23)

A useful point to recognize is where a slope equals zero, which can correspond to a maxi-
mum, a minimum, or an inflection. To determine these points, determine a first derivative of
an equation. Then, set this first-derivative equation to equal zero and solve for the basis (the
unknown). To determine whether this point is a maximum, a minimum, or an inflection, deter-
mine the second derivative of that equation. If that value is negative, the point is a maximum;
if it is positive, the point is a minimum; and if it is zero, the point is an inflection.

The graph of Eq. 1.24 (Fig. 1.2) is an example of this process:

B T V2 U (1.24)
The first derivative of Eq. 1.24 is:

dy 42

A 37— 108+ 3, e (1.25)
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Fig. 1.2—Graph of Eq. 1.24, an example of slopes, minima, and maxima.

which, when set equal to zero, is a quadratic equation with two roots, 1 =3 and 1/3. These
two points correspond to the maximum and minimum points on the graph. To prove which is
which, a second derivative is taken:

which at 1=3 and 1/3 is equal to 8 and —8, respectively. This means that at # = 3, the func-
tion is at a minimum and at ¢ = 1/3, the function is at a maximum.

The first differentiation of the equation of the position of a free-falling object starting at
rest (Eq. 1.1) gives the slope of the graph, which, as noted, is the velocity:

182

which is the acceleration caused by Earth’s gravity.

1.1.3 Differential-Equation Solutions. Solutions to differential equations solved in closed
form can range from trivial to impossible. Numerical methods often are required. Nevertheless,
some general strategies have been developed to solve differential equations.!>?

An ODE with only first derivatives is known as a first-order ODE. A second-order ODE
has second and possibly first derivatives. The same reasoning applies to third order and be-
yond. Likewise, when a PDE has only first derivatives, it is a first-order PDE. The second and
third orders and beyond are defined on the basis of their highest-order derivative.

This section has covered some of the basics of ODE and PDE mathematics. The reader is
urged to review mathematical texts and handbooks for more details on this subject.

To illustrate some of the aforementioned principles of ODE and PDE mathematics, the rest
of this chapter discusses examples within the subject of vibrations. Vibration mathematics has
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Fig. 1.3—Excitation/response system for deterministic vibrations.

been chosen because vibrations are notorious for instigating drilling and production problems.
The next section covers some basic information on the nature of vibrations, with subsequent
sections devoted to some aspect of the mathematical models of vibrations.

1.2 Introductory Thoughts About Vibrations

The fundamental theories of vibration are not new. Indeed, Saint-Venant* published his theory
on the vibrations of rods in 1867, and Love® published an entire treatise on vibration theory in
1926. The mathematics of vibration theory involves infinite series, complex functions, and Fouri-
er integral transforms, and its physics involves Newtonian mechanics and stress analyses. Until
recently, except under relatively simple conditions, the complexity of such mathematics had
restrained the application of vibration theory to solving simple common problems. Now, howev-
er, state-of-the-art computers can perform these complex calculations in a reasonable time
frame, making possible a wave of new studies.

1.3 Vibration Theory

A vibration is a fluctuating motion about an equilibrium state. There are two types of vibra-
tion: deterministic and random. A deterministic vibration is one that can be characterized
precisely, whereas a random vibration only can be analyzed statistically. The vibration generat-
ed by a pumping unit is an example of a deterministic vibration, and an intermittent sticking
problem within the same system is a random vibration.

In mechanical systems, deterministic vibrations are excitations that elicit a response from a
system, as shown schematically in Fig. 1.3. In theory, as long as two of the three variables
(excitation, system, and response) are known, the third one can be determined; however, the
mathematics might be challenging. Most often, the response function is sought, so that the exci-
tation function and the system must be known.

Vibration systems can be linear or nonlinear, and discrete or continuous (Fig. 1.4). In all
cases, a vibration system can be in one, two, or three mutually orthogonal dimensions. A linear
system is a system in which proportionality (Eq. 1.29) and superposition (Eq. 1.30) are true,
that is, in which:

If E(t) = R(t), then rE() = FR).coooeooeeeeeeeeeeeeeeeeeee (1.29)
and

If E,(1) = R,(¢) and E,(¢) = R, (1),
then E(1)+ E,)(t) = R(t) + Ry(0). oo (1.30)

When proportionality and superposition are not true, then the system is nonlinear.

A discrete system is one having a finite number of independent coordinates that can de-
scribe a system response. These independent coordinates are known as degrees of freedom
(DOFs). If the motion of mass, either translational or rotational, of a vibrating system is a
function of only one independent coordinate, then the system has one DOF. If two or more
independent coordinates are required to describe one or both types of motion, then the system
has two or more DOFs. If a system is continuous (an infinite set of independent coordinates is



Chapter 1—Mathematics of Vibrating Systems -7

Fig. 1.4—Vibration system classification.

Fig. 1.5—Excitation function classification.

needed to describe the system response), it has an infinite number of DOFs. Because material
structures all have a continuous nature, all systems have an infinite number of DOFs. Most
systems have dominant DOFs; some even have a single dominant DOF. Such systems therefore
can be characterized as discrete systems, which makes the mathematics more tractable.

If a system has a single DOF or set of DOFs in only one direction, it is a 1D system. If
there are two mutually orthogonal directions for the DOF, it is a 2D system; and if there are
three mutually orthogonal directions for the DOF, it is a 3D system.

As Fig. 1.5 shows, the excitation function can be periodic or transient, and absent or
present. A periodic vibration is one that can be characterized mathematically as an indefinite
repetition. A transient vibration is of finite length and is composed of waves that have a defi-
nite beginning and that eventually die out. These waves can be of extremely short duration or
last for some time.

A standing wave is a vibration whose wave profile appears to be standing still, though actu-
ally the particles that make up the material are oscillating about an equilibrium position.
Because of the geometry and boundary conditions of the material through which they are trav-
eling, the waves and the reflected waves cancel and reinforce themselves over the same
location in the material, which makes the wave profile appear not to be moving. The point at
which no motion is occurring is a nodal point, or node. The point of maximum amplitude is
the antinode.

In reality, all waves are transient in some way. If a wave is repeated over a longer time
than it takes for a single wave to propagate through a material, then this series of waves can
be called a vibration. All vibrations are transient, as well. If the vibration lasts longer than the
time under analysis, then it can be characterized as infinite in length.
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Fig. 1.6—Types of elastic waves.

When the excitation is present and is actively affecting the system within the analysis time
frame, the response is called a forced vibration. The response of a system with an absent exci-
tation function—one that is not present within the analysis time frame—is called a free
vibration. As such, the system can be responding to the removal of an excitation function. For
example, if the response of a mass and spring system is sought after the system has been
pulled down and released, the original excitation function (the pulling force) is considered ab-
sent because the analysis is being performed after the release.

1.4 Wave Propagation

The method by which a vibration travels through a system is known as wave propagation.
When an external force is impressed on a real-world elastic body, the body does not react
instantly over its entire length. The point immediately under the external force reacts first, and
then the section just under that point reacts to the previous section’s reaction, and so on. This
series of reactions is called wave propagation because the reactions propagate through the body
over a period of time at a specific velocity. If the rate of change of the external force is slow
enough, static equilibrium analysis can model the reactions adequately for most engineering
applications. This is called rigid-body analysis. If the external force changes rapidly, however,
wave-propagation analysis is necessary to model the reactions effectively.

1.4.1 Types of Waves. There are many types of elastic waves. Some listed in this section are
longitudinal, lateral, and bending waves.® Some of these are shown in Fig. 1.6.

In longitudinal waves (also variously called compression/tension, axial, dilatational, and ir-
rotational waves), the particles that make up the elastic medium are forced directly toward and
away from each other, and the direction of the particles’ motion is parallel to that of the wave
motion. In most steels, longitudinal waves travel at 16,800 ft/sec. Longitudinal waves are not
dispersive. This means that all the wave components that make up a longitudinal wave travel at
the same velocity and, hence, do not separate (disperse).

In lateral waves (also known variously as shear, torsional, transverse, equivoluminal, and
distortional waves), the particles slip beside each other, and move perpendicular to the direc-
tion of the wave motion. Because slipping uses more energy, lateral waves are slower. In steel,
for example, they travel at 10,400 ft/sec. A rapidly changing torsional force on a section of
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pipe will cause a lateral wave to propagate from the point of application to all other parts of
the pipe. It propagates as an angular twist. Lateral waves are nondispersive and have a similar
solution method as the longitudinal waves; however, shear or transverse waves are dispersive
(i.e., the wave components that make up a shear wave travel at different velocities). Their
wave components will disperse and “smear” the initial wave profile. This complicates the anal-
ysis significantly.

Bending waves (flexural waves) travel as a bend in a bar or plate and have longitudinal
and lateral components. Rotary shears and moments of inertia complicate bending-wave analysis.

Wave-propagation studies in petroleum engineering areas generally have been confined to
longitudinal, torsional, and lateral waves. Of these, longitudinal waves generally are easiest to
model and are considered in this section. A compression wave is a stress wave in which the
propagated stress is in compression. Likewise, a tension wave is a stress wave in which the
propagated stress is in tension.

1.5 Wave Behavior

Wave velocity depends primarily on density and modulus of elasticity but also is affected by
damping and frequency. For example, hitting one end of a long steel rod with a hammer will
generate a longitudinal wave that compresses the particles of the steel. The wave’s length is set
by the length of time that the hammer is in contact with the end of the rod, whereas its magni-
tude is set by the force of the hammer blow. As the wave moves along the rod, the steel
within the length of the wave is compressed. After the wave passes, the steel returns to its
unstressed state, though not necessarily in the same location as before the wave passage.

As another example, twisting (shearing) a steel rod will generate a shear wave. A shear
wave moves along the rod more slowly than the longitudinal wave does. Similarly to the longi-
tudinal wave discussed above, its length is set by the duration of the twisting action, whereas
its magnitude is set by the torque from the twisting action.

Waves act independently, but the stresses they create can be additive. For example, two
equal compression waves that are generated simultaneously by hammer blows at each end of a
long steel rod will meet in the center of the rod, pass through one another, and then each con-
tinue along the rod as if the other never existed (independence). While the waves are passing
each other, however, the compression in the steel will be twice (additive) that of either wave.

1.5.1 Natural Frequencies and Resonance. Everything has a natural frequency, a frequency
at which it would vibrate were it given the energy to vibrate and left alone. For instance, the
human body has a natural frequency of =5 cycles/sec. All drill and rod strings have a natural
frequency that depends on the material properties and geometry. The material properties deter-
mine the wave velocity, and the geometry determines how waves are reflected and refracted.

During wave propagation, the wave eventually reaches an end of the material. Some of the
wave will reflect back to its source. If the reflection reaches the source at the same time a new
wave is generated, the two waves will combine and be synchronized in phase. Later, if those
two waves’ reflections return to the source at the same time the next new wave is generated,
all three waves will combine. This will continue for as long as waves are generated under
these conditions, and the resultant wave will increase in amplitude, theoretically to infinity.
This is called resonance. The frequency at which resonance occurs is the natural frequency or
an integer multiple of that frequency (called a harmonic). If this wave reinforcement is allowed
to continue, the system eventually will either self-destruct or fatigue to failure.

A continuous system contains an infinite number of natural frequencies, whereas a discrete
single-degree-of-freedom (SDOF) system (e.g., a point mass on a massless spring) has only
one natural frequency. If two point masses are connected using two springs, then there are two
natural frequencies in this 2DOF system. In general, the number of DOFs in a system deter-
mines the number of natural frequencies it has, which means that any discrete system will have
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a finite number of natural frequencies; however, in reality, there is an infinite number of natu-
ral frequencies because all systems are continuous. Some frequencies will have higher ampli-
tudes than others. Such continuous systems with discrete higher-amplitude responses can be
modeled with a discrete methodology.

1.5.2 Damping. Resonance energy does not reach an infinite value because of damping, the
dissipation of energy over time or distance.” Without damping, or friction, the energy from
vibrations would build until there is more energy than the structure can sustain, which can
cause structural failure.

A wave propagating into a system adds energy to a system, whereas damping removes it.
Generally, the dissipated energy from the vibration is converted to heat, and if damping does
not take enough energy out of a system, the system can self-destruct from energy overload.
The amount of energy in a system at a given time is reflected in the system’s stress/strain
level. The more stresses/strains in the system, the higher the energy level. Once the stresses
reach a value greater than the yield strength of the system, yield failure is imminent. If the
stresses are greater than the ultimate strength of the material, failure is immediate.

In the borehole, three distinctive types of damping occur: viscous, Coulomb, and hysteretic.
Viscous damping occurs when the damping force generated is proportional to the velocity of
the particles. Coulomb damping (also called dry friction) is the force generated by the move-
ment of materials past one another, and it usually is proportional to the force normal to the
materials’ surfaces. The dynamic and static coefficients of friction are the proportionality con-
stants. Hysteretic damping is the friction force generated by the relative motion of the internal
planes of a material as a wave causes particle motion. Although this is true of all materials,
some materials are viscoelastic (i.e., they show a much larger hysteretic effect than do others).

Viscous Damping. As noted above, viscous damping occurs when the damping force is
proportional to the velocity of the particles. Viscous damping is shown by:

_ dx
R — (1.31)

One way that viscous damping arises in jarring analysis is from the interaction of a solid and
liquid at their interface, such as where the steel contacts the liquid mud along the sides of a
drillstring.

One method for determining the damping involves noting the decrement of acceleration
over one vibration cycle.® An impulse is impressed on the drillstring to produce a wave. While
the wave is decaying, the acceleration is measured and recorded multiple times at one location
on the string and at the same phase (i.e., crest to crest). The time between recordings also is
noted. These values are used in Eq. 1.32 to compute the damping coefficient (c¢). Unfortunate-
ly, though, this method gives the total damping and does not distinguish between viscous and
Coulomb damping.

A E ay

——ln P (1.32)

Coulomb Damping. Coulomb damping is the friction that occurs when two dry surfaces
slide over each other, and its force is a constant value that is independent of particle velocity
and displacement, but dependent on the friction factor («) and the force normal to the friction
surface. This value is:

T (1.33)

n
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The Coulomb damping force always is of the opposite sign from that of the particle velocity,
so that the damping force reverses when the particle velocity changes signs. This discontinuity
makes it a nonlinear damping force, shown as:

F ==+ (%)ﬂFn. .......................................................... (1.34)

Nonlinearity makes a closed-form solution to an equation of motion difficult.

Hpysteretic Damping. Hysteretic damping also is called structural damping because it arises
from internal friction within a structure. A wave moves through a material because the atomic
structure is reacting to an applied force. As the atoms of the structure move, energy is lost
through the interaction of these atoms with their neighboring atoms. Hysteretic damping is the
energy lost when atoms move relative to each other.

If a material had a perfectly linear stress/strain relationship, hysteretic damping would not
occur. In reality, though, there is no such thing as a perfectly linear stress/strain curve. Two
curves develop on the stress/strain diagram while a material is stressed and relieved. The center
area between these two curves represents the energy lost to internal friction. (This hysteresis
loop is the reason for the name of this damping type.) This variation can be small, but the
amount of energy dissipated can be large because high-frequency vibrations can cause this loop
to be repeated many, many times over a given time period.’

The hysteretic-damping value is highly dependent on a number of factors. One factor is the
condition of the material (i.e., chemical composition, inhomogeneities, and property changes
caused by thermal and stress histories). Another is the state of internal stress from initial and
subsequent thermal and stress histories. Also, the type and variation of stress—axial, torsional,
shear, and/or bending—affect the hysteretic-damping value.

A way of looking at hysteretic-damping force is to set it proportional to the particle veloci-
ty divided by the wave frequency. This is shown in Eq. 1.35.1°

h dx
BT gy s (1.35)
1.6 Equivalent Springs
Many systems can be modeled as multiple springs. Such springs can be combined into a sin-
gle, equivalent spring (Fig. 1.7). For parallel springs, the sum of the spring constants is equal
to the equivalent spring constant (Eq. 1.36). For series springs, the reciprocal of the sum of the
reciprocals of the spring constants is equal to the equivalent spring constant (Eq. 1.37). A lin-
ear spring oscillates in a single translational direction. A torsional spring oscillates with an
angular twist (Eq. 1.38).

1.7 Boundary and Initial Conditions

The boundary conditions (how the ends of a system are attached) and initial condition (condi-
tion of the system at the start in time) are extremely important in vibration and wave propaga-
tion analysis. The specific solution of any ODE or PDE requires a set of boundary and/or
initial conditions. Usually, a displacement (boundary condition) and an initial velocity (initial
condition) are specified.

In wave propagation, the boundary conditions also dictate wave behavior. For example, a
compression wave is reflected from a free end as a tension wave and from a fixed end as a
compression wave. If two rods are connected at their ends and are of different geometry or
material, then a fraction of the energy of the wave is reflected and the remaining portion of the
energy is refracted at their connection. Other types of boundaries direct the system response by
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Fig. 1.7—Equivalent springs.

Fig. 1.8—Types of boundary conditions.

limiting the DOF. This includes boundary conditions of pinned, revolute, translational, transla-
tional and rotational; forcing function; mass spring and/or damper, and a semi-infinite connec-
tion. In addition, changes in material properties will affect the various constants and will cause
wave-propagation reflections and refractions at the boundary between the properties. Fig. 1.8
shows some typical boundary conditions.

1.8 Mechanical Vibration Analysis
There are three components to mechanical vibration analysis: to determine the geometric com-
patibilities; to determine the constitutive (material properties) equations; and to determine the
equilibrium condition.

The geometric compatibilities are the displacement constraints and connections. They also
include the continuous properties, which state that the system does not separate into individual
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pieces. (If it does, that is another problem altogether.) The constitutive equations represent the
material properties, which include mass, damping, and spring coefficients. These constitutive
equations include stress/strain relationships and Hooke’s law (Egs. 1.39a and 1.39b):

0= Eiiieeeeee e (1.39a)
or, in another form,
EA,
F= 7 AL oo (1.39b)

The coefficient of A/ in Eq. 1.39b often is called the spring constant or stiffness constant.
The equilibrium condition is based on both static and dynamic conditions. A static equilibri-
um states that the sum of the forces acting on an object is equal to zero:

2 F =0 e (1.40)

A dynamic equilibrium is based on Newton’s second law and is the basis of many vibra-
tion analysis methods. The sum of the forces acting on an object is equal to its mass times the
acceleration of the object. Other dynamic-equilibrium analysis includes virtual work methods
and energy-balance methods (Hamilton’s principle).

Newton’s second law for a translational system is

and for torsional systems is

N A £ N (1.42)

Newton’s second law can be rewritten in a form known as D’Alembert’s principle:

in which mX is treated as a force and is called an inertial force.
Some basic equations of vibration analysis are shown in Table 1.1.

1.9 SDOF System
An SDOF system is the most basic vibration analysis. The typical SDOF system is the classi-
cal linear oscillator (CLO), as shown in Fig. 1.9. It consists of a point mass, spring, and damper.

1.9.1 Free Vibration Without Damping. The first analysis is free vibration without damping.
Using Newton’s second law and D’Alembert’s principle, the equation that describes free vibra-
tion without damping (¢ = 0) is:

which gives kx = mX, which when rearranged becomes:

X FEX =00 i (1.53)

(Exit]
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Fig. 1.9—SDOF free and undamped CLO system.

The solution to this differential equation is:

[k [ k
= —_— + R
x = (j sin t+C, cos Be e (1.54)

The constant multiplying the ¢ is the natural frequency of the system and is:
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in radians/unit time. Multiplying by 2%[ gives the natural frequency in cycles/unit time. When

Eq. 1.55 is substituted into Eq. 1.54, the result is:

x=Cpsin @t +Cy 08 WL i, (1.56)

The constants C; and C, are based on the initial and boundary conditions. If at time 0, x = x,
and x = v, the initial location and velocity, respectively, the first coefficient is:

which is the initial location. Differentiating once gives:

x=Ciw, cos @t = Coy, SIN W L, oo, (1.58)

which, when ¢ = 0, gives the other coefficient:

which is based on the initial velocity. The entire equation then is:

X = X COS (wnt) + :)—0 sin (a)nt). .............................................. (1.60)
n

Ex. 1.1 is an SDOF free and undamped CLO system.
1.9.2 Free Vibration With Damping. The second analysis of free vibration is with damping
(Fig. 1.10). Using Newton’s second law, the equation that describes free vibration with damp-
ing (c # 0) is:
L F =KX F CXy eroereerereeeeeeseeesesss e (1.61)

which is rearranged as before to get:

MEFCXHEX =01 i (1.62)
The general solution to this differential equation is:

e+ (Ve ami) —e= (Ve ami

x=Ce am +Cye am s e (1.63)

although the specific solution depends on the value under the square root. When e~ dmk = 0,
the system is critically damped. Another way to look at this critical damping point is:

Copit =VAMK = 2M@ o oo, (1.64)



1-16 Petroleum Engineering Handbook—Vol. |

Example 1.1—SDOF free and undamped CLO system.

Often, the damping coefficient is divided by the critical damping coefficient to get the critical
damping ratio:

c _ ¢ _
T e eeeeeeeeseeee e s e (1.65)

Cerit

If £ > 1, the system is underdamped. When disturbed, the system will experience an oscil-
lating decay. If & < 1, the system is overdamped and, when disturbed, will die out without
oscillating. If £ = 1, the system is critically damped and also will not oscillate.

A useful simplifying equation is the “damped” natural frequency, w,. It is:

@ = O NT = E e (1.66)

If the system is underdamped, that is, if 0 < & <1, the solution is:

—Cw t )
x=e " (C1 cos w4t + C, sin wdt) ............................................ (1.67)

or
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Fig. 1.10—SDOF free and damped CLO system.

x = (Zr e ™ sin (gt + B), o (1.68)

C
where @ = tan_lc—. If the initial and boundary coefficients are the same as before, then the
2
solution is:
—Co t vy +éw x
x=e " (xo cos w4t + 0 20 Gin wdt) .................................... (1.69)
1)
d
or
Vo T éw,xy\2 ~éw 1 L Xow
x=\/x02+(M) e " sin (a)dt+tan 1¢). ...................... (1.70)
Wy Vo T €@, X
Ex. 1.2 is an SDOF free and underdamped CLO system.
If the system is overdamped, that is, if £ > 1, the solution is:
—é‘wnl .
x=e  "(C, cosh wyt+ Cy$inh @ t), covvroorererrrcscrressescnnes (1.71)

but in this case, w, :an§2— 1. The order changed because it was an imaginary number.
With the same initial and boundary conditions as before, the solution is as before:

—éo, 1 Vot iw,xg
x=e X cosh @ ;t + ———————— SiNh @ jf ). ceovveeieieeeeee e, (1.72)
0 d o, d

Ex. 1.3 is an SDOF free and overdamped CLO system.
If the system is critically damped, that is, if =1, the solution with the initial and bound-
ary conditions is:
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Example 1.2—SDOF free and underdamped CLO system.

x = eiw"t[xo + (VO + a)nxo)t] ................................................. (1.73)

Ex. 1.4 is an SDOF free and critically damped CLO system.

1.9.3 Forced Vibration Without Damping. The next sets of systems have a forcing function
driving the vibration. The first of these is a CLO without damping (¢ = 0), as shown in Fig.
1.11. The equation of motion for this system with /" = F, sin wgl, a sinusoidally varying force,
using Newton’s second law, is:

mix + kx = F, sin DL i (1.74)

In this case, there are two terms in the solution, the homogenous or transient term, and the
particular or steady-state term. The homogenous term is the same as in a free-vibration case
and is solved by setting the forcing function to zero (that is, the free-vibration case, Eq. 1.60).
If the same initial and boundary conditions are applied as before, the solution for the homoge-
nous case is the same as before:



Chapter 1—Mathematics of Vibrating Systems 1-19

Example 1.3—SDOF free and overdamped CLO system.

v,
0 .

Xj, = Xy COS @, + 5 sin Db i (1.75)
n

The second term is the effect of the forcing function on the system. This is solved by assum-
ing a particular solution and deriving it back:

x, = C, sin wpt + C, cos T R (1.76)
)'cp =C Wy CO8 Wl — Cza)f sin S (1.77)
Xp = - cufZC] sin wpt = cof2C2 O R R (1.78)

Substituting the above equations into Eq. 1.74 gives:

m(—a)fZC1 sin a)ft - a)fZC2 cos a)ft)
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Example 1.4—SDOF free and critically damped CLO system.

+k<Cl sin wst+ C, cos a)ft) = F, sin T (1.79)
Collecting the terms gives:
(k = mar2)C, sin 1+ (k = mw,2)C, cos @/t = Fy S @t e (1.80)

Equating coefficients shows that:

F,
_ 0
G T G (1.81)
S
and
Gy =0 (1.82)
Therefore, the particular solution is:
F
Xy = T S Ol e (1.83)
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Fig. 1.11—SDOF forced and undamped CLO system.

which can be rewritten as:

F,
)
A a)f2 SIN @ L, i (1.84)
=22
w

where the reciprocal term in the parentheses sometimes is called the magnification factor. The
total solution is:

Ex. 1.5 is an SDOF forced and undamped CLO system.

Note that when the forcing frequency, w, matches the natural frequency, w,, the value of
the coefficient is infinity. This is the resonance condition, and it can lead to excessively large
displacements (see Fig. 1.12).

When the forcing frequency is close to but not at the natural frequency, a beating phe-
nomenon occurs. This appears as a low frequency impressed over the frequency of the system.
When the engines of a twin-engine aircraft are not quite synchronized, for example, one can
hear a beating sound as a low-frequency pulse (the “wow-wow” throb). Fig. 1.13 illustrates
this beating phenomenon.

1.9.4 Forced Vibration With Damping. The second system with a forcing function driving
the vibration is a CLO with damping (¢ # 0), as shown in Fig. 1.14. The equation of motion
for this system with the same force as before, F' = F, sin wt, is:
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Example 1.5—SDOF forced and undamped CLO system.

mi +cx+kx = F,sin DE. oo (1.86)

The solution has two parts, as before. It is similar to the last example, except for an addi-
tional damping term. The particular solution is solved similarly to the last example in Eqgs.
1.76, 1.77, and 1.78. Differentiating and substituting into Eq. 1.86 gives:

m(*a)fZC1 sin wpl = conC2 cos a)ft) + c(Cla)f cos @l = Cza)f sin a)ft)
+k<C1 sin wpt + C, cos coft) = Fj sin R (1.87)
Rearranging gives:

[(k - ma)f2)Cl - ca)sz} sin Wt
Hew, €y +(k = ma2)Cy] cos w,t = Fy sin @t e (1.88)

Equating coefficients as before yields:

e L O (1.89)
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Fig. 1.12—SDOF resonance condition.

Fig. 1.13—SDOF beating phenomenon.

and
cwpCy+ (k= mw;2)Cy = 0. o (1.90)

Solving for the constants gives:
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Fig. 1.14—SDOF forced and damped CLO system.

and
—cw F;
0
C,= - 2f . e (1.92)
I | I
i) -
which gives the particular solution:
2
-2
2
X, = F wf2 2 sin Wyt
2
- 2
k( “’nz) +cTop
7Ca)f
+ V12 COS @ L | (1.93)
“r 2
{k(l - ﬁ) +c a)f2
n

The total solution is homogenous and the particular solutions added together. In this case,
if the same initial and boundary conditions are applied as before, the homogenous solution is
the same as in the free-vibration case and is Eq. 1.69. The particular solution is Eq. 1.93 and is
the effect of the forcing function on the system. As noted before, the critical damping coeffi-
cient dictates the behavior of the homogenous part of the solution.

Ex. 1.6 is an SDOF forced and underdamped CLO system.

1.10 Two-Degree-of-Freedom (2DOF) Systems

At the basic level, systems with two and more DOFs are similar to SDOF systems. In a 2DOF
system, two independent equations of motion are required to define a system (e.g., a double
CLO or a double pendulum), but the DOFs need not be the same. For example, a system could
have a translational and a rotational DOF. As long as the equations of motion are independent
of one other, it is a 2DOF system. These equations must be solved simultaneously.
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Example 1.6—SDOF forced and underdamped CLO system.

m Chapter 2
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Fig. 1.15—2DOF free and undamped CLO system.

1.10.1 Free Undamped 2DOF System. As in the SDOF system, an undamped (c; and c, = 0)

system will be developed first. Fig. 1.15 shows such a system. As before, Newton’s second
law can determine the equations of motion. In the SDOF system, a solution in the form of sine
and cosine was used. For the first 2DOF system, another valid form of a solution, a sine with
a phase angle, @, is used to show another solution form. The equation for mass 1 is

mlxl = _k1x1+](2(x2_x1) ................................................... (1.94)

and for mass 2 is

I 2 £ 2T 7) FOS (1.95)

These two equations of motion must be solved simultaneously because they are coupled
through the displacement terms, x; and x,. As before, a solution is assumed and substituted
back into the equations of motion. The assumed solution is

X = €y SN (@8 + B (1.96)

and

Xy = Cy i (@F + D), oo (1.97)

for which the second differentiation is
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B = = @2Cy SN (@F + D)oo (1.98)
and
By = = @2Cy SIN (0F + D). cooovvvvevrrrrereeeeeeeeeeeeeeee s (1.99)
Substituting back into the equations of motion and collecting terms, the result is:
(ky + &y = @2m))Cy = kyCy = O (1.100)
and

~hyCy + by = @7 my)Cy = 0. o (1.101)

The only way not to have a trivial solution (C, and C, = 0) to these equations is to have the
determinate of the coefficients be zero:

ky ”‘2*“’2’”1 —k

=06 e (1.102)
— kz kz _ a)2m2
Using linear algebra, the determinate is:
4 2
mymyw* = [myky + my(ky + ) |07 + Kily = 0, oo (1.103)

which is a quadratic equation in terms of the square of the natural frequencies, w?. This solves
to:

, Mkt mz(k1 + 1‘2) + N/[”ﬁkz + mz(kl * kz)}z = 4mymokyky

w- =

T e (1.104)

There are two roots to this equation, which means that there are two natural frequencies.
The solution therefore must be in terms of the two frequencies. Substituting the first natural
frequency back into the equation of motion solution gives the result of the first natural frequency:

(kg + k= @2m))Cpy =y Cap = O (1.105)
and

—kCyy + by = @3my)Cy = 0. (1.106)

The ratio of Cj; to C,;, known as the mode shape, for the first natural frequency is:
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2
C —wim
1 % _hme 2 oo (1.107)

= —t =
! Gy k1+k2+a)%m1 ky

therefore,
Cr1 T A 0 i (1.108)

The first natural frequency motions then are:
x, = Cyy sin (0,7 + @) =2,y sin (@)1 + D)oo (1.109)

and
%y = Cyy i (@174 B, ). oo (1.110)

The mode shape for the second natural frequency is:

2
C — w5m
dy=—2= % 5 _kmo e (1.111)
Cy ky +ky + w5m ky
therefore,
Clr = A (1.112)

The second natural frequency motions then are:
X = Cyy sin (@yf + B,) = 2,Cp 50 (@ + Bs)cvvrcrrcrr (1.113)

and
%y = Cyy i (@ + By ). oo (1.114)

The complete solution then is both displacements added into one equation:

x; = Cyy sin (wlz + qﬁl) + C, sin (a)zt + qﬁz)

3Gy sin (@7 + @)+ 25 Cay i (@7 + By (1.115)

and
%y = Cyy sin (@t + @) + Cy sin (@0 + By). e (1.116)

The values of C,;, Cy5, Cy;, Cypy, @, and @D, depend on the initial conditions and the mode
shapes, 4, and 4,.
Ex. 1.7 is a 2DOF free and undamped CLO system.

1.10.2 Free Damped 2DOF System. Adding damping complicates the equations considerably,
but the procedure remains the same. In this case, it is easier to use linear algebra. Using the
same model as before (see Fig. 1.16), but adding viscous dampers (c; and ¢, # 0), the equa-
tions of motion for the independent DOFs are determined for mass 1 as
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Example 1.7—2DOF free and undamped CLO system.
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myiy = — k(= x)) = ek ey = ) e (1.127)

and for mass 2 as

Myty = =Xy = x;) = exiy = ) oo (1.128)
This can be written in matrix form as

0 my 562 —C cy ).62 _kZ kz X 0 .

MX + CX KX =0, oo (1.130)

+

or as

where M = the mass matrix, C = the damping matrix, K = the stiffness matrix, X = the accel-
eration vector, X = the velocity vector, and X = the displacement vector, which are given as:

m; 0
M= s e e— e et e e et e et eeteanraeareaans (1.131)
0 my
cpte, —6
C= e aans (1.132)
G G
K= Lk (1.133)
—k, k, e ee— e e—————e——— e e e ea——— e e —eeenaaaaas .

. X
D G OO PR (1.134)

%)

. jcl
X o | s (1.135)

X

and

X1
X = et e e e e e e aaaeeeas (1.136)

X

If the solution is assumed to be of the form

X = 0L e (1.137)
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Fig. 1.16—2DOF free and damped CLO system.

then

= O e (1.138)

and
F 6L L (1.139)
Substituting back into the equation of motion, the result in matrix form is:
@*MCe® + @CCe™ +KCE™ =0, wooororvoeeeeeereereereeeeeeeereeeee (1.140a)
which can be rewritten as
(@M + OC + K)Ce™ = 0. oooovrrreerrrerrssereeensesenen (1.140b)

Because time is always positive and a nontrivial solution is desired, the only way this equation
is true is if the determinate of the coefficient of Ce®'is zero; that is, if

DR) s oS X | NN (1.141)

The determinate of Eq. 1.141 is a fourth-order polynomial in terms of @, which means that
there are four roots. These roots can be:
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Example 1.8—2DOF free and damped CLO system.

1. Four real and negative roots.
2. Two sets of complex conjugates with negative real parts.
3. Two real and negative roots and one set of complex conjugates.
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Example 1.8—2DOF free and damped CLO system (continued).

If number one is the case, then the result is an exponentially decaying motion without oscil-
lation. It is similar to the overdamped case for an SDOF system. If number two is the case,
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then the motions will be exponentially decaying oscillations for both DOFs. This is similar to
the underdamped case for an SDOF system. Finally, for case number three, either condition
can occur.

Ex. 1.8 is a 2DOF free and underdamped CLO system.

More information on linear algebra can be found in Chap. 2 of this section of the Handbook.

1.10.3 Forced Damped 2DOF System. Adding forcing complicates the equations considerably
yet again. The procedure is the same, however, and it is a matter of keeping the mathematics
straight. Many texts are available to delve more deeply into this subject. For more information,
please refer to Refs. 11 through 19.

1.10.4 Multiple-DOF Systems. The previous discussion of 2DOF systems points out how to
handle any DOF system. The last example used matrix notation to define the system for the
solution process. Multiple-DOF systems are solved similarly with the primary difference being
the degree of the defining matrices is greater, as is the degree of difficulty in solving the sys-
tem. The matrix will have the same number of rows and columns as the degree of freedom.
There are other methods (e.g., finite-element modeling) that can be used to tackle the complex-
ity of multiple-DOF systems.

1.11 Continuous Systems
If one continues to add DOFs, the limit at an infinite DOF defines a continuous system. The
result becomes a PDE. The following is a brief description of the separation of variables
method for solving a PDE.

Fig. 1.17 shows a freebody diagram for axial and torsional systems. The axial system equa-
tions will be used to determine the solution of the equations of motion. Eq. 1.162 is the axial
equation of motion:

0°u 0°u du
— = A E TR TG s e 1.162
Map T T Tor e (1.162)
6214 . . azu . .
where m— = the inertial force, 4 E 7 = the rate of strain change, mg, = the static
ot 0x
weight of the element, and cg—lz = the force from viscous damping. This PDE, Eq. 1.162, can

be solved using the separation of variables method. This is shown as:
U@, 1) = XOCOT(). o (1.164)

The following solution assumption is made concerning the time function:

T(E) = €% oo (1.165)

This equation is substituted back into the assumed solution, which then is appropriately differ-
entiated and substituted back into the equation of motion. The equation becomes

3% x(x)
——¢

A FE
9 x*

c

it | (ma)z - cia))X(x)eiwt =0, e (1.166)

which is of the form
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Fig. 1.17—Freebody diagrams for axial and torsional motion.

S Y (1.167)

The standard solution of this equation is:
X(x) = CLe P 4+ Cre' P e (1.168)

The constants of integration, C,and C,, are determined by the initial and boundary conditions,
and ¢ is a collection of the constants and is given by:

2 .
mw” —ciw
0= AE (1.169)
Therefore, the total solution is:
Ux, 1) = (Cre 0" + Coe' )’ oo (1.170)

The solution to the torsional equation of motion is derived similarly to the axial equation,
with the substitution of the appropriate variables and noting that there is no initial strain from
gravity. The variables u, m, 4, E, ¢, w, v, and ¢ are replaced by 0, I, J, G, ¢y, @, vy and
n, respectively. The torsional equation of motion is:

5%0 3% 96
IW:JGW*CGW. .................................................. (1.163)

This gives the solution as:
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. . [ pt
ox, 1) = {(Cle_’”x+C2e’”x)elw0 } ........................................... (1.171)

Constants C, and C, are based on the initial and boundary conditions, and # is a collection of
the constants and is given by:

B w2 icywy
n= T (1.172)
where
vy = LG e (1.173)
Mg
and
pA,
My =g (d,2 = d2). (1.174)

1.12 Wave Reflection From Various Geometric Boundaries
As discussed early in the chapter, wave propagation is the movement of a distinct group of
waves through some material in response to an external force.

A key point in wave-propagation studies is how waves interact with geometric discontinu-
ities. What happens as a wave meets a fixed or free boundary condition? Also, what happens
to a wave as it encounters a geometrical area change or a change in material properties?

There are two limiting boundary conditions for wave propagation: a fixed (pinned) end
(zero displacement) and a free end (zero stress). A fixed end is a boundary condition in which
there is zero displacement. According to wave theory, during a wave encounter with a fixed
end, the stress at the fixed end doubles during the passage of the wave. A reflection of a stress
wave will simply bounce back with the same sign. A compression wave will reflect as a com-
pression wave and a tension wave will reflect as a tension wave. At a fixed end, because the
displacement is zero, the particle velocity will be zero. The wave particle velocity amplitude is
inverted during a reflection from a fixed end.

A free end is defined as a boundary condition free to move. The stress at the free end is
always zero. The effects on stress and particle velocity caused by a free end are opposite of
the effects on stress on a fixed end. A compression wave encountering a free end reflects as a
tension wave, and a tension wave reflects as a compression wave. The wave particle velocity
values double during an encounter with a free end and reflect with the same sign.

As a wave encounters a change in cross-sectional area, some of the wave is reflected and
some is transmitted (refracted). The amplitudes and sign of the waves depend on the relative
change in cross-sectional area. The equation that describes the effect on the incident force, F,,
of a cross-sectional-area, density, or modulus-of-elasticity change for the transmitted wave is
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and for the reflected wave is

Expy Ay
Elpl Acl

F, \/@ACZ +1Fl. .................................................... (1.176)
Eypy Ag

If an incident wave encounters a junction where the relative change in cross-sectional area
is greater than 1 (a smaller area to a larger area), most of the wave will transmit through the
junction. Some of the wave will reflect from the junction and will keep the same sign. For
example, a compression wave will transmit through the junction and keep going as a somewhat-
diminished compression wave. The part of the wave that is reflected is still a compression
wave, but its amplitude is less than that of the wave that transmitted though the junction.

On the other hand, if an incident wave encounters a junction where the relative change in
cross-sectional area is less than 1 (a larger area to a smaller area), most of the wave will re-
flect off the junction, but some of it will transmit through the junction and will keep the same
sign. For example, a compression wave will transmit through the junction and keep going as a
diminished compression wave. The reflected part of the wave is a tension wave whose absolute
amplitude is greater than that of the compression wave that is transmitted through the junction.

As with most drillstrings, there are many geometric discontinuities (changes in cross-section-
al area) that will cause part of the wave to refract and part to reflect. For example, drill collars
to heavyweight drillpipe to drillpipe all are geometric discontinuities. Sometimes, too, there are
material discontinuities—changes in material density or modulus of elasticity—that cause refrac-
tions and reflections. A third possible type of discontinuity is when there are different end-
points. For example, if the pipe is stuck, one end can be modeled as stuck. If the pipe is
hanging freely, such as with casing running, then the end is free.

More-detailed information on wave propagation can be found in Refs. 20 through 25.

A

Nomenclature
a = acceleration, L/t?, ft/sec?
A = slope, dimensionless
A, = cross-sectional area, L2, in.2
¢ = axial damping coefficient, mL/t, Ibf-ft/sec
Cqir = critical damping coefficient, dimensionless
= torsional damping coefficient, mL/t, Ibf-sec/rad
= constant of integration, various
= damping matrix, mL/t, 1bf-ft/sec
= inner diameter, L, in.
= outer diameter, L, in.
= modulus of elasticity, m/Lt?, psia
= excitation function
= cyclic frequency, 1/t, cycle/sec
f(f) = function of ¢
f(;) = first differential function
F = axial force, mL/t%, Ibf
F, = damping force, mL/t?, Ibf
F; = friction force, mL/t, Ibf
F, = hysteretic force, mL/t?, Ibf
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incident force, mL/t?, 1bf

= normal force, mL/t?, Ibf

= reflected force, mL/t?, Ibf

= transmitted force, mL/t?, Ibf

= initial force, mL/t?, Ibf

= gravitational constant, L/t?, 32.174 ft/sec?

function of ¢

= first derivative of function of g(¢)

shear modulus, m/Lt?, psia

hysteretic factor, dimensionless
imaginary operator

second moment of inertia, L*, in.*
iteration index

polar moment, L3, in.3

spring constant, m/t?, 1bf/in.
equivalent spring constant, m/t?, Ibf/in.

= wave number, 1/L, 1/ft

stiffness matrix, m/t?, Ibf/in.
total length, L, ft

mass, m, lbm

mass polar moment of inertia, mL, 1bf-sec?
mass matrix, m, Ibm
exponent

generic value

generic value

generic constant

iterated generic constant
response function

= time, seconds

torque, mL?/t?, Ibf-ft
displacement function in terms of time, ¢
displacement, L, in.

= continuous displacement function, L, in.

velocity, L/t, ft/sec
group speed, L/t, ft/sec

= sonic velocity, L/t, ft/sec
= phase velocity, L/t, ft/sec
= initial velocity, L/t, ft/sec
= torsional sonic velocity, L/t, ft/sec

displacement, L, in.
homogeneous displacement, L, in.

= particular displacement, L, in.

initial displacement, L, in.
first derivative with respect to time of displacement (velocity), L/t, ft/sec
particular velocity, L/t, ft/sec

second derivative with respect to time of displacement (acceleration), L/t
ft/sec?
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X, = particular acceleration, L/t?, ft/sec?

X(x) = displacement function in terms of location x
= displacement vector

= velocity vector, L/t, ft/sec

= acceleration vector, L/t?, ft/sec?
dependent variable, various

distance at point i, L, in.

limit value, various

arbitrary constant, various

= change in length, L, in.

change in time, t, seconds

change in dependent variable, various
amplitude, various

strain, L/L, in./in.

convenient coefficient, 1/L, 1/t
twist, rad

= second derivative with respect to time of twist (acceleration) rad/sec?
= mode shape, dimensionless
wavelength, L, in.

= friction factor, dimensionless

= critical damping ratio, dimensionless
density, m/L3, Ibm/in.3

= stress, m/Lt?, psia

= phase angle, rad

= frequency, 1/t, Hz

w, = damped natural frequency, 1/t, Hz

N UL R VRS
[l | (|

>g>a¢b=%3. o K
Il (Il

g
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w, = forcing frequency, 1/t, Hz
w, = natural frequency, 1/t, Hz
w, = twist natural frequency, 1/t, Hz

@ = convenient coefficient, 1/L, 1/ft
7 = period, t, seconds
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S| Metric Conversion Factors

cycle/sec x 1.0* E+00 =Hz
ft x 3.048* E-01 =m
ft2 x  9.290 304* E-02 =m?
in. x 2.54% E+00 =cm
in? x 6451 6* E+00 =cm?
in? x 1.638 706 E+01 =cm?
in* x 4.162 314 E-07 =m*
Ibf x 4.448 222 E+00 =
Ibf-ft x 1.355818 E+00 =Nm
Ibf-sec? 4.448 E+00 =N-s?
Ibm x 4.535924 E-01 =kg
psia x 6.894 757 E+00 =kPa
rad x 1.00%* E+00 =rad

*Conversion factor is exact.

Appendix—Glossary of Vibration Theory Terms
The period of a vibration is the time taken for a motion to repeat.

Frequency is the number of repeats per unit of time. This also is called a cyclic frequency.
An angular frequency (sometimes called circular frequency) () is measured in radians per unit
time. Angular frequency is the product of 2n and the cyclic frequency.’

The amplitude of a frequency is the difference between the maximum or minimum values
of a sinusoidally varying quantity and its mean. A wave’s crest is its maximum amplitude, and
the trough is its minimum amplitude.

The wave period is the length of time is takes a wave to travel from crest to crest. The
wave frequency is the inverse of the wave period.

The wavelength is the distance covered by one wave period.

The phase angle (abbreviated to “phase”) of a wave is the fraction of the distance the
wave has traveled relative to an arbitrary reference. The points at which the various waves
cross the average amplitude line do not coincide unless the phase is zero. The phase is nega-
tive if the crossing occurs before the reference wave crossing, and positive if it occurs after the
reference wave crossing.

Phase velocity is the velocity of a given point, as defined by the phase angle on a sinu-
soidal wave. When the phase velocity and the frequency remain constant, it is a nondispersing
wave. If the phase velocity and the frequency are not constant, the wave disperses.

The wave number is the ratio of the wavelength to 2x.!° If this ratio is a real number, the
wave will be a nondispersing wave (i.e., it will have a constant phase velocity for all its com-
ponents and will retain its shape). If the wave number is complex, then the wave will be a
dispersing wave (i.e., its components will have different phase velocities and it will not retain
its shape and will disperse over time). All waves encountered in macroscopic reality are dispers-
ing to some extent.

The group speed is the response of a wave’s group of sinusoidal components, and is differ-
ent from phase velocity. Group speed is important; the interaction of all the wave components
in terms of wave number, amplitude, and frequency causes the appearance of a carrier wave of
some wave number, amplitude, and frequency. This carrier wave is modulated by group waves
that propagate at group speeds. In a nondispersing wave, the group speeds are the same as the
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phase velocity of the wave components. In a dispersing wave, however, these group speeds can
be different. If the group speeds are greater than the phase velocities, it will appear that a
carrier wave originates at the back of the wave, propagates forward until it reaches the front of
the wave, vanishes, and reappears at the back of the wave. If the group speeds are less than
the phase velocities, it will appear that a carrier wave originates at the front of the wave, prop-
agates backward until it reaches the back of the wave, vanishes, and reappears at the front of
the wave. This can be visualized by thinking of a caterpillar’s motion. The caterpillar’s ripples
appear to move backward, yet the caterpillar moves forward.>* This is one reason the analysis
of dispersing waves can be very complicated.

The natural frequency of a system is the frequency at which the system vibrates when
free of any friction or forcing functions.

A damped natural frequency is a natural frequency with friction.

Damping is the dissipation of energy with time or distance. Several forms of damping are
discussed in this chapter.

A harmonic is a frequency that is an integer multiple of a given frequency.

A mode is a particular harmonic frequency.

The mode shape is a pattern of the system assumed during a harmonic.

A frequency spectrum is a band of frequencies.

A forcing function is an external force that is acting on a vibrating system. This has the
effect of modifying the vibrations that are experienced in the system, sometimes significantly.
For example, in a rotating-drillstring system, the drill bit will impart a forcing vibration to the
lower end of the string.

A critical frequency is a frequency at which amplitudes become unbounded. This occurs
when the frequency of the system matches one of the natural frequencies.

The critical rotary speed is a rotary speed that coincides with one of the critical frequen-
cies of the system.

Resonance occurs when the frequency of the forcing function is equal to one of the natural
frequencies of the system.

A stable system returns to its former position after the removal of the force that disturbed
the system. In pipe work, stability is involved with buckling, bending, and straightness of the
pipe.

An incident wave is a wave going into a geometric or material discontinuity.

A transmitted wave is the portion of a wave that passes through a geometric or material
discontinuity.

A reflected wave is the portion of a wave that does not pass through a geometric or mate-
rial discontinuity.

Impedance is the ratio of a force-like quantity to a velocity-like quantity when the argu-
ments of the real or imaginary parts of the quantities linearly increase with time. The recipro-
cal of impedance is mobility. If the mechanical impedance of two materials and their
geometries are equal, then the maximum amount of energy will be transmitted at their intersection.

The beating phenomenon occurs when two harmonic waves of slightly different frequen-
cies are impressed on a body. They are a periodic variation in vibration at a frequency that is
the difference between to two frequencies.

Self-excited vibrations occur when the forcing function is a function of the displacement,
velocity, or acceleration of the system mass. If the energy gained from the self-excited vibra-
tions is more than the system can absorb, the system will self-destruct.

A standing wave is a wave that appears to be standing still. There is no discernible begin-
ning or end in time to the wave.

A transient wave is a wave that has a definite beginning and eventually dies out.

Strain energy is the energy gained by a mass as it is deformed.
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Mathematics of Fluid Flow
John R. Fanchi, Colorado School of Mines

2.1 Introduction

The purpose of this chapter is to review the mathematics of fluid flow. We limit our review to
essential aspects of partial differential equations, vector analysis, numerical methods, matrices,
and linear algebra. These topics are discussed in the context of two fluid flow applications:
analysis of the convection/dispersion equation and diagonalization of the permeability tensor.
For more details about the mathematics presented here, consult Refs. 1 through 4.

2.2 Partial Differential Equations

Partial differential equations (PDEs) are frequently encountered in petroleum engineering. We
review basic concepts of PDEs by considering the relevant mathematical properties of the con-
tinuity equation.

2.2.1 Continuity Equation. Fluid flow through a volume can be described mathematically by
the continuity equation. The continuity equation has many uses, and its derivation is provided
to illustrate the construction of a partial differential equation from physical reasoning.” We be-
gin by considering the flow illustrated in Fig. 2.1. The block in Fig. 2.1 has length (Ax), width
(Ay), and depth (Az). Fluid flux (J) is the rate of flow of mass per unit cross-sectional area
normal to the direction of flow. The notation (Jx)x denotes fluid flux in the x direction at loca-
tion x. The cross-sectional area perpendicular to the flux direction is AyAz. Fluid flows into the
block at x with fluid flux J, and out of the block at x + Ax with fluid flux J,,,,. Applying the

principle of conservation of mass, we have the mass balance, which is written as
Massin — massout = mass accumulation. .........ccecceevveereeecriesveennen. 2.1
The mass entering the block in time interval, A¢, for flux across the face of the block at x is

J ) Ay Az | Af = MaSSIN. ooeerieieiieieieeeee e (2.2)
[(7),87 2]

The mass leaving the block in time interval, A¢, across the face of the block at x + Ax is
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Fig. 2.1—Coordinate system for continuity equation.

(7). A sAy Az] AL+ GAX Ay Az Al = MASS OUL, oo (2.3)

where we have added a source term ¢. Flow out of the block through ¢ is represented by g >
0, and flow into the block is represented by g < 0. The source term, ¢, can represent a variety
of important physical systems, including wells, aquifer support, fluid flow into a fracture sys-
tem from matrix blocks in a naturally fractured reservoir, and gas flow into a cleat system
from the coal in a coalbed.

Mass accumulation in the block is the change in concentration C of the mass in the block
during the time interval At, where concentration, C, is defined as the total mass in the block
divided by the block volume. The mass accumulation term is

[(C)t AT (C)J Ax Ay Az = mass accumulation, ............ccccceeeevevevennnnn. (2.4)

where concentration is evaluated at times ¢ and ¢ + At.
Substituting Eqs. 2.2 through 2.4 into Eq. 2.1, dividing by AxAyAzAt, and rearranging gives

3 (Jx)x+Ax B (Jx)x o (C) 40— (O,
Ax 7 At

e 2.5)

In the limit as Ax — 0, At — 0, the differences in Eq. 2.5 are replaced by partial derivatives.
We assume the fluxes and concentrations are sufficiently smooth and continuous to allow the
replacement of differences by partial derivatives. Eq. 2.5 becomes the continuity equation in
one space dimension.

ST 2.6)

Eq. 2.6 is an example of a partial differential equation.

2.2.2 Partial Differential Equations. PDEs are an extension of the concept of ordinary differ-
ential equations (ODEs). Unlike an ODE, which depends on only one independent variable, a
PDE depends on two or more independent variables. In the previous example, Eq. 2.6 depends
on two independent variables: one space dimension (x) and time (¢). The order of Eq. 2.6 de-
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pends on the form of concentration and flux. The order of a PDE is the order of the highest
derivative that appears in the equation.

oy oy . 0y 'y _ty
9t//’ x’ ay’ ’axzﬁayz’ axay9

F X, y’

for a function (y) of two or more independent variables {x,y,...}. A PDE is linear if it is first
order in the unknown function and its partial derivatives, and the coefficients of the partial
derivatives, are either constant or depend on the independent variables {x,y,...}. We illustrate
these concepts by considering the continuity equation for flow of a fluid with density (p), veloc-
ity (v,), and no source or sink terms. The concentration, C, and flux, J,, for this example are

¢=p;
J.=pv;
and
G =01 e (2.8)
Substituting Eq. 2.8 into Eq. 2.6 gives
a_€ + &ix(p V) = 01 (2.9)

Eq. 2.9 is a linear, first-order PDE if density is the unknown function and velocity is constant.
The situation is not so simple in more physically realistic systems.
Consider, for example, a slightly compressible fluid in which density is given by®

p=poexp e (P=Pg)]. oo (2.10)

where P is pressure, ¢ . is fluid compressibility, and the subscript, 0, refers to a reference val-
ue of pressure. Assume, as well, that velocity is proportional to pressure gradient so that

where a is the proportionality constant. Substituting Eqs. 2.10 and 2.11 into Eq. 2.9 gives

dP  a 0°P (ap)z_
at-i-cfaxz'i'a I D —— (2.12)

Eq. 2.12 is a nonlinear, second-order PDE. It is second order because of the second-order par-
tial derivative of pressure with respect to x, and it is nonlinear because of the square of the
pressure gradient term.

Solutions of PDEs depend on the form of the PDEs and their associated boundary condi-
tions. An important class of second-order PDEs has the form
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ey 9t y) | 0%y )
9 x* 0x0dy 8y2

where the functions {4, B, C, G} are known functions of two independent variables {x, y} and
the first-order partial derivatives 0 w(x, y)/0 x and 0 w(x, y)/0d y in a region (R) bounded by
a surface (S). The mathematical properties of the second-order PDEs depend on the relation-
ship between the functions {4, B, C, G}. A classification scheme for second-order PDEs is
given in Table 2.1.

Boundary conditions for second-order PDEs may be written as

ax, V(x, v)+B(x, y)%):y) O N (2.14)

where w(x, y) is the unknown function of two independent variables {x, y}, and 9 w(x, y)/0 n
is the derivative normal to a boundary. The functions {a, f, y} are known functions of {x, y}.
All of the functions and applicable derivatives are defined in a domain (R) bounded by a sur-
face (S). A classification scheme for the boundary conditions of a second-order PDE is given
in Table 2.2. The boundary conditions associated with the examples in Table 2.1 are given in
Table 2.3. The significance of PDE classification is considered further in the discussion of the
convection/dispersion equation presented next.

2.2.3 One-Dimensional (1D) Convection/Dispersion Equation. The continuity equation is
used to describe the mixing of one substance with another by writing flux in the form

—cy_pdC
L L R — (2.15)

The concentration, C, is the concentration of the solute in the solvent. The term v is the veloci-
ty of the solute, and D is the dispersion of the solute into the solvent. Substituting Eq. 2.15
into Eq. 2.6, the 1D convection/dispersion equation without sources or sinks, gives
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_L( _ 3_C) _o¢
ava D&x Gg e —s (2.16)
If we assume that v and D are constant, Eq. 2.16 simplifies to the form
2
D&C_ 0 € 0 e (2.17)

9 x? v@x ot’

Eq. 2.17 is the 1D convection/dispersion (C/D) equation. The dispersion term is D6*C/ox?, and
the convection term is —vOC/Ox. If the dispersion term is much larger than the convection term,
the solution of Eq. 2.17 can be approximated by the solution of the equation

9’C _ocC
D 52 :a—t. ............................................................ (2.18)
X

Eq. 2.18 is a parabolic PDE and behaves mathematically like a heat conduction equation. If the
convection term is much larger than the dispersion term, the solution of Eq. 2.17 can be approx-
imated by the solution of the equation.

oC_odC
Ll il R — (2.19)

Eq. 2.19 is a first-order hyperbolic PDE.
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Fig. 2.2—Analytical solution of the 1D C/D equation.

A solution of the 1D C/D equation, given in Eq. 2.17, is obtained as follows. We assume
that solute is moving in the x-direction with constant speed (v ). The concentration C(x,?) is a
function of space and time. We must specify two boundary conditions and an initial condition
for the concentration C(x,f) to solve the C/D equation. We impose the boundary conditions,
C@0, /) = 1 and C(oo, ) = 0, for all time, ¢ > 0, and the initial condition, C(x, 0) = 0, for all
values of x > 0. The boundary condition, C(0, ¢) = 1, says that we are injecting 100% solute at
x = 0, and the boundary condition, C(e, ) = 0, says that the solute never reaches the end of
the flow path at x = o. The initial condition, C (x, 0) = 0, says that there is no solute in the
solvent at the initial time, # = 0. The solution of the C/D equation is

Clx, )= %{erfc( x2:/lT‘;t ) + exp (%)erfc( x2:/D_‘;t )}, ............................ (2.20)

where the complementary error function erfc(y) is defined! as

erfc()—l—ijex (—zz)dz—l—i{ B S i +} 2.21)
Y vzl P Z|7 T an3 T@ens @gn7 [ '

The integral in Eq. 2.21 can be solved using the series expansion on the right side of Eq. 2.21
or a numerical algorithm.” Eq. 2.20 is illustrated in Fig. 2.2 for physical parameters v = 1 ft/
day and D = 0.01ft*day. This solution is used in Sec. 2.4 to evaluate a numerical solution of
the C/D equation.
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2.3 Vector Analysis

Fluid flow equations in two and three dimensions can be compactly represented using concepts
from vector analysis. For example, the continuity equation in three space dimensions for the
Cartesian coordinate system, shown in Fig. 2.1, is

aJx aJy 8JZ 0 C
“9x oy o9z 175+

............................................ (2.22)

The flux terms (J,) and (J,) have meanings analogous to (J,) for flux in the y and z directions,

N
respectively. If we write the components of flux as the flux vector J = {Jx, Jy, JZ}, Eq. 2.22
can be written in vector notation as

Vo T =g =L e (2.23)

N
where the divergence of vector J = {Jx, Jy, JZ}, in Cartesian coordinates, is

v.7 0J, 9J, 9
‘J_8x+8y+az’

............................................... (2.24)

The divergence operator V - is an example of an operator from vector analysis that deter-
mines the spatial variation of a vector or scalar field. Following Fanchi,* we first review the
concepts of scalar and vector fields and then define gradient (grad), divergence (div), and curl
operators.

2.3.1 Scalar and Vector Fields. We define scalar and vector fields in a Cartesian coordinate
system with position vector

—
X

A A AN
S XL YT ZE, e (2.25)

where {?, ?, l@} are unit vectors defined along the orthogonal {x,y,z} coordinate axes. If we

can associate a scalar function (f') with every point in a region (R), then the scalar field may
be written as

—
X

TG0 1, 2) = F(5) s (2.26)

Examples of scalar fields include pressure, temperature, and saturation.

N
If, instead of a scalar function (f), we can associate a vector v with every point in the
region (R), we can construct a vector field of the form

7()(, y,z)= 7(;}) ........................................................ (2.27)

The vector field is a function that assigns a vector to every point in the region R. Examples of
vector fields include the Darcy velocity field and seismic velocities.
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Fig. 2.3—Gradient Vf normal to surface S.

2.3.2 Gradient, Divergence, and Curl. The spatial variation of a scalar or vector field can be
determined with the del operator V. The del operator, V, is defined in Cartesian coordinates
as

A el - Sl 3 el (2.28)

The gradient of a scalar field (f) is obtained by operating on the scalar field with the del opera-
tor, thus

A A N 0
grad f =V [ = (18—x+j—+kﬁ)f: af+ja£ 8jz[' ............... (2.29)

The direction of the gradient of the scalar field ( /) evaluated at a point is oriented in the
direction of maximum increase of the scalar field. In addition, the vector field, V f, is perpen-
dicular to a surface that corresponds to a constant value of the scalar field (Fig. 2.3).

Two outcomes are possible when the del operator is applied to a vector field. One outcome
is to create a scalar, and the other is to create a vector. A scalar is obtained when we take the

dot product of the del operator with a vector field (7). The result is the divergence of the
vector field.

— - 0 \ 0 A
Div v =0 v :(lﬂ—i_jﬂ-’_kﬁ) (Vl-l‘v j+vk>
Vv, dv ov
_ v z
R v (2.30)

A vector is obtained when we take the cross product of the del operator with a vector field
— —
(v). The result is the curl of the vector field v .

N
Curl v =V X vy =

NECAZ 3vy AfOV, OV, ,\avy J v,
l( - Z)+] 6’2_3x)+k c’)’x—ay' .................. (2.31)

+4 +k X (v.i+v i+ l?)
rae - (vxz vty

(Exit
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N
The curl of the vector field v is called the rotation of the vector field. It is a vector that is

normal to the plane containing the vector field 7 The divergence of the gradient of a scalar
field (f) is

2 2 2
Vx (V==L L O L O (2.32)
d x dy 0z

where we introduce the Laplacian operator,

in Cartesian coordinates.
The gradient, divergence, curl, and Laplacian operators arise in many PDEs that affect

— —
petroleum engineering. For example, a vector field v is said to be irrotational if curl v =0,

and it is said to be solenoidal if div7 = 0. These properties of the vector field are useful for
analyzing the propagation of seismic waves. Another useful application of vector analysis is to
the mathematical representation of fluid flow in two or three spatial dimensions. Two examples
are presented next.

2.3.3 Incompressible Flow. Incompressible flow occurs when the density of a fluid is con-
-
stant. In this case, the continuity equation for flow of a fluid with density (p) and velocity (v )

has concentration (C) and flux (7) given by

—

oy N AT SO (2.34)

The concentration and density are scalar fields, and the velocity and flux are vector fields. The
continuity equation without source or sink terms becomes
A e (2.35)
ot

A more suitable form of the continuity equation for describing incompressible fluid flow is
obtained by substituting the differential operator,

D J | =
—_ = 4 .
Dr a7 " Vet (2.36)
into Eq. 2.35 to obtain
Dp -
= 4 . —
D TP Vo 1 = 0h s (2.37)

In the case of incompressible fluid flow, density is constant and Eq. 2.37 reduces to
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Eq. 2.38 shows that the divergence of the velocity of a flowing, incompressible fluid is zero.

2.3.4 Three-Dimensional (3D) Convection/Dispersion Equation. The convection/dispersion

-
equation in three dimensions is obtained by writing flux (/) in the multidimensional form

— —
J=CV =DVt (2.39)
Substituting Eq. 2.39 into the 3D continuity equation gives

—v-c7+v-Dvc—q=aa—f. ........................................... (2.40)

If we assume that 7 and D are constant, we can simplify Eq. 2.40 to the form of

pvic-- VC—q:%—f. ............................................... (2.41)

Eq. 2.41 is the 3D convection/dispersion equation. The term D V2C is the dispersion term, and

S
the term — v - V C is the convection term.

2.4 Numerical Methods

Systems of nonlinear PDEs are needed to describe realistic multiphase, multidimensional flow
in a reservoir. As a rule, these equations cannot be solved analytically; they must be solved
with numerical methods. To illustrate the mathematics, we discuss the numerical solution of
the 1D C/D equation.

’%c aC ocC
Daxz_vax:at’ .................................................... (2.42)

as introduced in Sec. 2.2. As a reminder, v is velocity, D is dispersion, and C is concentration.
Eq. 2.42 is a good example to use because it illustrates many useful numerical methods that
can be compared with the analytical solution given by Eq. 2.20. We first introduce the concept
of finite differences to convert Eq. 2.42 to an equation that can be solved numerically. We
then present a numerical representation of Eq. 2.42 and illustrate its solution. For more details,
you should consult the chapter on reservoir simulation in Vol. V, Reservoir Engineering and
Petrophysics, as well as Refs. 8 through 14.

2.4.1 Finite Differences. One way to solve a PDE is to convert the PDE to finite-difference
form. The finite-difference form is obtained by replacing the derivatives in the PDE with differ-
ences that are obtained from Taylor’s series. To illustrate the procedure, let us suppose that we
know the function f(x) at two discrete points x = x; and x = x; + Ax, where Ax is an incre-
ment along the x-axis (Fig. 2.4). We can approximate the derivative df(x)/dx at x = x; by
solving the Taylor’s series,

df

2 2 3 3
f(xi"'Ax):f(xl-)-i-AxE +(Ax) a f +(Ax) df

—L + -, ....(243
’JC=XI- 21 442 x=x, 30 443 x=x, ( )

for df(x)/dx. The result is



Chapter 2—Mathematics of Fluid Flow I-55

Fig. 2.4—Discrete points in the Taylor series expansion.

dar _
dx | x-x, = Ax Epy o (2.44)
where E; is the term
2 2 3
E-2xd) PCEI s b e (2.45)
2! dx2 X=X, 3! dx3 X=X,

1 1

If we neglect £, we obtain the finite-difference approximation of the first derivative.

dfwf(xﬁAx)_f(xi) 2 46
ax Ax ettt (2.46)
Eq. 2.46 is an approximation because we are neglecting all of the terms in £, which is called
the truncation error. In the limit as the increment Ax approaches zero, the truncation error ap-
proaches zero, and the finite difference approaches the definition of the derivative.

The finite difference in Eq. 2.46 is called a forward difference. Other differences are possi-
ble. Two that we use next are the backward difference,

and the centered difference,

Slx; +Ax) = flx; — Ax
dr A ST e

Egs. 2.46 through 2.48 are all derived from Taylor’s series.

2.4.2 Illustration: Numerical Solution of the 1D C/D Equation. We illustrate the application
of finite differences in a fluid flow problem by considering a specific finite-difference represen-
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tation of the 1D C/D equation. For a more detailed discussion of the numerical analysis of Eq.
2.42, see Chap. 4 of Ref. 8. In our example, we choose a backward difference for the time
derivative in Eq. 2.42, a centered difference for the space derivative in the convection term,
and a centered-in-time/centered-in-space difference for the dispersion term. Eq. 2.42 is convert-
ed from a PDE to the difference equation

1 +1 +1 +1
DZ(AX)Z[CZI+1—2C1»VZ +C[(171+C;1+1_2C;1+C;17J
n+1 n
L1 met_men]_ G =G
—vﬂb(qﬂ 1 —C;’_l)}fT. ....................................... (2.49)

The subscripts of concentration C denote points in space, and the superscripts denote points in

time. For example, the present time, ¢”, is denoted by superscript » and future time s

n+1

denoted by n+1. The time increment is Af=t¢ —¢". Similarly, the space increment is

Ax = x; | — x;. The concentration at time "1 and spatial location x; is denoted by Cl-" 1

The future concentration distribution is found from the current concentration distribution by
rearranging Eq. 2.49. We collect terms in C" "' on the left-hand side and terms in C" on the
right-hand side, thus

+1 DAt +1 +1 +1 vAt[1 +1 +1
< 72(Ax)2[cf+1 2 [E(Cinﬂ 7Cin—l)}

— AL (e 2 ) (2.50)

" 2(Ax)?

Eq. 2.50 is now written in the form

a,Cr b C b e Ol = dy s (2.51)
where the coefficients are
L. _vAt_ DAt
! 2 Ax 2 (Ax)2 ’
bi =1+ DA 1‘2 ;
(Ax)
= vAt DAt
: 2 Ax 2(Ax)2 ’
DAt
d=C"+ ST Yo/ o WO (2.52)
i i 2(Ax)2( i+1 i i 1)

All values of the variables in the coefficients are known at time ¢”. If we assume that the
spatial subscript is in the range 1 <i < NX, the system of finite-difference equations becomes
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r Cn+] 7] i B
"byc; 0 0 0 0 0 o 1| ! d,
n+1
a by ¢ 0 0 - 0 0 0 G d,
+1
0 ay by c3 0 0 0 0 Ccy B dy
00 0 0 0 0 ayy—; byx—1 cyx-1 cntl dyx-1
L0 0 0 0 0 O 0 ayx  byx | cntl dyx
NX | -
........................................................................ (2.53)
Eq. 2.53 can be written in matrix form as
MC =D, oo (2.54)

where M is the NX x NX matrix of coefficients, C is the column vector of unknown concentra-
tions at time "', and D is the column vector of right-hand-side terms that depend on known

concentrations at time ¢”. Both column vectors C and D have NX elements.

The system of equations in Eq. 2.54 is called a tridiagonal system because it consists of
three lines of nonzero diagonal elements centered about the main diagonal. All other elements
are zero. Techniques for solving the tridiagonal system of equations, using the Thomas algo-
rithm, are presented in Refs. 8 through 11 and Ref. 15. A solution of the set of equations for
physical parameters v = 1 ft/day and D = 0.01 ft*/day and finite-difference parameters Ax = 0.1
ft and Ar = 0.1 day is shown in Fig. 2.5. The difference between the analytical solution and
the numerical solution is because of numerical dispersion,®!%"'7 which is beyond the scope of
this chapter. What interests us here is the appearance of matrices in the mathematics of fluid
flow. Matrices are the subject of the next section.

2.5 Matrices and Linear Algebra

An example of a matrix was introduced in Sec. 2.4 for the 1D C/D equation. It is often easier
to work with many fluid flow equations when they are expressed in terms of matrices. Our
review follows the presentation in Ref. 4. We begin our discussion with an example of a ma-
trix that is used later in this chapter, namely the matrix associated with the rotation of a
coordinate system. We then summarize some important properties of matrices and determinants
and review the concepts of eigenvalues and eigenvectors from linear algebra.

2.5.1 Rotation of a Cartesian Coordinate System. Fig. 2.6 illustrates a rotation of Cartesian

coordinates from one set of orthogonal coordinates {xl, x2} to another set { i yz} by the an-
gle 6. The equations relating the coordinate systems are

Y| = Xy cos O + x, sin 6;

Vo= —X;SIN 0 F Xy 008 0. (2.55)

The set of equations in Eq. 2.55 has the matrix form
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Fig. 2.5—Numerical solution of the 1D C/D equation.

Mg cos@ sind X1 556
J’2 “| Zsind cosd xz, ............................................. (2.56)
which can be written as
Y= A X e (2.57)
The column vectors x and y are
3 X1
y= and X =] | (2.58)
b%) B X2

with two elements each, and the rotation matrix A4 is the 2 x 2 square matrix,

cos @ sin @
—sinf cos @

}. ...................................................... (2.59)

2.5.2 Properties of Matrices. In general, a matrix with m rows and n columns has the order
m X n and is referred to as a m X n  matrix. The entry in the i row and j column of the
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Fig. 2.6—Rotation of coordinate system.

matrix is the ;" element of the matrix. If the number of rows equals the number of columns
so that m = n, the matrix is called a square matrix. On the other hand, if m # n, the matrix is
a rectangular matrix.

If the matrix has a single column so that » =1, it is a column vector as in Eq. 2.58. If the
matrix has a single row so that m =1, it is a row vector. A row vector can be created from a
column vector by taking the transpose of the column vector. For example, the transpose of the
column vector x in Eq. 2.58 may be written as

T
= 2 [ 51 % | (2.60)

where the superscript 7 denotes the transpose of the matrix. In general, we can write a m X n
matrix 4 with a set of elements {aij i=1, 2, .nj=1, 2, m} as

A=} o (2.61)

The transpose of matrix 4 is

A" ={a;; ) =] (2.62)

The conjugate transpose of matrix 4 is obtained by finding the complex conjugate of each
element in 4 and then taking the transpose of the matrix 4. This operation can be written as

A=A =[a] ;] =a}] (2.63)

where * denotes complex conjugation. Recall that the conjugate z ofa complex number z is
obtained by replacing the imaginary number i =+4~1 with —i = —+/~1 wherever it occurs. If
all the elements of matrix 4 are real, the conjugate transpose of matrix 4 is equal to the trans-
pose of matrix 4. a a
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If the matrix 4 is a square matrix and the elements of matrix 4 satisfy the equality
a;;=aj; the matrix A is called a symmetric matrix. A square matrix A is Hermitian, or self-
adjoint, if 4= A (i.e, the matrix equals its conjugate transpose).

