

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Matthew Stoecker and Steve Stein

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940503

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to tkinput@microsoft.com.

Microsoft, Microsoft Press, Access, ActiveX, Authenticode, MS, MSDN, SQL Server, Visual Basic, Visual C#, Visual Studio,
Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of the Microsoft group of
companies. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Laura Sackerman
Project Editor: Maureen Zimmerman
Editorial Production: nSight, Inc.
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-32081

Contents at a Glance

Introduction xix

 CHAPTER 1 Windows Forms and the User Interface 1

CHAPTER 2 Confi guring Controls and Creating the

User Interface 45

CHAPTER 3 Advanced Windows Forms Controls 85

CHAPTER 4 Tool Strips, Menus, and Events 133

CHAPTER 5 Confi guring Connections and Connecting

to Data 181

CHAPTER 6 Working with Data in a Connected Environment 233

CHAPTER 7 Create, Add, Delete, and Edit Data in

a Disconnected Environment 341

CHAPTER 8 Implementing Data-Bound Controls 421

CHAPTER 9 Working with XML 453

CHAPTER 10 Printing in Windows Forms 495

CHAPTER 11 Advanced Topics in Windows Forms 531

CHAPTER 12 Enhancing Usability 565

CHAPTER 13 Asynchronous Programming Techniques 597

CHAPTER 14 Creating Windows Forms Controls 629

CHAPTER 15 Deployment 667

Glossary 693

Answers 697

Index 747

v

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

 Introduction

Hardware Requirements . xxi

Software Requirements . xxii

Using the CD and DVD . xxii

How to Install the Practice Tests xxiii

How to Use the Practice Tests xxiii

How to Uninstall the Practice Tests xxiv

Microsoft Certifi ed Professional Program . xxv

Technical Support . xxv

Evaluation Edition Software Support . xxvi

 Chapter 1 Windows Forms and the User Interface 1

Before You Begin . 2

Lesson 1: Adding and Confi guring Windows Forms 3

Overview of Windows Forms 3

Adding Forms to Your Project 4

Properties of Windows Forms 5

Modifying the Look and Feel of the Form 8

Creating Nonrectangular Windows Forms 14

Lesson Summary 18

Lesson Review 18

Lesson 2: Managing Control Layout with Container Controls 22

Overview of Container Controls 22

vi Contents

The GroupBox Control 25

The Panel Control 26

The FlowLayoutPanel Control 26

The TableLayoutPanel Control 28

The TabControl Control 32

The SplitContainer Control 33

Lesson Summary 38

Lesson Review 38

Chapter Review . 41

Chapter Summary 41

Key Terms 41

Case Scenarios 41

Suggested Practices . 42

Add a Windows Form to a Project at Design Time 42

Confi gure a Windows Form to Control Accessibility,

Appearance, Behavior, Confi guration, Data, Design,

Focus, Layout, Style, and Other Functionalities 42

Manage Control Layout on a Windows Form 43

Take a Practice Test . 43

Chapter 2 Confi guring Controls and Creating the

User Interface 45

Before You Begin .46

Lesson 1: Confi guring Controls in Windows Forms 47

Overview of Controls 47

Confi guring Controls at Design Time 49

Modifying Control Properties at Design Time 53

Best Practices for User Interface Design 58

Lesson Summary 60

Lesson Review 61

Lesson 2: Creating and Confi guring Command and Text

Display Controls . 62

The Button Control 62

The Label Control 67

The LinkLabel Control 67

viiContents

Lesson Summary 71

Lesson Review 71

Lesson 3: Creating and Confi guring Text Edit Controls 73

The TextBox Control 73

The MaskedTextBox Control 75

Lesson Summary 79

Lesson Review 80

Chapter Review . 81

Chapter Summary 81

Key Terms 82

Case Scenarios 82

Suggested Practices . 83

Add and Confi gure a Windows Forms Control 83

Take a Practice Test .84

Chapter 3 Advanced Windows Forms Controls 85

Before You Begin . 86

Lesson 1: Creating and Confi guring List-Display Controls 87

Overview of List-Based Controls 87

ListBox Control 87

ComboBox Control 88

CheckedListBox Control 89

Adding Items to and Removing Items from a

List-Based Control 90

The ListView Control 98

TreeView Control 100

NumericUpDown Control 103

DomainUpDown Control 104

Lesson Summary 106

Lesson Review 107

Lesson 2: Creating and Confi guring Value-Setting,

Date-Setting, and Image-Display Controls .108

Value-Setting Controls 108

The CheckBox Control 108

viii Contents

The RadioButton Control 110

The TrackBar Control 111

Choosing Dates and Times 112

DateTimePicker Control 112

MonthCalendar Control 112

Working with Images 114

PictureBox Control 114

ImageList Component 115

Lesson Summary 118

Lesson Review 119

Lesson 3: Confi guring the WebBrowser Control and

the NotifyIcon Component and Creating Access Keys121

The WebBrowser Control 121

The NotifyIcon Component 123

Creating Access Keys 125

Lesson Summary 126

Lesson Review 127

Chapter Review .128

Chapter Summary 128

Key Terms 129

Case Scenarios 129

Suggested Practices .130

Take a Practice Test .131

Chapter 4 Tool Strips, Menus, and Events 133

Before You Begin .134

Lesson 1: Confi guring Tool Strips .135

Overview of the ToolStrip Control 135

Tool Strip Items 138

Displaying Images on Tool Strip Items 140

The ToolStripContainer 141

Merging Tool Strips 141

Lesson Summary 145

Lesson Review 145

ixContents

Lesson 2: Creating and Confi guring Menus .147

Overview of the MenuStrip Control 147

Creating Menu Strips and Tool Strip Menu Items 149

Adding Enhancements to Menus 152

Moving Items Between Menus 155

Disabling, Hiding, and Deleting Menu Items 156

Merging Menus 157

Switching Between MenuStrip Controls Programmatically 158

Context Menus and the ContextMenuStrip Control 158

Lesson Summary 162

Lesson Review 162

Lesson 3: Using Events and Event Handlers .164

Overview of Events 164

Creating Event Handlers in the Designer 165

Managing Mouse and Keyboard Events 167

Creating Event Handlers at Run Time 172

Overriding Methods in the Code Editor 172

Lesson Summary 175

Lesson Review 175

Chapter Review .177

Chapter Summary 177

Key Terms 177

Case Scenarios 178

Suggested Practices .179

Take a Practice Test .179

Chapter 5 Confi guring Connections and Connecting

to Data 181

Before You Begin .183

Lesson 1: Creating and Confi guring Connection Objects184

What Is a Connection Object? 184

Creating Connections in Server Explorer 185

Creating Connections Using Data Wizards 185

Creating Connection Objects Programmatically 185

x Contents

Lesson Summary 193

Lesson Review 194

Lesson 2: Connecting to Data Using Connection Objects 195

Opening and Closing Data Connections 195

Connection Events 195

Lesson Summary 206

Lesson Review 206

Lesson 3: Working with Connection Pools .208

What Is Connection Pooling? 208

Controlling Connection Pooling Options 208

Confi guring Connections to Use Connection Pooling 210

Lesson Summary 213

Lesson Review 213

Lesson 4: Handling Connection Errors .214

Lesson Summary 218

Lesson Review 218

Lesson 5: Enumerating the Available SQL Servers on a Network219

Lesson Summary 221

Lesson Review 221

Lesson 6: Securing Sensitive Connection String Data223

Securing Data in Confi guration Files 224

Lesson Summary 228

Lesson Review 229

Chapter Review .230

Chapter Summary 230

Key Terms 230

Case Scenarios 231

Suggested Practices .231

Take a Practice Test .232

Chapter 6 Working with Data in a Connected Environment 233

Before You Begin .234

Lesson 1: Creating and Executing Command Objects235

xiContents

What Are Command Objects? 235

Creating and Confi guring Command Objects 237

Creating SQL Commands (SQL Statements) with

the Query Designer 241

Lesson Summary 253

Lesson Review 253

Lesson 2: Working with Parameters in SQL Commands255

What Are Parameters and Why Should I Use Them? 255

Types of Parameters 256

Creating Parameters 256

Adding Parameters to Command Objects 257

Lesson Summary 273

Lesson Review 273

Lesson 3: Saving and Retrieving BLOB Values in a Database275

Working with BLOBs 275

Lesson Summary 289

Lesson Review 289

Lesson 4: Performing Bulk Copy Operations .291

Why Perform Bulk Copies? 291

Lesson Summary 301

Lesson Review 302

Lesson 5: Performing Transactions by Using the

Transaction Object .303

What Is a Transaction? 303

How to Create Transactions 303

Setting the Isolation Level of a Transaction 304

Enlisting in a Distributed Transaction 305

Lesson Summary 310

Lesson Review 311

Lesson 6: Querying Data by Using LINQ .312

What Is LINQ? 312

LINQ Queries 313

Lesson Summary 336

Lesson Review 336

xii Contents

Chapter Review .338

Chapter Summary 338

Key Terms 338

Case Scenarios 338

Suggested Practices .339

Take a Practice Test .340

Chapter 7 Create, Add, Delete, and Edit Data in

a Disconnected Environment 341

Before You Begin .342

Lesson 1: Creating DataSet Objects .343

DataSet Objects 343

Creating DataSet Objects Programmatically 344

Lesson Summary 358

Lesson Review 358

Lesson 2: Creating DataTable Objects .360

How to Create DataTable Objects 360

How to Add a DataTable to a DataSet 361

How to Create Expression Columns in DataTable Objects 361

How to Create Autoincrementing Columns

in DataTable Objects 362

How to Add Constraints to a DataTable 363

Lesson Summary 368

Lesson Review 368

Lesson 3: Creating DataAdapter Objects .370

What Is a DataAdapter? 370

How to Create DataAdapter Objects 371

DataAdapter Commands 371

Generating Typed DataSet Objects from

DataAdapter Objects 373

Resolving Confl icts Between a DataSet and a

Database Using the DataAdapter 373

Performing Batch Operations Using DataAdapter Objects 375

Lesson Summary 383

Lesson Review 384

xiiiContents

Lesson 4: Working with Data in DataTable Objects385

Adding Data to a DataTable 385

Editing Data in a DataTable 386

Deleting Data in a DataTable 386

Maintaining Changes to DataRow Objects 386

Accepting and Rejecting Changes to a DataTable 387

DataTable Events 387

Row Errors 388

Lesson Summary 397

Lesson Review 397

Lesson 5: Working with XML in DataSet Objects .399

Writing a DataSet as XML Data 399

Writing DataSet Schema Information as XML Schema 400

Loading a DataSet from an XML Stream or Document 400

Loading DataSet Schema Information from an XML

Stream or Document 400

Synchronizing a DataSet with an XmlDataDocument 401

Performing an XPath Query on a DataSet 401

Lesson Summary 406

Lesson Review 406

Lesson 6: Creating and Using DataView Objects .408

Creating DataView Objects 408

Sorting and Filtering Data Using a DataView 409

Viewing Data Using a DataView 409

Modifying the Data in a DataView 410

Searching Data in a DataView 410

Navigating Related Data in a DataView 411

Working with DataView Events 411

Setting the DataTable Object’s Default Table Views

Using a DataViewManager 411

Lesson Summary 416

Lesson Review 417

Chapter Review .418

Chapter Summary 418

Key Terms 419

xiv Contents

Case Scenarios 419

Suggested Practices 420

Take a Practice Test .420

Chapter 8 Implementing Data-Bound Controls 421

Before You Begin .422

Lesson 1: Creating a Data-Bound Form with the

Data Sources Wizard .423

What Does the Wizard Create? 423

Lesson Summary 427

Lesson Review 427

Lesson 2: Implementing Data-Bound Controls .429

Binding Controls to Data 429

Lesson Summary 436

Lesson Review 436

Lesson 3: Working with the DataGridView . 438

Displaying a Dataset in the DataGridView Control 438

Confi guring DataGridView Columns 439

Adding Tables and Columns to a DataGridView 440

Deleting Columns in the DataGridView 440

Determining the Clicked Cell in a DataGridView 441

Validating Input in the DataGridView 441

Format a DataGridView Using Styles 443

Format a DataGridView Control by Using Custom Painting 443

Lesson Summary 448

Lesson Review 449

Chapter Review .450

Chapter Summary 450

Key Terms 451

Case Scenarios 451

Suggested Practices .451

Take a Practice Test .452

xvContents

Chapter 9 Working with XML 453

Before You Begin .454

Lesson 1: Reading and Writing XML with the XmlReader

and XmlWriter Classes. .455

The XmlReader Class 455

Writing XML with the XmlWriter Class 465

Lesson Summary 472

Lesson Review 472

Lesson 2: Managing XML with the XML Document Object Model 476

The XmlDocument Class 476

Lesson Summary 488

Lesson Review 489

Chapter Review .491

Chapter Summary 491

Key Terms 491

Case Scenarios 491

Suggested Practices .492

Take a Practice Test .493

Chapter 10 Printing in Windows Forms 495

Before You Begin .496

Lesson 1: Managing the Print Process by Using

Print Dialog Boxes .497

The PrinterSettings Class 497

The PrintDialog Component 497

The PageSetupDialog Component 500

The PrintPreviewDialog Component 501

Lesson Summary 504

Lesson Review 504

Lesson 2: Constructing Print Documents .506

The PrintDocument Component 506

Printing Graphics 508

xvi Contents

Printing Text 511

Notifying the User When Printing Is Complete 513

Security and Printing 513

Lesson Summary 516

Lesson Review 517

Lesson 3: Creating a Customized PrintPreview Component519

The PrintPreviewControl 519

Lesson Summary 525

Lesson Review 525

Chapter Review .527

Chapter Summary 527

Key Terms 527

Case Scenarios 528

Suggested Practices .528

Take a Practice Test .529

Chapter 11 Advanced Topics in Windows Forms 531

Before You Begin .532

Lesson 1: Implementing Drag-and-Drop Functionality 533

Implementing Drag-and-Drop Functionality 533

Lesson Summary 541

Lesson Review 541

Lesson 2: Implementing Globalization and Localization

for a Windows Forms Application .543

Globalization and Localization 543

Lesson Summary 551

Lesson Review 551

Lesson 3: Implementing MDI Forms .553

MDI Applications 553

Lesson Summary 559

Lesson Review 559

Chapter Review .561

Chapter Summary 561

Key Terms 562

xviiContents

Case Scenarios 562

Suggested Practices .563

Take a Practice Test .563

Chapter 12 Enhancing Usability 565

Before You Begin .566

Lesson 1: Implementing Accessibility .567

Creating Accessible Applications 567

Lesson Summary 572

Lesson Review 572

Lesson 2: Using User Assistance Controls and Components 573

User Assistance Controls and Components 573

Lesson Summary 590

Lesson Review 591

Chapter Review .593

Chapter Summary 593

Key Terms 593

Case Scenarios 594

Suggested Practices .594

Take a Practice Test .595

Chapter 13 Asynchronous Programming Techniques 597

Before You Begin .598

Lesson 1: Managing a Background Process with the

BackgroundWorker Component .599

Running a Background Process 600

Lesson Summary 609

Lesson Review 609

Lesson 2: Implementing Asynchronous Methods 611

Using Delegates 611

Creating Process Threads 615

Lesson Summary 623

Lesson Review 623

xviii Contents

Chapter Review .625

Chapter Summary 625

Key Terms 625

Case Scenarios 626

Suggested Practices .626

Take a Practice Test .627

Chapter 14 Creating Windows Forms Controls 629

Before You Begin .630

Lesson 1: Creating Composite Controls .631

Introduction to Composite Controls 631

Lesson Summary 639

Lesson Review 640

Lesson 2: Creating Custom Controls .641

Overview of Custom Controls 641

Lesson Summary 649

Lesson Review 649

Lesson 3: Creating Extended Controls and Dialog Boxes 650

Custom Dialog Boxes 650

Creating Extended Controls 653

Adding a WPF User Control to Your Windows Form Project 656

Lesson Summary 661

Lesson Review 661

Chapter Review .663

Chapter Summary 663

Key Terms 663

Case Scenarios 664

Suggested Practices .665

Take a Practice Test .665

Chapter 15 Deployment 667

Before You Begin .668

Lesson 1: Deploying Applications with ClickOnce669

xixContents

Overview of ClickOnce 669

Lesson Summary 674

Lesson Review 674

Lesson 2: Creating Setup Projects for Deployment676

Setup Projects 676

Lesson Summary 686

Lesson Review 687

Chapter Review .689

Chapter Summary 689

Key Terms 689

Case Scenarios 690

Suggested Practices .690

Take a Practice Test .691

Glossary 693

Answers 697

Index 747

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xxi

 Introduction

 This training kit is designed for developers who plan to take Microsoft Certifi ed Technol-

ogy Specialist (MCTS) exam 70-505, as well as for developers who need to know how to

develop Microsoft Windows–based applications using the Microsoft .NET Framework 3.5.

We assume that before you begin using this kit you have a working knowledge of Windows,

Microsoft Visual Studio, and Microsoft Visual Basic or C#.

 By using this training kit, you’ll learn how to do the following:

 Create a user interface (UI) for a Windows Forms application by using standard

controls.

 Integrate data in a Windows Forms application.

 Implement printing and reporting functionality in a Windows Forms application.

 Enhance usability.

 Implement asynchronous programming techniques to improve the user experience.

 Develop Windows Forms controls.

 Confi gure and deploy applications.

 Hardware Requirements

 The following hardware is required to complete the practice exercises:

 Computer with a 1.6 GHz or faster processor

 384 MB of RAM or more (786 MB of RAM or more for Windows Vista)

 2.2 GB of available hard disk space

 DVD-ROM drive

 1024 x 768 or higher resolution display with 256 colors

 Keyboard and Microsoft mouse or compatible pointing device

xxii Introduction

 Software Requirements

 The following software is required to complete the practice exercises:

 One of the following operating systems:

•• Windows XP with Service Pack 2

 •• Windows XP Professional x64 Edition (WOW)

•• Windows Server 2003 with Service Pack 1

•• Windows Server 2003, x64 Editions (WOW)

•• Windows Server 2003 R2

•• Windows Server 2003 R2, x64 Editions (WOW)

•• Microsoft Windows Vista (all editions except Starter Edition)

 Microsoft Visual Studio 2008. (A 90-day evaluation edition of Visual Studio 2008 Pro-

fessional Edition is included on DVD with this book.)

 Using the CD and DVD

 A companion CD and an evaluation software DVD are included with this training kit. The

companion CD contains the following:

 Practice tests You can reinforce your understanding of how to create .NET Frame-

work 3.5 applications by using electronic practice tests that you customize to meet

your needs from the pool of Lesson Review questions in this book. Or you can practice

for the 70-505 certifi cation exam by using tests created from a pool of 200 realistic

exam questions, which is enough to give you many different practice exams to ensure

that you’re prepared.

 Code Each chapter in this book includes sample fi les associated with the lab exercises

at the end of every lesson. For some exercises, you will be instructed to open a project

prior to starting the exercise. For other exercises, you will create a project on your own.

In either case, you can reference a completed project on the CD in the event you expe-

rience a problem following the exercise.

 An eBook An electronic version (eBook) of this book is included for times when you

don’t want to carry the printed book with you. The eBook is in Portable Document

Format (PDF), and you can view it by using Adobe Acrobat or Adobe Reader. You can

also use it to cut and paste code as you work through the exercises.

 The evaluation software DVD contains a 90-day evaluation edition of Visual Studio 2008

Professional Edition, in case you want to use it with this book.

xxiiiIntroduction

How to Install the Practice Tests
 To install the practice test software from the companion CD to your hard disk, do the

following:

 1. Insert the companion CD into your CD drive, and accept the license agreement. A CD

menu appears.

 NOTE IF THE CD MENU DOESN’T APPEAR

 If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled on

your computer. Refer to the Readme.txt fi le on the CD-ROM for alternate installation

instructions.

 2. Click the Practice Tests item and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

 1. Click Start/All Programs/Microsoft Press Training Kit Exam Prep. A window appears that

shows all the Microsoft Press training kit exam prep suites installed on your computer.

 2. Double-click the lesson review or practice test you want to use.

NOTE LESSON REVIEWS VS. PRACTICE TESTS

 Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client Develop-

ment Foundation lesson review to use the questions from the “Lesson Review” sections

of this book. Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client

Development practice test to use a pool of 200 questions similar to those in the 70-505

certifi cation exam.

 Lesson Review Options

When you start a lesson review, the Custom Mode dialog box appears so that you can con-

fi gure your test. You can click OK to accept the defaults, or you can customize the number of

questions you want, how the practice test software works, which exam objectives you want

the questions to relate to, and whether you want your lesson review to be timed. If you’re

retaking a test, you can select whether you want to see all the questions again or only those

questions you missed or didn’t answer.

NOTE IF THE CD MENU DOESN’T APPEAR

If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled on

your computer. Refer to the Readme.txt fi le on the CD-ROM for alternate installation

instructions.

NOTE LESSON REVIEWS VS. PRACTICE TESTS

Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client Develop-

ment Foundation lesson review to use the questions from the “Lesson Review” sections w

of this book. Select the (70-505) Microsoft .NET Framework 3.5–Windows-Based Client

Development practice test to use a pool of 200 questions similar to those in the 70-505t

certifi cation exam.

xxiv Introduction

 After you click OK, your lesson review starts.

 To take the test, answer the questions and use the Next, Previous, and Go To buttons

to move from question to question.

 After you answer an individual question, if you want to see which answers are

correct—along with an explanation of each correct answer—click Explanation.

 If you’d rather wait until the end of the test to see how you did, answer all the ques-

tions and then click Score Test. You’ll see a summary of the exam objectives you chose

and the percentage of questions you got right overall and per objective. You can print

a copy of your test, review your answers, or retake the test.

 Practice Test Options

 When you start a practice test, you choose whether to take the test in Certifi cation Mode,

Study Mode, or Custom Mode.

 Certifi cation Mode Closely resembles the experience of taking a certifi cation exam.

The test has a set number of questions, it’s timed, and you can’t pause and restart the

timer.

 Study Mode Creates an untimed test in which you can review the correct answers

and the explanations after you answer each question.

 Custom Mode Gives you full control over the test options so that you can customize

them as you like.

 In all modes, the user interface you see when taking the test is basically the same but

with different options enabled or disabled, depending on the mode. The main options are

discussed in the previous section, “Lesson Review Options.”

 When you review your answer to an individual practice test question, a “References” sec-

tion is provided that lists where in the training kit you can fi nd the information that relates to

that question and provides links to other sources of information. After you click Test Results

to score your entire practice test, you can click the Learning Plan tab to see a list of references

for every objective.

 How to Uninstall the Practice Tests
 To uninstall the practice test software for a training kit, use the Add Or Remove Programs

option (for Windows XP) or the Programs and Features option (for Windows Vista) in Win-

dows Control Panel.

xxvIntroduction

Microsoft Certifi ed Professional Program

The Microsoft certifi cations provide the best method to prove your command of cur-

rent Microsoft products and technologies. The exams and corresponding certifi cations are

developed to validate your mastery of critical competencies as you design and develop, or

implement and support, solutions with Microsoft products and technologies. Computer

professionals who become Microsoft-certifi ed are recognized as experts and are sought after

industry-wide. Certifi cation brings a variety of benefi ts to the individual and to employers and

organizations.

MORE INFO ALL THE MICROSOFT CERTIFICATIONS

For a full list of Microsoft certifi cations, go to www.microsoft.com/learning/mcp

/default.asp.

Technical Support

Every effort has been made to ensure the accuracy of this book and the contents of the com-

panion CD. If you have comments, questions, or ideas regarding this book or the companion

CD, please send them to Microsoft Press by using either of the following methods:

E-mail:

• tkinput@microsoft.com

Postal Mail:

• Microsoft Press

 Attn: MCTS Self-Paced Training Kit (Exam 70-505): Microsoft .NET Framework 3.5—

 Windows Forms Application Development, Editor

 One Microsoft Way

 Redmond, WA 98052–6399

For additional support information regarding this book and the CD-ROM (including

answers to commonly asked questions about installation and use), visit the Microsoft Press

Technical Support Web site at www.microsoft.com/learning/support/books/. To connect

directly to the Microsoft Knowledge Base and enter a query, visit http://go.microsoft.com

/fwlink/?LinkId=139549. For support information regarding Microsoft software, please con-

nect to http://support.microsoft.com.

MORE INFO ALL THE MICROSOFT CERTIFICATIONS

For a full list of Microsoft certifi cations, go to www.microsoft.com/learning/mcp

/default.asp.

 Evaluation Edition Software Support

 The 90-day evaluation edition provided with this training kit is not the full retail product and

is provided only for the purposes of training and evaluation. Microsoft and Microsoft Techni-

cal Support do not support this evaluation edition.

 Information about any issues relating to the use of this evaluation edition with this training

kit is posted to the Support section of the Microsoft Press Web site (www.microsoft.com

/learning/support/books/). For information about ordering the full version of any Microsoft

software, please call Microsoft Sales at (800) 426-9400 or visit www.microsoft.com.

 CHAPTER 1 1

 C H A P T E R 1

 Windows Forms and the User
Interface

 W indows Forms are the basis for most Microsoft Windows applications and can be con-

fi gured to provide a variety of user interface (UI) options. The developer can create

forms of various sizes and shapes and customize them to the user’s needs. Forms are hosts

for controls, which provide the main functionality of the UI. Special controls called container

controls can be used to control the layout of the UI.

 Exam objectives in this chapter:

 Add and confi gure a Windows Form.

 Add a Windows Form to a project at design time.

 Confi gure a Windows Form to control accessibility, appearance, behavior, confi gu-

ration, data, design, focus, layout, style, and other functionality.

 Manage control layout on a Windows Form.

 Group and arrange controls by using the Panel control, GroupBox control,

TabControl control, FlowLayoutPanel control, and TableLayoutPanel control.

 Use the SplitContainer control to create dynamic container areas.

 Add and confi gure a Windows Forms control.

 Use the integrated development environment (IDE) to add a control to a Windows

Form or other container control of a project at design time.

 Add controls to a Windows Form at run time.

 Lessons in this chapter:

 Adding and Confi guring Windows Forms 3

 Managing Control Layout with Container Controls 22

 2 CHAPTER 1 Windows Forms and the User Interface

Before You Begin

To complete the lessons in this chapter, you must be familiar with Microsoft Visual Basic or

 Microsoft Visual C# and be comfortable with the following tasks:

 Opening Microsoft Visual Studio and creating a Windows Forms project

 Dragging controls from the Toolbox to the Designer

 Setting properties in the Properties window

 REAL WORLD

Matt Stoecker

 When I develop a Windows Forms application, I pay special attention to the

design of the UI. A well-thought-out UI that fl ows logically can help pro-

vide a consistent user experience from application to application and make it easy

for users to learn new applications. Familiarity and common themes translate into

increased productivity.

REAL WORLD

Matt Stoecker

When I develop a Windows Forms application, I pay special attention to the

design of the UI. A well-thought-out UI that fl ows logically can help pro-

vide a consistent user experience from application to application and make it easy

for users to learn new applications. Familiarity and common themes translate into

increased productivity.

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 3

Lesson 1: Adding and Confi guring Windows Forms

This lesson describes how to create and confi gure Windows Forms. You will learn how to cre-

ate forms and refer to them in code, alter the visual properties of the form, and control the

behavior of the form at run time.

After this lesson, you will be able to:

 Add a Windows Form to a project at design time.

 Add a new Windows Form at run time.

 Resize a window at design time or run time.

 Identify and set the properties that determine a form’s appearance and behavior

at run time.

 Refer to the default instance of a form in code.

 Create a nonrectangular form.

Estimated lesson time: 45 minutes

Overview of Windows Forms
 Windows Forms are the basic building blocks of the UI. They provide a container that hosts

controls and menus and allow you to present an application in a familiar and consistent

fashion. Forms can receive user input in the form of keystrokes or mouse interactions and can

display data to the user through hosted controls. Although it is possible to create applica-

tions that do not contain forms, such as console applications or services, most applications

that require sustained user interaction will include at least one Windows Form, and complex

applications frequently require several forms to allow the program to execute in a consistent

and logical fashion.

When you create a new Windows Forms project, a form named Form1 is added to your

project by default. You can edit your form by adding controls and other visual elements in the

Designer, which is a graphic representation of a designable, visual element (such as a Form)

that appears in the Visual Studio Integrated Development Environment (IDE). The Visual

Studio IDE is shown in Figure 1-1.

After this lesson, you will be able to:

Add a Windows Form to a project at design time.

Add a new Windows Form at run time.

Resize a window at design time or run time.

Identify and set the properties that determine a form’s appearance and behavior

at run time.

Refer to the default instance of a form in code.

Create a nonrectangular form.

Estimated lesson time: 45 minutes

 4 CHAPTER 1 Windows Forms and the User Interface

 FIGURE 1-1 A Windows Form in the Visual Studio IDE

 Adding Forms to Your Project
 Most projects will require more than one form. You can add and confi gure additional forms at

design time, or you can create instances of predesigned forms in code at run time.

 To add a new form to your project at design time, fi rst, from the Project menu, select Add

 Windows Form. The Add New Item dialog box opens. Then, select Windows Form and type

a name for the new form in the Name box. Click Add to add the form to the development

environment.

 You can add and confi gure at design time as many forms as your application needs. You

can also create new instances of forms in your code. This method is most often employed

when you want to display a form that has already been designed. In Visual Basic you can

access default instances of a form by referring to that form by name. For example, if you have

a form named Form1 in your application, you can refer to it directly by its name, Form1. To

access the default instance of a form at run time (Visual Basic only),refer to the form by its

name. You can call methods or access properties from this default instance. For example:

 ' VB

Form1.Text = "This is my form"

Form1.Show()

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 5

 Note that if you are referring to a form from within that form’s code, you cannot use the

default instance. To access a form’s methods and properties from inside its code, use the key-

word Me (Visual Basic) or this(C#). For example:

' VB

Me.Text = "Coho Winery– Main Page"

// C#

this.Text = "Coho Winery – Main Page";

 You can also create new instances of forms at run time by declaring a variable that rep-

resents a type of form and creating an instance of that form. To add a form to your applica-

tion at run time, declare and instantiate a variable that represents your form. This example

assumes that you have already designed a form named Form1 in your project:

 ' VB

Dim myForm As Form1

myForm = New Form1()

' Displays the new form

myForm.Show()

// C#

Form1 myForm;

myForm = new Form1();

// Displays the new form

myForm.Show();

 Properties of Windows Forms
 The visual appearance of your UI is an important part of your application. A UI that is poorly

designed is diffi cult to learn and will increase training time and expense. You can modify the

appearance of your UI by using Windows Forms properties.

 Windows Forms contain a variety of properties that allow you to customize the look and

feel of the form. You can view and change these properties in the Properties window of the

Designer, as shown in Figure 1-2.

 6 CHAPTER 1 Windows Forms and the User Interface

 FIGURE 1-2 The Properties window

 Table 1-1 summarizes some of the Windows Forms properties that are important in the

look and feel of the application. Note that this is not an exhaustive list of all Windows Forms

properties but a selected subset.

 TABLE 1-1 Some Properties of the Form Class

 PROPERTY DESCRIPTION

 (Name) Sets the name of the Form class shown in the Designer. This

property can be set only at design time.

 Backcolor Indicates the background color of the form.

 BackgroundImage Indicates the background image of the form.

 BackgroundImageLayout Determines how the image indicated by the Background-

Image property will be laid out on the form. If no back-

ground image is selected, this property has no effect.

 ControlBox Determines whether the form has a Control/System menu

box.

 Cursor Indicates the cursor that appears when the cursor is moved

over the form.

 Enabled Determines whether the form is able to receive user input. If

Enabled is set to False, all controls contained by the form are

likewise disabled.

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 7

 PROPERTY DESCRIPTION

 Font Sets the default font for the form. All controls contained by

the form will also adopt this font unless their Font property

is set separately.

 ForeColor Indicates the forecolor of the form, which is the color used

to display text. All controls contained by the form will also

adopt this forecolor unless their forecolor property is set

separately.

 FormBorderStyle Indicates the appearance and behavior of the form border

and title bar.

 HelpButton Indicates whether the form has a Help button.

 Icon Indicates the icon that is used to represent this form.

 Location When the StartPosition property is set to Manual, this prop-

erty indicates the starting location of the form relative to

the upper left-hand corner of the screen.

 MaximizeBox Indicates whether the form has a maximize box.

 MaximumSize Determines the maximum size for the form. If this property

is set to a size of (0,0), the form has no upper size limit.

 MinimizeBox Indicates whether the form has a minimize box.

 MinimumSize Determines the minimum size to which the user can resize

the form.

 Opacity Represents the opacity, or conversely the transparency of

the form from 0% to 100%. A form with 100% opacity is

completely opaque, and a form with 0% opacity is com-

pletely transparent.

 Size Gets and sets the initial size of the form.

 StartPosition Indicates the position of the form when the form is fi rst

displayed.

 Text Determines the text caption of the form.

 TopMost Indicates whether the form always appears above all other

forms that do not have this property set to True.

 Visible Determines whether the form is visible when running.

 Windowstate Determines whether the form is minimized, maximized,

or set to the size indicated by the Size property when fi rst

shown.

 8 CHAPTER 1 Windows Forms and the User Interface

 Modifying the Look and Feel of the Form
 You can use the Property Grid to set properties of the form at design time. Properties set in

this manner will retain their values until the application starts, at which time they can be set in

code.

 You can set most properties of a form at run time. The generalized scheme for setting a

simple property is to use the assignment operator (=) to assign a value to a property. The fol-

lowing example demonstrates how to set the Text property of a form:

 ' VB

Form1.Text = "This is Form 1"

// C#

Form1.Text = "This is Form 1";

 Some properties, such as the Font or Size properties, are more complex. Their value is repre-

sented by an instance of a class or structure. For these properties, you can either set the prop-

erty to an existing instance of the class or create a new instance that specifi es any subvalues of

the property and assign it to the property, as shown in the following pseudocode example:

 ' VB

PropertyY = New Class(value,value)

// C#

PropertyY = new Class(value,value);

 The (Name) property, which represents the name of the Form class, is an exception. This

property is used within the namespace to uniquely identify the class that the Form is an

instance of and, in the case of Visual Basic, is used to access the default instance of the form.

 Setting the Title of the Form

 The name of the form is the name that is used to refer to the Form class or the default

instance of a form (Visual Basic only) in code, but it is also useful for the form to have a title

that is visible to users. This title might be the same as the name of the form but is more often

a description of the form itself, such as Data Entry. The title can also be used to convey infor-

mation to the user, such as “Processing Entries — My Application” or “Customer Entry — My

Application.” The title appears in the title bar and on the taskbar.

 You can change the title of a form by changing the Text property. To change the title of a

form at design time, set the Text property of the form in the Property Grid. To change the title

of a form at run time, set the Text property of the form in code, as shown in the following code:

 ' VB

Form1.Text = "Please enter your address"

// C#

Form1.Text = "Please enter your address";

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 9

 Setting the Border Style of the Form

 The border style of a form determines how the border of the form looks and, to a certain

extent, how a form behaves at run time. Depending on the setting, the FormBorderStyle

property can control how the border appears, whether a form is resizable by the user at

run time, and whether various control boxes appear (although these are also determined by

other form properties). The FormBorderStyle property has seven possible values, which are

explained in Table 1-2.

 TABLE 1-2 Values for the FormBorderStyle Property

 VALUE DESCRIPTION

 None The form has no border and has no minimize, maximize, help, or

control boxes.

 FixedSingle The form has a single border and the user cannot resize it. It can

have a minimize, maximize, help, or control box as determined by

other properties.

 Fixed3D The form’s border has a three-dimensional appearance and the

user cannot resize it. It can have a minimize, maximize, help, or

control box as determined by other properties.

 FixedDialog The form has a single border and the user cannot resize it.

Additionally, it has no control box. It can have a minimize,

maximize, or help box as determined by other properties.

 Sizable This is the default setting for a form. The user can resize it, and it

can contain a minimize, maximize, or help box as determined by

other properties.

 FixedToolWindow The form has a single border and the user cannot resize it. The

window contains no boxes except the close box.

 SizableToolWindow The form has a single border and the user can resize it. The

window contains no boxes except the close box.

 You can set the FormBorderStyle property at either design time or run time. To change the

border style of a form at design time, set the FormBorderStyle property in the Property Grid.

To change the border style of a form at run time, set the FormBorderStyle property in code, as

shown in the following example:

 ' VB

aForm.FormBorderStyle = FormBorderStyle.Fixed3D

// C#

aForm.FormBorderStyle = FormBorderStyle.Fixed3D;

 10 CHAPTER 1 Windows Forms and the User Interface

 Setting the Startup State of the Form

 The Windowstate property determines what state the form is in when it fi rst opens. The

 Windowstate property has three possible values: Normal, Minimized, and Maximized. The

default setting is Normal. When the Windowstate property is set to Normal, the form will

start at the size determined by the Size property. When the Windowstate property is set to

Minimized, the form will start up minimized in the taskbar. When the Windowstate property is

set to Maximized, the form will start up maximized. Although you can set this property at run

time, doing so will have no effect on the state of the form. Thus it is useful to set this property

in the Property Grid at design time only.

 Resizing the Form

 When the Windowstate property is set to Normal, it will start at the size determined by the

Size property. The Size property is actually an instance of the Size structure, which has two

members, Width and Height. You can resize the form by setting the Size property in the Prop-

erty Grid, or you can set the Width and Height separately by expanding the Size property and

setting the values for the individual fi elds.

 You can also resize the form by grabbing and dragging the lower right-hand corner, the

lower edge, or the right-hand edge of the form in the Designer. As the form is visibly resized

in the Designer, the Size property is automatically set to the new size.

 You can resize the form at run time by setting the Size property in code. The Width and

Height fi elds of the Size property are also exposed as properties of the form itself. You can set

either the individual Width and Height properties or the Size property to a new instance of

the Size structure, as shown in the following example:

' VB

' Set the Width and Height separately

aForm.Width = 300

aForm.Height = 200

' Set the Size property to a new instance of the Size structure

aForm.Size = New Size(300,200)

// C#

// Set the Width and Height separately

aForm.Width = 300;

aForm.Height = 200;

// Set the Size property to a new instance of the Size structure

aForm.Size = new Size(300,200);

 Note that if the form’s StartPosition property is set to WindowsDefaultBounds, the size will

be set to the window’s default rather than to the size indicated by the Size property.

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 11

 Specifying the Startup Location of the Form

 The startup location of the form is determined by a combination of two properties. The fi rst

property is the StartPosition property, which determines where in the screen the form will be

when fi rst started. The StartPosition property can be set to any of the values contained within

the FormStartPosition enumeration. The FormStartPosition enumeration values are listed in

Table 1-3.

 TABLE 1-3 StartPosition Property Settings

 VALUE DESCRIPTION

 Manual The starting location of the form is set by the form’s

Location property. (See the following options.)

 CenterScreen The form starts up in the center of the screen.

 WindowsDefaultLocation The form is positioned at the Windows default location

and is set to the size determined by the Size property.

 WindowsDefaultBounds The form is positioned at the Windows default location

and the size is determined by the Windows default size.

 CenterParent The form’s starting position is set to the center of the

parent form.

 If the StartPosition property is set to manual, the form’s starting position is set to the

location specifi ed by the form’s Location property, which is dictated by the location of the

form’s upper left-hand corner. For example, to start the form in the upper left-hand corner

of the screen, set the StartLocation property to Manual and the Location property to (0,0). To

start the form 400 pixels to the right and 200 pixels below the upper left- hand corner of the

screen, set the Location property to (400,200).

 Keeping a Form on Top of the User Interface

 At times you might want to designate a form to stay on top of other forms in the UI. For

example, you might design a form that presented important information about the program’s

execution that you always want the user to be able to see. You can set a form to always be on

top of the UI by setting the TopMost property to True. When the TopMost property is True,

the form will always appear in front of any forms that have the TopMost property set to False,

which is the default setting. Note that if you have more than one form with the TopMost

property set to True, they can cover up each other.

 Opacity and Transparency in Forms

 You can use the Opacity property to create striking visual effects in your form. The Opacity

property sets the transparency of the form. When set in the Property Grid, the opacity value

can range from 0 percent to 100 percent, indicating the degree of opacity. An opacity of 100

 12 CHAPTER 1 Windows Forms and the User Interface

percent indicates a form that is completely opaque (solid and visible), and a value of 0 percent

indicates a form that is completely transparent. Values between 0 percent and 100 percent

result in a partially transparent form.

 You can also set the Opacity property in code. When the Opacity property is set in code, it

is set to a value between 0 and 1, with 0 representing complete transparency and 1 repre-

senting complete opacity. The following example demonstrates how to set a form’s opacity to

50 percent:

' VB

aForm.Opacity = 0.5

// C#

aForm.Opacity = 0.5;

 The Opacity property can be useful when it is necessary to keep one form in the fore-

ground but monitor action in a background form or create interesting visual effects. A control

usually inherits the opacity of the form that hosts it.

 Setting the Startup Form

 If your Windows Forms application contains multiple forms, you must designate one as the

startup form. The startup form is the fi rst form to be loaded on execution of your application.

The method for setting the startup form depends on whether you are programming in Visual

Basic or C#.

 In Visual Basic you can designate a form as the startup form by setting the Startup Form

project property, which is done in the project Properties window, as shown in Figure 1-3:

 FIGURE 1-3 The Visual Basic project Properties window

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 13

 TO SET THE STARTUP FORM IN VISUAL BASIC

 1. In Solution Explorer, click the name of your project. The project name is highlighted.

 2. In the Project menu, choose <applicationName> Properties, where <applicationName>

represents the name of your project.

 3. In the Application tab, under Startup Form, choose the appropriate form from the

drop-down menu.

 Setting the startup form in C# is slightly more complicated. The startup object is speci-

fi ed in the Main method. By default, this method is located in a class called Program.cs,

which Visual Studio automatically creates. The Program.cs class contains, by default, a

Main method, as follows:

 static void Main()

{

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());

}

 The startup object is indicated by the line

 Application.Run(new Form1());

 You can set the startup form for the project by changing this line in the Program.cs

class to the form that you want to start the application. For example, if you wanted a

form called myForm to be the startup form, you would change this line to read as fol-

lows:

 Application.Run(new myForm());

 TO SET THE STARTUP FORM IN C#

 1. In Solution Explorer, double-click Program.cs to view the code. The code window

opens.

 2. Locate the Main method, and then locate the line that reads:

 Application.Run(new Form());

 where Form represents the name of the form that is currently the startup form.

 3. Change Form to the name of the form you want to set as the startup form.

 Making the Startup Form Invisible

 At times you might want the startup form to be invisible at run time. For example, you might

want a form to execute a time-consuming process when starting and not appear until that

process is complete. The Visible property determines whether a form is visible at run time.