The set of elements {aii} of a square matrix A4 is the principal diagonal of the matrix. The
elements {a ji } with i # j are off-diagonal elements. The matrix 4 is a lower triangular matrix
if a;; = 0 for i <j, and 4 is an upper triangular matrix if a;; = 0 for i > j. The matrix A is a
diagonal matrix if a;; = =0 fori # j.

2.5.3 Matrix Operations. Suppose the matrices 4, B, and C with elements

{ai j}, {bi j}, and {ci j}have the same order m X n. We are using double underlines to denote
matrices. Other notations are often used, such as boldface. The addition or subtraction of two
matrices may be written as

[FN

FTB=C, a;; T b, =Cii i, (2.64)

The product of a matrix 4 with a number £ may be written as

B=k4, bij =k T (2.65)
The product of matrix 4 with order m X n and matrix B with order n X p is
n
C=AB, ;i = 2 @b, i\ i (2.66)

where matrix C has order m X p. Notice that matrix multiplication is possible only if the num-
ber of columns in 4 equals the number of rows in B. This requirement is always satisfied for

square matrices.
The transpose of the product of two square matrices 4 and B is

and the adjoint of the product of two square matrices is

(AB)" = B A" sttt (2.68)

Notice that the product of two matrices may not be commutative (i.e., 48 # B 4 in general).

The identity matrix, /, is a square matrix with all off-diagonal elements equaling zero and
all diagonal elements equaling one. The identity matrix preserves the identity of a square ma-
trix 4 in matrix multiplication, thus

m~

............................................................. (2.69)

LS
1~
Il
I~
s

By contrast, a null matrix 0 is a matrix in which all elements are zero. In this case, the product
of the null matrix with a matrix 4 is
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N
no
Il
o
[N
=)

.............................................................. (2.70)

The matrix, 4, is singular if the product of matrix 4 with a column vector x that has at least
one nonzero element yields the null matrix; that is, 4 is singular if

1N

x=

no

s X T O oo 2.71)

The concepts of identity matrix and matrix singularity are needed to define the inverse ma-
trix. Suppose we have two square matrices 4 and B that satisfy the product

I
>
Il
[is~]
[°N
~

Lo (2.72)
Notice that the matrices A and B commute. The matrix A is nonsingular, and the matrix B is

the inverse of 4, thus B = A where A denotes the inverse of A Eq. 2.72 can be written in
terms of the inverse as

RSN

A=

IID;
N

e 2.73)

The inverse matrix is useful for solving systems of equations. For example, suppose we have a
system of equations that satisfies

where the column vector b and the matrix 4 are known, and the column vector x contains a
set of unknowns. Eq. 2.54 is an example for the 1D C/D equation. We can solve for x in Eq.
2.74 by premultiplying Eq. 2.74 by éil. The result is

A Ax=x=A"D e, (2.75)

Of course, we have to know 4 ! to find x. This leads us to a discussion of determinants.

2.5.4 Determinants, Eigenvalues, and Eigenvectors. The determinant (det) of a square matrix

é is denoted by det( ) or ’ A’ Two examples of determinants are the determinants of a
2 X 2matrix and a 3 X 3 matrix. The determinant of a 2 X 2 matrix is

i1 912
det - a = A1 Ayy T Ay A cererrereiinieieinni s (2.76)
21 %22

and the determinant of a 3 X 3 matrix is

41 %42 43
det| @1 G 93 | =ay aya33 T a0y Fa138y43

a3) dzp dzz

(Exit]
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Determinants are useful for determining if an inverse matrix 4_1 exists. Inverse matrices
are needed to solve finite-difference equations representing fluid flow. The condition
det (é) # 0 says that an inverse matrix éil exists, even though we may not know the ele-
ments of the inverse matrix. Determinants are also useful for determining eigenvalues and
eigenvectors.

Eigenvalues and eigenvectors are useful for understanding the behavior of physical quanti-
ties that may be represented by a matrix. An example in fluid flow is permeability, which we
discuss in more detail later in this chapter. First, we need to define the concepts of eigenvalue
and eigenvector.

Eigenvalues are the values of 1 in the eigenvalue equation

X = AX, i (2.78)

I

where 4 is an n X n square matrix and x is a column vector with n rows. The eigenvalue
equation may be written as

where [ is the n X n identity matrix. Eq. 2.79 has nonzero solutions, x, if the eigenvalue, 4, is
a characteristic root of 4, that is, A must be a solution of

N R (2.80)

Eq. 2.80 is the characteristic equation of 4, and the n values of 4 are the characteristic roots of
the characteristic equation. The characteristic roots, A, are obtained by expanding the determi-
nant in Eq. 2.80 into an nth-degree polynomial and then solving for the n values of A. These
concepts are illustrated in the next section.

2.6 Diagonalizing the Permeability Tensor

The form of Darcy’s law that is most widely used in formulating fluid flow equations in reser-
voir simulators assumes that the coordinate system is aligned with the principal axes of the
permeability tensor. The resulting diagonalized permeability greatly simplifies the fluid flow
equations. The simplified equations are easier to code and can be solved with less computation
time than fluid flow equations that include the full permeability tensor. Research in naturally-
fractured-reservoir modeling,'® geomechanics,'® and upscaling?® has demonstrated that the full
permeability tensor is needed to correctly solve fluid flow problems in a variety of realistic
settings. The mathematical procedure for diagonalizing the permeability tensor is presented
here as an illustration of the mathematics discussed in Sec. 2.5. The relationship between the
diagonalized-permeability-tensor assumption and grid orientation is discussed in Sec. 2.7. An
understanding of the relationship between grid orientation and the permeability tensor can help
us decide how to orient a fluid flow grid to most accurately represent the permeability distribu-
tion in a reservoir. The directional dependence of permeability and the permeability tensor are
first introduced. The procedure for diagonalizing the permeability tensor is then presented.
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2.6.1 Darcy’s Law and the Permeability Tensor. In one dimension, Darcy’s law says that
flow rate is proportional to pressure gradient. This can be expressed in oilfield units for single-
phase flow as

7= —0.0011271(%%, .................................................... (2.81)

where ;) is flow rate (B/D), x is length (ft), 4 is cross-sectional area (ft?), u is fluid viscosity
(cp), k is permeability (md), and @ is the phase potential (psia).

D =P = P(AZ). oo (2.82)

In Eq. 2.82, Az is depth from a datum (ft), P is fluid pressure (psia), and y is the pressure
gradient associated with the gravity term (psia/ft). The form of Darcy’s law with full permeabil-
ity tensor in Cartesian coordinate system {x, y, z} is

dy kxx kxy kxz od/0x
q, |= 70.001127§ kyy kyy Kz 1] 0®/0Y |, oo (2.83)
q, k.. kzy k.. 0d/0z

where we have treated the cross-sectional area, 4, as a constant with respect to direction. Eq.
2.83 can be rewritten as either a dyadic equation,

— Ao
q = 70.001127;k~ AV OO (2.84)

by treating permeability as a dyadic, or as a matrix equation,

od/0x

g=kA, A= —0.0011272] 30/ p || oo (2.85)
00/0z

by treating permeability as a matrix. We are interested here in the matrix representation.
The diagonal permeability elements {k,,, k,,, k..} represent the dependence of flow rate in
one direction on pressure differences in the same direction. The off-diagonal permeability ele-
ments {k,,, k., k., k., k., k.,} account for the dependence of flow rate in one direction on

pressure differences in orthogonal directions. Expanding Eq. 2.83 gives the corresponding set
of three equations demonstrating this dependence.

A 00 00 0D
q,~= — 0.001 127;(kxxﬂ + kxya—y + XZE)'
B Al 0 50 9D
q,= ~ 0.001 127;(/(ny + kyyﬂ + kyZE)'

A oD oD oD
q,= — 0.001 127;(kzxa—x + kzyﬂ + ZZE)'
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2.6.2 Similarity Transformations. Eq. 2.85 relates flow rate (g) and the pressure gradient
term, A. We can use a similarity transformation to diagonalize the matrix & while preserving
the form of the relationship between ¢ and A. Let us first show that a similarity transformation
preserves the form of Eq. 2.85.

We begin by multiplying Eq. 2.85 on the left by A4 to find

where 4 is a nonsingular, n x n square matrix. Because 4 is nonsingular, it is invertible; that
is, it satisfies the equality

AG = Ak A VAN oo, (2.89)
Defining the transformed matrices
g = Aq and
N = AN, oo (2.90)

and using the similarity transformation

in Eq. 2.89 yields

Eq. 2.92 is the same form as Eq. 2.85.

2.6.3 Matrix Diagonalization Procedure. It is mathematically possible to find a coordinate
system {x’,3’,z’} in which the permeability tensor has the diagonal form

key 0 0
0 ky/y’ 0 |. We diagonalize the matrix £ by finding and applying a similarity transfor-
0 0 kz'z/
mation matrix 4. The procedure for finding a matrix 4 that diagonalizes an n X n matrix k is
as follows:* - -
» Find the eigenvalues {4;: i = 1, ..., n} of k from the eigenvalue equation det(lg */Il) =0.

* Find # linearly independent eigenvectors {gl. =1, - n}
* Form the similarity transformation matrix 4 with the eigenvectors as columns.
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* Calculate the diagonalized matrix k". The diagonal entries of £~ are the eigenvalues corre-
sponding to the eigenvectors {c_zl. i=1, - n}
The coordinate axes {x’, y’, z’} are the principal axes of the diagonalized tensor, and the

diagonal form of the permeability tensor is obtained by a principal-axis transformation. The
flow equations along the principal axes are

A 0
qx/ = _0'001127;(kx'x/W);
B A 00\
q,= - 0.001127;(1%, 5y )
4 X
4= —0.001127;(1{2/2, > ) ............................................... (2.93)

The form of the permeability tensor depends on the properties of the porous medium. If the
medium is anisotropic, at least two elements of the diagonalized permeability tensor are not
equal. If permeability does not depend on direction, then permeability is isotropic, and the ele-
ments of the diagonalized permeability tensor are equal, that is,

kx/x/ = ky/y/ = kz/z/ S e e (294)

If the magnitude of the elements of the permeability tensor varies from one point in the medi-
um to another, the permeability tensor is heterogencous; otherwise, permeability is homoge-
neous. The principal axes of the permeability tensor may also vary from point to point in the
medium if permeability is heterogeneous.

2.6.4 Diagonalizing a Symmetric 2 x 2 Matrix. The ideas previously presented are implement-
ed by applying the matrix diagonalization algorithm to the 2 X 2 symmetric matrix

as viewed in the two-dimensional (2D) Cartesian coordinate system x = {xl, x2} shown in Fig.
2.6. For this example, we require that the elements of & satisfy the relations

kll i k22
Jpy = Ky e (2.96)

The relation ki, = kj; for off-diagonal elements is necessary to assure that the matrix k is sym-
metric. The requirement that k£ is symmetric is important when we consider a coordinate
transformation. To find the diagonal matrix k' corresponding to k, we must first solve the eigen-
value problem - -

Y R (2.97)

The two characteristic roots or eigenvalues 4, and A_ of Eq. 2.97 are the diagonal elements of
the diagonalized 2 X 2 matrix k', thus
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where A, and A_ are calculated as the solutions to the eigenvalue problem.

The eigenvalue problem is det[lg —/ld = 0. Using Eq. 2.95 gives

kjy =4 Ky o (2.99)
by ky—i s et ettt e .
or
(Kyy = 2Ky = 2) = Ky gy = O (2.100)
We expand the characteristic equation to get
L B e (O (2.101)

The two eigenvalues are found from the quadratic equation to be

1
he = 3k ) = (ko = 4k gy = )] (2.102)

The sum of the eigenvalues satisfies the relation

Ay T A=k F Ry e (2.103)
2.6.5 Eigenvectors. The matrix é is composed of orthonormal eigenvectors (a) found from
K@ =28 (2.104)
The basis vector, a, satisfies
T (2.105)
with the identity matrix £ . Expanding Eq. 2.105 gives

R N

g} + (yy = 2,)ay = 0. oo (2.106)
for the eigenvalue 1,, and

(kll _’1—)“1_ +hppay =0;
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Fpgty * (kyy = A-)y = 0 (2.107)

for the eigenvalue 4 . Rearranging Eq. 2.106 gives

+ Ve
a, = oy« eeeeeeieeereese et e et eeae s sneens (2.108)
bk At

Eq. 2.108 and the normalization condition,

0 (70 i FO (2.109)

provide the two equations that are necessary for determining the components of c_z+; thus,

2 _1
L PO ] SR The 2.110)
2 = _ P - 5 ) I/Z’ ................................. .
(ku /1+) [(k11 —,1+) +k12]
and
2 _1
o = T |, 2] " Ko @2.111)
ey =2l ey =) [(k11 — 2 )P+ klzz}/z
Similar calculations for @ yield the results
_ (kll /1+)
a,= S g —————— (2.112)
[(kll *'1+) +k12}
and
—k
- 12
a,= T ettt ettt ettt (2.113)
2 214
[(kll 'ﬁ) * klz}
where the relation
O T {0 I (2.114)
from Eq. 2.103, has been used.
To show that * and a~ are orthogonal, we must show that
@™ @ = a[a] F 305 = 0. s (2.115)

Substituting in the expressions for g+ and g gives
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kol = 24 (kyy =2 )k
+ - + - 12\"1 + _ 11 +)M2 _
aja, +aya, = (k” —/1+)2+k122 (kll _A+)2+k122 0, oo, (2.116)

as expected.

2.6.6 Coordinate Transformation. We now use the orthonormal eigenvectors ¢ and a to
construct the transformation matrix 4. According to the algorithm for diagonalizing a square
matrix presented previously, we form A4 as

a1+ al
A=[a" a )= | | (2.117)
B a 4
or
1 ~kipy (k)
A= e (2.118)

[(kl1 7/1+)2+k]22}15 k=4 Thy

A coordinate vector in the transformed coordinate system y = { Vs yz} is given by y=A4ux.
Rewriting the matrix equation for coordinate transformations in algebraic form gives

. _
Y= apxptapxy;

Yy = Gy X F Ay Xp; oo (2.119)
or
N aj ay [ x
=l . s (2.120)
Y2 a, a, | 2

An angle (6) can be associated with the linear transformation by writing the 2D coordinate
transformation as

e @2.121)

| cos 0 sinf | "1
| —sin6 cos @ Xy

The coordinate systems x = {xl, x2} and y = { Vi yz} are related by the counterclockwise rota-
tion shown in Fig. 2.6.
Equating elements of the transformation matrix in Eqs. 2.120 and 2.121 gives

D)

A = @) = COS B, cooroerrrveeeeisesseeeeeeeeie e (2.122)

and
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a;= —a; = = SN O (2.123)

The equalities a," = a,” and a,” = —a,” are in agreement with Eqs. 2.110 through 2.113. The
angle @ may be found from either

6= cos 71a1+ ............................................................. (2.124)
or
0= SIN @] oo (2.125)
Note that the equality,
cos 20+ sin 20 =(a ) + (a3 )* = () P+ ()2 = 1, v (2.126)

demonstrates that the eigenvectors are orthonormal.

2.7 Rotational Transformation of a 2 x 2 Permeability Tensor
We want to calculate changes to the permeability tensor when we transform from a coordinate

system y = { Y1 yz} where only the diagonal elements of a square matrix £" are nonzero to a
coordinate system x = {x,, xz} in which a 2 x 2 square matrix k& has nonzero off-diagonal
elements. We do this by performing a similarity transformation on the matrix k. The coordi-

nate systems x = {xl, x2} and y = { Y1 yz} are related by the similarity transformation matrix
A such that

Y= AX (2.127)

The two coordinate systems are shown in Fig. 2.6.
An angle () is associated with the transformation in Eq. 2.127 by writing the 2D coordi-
nate transformation as

Y1
b))

| cos@ sind X1 5 128
| im0 cosf || wy || e (2.128)

The coordinate systems x = {xl, xz} and y = { Y1 yz} are related by the counterclockwise ro-

tation shown in Fig. 2.6. We have an aligned coordinate system y = {yl ,yz} with the
principal axes of the permeability tensor. The diagonal tensor in the coordinate system

Y= {yl, ) yz} has the form

; kmax O
K=l B —— (2.129)
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where k. is the maximum permeability in the direction y, and k; is the permeability that is
transverse to k,,, in the direction y,. We want to know how the elements of the permeability

tensor change if we transform to the different coordinate system x = {xl, xz}.
The relationship between the elements of k” and & is

K = Ak AT, s (2.130)

where 4 is
B cos@ sind 5 131
AT| _Gn 0 cog g | (2.131)

If we multiply Eq. 2.130 from the left by 4_1 and from the right by 4, we obtain

S (2.132)

We find the elements of éﬂ by solving

1 a/ll allz cos @ sin @ 10
A'a= = e (2.133)

a5 a5 || —sinf cos@ 0 1

The result is

[N

1 cos @ —sind T 5 134
T sin g cos g | T AL e (2.134)

where A_T is the transpose of 4. Substituting Eqs. 2.131 and 2.134 into 2.132 gives

Kax COS 20+ ke sin 29 ki ax €OS 0 sin @ — k. cos 8 sin 0

Ikl
I

k. ax Sin 0 cos @ — k- sin 6 cos 6 k___ sin 2(9+I(Tcos 20

max 'max

_ kiy kip 2.135)
oy kyy [ T——————— .

We can use Eq. 2.135 to calculate the elements of £ for any rotation angle 6. If the permeabili-
ty is isotropic, we have k., = k7 = ki, and Eq. 2.135 simplifies to the form

TS (2.136)

1=

_ kiso 0
0 iso
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Fig. 2.7—Coordinate rotation in 2D.

Fig. 2.8—Plan view of channel sand with two permeability regions.

In the special case of isotropic permeability, the orientation of the coordinate system does not
affect the values of the elements of the permeability tensor.

Fig. 2.7 shows the results for an anisotropic case in which ., = 200 md and /k; = 50 md.
The values of elements k;, kj, and ky, of k are presented in the figure. The off-diagonal terms
satisfy the equality k;, = k,, for a symmetric matrix given in Eq. 2.96, so it is sufficient to
show only k;,. The values of the diagonal elements change most as @ approaches 45°, and the
values of the off-diagonal elements are greatest at § = 45°. A rotation of 90° recovers a diago-
nal permeability tensor, but 4, is now aligned along x,, and k& is aligned along x;.

2.7.1 Gridding a Channel Sand. The ideas discussed are now considered in the context of a
realistic application. Our problem is to find a coordinate system that lets us accurately model
fluid flow in a channel sand with the two permeability regions in Fig. 2.8.
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Fig. 2.9—Case A: homogeneous and anisotropic permeability.

Fig. 2.10—Case B: heterogeneous and anisotropic permeability.

We can highlight important features of the relationship between grid orientation and the
assumption of diagonalized permeability by assuming the permeability in each region is anisotrop-
ic with a maximum permeability 4, and a permeability k; that is transverse to the direction of
Kmax- The diagonalized, anisotropic permeability tensor k" in the y,-y, plane of a channel sand

m:
is the matrix

=Y K K (2.137)

and Darcy’s law for flow in the y,-y, plane is

0
— —0.0011272 fox 0 ) 9 (2.138)
. . il o k|| g [ :
ay2

Consider two cases. In Case A, permeability is homogeneous and anisotropic, and in Case B,
permeability is heterogeneous and anisotropic. The two cases are illustrated in Figs. 2.9 and
2.10.
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Fig. 2.11—Possible coordinate systems for grid orientation.

Fig. 2.11 shows two possible coordinate systems for orienting the grid. Coordinate system
y= { Y1.» ¥oyis more closely aligned with the spatial orientation of Region I than coordinate
system x = (x|, xz}, while coordinate system x = {xl, x2} is more closely aligned with the spa-
tial orientation of Region II than coordinate system y =y, , yz}. The coordinate system
y= { s yz}is obtained by rotating the coordinate system x = {x,, x,; through an angle 0 as
in Fig. 2.6.

We consider four grid orientations for each case: (1) grid y = { . y2} in Regions I and
II; (2) grid y = {yl’ , J’2} in Region I and grid x = {xl, xz} in Region II; (3) grid x = {xl, xz}
in Region I and grid y = {yl’ , yz} in Region II; and (4) grid y = {yl’ , ¥oj in Regions I and
II. The grid orientation cases allow us to consider the effect of different coordinate systems on
the permeability tensor in each region. We assume in our analysis that the reservoir simulator
is a typical simulator with a formulation of fluid flow equations that uses Darcy’s law with a
diagonal permeability tensor. We also assume the simulator allows different grid orientations in
different regions of the model; otherwise, grid orientation cases 2 and 3 are not feasible. Our
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analysis does not include multidimensional numerical dispersion,'” which can also affect the

Petroleum Engineering Handbook—Vol. |

accuracy of flow calculations. Results of the analysis are summarized in Table 2.4.

An “ok” in the “Permeability Tensor” column in Table 2.4 indicates that the diagonal per-
meability tensor is aligned with the grid. An “X” indicates that the magnitudes of the diagonal
terms in the permeability tensor must be corrected with Eq. 2.135. An “ok” in the “Formula-
tion” column in Table 2.4 indicates that the formulation of the fluid flow equations is correct.
An “X” indicates that the formulation of the fluid flow equations is incorrect because the for-
mulation does not include off-diagonal terms in the permeability tensor. Based on the results in
Table 2.4, we observe that the grid orientation in Case A.1 provides the most faithful represen-
tation of the permeability tensor in Case A, and the grid orientation in Case B.2 provides the

most faithful representation of the permeability tensor in Case B.

Nomenclature

a,b,c,d;

1% 1wt <

Qx

A,B,C,

—_——
>
~.>

Iz £

l

K
~uhhmeKr

finite-difference coefficients, Eq. 2.51
elements of matrices, Eq. 2.64

= matrices, Eq. 2.64

rotation matrix, Eq. 2.57

transpose of matrix 4, Eq. 2.134

cross-sectional area, Eq. 2.81

= functions, Eq. 2.13

fluid compressibility, Eq. 2.10

column vector of unknown concentrations at #**!, Eq. 2.54

concentration, Eq. 2.4

dispersion of the solute into solvent, Eq. 2.15

column vector of terms that depend on known concentrations at #**!, Eq. 2.54
truncation error, Eq. 2.45

scalar function, Eq. 2.26

unit vectors in Cartesian coordinates, Eq. 2.25

identity matrix, Eq. 2.69

= fluid flux in x-, y-, z-directions

fluid flux vector, Eq. 2.23

fluid flux in x-direction at location x

= fluid flux in y-direction at location y

= fluid flux in z-direction at location z

= permeability matrix, Eq. 2.85

permeability, Eq. 2.81
isotropic permeability, Eq. 2.136

= maximum permeability, Eq. 2.129
= transverse permeability, Eq. 2.129

number of rows and columns, Sec. 2.5.2
matrix of coefficients, Eq. 2.54
pressure, Eq. 2.82

flow rate, Egs. 2.81 and 2.85

source term, Eq. 2.3
region

surface

time
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—_—
K

" = present time
1 = future time
= vector field, Eq. 2.27

= velocity of solute, Eq. 2.15
speed in x-direction, Eq. 2.9

Rl>§ < <l
Il

= position vector, Eq. 2.25

= space dimensions
= discrete point in x-direction, Eq. 2.43

=
=
[\N]

Ra
I

= column vectors, Eq. 2.121
= proportionality constant, Eq. 2.11
functions, Eq. 2.14

= time interval

= length

= width

= thickness

angle, Eq. 2.55

= eigenvalues, Eq. 2.78

= fluid viscosity, Eq. 2.81

= density, Eq. 2.8

= pressure gradient, Eq. 2.85
= phase potential, Eq. 2.81
= function, Eq. 2.7

I

=
PR ar~
I

< 9l o = »%Egg
Il

Subscripts

i = discrete x-direction index
i,j = matrix indices, Eq. 2.61
ik = x-,y-, z-direction indices
NX = range of index, Eq. 2.53
t = time index, Eq. 2.4
x = x-direction index, Eq. 2.2
0 = reference value of pressure, Eq. 2.10

Superscripts

* = complex conjugation
T = transpose of matrix
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S| Metric Conversion Factors

bbl x 1.589 873 E-01 =m’
cp x 1.0% E-03 =Pas
ft x 3.048* E-01 =m
ft2 x 9.290 304* E-02 =m?
psi X 6.894 757 E+00 =kPa

*Conversion factor is exact.



Chapter 3

Mathematics of Transient Analysis
Erdal Ozkan, Colorado School of Mines

This chapter explains how fluid flow in porous media can be translated into a mathematical
statement and how mathematical analysis can be used to answer transient-flow problems. This
broad area is common to many other disciplines, such as heat conduction in solids and ground-
water hydrology. The objective of this chapter is to introduce the fundamentals of transient
analysis, present examples, and guide the interested reader to relevant references.

3.1 Introduction

Most physical phenomena in the domain of transient fluid flow in porous media can be de-
scribed generally by partial differential equations (PDEs). With appropriate boundary condi-
tions and sometimes with simplifying assumptions, the PDE leads to an initial boundary value
problem (IBVP) that is solved to find a mathematical statement of the resulting flow in the
porous medium. This section briefly discusses the statement of the IBVP for transient fluid
flow in porous media.

3.1.1 Equations of Transient Fluid Flow in Porous Media. In essence, fluid motion in porous
media can be specified by the knowledge of the velocity vector, v, a_n)d the density of the
fluid, p, as a function of the position (x, y, z) and time, ¢ thatis, v = v (x, y, z, #) and p=p
(x, , z, 1). Relative to the fixed Cartesian axes, the velocity vector can be written as
— -
% i +v

-
XX yly

TV Ly e 3.1

=V

where v,, v, and v, are the velocity components, and z'_;,i—y), and z_; are the unit vectors in the
X, y, and z directions, respectively.

The physical law governing the macroscopic fluid-flow phenomena in porous media is the
conservation of mass, which states that mass is neither created nor destroyed. The mathemati-
cal formula of this rule is developed by considering the flow through a fixed arbitrary closed
surface, I', lying entirely within a porous medium of porosity @, which is filled with a fluid of
viscosity u. Fig. 3.1 illustrates an arbitrary closed surface in porous medium.

The conservation of mass principle requires that the difference between the rates at which
fluid enters and leaves the volume through its surface must equal the rate at which mass accu-

mulates within the volume. The total mass within the volume at any time is given by
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Fig. 3.1—Arbitrary closed surface I' in porous medium.

Mg=/f/pq§dV. ............................................................ (3.2)
V

Then, the time rate of change of mass within I is

e S 8 e e 63

which, by the conservation of mass law, is equal to the rate at which mass enters V' through
the surface.

Consider the differential surface elemen&) dl"_,)shown in Fig. 3.1. The mass ente_ri)ng _t)he vol-
ume through dI" at the normal velocity, p v * n, in a time increment, A¢, is —p v + n dI" At,
and the total mass of the fluid passing through I' during A¢ is

- -
AM, = —Atﬁﬁo | U (3.4)
r

The surface integral in Eq. 3.4 accounts for both influx and outflux through the surface of
the volume; that is, AM, is the difference between the masses entering and leaving the control
volume during the time increment, At. Then, the mass rate entering the volume, V, through its
surface, I', can be written as
AM, dM, % N

g=lim —2 =—& = — 3 Al (3.5)

o At dt
At—0 v

By the principle of conservation of mass, equating the right sides of Eqgs. 3.3 and 3.5 yields

fffa%(pqa)dwgﬁ??drzo. ........................................... (3.6)
V r
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HA more useful relation is found with the divergence theorem, which states t}Et the flux of
p v through the closed surface, I, is identical to the volume integral of V - (p v) (the diver-

gence of p 7) taken throughout V; that is,

%7-7dl“—flf/fv~(p7)dV. .............................................. 3.7)

r

Here,V is the gradient operator, which in 3D Cartesian and cylindrical coordinates is given,
respectively, by

_ 0>, 0 = 90—
Vv = ax1x+ ayler 55 Lo (3.8)
and
_dJd = 10— 0d—>
V—arlr-i-rag aZlZ .............................................. (3.9
With the relation in Eq. 3.7, Eq. 3.6 can be recast into
ff” PB) +V * p V| AV = 0o (3.10)

If the functions involved in the argument of the integral in Eq. 3.10 are continuous, then the
integral is identically zero if and only if its argument is zero (because the volume integral in
Eq. 3.10 is identically zero for any arbitrarily chosen volume). Then, the following continuity
equation can be obtained.

%(pqs)+v-(p7)=o. ................................................... (3.11)

Eq. 3.11 is a PDE that is equivalent to the statement of the conservation of mass for fluid
flow in porous media. For practical purposes, however, Eq. 3.11 is expressed in terms of pres-
sure becagse density and velocity cannot be measured directly. To express density, p, and
velocity, v, in terms of pressure, we use an equation of state and a flux law, known as
Darcy’s law, respectively.

The following definition of isothermal fluid compressibility, ¢, is a useful equation of state
that relates density to pressure.

c= (% g—Z)T. ............................................................. (3.12)

If ¢ is a constant (the compressibility of many reservoir liquids may be considered as con-
stant), then Eq. 3.12 can be integrated to yield

p= poexp[(p po)}, ...................................................... (3.13)



1-80 Petroleum Engineering Handbook—Vol. |

where subscript 0 indicates the conditions at the datum. Similarly, the compressibility of the
porous rock, ¢y, is defined by

1 0
=% G T s (3.14)
and the total system compressibility, c,, is given by
Cp = CFC i, (3.15)

These definitions of compressibility help recast Eq. 3.11 in terms of pressure.
Darcy’s law for fluid flow in porous media is a flux law. Neglecting the gravity effect, it is
expressed by

—
v

k
= N D e 3.16
u P (3.16)

In Eq. 3.16, u is the viscosity of the fluid, and % is the permeability tensor of the formation
given by

ki kop K

oo oy

k= K0 Kgg Kgy Lo oo (3.17)

kya kyﬁ kw

where @, f, and y are the directions, and k; is the permeability in the i direction as a result of
the pressure gradient in the j direction.

If Egs. 3.13 through 3.16 are used in Eq. 3.11, an alternative statement of the conservation
of mass principle for fluid flow in porous media is obtained:

[k kg 2= 92
v (Iqu)-i-clu(Vp) =dc, PR (3.18)
Eq. 3.18 is the PDE that governs transient fluid flow in porous media. In the present form, Eq.
3.18 is not very useful in obtaining practical solutions because of the nonlinearity displayed in
the second term of the left side. For liquid flow, the viscosity, x, is constant and Eq. 3.18 can
be linearized by assuming that the pressure gradients, V p, are small in the reservoir and the
compressibility of the reservoir liquids, ¢, is on the order of 107 or smaller. Then, the second
term of the left side of Eq. 3.18 may be neglected compared with the remaining terms and the
following linear expression is obtained:

B
V- (kVp)=deu a—’t’. ................................................... (3.19)

Eq. 3.19 (or Eq. 3.18) is known as the diffusivity equation. As an example in Cartesian coordi-
nates, assuming that the coordinate axes can be chosen in the directions of the principal
permeabilities, &, in Eq. 3.19, may be represented by the following diagonal tensor:
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k. 0 0
k= 0 Kk 0 | (3.20)
0 0 k
Then, Eq. 3.19 may be written as
’p ’p 3’p op
k +k +k = D L, (3.21)
Yoxr Yoyt Taz? ot

If each coordinate, j = x, y, or z, is multiplied by 4/k/k;, where k may be chosen arbitrarily

(to preserve the material balance, k is usually chosen to be 43/kxkykz ), Eq. 3.21 may be trans-
formed into the diffusion equation for an isotropic domain:

If the same transformation is also applied to the boundary conditions (see Sec. 3.1.2), the
problems in anisotropic reservoirs may be transformed into those in isotropic reservoirs provid-
ed that the system is infinite or bounded by planes perpendicular to the principal axes of
permeability. In all other cases, this transformation distorts the bounding surfaces.

For the flow of gases, the assumptions of small fluid compressibility and pressure gradient

may not be appropriate and the ¢(V p)2 term in Eq. 3.18 may not be negligible. In these cases,
an expression similar to Eq. 3.21 may be obtained from Eq. 3.18 in terms of pseudopressure,
m, as

?*m . 3’m . 3’m o m
k +k +k =D C U e (3.24)
Toxt Yoyt Toz? oot
Here, the pseudopressure is defined by'
P
/
ndp):zjiﬂ—dpt ......................................................... (3.25)
0 ne

where Z is the compressibility factor. To define a complete physical problem, Eq. 3.21 (or
3.24) should be subject to the initial and boundary conditions discussed in Sec. 3.1.2.

3.1.2 Initial and Boundary Conditions. The solution of the diffusivity equation (Eq. 3.19)
should satisfy the initial condition in the porous medium. The initial condition is normally ex-
pressed in terms of a known pressure distribution at time zero; that is,

(Exit]
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Hm p(x, ¥, 2, )= F(X, V) Z) e (3.26)
t—0

The most common initial condition is the uniform pressure distribution in the entire porous
medium; that is, ' (x, y, z) = p.

The boundary conditions are specified at the inner (wellbore) and outer boundaries of the
reservoir. These are usually in the form of prescribed flux or pressure at the boundaries. The
condition of prescribed flux can be formulated as

where I' is the surface of the boundary, and » indicates the outward normal direction of the
boundary surface. The prescribed flux condition may be used at the inner and outer boundaries
of the reservoir. The most common use of the prescribed flux condition at the inner boundary
is for the production at a constant rate. In this case, the function, g(¢), is related to a constant
production rate, g. At the outer boundary, the prescribed flux condition is usually used to indi-
cate impermeable boundaries [g(£)=0] and leads to a pseudosteady state under the influence of
boundaries.

For some applications, pressure may be specified at the inner and outer boundaries. In this
case,

(PP = ). oo (3.28)

When used at the inner boundary, this condition represents production at a constant pressure,
Dy that is, h(f) = p,. At the outer boundary, specified pressure, p,, is usually a result of injec-
tion or influx from an adjacent aquifer, which usually leads to steady state in the reservoir.

It is also possible to have boundary conditions of mixed type. These usually correspond to
interface conditions in porous media. Ref. 2 contains more details about the common boundary
conditions for the diffusion equation.

3.1.3 Assumptions and Limits. Some assumptions have been made in the derivation of the
diffusivity equation given by Eq. 3.19. These assumptions determine the limits of applicability
of the solutions obtained from Eq. 3.19. One of the most important assumptions involved is the
continuity of the properties involved in Eq. 3.19. (This was required to obtain Eq. 3.19 from
the more general integral form in Eq. 3.10.) Therefore, sharp changes in the properties of the
reservoir rock and fluid (such as faults and fluid banks) should be incorporated in the form of
boundary or interface conditions in the solution of Eq. 3.19.

The second important assumption is that Darcy’s law describes the flux in porous media.
This assumption is valid at relatively low fluid velocities that may be appropriate to describe
liquid flow. At high velocities (when Reynolds number based on average sand grain diameter
approaches unity) such as those observed in gas reservoirs, Darcy’s law is not valid.’> In this
case, Forchheimer’s equation,* which accounts for the inertial effects, should be used. In
petroleum engineering, it is a common practice to consider the additional pressure drop as a
result of non-Darcy flow in the form of a pseudoskin because it is usually effective in a small
vicinity of the wellbore. Therefore, in this chapter, we do not consider non-Darcy flow in the
Teservoir.

3.2 Bessel Functions
As Sec. 3.3 illustrates, the Laplace transform of the diffusion equation in radial coordinates
yields a modified Bessel’s equation, and its solutions are obtained in terms of modified Bessel
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functions. This section introduces Bessel functions and discusses some of their properties to the
extent that they are encountered in the solutions of more common petroleum engineering prob-
lems.

3.2.1 Preliminary Definitions. A differential equation of the type

d2y 1 dy 22?2 _
—d2+;—dz t———y=0; V20 e (3.29)
z z

is called a Bessel’s equation of order v. A solution of Bessel’s equation of order v is called a
Bessel function of order v. A differential equation of the type

2 22 2
d_y+id_y+127vy:0; >0 (3.30)

dz?2 z dz 72

is called a modified Bessel’s equation of order v. Eq. 3.30 is obtained by substituting Az for z
in Eq. 3.29. Of particular interest is the case in which A=ki so that Eq. 3.30 becomes

2 2.2 2
Sy LAy R e S0 (3.31)

dz?2 z dz 72

Eq. 3.31 is called the modified Bessel’s equation of order v. A solution of the modified
Bessel’s equation of order v is called a modified Bessel function of order v.

3.2.2 Solutions of Bessel’s Equations and Bessel Functions. There are many methods of ob-
taining or constructing Bessel functions.® Only the final form of the Bessel functions that are
of interest are presented here.

If v is not a positive integer, then the general solution of Bessel’s equation of order v (Eq.
3.29) is given by

Y= AJ(2) 4 BI_(2); oo (3.32)

where 4 and B are arbitrary constants, and J,(z) is the Bessel function of order v of the first
kind given by

00 (_l)m(z/z)v +2m

J(2)= X e 3.33
W(2) m=0 m'T(v+m+1) (339
In Eq. 3.33, I'(x) is the gamma function defined by
I(x) = f L N (3.34)
0

If v is a positive integer, n, then J, and J—, are linearly dependent, and the solution of Eq. 3.29
is written as

Y =AJ(2) F BY (2). oo (3.39)
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In Eq. 3.35, Y,(z) is the Bessel function of order n of the second kind and is defined by

I~ 1" (2)

Y,(z) = lim
v—n

V—n

e (3.36)

Similarly, if v is not a positive integer, the general solution of the modified Bessel’s equation
of order v (Eq. 3.31) is given by

Y =AL(kz) + BL (k2), wcccovvoeririiiiiiiccccec (3.37)
where /,(z) is the modified Bessel function of order v of the first kind defined by

o v+2m
o= 3 (kz/2)

e 3.38
m=om!Tv+m+1) (3.38)

If v is a positive integer, n, I,, and I_, are linearly dependent. The solution for this case is

y=AL(kz)+ BK, (kz), ..cccovviririininiiiicicciccces (3.39)

where K,(z) is the modified Bessel function of order n of the second kind and is defined by

Kn(z) = lim

v—n

I (2)=J,(2)
e

}. ................................................. (3.40)

The modified Bessel functions of order zero and one are of special interest, and Sec. 3.2.3
discusses some of their special features.

3.2.3 Modified Bessel Functions of Order Zero and One. Modified Bessel functions of order
zero and one are related to each other by the following relations:

dfy(2)
i 1) (3.41)
and
dKO(z)
e =K (2). oo (3.42)

Fig. 3.2 shows these functions graphically.
For small arguments, the following asymptotic expansions may be used for the modified
Bessel functions of order zero and one:’
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Fig. 3.2—Bessel functions of order zero and one.

X 2m (2/2)2"171

[(2) = X o e 3.44
! m=0 (m!)2 ( )
- z 3 (z/2)2’"( 11 1)
Ky(2) = [ln(z)-ﬁ-y}lo(z) mZ:l ) T T ) NS (3.45)
where y = 0.5772..., and
I(Z) © 5 (/2)2m
“Tm(Z)- 0 embz/2r (01,1 L)
Kl(z)—{ln(z) y}]l(z)-i- . +mZ:1 21 2 (1+ S ER T ) (3.46)
Also, for large arguments, the following relations may be useful:
2 2 2 2 2 2 2
z 4v=—1 v =1]14v" -9 v —=1)4v" -9 (4v™ - 1|{4v™ =25
PP O L D
V2mz z 21(82) 31(82)
for |argz| <m/2, and
4z
Kv(z)—vzze
2 2 2 2 2 2 2
4v=—1 4T =1]14v" -9 4vT—1)14v" =9)|4v™ —1)(4v"—25
O T P R O
z 21(8z2) 31(82)
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for |argz| <3m/2. On the basis of the relations given by Egs. 3.43 through 3.48, the follow-
ing limiting forms may be written:

T R T (3.49)
z—0
BN Jy(2) = 00, oo (3.50)
z—> 00
B0 £(2) = 0, oo (3.51)
z—0
BN £1(2) = 90, oot (3.52)
77— 0
lim Kp(z) = — 1n (€72/2) = 00, oo (3.53)
z—0
0 Kg(2) = 0, oo (3.54)
z— 00
N K{(2) = 99, oo (3.55)
z—0
M z K (2) = 1, o (3.56)
z—0
and
T 1 E R R (3.57)
z—> 00

These relations are useful in the evaluation of the asymptotic behavior of transient-pressure
solutions.

3.3 Laplace Transformation

Integral transforms are useful in solving differential equations. A special form of the linear
integral transforms, known as the Laplace transformation, is particularly useful in the solution
of the diffusion equation. The Laplace transformation of a function, F(¢), denoted by L{F(¢)},
is defined by

oo

L{F()} = f 0 0 1 A (3.58)
0

where s is a number whose real part is positive and large enough for the integral in Eq. 3.58 to

exist. In this chapter, a bar over the function indicates the image or the Laplace transform of
the function; that is,

O R ()} S (3.59)
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3.3.1 Fundamental Properties of the Laplace Transformation. The following fundamental
properties of the Laplace transformation are useful in the solution of common transient-flow
problems.

Transforms of Derivatives.

d 9 9 b t -
L{%} =sp(x, v, 2,8) = px, ¥, 2, t=0). ovvveeeeeeeeeeenn, (3.60)
dnp(xs Y, Z, t) n_ n—1 nfzdp(x, Y, Z, t)
L{ e =s"plx, y, 2, 9) =" plx, y, 2, 1=0) = T .
_5d? t an! t
—s" 3%2’2’) e p(x’fyl’ z 1) e, (3.61)
d¢ =0 d" =0
d" Nl _ d'p
L{ plx, p, 2 )}= PP 28 (3.62)
dx” dx"
Transforms of Integrals.
t 1=
L f p(t/)dt'} = P8): (3.63)
0
Substitution.
Liplkt)} = %;(%) Tt R (3.64)
L{e atp(t)} = ;(s F @), oo (3.65)
where p(s) = L{p(t)}.
Translation.
—st —
L{H(t = 1)p(t = tg)} =€ ps), oo (3.66)
where H (t - to) is Heaviside’s unit step function defined by
( ) 0 for £<¢
Hl\t—t))= ettt ettt b e 3.67
0 1 for £>1¢ (3.67)
Convolution.
t f— f—
L{fpl(r)pz(t =) drp = p($)P(8). oo (3.68)
0
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3.3.2 Inverse Laplace Transformation and Asymptotic Forms. For the Laplace transform to
be useful, the inverse Laplace transformation must be uniquely defined. L' denotes the inverse
Laplace transform operator; that is,

p()=1L" {;(s)}. .......................................................... (3.69)

In this operation, p(f) represents the inverse (transform) of the Laplace domain function, p(s).
A uniqueness theorem of the inversion guarantees that no two functions of the class ¢ have the
same Laplace transform.® The class ¢ is defined as the set of sectionally continuous functions F
(¢) that are continuous on each bounded interval over the half line # > 0 except at a finite
number of points, #, where they are defined by

F(g) = %[F(ti ) Rt (7 1) S (3.70)

and | F(¢t)| < Me™ for any constants M and a.

The most rigorous technique to find the inverse Laplace transform of a Laplace domain
function is the use of the inversion integral,® but its discussion is outside the scope of this
chapter. For petroleum engineering applications, a simple table look-up procedure is usually the
first resort. Table 3.1 shows an example table of Laplace transform pairs that may be used to
find the Laplace transforms of real-space functions or the inverse Laplace transforms of the
Laplace domain functions. Fairly large tables of Laplace transform pairs can be found in Refs.
6 and 7. The relations given in the Laplace transform tables may be extended to more complex
functions with the fundamental properties of the Laplace transforms noted in Sec. 3.3.1.

When a simple analytical inversion is not possible, numerical inversion of a Laplace do-
main function is an alternate procedure. Many numerical inversion algorithms have been
proposed in the literature. For the inversion of the transient-flow solutions in Laplace domain,
the numerical inversion algorithm suggested by Stehfest® is the most popular algorithm.

The Stehfest algorithm is based on a stochastic process and suggests that an approximate

value, p,(T), of the inverse of the Laplace domain function, ;(s), may be obtained at time
t=T by

m2 ¥ -
PT) =T ZVp(s) g (3.71)
i=1 s=i T
where
min(i, N/2) kN/Z(Zk)'

V.= (G0 £ R B ) S S ..2A S— (3.72)

k=i 1y2[(N12) = k] k!t (k= D1 G =0 @k =i

In Egs. 3.71 and 3.72, N is an even integer. Although, theoretically, the accuracy of the
inversion should increase as N tends to infinity [p, (7') should tend to p(7 )], the accuracy may
be lost because of round-off errors when N becomes large. Normally, the optimum value of N
is determined as a result of a numerical experiment. As a reference, however, the range of 6 <
N < 18 covers the most common values of N for transient-flow problems. The Stehfest algo-
rithm is not appropriate for the numerical inversion of oscillatory and discontinuous functions.
In these cases, a more complex algorithm proposed by Crump’ may be used.
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In some cases, obtaining asymptotic solutions for small and large values of time may be of
interest. These asymptotic results may be obtained without inverting the full solution into the
real-time domain. The limiting forms of the full solution as s — o and s — 0 correspond to
the limiting forms in the time domain for short and long time, respectively. The inversion of
the limiting forms may be easier than the inversion of the full solution. Examples 3.1 through
3.4 demonstrate the use of Laplace transformation in the solution of transient-flow problems.

Example 3.1 Consider transient flow toward a fully penetrating vertical well in an infi-
nite homogeneous reservoir of uniform thickness, %, and initial pressure, p;.

Solution. This problem may be formulated most conveniently in the radial coordinates. The
diffusivity equation governing fluid flow in porous media is given, in radial coordinates, by

13 (.08p)_ 108y
r@r(r ar n ot (3.73)
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where Ap = p, — p. Eq. 3.73 is the same in absolute (cgs or SI) or Darcy units. (In field units,
some conversion coefficients are involved in Eq. 3.73.) The initial condition is

JN I =X ) R R (3.74)

which means that the pressure is uniform and equal to p; initially throughout the reservoir. The
outer boundary condition for an infinite reservoir is

AP(F = 00, 1) = 0, oo (3.75)

which physically means that for any given time, ¢, there is a large enough distance, 7, in the
reservoir at which the initial pressure, p;, has been preserved.

The inner boundary condition depends on the production conditions at the surface of the
wellbore (7 = r, ). Assuming that the well is produced at a constant rate, g, for all times,

aAp) _ _ qBu
(r ey R —— (3.76)

The inner boundary condition given in Eq. 3.76 is simply a restatement of the flux law
(Darcy’s law given by Eq. 3.16) at the surface of the wellbore.

Eqgs. 3.73 through 3.76 define the IBVP to be solved to obtain the transient-pressure distri-
bution for the given system. Application of the Laplace transforms to Eq. 3.73 yields

ld
r dr

dap|_1dAp  dPAp _ s =
L )— T dr + 2 ”A (3.77)

or, rearranging, we obtain

L
LdAp A AD S N e (3.78)
r dr dr? n

In obtaining the right side of Eq. 3.77, the initial condition (Eq. 3.74) has been used. Simi-
larly, Egs. 3.75 and 3.76 are transformed into the following forms, respectively.

AP(F = 00, 1) = 0, wooooeeeeeeeeeeeeseseeseeeeseeeeeeeeeeseseeeeeeeee (3.79)
and
dapl _ _gqBu
(r " ) e RS, (3.80)

Comparing Eq. 3.78 with Eq. 3.31, we recognize Eq. 3.78 as the modified Bessel’s equa-
tion of order zero. The solution of Eq. 3.78 may be written directly from Eq. 3.39 as

Ap(s) = CLIWs T 7) + CyRy WS THF). oo (3.81)
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Fig. 3.3—Finite wellbore radius (Eq. 3.85) and line-source (Eq. 3.87 or 3.91) solutions for
Example 3.1.

The constants C; and C, in Eq. 3.81 are obtained from the boundary conditions. The outer
boundary condition (Eq. 3.79) indicates that C; = 0 [because lim [(x) = o, Eq. 3.79 is satis-

fied only if C, = 0]; therefore, o
AP(S) = CyRy(WS T F). oo (3.82)
From Egs. 3.80 and 3.82, we obtain
(rdﬁ—r;)r T csTnr K (Wsinr,)= - z?rfzs s e (3.83)
which yields
C, = qBu e (3.84)

- 2zkh SVs/anKl(VS/n rw).

Then, the solution for the transient-pressure distribution is given, in the Laplace transform do-
main, by

qBu Ko(VS/ﬂ”)
2rkh g s/n erl(VS/an).

Apls) =2 e, (3.85)

To complete the solution of the problem, Eq. 3.85 should be inverted into the real-time
domain. The real inversion of Eq. 3.85, however, is not available in terms of standard func-
tions. One option is to use Stehfest’s numerical inversion algorithm® as discussed in Sec. 3.3.2.
The dashed line in Fig. 3.3 represents the numerical inversion of the solution in Eq. 3.85. An-
other option is to find an approximate inversion. One of these asymptotic forms is known as
the line-source solution and commonly used in transient-pressure analysis.

To obtain the line-source approximation of the solution given in Eq. 3.85, we assume that
the radius of the wellbore is small compared with the other dimensions of the reservoir. Thus,
if we assume r,,—0 and use the relation given in Eq. 3.56, we obtain



1-92 Petroleum Engineering Handbook—Vol. |

lim V5777, Kj(WS T 7,) = 1o (3.86)

- —0
Using this relation in Eq. 3.85, we obtain the line-source solution in Laplace domain as

qBu KO(VS /nr)
2rk h s

Ap(s) = S (3.87)

The inversion of Eq. 3.87 can be accomplished by using a Laplace transform table. From Table
3.1 (or from the tables in Refs. 6 and 7), we have

2
LYKy (kvs)} = exp( ’f”) T S N (3.88)

With Eq. 3.88 and the Laplace transform property noted in Eq. 3.63, we obtain the following
inversion of Eq. 3.87 in the real-time domain:

t /7
Apr, 1) = f ( por )df,. .......................................... (3.89)

Making the substitution u = 72/ (45¢’) and noting the definition of the exponential integral func-
tion, Ei(x), given by

0 —u
Ei(x) = — f Uy e (3.90)
-X
we obtain the line-source solution as
Ap(r, D)= — B g 2 (3.91)
p Akh At | .

Fig. 3.3 shows a comparison of the results computed from Eq. 3.85 (finite-wellbore radius)
and Eq. 3.91 (line source) for the data noted in the figure. The two solutions yield different
results at early times but become the same at later times. In fact, it can be shown analytically
that the long-time approximation of the finite-wellbore radius solution (Eq. 3.85) is the same as
the line-source well solution. To show this, we note that the long-time approximation of the
solution in the time domain corresponds to the limiting form of the solution in the Laplace
domain as s — 0. Then, with the property of the Bessel function given in Eq. 3.56, we can
show that

- K,(Ws/nr) K, Ws/nr)
lim Ap(s) = 2‘1% 0 = 2‘]% 0 S (3.92)
50 KM 5 lim [VS/;y rWKl(VS/n rw)} & S
s—0
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Example 3.2 Consider transient flow as a result of constant-rate production from a fully
penetrating vertical well in a closed cylindrical reservoir initially at uniform initial pressure, p;.

Solution. Fluid flow in cylindrical porous media is described by the diffusion equation in
radial coordinates given by

%%(r aaArp ) = %%Atp. ................................................... (3.93)
The initial condition corresponding to the uniform pressure distribution equal to p; is
AP(Fy £ =0) = 0, oo (3.94)
and the inner boundary condition for a constant production rate, ¢, for all times is
(r ‘Mp) = B (3.95)
or )" ="y 2k h

The closed outer boundary condition is represented mathematically by zero flux at the outer
boundary (r = r,) that corresponds to

(aaAr” )r = 00 e (3.96)

e

The Laplace transforms of Egs. 3.93 through 3.96 yield, respectively,

1dAp , dAp s>

Far g ;ApZO, ................................................. (3.97)
dAp _ __9Bu
r — il O —— (3.98)
and
dAp _
(—dr )r_re 0. e (3.99)

(The initial condition given by Eq. 3.94 has been used to obtain Eq. 3.97.) Because Eq. 3.97 is
the modified Bessel’s equation of order zero, its general solution is given by

Ap(s) = CLIWs 77 7) + CyRyWS TH F). oo (3.100)

With the outer boundary condition given by Eq. 3.99, we obtain

dAp
dr

= CVsTn L(NsTnr,) = CAsTn Ky(Ws Th7,) = 0, weovvveeere (3.101)
e
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which yields

II(VS/nre)
Gy = O 7 et (3.102)
2 ! KI(VS/nre)
and thus
_ KO(Vs/n I")[l('\/S/i’] re)
Ap(s)=Cy| LWs/nr)+ s 3.103
¥4 1 0( n ) Kl(«/sTn Ve) ( )
Using the inner boundary condition given by Eq. 3.98 yields
dA; clvsTn [(\/T ) ‘S/nerl('S/”rw)ll('S/”re)
r—— = S 7, S r.)—
dl" l":rw 1 ]7 w'l 7] w. Kl(mre)
- __9Bu
i s (3.104)
From Egs. 3.102 and 3.104, we obtain the coefficients C| and C, as follows:
qBu Kl('S/rlre)
C = D A — iy — A fp— s TS (3.105)
TR sAls iy o [II(VS /n I”e)Kl(VS/I’] rw) - 11<VS/7’] rW)Kl(VS /n re)}
and
L\Ws/nr
c, - 481 (57, N (3.106)

2k 5T, [T K (S T ) = 4 (V5T ) (Vs T )
Substituting C; and C, into Eq. 3.100 yields

— qBu IO(VS/nr)K1<Vs/77 re)+11(Vs/17 re)KO(VS/r]r)
Ap(s) = I (3.107)
2rkh sinr,, [II(VS /n re)Kl(VS In rw) - 11(VS In rW)Kl(VS In re)}

The inverse of the solution given by Eq. 3.107 may not be found in the Laplace transform
tables. van Everdingen and Hurst'® provided the following analytical inversion of Eq. 3.107
with the inversion integral.

2 2
_ qBu 2 r Te r 1 4 4, T 2
Ap(r, )=~ — 2(’7t__)_ zlnr——i)ﬂre—“relnr——%—l
e
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Fig. 3.4—Bounded reservoir solution (Eq. 3.107) for Example 3.2.

r

e B e R Y |

Y exp (—ﬁﬁ”—;) e (3.108)
n=1 "o
i e R B
In Eq. 3.108, B, ,, etc. are the roots of
re re
Yl(/}n)Jl(,Bnr—) AN ﬂnr—) =01 oo (3.109)

The solution given in Eq. 3.107 may also be inverted numerically with the Stehfest algorithm.®
Fig. 3.4 shows the results of the numerical inversion of Eq. 3.107.

Example 3.3 Consider the flowing wellbore pressure of a fully penetrating vertical well
with wellbore storage and skin in an infinite reservoir.

Solution. Revisit the case in Example 3.1 and add the effect of a skin zone around the
wellbore. Assume that the constant production rate is specified at the surface so that the stor-
age capacity of the wellbore needs to be taken into account. Before presenting the initial-
boundary value problem, skin factor and surface production rate should be defined.

Using van Everdingen and Hurst’s thin-skin concept!® (vanishingly small skin-zone radius),
the skin factor is defined by

5 = p(rw+)_pwf _ P(”W"‘)_ow

" (,a_P) q rBu
Ty 27k h

s e (3.110)

where g, is the sandface production rate, p(r, +) denotes the reservoir pressure immediately
outside the skin-zone boundary, and p,, is the flowing wellbore pressure measured inside the
wellbore. Rearranging Eq. 3.110, we obtain the following relation for the flowing wellbore pres-
sure.
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dAp
prfZAp(rw+)_Sm(r or )r:r

w

e (3.111)

When the production rate is specified at the surface, it is necessary to account for the fact
that the wellbore can store and unload fluids. The surface production rate, ¢, is equal to the
sum of the wellbore unloading rate, g,,, and the sandface production rate, g, ; that is,

G = Gy T g o oevmmmemmsemssnissi (3.112)
where
24c dAp,,
qwb:TT ........................................................ (3.113)
and

_ 27rkh( 8Ap)
=

dsr = Bu L (3.114)

w

In Eq. 3.113, C is the wellbore-storage coefficient. Substituting Eqs. 3.113 and 3.114 into Eq.
3.112, we obtain the following expression for the surface production rate.

24C dAp,, ;- 27rkh(r aAp)
B dr Bu or Jr=r

w

S R (3.115)

The mathematical statement of the problem under consideration is similar to that in Exam-
ple 3.1, except that the inner-boundary condition should be replaced by Eq. 3.115, and Eq.
3.111 should be incorporated to account for the skin effect. The IBVP is defined by the follow-
ing set of equations in the Laplace domain:

1dap , &Ap s >

G g P (3.116)
AP(F = 00, 8) = 0, woooveeeeeeeeeeeeeeeeeeeeeee e (3.117)

24C —  2zkh| dAp _q
R T v e )rrw e — (3.118)

and
- - dAp

Ap,r=Ap(r, +) = s, r | L (3.119)

w

The general solution of Eq. 3.116 is

Ap(s) = CLIWST7 )+ CoRy(WS THF). oo (3.120)
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The condition in Eq. 3.117 requires that C; = 0; therefore,
AP($) = CyRy(WSTHF). s (3.121)

The use of Eq. 3.121 in Eq. 3.119 yields

A;wf = CzKO(vs/n r,t ) + smCZVS/n rWKl(VS/;y rw). ........................... (3.122)

From Egs. 3.118, 3.121, and 3.122, we obtain

2 [ KoWsTnr, + )+ 5,35 7 K (V5T )]

B
2rkh V5Tn sTrr )= q
5 G s Ky s/nrw)—?, .......................................... (3.123)
which yields
_ _qBu
G 2nkhs
1
X T e (3.124)
VS/”I’WKI(VS/ﬂI’w)+—znk'ZS[KO(VS/I’[I"W'f‘)""SmVS/i’]l”WKI(VS/ﬂVW)}

Substituting Eq. 3.124 for C, in Eq. 3.122, we obtain the solution for the transient-pressure
distribution in the Laplace transform domain as

~ __qBu
APwi = Dk
KO(VS Inr, + ) +s,Ns/n erl(«/s /n rw)

merl(m rw) o S[KO(W A ) + Smm erl(m rw)}

* 2k h

o (3.125)

The real inversion of the solution in Eq. 3.125 has been obtained by Agarwal et al.!' with
the inversion integral. It is also possible to invert Eq. 3.125 numerically. Fig. 3.5 shows the
results of the numerical inversion of Eq. 3.125 with the Stehfest’s algorithm.® Also shown in
Fig. 3.5 are the logarithmic derivatives of Ap,. These derivatives are computed by applying
the Laplace transformation property given in Eq. 3.60 to Eq. 3.125 as follows:

dApr _
L{ TS }:SApr. ..................................................... (3.126)

Here, we have used Ap_ (¢ = 0) = 0. To obtain the logarithmic derivatives, we simply note that
Py 1 g ply

dApr dprf
it =t Qg —————— (3.127)
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Fig. 3.5—Wellbore-storage and skin solution (Eq. 3.125) for Example 3.3.

Example 3.4 Consider pressure buildup with wellbore storage and skin following a draw-
down period at a constant rate in an infinite reservoir.

Solution. This example is similar to Example 3.3 except, at time ¢,, the well is shut in and
pressure buildup begins. The system of equations to define this problem is

Li( 3AP)ZL5AP

PP ] e (3.128)
TN ) R (O (3.129)
AP(F = 00, 1) = 0, cooooeeeeeeeeeeeseeeeeeeseseeeeeeeeeeeeeeeeesres (3.130)

24C dAp,, 27rkh( aAp) B
P a— AT R Lt (S nm——— (3.131)

where H (t - tp) is Heaviside’s unit function (Eq. 3.67), and

S ——— (3.132)

prf = Ap(rw + ) - Sm(}’%)

The right side of the boundary condition in Eq. 3.131 accounts for a constant surface pro-
duction rate, g, for 0 < ¢ < ¢, and for shut in (¢ = 0) for ¢ > #,. Taking the Laplace transforms
of Egs. 3.128 through 3.132, we obtain

- )
LdAp o AD S N 0 eeee (3.133)
rodr a2 n

AP(F = 00, 1) = 0, oo eeeeesene (3.134)
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24C = 2zkh| dAp _q ( - *stp)
g APy B ol R . l—e y eeeeeee e eneens (3.135)
and
— - dAp
Apy ;= Apl(r, +)=s, T R (3.136)
The general solution of Eq. 3.133 is
Ap(s) = CLIWST7 )+ CoRy(WSTHF). oo (3.137)

The condition in Eq. 3.134 requires that C,= 0; therefore,
AP($) = CyRy(WS T F). s (3.138)

From Egs. 3.138 and 3.136, we obtain

A;wf = CzKo(vs/n r,t ) + smsz/s/n rWKl(VS/;y rw). ........................... (3.139)

Substituting the results of Eqs. 3.138 and 3.139 into Eq. 3.135, we have

2C KW T, + )+ s, 5T K (V5T )]

B
—st
+ 27;];1 Cs/n erl(VS/n rw) = %(1 —e p), ................................. (3.140)
which yields
_ _qBu
G 2k hs
—st
l—-e 7
X Sac s (3.141)
Vs/n erl(VS /n rw) + ﬁs[l(o(«/s/n 7, + ) +s,Ns/n I’WKI('\/S/ﬂ rw)}

Substituting Eq. 3.141 into Eq. 3.139, we obtain the following solution in the Laplace trans-
form domain, which covers both the drawdown and buildup periods.

KT, + )+ 5, 85T K (65T, )] 1= )
T K (VsTn, )+ 5 s KoWs T, + )+ s, 5T g (VT )|

27k h

o (3.142)
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Fig. 3.6—Drawdown and buildup results with wellbore-storage and skin solution (Eq. 3.142) for
Example 3.4.

st
The (1 —e 7 ) term contributed by the discontinuity at time ¢ = 1, causes difficulties in the

numerical inversion of the right side of Eq. 3.142 with the use of the Stehfest algorithm.® As
suggested by Chen and Raghavan,'? this problem may be solved by noting that

L—l

?(s)(l - e_”l’ﬂ ‘ - L‘l{?(s)} ‘ - L_l[_?(S)} (3.143)

and applying the Stehfest algorithm term by term to the right side of Eq. 3.143. Fig. 3.6 shows
sample results obtained by the numerical inversion of Eq. 3.142.

3.4 Green’s Functions and Source Functions

Green’s function and source functions are used to solve 2D and 3D transient-flow problems
that may result from complex well geometries, such as partially penetrating vertical and in-
clined wells, hydraulically fractured wells, and horizontal wells. Before introducing these
techniques, it is useful to clarify the terminology.

In our terminology, a source is a point, line, surface, or volume at which fluids are with-
drawn from the reservoir. Strictly speaking, fluid withdrawal should be associated with a sink,
and the injection of fluids should be related to a source. Here, however, the term source is
used for both production and injection with the convention that a negative withdrawal rate indi-
cates injection.

Green’s functions and source functions are closely related. A Green’s function is defined
for a differential equation with specified boundary conditions (prescribed flux or pressure) and
corresponds to an instantaneous point-source solution. A source function, on the other hand, is
the solution of the given differential equation with specified boundary conditions and source
geometry.

The details of the theory and application of Green’s function and source functions for the
solution of transient-flow problems in porous media can be found in Ref. 2 and Refs. 13
through 20. A brief account of the use of these techniques is presented here, as well as an
introduction of the fundamental solution and point-source concepts.
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3.4.1 Fundamental Solution of the Diffusion Equation. The fundamental solution,
y f(M , M, t, 7), of the diffusion equation for fluid flow in porous media satisfies the following
differential equation:

ayf(Ms M/a ty T)
ot

NNy (M, M1, 7) - = = (M, M, £, ), oo (3.144)

where §(M, M, t, 7) is a generalized (symbolic) function' called the Dirac delta function and
is defined on the basis of its following properties:

t

; ( DM’ 1 for t;<t,t<t, and M, M inD
oM, M', t, )dM’ dr = s ereeeeeens (3.145)
[£ otherwise
1
and
)
»/fé(M’ M” ta T) (ﬂ(M/s T)dM/ dT
t1 D
B oM, t) for t;<t,z<t, and M, M’ inD (.146)
0 otherwise e ———— .

The delta function is symmetric in M and M’ and also in ¢ and 7. In this formulation, the
delta function represents the symbolic density of a unit-strength, concentrated source located at
M’ and acting at time 7. In physical terms, this source corresponds to an infinitesimally small
well (located at point M") at which a finite amount of fluid is withdrawn (or injected) instanta-
neously (at time 7). Therefore, the solution of Eq. 3.144 (the fundamental solution) is also
known as the instantaneous point-source solution. Formally, the point-source solution corre-
sponds to the pressure drop, Ap = p; — p, at a point M and time ¢ in an infinite porous medium
(reservoir) because of a point source of unit strength located at point M’ and acting at 7 <t.

3.4.2 The Source-Function Solutions of the Diffusion Equation. The point-source solution
was first introduced by Lord Kelvin'® for the solution of heat conduction problems and was
extensively discussed by Carslaw and Jaeger.'* The point-source solution is usually obtained by
finding the limiting form of the pressure drop resulting from a spherical source as the source
volume vanishes. To demonstrate the derivation of the instantaneous point-source solution, con-
sider the transient flow of a slightly compressible fluid of constant compressibility and viscosi-
ty toward a spherical source of radius » = a in an infinite, homogeneous, and isotropic porous
medium. Because of the spherical symmetry of the physical problem, we can conveniently ex-
press the governing equation of fluid flow in porous media in spherical coordinates as

2 dAp azAp_ 1 0Ap
= + —
r or 9,2 n 0t

TS O (3.147)

Assume that the initial pressure drop satisfies
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Ap; for 0<r<a
Ap(r,t=0)= s reeeeeeee———————— e e eaa—_ (3.148)
0 for r>a

and we have the condition that
AP(F =0, 1) = 0. oo, (3.149)

On substitution of u = rAp, Eqs. 3.147 through 3.149 become, respectively,

e e eseansesere s ese e seanseseane (3.150)

rAp; for 0<r<a
u(r, t=0)= ettt eaean (3.151)
0 for r>a

and
U =0, 1) = 0 et (3.152)

The solution of the problem described by Egs. 3.150 through 3.152 is given by'*

= P R e
y2 i exp ant Or exp ant exp 2t exp 2t P (3.153)

If we expand the exponential terms in the integrand in Eq. 3.153 in powers of ' and neglect
the terms with powers higher than four, we obtain

3
o ( . ){ ( : )(rz )}
~—————exp || 1+ et | AP 3.154
d 24(mnt)*'? P\ e 40t \ nt (3.154)

In Eq. 3.154, 4wa®/3=V where V is the volume of the spherical source. If ¢ denotes the volume
of the liquid released as a result of the change in the volume of the source, AV, which is
caused by the change in pressure, Ap;, then g = — @AV. With the definition of compressibility,
c=—(1/ V)(AV/ Apl-), we obtain g = @cV'Ap,. Then, we can show that

3 ~
dra . q
3 Ap; = e (3.155)

Substituting Eq. 3.155 into Eq. 3.154, we obtain

é 7‘2 Cl2 1"2
Ap~ ————exp|—F—||1+ — 0] e, 3.156
P 8bc(mnt)’'? P ( 4nt ){ (4O’7t )( nt ﬂ ( )
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If we let the radius of the spherical source, a, tend to zero while g remains constant, Eq. 3.156
yields the point-source solution in spherical coordinates given by

~ 2

q r

Ap = exp (— ) ............................................. 3.157)
8®c(ﬂn1)3/2 4nt

This solution may be interpreted as the pressure drop at a distance » because of a volume of
fluid, g, instantaneously withdrawn at » = 0 and ¢ = 0. Consistent with this interpretation,
q/(®c)is the strength of the source, which is the pressure drop in a unit volume of the porous
medium caused by the instantaneous withdrawal of a volume of fluid, g (see Eq. 3.155).

Instantaneous Point Source in an Infinite Reservoir. Nisle?! presented a more general solu-
tion for an instantaneous point source of strength g/(®c) acting at + = 7 in an infinite,
homogeneous, but anisotropic reservoir as

q M-M)1y

8Peyln i Lalt = 0]}/ =P { 4t —1)

Ap(M, M, t—1) =

}. ................ (3.158)

In Eq. 3.158, M and M’ indicate the locations of the observation point and the source, respec-
tively. For a 3D Cartesian coordinate system, M = (x, y, z), M' = (x, y', z'), and (M — M7)2/;Ny =
(x = x)y, + (v — ¥/, + (z — 2')/n, with n,, n,, and 7, representing the diffusivity constants
(defined in Eq. 3.23) in the x, y, and z directions, respectively.

Continuous Point Source in an Infinite Reservoir. 1If the fluid withdrawal is at a continuous
rate, ¢(¢), from time O to ¢, then the pressure drop as a result of a continuous point source in an
infinite reservoir is obtained by distributing the point sources of strength g(z)/(@c) over a time
interval 0 <7 <¢. This is given by

t
Ap(M, M, ) = é f GDOSM, M, =) Aty oo (3.159)
0

where S(M, M’, t—7) corresponds to a unit-strength [g/(Pc) = 1], instantaneous point source in
an infinite reservoir; that is,

(M- M)y
4(t—1)

1

8y 1 Lt = D]

Instantaneous and Continuous Line, Surface, and Volumetric Sources in an Infinite Reser-
voir. Similarly, the distribution of instantaneous point sources of strength g(M’)/(®c) over a
line, surface, or volume, I',, in an infinite reservoir leads to the following solution correspond-
ing to the pressure drop because of production from a line, surface, or volumetric source,
respectively.

S(M, M, t—7) = exp [— } .................... (3.160)

Ap(M, M, 11 = [G0) S(M. My 1= ) AMy (3.161)

T
w
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In Eq. 3.161, M,, indicates a point on the source (/) and é(Mw) is the instantaneous with-
drawal volume of fluids per unit length, area, or volume of the source, depending on the
source geometry. For example, the pressure drop as a result of an infinite line source at x', )’
and —oo <z’ < 00 may be obtained as follows:

, 1 (e=xV I + (=31,
Ap(x, X', y, y,t—1) = 377 €XP |~ 2~
8Dyl 1 . [alt = )] -t
+oo
N (z-2) Z)?
>< / /7 /7
fmq(x,y,z)exp{ oo A2 e (3.162)

If we assume that the flux is uniform along the line source and the source strength is unity
[q(x’, v, 2/) I (®c) =q/(PDc) = 1], then we can write the instantaneous, infinite line-source solu-
tion in an infinite reservoir as

S N - XV I+ (y - y)z/ﬂy 3163
x, X, v, v, t— 47[@0*1) Y7 W (3.163)

As another example, if we consider an instantaneous, infinite plane source at x =x/,
—00 <y’ <00 and —o0 < z/ < o0 in an infinite reservoir, we can write

1 (x—x')
Ap(x, X', t—1) = exp {—
8@04/;7)6;7));72[71([ -9]/? 4n (t—1)
+0o+00 2 \2
=y Inlz=2")1n
X f f A, ¥, ) exp |- 4(;_1) 214y’ d2; oo (3.164)

which also leads to the following uniform-flux, unit-strength, instantaneous, infinite plane-
source solution in an infinite reservoir:

.
2y (t — 1) P 4n (t—1)

S(x, x', t—1) = } ................................ (3.165)

If the fluid withdrawal is at a continuous rate from time O to ¢, then the continuous line-, sur-
face-, or volumetric-source solution for an infinite reservoir is given by

t
N ’ L, /
Ap(M, M, 1) = q)c{f S(M, M/, t—2)dM/,dz. oo (3.166)

Source Functions for Bounded Reservoirs. The source solutions discussed previously can
be extended to bounded reservoirs. The method of images provides a convenient means of gen-
erating the bounded-reservoir solutions with the use of the infinite reservoir solutions, especial-
ly when the reservoir boundaries consist of impermeable and constant-pressure planes. The
method of images is an application of the principle of superposition, which states that if f; and
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Fig. 3.7—Application of the method of images to generate the effect of a linear boundary.