You can set the Visible property either in the Property Grid or in code. If you set Visible to

False in the property window, the form will be invisible at startup.

 14 CHAPTER 1 Windows Forms and the User Interface

To make a form invisible during execution, set the Visible property to False in code, as

shown in the following example:

' VB

aForm.Visible = False

// C#

aForm.Visible = false;

Quick Check

 1. How can you specify the startup location of a form?

 2. How do you set the startup form?

Quick Check Answers

 1. Use the Form.StartPosition property to indicate the starting position of a form.

 2. In Visual Basic you can set the startup form by setting the value in the Applica-

tion tab of the project properties. In C# you must locate the call to the Applica-

tion.Run method in the Main method and change the startup form there.

Creating Nonrectangular Windows Forms
For advanced visual effects, you might want to create forms that are nonrectangular. For

example, you might want to create an oval form or a form in the shape of your company’s

logo. Although creating a nonrectangular form is easy, there are several things to consider

about the fi nal look and feel of the form.

You can create a nonrectangular form by setting the Region property of the form in the

Form_Load event handler. Because the change in shape of the form actually occurs at run

time, you are unable to view the form in its actual shape at design time. Thus, you might have

to start the application and view the form several times as you fi ne-tune the appearance and

placement of controls.

 The Region property is an instance of System.Drawing.Region. This class represents an area

of the screen that is the interior of a graphics shape defi ned by rectangles and graphics paths.

The easiest way to create a nonrectagular region is to create a new instance of the Graphics-

Path class and then create the new Region from it. The following code demonstrates a simple

example:

' VB

Dim myPath As New System.Drawing.Drawing2D.GraphicsPath

' This line of code adds an ellipse to the graphics path that inscribes the

' rectangle defined by the form's width and height

myPath.AddEllipse(0, 0, Me.Width, Me.Height)

' Creates a new Region from the GraphicsPath

Quick Check

1. How can you specify the startup location of a form?

2. How do you set the startup form?

Quick Check Answers

1. Use the Form.StartPosition property to indicate the starting position of a form.

2. In Visual Basic you can set the startup form by setting the value in the Applica-

tion tab of the project properties. In C# you must locate the call to the Applica-

tion.Run method in the Main method and change the startup form there.

Q

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 15

Dim myRegion As New Region(myPath)

' Sets the form’s Region property to the new region

Me.Region = myRegion

// C#

 System.Drawing.Drawing2D.GraphicsPath myPath = new System.Drawing.Drawing2D.

GraphicsPath();

// This line of code adds an ellipse to the graphics path that inscribes

// the rectangle defined by the form's width and height

myPath.AddEllipse(0, 0, this.Width, this.Height);

// Creates a new Region from the GraphicsPath

Region myRegion = new Region(myPath);

// Sets the form's Region property to the new region

this.Region = myRegion;

 The System.Drawing and System.Drawing.Drawing2D classes will be discussed in further

detail in Chapter 14, “Creating Windows Forms Controls.”

 Because nonrectagular forms will have limited borders (if any), it is generally a good idea

to set the FormBorderStyle property of the form to None. This prevents any parts of the form

that intersect the original rectangle edges of the form from having a different and unwanted

appearance. However, with the FormBorderStyle property set to None, there is no built-in way

for the user to resize, move, or close the form, and you must build these features into your

design. A simple nonrectangular form is shown in Figure 1-4.

 FIGURE 1-4 An elliptical form with a Close Form button

 TO CREATE A NONRECTANGULAR FORM

 1. In the Property Grid, set the FormBorderStyle to None.

 2. Double-click the form in the Designer to open the default Form_Load event handler.

 3. In the Form_Load event handler, create a new instance of the Region class, as shown in

the previous example.

 4. If desired, add close, move, or resize functionality to the form because the user might

not be able to access the form’s borders or title bar.

 5. Set the form as the startup form and press F5 to view the form. Fine-tune the appear-

ance and placement of controls as necessary.

 16 CHAPTER 1 Windows Forms and the User Interface

 LAB Customizing a Windows Form

 In this lab you will practice customizing a Windows Form by applying techniques that you

learned in the preceding lesson. In Exercise 1 you will create a Windows Form and customize

the appearance by setting properties and writing code. In Exercise 2 you will create a form

with a nonrectangular shape. This lab guides you through the steps involved. Completed

versions of each lab can be installed from the companion CD. If you prefer to do an unguided

lab, please see the “Case Scenarios” section at the end of this chapter.

 EXERCISE 1 Customize a Rectangular Windows Form

 1. Open Visual Studio and create a new Windows Forms project. The project opens with a

default form named Form1 in the Designer.

 2. In the Designer, select the form. The properties for the form are displayed in the

Property Grid.

 3. In the Property Grid, set the following properties to the values specifi ed in the

following table:

 PROPERTY VALUE

 Text Trey Research

 FormBorderStyle Fixed3D

 StartPosition Manual

 Location 100,200

 Opacity 75%

 4. From the Toolbox, drag three buttons onto the form and position them conveniently.

 5. Select each button in turn and, in the Properties window, set the Text property of the

buttons to Border Style, Resize, and Opacity. When fi nished, your form should look

similar to Figure 1-5.

 FIGURE 1-5 The practice form

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 17

 6. In the Designer, double-click the button labeled Border Style to open the code window

to the event handler for Button1.Click. Add the following line of code to this method:

 ' VB

Me.FormBorderStyle = FormBorderStyle.Sizable

// C#

this.FormBorderStyle = FormBorderStyle.Sizable;

 7. Return to the Designer, and then double-click the Resize button and add the following

line:

' VB

Me.Size = New Size(300, 500)

// C#

this.Size = new Size(300, 500);

 8. Return to the Designer, and then double-click the Opacity button and add the follow-

ing line:

 ' VB

Me.Opacity = 1

// C#

this.Opacity = 1;

 9. Press F5 to run the application. Click each button and observe the effect on the

appearance of the form.

 EXERCISE 2 Create a Nonectangular Windows Form

 1. In this exercise, you will create a triangular Windows Form.

 2. Open Visual Studio and create a new Windows Forms project. The project opens with a

default form named Form1 in the Designer.

 3. In the Property Grid, set the FormBorderStyle property to None and the BackColor

property to Red. This will make the form easier to see when you test the application.

 4. Drag a Button from the Toolbox to the upper left-hand corner of the form. Set the Text

property of the button to Close Form.

 5. Double-click the Close Form button and add the following code to the Button1_Click

event handler:

' VB

Me.Close()

// C#

this.Close();

 18 CHAPTER 1 Windows Forms and the User Interface

 6. In the Designer, double-click the form to open the Form1_Load event handler. Add

the following code to this method. This code sets the form’s region to the shape of a

triangle by defi ning a polygon with three corners.

 ' VB

Dim myPath As New System.Drawing.Drawing2D.GraphicsPath()

myPath.AddPolygon(New Point() { New Point(0, 0), New Point(0, Me.Height), _

 New Point(Me.Width, 0) })

Dim myRegion As New Region(myPath)

Me.Region = myRegion

// C#

System.Drawing.Drawing2D.GraphicsPath myPath = new

 System.Drawing.Drawing2D.GraphicsPath();

myPath.AddPolygon(new Point[] { new Point(0, 0), new Point(0, this.Height),

 new Point(this.Width, 0) });

Region myRegion = new Region(myPath);

this.Region = myRegion;

 Press F5 to run the application. A triangular-shaped form is displayed.

 Lesson Summary
 Forms are the basic building blocks of a Windows application and serve as the foundation

for the UI. The form can act as a host for controls and can contain methods, properties, and

events. Forms can be added at design time, or new instances of forms can be added in code

at run time.

 You can alter the look, feel, and behavior of a form by changing the form’s properties.

Properties such as Text, FormBorderStyle, Windowstate, Size, StartPosition, TopMost, Vis-

ible, and Opacity allow you to create a variety of visual styles and effects.

 You can designate the startup form in the project properties window for Visual Basic or

by changing the startup form in the Main method for C#. The Main method is usually

found in the Program.cs class, which is autogenerated.

 You can create nonrectangular forms by creating a new instance of the Region class

and then setting the form’s Region property to that new instance.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 19

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following code snippets demonstrates how to add a new instance of a

 Windows form named Form1 at run time?

A. ' VB

Dim myForm As Form1

myForm = Form1.CreateForm()

// C#

Form1 myForm;

myForm = Form1.CreateForm();

B. ' VB

Dim myForm As Form1

myForm.Show()

// C#

Form1 myForm;

myForm.Show();

C. ' VB

myForm = Form1

myForm.Show()

// C#

myForm = Form1;

myForm.Show();

D. ' VB

Dim myForm As Form1

myForm = New Form1()

// C#

Form1 myForm;

myForm = new Form1();

 2. Which of the following code snippets correctly demonstrates how to set a form to a

nonrectangular shape?

A. ' VB

Dim aPath As New System.Drawing.Drawing2D.GraphicsPath

aPath.AddEllipse(0, 0, this.Width, this.Height)

Me.Region = New Region();

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 20 CHAPTER 1 Windows Forms and the User Interface

// C#

System.Drawing.Drawing2D.GraphicsPath aPath = new System.Drawing.Drawing2D.

GraphicsPath();

aPath.AddEllipse(0, 0, Me.Width, Me.Height);

this.Region = new Region();

 B. ' VB

Dim aPath As New System.Drawing.Drawing2D.GraphicsPath

aPath.AddEllipse(0, 0, Me.Width, Me.Height)

// C#

System.Drawing.Drawing2D.GraphicsPath aPath = new System.Drawing.Drawing2D.

GraphicsPath();

aPath.AddEllipse (0, 0, this.Width, this.Height);

 C. ' VB

Dim aPath As New System.Drawing.Drawing2D.GraphicsPath

aPath.AddEllipse(0, 0, Me.Width, Me.Height)

Me.Region = New Region(aPath)

// C#

System.Drawing.Drawing2D.GraphicsPath aPath = new System.Drawing.Drawing2D.

GraphicsPath();

aPath.AddEllipse(0, 0, this.Width, this.Height);

this.Region = new Region(aPath);

 D. ' VB

Dim aPath As New System.Drawing.Drawing2D.GraphicsPath

aPath.AddEllipse(0, 0, Me.Width, Me.Height)

Me.Region = aPath

// C#

System.Drawing.Drawing2D.GraphicsPath aPath = new System.Drawing.Drawing2D.

GraphicsPath();

aPath.AddEllipse(0, 0, this.Width, this.Height)

this.Region = aPath;

 3. Which of the following code samples correctly sets the title, border style, size, and

opacity of a form?

 A. ' VB

Me.Text = "My Form"

Me.FormBorderStyle = FormBorderStyle.Fixed3D

Me.Size = New Size(300, 300)

Me.Opacity = 0.5

 Lesson 1: Adding and Confi guring Windows Forms CHAPTER 1 21

// C#

this.Text = "My Form";

this.FormBorderStyle = FormBorderStyle.Fixed3D;

this.Size = new Size(300, 300);

this.Opacity = 0.5;

 B. ' VB

Me.Text = "My Form"

Me.BorderStyle = "Fixed3D"

Me.Size = New Size(300, 300)

Me.Opacity = 0.5

// C#

this.Text = "My Form";

this.BorderStyle = "Fixed3D";

this.Size = new Size(300, 300);

this.Opacity = 0.5;

 C. ' VB

Me.Text = "My Form"

Me.FormBorderStyle = FormBorderStyle.Fixed3D

Me.Size = (300,300)

Me.Opacity = "100%"

// C#

this.Text = "My Form";

this.FormBorderStyle = FormBorderStyle.Fixed3D;

this.Size = (300,300);

this.Opacity = "100%";

 D. ' VB

Me.Title = "My Form"

Me.FormBorderStyle = FormBorderStyle.Fixed3D

Me.Size = New Size(300,300)

Me.Opacity = "100%"

// C#

this.Title = "My Form";

this.FormBorderStyle = FormBorderStyle.Fixed3D;

this.Size = new Size(300,300);

this.Opacity = "100%";

 22 CHAPTER 1 Windows Forms and the User Interface

Lesson 2: Managing Control Layout with Container
Controls

This lesson describes how to add and confi gure container controls. You will learn how to add

controls to a form or to a container control and to confi gure various kinds of container con-

trols to create dynamic and varied layouts for controls in your form.

After this lesson, you will be able to:

 Add a control to a form or container control at design time.

 Add a control to a form or container at run time.

 Group and arrange controls with the Panel control.

 Group and arrange controls with the GroupBox control.

 Group and arrange controls with the TabControl control.

 Group and arrange controls with the FlowLayoutPanel control.

 Group and arrange controls with the TableLayoutPanel control.

 Create dynamic container areas with the SplitContainer control.

Estimated lesson time: 45 minutes

Overview of Container Controls
Container controls are specialized controls that serve as a customizable container for other

controls. Examples of container controls include the Panel, FlowLayoutPanel, and SplitContainer

controls. Container controls give the form logical and physical subdivisions that can group

other controls into consistent UI subunits. For example, you might contain a set of related

RadioButton controls in a GroupBox control. The use of container controls helps create a sense

of style or information fl ow in your UI and allows you to manipulate contained controls in a

consistent fashion.

When a container control holds other controls, changes to the properties of the container

control can affect the contained controls. For example, if the Enabled property of a panel is

set to False, all of the controls contained in the panel are disabled. Likewise, changes to prop-

erties related to the UI, such as BackColor, Visible, or Font, are also applied to the contained

controls. Note that you can still manually change any property inside a contained control, but

if the container is disabled, all controls inside that container will be inaccessible regardless of

their individual property settings.

The Controls Collection

Each form and container control has a property called Controls, which represents the col-

lection of controls contained by that form or control. When a control is added to a form or

container control at design time, the Designer automatically adds it to the controls collection

After this lesson, you will be able to:

Add a control to a form or container control at design time.

Add a control to a form or container at run time.

Group and arrange controls with the Panel control.l

Group and arrange controls with the GroupBox control.x

Group and arrange controls with the TabControl control.l

Group and arrange controls with the FlowLayoutPanel control.l

Group and arrange controls with the TableLayoutPanel control.l

Create dynamic container areas with the SplitContainer control.r

Estimated lesson time: 45 minutes

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 23

of that form or container control and sets the location property as appropriate. You can also

dynamically add a new control at run time by manually creating a new control and adding the

control to the controls collection.

 Adding a Control to a Form or Container Control in the Designer

 There are four ways to add a control to a form or container control in the Designer:

 Drag the control from the Toolbox to the surface of the form or container control.

 Select a control in the Toolbox, and then draw it on the form with the mouse.

 Select a control in the Toolbox and double-click the form.

 Double-click the control in the Toolbox.

 Adding a Control to a Form or Container Control at Run Time

 To add a control to a form or container control at run time, manually instantiate a new control

and add it to the Controls collection of the form, as shown in the following example. You must

set any properties of the control, such as the Location or Text properties, before adding it

to the Controls collection. The following sample code assumes that you have added a Panel

container named Panel1 (panels are discussed later in this chapter in the section “The Panel

Control”):

 ' VB

Dim aButton As New Button()

' Sets the relative location in the containing control or form

aButton.Location = New Point(20,20)

aButton.Text = "Test Button"

' Adds the button to a panel called Panel1

Panel1.Controls.Add(aButton)

' Adds the button to a form called Form1

Me.Controls.Add(aButton)

// C#

Button aButton = new Button();

// Sets the relative location in the containing control or form

aButton.Location = new Point(20,20);

aButton.Text = "Test Button";

// Adds the button to a panel called Panel1

Panel1.Controls.Add(aButton);

// Adds the button to a form called Form1

this.Controls.Add(aButton);

 The Anchor Property

 The Anchor and Dock properties of a control dictate how it behaves inside its form or parent

control. The Anchor property allows you to defi ne a constant distance between one or more

edges of a control and one or more edges of a form or other container. Thus, if a user resizes

 24 CHAPTER 1 Windows Forms and the User Interface

a form at run time, the control edges will always maintain a specifi c distance from the edges.

The default setting for the Anchor property is Top, Left, meaning that the top and left edges

of the control always maintain a constant distance from the top and left edges of the form. If

the Anchor property were set to Bottom, Right, for example, the control would “fl oat” when

the form was resized to maintain the constant distance between the bottom and right-hand

edges of the form. If opposite properties are set for the Anchor property, such as Top and

Bottom, the control will stretch to maintain the constant distance of the control edges to the

form edges.

 You can set the Anchor property to any combination of Top, Bottom, Left, Right, or none

of these. The Properties window presents a visual interface that aids in choosing the value for

the Anchor property. This interface is shown in Figure 1-6.

 FIGURE 1-6 Choosing the Anchor property

 The Dock Property

 The Dock property enables you to attach your control to the edge of a parent control. The

parent control can be a form or a container control, such as a Panel control or a TabControl

control.

 Like the Anchor property, the Dock property provides a special visual interface that allows

you to graphically choose the property value. This interface is shown in Figure 1-7.

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 25

 FIGURE 1-7 Choosing the Dock property

 To set the Dock property, click the section of the interface that corresponds to where you

want your control to dock. For example, to dock your control to the right-hand side of the

form, click the bar on the right of the interface. To release docking, choose None. Clicking the

center of the Dock property interface sets the Dock property to a value of Fill, which means

the control will dock to all four sides of the form and fi ll the control in which it resides.

 The GroupBox Control
 The GroupBox control is a container control that appears as a subdivision of the form sur-

rounded by a border. It does not provide scrollbars, like the Panel control, nor does it provide

any kind of specialized layout capabilities. A GroupBox can have a caption, which is set by the

Text property, or it can appear without a caption when the Text property is set to an empty

string.

 The most common use for GroupBox controls is for grouping RadioButton controls.

RadioButton controls placed within a single GroupBox are mutually exclusive but are not

exclusive of RadioButtons elsewhere in the form or in other GroupBox controls. RadioButtons

will be discussed in greater detail in Chapter 3, “Advanced Windows Forms Controls.” Table

1-4 describes Text, the most important unique property of the GroupBox control.

 26 CHAPTER 1 Windows Forms and the User Interface

 TABLE 1-4 The Text Property of the GroupBox Control

 PROPERTY DESCRIPTION

 Text Represents the caption of the GroupBox enclosure. If no caption is desired,

this property should be set to an empty string.

 The Panel Control
 The Panel control creates a subsection of a form that can host other controls. The Panel can

be indistinguishable from the rest of the surrounding form, or it can be surrounded by a

border as determined by the BorderStyle property. A Panel can have a BorderStyle property of

None, which indicates no border; FixedSingle, which indicates a single edge around the Panel;

or Fixed3D, which represents a border with a three-dimensional appearance.

 The Panel control is a scrollable control, which means that it supports horizontal and verti-

cal scroll bars. Controls can be hosted in the Panel outside of its visible bounds. When the

AutoScroll property is set to True, scroll bars will automatically be available if any controls are

placed outside of the visible bounds of the control. If the AutoScroll property is set to False,

controls outside the visible bounds of the Panel are inaccessible. Important properties of the

Panel control are shown in Table 1-5.

 TABLE 1-5 Important Properties of the Panel Control

 PROPERTY DESCRIPTION

 AutoScroll Determines if the Panel will display scroll bars when controls are hosted

outside the visible bounds of the Panel. Scroll bars are displayed when

this property is set to True and are not displayed when it is set to False.

 BorderStyle Represents the visual appearance of the Panel border. This property

can be set to None, which indicates no border; FixedSingle, which cre-

ates a single-line border; or Fixed3D, which creates a border with a

three-dimensional appearance.

 The FlowLayoutPanel Control
 The FlowLayoutPanel is a subclass of the Panel control. Like the Panel control, it is most com-

monly used to create a distinct subsection of the form that hosts related controls. Unlike the

Panel control, however, the FlowLayoutPanel dynamically repositions the controls it hosts

when it is resized at either design time or run time. This provides a great aid to UI design

because control positions are automatically adjusted as the size and dimensions of the Flow-

LayoutPanel are adjusted and it provides dynamic realignment of the UI (much like an HTML

page) if the FlowLayoutPanel is resized at run time.

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 27

 Like the Panel control, the FlowLayoutPanel control is a scrollable control. Scroll bars are

enabled when AutoScroll is set to True and are disabled when AutoScroll is set to False.

 The default fl ow direction of the FlowLayoutPanel is from left to right, meaning that con-

trols placed in the FlowLayoutPanel will locate in the upper left-hand corner and then fl ow

to the right until they reach the edge of the panel. The FlowDirection property controls this

behavior. You can set the FlowDirection property to four possible values: LeftToRight, which is

the default; RightToLeft, which provides fl ow from right to left; TopDown, in which the controls

fl ow from the top of the control to the bottom; and BottomUp, in which controls fl ow from

the bottom to the top of the FlowLayoutPanel.

 Once the end of a row (in the case of LeftToRight and RightToLeft FlowDirection settings)

or column (in the case of TopDown and BottomUp FlowDirection settings) is reached, the fl ow

will wrap or not wrap to the next row or column as determined by the value of the Wrap-

Contents property. If WrapContents is set to True (which is the default), controls will automati-

cally wrap to the next column or row. If it is set to False, controls will not automatically form

new rows or columns.

 You can manually create breaks in the fl ow of the controls that are analogous to line

breaks in text. When the WrapContents property of a FlowLayoutPanel control is set to False,

you must manually set fl ow breaks to manage the fl ow, but you can also set fl ow breaks when

WrapContents is set to True if you desire individual breaks. You can set a fl ow break on a con-

trol by calling the SetFlowBreak method of the FlowLayoutPanel.

 TO SET A FLOW BREAK ON A CONTROL HOSTED IN A FLOWLAYOUTPANEL

 1. Set the fl ow break by using the SetFlowBreak method as shown in the following exam-

ple (which assumes a FlowLayoutPanel control named Flp and a Button named aButton

have already been created):

 ' VB

Flp.SetFlowBreak(aButton, True)

// C#

Flp.SetFlowBreak(aButton, true);

 2. Regardless of whether there is room in the FlowLayoutPanel to continue the fl ow of

controls, a control that has had a fl ow break set by this method will start a new row (or

column, depending on the value of the FlowDirection property) in the FlowLayoutPanel.

 3. You can query a particular control to determine if it has had a fl ow break set for it by

calling the GetFlowBreak method, as shown in the following example:

 ' VB

If Flp.GetFlowBreak(aButton) Then

 ' Continue processing

End If

// C#

 28 CHAPTER 1 Windows Forms and the User Interface

if (Flp.GetFlowBreak(aButton))

{

// Continue processing

}

 Table 1-6 lists important properties and methods of the FlowLayoutPanel control.

 TABLE 1-6 Important Members of the FlowLayoutPanel Control

 PROPERTY/METHOD DESCRIPTION

 AutoScroll Property. Determines if the FlowLayoutPanel will display scroll bars

when controls are hosted outside the visible bounds of the Panel.

Scroll bars are displayed when set to True and are not displayed

when set to False.

 BorderStyle Property. Represents the visual appearance of the Panel border. It

can be set to None, which indicates no border; FixedSingle, which

creates a single-line border; or Fixed3D, which creates a border with

a three-dimensional appearance.

 FlowDirection Property. Determines the direction of fl ow in the FlowLayoutPanel.

Can be set to LeftToRight, RightToLeft, TopDown, or BottomUp.

 WrapContents Property. Determines whether controls will automatically wrap to

the next column or row when the FlowLayoutPanel is resized.

 GetFlowBreak Method. This method returns a Boolean value that indicates

whether a particular control has had a fl ow break set.

 SetFlowBreak Method. This method sets a fl ow break on a control contained in

the FlowLayoutPanel.

 The TableLayoutPanel Control
 Like the FlowLayoutPanel control, the TableLayoutPanel control is a specialized panel that aids

in the design and layout of the UI. The TableLayoutPanel is essentially a table that provides

cells for the individual hosting of controls. Like other panels, it is a scrollable container that

provides scroll bars when the AutoScroll property is set to True.

 At design time the TableLayoutPanel appears on the form as a table of individual cells.

You can drag controls from the Toolbox into each of the cells. Generally, only one control can

be hosted in a single cell. However, for complicated UI designs, you can nest other container

controls inside TableLayoutPanel cells, each of which can host multiple controls.

 At run time the CellBorderStyle property determines the appearance of the cells. You can

set this property to None, which displays no cell lines, or to Single, Inset, InsetDouble, Outset,

OutsetDouble, or OutsetPartial, each of which gives a distinctive look and feel to the table

cells.

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 29

 The ColumnStyle and RowStyle collections manage the columns and rows of the TableLay-

outPanel control. At design time you can set the styles of the rows and columns by choosing

the ColumnStyles or RowStyles collection in the Property Grid and launching the Columns

And Rows Styles editor, shown in Figure 1-8.

 FIGURE 1-8 The Columns And Rows Styles editor

 You can alter column and row size styles with this editor. Column and row size styles can

be set to Absolute, which indicates a fi xed size in pixels, or they can be set to Relative, which

indicates a percentage of the size of all columns or rows whose style is set to Relative. Col-

umns and rows can also be set to AutoSize. When set to this value, the columns and rows will

automatically adjust to the correct size.

 Column and row styles can also be set manually in code by accessing the ColumnStyles

and RowStyles collections in code. You can access the style for a particular column or row by

the index of that column or row. Styles can be set as shown in the following example:

 ' VB

TableLayoutPanel1.ColumnStyles(0).SizeType = SizeType.Absolute

TableLayoutPanel1.ColumnStyles(0).Width = 20

TableLayoutPanel1.RowStyles(0).SizeType = SizeType.Percent

TableLayoutPanel1.RowStyles(0).Height = 50

// C#

TableLayoutPanel1.ColumnStyles[0].SizeType = SizeType.Absolute;

TableLayoutPanel1.ColumnStyles[0].Width = 20;

TableLayoutPanel1.RowStyles[0].SizeType = SizeType.Percent;

TableLayoutPanel1.RowStyles[0].Height = 50;

 If you set a row or column style to a size type of anything other than SizeType.Absolute,

you can also set the Width (for columns) or Height (for rows). These values are set in either

pixels or percentages as is appropriate for the SizeType of the ColumnStyle.

 30 CHAPTER 1 Windows Forms and the User Interface

 When adding new controls to a TableLayoutPanel at run time, you can use either of

two overloads of the TableLayoutPanel.Controls.Add method. The fi rst is the standard Add

method, as follows:

 ' VB

TableLayoutPanel1.Controls.Add(aButton)

// C#

TableLayoutPanel1.Controls.Add(aButton);

 This method simply adds the control to the controls collection of the TableLayoutPanel,

and the control is inserted into the next open cell in the table. If there are no more open cells,

the behavior of the TableLayoutPanel is determined by the value of the GrowStyle property.

If the GrowStyle property is set to AddRows, additional rows will be added to accommodate

new controls. If the GrowStyle property is set to AddColumns, new columns will be added

when needed. If the GrowStyle property is set to FixedSize, no new cells may be added. If you

attempt to add a control to a TableLayoutPanel with a GrowStyle value of FixedSize, an excep-

tion will be thrown.

 You can also add a control to a specifi c cell by using the Controls.Add method, as follows:

 ' VB

TableLayoutPanel1.Controls.Add(aButton,3,3)

// C#

TableLayoutPanel1.Controls.Add(aButton,3,3);

 Columns in a TableLayoutPanel are numbers starting at 1, while rows start at 0. Thus the

example shown above adds aButton to the cell in column 3 at row 3, which is actually the

fourth column and the fourth row the user sees. Note, however, that if a cell is already

occupied by a control, your control might not be added to that cell. Controls added to cells

at design time generally have precedence over controls added at run time. In these cases the

control is simply added to the next available cell. If you add the control to a cell that contains

another control that has been added at run time, the cell already in that position will usually

be moved down to the next available cell in favor of the control just added. As always, careful

testing is important.

 TO ADD A CONTROL TO A TABLELAYOUTPANEL CONTROL AT RUN TIME

 1. Declare and instantiate a new control in code.

 2. Use the TableLayoutPanel.Controls.Add method to add the control. An example follows:

 ' VB

Dim aButton As New Button()

' Adds the Button to the next available cell

TableLayoutPanel1.Controls.Add(aButton)

' Adds the Button to a cell at (2,2)

TableLayoutPanel1.Controls.Add(aButton, 2, 2)

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 31

// C#

Button aButton = new Button();

// Adds the Button to the next available cell

TableLayoutPanel1.Controls.Add(aButton);

// Adds the Button to a cell at (2,2)

TableLayoutPanel1.Controls.Add(aButton, 2, 2);

 Table 1-7 lists important properties and methods of the TableLayoutPanel control.

 TABLE 1-7 Important Members of the TableLayoutPanel Control

 PROPERTY/METHOD DESCRIPTION

 AutoScroll Property. Determines if the TableLayoutPanel will display scroll bars

when controls are hosted outside the visible bounds of the Panel.

Scroll bars are displayed when this property is set to True and are not

displayed when it is set to False.

 CellBorderStyle Property. Determines the style of the cell borders. This property can

be set to None, which indicates no cell borders, or to a variety of dif-

ferent visual styles.

 ColumnCount Property. Indicates the number of columns. You can add or remove

columns by incrementing or decrementing the ColumnCount prop-

erty.

 Columns Property. Represents the collection of columns. Available only at

design time; accessing this property launches the Columns And Rows

Styles editor.

 ColumnStyles Property. Represents the collection of column styles. Available only

at run time.

 GrowStyle Property. Represents how the TableLayoutPanel grows when new

controls are added to it. This property can be set to AddColumns,

AddRows, or FixedSize.

 RowCount Property. Indicates the number of rows. You can add or remove rows

by incrementing or decrementing the RowCount property.

 Rows Property. Represents the collection of rows. Available only at design

time; accessing this property launches the Columns And Rows Styles

editor.

 RowStyles Property. Represents the collection of row styles. Available only at

run time.

 Controls.Add Method of the Controls collection. Can be used to add a control,

either to the next available cell or to a specifi c cell identifi ed by its

column and row coordinates.

 32 CHAPTER 1 Windows Forms and the User Interface

 The TabControl Control
 The TabControl control enables you to group sets of controls in tabs, rather like fi les in a fi ling

cabinet or dividers in a notebook. For example, you might create property pages for an appli-

cation in which each page represents the properties of a specifi c component. The TabControl

serves as a host for one or more TabPage controls, which themselves contain controls. The

user can switch between tab pages (and the controls contained therein) by clicking the tabs

on the TabControl.

 The most important property of the TabControl is the TabPages property. TabPage con-

trols are specialized container controls that are hosted only inside TabControl controls. Each

TabPage has its own set of properties, and you can access these properties by editing the

TabPages property at design time. This launches the TabPage Collection Editor, as shown in

Figure 1-9.

 FIGURE 1-9 The TabPage Collection Editor

 Individual TabPage controls are a lot like Panel controls. They are scrollable controls and

will generate scroll bars as needed if the AutoScroll property is set to True. Individual TabPage

controls also have a Text property, which represents the text shown in the tab that represents

this page in the TabControl. Also, like Panel controls, TabPages have a BorderStyle property

that can be set to None, FixedSingle, or Fixed3D, with results similar to those in the Panel

control.

 The TabControl has several properties that you can use to customize the look and feel of

the control. The Appearance property controls how the tabs look. This property can be set to

Normal, Buttons, or FlatButtons, each of which generates a different visual style. The Align-

ment property determines whether the tabs appear on the Top, Bottom, Left, or Right of the

TabControl. The TabControl also has a property called Multiline, which indicates if more than

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 33

one row of tabs is allowed. When it is set to True, multiple rows of tabs are supported. When

it is set to False, only a single row of tabs is allowed. Important properties of the TabControl

control and TabPage control are shown in Table 1-8 and Table 1-9, respectively.

 TABLE 1-8 Important Properties of the TabControl Control

 PROPERTY DESCRIPTION

 Appearance Determines the visual style of the TabControl

 Alignment Determines whether the tabs appear on the Top, Bottom, Left, or

Right of the TabControl

 Multiline Determines whether more than one row of tabs is allowed on the

TabControl

 TabPages Represents the collection of TabPage controls hosted by the

TabControl

 TABLE 1-9 Important Properties of the TabPage Control

 PROPERTY DESCRIPTION

 AutoScroll Determines if the TabPage will display scroll bars when controls are

hosted outside the visible bounds of the Panel. Scroll bars are displayed

when set to True and are not displayed when set to False.

 BorderStyle Represents the visual appearance of the TabPage border. It can be set

to None, which indicates no border; FixedSingle, which creates a single-

line border; or Fixed3D, which creates a border with a three-dimensional

appearance.

 Text Represents the text displayed on the tab in the TabControl that repre-

sents this TabPage.

 The SplitContainer Control
 The SplitContainer control creates a subsection of the form where a Splitter divides the Split-

Container into two SplitterPanel controls that function similarly to Panel controls. The user can

grab the Splitter with the mouse and move its location, thus changing the relative size of each

SplitterPanel. The SplitContainer.Dock property is set to Fill by default because the most com-

mon use for SplitContainer controls is to create divided Windows forms.

 The SplitContainer exposes its two child SplitterPanel controls through its Panel1 and

Panel2 properties. These properties allow you to access the properties of the contained

SplitterPanel controls.

 Each SplitterPanel contained by the SplitContainer control functions in basically the same

way as a Panel control. They can host controls and are distinct from the rest of the form. They

 34 CHAPTER 1 Windows Forms and the User Interface

can display scroll bars when the AutoScroll property is set to True. The individual SplitterPanel

controls of a SplitContainer do not have individual borders, so they expose no BorderStyle

property like stand-alone Panel controls do, but the SplitContainer control itself does have a

BorderStyle property. Like the BorderStyle property of the Panel control, this property can

be set to None, FixedSingle, or Fixed3D. When the BorderStyle property is set, it affects the

appearance of the Splitter also.

 The orientation of the Splitter is determined by the Orientation property. When it is set to

Vertical, the Splitter stretches from the top to the bottom of the SplitContainer. When it is set

to Horizontal, the Splitter stretches from left to right.

 The FixedPanel property allows you to designate a panel in the SplitContainer that will

remain constant in size if the control is resized. This property can be set to Panel1 so that only

Panel2 will be resized, to Panel2 so that only Panel1 will be resized, or to None so that both

panels will be resized proportionally when the control is resized. Note that a panel is fi xed by

the FixedPanel property only when the SplitContainter control is resized. The user is still able

to resize the panels by grabbing and moving the Splitter with the mouse.

 You can disable the ability of the user to move the Splitter by setting the IsSplitterFixed

property. When it is set to True, the Splitter is fi xed in its location and the user cannot move it.

You can manually move the Splitter in code by changing the SplitterDistance property in code.

This property represents the distance, in pixels, of the Splitter from the left edge (when Orien-

tation is Horizontal) or the top edge (when Orientation is Vertical). You can change the thick-

ness of the Splitter by setting the SplitterWidth property, which is also represented in pixels.

 You can hide one of the panels in a SplitContainer by setting either the Panel1Collapsed or

Panel2Collapsed properties to True. When one of these properties is set to True, the corre-

sponding panel is collapsed and the other panel expands to fi ll the SplitContainer. Note that

you cannot set both of these properties to True. For example, if you set Panel1Collapsed to

True when Panel2Collapsed is already set to True, Panel2Collapsed will be set to False.

 You can set a minimum size for individual panels by setting the Panel1MinSize and

Panel2MinSize properties. These properties represent the minimum number of pixels to

which a panel can be sized. Important properties of the SplitContainer control are shown in

Table 1-10.

 TABLE 1-10 Important Properties of the SplitContainer Control

 PROPERTY DESCRIPTION

 BorderStyle Represents the visual appearance of the TabPage border. It can

be set to None, which indicates no border; FixedSingle, which

creates a single-line border; or Fixed3D, which creates a border

with a three-dimensional appearance.

 FixedPanel Represents the panel of the SplitContainer that is fi xed in size.

This property can be set to Panel1, Panel2, or None, in which

case no panel has a fi xed size.

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 35

PROPERTY DESCRIPTION

IsSplitterFixed Determines whether the location of the Splitter is fi xed and can-

not be moved by the user.

 Orientation Determines whether the Splitter is oriented horizontally or verti-

cally in the SplitContainer. It can be set to Horizontal or Vertical.

 Panel1 Exposes the properties of the SplitContainer control’s Panel1.

 Panel1Collapsed Determines whether Panel1 is collapsed or regular size. The

Panel is collapsed when this property is set to True.

 Panel1MinSize Gets or sets the minimum size for Panel1.

 Panel2 Exposes the properties of the SplitContainer control’s Panel2.

 Panel2Collapsed Determines whether Panel2 is collapsed or regular size. The

Panel is collapsed when this property is set to True.

 Panel2MinSize Gets or sets the minimum size for Panel2.

 SplitterDistance Represents the distance of the Splitter from either the top or left

edge of the form, depending on the value of the Orientation

property.

 SplitterWidth Gets or sets the width of the Splitter in pixels.

 Quick Check

 1. What is the purpose of the Dock property?

 2. What are containers and what are they used for?

 Quick Check Answers

 1. The Dock property allows you to attach a control to one of the sides of the form

or to fi ll all available space in the form.

 2. Containers are specialized controls that can be used to host other controls. They

can be used to provide a variety of different control-display layouts.

 LAB Practice with Container Controls

 In this lab, you will practice using container controls by creating a Windows form with a vari-

ety of container controls.

Quick Check

1. What is the purpose of the Dock property?k

2. What are containers and what are they used for?

Quick Check Answers

1. The Dock property allows you to attach a control to one of the sides of the form k

or to fi ll all available space in the form.

2. Containers are specialized controls that can be used to host other controls. They

can be used to provide a variety of different control-display layouts.

Q

 36 CHAPTER 1 Windows Forms and the User Interface

 EXERCISE Practice with Container Controls

 1. Open Visual Studio and create a new Windows Forms project.

 2. From the Toolbox, drag a TabControl to the surface of the form. In the Property Grid,

set the Dock property to Fill.

 3. In the Property Grid, choose the TabPages property to open the TabPages Collection

Editor. Add tab pages until there is a total of four pages. Set the Text properties of

these four TabPage controls to GroupBox, FlowLayoutPanel, TableLayoutPanel, and

SplitContainer, respectively. Click OK.

 4. In the form, select the tab labeled GroupBox. From the Toolbox, drag a GroupBox con-

trol onto the surface of the TabPage control.

 5. Drag two RadioButton controls into the GroupBox.

 6. In the form, select the tab labeled FlowLayoutPanel. From the Toolbox, drag a FlowLay-

outPanel control onto the surface of the TabPage control. Set the Dock property of the

FlowLayoutPanel to Fill.

 7. From the Toolbox, add four Button controls to the FlowLayoutPanel.

 8. Double-click Button1 and add the following code to the Click event handler:

 ' VB

FlowLayoutPanel1.SetFlowBreak(Button3, True)

// C#

flowLayoutPanel1.SetFlowBreak(button3, true);

 9. Select the Designer for the form. In the form, select the tab labeled TableLayoutPanel.

From the Toolbox, add a TableLayoutPanel control to the TabPage. Set the CellBorder-

Style property to Inset and AutoScroll to True.

 10. From the Toolbox, add a Button control to the upper-left cell of the TableLayoutPanel.

 11. Double-click the Button and add the following code to the Button5_Click event han-

dler:

 ' VB

Dim aButton As New Button

TableLayoutPanel1.Controls.Add(aButton, 1, 1)

// C#

Button aButton = new Button();

tableLayoutPanel1.Controls.Add(aButton, 1, 1);

 12. In the Designer, choose the SplitContainer tab. From the Toolbox, add a SplitContainer

control to this TabPage. Set the BorderStyle property to Fixed3D.

 13. From the Toolbox, add two Button controls to Panel1 of the SplitContainer. Set the Text

properties of these buttons to Fix/Unfi x Panel1 and Fix/Unfi x Splitter. Resize the

form, Panel1, and the buttons as necessary to display the text.

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 37

 14. Add a Button to Panel2 and set the Text property to Collapse/Uncollapse Panel1.

Resize the button as necessary to display the text.

 15. Double-click the button labeled Fix/Unfi x Panel1 and add the following code to the

Click event handler:

 ' VB

If SplitContainer1.FixedPanel = FixedPanel.Panel1 Then

 SplitContainer1.FixedPanel = FixedPanel.None

Else

 SplitContainer1.FixedPanel = FixedPanel.Panel1

End If

// C#

if (splitContainer1.FixedPanel == FixedPanel.Panel1)

{

 splitContainer1.FixedPanel = FixedPanel.None;

}

else

{

 splitContainer1.FixedPanel = FixedPanel.Panel1;

 }

 16. Double-click the button labeled Fix/Unfi x Splitter and add the following code to the

Click event handler:

 ' VB

SplitContainer1.IsSplitterFixed = Not SplitContainer1.IsSplitterFixed

// C#

splitContainer1.IsSplitterFixed = !(splitContainer1.IsSplitterFixed);

 17. Double-click the button labeled Collapse/Uncollapse Panel1 and add the following

code to the Click event handler:

 ' VB

SplitContainer1.Panel1Collapsed = Not SplitContainer1.Panel1Collapsed

// C#

splitContainer1.Panel1Collapsed = !(splitContainer1.Panel1Collapsed);

 18. Press F5 to run the application.

 19. In the GroupBox tab, alternately select the radio buttons and note that the radio but-

tons are automatically mutually exclusive.

 20. In the FlowLayoutPanel tab, resize the form with the mouse. Note the automatic

change in layout that occurs. Click Button1 and note the effect of setting a fl ow break

on Button3.

 38 CHAPTER 1 Windows Forms and the User Interface

 21. In the TableLayoutPanel tab, click Button5 to observe how new controls are added to

the TableLayoutPanel.

 22. In the SplitContainer tab, resize the form and resize each panel by moving the Splitter.

Click each button in turn and observe the effect on the ability of the control to resize.

Lesson Summary
 Container controls can be used to group and arrange controls on a form. Container

controls include Panel, GroupBox, FlowLayoutPanel, TableLayoutPanel, and Split-

Container controls.

 GroupBox controls are usually used to group RadioButton controls.

 Panel controls create distinct subsections of a form. FlowLayoutPanel controls and

TableLayoutPanel controls are derivatives of the Panel that provide added layout capa-

bilities.

 The SplitContainer encapsulates two SplitterPanel controls and a Splitter. The user can

resize the panels by grabbing and moving the Splitter.

 The TabControl control maintains a collection of TabPage controls that each function

similarly to individual panels. The user can select each tab page at run time by choos-

ing the corresponding tab that is displayed on the edge of the tab control.

 Lesson Review
 You can use the following questions to test your knowledge of the information in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following code samples demonstrates how to set a fl ow break on a con-

trol named aButton in a FlowLayoutPanel named FLPanel1?