/> are two linearly independent solutions of a linear PDE and ¢, and ¢, are two arbitrary con-
stants, then f; = ¢, f; + ¢, f; is also a solution of the PDE. Examples of source functions in
bounded reservoirs are presented here.

Instantaneous Point Source Near a Single Linear Boundary. To generate the effect of an
impermeable planar boundary at a distance d from a unit-strength, instantaneous point source
in an infinite reservoir (see Fig. 3.7), we can apply the method of images to the instantaneous
point-source solution given in Eq. 3.157 as

, 1 (y*y/)z/ny+(zfz’)2/;72
SM, M’ t—1) = 5 exp |-
8y Lt = )] 4(t-1)
AY A 2
X { exp {—% T oex {—%”. .............................. (3.167)

It can be shown from Eq. 3.167 that (0S/0x),-, = 0; that is, the bisector of the distance be-
tween the two sources is a no-flow boundary. Similarly, to generate the effect of a constant-
pressure boundary, we use the method of images and the unit-strength, instantaneous point-
source solution (Eq. 3.160) as follows:

— 2/ 7 2/
S(M, M/, I*T): 1 — exp 7(.)/ .V) ”y+(Z Z) 7]2‘|
8 . alt = 1] 4(t—1)
—x')? — ¥ —2d)?
x { exp {—% — exp {—%H .............................. (3.168)

Instantaneous Point Source in an Infinite-Slab Reservoir. Using the method of images and
considering the geometry shown in Col. A of Fig. 3.8, we can generate the solution for a unit-
strength, instantaneous point source in an infinite-slab reservoir with impermeable boundaries
at z = 0 and /. The result is given by

1

8y 1 Lt =02

@ (z—-2 —2nh)2
> _ETE b,
n_m{exp{ 4.0 €xXp

SM, M, t—1) = exp

(x—x/)z/nx'*‘(y—y/)z/ﬂy
4(t—1)

.................... (3.169)

B (z+2 —2nh)?
4n (t — 1) ’
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which, with Poisson’s summation formula given by'*

+oo0 &—2né ) o 22
2 exp —u :@ 1+2 X exp -z Zt cos n7ri s eereeneeenes (3.170)
e 4¢ g, n=1 & Ce
may be transformed into
732 732
1 =XV +(=y)/n
SM, M, t—1)=——F————¢exp|— .
a0 (=) p{ 41—
2.2
o0 n“nn (t—1) ’
X {1+2 X exp {—+1( COS NT— oS nnz—)} ........................ (3.171)
n=1 h h h

Following similar lines, if the slab boundaries at z = 0 and / are at a constant pressure equal
to p,, we obtain

~ 732 732
g (x*x)/;nyr(yfy)/ﬂy
SM, M, t—-1) = -
( ) 2n®ch«/11x11y(t71) exp{ 4(t—1)
2 2
- nnnz(t—r){ . z . Z/:|
X - - - -
{ngl exp 2 SN A7 SN AT (3.172)

Similarly, for the case in which the slab boundary at z = 0 is impermeable while the boundary
at z = h is at a constant pressure equal to p,, the following solution may be derived:

~ (x*x/)z/;y +(yfy’)2/i7
SM, M, t—1) = q - X Y
( ) 27t¢ch«/17x17y(t -1 exp { 4(t—1)
oo @n—- l)znznz(l ) nz nz’
X ngl exp {— 2 { cos 2n — l)ﬁ cos 2n — Dﬁ} e (3.173)

Instantaneous Point Source in a Closed Parallelepiped. The ideas used previously for slab
reservoirs may be used to develop solutions for reservoirs bounded by planes in all three direc-
tions. For example, if the reservoir is bounded in all three directions (i.e., 0<x<x,
0<y<y, and 0<z<h) and the bounding planes are impermeable, then we can use Eq.
3.157 and the method of images to write

1

8y 1 Lt =02

+§° (x -x - ane)z (x +x' - ane)z
T e 4 R iy TR

SM, M, t—1) =

n

]+ exp
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Fig. 3.8—Application of the method of images to generate the solutions for infinite-slab reservoirs.

|

(y—y —2ny,) (y+) —2ny,)?

+00
X X {exp
n=—o00

- 417y(t -1 Texp T 4;7y(t -1
& (z—2 - 2nh)2 (z+z2 - 2nh)2
X n_zoo{exp {_m}'i' X —m”, .................... (3.174)

which, with Poisson’s summation formula (Eq. 3.170), may be recast into the following form:

Ky (=7

oo 4
S(M, M, t—1)= L{1 +2 2 exp {— (cos k== cos knx—)}
x y.h k=1 X X

eye xﬁ e e
2.2
0 m-ny (t—1) ’
X {1+2 2 exp —72 (cos ma-2- cos mny—)
m=1 ye e ye
2 2
o0 n“nn (t—1) ’
X {1+2 X exp —+ (cos nr— cos nnz—) s (3.175)
n=1 h h h

Instantaneous Infinite-Plane Source in an Infinite-Slab Reservoir With Impermeable Bound-
aries. The instantaneous point-source solutions of Eqs. 3.171 through 3.173 may be extended
to different source geometries with Eq. 3.161. For example, the solution for an instantaneous
infinite-plane source at z = z' in an infinite-slab reservoir with impermeable boundaries is ob-
tained by substituting Eq. 3.171 for S in Eq. 3.161. This yields
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Ap(M, t - 7070 ¢, ') (x‘x/)z/’?ﬁ(y‘y/)z/”y
P T @ Axhln (t*r) 4(t—1)
o 2 — /
X {l +2n§1 exp {_%2(!&}( cos mr% cos nn—) dx’ dy’ ., (3.176)

Assuming a unit-strength, uniform-flux source [¢(x’, y")/(®c) =q/(dc) = 1], we obtain the fol-
lowing instantaneous infinite-plane source solution in an infinite-slab reservoir with imperme-
able boundaries:

S(M, M/,t—r):l 1+2 X exp|—
h h2

n=1

h h

{ nznznz(l‘ -7)

/
( cos nT— cos nnz—)} e (3.177)

Instantaneous Infinite-Slab Source in an Infinite-Slab Reservoir With Impermeable Bound-
aries. Following similar lines, we can obtain the solution for an instantaneous, infinite-slab
source of thickness, 4, located at z = z, (z,, is the z-coordinate of the midpoint of the slab

source) in an infinite-slab reservoir with impermeable boundaries.

+ooooty ! p 72 72
- ¢, y', 2") XD i+ =D,
ot 19 | fw [ e exp{ 0

e} /
X {1+ = =
{1 2n§1 exp 2 €OS N~ COS NI ) dz/ dx" dy" ..o (3.178)

n 7r nz(t—r)l(

If we assume a uniform-flux slab source [¢(x, )/, z’)/(®c) =g/ (®c) = 1], then Eq. 3.178 yields

h{ 4n 21

nznznz(t -7) 1

RN PR/ i 5
SM, M t—1)= I — =y exp 2
h z
« r z w
sin N COS nw - cos nw— )} ........................................ (3.179)

Uniform-Flux, Continuous, Infinite-Slab Source in an Infinite-Slab Reservoir With Imper-
meable Boundaries. Solutions for continuous plane and slab sources can be obtained as
indicated by Eq. 3.159 (or Eq. 3.166). For example, the solution for a uniform-flux, continu-
ous, infinite-slab source in an infinite-slab reservoir with impermeable top and bottom bound-
aries may be obtained by substituting the right side of Eq. 3.179 for S in Eq. 3.159 and is
given by

4n 21 (nzﬂznzr)

t
qh,
= — 4+ — —
Ap(M, 1) <Dch£ ! why, p=1n P 52
h z
w | sin b z w
(sm nmoy €0S NS oS NI ﬂ AT e (3.180)
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Fig. 3.9—Geometry of the well/reservoir system for a partially penetrating vertical well in an infinite-
slab reservoir with impermeable boundaries for Example 3.5.

The same solution could have been obtained by substituting the unit-strength instantaneous
point-source solution given by Eq. 3.171 for S in Eq. 3.166.

Example 3.5 Consider transient flow toward a partially penetrating vertical well of pene-
tration length, 4, in an infinite, homogeneous, slab reservoir of uniform thickness, 4, and
initial pressure, p;, with impermeable top and bottom boundaries.

Solution. Fig. 3.9 shows the geometry of the well and reservoir system of interest. The
solution for this problem can be obtained by assuming that the well may be represented by a
vertical line source. Then, starting with Eq. 3.166 and substituting the unit-strength, instanta-
neous point-source solution in an infinite-slab reservoir with impermeable boundaries [Eq.
3.171 with g/ (®c) = 1] for S, we obtain

z +h /2

~ 2 2
Ap(M t)—Lfl wa S exp{—(x_X/) Iyt =57 “’y}
b @ _ _
co Y /247rh4/;7x;7y(t 7) 4t —1)
w w
2 2
0 n“ny (t—1) ’
X {1+2 2 exp —% (cos nr— cos nnz—) dz’ dz. i (3.181)
n=1 h h h

If we assume that the strength of the source is uniformly distributed along its length (this phys-
ically corresponds to a uniform-flux distribution) and the production rate is constant over time
lie, ¢z, 1) =q= q/hp, where g is the constant production rate of the well], then Eq. 3.181
yields

Ap(M, t) =

2 2
e=x)" i + ="/,
4z

t
#f exp
47rq§ch4/;7x77y o
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22
4h 1 nr 772‘[ . hw z Zy dr
1+ exp( )( Sin nx=,- cos nw- cos )1 R (3.182)

3.4.3 The Use of Green’s Functions and Source Functions in Solving Unsteady-Flow Problems.
As discussed in Sec. 3.4.2, the conventional development of the source-function solutions uses
the instantaneous point-source solution as the building block with the appropriate integration
(superposition) in space and time. In 1973, Gringarten and Ramey'? introduced the use of the
source and Green’s function method to the petroleum engineering literature with a more effi-
cient method of developing the source solutions. Specifically, they suggested the use of infinite-
plane sources as the building block with Newman’s product method.””> In this section, we
discuss the use of Green’s functions and source functions in solving unsteady-flow problems in
reservoirs.

Green’s function for transient flow in a porous medium is defined as the pressure at M (x,
y, z) at time ¢ because of an instantaneous point source of unit strength generated at point
M'(x", y', z) at time 7 < ¢ with the porous medium initially at zero pressure and the boundary
of the medium kept at zero pressure or impermeable to flow.'>'* If we let G(M, M', t — 1)
denote the Green’s function, then it should satisfy the diffusion equation; that is,

a—f=nv2G 11 S 2 (3.183)

Because G is a function of 7 — 7, it should also satisfy the adjoint diffusion equation,

%—fﬂysz:o 1S S S (3.184)

Green’s function also has the following properties:'>*

1. G is symmetrical in the two points M and M"; that is, Green’s function is invariant as the
source and the observation points are interchanged.

2.As t—71, G vanishes at all points in the porous medium; that is,

limG(M, M’, t —17) = 0, except at the source location, M = M’ where it becomes infinite, so
t—1

that G satisfies the delta function property,

lim [ @(M") G(M, M, t = 1)dAM’ = g(M), weooerooeeeeeeeeeceerreeereeeeee (3.185)
[*}
D

where D indicates the domain of the porous medium, and ¢(M) is any continuous function.
3. Because G corresponds to the pressure because of an instantaneous point source of unit
strength, it satisfies

fG(M, M E=0)OM = 1o (3.186)
D

4. G or its normal derivative, 0G/On, vanishes at the boundary, I', of the porous medium. If
the porous medium is infinite, then G vanishes as M or M'—o.
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Let p(M’, 7) be the pressure in the porous medium and G(M, M’, t — 1) be the Green’s func-
tion. Let D denote the domain of the porous medium. Then, p and G satisfy the following
differential equations:

%—f:nvzp 105 VTV N (3.187)
and
a—f = —yV2G  for M, M inD. oo (3.188)
Then, we can write
) 5 9G
——(pG) = a—f+p > oL CAYA 0 AV c) N (3.189)
or
t—¢e 5 t—¢
[ [5-00ram" ae=1 [ [(GV?p = pV°G)dM’ dt, v (3.190)
0 D 0 D

where ¢ is a small positive number. Changing the order of integration and applying the Green’s
theorem,

szf(M)dM=/g—£dF, ................................................. (3.191)
D r

where D and I' indicate the volume and boundary surface of the domain, respectively; S de-
notes the points on the boundary; and 0/0n indicates differentiation in the normal direction of
the surface I'; we obtain

t—¢
= = op _ a_G)
fD(pG)T_tng fD(pG)T_OdM —%{(Gan T LI — (3.192)

Taking the limit as e—0 and noting the delta-function property of the Green’s function (Eq.
3.185), Eq. 3.192 yields

t
_ ’ ’ ’ op _ _G)
(M, r)[)pl.(M )G(M, M, ) dM +;7M(Ga” L — (3.193)

where p(M) = p(M, ¢t = 0) is the initial pressure at point M.

In Eq. 3.193, the boundary of the porous medium consists of two surfaces: the inner bound-
ary that corresponds to the surface of the wellbore, I',, and the outer boundary of the reservoir,
I',. Eq. 3.193 may be written as
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dM’ dr

w

p(M, t)—po,-(M’)G(M, M, 1) dM’ +nftf(Gg—5—pg—f)

+,7f[ [lc ( )dM’ QT oo (3.194)
or

e

As the fourth property of Green’s function noted previously requires, if the outer boundary of
the reservoir is impermeable, [(d p/dn) =0] or at infinity, then G vanishes at the outer

e
boundary; that is, G(I';) = 0. Thus, Eq. 3.194 becomes

p(M, 1) = /pl(M )G(M, M’ t)dM’+;1f/( —pg—f)dM/wdr. ............... (3.195)
OF

Similarly, if the flux, (3 p/dn) , is specified at the inner boundary, then the normal deriva-
w
tive of Green’s function, (0 G/ 0 ”)F , vanishes at that boundary. This yields
w

t
f pAMG(M, M, 1)dM’ — p(M, 1) = — 1 f f Gg—i AM/, . e (3.196)
D or
w
If the initial pressure, p;, is uniform over the entire domain (porous medium), D, then, by
the third property of Green’s function (Eq. 3.186), we should have

f PG, M, ) AM” = P (3.197)

Also, the flux law for porous medium (Darcy’s law) requires that the volume of fluid passing
through the point, M",, on the inner-boundary surface, I',,, at time ¢ be equal to

w w2

op\M ,t
dm,, 1)= ﬁ(a—n’”) ................................................. (3.198)

The substitution of Egs. 3.197 and 3.198 into Eq. 3.196 yields

t
Ap(M, 1) = %C [ [dm,, ) G0, M =) M (3.199)

where Ap(M,f) = p; — p(M, f). Not surprisingly, Eq. 3.199 is the same as Eq. 3.166 because G
in Eq. 3.199 is the instantaneous point-source solution of unit strength denoted by S in Eq.
3.166.

The expression given in Eq. 3.199 may be simplified further by assuming that the flux,
é(Mw, t),is uniformly distributed on the inner-boundary surface (wellbore), I',,. This yields
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t
17
Ap(M, 1) = o [HDS(M, My 1), (3.200)
0
where
S(M, My, 1) = [ G(M, Miyy ) AM (3.201)
Tr
w

The integration in the right side of Eq. 3.201 represents the distribution of instantaneous
point sources over the length, area, or volume of the source (well), and S denotes the corre-
sponding instantaneous source function. In Sec. 3.4.2, we discussed the conventional derivation
of the source functions starting from the basic instantaneous point-source solution. Here, we
discuss the use of infinite-plane sources as the building block with Newman’s product method.??

Newman’s product method?> may be stated for transient-flow problems in porous media as
follows:'3 if a well/reservoir system can be visualized as the intersection of 1D or 2D systems,
then the instantaneous source or Green’s function for this well/reservoir system can be construct-
ed by the product of the source or Green’s functions for the 1D and/or 2D systems. For
example, an infinite line-source well at x = x', y = ', and —o0 < 2z’ < 400 in an infinite reservoir
may be visualized as the intersection of two infinite, 1D plane sources; one at x = x’, —o0 < y'
< +oo, and —oo < z' < +oo, and the other at —o0 < x' < +o0, y =)', and —oo < 2’ < +oo. Then, the
instantaneous source function for this infinite line-source well, S(x, x', y, y/, ¢ — 7), may be
obtained as the product of two infinite, 1D plane sources, given by

AV)
SG, j -0 = SN — exp {M} for j=X0ry, cveeennn. (3.202)
2 m7j(tfr) 4711-(1*1)
as follows
732 72
1 =X, +(=y)In
SG, ¥, y, ¥\ t—1) = ———— exp |- N 3203
»y (o) O 4c-0) (3:209)

As expected, this solution is the same as Eq. 3.163, which was obtained by integration of
an instantaneous point source in an infinite reservoir. For a radially isotropic reservoir (1, = 7,
=1n,), Eq. 3.203 yields

1 d?
S(r, v, 0,0, t—1)= ———— e e, 3.204
(r, r 7) pr exp{ 4%01)} ( )

where d is the distance between the line source and the observation line in the x-y plane (see
Fig. 3.10) and is given by

d*=(x- x/)2+ (y —y/)2 =2+ "2 =2 cos (0— (2 T (3.205)

Similarly, intersecting three infinite instantaneous plane sources (or a line source and a
plane source), we can obtain the instantaneous point-source solution in an infinite reservoir as
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Fig. 3.10—Geometry of a line source in 3D Cartesian and radial coordinates.

1

8y 1 n 1t — ]2
(x—x/)z/nx+(y—y/)2/7]y+(z—z’)2/nz

4(t—1) '

S(x, x/, ¥, y’, z, z/, t—1)=

X o eXp |- | e (3.206)

Instantaneous plane sources in slab reservoirs can be generated with the plane sources in
infinite reservoirs and the method of images as discussed in Sec. 3.4.2. Similarly, the instanta-
neous slab sources can be obtained by integrating plane sources over the thickness of the slab
source (see Sec. 3.4.2). Table 3.2, compiled from the work of Gringarten and Ramey,'’
presents the basic instantaneous source functions in infinite reservoirs, and Table 3.3 shows the
corresponding geometries of the source-reservoir systems. The basic instantaneous source func-
tions given in Table 3.3 may be used to construct the source functions that represent the
appropriate well geometry by Newman’s product method.

Gringarten and Ramey'? have also presented the approximating forms of the instantaneous
linear sources and the time ranges for these approximations to be valid. The approximate solu-
tions are very useful in obtaining expressions for pressure distributions at early and late times
and identifying the flow regimes during the corresponding time periods. Table 3.4 presents the
short- and long-time approximating forms for instantaneous linear sources and their time
ranges. Examples 3.6 and 3.7 present some applications of the product-solution method and the
derivation of the approximate solutions for pressure distributions.

Example 3.6 Consider transient flow toward a partially penetrating vertical fracture of
vertical penetration /, and horizontal penetration 2x, in an infinite, homogeneous, slab reservoir
of uniform thickness, 4, and initial pressure, p;, with impermeable top and bottom boundaries.

Solution. Fig. 3.11 shows the geometry of the well reservoir system of interest. Approxi-
mate the fracture by a vertical plane of height s, and length 2x. The corresponding source
geometry may be visualized as the intersection of an infinite plane source at y = )’ in an infi-
nite reservoir (Source I in Tables 3.2 and 3.3), an infinite-slab source of thickness 2x, at x = x'
in an infinite reservoir (Source IV), and an infinite-slab source of thickness #,=h, at z = z,, in
an infinite-slab reservoir of thickness /# (Source VIII). Then, by Newman’s product method, the
appropriate source function is given by
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1 xf+(x x’) xf—(x—x/)
X —| erf erf —
2 U/n (-1 24/nx(t*t)
h n’w’n (t—1) nrh nmz
X Tf{l + % ll exp |— hZz sin th cos hw cos nhﬂ e (3.207)
e

Assuming that the production is at a constant rate, g = g(¢)2x fh r and using Eq. 3.207 for the
source function, S, in Eq. 3.200, we obtain :

(y-»)*
4nyr

x,+(x—x")
erf t

VK

+ erf

Xy (x—x") }
i

t
Ap(x, y, z, t) = #/‘ exp
8<1§cxfh4/myy o
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2 2
- 4 =21 nmn,T mrhf nmz,, iz
—”hfn—l L exXp [~ 2 sin —= cos —— cos —

de
e

............. (3.208)

If the fracture penetrates the entire thickness of the reservoir (i.e., % = h) as shown in Fig.
3.12, then Eq. 3.208 yields '
q
Ap(x, y, 1) = ———F—
8Dcx thhm ¥

x,+(x—x") x,—(x—x")
{erf t + erf t dr

24n 7 24n 7 Vo

(y y')?

J’

................ (3.209)

t
X/exp
0

The fully penetrating fracture solution given in Eq. 3.209 also could be obtained by construct-
ing the source function as the product of an infinite plane source at y = )' in an infinite
reservoir (Source I in Tables 3.2 and 3.3) and an infinite-slab source of thickness 2x,at x = x’
in an infinite reservoir (Source IV). This source function then could be used in Eq. 3.200.

Fig. 3.13 presents an example of transient-pressure responses computed from Eq. 3.209. To
obtain the results shown in Fig. 3.13, numerical integration has been used to evaluate the right
side of Eq. 3.209. It is also of interest to obtain an early-time approximation for the solution
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Fig. 3.11—Geometry of the well/reservoir system for a partially penetrating vertical fracture in an
infinite-slab reservoir with impermeable boundaries for Example 3.6.

Fig. 3.12—A fully penetrating vertical fracture in an infinite-slab reservoir with impermeable
boundaries.

given in Eq. 3.209. Substituting the early-time approximating forms for the slab sources in an
infinite reservoir (approximations given in Table 3.4 for Source Functions IV and VIII), we obtain

2
S(x, X, v, ¥,z 2, t—r) = ap exp |— 5 _y/) S e (3.210)
W 2 7n7y(t -7) 477y(t -1

where
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Fig. 3.13—Transient pressure responses of a uniform-flux fracture computed from Eq. 3.209.

0 for ’z—zw‘>hf/2
a=4{ 1 for ‘Z—ZW‘<hf/2

............................................ (3.211)
b for |z-z,|=h,/2
and
0 for lx—x"[>x,
p={ 1 for [x=x"[<xp (3.212)

b for [x—x"|=ux,

Assuming a constant production rate, g = ¢(¢)2x fh I3 and substituting the source function given
by Eq. 3.210 in Eq. 3.200, we obtain

2
Ap(x, v, z, t) = %{Vn tex (—y—)—l erfc( J ) e, 3.213
Xy 2<Dcxfhfm7y Tyt €XP 477yt 27 2 nyt ( )
where erfc (z) is the complementary error function defined by
erfe (2)= 1 — erf () = == f exp ()it oo (3.214)
vr
X

Example 3.7 Consider transient flow toward a uniform-flux horizontal well of length L,
located at (x', ', z,) in a closed, homogeneous, rectangular parallelepiped of dimensions 0 < x
<x,0=<y<y,0=<z<hand of initial pressure, p,.

Solution. Fig. 3.14 shows the sketch of the horizontal-well/reservoir system considered in
this example. If we approximate the horizontal well by a horizontal line source of length L,
then the resulting source/reservoir system may be visualized as the intersection of three
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sources: an infinite plane source at y = y' in an infinite-slab reservoir of thickness y, with im-
permeable boundaries (Source V in Tables 3.2 and 3.3), an infinite-slab source of thickness L,
at x = x’ in an infinite-slab reservoir of thickness x, with impermeable boundaries (Source VI-
II), and an infinite-plane source at z = z,, in an infinite-slab reservoir of thickness 4 with
impermeable boundaries (Source V). Then, by Newman’s product method, the appropriate
source function can be obtained as

S(x, Xy v Vs 2,20 t—7) = ; {HZ ZleXp
o

e

22 .,

omr ’7y(t T)} cos mry’ mny}
2
e

- 2.2
Lh Xe k' (-0 | kL, kax’ kmx
X — L exp |— 5 sin cos cos
X, ”Lhk 1k x? 2x, X, X,
2.2
© nmy (t—1) nmz
X %{l +2 2 exp {— hzz cos hw cos n%} ....................... (3.215)
n=1

Assuming that the production is at a constant rate, ¢ =¢(¢)L,, and using Eq. 3.215 for the
source function, S, in Eq. 3.200, we obtain

m2”2’7y(t —17) mry’ mny
Ap(x, y, z, 1) = hf 1+2 Z g > cos cos
Ve

- 22
v { 4x, 1 exp {_ k7 n (¢ _T)] sin kwL, kax’ kfrx}

2
X, er Xe Xe

© nznznz(t -7 nmz,, niz
- 2 €Os — " €0s — = dre e, (3.216)

Table 3.5 presents the pressure responses for a uniform-flux horizontal well in a closed square
computed from Eq. 3.216. We may obtain a short-time approximation for Eq. 3.216 with the
early-time approximations given in Table 3.4 for Source Functions V and VIII. This yields

.............. (3.217)

4¢

2 2
Ap(x, y, 2, 1) = — q Ei _(J/*y’) /iyy+(zfzw) /n,
s Vo 4 47[¢C«H’]y7]ZLh 5

where Ei(—x) is the exponential integral function defined by Eq. 3.90. Eq. 3.217 indicates that
the early-time flow is radial in the y-z plane around the axis of the horizontal well. This solu-
tion corresponds to the time period during which none of the reservoir boundaries influence the
pressure response.

It is also possible to obtain another approximation for Eq. 3.216 that covers the intermedi-
ate time-flow behavior. If we approximate the source function in the x direction (Source
Function VIII) by its early and intermediate time approximation and the source function in the
y direction (Source Function V) by its early time approximation given in Table 3.4, we obtain
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Fig. 3.14—A horizontal well in a closed rectangular parallelepiped (Example 3.7).

=)
4n T

t
_ q
Ap(x, y, ,t—ifex
p(x, y, z, t) 4,—m7y¢cth0 p y

(Lh/2)+(x—x') (Lh/2)—(x—x')
X | erf + erf
24n T 2n.7
§ ”2”2’7z7 nnz,, nrz | dt
X {1+2 - e e 3.218
el exp 2 cos — — cos — vz ( )

This approximation should correspond to the time period during which the influence of the
top and/or bottom boundaries may be evident but the lateral boundaries in the x and y direc-
tions do not have an influence on the pressure response. This solution also could have been
obtained by assuming a laterally infinite reservoir. In this case, the source function would have
been constructed as the product of three source functions: an infinite-plane source at y = )’ in
an infinite reservoir (Source I in Tables 3.2 and 3.3), an infinite-slab source of thickness L, at
x = x' in an infinite reservoir (Source IV), and an infinite-plane source at z = z,, in an infinite-
slab reservoir of thickness 4 with impermeable boundaries (Source V).

3.4.4 The Use of Source Functions in the Laplace Domain To Solve Unsteady-Flow Problems.
There are many advantages of developing transient-flow solutions in the Laplace transform do-
main. For example, in the Laplace transform domain, Duhamel’s theorem? provides a conve-
nient means of developing transient-flow solutions for variable-rate production problems using
the solutions for the corresponding constant-rate production problem. Duhamel’s theorem states
that if Ap and Ap, denote the pressure drawdown corresponding to the variable production rate,

q(?), and the constant production rate, g., respectively, then

dAp
aTC(M, 21 (3.219)

t
1
Ap(M, 1) = q—cgq(r)

Applying the Laplace transform converts the convolution integral in Eq. 3.219 to an algebraic
expression, and Duhamel’s theorem is given in the Laplace transform domain as

Ap(M, s) = s%S)A_pC(M, R S (3.220)

c
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The simplicity of the expression given in Eq. 3.220 explains our interest in obtaining transient-
flow solutions in the Laplace transform domain.

Another example to explain the convenience of the Laplace domain solutions is for the
naturally fractured reservoirs. Common transient-flow models of naturally fractured reservoirs

lead to the following differential equation in radial coordinates in the Laplace transform
domain:?

1 d | dApp) =
o dr " ar, sf(s)Apf—O, .......................................... (3.221)
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where the subscript f indicates the fracture property, and #;, and r, are the dimensionless time
and distance (as defined in Egs. 3.230 and 3.234).

The naturally fractured reservoir function, f'(s), is a function of matrix and fracture proper-
ties and depends on the model chosen to represent the naturally fractured reservoir.? The
corresponding differential equation for a homogeneous reservoir is obtained by setting f'(s) = 1
and is given by

1 d (szp L S (3.222)

_2?—
rn ©—'D

p
D drp,
The general solutions for Eqs. 3.221 and 3.222 are given, respectively, by

Ap () = AR[Ns f()rp] + BE A S(Irp] o (3.223)

and

Ap(s) = Al(yf57p) + BEY4STD)- oovevererescersenrressceesascnn (3.224)

To obtain a solution for constant-rate production from an infinite reservoir, for example, the
following boundary conditions are imposed:

Ap ((rp = ) = Ap(rp = ) = 0o (3.225)
and
de(?:;f _— rDiArg’ - —%. ..................................... (3.226)
Then, it may be shown that
SAP LSS = [SAPS)], _ | (51 s (3.227)

where the right side of Eq. 3.227 indicates the substitution of sf'(s) for s in sAp(s). This discus-
sion demonstrates that it is possible to derive transient-flow solutions for naturally fractured
reservoirs by following the same lines as those for the homogeneous reservoirs. Furthermore, if
the solution for the corresponding homogeneous reservoir system is known in the Laplace trans-
form domain, then the solution for the naturally fractured reservoir problem may be directly
obtained from Eq. 3.227.

Obtaining the Laplace transforms of the Green’s and source function solutions developed in
the time domain with the methods explained in Secs. 3.4.2 and 3.4.3 usually poses a difficult
problem. The problems arise mainly because of the use of the product method solution. For a
specific class of functions, Chen et al?* presented a technique that may be used to apply the
Laplace transform to the product-solution technique. For a more general procedure to develop
source function solutions in the Laplace transform domain, however, the product solution tech-
nique should be avoided.?
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Ozkan and Raghavan'®!? have shown that it is more convenient to develop source-function
solutions in the Laplace transform domain if the point-source solution is used as a building
block. Then, other source geometries may be obtained by the superposition (integration) of the
point sources along the length, surface, or volume of the source.

Point-Source Solution in the Laplace Domain. Consider the flow of a slightly compressible
fluid in an infinite, naturally fractured reservoir. We can use the double-porosity model suggest-
ed by Barenblatt et al.>> and Warren and Root* to develop the governing flow equations for
naturally fractured reservoirs. The results, however, will be applicable to the model suggested
by Kazemi?” and de Swaan-O?® with a simple modification.

Flow around a point source in an infinite porous medium may be expressed conveniently in
spherical coordinates. The differential equations governing flow in a naturally fractured reser-
voir are given in spherical coordinates by

A oA oA
1.0 (rD pf)—a) LA e (3.228)
rp 0rp arp atp atp
and
dAp
HApy=Bps)= =1 =) s (3.229)

dtp

In Egs. 3.228 and 3.229, subscripts f and m indicate the property of the fracture and matrix
systems, respectively. Initial pressure, p;, is assumed to be uniform in the entire system,; that is,
Dsi = Pwi = Pi- The dimensionless time, #p, is defined by

. 124 (3.230)

where 0 is a characteristic length in the system, and

n= L
[ R e — (3.231)

The definitions of the other variables used in Eqs. 3.228 and 3.229 are

Ve
w= [ (chsCt()f +t()’f¢3cz)m} e (3.232)
L=at’k, S (3.233)
and
R (3.234)
where



Chapter 3—Mathematics of Transient Analysis 1-125
$p=Nkylksp !0 E=X, Yy O Zu it (3.235)
The initial and outer-boundary conditions are given, respectively, by
AP ftp=0.1p>0)= 0 j =, frosiimiiiiieier (3.236)
and

Apj(rD 00, 1p) = 05 = M, [ (3.237)

The inner-boundary condition corresponding to the instantaneous withdrawal of an amount
of fluid, g, at = 0 from a point source is obtained by considering the mass balance on a small
sphere. If we require that at any time ¢ =7 > 0, the sum of the flux through the surface of a
small sphere around the source location must equal the volume of the fluid, ¢, instantaneously
withdrawn from the sphere at ¢ = 0, we can write?

T

4nk dAp
/ { lim —L a(r})—f) TR (3.238)
0 e—0+ M QVD 'nTée

Although the withdrawal of fluids from the sphere is instantaneous, the resulting flow in the
porous medium, and the flux across the surface of the sphere, is continuous. Therefore, if ¢
represents the total flux across the surface of the small sphere during the time interval 0 < ¢ <
T, then the mass balance requires that the cumulative production (flux across the surface of the
small sphere) at time T be equal to the instantaneous withdrawal volume of fluid from the
sphere. That is,

T
q= f GV AL oo, (3.239)
0

For the condition expressed in Eq. 3.239 to hold for every T > 0, we must have
GOV =GO, oo (3.240)

where (1) is the Dirac delta function satisfying the properties expressed by Egs. 3.185 and
3.186.
Using the results given by Eqs. 3.239 and 3.240 in Eq. 3.238, we obtain

47k dAp
lim —2L Q(r[z, 1A ) 0 (3.241)
e—0+ MU 3rD rn=¢

The Laplace transform of Eqs. 3.228, 3.229, 3.237, and 3.241 yields

— -4 B L0 T T N (3.242)
,,[2) drp|'P drp /
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where
F() =[s(1 = @)+ 2]/[s(1 = @) + AL, coovereeeeeeeeeee e, (3.243)
AP (rp = %) =0, o (3.244)
and
dAp ~
lim 470°rj— 1A = - 9 e (3.245)
e 0+ D |rp=¢ (V¢Ct) ot (V@Ct)m

In deriving these results, we have used the initial condition given by Eq. 3.236 and noted that

(o)

1400} = [ exp (-stp) o)t = f exp (—s—t) 3O dt =L (3.246)
o U 0? 0?
In Eq. 3.245, the term g/ [(V@Dct) 7 + (V @ct)m} represents the strength of the source for the nat-
urally fractured porous medium.
The solution of Eqs. 3.242, 3.244, and 3.245 yields the following solution for the pressure
distribution in the reservoir, except at the source location (the origin), because of an instanta-
neous point source of strength q/ [thpct f + V@ct) } acting at £ = 0:

g exp [—st(s) rD}

AD = T T T g (3.247)

(vac,), +(ac),  4x0’n,
If the source is located at x'p, ¥'p, 2, then, by translation, we can write
Ap r=GS(Rpy 5)1[(Fde,) (Y DC,), | o (3.248)
where
S(Rps s) = exp [5G Rp| /(4703 Rp), covvvovrccricrrcn (3.249)
and
Ry =A(xp=3p)+ (= Yo+ (2 = 2P oo (3.250)

The instantaneous point-source solution for the model suggested by Barenblatt et al.>> and War-
ren and Root*® can also be used for the model suggested by Kazemi?’ and de Swaan-O,*
provided that the appropriate f{s) function is invoked. To obtain the solution for a homoge-
neous reservoir, f{s) should be set to unity, V,= 1, and V,, = 0.

If we consider continuous withdrawal of fluids from the point source, then, by the principle
of superposition, we should have



Chapter 3—Mathematics of Transient Analysis

Chapter 2 Chapter 4

I-127



1-128 Petroleum Engineering Handbook—Vol. |

Apy= fq(r)SRD,tD D) dr= 2 fq(rD (R 1~ ) de gy (3251)
0

(vec,) (V@ct .

!

The Laplace transform of Eq. 3.251 yields the following continuous point-source solution in an
infinite reservoir:

g_]ﬂ exp (—x/ER D)
Ap = 5 ettt ettt (3.252)
47k 0 R,
where we have substituted Eq. 3.249 for S, dropped the subscript £, and defined
U= SJS) oo (3.253)

Line-, Surface-, and Volumetric-Source Solution in the Laplace Domain. The point-source
solution in the Laplace domain may be used to obtain the source solutions for different source
geometries. If we define
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G(xD* x/D, yD*y'D, Zp— Z/D, S) = App/q, .................................... (3.254)

where Ap, represents the appropriate point-source solution, then, by the application of the super-
position principle, the solution for the withdrawal of fluids from a line, surface, or volume, I',,
is given by

Ap = f&(xWD, YwD» ZWD) G(xD—xWD, YD~ Ywp> ZD " Zwp, S) dM . ..o (3.255)

T
w

If we assume a uniform-flux distribution in time and over the length, surface, or volume of the
source, then
- _q
Ap = " G(xD*xWD, YD~ Ywp» ZD " Zwp, s)de‘ ............................. (3.256)
r
w

The following presentation of the source function approach in the Laplace domain assumes that
the flux distribution is uniform, and g =¢/s. Also, the constant production rate from the length,
area, or the volume of the source, I',, is denoted by ¢ so thatg=gq/T",.

Only sources in infinite reservoirs have been considered so far. These solutions may be
easily extended to bounded reservoirs. The following sections present some useful solutions for
transient-flow problems in bounded porous media. The first group of solutions is for laterally
infinite reservoirs bounded by parallel planes in the vertical direction (infinite-slab reservoirs).
The second and third groups comprise the solutions for cylindrical and rectangular reservoirs,
respectively.

Solutions for Infinite-Slab Reservoirs. In this section, we consider one of the most com-
mon reservoir geometries used in pressure-transient analysis of wells in porous media. It is
assumed that the lateral boundaries of the reservoir are far enough not to influence the pressure
response during the time period of interest. The top and bottom boundaries of the reservoir at z
= 0 and z = h are parallel planes and may be of impermeable, constant pressure, or mixed
type. Table 3.6 presents the solutions for the most common well geometries (point-source, ver-
tical, fractured, and horizontal wells) in infinite-slab reservoirs. Next, we briefly discuss the
derivation of these solutions.

Consider a point source in an infinite-slab reservoir with impermeable boundaries at the
bottom, z = 0, and the top, z = 4. To obtain the point-source solution for this case, we use the
point-source solution in an infinite reservoir given by Eq. 3.252 with the method of images.
The result is given by

=L S [ exp (B ) W 2,

47k s = —
+ exp (VAR + 2y IFB + 2By s s (3.257)
where
rg = (xD - x’D)2 + (yD - y/D)z, ............................................... (3.258)
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I T ZD T Zyp T 20 A, (3.259)
Zpy = Zpt Z,p T 2R, (3.260)

and
Ry = Rk h, e, (3.261)

The solution given in Eq. 3.257 is not very convenient for computational purposes. To obtain a
computationally convenient form of the solution, we use the summation formula given by!"?

+  exp [—ﬁ\/az + (5— an“e)z} 1 = n2n2 &
”22700 = (57 znge)z = g—e Ko(ax/;) + 2n§1KO aplv+ f—i cos mtf_e ... (3.262)

and recast Eq. 3.257 as

—  qu

Pt R (3.263)

oo 2.2 z Z/
KO(rD«/;) +2 2 Ko|rpplu+ n_;r cos nr—2 cos nr—2
n=1 hy hp hp

The point-source solutions for infinite-slab reservoirs with constant pressure and mixed
boundaries at the top and bottom are obtained in a similar manner!'” and are given in Table 3.6.
The point-source solutions can be used with Eqs. 3.254 and 3.256 to generate the solutions for
the other well geometries given in Table 3.6. For example, to generate the solution for a partial-
ly penetrating vertical line-source well of length £, in an infinite-slab reservoir with imperme-
able slab boundaries, we integrate the right side of Eq. 3.263 from z,, — A, /2 to z,, + h,, / 2
with respect to z', where z, is the vertical coordinate of the midpoint of the open interval. If 4,
= h (i.e., the well penetrates the entire thickness of the slab reservoir), then this procedure
yields the solution for a fully penetrating vertical line-source well. The solution for a partially
penetrating fracture of height 4, and half-length x, is obtained if the point-source solution is
integrated once with respect to z' from z, — h,/ 2 to z, + h,/ 2 and then with respect to x’
from x,, — x, to x,, + x; where x,, and z, are the coordinates of the midpoint of the fracture.
Similarly, the solution for a horizontal-line source well of length L, is obtained by integrating
the point-source solution with respect to x' from x,, — L, / 2 to x,, + L, / 2, where x,, is the x-
coordinate of the midpoint of the horizontal well.

Solutions for Cylindrical Reservoir. Solutions for cylindrical reservoirs may also be ob-
tained by starting from the point-source solution in the Laplace transform domain. The Laplace
domain solution for a point source located at 75,0, z', should satisfy the following diffusion

equation in cylindrical coordinates.

i
Ddr,

1 d

By L1 d&Ap  PAp =
rp drp

UAD =0, oo (3.264)
rp d0* dzd

where

Py =KD F Ve (3.265)
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The point-source solution is also required to satisfy the following flux condition at the source
location (r, —0+, 0 = @', z;, = z'p):

z/D+aD/2 _
lim | lim 2% [ S I (3.266)
eDﬁO+ rDHOJr HEp er S
Zp~ép/2 9=0

Assuming that the reservoir is bounded by a cylindrical surface at 7, = r,, and by the parallel
planes at z;, = 0 and %, we should also impose the appropriate physical conditions at these

boundaries.
We seek a point-source solution for a cylindrical reservoir in the following form:

N Lk o R (3.267)

In Eq. 3.267, P is a solution of Eq. 3.264 that satisfies Eq. 3.266 and the boundary conditions
at z, = 0 and A, P may be chosen as one of the point-source solutions in an infinite-slab
reservoir given in Table 3.6, depending on the conditions imposed at the boundaries at z, = 0
and /. If O is chosen such that it satisfies the boundary conditions at z;, = 0 and /4, its contri-
bution to the flux vanishes at the source location, and P + Q satisfies the appropriate boundary
condition at rp, = r,p, then Eq. 3.267 should yield the point-source solution for a cylindrical
reservoir with appropriate boundary conditions.

Consider the example of a closed cylindrical reservoir in which the boundary conditions are
given by

(dA p/dzD)ZD S — (3.268)

and

(d@ / er) = 0n oo (3.269)

"'D"TeD

According to the boundary condition given by Eq. 3.268, we should choose P as the point-
source solution given in Table 3.6 (or by Eq. 3.263). Then, with the addition theorem for the

Bessel function Ko(aR D) given by'*

+00
k_Z Ik(arD)Kk(ar/D) cos k(9—@); for rp<rp
KolaRp)=1{" R (3.270)
k}—: oolk(ar’D)Kk(arD) cos k(0— @), for rp>rp
where
R2 _ .2 + 72 _ 2 ’ o
h=rptr = 2rprcos (0= 0'), i, (3.271)

we can write
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/
z

5 6/‘ v _D ‘D
pP= S h s s{ Z_ Ik(x/_rD)Kk(«/—rD) cos k(60 )+2 2 cos nnhD cos nnhD

2 2
,ﬂu +— rD) cos k(60— 9/)” ...................... (3.272)
hD

for rp < r'p. If rp >r'p, we interchange 7, and 7'y in Eq. 3.272. If we choose é in Eq. 3.267 as

/
V4 z

0 , 2 A
0= 27erhDs{ 2, ak[k([rD) cos k(0—6")+2 Zl cos nnhD cos nnhD

+oo 2
> bklk("/” +— rD) cos k(6 - 6’)1 ................................. (3.273)
k=—o0 hp

where a; and b are constants, then é satisfies the boundary condition given by Eq. 3.268, and

X

the contribution of Q to the flux at the source location vanishes. If we also choose the con-
stants a; and b; in Eq. 3.273 as

L(War ) Ky (Wur, p) | T Vs, p)eceeceeceeceeceesceceeese (3.274)

n27r2 27[2 n27r2
by = —L\u+ 3 ’”DKk ut———r,p /I;t Ut T Typ s e (3.275)
hD hD hD

then A_p =P+ é satisfies the impermeable boundary condition at r, = r,, given by Eq. 3.269.
Thus, the point-source solution for a closed cylindrical reservoir is given by

and

_ ~ +00 I(x/ar/ )K/( ur )
qu k D)™k eD ,
Ap=—F— (x/_R ) 2z Ik(x/;rD) cos k(0—6")
27[th k=—o0 [;{( ureD)
- Zp Z/ n’n?
+2 2 cos nr—— cos nT—— Kol + ——Rp
n=1 hp hp h?
D
s " n' K 2 2
u+——r u+=—r
+oo 275 k %) D™k % eD
- X Lu+ > cosk(@—0')|).......... (3.276)
k=—o0 hD ( n 7[ )
2
D
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This solution procedure may be extended to the cases in which the boundaries are at con-
stant pressure or of mixed type.!° Table 3.7 presents the point-source solutions for cylindrical
reservoirs for all possible combinations of boundary conditions. Solutions for other source ge-
ometries in cylindrical reservoirs may be obtained by using the point-source solutions in Table
3.7 in Eq. 3.255 (or Eq. 3.256).

Example 3.8 Consider a partially penetrating, uniform-flux fracture of height /4, and half-
length x, in an isotropic and closed cylindrical reservoir. The center of the fracture is at 7' = 0,
0" =0, 2’ = z,, and the fracture tips extend from (+' = x, 6 = a + @) to (*' = x;, 0 = a).

Solution. Fig. 3.15 shows the geometry of the fracture/reservoir system considered in this
example. The solution for this problem is obtained by first generating a partially penetrating
line source and then using this line-source solution to generate the plane source. The solution
for a partially penetrating line source at »'j, 6, z,, is obtained by integrating the corresponding
point-source solution given in Table 3.7 with respect to z' from z, — h;/ 2 to z,, + h,/ 2 and is
given by

[k(“/a r /D)K ;c(“/ar eD)
AP = Sakths

1 ;c (ﬁreD)

© h z z
-i—ﬂ > 1 sin nr—L cos nr—2 cos nr—22
7h oy 2h I, I,

i [k (gnr/[))K;c(gnreD)

Kyfe,Rp) - kzz_oo[k(gnrD) ern)
ne

cos k(0—6)

Ko(‘/;RD) i E ool" (‘/;r D)

X

cos k(60— 6 )]} ................. (3.277)

To generate the solution for a partially penetrating plane source that represents the fracture,
the partially penetrating line-source solution given in Eq. 3.277 is integrated with respect to '
from 0 to x, with @' = @ + « in the third quadrant and with ¢" = o in the first quadrant. This
procedure yields

_ " J 2 2 _ / _ /
Ap = 2k ps { Ko[x/;A/rD+r T~ 2rpr'y cos (0 a)}er

x /0

S
+ f KO[«/M/;% + r/%, —2rpr'pcos (0—a— n)}dr’D
0

x /0

L (Warp)Ky (War, ) f} e
K\Vurp)drp
0

1 ;c (ﬁreD)

+o00
- 2 [cosk(@—a)+ cos k(—a—7n)]
k=—co

© h z z
+ﬂ > 1 sin nr—L cos nr—= cos nr—22
wh 4= 2h Iy, Iy

xf/Q

X / Ko[gn\/”é + r/%, —2rpr'p cos (60— oc)]dr/D
0
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Fig. 3.15—Geometry of a partially penetrating fracture in a closed cylindrical reservoir (Example 3.8).

xf/Q
+ f KO rD+r D —2rprp cos (—a— n)}er
0
x /0
+ I(e r K er f
k D k D
- 2 [cosk(@—a)+ cos k(0—a—m)] i /lkederD e (3.278)
k=—o0 Ik SnreD 0

It is possible to obtain an alternate representation of the solution given in Eq. 3.278. With the
addition theorem of the Bessel function Kj(x) given by Eq. 3.270, the solution in Eq. 3.277
may be written as

—  quhy N Ah hy D “wD
P= 50 = 72 F,(Wu) cos k(6—6") + hfnZI sin n—- s nnhD cos nm i
+00
< X OoFk(sn) N LGS | S (3.279)
where
) - Fk(ﬂ., V/D’ rD) for rp 2 r’D (5.250
k Fk(/l, }"D’ r/D) for rD < r/D ......................................... .
and
F (G, a, b) = L@ KDL (r, ) = LK1, p )]/ Ly p2) v (3.281)



1-136 Petroleum Engineering Handbook—Vol. |

The integration of the partially penetrating vertical well solution given in Eq. 3.279 with
respect to 7' from 0 to x, (with 8" = o + 7 in the third quadrant and with 6" = o in the first
quadrant) yields the following alternative form of the partially penetrating fracture solution:

N xf/Q xf/Q
_ qluhf +0o
Ap= | cosk(O-a-n) [ FWu)dry+ cosk(0-a) [ F(a)dry,
27TthS k=—co 0 0
4h o 1 hy Zp ZwD
+ — Sin nw—=%- COS nT—— COS N7
wh =i 2 Iy Iy
xf/Q xf/Q
<Y | cosk(O—a—n) f Fi(e,)dry + cos k(0 a) f F(e,)dr'p| b, oo (3.282)
k=—0o0
where
B
f F (0, 7y, rp)dr, for rpy > x /0
0
f FWDdry =\ v 5 S (3.283)
0 /Fk(i’ r/D, rD)dV,D-‘r ka(i, " r/D)dr/D for rp < xf/Q
0 r
D

Example 3.9 Consider a uniform-flux, horizontal line-source well of length L, in an
isotropic and closed cylindrical reservoir. The well extends from (' = L,/2, 0 = a + ) to (r' =
L,/2, 0 = a), and the center of the well isat 7' =0, 8'=0, ' = z,.

Solution. The solution for a horizontal line-source well in a closed cylindrical reservoir is
obtained by integrating the corresponding point-source solution in Table 3.7 with respect to r'
from 0 to L, / 2 with & = o + 7 in the third quadrant and with 8’ = « in the first quadrant. The
final form of the solution is given by

L,/(20)
Ap = 27rkh { */— \rd+ 1= 2y cos (0—a)]dr,

L,/(20)

h
+ f Ko[x/%/ré + r/2Df 2rpr'n cos (0 — o — n)}dr’D
0
L /(29)
o I (Wurp K (War, ) "
,k +2 [ cos k(@—a)+ cos k(—a—7)] k( m:?) k( I)NQD) f Ik(x/ﬁr’D)drb
=T r
0
+2r§1 cos nnz—g COS nw Zhwlf
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/ rD+r D ZrDrD cos (00— a)}er

+ f K0 r[2)+rD 2rpr'p cos(@—a—ﬂ)}drb
0

= oo Kileren) "
- Z [ cos k(0 —a)+ cos k(6 —a—n)] f Ik<8nrb)dr/D R (3.284)
0

k= 1 ;c(gn reD)

Solutions for Rectangular Parallelepiped Reservoir. Solutions for rectangular parallelepiped
reservoirs may also be obtained by starting from the point-source solution in the Laplace trans-
form domain in an infinite reservoir and using the method of images to generate the effects of
the planar boundaries. Although the formal procedure to obtain the solution is fairly easy, the
use of the method of images in three directions (¥, y, z) yields triple infinite Fourier series,
which may pose computational inconveniences. As an example, the solution for a continuous
point source located at x', y’, z' in a rectangular porous medium occupying the region 0 < x <
x, 0<y<y, and 0 <z < h is obtained by applying the method of images to the point-source

solution given by Eq. 3.252:1%%

~ +co +co +co

NG
AP s, Sy Z S S S

8y 5 151 1 258y 1 2T 5 25 5 2 e (3.285)
where
~ 2.~ 2.~ 2
_ eXp [_‘/;N/(xDi_zkxeD) +(yDj_2myeD) +(ZDQ_2nhD)J
i’ j’ Q N = 2 -~ 2 It 2
N/(xDi - 2kxeD) + (yDj - 2myeD) + (ZDQ - Z”hD)
for 4, J, 0 =1002, oo (3.286)
and
Fpe = xpt (1, Or §= 1012, oo (3.287)
T =t Dy, FOr S = 1082, oo (3.288)
Fpe=z2pt (1’2, fOr 5= 1082: oo (3.289)

Ref. 29 shows that the triple infinite sums in Eq. 3.285 may be reduced to double infinite
sums with
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400 400 400 T cosh«/ﬁ(yeD— ‘;T/D‘)
2z X X S§= ;
k=—c0 m=—cop=—oo  2X,php u sinh Vuy,

2,2
COShV“* ZZk (v~ ‘J’D‘)
+2 Z cos k;r eD o
k=
4/ smh u+—yeD
- - COShV ﬂ; YeD™ ‘yD‘
"D

+2 Z cos mt

=1 hD u+ x2n2 h wn®
—h2 sin h2 ye‘D
D D
2 2 2,2
z°n n°k ~
N cosh pju +——+— (yeD_ ‘yD‘)
- Xp hp  Yep
+2 2 cos kn—— e (3.290)
k=1 XeD n 71,'2I12 i n2k2 inh n 71'2n2 n 7r2k2
u —h2 xz Sin u h2 x2 yeD
D eD D eD

where

§o 2 e 2k + (5~ 2y + G210 e (3.291)

\/ (ep — 2kx,p)* + (i~ zmyeD)2 +(Ep—2nhp)?

The resulting continuous point-source solution for a closed rectangular reservoir is given by

cosh Vuyp, + cosh Vuy,, © x X/

- g D D
Ap = - +2 X cos km—=— cos kn——
P 2k0x, s u sinh Vuy, k=1 YeD YeD
cosh g,y + cosh £y, Zp z [ coshe,yp, + coshe, vy,
- +2 Z COS NT—— COS NT——
g, sinh gy, n=1 hp hp g, sinhe y,
o Xp x5y coshe, ¥, + coshe,
+2 Y cos kr—2 cos kn—= k, n’ D1 e | (3.292)
k=1 XeD XeD €k, n sinh €k, nYeD
where
Yp1=Yep ™ ) eeeeeteete et ettt ettt ettt et e neene (3.293)
~ _ /
T R (3.294)

8, =AU T BBy oo (3.295)
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6 =AU K2 TE T X2 ), e (3.296)

and

€ n= Q/u + kznz/ng-i- n27r2/h2D. ............................................ (3.297)

Following a procedure similar to the one explained here, it is possible to derive the point-
source solutions in rectangular parallelepiped reservoirs for different combinations of boundary
conditions.!”?* Table 3.8 gives these solutions, which may be used to derive the solutions for
the other source geometries with Eq. 3.255 (or Eq. 3.256). Examples 3.10 and 3.11 demon-
strate the derivation of the solutions for the other source geometries in rectangular reservoirs.

Example 3.10 Consider a fully penetrating vertical fracture of half-length x, located at x’
=x, and y' = y,, in a closed rectangular reservoir.

Solution. Assuming uniform-flux distribution along the fracture surface, the solution for this
problem is obtained by integrating the corresponding point-source solution in Table 3.8, first
with respect to z' from 0 to /4 and then with respect to x’ from x,, — x; to x,, + x. The result is

— Z],uhxf cosh x/ﬁj/m + cosh «/E}Dz

Ap =
P kox, phps Vu sinh vuy,
2x, ® X X cosh &, y,,, + cosh ¢,y
e s L Gn kL cos k2 cos kn- kD lh e (3.298)
nxfk=1k X, x, x, g, sinh ey,

where 3, ¥, and ¢, are given respectively by Eqs. 3.293, 3.294, and 3.296.

Example 3.11 Consider a horizontal well of length L, in the x-direction located at x' =
X, ¥ =y, and z' =z, in a closed rectangular reservoir.

Solution. The solution for a horizontal line-source well is obtained by integrating the corre-
sponding point-source solution in Table 3.8, with respect to x’ from x,—L, /2 to x,+L, /2, and
is given by

AP = AP T APy oo (3.299)
where
— qul, cosh ¥uy,, + cosh Yuyp,
P1 2k0x, ph s u sinh Vuy,
4x, @ L X cosh g, y,, + cosh g,y
+—= 3 1 sin kn—h cos kn—% cos kn-> k L e (3.300)
mly =1k 2x, x, x, g, sinh ey,
and
— 2qulL, E zp z,,p( coshe,yp + coshe,y,,
Apy==———"— = .
P27 20 phps |zt S "y Sy, ¢, sinh e v,
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4x L X
Y 1 sin kn—h cos kr—= cos krri
Ly =1k 2x X X

e e e

+

cosh & Vp1 T cosh k. VD2

8k, n sinh 8k, nYeD

Chapter 2 Chapter 4

|
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N (3.301)
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In Eq. 3.301, ypp1, Ypps €, &> and g, are given by Eqs. 3.293 through 3.297.

Conversion From 3D to 2D Anisotropy. The solutions previously presented assume that the

reservoir is anisotropic in all three principal directions, x, y, and z with k,, k,, and k, denoting

the corresponding permeabilities. In these solutions, an equivalent isotropic permeability, &, has
been defined by

k =$/kxkykz. .............................................................. (3.302)

For some applications, it may be more convenient to define an equivalent horizontal permeabil-
ity by

O (3.303)

and replace £ in the solutions given in this section (Sec. 3.4.4) by k;,. Note that k£ takes place in
the definition of the dimensionless time ¢, (Eq. 3.230). Then, if we define a dimensionless time
i, based on k;, the relation between 7, and ¢, is given by

T N S (3.304)

Because in the solutions given in this section the Laplace transformation is with respect to ¢,

conversion from 3D to 2D anisotropy requires the use of the following property of the Laplace
transforms:

R () = RV (0 SR (3.305)

As an example, consider the solution for a horizontal well in an infinite-slab reservoir. As-
suming that the midpoint of the well is the origin (x,, = 0, y,,p, = 0) and choosing the half-
length of the horizontal well as the characteristic length (i.e., £ = L, / 2), the horizontal-well
solution given in Table 3.6 may be written as

fK k/k) +y12)VSf(s)}da

27rkh DS
0 2 I’l27l'2
+2 > cos nmzp, cos mz'zwa KO k/k ) sf(s) + h—2 do}.nn..... (3.3006)
n=1
D

In Eq. 3.306, s is the Laplace transform variable with respect to dimensionless time, #,, based
on k and

R Y (3.307)
R (3.308)
21 = 2/ By oo (3.309)
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and
By = 2Rak TR,/ Lo (3.310)

If we define the following variables based on %,

Xp = Ak KXy oo (3.311)
T = A, TV Py oo (3.312)
By = AR Th Iy e (3.313)
and also note that
hpy = 20K Tk, Ly = 2h K K VK /(L' %) = 200k, 1 (L), o (3314)

then, we may rearrange Eq. 3.306 in terms of the dimensionless variables based on £, as

Aplly) =

< TR 2.k Ak
A ko o B TR b khs}da

271:2
\/ ak, Tk, +yD\/ Z
D

ulk /) {/1 :

+2 2 COS nwzp, COS nnzwa Ky

n=1

da}, ..... (3.315)

where
N k/k)so(1— o)+
/(is)— (k) e (3.316)
k") (kg )s(1 = w) +2
and
W 7 OIS (3.317)
If we compare Eqgs. 3.306 and 3.315, we can show that
_ khp k _( k )} khp
Aplk )= ———| A = ——<—LiAPIT ) (s oo 3.318
li) - (n/Ly Lk Nk (2m/ L)k, tanlip)} (3319

where we have used the relation given by Eq. 3.305. If we now define s as the Laplace trans-
form variable with respect to 7,,, we may write

_ kh, —
Ap(k,) = ( L N (3.319)

21/ Lk,
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With the relation given by Eq. 3.319 and Eq. 3.306, we obtain the following horizontal-well
solution in terms of dimensionless variables based on &

Aplky) = 271(# {+f] KOW(%D -k TR + J%\/%}da

201 L)k |7

— 2.2
x/(;cD — ok, Tk ) + yzm/g]f(g) + ”Z;T
D

Computational Considerations and Applications. The numerical evaluation of the solutions
given previously may be sometimes difficult, inefficient, or even impossible. Alternative com-
putational forms of some of these solutions have been presented in Refs. 18, 19, and 29. Here,
we present a summary of the alternative formulas to be used in the computation of the source
functions in the Laplace transform domain. Some of these formulas are for computations at
early or late times and may be useful to derive asymptotic approximations of the solutions
during the corresponding time periods.

As Sec. 3.3.1 notes, the short- and long-time approximations of the solutions correspond to
the limiting forms of the solution in the Laplace transform domain as s—oo and s—0, respec-
tively. In the solutions given in this section, we have defined u = sf(s). From elementary
considerations, it is possible to show that the definition of f{s) given in Eq. 3.243 yields the
following limiting forms:

+1

+2 X cos Nz, COS ””Zwa K, daj. ..., (3.320)

-1
" 21

Hm = HM SF(S) = SOuuiiiiieiieeeeeeeeeeeeeeeeeeeeenn (3.321)
§— 0O §— 0O
and
e TR Tl L) L T (3.322)
s—0 s—0

These limiting forms are used in the derivation of the short- and long-time asymptotic approxi-
mations. In the following expressions, homogeneous reservoir solutions are obtained by substi-
tuting w = 1.

The Integral.

b
1=+ [ KNyl = o 4 YR (3.323)

This integral arises in the computation of many practical transient-pressure solutions and may
not be numerically evaluated, especially as y,—0; however, the following alternate forms of

the integral are numerically computable.'

Vi(xpa) Yulxp=b)
1= ﬁ / K()(\/az + uyé)da - f KO(\/a2 + uyé ’da s Xp2bse... (3.324)
0 0
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4/E(laﬂcD) ﬁ(afxD)

}:ﬁ f Kofya? + uyp)da - f Koo +uyd)dal  xp< ds. (3.325)
0 0

and

4/;(foa) x/;(bfxD)

oL f Koo+ uyD)da+ f Ky +uyd)dal.  a<x,<b...... (3326)
0 0

SYu

The integrals in Eqs. 3.324 through 3.326 may be evaluated with the standard numerical inte-
gration algorithms for y, # 0. For y, = 0, the polynomial approximations given by Luke*® or
the following power series expansion given by Abramowitz and Stegun’ may be used in the
computation of the integrals in Eqgs. 3.324 through 3.326:

oo (x/2)2k

/Ko(oc)da = x{ > —
o k=0(k!)"2k+1)

k
—( In < +05772 - )+ > l}
2 nzli’l

o 2k
S (x/2)

k=0m}. ...................................................... (3.327)

For numerical computations and asymptotic evaluations, it may also be useful to note the fol-
lowing relations: "

z

fK()(V o+ cz’da = % exp(—lcl)— OfOKO(V o+ cz)da, .......................... (3.328)

0 z

and

f Ko(Va? + P)da = LGl 2 D (3.329)
0

It can be shown from Egs. 3.328 and 3.329 that, for practical purposes, when z > 20, the right
sides of Egs. 3.327 and 3.328 may be approximated by #/2 and & exp (—|c|)/2, respectively.'®?

As Refs. 18, 19, and 29 show, it is possible to derive the following short- and long-time
approximations (i.e., the limiting forms as s—o and s—0, respectively) for the integral / giv-
en, respectively, by

slimoj = ﬁf”z exp (— ‘ Yp ‘ M), ........................................ (3.330)

where
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2 for a<xp<b

B=1{1 for Xp=aorxp=>b s (3.331)

0 for xp<aorxp>b
and

. = b-a 2
lim7="%(-Ins+ In4-2+2)+ ;o‘(xD, L) R (3.332)

s—0

where y=0.5772 -+ and

o‘(xD, Y @, b) = %{(xD— b) In [(xD— b)2+yé} —(xD— a) In [(xD—a)z +yé}}

———| arctan — arctan
2 Yp

xp—b

e (3.333)

YD

It is also useful to note the real inversions of Eqgs. 3.330 and 3.332 given, respectively, by

2
) YD T ‘yD‘
lim /= tr/ - - = foc|l———||cccooeeeneereen.... 3.334
(0 Pomiploexp |\ =g 017 7 erc(z i (3:334)
and
_ 4¢
tim =222 1n (—f)+2 £20(x s Vo @3 D). (3335)
[DHOO e
The Series 3’1.

— COS nmz CoS nuz.
S,= 2 ———— exp (—u+n’2/ i+ aPyp) for yp2 0. (3.336)

nzly/u+n "/ hp+a

Two alternative expressions for the series S| may be convenient for the large and small values
of u (i.e., for short and long times).”” When u is large,

5- 22 5 NP )
N
+ Kol gz + 2, — 20203+ yiNu + ] - exp (Ve +Z ) s e (3.337)
Nu+a

and when u + a® << n’z*/h?,
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exp( \/u+n ps /h2 +a yD) exp (—mryD/hD)

= né‘,] COS N7z COS N7z, x/y e /h2 - P
*Z—g{ In [1 —2 exp (*nyD/hD) cos n(z +ZW) + exp (*27ryD/hD)]
+In[1-2exp (~myp/hp) cos dlz—z,)+ exp (<2zyp/ hp)]}s oo (3.338)

The Series 3‘2.

©  sin nzz sin naz

ﬂzly/u-i-n T /h2

exp( Vu+ 2| b+ aPyp) for yp > 0. (3.339)

Alternative computational forms for the series S, are given next.”’> When u is large,

3’2 = zi 27 {KO[J(Z -z,” 2n)2h% + yéﬂ/u + az}
KA+ 2, = 205+ yEV U+ P}, (3.340)

and when u + a? << n’n?/h?p,

_ oo exp( x/u+n T /h2 +a yD) exp (—mryD/hD)
S, = 2 sin nzz sin nrz,,
n=1 ¢u+nn/h2+a2 na/ hp

hp, 1—2exp (—nyD/hD) cos 7r(z + zw) + exp (—ZnyD/hD)
——1In e (3.341)
4 1—-2exp (—nyD/ hD) cos n(z - zw) + exp (—27ryD/ hD)

The Series 3‘3.

o cos 2n— 1) z cos 2n —
=X
n=1 A/u+(2n*1)27r2/(4hD)+0t2

FOF 15> 0. oo (3.342)

)2ZW

exp [—«/u +Q2n— 1)27r2/(4h2D) + azyD}

The following alternative forms for the series 3‘3 may be convenient for the large and small
values of u (i.e., for short and long times).?” When u is large,

Sy = z—i”jiooo(—l)”{KOW(z — 2, 2n)hh+ yu+ a?]

KAz + 2, = 20203+ YU+ @]}, (3.343)

and when u + @ << 2n — 1)> ©?/(4h?p),
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2 cos 2n — 1) z cos 2n — )

n=1 2ZW
exp [—\/u +(@2n- 1)2712/(4th) + azyD} exp [—(Zn - l)nyD/(ZhD)}
>< —
x/u+(2n— 1)27r2/(4h2)+a2 (2n - 1)”/(2hD)
hp, 1+2exp{ Typ/ 2hD}cos% +z, + exp( ﬂyD/hD)
+—{1In
4w 1-2 exp{ nyD/ }cos% +z, + exp( nyD/hD)
PN exp |2/ (2hp) cos %(Z o (“mp ) R (3.344)
1-2 exp[ nyD/(2 D)} 5(2 z, + exp( nyD/hD)
The Series F.
F= ;n¥l COS nmzp, COS nnzD/KO xD a) +yD}d ...................... (3.345)

where

€, =AU A I B, oo (3.346)

The series F may be written in the following forms with the use of Eqs. 3.324 through 3.326.

_ ©  cos naz . cos niz’
F= 1 2 D D
s &
n=1 n
an(xD—a) an(xD—b) xp >b
X / Ko(v o +enyp)do— KO(VoL2 +&2y2 )da s e (3.347)
0 0

= 1
= ?ngl én
an(b*xD) En(a*xD) xDSa
X f Koo+ e2y3)da - f Koyo + &2y )da s e (3.348)
0 0

and

©  cos nwz, cos nwz’
1 D D

N &

n=1 n
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_ < <
a a(b xp a,xD,b

D
X f Ky + cyp)dat [ Koo +edyp)da R (3.349)
0

0

The computation of the series in Eqs. 3.347 and 3.348 should not pose numerical difficulties;
however, the series in Eq. 3.349 converges slowly. With the relation given in Eq. 3.328, we
may write Eq. 3.349 as®

F(anDSb)=F1*;n§1 .
X / Koo + &2y )da+ / Koy + 2v2)da ), v (3.350)
En(foa) gn(bfxD)

where

o /
Fi=Zy DD ey | yp | o (3.351)

Sn=1 Sn

Before discussing the computation of the series given in Eq. 3.351, we first discuss the deriva-

tion of the asymptotlc approximations for the series /. When s is large (small times), F may
be approximated by?’

Slimoj: ﬂstnEw{KOW(zDHD 22k + y J_}
+Ko\(zp — 2~ 2003+ y2ws|| — ap exp (~Vaos | yp | )/ (45> Vo), e (3.352)

where £ is given by Eq. 3.331. If s is sufficiently large, then Eq. 3.352 may be further approxi-
mated by

— pBhp 55 5 7f exp (—sz‘yD‘)

Jim == — 2 K| (zp— 225+ yivws| - P TEN R (3.353)

The inverse Laplace transform of Eq. 3.353 yields
phy | (ep==pfhp+yp
lim F=— Ei|—
tr—0 8 dtp/ w
AN _Z \erfcM (3.354)
2N, exp 4,0 2 Yp 2@ e .

For small s (large times), depending on the value of x, F may be approximated by one of the
following equations:?’
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limF=—2
s—0 TS p=1 n
mt(xD*a)/hD nn(xD*b)/hD xDZb
X f Ko( o+ nznzylz)/h%) do — f KO( o>+ nznzylz)/h% da y e (3.35%)
0 0
— h COS N7z p oS Nz’
lim F = = D D
s—0 TS p=1 n
nn(b—xD)/hD nn(a—xD)/hD xDS a
X f KO(\/az + nznzylz)/ h% Jdo: — f KO(\/az + nznzyé/ th |da y e (3.356)
0 0
and
— — hpn ©  cos nmzp cos naz’
lim F = lim F,— = ¥ ——2 P
s—0 s—0 S p=1 n
X / Ko(yoz2 + }1271'2)/;2)/ h%’da
mr(xD*a)/hD
. a< xp <bh
N A A s e (3.357)
mt(b*xD)/hD
where lim F | is given by Eq. 3.364.
s—0 _
The Series F,.
’
- COS N7z, COS NIz
F=2% exp (<&, | ¥p | )s oo (3.358)
Sn=1 &y

where

€, =AU AN B, oo (3.346)

With the relations given in Eqgs. 3.337 and 3.338, the following alternative forms for the series

F;may be obtained, respectively, for the large and small values of s (i.e., for short and long
times).?’ When u is large,

— h

+oo
F, = 2—’;n I (K[ f(zp— = = 2020+ y2u]
Ko \(zp + 2~ 2nhd + y2fu |~ wexp (| yp | )/ @V}, o (3.359)
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and when u << n’n’/h?p,

= = - - /h
1irnF1:£; S———— exp( gn‘yD‘)_ exp( nn‘)’D‘ D)

s—0 Sn=1 g, Iln’/l’lD
h
74—?{ln[1*2 exp (*n‘yD’ /hD) cos 7r(z+zw)+ exp (*27r‘yD‘ /hD)]
+ ln[l —2exp (*n‘yD‘ /hD) cos n(zsz)Jr exp (*27[‘ yD‘ /hD)}}. .............. (3.360)

It is also possible to derive asymptotic approximations for the series 1?1. When s is large
(small times), F'; may be approximated by®

lim 7y =2 S {kfyop 2~ 20)HD + yivars]

§— 0 25 p=—oo

+K(zp— =20 i3+ s || —wexp (Vas | yp | )/ (257 V). o (3.361)

If 5 is sufficiently large, then Eq. 3.361 may be further approximated by

lim F, = h—fKow(zD — 2P+ yias | —wexp (<Vas | yp | ) /(253 V). ...... (3.362)

oo 172

The inverse Laplace transform of Eq. 3.362 yields

2 2
- hy [ o=z hp+ b
lim F\ = ——=Ei|—
tD*)O 4 4tD/C()
L exp |- ’ +Z | yp| erfe EA (3.363)
i G o) 2 Yp VNI R— .

For small s (large times), F | may be approximated by*’

liml?lz —Z—?{ln[l—z exp (—n‘yD‘ /hD) cos 7T(Z+ZW)+ exp (—271")/D‘ /hD)}

s—0

+In[1-2exp (~x| vy | /hp) cos a(z—z,)+ exp (27 | yp | 1hp)]}. oo (3.364)
The Ratio El.

- cosh x/g(yeD—j}D)
R, = - ettt (3.365)
sinh x/EyeD

By elementary considerations, the ratio R; may be written as®
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Ry = { eXp (_*/E)N’D) +oexp [_&(zyeD_}D)}}

1+ 2 exp (~2mvay,p)|. oo (3.366)
m=1

The expression given in Eq. 3.366 provides computational advantages when s is small (time is
large).