 A. ' VB

aButton.SetFlowBreak()

// C#

aButton.SetFlowBreak();

 B. ' VB

aButton.SetFlowBreak(FLPanel1)

// C#

aButton.SetFlowBreak(FLPanel1);

NOTE AnswersE

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Managing Control Layout with Container Controls CHAPTER 1 39

 C. ' VB

FLPanel1.SetFlowBreak(aButton, True)

// C#

FLPanel1.SetFlowBreak(aButton, true);

 D. ' VB

FLPanel1.aButton.SetFlowBreak

// C#

FLPanel1.aButton.SetFlowBreak();

 2. You are designing an application that includes a property page that enables the user

to set properties of the application. These properties are divided into three categories:

Appearance, Execution, and Memory Management. Which container control represents

the best starting point for the user interface?

 A. TableLayoutPanel

 B. FlowLayoutPanel

 C. GroupBox

 D. TabControl

 3. Which of the following is the correct way to add a control to a form at design time?

(Choose all that apply.)

 A. Select a control in the Toolbox and double-click the form.

 B. Select a control in the Toolbox and draw on the form with the mouse.

 C. Double-click the control in the Toolbox.

 D. Select the control in the Toolbox and drag it to the form.

 4. Which of the following code samples demonstrates the correct way to add a Button

control to a form named Form1 at run time?

 A. ' VB

Form1.Controls.Add(Button)

// C#

Form1.Controls.Add(Button);

 B. ' VB

 Dim aButton As New Button

 Form1.Controls.Add(aButton)

 // C#

 Button aButton = new Button();

 Form1.Controls.Add(aButton);

 40 CHAPTER 1 Windows Forms and the User Interface

 C. ' VB

 Dim aButton As New Button

 Form1.Add(aButton)

// C#

Button aButton = new Button();

Form1.Add(aButton);

 D. ' VB

 Form1.Add(New Button)

// C#

Form1.Add(new Button);

 5. Which code sample correctly demonstrates how to add a new panel to a SplitContainer

named SpC1?

 A. ' VB

SpC1.Controls.Add(New Panel)

// C#

SpC1.Controls.Add(new Panel());

 B. ' VB

SpC1.Controls.Add(New SplitterPanel)

// C#

SpC1.Controls.Add(new SplitterPanel());

 C. ' VB

SpC1.Add(New SplitterPanel)

// C#

SpC1.Add(new SplitterPanel());

 D. ' VB

None of the above

// C#

None of the above

 Chapter Review CHAPTER 1 41

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 The form is the basic building block of Windows Forms applications. Forms provide a

variety of properties that you can use to affect the appearance of the user interface, in-

cluding Text, BorderStyle, Size, Opacity, and the behavior of the UI, such as Windowstate

and TopMost.

 Forms are generally rectangular, but you can create nonrectangular forms by setting

the Region property to a nonrectangular region.

 Container controls can host and help manage layout of individual controls.

 The SplitContainer control can be used to create dynamically sizable sections of a form,

each of which contains its own controls.

 Controls can be added to a form at design time by selecting a control from the Tool-

box or they can be added dynamically at run time.

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

 container control

 control

 Toolbox

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about Windows Forms and

the UI. You can fi nd answers to these questions in the “Answers” section at the end of this

book.

 42 CHAPTER 1 Windows Forms and the User Interface

 Case Scenario 1: Designing a User Interface

 You are a Windows Forms developer recently hired by Adventure Works to create an internal

 Windows Forms application. This application is to be an administrator version of a highly suc-

cessful Web site that uses frames for navigational purposes and presents a complex UI with

several controls and images. Your job is to make the look and feel of the Windows application

UI match the Web site experience as closely as possible. What are some strategies that you

could use to design this UI?

 Case Scenario 2: Designing a Web Browser

 Adventure Works has asked you be part of the team that will create a Web browser for its

internal site. The .NET control WebBrowser will be used for the actual Web browsing function-

ality. One of the primary demands for the UI is the ability to have only a single instance of the

application running but to be able to have multiple Web pages open that the user can rapidly

switch between without having to navigate back and forth. How might you use container

controls to design this aspect of the UI?

 Suggested Practices

 To master the “Add and Confi gure a Windows Form” objective, complete the following tasks.

 Add a Windows Form to a Project at Design Time
 For this task, complete Practice 1.

 Practice 1 Create a custom form that appears as an ellipse at run time. This form

should contain functionality that allows the user to close it at run time.

 Confi gure a Windows Form to Control Accessibility,
Appearance, Behavior, Confi guration, Data, Design, Focus,
Layout, Style, and Other Functionalities
 For this task, complete Practices 1, 2, and 3.

 Practice 1 Create an application that enables the user to create new instances of a

form by clicking a button.

 Practice 2 Create an application that enables the user to resize the form and change

visual properties of the form, such as BorderStyle and Opacity. Set the startup form to

always be on top of the UI and to start in the upper left-hand corner of the screen.

 Practice 3 Create a multiform application and set the second form to be the startup

form. Set the startup form to be maximized at startup.

 Take a Practice Test CHAPTER 1 43

Manage Control Layout on a Windows Form
For this task, complete Practice 1.

 Practice 1 Create an application that uses the GroupBox, Panel, TabControl, Flow-

LayoutPanel, TableLayoutPanel, and SplitContainer controls to arrange the layout of

controls on a form.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 2 45

 C H A P T E R 2

 Confi guring Controls and
Creating the User Interface

 This chapter explores in depth how to confi gure controls and create the user interface

(UI). Controls are graphical components that provide reproducible functionality that you

can use to create a consistent user interface experience over several applications. Microsoft

Visual Studio provides controls for information display, data input, user interaction, and

other specialized tasks.

 In this chapter you will learn general procedures for manipulating controls in your

application, and you will learn about the specifi c properties of command and text display

controls. In Chapter 3, “Advanced Windows Forms Controls,” you will learn about value-

setting controls, list-based controls, and other advanced Windows Forms controls.

 Exam objectives in this chapter:

 Add and confi gure a Windows Forms control.

 Confi gure controls on a Windows Form at design time to optimize the user

interface (UI).

 Modify control properties.

 Confi gure controls in a Windows Form at run time to ensure that the UI complies

with best practices.

 Create and confi gure command controls on a Windows Form.

 Create and confi gure text display controls on a Windows Form.

 Create and confi gure text edit controls on a Windows Form.

 Use the LinkLabel control to add Web-style links to Windows Forms applications.

 Lessons in this chapter:

 Confi guring Controls in Windows Forms 47

 Creating and Confi guring Command and Text Display

Controls 62

 Creating and Confi guring Text Edit Controls 73

 46 CHAPTER 2 Confi guring Controls and Creating the User Interface

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book .

 Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the .NET

Framework .

 Completed Chapter 1, “ Windows Forms and the User Interface,” or have a good under-

standing of Windows Forms, how to add controls to forms, and how to use the Visual

Studio Integrated Development Environment (IDE) .

 REAL WORLD

Matt Stoecker

 The design of the UI is crucial to the success of an application. I fi nd that a user

interface must be internally consistent, fl ow logically, and be easy for the user

to use and understand. Poorly designed UIs have led to lost hours in training and

use and, ultimately, to lost productivity.

REAL WORLD

Matt Stoecker

The design of the UI is crucial to the success of an application. I fi nd that a user

interface must be internally consistent, fl ow logically, and be easy for the user

to use and understand. Poorly designed UIs have led to lost hours in training and

use and, ultimately, to lost productivity.

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 47

Lesson 1: Confi guring Controls in Windows Forms

This lesson describes general principles of creating and confi guring controls. You will learn

common properties of controls, how to change the properties of controls at design time or

at run time, and how to control the layout of your controls. You will learn the various mecha-

nisms the IDE exposes to modify controls quickly, and you will learn how to design your UI in

accordance with best practices.

After this lesson, you will be able to:

 Modify the size of a control at design time.

 Modify the location of a control at design time.

 Anchor a control within a Windows Form or other container control.

 Dock a control within a Windows Form or other container control.

 Modify control properties by using the Properties window.

 Modify control properties by using smart tags.

 Manage the allocation of controls in a Windows Form by using the Document

Outline window.

 Confi gure controls in a Windows Form at run time to ensure that the UI follows

best practices.

 Estimated lesson time: 45 minutes

 Overview of Controls
 Controls are components that combine a graphical interface with predesigned functionality.

Controls are reusable units of code that are designed to fulfi ll particular tasks. For example,

the TextBox control is designed to display text and receive textual input from the user, and it

provides properties, methods, and events that facilitate these tasks.

 All controls inherit from the base class Control and, as such, share a variety of properties

relating to size, location, and other general aspects of controls. Table 2-1 describes some of

the common properties of controls.

 TABLE 2-1 Common Properties of Controls

 PROPERTY DESCRIPTION

 Anchor Determines how the control is anchored in its parent form or

container control.

 BackColor Gets or sets the BackColor of the control.

 BackgroundImage Represents the image that is painted as the background image of the

control.

After this lesson, you will be able to:

Modify the size of a control at design time.

Modify the location of a control at design time.

Anchor a control within a Windows Form or other container control.

Dock a control within a Windows Form or other container control.

Modify control properties by using the Properties window.

Modify control properties by using smart tags.

Manage the allocation of controls in a Windows Form by using the Document

Outline window.

Confi gure controls in a Windows Form at run time to ensure that the UI follows

best practices.

Estimated lesson time: 45 minutes

 48 CHAPTER 2 Confi guring Controls and Creating the User Interface

 PROPERTY DESCRIPTION

 CausesValidation Represents whether a control causes validation; validation enables

you to verify that user input meets specifi c formatting and value

requirements.

 ContainsFocus Indicates whether this control or one of its child controls has the

focus.

 Controls Gets the collection of controls contained within this control. Used

only for containers.

 Cursor Represents the cursor that is used when the mouse pointer is over

this control.

 Dock Determines how the control is docked in its parent form or container

control.

 Enabled Gets or sets whether the control is enabled. If a control is not

enabled, it appears dimmed and cannot be selected or edited.

 Font Gets or sets the font used to display text by this control.

 ForeColor Represents the color used in the foreground of this control, primarily

for displaying text.

 HasChildren Gets a value that indicates if this control has any child controls.

 Height Represents the height of the control in pixels.

 Location Indicates the location of the upper left-hand corner of this control

relative to the upper left-hand corner of its parent form or container

control.

 MaximumSize Gets or sets the maximum size for the control.

 MinimumSize Gets or sets the minimum size for the control.

 Name Represents the name used to refer to the control in code. This prop-

erty can be altered only at design time and cannot be modifi ed at

run time.

 Parent Gets or sets the parent form or container control for this control.

Setting this property adds the control to the new parent’s controls

collection.

 Region Gets or sets the window region associated with the control.

 Size Represents the size of the control in pixels.

 TabIndex Indicates in what order the control is selected when the Tab key is

used to navigate from control to control.

 Tag Enables the programmer to store a value or object associated with

the control.

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 49

 PROPERTY DESCRIPTION

 Text Gets or sets the text associated with the control. The text might or

might not be displayed, depending on the type of control and other

property settings.

 Visible Indicates whether the control is visible.

 Width Represents the width of the control in pixels.

 Confi guring Controls at Design Time
 As seen in Chapter 1, you can add a control to a form or container control at design time by

dragging it from the Toolbox, selecting it in the Toolbox and clicking the form, or double-

clicking the control in the Toolbox. Using any of these methods, you can add the control to

the design surface. When the control is in the Designer, you can modify its properties. You

can adjust many of the properties of a control graphically in the Designer by using the mouse.

For other properties you can modify control properties in the Properties window.

 Control Size and Location

 The method of modifying a control with the mouse is intuitive and allows you to adjust the

control to exactly the desired size. You adjust the size of a control with the mouse by fi rst

selecting the control, usually by clicking it in the Designer. This causes the control to be

outlined by white squares and a dotted line as shown in Figure 2-1.

 FIGURE 2-1 A selected Form control in the Designer

 Once the control has been selected, you can resize it in the Designer by grabbing an edge

or a corner and dragging it with the mouse.

 You can also resize a control in the Properties window by modifying the Size property. The

Size property has two components, Width and Height, which represent the width and height

of the control in pixels. You can modify these individual components by expanding the Size

property and typing a new value for one of the components in the Properties window, or you

can modify the Size property directly. The control is resized accordingly.

 You can choose one of two ways to resize a control.

 50 CHAPTER 2 Confi guring Controls and Creating the User Interface

 TO RESIZE A CONTROL AT DESIGN TIME

 1. Select the control, and then drag a corner or an edge to the appropriate size.

 2. Modify the Size property in the Properties window by either changing the Size prop-

erty directly or expanding the Size property and changing the Height or Width.

 The Designer also provides an easy way to set the location of a control on a form or con-

tainer control. You can change the location of a control graphically by grabbing the middle of

the control with the mouse and dragging it to the new location.

 You can also set the location of the control by modifying the Location property in the

Properties window. The Location property represents the coordinates of the upper left-hand

corner of the control relative to the upper left-hand corner of the parent form or container

control. The Location property has two components, X and Y. You can modify the Location

property directly in the Properties window, or you can expand the Location property and

individually set the X or Y values. The property will relocate to the new location.

 You can choose one of two ways to change the location of a control.

 TO CHANGE THE LOCATION OF A CONTROL AT DESIGN TIME

 1. Grab the middle of the control with the mouse and drag it to the appropriate location.

 2. Set the Location property of the control in the Properties window, either by setting the

Location property directly or by expanding the Location property and modifying the

values of X or Y as appropriate.

 You can also reposition a group of controls graphically with the mouse. You must fi rst

select all of the controls that you want to move, either by outlining the appropriate controls

with the mouse or by holding down the Ctrl key and clicking each control in turn. A group of

selected controls is shown in Figure 2-2.

 FIGURE 2-2 A group of selected controls in the Designer

 Once the group of controls is selected, you can move the group by grabbing the middle

of one of the controls and moving it with the mouse. You can also set property values for

multiple controls simultaneously by selecting multiple controls and setting a property in the

Properties window.

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 51

 The Layout Toolbar

 The Layout toolbar provides a quick and easy way to accomplish many of the control layout

tasks required at design time. The Layout toolbar is not one of the default toolbars, so you

might need to add it to the IDE. You can add the Layout toolbar by selecting the View menu,

choosing Toolbars, and then selecting Layout. The Layout toolbar is shown in Figure 2-3.

 FIGURE 2-3 The Layout toolbar

 The Layout toolbar allows you to adjust the vertical and horizontal alignment of a group of

controls. The toolbar buttons associated with these tasks are shown in Figure 2-4.

 FIGURE 2-4 Horizontal and vertical spacing buttons

 You can apply any of these layout buttons to a group of controls by selecting the group of

controls and then clicking the appropriate button.

 TO ADJUST CONTROL SPACING WITH THE LAYOUT TOOLBAR

 1. If necessary, add the Layout toolbar to the IDE by selecting the View menu, choosing

Toolbars, and then selecting Layout.

 2. Select the group of controls that you want to adjust.

 3. Adjust the control spacing by clicking the appropriate button.

 The Layout toolbar also contains buttons that allow you to align the controls in the

Designer. The buttons involved in alignment are shown in Figure 2-5.

 FIGURE 2-5 Control alignment buttons

 You can apply any of these alignment buttons to a group of controls by selecting the

group of controls and then clicking the appropriate button.

 TO ADJUST CONTROL ALIGNMENT WITH THE LAYOUT TOOLBAR

 1. If necessary, add the Layout toolbar to the IDE by selecting the View menu, choosing

Toolbars, and then selecting Layout.

 2. Select the group of controls that you want to adjust.

 3. Adjust the control spacing by clicking the appropriate button.

 52 CHAPTER 2 Confi guring Controls and Creating the User Interface

Snaplines

Snaplines give you visual aid and feedback when locating controls on a form or within a con-

tainer control. When you drag a control onto a form or container control, snaplines appear,

providing cues relating to control alignment.

When you drag a control near the edge of a form, container control, or other control, a

snapline appears, indicating the distance represented by the Margin property. Also, snaplines

indicating vertical and horizontal alignment of control edges appear when a control that is

being dragged comes into alignment with an adjacent control. When a snapline appears, you

can drop the control to create an aligned UI. Horizontal, vertical, and margin snaplines are

shown in Figure 2-6.

 FIGURE 2-6 Snaplines

 If snaplines are disabled, you can enable them in the Options dialog box, as described in

the following steps.

 TO ENABLE SNAPLINES

 1. From the Tools menu, select Options to open the Options dialog box.

 2. In the left-hand pane, expand Windows Forms Designer and select General.

 3. In the right-hand pane set LayoutMode to SnapLines.

 4. Click OK.

Quick Check

 1. What is the purpose of snaplines?

 2. What can you use the Layout toolbar for?

Quick Check

1. What is the purpose of snaplines?

2. What can you use the Layout toolbar for?

Q

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 53

Quick Check Answers

 1. Snaplines appear at design time and help you align controls to the form or to

each other.

 2. The Layout toolbar allows you to align controls on a form and adjust their

spacing.

Modifying Control Properties at Design Time
Although you can modify properties of controls such as location and size by manipulating the

control in the Designer, other mechanisms allow you to set control properties in the Designer,

including the Properties window, smart tags, and the Document Outline window.

The Properties Window

The primary interface for setting control properties is the Properties window, which exposes

the properties of a form, component, or control that can be set at design time. You can set

property values for most properties by selecting the property and typing a new value for

the property into the Properties window. For some properties, such as the Dock and Anchor

properties, the Properties window provides specialized graphical interfaces that assist in set-

ting the property value. The Properties window is shown in Figure 2-7.

FIGURE 2-7 The Properties window

If the Properties window is not visible, you can open it with the following procedure.

Quick Check Answers

1. Snaplines appear at design time and help you align controls to the form or to

each other.

2. The Layout toolbar allows you to align controls on a form and adjust their

spacing.

 54 CHAPTER 2 Confi guring Controls and Creating the User Interface

 TO OPEN THE PROPERTIES WINDOW

 From the View menu, choose Properties Window. Or press F4.

 TO SET A PROPERTY IN THE PROPERTIES WINDOW

 1. With the mouse, click the property you want to set.

 2. Type the new value for the property or use the specialized interface if this property

provides one.

 Dock and Anchor Properties

 The Dock and Anchor properties allow you to defi ne how a control behaves within the con-

fi nes of its parent form or container control. The Anchor property defi nes a constant distance

between one or more edges of a control and the corresponding edges of the control’s parent

form or container control. The Dock property allows you to attach a control to an edge of the

parent form or container control or to fi ll the form completely.

 The Anchor Property

 The Anchor determines which edges of the control, if any, maintain a constant distance from

the edge of its parent form or container control when the parent is resized. The default value

for this property is Top, Left, which means that the top and left edges of the control will main-

tain a constant distance from the corresponding edges of its parent. This has the effect of the

control maintaining both its position and size when the parent is resized. If opposite edges

(for example, right and left) are both set in the Anchor property, the control stretches when

the parent is resized. If neither of opposite edges is set in the Anchor property, the control

fl oats when the parent is resized.

 You set the Anchor property in the Properties window. The Anchor property has a special

interface (shown in Figure 2-8) that allows you to choose the edges to anchor.

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 55

 FIGURE 2-8 Setting the Anchor property

 TO SET THE ANCHOR PROPERTY

 1. In the Properties window, choose Anchor and click the drop-down box. The Anchor

property visual interface appears.

 2. Click the bars indicating the edges you want to anchor. When fi nished, click outside of

the Anchor property interface.

 The Dock Property

 The Dock property allows you to attach a control to the edge of its parent. For example, a

control docked to the top edge of a form or container control is always connected to the top

edge of the parent control and automatically resizes in the left and right directions when its

parent is resized. The Dock property can also be set to Fill, in which case the control occupies

all of the available space in the parent control. This setting is usually used with a container

control, such as SplitContainer or FlowLayoutPanel.

 Like the Anchor property, the Dock property provides a graphical interface for setting the

value, as shown in Figure 2-9.

 56 CHAPTER 2 Confi guring Controls and Creating the User Interface

 FIGURE 2-9 Setting the Dock property

 TO SET THE DOCK PROPERTY

 1. In the Properties window, choose the Dock property and click the drop-down box. The

Dock property visual interface appears.

 2. Click the box indicating the value you want to set the Dock property to.

 Smart Tags

 Some controls expose their most common tasks through smart tags. When present, smart

tags appear as small boxes in the upper right-hand corner of the control, as shown in Figure

2-10.

 FIGURE 2-10 A Combo box with a smart tag

 When the smart tag is clicked, a box that facilitates the most common tasks appears, as

shown in Figure 2-11.

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 57

 FIGURE 2-11 Combo box smart tag tasks

 TO MODIFY CONTROL PROPERTIES BY USING SMART TAGS

 1. For controls that expose smart tags, click the smart tag in the Designer. A control-

specifi c Tasks box opens.

 2. Use the Tasks box to perform common tasks associated with the control.

 Document Outline Window

 When you are creating forms that contain several container controls, the Document Outline

window can be useful for allocating controls between the various containers. The Document

Outline window graphically displays all of the controls and container controls that reside in

a form. With the mouse, you can grab controls in the Document Outline window and move

them from one container to another. You can also delete controls from the form by deleting

them in the Document Outline window and add them by copying them from the Toolbox and

pasting them into the Document Outline window. Figure 2-12 shows the Document Outline

window.

 FIGURE 2-12 The Document Outline window

 58 CHAPTER 2 Confi guring Controls and Creating the User Interface

 TO OPEN THE DOCUMENT OUTLINE WINDOW

 From the View menu, select Other Windows, and then select Document Outline. Or press

Ctrl+Alt+T.