Example 3.12 Consider a fully penetrating, uniform-flux fracture of half-length x; located
at x'=0, y'=0 in an infinite-slab reservoir with closed top and bottom boundaries.

Solution.Table 3.6 gives the solution for this problem. For simplicity, assuming an isotropic
reservoir, choosing the characteristic length as ¢ = x, and noting that g = 2ghx Iz the solution
becomes '

+1
dmkh— 1
A=y _fl K Axp =l + y2Vu|dat e (3.367)

First consider the numerical evaluation of Eq. 3.367. We note from Eqs. 3.324 through 3.326
that Eq. 3.367 may be written in one of the following forms, depending on the value of x.

ﬁ(x +1) ﬁ(x 1)

D D

2mkh 7 _ 1 [2 2) _ [ 2 2) >

” Ap = ol f Ko( a” +uyp)da f KO( a” +uyp)da xp21 , ... (3.368)
0 0

«/;(l—xD) ﬁ(—l—xD)
27:;}1_= Zsi/E f K0<\/a2+uylz))da— / KO( a2+uy2D da
0 0
XD S T s (3.369)
and
ﬁ(xD+l) «/E(I*xD)
2rkh 7 1
Zﬂ Ap = P f Ko(vaz—kuyé’da-i- f KO(yaz-i-uylz)'da
0 0
TLSxp S L (3.370)

The numerical evaluation of the integrals in Eqs. 3.368 through 3.370 for y, # O should be
straightforward with the use of the standard numerical integration algorithms. For y, = 0, the
polynomial approximations given by Luke®® or the power series expansion given by Eq. 3.327
should be useful.

The short- and long-time asymptotic approximations of the fracture solution are also ob-
tained by applying the relations given by Eqs. 3.330 and 3.332, respectively, to the right side
of Eq. 3.367. This procedure yields, for short times,
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lim 2k h A_p 7rﬁ3 -
s—o0 qH Waos

exp (= | yp | Vo s), v (3.371)

or, in real-time domain,

b

lim 2ZKR A
tDHO qu

g N7tp/ o exp

p= R (3.372)

where f is given by Eq. 3.331 with ¢ = — 1 and b = + 1. At long times, the following asymp-
totic approximation may be used:

lim 2nkh A_p _ 1
s—0 G 2s

(—Ins+ ln4*2y+2)+%0'(xD, Ypr =1 1) (3.373)

or, in real-time domain,

4t
lim 2R, - i{ In (—D)+2

+0(xp ¥ =1y + 1), e (3.374)

where y = 0.5772 -+ and O’(XD, Yp — 1, F 1) is given by Eq. 3.333.

Example 3.13 Consider a horizontal well of length L, located at x’ = 0, y' = 0, and z' =
z,, in an infinite-slab reservoir with closed top and bottom boundaries.

Solution.Table 3.6 gives the horizontal-well solution for an infinite-slab reservoir with im-
permeable boundaries. Assuming an isotropic reservoir, choosing the characteristic length as ¢
= L, / 2 and noting that ¢ =¢L,, the solution may be written as

2rkh— _ 2mkh— =
Ap = AP 1 H Fy oo 3375
gu " Tqu °PS (3-37)

where 27rkh5 f/(q,u) is the fracture solution given by the right side of Eq. 3.367 and F is
given by '

+1

F= énil COS nmzp, COS nnEWDf Ko[«/<xD - oc)2 + yéen}da, ...................... (3.376)
-1
with
8, =AU T BB, oo (3.346)
B = 2 By oo (3.377)
and
2 py = 2yl B e (3.378)
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The computation of the first term in the right side of Eq. 3.375 [2akhAp f/(q,u)] is the
same as the computation of the fracture solution given by Eq. 3.367 and has been discussed in
Example 3.12. The computational form of the second term (F) in the right side of Eq. 3.375 is
given by Eqs. 3.347 through 3.350. Of particular interest is the case for —1 < x;, < +1. In this
case, from Egs. 3.350 and 3.351, we have

F(—leDS 1) Fl—l 2 COS Az, COS NNz,
Sn=1 En
X / KO('V a2 + giyé )da + / KO( 0!2 + 8%)/%))(10! 3 rrrnereeeeeeerarn——— (3.379)
sn(xD+1) sn(lfxD)

where

=Ty SEMED D (o, | | ) (3.380)

n

The computational considerations for the series Fl have been discussed previously.
Next, we consider the short- and long-time approximations of the horizontal-well solution
given by Eq. 3.375. To obtain a short-time approximation, we substitute the asymptotic expres-

sions for 27rkhAp f /(gu) and F as s— given, respectively, by Eqs. 3.371 and 3.353. This yields

—  ph .
Jim. 2’;‘1'1 D e L T R R ] Ap— (3.381)

where £ is given by Eq. 3.331. The inverse Laplace transform of Eq. 3.381 is given by

-~ 2,2, .2
_(ZD’ZWD) hp+yp
dtplw

Bh
lim 2N, — 7D gy
th—0 qu 8

e (3.382)

To obtain the long-time approximation of Eq. 3.375, we substitute the asymptotic expressions

for 27tkhAp f/ (qu) and F as s—oo given, respectively, by Eq. 3.374 and Egs. 3.355 through
3.357. Of particular interest is the case for —1 < x,, < +1, where we have

. 2mkh—
lim

p” Ap =—(—lns+ln4 2y+2)+ (xD,yD,—l,+1)
s—0

h
*4—?{ ln[l —2 exp (*ﬂ’yD’ /hD) cos ﬂ(EDJrEWD)Jr exp (*27{‘ yD‘ /hD)}

+ ln[l —2exp (*7{‘ yD‘ /hD) cos n(EDféwD)+ exp (*ZﬂyD‘ /hD)}}

- - N
hp COS NAZp COS NAZ,,,




Chapter 3—Mathematics of Transient Analysis 1-157

X f KO( a2+n27r2yé/h%))da+ f KO( a2+n27r2yé/hlz))da R (3.383)
x +1)/hD mz(l—xD)/hD

where y =0.5772 -+ and a(xD, yp — L, + 1) is given by Eq. 3.333. The inverse Laplace trans-
form of Eq. 3.383 yields

4t
2mkh 1“1(_1) s

+a(xD, yp 1, +1)

+In {[1 -2 exp (—71" yD‘ /hD) cos ﬂ(ED—EwD)+ exp (—27r’yD‘ /hD)}}

hp § COS N7z, COS NAZ,,,

T p=1 n

h
*TD{ ln[l —2exp (*ﬂ’yD’ /hD) cos ﬂ(EDJrEWD)Jr exp (*27{‘ yD‘ /hD)}}

<| [ kWA [ KWl 2] i )dal. ... 3384)
nn(xD+1)/hD n;r(l—xD)/hD

Example 3.14 Consider a fully penetrating, uniform-flux fracture of half-length x; in an
isotropic and closed cylindrical reservoir. The center of the fracture is at »' = 0, § = 0 and the
fracture tips extend from (' = x; 0 = a + n) to (' = x5 0 = 0).

Solution. The solution for this problem has been obtained in Eq. 3.278 in Example 3.8 with
h,, = h. Choosing the characteristic length as £ = x, and noting that g = 2ghx I the solution is
given by '

1
dkh— 1 SR
” Ap=— {Ko[«/ﬁy/r[) +r' = 2rpr’, cos (60— a)}dr/D

1
+fK0[x/ﬁx/rlz) + r/2D - 2rDr’D cos (@—a— ﬂ)}dl”D
0

5 I (Wur,) K} (Vu.
- X [cosk(@—a)+ cos k(60— oa— )] ( rD) k( Urep

k=—oc0 [k( ureD)

For the computation of the pressure responses at the center of the fracture (r, = 0), Eq. 3.385
simplifies to

f]k (Warl)dr/pl. ... (3.385)

1
2 N p = [ [Kfar'y) + 1Waar p) K (Vi p) 1 (Vi p)] 4y o (3.386)
0

It is also possible to find a very good approximation for Eq. 3.385, especially when r,, is
large. If we assume'”
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D" K(Vur, p) ! T (War, p) = Ko(Wur, p) To(Nur,p)s oo (3.387)

and use the following relation*

Io[ﬁx/rf) + V’% —2rpr’p cos (-6 )} = njiiom(—l)nln(«/;rD)ln(«/ﬁr/D) cosn(@—0), ... (3.388)

then Eq. 3.385 may be written as

1
fKO[‘/;\/Vé + r’%) - 2rDr’D cos (08— a)}dr/D
0

2mkh— 1
au P72

1
+fK0[x/E~/r[2) + r’% = 2rpr'p cos (0 —o— n)}drb}

1

1 K1(*/;” eD)

+— f[o[«/ﬁy/r[2)+r/%)—2rDr’D cos (Q—a)}dr’D
2s ll(ﬁreD) 0
1
[ R+ = 2r T cos (0-a- n)}dr’D}. ............................... (3.389)
0
Because!’
+cosa 1
f Z(x/ﬁIA{D)dé = /Z[ﬁ¢r§ + r’2D —2rpr'p cos (6 — a)}drb
—cosa 0
1
AN+ 1= 2 €08 (0= = DAy (3.390)
0
where
A
Rp=(xp=xp=¢P+(yp—¥p=tan @) oo (3.391)
Eq. 3.389 may also be written as
2akh 1 +cosa
Thkh — A A
S [ [Kolvakp) + sl )k, (Var, p) 1 1 (¥ar, p) | .. (3.392)
—cosa

Although the assumption given in Eq. 3.387 may not be justified by itself, the solution
given in Eq. 3.392 is a very good approximation for Eq. 3.385, especially when r,, is large.
For a fracture at the center of the cylindrical drainage region, Eq. 3.392 simplifies to
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+1
2’;2 "y - o [ (g Nyl = P+ Bz
-1
iy (ep = &P+ 3 K (W, p) (Vi p) G (3.393)

It is also possible to obtain short- and long-time approximations for the solution given in
Eq. 3.393. For short times, u—oc0 and the second term in the argument of the integral in Eq.
3.393 becomes negligible compared with the first term. Then, Eq. 3.393 reduces to the solution
for an infinite-slab reservoir given by Eq. 3.367, of which the short-time approximation has
been discussed in Example 3.12.

To obtain a long-time approximation, we evaluate Eq. 3.393 at the limit as s—0 (u—s). As
shown in Sec. 3.2.3, for small arguments we may approximate the Bessel functions in Eq.
3.393 by

Ko(2) = = 10 (€72/2), oo (3.394)
K@) =1/z+ (/2 n(€72/2) = 1/2], e (3.395)
B(E) =14 2214, e (3.396)
and
L) = 2/24 22116, oo (3.397)

where y =0.5772 --- . With Egs. 3.394 through 3.397 and by neglecting the terms of the order
312 29

s7%, we may writ
- - 2 TeD 3 ;%
lim | Ko(Vs7 ) + Iy(Vs7 ) Ky (Vsr, )/ 1 (Vsr, )] = —— + In =2 = =+ —2— ... (3.398)
50 rpS rp 4 2r;,
If we substitute the right side of Eq. 3.398 into Eq. 3.393, we obtain
. 2mkh— 2 1 3
lim Ap = +—( Inr *—)
s—0 qU I”EZDSZ s eb 4
l+alxp, yp, =1, +1 Nxp, Yp» Top
+ ( ) + ( - ) ................................... (3.399)
s s
where o(xp, yp, —1, +1) is given by Eq. 3.333 and
- .2 2 3 3 2
3xps vps o) = 90/ (2620) + [ = 1P = (xp = 1] /(1272 oo (3.400)

The inverse Laplace transform of Eq. 3.399 yields the following long-time approximation for a
uniform-flux fracture at the center of a closed square:
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Y
27k Ny = V—D+ Inr,,~ i +1+0(xp, ypr =1, +1)+8(xp, yp» 7o) e (3:401)
eD

lim
t—co qUu

Example 3.15 Consider a fully penetrating, uniform-flux fracture of half-length x; in an
isotropic and closed parallelepiped reservoir of dimensions x, X y, x h. The fracture is parallel
to the x axis and centered at x,, y,, z,.

Solution. The solution for this problem has been obtained in Example 3.10 and, by choos-
ing € = x; is given by

- 27zkh — x | cosh ﬁ(%D - ‘ Yp~ YwpD ‘ ) + cosh ﬁ[yeD - (J’D * wa)}
Ppf= g AP17 XopS Vu sinh Vuy,
- § % sin kn% cos kn);W—D cos kn;—D
= eD eD eD
cosh gk(yeD - ‘ YD~ Ywp ‘ ) + cosh gk[yeD - (J’D + wa)}
- s eeeerreeeiaeas (3.402)
g, sinh gy,
where

6 =AU A KT/ X2 Py oo (3.403)

The computation of the ratios of the hyperbolic functions in Eq. 3.402 may be difficult, espe-
cially when their arguments approach zero or infinity. When s is small (long times), Eq. 3.366
should be useful to compute the ratios of the hyperbolic functions. When s is large (small
times), with Eq. 3.366 the solution given in Eq. 3.402 may be written as®

pr:le+prl+pr2’ ................................................. (3.404)

where

- 2% | s xp o0 (e vp )
Pp1 = Z i sin km—— cos kn— cos kx
=1 XeD XeD XeD €k

xWD+1 ,

= x xp e (& [ vp=3up))

D D k|7D wD
= > cos kr cos km
XeDS k=1 XeD XeD &
x ~—1

wD

+1 +

- 2_1s z {KON(XD —x,p—2kx,p—a)+(yp— wa)Zﬁ}

k=—co

-1
+KO[~/(xD +%p = 2kxp— a)Z + (yD - wa)zﬁ}}da
—7 exp (_\/; ’ YD~ YwD ’ >/(xeDs«/§), ........................................ (3.405)

/
dx'p
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Ppp1 = ﬁ{ exp [_‘/E(J’D + wa)} + exp [_‘/;@yez) ~Vp~ wa)}
eD
texp (N | yp=yp| )+ exp [Vul2y,p— [yp =200 |)]}

1+ § exp (—2mx/ﬁyeD)

X e (3.406)
m=1
and
— OO X X
Poma = %lglé sin kz x:D cos km xf; cos km xjg
< Hexp[=ex(vp+ yup)|+ exp [=4(23.p = yp = 30
+exp (e | v~ 2un | )+ o0 [~e(20p = [ o= vun )]}
X |1+ Ozo:] exp (~2me, v, p) } ............................................. (3.407)
e

The last equality in Eq. 3.405 follows from the relation given by Eq. 3.349. The expression
given in Eq. 3.405 may also be written as

Pp1=Ppi +pr3, ........................................................ (3.408)

where

+1

Ppi = 2—ls fl KA (cp =50 = @)+ (v = 1) Vit | 4y o (3.409)

and

+1

;Db3 = %/ KON(XD TXp ™ 0‘)2 + (yD - wa)z*/ﬂd“
%1

ool
+2_1Sk§1f {KOW(xD ~Xyp~2kx,p— 0‘)2 + (yD - wa)zﬂ/ﬂ
-1

+K0N (xD +Xp 2kx,p 0‘)2 + (yD - wa)z‘/ﬂ
+K0N (xD ~Xyp T 2kx,p 0‘)2 + (yD - wa)z‘/ﬂ
+KOW(xD +x,p+2kx,p—af +(yp - wa)zx/ﬂ}da
— exp (Vi | yp = vup | )/ (KupsVi): o (3.410)

Therefore, the solution given by Eq. 3.402 may be written as follows for computation at early
times (for large values of s):
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P = Ppit Ppps cooeeiesesiesiossoesesesesosoeoee (3.411)

where ; pi 1s given by Eq. 3.409 and corresponds to the solution for a fractured well in an infinite-

slab reservoir (see Eq. 3.367 in Example 3.12) and pp, represents the contribution of the
lateral boundaries and is given by

Pph = Ppb1l T PDp2 T P pp3e cooveeeeeereemeneneniniiiccieicicnn (3.412)

In Eq. 3412, ppp1s Ppyo> and pp, 5 are given, respectively, by Egs. 3.406, 3.407, and 3.410.
The integrals appearing in Eqgs. 3.409 and 3.410 may be evaluated by following the lines out-
lined by Eqgs. 3.324 through 3.326.

It is also possible to derive short- and long-time approximations for the fracture solution in
a closed rectangular parallelepiped. The short-time approximation corresponds to the limit of
the solution as s—oco. It can be easily shown that the p,, term in Eq. 3.411 becomes negligi-
ble compared with the p . term for which a short-time approximation has been obtained in
Example 3.12 (see Egs. 3.371 and 3.372).

To obtain a long-time approximation (small values of s), the solution given in Eq. 3.402
may be written as?’

- 2 %1 . 1 x x
Ppys=H+= X —sin kr— cos k2 cos kn—2-
4 Sk=1k XeD XeD XeD

cosh gk(yeD - ‘ Yp~ YwD ‘ ) + cosh gk[yeD - (J’D + wa)}

S e (3.413)
where
o T cosh x/ﬁ(yeD* ‘yD*wa‘)Jr cosh«/ﬁ[yeD*(yDerwD)}
X,pS Vu sinhVuy,,
X Yp~y ypty
S SN S Lz( cos mr—2—"2 1 cos mnM), .......... (3.414)
XeDYeDSU XeDYeDS m=1 & YeD YeD
and

€, =AU AT Y20 e (3.415)

The second equality in Eq. 3.414 results from?'

cosh a(r—
cos kx _ m coha@w=) 1o icop . (3.416)
k=1 k244 2a sinh azx 2a

For small values of s, replacing u by s and s + a by a, and with?!
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X +xT’ 0 < X 27, oo (3.417)

the term H given by Eq. 3.414 may be approximated by

2y x yp~ Y ypty
lim H = 2n eD > Lz( CcOS mm D _“wD cos mnu)
s—0 X,pYeD’ XeDS m=1m YeD YeD
2 2
o 21 Dl ont s Dol ) a1s)
- 2 - e 2 cee o
X,pVepS XepS |3 2y.p 4y.,

The long-time approximation of the second term in Eq. 3.413 is obtained by assuming u <<
Km*/x?,, and taking the inverse Laplace transform of the resulting expressions; therefore, we

can obtain the following long-time approximation

2
. 2atp - 2my,p| | ‘ Yo~ Ywp| TYp T Vup (J’D - wa) + (J’D + wa)
lim Ppr= + 3 3 + 5
t— 00 XeDYeD XeD YeD 4yeD
2x © X X
+—<D ¥ % sin k7rL cos kr—2 cos kr
T k=1k XeD XeD XeD
cosh gk(yeD— ‘ YD~ YwD ‘ )+ cosh 8k[yeD— (yD+wa)} (3.419)
5 e ——— .
sinh kz—2
YeD

Example 3.16 Consider a uniform-flux horizontal well of length L, in an isotropic and
closed parallelepiped reservoir of dimensions x, x y, X h. The center of the well is at x,, y,,

z,,, and the well is parallel to the x axis.
Solution. The solution for this problem was obtained in Example 3.11 and, by choosing € =

L, /2, is given by
(3.420)

kh— _~ =
Ap=pp,+F,
gu 0 PprT

where ; Df is the solution discussed in Example 3.15, and 1?1 is given by

X - -
2 cos nmzp cos naz,,

X 1S e

eD®> n=1

F=

cosh 3n<yeD - ‘ Yp~™ YwD ‘ ) + cosh gn{yeD - (J’D + wa)}

X h

e, sinhe, y,
4 N [ 1 XD Xp
+— 2 cos Nz, COS NAZ,, 2 = sin kxz—— cos kx cos kn——
Sn=1 =1k XeD XeD XeD
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COShgk, n(yeD_ ‘yD_wa ‘ )+ COSh‘c'\k, n[yeD_(yD+wa)}

X -
€k n sinh €. nYeD

e (3.421)

In Eq. 3.421, z;, and z,, , are given by Eqs. 3.377 and 3.378, respectively,

8, =AU T BBy oo (3.346)

and

T R T L a7, (3.422)

The computation and the asymptotic approximations of the ]_9 py term have been discussed
in Example 3.15. To compute the /| term for long times (small s), the relation for the ratios
of the hyperbolic functions given by Eq. 3.366 should be useful. For computations at short
times (large values of s), following the lines similar to those in Example 3.15, the F | term in
Eq. 3.421 may be written as

T (3.423)
where
F= %ngl COs nmzp, COS mz%WD/ KO[\/(XD —X,p~ a)2 + (yD - wa)zgn]da, ........ (3.424)
-1
T R N (3.425)
;bl =2 3 L cos N7z COS ””%wD{{ cXp [_%(J’DJF wa)} + exp [_8n(2yeD “Yp~ wa)]
XeDS n=18,
+exp [78n(2yeD B ‘ YD~ YwD ‘ )}} 1+ mzz:l eXp (72m8nyeD)

+ exp (—en ‘ YD~ YwD ‘ )m§1 exp (—2menyeD)}, ................................ (3.426)

I'Fb2 = ;:1 COS nmzp, COS nikailﬁ sin kn}CeLD cos kﬂZ—Z cos kn)ZV—DD

e [-ae oo sl + o0 [0 2020 00)]

+exp [_gk, n(zyeD_ ‘ YD~ YwD ‘ )}} 1+ X exXp (—Zmek, nyeD)

m=1
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(3.427)

+ exp (—3,{’ n ‘ YD~ YwD ‘ )mZ::l exp (—2m5k’ nyeD) s reerereer e

and
— 1 o
Fb3 = ;’El COS nmzp COS Nz,

+K0[~/(XD +x,pt2kx,p— a)2 + (yD - yWD)zsn]}da e (3.428)

The computational form of the F term in Eq. 3.424 is obtained by applying the relations given
by Egs. 3.347 through 3.350 and Eq. 3.328. Of particular interest is the case for —1 < x, < +1

and y, = y,p given by

- - 1 o1 . N
F(*leDS +1)=F17;n2—cos nAZp COS NTZ,,p

=1¢,

x [ Kodar [ K@da] (3.429)
en(xD*xWDJrl) en(lfxD+wa)
where
— g & cosnmpcosnmz,,,
Fi=5 % - exp (&, | yp | ) e (3.430)
which can be written as follows by using the relation given in Eq. 3.337:
- hp T N - T
F, = angw{Ko( 2y =2, p—2n | hpWu)+ Ko |2p+2,p = 21 | hpplu) = m} (3.431)

Similarly, for =1 < x, < +1 and y, = y,,p, the Fb3 term given in Eq. 3.428 may be written as

oo

Fb3 = %nglé CoS naz, cos nriwD{Kil[(xD+wa+ l)en} _Kil[(xD+wa_ l)en}
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(o]

+l:21 {Kil[(kaeD —Xptx,pt l)en} - Kil[(kaeD —Xptx,p— l)en}

+Ki1[(2kxeD —Xp—X,pT l)gn} - Kil[(kaeD —Xp—TX,p l)gn}
+Ki1[(2kxeD txXpTX,pt l)gn} - Kil[(zkxeD tXpTXup~ l)gn}

+Ki[(2kx,p+ xp + x,p + Ve, |- Ki)[(2kx,p+ xp+ 3 p = ey ] s coonerreenn (3.432)

where

Kiy(x) = f A (3.433)

X

Example 3.15 discussed the short- and long-time approximations of the ; py term in Eq.
3.420. A small-time approximation for F'; given by Eq. 3.423 is obtained with u = ws and by
noting that as s — ©°, F'+ F, ~ F. Then, substituting the short-time approximations for p , r

and F given, respectively, by Eqgs. 3.371 and 3.353 into Eq. 3.420, the following short-time
approximation is obtained:?’

_ ph
lim 22K A, — ﬂ—DKON(}D T R et T R ore N— (3.434)

s—oo U 4s

where S is given by Eq. 3.331. The inverse Laplace transform of Eq. 3.434 yields

- L 2.2 2
2mhkh — Bhp (ZD_ZWD) hD+(yD_wa)
Ap=-Lg e (3.435)
t—0 qu 8 4ty @

The long-time approximation of Eq. 3.420 is obtained by substituting the long-time approxima-
tions of p i and F';. The long time-approximation of p ’ is obtained in Example 3.15 (see

Eq. 3.413 through 3.419). The long-time approximation of /', is obtained by evaluating the
right side of Eq. 3.421 as s — 0 (v — 0) and is given by

_ o
F =—2

1
2 = COS Ay COS NIZ
D D
Xepn=1"h w

X cosh/{n(yeD_ ‘yD_wa‘)+ COShin[yeD_(yD-'_yWD)}
A, sinh 4y,

< | 1 XD Xp
+— 2 cos Nz, COS N7Z,, > — sin kx— cos kx cos km——
S =1 =1k X,p X,p X,p

» cosh )"k, n(yeD— ‘ Yo~ VYwD ‘ )+ cosh ’Ik, n[yeD_ (yD+yWD)}
A, p Sinh A v ’

............. (3.436)

where



Chapter 3—Mathematics of Transient Analysis 1-167

A = NI Ry (3.437)

and

T R T T (3.438)

Thus, the long-time approximation Eq. 3.420 is given by

2nkh
qu

L R T T (3.439)

where pj, and F, are given, respectively, by Eqs. 3.419 and 3.436. For computational purposes,
however, F; may be replaced by

Fi = F A+ Fy  FpyF Fpgei, (3.440)

In Eq. 3.440, F, F,,, F),, and F,; are given, respectively, by

o +1

F= 2 cos nazp, cos n7r§wa Ko[’ln\/(fo X,p~ a)2 + (yD - wa)sza, ........... (3.441)

n=1

Fyy=——2 % c0S N7z, COS ””%wl){{ exp [, (vp+ yup)] + exp [<4,(2vep = v~ yup)]

+ exp [fin(EyeD - ‘ YD~ YwD ‘ )}}

1+ § exp (*Zm/lnyeD)
m=1

+ exp (—ln ‘ YD~ YwD ‘ )m§1 exp (—2m/1nyeD) 5 eeereeeee e naeas (3.442)

(ee] oo
1 . 1 Xp XwD

F,=4 > cos nnzD cos nnzwD )y T sin kr—— cos knh— cos kn—h
n=1 k=1%% n XeD D D

{{ exp [~ (vt ¥un)]+ o [~2 (250p = p= Yup)]

1+ § exp (—Zm/lk’ nyeD)

+ exp [—ik,n(zyeg_ ‘yD_wa‘)}} me1

............................. (3.443)

+exp <_/1k, n ‘ YD~ YwD ‘ )m§1 €xp <_2mlk, nyeD) >
and

1 o
[73: 3 § CcoS nnzp, COoS nnz, np
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+1
X fKo[\/(xD+wa 0‘) +(yD_wa) /ln}da
5
el
+k§1 KON(XD %up = 2kx,p =)+ (vp = ¥, p) in}

{
+KO[\/(XD +x,p~2kx,p— a)2 + (yD — wa)z’ln}
[

+KO ~/(XD R)) + kaeD - a)z + (yD - wa)zlln}

K A(p * 50p+ 2630 = a) (1 = 1D g |0 e (3.444)

When computing the integrals and the trigonometric series, the relations given by Egs. 3.324
through 3.326 and 3.345 through 3.350 are useful.

Nomenclature
a =
B —

C

radius of the spherical source, L
formation volume factor, res cm?/std cm?
fluid compressibility, atm™

formation compressibility, atm !

total compressibility, atm ™!

= wellbore-storage coefficient, cm?/atm
= distance to a linear boundary, cm

domain
exponential integral function

= naturally fractured reservoir function

naturally fractured reservoir function based on s

= Laplace transform of a function f'(¢)

= Q@Green’s function

formation thickness, cm

= dimensionless thickness, Eq. 3.313

= dimensionless thickness, Eq. 3.314
= fracture height (vertical penetration), cm

slab thickness, cm
well length (penetration), cm

= Heaviside’s unit step function
= unit normal vector in the & direction, ¢ =x, y, z, r, 6

modified Bessel function of the first kind of order v
derivative of 7 (x)

Bessel function of the first kind of order v
isotropic permeability, md

= fracture permeability, md

equivalent horizontal permeability, md

permeability in i-direction as a result of pressure gradient in j-direction, md
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ke

key
Ki, (x)
K, (x)
K (x)

Pmi
Pyyr

p(s)

p@) =
pdT) =

1-169

permeability in &-direction, £ = x, y, z, md

fracture permeability in &-direction, & = x, y, z, md
first integral of Ko(z)

modified Bessel function of the second kind of order n
derivative of K, (x)

characteristic length of the system, cm
Laplace transform operator
inverse Laplace transform operator

horizontal-well length, cm

pseudopressure, atm?/cp
mass, g

point in space
source point in space
pointin ",

source pointin I |

outward normal direction of the boundary surface
normal vector

even integer in Stehfest’s algorithm
pressure, atm
pressure for constant production rate, g, atm

dimensionless fracture pressure

external boundary pressure, atm
fracture pressure, atm

initial pressure in fracture system, atm
initial pressure, atm

pressure in medium j, j=m, f, atm
matrix pressure, atm

initial pressure in matrix system, atm
flowing wellbore pressure, atm
Laplace transform of p(¢)

inverse of the Laplace domain function

approximate inverse of p(s) at =T, atm

production rate, cm?/s

instantaneous production rate for a point source, cm®/s
constant production rate, cm®/s

sandface production rate, cm’/s

wellbore production rate as a result of storage, cm?/s

radial coordinate and distance, cm
source coordinate in r-direction, cm
external radius of the reservoir, cm

wellbore radius, cm

distance in 3D coordinates, cm
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R, = dimensionless radial distance in cylindrical coordinates
s = Laplace transform parameter
s = Laplace transform parameter based on 7 »

s,, = skin factor
S = source function

t = time, s
fp = dimensionless time based on k;,
t,p = dimensionless time based on area
= producing time, s

= Temperature, °C
= s5f(s)

= velocity vector

= velocity component in the & direction, &£ = x, y, z, r, 8, cm/s

. = constant in Stehfest’s algorithm
- = fraction of the volume occupied by fractures
= fraction of the volume occupied by matrix

= distance in x-direction, cm
= source coordinate in x-direction, cm
x, = distance to the external boundary in x-direction, cm

tp
T
u
-
%
Ve
V = volume, cm?
v
Vi
Vm
x
/
X

x = half slab thickness, cm
xp = fracture half-length, cm
Xp = dimensionless fracture half-length
x, = well coordinate in x-direction, cm
y = distance in y-direction, cm
y’ = source coordinate in y-direction, cm
v, = distance to the external boundary in y-direction, cm

¥,, = well coordinate in y-direction, cm
Y (x) = Bessel function of the second kind of order n

z = distance in z-direction, cm
z" = source coordinate in z-direction, cm
z; = dimensionless distance in z-direction, Eq. 3.377
z. = well coordinate in z-direction, cm
z,,p = dimensionless well coordinate in z-direction, Eq. 3.378
Z = compressibility factor
o = permeability direction, Eq. 3.17
f = permeability direction, Eq. 3.17
I' = boundary surface, cm?
I' , = external boundary surface
I’ = length, surface, or volume of the source
I'(x) = Gamma function
y = Euler’s constant (y = 0.5772...)
y = permeability direction, Eq. 3.17
vy = fundamental solution of diffusion equation
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A = difference operator
Dirac delta function
n = diffusivity constant
n; = diffusivity constant in i direction, i = x, y, z, or r

Y
~
=
~
Il

6 = angle from positive x-direction, degrees radian
0 = source coordinate in #-direction, degrees radian
= transfer coefficient for a naturally fractured reservoir
= ] based on £,

A
2
[ = Vviscosity, cp
p
T
D

density, g/cm?

time, s

porosity, fraction

any continuous function

w = storativity ratio for a naturally fractured reservoir

<

=

S
Il

Subscripts and Superscripts

D = dimensionless

f = fracture

i = initial

m = matrix

w = wellbore

7= Laplace transform indicator
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S| Metric Conversion Factors

atm X 1.013 250* E+05 =Pa
cp X 1.0* E-03 =Pas
in. X 2.54% E+00 =cm
in2 X 6451 6* E+00 =cm?
°F (°F-32)/1.8 =°C
ft X 3.048* E-01 =m

*Conversion factor is exact.



Chapter 4
Fluid Sampling
John M. Williams™ and Sunil L. Kokal, Saudi Aramco

4.1 Introduction

Many general petroleum engineering texts have sections covering the measurement of phase
behavior or pressure/volume/temperature (PVT) analysis, but few have detailed descriptions of
fluid-sampling practices. This chapter covers the sampling of all produced reservoir fluids. It is
intended to provide an overview of sampling methods, guidelines for selecting suitable meth-
ods, and detailed procedures for the most common practices.

An enormous range of reservoir fluids exists, and this means that the limited measurements
of produced oil and gas properties that can be made in the field are far from adequate to pro-
vide the detailed characterization that modern petroleum engineering requires. In addition to
PVT analysis, of fundamental importance to reservoir management, measurements relating to
corrosion potential, solids formation, and nonhydrocarbon constituents have the potential to pro-
duce serious effects on the design of production facilities, on compatibility with pipeline
transport, on product sales value, on refinery maintenance costs, and on reservoir asset values
in general. The lack of such data could easily represent more risk than that tolerated when the
decision to perform sampling and laboratory studies is taken. Examples of the financial impact
of errors in fluid-property measurements are given elsewhere.! Fluid samples are thus required
to enable advanced physical and chemical analyses to be carried out in specialized laboratories.
Samples must be collected from a wide range of locations, including separators, pipelines,
tanks, wellbores, and the formation itself. This chapter primarily targets the sampling of fluids
under pressures above atmospheric, where numerous tools and procedures have been developed
that are essentially specific to the petroleum industry. Best practices are proposed for fluid sam-
pling, reporting of data, and quality control of samples.

Reservoir-fluid-property measurements derive from a complicated series of processes rely-
ing both on the operation of equipment and the performance of people, so the scope for errors
is very significant. The overriding challenge in fluid sampling is that of ensuring that the fluid
entering the sample container is representative of the bulk fluid being sampled. It is equally
important that the sample remains representative during handling and storage, until all required
measurements have been completed. Although thorough sample-checking procedures can identi-
fy some of the most obvious problems, there is never absolute certainty that the fluid under

" Now with The Petroleum Inst., Abu Dhabi, UAE.
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study is truly representative of the reservoir fluid. On occasion, laboratory measurements can
show that a fluid is definitely not representative (e.g., saturation pressure is significantly higher
than reservoir pressure), but even here the problem could lie with errors in field measurement
data rather than with the samples themselves. Thus, it is essential that all the necessary precau-
tions are taken to prevent poor samples from leading to erroneous physical-property measure-
ments.

Fig. 4.1 is a schematic diagram illustrating some of the most common sources of error in
relation to the collection of production samples and data in the field. Perhaps the most impor-
tant, yet often misunderstood, phase of any sampling program is that of well conditioning. A
poorly conditioned well may still be producing drilling-mud filtrate, workover fluids, or reac-
tion products and, in extreme cases, such materials may remain even after months of produc-
tion. A conflicting aim of well conditioning is to avoid excessive pressure drawdown and the
creation of a large region of two-phase reservoir fluid around the wellbore, which may be diffi-
cult to remove. This is especially important in the case of gas/condensate reservoirs, of which
many are found at their saturation pressures. The sampling program must ensure that appropri-
ate procedures are used to ensure that samples are taken under the best conditions.

Measurements of reactive or nonhydrocarbon components of reservoir fluids are complicat-
ed by the potential for loss through reaction or adsorption in contact with the production tubing
or with sample-bottle walls, especially during long storage periods. On-site measurements can
be very important if performed and recorded properly.

The schematic in Fig. 4.1 emphasizes sampling activities in cased-hole wells, but pressur-
ized samples are also obtained with formation-test tools in openhole wells. Here, contamination
by mud filtrate or excessive pressure decrease (drawdown) during sampling means that it may
not be possible to obtain quality PVT samples. Contamination by oil-based mud (OBM) is es-
pecially problematic.> Sampling from tanks or pipelines also requires that care be taken to
ensure that the fluid is representative of the location or condition required to be studied.

Not only may errors in the field mean that samples are not fully representative of the reser-
voir fluid, but even good fluid samples may be studied under invalid conditions. Pressure and
temperature errors can influence measurements and their interpretation, but it is especially er-
rors in gas/oil ratio (GOR) that can have a major influence on a PVT study. Even basic data,
such as sampling date and time, if not recorded or erroncous, can reduce the value of samples,
even to the point of making measurements meaningless.

4.2 General Guidelines for Setting Up a Sampling Program
The specific requirements for samples and laboratory studies naturally will depend on the state
of knowledge about a prospect. Thus, it may be advisable to perform extensive sampling and a
complete suite of laboratory measurements on a wildcat well when nothing is previously
known about the reservoir; this may provide the only fluid data on which to base future explo-
ration work. However, the early wells in a field may not provide the best samples because
drilling and workover practices will not have been optimized, and the wells’ response to testing
programs may require changes that are detrimental to fluid sampling. It may then be necessary
to repeat some analyses during the appraisal stage, typically when wells will yield samples that
are more representative of likely production. In contrast, sampling late in the appraisal phase
may be needed only on occasions when surface measurements indicate unexpected fluid character.
The composition of subsurface water commonly changes laterally, as well as with depth, in
the same aquifer. Changes may be brought about by the intrusion of other waters and by dis-
charge from and recharge to the aquifer. It is thus difficult to obtain a representative sample of
a given subsurface body of water. Any one sample is a very small part of the total mass,
which may vary widely in composition. Therefore, it is generally necessary to obtain and ana-
lyze many samples. Also, the samples may change with time as gases come out of solution and
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Fig. 4.1—A schematic view of wellsite sampling and measurement errors.'

supersaturated solutions produce precipitates. Sampling sites should be selected, if possible, to
fit into a comprehensive network to cover an oil-productive geologic basin. There is a tendency
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for some oilfield waters to become more diluted as the oil reservoir is produced. Such dilution
may result from the movement of water from adjacent compacting clay beds into the petroleum
reservoir as pressure declines with the continued removal of oil and brine. The composition of
oilfield water varies with the position within the geologic structure from which it is obtained.
In some cases, the salinity will increase up-structure to a maximum at the point of oil/water
contact.

The first priority in developing a sampling program, whether extensive or limited, is to
establish exactly what measurements are required. Table 4.1 gives a wide range of the measure-
ments that are typically considered for exploration wells. This can be used as a checklist,
together with direct contacts with users in other functions, to identify specific requirements for
sampling and on-site measurements. Generally, it is advisable to plan to perform all applicable
measurements unless sufficient information is already available from earlier tests of other
wells. The fact that a measurement proves to be “normal,” or an unwanted component is not
detected, should not be regarded as a waste of resources because it can still provide essential
information, especially if data are different on other wells or changes are identified during pro-
duction. On-site measurements are recommended for all reactive components because concentra-
tions may change with time (e.g., during a well test), and losses frequently occur during
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sample transport and storage. Table 4.1 is not a comprehensive list, and other measurements
will be required in certain locations and for specific purposes.

Having decided which fluid measurements are required, it is necessary to set up a suitable
sampling program, taking into account the cost of the work, the quality and quantity of sam-
ples and subsequent measurements, the urgency with which data are required, and the applica-
tion of safe practices. The program should specify who has overall responsibility if a change is
required in the program, as often occurs. Sampling programs should not be developed in isola-
tion from the other objectives of a well test because there is direct conflict in some cases, such
as when the well test requires large drawdowns for gas/condensate fluids as part of flow-capac-
ity tests. Thus, in the case of a well test, the overall plan should include the following: (a)
establish the production potential, (b) determine the permeability, (¢) determine the skin, and
(d) collect fluid samples. Each objective should be defined in sufficient detail so that all parties
involved are fully aware of their obligations, thus increasing the likelihood of achieving the
objective. Objectives must be realistic and must allow for possible changes. In the case of fluid
sampling and on-site analyses, the following sorts of questions should be considered in decid-
ing the detailed sampling objectives: (1) How much information is available on the likely
reservoir fluid? (2) What types of fluid sampling will be best? (3) What is the most suitable well-
cleanup and -conditioning procedure, and how can this be integrated with other well-test
objectives? (4) How many samples are needed, and do partners need duplicates? (5) When is
the ideal time to take samples? (6) Will on-site analyses be required? (7) Who will perform
sampling and analysis duties?

Fluid-sampling operations are often left to service-company personnel, but because signifi-
cant variation in levels of competence exists within the industry and within service companies
themselves, it is recommended either to use specialist laboratory personnel or to supervise the
service-company operations closely.

General guidelines for choosing reservoir-fluid-sampling methods and sample quantities re-
quired are summarized in Table 4.2. Regardless of the actual volumes mentioned, you should
collect at least two separate samples of each fluid, referred to as duplicate or replicate samples.
This reduces the chance of losing information if one of the samples leaks or is accidentally
damaged during laboratory operations, and it allows a comparison between the samples as part
of the quality-control procedures.

Surface-separator sampling is the most common technique, but the reservoir-fluid sample
recombined in the laboratory is subject to errors in the measured GOR and any imprecision in
the laboratory recombination procedure. Downhole samples (or wellhead samples) are not af-
fected by such inaccuracies but require the fluid to be in monophasic condition when sampled;
this can be confirmed definitively only afterward in the laboratory. Also, there is general reluc-
tance to attempt downhole sampling in gas/condensate reservoirs because many are saturated,
and the phases are likely to segregate in the wellbore. The ideal situation for a laboratory is to
receive both surface and downhole samples because a choice is then available, and a good idea
can be obtained of how representative the resulting fluid is.

In certain circumstances, it can be good practice to collect “backup” fluid samples at the
earliest opportunity during a production test, even if a well has not cleaned up properly. If the
test has to be aborted for some reason [well bridging, unexpected levels of hydrogen sulfide
(H,S), etc.], the backup samples may be of great value, even if they are not 100% representa-
tive. If the test is completed successfully, the backup samples can be discarded to avoid the
cost of unnecessary shipment and testing.

If sampling is part of a long-term monitoring program, such as those required by govern-
ment authorities or those forming part of custody-transfer contracts, the methods defined in the
appropriate documentation or contracts must be followed as closely as possible, even if this
constitutes differences with the procedures or recommendations in this text or in the industry
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standards cited here. Full use of this text and appropriate industry standards should, of course,
be made in setting up new procedures and contracts that require long-term sampling and mea-
surement programs.

If there is concern about whether the fluid is homogeneous in a flow line or tank, the best
approach is to take samples from different locations and compare them. In a liquid flow line,
take samples from the top and bottom; in a tank, take samples at different depths. If samples
are indeed different, it is advisable to locate a better sampling point (e.g., where there is suffi-
cient turbulence to homogenize the fluid). Failing this, the only solution may be to mix the
samples together in an attempt to provide a representative average fluid. If, however, the pur-
pose of the sampling is to study the nonhomogeneity, then separate samples should be taken
accordingly.

When samples are collected from drillstem tests (DSTs), which do not involve surface pro-
duction, the limited volume of fluid produced from the reservoir may be insufficient to remove
mud filtrate or other contaminated or changed fluid. Thus, even samples collected from the last
fluid that enters the drillstem may not be truly representative. This is especially the case for
formation-water samples, which are more widely susceptible to contamination from drilling flu-
ids, well-completion fluids, cements, tracing fluids, and acids, which contain many different
chemicals. The most representative formation-water samples are usually those obtained after
the oil well has produced for a period of time and all extraneous fluids adjacent to the well-
bore have been flushed out.

In some cases, fluid sampling may be made on short notice in response to a problem, with
the intention of identifying the cause and preventing any recurrence. Here, it is essential to
record all the operating conditions and any changes that may have contributed to the problem.
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Fig. 4.2—A generalized phase diagram for reservoir fluids.

Also, it can be useful to collect a reference sample when operation is normal, if this is possible
(e.g., a sporadic problem or a similar installation not affected), to allow comparisons. Laborato-
ry personnel also should be contacted regarding the sample needs and the types of analyses
that could be performed.

4.3 Reservoir-Fluid Type

One of the principal variables in reservoir-fluid sampling is the type of reservoir fluid present.
This is rarely known with certainty and, in exploration wells, may be completely unknown at
the start of testing. Determining the exact nature of a reservoir fluid is, of course, a key objec-
tive of sampling and laboratory study. Fig. 4.2 shows the relation between the major classes of
hydrocarbon reservoir fluid in terms of a generalized phase diagram. Although the shape of the
phase diagram is specific to the actual fluid composition, it is the reservoir temperature com-
pared to the temperature 7, of the critical point (7, determines if the fluid is an oil or a gas).
When the reservoir temperature is lower than 7., the fluid is an oil and will exhibit a bubble-
point when pressure is reduced into the two-phase region. If the reservoir-fluid temperature is
above T, the fluid is a gas and will either show gas/condensate behavior and a dewpoint on
pressure reduction or, if the reservoir temperature is also above the cricondentherm 7, the fluid
will behave as a one-phase gas with no liquid formation in the reservoir on pressure reduction.
If the fluid exists in the reservoir at or close to its critical temperature, it is classified as a
critical or near-critical fluid. These fluids exhibit neither bubblepoint nor dewpoint, but on pres-
sure reduction into the two-phase region, they immediately form a system comprising large
proportions of both gas and liquid (e.g., 60% gas and 40% liquid by volume).

The reservoir pressure determines whether the fluid is at the boundary of the two-phase
region (and referred to as saturated) or at a higher pressure than the two-phase region (and
referred to as undersaturated). Saturated fluids will immediately enter the two-phase region
when a well produces fluid because of the reduction of pressure in the well and near-wellbore
region. More details on phase diagrams are available in the General Engineering section of this
Handbook.

Both the reservoir-fluid type and the saturation condition influence the way fluid samples
must be collected, yet this information can be estimated only at the time of the sampling pro-
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gram and is especially uncertain when fluids are close to the boundaries between the different
types. Numerous correlations are available for estimating reservoir-fluid type and condition
from produced-fluid flow rates and properties measured at the wellsite (such as those devel-
oped by Standing’® and those given elsewhere in this Handbook), but you should be careful in
using these methods, especially when the fluid properties differ significantly from those used to
develop the correlation. For this reason, it is good practice to allow for significant error in the
reservoir-fluid character when designing and implementing sampling programs.

4.4 Well Conditioning

The best way to prepare a well for sampling is dependent on the reservoir-fluid type, as indicat-
ed earlier. With the exception of one-phase gas reservoirs, prolonged production will cause all
reservoirs to reach saturation conditions, thus bringing about changes in the fluid composition
throughout the reservoir. When this happens, there is no longer any possibility of obtaining
truly representative fluid samples. Thus, although in one-phase gas reservoirs (and for a certain
length of time in undersaturated reservoirs), the fluid will remain unchanged during pressure
depletion—the true nature of the fluid will be unknown until samples actually have been ana-
lyzed in a laboratory—it is strongly recommended to take samples at the earliest opportunity in
the life of a well.

Both in openhole and in cased-hole completions, the best depth or production interval for
sampling will be as far away as possible from gas/oil, gas/water, and oil/water transition zones
to reduce the chances of coning. Every attempt should be made to test zones individually be-
cause commingled production may be difficult to detect and is impossible to correct in the
laboratory.

The possible influence of any matrix-treatment chemicals on sampling programs should be
evaluated, and treatment schedules should be modified accordingly. Problems such as the liber-
ation of carbon dioxide (CO,) or H,S after acid treatments are possible, as is the release of
other components such as metal ions, and these could affect analyses. On the other hand, sam-
pling after an acid treatment has been properly cleaned up has the probable advantage of
reduced drawdown in the near-wellbore region.

Because of the enormous variety of constraints, there can be no definitive guidelines for
well conditioning. The first phase of conditioning involves the cleanup, in which the well is
flowed to the surface to remove any solids resulting from perforating activities, drilling mud or
completion fluids in the well, and mud filtrate or workover fluids that may remain in the forma-
tion near the wellbore. Here, the production rate must provide a sufficient flow velocity in the
production string to lift solids, hydrocarbon liquids, and water to the surface, but conditioning
is typically performed at the maximum rate, as this reduces the total length of the cleanup period.

The cleanup period typically lasts from a few hours to 24 hours, and progress is monitored
by regular measurements of flowing wellhead pressure, basic sediment and water (BS&W), and
other parameters. At the end of the cleanup period, production may be diverted through the
separator to check its operation. This is an ideal moment to take backup samples.

Depending on the fluid type, significant differences can exist in conditioning procedures,
which attempt to control or eliminate any modified reservoir fluid so that fluid entering the
well is identical to that in the reservoir. For an unknown fluid, one of the most important con-
siderations is the need to interpret the response of the well to different flow conditions and
then develop the final sampling program during the test itself on the basis of this information.
If initial production indicates an oil, the best approach is to evaluate the response of surface
GOR to changes in production rate. As long as representative reservoir fluid enters the well-
bore and is carried to the surface, and the same separator operating conditions of temperature
and pressure are maintained, the GOR should remain stable for different choke sizes. A GOR
that changes significantly between choke sizes is indicative of nonrepresentative production ei-
ther caused by two-phase flow effects in the near-wellbore region or possibly by commingled
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production of more than one reservoir fluid (e.g., oil zone and gas cap), and production should
be choked back until GOR no longer changes with choke size.

If, however the reservoir contains a saturated gas condensate, extra flow periods will sim-
ply compound the condensate-buildup problem, so sampling at the earliest stable rate is
probably advisable. In fact, some modeling work* has shown that when an important ring or
bank of condensate has built up in the reservoir, it may be possible to produce at reasonably
high rates with an apparently stable GOR while producing fluid that is not representative of the
original reservoir fluid. At very high flow rates, the GOR may appear to increase as a result of
liquid carry-over in the separator gas stream.

Gas wells that have a small flow velocity will exhibit liquid “slippage” in the tubing and
heading or unstable flow rates at the surface. Several methods of establishing the required min-
imum flow rate are available, of which an industry nomogram® has been used extensively. In
very-low-permeability, saturated gas/condensate reservoirs, it may not be possible to lift conden-
sate from the well without creating a major pressure drawdown in the reservoir and causing
nonrepresentative fluid to enter the wellbore. The best approach here is to select a small tubing
diameter before the test so that the minimum lift velocity can be achieved with a low flow rate
and, thus, reduced drawdown.

In highly undersaturated reservoirs, it is possible to take downhole samples while the reser-
voir is producing, provided that the downhole flowing pressure is greater than the fluid
saturation pressure. In many cases, however, the saturation pressure will be unknown or cannot
be estimated with sufficient accuracy; then, the best recommendation for downhole sampling in
an oil reservoir is to sample when shut in, as for reservoirs that are at or close to saturation
pressure. Before downhole sampling with the well shut in, it is necessary to allow pressure to
build up near to static and then to purge fresh reservoir fluid at a low rate to replace any
“changed” fluid in the wellbore or in the near-wellbore region. The most suitable time for down-
hole sampling during the well test is probably after the initial cleanup and buildup, but an
alternative is at the very end of the test if a long buildup is part of the test plan.

On a different aspect of well conditioning, the use of OBM during drilling operations can
lead to contamination of the near-wellbore region, and any subsequent contamination of fluid
samples by base oil may not be identified. This is unlikely to pose a problem if the well is
properly cleaned up, but it can result in significant contamination if samples are collected using
an openhole formation tester in which only small volumes are purged. It is thus best if lost
circulation can be minimized during drilling and ideal if only water-based muds are used.

If surface-separator sampling is planned, another form of conditioning can be necessary if
chemicals are in use. Injection of methanol or glycol upstream of the separator can be used to
prevent gas-hydrate formation, and the injection of antifoaming agents and demulsifiers may be
required in oil reservoir fluids. If possible, any such injection should be stopped before separa-
tor samples are taken, and enough time should be allowed for such potential contaminants to
be purged from the separator (e.g., by waiting at least five times the residence time). Residence
times can be derived from the nomogram given in the chapter on Design of Two- and Three-
Phase Separators in the Facilities and Construction Engineering section of this Handbook.

Separator conditions themselves also have an influence on sampling operations. Separator
temperature can be controlled only by changing the production rate or by the use of a heater,
but there is generally more flexibility in the separator pressure, which can be set at any value
not exceeding the choke downstream pressure limit for critical flow (or the working pressure
of the separator, if it is lower). The advantages of using the highest-acceptable separator pres-
sure include more intermediate components being in the liquid (increasing the liquid flow rate
somewhat), more gas in sample bottles because of the increased pressure, and generally a lean-
er gas stream with less condensation on cooling. Although service companies may be reluctant
to operate separators at higher pressures, these benefits can be important for the quality of fluid
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measurements. For low-GOR oil production, a lower separator pressure may be advisable be-
cause it can significantly increase the gas flow rate and improve its measurement accuracy.
Separator liquid levels also can be adjusted in many separators; lower levels increase gas resi-
dence time and thus can reduce carry-over problems for gas wells, whereas higher levels
increase oil residence time, which can reduce emulsion or foaming problems.

In view of the concerns presented above, the current best practices for conditioning a well
for sampling should include the following steps. Complementary details of guidelines can be
found elsewhere.!

For oil reservoirs:

* Clean up the well until wellhead pressure and BS&W stabilize.

* For surface sampling, reduce the flow rate in steps until the separator GOR does not
change between choke sizes, then stabilize separator conditions and take separator samples.

* For downhole sampling, shut in the well and build up to static pressure; produce at a low
rate for long enough to remove all changed material in the near-wellbore region, and briefly
shut in.

* Finally, purge fluid past the sampler in the well at a bleed rate and shut in before sam-
pling (this step may be omitted if downhole fluid is known to be monophasic).

* For gas/condensate reservoirs:

* Clean up the well until wellhead pressure and BS&W stabilize, then flow the well at the
lowest flow rate that will lift liquids up the tubing.

* For surface sampling, stabilize separator conditions and take separator samples.

* For downhole sampling (undersaturated reservoir with monophasic flow downhole), col-
lect downhole samples.

Recommendations for well conditioning in a near-critical-fluid reservoir are not widely avail-
able, both because these reservoirs are fairly rare and because there is no sure way of
identifying the situation from surface measurements. A rule of thumb is that reservoirs with near-
critical fluids often exhibit separator GORs in the region of 4,000 scf/bbl (700 m’/m?), but
there are no well-established GOR ranges for the near-critical region, and correlations are
rarely applicable in this area. Because pressure drawdown can result in major changes in the
reservoir fluid, it is advisable to perform sampling at the earliest moment (a good practice for
all reservoir types) and to condition the well by flowing it at successively slower rates to re-
move all nonrepresentative hydrocarbon phases as far as possible. However, it may be difficult
to establish when the well is adequately conditioned because the surface GOR may change
only slightly with different quantities of downhole phases, and expert advice should be sought
to evaluate all the observations.

4.5 Selection and Preparation of Sampling Equipment
Equipment planning must start as soon as the sampling program is defined to ensure that all
necessary equipment will be available and checked well in advance of the sampling operation.
For pressurized sampling operations, metal cylinders are invariably used, almost always with
valves at each end that facilitate filling, transfer, and cleaning operations. For downhole sam-
ples and separator liquid samples, the sampling procedure requires maintaining pressure on the
sample while the sample cylinder is filled. Achieving this by draining mercury from a full cylin-
der’ has been largely discontinued owing to the safety and environmental concerns with
mercury. The industry is now using piston cylinders, which have an internal piston to separate
the sample part of the chamber from the hydraulic fluid (commonly a mixture of water and
ethylene glycol). Maintenance of the piston cylinders is more complicated because the piston
seals must be in excellent condition to prevent the occurrence of internal leaks.

Cylinders are commonly made from stainless steel or titanium, the latter being significantly
lighter and offering better resistance to H,S (while being incompatible with mercury). Alu-
minum cylinders are in common use because larger volumes of sample are generally required,



1-184 Petroleum Engineering Handbook—Vol. |

and the cylinder weight is a concern. Cylinders with internal coatings, such as Teflon®, are
also used occasionally. The wide variety of materials used for pressurized sampling demon-
strates the fact that there is no perfect solution to the problems of resistance to corrosion,
sample preservation, volume, and weight. All cylinders must be provided with plugs for the
valves, endcaps to protect the valves, and storage containers to facilitate handling and to pro-
tect cylinders during transport. It is good practice to plug and label cylinders when they have
been prepared for sampling to avoid any confusion when at the job site.

For atmospheric samples, containers that are used for water samples include polyethylene,
other plastics, hard rubber, metal cans, and borosilicate glass, but the choice should be based
on the measurements that will be performed on the samples. For stock-tank hydrocarbon lig-
uids, glass or plastic containers are more resistant to corrosive components and are generally
preferred for smaller volumes. Although plastic containers are more robust, they can contami-
nate samples with plasticizers, and glass bottles must be used for storing stock-tank samples
intended for geochemical analysis. Glass containers must be well protected against the risk of
breakage.

For water samples, glass will adsorb various ions such as iron and manganese and may
contribute boron or silica to the aqueous sample, so its use should be avoided if ionic analyses
are required. Plastic and hard rubber containers are not suitable if the sample is to be analyzed
to determine its organic content, and a metal container is often used if the sample is to be
analyzed for dissolved hydrocarbons such as benzene. Otherwise, a polyethylene bottle is prob-
ably the most satisfactory container, especially if the sample is to be stored for some time
before analysis. Also, a plastic container is less likely to break than is glass if a water sample
is transported in freezing temperatures. However, not all polyethylenes are acceptable because
some contain relatively high amounts of metal contributed by catalysts in their manufacture.
The approximate metal content of the plastic can be determined by a qualitative emission spec-
trographic technique.

In addition to sample containers, sampling equipment must include fittings, valves, gauges,
and lines to enable samples to be recovered safely from the required location. Trained person-
nel must be assigned to collect samples. They should have copies of the sampling program and
field procedures, the prepared forms for recording data, and a supply of labels. All sampling
equipment must have been previously pressure tested and be clean and dry. Downhole-sam-
pling equipment such as production samplers and formation-test samplers are extremely sophis-
ticated and must be prepared by specialists. Great care must be taken with maintenance,
cleaning, and assembly to ensure the maximum chance of correct operation and the minimum
chance of contamination or other nonrepresentative sampling.

4.6 Pressurized Hydrocarbon Fluid-Sampling Procedures

The procedures covered here apply to reservoir fluids or production streams above ambient
pressure, and they are highly specific to the petroleum industry. The American Petroleum Inst.
publishes a detailed recommended practice,® which is the most complete industry standard cov-
ering the sampling of pressurized hydrocarbon fluids. It should be consulted for additional
information to that presented here. The choice of sampling method depends on the reservoir-
fluid type; this has been explained in the guidelines mentioned above. Here, the various
methods have been subdivided into downhole- or surface-sampling methods. The former obvi-
ously apply to a specific well, whereas the latter can be used for wells, gathering stations, or
other surface facilities.

* Trademark of DuPont Corp., Wilmington, Delaware
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Although here, “hydrocarbon” is intended to mean fluids containing hydrocarbons and non-
hydrocarbons but no (or only small) quantities of water, techniques in this section also can be
applied to the sampling of pressurized water fluids, though this is not very common.

4.6.1 Production Downhole Sampling. Production downhole sampling, also referred to as bot-
tomhole sampling, involves running a special sampling tool into the well on wireline so that a
sample of the fluid in the well can be collected under the increased pressure of the fluid col-
umn. Careful well conditioning is necessary, as described earlier, to ensure that the fluid is in
monophasic condition. Modern samplers are triggered either by a timer or a mechanical clock
in the tool itself, or by an electric signal conveyed by electric line. The former system is more
common, being able to be run with any wireline unit, but it has the inconvenience of needing a
preset delay to allow the tool and well to be set up for sampling. The sampler should be low-
ered into the well until it is a short distance above the upper limit of the perforated interval
(unless there are mechanical limitations that prevent the tool from reaching this depth) to col-
lect a sample that is representative of all the produced intervals. Various drillstem and tubing-
conveyed installations are available for downhole samplers, which allow them to be operated
without the use of wireline. These can allow samples to be collected downhole in high-risk
wells in which wireline operations are not permitted.

One advantage of downhole sampling is that it can be performed without a separator at the
well. There are several problems that can occur in downhole sampling: the fluid around the
sampler may be in two-phase condition, or it may have segregated in the wellbore; a mechani-
cal problem can lead to incorrect opening or closing of the device; the fluid may be contaminat-
ed with water or drilling mud; or the sample may not be made fully homogeneous before
transfer into a shipping bottle. Use of a pressure survey may help check the whereabouts of
any interfaces in the wellbore, but lack of an interface does not guarantee that the fluid present
has not lost any material in the form of condensation or wax or asphaltene precipitation.

It is common practice for downhole samples to be transferred at the wellsite, as this allows
a measure of the quality of the sample to be obtained, and can allow additional sampling runs
to be made in most cases (if needed) while still at the wellsite. This approach also can reduce
rental charges for the downhole samplers if supplied by a service company. Because it is diffi-
cult either to transfer the entire downhole sample (such that it need not be homogeneous) or to
make it fully homogeneous (and just transfer a portion), the best practice is to try to achieve
both objectives. Samplers with moving metal parts to facilitate mixing are now fairly common
and are preferred. General recommendations to be followed for downhole sampling are given
in Table 4.3.

Downhole samples are commonly transferred to shipping bottles at the wellsite, and the
following subsection describes a method suitable for most production downhole samples and
many formation-test samples. This step-by-step method is reproduced from RP 44 (where it
appears as Section 6.2.5)° by kind permission of the American Petroleum Inst. (API). It may
need to be modified according to the actual type of transfer equipment available.

API RP 44 Method for Sample Transfer to Shipping Container. If the sampler itself is not
used to transport the sample to the laboratory, the sample must be transferred to a transfer
container for shipping or transport. Whatever vessel is used, it must have an adequate pressure
rating and be certified to meet all applicable shipping regulations. Further, the shipping cylin-
ders must be cleaned thoroughly; this is particularly important to avoid contamination of the
sample from trace amounts of heavy components remaining in the cylinder from previous use.

The primary concern in transferring a downhole sample to a shipping container is to main-
tain the integrity of the sample during the transfer operation. This requires that the fluid in the
sampler be maintained in a single-phase condition during the entire sample-transfer process or,
if the fluid is in a two-phase condition, that the entire contents of the sampler be transferred.
(The sampler should be heated if wax or asphaltenes are present.) If only a portion of a two-
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phase sample is transferred, the fluid transferred to the shipping container will differ from the
original sample because the two phases in the sampler almost certainly cannot be transferred in
the proportions that exist in the sampler. Because valid transfer is crucial to sample quality, the
preferred procedure is to maintain the fluid in a single-phase state and transfer it in its entirety.
An important consideration is that pressurizing the sample may produce a single-phase condi-
tion but may not homogenize the sample; thus, thorough agitation (by rocking the cylinder)
during the process is important.

In addition, the sample composition must not be altered either by (a) leaks of hydraulic
fluid across the piston of piston-type samplers or (b) by selective absorption of components
from the sample into a transfer fluid (e.g., water or glycol) in cases in which the transfer fluid
is in direct contact with the sample. The latter is a particular problem in samples containing
CO, or H,S, which are very soluble in the transfer fluid.

At all stages of the transfer process, the pressure must be maintained substantially higher
than the sample saturation pressure. Fig. 4.3 shows a schematic diagram of a transfer apparatus
for piston-type samplers and transport containers. The 1966 Edition 1 of API RP 447 should be
consulted for transfer apparatus involving direct contact between the sample and mercury (as
the hydraulic fluid).

The transfer procedure is as follows.

1. Use the pump to fill all lines between valves B and F with hydraulic fluid (refer to Fig.
4.3). This can be done by loosening the fittings at these valves and pumping until hydraulic
fluid appears, then tightening each fitting. Note: Valves A and B and F, G, and H may be
integral parts of the sampler and transfer container, respectively, depending on the design of
these vessels. Also, valve H and its line may be arranged somewhat differently from Fig. 4.3 so
that valve H simply “tees” into the line from valve A to valve G.

2. With valves A, D, E, and F closed and valve C open, slightly open valve B and note the
opening pressure of the sampler. Valve B is often hydraulically or spring-actuated in cases in
which it is part of the sampler; if so, use the pump to raise the pressure until valve B just
opens, and record the opening pressure.

3. Open valve G and evacuate through valve H the line between valves G and A, including
the sample side of the transfer container.
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Fig. 4.3—Diagram of sample transfer apparatus.

4. Close valve H.

5. Open valve F and use the pump to bring the hydraulic oil pressure in both the sampler
and the shipping container to a pressure well above the saturation pressure of the sample.

6. Slightly open valve A and fill the line between that valve and the upper face of the
piston in the shipping container with sample fluid, using the pump to keep the pressure on the
gauge well above the saturation pressure during this transfer process.

7. Close valve C, then slightly open valve D, allowing hydraulic fluid to drain slowly into
the hydraulic oil reservoir (open to atmospheric pressure) as fluid flows from the sampler to
the shipping container. Use the calibrated pump to (a) keep the pressure in the sampler above
the saturation pressure and to (b) keep track of the amount of sample transferred. When the
desired amount of sample has been transferred, close valve D, then close valves A and G.

8. Before the transferred sample can be shipped, a vapor space must be created in the ship-
ping container. To do this, slightly open valve E and allow hydraulic oil to drain from the
shipping container into an open calibrated receiver. Close valve E, then valve F, when the vol-
ume of hydraulic fluid in the receiver equals 10% of the volume of the shipping container.
This will result in a 10% vapor space (“ullage” or “outage”) in the shipping container. Such a
void volume is required for safety because very high pressures can result if the temperature
increases even slightly in a totally liquid-filled, closed vessel. Note: Special sample cylinders
with an auxiliary gas cap are available for samples that must be retained in single-phase
(monophasic) condition.

9. Close valve B if it is not self-sealing. Open valve C, then valve D, to relieve pressure in
the pump. At this point, the sampler and shipping (transfer) vessel can be disconnected from
the transfer apparatus.

4.6.2 Downhole Sampling With Formation Testers. The collection of reservoir-fluid samples
by formation-test tools was originally a secondary benefit of their use for the measurement of
pore pressures. Formation-test tools can obtain reservoir-fluid samples without any production
to the surface. The tool is typically run into an openhole well containing drilling mud or com-
pletion fluid to a specific depth, and a probe is forced against the formation, providing a seal
and allowing formation fluid to flow into the tool. Modern formation testers generally can be
equipped with numerous devices designed specifically to enable samples of reservoir fluid to
be collected in a series of sample chambers. These tools offer the advantage of the ability to
collect samples without performing a DST with fluid flow to the surface, and they are especial-
ly useful in obtaining fluids from a number of discrete depths, thus helping identify possible
fluid gradients. However, the principal disadvantage is the limited cleanup that is possible, re-
sulting in various levels of contamination by drilling-mud filtrate. These problems have been
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reduced by developments allowing the pumping of significant volumes of fluid into the well
and the monitoring of the quality of the fluid flowing into the tool. Nevertheless, samples col-
lected almost always contain some contamination (both from mud filtrate and from small
quantities of water used to fill connecting lines when the tool is prepared), but when the
drilling mud is water-based, such contamination can be separated in the laboratory, and it is a
significant concern only when sampled fluids contain soluble components such as H,S and
CO,. When sampling in wells that have been drilled with OBM, contamination is more diffi-
cult to detect and impossible to remove physically. Advanced spectroscopic detection systems
have been developed for formation-test tools, but the industry is now beginning to accept that
there always will be problems with formation-test sample contamination where OBMs have
been used, and laboratories have developed various methods for evaluating the level of contam-
ination and for estimating the true physical properties of uncontaminated reservoir fluid.® In
fact, this problem is not limited to formation-test samples because in some cases, production
testing may not fully clean up OBM filtrate, especially if there have been significant losses
during drilling.

Formation-test tools are extremely sophisticated and must be run by specially trained engi-
neers and wireline operators. In addition, significant differences exist between the tools avail-
able from the various service companies, and technological developments are occurring all the
time, so specific operating details will not be given here. However, in addition to the well
preparation described earlier, a number of recommendations can be made for the sampling pro-
cess:

* Planning must optimize the match between tool capability and sampling and analysis needs.

» Sample sizes collected should be compatible with storage containers so that individual
samples can be transferred in their entirety.

» Sample chambers containing mixing devices are to be preferred because they facilitate
sample homogenization before transfer; where possible, duplicate samples should be taken from
each depth sampled.

* To determine depth gradients, samples should be collected from at least three different
depths spanning the reservoir interval; when available, fluid-quality monitors should be used to
evaluate cleanup of the fluid entering the tool.

* The fluid-sampling rate should be adjusted where possible to minimize pressure draw-
down, unless downhole bubblepoint measurement or estimation are available that allow higher
sampling rates to be used with confidence.

 If OBM was used in drilling, collect a sample of the mud that has been used most recent-
ly, and contact a laboratory that will analyze the samples to establish which fluid samples are
needed; for some correction techniques, samples are required from the same depth with differ-
ent levels of filtrate contamination.

* Use of the formation-tester pump to compress collected samples (sometimes referred to as
“overpressuring”) may help reduce the effects of cooling, but it should not be used if final
pressures are to be used as a measure of sample quality. If phase segregation on cooling must
be avoided, single-phase sample chambers should be selected as described below.

o If fluid pumpout into the well is not possible (e.g., for safety reasons—H,S, low overbal-
ance, etc.), large sample chambers should be used at the start of sampling to serve as “dump”
chambers, allowing better-quality samples to be collected afterward.

* The depth and sampling time must be recorded together with the serial number of each
chamber.

* If possible, avoid using OBM when drilling, or switch to water-based mud for probable
hydrocarbon-bearing intervals. Handling and transfer of formation-test samples should be along
the lines described above for production-test downhole samples.
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4.6.3 Single-Phase Sampling. Downhole samples cool down as they are pulled out of the
well, and the associated fall in pressure will usually result in the sample entering the two-phase
region, thus necessitating homogenization before transfer. Special versions of downhole sam-
plers now available, known as single-phase or monophasic samplers, use the release of gas
pressure behind an additional piston to maintain a downhole sample above reservoir pressure
while it is brought to the surface. This design of sampler is especially used for reservoir fluids
likely to precipitate asphaltenes, which are very susceptible to pressure reduction and difficult
to homogenize. For other fluids, single-phase samplers facilitate sample transfer and reduce the
chance of the transferred fluid not being representative of the fluid in the sampler. One disad-
vantage of the one-phase sampler is that a “bubblepoint check” cannot be performed on site
because the gas buffer will mask sample behavior. One solution to this limitation is to run a
conventional sampler in tandem to permit a quality check on one of the samples in the field.

Although the single-phase sampler will prevent the formation of a gas phase in most cases,
it does not prevent the formation of a wax phase in waxy reservoir fluids, which commonly
occurs with cooling. A sampler with a heated chamber is available but has not been used wide-
ly. Also, gas/condensate fluids undergo significant shrinkage on cooling, and single-phase
samplers may not prevent the formation of condensate in the sample chamber. Single-phase
versions of formation-tester sample chambers are also available.

4.6.4 Other Downhole-Sampling Tools. Various other tools can be used to collect downhole
fluid samples, such as DST chambers, but thought must be given to the problems in recovering
a valid sample from the tool, and preference must be given to configurations that allow sam-
ples to be homogenized, transferred under pressure, and preferably contained in a single
storage cylinder. Industry practice now favors the use of standard wireline samplers conveyed
into the well as part of the DST tool.

4.6.5 Separator Sampling. Surface sampling primarily involves sampling individual gas and
liquid streams from a production separator or similar installation, and it is by far the most
common method of sampling pressurized hydrocarbon fluids. The operation of oil and gas sep-
arators is covered in detail elsewhere in this Handbook. Usually, the objective of separator
sampling is to obtain a fluid representative of the production of one well that enters the separa-
tor in its entirety, but the method also can be used to obtain a fluid representing commingled
production from a number of wells into a single gas/oil separation plant. In either case, the
objective is to collect separate samples of the gas and liquid exiting the separator and to mea-
sure the separate flow rates of the two phases and obtain the GOR. Although the two phases
are never in perfect equilibrium, providing that the two samples are representative of the sepa-
rate flows, it is possible to mix the two samples together in the same proportion in which they
are produced to obtain a recombined sample that represents the fluid entering the separator.

Some of the biggest errors affecting fluid samples are related to the measurement of separator-
gas and -liquid flow rates, which are crucial for the recombination process in the laboratory.
Good accuracy is often considered to be in the region of 5%, but the figure can be much
worse, for example, if there is carry-over of liquid in the gas exit stream (or carry-under of gas
in an oil with foaming tendencies). Problems are especially common for gas-well production
tests, where very high flow rates can be used, and special techniques are available for trying to
measure liquid carry-over in such situations. However, the best approach involves proper sizing
and adjustment of the separator for the production rate. Another important source of error in
this domain involves confusion over whether liquid flow rates are reported at separator condi-
tions or at tank conditions; this has serious implications for gas/condensate fluids in which the
separator-liquid shrinkage is typically much larger than in the case of an oil.