 TO MOVE CONTROLS FROM ONE CONTAINER TO ANOTHER IN THE

DOCUMENT OUTLINE WINDOW

 1. In the Document Outline window, grab the control you want to move with the mouse.

 2. Drag the control onto the name of the container control you want to add it to.

 TO REMOVE A CONTROL FROM A PROJECT WITH THE DOCUMENT OUTLINE

WINDOW

 Select the control in the Document Outline window and press Delete. Note that if you delete

a container control in this way, you will also delete any contained controls.

 TO ADD A CONTROL TO A PROJECT WITH THE DOCUMENT OUTLINE WINDOW

 1. Right-click a control in the Toolbox and choose Copy.

 2. In the Document Outline window, right-click the form or container control you want to

add a new control to and choose Paste.

 Best Practices for User Interface Design
 How your UI is composed infl uences how easily users can learn and use your application.

Primary considerations for UI design include:

 Simplicity

 Position of controls

 Consistency

 Aesthetics

 Simplicity

 Simplicity is an important aspect of a UI. A complex UI makes an application more diffi cult

to learn, resulting in lost productivity. A UI should allow a user to quickly complete all tasks

required by the program but should expose only the functionality needed at each stage of

the application.

 When designing your UI, keep program fl ow and execution in mind. Controls that display

related data should be grouped together on the form. You can use container controls to

organize related controls into distinct subsections of a form. Controls such as list boxes,

combo boxes, and check boxes can be used to display data and allow users to choose

between preset options. Enable default values whenever possible. For example, if most of

the intended users of an application will choose United States in a Country fi eld, set United

States as the default value for that fi eld. Note that you should always make it easy to override

a default value when necessary.

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 59

 Position of Controls

 The location of controls on your UI should refl ect their relative importance and frequency of

use. For example, if your form collects both required and optional information, the controls

that collect required information are more important and should receive greater prominence

in the UI.

 Because relatedness of information is an important consideration, controls that display

related information should be grouped together. For example, if you have a form that dis-

plays information about a customer, a purchase, or an employee, you can group each set of

controls on a TabControl that allows the user to easily move back and forth between displays.

 Consistency

 A UI should exhibit a consistent design across each form in your application. An inconsistent

design can make your application seem disorganized or chaotic, making it harder for your

target audience to adopt it.

 Consistency is created from the use of colors, fonts, size, and types of control. Before

developing an application, decide on a visual scheme that will remain consistent throughout

the application. The use of system colors and fonts can create a consistent user experience

throughout the application.

 Aesthetics

 Whenever possible, a UI should be inviting and pleasant. Although clarity and simplicity

should not be sacrifi ced for the sake of attractiveness, try to create an application that will not

dissuade users.

 The use of color can help make your UI attractive to the target audience, but overuse can

inhibit adoption. Loud, vibrant colors might be initially appealing but can cause eyestrain and

might be unappealing to some users. When possible, use muted colors with broad appeal.

Never rely on color alone to convey information and, when designing for international audi-

ences, be aware that certain colors might have cultural signifi cance.

 Usability should determine the fonts you choose for your application. You should avoid

fonts that are diffi cult to read; stick to common, easy-to-read fonts, such as Times New

Roman or Arial. Use decorative fonts for special visual effects only when appropriate and

never to convey important information.

 LAB Practice Confi guring Controls

 In this lab, you will practice confi guring controls at design time. You will use the techniques

described in the previous lesson to add controls to a Windows Form, set the location and size

in the Properties window, and use smart tags, the Layout toolbar, snaplines, and the Docu-

ment Outline window. You can install the completed sample from the companion CD.

 60 CHAPTER 2 Confi guring Controls and Creating the User Interface

 EXERCISE 1 Practice Confi guring Controls

 1. Open Visual Studio and create a new Windows Forms project.

 2. From the Toolbox, drag a SplitContainer onto the form.

 3. Open the SplitContainer smart tag and choose Horizontal Splitter Orientation. The

Orientation property of the SplitContainer is set to Horizontal.

 4. From the Toolbox, drag three Button controls into the top panel of the SplitContainer.

Use snaplines to align them horizontally.

 5. Select Button1. In the Properties window, set the Location property to 0, 0.

 6. Select Button2. In the Properties window, set the Size property to 30, 50.

 7. If the Layout toolbar is not visible, add it to the IDE by choosing View, Toolbars, and

then Layout.

 8. In the form, select all three controls and align their bottom edges by clicking the Align

Bottoms button in the Layout toolbar.

 9. Press Ctrl+Alt+T to open the Document Outline window.

 10. In the Document Outline window, select Button3 and move it to SplitContainer1.

Panel2.

 11. In the form, select Button3. In the Properties window, set the Dock property to Bottom.

 12. In the form, select Button2. In the Properties window, set the Anchor property to

Bottom, Right.

 13. Press F5 to run the application. Using the mouse, resize the form and observe the dif-

ferent behavior of the three buttons.

 Lesson Summary
 Visual Studio gives you several mechanisms for managing the layout of controls on

your form, including:

•• The Properties window

•• Layout toolbar

•• Snaplines

•• Control modifi cation in the Designer using the mouse

 You can modify individual properties of controls in the Properties window. Some prop-

erties provide specialized graphical interfaces to help you set the property value.

 Smart tags expose the most common confi guration tasks of several controls.

 The Anchor and Dock properties allow you to set specialized behaviors for controls on

your form.

 The Document Outline window provides an easy way to manage the allocation of con-

trols between your form and container controls.

 Lesson 1: Confi guring Controls in Windows Forms CHAPTER 2 61

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in an

electronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following can be used to modify the size of a control in a form at design

time? (Choose all that apply.)

A. Grabbing and dragging the edges of the control

B. Setting the control size in the View menu

 C. Clicking the smart tag and entering a new size for the control

 D. Editing the Size property in the Properties window

 2. Which of the following methods can be used to modify the location of controls in a

form at design time? (Choose all that apply.)

 A. Changing the Location property in the Properties window

 B. Grabbing the control and moving it with the mouse

 C. Using the Layout toolbar to adjust control spacing

 D. Using the Location window to graphically position controls

 3. Which setting of the Anchor property allows controls to fl oat freely when the form is

resized?

 A. Top

 B. Top, Bottom

 C. None

 D. Right, Left

 4. Which setting of the Dock property causes the control to fi ll its form or container con-

trol?

 A. Top

 B. Fill

 C. Top, Left, Right, Bottom

 D. None, you should use the Anchor property

NOTE ANSWERSE

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 62 CHAPTER 2 Confi guring Controls and Creating the User Interface

Lesson 2: Creating and Confi guring Command and
Text Display Controls

This lesson explains the use of command and text display controls. Text display controls such

as Label and LinkLabel are most commonly used to convey read-only information to the user.

Command controls such as the Button control are used to execute tasks or continue with the

application. You will learn common properties and events of the Button, Label, and LinkLabel

controls and how to use them in designing your UI.

After this lesson, you will be able to:

 Confi gure a Button control that a user can click to perform actions.

 Use a Label control to display text that the user cannot alter.

 Use the LinkLabel control to add Web-style links to Windows Forms applications.

Estimated lesson time: 30 minutes

The Button Control
One of the most familiar controls in the Toolbox is the Button control. The Button control

is the primary control that enables command interaction between the user and the UI. The

Button can display a short string on its face and can respond to user clicks. The Button control

gives a visual cue when clicked and exposes an event handler that allows the developer to

write code that executes when the Button is clicked.

The Button control exposes several properties that enable you to customize its appearance

and behavior. Table 2-2 shows important properties of the Button control.

 TABLE 2-2 Important Properties of the Button Control

 PROPERTY DESCRIPTION

 AutoEllipsis Enables the automatic handling of text that extends beyond

the width of the button

 DialogResult Sets a DialogResult value that you can associate with the but-

ton, such as DialogResult.OK or DialogResult.Cancel

 FlatAppearance Defi nes styles that govern how the button appears and

behaves when the FlatStyle property is set to Flat

 FlatStyle Sets the visual style of the button when a user moves the

mouse over the button and clicks

 Text Sets the text that appears on the button

 TextAlign Indicates how the text displayed on the button is aligned

After this lesson, you will be able to:

Confi gure a Button control that a user can click to perform actions.

Use a Label control to display text that the user cannot alter.l

Use the LinkLabel control to add Web-style links to Windows Forms applications.l

Estimated lesson time: 30 minutes

 Lesson 2: Creating and Confi guring Command and Text Display Controls CHAPTER 2 63

 Responding to Clicks

 The primary function of a Button control in the UI is to respond to user mouse clicks. When

a user clicks a button, it typically causes code to be executed. For example, you might have

an OK button that causes the application execution to continue after the user has provided

necessary information or you might have a Cancel button that returns execution to a previous

step.

 You can write code to be executed when the button is clicked by using the Button.Click

event handler. This is a method that is activated when the button is clicked and then executes

appropriate code.

 TO WRITE CODE FOR THE BUTTON.CLICK EVENT HANDLER

 1. In the Designer, double-click the button you want to write code for. Visual Studio auto-

matically generates a method declaration named Button_Click and adds code behind-

the-scenes to confi gure the method to handle the Button.Click event. Visual Studio

displays the new Button_Click method that runs when the user clicks the button.

 2. Write the appropriate code in this method. At run time this code is executed when the

button is clicked. The following code shows an example of a complete Button_Click

method:

 ' VB

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _

 System.EventArgs)_

 Handles Button1.Click

 MsgBox("The Button has been clicked!")

End Sub

// C#

private void button1_Click(object sender, EventArgs e)

{

 MessageBox.Show("The Button has been clicked!");

}

 Events and event handlers will be covered in greater detail in Chapter 4, “Tool Strips,

Menus, and Events.”

 Responding to Other Clicks

 Although the Button.Click event handler is useful for responding to simple clicks, you can also

confi gure a button or other control to respond to other mouse clicks as well, such as right-

clicks. You can respond to these clicks by using the MouseDown event.

 One of the arguments for the Button.MouseDown event handler is an instance of

MouseEventArgs. This argument contains detailed information about the location and

click-state of the mouse and can be used to differentiate between left-clicks, right-clicks,

 64 CHAPTER 2 Confi guring Controls and Creating the User Interface

double-clicks, and other mouse interactions. Table 2-3 describes the properties of the

MouseEventArgs class.

TABLE 2-3 Properties of MouseEventArgs

 PROPERTY DESCRIPTION

 Button Indicates the mouse button that was pressed. Possible values are Left,

Right, Middle, None, XButton1, or XButton2.

 Clicks Gets the number of times the button was pressed and released.

 Delta Gets a count of how many notches the mouse wheel has rotated.

 Location Gets the current location of the mouse pointer.

 X Gets the X coordinate of the mouse pointer.

 Y Gets the Y coordinate of the mouse pointer.

 Using the values exposed by the MouseEventArgs instance, you can determine the button

that was clicked and the position of the mouse wheel. Note that if any button other than the

left button clicks a control, the control will not give the visual feedback (the “click” in the UI)

that is customary for a button.

 TO RESPOND TO VARIOUS MOUSE CLICKS

 1. In the Designer, select the Button control you want to write code for.

 2. In the Properties window, click the lightning bolt toolbar button (shown in Figure 2-13)

to view the Button control’s events.

 FIGURE 2-13 The lightning bolt toolbar button

 3. In the Properties window, double-click the cell next to MouseDown to have Visual

Studio generate and display an event handler for Button.MouseDown.

 4. Write code in this event handler that responds to the desired mouse click combination.

The following example demonstrates how to differentiate between the left and right

buttons:

 ' VB

Private Sub Button1_MouseDown(ByVal sender As System.Object, ByVal e As _

 System. Windows.Forms.MouseEventArgs) Handles Button1.MouseDown

 Select Case e.Button

 Case Windows.Forms.MouseButtons.Left

 MsgBox("The left button was clicked")

 Case Windows.Forms.MouseButtons.Right

 MsgBox("The right button was clicked")

 Case Else

 Lesson 2: Creating and Confi guring Command and Text Display Controls CHAPTER 2 65

 MsgBox("Some other button was clicked")

 End Select

End Sub

// C#

private void button1_MouseDown(object sender, MouseEventArgs e)

{

 switch (e.Button)

 {

 case MouseButtons.Left:

 MessageBox.Show("The left button was clicked");

 break;

 case MouseButtons.Right:

 MessageBox.Show("The right button was clicked");

 break;

 default:

 MessageBox.Show("Some other button was clicked");

 break;

 }

}

 FlatStyle and FlatAppearance

 The FlatStyle property determines whether the button has a three-dimensional, raised

appearance or a fl at appearance. You can give a button a fl at appearance by setting the

FlatStyle property to Flat.

 When the FlatStyle property is set to Flat, the FlatAppearance property determines how

the button looks and behaves in the UI. The FlatAppearance property is an instance of a

structure that contains properties described in Table 2-4.

 TABLE 2-4 Properties of FlatAppearance

 PROPERTY DESCRIPTION

 BorderColor Sets the color of the button border

 BorderSize Sets the size of the button border

 MouseDownBackColor Sets the color of the button when the left mouse button

clicks this button

 MouseOverBackColor Sets the color of the button when the mouse pointer is

over the button

 When the FlatStyle is set to Flat, there are fewer built-in visual cues that allow the user to

interact with the button. You can provide additional cues by setting appropriate values in the

FlatAppearance property. The following procedure describes how to set the BackColor of the

button when under the mouse.

 66 CHAPTER 2 Confi guring Controls and Creating the User Interface

 TO CHANGE THE BACKCOLOR OF A BUTTON WHEN UNDER THE MOUSE

 1. In the Properties window, set the FlatStyle property to Flat.

 2. Expand the FlatAppearance property.

 3. In the FlatAppearance property, set the MouseOverBackColor property to the color you

want the button to have when under the mouse.

 Accept and Cancel Buttons

 A common scenario when creating dialog forms is to create an Accept or Cancel button on

the form that provides an appropriate DialogResult value to the form when clicked. You can

use the DialogResult property of the Button to create Accept or Cancel buttons.

 TO CREATE AN ACCEPT OR CANCEL BUTTON

 1. From the Toolbox, drag a button onto the form and set the Text property to an appro-

priate value (for example, Accept for an Accept button).

 2. In the Properties window, set the DialogResult property to OK for an Accept button or

Cancel for a Cancel button.

 3. In the Designer, double-click the button to open the code window.

 4. In the Button_Click event handler, close the form as shown here:

 ' VB

Me.Close()

// C#

this.Close();

 When a form is shown with the ShowDialog method, it automatically returns the dialog

result associated with the button that was clicked. The following example demonstrates how

this form might be used. The hypothetical form is named DialogForm.

 ' VB

Dim aForm As New DialogForm

Dim aResult As System. Windows.Forms.DialogResult

aResult = aForm.ShowDialog

If aResult = DialogResult.Ok Then

 ' Do something

 Else

 ' Do something else

End If

// C#

Dialog aForm = new DialogForm();

System.Window.Forms.DialogResult aResult;

aResult = aForm.ShowDialog();

if (aResult == DialogResult.Ok)

 Lesson 2: Creating and Confi guring Command and Text Display Controls CHAPTER 2 67

{

 // Do something

}

else

{

 // Do something else

}

 The Label Control
 The Label control is primarily used to display read-only textual information to the user. For

example, labels are frequently used to display an informative string beside a control, such as

“First Name” beside a TextBox control meant to collect the user’s fi rst name. Labels can also

be used to defi ne shortcut keys for other controls.

 The text displayed in a label is set in the label’s Text property. You can set the label to

resize itself automatically to the size of the text by setting the label’s AutoSize property to

True. If the AutoSize property is set to False, you can set the size of the label by grabbing and

dragging the control edges in the Designer.

 You can use Label controls to defi ne access keys for other controls. Access keys are keys

that, when pressed in combination with the Alt key, move the focus to the desired control.

The following procedure describes how to use a Label control to defi ne an access key for

another control.

 TO DEFINE AN ACCESS KEY

 1. From the Toolbox, drag a Label control onto the form, near the control for which you

want to defi ne the access key (for example, a TextBox control).

 2. In the Properties window, set the Text property to a descriptive name for the control.

Precede the letter that you want to use for the access key with an ampersand (&) char-

acter. For example, to use F as the access key, set the Label’s Text property to &First

Name.

 3. In the Properties window, set the UseMnemonic property to True (the default).

 4. In the Properties window, set the TabIndex property to one less than the TabIndex

property of the control for which you are defi ning an access key. Verify that two con-

trols do not have the same TabIndex value.

 The LinkLabel Control
 The LinkLabel control allows you to create a Web-style link in your form that opens a Web

page or performs some other action when clicked. The LinkLabel control contains a variety

of properties that allow you to confi gure the LinkLabel control. Table 2-5 shows important

properties of the LinkLabel control.

 68 CHAPTER 2 Confi guring Controls and Creating the User Interface

 TABLE 2-5 Important Properties of the LinkLabel Control

 PROPERTY DESCRIPTION

 ActiveLinkColor Sets the color of the link when it is being clicked

 LinkArea Indicates the area of the LinkLabel that functions as a link

 LinkBehavior Indicates the behavior of the link

 LinkColor Sets the color of the link

 LinkVisited Indicates whether the link has been visited

 VisitedLinkColor Sets the color of visited links

 Specifying Link Color

 You can specify the color of the link that is displayed in the LinkLabel control by setting the

properties of the LinkLabel control. The LinkColor indicates the color of the link before being

clicked. The ActiveLinkColor represents the color of the link when the link is being clicked,

and the VisitedLinkColor is the color of a link that has been visited. Note that you must set

the LinkVisited property of the LinkLabel control to True for the link to appear in the color

indicated by the VisitedLinkColor property. All of these properties can be set at design time in

the Properties window.

 Specifying Link Behavior

 The underlying behavior of the link is determined by the LinkBehavior property. The Link-

Behavior property has four possible values: SystemDefault, AlwaysUnderline, HoverUnderline,

and NeverUnderline. The behavior that each of these values defi nes is fairly self-explanatory.

When set to SystemDefault, the LinkLabel displays the same default link behavior that is speci-

fi ed by the system. When set to AlwaysUnderline, the link is always underlined. Similarly, when

set to NeverUnderline, the link is never underlined, and when set to HoverUnderline, the link is

underlined only when the mouse hovers over the link. The LinkBehavior property is generally

set at design time in the Properties window.

 Opening a Form or Web Page with LinkLabel

 You use the LinkLabel.LinkClicked event handler to open a new form or Web page. You can

also use this technique to set the LinkVisited property to True, which causes the link to appear

in the color of the VisitedLinkColor property. The following procedure demonstrates how to

open a new form or Web page with the LinkLabel control.

 TO OPEN A FORM OR WEB PAGE WITH THE LINKLABEL CONTROL

 1. Set the Text property of the LinkLabel control to an appropriate value that indicates

the link destination (for example, Shipping Form or Microsoft Web Site).

 Lesson 2: Creating and Confi guring Command and Text Display Controls CHAPTER 2 69

 2. In the Designer, double-click the LinkLabel to create a LinkLabel.LinkClicked event

handler.

 3. Write the appropriate code to open a new Web page or to display a new form. Set the

LinkVisited property of the LinkLabel to True. An example is shown here. This example

assumes you have a LinkLabel control named LinkLabel1 and a form named Shipping-

Form in your project.

' VB

' Opens a new Form

ShippingForm.Show()

' Opens a new web site in Internet Explorer

System.Diagnostics.Process.Start("www. Microsoft.com")

' Set the LinkVisited property to True

LinkLabel1.LinkVisited = True

// C#

// Opens a new Form

ShippingForm.Show();

// Opens a new web site in Internet Explorer

System.Diagnostics.Process.Start("www. Microsoft.com");

// Set the LinkVisited property to true

linkLabel1.LinkVisited = true;

Quick Check

 1. What events of the Button control can be used to respond to mouse clicks?

 2. When would you use a LinkLabel control instead of a Label control?

Quick Check Answers

 1. The Click event responds to the left button click, and the MouseDown event can

be used to respond to other button clicks.

 2. The Label control is designed primarily to label other controls on a form. The

Link Label control exposes a link to the user that can open a new form or Web

page.

LAB Practice with Command and Text Display Controls

In this lab, you will practice some of the techniques covered in this lesson. You will add a Link-

Label to a form and confi gure it to open a dialog form that asks the user to input his or her

name. You can install a completed version of this lab from the companion CD.

Quick Check

1. What events of the Button control can be used to respond to mouse clicks?

2. When would you use a LinkLabel control instead of a l Label control?l

Quick Check Answers

1. The Click event responds to the left button click, and thek MouseDown event can

be used to respond to other button clicks.

2. The Label control is designed primarily to label other controls on a form. Thel

Link Label control exposes a link to the user that can open a new form or Web l

page.

Q

 70 CHAPTER 2 Confi guring Controls and Creating the User Interface

 EXERCISE 1 Creating a Dialog Form

 1. Create a new Windows Forms application.

 2. From the Toolbox, drag a LinkLabel control onto the form.

 2. In the Properties window, set the Text property to Open Form.

 3. From the Project menu, choose Add Windows Form and add a new Windows Form

named Form2 to your project.

 4. In the Designer, drag two Button controls onto Form2. Set the Text property of Button1

and Button2 to Accept and Cancel, respectively.

 5. Set the DialogResult property of the AcceptButton to OK and the DialogResult prop-

erty of the Cancel button to Cancel.