Although broad guidelines were given above concerning the volumes of samples that
should be collected, special attention should be given when collecting gas samples from separa-
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Fig. 4.4—Separator-gas volume to be collected as a function of pressure, GOR, and oil volume.

tors operating at low pressures because the lower density may result in the collection of
insufficient weight of gas. Fig. 4.4 enables the required volume of gas to be estimated simply
as a function of separator pressure, GOR, and the volume of liquid that is required. This chart
is reproduced with the kind permission of Saudi Aramco.
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In line with current trends in the oil industry, this work recommends using evacuated bot-
tles for gases and piston bottles for liquids and avoiding any use of mercury in sampling
operations. At extremely low temperatures, piston bottles have been reported to leak past the
piston seal, so sampling under such conditions should be avoided if possible. If these methods
cannot be used, then repeated purging (a minimum of five times) should be used for gas sam-
ples, and the displacement of brine should be used for liquid samples unless high H,S or CO,
levels are present, in which case it is preferable to use separator water saturated with gas if it
is available. The principal guidelines to be followed for surface sampling are given in Table
4.4.

The following two subsections describe the two most common separator-sampling methods
in detail.

API RP 44 Gas Method No. 1: Filling an Evacuated Container. The following step-by-step
method is reproduced from RP 44 (where it appears as Section 6.3.7.1) by kind permission of
APIL.

This method is especially simple and accurate. The principal undesirable feature of the
method is the requirement that the vessel be evacuated before its transport to the sampling
point (with possible loss of vacuum during transport), or that a vacuum pump be provided at
the wellsite. Testing pre-evacuated vessels for adequate vacuum at the time of sampling should
be done only by personnel well trained in vacuum-testing procedures because improper testing
often leads to loss of vacuum or introduction of air into the sample vessel. (Collecting an addi-
tional sample may be preferable to vacuum testing.) A clean, evacuated container should never
be purged with separator gas and re-evacuated in the field because any liquid that condenses in
the container during the purge may not totally re-evaporate during evacuation in the field.
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Sample collection is accomplished by the following steps:

1. Locate an appropriate sample source valve A (see Fig. 4.5) on the separator from which
the desired sample can be collected. Clean any debris from valve A; open the valve briefly to
blow it out, and then close it.

2. Connect the fitting on the flexible tubing of the sampling rig securely to valve A on the
separator. Open the line valve B, and open the purge valve C.

3. If a vacuum pump is available and personnel are qualified in vacuum techniques, con-
nect the sample inlet valve D on the sample container to the fitting on the sampling rig, as
shown in Fig. 4.5. Connect the vacuum pump to valve C, open valve C and valve B to evacu-
ate the sampling rig, then close valve C and disconnect the pump. Slowly reopen valve A
completely to establish full separator pressure on the entire sampling rig from valve A to valve
D, and proceed to Step 6.

4. If a vacuum pump is not available, open valves B and C, then open and close valve A in
one quick burst to purge air from the sampling rig, and quickly close valve B. Slowly reopen
valve A completely to establish full separator pressure on the entire sampling rig from valve A
to valve B.

5. Connect the sample inlet valve D on the sample container to the fitting on the sampling
rig, as shown in Fig. 4.5. Open valve C, then open and close valve B in one quick burst to
purge air from the line connecting valves B and D, and close valve C promptly. Note: Use a
long vent line on valve C if H,S is present. Reopen valve B to establish full separator pressure
on the entire sampling rig from valve A to valve D.

6. Cautiously crack open valve D, while carefully monitoring the pressure gauge, and fill
the container slowly. Continuously adjust valve D as needed to keep full pressure on the pres-
sure gauge. Filling a large container can take as long as 20 minutes. The progress of the filling
process can be monitored by listening for a hissing sound at valve D (and in the container) and
by monitoring the pressure gauge. When you think that the container is full, open valve D
further while listening to the container and monitoring the pressure gauge.

7. When the container is full, close valve D, and then close valve B.

8. Slightly open valve C to bleed the connections between valves B and D to atmospheric
pressure. Note: The line from valve A to valve B, including the pressure gauge, is still under
full pressure. Use a long vent line on valve C if H,S is present.

9. Disconnect the sample container. This is the last step in collecting the first sample. The
apparatus is now ready for collecting additional samples by repeating Steps 5-8.

10. Following collection of the last sample, close valve A securely, then open valve B (and
valve C, if it is not already open) to bleed pressure from all parts of the line and sampling rig
before disconnecting the line from valve A. Note: Use a long vent line on valve C if H,S is
present.

11. Insert sealing plugs into the valves on each sample container; then check the valves for
leaks by immersing them in water or painting them with soap solution. Before inserting the
sealing plugs, the threads should be lubricated by stretching Teflon® tape into the threads or
by applying pipe dope. After a container is determined to be leak-free, it should be tagged and
otherwise prepared for storage or transit.

API RP 44 Oil Method No. 3: Filling a Piston-Type Container. The following step-by-step
method is reproduced from RP 44 (where it appears as Section 6.3.8.3)° by kind permission of
API. It refers to the same sampling rig as that used for the gas-sampling method above, though
the sample cylinder will contain a piston, and valve E will represent the hydraulic-fluid connec-
tion, as indicated in Fig. 4.6. Some steps in this procedure may need modification depending
on exact equipment design; this is notable for sample cylinders, which have an additional
purge valve at the sample inlet end of the cylinder.
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Fig. 4.5—Diagram of a sampling apparatus.

Fig. 4.6—Diagram of a liquid-sampling apparatus.

This is a preferred method for nonmercury liquid-sample collection. It has the advantage
that the liquid sample can be kept at the saturation pressure throughout the collection process,
which avoids gas breakout from the sample. In addition, the sample does not come into contact
with any other fluids during sampling or during transfer in the laboratory. The undesirable fea-
ture of the method is that with sample containers, the potential for contamination with hy-
draulic fluid exists if the seal on the piston leaks. (Water can be used as the hydraulic fluid to
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minimize the possibility of contamination, but the operator should first check with the manufac-
turer to ensure that water will not damage the container.)

If a piston-type container is being used, hydraulic fluid must be preloaded behind the piston
so that the piston position is fully toward the sampling end. A danger is that inexperienced
personnel may not know this and may attempt to use this type of container without a proper
fill of hydraulic fluid and without proper hydraulic-pressure support on the piston seal. In such
a case, full pressure will not be maintained on the separator oil during sampling, and the pro-
cess essentially will be the same as filling an empty container, except that the seal on the
piston might leak. The manufacturer’s instructions should be consulted to ensure that the opera-
tion of the piston-type container is completely understood before commencing the sampling
operation.

The procedure is as follows:

1. Locate an appropriate sample source valve A on the separator (see Fig. 4.6) from which
the desired oil sample can be collected. Clean any debris from valve A, hold a rag over the
valve (or attach a temporary purge line connected to a suitable container), open valve A slow-
ly, purge sufficient oil through the valve, and then close valve A. Remove the rag or tempo-
rary purge line. Note: Use a long vent line if H,S is present.

2. Connect the fitting on the flexible tubing of the sampling rig (see Fig. 4.6) securely to
valve A on the separator. Open the line valve B, and open the purge valve C.

3. If a vacuum pump is available and personnel are qualified in vacuum techniques, con-
nect the sample inlet valve D on the sample container to the fitting on the sampling rig, as
shown in Fig. 4.6. Connect the vacuum pump to valve C, open valve C and valve B to evacu-
ate the sampling rig, and then close valve B. Slowly reopen valve A completely to establish
full separator pressure on the entire sampling rig from valve A to valve B. Open valve D to
evacuate the connection and the small dead volume in the container (the internal volume be-
tween valve D and the face of the piston when the piston position is at the sampling end), then
close valve C and disconnect the pump. Slowly reopen valve B completely to establish full
separator pressure on the entire system from valve A through valve D to the face of the piston
in the container, and proceed to Step 6. Be sure that valve D is completely open.

4. If a vacuum pump is not available, close valve B and open valve A slowly (the pressure
on the gauge should rise to the separator pressure). Close valve A, attach a purge line at the
end of the rig below valve C, close valve C, and open valve B to let the pressure deplete to
atmospheric. Close valve B, then slowly reopen valve A completely. Slightly open valve B,
and slowly purge a volume of oil equivalent to several times the volume of the sampling rig,
collecting the purged oil in a suitable container (maintain full separator pressure on the pres-
sure gauge during this purge). Close valve B, and remove the purge line. Full separator
pressure should now be on the entire sampling rig from valve A to valve B.

5. Connect the sample inlet valve D on the sample container to the fitting on the sampling
rig, as shown in Fig. 4.6, and attach a purge line at the end of valve C. Open valve D, close
valve C, and open valve B slowly to pressure up the connection with the container and any
dead volume in the sample container. Close valve B, and open valve C to let the pressure
deplete to atmospheric. Close valve C, then slowly reopen valve B completely. Slightly open
valve C, and slowly purge a volume of oil equivalent to several times the volume of the con-
nection, collecting the purged oil in a suitable container (maintain full separator pressure on the
pressure gauge during this purge). Close valve C, and remove the purge line. Full separator
pressure should now be on the entire sampling rig from valve A through valve D to the face of
the piston in the sample container. Be sure that valve D is completely open. Note: This method
is not perfect because the oil in the dead volume in the sample container has not been purged
under pressure. However, if the piston position is fully toward the sampling end of the contain-
er, the amount of oil in the dead volume will be negligible.



Chapter 4—FIluid Sampling 1-195

6. Cautiously crack open sample outlet valve E while carefully monitoring the pressure
gauge, and allow the sample fluid to slowly displace the preload hydraulic oil into a suitable
collection vessel. Continuously adjust valve E as needed to be sure that the rate of sample
collection is sufficiently slow so that full separator pressure is maintained on the sample side
of the piston (as indicated by the pressure gauge). The sampling operation can be ended when
a desired volume of sample is collected (as indicated by a given volume of hydraulic fluid
being displaced to the collection vessel). The operation must be stopped with at least enough
preload liquid left in the container to provide the “outage” required in Step 7. Close valves E,
D, and B, in that order. (If the container has a magnetic indicator to show the position of the
piston, then nitrogen gas can be used as the hydraulic fluid behind the piston, and Step 7 can
be eliminated so long as approximately 10% volume of nitrogen remains on the hydraulic side
of the piston.)

7. Open valve E slightly (with valve D closed), and drain into the collection vessel a vol-
ume of hydraulic oil equal to approximately 10% of the container volume. This will create the
necessary vapor space in the container without altering the overall composition of the oil sam-
ple. (Be sure to leave at least some hydraulic oil behind the piston so that there is pressure
support on the seal and very little pressure drop across the seal). Close valve E securely.

8. Slightly open valve C to bleed the connections between valves B and D to atmospheric
pressure. Note: The line from valve A to B, including the pressure gauge, is still under pres-
sure. Use a long vent line if H,S is present.

9. Disconnect the sample container. This is the last step for the first sample and leaves the
apparatus ready for collection of additional samples by repeating Steps 5-8.

10. Following collection of the last sample, close valve A securely, then open valve B (and
valve C, if it is not already open) to bleed pressure from all parts of the line and sampling rig
before disconnecting the line from source valve A.

11. Wipe the valves on the sample container clean and inspect for any signs of leakage.
After a container is determined to be leak-free, insert plugs in the valves, then tag the contain-
er and otherwise prepare it for storage or transit. Before inserting the sealing plugs, the threads
should be lubricated by stretching Teflon® tape into the threads or by applying pipe dope.

4.6.6 Wellhead Sampling. Wellhead sampling, more commonly known as flowline sampling,
involves the collection of a fluid sample at the surface from the wellhead itself or from the
flowline or upstream side of the choke manifold, provided that the fluid is still in one-phase
condition. This option is restricted to wells producing dry gas, very-low-GOR oils, and some
high-pressure/high-temperature reservoir fluids. Dry-gas wellhead samples can be collected as
for gas sampling from a separator, whereas wellhead sampling of other or unknown fluids
should be performed as for separator liquids. However, all equipment must be compatible with
maximum wellhead pressure, and as the state of the fluid is not usually known with certainty,
separator sampling also should be performed if possible, as a backup.

4.6.7 Isokinetic Sampling. Isokinetic sampling, also known as split-stream sampling, involves
collecting samples from well production in two-phase flow, using a small side stream to allow
the two-phase fluid to be collected and measured in laboratory scale equipment at the wellsite.
There are two principal challenges in this approach: controlling the side stream so that it is
removed from the main flow at identical velocity (hence the term isokinetic) to avoid dispropor-
tionate sampling of the two phases, and ensuring that the flow is turbulent upstream of the
sampling probe so that the minor phase is finely distributed in the major phase. Although this
special type of sampling has been used for more than 60 years, mainly for sampling gas/con-
densate production, many still consider it to be at the development stage,” and it has never
achieved wide acceptance. A more recent development of isokinetic sampling involves sam-
pling of the exit gas stream from a separator and calculation of a figure for separator
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efficiency. This efficiency is then used to modify the GOR used for recombining separator
samples, but it should be compared to the separator efficiencies reported elsewhere in this Hand-
book.

4.7 Nonpressurized Hydrocarbon Fluid-Sampling Procedures

The sampling of nonpressurized or atmospheric-pressure hydrocarbon fluids from lines is rela-
tively simple to perform, but attention must be paid to the need to purge sampling lines and
pipework with at least three times their volume of fresh fluid before each sampling session.
This is especially important in some installations and processing facilities, where the sampling
point may be at the end of a “dead-leg” or trap in which fluid has collected or stagnated over
a long period of time. In general, oil or condensate samples should be collected from a sample
tap on the side of the line or the top of the line to avoid any water or sediment that may have
accumulated at the bottom of the line. Atmospheric gas samples are rarely collected, but if
they are required, they should be collected in evacuated chambers to minimize contamination
by air.

Atmospheric hydrocarbon samples also may be collected from pressurized lines or from
samples collected in pressurized chambers, such as downhole samples. Usually, this will in-
volve the release of gas and the collection of oil or condensate. Because the separation
procedure that releases gas is dependent on the temperature and pressure (which may be above
atmospheric if the liquid is collected in a closed trap), the properties of samples collected in
this way may vary. Also, because the fluid in a sample chamber may already be in two-phase
condition (or may have segregated), liquid from the entire sample should be collected to mini-
mize uncertainty in the sample quality.

Sampling from tanks is complicated by the need to collect samples from various depths to
allow for any property changes or segregation that may exist. The procedure given next is a
traditional method used for measuring and testing a field tank of crude oil, frequently referred
to as “running” when related to custody-transfer transactions. It was published as API Standard
2500 but is no longer available. The method is reproduced here with the permission of the
American Petroleum Inst. It is intended to support operations still using this method, or meth-
ods derived from it, and serve as a guideline to engineers setting up similar methods. Detailed
descriptions of individual calibration and measurement methods are available in the AP Manu-
al of Petroleum Measurement Standards (MPMS),” which represents all branches of the
petroleum industry and is the recognized standard for downstream measurement methods.

4.7.1 Procedure for Typical Measuring, Sampling, and Testing of a Tank of Oil.

1. The tank is vertical, nonpressurized, and has a fixed roof with side outlets; it is to be
gauged by the innage method (a process to determine the depth of liquid in a tank, which is
measured from the surface of the liquid to the tank bottom or to a fixed datum plate).

2. The oil viscosity is less than 100 Saybolt seconds at 100°F and is a liquid at atmospher-
ic temperature and pressure.

3. A cup-case thermometer is used to read the temperature of the oil in the tank.

4. A thief is used to obtain fluid samples from the tank. (A “thief” is an industry term for a
bottom-closure, core-type sampler used to secure samples from chosen depths in storage tanks.)

5. The API gravity scale hydrometer test method is used to determine the API gravity of
the oil; the temperature of the oil has to be near 60°F (+5°F).

6. The water and sediment in the oil are to be determined by the centrifuge method with a
203-mm (8-in.) cone-shaped tube.

The following outline gives the sequence of steps to be taken and the key points to be noted at
each step.

1. Isolate the tank to be checked.
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2. Use safety precautions and fresh air bottles if an H,S hazard exists.

3. Ground yourself to a stair railing or tank shell before reaching the top. This prevents static-
electrical discharge in a hazardous area.

4. Stand to the side of the hatch when opening it to permit wind to blow gas away from you.

5. Measure the temperature: suspend a thermometer in the oil tank. The thermometer should
be 12 in. or more from the tank shell and must be immersed in oil for 5 minutes.

Use an American Soc. for Testing and Materials (ASTM)-approved, wood-back or corrosion-
resistant metal cup case. If atmospheric temperature differs by more than 20°F from that of the
liquid in the tank, the cup case should be given at least two preliminary immersions. Empty
the cup case after each immersion.

Rapidly withdraw the thermometer and read and record the temperature to the nearest 1°F.
Note: The number of temperature measurements varies with the depth of the liquid.

In a tank containing more than 15 ft of liquid, three measurements should be taken: (1) 3 ft
below the top surface of the liquid, (2) in the middle of the liquid, and (3) 3 ft above the
bottom of the liquid.

In a tank containing 10 to 15 ft of liquid, two measurements should be taken: (1) 3 ft
below the top surface of the liquid, and (2) 3 ft above the bottom surface of the liquid. In a
tank containing less than 10 ft of liquid, one measurement should be taken in the middle of the
liquid. For tanks over 10 ft high with a capacity of less than 5,000 bbl, one measurement in
the middle of the liquid should be taken.

6. With a thief, take sample(s) for a BS&W centrifuge test. Note: The number of samples
to be taken for BS&W determination varies.

In tanks larger than 1,000-bbl capacity that contain more than 15 ft of liquid, equal-volume
samples should be taken (1) 6 in. below the top of the liquid, (2) at the middle of the liquid,
and (3) at the outlet connection of the merchantable oil, in the order named. This method also
may be used in tanks up to and including a capacity of 1,000 bbl.

In a tank larger than 1,000-bbl capacity that contains more than 10 ft and up to 15 ft of
liquid, equal-volume samples should be taken (1) 6 in. below the top surface of the liquid and
(2) at the outlet connection of the merchantable oil, in the order named. This method may be
used on tanks up to and including a capacity of 1,000 bbl.

In a tank larger than 1,000-bbl capacity that contains 10 ft or less of liquid, one sample
may be taken in the middle of the column of liquid.

7. Place the BS&W composite sample in a sample container. The sample should be a blend
of the upper, middle, and lower samples (if three samples were required), containing equal
parts from the samples taken.

8. Seal the sample container. In the lower 48 states, with the exception of California, the
sample is ready to be tested for BS&W, as described in Step 17. In California, the container
should be labeled and delivered to the laboratory for BS&W determination. (Note: These U.S.
state references were part of the original standard.)

9. With a thief, take a sample for gravity determination. The sample should be taken mid-
way between the oil surface and the pipeline connection. Hang the thief in the hatch. Remove
bubbles, and place the hydrometer in the oil sample.

10. Determine and record the sample temperature to the nearest 0.5°F. The hydrometer
must float away from the wall of the cylinder; the temperature of the surrounding media
should not change more than 5°F.

Depress the hydrometer two scale divisions and release. Read the hydrometer to the nearest
0.05°API on a scale at which surface or liquid cuts scale.

11. Read and record the sample temperature to the nearest 0.5°F. Repeat the gravity reading
if the temperature of the sample before and after the gravity reading has changed more than
1°F. Apply any relevant correction to the observed hydrometer reading (correction scale on
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bulb) to the nearest 0.1°API. Record the mean temperature reading observed before and after
the final hydrometer reading to the nearest 1°F.

Note: Hydrometer scale readings at temperatures other than calibration temperatures
(60°F) should not be considered more than scale readings because the hydrometer bulb
changes with temperature.

12. Convert the relevant corrected value to standard temperatures. Use API MPMS Chapter
11.1 (Table 5A)° for crude oils.

13. Take the bottom thief sample for BS&W height. Lower the clean, dry thief slowly into
the oil to the desired depth, trip the thief, and raise it slowly to avoid agitation. When the
sample is taken, the top of the thief must be 2 in. above the bottom of the pipeline connections.

14. Determine and record BS&W height in the tank. Pour the remaining thief sample over
a test glass until contamination appears. Measure and record (as the BS&W height) the dis-
tance from the bottom of the thief to the top of the contamination in the thief. If BS&W height
is less than 4 in. from the bottom of the pipeline connection, do not run the tank.

15. Gauge the tank. Do not gauge a boiling or foaming tank. Use steel innage tape with an
innage plumb bob. Always make contact between the gauge line and the hatch while running
tape into the tank.

Gauge the tank only at the reference point on the gauging hatch. On tanks of 1,000-bbl
capacity or less, read to the nearest 1/4 in. On tanks of 1,000 bbl or more, read to the nearest
1/8 in. Record the reading immediately; repeat until two identical gauges are obtained.

16. Saturate solvent with water. Toluene is approved solvent; it is flammable and toxic.
Care should be taken when using toluene.

Fill a 1-qt or 1-L glass bottle with a screw top with 700 to 800 mL of toluene. Add 25 mL
of either distilled or tap water. Screw the cap on; shake vigorously for 30 seconds. Loosen the
cap; place the bottle in a bath for 30 minutes. Maintain the bath at a constant temperature of
140 £5°F. Remove, tighten the cap, and shake vigorously for 30 seconds. Repeat three times.

Allow the bottle of water/toluene mixture to sit in the bath for 48 hours before using. Be
sure that no free water is left in the bottle.

17. Shake the sample container until the sample is well mixed. Fill two 203-mm (8-in.) cone-
shaped centrifuge tubes with 50 mL of sample. Use a pipette to add 50 mL of toluene.
Toluene should be water saturated at 140°F. Read the top of the meniscus at both the 50- and
100-mL marks. Add a 0.2-mL demulsifier if necessary for a clean break in the oil/water contact.

Stopper the tube tightly; invert the tube 10 times to ensure that oil and solvent are uniform-
ly mixed.

18. Loosen the stopper slightly. Immerse the tube to the 100-mL mark in a bath for 15
minutes. The bath must maintain a temperature of 140 +5°F; by contract agreement, the bath
temperature may be 120 +5°F.

Remove the tube from the bath and tighten the stopper. Invert the tube 10 times to ensure
that oil and solvent are uniformly mixed.

19. Place the tubes in trunnion cups on opposite sides of the centrifuge. Spin for 10 min-
utes while maintaining minimum relative centrifuge force of 600.

Following the spinning, read and record the combined volume of water and sediment at the
bottom of each tube. Read to the nearest 0.05 mL for oil from 0.1- to 1-mL graduation. Read
to the nearest 0.1 mL above 1-mL graduation. Estimate to the nearest 0.025 mL below 0.1-mL
graduation.

Return the tube to the centrifuge without agitation. Spin for 10 minutes at the same rate.
Repeat this operation until the combined volume of water and sediment remains constant on
two consecutive readings.

20. Record the final volume of water and sediment in each tube. The sum of the two admis-
sible readings is the vol% of water and sediment in the sample.
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After the tank has been run, the following closing data should be obtained.

21. Closing oil temperature: no closing temperature is necessary on tanks of 5,000 bbl or
less; on tanks of 5,000 bbl or more, always read to the nearest 1°F.

22. Obtain a closing gauge reading at the same point and in the same manner as the open-
ing gauge reading.

23. Obtain the bottom thief. If the BS&W level is lower than the opening gauge, report this
to a supervisor.

More information concerning the specific measurement methods referred to here can be
found in the API MPMS.® The manual is being updated continually, and care should be taken
that the current standard or chapter is used. Identification of the appropriate section can be
made using the publication catalog on the API website (http://www.api.org/cat/).

4.8 Oilfield Waters

Oilfield waters are often referred to as brines, especially when they contain significant quanti-
ties of dissolved salts. They also frequently contain dissolved gases (more details are available
elsewhere in this Handbook) and may contain small quantities of the heavier hydrocarbons
found in oils. Water can be present in a surface separator during production, either from liquid
water in the zone being tested or by condensation from water vapor in the produced gas, or
possibly from both. Water from aquifers or seawater may also need to be analyzed in connec-
tion with water-injection activities.

The analysis of oilfield waters has a wide range of applications, including identifying the
origin of produced water, characterizing aquifer properties, interpreting wireline-log measure-
ments, predicting formation damage from water incompatibility, investigating scaling tenden-
cies in surface and downhole equipment, monitoring fluid movement in reservoirs, identifying
the presence of bacteria, evaluating disposal options and environmental compliance, and predict-
ing and monitoring corrosion. Water analyses also can be useful in diagnosing and correcting
numerous oilfield operating problems.

API publishes Recommended Practice 45,'° which contains information on the applications
of oilfield-water analyses and gives recommendations for the proper collection, preservation,
and labeling of oilfield-water samples. RP 45 also gives a description of numerous analytical
methods and recommends appropriate reporting formats for analytical results. This publication
should be consulted for more information about specific analytical methods and any special
sampling or storage requirements linked to such methods. Numerous analytical methods are
also available as ASTM standards.!!

When sampling and analysis are part of a long-term monitoring program, such as those
required by government authorities or those forming part of custody-transfer contracts, the meth-
ods defined in the appropriate documentation or contracts must be followed as closely as
possible, even if this constitutes differences with the procedures or recommendations in this
text or with the industry standards cited here. However, the guidelines provided here should be
taken into consideration before contracts are drafted or when existing contracts are renewed.

If samples are to be collected for the measurement of trace components, biological species,
or reactive chemicals that are likely to be affected by storage, container material, or ambient
conditions, on-site analyses should be considered. API RP 45 lists the following measurements
that should be carried out immediately in the field after sampling and filtering oilfield waters:
(1) pH, (2) temperature, (3) alkalinity, (4) dissolved oxygen, (5) CO,, (6) H,S, and (7) total
and soluble iron. Other measurements or preparations to be performed in the field include (8)
turbidity on an unfiltered sample, (9) total suspended solids with at least primary filtration and
washing performed in the field, (10) bacteria with filtering and/or culturing in the field, and
incubation and counting performed in the laboratory. Biological determinations are outside the
scope of this document but are covered in detail elsewhere.'>!?
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Fig. 4.7—Water-sampling method to avoid air.

For many other analyses, special preparation and preservation measures are required to be
performed in the field. This can involve acidification with various acids, addition of other chem-
icals, refrigeration [ideally 39°F (4°C)], and storage in the dark. If there is any uncertainty
concerning sample storage conditions, the laboratory that will perform the analyses should be
consulted for advice. If no information is available, it is advisable to keep samples cool and
out of the sunlight.

For a DST that does not flow to the surface, great care must be taken to determine if the
test has flowed sufficient fluid to allow representative reservoir brine into the tool. The best
practice is to sample the water after each stand of pipe is removed. Normally, the total-dissolved-
solids content will increase downward and become constant when pure formation water is
obtained. A test that flows water will give even higher assurance of an uncontaminated sample.
If only one DST water sample is taken for analysis, it should be taken just above the tool
because this is the last water to enter the tool and is least likely to show contamination.

Surface sampling is commonly used to obtain a sample of formation water from a sampling
valve at the wellhead or another sampling point. A plastic or rubber tube can be used to trans-
fer the sample from the sample valve into the container. Fig. 4.7 shows a simple method of
excluding air when sampling water in this way. After purging the sample valve and line to
remove any foreign material, water is delivered to the bottom of the sample bottle, which is
placed in a large, much taller beaker until the water fills the beaker and overflows. Then, the
cap is immersed in the beaker and inverted to eliminate air bubbles before removing the deliv-
ery tube and closing the sample bottle under water. This technique cannot be used when acid
or other preservatives must be added to the sample.

An alternative sampling technique for use when a clean source of water is available is
shown in Fig. 4.8. Here, once the sample point and line have been purged, the sample is col-
lected in the sample cylinder by closing the two valves. This system should not be used to
collect pressurized water samples.

In many producing wells, it may be impossible to locate a suitable sampling point free
from oil or gas, such as for pumping wellheads in which the brine will surge out in heads and
be mixed with oil. In such situations, a larger container equipped with a sampling tap near the
bottom can be used as a surge tank or oil/water separator. Such a device is shown in Fig. 4.9.
This method will serve to obtain samples that are relatively oil-free.
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Fig. 4.8—An alternative method for collecting air-free water samples.

Fig. 4.9—Oil/water separator and water-sample filtering system.

For some measurements, it is necessary to obtain a field-filtered sample. The filtering sys-
tem shown in Fig. 4.9 is simple and economical and can be used for various applications. It
consists of a 50-mL disposable syringe, two check valves, and an inline disk-filter holder. The
filter holder takes size 47-mm-diameter, 0.45-um pore-size filters, with the option of including
various prefilters. The syringe fill line should be connected to a source of brine free from oil
or gas, either directly to a suitable sample point or to the brine outlet from a suitable separa-
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tion vessel, as shown in Fig. 4.9. The brine is drawn through the inlet line into the syringe and
then forced through the filter into the collection bottle. The check valves allow the syringe to
be used as a pump for filling the collection bottle without needing to open and close valves. If
the filter becomes clogged, it can be replaced in a few minutes. Approximately 2 minutes are
required to collect 250 mL of sample. Usually two samples are taken, with the one being acidi-
fied to pH 3 or less with concentrated hydrochloric or nitric acid. The system can be cleaned
easily or flushed with brine to prevent contamination.

If pressurized water samples are required, most of the procedures described previously for
pressurized hydrocarbon fluids can be used, including downhole sampling. Piston sample bot-
tles are essential because the sample cannot be collected by the displacement of water or brine.

4.9 Sampling-Data Measurement and Recording

In the same way that laboratory measurements require representative samples to be meaningful,
the samples themselves must be supported by accurate data to provide a unique identification
and to record all important production and sampling parameters that will be used in checking
the sample and (in many cases) in determining the exact measurements that will be performed.
This section reviews the importance of data measurement and provides guidelines for recording
and validating the necessary data.

Provided that flowmeters and pressure gauges are properly sized for a measurement, so that
readings are not made at the low end of the measurement range, random errors are generally
small. Systematic errors are a major concern, however, for all measurements, deriving from
sensor malfunction, poor (or lack of) calibration, and human error in general; the latter item
can include both errors in recording and reporting data and those deriving from the use of
computer-based acquisition systems (e.g., entry of erroneous calibration data, incorrect sensor
connections, and even software bugs). Although systematic errors are comparatively rare, their
magnitude can be significant. In fact, on some occasions, errors are identified only when mea-
sured values are so large that the values become ridiculous.

The GOR is considered to be the most important measurement for separator samples, and it
is dependent on errors in both the gas flow rate and the oil flow rate, which are measured
separately. New techniques have seen limited application to reduce errors in GOR, such as the
injection of a standard marker chemical upstream of the separator and measurements of the
concentrations in the separated gas and liquid streams. Also, use of various carry-over measure-
ment techniques has been made, such as the isokinetic approach described briefly earlier.
However, significant improvements can be achieved simply by proper sizing, calibration, and
recording.

In production testing, gas flow rate itself is widely measured by the orifice meter. This
system has been in use for a long time, but new standards have been issued more recently that
improve gas rate calculations.'* The orifice meter relies on a range of coefficients or factors to
calculate the flow rate from the differential pressure measured across the orifice. Many of these
factors are derived from on-site measurements of the gas. The measurement accuracy can be
improved by ensuring that the orifice plate has been sized correctly for the flow so that it falls
within 30 to 70% of full range (or higher, if there is no chance of going off scale). Likely
additional sources of error come from what could be considered mechanical factors, such as
the physical condition of the orifice plate itself; waxy deposits or damage will change the flow
performance and can lead to significant errors. An obvious but commonly overlooked potential
error concerns not the condition of the orifice, but the recording of the orifice size. An over-
sight here can have serious implications not only for fluid analysis but for well-test interpreta-
tion. Errors in the differential-pressure measurement derive primarily from poor calibration of
the recording instrument or from liquid buildup in the lines that have not been purged. The
orifice meter pressure-base factor is a common source of errors because variations do exist
between the reference pressure and temperature used for gas measurements (e.g., a variation
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between 100 kPa and 14.7 psia is an increase of 1.4%). Thus, it is essential that reference
conditions are quoted correctly. The actual source of gas gravity and supercompressibility fac-
tors (F, and F),,) is usually not important for fluid studies because accurate values are common-
ly calculated in the laboratory on the basis of compositional analysis of the gas sample, but it
is necessary to know exactly which values were used to correct gas flow rate to the new val-
ues. To ensure the highest accuracy in gas flow-rate measurement, a check should be made
that all the meter factors are determined and used correctly. Approximate flow rates can be
derived from the choke setting, and a comparison should identify any major error in the orifice
meter calculation.

Condensate or oil flow rates are normally measured by a positive displacement meter that
is placed in the outlet line from the separator upstream of the flow control valve. The most
common error derives from incomplete reporting of the measurement conditions for the oil
rate, especially whether the oil flow is measured at separator or at stock-tank conditions, and
the meter factors and shrinkage values that should be applied if stock-tank rates are reported.
The most likely causes of error in the measurement itself are poor calibration, worn seals (al-
lowing liquid to bypass the measuring element), or the release of gas leading to high-volume,
two-phase measurement. The latter problem can be treated by the installation of a “gas elimina-
tor,” which is effectively a tiny separator before the meter. Gas breakout in the meter may be
signaled by sudden flow-rate fluctuations, whereas stable foams with some oils (occasionally
referred to as “carry-under”) may be less obvious and may require antifoaming agents to over-
come. Any water and sediment in the oil flow should be determined by the BS&W measure-
ment and corrected for accordingly. It is good practice to size the flowmeter according to the
expected flow rate, as recommended for gas flows. Flow rates also should be checked by gaug-
ing the stock tank regularly.

BS&W measurement is performed by centrifuging a sample of liquid mixed with solvent;
although relative error in the measurement can be very important at low BS&W, measurement
accuracy is generally adequate for the purposes of flow-rate correction. Of more concern is
whether the sample used for the measurement is representative, so samples should be taken
from the top and bottom of the liquid flowline, and a comparison should be made.

The shrinkage factor, used to relate separator-liquid volumes to stock-tank conditions, de-
pends on a differential liberation of gas and may give different values from the true flash
process as separator liquid enters the tank stage. In normal circumstances, it is thus much bet-
ter to rely on a separator flow rate measured with a calibrated meter than to use the tank flow
rate corrected according to the shrinkage tester. In the worst case, with no reliable liquid flow
rates at separator conditions, an experimental shrinkage factor must be determined in the labo-
ratory and used with the average tank flow rate to obtain the necessary rate.

Further details of proper oil- and gas-measurement practices are available elsewhere in this
Handbook and in other sources.!> Table 4.5 provides a checklist that can ensure that surface-
measurement data are as reliable as possible. Other surface measurements should be validated
in similar fashion; for example, wellhead pressures should be measured with a dead-weight
tester or with a pressure gauge that has been calibrated recently.

Among the downhole measurements, it is the reservoir temperature that is the most impor-
tant for fluid studies because this is the temperature at which reservoir-fluid-property measure-
ments will be made. In addition, pressures, gradients (density, pressure, and temperature), and,
indeed, the depth at which these measurements are made are all important in validating sam-
ples and in interpreting laboratory measurements. Downhole temperature and pressure gauges
should be calibrated, under well conditions if possible, and adequate time allowed for tempera-
tures to stabilize if fluid production or injection has influenced downhole temperatures. Good
knowledge of temperatures in a reservoir may only be available once measurements have been
made in several wells.
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The data listed in Tables 4.6 and 4.7 must be considered essential if fluid samples are to
be studied properly in the laboratory. These data are the absolute minimum needed for valid
laboratory studies. Every attempt should be made to provide all the information requested on
sampling sheets. An independent check at the wellsite is advisable to ensure that sampling per-
sonnel have achieved this need. Many additional measurements are of value in sample valida-
tion, and measurement trends with time are important in monitoring well behavior (such as
during cleanup or when evaluating the effect of changes in production). To enable a proper
check to be made of well conditioning, separator stability, and data recorded on the sampling
sheets, it is recommended that a full copy of the well-test report (or records of production data
for production facilities) be sent to the laboratory that will be working on the samples.

Water can be produced in a surface separator—either from liquid water in the zone being
tested or by condensation from water vapor in the produced gas, or possibly from both—and
can affect measurement accuracy. The effect of water on gas gravity (and, thus, the gas flow
rate) is currently ignored because it is not routinely measured either in the field or in the labo-
ratory. In most cases, this is an acceptable approach, but in separators operating at high
temperatures and low pressures, the water content of the gas stream can reach significant pro-
portions (for further details, refer to the nomogram!> “Water content of hydrocarbon gas”).
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Water production can have more serious consequences if separator-liquid flow rates are not
properly corrected for BS&W measurements.

The data in Table 4.8 should be recorded for the sampling of water from a well. Similar
data should be recorded for water samples taken from other installations or facilities.

4.10 Quality Control of Samples

4.10.1 Selecting Samples for Study. This is an area in which there have been significant im-
provements in recent years, with significantly more details of quality-control tests being
reported by laboratories, yet only limited information has been published on the aspect of fluid
sampling.'® This section highlights the principal controls that should be performed and gives
guidelines for selecting which samples are most likely to be representative. Newer concerns
involve the quality of formation-test samples from wells drilled with OBM. Because of the
wide range of fluids and sampling conditions, comparison of duplicate (or, more correctly, repli-
cate) samples is generally the best method of evaluating whether the sample is representative.

The primary objectives must be selection of a fluid that is most representative of the reser-
voir fluid and identification of any serious quality problems related to the samples or the
sampling data; these problems must be communicated to the client before proceeding with the
fluid study.

Poor sample quality can arise from such sources as sampling nonrepresentative fluid, hu-
man error during sampling or field transfers, contaminated sample containers, and leaks during
shipment.

For separator-gas samples, the quality checks that should be made when the sample bottles
have been heated to, or slightly above, separator temperature are (1) determination of opening
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pressure; (2) compositional analysis, including air content; and (3) determination of residual
liquids, possibly from carry-over.

Separator liquids transported with a gas cap must be homogenized by pressurization and
agitation. In this instance, the controls that must be performed are (1) determination of initial
opening pressure; (2) determination of bubblepoint pressure at ambient or (preferably) separator
temperature; (3) a check for presence of sediments or an aqueous phase; and, when feasible,
(4) flash separation to give GOR, shrinkage, gas gravity, or composition.

Downhole samples should be checked in the same way, except that bubblepoint pressure
can be measured at either ambient or reservoir temperature. Measurement at reservoir tempera-
ture takes longer but is preferable for comparisons with downhole static or flowing pressures.
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Ambient bubblepoint-pressure estimates are often available from field transfers, but they should
be used only as a guide because thorough mixing of the sample may not be achieved during
recompression, and temperatures may be unstable. In downhole samples of a highly volatile oil
or a gas condensate, no “break point” will be seen on the recompression curve, and a satura-
tion pressure must be determined in a windowed PVT cell.

The following are parameters that should be used, in order of preference, when a sample is
selected on the basis of sample quality alone (i.e., when samples are essentially duplicates col-
lected at the same time and under the same conditions): (1) an adequate sample volume or
pressure; (2) a downhole sample bubblepoint pressure lower than downhole pressure during
sampling; (3) contamination levels lower than, or similar to, duplicate samples; (4) bottle open-
ing pressures that agree with sampling data (i.e., leaks are unlikely); (5) surface sample
bubblepoint pressures that agree with separator data; (6) a close correlation between laboratory
measurements on duplicate samples; and (7) one sample that represents “average” properties of
duplicates.

For gas and oil samples collected from a separator, if at all possible, production test reports
or other documentation should be studied in addition to the sampling sheets that normally ac-
company samples because a high proportion of sampling sheets contain inconsistencies. Data
should be studied with the following objectives: (1) to identify what well or plant conditioning
has been performed; (2) to look for the stability of gas and liquid rates when the surface sam-
ples were taken and, possibly, to calculate averages at the time the samples were taken; (3) to
ensure that the GOR is based on oil flow rate at separator conditions; (4) to determine which
gas gravity and nonideality (Z) factors were used, as well as the reference pressure and temper-
ature; and (5) to verify reservoir temperature and static pressure.

If all samples meet the quality criteria, the choice can be made on the basis of field data
alone, although the selection tends to be a compromise in some cases. Both operator and labo-
ratory personnel must be involved in these choices. Primary emphasis should be given to (1)
samples collected after proper well conditioning, (2) surface oil and gas samples taken simulta-
neously or close together, (3) a downhole sample that was collected above its bubblepoint that
compares well with the bubblepoint pressure for duplicate samples, (4) a good downhole sam-
ple in preference to a recombined surface sample, and (5) a recombined surface sample if
doubt exists about the quality of downhole samples. In cases in which downhole samples have
been backed up by surface samples (an excellent practice), creation of a recombined surface
sample from the best surface samples might be worthwhile, especially if there are only one or
two downhole samples that appear to be valid. This allows comparison of the recombined sur-
face sample with the downhole samples. In fact, in important wells, complete analyses of the
two types of reservoir-fluid samples might be useful. Such an approach can give a high level
of confidence in the data and could provide a crosscheck of separator GORs.

All validation data and analyses do not need to be included in the report when laboratory
measurements are reported, but it is good practice to use a minimum of one page to explain
sample selection and to detail any quality or field-data problems. This information can be of
major value to engineers using the measured data.

Wells drilled with OBM are particularly problematic for formation-test-tool sample quality,
and many research and development (R&D) centers worldwide are working on correction tech-
niques. Figs. 4.10 and 4.11 demonstrate the sort of contamination that can occur; because the
base oil is miscible with reservoir oil, it is impossible to remove this contamination from sam-
ples. It is essential to perform “fingerprint”-type gas chromatography (GC) analyses as a
minimum quality control on formation-test samples to provide a qualitative indication of con-
tamination, and even on production-test samples for which thorough cleanup may not have
been achieved.
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Fig. 4.10—Chromatogram showing broad OBM peak.

Fig. 4.11—Chromatogram showing narrow OBM peak.

Special correction techniques are increasingly used within the oil industry, and because
these techniques vary between organizations and laboratories, sample selection should be done
only after considering which method to use. Many companies are forced to use oil-based
drilling muds to manage drilling costs in water-sensitive formations, and the added expense of
handling contaminated samples (and the risk associated with poorer-quality data) must be used
to evaluate the overall economic balance.

For water samples, comparisons of duplicates also give a good indication of quality. Where
fluid concentration may be stabilizing (e.g., at the end of a cleanup), sequential samples should
be used to look for compositional trends and thus to help decide if representative fluid has
been sampled. For some sampling procedures involving trapping or precipitation of particular
components, it is highly recommended to use blank “samples,” which undergo exactly the
same treatment and storage as the actual sample and provide a reference measurement to assist
with the interpretation of laboratory measurements. More details are available in API RP 45.1°



Chapter 4—FIluid Sampling 1-209

Although this chapter concentrates on sampling rather than on analytical measurements, it
is worth providing simple quality-control guidelines for GC here. This is because of the impor-
tance of GC analytical techniques both in the quality-control procedures described above and,
increasingly, in on-site measurements and because simple guidelines of the sort given in Table
4.9 are not widely reported.

4.10.2 Selecting Fluid Samples for Storage. Decisions concerning sample storage involve the
following constraints: (1) discarding samples may prevent future measurements or checking of
dubious results; (2) long-term storage of pressurized samples may incur very high rental costs;
(3) sample-bottle purchase involves higher “short-term” cost (instead of long-term rental
charges) but may sidestep the issue of deciding on a long-term storage policy; and (4) long-
term storage requires a safe storage area and a catalog to be maintained (subcontracting is an
option to be considered by producers).

One policy could be to keep duplicate samples for a short length of time on a rental basis
and then to transfer minimum sample quantities into bottles purchased specifically for long-
term storage. In all cases, it is advisable to budget for long-term storage within the project costs.

A good approach is for the laboratory report to recommend which samples should be kept
or discarded on the basis of the quality checks and the study itself. An initial selection can be
made at the end of the study, or even at the quality-control stage, if useless samples are identi-
fied. Then, the “customer” can respond on the basis of this information and the other needs of
the project.

Further measurements may be warranted for a number of reasons: doubts about initial mea-
surements; measurements required at different temperature or pressure conditions; advanced
PVT measurements that are deemed necessary (interfacial tension, phase diagram, etc.); new
analytical techniques that are developed before the reservoir is developed; or an asset purchase
or joint venture that changes needs or requires independent measurements.

Because of the complexity of the heavy components in reservoir fluids, it is impossible to
make an adequate synthetic mixture based on the liquid composition determined. It is thus
good practice to store at least 1L of stock-tank liquid. This can be stored cheaply in a low-
pressure closed container, but it also could be blended with a synthetic gas mixture (based on
separator-gas and stock-tank gas analyses) to recreate a sample close to the original fluid com-
position, if further work was eventually required on the reservoir fluid itself.
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A small volume (e.g., 100 cm?) of separator gas should be stored under pressure in case more-
accurate or new analytical measurements are required on the gas later. For a downhole sample,
a flash separation can be made at a convenient pressure to generate a suitable gas sample for
storage.

Note that the quantities specified above are recommended in the case that no further labora-
tory measurements are anticipated. If further work appears likely, appropriate quantities of
samples should be stored in addition to these minimum volumes.

This work recommends that a suitable sample-storage policy be identified and implemented
in operating companies.

4.11 Hazards

No text covering fluid sampling would be complete without reference to the numerous hazards
that must be considered when establishing safe working practices and sampling programs. Like
many areas of the petroleum industry, if not managed properly, hazards can lead to equipment
damage or loss, personal injury, and even death. Common hazards include the following
(though this list is not exhaustive and may not cover unusual locations or special operating
practices).

Hydrogen Sulfide (H,S). This poisonous chemical is present in numerous hydrocarbon
reservoirs and can be present both in gas streams and dissolved in hydrocarbon liquids. Al-
though H,S is recognizable by its smell at the low parts per million (ppm) level, above
approximately 100 ppm the human nose becomes insensitive to the gas, and personnel could
easily be exposed to lethal levels of H,S (700 ppm can lead to instant death) if proper safety
equipment is not in use. Safety measures should range from automatic alarm systems, personal
monitors, and evacuation equipment to positive-pressure breathing systems, depending on the
exact nature of the risk.

High Pressures. Fluid sampling frequently involves pressures up to 10,000 psi (700 bar),
and even higher pressures are becoming increasingly common. Basic precautions should in-
volve careful checking that equipment has a working pressure rating compatible with the
maximum pressure that can be encountered at a sampling point (beware that flowing streams
can produce a “hammer” effect when valves are closed suddenly), routine wearing of eye pro-
tection, and releasing of pressure before tightening leaking connections and attaching the ends
of lines used to vent pressure.

Flammable Materials. Reservoir-fluid samples contain combustible hydrocarbons, so care
must be taken to eliminate all sources of ignition from areas in which samples are collected or
stored, especially where hydrocarbons are released during the purging of lines. Equipment must
never be pressurized with oxygen or air (e.g., to clear blockages), as this can result in autoigni-
tion of heavy hydrocarbons (the “diesel” effect).

Solvents. Cleaning agents may contain dangerous compounds such as chlorinated solvents,
and indeed, produced fluids may contain benzene. Breathing of vapors and skin contact with
solvents should be avoided as much as possible. Solvents should be used as efficiently as possi-
ble, and all waste materials should be stored in closed containers before proper disposal.

Transport and Storage. Physical shocks are common during transport, so sample contain-
ers should be shipped with connecting ports plugged and exposed valves protected by endcaps.
Liquid-filled containers are at risk of developing high pressures when heated; the best protec-
tion is to collect samples so that the liquid is in two-phase condition, with a gas cap represent-
ing approximately 10% of the capacity, or to use sample containers with a special separate gas
cap. Rupture disks can be used to provide similar protection, but there is an increased risk of
sample loss and venting of hazardous material.

Other Hazards. Examples of other dangers that sampling personnel must be aware of in-
clude offshore operations (special survival training is available), lack of oxygen in enclosed
areas where large volumes of gases can be vented (notably nitrogen, but other gases such as
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hydrocarbons are an equal danger), and the toxicity of mercury, still used in some sampling
operations.

Personnel who are not trained to work safely in the presence of these or other hazards must
not undertake fluid-sampling activities. Assistance in properly managing all hazards should be
obtained from qualified safety specialists.

4.12 Special Topics in Fluid Sampling

4.12.1 Sampling of Crude-Oil Emulsions. Samples of emulsions may be required for several
reasons, including verifying crude specifications, evaluating the performance of emulsion-treat-
ing systems, or for laboratory testing such as choice of demulsifiers and optimum concentra-
tion. Emulsions frequently must be sampled under pressure, and special procedures must be
used to obtain representative samples. For crude specification testing, it is not important to
maintain the integrity of the water droplets; however, the sample location point may be critical.
In general, samples should not be withdrawn from the bottom of the pipe or vessel, where free
water may accumulate, affecting the BS&W reading and, thus, the validity of the sample. In
addition, the sample should not be withdrawn from the top of the vessel or pipe, as it is likely
to contain primarily oil. The best position in the pipe to take an emulsion sample is from the
side at approximately midheight, preferably with a sampling probe (often known as a “quill”).
Choosing a sampling point at which there is turbulence and high fluid velocity in the pipe may
also avoid problems caused by segregation and ensure that the sample is homogeneous.

As for all sampling activities, every effort should be made to obtain representative samples.
When sampling from pressurized lines and vessels, care should be taken to ensure that emulsi-
fication does not occur during the sampling process itself. For example, samples obtained at
the wellhead or production headers may show a high percentage of emulsion (as a consequence
of the sampling as the sample was depressurized into the sample container), whereas the actual
oil and water inside the piping may or may not be in the form of an emulsion. Also, emulsions
exhibit a wide range of stability, so samples of emulsions collected in the field may separate
partially or even totally during shipment to the laboratory.

The best sampling procedure to use for samples from pressurized sources, without further
emulsification of the liquids, is the technique based on a floating-piston cylinder, as described
in Section 4.6.5. A setup similar to that in Fig. 4.6 is used, with the hydraulic section of the
cylinder filled with a pressurizing fluid (e.g., a glycol/water mixture or a synthetic oil) and the
top of the cylinder evacuated. Purging of the sample line can be made but should be carried
out at a bleed rate. The sample collection should be performed slowly to obtain the sample
with a minimum pressure drop between the cylinder and the sampling point. Alternative meth-
ods use a simple sample cylinder (without any floating piston), which is initially filled with
water (or mercury). Once the pressurized sample is captured, the cylinder can be depressurized,
if required, by removing further quantities of hydraulic fluid extremely slowly with little effect
on the sample.

In situations in which sampling into a pressurized container is not possible, the best method
to take an emulsion sample is to bleed the sample line very slowly into the sample container.
The idea is to minimize shear and reduce emulsification that may be caused by the sampling
procedures. Emulsions are covered in more detail elsewhere in this Handbook.

4.12.2 Waxy and Asphaltenic Fluids. Great care should be taken in sampling fluids that have
potential for the precipitation of wax or asphaltenes because loss of a solid or flocculated
phase during sampling or handling will produce fluids that are no longer representative. Be-
cause these tendencies may not be recognized until the samples are being studied, the same
precautions are advisable for all fluids that have not been characterized previously in detail.
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Asphaltene problems in particular are difficult to predict owing to a poor correlation be-
tween asphaltene concentration and flocculation tendency. Because of the difficulty of homoge-
nizing fluids containing flocculated asphaltenes, it is highly recommended that downhole
samples be collected using single-phase samplers with the pressure raised well above reservoir
pressure by the nitrogen charge. Separator oils and atmospheric oils generally suffer from limit-
ed asphaltene deposition problems because they contain very few of the light hydrocarbons that
contribute to flocculation.

Paraffinic or waxy crude oils can be extremely difficult to sample, with separator liquids
occasionally solidifying in sampling lines and equipment, and the use of heated, short, large-
diameter sampling lines is recommended. At downhole temperatures, sampling is generally
easier, and limited availability of heated sampling tools exists. Single-phase sampling tools can
be used, especially if asphaltene and wax problems may occur, but pressure maintenance alone
will not prevent wax precipitation on cooling, as this is strongly dependent on temperature.
Though rarer, gas/condensate reservoirs can also produce liquids that show wax-forming tenden-
cies, which require special handling procedures.

Sample bottles containing movable mixing devices are recommended in all these cases, as
returning samples to original sampling conditions and agitating for a lengthy period (e.g.,
overnight) gives the highest chance of recovering representative samples from samplers or sam-
pling cylinders.

4.12.3 On-Site Measurements. It is worth giving some details of common on-site measure-
ments because they must be performed on representative samples or sample streams and are
frequently included in sampling programs.

The most common on-site gas analysis method is the “length-of-stain” detector tubes (often
called “sniffer” tubes or Drager tubes, after one of the suppliers) used primarily for H,S but
available for CO, and a wide range of other gases and vapors. This method is relatively simple
to use, and principal errors derive from incorrect use of response factors or stroke counts. The
ASTM has a number of standards that apply to this method,'”"° and all propose a sampling
system based on a modified polythene wash bottle (or equivalent setup) to ensure that measure-
ments are performed on a representative sample stream. Flexible tubing is connected from a
control valve at the sample point to the wash-bottle delivery tube, and the screw cap is re-
moved (or perforated). Then, the control valve is opened slightly to allow gas to flow into the
bottom of the wash bottle, which purges air out of the top. After purging for at least 3 min-
utes, the length-of-stain detector can be inserted through the top of the wash bottle and the
pump operated to perform the measurement. This arrangement ensures that the gas sampled is
at atmospheric pressure. Detector tubes have a limited life and should not be used beyond the
date limit. Care must be taken to avoid contacting any liquids with the end of the tube. An
alternative approach used a gas bag, which must be made from an inert material and purged
completely at least five times immediately before the measurement. In some circumstances, gas
concentrations above the detector-tube limit can be estimated by using fewer or fractional
pump strokes, but such practices must be recorded clearly to help interpret measurements. For
reactive species like H,S, there is significant justification for making on-site concentration mea-
surements by two independent techniques, as this provides on-site quality assurance.?’

Portable gas chromatographs are becoming more common at the wellsite, and they bring
the advantage of early characterization of gas composition, together with an identification of
most nonhydrocarbons present (depending on the carrier gas used). However, such instruments
are accurate only when operated by trained personnel and when properly calibrated. Also, the
additional cost of the service must be justified, though this could occur in the following cases:
(1) high nitrogen or helium is anticipated, (2) early decisions must be made on the basis of gas
sales value, (3) variable nonhydrocarbon concentrations occur within a field and will contribute
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to property mapping or be used to determine if fluid sampling is required, or (4) sample trans-
port logistics mean that laboratory analyses may take a very long time.

The possibility of sulfate-reducing bacteria (SRB) contaminating completion fluids and
even souring the reservoir itself represents a significant risk, and tests on site or sampling for
SRB are recommended to identify and address potential problems. Tests that give a negative
result can be particularly helpful in identifying the origin of SRB development later in the life
of a field.

Many additional analytical measurements can now be performed on site because there is a
wide variety of portable chemical test kits available, especially for water analysis. However,
suitably trained operators are essential.

4.12.4 Drilling-Mud Gas. During drilling operations, returning drilling mud is commonly mon-
itored for the presence of hydrocarbons, both for formation-evaluation purposes and for safety
concerns. Generally, hydrocarbons are extracted from the mud to provide an air sample contain-
ing hydrocarbons, and as the extraction technique is dependent on equipment design and
installation, measured compositions are rarely quantitatively representative of the concentrations
in the drilling mud. This limitation is commonly accounted for by the use of hydrocarbon ra-
tios when interpreting drilling-mud hydrocarbon analyses and logs, but it has been shown?! that
effective quantitative measurements can be obtained with careful location of the mud-sampling
point, the use of a special extraction device, and care to account for losses of hydrocarbon gas
from the return line before the mud-sampling point. Mud logging is covered in detail elsewhere
in this Handbook.

4.12.5 Water-Cut Measurements. Downhole sampling can be used as a means to measure
water cut in producing oil wells, especially when there are no separation facilities or suitable
measuring instruments at the wellsite or when measurements with depth are required as an al-
ternative to (or validation for) production logs. In these cases, the well should be flowing at
normal producing conditions, unless the purpose of the sampling is to investigate the water cut
at other production conditions. As in all cases in which sampling is attempted from two-phase
flow, there is the potential for preferential collection of one of the phases; this is especially
likely if the two phases are not well distributed. It may be advisable to set the sampler to
collect the sample in the shortest time to minimize any segregation. Care also should be taken
in high-angle well sections, where the sampler will lie in the lowest part and is likely to sam-
ple water preferentially.

For a measurement of total water cut, it is advisable to sample from a depth a moderate
distance [e.g., 20 ft (6 m)] above the top of the perforated interval. Also, it is good practice to
take a number of separate samples under identical flow conditions to allow evaluation of the
repeatability of water-cut measurements. Good agreement between replicate samples, although
not absolute proof, gives high confidence in the reliability of the measurements, whereas signif-
icant variation is a clear sign of unrepresentative sampling or of variable water cut in the fluids
entering the wellbore. Sampling from a range of depths both above and within the perforated
interval in a well can provide more-detailed information on water production, but it does not
give production-rate information on its own.

Volumetric measurement of water cut should ideally be made on site so that repeat measure-
ments can be made as required. If emulsion is present in the sampled fluid, this should be
given time to break, or suitable chemicals should be used to demulsify the sample before the
definitive water-cut measurement.

4.13 Conclusions
Optimizing costs in all petroleum-industry activities continues to have a major effect on sam-
pling operations, with competition between production testing and formation-test-tool opera-
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tions leading to widespread industry acceptance of lower-quality fluid samples from the latter.
A key challenge at present is to get better-quality formation-test-tool samples not simply by
advanced tool capability but by better planning and preparation for the test. Increasing efforts
to obtain reservoir information from short well cleanups is also putting pressure on fluid-sam-
pling operations, but in some cases (such as on-site measurements), this change in emphasis
may provide opportunities for measurements that otherwise would not be available.

Multiphase metering is likely to have an increasing impact on sampling operations because
the accuracy of flow-rate measurement is seen to be improving, and the economic benefits of
avoiding the use of separators will be major. However, even with significant development of
special sampling approaches (such as isokinetic sampling), it seems unlikely that the same qual-
ity of samples will be available as with traditional separator methods.

Among the major developments in the past 10 to 15 years is the progress toward the world-
wide elimination of the use of mercury in fluid-sampling operations, producing significant
improvements in personnel safety and environmental protection. Efforts must continue to
achieve better management of sampling programs and cost-efficient sample storage, despite the
difficult challenge of trying to assign monetary values to fluid samples and the measurements
made on them.

Specific technical developments that can be anticipated are a greater use of automatic surface-
sampling systems, introduction of equipment better designed to preserve reactive samples such
as fluids containing H,S, an increase in gas/condensate downhole sampling and in use of down-
hole sampler technology (such as heated chambers for sampling waxy fluids), and downhole
measurement of simplified composition and physical properties such as bubblepoint.

With the tremendous pace of the development and functionality of new downhole tools,
there is a need for speedy updating of industry standards documentation to allow broad dissem-
ination of new sampling knowledge and practices; however, it is clear that this is not a role
readily filled by traditional standards organizations such as API. Working groups and forums
involving service companies and operators may provide the best prospect of developing stan-
dards updates, which can be published in peer-reviewed petroleum engineering journals.

Nomenclature
F, = gas gravity meter factor defined as v/1/G
F,, = gas supercompressibility meter factor defined as /1/Z
G = gas gravity
P, = separator pressure
= critical temperature
T, = cricondentherm
Z = gas nonideality (or compressibility) factor

References

1. Moffatt, B.J. and Williams, J.M.: “Identifying and Meeting the Key Needs for Reservoir Fluid
Properties: A Multi-Disciplinary Approach,” paper SPE 49067 prepared for presentation at the
1998 SPE Annual Technical Conference and Exhibition, New Orleans, 27-30 September.

2. Williams, J.M.: “Fluid Sampling Under Adverse Conditions,” Revue de I’Institut Frangais du
Petrole (May—June 1998) 53, No. 3, 355.

3. Standing, M.B.: “Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems,” SPE,
Richardson, Texas (1951) 10-19.

4. McCain, W.D. Jr. and Alexander, R.A.: “Sampling Gas-Condensate Wells,” SPERE (August
1992) 358; Trans., AIME, 293.

5. Turner, R.G., Hubbard, M.G., and Dukler, A.E.: “Analysis and Prediction of Minimum Flow Rate
for the Continuous Removal of Liquids from Gas Wells,” Trans., AIME (1969) 246, 1475.



Chapter 4—FIluid Sampling 1-215

11.

12.
13.

14.

15.
16.
17.

18.

19.

20.

21.

RP 44, Recommended Practice for Sampling Petroleum Reservoir Fluids, second edition, API,
Washington, DC (2003).

RP 44, Recommended Practice for Sampling Petroleum Reservoir Fluids, first edition, API,
Washington, DC (1966).

Hy-Billiot, J. et al.: “Getting the Best From Formation Tester Sampling,” paper SPE 77771
presented at the 2002 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 29
September—2 October.

Manual of Petroleum Measurement Standards, AP1, Washington, DC (1974—present).

RP 45, Recommended Practice for Analysis of Oil-Field Waters, third edition, API, Washington,
DC (1998).

“Water and Environmental Technology,” Section 11, Annual Book of ASTM Standards,
American Soc. for Testing and Materials, West Conshohocken, Pennsylvania (2002).
TM0194-94, “Field Monitoring of Bacterial Growth in Oilfield Systems,” NACE Intl., Houston.
RP 38, Recommended Practice for Biological Analysis of Subsurface Injection Waters, third
edition, API, Washington, DC (1975).

Teyssandier, R.G. and Beaty, R.: “New Orifice Meter Standards Improve Gas Calculations,” Oil
& Gas J. (11 January 1993) 40.

Engineering Data Book, Gas Processors Suppliers Assn., Tulsa (1987) Vol. II, Fig. 20-3.
Williams, J.M.: “Getting the Best out of Fluid Samples,” JPT (September 1994) 752.

“Standard Test Method for Hydrogen Sulfide in Natural Gas Using Length-of-Stain Detector
Tubes,” D-4810, American Soc. for Testing and Materials, West Conshohocken, Pennsylvania
(June 1988).

“Standard Test Method for Carbon Dioxide in Natural Gas Using Length-of-Stain Detector
Tubes,” D-4984, American Soc. for Testing and Materials, West Conshohocken, Pennsylvania
(November 1989).

“Standard Test Method for Water Vapor in Natural Gas Using Length-of-Stain Detector Tubes,”
D-4888, American Soc. for Testing and Materials, West Conshohocken, Pennsylvania (February
1989).

Williams, J.M.: “Getting Reliable On-Site H,S and CO, Concentrations for Anti-Corrosion
Measures in Gas Wells,” paper SPE 81495 presented at the 2003 SPE Middle East Oil Show and
Conference, Bahrain, 9-12 June.

Roberts, G.L., Kelessidis, V.C., and Williams, J.M.: “New System Provides Continuous
Quantitative Analysis of Gas Concentration in the Mud During Drilling,” SPEDE (September
1991) 219.

Sl Metric Conversion Factors

°API 141.5/(131.5+°API) =g/em?

bar x 1.0* E+05 =Pa
bbl x 1.589 873 E-01 =m’

ft x 3.048% E-01 =m

ft2 x 2.831 685 E-02 =m?
°F (°F —32)/1.8 =°C
in? x 1.638 706 E+01 =cm?
psi x 6.894 757 E+00 =kPa

*Conversion factor is exact.
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Chapter 5

Gas Properties
Brian F. Towler, U. of Wyoming

5.1 Molecular Weight

Molecules of a particular chemical species are composed of groups of atoms that always com-
bine according to a specific formula. The chemical formula and the international atomic weight
table provide us with a scale for determining the weight ratios of all atoms combined in any
molecule. The molecular weight, M, of a molecule is simply the sum of all the atomic weights
of its constituent atoms. It follows, then, that the number of molecules in a given mass of
material is inversely proportional to its molecular weight. Therefore, when masses of different
materials have the same ratio as their molecular weights, the number of molecules present is
equal. For instance, 2 Ibm hydrogen contains the same number of molecules as 16 Ibm
methane. For this reason, it is convenient to define the unit “Ibm mol” as a mass of the materi-
al in pounds equal to its molecular weight. Similarly, a “g mol” is its mass in grams. One Ibm
mol or one g mol of any compound, therefore, represents a fixed number of molecules. This
number for the g mol was determined in 1998 by the U.S. Natl. Inst. of Standards and Technol-
ogy to be 6.02214199x10%3. The number of significant digits shown is the accuracy to which it
has been determined experimentally.

5.2 Ildeal Gas

The kinetic theory of gases postulates that a gas is composed of a large number of very small
discrete particles. These particles can be shown to be identified with molecules. For an ideal
gas, the volume of these particles is assumed to be so small that it is negligible compared with
the total volume occupied by the gas. It is assumed also that these particles or molecules have
neither attractive nor repulsive forces between them. The average energy of the particles or
molecules can be shown to be a function of temperature only. Thus, the kinetic energy, E, is
independent of molecule type or size. Because kinetic energy is related to mass and velocity by
E="%m?, it follows that small molecules (less mass) must travel faster than large molecules
(more mass) when both are at the same temperature. Molecules are considered to be moving in
all directions in a random manner as a result of frequent collisions with one another and with
the walls of the containing vessel. The collisions with the walls create the pressure exerted by
the gas. Thus, as the volume occupied by the gas is decreased, the collisions of the particles
with the walls are more frequent, and an increase in pressure results. It is a statement of
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Boyle’s law that this increase in pressure is inversely proportional to the change in volume at
constant temperature:

where p is the absolute pressure and V is the volume.

Further, if the temperature is increased, the velocity of the molecules and, therefore, the
energy with which they strike the walls of the containing vessel will be increased, resulting in
a rise in pressure. To maintain the pressure constant while heating a gas, the volume must be
increased in proportion to the change in absolute temperature. This is a statement of Charles’
law,

where T is the absolute temperature and p is constant.

From a historical viewpoint, the observations of Boyle and Charles in no small degree led
to the establishment of the kinetic theory of gases, rather than vice versa. It follows from this
discussion that, at zero degrees absolute, the kinetic energy of an ideal gas, as well as its vol-
ume and pressure, would be zero. This agrees with the definition of absolute zero, which is the
temperature at which all the molecules present have zero kinetic energy.

Because the kinetic energy of a molecule depends only on temperature, and not on size or
type of molecule, equal molecular quantities of different gases at the same pressure and temper-
ature would occupy equal volumes. The volume occupied by an ideal gas therefore depends on
three things: temperature, pressure, and number of molecules (moles) present. It does not de-
pend on the type of molecule present. The ideal-gas law, which is actually a combination of
Boyle’s and Charles’ laws, is a statement of this fact:

where p = pressure, V' = volume, n = number of moles, R = gas-law constant, and 7 = absolute
temperature.

The gas-law constant, R, is a proportionality constant that depends only on the units of p,
V, n, and T. Tables 5.1a through 5.1c present different values of R for the various units of
these parameters. The value of the gas constant is experimental, and more-accurate values are
reported occasionally. The values in Tables 5.1a through 5.1c are based on the values reported
by Moldover et al.! Their value was determined from measurements of the speed of sound in
argon as a function of pressure at the temperature of the triple point of water. Note that be-
cause pV has the units of energy, the value of R is typically given in units of energy per mole
per absolute temperature unit [e.g., the appropriate SI value for R is 8.31447 J/(g mol-K), and
the appropriate British gravitational (sometimes called the American customary units) value for
R is 1,545.35 ft-1bf/(Ib-mol°R)]. However, sometimes pressure and volume units are more ap-
propriate, such as R = 10.7316 (psia-ft*)/ (Ib mol-°R).

5.3 Critical Temperature and Pressure

Typical pressure/volume/temperature (PVT) relationships for a pure fluid are illustrated in Fig.
5.1. The curve segment B-C-D defines the limits of vapor/liquid coexistence, with B-C being
the bubblepoint curve of the liquid and C-D being the dewpoint curve of the vapor. Any com-
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bination of temperature, pressure, and volume above that line segment indicates that the fluid
exists in a single phase. At low temperatures and pressures, the properties of equilibrium va-
pors and liquids are extremely different (e.g., the density of a gas is low, while that of a liquid
is relatively high). As the pressure and temperature are increased along the coexistence curves,
liquid density, viscosity, and other properties generally decrease while vapor density and viscos-
ity generally increase. Thus, the difference in the physical properties of the coexisting phases
decreases. These changes continue as the temperature and pressure are raised until a point is
reached at which the properties of the equilibrium vapor and liquid become equal. The temper-
ature, pressure, and volume at this point are called the “critical” values for that species.
Location C on Fig. 5.1 is the critical point. The critical temperature and pressure are unique
values for each species and are useful in correlating physical properties. Critical constants for
some of the commonly occurring hydrocarbons and other components of natural gas can be
found in Table 5.2.

5.4 Specific Gravity (Relative Density)

The specific gravity of a gas, y, is the ratio of the density of the gas at standard pressure and
temperature to the density of air at the same standard pressure and temperature. The standard
temperature is usually 60°F, and the standard pressure is usually 14.696 psia. However, slightly
different standards are sometimes used in different locations and in different units. The ideal-
gas laws can be used to show that the specific gravity (ratio of densities) is also equal to the
ratio of the molecular weights. By convention, specific gravities of all gases at all pressures are
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usually set equal to the ratio of the molecular weight of the gas to that of air (28.967). Al-
though specific gravity is used throughout this chapter, this traditional term is not used under
the SI system; it has been replaced by “relative density.”

5.5 Mole Fraction and Apparent Molecular Weight of Gas Mixtures

The analysis of a gas mixture can be expressed in terms of a mole fraction, y,, of each compo-
nent, which is the ratio of the number of moles of a given component to the total number of
moles present. Analyses also can be expressed in terms of the volume, weight, or pressure
fraction of each component present. Under limited conditions, where gaseous mixtures conform
reasonably well to the ideal-gas laws, the mole fraction can be shown to be equal to the vol-
ume fraction but not to the weight fraction. The apparent molecular weight of a gas mixture is
equal to the sum of the mole fraction times the molecular weight of each component.

5.6 Specific Gravity of Gas Mixtures

The specific gravity (y,) of a gas mixture is the ratio of the density of the gas mixture to that
of air. It is measured easily at the wellhead in the field and therefore is used as an indication
of the composition of the gas. As mentioned earlier, the specific gravity of gas is proportional
to its molecular weight (M,) if it is measured at low pressures where gas behavior approaches
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ideality. Specific gravity also has been used to correlate other physical properties of natural
gases. To do this, it is necessary to assume that the analyses of gases vary regularly with their
gravities. Because this assumption is only an approximation and is known to do poorly for
gases with appreciable nonhydrocarbon content, it should be used only in the absence of a
complete analysis or of correlations based on a complete analysis of the gas.

5.7 Dalton’s Law

The partial pressure of a gas in a mixture of gases is defined as the pressure that the gas
would exert if it alone were present at the same temperature and volume as the mixture.
Dalton’s law states that the sum of the partial pressures of the gases in a mixture is equal to
the total pressure of the mixture. This law can be shown to be true if the ideal-gas laws apply.

5.8 Amagat’s Law

The partial volume of a gas in a mixture of gases is defined as the volume that the gas would
occupy if it alone were present at the same temperature and pressure as the mixture of the
gases. If the ideal-gas laws hold, then Amagat’s law (that the sum of the partial volumes is
equal to the total volume) also must be true.
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Fig. 5.1—A typical pressure/volume diagram for pure components.

5.9 Real Gases

At low pressures and relatively high temperatures, the volume of most gases is so large that
the volume of the molecules themselves may be neglected. Also, the distance between
molecules is so great that the presence of even fairly strong attractive or repulsive forces is not
sufficient to affect the behavior in the gas state. However, as the pressure is increased, the total
volume occupied by the gas becomes small enough that the volume of the molecules them-
selves is appreciable and must be considered. Also, under these conditions, the distance
between the molecules is decreased to the point at which the attractive or repulsive forces be-
tween the molecules become important. This behavior negates the assumptions required for ideal-
gas behavior, and serious errors are observed when comparing experimental volumes to those
calculated with the ideal-gas law. Consequently, a real-gas law was formulated (in terms of a
correction to the ideal-gas law) by use of a proportionality term.

5.10 Real-Gas Law

The volume of a real gas is usually less than what the volume of an ideal gas would be at the
same temperature and pressure; hence, a real gas is said to be supercompressible. The ratio of
the real volume to the ideal volume, which is a measure of the amount that the gas deviates
from perfect behavior, is called the supercompressibility factor, sometimes shortened to the com-
pressibility factor. It is also called the gas-deviation factor and given the symbol z. The gas-
deviation factor is by definition the ratio of the volume actually occupied by a gas at a given
pressure and temperature to the volume it would occupy if it behaved ideally, or:

_ Actual volume of gas at specified 7'and p
Ideal volume of gas at same 7 and p

Note that the numerator and denominator of Eq. 5.4 refer to the same mass. (This equation for
the z factor is also used for liquids.) Thus, the real-gas equation of state is written:
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The gas-deviation factor, z, is close to 1 at low pressures and high temperatures, which
means that the gas behaves as an ideal gas at these conditions. At standard or atmospheric
conditions, the gas z factor is always approximately 1. As the pressure increases, the z factor
first decreases to a minimum, which is approximately 0.27 for the critical temperature and criti-
cal pressure. For temperatures of 1.5 times the critical temperature, the minimum z factor is
approximately 0.77, and for temperatures of twice the critical temperature, the minimum z fac-
tor is 0.937. At high pressures, the z factor increases above 1, where the gas is no longer
supercompressible. At these conditions, the specific volume of the gas is becoming so small,
and the distance between molecules is much smaller, so that the density is more strongly affect-
ed by the volume occupied by the individual molecules. Hence, the z factor continues to
increase above unity as the pressure increases.

Tables of compressibility factors are available for most pure gases as functions of tempera-
ture and pressure. Compressibility factors for mixtures (or unknown pure compounds) are
measured easily in a Burnett’ apparatus or a variable-volume PVT equilibrium cell. The gas-
deviation factor, z, is determined by measuring the volume of a sample of the natural gas at a
specific pressure and temperature, then measuring the volume of the same quantity of gas at
atmospheric pressure and at a temperature sufficiently high so that the hydrocarbon mixture is
in the vapor phase. Tables of compressibility factors are available for most pure gases as func-
tions of temperature and pressure. Excellent correlations are also available for the calculation
of compressibility factors. For this reason, compressibility factors are no longer routinely mea-
sured on dry-gas mixtures or on most of the leaner wet gases. Rich-gas/condensate systems
require other equilibrium studies, and compressibility factors can be obtained routinely from
these data.

If the gas-deviation factor is not measured, it may be estimated from correlations. The cor-
relations depend on the pseudoreduced temperature and pressure, which in turn depend on the
pseudocritical temperature and pseudocritical pressure. The pseudocritical temperature and pseu-
docritical pressure normally can be defined most simply as the molal average critical tempera-
ture and pressure of the mixture components. Thus,

Ppe=2ViPe; and L (5.6)

where p,~= pseudocritical pressure of the gas mixture, 7,.= pseudocritical temperature of the
gas mixture, p,= critical pressure of component i in the gas mixture, 7,=critical temperature of
component i in the gas mixture, and y~=mole fraction of component i in the gas mixture. These
relations are known as Kay’s rule after W.B. Kay,* who first suggested their use.

The pseudocritical temperature and pressure are not the actual critical temperature and pres-
sure of the mixture but represent the values that must be used for the purpose of comparing
corresponding states of different gases on the z-factor chart (Fig 5.2). It has been found to
approximate the convergence of the lines of constant volume on a pressure/temperature diagram.

Sutton* found that Kay’s rules for the determination of pseudocritical properties did not
give accurate results for higher-molecular-weight mixtures of hydrocarbon gases. He found that
they resulted in errors in the z factor as high as 15%. Instead, Sutton* proposed a modification
of a method first proposed by Stewart et al’ Sutton’s* method is to first define and determine
the pseudocritical properties of the C,, fraction, then calculate the pseudocritical properties of
the mixture as follows:

| ch) 2( Tc)2
F. =~ e TRl 5.7
] 3(pcc7+ 3\ 7 e (.7



Chapter 5—Gas Properties 1-225

Fig. 5.2—Gas-deviation-factor chart for natural gases (from Standing and Katz").
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Fig. 5.3—Pseudocritical properties of methane-based natural gases (from Sutton?).

Fr= j;_c C7+(0.3129yC7+ —4.8156y§7+ +27.3751yé7+) ........................ (5.9)
K= lil(fj}%)—FK ......................................................... (5.10)

T, = K72 .................................................................. (5.11)

Ppe= Tﬁ“ ................................................................. (5.12)

If the composition of the gas is unknown, then a correlation to estimate pseudocritical tem-
perature and pseudocritical pressure values from the specific gravity is used. There are several
different correlations available, but Fig. 5.3 was developed by Sutton* on the basis of 264 dif-
ferent gas samples. Sutton also used regression analysis on the raw data to obtain the following
second-order fit for the pseudocritical properties of hydrocarbon mixtures:

Ppe=T568= 131077, = 3675 oo (5.13)

_ _ 2
Te = 169.24349.57 = T4.07> oottt (5.14)
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Fig. 5.4—Gas-deviation factors for natural gases at pressures of 10,000 to 20,000 psia.”

These equations and Fig 5.3 are valid over the range of specific-gas gravities with which
Sutton* worked: 0.57 <y, < 1.68. Using the obtained pseudocritical values, the pseudoreduced
pressure and temperature are calculated using

- P
and T.= R (5.15)
T
pc

The gas-deviation factor is then found by using the well-known correlation chart of Fig.
5.2, originally developed by Standing and Katz.® Compressibility factors of high-pressure natu-
ral gases (10,000 to 20,000 psia) may be obtained from Fig. 5.4, which was developed by Katz
et al.” Figs. 5.5 and 5.6 may be used for low-pressure applications after Brown et al.®

Dranchuk and Abou-Kassem’ fitted an equation of state to the data of Standing and Katz,°
which is more convenient for estimating the gas-deviation factor in computer programs and
spreadsheets. Hall and Yarborough!® also have published an alternative equation of state. The
Dranchuk and Abou-Kassem® equation of state is based on the generalized Starling equation of
state and is expressed as follows:

A, Ay A, A )p ( A, A )ﬂ
2 3 4 5 7 8| 2
z=1+|A+—+—F+—F+—p. A+ +—
1 3 5 r 6 2 r
L. o A
A4, A p>
7 81 5 2 2
—Ag| 7+ ey )ﬂr + 41 +A11pr)(—Tg) exXp (= A1 1Y), oo (5.16)
r r r
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Fig. 5.5—Gas-deviation-factor chart for natural gases near atmospheric pressure.?

027 p
where p, = (Z—T)r and where the constants A4, through A, are as follows: 4, = 0.3265; 4, =
r

—1.0700; A5 = —0.5339; 4, = 0.01569; A5 = —0.05165; 4¢ = 0.5475; A, = —0.7361; Az = 0.1844;
Ay =0.1056; A,, = 0.6134; and 4,, = 0.7210.

Dranchuk and Abou-Kassem® found an average absolute error of 0.486% in their equation,
with a standard deviation of 0.00747 over ranges of pseudoreduced pressure and temperature of
0.2 <p,. <30; 1.0 < T, <3.0; and for p,, < 1.0 with 0.7 < 7, < 1.0.

Dranchuk and Abou-Kassem’ also found that this equation and other equations of state give
unacceptable results near the critical temperature for 7, = 1.0 and p,, >1.0, so these equations
are not recommended in this range.

Because the parameter z is embedded in p,, an iterative solution is necessary to solve the
Dranchuk and Abou-Kassem equation of state, but this can be programmed. An example of
this is provided by Dranchuk and Abou-Kassem.” The equation also can be solved on a spread-
sheet using the nonlinear-equation-solver option, which is discussed in more detail elsewhere.'!
Nonlinear equation solvers are also set up specifically to solve these equations easily.

The z-factor chart of Standing and Katz (Fig 5.2) and the pseudocritical property-calcula-
tion methods of Sutton* are valid only for mixtures of hydrocarbon gases. Wichert and Aziz'?
have developed a correlation to account for inaccuracies in the Standing and Katz chart when
the gas contains significant fractions of acid gases, specifically carbon dioxide (CO,) and hydro-
gen sulfide (H,S). The Wichert and Aziz'? correlation modifies the values of the pseudocritical
temperature and pressure of the gas. Once the modified pseudocritical properties are obtained,

[m)
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Fig. 5.6—Gas-deviation-factor chart for natural gases at low reduced pressure.?

they are used to calculate pseudoreduced properties, and the z factor is determined from Fig.
5.2 or Eq. 5.10. The Wichert and Aziz!? correlation first calculates a deviation parameter é:

e =12004% = A1)+ 15(B% = BY), oo, (5.17)

where A = the sum of the mole fractions of CO, and H,S in the gas mixture and B = the mole
fraction of H,S in the gas mixture. Then, the value of ¢ is used to determine the modified
pseudocritical properties as follows:

L (5.18)
T pchpc
and Ppe= Tpc_B(l T R)g s (5.19)

The correlation is valid only in units of 7 in R and p in psia. It is applicable to concentrations
of CO, < 54.4 mol% and H,S < 73.8 mol%. Note that ¢ also has units of R. The correction
factor, ¢, has been plotted against H,S and CO, concentrations in Fig. 5.7 for convenience.
Note that maximum correction occurs around 4 = B = 47% or 47% H,S concentration and 0%
CO, concentration. Wichert and Aziz!? found their correlation to have an average absolute er-
ror of 0.97% over the following ranges of data: 154 psia < p < 7,026 psia and 40°F < T <
300°F.

Piper et al.'3 have also adapted the Stewart e al.’> method to develop equations that can be
used to calculate the pseudocritical properties of natural gas mixtures that contain nitrogen
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Fig. 5.7—Pseudocritical-temperature-adjustment factor,'? g, °F.

(N,), CO,, and H,S without making a separate correction. There are two sets of equations,
depending on whether the composition or the specific gravity is known. When the gas composi-
tion is used, the following equations are developed on the basis of 896 data points:

STt 2 o L2 Tay > y e tagye, Mc +a7(yc M )2 ............. (5.20)
i=1 ' Pei Jj= Jpcj 7+ 7+ 7+ 7+
and K = fiy+ iﬁ(yiT”')ﬂf Sy e M thfve, v, fro 20
0 i=1 " Dei 4j=1yj /pcj 6yC7+ Cyy 7)’(;7+ N .

where y; are the contaminant compositions{ szs, ycoz, yNz} and y; are the hydrocarbon com-

positions{ycl, ycz, yC3, yC4, yCS, yc6}, and o; and f; are as given in Table 5.3.

If the composition of the hydrocarbons is unknown but the specific gravity and the nonhy-
drocarbon compositions are known, the following equations for J and K were developed by
Piper et al.'® on the basis of 1,482 data points:

) ) )
J=0.11582— 045820y, o —=| —0.90348 <1 —0.66026y, =
TH8| p H,S €0, p co, Nyl p N,

c c c

£0.707297 4 = 0.0993977 oo (5.22)

and
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C

T. :
K =3.8216—0.06534y (—‘) -0.42113y, (— -0.91249y: (—‘)
HyS VP JH,8 €0, NP /co, N2 NPc N,

F17438) = 3219175 s (5.23)

Then, the pseudocritical properties can be calculated from J and K in Egs. 5.11 and 5.12.

Example 5.1 Calculation of the z Factor for Sour Gas. Using (a) the Sutton* correlation
and the Wichert and Aziz'?> correction, and (b) the method of Piper et al,' calculate the z
factor for a gas with the following properties and conditions:

Y, = 0.7, H,S = 7%, and CO, = 10%; p = 2,010 psia and T = 75°F.

Solution. (a) First, calculate the pseudocritical properties.

Ppe=756.8— 131077, = 3.6y%

=756.8— (131.07)(0.7) — (3.6)(0.7%)
= 663.29 psia.

_ _ 2
T, =169.2+349.57, —74.0y,

=169.2 +(349.5)(0.7) — (74.0)(0.7%)
=377.59°R.

Next, calculate the adjustments to the pseudocritical properties using the Wichert and
Aziz'? parameters.

e=120(4% — 410 +15(B%5 — BY
=(120)(0.17% = 0.17"%) + (15)(0.07%3 - 0.07%
=21.278°R.

T, =T, —&=37759-21.278 = 356 31° R
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’

¢ Ppdpe  (663.29 psia)(356.31° R)
Pre =T =BU =Bl ~ 37759 R—(0.07)(0.93)(21.278° R)

= 628.21 psia.

Next, calculate the pseudoreduced properties:

p _ 2,010 psia

Pr= e~ 62821 psia =3.1995
~ (75+459.67)°R
and TV_—356.31°R =1.5006.

Finally, looking up the z-factor chart (Fig 5.2) gives z = 0.772.
(b) Using the method of Piper et al.,'?

T T T
J=0.11582—0.45820 i) —-0.90348 (—‘) - 0.66026 (—‘)
szs( Pe JH,S Yco,\ 7, co, N\ 2, N,
+0.70729y, —0.099397y

= 0.11582 - (0.45820)(0.07)( ;35 =) - (0.90348) 0.1 X )

+(0.70729)(0.7) - (0.099397)(0.7%)
=0.4995° R (in.%) /Ibf,

T T
_<

T
K =3.8216 —0.06534 —-0.42113 —= —0.91249p, | —=
szs( Vre )st yCOZ( V7 )co2 yN2( Vre )N2

+17.438y, - 3.2191y]

~3.8216 - (0.06534)(0.07) 222 SR

V1,306 psia)_0'42113ycoz(«/1,071 psia
+(17.438)(0.7) - (3.2191)(0.7%)
= 13.661° R (in.) /1o,
K2 13.661% R%in?[Ibf

T === =373.6°R
P J 0.4995°R in.?/1bf

_Tpe _ 3736
Ppe™ " 7 0.4995

= 747.9 psia.

The pseudoreduced properties are then:

p__ 2,010 psia
Ppe 747.9 psia

T _ (75+459.67° R

T, 373.6'R

b= = 2.687

and T, = =1.431.

Finally, looking up the z-factor chart (Fig 5.3) gives z = 0.745.
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The two methods give results that differ by 3.6% of the smaller value (z = 0.745), which is
within the range of accuracy of either method. Because the method of Piper et al.'® is based on
a larger data set and has integrated the nonhydrocarbon compositions into the method, it is
likely to be more accurate.

5.11 Gas Density and Formation Volume Factor

The formation volume factor of gas is defined as the ratio of the volume of gas at the reservoir
temperature and pressure to the volume at the standard or surface temperature and pressure (p;
and 7). It is given the symbol B, and is often expressed in either cubic feet of reservoir vol-
ume per standard cubic foot of gas or barrels of reservoir volume per standard cubic foot of
gas. The gas-deviation factor is unity at standard conditions; hence, the equation for the gas
formation volume factor can be calculated using the real gas equation:

V p p..zT
B =R _IRL Cse s e (5.24)
& T p <z, nRT T,.p

Sc sc N

The n divides out here because both volumes refer to the same quantity of mass.
When p, is 1 atm (14.696 psia or 101.325 kPa) and 7, is 60°F (519.67°R or 288.71°K),
this equation can be written in three well-known standard forms:

B =0.02827932L rof [ sef
g 4
zT
= 000503676~ RB / scf

= 0.350958% RM® [SM, oot (5.25)

where rcf/scf = reservoir cubic feet per standard cubic feet, RB = reservoir barrels, and Rm?/
Sm® = reservoir cubic meters per standard cubic meters. The formation volume factor is always
in units of reservoir volumes per standard volumes.

The three forms in Eq. 5.25 are for specific units. In the first two equation forms, the pres-
sure is in psia and the temperature is in °R. In the third form, the pressure is in kPa and the
temperature is in K.

The density of a reservoir gas is defined as the mass of the gas divided by its reservoir
volume, so it can also be derived and calculated from the real-gas law:

m, nMg B nMal

_ _ _ ig _ 28.967ygp
Pg Ve znRT/p  znRIT/p ZRT

5.12 Isothermal Compressibility of Gases
The isothermal gas compressibility, c,, is a useful concept that is used extensively in determin-
ing the compressible properties of the reservoir. The isothermal compressibility is also the
reciprocal of the bulk modulus of elasticity. Gas usually is the most compressible medium in
the reservoir; however, care should be taken so that it is not confused with the gas-deviation
factor, z, which is sometimes called the compressibility factor.

The isothermal gas compressibility is defined as:



1-234 Petroleum Engineering Handbook—Vol. |

_ 1[99,
=7 ( T )T ........................................................... (5.27)

An expression in terms of z and p for the compressibility can be derived from the real-gas law
(Eq. 5.5):

an nRT 0z znRT _ (znRT\1 dz znRT\ 1
a— = - a— - P = ;d_ I L (528)
Plr P Plr p p p p /p
From the real-gas equation of state,
1 __»
Vg znRT
] (Wg) 1dz 1
and (=S| = o T T 5.29
Vg( dply, zdp p (5.29)
hence,
_1 1 ﬂ)
cg—p z(apT .......................................................... (5.30)

For gases at low pressures, the second term is small, and the isothermal compressibility can
be approximated by ¢, = 1/p. Eq. 5.30 is not particularly convenient for determining the gas
compressibility because in Fig 5.2 and Eq. 5.16, z is not actually expressed as a function of p
but of p,. However, Eq. 5.30 can be made more convenient when written in terms of a dimen-
sionless, pseudoreduced gas compressibility defined as

N (5.31)
Multiplying Eq. 5.30 through by the pseudocritical pressure gives
_ _ 1 19z
€= Colpe = 2 Z(aPr)Tr ................................................. (5.32)

Charts of the pseudoreduced gas compressibility have been published by Trube'* and by
Mattar ef al.,' and two of these are shown in Figs 5.8 and 5.9. Mattar et al.'> also developed
an analytical expression for calculating the pseudoreduced compressibility; that expression is

(92/3p,)
e = 027 L (5.33)

r P, ZZT), 1+ p_r 0z
z apr T,

Taking the derivative of Eq. 5.10, the following is obtained:
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Fig. 5.8—Pseudoreduced-compressibility chart for 3.0 2 T, 2 1.05 and 15.0 2 p, 20.2 (from Mattar et al."%).

A7 AS
+2 A6+T—+F -
r r

2A1()pr
3
Tr

A A A A
= A1+—2+—33+—4+—55
. r 1T

r r

A A
T_:JFT_ZS)PﬁJF[l +A11/’z_(‘411p3)2}

exp (—A Up%) ................. (5.34)

Parameters 4, through A,, are defined after Eq. 5.16. Eq. 5.34 can then be substituted into Eq.
5.33, and the pseudoreduced gas compressibility can be calculated. Then, if the pseudoreduced
gas compressibility is divided by the pseudocritical pressure, the gas compressibility is ob-
tained analytically. Either the graphical method or the analytical method can be used, but the
analytical method is easier to apply in a spreadsheet, nonlinear solver, or other computer program.

There is also a close relationship between the formation volume factor of gas and the isother-
mal gas compressibility. It can easily be shown that
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Fig. 5.9—Pseudoreduced-compressibility chart for 3.0 2 T, 2 1.4 and 15.0 2 p, 20.2 (from Mattar et al."%).

5.13 Gas Viscosity

Just as the compressibility of natural gas is much greater than that of oil, water, or rock, the
viscosity of natural gas is usually several orders of magnitude smaller than oil or water. This
makes gas much more mobile in the reservoir than either oil or water. Reliable correlation
charts are available to estimate gas viscosity. Carr ef al.'® have developed charts (Figs. 5.10
through 5.13) that are the most widely used for estimating the viscosity of natural gas from
the pseudoreduced critical temperature and pressure. Fig. 5.10 gives the viscosities for individu-
al components. Fig. 5.11 gives the viscosities for gas at the desired temperature and atmospher-
ic pressure based on the temperature and specific gravity or molecular weight. The viscosity of
gas mixtures at one atmosphere and reservoir temperature can either be read from Fig. 5.11 or
determined from the gas-mixture composition with Eq. 5.36.

N
Zgﬂv
N
ZJ}I' gl

Iuga

(Exit]
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Fig. 5.10—Viscosity of pure hydrocarbons at 1 atm (from Carr et al."®).

where p,, = viscosity of the gas mixture at the desired temperature and atmospheric pressure;
y; = mole fraction of the ith component; y; = viscosity of the ith component of the gas mixture
at the desired temperature and atmospheric pressure (obtained from Fig. 5.10); M,; = molecular
weight of the ith component of the gas mixture; and N = number of components in the gas
mixture.

This viscosity is then multiplied by the viscosity ratio (from Fig. 5.12 or Fig. 5.13) to ob-
tain the viscosity at reservoir temperature and pressure. Note that Figs. 5.12 and 5.13 (from
Carr et al.'®) are based on pseudocritical properties determined with Kay’s rules. It would not
be correct, then, to use the methods of Sutton* or Piper et al.'® to calculate the pseudocritical
properties for use with those charts. However, Kay’s rules require a full gas composition. If
only specific gravity is known, then the pseudocritical properties would have to be obtained
from Fig. 5.3 or Eqgs. 5.13 and 5.14. The inserts of Fig. 5.11 are corrections to be added to the
atmospheric viscosity when the gas contains N,, CO,, and H,S.

Lee et al.'” developed a useful analytical method that gives a good estimate of gas viscosi-
ty for most natural gases. This method lends itself for use in computer programs and spread-
sheets. The method uses the gas temperature, pressure, z factor, and molecular weight, which
have to be measured or calculated; the density can be measured or calculated as well. The
equations of Lee et al.'” are for specific units as noted below and are as follows:

1y =Ky exp (XpY), oot (5.37)
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Fig. 5.11—Viscosity of natural gases at 1 atm (from Carr et al.'6).

M M (0.00094 +2X% 10_6Mg)T1 =

where p = —£ = 0.00149406—%, K, = %6

, X=35+ - +0.01Mg, and

(209 +19M, +T)

Y =2.4-02Xand where u, = gas viscosity, cp; p =gas density, g/cm’; p = pressure, psia; T =
temperature, °R; and M, = gas molecular weight = 28.967y,.

For the data from which the correlation was developed, the standard deviation in the calcu-
lated gas viscosity was 2.7%, and the maximum deviation was 9%. The ranges of variables
used in the correlation were 100 psia < p < 8,000 psia, 100 <T (°F) < 340, and 0.90 < CO, (mol
%) < 3.20 and 0.0 < N, (mol%) < 4.80. In using these equations, it is important either to
measure the density or to ensure that the z-factor calculation has included the effect of N,
CO,, and H,S using the method of Wichert and Aziz.!> The equations of Lee et al.!” were
originally written to give the viscosity in micropoise, but the modified form above gives the
viscosity in the more commonly used centipoise. This viscosity unit (cp) is also easily
converted to the SI unit of Pa's by dividing by 1,000.

Example 5.2 Properties of Natural Gas. For the gas in Example 5.1, find the (a) density,
(b) formation volume factor, (c) viscosity, and (d) isothermal compressibility.

Solution.

(a) The density is calculated from Eq. 5.14:

(28.967)(0.7) 1bm .
BTy [28XTOL B 12,010 psia) g lom
g _ . . 3 .
ZRT (0.772)(10.732 "”“;’ﬂ)(% +459.67)° R ft
ft™ —R
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Fig. 5.12—Effect of temperature and pressure on viscosity of natural gases (from Carr et al.'6).

(b) The formation volume factor is calculated from Eq. 5.13:

0.772(75 +459.67° R _ ft®
2,010 psia = 0.00581 scf”

B =0.0287932L = 0.028793
g p

(¢) The viscosity is determined using the charts of Carr ef al.'® in Figs. 5.10 through 5.13.
First, the viscosity for M, = (0.7)(28.967) = 20.3 at p = 1 atm and T = 75°F is read from Fig.
5.11. This gives 0.0102 cp, but corrections are needed for the acid gases. The correction for
10% CO, is 0.0005 cp, and the correction for 7% H,S is 0.0002 cp. Hence, this gives p,, =
0.0109 cp.

Next, the ratio of pg/u,, is read from Fig. 5.13, which gives u/u,, = 1.55. Hence, u, =
(1.55) (0.0109 cp) = 0.0169 cp.
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Fig. 5.13—Effect of temperature and pressure on viscosity of natural gases (from Carr et al.'5).

Chapter 4 Chapter 6
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(d) The compressibility is determined by first reading Fig. 5.8 or Fig. 5.9 for the previously
calculated values of p, = 3.200 and 7, = 1.500 to give ¢, T, = 0.5. Because 7, = 1.500 then ¢, =
0.5/1.5 = 0.3333. Because ¢, = ¢, Py,

cg=c,|p,.=03333]62821

c,=5306 X 10 psi .

5.14 Real-Gas Pseudopotential

In the analysis of gas reservoirs, well-test analysis, gas flow in pipes, and other calculations
can be made more accurate by the use of the real-gas pseudopotential. This is because the z
factor and viscosity that appear in such equations along with pressure terms are dependent on
pressure. Consequently, the integral of pressure divided by the z factor and viscosity is defined
as a separate parameter called the real-gas pseudopotential and is designated here as y(p).

p
q/(p)—pr Lo, (5.38)

where p, is some arbritary low base pressure (typically atmospheric pressure). This integral is
usually evaluated numerically using values of z and u for the particular gas at a particular tem-
perature. Then, the pseudopotential is tabulated as a function of pressure and temperature.
lustrations of the calculation and use of the real-gas pseudopotential are provided elsewhere
in this Handbook.

5.15 Vapor Pressure

At a given temperature, the vapor pressure of a pure compound is the pressure at which vapor
and liquid coexist at equilibrium. The term “vapor pressure” should be used only with pure
compounds and is usually considered as a liquid (rather than a gas) property. For a pure com-
pound, there is only one vapor pressure at any temperature. A plot of these pressures for
various temperatures is shown in Fig. 5.14 for n-butane. The temperature at which the vapor
pressure is equal to 1 atm (14.696 psia or 101.32 kPa) is known as the normal boiling point.

5.15.1 The Clapeyron Equation. The Clapeyron equation gives a rigorous quantitative rela-
tionship between vapor pressure and temperature:

where p,=vapor pressure, T=absolute temperature, AV=increase in volume caused by vaporizing
1 mole, and L,=molal latent heat of vaporization.

Assuming ideal-gas behavior of the vapor and neglecting the liquid volume, the Clapeyron
equation can be simplified over a small temperature range to give the approximation

which is known as the Clausius-Clapeyron equation. Integrating this equation gives
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Fig. 5.14—Vapor pressure of n-butane.

LV LV
fd(lnpv)=fﬁdT=lnpv=ﬁ+b, ...................................... (5.41)

where b is a constant of integration that depends on the particular fluid and the data range.
This equation suggests that a plot of logarithm of vapor pressure against the reciprocal of the
absolute temperature would approximate a straight line. Such a plot is useful in interpolating
and extrapolating data over short ranges. However, the shape of this relationship for a real
substance over a significant temperature range is more S-shaped than straight. Therefore, the
use of the Clausius-Clapeyron equation is not recommended when other methods are available,
except over short temperature ranges in regions where the ideal-gas law is valid.

5.15.2 Cox Chart. Cox'® further improved the method of estimating vapor pressure by plot-
ting the logarithm of vapor pressure against an arbitrary temperature scale. The vapor-pressure/
temperature plot forms a straight line, at least for the reference compound (and usually for
most of the materials related to the reference compound). This is especially true for petroleum
hydrocarbons. A Cox chart, using water as a reference material, is shown in Fig. 5.15. In addi-
tion to forming nearly straight lines, compounds of the same family appear to converge on a
single point. Thus, it is necessary to know only vapor pressure at one temperature to estimate
the position of the vapor-pressure line. This approach is very useful and can be much better
than the previous method. Its accuracy is dependent to a large degree on the readability of the
chart.

5.15.3 Calingeart and Davis Equation. The Cox chart was fit with a three-parameter function
by Calingeart and Davis.!"” Their equation is

lnpv:A—ﬁ, ........................................................
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Fig. 5.15—Cox chart for normal paraffin hydrocarbons.'®

where 4 and B are empirical constants and, for compounds boiling between 32 and 212°F, C is
a constant with a value of 43 when T is in K and a value of 77.4 when T is in °R. This
equation generally is known as the Antoine? equation because Antoine proposed one of a very
similar nature that used 13 K for the constant C. Knowledge of the vapor pressure at two tem-
peratures will fix 4 and B and permit approximations of vapor pressures at other temperatures.
Generally, the Antoine approach can be expected to have less than 2% error and is the pre-
ferred approach if the vapor pressure is expected to be less than 1,500 mm Hg (200 kPa) and
if the constants are available.

5.15.4 Lee-Kesler Equation. Vapor pressures also can be calculated by corresponding-states
principles. The most common expansions of the Clapeyron equation lead to a two-parameter
expression. Pitzer et al.?! extended the expansion to contain three parameters:

n(p,,) = £2T.)+ @ f (T,), oo (5.43)

where p,, is the reduced vapor pressure (vapor pressure/critical pressure), f 0 and f I are func-
tions of reduced temperature, and w is the acentric factor.

Lee and Kesler?? have expressed £ and £ in analytical forms:

0_ 6.09648 6
0=5.92714 - 252 - (1.28862) In T, +0.169347(T,)C...cooovrrccrns (5.44)
r
and
0_ 15.6875 6
0 =152518 - === - (13.4721) In 7, +0.43577(T, )%, oo (5.45)
r
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which can be solved easily by computer or spreadsheet. Lee-Kesler?? is the preferred method
of calculation but should be used only for nonpolar liquids.

The advent of computers, calculators, and spreadsheets makes the use of approximations
and charts much less advantageous than it was before the 1970s. Values of acentric factors can
be found in Poling et al.,* who also presented many other available vapor-pressure correlations
and calculation techniques, with comments about their advantages and limitations.

5.16 Further Example Problems

Example 5.3 Calculate the relative density (specific gravity) of natural gas with the follow-
ing composition (all compositions are in mol%):

C, = 83.19%

C, = 8.48%

C;=437%

i-C, = 0.76%

n-C, = 1.68%

i-Cs = 0.57%

n-Cs = 0.32%

Ce = 0.63%

Total = 100%

Solution. First, calculate the apparent mole weight from the information presented in Table
5.4.

M, = Zy;M, = 20.424.

Vg =M, | M,=2Xy;M,; | 28.967 = 20.424 | 28.967 = 0.705,

where the molecular weight of air, M,, is 28.967.




Chapter 5—Gas Properties 1-245

Example 5.4 Calculate the actual density of the same mixture at 1,525 psia and 75°F (a)
using Kay’s® rules, (b) Sutton’s* correlation, and (c) the Piper et al.'® correlation.
Solution. The density is calculated from

Mgp

Pe= ZRT

where p = 1,525 psia, M, = 20.424, R = 10.7316 (psia-ft’)/(lbm mol°R), and T = 75°F +
459.67 = 534.67°R, and z must be obtained from Fig. 5.3.

(a) Calculate z, from the known composition in Table 5.5.

Using Kay’s’ rules, we obtain from the known gas composition:

T,. =Zy,T; = 393.8°R,

T, = 534.67/393.8 = 1.3577,

Dpe =2yiDe; = 662.88 psia,

Dpr = D/Ppe = 1,525/662.88 =2.301,

and from Fig. 5.3, z, = 0.71.

(b) From Sutton’s* gas gravity method, y, = 0.705; then, we obtain from Eqgs. 5.7 and 5.8
that

Ppe=756.8=131.07y, 3.6y,

=756.8 - (131.07)(0.705) - (3.6)(0.705°)
= 662.6 psia.

_ _ 2
T,.=169.2+349.5,, ~ 740y,

=169.2 +(349.5) - (0.705) — (74.0)(0.705%)
=378.8°R.

This gives
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p _ 1,525 psia

Por= ", ~ 662.6 psia 2.302
_ T _ 53467 R _
and Tpr = Tpc 3738 R 1.411.

From Fig. 5.3, we obtain z, = 0.745.
(c) Using the Piper et al.'’> method, we first calculate J and K using

T.
J=a,ta Zy
4
0 ]—] jpc]

and K = ﬂ0+ﬁ4zyj¢7
cJ

The details of the calculations are found in Table 5.5.
Then,

J =0.052073 + (0.85101)(0.60257)
=0.56486° R-in.% | Ibf.

K= —0.39741+(0.98211)(15.36101)
= 14.68879° R-in. [ 1bf*".

2 2
_ _ 14.68879 _ o
Tpc— = 7056486 381.97" R.
_tpe 38197 .
Ppe= = 056486 676.22 psia.
p,.= = 1525/676.22 =2.255
4
Ppe
T
and 7. = — = 534.67/381.97 = 1.400.
Tpc

Finally, looking up the z-factor chart (Fig. 5.3) gives z = 0.745.

Conclusion. Even though the Sutton* correlation and the Piper et al.'3 correlation gave slight-
ly different critical properties, the z factors from those two methods are the same. Kay’s® rule
gives a value that is 4.6% lower, but the result using Sutton’s* correlation and the Piper et al. '
correlation has been shown to be more accurate. The density is then given by

pM, (1,525)(20.424)
P~ ZRT ~ (0.745)(10.7316)(534.67)

=7.286 1bm/ft3 =116.8 kg/m3

Example 5.5 Calculate the z factor for the reservoir fluid in Table 5.6 at 307°F and 6,098
psia.

The experimental value is z = 0.998.

Solution. Using the Piper et al.'3> method, we first calculate J and K using
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yT
J—oc0+ Z (

i=1 ci

T

2

) tay Ely tagyer + M7+ “7(J’C7 + Mg )
- C_]

»T, T,
and K =+ EIB(W)—) ﬂ42yjr+ﬂ6yc7+MC7+ Bolver « Moy 4 P

Cl

The details of the calculation are in Table 5.7.
Then,

+2(

i=1
=0.052073 + (1.106)(0.12452) + (0.86961)(0.0434) +(0.72646)(0.0546) + (0.85101)(0.34416)

+(0.020818)(4.4387) - (0.0001506)(4.4387%)

T,
2
)*0‘42% +a6yC7+MC7++a7(yC7+MC7+)

ci

= 0.63832° R(in.%) /Ibf.

L Cl

=pot Eﬂ(r)+ﬁ42yjr+ﬂ6yc7+Mc7+ By 4 Meg 1 ]

= —0.39741 + (1.0503)(4.50) + (0.96592)(1.4205) + (0.78569)(1.2124) + (0.98211)(8.666)
+(0.45536)(4.4387) — (0.0037684)(4.4387°)

=17.372° R(in.) / 1b£*,
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2 2
_K° 1737166 _ o
Tpc— 7 0.63832 472.76" R
_Tpe _ 47276

Ppe™ T T 0.63832

= 740.64 psia,

p. =L =6098/740.64 = 8.233,
}

and 7. = TL =766.67/472.76 = 1.622.

pc
Finally, looking up the z-factor chart (Fig. 5.3) gives z = 1.02. This represents a 2% error with
the experimental value.

Example 5.6 Calculate the viscosity at 150°F (609.67°R) and 2,012 psia for the gas of the
composition shown in Table 5.8.

Solution (by the Carr et al.'® Method). First, calculate the pseudocritical properties using
Kay’s® rules. The charts of Carr et al.'® are based on pseudocritical properties determined with
Kay’s rules; it would not be correct, then, to use the methods of Sutton* or Piper et al.'’ to
calculate the pseudocritical properties for use with the viscosity calculation. The details are in
Table 5.9.
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T,
cN2 6

J=ayt oy ——ta, 2y,
0TI M

T, .
cJ
p

e
= 0.052073 +(0.72646)(0.072741) + (0.85101)(0.474774)
= 0.50895° R(in.%) /1bf.

o B ey & 3L

K =Byt By ==ty 2yl

0" P3 NZW 4}.=1 J@

= —0.39741 +(0.78569)(1.61511) + (0.98211)(12.2376)
= 12.8902° R(in.) / 1bf*~.

2 2
_K® _ 12.8902° _ o
Ty = = Os0805 ~ 32647 R.
T, 32647
— pc _ 2LV .
Ppe="J 0.50895 641.45 psia.
p 2012
=== =345
Pr=p,. ~ 63808
and T 609.67 _ 1.735.

I
roT, 35144

These parameters are then used to determine the viscosity at 1 atm. First, the viscosity for M,
=20.079 at p = 1 atm and 7' = 150°F is read from Fig. 5.11. This gives p,, = 0.0114 cp, but a
correction is needed for the nitrogen. The correction for 15.8% N, is 0.0013 cp. Hence, this
gives g, = 0.0127 cp.

Next, the ratio of uy/u,, is read from Fig. 5.13 using the pseudoreduced properties calculat-
ed above, which gives pu/u,, = 1.32. Hence, u, = (1.32) (0.0127) = 0.0168 cp. This represents
a 2.5% error from the experimentally determined value of 0.0172 cp.

Solution (by the Lee et al.'7 Method). In this method, the z factor is required; this is most
accurately determined with the Piper et al.'’> method, the details of which are in Table 5.10.
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TcN2 g

J=oayta —+ta
0" 43N, Pex, 4. y
=0.052073 + (0.72646)(0.072741) + (0.85101)(0.474774)

onf: 2
R(in.
—0.50895 M

Ibf

ot By a2, 3y

K = .

O N en, T A

= —0.39741 4+ (0.78569)(1.61511) + (0.98211)(12.2376)

*R(in)
- 12.890211;%.
T, = K72 - %9809252 —326.47° R,
Ppe= T"f = 0%?8;975 — 641.45 psia,
Pr= Pch - 6%1?251);1 = 3.1366,
and T = —— = SOOT R _ 4675,

I
r T, 32647 R

Look up the chart of Fig. 5.3, which gives a value of z = 0.91; then,
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PMg(0.00149406)(2012)(20.079)

= - 3
P~ Zrr 0.91(609.67) =0.11025 g/cm”.

(0.00094 +2x10°© g)rl 5
209+ 190, +T

K, =
(0:00094 +2 x 107°)(20.079)(609.67"%)
- 209 + (19)(20.079) + 609.67

45, 986
X=35+ T +0.01Mg

=0.012294 cp.

986
609.67

Y =24-02X=24-(02)(53181) = 1.3364.
py =K, exp (Xp')=0.012294 exp [(5.3181)(0.11025"3%)] = 0.01625 cp.

=35+

+(0.01)(20.079) = 5.3181.

This method gives a value that is 5.5% less than the experimentally determined value of
0.0172 cp.

Example 5.7 The vapor pressure of pure hexane as a function of temperature is 54.04 kPa
at 50°C and 188.76 kPa at 90°C. Estimate the vapor pressure of hexane at 100°C, using all the
methods outlined previously.

Solution: Clausius-Clapeyron. The Clausius-Clapeyron equation can be solved graphically
by plotting a log of vapor pressure vs. reciprocal absolute temperature and extrapolating. It
also can be solved by slopes fitting an equation of the form log(p,) =c/T+b to the two data
points. Because the other three methods must be done in American customary units, the Clausius-
Clapeyron method also will be converted to those units.

T, = 50°C = 122°F = 581.67°R,

/T, = 0.0017192°R7,

T, = 90°C = 653.67°R,

1/T, = 0.0015298°R™,

py at T) = 54.04 kPa = 7.8374 psia,

log p, = 0.89417,
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p, at T, = 188.76 kPa = 27.3773 psia,
log p, = 1.43739,

Alog p, = —0.543195,

1/T—1/T, = 0.00018936,

and ¢ = slope = —0.543195/0.00018936
= -2868.52°R.

Solving for b, log p, = —2868.52/T+b yields
b = 5.8257,

T; = 100°C = 212°F = 671.67°R,

and 1/T; = 0.0014888.

Solving for p, at 100°C yields

log p, = —2868.52 | T +5.8257

= —2868.52(0.0014888) + 5.8257
= 1.555;

hence, p, = 35.89 psia = 247.46 kPa.

Alternatively, if the vapor pressure at 70°C is 105.37 kPa and is known, you can use the
70 to 90°C temperature differential to calculate the slope and intercept and ultimately calculate
p, = 35.79 psia = 246.79 kPa.

Solution: Cox Chart.'® From Fig. 5.15, the vapor pressure at 100°C can be approximated
between 35 and 36 psia. A larger chart is required for more-precise readings.

Solution: The Calingeart and Davis or Antoine Equation. This can be used by obtaining the
Antoine constants from Poling ef al.?® For n-hexane, with temperature in K, these constants are
A =15.8366, B = 2697.55, and C = —48.78. Then,

., B 269755 _
1npva T—C 15.8366 373 — 48,78 3.60233,

and p, = 36.68 psia = 252.73 kPa.

Solution: Lee-Kesler. The use of the Lee-Kesler?? equation requires p,, T, and o for n-hex-
ane. These can be obtained from Table 5.2.

p. = 436.9 psia (29.7 atm),

T, = 453.7°F or 913.3°R or 507.4 K,

and o = 0.3007.

For 100°C,

T, = 0.7351,

(T,)® = 0.15782,

In 7, = —0.30775,

70=592714—(6.09648 /0.7351) + 1.28862(0.30775) + 0.169347(0.15782)
= —1.94296,

and ! = 152518 — (15.6875/0.7351) + 13.4721(0.30775) + 0.43577(0.15782)
— - 1.87402,
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In p,, = —1.94296 +(0.3007)( - 1.87402)
= —2.50648,

Py, = — =0.0816,

c

and p, = (0.0816)(29.7) = 2.4235 atm = 35.62 psia = 245.6 kPa.

Experimental Value. 35.69 psia = 246.1 kPa.

Conclusions. Lee-Kesler gives the best answer, but the Clausius-Clapeyron method is also
very accurate to within 0.17 psi, which is typical if the extrapolation is close to the appropriate

range.

Nomenclature
= constant characteristic of the fluid
= empirical constant for substance i

= mixture parameter
= parameter a characteristic
= functional relationship

sum of the mole fractions of CO, and H,S in the gas mixture
constant characteristic of the fluid

= empirical constant for substance i
= parameter b for mixture
= mole fraction of H,S in the gas mixture

gas formation volume factor (RB/scf or Rm?/Sm?)
empirical constant
coefficient of isothermal compressibility

= dimensionless pseudoreduced gas compressibility
= constant with a value of 43 when the temperature is in K, and a value of 77.4

when the temperature is in °R

= empirical constant

empirical constant for substance i

= empirical constant

viscosity parameter
kinetic energy, J

= empirical constant

= functions of reduced temperature

= parameter in the Stewart ef al.> equations (Egs. 5.9 and 5.10), K-Pa 2
= parameter in the Stewart et al.’ equations (Egs. 5.9 and 5.10), K-Pa™!

parameter in the Stewart et al.’ equations (Egs. 5.9 and 5.10), K-Pa™!?

= parameter in the Lee ef al.'® viscosity (Eq. 5.37), cp
= constant for each binary pair when used for mixtures
= molal latent heat of vaporization, J

mass, kg
mass of gas, kg
molecular weight

= molecular weight of air
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= molecular weight of C,, fraction

= average molecular weight of gas mixture

Pei =

ppc

pr =
Pre =
pS(‘ =
= vapor pressure, Pa

t,ﬂqﬂ’ﬂN';U?;B

N "%H Q

3

aﬂ ~H

<
* o

N <

Vg

number of moles

number of components in the gas mixture

absolute pressure, Pa

critical pressure, Pa

critical pressure of component / in a gas mixture, Pa

base pressure for real-gas pseudopotential, typically atmospheric pressure,
Pa

pseudocritical pressure of a gas mixture, Pa

reduced pressure

pressure at reservoir conditions, Pa

pressure at standard conditions, Pa

reduced vapor pressure (vapor pressure/critical pressure)
gas-law constant, J/(g mol-K)

ratio of critical to absolute temperature

absolute temperature, K

critical temperature, K

= critical temperature of component i in a gas mixture, K

corrected pseudocritical temperature, K

= reduced temperature

= temperature at reservoir conditions, K

temperature at standard conditions, K
correlating parameter

velocity, m/s

volume, m?

critical volume, m?

critical volume of C,, fraction, m?
volume of gas, m?

= molar volume, m?
= reduced volume

volume at reservoir conditions, m>

= volume of gas at reservoir temperature and pressure, m?

= volume at standard conditions, m?

mole fraction of component i in a liquid
parameter used to calculate ¥

mole fraction of component i in a gas mixture
parameter in Eq. 5.37

compressibility factor (gas-deviation factor)
compressibility factor at reservoir conditions
compressibility factor at standard conditions

= molar density
ppc =

relative density of C,, fraction
temperature-correction factor for acid gases, K
acentric factor

specific gravity for gas
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[ = viscosity, Pas
Ugo = Viscosity of gas mixture at desired temperature and atmospheric pressure,
Pas
pg = density of gas, kg/m?
p, = dimensionless density of gas in Eq. 5.16=0.27 p,/(zT,)
w = real-gas pseudopotential defined by Eq. 5.38
w(p) = real-gas pseudopotential
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S| Metric Conversion Factors
141.5/(131.5+°API)

°API
atm
bar
bbl
cp
Darcy
dyne
dyne/cm?
ft

ft2

ft?
ft-1bf
°F

°F
hp-hr
in.

in.?
in.3
kW-hr
Ibf
1bf/in.2
Ibf-s/ft?
Ibm
mile
N-m
psi
°R/1.8

X X X X X X X X X X X

X X X X X X X X X X

X

1.013 250*
1.0%

1.589 873
1.0%

9.869 233
1.0%

1.0%
3.048*
9.290 304*
2.831 685
1.355 818
(°F-32)/1.8
(°F+459.67)/1.8
2.684 520
2.54%

6.451 6*
1.638 706
3.6

4.448 222
6.894 757
4.788 026
4.535924
1.609 344

6.894 757

*Conversion factor is exact.

E+05
E+05
E-01
E-03
E-01
E-02
E-01
E-01
E-02
E-02

E+06
E+00
E+00
E+00
E+06
E+00
E+03
E+01
E-01
E+00

E+00

=g/cm?
=Pa
=Pa
=m3
=Pas
= um?
=mN



Chapter 6

Oil System Correlations
Robert P. Sutton, Marathon Oil Co.

6.1 Introduction

The calculation of reserves in an oil reservoir or the determination of its performance requires
knowledge of the fluid’s physical properties at elevated pressure and temperature. Of primary
importance are those properties including bubblepoint pressure, solution gas/oil ratio (GOR),
and formation volume factor (FVF). In addition, viscosity and surface tension must be deter-
mined for calculations involving the flow of oil through pipe or porous media. Ideally, these
properties are determined from laboratory studies designed to duplicate the conditions of inter-
est; however, experimental data are quite often unavailable because representative samples
cannot be obtained or the producing horizon does not warrant the expense of an in-depth reser-
voir fluid study. In these cases, pressure-volume-temperature (PVT) properties must be deter-
mined by analogy or through the use of empirically derived correlations. This chapter reviews
methods for the determination of bubblepoint pressure, solution GOR, oil FVF, isothermal com-
pressibility, dead (gas-free) oil viscosity, gas-saturated (bubblepoint) oil viscosity, undersaturat-
ed oil viscosity, and gas/oil, oil/water, and gas/water surface tension. Table 6.1 (Refs. 1
through 28) summarizes the recommended methods for general use determination of each prop-
erty. These recommendations are based on the correlation performance derived from a common
data set or the author’s experiences drawn from using various correlations for a number of
years. In Appendix A, Tables A-1 through A-12 (Refs. 29 through 65) contain a comprehen-
sive and descriptive list of available correlations because specific applications could require the
use of methods other than those listed in Table 6.1.

During the last 60 years, several correlations have been proposed for determining PVT prop-
erties. The most widely used correlations treat the oil and gas phases as a two-component
system. Only the pressure, temperature, specific gravity, and relative amount of each compo-
nent are used to characterize the oil’s PVT properties. Crude oil systems from various oil-
producing regions of the world were used in the development of the correlations. These crude
oils can exhibit regional trends in chemical composition, placing them into one of the follow-
ing groups: paraffinic, napthenic, or aromatic. Because of the differences in composition,
correlations developed from regional samples, predominantly of one chemical base, may not
provide satisfactory results when applied to crude oils from other regions.

Hydrocarbons are classified according to the structure of the molecule.®® Paraffin hydrocar-
bons are characterized by open or straight chains joined by single bonds. Examples are
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methane, ethane, propane, and decane. Isomers of these compounds, which contain branched
chains, are also included as paraffins. The first four members of the series are gaseous at room
temperature and pressure. Compounds ranging from pentane (CsH;,) through heptadecane
(Ci7H;4) are liquids, while the heavier members are colorless, wax-like solids. Unsaturated hy-
drocarbons, which consist of olefins, diolefins, and acetylenes, have double and triple bonds in
the molecule. These compounds are highly reactive and are not normally present to any great
extent in crude oil. Naphthene hydrocarbons are ringed molecules and are also called cycloparaf-
fins. These compounds, like the paraffins, are saturated and very stable. They make up a
second primary constituent of crude oil. Aromatic hydrocarbons are also cyclic but are deriva-
tives of benzene. The rings are characterized by alternating double bonds and, in contrast to
olefins, are quite stable, though not as stable as paraffins. Crude oils are complex mixtures of
these hydrocarbons. Oils containing primarily paraffin hydrocarbons are called paraffin-based
or paraffinic. Traditional examples are Pennsylvania grade crude oils. Naphthenic-based crudes
contain a large percentage of cycloparaffins in the heavy components. Examples of this type of
crude come from the United States midcontinent region. Highly aromatic crudes are less com-
mon but are still found around the world.®” Crude oils tend to be a mixture of paraffins-
naphthenes-aromatics, with paraffins and naphthenes the predominant species. Fig. 6.1,
although not complete, shows a distribution of crude oil samples obtained worldwide. Geochem-
ical analyses provided the crude’s chemical nature.

Resins and asphaltenes may also be present in crude 0il.*>”" Resins and asphaltenes are the
colored and black components found in oil and are made up of relatively high-molecular-
weight, polar, polycyclic, aromatic ring compounds. Pure asphaltenes are nonvolatile, dry,
solid, black powders, while resins are heavy liquids or sticky solids with the same volatility as
similarly sized hydrocarbons. High-molecular-weight resins tend to be red in color, while
lighter resins are less colored. Asphaltenes do not dissolve in crude oil but exist as a colloidal
suspension. They are soluble in aromatic compounds such as xylene, but will precipitate in the
presence of light paraffinic compounds such as pentane. Resins, on the other hand, are readily
soluble in oil.

No crude oil has ever been completely separated into its individual components, although
many components can be identified. Table 6.2 lists the more important compounds in a sample
of Oklahoma crude. A total of 141 compounds were identified in this oil sample that account
for 44% of the total crude volume. Despite this complexity, several properties relevant to
petroleum engineers can be determined from black oil PVT correlations.



Chapter 6—O0il System Correlations 1-259

Fig. 6.1—Chemical nature of crude oils found worldwide (after Reservoir Fluid Database®?).

6.2 Crude Oil Characterization

Crude oil characterization has long been an area of concern in refining; however, the need to
identify the chemical nature of crude has gained importance in upstream operations. Tradition-
ally, this has been done by simply stating the crude oil gravity. The petroleum industry uses
API gravity as the preferred gravity scale, which is related to specific gravity as
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141.5
B (6.1)

o

Whitson”! has suggested use of the Watson’>”? characterization factor as a means of further
characterizing crude oils and components. In 1933, Watson and Nelson introduced a ratio be-
tween the mean average boiling point and specific gravity that could be used to indicate the
chemical nature of hydrocarbon fractions and, therefore, could be used as a correlative factor.
Characterization factors are calculated with

1
T,

Ky = oo (6.2)
Yo

Characterization factors are useful because they remain reasonably constant for chemically sim-
ilar hydrocarbons. A characterization factor of 12.5 or greater indicates a hydrocarbon com-
pound predominantly paraffinic in nature. Lower values of this factor indicate hydrocarbons
with more naphthenic or aromatic components. Highly aromatic hydrocarbons exhibit values of
10.0 or less; therefore, the Watson characterization factor provides a means of determining the
paraffinicity of a crude oil. Using work from Riazi and Daubert,”* Whitson’' developed the
following relationship in terms of molecular weight and specific gravity.

_ 0.15178, —0.84573
K, = 4.5579 M 0TS e, (6.3)

o

Table 6.3 provides values of Watson characterization factors for selected pure components clas-
sified as paraffins, naphthenes, or aromatics. The characterization factor values provide insight
into their use.

Crude oils typically have characterization factors ranging from 11 to 12.5. Table 6.4 was
derived from assay data available in the public domain. It samples crudes from around the
world and can be used to provide insight into PVT behavior on a regional basis.

The properties of the heptanes-plus fraction in the stock tank crude oil are an additional
source that can provide insight into the Watson characterization factor. It is important to ac-
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count for the lighter paraffin components found in the oil to arrive at the characterization
factor for the entire crude.

Fig. 6.2 depicts a relationship between crude oil gravity and characterization parameter.
While not definitive, it can be observed that lower gravity crudes tend to be more naphthenic,
while higher-gravity crudes tend to be more paraffinic.

6.3 Bubblepoint Pressure

Tables A-1 and A-2 summarize correlations of bubblepoint. Since Standing’s?® correlation ap-
peared in 1947, more than 30 methods have been proposed. Many of these were developed
during the last 15 years. The effective use of the correlations lies in an understanding of their
development, along with knowledge of their limitations. These equations can be expressed func-
tionally as

Py = ST, 7app g Ry) oot (6.4)

Solution GOR is determined by rearranging any given correlation equation. Recent studies”>®
provide statistical analyses for bubblepoint-pressure correlations and provide recommendations
based on their findings; however, none of these references examines the full set of correlations.
Al-Shammasi’> compiled a databank of 1,243 data points from the literature. This was supple-
mented by 133 samples available from a GeoMark Research database,®® bringing the total
number of data points to 1,376. These data were then used to rank the bubblepoint pressure
correlations. Table 6.5 summarizes the ranges of data found in this compilation and the distri-
bution. Fig. 6.3 shows the distribution of data used to prepare PVT correlations.

Table 6.6 summarizes correlation performance. The results are sorted by absolute average
relative error, which provided a means to rank the methods.

The data were further grouped to examine the impact of crude oil gravity and GOR on the
consistency of the correlations. Methods proposed by Lasater,' Al-Shammasi,> and Velarde et
al.’ showed reliability over a wide range of conditions. The author has experienced good re-
sults from both the Standing?'-* and Glase'? correlations, although they may not have ranked
highly with this data set. Fig. 6.4 depicts these correlations for comparison.

Fig. 6.5 graphically summarizes the results of all 32 bubblepoint pressure correlations for
varying GOR, a 35°API crude oil, a hydrocarbon gas gravity of 0.65, and a temperature of
150°F. Individual methods are unlabeled because it is the envelope and range of answers that
are of interest. Some information concerning correlation trends can be gathered from the outliers.
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Fig. 6.2—Typical characterization factors for various crude oil gravities.

Owolabi’s*® method for Alaska Cook Inlet Basin crude oil systems, shown in Fig. 6.5, illus-
trates the impact of gas impurities on the correlation. This crude oil system is characterized by
GORs in the range 200 to 300 scf/STB and nitrogen contents of 5 to 15%. The limited range
of GORs combined with the nitrogen in the surface gas results in a correlation that predicts
rather large values of bubblepoint pressure when extrapolated to higher GORs. This illustrates
the pitfalls of developing a correlation from a limited set of data and further defines the impor-
tance of understanding the range of applicability for any given correlation. The method may be
perfectly valid within a limited range of conditions; however, the equations that define the
method may not be suitable for extrapolation.

This example also illustrates the importance of adjusting the calculated bubblepoint pres-
sure for the effects of gas impurities. For the most part, bubblepoint-pressure correlations have
been established with little or no impurities in the gas. Owolabi recognized the importance of
these impurities and their impact on the calculated results. Methods to adjust the calculated
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Fig. 6.3—Distribution of data used to prepare PVT correlations.

bubblepoint pressure for gas impurities have been developed and should be used. Sec. 6.4 cov-
ers these methods.

It is instructive to focus on the large spread in the range of correlations presented in Fig.
6.5. The correlations form a core envelope of results that coincide with variations expected
because of the chemical nature of the crude oil. Correlations with results residing above and
below the core envelope were ignored, and the difference between high and low results was
determined as shown in Fig. 6.6.
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Fig. 6.4—Selected bubblepoint pressure correlations.

Correlations using only API gravity to define the crude oil component do not adequately
describe the chemical nature of the crude oil. Lasater’s method relies on a relationship relating
crude oil gravity and molecular weight. Whitson’s Watson characterization factor equation can
be used to examine this relationship. Lasater reported that the oil gravity/molecular weight rela-
tionship corresponded to a Watson characterization factor of 11.8; however, on closer examina-
tion, the correlation is representative of paraffinic oil with a Watson characterization factor of
approximately 12.2, as Fig. 6.7 shows. Whitson and Brulé!? recommended that Cragoe’s” rela-
tionship to determine molecular weight from API gravity be used to determine crude molecular
weight.

M, = L (6.5)

Yapr 39

First published in 1929, this equation is generally used with condensates and is applicable
over the range of 20 to 80°APIL. It should not be used outside this range. A Watson characteri-
zation factor of 11.8 is defined by Cragoe’s relationship over the API gravity range 30 to 40.
Whitson’s work with North Sea crudes that have a characterization factor of 11.9 supports this
recommendation. A more general recommendation is to use Whitson’s equation to determine
the molecular weight from the Watson characterization factor and oil specific gravity. This
adds the dimension of crude oil chemical nature to the estimate of fluid properties using corre-
lations. Lasater developed a correlation between a bubblepoint pressure factor, p,y,/T, and the
mole fraction of gas dissolved in the oil, which is depicted in Fig. 6.8. The equation fit to the
data has been modified to provide better performance of the correlation at high GOR condi-
tions. Lasater’s method is summarized in its entirety in Tables A-1 and A-2.

Whitson and Brulé offered a modification to Glase’s correlation to account for changes in
characterization factor. Glasg’s correlation was developed from North Sea crude oils with a
Watson characterization factor of 11.9. The proposed modification is

Vo, = yom(KW JTLO) s (6.6)
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Fig. 6.9 depicts the effect of changing the Watson characterization factor on bubblepoint
pressure for the Lasater and Glase correlations. The range in bubblepoint pressure solutions is
comparable to the range exhibited in Fig. 6.6. Clearly, the addition of Watson characterization



1-268 Petroleum Engineering Handbook—Vol. |

Fig. 6.5—Bubblepoint pressure relationship with solution GOR.

factor to correlation of bubblepoint pressure offers increased flexibility in the use of a correla-
tion on a worldwide basis. Whitson and Brulé present graphs detailing the relationship between
bubblepoint pressure and characterization that show bubblepoint pressure declining with an in-
crease in characterization factor. Their analysis procedure also allows for changing API gravity
and GOR. By allowing these two quantities to vary, their evaluation shows the converse of
Fig. 6.9.

A correlation is an equation or method fit to specific data groups to provide the relation-
ship between dependent and independent variables. Properly defined, the variables cover a
wide range of conditions, enabling the correlation to properly represent the physical processes
being modeled. Formulation of the equations is important because they are routinely extrapolat-
ed outside the range used for their development. Some correlations have been developed with
multiple equations for various ranges of crude oil gravity. Normally, 30°API is selected as a
point at which the equations change. Discontinuities in relationships can arise as a result of
using multiple equations. Other methods show nonphysical trends. Care must be exercised in
the use of these methods for “general use” calculations over a wide range of conditions.

Correlations proposed by Vazquez and Beggs,>?* Al-Najjar et al,*® Kartoatmodjo and
Schmidt,*® De Ghetto et al.,*** and Elsharkawy and Alikhan*’ use multiple equations to cover
the range of API gravities. These methods often exhibit discontinuities across the boundaries.
The method of Dokla and Osman?® shows virtually no sensitivity to crude oil gravity. Bubble-
point pressure should increase with rising temperature. Methods proposed by Dokla and
Osman, Almehaideb,* Elsharkawy and Dindoruk, and Christman® show a decrease. Bubble-
point pressure should decrease with increasing gas gravity. Methods proposed by Asgarpour et
al.¥ (for the Cardium/Viking and D2/Leduc formations) and Elsharkawy are insensitive to gas
gravity or show increasing bubblepoint pressure with increasing gas gravity. Omar and
Todd’s*'#? correlation shows a parabolic trend that is inaccurate for high gas gravities. This
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Fig. 6.6—Variability defined by bubblepoint pressure correlations.

Fig. 6.7—Effective molecular weight related to tank-oil gravity.

method should be avoided for crude oil systems with gas-specific gravities greater than 1.10.
Figs. 6.10 through 6.12 show these results graphically.

Additionally, several other correlations have been found to exhibit undesirable tendencies.
At atmospheric pressure where solution GOR is zero, Petrosky and Farshad!®!! determines a
value of 50 to 100 scf/STB. Dindoruk and Christman provided separate equations for GOR and
bubblepoint pressure because of their complexity. Both equations provide nearly identical re-
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Fig. 6.8—Bubblepoint pressure factor correlation with gas mole fraction.

sults for low GOR systems. For higher GOR systems (e.g., greater than 2,000 scf/STB), their
GOR equation provides more realistic results; therefore, when using the Dindoruk and Christ-
man method, their equation for solution GOR is recommended. For calculating bubblepoint
pressure, this equation must be solved with numerical methods because of its formulation. Cor-
relations proposed by Owolabi** and Hasan et al.** are undefined at pressures less than 55 psia,
while Al-Marhoun’s** method, published in 1985, has an upper pressure limit of 5,348 psia
because of the formulation of the equations.

In summary, correlations are often incorporated into computer programs in which they can
easily be used for conditions outside the range intended for the method. Some methods are
well behaved and provide reasonable results when extrapolated. Other methods should only be
used within the bounds defined by the data used in the development of the correlation.

6.4 Nonhydrocarbon Gas Effects
Nonhydrocarbon gases typically found in crude oil systems are nitrogen, carbon dioxide, and
hydrogen sulfide. The bubblepoint pressure correlations (with the exception of Owolabi,** Al-
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Fig. 6.9—Effect of characterization factor on bubblepoint pressure.

Marhoun,*3¢ and Dokla and Osman*) were developed with crude oil systems that did not
contain significant amounts of impurities in the gas phase. Work by Jacobson,®® Glase,!? and
Owolabi point out the need for procedures to modify the calculated bubblepoint pressure for
these impurities. Nitrogen does not readily dissolve in crude oil, resulting in an increase in
bubblepoint pressure. On the other hand, carbon dioxide and hydrogen sulfide are more soluble
in crude oil than natural gas, which has the effect of lowering bubblepoint pressure. Jacobson
evaluated 110 crude oil PVT samples containing up to 14% nitrogen and found that a correc-
tion factor need only be based on the nitrogen content of the gas and the temperature of the
mixture. An equation to account for the effects of nitrogen on bubblepoint pressure was devel-
oped.

pr2

= 1.1585 + 286y, — 1.07 X 107 3T. oo (6.7)
Ppp 2

Glasg examined the effects of nitrogen, carbon dioxide, and hydrogen sulfide on bubble-
point pressure and developed corrections for each impurity. The correction for nitrogen content
is a function of nitrogen content in the gas, temperature, and crude oil gravity.

pr2

o= 10+[(~2.65 X 1074, py +5.5 X 10‘3)T+(o.o931yAPf0.8295)}yN2
bh

[(1.954 > 107" y48) T +(0.027 9,y — 2.366)] yf,z. ............................ (6.8)

The correction for carbon dioxide is a function of carbon dioxide content and temperature,
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Fig. 6.10—Example of correlation discontinuities—API gravity.

Fig. 6.11—Correlations exhibiting nonphysical trends with temperature.

Pbco2

= 1.0 = 693.8 oo T 1%, s (6.9)
Ppp 2
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Fig. 6.12—Correlations exhibiting nonphysical trends with solution gas gravity.

while the correction for hydrogen sulfide was found to be a function of hydrogen sulfide con-
tent in the surface gas and crude oil gravity.

przs
Ppp

= 1.0 - (0.9035 + 0.0015y ;) Vst 0.019(45 = y5p1) yézs. .............. (6.10)

Figs. 6.13 through 6.15 depict these corrections. Owolabi found that Jacobson’s method
was superior for correcting the calculated bubblepoint pressure for the nitrogen content in Cook
Inlet crude oil systems. Jacobson’s method was derived from measured data containing less
than 14% nitrogen, while Glasg’s data covered systems with nearly 20% nitrogen. Glasg’s cor-
rection factors for carbon dioxide and hydrogen sulfide used measured data containing impuri-
ties of 20 and 40%, respectively.

6.5 Solution GOR
This property is determined by rearranging the equations for calculating bubblepoint pressure
as discussed in Secs. 6.3 and 6.4.

6.6 Formation Volume Factor

The oil FVF relates the volume of oil at stock-tank conditions to the volume of oil at elevated
pressure and temperature. Values typically range from approximately 1.0 bbl/STB for crude oil
systems containing little or no solution gas to nearly 3.0 bbl/STB for highly volatile oils. Ta-
bles A-3 and A-4 summarize thirty correlations for saturated crude oil systems that have been
identified in the literature. For saturated systems, gas is liberated as pressure is reduced below
the bubblepoint. This results in a corresponding shrinkage in oil volume, as shown for all of
the methods in Fig. 6.16. The rather large number of correlations preclude the identification of
individual methods. The results show a relatively narrow range of oil FVF values determined
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Fig. 6.13—Nitrogen bubblepoint pressure correlations factor.

by all of the correlation methods. These correlations determine FVF based on the following
function.

N A (AN ) K. (6.11)

Solution GOR accounts for the largest change in FVF. Increases in temperature, crude oil grav-
ity, and gas gravity provide a small increase in FVF.

Recent studies™ 778! provide statistical analyses for bubblepoint oil FVF correlations and
provide recommendations based on their findings; however, none of these references examines
the full set of correlations. Al-Shammasi’> compiled a databank of 1,345 data points from the
literature that was combined with 133 data points from the GeoMark Research database®® to
yield a total of 1,478 data points. These data were used to rank the accuracy of the oil FVF
correlations. The ranges and distribution of these data can be found in Table 6.5 and Fig. 6.3.
Table 6.7 summarizes correlation performance. The results are sorted by absolute average rela-
tive error, which provides a means to rank the methods.

The data were further grouped to examine the impact of crude oil gravity and GOR on
consistency of the correlations. Methods proposed by Al-Marhoun,* Al-Shammasi,? Farshad et
al.’ and Kartoatmodjo and Schmidt®® showed reliability over a wide range of conditions. The
author has experienced good results from both the Standing>® and Glase!'? correlations, although
they may not have ranked highly with this data set. Fig. 6.17 summarizes these methods.

The correlations were tested against the other parameters used in the derivation of the meth-
ods: crude oil API gravity, gas gravity, and temperature. Several methods use multiple equa-
tions valid for specified ranges of crude oil gravity. Discontinuities, which are summarized in
Fig. 6.18, can result from the use of this technique to develop a correlation. Furthermore, FVF
should increase with increasing API gravity. Fig. 6.18 shows methods that exhibit nonphysical
results.
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Fig. 6.14—Carbon dioxide bubblepoint pressure correction factor.

FVF should increase with increasing solution gas gravity. Fig. 6.19 shows that a number of
correlations predict results opposite to this trend. Correlations listed in Figs. 6.18 and 6.19
should be used with caution to avoid problems associated with discontinuities or nonphysical
behavior. Limitations imposed by data used in the correlation’s development should be followed.

6.7 Isothermal Compressibility
The isothermal compressibility of undersaturated oil is defined as

which reflects the change in volume with change in pressure under constant temperature condi-
tions. Below the bubblepoint pressure, oil isothermal compressibility is defined from oil and
gas properties to account for gas coming out of solution. The corresponding saturated oil com-

pressibility is
1 0 BO 0 Rs
¢, = —— - B
B,[\odpr g\ apr

Above bubblepoint pressure, oil volume changes as a function of isothermal compressibility
only. Tables A-5 and A-6 summarize the correlations developed to predict this property. Oil
FVFs for undersaturated crude oil are determined as a function of bubblepoint FVF, isothermal
compressibility, and pressure above bubblepoint from

e (6.13)
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Fig. 6.15—Hydrogen sulfide bubblepoint pressure correction factor.

B, = Babe[c” 2] (6.14)

o

A total of 141 data points were available from the GeoMark PVT database.®® Geographically,
these samples were obtained from the Gulf of Mexico and the Gulf of Suez. Table 6.8 pro-
vides a summary of the data. This data was used to evaluate and rank the performance of the
isothermal compressibility correlations. Table 6.9 provides the results. Data in the table have
been sorted by absolute average relative error, which provides a means to rank the methods.
Fig. 6.20 graphically shows isothermal compressibility vs. pressure.

Methods proposed by Standing!® and Ahmed®? exhibit excessive changes in compressibility
compared with the other methods and can determine results that are physically unreal. Fig.
6.21 shows how isothermal compressibility changes with crude oil gravity. As oil gravity in-
creases, isothermal compressibility should increase. Results predicted by Ahmed, Al-Marhoun,*
De Ghetto et al.,*** and Elsharkawy and Alikhan*’ do not properly model the phenomena. De
Ghetto et al. proposed a method that uses several equations covering various API gravity
ranges. This technique results in discontinuities in predicted properties as the equations change.
Fig. 6.22 shows the change in isothermal compressibility with solution GOR. Varying this prop-
erty also results in varying the bubblepoint pressure. To illustrate this effect, isothermal
compressibility is determined at 1,000 psi above a variable saturation pressure. Results from
methods proposed by Petrosky and Farshad,'®!! Kartoatmodjo and Schmidt,®® and Dindoruk
and Christman® are undefined for solution GORs of zero. Methods proposed by Ahmed, Al-
Marhoun, and Kartoatmodjo produce unphysical results with changing GOR.
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Fig. 6.16—Gas saturated oil FVF correlation results vs. solution GOR.

6.8 Density

The physical property density is the ratio between mass and volume. The density of crude oil
can be determined from specific gravity of the crude oil, the solution gas gravity, the solution
GOR, and the oil FVF.®2 Under any condition, density will be defined by

w,+ Wg ( )
D T T e e 6.15
oV, tAV,
Stated more rigorously with PVT properties, this relationship becomes
62.42796y + 0.0136y_ R
p, = "B e (6.16)

o

This is valid for all pressure and temperature conditions for which the PVT properties are deter-
mined. As expressed, this equation provides density with the units of 1bm/ft>.

6.9 Viscosity
Absolute viscosity provides a measure of a fluid’s internal resistance to flow. Any calculation
involving the movement of fluids requires a value of viscosity. This parameter is required for
conditions ranging from surface gathering systems to the reservoir. Therefore, correlations can
then be expected to evaluate viscosity for temperatures ranging from 35 to 300°F. Fluids that
exhibit viscosity behavior independent of shear rate are described as being Newtonian fluids.
Viscosity correlations discussed in this chapter apply to Newtonian fluids.

The principal factors affecting viscosity are oil composition, temperature, dissolved gas, and
pressure. Typically, oil composition is described by API gravity only. As discussed earlier in
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this chapter, this is a shortcoming. The use of both the API gravity and the Watson characteri-
zation factor provides a more complete description of the oil. Table 6.10 shows an example
for a 35° API gravity oil that points out the relationship of viscosity and chemical makeup
recalling a characterization factor of 12.5 is reflective of highly paraffinic oils, while a value of
11.0 is indicative of a naphthenic oil. Clearly, chemical composition, in addition to API gravi-
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Fig. 6.17—Selected oil FVF correlations.

ty, plays a role in the viscosity behavior of crude oil. Fig. 6.23 shows the effect of crude oil
characterization factor on dead oil viscosity. In general, viscosity characteristics are predictable.
Viscosity increases with decreases in crude oil API gravity (assuming a constant Watson char-
acterization factor) and decreases in temperature. The effect of solution gas is to reduce
viscosity. Above saturation pressure, viscosity increases almost linearly with pressure. Fig. 6.24
provides the typical shape of reservoir oil viscosity at constant temperature.