 6. From the Toolbox, drag two TextBox controls onto the form.

 7. C# only: Set the Modifi ers property of each TextBox control to Internal.

 8. From the Toolbox, drag two Label controls onto the form and place each near a Text-

Box control.

 9. Set the Text properties of the Label controls to &First Name and &Last Name.

 10. Set the UseMnemonic property for each label to True.

 11. In the Properties window, set the TabIndex property as shown.

 CONTROL TAB INDEX SETTING

 Label1 0

 TextBox1 1

 Label2 2

 TextBox2 3

 Button1 4

 Button2 5

 12. In the Designer, choose the tab for Form1. Double-click the LinkLabel control to create

a LinkLabel.LinkClicked event handler. Add the following code:

 ' VB

Dim aResult As DialogResult

aResult = Form2.ShowDialog()

If aResult = Windows.Forms.DialogResult.OK Then

 MsgBox("Your name is " & Form2.TextBox1.Text & " " & _

 Form2.TextBox2.Text)

End If

LinkLabel1.LinkVisited = True

 Lesson 2: Creating and Confi guring Command and Text Display Controls CHAPTER 2 71

// C#

DialogResult aResult;

Form2 aForm = new Form2();

aResult = aForm.ShowDialog();

if (aResult == System. Windows.Forms.DialogResult.OK)

{

 MessageBox.Show("Your name is " + aForm.textBox1.Text + " " +

 aForm.textBox2.Text);

}

linkLabel1.LinkVisited = true;

 13. Press F5 to run the application. Click the LinkLabel to open the form. Test the access

keys and both the Accept and the Cancel buttons.

 Lesson Summary
 The Button control is the primary command control for the UI. The Button_Click event

handler is the method that is executed when the button is clicked. The button can

respond to other mouse button clicks by means of the MouseDown event.

 The FlatAppearance property governs how a Button looks and behaves when the Flat-

Style property is set to Flat.

 By setting the DialogResult value of a Button control, you can create a Cancel or Accept

button. You can then examine the result of the form as you would a standard dialog

box.

 The Label control conveys read-only information to the user. You can use a Label to

defi ne an access key by setting the Text, TabOrder, and UseMnemonic properties.

 The LinkLabel control allows you to create Web-style links in your UI. The LinkColor,

ActiveLinkColor, and VisitedLinkColor properties control the color of the link in the

LinkLabel control. You write code to open new forms or Web pages in the LinkLabel.

LinkClicked event handler.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

NOTE ANSWERSE

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 72 CHAPTER 2 Confi guring Controls and Creating the User Interface

 1. Which Button events can be used to respond to mouse clicks? (Choose all that apply.)

 A. Button.Click

 B. Button.LinkClicked

 C. Button.MouseDown

 D. Button.MouseOver

 2. Which property does not control how a Button looks or behaves when the FlatStyle

property is set to Flat?

 A. FlatAppearance.MouseOverBackColor

 B. FlatAppearance.MouseDownBackColor

 C. FlatAppearance.BorderSize

 D. FlatAppearance.Text

 3. Which is necessary to defi ne an access key using a Label control? (Choose all that

apply.)

 A. Set the TabOrder so that the control for the access key is immediately after the

Label control.

 B. Set the UseMnemonic property to True.

 C. Set the Text property with an ampersand to indicate the access key.

 D. Set the CausesValidation property to True.

 4. Which properties can be used to defi ne the color behavior of the LinkLabel control?

(Choose all that apply.)

 A. ActiveLinkColor

 B. LinkLabel_LinkClicked

 C. VisitedLinkColor

 D. LinkBehavior

 Lesson 3: Creating and Confi guring Text Edit Controls CHAPTER 2 73

Lesson 3: Creating and Confi guring Text Edit Controls

This lesson describes how to create and confi gure text edit controls. TextBox controls are

used both to display text to the user and to receive textual input. The MaskedTextBox control

allows you to display text in a preset format and validate user input against a format. In this

lesson, you will learn how to confi gure the TextBox and MaskedTextBox controls to receive

and display user input.

After this lesson, you will be able to:

 Confi gure the TextBox control to receive editable, multiline input from the user.

 Confi gure the MaskedTextBox control for formatted text and data entry.

Estimated lesson time: 30 minutes

The TextBox Control
The TextBox control is the primary control used to receive textual input from the user. The

TextBox allows you to receive text from and display text to the user. You can create text boxes

that can display multiline text, and you can create text boxes that display a password charac-

ter instead of the actual text.

The TextBox control exposes several properties that allow you to confi gure its behavior.

Important properties of the TextBox control are shown in Table 2-6.

TABLE 2-6 Important Properties of the TextBox Control

PROPERTY DESCRIPTION

AutoCompleteCustom-

Source

Holds a string collection that contains autocomplete data

when the AutoCompleteMode is set to a value other than

None and the AutoCompleteSource is set to Custom.

AutoCompleteMode Sets the AutoComplete mode of the control. Possible values

are None, Append, Suggest, or SuggestAppend.

 AutoCompleteSource Sets the source for autocomplete data. Can be set to any of

a variety of system sources or to a custom source provided

by the AutoCompleteCustomSource property.

 CharacterCasing Indicates the casing of the characters in the TextBox control.

Possible values are Normal, Upper, or Lower.

After this lesson, you will be able to:

Confi gure the TextBox control to receive editable, multiline input from the user.x

Confi gure the MaskedTextBox control for formatted text and data entry.x

Estimated lesson time: 30 minutes

 74 CHAPTER 2 Confi guring Controls and Creating the User Interface

 PROPERTY DESCRIPTION

 Lines Returns a string array representing the individual lines of the

text box. This property is most useful when MultiLine is set

to True. Note that a line is defi ned as a string that is termi-

nated by a carriage return character and does not refer to

visible lines in the UI as might be seen when the WordWrap

property is set to True.

 MaxLength Specifi es the maximum number of characters that can be

entered into the TextBox.

 MultiLine Indicates whether the TextBox can contain only a single line

of text or multiple lines.

 PasswordChar Sets the password character to be displayed in the Textbox

instead of the actual text.

 ReadOnly Indicates whether the text in the TextBox can be edited.

 ScrollBars Indicates whether scroll bars are displayed in the

TextBox when the MultiLine property is set to True.

 Text Gets or sets the text contained in the TextBox.

 UseSystemPasswordChar Indicates whether to display the system password instead of

the actual text in the TextBox.

 WordWrap Indicates whether words automatically wrap from one line

to the next when the MultiLine property is set to True.

 The main purpose of the TextBox control is to provide a container for editable text. Users

can input text into text boxes or edit textual data that the application displays. The text held

by the TextBox property is accessible through the Text property. The text in the TextBox is

editable if the ReadOnly property is set to False, which is the default. If the ReadOnly property

is set to True, the user cannot edit the text displayed.

 Creating a Multiline TextBox Control

 TextBox controls are single-line by default, but you can create a multiline TextBox by set-

ting the MultiLine property to True. This allows you to resize the TextBox vertically as well as

horizontally.

 When the MultiLine property is set to True, several other properties become important.

The Lines property exposes a string array that contains the individual lines of the TextBox.

The ScrollBars property indicates whether scroll bars are displayed for the TextBox and, if

so, whether Horizontal, Vertical, or both are displayed. The WordWrap property indicates

whether words automatically wrap from one line to the next. Note that if the WordWrap

property is set to True, horizontal scroll bars never appear, even if the ScrollBars property is

set to Horizontal.

 Lesson 3: Creating and Confi guring Text Edit Controls CHAPTER 2 75

 Creating a Password TextBox Control

 You can use the PasswordChar or UseSystemPasswordChar properties to create a text box that

can receive text input but displays a masking character instead of the actual text, render-

ing the user input unreadable by observers. This is most commonly used to create a text box

for entering a password. If the PasswordChar property is set to a character (for example, an

asterisk [“*”]), that character is displayed whenever the user types a character into the text

box. Note that the actual characters the user types are stored in the Text property—only the

rendering of these characters in the UI changes. You can also set the UseSystemPasswordChar

property to True, which will display the password character defi ned by the system for each

character typed in the text box. If UseSystemPasswordChar is set to True and PasswordChar is

set to a character, the system password character is used.

 The MaskedTextBox Control
 The MaskedTextBox control is a modifi ed TextBox that allows you to defi ne a preset pattern

for accepting or rejecting user input. The Mask property allows you to specify required or

optional characters or specify whether input characters are letters or numbers and apply

formatting for the display of strings. Important properties of the MaskedTextBox control are

shown in Table 2-7.

 TABLE 2-7 Important Properties of the MaskedTextBox Control

 PROPERTY DESCRIPTION

 AllowPromptAsInput Indicates whether the prompt character is valid as input.

 AsciiOnly Indicates if only ASCII characters are valid as input. When set

to True, only A–Z and a–z are accepted as input.

 BeepOnError Indicates whether the MaskedTextBox sends a system beep

for every input character it rejects.

 CutCopyMaskFormat Determines whether literals and prompt characters are

included when the text is cut or copied.

 HidePromptOnLeave Indicates whether prompt characters are hidden when the

MaskedTextBox loses the focus.

 InsertKeyMode Gets or sets the text insertion mode for the MaskedTextBox.

 Mask Defi nes the input mask for the MaskedTextBox (explained in

detail in the following text).

 PromptChar Gets or sets the character used for the prompt.

 RejectInputOnFirstFailure Gets or sets a value indicating whether parsing of user input

stops after the fi rst invalid character is reached.

 ResetOnPrompt Indicates how an input character that matches the prompt

character should be handled.

 76 CHAPTER 2 Confi guring Controls and Creating the User Interface

 PROPERTY DESCRIPTION

 ResetOnSpace Determines how a space input character should be handled.

 SkipLiterals Indicates whether literals in the mask should be reentered or

skipped.

 TextMaskFormat Indicates whether prompt characters and literal characters

are included in the text returned by the Text property.

 The Mask Property

 The most important property of the MaskedTextBox is the Mask property. This property

allows you to defi ne a string that represents the required format of an input string in the

MaskedTextBox. The MaskedTextProvider associated with the MaskedTextBox provides the

parsing engine that parses the Mask format. The code characters used by the default Masked-

TextProvider are shown in Table 2-8.

 TABLE 2-8 Elements of the Default MaskedTextProvider

 MASKING

ELEMENT DESCRIPTION

 0 Represents a required digit between 0 and 9.

 9 Represents an optional digit between 0 and 9.

 # Represents an optional digit between 0 and 9 or a space. Plus (+) and minus

(–) signs are also accepted.

 L Represents a required letter, either uppercase or lowercase (A–Z, a–z).

 ? Represents an optional letter, either uppercase or lowercase (A–Z, a–z).

 & Represents a required character. If AsciiOnly is set to True, this element

behaves like the L element.

 C Represents an optional character. If AsciiOnly is set to True, this element

behaves like the [?] element.

 A, a Represents an optional alphanumeric character. If AsciiOnly is set to True, it

accepts only A–Z and a–z.

 . Decimal placeholder. Represents a decimal character. The actual charac-

ter used will be the decimal character that is set by the control’s Format-

Provider.

 , Thousands placeholder. Represents a thousands separator. The actual

character used will be the thousands separator that is set by the control’s

FormatProvider.

 : Time separator. Represents a time separator. The actual character used will

be the time separator character that is set by the control’s FormatProvider.

 Lesson 3: Creating and Confi guring Text Edit Controls CHAPTER 2 77

 MASKING

ELEMENT DESCRIPTION

 / Date separator. Represents a date separator. The actual character used will

be the date separator that is set by the control’s FormatProvider.

 $ Currency symbol. Represents a currency symbol. The actual character used

will be the currency symbol that is set by the control’s FormatProvider.

 < Shift down. Converts all following characters to lowercase.

 > Shift up. Converts all following characters to uppercase.

 | Disables a previous shift up or shift down.

 \ Escapes a mask character, turning it into a literal character. The double slash

(\\) is the escape sequence for a backslash.

 All other

characters

All other characters appear as themselves in the MaskedTextBox, and the

user cannot move or delete them.

 You can design a mask for the masked text box by creating a string made of characters

described in Table 2-8. Setting the Mask property of the MaskedEditBox restricts the input

that is allowed to the format determined by the mask string. Some examples of mask strings,

together with input strings and the output string that is displayed in the control, are shown in

Table 2-9.

 TABLE 2-9 Examples of Mask Strings

 MASK STRING INPUT TEXT DISPLAYED TEXT

 (999)-000-0000 1234567890 (123)-456-7890

 00/00/0000 07141969 07/14/1969 – Note that the actual date

separator displayed is determined by the

control’s FormatProvider.

 $99,999.00 1234567 $12,345.67 – Note that the actual currency

symbol, thousands separator, and decimal

separator is determined by the control’s

FormatProvider.

 LL>L|LLL<LL abcdABCD abCdABcd

 Confi guring the MaskedTextBox for User Input

 In addition to the Mask property, the MaskedTextBox control has several properties that

affect how the control behaves when receiving user input. The AsciiOnly property determines

if only ASCII characters are allowed as input; when set to True, it restricts input to A–Z and

a–z. Other inputs are rejected. You can set the control to notify users when an error has been

committed by setting the BeepOnError property to True. The SkipLiterals property determines

 78 CHAPTER 2 Confi guring Controls and Creating the User Interface

whether literal characters should be reentered by the user (if set to False) or skipped over in

the MaskedTextBox (when set to True).

The RejectInputOnFirstFailure property governs how text that is pasted into the Masked-

TextBox is handled. If a string that does not match the Mask format is pasted into the Masked-

TextBox, the MaskedTextBox rejects the entire string if the RejectInputOnFirstFailure is set to

True. If set to False, the MaskedTextBox accepts all the characters that match the Mask format.

 The Prompt property sets the character that is displayed in the MaskedTextBox when there

is no input for a given position. The default value for the Prompt character is the underscore

character (_). The AllowPromptAsInput and ResetOnPrompt properties govern how the

prompt character is treated when entered as input. If the ResetOnPrompt property is set to

True, prompt characters are accepted, the Mask is reset for that character position, and the

cursor advances to the next position. If the ResetOnPrompt property is set to False and the

AllowPromptAsInput property is set to True, the prompt character is processed as regular

input. If both properties are set to False, the prompt character is rejected. The ResetOnSpace

property governs the treatment of spaces in the same way that ResetOnPrompt governs the

treatment of prompt characters.

 Manipulating Text in the MaskedTextBox

 The text shown in the MaskedTextBox is not necessarily the text that is available to the user

when cutting and pasting or to the application when text is manipulated programmatically.

The CutCopyMaskFormat determines how the text in the MaskedTextBox is treated when

the user cuts or copies it. The default value for this property is IncludeLiterals, in which case

literals from the Mask are included when text is cut or copied but prompt characters are

not. You can also set this property to ExcludePromptAndLiterals, which excludes both liter-

als and prompts; IncludePrompt, which includes prompt characters but excludes literals; and

IncludePromptAndLiterals, which includes both prompts and literals. The TextMaskFormat

property has the same possible values and functions in the same way with respect to the text

returned by the Text property.

Quick Check

 1. How can you create a TextBox with more than one line?

 2. What is the purpose of the MaskedTextBox control?

Quick Check Answers

 1. You can create a multiline TextBox by setting the MultiLine property to True.

 2. The MaskedTextBox control is used to display a format to the user for data entry

or display and to validate that data is input in the correct format.

Quick Check

1. How can you create a TextBox with more than one line?x

2. What is the purpose of the MaskedTextBox control?

Quick Check Answers

1. You can create a multiline TextBox by setting thex MultiLine property to True.

2. The MaskedTextBox control is used to display a format to the user for data entryx

or display and to validate that data is input in the correct format.

Q

 Lesson 3: Creating and Confi guring Text Edit Controls CHAPTER 2 79

 LAB Practice with Text Display Controls

 In this lab, you will add controls to the project you created in Lesson 2, “Creating and Confi g-

uring Command and Text Display Controls.” You will add a multiline textbox to prompt the

user for an address, and you will add a MaskedTextBox to collect a phone number.

 EXERCISE 1 Adding Text Display Controls

 1. In Visual Studio, load the solution you completed in Lesson 2 or the completed Lesson

2 solution that you installed from the companion CD in the code folder.

 2. In Solution Explorer, double-click Form2 to open the Designer for Form2.

 3. From the Toolbox, drag a TextBox onto the form. Drag a Label onto the form next to

the TextBox.

 4. Set the Text property of the Label to Address.

 5. Set the Multiline property of the TextBox to True and set the WordWrap property to

False. Set the ScrollBars property to Both. Resize the TextBox to make it large enough

to hold an address.

 6. From the Toolbox, drag a MaskedTextBox and a Label onto the form.

 7. Set the Text property of the Label to Phone Number.

 8. Set the Mask property of the MaskedTextBox to (999)-000-0000.

 9. C# only. Set the Modifi ers property of the TextBox and MaskedTextBox to Internal.

 10. In Solution Explorer, right-click Form1 and choose View Code.

 11. In the LinkLabel1_LinkClicked event handler, add the following code at the end of the If

block in the code you added in Lesson 2:

 ' VB

MsgBox("Your address is " & Form2.TextBox3.Text)

MsgBox("Your phone number is " & Form2.MaskedTextBox1.Text)

// C#

MessageBox.Show("Your address is " + aForm.textBox3.Text);

MessageBox.Show("Your phone number is " + aForm.maskedTextBox1.Text);

 12. Press F5 to run and test your application.

 Lesson Summary
 The TextBox control allows the user to enter text. The text that is entered can be

accessed through the Text property.

 TextBox controls can be single-line or multiline, depending on the value of the Multi-

Line property.

 80 CHAPTER 2 Confi guring Controls and Creating the User Interface

 The MaskedTextBox control can be confi gured for formatted text display and entry.

 The Mask property determines the formatting for text in MaskedTextBox controls.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following properties of the TextBox control should be set to the value

indicated to ensure that the TextBox can accommodate a string 10,000 characters long?

A. MultiLine = True

B. WordWrap = True

C. ScrollBars = True

D. MaxLength = 10000

 2. Which of the following Mask property settings will confi gure a MaskedTextBox for

the entry of a social security number, which is displayed as three digits, followed by a

hyphen, then two digits, followed by another hyphen, and then fi nally four digits?

A. 999-99-9999

B. 999/00/0000

C. 000-00-0000

D. 000/00/0000

 3. You have a MaskedTextBox with the Mask property set to 000-0000 to indicate a

seven-digit phone number. You want users to be able to cut and paste the entire

string, including the ‘-’ character, but when the program accesses the MaskedText-

Box, you want to exclude the ‘-’ character. Which of the following will confi gure the

MaskedTextBox to provide this functionality?

A. Set the CutCopyMaskFormat property to ExcludePromptAndLiterals and TextMask-

Format to IncludeLiterals.

 B. Set the CutCopyMaskFormat property to IncludeLiterals and TextMaskFormat to

ExcludePromptAndLiterals.

 C. Set the CutCopyMaskFormat property to ExcludePromptAndLiterals and TextMask-

Format to IncludePrompt.

 D. Set the CutCopyMaskFormat property to IncludeLiterals and TextMaskFormat to

IncludeLiterals.

NOTE ANSWERSE

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Chapter Review CHAPTER 2 81

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 Controls are visual components that provide functionality designed to enable common

tasks. You can add controls to the Designer by dragging them from the Toolbox.

 The Visual Studio IDE contains several mechanisms for managing the layout of controls

on your form, including:

•• The Properties window

•• The Layout toolbar

•• Snaplines

•• Control modifi cation in the Designer using the mouse

•• Anchor and Dock properties

 The Button control is designed to accept user commands and execute code when

clicked. You can use the Button_Click and Button_MouseDown events to respond to

user clicks.

 Label controls are primarily used to display read-only text and can be used to create

access keys for other controls.

 The LinkLabel control allows you to create Web-style links that open Web pages or

other forms when clicked.

 The TextBox control is used to receive user input as well as to display text. TextBox

controls can be either single-line or multiline.

 The MaskedTextBox enables you to specify a format for text display or user input. It

enables you to confi gure how that format restricts user input and how the format is

treated during user cut and copy operations.

 82 CHAPTER 2 Confi guring Controls and Creating the User Interface

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

times in the glossary at the end of the book.

 access key

 event handler

 mask

 snaplines

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about how to use controls

to design UIs. You can fi nd answers to these questions in the “Answers” section at the end of

this book.

 Case Scenario 1: Designing a Simple User Interface

 Your organization, Humongous Insurance, is creating an application to help customers calcu-

late the future value of bonds and other investments that will be held for a number of years.

As a new employee, you are assigned a simple task: create the front-end interface and pre-

pare the user input to be processed by the calculation engine that will be supplied by another

development team. You begin by reviewing the technical requirements.

 TECHNICAL REQUIREMENTS

Create a UI that accepts the following information from users in a simple, straightforward

way:

 Current investment value

 Assumed interest rate

 Time span in years

 QUESTIONS

 Answer the following questions for your manager:

 1. How can you provide an easy-to-understand interface that provides visual cues to the

user, clearly indicates currency when appropriate, and accepts user input for all three

of the aforementioned factors?

 2. How can you provide a keyboard-based system of navigation as an alternative to

mouse use?

 Suggested Practices CHAPTER 2 83

 Case Scenario 2: Designing a User Interface

 Your company has been contracted to design and implement a reservation system for a ski

resort and chalet. You have been handed the job of creating a page that is used to enter and

display client data. You begin by reviewing the technical requirements.

 TECHNICAL REQUIREMENTS

 Create a UI that accepts the following information from users in a simple, straightforward

way:

 First and last name.

 Address.

 City, state, and postal code.