Viscosity calculations for live reservoir oils require a multistep process involving separate
correlations for each step of the process. Dead or gas-free oil viscosity is determined as a func-
tion of crude oil API gravity and temperature. The viscosity of the gas saturated oil is found as
a function of dead oil viscosity and solution GOR. Undersaturated oil viscosity is determined
as a function of gas saturated oil viscosity and pressure above saturation pressure.

Figs. 6.25 and 6.26 summarize all of the dead oil viscosity correlations described in Tables
A-7 and A-8. The results provided by Fig. 6.26 show that the method proposed by Standing®*
is not suited for crude oil with gravities less than 28°API. Al-Kafaji et al.’s* method is unsuit-
ed for crudes with gravities less than 15°API, while Bennison’s®> method, developed primarily
for low API gravity North Sea crudes, is not suited for gravities greater than 30°API.

Fig. 6.27 provides an annotated list of the most commonly used methods. The results illus-
trate the trend for dead oil viscosity and temperature. As temperature decreases, viscosity
increases. At temperatures below 75°F, the method of Beggs and Robinson'® significantly over-
predicts viscosity while Standing’s method actually shows a decrease in viscosity. These
tendencies make these methods unsuitable for use in the temperature range associated with
pipelines. Beal’s??! method was developed from observations of dead oil viscosity at 100 and
200°F and has a tendency to underpredict viscosity at high temperature. Dead oil viscosity cor-
relations are somewhat inaccurate because they fail to take into account the chemical nature of
the crude oil. Only methods developed by Standing'® and Fitzgerald'>!'%%! take into account the
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Fig. 6.18—O0il FVF vs. crude oil API gravity.

chemical nature of crude oil through use of the Watson characterization factor. Fitzgerald’s
method was developed over a wide range of conditions, as detailed in Tables A-7 and A-8, and
is the most versatile method suitable for general use of the correlations listed in that table. Fig.
6.28 provides the area of applicability for Fitzgerald’s method.

Andrade’s*>% method is based on the observation that the logarithm of viscosity plotted vs.
reciprocal absolute temperature forms a linear relationship from somewhat above the normal
boiling point to near the freezing point of the oil, as Fig. 6.29 shows. Andrade’s method is
applied through the use of measured dead oil viscosity data points taken at low pressure and
two or more temperatures. Data should be acquired at temperatures over the range of interest.
This method is recommended when measured dead oil viscosity data are available.

Tables A-9 and A-10 provide a complete summary of the bubblepoint oil viscosity meth-
ods. Correlations for bubblepoint oil viscosity typically take the form proposed by Chew and
Connally.'” This method forms a correlation with dead oil viscosity and solution GOR where A
and B are determined as functions of solution GOR.

B
Moy = Al g oo (6.17)

Figs. 6.30 and 6.31 shows the correlations for the A and B parameters developed by various
authors. Fig. 6.32 shows the effect of the A and B correlation parameters on the prediction of
viscosity. This plot was developed with a dead oil viscosity value of 1.0 cp so the effect of
solution GOR could be examined. Correlations proposed by Labedi,?'~*’ Khan et al.,* and Alme-
haideb*® do not specifically use dead oil viscosity and solution GOR and were not included in
this plot.
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Fig. 6.19—O0il FVF vs. solution gas gravity.

When pressure increases above bubblepoint, the oil becomes undersaturated. In this region,
oil viscosity increases nearly linearly with pressure. Tables A-11 and A-12 provide correlations
for modeling undersaturated oil viscosity. Fig. 6.33 presents a visual comparison of the methods.

6.10 Surface Tension

Interfacial or surface tension exists when two phases are present. These phases can be gas/oil,
oil/water, or gas/water. Surface tension is the force that holds the surface of a particular phase
together and is normally measured in dynes/cm. The surface tension between gas and crude oil
ranges from near zero to approximately 34 dynes/cm. It is a function of pressure, temperature,
and the composition of each phase. Two forms of correlations for calculating gas/oil surface
tension have been developed. The first form is a pseudocompositional black oil approach. Two
components, gas and oil, are identified, and techniques used with compositional models are
used to calculate surface tension. The second approach uses empirical correlations to determine
surface tension. Black oil correlations may provide less than accurate results because of the
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simplified characterization of the crude oil. Generally, the heavy end components of a crude oil
may be made of asphaltic and surface active materials that have a measurable effect on surface
tension.

With the compositional approach, surface tension is determined from the following equation
proposed by Weinaug and Katz.%

N
]é = _p() — _pg
g0 i§1Pi X; M, Vi e (6.18)

where the density terms are defined with units of g/cm?. P; is the parachor of each component.
This property is a characteristic of pure components and is determined from surface tension
measurements where the density of the gas and liquid phases are known. Fig. 6.34 provides a
relationship between parachors and molecular weight.

In 1973, Ramey®® proposed a pseudocompositional method for calculating surface tension.
The two components are oil and gas. Gas is free to dissolve in the oil phase, and oil is free to
vaporize in the gas phase, which makes this method more versatile than the other methods
discussed in this chapter. The Weinaug-Katz equation is modified as
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Fig. 6.20—Isothermal compressibility vs. pressure.

oot i) nbas )
o, =P |x -y - P_|x -y ) rreeeeenrrreeaeans (6.19)
go ol\%o Mog 4 Mgo g gMog gMgo
where the oil mole fraction in the oil phase is defined as
7521 X 10 °R M, |
x, = |1+ - s rereerere ettt (6.20)
Yo
and the gas mole fraction in oil is
X = Lo X e (6.21)
The mole fraction of oil and gas in the gas phase is
7521 x 10 °m | 622
=1+ s ettt ettt ettt .
Yo v, (
and
Vg = L= p e (6.23)

The traditional assumption used with the black oil approach is that the oil vaporized in the gas
phase, r,, is zero. In this instance, y,=0 and y,=1, which simplifies Eqs. 6.22 and 6.23.
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Fig. 6.21—Isothermal compressibility vs. crude oil gravity.

The average molecular weights of the oil and gas phases are defined as

Mog =x,M, + ngg, ..................................................... (6.24)
and
Mgo =y,M, + ngg. ...................................................... (6.25)

Liquid and gas densities are defined with units of g/cm?:

7o +2.179 X 107y R,
P, = B 5 et e e et et e e e s e eeeens

o

and

M,
P
pg="93184 X 10 Tgo .................................................. (6.27)

Whitson and Brulé!® suggested the following parachor equations, which reproduce the graph-
ical methods suggested by Ramey:

P, = (2376 +0.0102p 4 py) My, woooovoceereeensceessceese (6.28)
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Fig. 6.22—Isothermal compressibility vs. solution GOR.

and

Pg=25.2+2.86Mg. ........................................................ (6.29)

In 1989, Asheim® presented another pseudocompositional correlation for surface tension.
With the assumption that no oil vaporizes into the gas phase, the resulting equation is

R, 1

1/4 -3
= + X -
0 P, M B, 1.493 10 Pg 5614583 B, B | e (6.30)
g
where the gas FVF, B,, is defined as
p. Z(T+459.67)
B = e, (6.31)

& p(r,,+459.67)

Asheim proposed the following equations to calculate the parachors for the oil and gas phases.

P, = 240 M, + 40 ..ooooooooooeeeeeeeeeeeeeeeeeeeeeeee (6.32)
Py =279 My + 40, oo (6.33)

While this method appears different from that proposed by Ramey, it is identical for the
Ramey case in which no oil vaporizes into the gas phase. This method differs from Ramey’s
method only by the definition of the oil and gas parachors.
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Fig. 6.23—Dead oil viscosity vs. API gravity and Watson characterization factor.

The Baker and Swerdloff 2627 method was published in 1955. It was presented in the form
of graphs for estimating gas/oil surface tension (Fig. 6.35). Equations to calculate the dead oil
surface tension at 68 and 100°F are

aodég =39 = 02571 P ppps covveeeereereeeeiseeieiseeee s (6.34)
and
00d100 = 37.5 = 02571 Y App ceereveeeiienieiieeee (6.35)

Beggs®” suggests that for temperatures greater than 100°F, the value calculated for 100°F
should be used. Similarly, if the temperature is less than 68°F, the value calculated for 68°F
should be used. For intermediate temperatures, surface tension is derived by linear interpolation
as described by

T — 68 ( - )
( ) Todgg — Zody

O-Od = O'Od68 - 32 e eeeerieiieeeseeeeeaeeaeaaaaas (636)
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Fig. 6.24—Typical oil viscosity curve.

At pressures greater than atmospheric pressure, gas is dissolved in the oil, which reduces
surface tension. Baker and Swerdloff provided the graphical correction factor shown in Fig.
6.36, which can be reproduced mathematically by

o —4
(ﬂ) = o T8O306 X 10T D) e (6.37)
Ood

The live oil surface tension is then derived from
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Fig. 6.25—Dead oil viscosity correlations vs. temperature.

O-go

). .......................................................... (6.38)

Ugo = aod(

In 2000, Abdul-Majeed® presented an update to Baker and Swerdloff’s correlation. Surface
tension data from 18 crude oils covering the temperature range 60 to 130°F was used to derive
Eq. 6.39, which Fig. 6.37 shows graphically.

0, = (117013 = 1.694 X 107°7)(38.085 = 0.259 5 py). coevvvvercrrererncn (6.39)

Data acquired from 42 crude oil/gas systems was used to develop the live oil correction factor.
These data, shown graphically in Fig. 6.38, can be represented by

(—3.8491 X 1073 RS)

0
—=] = 0.056379 + 0.94362 ¢ e (6.40)

Ood

As with the Baker and Swerdloff method, the live oil surface tension is given by Eq. 6.38.
Table 6.11 shows the statistics provided by Abdul-Majeed comparing the results of the pro-
posed method with the Baker and Swerdloff method. Fig. 6.39 shows a comparison of the four
methods for calculating surface tension.

6.11 Water-Hydrocarbon Surface Tension

The surface tension of a water-hydrocarbon system varies from approximately 72 dynes/cm for
water/gas systems to 20 to 40 dynes/cm for water/oil systems at atmospheric conditions. In
1973, Ramey® published methods to evaluate the surface tension of water-hydrocarbon mix-
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Fig. 6.26—Dead oil viscosity vs. API gravity.

tures. Unfortunately, this work was for liquid hydrocarbons and did not extend into the gas-
phase region. A later publication by Firoozabadi and Ramey®® provided a more generalized
correlation suitable for use with gas and liquid hydrocarbons. Surface tension data from pure
components ranging from n-dodecane to methane were plotted as shown in Fig. 6.40. The sur-
face tension function used for the y-axis is

60'25

hw 3125

(f)Tf s e (6.41)
Pyw = Pp

while the density difference between the water and hydrocarbon phase is plotted on the x-axis.
The data in Fig. 6.40 can be represented by

0.25
T g03125 _ g 5g, L6 (6.42)
TETRK R T TR .

Solving for surface tension, the relationship becomes

T = e (6.43)

1.58(p,, = p,) + 1.76 ]*
T03125
y

This equation requires that the pseudocritical temperature of the oil and gas phases be calculat-
ed to evaluate reduced temperature. Riazi’s™ relationship for liquid hydrocarbons can be
modified to yield
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Fig. 6.27—Annotated list of commonly used dead oil viscosity correlations.

— 1.76544  2.12504
T,, = 24.2787 K103 21500 e (6.44)

o

Sutton’s®® equation for pseudocritical temperature can be used for the gas phase:
— 2
Tog = 1692+ 349.5y, . = TA0Ygper o, (6.45)

When the pressure increases and gas dissolves into the oil phase, the composition of that phase
changes. The pseudocritical temperature of the mixture can be evaluated by calculating the
mole fraction of each component present in the oil. For the oil component, we have

7521 X 10°R M, !
x, = |1+ s e (6.46)

o Y,

while the gas mole fraction in oil is

The pseudocritical temperature of the mixture is then the mole fraction weighted average pseu-
docritical temperature of each component:

L N S N (6.48)

cm o~ co
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Fig. 6.28—Area of applicability for Fitzgerald’s correlation. (Reproduced courtesy of the American
Petroleum Institute.®)

This work serves as a guide for estimating the surface tension between water and hydrocar-
bons. Firoozabadi and Ramey recommended that a single point measurement for oil water
systems be obtained so that the curve in Fig. 6.40 could be appropriately adjusted. Fig. 6.41
shows an example of results for oil/water and gas/water systems derived from this method.

For methane-brine systems, Standing'® has indicated that the surface tension will increase
according to Fig. 6.42. The relationship in Fig. 6.42 can be approximated by

-5
Gogr = 344 X 1072Cy, i (6.49)

Example 6.1 Determine the PVT properties for a United States midcontinental crude oil
and natural gas system with properties listed in Table 6.12. Table 6.13 lists the correlations to
be used. Measured data are provided for comparison with the calculated results. For correla-
tions that rely on other correlations, these data illustrate the effects of error propagation in the
calculations.

Solution. Determine the crude oil specific gravity,

_ 1415 1415
Yap + 1315 37.9 + 1315

and molecular weight,
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Fig. 6.29—Dead oil viscosity vs. reciprocal absolute temperature.

=193 i (6.51)

0.84573\6.58848
_ K.,7, (118 x 0.84980-845736.58848
0 4.5579 4.5579

Bubblepoint Pressure—Lasater. Calculate the gas mole fraction in the oil,

-1
Yo

7.521x10 °R M,

-1
1+ 08353 } = 0572, .. (6.52)
7521x10°0 X 769 X 193

1+

and the Lasater bubblepoint pressure factor,

(0.572 — 0.15649)
0.33705

- 0.15649
(xg )
0.33705
=e

- 0.59162 = e( ) — 0.59162 = 2.843, .......... (6.53)

Pr=

with Lasater’s relationship between bubblepoint pressure factor and bubblepoint pressure,

_ pp(T+459.67)  2.843(120 + 459.67)

7Y 0.804 = 2,050 psia. ...ccecvererrnennen. (6.54)

Pp

For comparison, Standing = 2,316 psia, Glasg = 2,725 psia, Al-Shammasi = 2,421 psia, and
Velardi = 2,411 psia.

Modify the calculated bubblepoint pressure to account for the effects of nitrogen in the
surface gas with Jacobson’s equation.
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Fig. 6.30—Bubblepoint viscosity correlation parameter A.

PN, 3
= 1.1585 + 286 yy. — 1.07 X 10 °T
Ppi 2
= 1.1585 + 2.86 X 0.0238 — 1.07 X 107> X 120 = 1.098...ororevrerrernnn.. (6.7)

Therefore, the bubblepoint pressure should be increased by 9.8% to 2,251 psia. The measured
bubblepoint pressure was reported to be 2,479 psia.
Bubblepoint Oil FVF—AI-Shammasi.

1.81 X 107*R, , 449 X 10741 - 60)

B, =1+553 X 10 R (T - 60) +

o y()

—4
2,06 X 10°*R_y
+ e (6.55)
7o

1.81 X 1074 X 769
0.8353
4.49 X 1074120 — 60) L 2.06 % 1074 X 769 X 0.804
0.8353 0.8353
= 1.377 bbl/STB.

= 14553 X 1077 X 769 X (120 — 60) +

For comparison (in bbl/STB), Standing = 1.410, Glase = 1.386, Al-Marhoun!® = 1.364, Farshad
= 1.364, and Kartoatmodjo = 1.358. The measured bubblepoint oil FVF is 1.398 bbl/STB.
Isothermal Oil Compressibility—Farshad.
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Fig. 6.31—Bubblepoint viscosity correlation parameter B.

0.1982-0.6685,—0.21435_1.0116 _—0.1616
X = R, T Vg VAPL D e (6.56)
_ 7690.19821200.66850 804—0.2143537 91.01164500—0.1616 — 97459
-4 -8 .2
—54531 +503 X 10 "X —35 X 10 "X
¢, = 10( e (6.57)
—4 -8 2
—5.4531 + 5.03 X 10 '974.59 — 3.5 X 10 "974.59 _ _
= 10( ) 10.09 X 10 ®psi L.

The measured isothermal compressibility is 11.06 x 10 psi.

Undersaturated Oil FVF. With the results from Lasater’s method for bubblepoint pressure,
Al-Shammasi’s method for bubblepoint oil FVF, and Farshad’s equation for isothermal com-
pressibility, the undersaturated oil FVF is given by

B, =B, Lo Pl (6.14)

o

= 1377 (L1009 X 107 @251 - 4500] _ 34641/ STB,

which compares to a measured value of 1.367 bbl/STB. Because this calculation uses the re-
sults from multiple correlations, individual correlation error compounds and propagates through
to the final result. The calculated value is 1.367 bbl/STB with the actual bubblepoint value of
1.398 bbl/STB; therefore, the accuracy of the bubblepoint FVF is primarily affected by the
accuracy of the undersaturated FVF.

Oil Density.
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Fig. 6.32—Bubblepoint oil viscosity vs. solution GOR.

62.427967, + 0.01367, R,

p, = T (6.16)
X X X
_ 62.42796 X 0.8353 + 0.0136 0.804 769 _ 45.0 lbm/ft3.
1.346
Dead Oil Viscosity—Glase.
10
_(3.141 X 10 [10.313 log ) — 36.447]
Hog = (W) log (VAPI) OB T (6.58)

_ (3.141 x 10"

[10.313 log (120) — 36.447] _
0 ) log (37.9) = 2.30 cp.

For comparison, Fitzgerald = 1.808 cp, and Bergman = 2.851 cp. The measured dead oil viscos-

ity is 1.67 cp.
Bubblepoint Oil Viscosity—Chew and Connally.

080 a0+ 0.80 = 0.3906. oo (6.59)

A=020 +
020 (0.00081 RS) 10{0:00081 > 769)

10
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Fig. 6.33—Undersaturated oil viscosity vs. pressure.

~ 057 0.57 _

B =043+ o] 0.43 + o < 7o) 0.5893. oo (6.60)
10 S

= A, =03906 X 2.30%7%7 = 0.638 cp...ovorrrrorccc (6.17)

For comparison, Beggs and Robinson = 0.515 cp. The measured viscosity at bubblepoint is
0.401 cp.
Undersaturated Oil Viscosity—Vazquez and Beggs.

1187 (-39 x 1075y - )
u, =, (p%)[“” ol e (6.61)
26 45001187 10(73.9 X 1070 X 4500 — 5)
= 0.638(%)[ e 1Z 088 p.

For comparison, Beal = 0.730 cp and Kouzel = 0.778 cp. The measured value is 0.475 cp.
This example illustrates the steps necessary to calculate oil viscosity requiring correlations for
dead oil viscosity, bubblepoint viscosity, undersaturated viscosity, and bubblepoint pressure/so-
Iution GOR. Errors in individual correlations can compound and propagate through to the
resulting answer. For instance, if the measured bubblepoint viscosity is used in Eq. 6.61, the
result is 0.52 cp—much closer to the measured value. Therefore, care should be exercised in
the selection of accurate correlations for individual properties.
Gas/Oil Surface Tension—Abdul-Majeed. Calculate the dead oil surface tension.



Chapter 6—O0il System Correlations 1-297

Fig. 6.34—Hydrocarbon parachors.?

0,4 = (1.17013 = 1.694 X 107°7)(38.085 = 0.259 7 5 py)-vevrrrcrvvrrrcrivres (6.39)

= (1.17013 - 1.694 X 10 X 120)(38.085 — 0.259 X 37.9) = 27.3 dynes/cm.

Determine the live oil adjustment factor.

O o (-3.8491 x 1073 R )
——] = 0.056379 + 0.94362¢ e (6.40)
%0d
(-3.8491 % 107 x 769)
= 0.056379 + 0.94362 ¢ = 0.105.
Calculate the live gas/oil surface tension.
o
- go
o, = T s (6.38)
8¢ od ( Ood )
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Fig. 6.35—Surface tension of crude oil at atmospheric pressure (after Baker and Swerdloff?7).

= 273 X 0.105 = 2.88 dynes/cm.
For comparison, Baker and Swerdloff = 4.73 dynes/cm.

Water/Oil Surface Tension—Firoozabadi and Ramey. Calculate the pseudocritical tempera-
ture of the dead oil.

T, = 242787 K 7034212500 (6.44)

= 242787 X 11.81763%4( 8353221304 — 1292 7° R,

Calculate the pseudocritical temperature of the gas.

— 2
T,y = 1692+ 3495 ) = 4072 (6.45)

= 169.2 +349.5 X 0.804 — 74.0 X 0.804>= 402.4°R.
Calculate the pseudocritical temperature of the live gas/oil mixture.

T. =xT. +x T

cm o’ co g cg

= (1 - 0.572)1292.7 + 0.572 X 402.4= 783° Rureerevrverrerrererrerrrren. (6.48)

Convert oil density units from lbm/ft* to g/cm’.
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Fig. 6.36—Effect of solution gas on crude oil surface tension (after Baker and Swerdloff?’).

Fig. 6.37—Surface tension of crude oil at atmospheric pressure. (Reprinted from J. of Petroleum Sci-
ence and Engineering, Vol. 27, Abdul-Majeed and Abu Al-Soof, “Estimation of Gas-Oil Surface
Tension,” 197, Copyright 2000, with permission from Elsevier.)
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Fig. 6.38—Effect of solution gas on surface tension of crude oils. (Reprinted from J. of Petroleum
Science and Engineering, Vol. 27, Abdul-Majeed and Abu Al-Soof, “Estimation of Gas-Oil Surface
Tension,” 197, Copyright 2000, with permission from Elsevier.)

Po

- ¢ _ 3
Ph = Tranrog = 07206 8/Cm i (6.62)

Calculate the surface tension between the oil and water phases.

1.58(p,, — p,) + 176 ]*

Oy = 3105 | e (6.43)
70
4
1.58 (1.000 — 0.7206) + 1.76
= 03125 = 34.2 dynes/cm.
((120+459.67)/ ) '
783
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Fig. 6.39—Comparison of surface tension calculation methods.
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Fig. 6.40—Generalized correlation for water/hydrocarbon surface tension. [This material is being used
with permission from the Petroleum Society. The author thanks the Petroleum Society for the use of this
material and reminds recipients that no other copies may be made without the expressed written consent
of the Petroleum Society. Firoozabadi, A. and Ramey, H.J.: “Surface Tension of Water-Hydrocarbon Sys-
tems at Reservoir Conditions,” Journal of Canadian Petroleum Technology (May—June 1988) 41.]
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Fig. 6.41—Water/hydrocarbon surface tension.
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Fig. 6.42—Methane/brine surface tension correlation."®

gas FVF, ft¥/scf

oil FVF, bbl/STB

oil formation volume at bubblepoint pressure, bbl/STB
oil isothermal compressibility, Lt*m, psi-!

oil isothermal compressibility at bubblepoint, Lt*/m, psi’!
salt concentration in water, ppm

Watson characterization factor, °R !

gas molecular weight, m, Ibm/Ibm mol

gas/oil mixture molecular weight, m, Ibm/Ibm mol

oil molecular weight, m, Ibm/Ibm mol

oil-gas mixture molecular weight, m, lbm/lbm mol
pressure, m/Lt?, psia

bubblepoint pressure, m/Lt?, psia

bubblepoint pressure of oil with CO, present in surface gas, m/Lt?, psia

bubblepoint pressure of oil with H,S present in surface gas, m/Lt%, psia

bubblepoint pressure of oil with N, present in surface gas, m/Lt?, psia

= bubblepoint pressure of oil without nonhydrocarbons, m/Lt?, psia

bubblepoint pressure factor, psia/°R

pressure ratio (fraction of bubblepoint pressure)
pressure at standard conditions, m/Lt?, psia
separator pressure, m/Lt?, psia

parachor

gas parachor

= parachor of each component
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= oil parachor

vaporized oil/gas ratio, STB/scf
solution GOR, scf/STB
solution GOR at bubblepoint conditions, scf/STB

= temperature, T, °F

temperature, T, °R

mean average boiling point temperature, T, °R
gas pseudocritical temperature, T, °R

mixture pseudocritical temperature, T, °R

oil pseudocritical temperature, T, °R

reduced temperature, T

temperature at standard conditions, T, °F
separator temperature, T, °F

kinematic viscosity at 100°F, L?/t, cs
kinematic viscosity at 200°F, L%/, cs

volume, L’

volume of crude oil, L3

weight of dissolved gas, m

weight of crude oil, m

gas “component” mole fraction in oil
component i mole fraction in oil phase

oil “component” mole fraction in oil
calculated value in ARE and AARE calculations

measured value in ARE and AARE calculations
mole fraction CO, in surface gas

gas “component” mole fraction in gas
mole fraction H,S in surface gas

component i mole fraction in gas phase
mole fraction N, in surface gas

oil “component” mole fraction in gas
corrected oil “component” mole fraction in gas

measured oil “component” mole fraction in gas

gas compressibility factor

oil API gravity

gas specific gravity, air=1

gas specific gravity adjusted for separator conditions, air=1

gas specific gravity of hydrocarbon components in a gas mixture, air=1
separator gas specific gravity, air=1

oil specific gravity

“corrected” oil specific gravity

measured oil specific gravity

change in volume as a result of dissolved gas, L3

adjustment to liquid density because of pressure, m/L?, Ibm/ft?
adjustment to liquid density because of temperature, m/L?, Ibm/ft?
oil viscosity, m/Lt, cp

bubblepoint oil viscosity, m/Lt, cp

dead oil viscosity, m/Lt, cp

apparent liquid density of solution gas, m/L?, Ibm/ft3
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pg = gas density, m/L?, Tom/ft’
p;, = hydrocarbon density, m/L?, g/cm?
p, = oil density, m/L?, Ibm/ft}
p,p = bubblepoint oil density, m/L?, lbm/ft*
P po = pseudoliquid density, m/L’, Ibm/ft’
p,, = water density, m/L?, g/cm’
0., = water salinity correction for gas/water surface tension, m/t?, dynes/cm
o,,, = hydrocarbon/water surface tension, m/t*, dynes/cm
o,, = gas/oil surface tension, m/t?, dynes/cm
o,; = dead oil surface tension, m/t?, dynes/cm
o,; = dead oil surface tension at 68°F, m/t?, dynes/cm

G4 = dead oil surface tension at 100°F, m/t?>, dynes/cm
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°API 141.5/(131.5+°API) =g/em’
bbl x 1.589 873 E-01 =m’
cp x 1.0% E—03 =Pas
Cs x 1.0% E-06 =m¥s
dyne x 1.0%* E-02 =mN
ft? x 2.831685 E-02 =m’
°F (°F—32)/1.8 =°C
in. x 2.54% E+00 =cm
Ibm x 4.535924 E-01 =kg
psi x 6.894 757 E+00 =kPa

*Conversion factor is exact.
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Chapter 7

Thermodynamics and Phase Behavior
R.T. Johns, U. of Texas at Austin

7.1 Introduction

Phase behavior describes the complex interaction between physically distinct, separable por-
tions of matter called phases that are in contact with each other. Typical phases are solids,
liquids, and vapors. Phase behavior plays a vital role in many petroleum applications, such as
enhanced oil recovery, compositional simulation, geochemical behavior, wellbore stability,
geothermal energy, environmental cleanup, multiphase flow in wellbores and pipes, and surface
facilities.

Thermodynamics, which is central to understanding phase behavior, is the study of energy
and its transformations. Using thermodynamics, we can follow the energy changes that occur
during phase changes and predict the outcome of a process. Thermodynamics began as the
study of heat applied to steam power but was substantially broadened by Gibbs in the middle
to late 1800s. Gibbs’ most significant contribution was the development of phase-equilibrium
thermodynamics applied to multicomponent mixtures, particularly the concept of chemical po-
tential.! The concept of chemical potential leads to the result that, at equilibrium, the chemical
potential of each component must be the same in all phases (¢;; = ;).

Phase-equilibrium thermodynamics seeks to determine properties such as temperature, pres-
sure, and phase compositions that establish themselves once all tendencies for further change
have disappeared. This chapter reviews the fundamentals of phase-equilibrium thermodynamics
used in petroleum applications, especially those that require liquid-vapor phase behavior.>” The
next chapter in this section of the Handbook illustrates phase behavior through diagrams.

7.2 Fundamental Ideas and Problem Statement
Fig. 7.1 is a schematic showing a closed container of liquid and vapor. Given constant and

known temperature, pressure, and overall compositions (z; where i =1, -+, n,) at equilibrium,
the fundamental task is to quantify the molar fractions of the phases (L, ) and compositions
of the vapor (y; where i =1, ---, n.) and liquid phases (x; where i =1, ---, n.) that form at

equilibrium. The phases are assumed to be homogeneous, in which intensive parameters such
as pressure, temperature, density, viscosity, and phase compositions are uniform throughout the
phase. (Thus, gravity effects are not typically considered.) Intensive properties are those that
are independent of the amount of the phases (e.g., phase density, pressure, and temperature).
Alternatively, extensive properties depend on the amount of the phases (e.g., total volume and
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Fig. 7.1—Vapor-liquid equilibrium at constant pressure, temperature, and overall composition. A dashed

line shows a distinct interface between the two phases.

moles of liquid). Intensive properties can be determined as the ratio of two extensive proper-
ties; for example, molar density is the number of moles divided by the total volume.
The overall compositions and phase compositions in Fig. 7.1 are written as mole fractions,

which are defined by

_ moles of component i in all phases

i total moles of all phases

>

and

_ moles of component i in the vapor
i total moles of vapor

>

n n n
where Eicz 12; = 1.0 for the container, Eii 1x; = 1.0 for liquid, and Zl-C: 1v; = 1.0 for vapor. The

relative amounts of the phases are defined by the phase mole fractions,

_ moles of the liquid phase
total moles of all phases ’

and

_ moles of the vapor phase
total moles of all phases’

where L +V = 1. The phase molar fractions are not saturations, although they could be convert-
ed to saturations from the phase densities. The molar fractions of the phases are related to the

overall and phase compositions by
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S (7.1)

Thus, once the overall compositions and phase compositions are known, the phase molar frac-
tions, L and V, are also known.

7.2.1 Gibbs Phase Rule and Duhem’s Theorem. The Gibbs phase rule and Duhem’s theorem
assure us that the problem illustrated in Fig. 7.1 can be solved. Ideas and theories from thermo-
dynamics are based on observations. Gibbs, for example, observed that the equilibrium inten-
sive state of the system is fully known once the pressure, temperature, and phase compositions
are specified. The number of intensive properties that we would like to know is, therefore,
2+n,n » where n_ is the number of phases (for vapor/liquid equilibrium, n, is two). These
intensive properties can only be determined if a sufficient number of equations are available or
if some of them are explicitly specified. An inventory of equations shows that there are n »

summation equations (i.e., the phase mole fractions for each phase sum to 1.0) and » c(n - 1)

equilibrium relations, for a total of n p T c(n - 1) equations. The equilibrium relations could

V.
be given as K-values (K; = x—’), which relate the component liquid and vapor mole fractions or,

as described later, chemical plotential criteria for equilibrium (i.e., y;; = /“iV)

The Gibbs phase rule says that the degrees of freedom are 2 +n which is the differ-
ence between the number of required intensive properties (unknowns{ and the number of
relations (equations). The Gibbs phase rule is only practically useful for a small number of
components but does offer significant insight into the maximum number of phases that can
form as well as how many intensive properties can be independently specified.

For example, suppose that only one phase (n » = 1) is present at equilibrium in a system
containing a pure fluid (n, = 1). The Gibbs phase rule says that only two intensive properties
can be specified (degrees of freedom are two). We cannot specify three or more intensive prop-
erties for this case, but we are free to choose which intensive properties are set. Typically, we
would choose temperature and pressure. The choice of intensive properties is not completely
arbitrary, for only properties related to an individual phase can be selected. Thus, properties
such as the overall density of the two-phase system or the phase molar fractions, L and 7,
cannot be used to reduce the degrees of freedom.

Suppose next that three equilibrium phases exist in the pure fluid (i.e., the triple point). For
this case, the degrees of freedom are zero, and no intensive properties can be specified. That
is, the intensive properties, such as temperature and pressure, are determined and are not arbi-
trary at the triple point. Four phases in equilibrium with each other are not allowed by the
Gibbs phase rule (neither are they observed experimentally).

Duhem’s theorem is another rule, similar to the phase rule, but it specifies when both the
extensive and intensive states of the system are determined. The theorem states that for any
closed system containing specified moles of n. components (from which the overall composi-
tions can be calculated), the equilibrium state is completely determined when any two indepen-
dent properties are fixed. The two independent properties may be either intensive or extensive;
however, the maximum number of independent intensive properties that can be specified is
given by the Gibbs phase rule. For example, when the degrees of freedom are one, at least one
of the two variables must be extensive. When the degrees of freedom are zero, both must be
extensive. Thus, the combination of the Gibbs phase rule and Duhem’s theorem shows that the
extensive and intensive state of the two-phase problem in Fig. 7.1 can be determined when the
temperature, pressure, and moles of all the components are specified. For a pure component
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Fig. 7.2—Potential states of a system illustrated by a ball rolling down a hill.

system, the intensive and extensive state of the system is determined when the temperature,
pressure, and the total number of moles are given.

7.2.2 Equilibrium, Stability, and Reversible Thermodynamic Systems. Thermodynamics is a
macroscopic viewpoint in that it concerns itself with the properties of a system, such as temper-
ature and density. Thermodynamics predicts the nature of a new equilibrium state—not the rate
at which that state is reached. One of the characteristics of equilibrium is that the thermodynam-
ic properties are time invariant. Furthermore, once equilibrium is reached, the process or
pathway that led to equilibrium cannot be determined.

The equilibrium state is always time invariant, whether it is dynamic or static. A dynamic
equilibrium process is a steady-state process, in which the properties change spatially but not
temporally. A static process, while having the appearance of reaching a static state on a macro-
scopic scale (such as that shown in Fig. 7.1), is anything but static on a microscopic scale.
Molecules from the liquid phase continue to move into the vapor phase and vice versa, but the
rates of energy and mass transfer are equal, giving the appearance of equilibrium on a macro-
scopic scale. Indeed, this is exactly the definition for equilibrium embodied by the chemical
potential criterion u,; = i,

The criterion of time invariance is a necessary, but not sufficient, condition for equilibrium.
Some systems can exist in metastable states that are time invariant. For example, at the Earth’s
surface, diamonds are in a metastable state of pure carbon, whereas graphite is the equilibrium
state. Fig. 7.2 illustrates the concept of equilibrium vs. metastable or unstable (nonequilibrium)
states by considering a ball rolling down a hill into a valley. When the ball is on the side of
the hill, it is unstable and will roll down the slope because of gravitational forces; this is an
unstable process. The ball, however, if initially trapped in a small depression on the side of the
hill, will not roll down the hill; this is a metastable state. Lacking any additional energy, the
ball will stay in the metastable position. If the depression is removed, or the ball is slightly
moved, the ball will roll down the hill until it reaches the lowest position, which corresponds
to the lowest gravitational potential energy or equilibrium position.

Later on, we will find that a definition for equilibrium is when the Gibbs free energy of the
system is the lowest value possible, and this is how one can recognize unstable or metastable
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states from the true equilibrium. Generally, equilibrium states that arise naturally are stable to
small disturbances. On the flip side, metastable equilibrium states, which are not stable to
small disturbances, do not occur often in nature. Our mathematical description of equilibrium,
however, will exhibit these unstable and metastable states, so we must be able to recognize them.

Processes of interest to us are often not time invariant, and it would appear that equilibrium
thermodynamics is not very useful. For example, we typically run transient simulations to esti-
mate the recovery of reservoir oil by injection of a gas. The concept of local equilibrium and
reversibility are used to overcome this apparent limitation of thermodynamics. Equilibrium at a
point in a reservoir, termed local equilibrium, often applies when internal relaxation processes
are rapid with respect to the rate at which changes are imposed on the system. That is, equilib-
rium thermodynamics can be applied over small volumes of the reservoir, even though pressure
and other gradients remain in the reservoir. In reservoir simulation, the small volumes are grid-
blocks, although the size of the gridblocks must be sufficiently small so that good accuracy is
obtained.

The concept of reversibility of a process is also important. A reversible process proceeds in
sufficiently small steps so that it is essentially in equilibrium at any given time (i.e., the pro-
cess at a point in the reservoir proceeds in a succession of local equilibrium steps). A process
is reversible when its direction can be reversed at any point by an infinitesimal change in exter-
nal conditions.

The concept of reversibility is, in a sense, the temporal equivalent to the spatial concept of
local equilibrium. Thus, the concepts of local equilibrium and reversibility allow the applica-
tion of equilibrium thermodynamics to real systems, which are invariably nonequilibrium at
large scales. For most cases, very little accuracy is lost in making such assumptions.

7.3 Fundamental Equations

Relatively few ideas and equations are used to solve the phase behavior problem illustrated in
Fig. 7.1. The most fundamental idea in thermodynamics is the conservation of total energy,
which is termed “the first law of thermodynamics.” The first law is based on our every day
observation that for any change of thermodynamic properties, total energy, which includes inter-
nal, potential, kinetic, heat, and work, is conserved. The second fundamental idea in thermody-
namics is the total entropy balance or “the second law of thermodynamics.” Entropy is a
thermodynamic property that expresses the unidirectional nature of a process and, in some
sense, is “nature’s clock.” For example, a cup of hot coffee at room temperature cools down
instead of heating up. The conservation of total mass is also used to constrain thermodynamic
processes.

These equations are applied to a thermodynamic system. A thermodynamic system is de-
fined as that part of the universe we are considering—for example, the inside of the container
in Fig. 7.1. Everything else is called the surroundings. A system may be related to its surround-
ings in a variety of ways, depending on whether mass or energy (in the form of heat or work)
is exchanged (see Fig. 7.3). When no heat or mass is transferred, and no work is done on or
by the surroundings, the system is referred to as an “isolated” system. When only energy is
exchanged between the system and surroundings, the system is “closed.” Last, the system is
“open” when both mass and energy are exchanged between the system and its surroundings.
No work is allowed on or by an isolated system, and its boundaries are therefore rigid.

A thermodynamic state is given by its thermodynamic properties (e.g., pressure, density,
enthalpy, temperature, internal energy, entropy, and other properties). All of these are state func-
tions that depend only on the present state reached (point conditions)—not the path that the
system took to reach that state. For example, if methane is heated, compressed, and then re-
turned to its initial volume and temperature, the methane will have exactly the same pressure
as before, independent of how it was heated or compressed. The usefulness of state functions
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Fig. 7.3—Three types of thermodynamic systems. M indicates mass, and Q indicates heat.

is the simplest possible path can be selected for the calculation of the change in a state func-
tion; that is, we would likely choose a reversible path that consists of isothermal or isobaric steps.

In contrast to state functions such as entropy or pressure, heat and work are not thermody-
namic properties but depend on the nature or path of the process that the system undergoes. A
different path will give a different amount of work and heat.

7.3.1 First Law of Thermodynamics. We begin with the first law of thermodynamics applied
to an open thermodynamic system. As illustrated in Fig. 7.3, an open system allows mass and
energy to flow into or out of the system. We make the following assumptions and definitions:

1. Mass flows into or out of the system along one boundary of the system. The mass flow
rate into the system is positive, whereas flow rates out of the system to the surroundings are
negative.

2. Mass can carry internal energy into or out of the system. We neglect kinetic and poten-
tial energy carried by the mass. This is often a good assumption when the fluid is not moving
near the speed of sound, the change in height over the system is not large, or the system tem-
perature variations are not large.

3. The only types of work that are present are expansion/compression of the system and
flow work. The boundaries of the system can expand or contract. Thus, work can be done by
the system on the surroundings or vice versa. Work is positive when the surroundings do work
on the system (i.e., the system contracts). The mass that enters or exits the system also does work
—sometimes called flow work or pressure work.

4. We neglect potential energy and kinetic energy changes within the system.

5. Energy in the form of heat might enter or leave the system across the system boundaries.
Heat transfer is positive when heat is exchanged from the surroundings to the system.

Before proceeding, we must define internal energy. Internal energy of a substance is the
sum of the potential energy arising from chemical bonds of atoms and electrons and the sum
of the kinetic energy of the atoms and molecules. The microscopic kinetic energy is sometimes
called thermal energy, which is proportional to temperature.

With this definition, a total macroscopic energy balance in the system, at an instantaneous
point in time, gives

energy into the system

Rate of accumulation of total
energy within the system

(Net rate of transport of total

where
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Rate of accumulation of total dnU)

energy within the system Jp 7 s

and nU, the total internal energy, is equal to the total energy within the system by assumption
four previously discussed. The property, U, is the molar internal energy (total energy/mole).
Eq. 7.3 shows that when work or heat is added to the system, the molecular activity increases,
d(nU)

5 > 0.

The term on the right side of Eq. 7.2 contains three terms: mass influx into the system that
carries energy; heat transfer into the system; and compression work done by the surroundings
on the system. Because we neglect potential and kinetic energy of the mass that flows into the
system (assumption two), the energy associated with the mass influx into the system is simply
Un, where n is the molar flow rate. Based on assumption one, there is only one molar flow
rate into the system. The rate of heat flow from the surroundings across the system boundaries
into the system is given by Q. Compression (or expansion) of the system boundaries causes
work on the system denoted by . Substitution of these terms into Eq. 7.2 gives

causing the total internal energy to increase; that is,

dnU)
dt

where the left side refers to energy within the system and the right side to energy that flows
across the system boundaries into the system.

The two types of work considered are expansion/compression work and flow work (assump-
tion three). From physics, work is performed whenever a force acts over a distance. Thus, the

differential mechanical work that results from a differential displacement dT is given by

dw = 1_7) dT. For expansion/compression work, the external force is equal to an external pres-
sure supplied by the surroundings multiplied by the corresponding area along the boundary of
the system.

In Cartesian coordinates, dW = — pext(A dx+ A4 yd y+ Azdz), where the external pressure
is constant along the boundary of the system. 4  is the area normal to the x-coordinate that is
being displaced, and so forth. The minus sign indicates that work is positive if the displace-
ment is negative (i.e., an external force compresses the system). The expression for the
differential work can be simplified further as dW = — p_ . d(nV'), where nV is the total volume

. dnV
and V' is the molar volume (volume/mole). The rate of work is W = —p, x[%. This equation

applies to any arbitrarily shaped system.

For example, consider a rectangular box that expands differentially into the surroundings on
three sides, as illustrated in Fig 7.4. Here, 4, ~ yz, A~ xz, and 4_ ~ xy, where the differen-
tial  cross  terms are  neglected. The  differential  work  is, therefore,
dW = — p(yzdx + xzdy + xydz), provided the external pressure is the same on all faces of
the box. The differential displacement volume is equal to dnV)=d(xyz)=
yzdx + xzdy + xydz, which gives the desired result. In this example, the differential work is
negative because the system does work on the surroundings. The example also illustrates that
even though the system expands into the surroundings, the work is always related to the exter-
nal pressure. If the external pressure is zero, no work will be done by the system because the
surroundings will offer no resistance.

Flow work is done by mass that enters or exits the system. A flowing fluid element does
work on the fluid ahead of it, and the fluid behind it does work on that fluid element. Flow
work, for example, turns the turbine shaft of a hydroelectric power plant. For one-dimensional
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Fig. 7.4—The expansion of a rectangular system into the surroundings.

(1D) inflow or outflow of fluid, the instantaneous rate of flow work is

W=F % = Pex At = @h = Pex/ 1> Where u is the velocity of the fluid; p is the molar densi-
ty (i.e., inverse of V); and the molar flow rate is n =pAu. Flow work is positive when the
fluid is entering the system; that is, the surroundings do work on the system.

For reversible displacements, the pressure in the system must equal the external pressure,
P = Pexp SUpplied by the surroundings, so the system and surroundings are always in equilibri-
um. With the assumption of reversibility, the total rate of work (expansion/compression work

. . dnV . .
plus flow work) becomes W = pVn — p%. Eq. 7.4 is then written as
d(nU)—U’+'+ Vi d(nv) 75
2 Un O+pVn—p Jp——————s (7.5)

Eq. 7.5 can be simplified by defining the enthalpy, H = U + pV. The definition for enthalpy is
defined strictly for mathematical convenience. For liquids and solids at low pressures, we often
take H = U because the product pV is small compared to U (the molar volume of the con-
densed phases is also small). Combining the first and third terms on the right side of Eq. 7.5
gives

d(nU) . dnV)
= +0-
7 Hn+Q-p g (7.6)
Eq. 7.6 can be written in thermodynamic shorthand as
dnU)=Hdn+dQ—pd@V). oo, (7.7)

For closed systems, dn = 0 (the total moles in the system is constant), and Eq. 7.7 becomes

dnU)=dQ - pd(nV).
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For isolated systems, dn =0, dQ =0, and d(nV) = 0; therefore, Eq. 7.7 reduces to

which shows that the total internal energy of an isolated system is constant (nU = constant).

7.3.2 Second Law of Thermodynamics. Conservation of total mass and energy are insuffi-
cient to solve many phase-equilibrium problems. Processes that satisfy these conservation
equations may not be physically possible; that is, the process of a cold cup of coffee sponta-
neously heating up on your dinner table would satisfy the first law of thermodynamics but has
a near zero probability to occur. Processes have a natural direction to them in that spontaneous
processes tend to dissipate gradients (e.g., Darcy’s law for pressure gradients and Fick’s law
for concentration gradients) in the system until equilibrium is reached. A system that is not
subject to forced flows of mass or energy from its surroundings will evolve to a time-invariant
state that is uniform or composed of uniform subsystems—the equilibrium state. The second
law of thermodynamics introduces a new thermodynamic property, entropy, and provides a
mathematical statement that describes this unidirectional nature of processes.

The second law also has implications for the efficiency of processes. Heat and work are not
of the same quality in that work can be efficiently converted to thermal energy (e.g., frictional
heat losses), but thermal energy can be only partially converted into mechanical energy (e.g.,
steam power plants). Thus, work is a more valuable form of energy than heat—work has a
high quality. Furthermore, energy at higher temperatures is more useful than energy at lower
temperatures. For example, the ocean contains an immense amount of energy, but it is not very
useful because of its low temperature. Energy is degraded when heat transfers from one system
to another of lower temperature. Entropy is a measure of the energy degradation or disorder of
the system.

Entropy is a thermodynamic property just like temperature and pressure. Entropy is a state
function, in which changes during a reversible process in a closed system are given by the
ratio O/T. Entropy increases as 7 decreases or O increases.

Entropy is related to the likelihood that equilibrium will be reached. Entropy is best under-
stood by examining a very simple example at the microscopic scale. Fig. 7.5 shows the initial
state of a hypothetical closed system that contains four molecules. The system is initially parti-
tioned into two halves, such that the molecules from one half cannot move into the other half.
One molecule is in the left subsystem and three are in another, thus, the pressures are not
initially the same. Each subsystem has only one possible configuration—the initial state. Thus,
the subsystems are well ordered, and entropy is initially small.

When the partition is removed, however, the molecules from each subsystem are free to
move into the other half of the system, and a total of 16 different configurations are possible,
as shown in Fig. 7.5. Because each of these configurations is equally likely, the probability
that the system will be found in its original configuration is only 1/16 (i.e., 27#). The system is
more likely to contain two molecules in each subsystem (probability of 6/16 or 3/8), which is
the equilibrium state—the most disordered state. Entropy is related to the maximum number of
possible configurations of the system, and thus, the entropy after the partition is removed has
increased. The configurations could also be arrangements of energy quanta, instead of molecu-
lar arrangements, as in this example.

Although the original configuration for four molecules is not improbable, real systems con-
tain many more molecules. For example, if one mole of a gas were present in the system (6.0
x 10% molecules), the likelihood that the system would be found in its initial state would be
very unlikely (27 x 10%). However, the probability that the system would contain a similar
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Fig. 7.5—lllustration of entropy for a closed composite system with four molecules (after Smith et al.%).
The molecules on each side of the partition are initially constrained by a partition. After the partition is
removed, the molecules are free to move around the entire system by Brownian motion. Equilibrium is
the most likely final state.

number of molecules on each side would be near 1.0 (i.e., the pressure would be equal through-
out the closed system).

The steps to write the entropy balance for an open system are similar to those for the first
law of thermodynamics. We allow for the following:

1. Mass flows into or out of the system at only one location on the boundary of the system.
The mass flow rate into the system is positive, whereas flow rates out of the system to the
surroundings are negative.

2. Mass can carry entropy into or out of the system. The rate of entropy transfer into the
system by mass flow is given by Sn.

3. Energy in the form of heat may enter or leave the system across the system boundaries
at a specified exterior temperature, 7. Heat transfer is positive when heat is exchanged from
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the surroundings to the system. Entropy, Q/7, is transferred from the surroundings to the sys-
tem during heat transfer. The rate of entropy transfer into the system by heat transfer is
therefore %

4. The temperature at the boundary or exterior of the system is equal to the temperature
within the system (i.e., the heat transfer process is reversible).

5. Unlike total energy or mass, entropy is generated within a system that is not in equilibri-
um. Entropy generation is related to irreversibilities in the system such as temperature gradi-
ents, pressure gradients, or concentration gradients. The second law of thermodynamics states
that entropy generation is always positive.

With these assumptions and definitions, the entropy balance is

dnsS) .. 0 .
7 Ll o O (7.9)

where the term on the left is the change in total entropy within the system (S is entropy/mole),
and the first two terms on the right are the net rate of total entropy transported into or out of
the system by mass and heat transfer. The last term is the internal generation rate of entropy
within the system. In thermodynamic shorthand, the entropy balance can be written as

d(nS) = Sdn + Q S Y (7.10)

For closed systems (dn = 0), the entropy balance becomes d(nS) = % +dS. For isolated sys-
tems (dn = 0 and dQ = 0), the entropy balance is

A(RS) = AS G ceorieeevreeerssesssieeereeee s (7.11)

In an isolated system at equilibrium, the total entropy cannot change with time. Thus, the gen-
eration of entropy must be zero at equilibrium (dS; = 0), which we stated previously. Away
from equilibrium, entropy generation is positive (dS; > 0), which implies that entropy, in an
isolated system, increases with time and reaches a maximum at equilibrium.

Why is entropy generation positive away from equilibrium? Consider an isolated system
that is composed of two open subsystems 4 and B.* Heat is exchanged only from the high
temperature subsystem A to the low temperature subsystem B. Thus, the rate of heat transfer is
0,= 4= -Qp= B= ( uT B)’ where /1 is a constant heat-transfer coefficient. Each subsystem is
well mixed so that 7 is always uniform [i.e., no internal gradients exist, and subsystems 4 and
B must pass through a succession of equilibrium states (i.e., the process is reversible and
SG 4= SGB 0)]. From Eq. 7.9 and the expressions for the rate of heat transfer, the entropy

_desy) 0y T4~ Tp
balance for subsystem A4 is o =7 = “h—;—| and for subsystem B,
_ 4 4
dnsy) 0 h(TA_TB)
dt Ty Ty )

. . e . d@s) :
For the isolated system not in equilibrium, the entropy balance is % = §¢. Furthermore,

the total entropy, nS, is an extensive property so that nS=n ,S,+npS, The entropy genera-

M
tion term of the combined system is therefore given by Sg=——7——— Because absolute
AB
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temperatures are positive and the heat transfer coefficient is positive, this result demonstrates
that entropy generation is always positive away from equilibrium. At equilibrium 7, =T, and
the entropy generation term is zero, as stated before. Furthermore, the rate of entropy genera-
tion is proportional to the square of the gradients (temperature difference in this case). If the
temperature gradients are kept small with time (infinitesimal equilibrium steps), entropy genera-
tion remains near zero.

A process is reversible if it occurs with small gradients (i.c., consists of a succession of
infinitesimal equilibrium steps). Thus, dS; = 0 for a reversible process, and from Eq. 7.10,

do
d(nS) = Sdn + % ....................................................... (7.12)

For a closed system that undergoes a reversible process, Eq. 7.12 reduces to dQ,., =Td(nS).

In summary, the second law of thermodynamics states that the rate of entropy generation
within a system must be greater than or equal to zero. A process for which the rate of genera-
tion of entropy is always zero is a reversible process. A large rate of entropy generation
corresponds to greater process irreversibilities.

7.3.3 Fundamental Property Relations and Equilibrium Conditions. We would like to calcu-
late thermodynamic properties and the equilibrium state from a simplified mathematical model,
called an equation-of-state (EOS). To do this, we need equations that relate thermodynamic
quantities in terms of pressure, molar volume, and temperature data (PVT data), and we want
to eliminate any path dependence by eliminating all properties that are not state functions. Sub-
stitution of Eq. 7.10 into Eq. 7.7 by elimination of dQ (a path dependent quantity) and
selection of a reversible path (such that dS; = 0) gives

dnU) = Hdn +Td(nS) —TSdn — pd(nV). .....cocooveeeeeeeeeeeereennn. (7.13)

All of the properties in Eq. 7.13 are state functions; thus, Eq. 7.13 is independent of the path
or process. After combining like terms, Eq. 7.13 becomes

dnU) = Gdn+Td(nS) = pd(nV), .ooovveeeeeeeeeeeeeeeeeeeereeeen. (7.14)

where G = H —TS is defined as the molar Gibbs energy. For a closed system (dn =0), Eq.
7.14 becomes

dnU) =Td(nS) = pd(nV). ..coooeemeeeeeeeeeeeeeeeeeeeeeeeeee. (7.15)

Egs. 7.14 and 7.15 are examples of fundamental property relations. Other fundamental property
relations are possible. For example, differentiation of the definition for total Gibbs energy gives
dnG)=dnH)—TdnS) — (nS)dT. Similarly, differentiation of the total enthalpy gives
d(nH) =d(nU)+ pd(nV)+(nV)dp. Substitution of these relations into Eq. 7.14 (or Eq. 7.15)
by elimination of the enthalpy term gives the fundamental property relation for the total Gibbs
free energy of a closed system as

dnG) = V)dp = (NSVAT, ..o (7.16)
or, for an open system,

dnG) = mV)dp —(nS)AT + Gdn. ..o, (7.17)
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Fig. 7.6—Isolated system with two open subsystems. The subsystems correspond to the vapor and liquid
phases as shown by the dashed lines. The solid line is the boundary of the isolated system.

Equilibrium Criteria for Single-Component Liquid/Vapor Systems. Consider an isolated sys-
tem of a pure fluid with two phases, vapor and liquid. Initially, the temperature, pressure, and
other properties of the two phases are not in equilibrium. Fig. 7.6 illustrates the composite
isolated system in which each phase is treated as a subsystem.

We begin by writing the differential entropy change from Eq. 7.14 for each open subsys-
tem. The vapor phase equation is

dnU), p, Gy
dnS), = ———+——dmV), — ——dny, oo (7.18)
14 TV TV Vv TV Vv
and for the liquid phase,
dnU), p; G,
dnS); = ————+ ——dnV); = AN oo (7.19)
L TL TL L TL L

The change in the total entropy of the isolated system can be written as the summation of Egs.
7.18 and 7.19. The result is

dnU), dnU);, p, P Gy G,
dns) = TV + TL + id(nV)V + T—Ld(nV)L - T—Vng - T—LdnL. .......... (7.20)
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For an isolated system, the change in the total internal energy is zero (see Eq. 7.8), as is the
change in the total mass and volume. Thus, dn; = —dn,, dnU); = —d(nU),, and
dnV); = —d(nV),. The differential entropy change for an isolated system at equilibrium must
also be zero (see Eq. 7.11). Eq. 7.20 becomes

1 1 Pr Py G, Gy
0—(TL TV)d(nU)L+(TL TV)d(nV)L+(TV 7, dn;.

Because changes in internal energy, volume, and mass of the liquid phase can be arbitrarily set
1

(i.e., are independent)), we must have at equilibrium  that 7
L v
R AN s
= ? - ? = ? - ? = 0. Thus, at equilibrium, T; =T}, p; = py, and G; = Gy,. The first

two equilibrium criteria are obvious. The equilibrium condition that the Gibbs free energy of
the phases is equal is not as obvious.

Other systems lead to similar equilibrium conditions. For example, for a closed system at
constant pressure and temperature (dp =0, dT = 0) the fundamental property relation from Eq.
7.16 becomes d(nG) =0. Thus, the equilibrium criterion here is that the Gibbs free energy
must be a minimum. This criterion also leads to the equality of the Gibbs free energy of both
phases at equilibrium, G; = G,.

Fugacity of a Pure Fluid. Fugacity criterion is often used as a substitute for the Gibbs free-
energy criterion. The definition for fugacity comes from an analogue with ideal gases that is
derived for a closed system under isothermal conditions. Eq. 7.16 for an isothermal process
(dT=0) is

ANG) = (MV)AP. oo (7.21)

For an ideal gas, V' = %, and Eq. 7.21 becomes

”ﬁT AD = NRTACID D)oo (7.22)

d(nG)'& =

Fugacity is defined by analogy for a fluid that is not ideal. That is, we define the fugacity, f,
based on a comparison with Eq. 7.22, which is written as

ANG) = NRTACIN F). oo (7.23)

Eq. 7.23 shows that the value for fugacity is whatever is required to give the correct behavior
of the real fluid. More exactly, fugacity measures how the Gibbs free energy of a real fluid
deviates from that of an ideal gas. Fugacity has units of pressure, and for an ideal gas the
fugacity is equal to the pressure (compare Eqs. 7.23 and 7.22).

We showed that at equilibrium for a pure fluid G; = G;,. By integration of Eq. 7.23 under
isothermal conditions, the Gibbs free-energy criterion implies that the fugacity of the liquid and
vapor phases must also be equal at equilibrium. That is, at equilibrium for a pure fluid,

F1 = fypeerememseeeesssssseessssssees s (7.24)
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We would like an expression for fugacity in terms of our convenient quantities of pressure,
molar volume, and temperature, so that an EOS can be used. Substitution of Eq. 7.21 into Eq.
7.23 gives

Vdp = RTd(1n f).

RTd p

Subtraction of from both sides and some algebraic rearrangement gives

Finally, integration from a reference state of zero pressure (ideal gas state) to the actual pres-
sure gives

P
wLend), (e

From the definition of fugacity, lim % =1 (i.e., the fugacity is equal to the pressure for an
p—0

ideal gas), we have

P P
f lf(RT ) f dp
mht=Inp=——[l—-V|dP=[(Z -1, oo 7.25
» ® RTo » 0 » (7.25)

where ¢ = % is known as the fugacity coefficient, and Z = % is the compressibility factor.

The fugacity coefficient is therefore equal to 1.0 for an ideal gas. Eq. 7.25 requires knowing
the compressibility factor as a function of pressure.

Models for compressibility factor, such as a cubic EOS, however, are typically not explicit
functions of pressure. A more convenient form would be to transform the integral with respect
to pressure to one with respect to volume. Eq. 7.25 can be transformed to

%

mL =L (%—P)dl/— N Z4(Z 1) oo (7.26)

[ee]

The importance of Eq. 7.26 is that the fugacity can be calculated if the molar volume, tempera-
ture, and pressure are known over the full range of molar volumes from V' to 0. Typically,
sufficient laboratory data (p, ¥, T) is not available, and mathematical models, such as cubic
EOS, are used. We will use Egs. 7.24 and 7.26 in Sec. 7.4 to calculate the intensive and exten-
sive state of a pure fluid at equilibrium using a cubic EOS.

Equilibrium Criteria for Multicomponent Liquid/Vapor Systems. The procedure to deter-
mine the equilibrium criterion for multicomponent systems is similar to that used for pure
fluids. We consider a closed system with a multicomponent mixture of # moles as illustrated in
Fig. 7.1. Transfer of mass from one phase to the other is allowed, but the overall system is
closed, such that the overall composition of the system is constant. Given the overall composi-



1-348 Petroleum Engineering Handbook—Vol. |

tions (z;), pressure, and temperature, we seek to determine the amount of liquid and vapor
present at equilibrium, as well as the component mole fractions for the phases (x; and y;).

As before, the closed system consists of two subsystems, the liquid and vapor phases (see
Fig. 7.6). The primary difference between the derivation for pure fluids and the derivation for
multiple components is that the fundamental property relations for the open system must be
modified to include mass transfer of different components. That is, we must compute the
change in the total Gibbs energy of the liquid phase as small amounts of each component (dn;)
are transferred from the vapor phase to the liquid phase (or vice versa for the vapor phase).
For example, Eq. 7.17 becomes

dnG) = WV)dp — (nS)dT + aldnl + azdn2 + o
n

— [
+G, dn, =nV)dp—(nS)dT + ZlGidnl., ...................................... (7.27)
c c i=

where Ei is the molar Gibbs free energy added to the liquid phase when dn; moles are added
to it. The partial molar Gibbs energy G; is also named the chemical potential,

- 0(nG)

added to a mixture when dn;is added to it.! Thus, Eq. 7.27 is commonly written as

The chemical potential measures how much Gibbs energy is

n

C
dnG); =WV),;dp — (nS),dT + ,le“iLd”iL
i=
for the liquid phase, and
n

C
d(nG),, = (nV),dp — (nS),dT + iglluﬂ,dnﬂ,

for the vapor phase. As for pure fluids, these two equations are added to obtain the differential
total Gibbs energy of the entire closed system. Because the differential total Gibbs free energy
of the closed system must be zero when pressure and temperature are constant, we obtain

S

C

d(nG) = d(nG), + d(nG), = _Zl(ﬂi 1An F ) = 0. (7.28)
o

Conservation of mass requires that any component that enters a phase must have come from
the other phase so that dn,; = —dn,}, and upon substitution into Eq. 7.28,

n
C
El(ﬂz’L ’/v‘iV)d"iL =0.
Because the dn; are independent and arbitrary, we must have at equilibrium

Hip =M, TOT D=1, o M (7.29)
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Eq. 7.29 says that at equilibrium the chemical potential of a component in the liquid phase
must be equal to the chemical potential of the same component in the vapor phase. This equi-
librium criterion reduces to G; = G, for the case of a pure fluid.

Fugacity of a Component in a Mixture. The equilibrium criterion expressed as component
fugacities is often used instead of chemical potentials. The reason for this is primarily one of
convenience because component fugacity has units of pressure. Just as for pure fluids, the fu-
gacity of a component is defined as an analogue to an ideal gas mixture.

. . . . RT
Consider an ideal gas mixture at a temperature 7. The pressure for n moles is p = nn_V In

this mixture, each component has n; moles. If 7, moles of each component in this mixture
occupy the same total volume alone at the same temperature, the pressure would be
n.RT y.RT
1 1

Pi=— = Division of this result by the pressure gives the partial pressure of a compo-

n.
nent in an ideal gas mixture. That is, p; = y;p, where y; = 71 is the vapor molar fraction of

n
each component. The sum of the partial pressures equals the pressure p = Zii il

For an ideal pure gas at constant temperature, we had dG;g = %d p=RTd In p (see Eq.
7.22). 1t follows, therefore, that the partial molar Gibbs energy of a component should be eval-
uated at the partial pressure, or

dG'€ = RTd In p; = RTA 10 (y,0)- covoovvervroicecsrosceesseseees (7.30)

For a real mixture (not an ideal gas or solution), the component fugacity is defined by ana-
logue with Eq. 7.30.

dG,=dit; = RTA I Fiy vooooeeeeeeoeeeseeeeeeeeseee (7.31)

where JA‘,- is the fugacity of component i in a mixture. The component fugacity for real fluids
is sometimes referred to as a corrected partial pressure. Comparison of Egs. 7.30 and 7.31

show that for ideal mixtures, jA’,- = y;p. From the integration of Eq. 7.31 and the use of the
equilibrium criteria of Eq. 7.29, we obtain the equilibrium criteria for component fugacities as

A, A
Jir=fiv, for i =1, " [ B . (7.32)
c

Eq. 7.32 is often used instead of the equality of chemical potentials to determine equilibrium.
To calculate component fugacities of a real mixture, we subtract the chemical potential for
component 7 in an ideal gas (Eq. 7.30) from both sides of Eq. 7.31. The result is

A,
du, — du'® = RTd In T; = RTA I iy oo (7.33)

1
1

A N
where ¢, = ﬁ is the component fugacity coefficient. Eq. 7.33 is used to calculate the devia-
i

tion of the component fugacity from ideal behavior (this is also known as the residual partial
Gibbs energy of component i). Integration of Eq. 7.33 from zero pressure to the actual pres-
sure gives u; = RT In ¢, where the chemical potential is zero and the component fugacity
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coefficient is 1.0 at zero pressure (the mixture is ideal at zero pressure). From Egs. 7.21 and
7.22 and the definition of fugacity, we obtain using calculus:

P
g, = [(Z- 1)%”, ...................................................... (7.34)
0
= o(nz . . -
where Z; = a’;i) e, ilS the partial molar compressibility factor.

Eq. 7.34 is similar in form to Eq. 7.25 for a pure fluid. Table 7.1 compares the fundamen-
tal equilibrium equations for pure and multicomponent fluids. Because cubic EOS represent Z
as an explicit function of ¥ and not Z as a function of p, Eq. 7.34 is often rearranged to

~ Nomz) av
Ingp, = —f e WM Ze e (7.35)
0 n; T, ny, nj + i V

Eq. 7.35 shows that the fugacity of a component in a mixture can be calculated when the mo-
lar volume, temperature, pressure, and compositions are known over the full range of molar
volumes from V' to co. Sufficient laboratory data is typically not available for the integration
and an EOS must be used. We will use Eqs. 7.32 and 7.35 in Sec. 7.5 to calculate the inten-
sive and extensive state of a multicomponent mixture at equilibrium using a cubic EOS.

7.4 Volumetric Properties of Pure Fluids

The phase behavior of a typical pure fluid can be represented on a pressure-temperature dia-
gram, as illustrated in Fig. 7.7. From the Gibbs phase rule (Sec. 7.2.1), the number of degrees
of freedom are 3 —n_, which means that one, two, or three phases can be present at equilibri-
um. For simplicity, tﬁese phases are shown as a solid, liquid, and a vapor, although numerous
additional solid and liquid phases are possible, as long as no more than three of those phases
coexist at equilibrium at the same temperature and pressure. Water, for example, has nine dif-
ferent solid phases, each of which has a different crystalline structure.® At the pressure and
temperature of the Earth’s surface, however, we experience only one solid, liquid, and vapor
phase of water.
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Fig. 7.7—lllustration of a pressure-temperature diagram for a pure fluid. The path indicated from point A,
a vapor, to point B, a liquid, would never encounter an interface.

According to the Gibbs phase rule, there are no degrees of freedom when three phases are
in equilibrium. This necessarily implies that three phases must be in equilibrium only at one
temperature and pressure; this is the triple point indicated in Fig. 7.7. That is, we are not free
to choose the temperature and pressure at which three phases can coexist. The temperature and
pressure of the triple point are determined.

For two phases, however, the degrees of freedom are one, and we can set either the temper-
ature or the pressure, but not both. Once the temperature is specified, the pressure is deter-
mined. Thus, two equilibrium phases are represented by curves on a pressure-temperature
diagram. The sublimation curve gives the locus of points where solid and vapor are in equilib-
rium; the melting or fusion curve gives the locus of points where solid and liquid are in
equilibrium; and the vaporization or saturation curve gives the locus of points where the liquid
and vapor are in equilibrium. The pressure along the vaporization curve is called the vapor or
saturation pressure. For example, the pure fluid at temperature 7 in Fig. 7.7 has a vapor pres-

sure of py.

A single solid, liquid, or vapor phase can exist over a range of temperatures and pressures
(degrees of freedom are two). This is indicated in Fig. 7.7 by the three single-phase regions of
solid, liquid, and vapor.

When the temperature and pressure along the vaporization curve is increased to the critical
pressure, p,, and temperature, T, the interface between the liquid and vapor phases becomes
indistinct. This occurs at the critical point shown in Fig. 7.7. Beyond the critical point, fluids
become “supercritical” and no phase interface is visible. For example, the vapor at point “A”
in Fig. 7.7 would become more liquid-like as the pressure and temperature are varied along the
semicircle to point “B,” a liquid. The fluid would never exhibit two phases during the process,
as identified by an interface. Because there is no actual boundary that defines the supercritical
region, fluids should be described in terms of liquid-like or vapor-like.

One important characteristic of critical fluids is that thermodynamic properties approach
each other; that is, the densities/viscosities of the vapor and liquid phases become the same at
the critical point. We often inject supercritical fluids, such as carbon dioxide, into reservoirs so
that, as the supercritical fluid and the reservoir fluid mix, phase interfaces disappear, facilitat-
ing production of hydrocarbon components previously not recovered (see the chapter on steam
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Fig. 7.8—PVT experiment of a pure fluid along an isotherm in a closed system (constant composition

expansion). The pressures for states two through four are equal to the vapor pressure, p.‘I’, in Fig. 7.7.

injection in the Reservoir Engineering and Petrophysics section of this Handbook). Thus, an
accurate characterization of critical behavior is very important.

A pressure-temperature diagram contains no information about molar volume—just phase
boundaries. Consider an experiment in a closed system that is held at constant temperature
(ignoring the solid phase). The experiment is designed to measure pressure as the volume is
changed and is generally referred to as a PVT experiment. Fig. 7.8 illustrates several phase
behavior states that occur in a PVT experiment. The chapter on phase diagrams in this section
of the Handbook outlines similar experiments for multicomponent mixtures. The steps in the
PVT experiment for a pure fluid are listed next.

1. Place a known amount of a single-component fluid in a constant temperature PVT cell at

vapor state one, illustrated in Fig. 7.8. The molar volume of the fluid can be calculated from
V = total_moles in_cell . Measure the pressure.
(volume of cell — mercury volume injected)

2. Inject a volume of mercury into the cell. Calculate V}, again, and monitor the correspond-
ing pressure change. Because vapor is highly compressible and the mercury is highly incom-
pressible, the pressure change with decreasing molar volume of the vapor phase will be
relatively small. The fluid remains a vapor.

3. Continue to inject mercury until the vapor becomes saturated at state two. At this pres-

sure (the vapor pressure, pr, in Fig. 7.7), a small amount of liquid forms (for multicomponent
mixtures, this is the dew point). Calculate the saturated V},, and measure the pressure.

4. Continue to inject mercury to state three, where the molar fractions of vapor and liquid
are about equal. The pressure is constant at the vapor pressure pi’, corresponding to tempera-
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Fig. 7.9—lllustration of a pressure-volume diagram for a pure fluid in a closed system. The isotherm for
T, corresponds approximately to the same temperature in Figs. 7.7 and 7.8.

ture 7). The pressure is constant because the temperature is constant (i.e., the degrees of
freedom from the Gibbs phase rule are one for two phases in equilibrium; thus, the pressure is
fixed if the temperature is constant). Because the pressure does not change with decreasing
molar volume, the compressibility of the closed system is infinite.

5. Continue to inject mercury to state four until only a small drop of vapor remains (for
multicomponent mixtures, this is the bubble point). Calculate the saturated liquid molar vol-
ume, V;.

6. Continue mercury injection to state five and calculate V;, while monitoring the pressure.
During this step, the fluid remains a liquid, and the pressure rises very quickly for small
changes in the molar volume. The pressure rises quickly with decreasing molar volume be-
cause liquids are nearly incompressible compared to vapors.

The PVT process just described generates an isotherm on a pressure-volume diagram, as
illustrated in Fig. 7.9. States one through five correspond to those in the isothermal PVT exper-
iment. A vapor pressure dome or two-phase envelope outlines the two-phase region. Along the
left boundary of the dome, the liquid is completely saturated, for any reduction in pressure
would cause a bubble of vapor to form. Along the right boundary of the dome, the vapor is
saturated. To the left of the dome the liquid is subcooled, whereas to the right of the dome, the
vapor is superheated. Two metastable states have been observed within the two-phase region:
superheated liquid and subcooled vapor. These states are unlikely to exist in a reservoir where
nucleation is always present (see Ref. 2 on nucleation).

From the Gibbs phase rule, the pressure within the two-phase region along the 7 isotherm
remains at its corresponding vapor pressure as molar volume changes from states two to four
(ie., ¥, to Vp). ¥, in Fig. 7.9 is the molar volume of the saturated vapor, whereas V; is the
saturated liquid molar volume. V- is the molar volume of the fluid at its critical point.
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The critical point, in which the molar volumes of the liquid and vapor become equal, is at
the apex of the dome in Fig. 7.9. The critical point must be at the apex because the isotherms
in the two-phase region are horizontal, as required by the Gibbs phase rule. Thus, the slope
and the inflection point of the isotherm at the critical temperature must be zero. For isotherms
where T > T, the molar volume (inverse of molar density) changes continuously from vapor-
like values to liquid-like values as the pressure increases.

The isothermal compressibility of the fluid is given by the inverse of the slopes of the
isotherms. For isotherms where T <T,., the slope is small in the superheated vapor region, indi-
cating that the fluid compressibility is large. The slope is large in the subcooled liquid region,
indicating that the fluid is nearly incompressible. At the boundary of the two-phase dome, the
isothermal compressibility is discontinuous and is equal to infinity (zero slope). Compressibility
is infinite in the two-phase region because, as the system volume is decreased, some of the
vapor molecules, which occupy more space, are condensed into the denser liquid phase in
which they occupy less space.

For a two-phase mixture at constant temperature, such as that shown by state three in Fig.
7.9, the molar phase volumes, ¥}, and V;, do not change as the volume of the closed system
changes. This occurs because the pressure is constant in the two-phase region for a pure fluid.
Thus, as the volume is changed, the molar densities of the vapor and liquid phases do not
change, but only the molar fractions (or amounts) of the phases change. The overall density of
the two-phase mixture will change as the closed system is compressed or expanded.

For example, consider state three in the two-phase region at a temperature of 7}. The vapor

o1 . o1
molar density is 7 (at state two), whereas the liquid molar density is 7 (at state four). The
14 L

mole fraction of vapor at state two is V. Extensive parameters, such as the total molar volume
of the two-phase mixture, can be calculated by

total volume of closed system
= = -V)+ e e .
r total moles in closed system na=n+ny (7.36)

For total molar enthalpy,

total enthalpy of closed system
= = =V)+HV, oo .
Hy total moles in closed system L=+ HY, (7.37)

where Hj is the molar enthalpy of the saturated liquid, and H, is the molar enthalpy of the
saturated vapor. Eqs. 7.36 and 7.37 can be solved for V" as

O S N (7.38)
V=V, H,-H
Eq. 7.38 is known as a lever rule. The fluid quality is the molar volume fraction V" as a percent-

age. An illustration of quality lines is given in Fig. 7.10. A quality of 100% is a saturated
vapor. State three in Fig. 7.10 has a quality of about 60%.

7.4.1 Phase Behavior Models of Pure Fluids. An accurate characterization of phase behavior
is critical to the prediction of oil recovery. Often, sufficient PVT experimental data is not avail-
able, and mathematical models that are “tuned” to experimental data are needed. EOS calcula-
tions are used for this purpose. EOS models are typically easy to implement in a numerical
simulator.
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Fig. 7.10—Quality lines within the two-phase region on a pressure-volume diagram.

One of the first EOS was Boyle’s and Charles’s law. These laws were combined into the
ideal gas equation we use today, pV = RT. The ideal gas equation is generally satisfactory for
vapors at pressures below a few atmospheres. Numerous other types of EOS were developed
through the years,” but the most widely used EOS type in the petroleum industry is the cubic
EOS.

Van der Waals developed the first cubic EOS. Unlike the ideal gas equation, which is limit-
ed to low pressure vapors, the van der Waals EOS attempted to provide good phase behavior
estimates for both liquids and vapors by using only one equation. He also developed the princi-
ple of corresponding states, which is frequently used in the petroleum industry today. Numer-
ous cubic EOS models are available today that give better accuracy than the van der Waals’
EOS. The two most widely used cubic EOS are the Peng-Robinson EOS?® and modified ver-
sions of the Redlich-Kwong EOS.>!10

Prediction of the phase behavior of real reservoir fluids is difficult because of the complex
interaction of molecules. Intermolecular forces of attraction and repulsion determine thermody-
namic properties for any mixture of molecules. The attraction forces allow fluids to form liquid
and solid phases, whereas repulsions are responsible for resistance to compression.

The accuracy of any EOS depends on its ability to model the attractions and repulsions
between molecules over a wide range of temperatures and pressures. EOS models are empirical
in that they do not attempt to model the detailed physics but only the cumulative effect in
terms of a small number of empirical parameters. Generally, EOS models are more accurate
when attractions are small, which explains why water, a polar substance, is more difficult to
model.

Ideal Gas Equation. The simplest and most fundamental EOS is the ideal gas equation, in
which the pressure, volume, and temperature of a fluid are related by

P 7 (7.39)

As stated previously, the behavior of a gas may be approximated by Eq. 7.39 if the pres-
sure is relatively low (i.e., less than a few atmospheres). A gas is ideal if molecular interac-
tions are negligible, something that could only occur at zero pressure. Thus, molecular
interactions are negligible at zero pressure; therefore, thermodynamic properties, such as the
molar internal energy of an ideal gas, are only a function of temperature.
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Real Fluid Equation. Most fluids are not ideal. Real fluids, whether vapor or liquid, can be
defined by the compressibility factor

= e (7.40)

Intensive thermodynamic properties, such as the molar internal energy, are a function of both
temperature and pressure for a real fluid. A common mistake is to believe that Eq. 7.40 is only
applicable to gases. Eq. 7.40 will be used later in this chapter to represent the behavior of any
phase, whether liquid or vapor.

Coefficient of Isothermal and Isobaric Compressibility. For a single-phase fluid, we often
employ very simple equations-of-state that describe the relationships between pressure, temper-
ature, and molar volume. As stated previously, molar volume is a state function—it is not
determined by the process or path taken to that state. Thus, for every temperature and pressure,
there corresponds only one value of molar volume, and hence, we can write an equation that
describes differential changes in molar volume as

av = (g’;) T+ (SZ)dp ................................................. (7.41)

Division of Eq. 7.41 by the molar volume gives

v _
v cpdT CAP, et (7.42)
where ¢ = — %(gy) is the isothermal compressibility of the fluid, and cp)= L(g—’;)p is the

isobaric compresmﬁlhty of the fluid. The minus sign is introduced, per convention, to make the
compressibilities positive.

Eq. 7.42 describes the fractional change in the molar volume for small changes in tempera-
ture and pressure. Because reservoirs are usually thought to be isothermal, the isothermal
compressibility is most often used in reservoir engineering. It is often written in terms of densi-
ty or formation volume factor (FVF) as

5ok 55
oplr oplr

o= _ _( 0 V) _
dplr
Several special cases of Eq. 7.42 are useful to consider. First, when the volume under con-

sideration is closed (dV =0), Eq. 7.42 gives dp = p dT Under the assumption of constant

compressibilities, this result can be integrated to Ap = —AT which gives the pressure change
in a closed volume resulting from a temperature change.
Second, when the process is isothermal, Eq. 7.42 reduces to d7V = —cdp. This result can

be integrated under the assumption of constant compressibility to obtain
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where subscript o is a reference state. Eq. 7.43 is often referred to as the EOS for a constant

S . . . - apTP
compressibility fluid. It can be rewritten in a more familiar form as V="V e ( 0) or

C(p - po) . . : -
p=pye . This result is often used in well testing.

Third, when the compressibility of the fluid is both constant and small, and the pressure
change is not too large, the exponential term in Eq. 7.43 can be simplified so that
V=V (1-cAp)or p=p,(1+cAp). This result is often referred to as the EOS for a fluid with
a slight, but constant, compressibility.

Last, substitution of the definition of compressibility factor (Eq. 7.40) into Eq. 7.42 gives

1 1(dZ
c= ; - ?(ﬁ)T ......................................................... (7.44)

Eq. 7.44 is exact, whether the fluid is a vapor or liquid. For an ideal gas, the compressibili-
ty factor is constant and equal to 1.0, and Eq. 7.44 reduces to ¢ = %. Thus, the isothermal

compressibility for an ideal gas is inversely proportional to pressure.

Cubic Equations-of-State. The van der Waals EOS was the first EOS capable of represent-
ing both the liquid and vapor. The van der Waals EOS, however, is not used because of its
lack of accuracy near critical points. The Peng-Robinson EOS and a modified version of the
Redlich-Kwong EOS are generally used (see Table 7.2 for comparison). Nevertheless, the sim-
plicity of the van der Waals EOS makes it useful in demonstrating several key concepts.

As for other cubic EOS, the van der Waals EOS describes the pressure as a function of
molar volume and temperature, which is written as

where b is the repulsion parameter, and « is the attraction parameter. The first term on the
right side of Eq. 7.45 attempts to represent the pressure deviation from an ideal gas that results
from molecules occupying and competing for space. The effective volume available for move-
ment of the molecules (on a molar basis) is ¥ — b—not V, as it would be for an ideal gas.
Thus, b represents the smallest possible volume that one mole of molecules can occupy (no
space would exist between the molecules).

As V approaches b, the denominator in the first term on the right side becomes small so
that pressure increases very rapidly. Because b is based on the effective molecule size, the
value for b will change with the nature of the pure fluid and will determine the lower bound-
ary for the region of interest on a pressure-volume diagram (i.e., the physical region of interest
is only where V > b).

The second term on the right side of Eq. 7.45 accounts for the attractive forces between
molecules. The attractive forces will be proportional to the square of the number of molecules

present and, thus, on a macroscopic scale. The proportionality constant, @, depends on the

1
V2
nature and strength of the forces between the molecules and, therefore, the fluid type. As V
becomes large, the contribution of the attractive forces becomes small, and the second term on
the right side of Eq. 7.45 becomes negligible. Under these conditions, the van der Waals EOS
approaches the ideal gas equation (Eq. 7.39). This is also true for the other EOS in Table 7.2.

The van der Waals EOS can be rewritten in cubic form as
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or in terms of the compressibility factor,

2
Z3—(1 +b_p)Zz+%Z_Lp3 =
RT (R (RT)

Determination of a and b From van der Waals EOS. We previously demonstrated that an
isotherm on a pressure-volume diagram must have zero slope at the critical point. There is also
an inflection point there. Thus, any cubic EOS must be constrained by
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Eq. 7.47 consists of two equations that can be solved simultancously to determine the un-
knowns, a and b. This procedure can be somewhat tedious, especially for more advanced cubic
EOS.

A simpler method is to recognize that Eq. 7.47 implies that only one volume root of the

cubic EOS exists at the critical point. Mathematically, this can be expressed as (V— VC)3 =0,
which upon expansion is V3 *3VCV2+3V3V*VC3 = 0. Comparison of this expansion to Eq.
_a
Pc
These three relationships are easily solved to obtain @ and b in terms of only the critical pres-

sure and temperature, as well as to determine the relationship between critical parameters. That
2.2

RT
7.48 term by term at the critical point gives =3V = — (b + —C), 3V§ = —, and —VC3 = —-—
Pc

27RT, R, rde 5
is, a=——; b=+—; and Z- = ———— = <. A similar procedure can be used for any cubic
64pC SpC RTC 8

EOS.
The result shows that the critical compressibility factor is constant and is independent of
the fluid. This is true for the other cubic EOS models in Table 7.2. For the van der Waals

EOS, we obtained Z, = % = 0.375. In reality, the critical compressibility factor is not constant
for different fluids and is generally smaller than 0.3. For example, water has a critical compress-
ibility of about 0.23, and that of carbon dioxide is 0.27. The poor match of the van der Waals
EOS at the critical point explains why it is not used today. Both the Redlich-Kwong EOS and
the Peng-Robinson EOS have critical compressibilities closer to measured values (see Table
7.2).

A constant critical compressibility factor means that only two of the three critical properties
can be satisfied at the critical point. For example, if critical pressure and temperature are speci-
fied, the critical volume will not be correctly predicted. For the van der Waals EOS,

RT
Vo= %p—c Thus, when the critical pressure and temperature are specified, the critical volume
or critical density of the fluid is likely in error. In general, liquid densities predicted by cubic
EOS exhibit greater error than do vapor densities. Ref. 2 gives a good description of how den-
sity predictions can be improved using volume translation parameters.

We determined a and b only at the critical point. Their values could be different away

from the critical point and could be functions of temperature. Therefore, in general,

27R*T2

RT,

C . .

a= g, % and b = vﬁ, where a and f are functions of temperature; these functions must
C C

approach 1.0 at the critical point. For most cubic EOS, f is taken to be 1.0, and a is adjusted
to give the correct vapor pressure (see Table 7.2).

Construction of Pressure-Volume Diagram From Cubic EOS. Once a and b are defined, a
cubic EOS can be used to generate the pressure-volume diagram, as illustrated in Fig. 7.9.
From the Gibbs phase rule, there is only one degree of freedom within the two-phase region
for pure fluids. We assume that temperature has been specified but not the pressure. Our goal,
therefore, is to solve for the vapor pressure, given temperature and the critical properties of the
fluid.

The procedure used to estimate @ and b ensures that the cubic EOS gives the experimental-
ly measured shapes of the isotherms for temperatures greater than or equal to the critical point.
Fig. 7.11 illustrates the isotherms generated from a cubic EOS. As shown by the loop in the
curve, cubic EOS can have three roots for isotherms below the critical temperature. The loop is
not physical because the pressure must be constant in the two-phase region.

The nonphysical condition must be removed to achieve the correct physical response in the
two-phase region. That is, the loop within the two-phase region must be discarded and replaced
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Fig. 7.11—Isotherms with a cubic EOS are shown for three different temperatures. The isotherm below the
critical temperature does not give the physically-correct result within the two-phase region because pres-
sure should be constant there. The dashed line indicates the correct isotherm in the two-phase region.
The areas above and below the dashed line should be equal when the pressure is equal to the equilibrium
vapor pressure (Maxwell’s equal-area rule).

by the correct vapor pressure. The procedure is relatively simple. Within the two-phase region,
there are three roots along an isotherm. At the vapor pressure, the root with the largest molar
volume is taken to be the molar volume of the saturated vapor V},, whereas the smallest root is
V;. The middle root is discarded because choosing that root would lead to unstable phases (see
Sec. 7.2.2). The middle root is clearly nonphysical in that it is located on the isotherm where

0 . . .
(ﬁ)T > 0(i.e., pressure increases as density decreases).

Principle of Corresponding States. Correlations for reservoir fluids, such as the generalized

compressibility factor charts for natural gases, use reduced temperature, pressure, and volume,
T v . .

where T = %’ Pr= ;;C, and Vj, = % A cubic EOS shows why these parameters give good

correlations. For example, substitution of the reduced parameters into the van der Waals EOS

(Eq. 7.45), along with the definitions of a and b, gives

8T
__%r 3
Pr= W1 VI%. ....................................................... (7.48)

Eq. 7.48 is dimensionless and is often called the reduced form of the van der Waals EOS. The
reduced form leads directly to the principle of corresponding states. The two-parameter princi-
ple of corresponding states says that all fluids, when compared at the same reduced tempera-
ture and pressure, have approximately the same compressibility factor, and all deviate from ideal-
gas behavior by about the same degree. The reduced compressibility factor is given by
V

% = I;RT—;. Because Z- is constant for a cubic EOS, the compressibility factor is constant for
the same reduced temperature and pressure (reduced volume is related to reduced pressure and
temperature through Eq. 7.48).

The principle of corresponding states is a powerful idea even though it is only qualitatively
correct. Experiments show that Z is not constant for different fluids. Nevertheless, it demon-

strates that, to obtain reasonable estimates of fluid properties, only the reduced pressure and
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Fig. 7.12—Estimation of acentric factor (after Smith et al.%). Simple fluids collapse to a single curve. The
deviation of complex fluids from simple fluids is measured by the acentric factor, w. The deviation (or
acentric factor) is determined at a reduced temperature of 0.70.

temperature must be known. This is why most fluid correlations use reduced temperature and
pressure.
In reality, fluids can deviate from the principle of corresponding states. Pitzer noted that a

plot of i vs. log lop}; for simple fluids (molecules that are roughly spherical in shape such

as the Noble gases) collapse onto a straight line (see Fig. 7.12). The parameter, pIVQ, is the
reduced pressure at the vapor pressure. Other more complex and nonspherical molecules such
as hydrocarbon-chained molecules, however, do not plot on that same line. Thus, Pitzer defined
an additional correlation variable called the acentric factor, where

w=—10- log 10(1’;%) ’TR:OJ = log

The acentric factor measures the deviation of complex fluids from the simple fluids at a
reduced temperature of 0.70 (see Fig. 7.12). Hydrocarbons with longer chains generally have
greater acentric factors. For example, methane has an acentric factor of 0.008, while n-butane
has an acentric factor of 0.193.

Because the acentric factor is simple to measure, it is often used to improve phase-behavior
calculations from cubic EOS. The three-parameter principle of corresponding states is that a
fluid will have about the same compressibility factor as another fluid, if the reduced pressure,
reduced temperature, and acentric factors are similar.

Calculation of Vapor Pressure. Although the shape of an isotherm from a cubic EOS can
be made qualitatively correct, the problem remains that the vapor pressure is unknown for a
given temperature. The vapor pressure is determined using the equilibrium criterion of Eq.
7.24. For example, substitution of the Soave Redlich-Kwong EOS into Eq. 7.25 and subsequent
integration gives the fugacity as a function of pressure, molar volume, and temperature. That is,

_ V ao 4 L
f_peXp[ln(V*b)+(RTb)ln(V+b)+Z 1=z
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Fig. 7.13—Procedure for determination of vapor pressure for a pure fluid.

The fugacity of the vapor is computed using the molar volume of the vapor phase, V},, whereas
the liquid fugacity is determined using V;. Thus, the fugacity for the vapor phase from the
Soave Redlich-Kwong EOS is

f,=pexp| In W +(““)1n A PSS, (7.49)

v = D €xp 7 RTD Vb v /P .
Py .

where 7, = Tk and for the liquid phase,

4 ao. 4

fL_peXp{ln(VL—b)+(RTb)ln(VL+b +Z,—1-InZ;|, o (7.50)
y, . 4

whereZL=—L

The problem of calculating the vapor pressure reduces to finding the pressure that gives the
required phase molar volumes so that the fugacities of the phases are equal. Fig. 7.13 illus-
trates the procedure. The procedure works well as long as the initial guess for the pressure is
in the range of the cubic EOS where three roots exist (i.e., the pressure is within the loop of
the cubic EOS). If the pressure is above the critical pressure, only one root exists for the molar
volume. This is also true if the pressure is below the minimum value of the loop (the mini-
mum pressure of the loop could be negative).

For a pure fluid, the vapor pressure can also be determined graphically with Maxwell’s
equal area construction. Fig. 7.11 shows that the vapor pressure is the pressure required so that
the areas bounded by the vapor pressure line and the loop of the cubic EOS must be equal.
The equal area construction results from the equality of Gibbs energy (or fugacities). This
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Fig. 7.14—Example calculation of two-phase envelope for propane using the SRKEOS (Soave-Redlich-
Kwong Equation-of-State). The solid lines are the isotherms at 40 and 70°C. The vapor pressures are
labeled on the narrow-dashed lines. The critical point, calculated with the SRKEOS, is compared to the
experimentally measured critical point for propane. The two-phase envelope connects the equilibrium
liquid and vapor molar volumes.

method is less accurate but serves as a useful check to the calculated vapor pressure. Ref. 2
outlines Maxwell’s construction method in detail for pure fluids and mixtures.

Example Calculation of Two-Phase Envelope. This section demonstrates a calculation of
vapor pressure and the two-phase envelope for a pure fluid using the procedure outlined in Fig.
7.13. Propane is selected as the pure fluid at a temperature of 40°C (313°K). We also select
the Soave-Redlich-Kwong EOS to model the phase behavior. The properties for propane are a
critical temperature of 370°K; a critical pressure of 42.5 bars; and an acentric factor of 0.152.
The gas constant in consistent units is 83.1 cm?-bar/mol/K.

With these values, the parameter “a” in Table 7.2 is calculated to be 9.51E6 cm®-bar/mol?,
and parameter “b” is 62.7 cm’/mol. The value for o from Table 7.2 is found to be 1.05 (the
reduced temperature at 40°C is 0.913). Fig. 7.14 shows the isotherm at 40°C calculated with
the SRKEOS.

Based on the calculated isotherm, we select an initial value of 10 bars for the vapor pres-
sure. Any value within the S-loop of the isotherm would be satisfactory as an initial guess for
the vapor pressure. A vapor pressure of 13.8 bars is calculated with the iteration procedure of
Fig. 7.13. The calculated vapor pressure is the pressure at which the fugacities of the vapor
and liquid phases are equal (illustrated in Figs. 7.11 and 7.14 by the Maxwell equal-area rule).
The fugacities are 11.3 bars at the vapor pressure, which are calculated with Eqgs. 7.49 and
7.50. The equilibrium liquid molar volume is 105 cm?/mol, and the vapor molar volume is
1462 cm’/mol.

Fig. 7.14 also illustrates the phase behavior with the SRKEOS at a higher temperature of 70°
C. The calculated vapor pressure at this temperature is 26.2 bars. The equilibrium liquid molar
volume is 128 cm?/mol, and the vapor molar volume is 691 cm?/mol. Thus, as the temperature
is increased, the size of the two-phase region shrinks. Fig. 7.14 shows the two-phase envelope
that connects the liquid and vapor molar volumes. At the critical temperature, the two-phase
region disappears.

The values for vapor pressure and molar volumes are calculated parameters only. Using the
critical temperature and pressure, the critical volume from the SRKEOS is approximately 241
cm’/mol (Z-=1/3 always for the SRKEOS). The actual critical volume from experimental
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data is 200 cm’/mol, which is about 20 percent smaller than the calculated value. Ref. 2 out-
lines a more complex method to improve the calculated match of cubic EOS to experimental
data.

7.5 Volumetric Properties of Mixtures

The interaction of the different molecules in a mixture causes behavior not observed in pure
fluids. The chapter on phase diagrams in this section of the handbook describes the volumetric
behavior of mixtures. Sec. 7.5 presents the basic procedure to predict the equilibrium phase
behavior of mixtures by a cubic EOS. More detailed information can be found in many
sources, including Refs. 2 and 7.

The thermodynamic properties of a mixture can be calculated with the same EOS for a
pure fluid, with some modifications. The primary difference is that the mixture molar volume
for a phase is calculated with EOS constants and temperature-dependent functions of the phase
molar composition, either x; or y;. For example, the Soave Redlich-Kwong EOS written for a
mixture 1S

RT (aa),,
p= _ - 5
Vm bm Vm(Vm + bm)

where subscript m indicates a mixture property. The mixture properties are calculated with mix-
ing rules that are often linear or quadratic functions of the phase mole fractions. For example,
for the liquid phase, the mixing rule for the product, aa, is often the quadratic equation,

S

n

c C
(aa),, = ‘Zl _leixj(aa)ij,
i=1j=

where .(aa)l- i= (l —.kl- j)\/(aa)l-(aa) Iz The parameters £; ; are call.ed binary ipteraction parame-
ters. Binary interaction parameters are constants that are determined by fitting the cubic EOS
to experimental PVT data. The mixing rule for aa is theoretically justified from virial EOS,

n
which are discussed in Refs. 2 through 7. For b, , the linear relationship, b, = Zic: 1X;b;, 1s
often used.
For equilibrium calculations, the fugacity of every component in each phase must be calcu-
lated. Eq. 7.35 is used for this purpose. For example, substitution of the Soave Redlich-Kwong
EOS into Eq. 7.35 gives the fugacity of a component in the liquid phase, which is written as

n
c
2 .2 xj(aa)l.j

ln( VmL )+ bi n j=1 1 ( VmL )
}\F VmL B me VmL_me RTme VmL + me (7 51)
iL =D exp , ... (7.
bi(aa)mL VmL * me me ZL
+ 5 In 7 ~ 7 1p — In|{—
RTH mL mL™ mL %
mL
meL .. . . . .
where Z, = —_——. A similar equation is written for the vapor phase, where x. is replaced b
L RT q por p i Y y

;> and superscript L is replaced by V.
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7.5.1 Procedure for Equilibrium Calculations of a Mixture. The procedure for equilibrium
calculations of a potential two-phase mixture is more complex than that of a pure fluid. For an
equilibrium flash calculation, the pressure and temperature and overall mole fractions are speci-
fied (i.e., pressure and temperature are now independent, as specified by the Gibbs phase rule).
The general procedure for a flash calculation is discussed next.

y.
1. Make an initial guess of the K-values, where K, = x—l When the guess of the K-values is

1
near the equilibrium solution, the procedure will converge rapidly. If the guess is not good, the
procedure might not converge at all. Most EOS programs use some empirical correlation to
estimate the phase mole fractions based on K-values. The Wilson equation'' is often used,

exp {5.37(1 ““i)(l - TL)} |

ri

where K; = x—l =
i PRi
2. Calculate x; and y, with the Rachford-Rice procedure.'> Once the K-values for each com-
ponent are specified, the Rachford-Rice procedure is used to estimate the phase mole fractions.
A material balance on each component gives z; = Lx; + (1 — L)y;, where L is the mole fraction
liquid (see Eq. 7.1). Substitution of y, = K;x; into the material balance equation gives, upon
z. K.z.

: or alternatively y; =

rearrangement, x; = ————
L+(1- DK,

Substitution of these expres-

n, (1- &)
i=lr+(- DK,
a nonlinear equation that can best be solved by a simple Newton-Raphson iteration, where for

new _ Lold_ F(LOId)

dF.
dL Lold

11
L+(1—L)Kl.'

n. n.
sions into the function F(L) =X, x;,—X,%,y,=0 gives F(L) =X = (). This is

each iteration the new value of the liquid mole fraction is found from L

new

. . . L -
For the first iteration, choose L = 0.5 and iterate until ( a 1) <1077,
L

3. Calculate the cubic EOS parameters (e.g., a,, and b,). This step is very straightforward
and depends on the selected EOS and its associated mixing rules. The critical temperatures,
pressures, and acentric factors for each component are needed to calculate the EOS parameters.

4. Solve the cubic EOS for the phase molar volumes V, ; and V, ;.. This step requires solu-
tion of the cubic EOS for the compressibility factor, Z, of the vapor and liquid (or alternatively
for V}, and V;). Because the compositions of the vapor and liquid are different, two separate
solutions for the roots of the cubic EOS are required. A cubic equation-solver or iteration
method should be used to obtain the roots of the EOS.

The procedure for this step is more complex than for a pure fluid because six roots of the
cubic EOS are calculated (i.e., three roots for the liquid and three for the vapor). The middle
root for the vapor and liquid are discarded because that solution leads to unstable phases, simi-
lar to pure fluids. One of the remaining two liquid roots is paired with one of the other vapor
roots to calculate component fugacities and equilibrium. If the wrong root pairing is selected,
the solution could be false in that an unstable or metastable solution could be obtained. The
correct equilibrium solution is the one that minimizes the total Gibbs energy compared with
the other possible root-pairings. Refs. 2 and 7 provide a good description of how to select the
liquid and vapor roots so that the total Gibbs energy of the two-phase mixture is minimized.
For most cases, the correct root for the liquid is the one that gives the smallest molar volume,
and the correct root for the vapor is the one that gives the largest molar volume.

Refs. 2 and 7 also examine using stability analyses to determine whether a mixture will
form three phases instead of just one or two phases. The chapter on phase diagrams in this
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section of the handbook discusses the formation of three equilibrium phases in CO,/crude oil
systems.

5. Calculate the component fugacities of each component in each phase, }\’W and jA",-L. The
selected cubic EOS is used to determine an expression for the fugacity of a component in a
phase (see Eq. 7.51 for example).

}\iV
TiL

all components. If the criteria are satisfied, equilibrium has been obtained. The correct equilib-

6. Check to see if equilibrium has been reached. A good criterion is ( - 1) <107° for

A, A, . .
rium solution is found when f;; = f;v for each component. Because the solution is never
7 _
found exactly, we accept the solution if (?—IV ~1] <107 for each component. The tolerance of
JiL
10 >can be decreased if better accuracy is required.
7. If the criteria have not been satisfied, the K-values should be updated and steps two
through six repeated. This step is also very important; it affects both the rate of convergence
and whether the iteration converges at all. One procedure that works well is the simple succes-

T

. o . A A JiL
sive substitution scheme that relies on the fact that ¢, = S and ¢,; = —xlp for each compo-
i i

A
oip  Tir Vi .
nent. Therefore, —— = ———. At equilibrium, the component fugacities are equal so that
by T %i
Pi Vi . . . .
A[L =1= K. We can use this ratio to estimate new K-values from the old ones. That is,
P i
TiL
KV = ?;Kiold. Once the new K-values are determined, steps two through six are repeated
Jiv

until convergence in step six is achieved. Convergence from successive substitutions can be
slow near the critical region. Other methods may be required when convergence is slow.”

7.6 Characterization of In-Situ Fluids

Phase behavior calculations require that all components and their properties be specified. Crude
oils, however, typically have hundreds of components, making the EOS procedure in Sec. 7.5
computationally intensive. Thus, components are often lumped into pseudocomponents to ap-
proximate the in-situ fluid characterization. The characterization usually takes the following
three steps:

1. The hydrocarbon components in the in-situ fluid are analyzed using analytical tech-
niques, such as chromatography or distillation. New analytical techniques often give a reliable
analysis for hydrocarbon components up to Cs, instead of the traditional C,. Properties for
hydrocarbon components greater than C,, are reported as a Cs,, fraction.

2. The measured components are separated and lumped into a minimum number of pseudo-
components. The chosen number of pseudocomponents is often a result of the measured fluid
characterization and the degree of accuracy required (see step three). The properties and selec-
tion of the pseudocomponents are determined using a variety of methods as reported in Ref. 7.
The required pseudocomponent properties are those needed for the cubic EOS calculations,
such as critical temperature, pressure, and acentric factor.

3. The pseudocomponent properties are adjusted to match all available phase behavior data
(e.g., PVT reports). This process, which typically uses nonlinear regression, is known as EOS
tuning. EOS tuning is needed because of the inherent uncertainty in the properties estimated
from step two, especially for the heavier components. Binary interaction parameters are typical-
ly the first parameters to be adjusted, although all of the parameters may need some tuning.
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The number of pseudocomponents may need to be increased from step two to obtain a good fit
of the calculated phase behavior with the measured phase behavior data.

The selection of pseudocomponents and their property values are likely not unique, as is
often the case when numerous model parameters are estimated by fitting measured data with
nonlinear regression. Care should be taken to avoid estimates in the pseudocomponent proper-
ties that are unphysical and to reduce the number of parameters. Furthermore, the final EOS
characterization is most accurate in the range of the measured phase behavior data. Phase be-
havior data should be collected that covers, as much as possible, the conditions that occur in
the reservoir. The characterization should be updated when new data becomes available.

Finally, fluid characterizations may vary from one location in the reservoir to another. In
such cases, multiple EOS characterizations might be required. Compositional variations can oc-
cur for a variety of reasons. For example, gravity can cause vertical compositional gradients,
where heavier components become more concentrated at greater depths. Refs. 2, 13, and 14
provide examples of gravitational concentration gradients. Variations caused by thermal gradi-
ents are also discussed in Ref. 2.

Nomenclature

= constant parameter in cubic EOS in Table 7.2, pressure-volume?, Pa-m
area normal to specified direction, m?

= constant parameter in cubic EOS in Table 7.2, volume/mole, m*/mole
formation volume factor of the fluid, volume/volume

isothermal compressibility of a fluid, 1/pressure, 1/Pa

= isobaric compressibility of a fluid, 1/pressure, 1/Pa

fugacity of a pure fluid, pressure, Pa

= fugacity of a component in a mixture, mole?-pressure/mole?, Pa

= external force on one side of system, energy/length, J/m
= external force vector of surroundings on system, energy/length, J/m

= molar Gibbs free energy, energy/mole, J/mole

= heat transfer coefficient, energy/temperature/time, J/(Kelvin-sec)
= molar enthalpy of fluid, energy/mole, J/mole

= binary interaction parameter, dimensionless

K-value of i component, y;/x;, dimensionless

= displacement vector of system, length, m

= liquid mole fraction, moles liquid/total moles, dimensionless

= net mass transferred, mass, moles

= total moles of all components, moles

= number of components

= number of phases

= pressure, force/area, Pa

= net heat transferred, energy, J

= gas constant, pressure-volume/temperature/mole, Pa-m?/(Kelvin-mole)

molar entropy of fluid, entropy/mole, J/(Kelvin-mole)

time, seconds

temperature, Kelvin

velocity of fluid, length/time, m/sec

molar internal energy, energy/mole, J/mole

= vapor mole fraction, moles vapor/total moles, dimensionless or molar
volume of fluid, volume/mole, m3/mole

= net work performed, energy, J

= x-coordinate, length, m

SN O N IR S I R~ AT " 6 o> s
Il

= N
|
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x; = mole fraction of /" component in liquid, moles /" component in liquid/total
moles liquid, dimensionless
y = y-coordinate, length, m
»; = mole fraction of /" component in vapor, moles i'" component in vapor/total
moles vapor, dimensionless
z = z-coordinate, length, m
z; = overall mole fraction of i component, moles i component/total moles,
dimensionless
Z = compressibility factor of a fluid, dimensionless
o. = temperature dependence function in cubic EOS in Table 7.2, dimensionless
S = temperature dependence function in cubic EOS, typically set to 1.0,
dimensionless
4; = chemical potential of i'" component, energy/mole, J/mole
p = molar density of fluid, moles/volume, mole/m?
9= fugacity coefficient for a pure fluid, pressure/pressure, dimensionless
@; = fugacity coefficient for a component in a mixture, mole’-pressure/mole*-
pressure, dimensionless
w = acentric factor, dimensionless
Subscripts
A = open subsystem A
B = open subsystem B
C = state is at critical point
ext = external to system
G = generated quantity within system
i = i component
Jj = j™ component
L = liquid
m = mixture
o = reference state
rev = reversible process
R = reduced parameter, ratio of quantity/critical value, dimensionless
T = total
v = vapor pressure
V = vapor
x = direction is along x-coordinate
y = direction is along y-coordinate
z = direction is along z-coordinate
Superscripts
ig = ideal gas
L = liquid
Vv = vapor pressure
V = vapor
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S| Metric Conversion Factors

bar x 1.0% E+05 =Pa

ft x 3.048%* E-01 =m

ft> x  9.290 304* E-02 =m?
ft/sec x 3.048 E-01 =m/s

°F (°F -32)/1.8 =°C

kelvin (K—-273.15) =°C

*Conversion factor is exact.
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Chapter 8

Phase Diagrams
F.M. Orr, Jr. and K. Jessen, Stanford U.

8.1 Introduction

Petroleum reservoir fluids are complex mixtures containing many hydrocarbon components that
range in size from light gases such as methane (C,) and ethane (C,) to very large hydrocarbon
molecules containing 40 or more carbon atoms. Nonhydrocarbon components such as nitrogen,
H,S, or CO, also may be present. Water, of course, is present in essentially all reservoirs. At a
given temperature and pressure, the components distribute between the solid, liquid, and vapor
phases present in a reservoir. A phase is the portion of a system that is homogeneous, is bound-
ed by a surface, and is physically separable from other phases. Equilibrium phase diagrams
offer convenient representations of the ranges of temperature, pressure, and composition within
which various combinations of phases coexist. Phase behavior plays an important role in a vari-
ety of reservoir engineering applications, ranging from pressure maintenance to separator
design to enhanced oil recovery (EOR) processes. This chapter reviews the fundamentals of
phase diagrams used in such applications. Additional material on the role of phase equilibrium
in petroleum/reservoir engineering can be found in Refs. 1 and 2.

8.2 Phase Diagrams for a Single Component

Fig. 8.1 summarizes the phase behavior of a single component. The saturation curves shown in
Fig. 8.1 indicate the temperatures and pressures at which phase changes occur. At temperatures
below the triple point, the component forms a vapor phase if the pressure is below that indicat-
ed by the sublimation curve and forms a solid phase at pressures above the curve. At pressures
and temperatures lying on the sublimation curve, solid and vapor can coexist. At pressures and
temperatures on the melting curve, solid and liquid are in equilibrium. At higher temperatures,
liquid and vapor can coexist along the vaporization or vapor-pressure curve. If the pressure is
greater than the vapor pressure, a liquid forms; if the pressure is lower than the vapor pressure,
a vapor forms. The vapor-pressure curve terminates at the critical point. At temperatures above
the critical temperature, 7,, a single phase forms over the entire range of pressures. For a sin-
gle component, the critical temperature is the maximum temperature at which two phases can
exist. Critical temperatures of hydrocarbons vary widely. Small hydrocarbon molecules have
low critical temperatures, while large hydrocarbon molecules have much higher critical temper-
atures. Critical pressures generally decline as the molecular size increases. For instance, the
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Fig. 8.1—Phase behavior of a pure component.

critical temperature and pressure of C; are —117°F and 668 psia; for decane, the values are
652°F and 304 psia.

For many reservoir engineering applications, liquid/vapor equilibrium is of greatest interest,
although liquid/liquid equilibria are important in some EOR processes. Solid/liquid phase
changes, such as asphaltene or paraffin precipitation (see the chapter on crude oil emulsions in
this volume), occasionally occur in petroleum production operations.

Fig. 8.2 shows typical volumetric behavior of a single component in the range of tempera-
tures and pressures near the vapor-pressure curve in Fig. 8.1. If the substance under considera-
tion is placed in a pressure cell at constant temperature, 7}, below 7, and at a low pressure
(point A, for instance), it forms a vapor phase of high volume (low density). If the volume of
the sample is decreased with the temperature held constant, the pressure rises. When the pres-
sure reaches p (7)), the sample begins to condense. The pressure remains constant (see Sec.
8.3) at the vapor pressure until the sample volume is reduced from the saturated vapor volume
(Vy) to that of the saturated liquid (V;). With further reductions in volume, the pressure rises
again as the liquid phase is compressed. Small decreases in volume give rise to large pressure
increases in the liquid phase because of the low compressibility of liquids. At a fixed tempera-
ture, T,, above the critical temperature, no phase change is observed over the full range of
volumes and pressures. Instead, the sample can be compressed from high volume (low density)
and low pressure to low volume (high density) and high pressure with only one phase present.

8.3 The Phase Rule

The number of components present in a system determines the maximum number of phases
that can coexist at fixed temperature and pressure. The phase rule of Gibbs states that the num-
ber of independent variables that must be specified to determine the intensive state of the
system is given by

F=2+nc—np—Nc, ........................................................ 8.1)
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Fig. 8.2—Volumetric behavior of a pure component in the vapor/liquid region.

where F' is the number of degrees of freedom, 7, is the number of components, 7, is the num-
ber of phases, and N, is the number of constraints (e.g., chemical reactions). For a single-
component system, the maximum number of phases occurs when there are no constraints (N, =
0) and no degrees of freedom (F = 0). Thus, the maximum number of possible phases is three.
Therefore, if three phases coexist in equilibrium (possible only at the triple point), the pressure
and temperature are fixed. If only two phases are present in a pure component system, then
either the temperature or the pressure can be chosen. Once one is chosen, the other is deter-
mined. If the two phases are vapor and liquid, for example, choice of the temperature deter-
mines the vapor pressure at that temperature. These permitted pressure/temperature values lie
on the vapor-pressure curve in Fig. 8.1.

In a binary system, two phases can exist over a range of temperatures and pressures. The
number of degrees of freedom is calculated by

J R N (8.2)

therefore, both the temperature and pressure can be chosen, although there is no guarantee that
two phases will occur at a specific choice of T and p.

For multicomponent systems, the phase rule provides little guidance because the number of
phases is always far less than the maximum number that can occur. However, for typical appli-
cations, the temperature, pressure, and overall composition of a system are known in advance.
This allows the number of phases in the system to be predicted by stability analysis, as de-
scribed in the chapter on phase behavior in this volume. Secs. 8.4 through 8.8 introduce the
types of phase diagrams that can be used to portray the thermodynamic phenomena that play
important roles in oil and gas production.

8.4 Binary Phase Diagrams

Fig. 8.3 is a pressure-composition (p-x-y) phase diagram that shows typical vapor/liquid phase
behavior for a binary system at a fixed temperature below the critical temperature of both com-
ponents. At pressures below the vapor pressure of Component 2, p,,, any mixture of the two
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Fig. 8.3—Pressure-composition diagram for a binary mixture at a temperature below the critical temper-
ature of both components.

components forms a single vapor phase. At pressures between p,; and p,,, two phases can coex-
ist for some compositions. For instance, at pressure p,, two phases will occur if the mole
fraction of Component 1 lies between x; and x. If the mixture composition is xp, it will be all
liquid; if the mixture composition is x, it will be all vapor. At constant temperature and pres-
sure, the line connecting a liquid phase and a vapor phase in equilibrium is known as a tie
line. In binary phase diagrams such as Fig. 8.3, the tie lines are always horizontal because the
two phases are in equilibrium at a fixed pressure. For 1 mole of mixture of overall composi-
tion, z, between x; and x;, the number of moles of liquid phase is

Xp— 2
e (8.3)
Xg~XB

Eq. 8.3 is an inverse lever rule because it is equivalent to a statement concerning the dis-
tances along a tie line from the overall composition to the liquid and vapor compositions.
Thus, the amount of liquid is proportional to the distance from the overall composition to the
vapor composition, divided by the length of the tie line.

Phase diagrams such as Fig. 8.3 can be determined experimentally by placing a mixture of
fixed overall composition in a high-pressure cell and measuring the pressures at which phases
appear and disappear. For example, a mixture of composition x; would show the behavior indi-
cated qualitatively in Fig. 8.4. At a pressure less than p, (Fig. 8.3), the mixture is a vapor. If
the mixture is compressed by injecting mercury into the cell, the first liquid, which has compo-
sition x,, appears at the dewpoint pressure, p,. As the pressure is increased further, the volume
of liquid grows as more and more of the vapor phase condenses. The last vapor of composition
xi disappears at the bubblepoint pressure, p;,.

If the system temperature is above the critical temperature of one of the components, the
phase diagram is similar to that shown in Fig. 8.5. At the higher temperature, the two-phase
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Fig. 8.4—Volumetric behavior of a binary mixture at constant temperature that shows a bubblepoint
pressure.

region no longer extends to the pure Component 1 side of the diagram. Instead, there is a
critical point, C, at which liquid and vapor phases are identical. The critical point occurs at the
maximum pressure of the two-phase region. The volumetric behavior of mixtures containing
less Component 1 than the critical mixture, x,, is like that shown in Fig. 8.4. Fig. 8.6 shows
the volumetric behavior of mixtures containing more Component 1. Compression of the mix-
ture of composition x, (in Fig. 8.5) leads to the appearance of liquid phase of composition x;
when pressure p,, is reached. The volume of liquid first grows and then declines with increas-
ing pressure. The liquid phase disappears again when pressure p,, is reached. Such behavior is
called “retrograde vaporization” or “retrograde condensation” if the pressure is decreasing.

If the system temperature is exactly equal to the critical temperature of Component 1, the
critical point on the binary pressure-composition phase diagram is positioned at a Component 1
mole fraction of 1.0. Fig. 8.7 shows the behavior of the two-phase regions as the temperature
rises. As the temperature increases, the critical point moves to lower concentrations of Compo-
nent 1. As the critical temperature of Component 2 is approached, the two-phase region
shrinks, disappearing altogether when the critical temperature is reached.

Fig. 8.8 shows a typical locus of critical temperatures and pressures for a pair of hydrocar-
bons. The critical locus shown in Fig. 8.8 is the projection of the critical curve in Fig. 8.7 onto
the p-T plane. Thus, each point on the critical locus represents a critical mixture of different
composition, although composition information is not shown on this diagram. For temperatures
between the critical temperature of Component 1 and Component 2, the critical pressure of the
mixtures can be much higher than the critical pressure of either component. Thus, two phases
can coexist at pressures much greater than the critical pressure of either component. If the dif-
ference in molecular weight of the two components is large, the critical locus may reach very
high pressures. Fig. 8.9 gives critical loci for some hydrocarbon pairs.?

The binary phase diagrams reviewed here are those most commonly encountered. However,
more complex phase diagrams involving liquid/liquid and liquid/liquid/vapor equilibriums do
occur in hydrocarbon systems at very low temperatures (well outside the range of conditions
encountered in reservoirs or surface separators) and in CO,/crude oil systems at temperatures
below approximately 50°C. See Refs. 4 and 5 for reviews of such phase behavior.
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Fig. 8.5—Pressure-composition phase diagram for a binary mixture at a temperature above the critical
temperature of Component 1.

8.5 Ternary Phase Diagrams

Phase behavior of mixtures containing three components is represented conveniently on a trian-
gular diagram such as those shown in Fig. 8.10. Such diagrams are based on the property of
equilateral triangles that the sum of the perpendicular distances from any point to each side of
the diagram is a constant equal to the length of any of the sides. Thus, the composition of a
point in the interior of the triangle can be calculated as

Ll LZ L3 ( )
X1 = T, Xy T T, X2 T T, e 8.4
1 LT 2 LT 3 LT
where
Lp=Ly+ Lyt Lyt (8.5)

Several other useful properties of triangular diagrams are a consequence of this fact. For
mixtures along any line parallel to a side of the diagram, the fraction of the component of the
corner opposite to that side is constant (Fig. 8.10b). In addition, mixtures lying on any line
connecting a corner with the opposite side contain a constant ratio of the components at the
ends of the side (Fig. 8.10c). Finally, mixtures of any two compositions, such as A and B in
Fig. 8.10d, lie on a straight line connecting the two points on the ternary diagram. Composi-
tions represented on a ternary diagram can be expressed in volume, mass, or mole fractions.
For vapor/liquid equilibrium diagrams, mole fractions are most commonly used.

Fig. 8.11 shows the typical features of a ternary phase diagram for a system that forms a
liquid and a vapor at fixed temperature and pressure. Mixtures with overall compositions that
lie inside the binodal curve will split into liquid and vapor. Tie lines connect compositions of
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Fig. 8.6—Volumetric behavior of a binary mixture at constant temperature showing retrograde
condensation.

Fig. 8.7—Regions of temperature, pressure, and composition for which two phases occur in a binary liquid/
vapor system.

liquid and vapor phases in equilibrium. Any mixture with an overall composition along a tie
line gives the same liquid and vapor compositions. Only the amounts of liquid and vapor
change as the overall composition changes from the liquid side of the binodal curve to the
vapor side. If the mole fractions of Component 7 in the liquid, vapor, and overall mixture are
X;, y;, and z;, the fraction of the total moles in the mixture in the liquid phase is given by
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Fig. 8.8—Pressure-temperature diagram: a projection of the vapor-pressure (p,, and p,,) curves and locus
of critical points for binary mixtures. Points C, and C, are the critical points of the pure components.

YiTz
L = e (8.6)

Yi™ X

Eq. 8.6 is another lever rule similar to that described for binary diagrams. The liquid and
vapor portions of the binodal curve meet at the plait point, a critical point at which the liquid
and vapor phases are identical. Thus, the plait-point mixture has a critical temperature and pres-
sure equal to the conditions for which the diagram is plotted. Depending on the pressure,
temperature, and components, a plait point may or may not be present.

Any one ternary diagram is given for fixed temperature and pressure. As either the temper-
ature or pressure is varied, the location of the binodal curve and slopes of the tie lines may
change. Fig. 8.12 shows the effect of increasing pressure on ternary phase diagrams for mix-
tures of C,, butane (C,), and decane (C,;) at 160°F.%” The sides of the ternary diagram
represent a binary system; therefore, the ternary diagram includes whatever binary tie lines ex-
ist at the temperature and pressure of the diagram. Fig. 8.13 shows the corresponding binary
phase diagrams for the C,—C, and C,—C,, pairs. The C,—C,, pair is not shown because it forms
two phases only below the vapor pressure of C,, approximately 120 psia at 160°F (see Fig.
8.9).

As Fig. 8.12 shows, at 1,000 psia the two-phase region is a band that stretches from the C,—
C,o side of the diagram to the tie line on the C,—C, side. If the pressure is increased above
1,000 psia, the liquid composition line shifts to higher methane concentrations; methane is
more soluble in both C, and C,, at the higher pressure (see Fig. 8.13). The two-phase region
detaches from the C,—C, side of the diagram at the critical pressure of the C,—C, pair (approxi-
mately 1,800 psia). As the pressure increases above that critical pressure, the plait point moves
into the interior of the diagram (Fig. 8.12, lower diagrams). With further increases in pressure,
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Fig. 8.9—Vapor-pressure curves for light hydrocarbons and critical loci for selected hydrocarbon pairs.

the two-phase region continues to shrink. It would disappear completely from the diagram if
the pressure reached the critical pressure of the C,—C,, system at 160°F (nearly 5,200 psia).

According to the phase rule, three phases may coexist at a fixed temperature and pressure
for some ternary systems. Fig. 8.14 shows the general structure of such systems. The three-
phase region (3®) on a ternary diagram is represented as a triangle in Fig. 8.14. Any overall
composition lying within the three-phase region splits into the same three phases (I, II and III).
Only the amounts of each phase change as the overall composition varies within the three-
phase region. Given 1 mole of an overall mixture in the three-phase region, the geometrical
relations

a C e
B = PR Buy= ot and IBIHZW ................................... 8.7)
1T
with 2 Bi= L (8.8)
i=1

determine the fraction of each phase. The edges of the three-phase region are tie lines for the
associated two-phase (2&) regions; thus, there is a two-phase region adjacent to each of the
sides of the three-phase triangle. Three-phase regions can exist in several phase diagrams ap-
plied in the design of EOR processes. Examples are discussed in Secs. 8.7 and 8.8.
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Fig. 8.10—Properties of ternary diagrams.

8.6 Quaternary Phase Diagrams

Phase diagrams for systems with four components can be represented conveniently on a tetrahe-
dral diagram like that shown in Fig. 8.15a, which shows a quaternary phase diagram calculated
with the Peng-Robinson® equation of state for mixtures of methane (C,), C;, C4, and hexade-
cane (Cj5) at 200°F and 2,000 psia. These phase diagrams have a property similar to that of
ternary diagrams: the sum of the lengths of perpendicular lines drawn from a composition
point in the interior of the diagram to the four faces of the diagram is a constant length.
Hence, the fractions of four components can be represented by an extension of Eq. 8.4 to four
components.

The faces of the quaternary diagram are ternary phase diagrams. Fig. 8.15b shows the
ternary diagram for the ternary methane (C,)/hexane (Cy)/hexadecane (C,4) system, which is
the bottom face of the quaternary diagram. The two-phase region is a band across the diagram,
and there is no critical point on that face. Fig. 8.15¢c shows the C,/C;/C,4 system, which is the
left face of the quaternary diagram. That ternary system does have a critical point. While the
ternary diagram for C,/C;/Cy is not shown separately, it is qualitatively similar to the diagram
for the C,/C5/C4 system in Fig. 8.15c.

The two-phase region in the interior of the quaternary diagram is a 3D region of composi-
tion space bounded by the ternary two-phase regions on the faces. Within that region, every
mixture composition forms two phases, and each composition point lies on a tie line that con-
nects equilibrium vapor and liquid compositions. A vertical slice through the two-phase region
is shown in Fig. 8.15a, along with a few tie lines that lie in the interior of the diagram. The
mole fraction of liquid phase is still calculated with Eq. 8.6, which applies to systems with any
number of components.
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Fig. 8.11—Ternary phase diagram at a constant temperature and pressure for a system that forms a liquid
and a vapor.

The boundary of the two-phase region in the interior of the quaternary diagram is divided
into two parts: a surface that includes all the vapor-phase compositions and a corresponding
surface of liquid-phase compositions. The dividing line between the liquid and vapor surfaces
is a critical locus (the dotted line in Fig. 8.15¢) that connects the critical point in the C,/C;/Ci¢
face (Fig. 8.15a) with the critical point in the C,/C;/C¢ face. The critical locus is a set of com-
positions at which the liquid and vapor phases have identical compositions and properties. The
compositions and limiting tie lines on the critical locus play important roles in the description
of EOR processes (see Sec. 8.8).

8.7 Reservoir Fluid Systems

Real reservoir fluids contain many more than two, three, or four components; therefore, phase-
composition data can no longer be represented with two, three or four coordinates. Instead,
phase diagrams that give more limited information are used. Fig. 8.16 shows a pressure-temper-
ature phase diagram for a multicomponent mixture; it gives the region of temperatures and
pressures at which the mixture forms two phases. The analog of Fig. 8.16 for a binary system
can be obtained by taking a slice at constant mole fraction of Component 1 through the dia-
gram in Fig. 8.7. Also given are contours of liquid-volume fractions, which indicate the
fraction of total sample volume occupied by the liquid phase; however, Fig. 8.16 does not give
any compositional information. In general, the compositions of coexisting liquid and vapor will
be different at each temperature and pressure.

At temperatures below the critical temperature (point C), a sample of the mixture described
in Fig. 8.16 splits into two phases at the bubblepoint pressure (Fig. 8.4) when the pressure is
reduced from a high level. At temperatures above the critical temperature, dewpoints are ob-
served (Fig. 8.6). In this multicomponent system, the critical temperature is no longer the
maximum temperature at which two phases can exist. The critical point is the temperature and
pressure at which the phase compositions and all phase properties are identical.

The bubblepoint, dewpoint, and single-phase regions shown in Fig. 8.16 are sometimes
used to classify reservoirs. At temperatures greater than the cricondentherm, which is the maxi-
mum temperature for the formation of two phases, only one phase occurs at any pressure. For
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Fig. 8.12—Ternary phase diagram for the methane/butane/decane system at 160°F.

instance, if the hydrocarbon mixture in Fig. 8.16 were to occur in a reservoir at temperature 7,
and pressure p, (point A), a decline in pressure at approximately constant temperature caused
by removal of fluid from the reservoir would not cause the formation of a second phase.

While the fluid in the reservoir remains a single phase, the produced gas splits into two
phases as it cools and expands to surface temperature and pressure at point A’. Thus, some
condensate would be collected at the surface even though only one phase is present in the
formation. The amount of condensate collected depends on the operating conditions of the sep-
arator. The lower the temperature at a given pressure, the larger the volume of condensate
collected (Fig. 8.16).

Dewpoint reservoirs are those for which the reservoir temperature lies between the critical
temperature and the cricondentherm for the reservoir fluid. Production of fluid from a reservoir
starting at point B in Fig. 8.16 causes liquid to appear in the reservoir when the dewpoint
pressure is reached. As the pressure declines further, the saturation of liquid increases because
of retrograde condensation. Because the saturation of liquid is low, only the vapor phase flows
to producing wells. Thus, the overall composition of the fluid remaining in the reservoir
changes continuously.

The phase diagram shown in Fig. 8.16 is for the original composition only. The preferential
removal of light hydrocarbon components in the vapor phase generates new hydrocarbon mix-
tures, which have a greater fraction of the heavier hydrocarbons. Differential liberation experi-
ments, in which a sample of the reservoir fluid initially at high pressure is expanded through a
sequence of pressures, can be used to investigate the magnitude of the effect of pressure reduc-
tion on the vapor composition. At each pressure, a portion of the vapor is removed and
analyzed. These experiments simulate what happens when condensate is left behind in the reser-
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Fig. 8.13—Pressure-composition phase diagram for methane/butane and methane/decane binary systems
at 160°F.

voir as the pressure declines. See Ref. 9 for more details on pressure/volume/temperature
experiments.

As the reservoir fluid becomes heavier, the boundary of the two-phase region in a diagram
like Fig. 8.16 shifts to higher temperatures. Thus, the composition change also acts to drive the
system toward higher liquid condensation. Such reservoirs are candidates for pressure mainte-
nance by lean gas injection to limit the retrograde loss of condensate or for gas cycling to
vaporize and recover some of the liquid hydrocarbons.

Bubblepoint reservoirs are those in which the temperature is less than the critical tempera-
ture of the reservoir fluid (point D in Fig. 8.16). These reservoirs are sometimes called
undersaturated because the fraction of light components present in the oil is too low for a gas
phase to form at that temperature and pressure. Isothermal pressure reduction causes the appear-
ance of a vapor phase at the bubblepoint pressure. Because the compressibility of the liquid
phase is much lower than that of a vapor, the pressure in the reservoir declines rapidly during
production in the single-phase region. The appearance of the much more compressible vapor
phase reduces the rate of pressure decline. The volume of vapor present in the reservoir grows
rapidly with reduction of reservoir pressure below the bubblepoint.

Because the vapor viscosity is much lower than the liquid viscosity and the gas relative
permeability goes up markedly with increasing gas saturation, the vapor phase flows more easi-
ly. Hence, the produced gas/oil ratio climbs rapidly. Again, pressure maintenance by water-
drive, water injection, or gas injection can improve oil recovery substantially over the 10 to
20% recovery typical of pressure depletion in these solution-gas-drive reservoirs. As in dew-
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Fig. 8.14—Generic ternary phase diagram with three-phase region.

point reservoirs, the composition of the reservoir fluid changes continuously once the two-
phase region is reached.

There is, of course, no reason why initial reservoir temperatures and pressures cannot lie
within the two-phase region. Oil reservoirs with gas caps and gas reservoirs with some liquids
present are common. There also can be considerable variation in the initial composition of the
reservoir fluid. The discussion of single-phase, dewpoint, and bubblepoint reservoirs is based
on a phase diagram for one fluid composition. Even for one fluid, all the types of behavior
occur over a range of temperatures. In actual reservoir settings, the composition of the reser-
voir fluid correlates with depth and temperature. Deeper reservoirs usually contain lighter oils.!°

Fig. 8.17 shows the relationships between oil gravity and depth for two basins. The higher
temperatures of deeper reservoirs alter the original hydrocarbon mixtures to produce lighter
hydrocarbons over geologic time.'” Low oil gravity, low temperature, and relatively small
amounts of dissolved gas all combine to produce bubblepoint reservoirs. High oil gravity, high
temperatures, and a high concentration of light components produce dewpoint or condensate
systems.

8.8 Phase Diagrams for EOR Processes

Phase behavior plays an important role in a variety of EOR processes. Such processes are de-
signed to overcome, in one way or another, the capillary forces that act to trap oil during
waterflooding. Interpretation of phase diagrams is particularly important in the design of surfac-
tant/polymer processes and gas-injection processes.

8.8.1 Surfactant/Polymer Floods. In surfactant/polymer displacement processes, the effects of
capillary forces are reduced by injection of surfactant solutions that contain molecules with oil-
and water-soluble portions. Such molecules migrate to the oil/water interface and reduce the
interfacial tension, thereby reducing the magnitude of the capillary forces that resist movement
of trapped oil.

Fig. 8.18!! shows phase diagrams typical of those used to describe the behavior of surfac-
tant systems. In these ternary diagrams, the components shown are no longer true thermodynam-
ic components because they are mixtures. A crude oil contains hundreds of components, and
the brine and surfactant pseudocomponents also may be complex mixtures. The simplified rep-
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Fig. 8.15—Properties of the quaternary phase diagram.

resentation, however, has obvious advantages for describing phase behavior, and it is reason-
ably accurate as long as each pseudocomponent has approximately the same composition in
each phase. In Fig. 8.18a, for instance, the “oil” pseudocomponent can appear in an oil-rich
phase or in a phase containing mostly surfactant and brine. If the oil solubilized into the surfactant/
brine phase is nearly the same mixture of hydrocarbons as the original “oil,” then the represen-
tation in terms of pseudocomponents is reasonable. The compositions shown in Fig. 8.18 are in
volume fractions. An inverse lever rule similar to Eqs. 8.3 and 8.6 gives the relationship be-
tween the volumes of the two phases for a given overall composition, as Fig. 8.18 illustrates.
Fig. 8.18a is a phase diagram for the liquid/liquid equilibrium behavior typical of mixtures
of brines of low salinity with oil. If there is no surfactant present, the oil and brine are immis-
cible; mixture compositions on the base of the diagram split into essentially “pure” brine in
equilibrium with “pure” oil. The addition of surfactant causes some oil to be solubilized into a
microemulsion rich in brine. That phase is in equilibrium with a phase containing nearly pure
oil. Thus, in the low-salinity brine, the surfactant partitions into the brine phase, solubilizing
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Fig. 8.16—Pressure-temperature phase diagram (phase envelope) for a mixture of fixed composition.

some oil. The plait point in Fig. 8.18a lies close to the oil corner of the diagram. Because only
two phases occur and the tie lines all have negative slope, such phase is often called Type II(-).

Phase diagrams for high-salinity brines are often similar to Fig. 8.18b. In the high-salinity
systems, the surfactant partitions into the oil phase and solubilizes water into an oil-external
microemulsion. In this case, the plait point is close to the brine apex on the ternary diagram.
For intermediate salinities, the phase behavior can be more complex, as Fig. 8.18c shows. A
triangular three-phase region occurs (see Fig. 8.14) for which the phases are a brine-rich phase,
an oil-rich phase, and a microemulsion phase. There is a two-phase region adjacent to each of
the sides of the three-phase triangle. In Fig. 8.18c, the two-phase region at low surfactant con-
centrations is too small to show on the diagram. It must be present, however, because oil and
brine form only two phases in the absence of surfactant.

8.8.2 Gas-Injection Processes. Miscible displacement processes are designed to eliminate in-
terfaces between the oil and the displacing phase, thereby removing the effects of capillary
forces between the injected fluid and the oil. Unfortunately, fluids that are strictly miscible
with oil are too expensive for general use. Instead, fluids such as C;, C, enriched with interme-
diate hydrocarbons, CO,, or nitrogen are injected, and the required miscible-displacing fluid is
generated by mixing the injected fluid with oil in the reservoir. Phase behavior of gas/oil sys-
tems is often summarized in pressure-composition (p-x) diagrams.

Fig. 8.19 is an example of a p-x diagram for mixtures of CO, (containing a small amount
of C, contamination) with crude oil from the Rangely field.'"> The behavior of binary mixtures
of CO, with a particular oil is reported for a fixed temperature; therefore, the oil is represented
as a single pseudocomponent. The bubblepoint and dewpoint pressures, the regions of pressure
and composition for which two or more phases exist, and information about the volume frac-
tions of the phases are indicated. However, the diagrams provide no information about the
compositions of the phases in equilibrium.

Fig. 8.20 illustrates the reason for the absence of composition data and gives data reported
by Metcalfe and Yarborough'? for a ternary system of CO,, C,, and C,,. Binary-phase data for
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Fig. 8.17—Increase in °API gravity with depth: (a) Ordovician Ellenberger reservoirs in Delaware Val Verde
basin and (b) Pennsylvanian Tensleep reservoirs in Wyoming.

the CO,~C,!* and CO,—C,,'° systems also are included. Fig. 8.20 shows a triangular solid with-
in which all possible compositions (mole fractions) of CO,—C,—C,, mixtures for pressures
between 400 and 2,000 psia are contained. The two-phase region is bounded by a surface that
connects the binary-phase envelope for the CO,—C,, binary pair to that on the CO,—C, side of
the diagram. That surface is divided into two parts-liquid compositions and vapor compositions.

Tie lines connect the compositions of liquid and vapor phases in equilibrium at a fixed
pressure. Thus, the ternary phase diagram for CO,—C,—C,, mixtures at any pressure is just a
constant pressure (horizontal) slice through the triangular prism. Several such slices at different
pressures are shown in Fig. 8.20. At pressures below the critical pressure of CO,—C, mixtures
(1,184 psia), both CO,—C,, and CO,—C, mixtures form two phases for some range of CO, con-
centrations. At 400 and 800 psia, the two-phase region is a band across the diagram. Above
the critical pressure of CO,—C, mixtures, CO, is miscible with C, and ternary slices at higher
pressures show a continuous binodal curve on which the locus of liquid compositions meets
that of vapor compositions at a plait point. The locus of plait points connects the critical points
of the two binary pairs.

To see the effect of representing the phase behavior of a ternary system on a pseudobinary
diagram, consider a p-x diagram for “oil” composed of 70 mol% C,, and 30 mol% C,. At any
fixed pressure, the mixtures of CO, and oil, which would be investigated in an experiment to
determine a p-x diagram, lie on a straight line (the dilution line), which connects the original
oil composition with the CO, apex. Thus, a p-x diagram for this system is a vertical slice
through the triangular prism shown in Fig. 8.20. The saturation pressures on a p-x diagram are
those at which the dilution plane intersects the surface that bounds the two-phase region. Bub-
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Fig. 8.18—Ternary representation of phase diagrams.""

blepoint pressures occur where the dilution plane intersects the liquid composition side of the
two-phase surface, while dewpoint pressures occur at the intersection with vapor compositions.
Comparison of the phase envelope on the resulting p-x diagram with binary phase diagrams
yields the following observations.

* Tie lines do not, in general, lie in the dilution plane; they pierce that plane. This means
that the composition of vapor in equilibrium with a bubblepoint mixture on the p-x diagram is
not the same as that of the dewpoint mixture at the same pressure.
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Fig. 8.19—Pressure-composition diagram. Gas 1 system for Rangely oil: 95% CO, and 5% CH, gas system
at 160°F.

* The critical point on the p-x diagram occurs where the locus of critical points pierces the
dilution plane. It is not, in general, at the maximum saturation pressure on the p-x diagram.
The maximum pressure occurs where the binodal curve in a horizontal slice is tangent to the
dilution plane. The critical point on the p-x diagram can lie on either side of the maximum
pressure, depending on the position of locus of plait points on the two-phase surface.

It is apparent from Fig. 8.20 that the composition of the original oil has a strong influence
on the shape of the saturation-pressure curve and on the location of the critical point on the p-
x diagram. If the oil had been richer in C,, the critical pressure and maximum pressure both
would have been lower. Thus, it should be anticipated that the appearance of p-x diagrams for
CO,/crude oil systems should depend on the composition of the oil.

Figs. 8.19 and 8.21 illustrate the complexity of phase behavior observed for CO,/crude oil
systems. Fig. 8.19 gives the behavior of mixtures of CO, (with approximately 5% C, as a con-
taminant) with Rangely crude oil at 160°F. The oil has a bubblepoint pressure of approximate-
ly 350 psia. Mixtures containing up to approximately 80 mol% CO, (+ C,) show bubblepoints,
while those containing more CO, show dewpoints. At the relatively high temperature of the
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Fig. 8.20—Phase behavior of CO,—C,~C,, mixtures at 160°F.

Rangely field, only two phases, a liquid and a vapor, form. At lower temperatures, more com-
plex phase behavior can occur.

Fig. 8.21 shows the behavior of mixtures of an oil containing no dissolved gas from the
Wasson field* with CO,. At 90°F and 105°F, the mixtures form a liquid and a vapor at low
pressures and two liquid phases at high pressures and high CO, concentrations. They form
three phases, two liquids and a vapor, for a small range of pressures at high CO, concentra-
tions. The liquid/liquid and liquid/liquid/vapor behavior disappears if the temperature is high
enough. At 120°F (Fig. 8.21c), the three-phase region disappears. For the systems studied to
date, 120°F appears to be a reasonable estimate of the maximum temperature for liquid/liquid/
vapor separations. See Refs. 4 and 5 for detailed discussions of such phase behavior. Well-char-
acterized ternary systems that display similar behavior are described by Larsen et al.,'® who
report ternary diagrams like Fig. 8.14 for CO,/hydrocarbon systems.
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Fig. 8.21—p-x diagrams for mixtures of CO, with Wasson oil, where L, is liquid phase (oil rich), L, is liquid
phase 2 (CO,-rich phase), and V is the vapor phase. Dashed lines indicate constant volume fraction of
L, phase.
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8.8.3 Multicontact Miscibility in Gas-Injection Processes. Phase diagrams of the types de-
scribed here are often used to represent miscible gas-injection processes. The simplest form of
miscibility is first contact miscibility. It occurs when a given gas is injected into oil at a tem-
perature and pressure at which any mixture of the oil and gas result in a single-phase fluid. For
an oil/gas pair to be first contact miscible, the dilution line, which connects the oil composition
and the gas composition, cannot intersect the two-phase region. The lowest pressure at which
first contact miscibility can occur is the pressure at which the dilution line is tangent to the two-
phase boundary; therefore, this pressure is referred to as the first contact miscibility pressure.
However, multicontact miscibility can develop at pressures lower, often substantially lower,
than the first contact miscibility pressure.

For ternary systems, two mechanisms can lead to the development of a multicontact misci-
ble displacement: vaporizing drives and condensing drives. Fig. 8.22a demonstrates the features
of a vaporizing drive for the displacement of a C,—C,¢ mixture (O,) by pure C,. The displace-
ment composition path traverses the two-phase region along two key tie lines in compositional
space: the tie line that extends through the injected gas composition (the injection tie line) and
the tie line that extends through the initial oil composition (the initial tie line).!”'® As the pres-
sure is increased, the two-phase region shrinks and, at some point, one of the key tie lines
become a critical tie line (a tie line that is tangent to the two-phase region at a critical point).

Fig. 8.22b demonstrates the features of a condensing gas drive for a C,—C; mixture displac-
ing oil consisting of C, and C,;4 In this case, the injection tie line is closer to the critical point,
and as the pressure is increased, it is the first to become a critical tie line. For both cases, the
pressure at which one of the key tie lines become a critical tie line is known as the minimum
miscibility pressure (MMP).!® Thus, in three-component systems, a displacement can be multi-
contact miscible only if one of the two key tie lines is a critical tie line. If it is the initial oil
tie line that is critical, the displacement is a vaporizing drive, and if the injection gas tie line is
the critical tie line, the displacement is a condensing drive.

For four-component systems, the displacement path has been shown to include a third key
tie line referred to as the crossover tie line." Fig. 8.22¢ shows the crossover tie line. Just as in
the ternary displacements, miscibility develops when any one of the key tie lines reduces to a
critical point. If the pressure in Fig. 8.22c is increased, the crossover tie line will become a
critical tie line before either the initial or injection tie lines. Hence, the existence of the
crossover tie line introduces a third mechanism for the development of multicontact miscibility.
This mechanism is known as the combined condensing/vaporizing drive.?*?! Fig. 8.22¢ shows
that the displacement composition path for a four-component system in which a mixture of C,
and C; displaces an oil containing C,, C4, and C,4 includes a vaporizing segment connected to
a condensing segment by the crossover tie line.

With each additional component added to the displacement process, another crossover tie
line is added to the displacement composition path. The MMP for such multicomponent gas-
injection processes can be determined by locating the key tie lines and calculating the length of
these tie lines as the pressure is increased. The MMP is the pressure at which one of the key
tie lines has zero length. Fig 8.23%? reports the result of such a calculation for a 15-component
fluid description. In this system, the injection gas contains 11 components and is rich in C; but
includes N,, CO,, and hydrocarbons up to C,;. The eighth crossover tie lie becomes a critical
tie line at the MMP of 5,350 psia. Displacements that display the combined condensing/vapor-
izing mechanism are common in oilfield fluid systems.
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Fig. 8.22—Condensing and vaporizing segments in gas-injection processes.
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Fig. 8.23—Tie-line length vs. pressure for a multicomponent gas-injection process.
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pressure at point A, m/Lt?, psi

bubblepoint pressure, m/Lt?, psi

critical pressure, m/Lt2, psi

dewpoint pressure of mixture xz, m/Lt?, psi
lower dewpoint pressure mixture x2, m/Lt2, psi
upper dewpoint pressure mixture x%, m/Lt?, psi
total pressure, m/Lt%, psi

vapor pressure, m/Lt2, psi
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P, = saturation pressure of pure component 1, m/Lt?, psi
Dy, = saturation pressure of pure component 2, m/Lt?, psi
T = temperature, T, K
T, = constant temperature below 7, T, K
T, = constant temperature above 7,, T, K
T, = temperature at point A, T, K
= critical temperature, T, K
V = vapor
V. = critical volume, L3, ft3
V; = saturated liquid volume, L?, ft3
V, = saturated vapor volume, L3, ft3
x, = mole fraction of component 1
X, = mole fraction of component 2
x3; = mole fraction of component 3
x, = saturated liquid composition at p,
X = saturated vapor composition at p,
Xc = critical mixture
xg = vapor phase composition in equilibrium with x; from overall mixture z
= mole fraction of component i in the liquid phase
y; = mole fraction of component 7 in the vapor phase
z = overall composition in mole fractions
z; = mole fraction of component 7 in the overall composition
f; = mole fraction of phase I
puy = mole fraction of phase II
Pur = mole fraction of phase III
p; = mole fraction of phase i
B; = mole fraction of phase j
2® = two-phase region
3® = three-phase region
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S| Metric Conversion Factors

°API 141.5/(131.5+°API) =g/cm’
ft x 3.048* E-01 =m
°F (°F —32)/1.8 =°C
psi X 6.894 757 E+00 =kPa

*Conversion factor is exact.



Chapter 9

Asphaltenes and Waxes
Long X. Nghiem and Bruce F. Kohse, Computer Modelling Group

9.1 Introduction

Deposition of the high-molecular-weight components of petroleum fluids as solid precipitates
in surface facilities, pipelines, downhole tubulars, and within the reservoir are well-recognized
production problems. Depending on the reservoir fluid and the type of recovery process, the
deposited solid may consist of asphaltenes, waxes, or a mixture of these materials. The de-
posits also can contain resins, crude oil, fines, scales, and water.!

This chapter discusses the experimental measurement and thermodynamic modeling of the
phase 