 Credit card number.

 A general area for comments about the client.

 At the bottom of the technical requirements section is a note from the head of security

that reads, “We need to be extra careful about our customers’ credit card information.

Make sure it isn’t displayed with the rest of the data.”

 QUESTIONS

 Answer the following questions for your manager:

 1. What controls are most appropriate for the design of the UI?

 2. How can you keep customer credit card data from being displayed but still enable its

entry?

 Suggested Practices

 To master the Add and confi gure a Windows Forms control objective, you must complete the

following practices, as well as the practices in Chapter 3.

 Add and Confi gure a Windows Forms Control
 For this task, complete practices 1, 2, and 3.

 Practice 1 Build an application that performs simple arithmetic calculation and dis-

plays the result to the user.

 Practice 2 Create a front end for a hotel reservation system that collects relevant

data about the customer.

 Practice 3 Design MaskedTextBox masks that create formats appropriate for

apartment numbers, monthly bank deposits, dates and times, and other real-world

examples.

 84 CHAPTER 2 Confi guring Controls and Creating the User Interface

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 3 85

 C H A P T E R 3

 Advanced Windows Forms
Controls

 This chapter continues where Chapter 2, “Confi guring Controls and Creating the User

Interface,” left off, with an in-depth examination of Windows Forms controls. In this

chapter, you will learn how to create and confi gure controls for displaying lists, setting val-

ues and dates, displaying images, browsing the Web, and notifying the user of background

processes. You will also learn how to create access keys for controls without using the Label

control as shown in Chapter 2.

 Exam objectives in this chapter:

 Add and confi gure a Windows Forms control.

 Provide a list of options on a Windows Form by using a ListBox control, a Combo-

Box control, or a CheckedListBox control.

 Confi gure the layout and functionality of a Windows Form to display a list of

items.

 Implement value-setting controls on a Windows Form.

 Confi gure a WebBrowser control.

 Add and confi gure date-setting controls on a Windows Form.

 Display images by using Windows Forms controls.

 Confi gure the NotifyIcon component.

 Create access keys for Windows Forms controls.

 Lessons in this chapter:

 Creating and Confi guring List-Display Controls 87

 Creating and Confi guring Value-Setting, Date-Setting, and

Image-Display Controls 108

 Confi guring the WebBrowser Control and the NotifyIcon

Component and Creating Access Keys 121

 86 CHAPTER 3 Advanced Windows Forms Controls

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the .NET

Framework .

 Have a good understanding of Windows Forms, how to add controls to forms, and

how to use the Visual Studio Integrated Development Interface (IDE) .

 REAL WORLD

Matt Stoecker

 When I am creating a user interface (UI), the large variety of controls that are

available for use dramatically streamlines the UI creation process. Built-in

controls for displaying lists and images and setting dates and other values allow me

to spend less time on UI coding tasks and more time developing the application’s

custom functionality.

REAL WORLD

Matt Stoecker

When I am creating a user interface (UI), the large variety of controls that are

available for use dramatically streamlines the UI creation process. Built-in

controls for displaying lists and images and setting dates and other values allow me

to spend less time on UI coding tasks and more time developing the application’s

custom functionality.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 87

Lesson 1: Creating and Confi guring List-Display
Controls

A common scenario in user interface design is to present lists of data to users and to allow

them to select items from that list. Visual Studio provides several list-based controls that

allow a variety of presentation options. In this lesson, you will learn about the basic list-based

controls, such as the ListBox, ComboBox, and CheckedListBox, as well as more specialized list-

based controls, such as ListView, TreeView, NumericUpDown, and DomainUpDown. You will

learn how to display lists and select items from lists.

After this lesson, you will be able to:

 Programmatically determine which item in a list appears in a given position.

 Add or remove items from a list of items in a list-based control.

 Bind a list-based control to a data source.

 Sort list data.

 Display data in a drop-down combo box.

 Select one or more items from a predefi ned list.

 Use the ListView control to display a list of items with icons.

 Use the TreeView control to display a list of items in a hierarchical view.

 Confi gure the DomainUpDown control to display a list of strings.

 Confi gure the NumericUpDown control to display a list of numbers.

 Estimated lesson time: 60 minutes

 Overview of List-Based Controls
 The basic list-based controls are the ListBox, ComboBox, and CheckedListBox controls.

Although differing somewhat in appearance and functionality, each of these controls orga-

nizes and presents lists of data in the same way, and each contains an Items collection that

organizes the items contained in one of these controls.

 The Items collection is basically a collection of objects. Although these objects are often

strings, they do not have to be. If a collection does contain a string, however, the string repre-

sentation of the object is displayed in the control.

 ListBox Control
 The ListBox control is the simplest of the list-based controls. It serves primarily to display a

simple list of items in an easy-to-navigate user interface. Users can select one or more items.

Table 3-1 describes the important properties of the ListBox control.

After this lesson, you will be able to:

Programmatically determine which item in a list appears in a given position.

Add or remove items from a list of items in a list-based control.

Bind a list-based control to a data source.

Sort list data.

Display data in a drop-down combo box.

Select one or more items from a predefi ned list.

Use the ListView control to display a list of items with icons.w

Use the TreeView control to display a list of items in a hierarchical view.w

Confi gure the DomainUpDown control to display a list of strings.

Confi gure the NumericUpDown control to display a list of numbers.

Estimated lesson time: 60 minutes

 88 CHAPTER 3 Advanced Windows Forms Controls

 TABLE 3-1 Important Properties of the ListBox Control

 PROPERTY DESCRIPTION

 DataSource Sets the source for data binding in this control.

 DisplayMember Represents the data member that is displayed in this control.

 FormatString Specifi es a formatting string that will be used to format the entries

in the control if FormattingEnabled is set to True.

 FormattingEnabled Determines whether the entries in the control are formatted using

the FormatString.

 Items Returns the collection of items contained in this control.

 MultiColumn Indicates whether this item shows multiple columns of items or

only a single item.

 SelectedIndex Gets the index of the selected item or, if the SelectionMode prop-

erty is set to MultiSimple or MutilExtended, returns the index to

any selected item.

 SelectedIndices Returns a collection of all selected indexes.

 SelectedItem Returns the selected item or, if the SelectionMode property is set

to MultiSimple or MultiExtended, returns the index to any selected

item.

 SelectedItems Returns a collection of all selected items.

 SelectedValue In a data-bound control, returns the value associated with the

selected item. If the control is not data-bound, or, if the Value-

Member is not set, this property returns the ToString value of the

selected item.

 SelectionMode Determines how many items can be selected in a ListBox. Can

be set to None, One, MultiSimple, or MultiExtended. MultiSimple

allows the selection of multiple objects, and MultiExtended allows

the use of the Shift and Ctrl keys when making multiple selections.

 ValueMember Indicates the data member that will provide the values for the

ListBox.

 ComboBox Control
 The ComboBox control is similar to the ListBox control, but, in addition to allowing the user to

select items from a list, it provides a space for a user to type an entry as well as select items

from a list. Additionally, you can confi gure the ComboBox either to display a list of options or

to provide a drop-down list of options. Table 3-2 describes the important properties of the

ComboBox control.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 89

 TABLE 3-2 Important Properties of the ComboBox Control

 PROPERTY DESCRIPTION

 DataSource Sets the source for data binding in this control.

 DisplayMember Represents the data member that is displayed in this control.

 DropDownHeight Sets the maximum height for the drop-down box.

 DropDownStyle Determines the style of the combo box. Can be set to Simple,

which is similar to a ListBox; DropDown, which is the default; or

DropDownList, which is similar to DropDown but does not allow

the user to type a new value.

 DropDownWidth Sets the width of the drop-down section of the combo box.

 FormatString Specifi es a formatting string that will be used to format the

entries in the control if FormattingEnabled is set to True.

 FormattingEnabled Determines whether the entries in the control are formatted

using the FormatString.

 Items Returns the collection of items contained in this control.

 SelectedIndex Gets the index of the selected item.

 SelectedItem Returns the selected item.

 SelectedValue In a data-bound control, returns the value associated with the

selected item. If the control is not data-bound, or, if the Value-

Member is not set, this property returns the ToString value of the

selected item.

 ValueMember Indicates the data member that will provide the values for the

ComboBox.

 CheckedListBox Control
 The CheckedListBox displays a list of items to users and allows them to select multiple items

by checking boxes that are displayed next to the items. Any number of items can be checked,

but only one item can be selected at a time. You can retrieve a collection that represents the

checked items by accessing the CheckedItems collection, and you can get a collection of the

checked indexes by accessing the CheckedIndices collection. Table 3-3 describes the impor-

tant properties of the CheckedListBox control.

 90 CHAPTER 3 Advanced Windows Forms Controls

 TABLE 3-3 Important Properties of the CheckedListBox Control

 PROPERTY DESCRIPTION

 CheckedIndices Returns a collection that represents all of the checked indexes

 CheckedItems Returns a collection that exposes all of the checked items in the

control

 FormatString Specifi es a formatting string that will be used to format the entries

in the control if FormattingEnabled is set to True

 FormattingEnabled Determines whether the entries in the control are formatted using

the FormatString

 Items Returns the collection of items contained in this control

 MultiColumn Indicates whether this control shows multiple columns of items or

only a single item

 SelectedIndex Gets the index of the selected item, or, if the SelectionMode

property is set to MultiSimple or MultiExtended, it can return any

selected index

 SelectedItem Returns the selected item, or, if the SelectionMode property is set to

MultiSimple or MultiExtended, it can return any selected item

 You can set an item to be checked or unchecked by calling the SetItemChecked method, as

shown below:

 ' VB

CheckedListBox.SetItemChecked(0, True)

// C#

checkedListBox.SetItemChecked(0, true);

 Likewise, you can use the SetItemCheckState method to set the CheckState of an item:

 ' VB

CheckedListBox.SetItemCheckState(0, CheckState.Indeterminate)

// C#

checkedListBox.SetItemCheckState(0, CheckState.Indeterminate);

 Adding Items to and Removing Items from a List-Based
Control
 You can add items to or remove items from a list-based control through either the Designer

at design time or code at run time.

 To add items to a list-based control at design time, you select the control in the Designer

and then, in the Properties window, select the Items property. The String Collection Editor

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 91

(shown in Figure 3-1) opens. All of the items currently contained in the control are shown.

Items can then be added to or removed from this list.

 FIGURE 3-1 The String Collection Editor

 You can also use code to programmatically add and remove items from the control at run

time. To add an item, you use the Items.Add method, as shown in the following code example:

 ' VB

ListBox1.Items.Add("This string will be added to the list")

// C#

listBox1.Items.Add("This string will be added to the list");

 If you have several items to add at once, you can use the AddRange method to add an ar-

ray of items to the control, as shown here:

 ' VB

ListBox1.Items.AddRange(New String() {"Item1", "Item2", "Item3"})

// C#

listBox1.Items.AddRange(new String[] {"Item1", "Item2", "Item3"});

 You can use the Items.Insert method to add an item to a specifi c index in the list. The index

of items is a zero-based index, so the fi rst item in the control is at index 0. When you add an

item to an index that is already occupied by an item, that item and any items beneath it are

shifted down one index. The following code shows how to insert an item to be third in the

displayed list, assuming that the ListBox1 control is already populated with several items:

 ' VB

ListBox1.Items.Insert(2, "This item will be third")

// C#

listBox1.Items.Insert(2, "This item will be third");

 You can use the Items.Remove method to remove an item from the list. This method

requires a reference to the object that you want to remove from the items collection. Note

 92 CHAPTER 3 Advanced Windows Forms Controls

that if your control contains a collection of objects that are not strings, you will need to pass a

reference to the object itself to remove it, not just to the string representation that appears in

the control. The following example demonstrates the Items.Remove method:

 ' VB

ListBox1.Items.Remove("This string will be removed")

// C#

listbox1.Items.Remove("This string will be removed");

 If you do not know the actual item that you want to remove at run time but have the

index of the item you want to remove, you can use the Items.RemoveAt method. This method

removes the item at a given index and adjusts the indexes of the other items accordingly. The

Items.RemoveAt method is demonstrated in the following code example:

' VB

' Removes the third item in the list

ListBox1.Items.RemoveAt(2)

// C#

// Removes the third item in the list

listBox1.Items.RemoveAt(2);

 To remove all items from a list-based control, you can use the Items.Clear method, as

shown here:

 ' VB

ListBox1.Items.Clear()

// C#

listBox1.Items.Clear();

 Determining Where an Item Appears in a List

 If you want to determine where an item appears in a list programmatically, you can do so by

using the Items.IndexOf method. This method takes the item you want to fi nd as an argument

and returns an integer that represents the index of that item. If the item is not found in the

Items collection, the IndexOf method returns -1. An example of the IndexOf method is shown

here:

 ' VB

Dim anIndex As Integer

anIndex = ListBox1.Items.IndexOf("A String")

// C#

int anIndex;

anIndex = listBox1.Items.IndexOf("A String");

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 93

 You can also programmatically determine the index of an item that has been selected by

the user by using the SelectedIndex property. The SelectedIndex property returns the item that

has been selected in the user interface at run time. If more than one item has been selected,

the SelectedIndex property can return any of the selected items. The SelectedIndex property is

demonstrated here:

 ' VB

Dim anIndex As Integer

anIndex = ListBox1.SelectedIndex

// C#

int anIndex;

anIndex = listBox1.SelectedIndex;

 In controls where the SelectionMode property is set to MultiSimple or MultiExtended, you

can return all of the selected indexes by using the SelectedIndices property, as shown in the

following example:

 ' VB

For Each i As Integer In ListBox1.SelectedIndices

 Console.WriteLine(ListBox1.Items(i).ToString)

Next

// C#

foreach (int i in listBox1.SelectedIndices)

{

 Console.WriteLine(listBox1.Items[i].ToString());

}

 Binding List-Based Controls to Data Sources

 You will frequently want to expose data to the user in list-based controls. You can bind ListBox

controls and ComboBox controls (but not CheckedListBox controls) to a data source by using

the DataSource, DisplayMember, and ValueMember properties to bind a list-based control to

a column of data in a data table.

 Add a data source to your project. Adding data sources to your project is covered in detail

in Chapter 5, “Confi guring Connections and Connecting to Data.”

 TO BIND A LIST-BASED CONTROL TO A DATA SOURCE

 1. In the Designer, select the list-based control that you want to bind to a data source.

 2. In the Properties window, click the DataSource property to open the data source

confi guration interface, as shown in Figure 3-2. Set the DataSource property to a table

contained in one of the data sources in your project.

 94 CHAPTER 3 Advanced Windows Forms Controls

 FIGURE 3-2 Setting the DataSource property

 3. In the Properties window, click the DisplayMember property. Visual Studio displays the

columns in the selected table. This is the column whose rows will be displayed in the

control.

 4. In the Properties window, click the ValueMember property. Choose a column name in

the interface to bind the control to. This is the column whose members will provide the

value that is returned from the selected index in the control.

 The DataSource property indicates the data source (usually a data table) that the data in

the control is drawn from. The DisplayMember property represents the column of data in the

data source that is displayed to the user in the control. The ValueMember property allows you

to designate an additional column of values to be represented in the control. For example,

you might set the DisplayMember property to the Products column to display a list of prod-

ucts to the user but set the ValueMember to a ProductsCode column that returns a

numeric code for each product. In this instance, whenever an item is selected, the Selected-

Item property returns the item displayed in the ListBox, and the SelectedValue property

returns the corresponding item from the ProductsCode column.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 95

 Sorting in List-Based Controls

 You can sort the objects displayed in a list-based control by setting the Sorted property to

True, as shown here:

 ' VB

ListBox1.Sorted = True

// C#

listBox1.Sorted = true;

 Sorting data at the data source will be covered in Chapter 7, “Create, Add, Delete, and Edit

Data in a Disconnected Environment.”

 Setting a Format for Items Displayed in a List-Based Control

 You can format the items that you display in a list-based control. For example, if you are

displaying a list of monetary values, you can format them all as currency and they will be

displayed in the currency format that is appropriate to the culture the application is running

under.

 You can set a format for a list-based control by setting the FormatString property at design

time. Selecting and clicking the FormatString property in the Properties window launches the

Format String Dialog dialog box, shown in Figure 3-3.

FIGURE 3-3 The Format String Dialog dialog box

 The FormattingEnabled property determines whether to use the formatting indicated by

the FormatString. When the FormattingEnabled property is set to True, the entries in the con-

trol are displayed in the format indicated by the FormatString property.

 96 CHAPTER 3 Advanced Windows Forms Controls

 CUSTOM FORMAT STRINGS

If the preset format strings do not provide the correct format for an item, you can create a

custom format string. Table 3-4 describes the characters that you can use to create a custom

format string.

 TABLE 3-4 Custom Format String Characters

 CHARACTER DESCRIPTION

 0 Zero placeholder. If the value being formatted has a digit in the position

where the ‘0’ appears in the format string, then that digit is copied to the

result string. The position of the left-most ‘0’ before the decimal point and

the right-most ‘0’ after the decimal point determines the range of digits

that are always present in the result string. Note that the “00” specifi er

causes the value to be rounded to the nearest digit preceding the decimal,

where rounding away from zero is always used. For example, formatting

34.5 with “00” would result in the value 35.

 # Digit placeholder. If the value being formatted has a digit in the position

where the ‘#’ appears in the format string, then that digit is copied to the

result string. Otherwise, nothing is stored in that position in the result

string. Note that this specifi er never displays the ‘0’ character if it is not a

signifi cant digit, even if ‘0’ is the only digit in the string. It will display the ‘0’

character if it is a signifi cant digit in the number being displayed. The “##”

format string causes the value to be rounded to the nearest digit preceding

the decimal, where rounding away from zero is always used. For example,

formatting 34.5 with “##” would result in the value 35.

 . Decimal separator. The fi rst ‘.’ character determines the location of the

fi rst decimal separator in the formatted value. Additional ‘.’ characters are

ignored. Note that the actual character used will be the decimal separator

determined by the current locale.

 , Thousands separator and scaling. First, if the format string contains a

‘,’ character between two digit placeholders (0 or #) and to the left of

the decimal point (if one is present), then the output will have thousand

separators inserted between each group of three digits to the left of the

decimal separator. The actual character used as the decimal separator in

the result string is determined by the NumberGroupSeparator property of

the current NumberFormatInfo that controls formatting.

If the format string contains one or more ‘,’ characters immediately to the

left of the decimal point, then the number will be divided by the number

of ‘,’ characters multiplied by 1000 before it is formatted. For example, the

format string “0,” will represent 100 million as simply 100.

 % Percentage placeholder. The presence of the % symbol causes the number

represented to be multiplied by 100 before formatting. The % symbol

appears in the place that it occurs in the format string.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 97

 CHARACTER DESCRIPTION

 E0, E+0, E-0,

e0, e+0, e-0

Scientifi c notation. If any of the strings “E”, “E+”, “E-”, “e”, “e+”, or “e-” are

present in the format string and are followed immediately by at least one

‘0’ character, then the number is formatted using scientifi c notation with

an ‘E’ or ‘e’ inserted between the number and the exponent. The number

of ‘0’ characters following the scientifi c notation indicator determines

the minimum number of digits to output for the exponent. The “E+” and

“e+” formats indicate that a sign character (plus or minus) should always

precede the exponent. The “E”, “E-”, “e”, or “e-” formats indicate that a sign

character should precede only negative exponents.

 \ Escape character. In C# this character is used to indicate that the character

immediately following the ‘\’ is to be interpreted as an escape sequence. In

Visual Basic this character has no effect.

 “ABC”, ‘ABC’ Literal strings. Characters enclosed in ” or ‘’ are displayed as literal strings in

the formatted string.

 ; Section separator. The ‘;’ character is used to separate sections for posi-

tive, negative, and zero numbers in the format string. You can provide up

to three sections in a format string, each containing its own format. These

sections should be separated by ‘;’ characters and will be applied to posi-

tive, negative, and zero numbers, respectively.

 Other

Characters

Other characters in the format string are represented as literal strings.

 Selecting Items in a List-Based Control

 You can programmatically select items in a list-based control by using the SelectedItem or

SelectedIndex property. You can select an item in a list-based control as shown in the follow-

ing example:

 ' VB

ListBox1.SelectedItem = "This item will be selected"

// C#

listBox1.SelectedItem = "This item will be selected";

 If the SelectedItem property is set to an item that is not contained in the control, there is

no effect, and no item is selected.

 If the control allows multiple selections, you can select multiple items by setting the

Selected Item property multiple times if the SelectionMode property is set to MultiSimple or

MultiExtended (which is supported only by the ListBox control). Once selected, an item

remains selected until unselected by the user. An example is shown here:

 ' VB

ListBox1.SelectedItem = "This item will be selected"

 98 CHAPTER 3 Advanced Windows Forms Controls

ListBox1.SelectedItem = "This item will be selected too"

// C#

listBox1.SelectedItem = "This item will be selected";

listBox1.SelectedItem = "This item will be selected too";

 The SelectedIndex property functions in a way similar to the SelectedItem property, except

that it is an Integer type that corresponds to the sequential item in the list. You can select an

item in the control by setting the SelectedIndex property to the corresponding index, and

you can select multiple items by setting the property multiple times in succession. The main

difference between the behavior of the SelectedItem property and the SelectedIndex property

is that the SelectedIndex property throws an exception if an attempt is made to set it to a

nonexistent index.

 The ListView Control
 The ListView control allows you to view lists of items with optional associated icons in the

manner of Windows Explorer. Using the ListView control, you can display items with large

associated icons, small associated icons, or additional details about the item. Table 3-5 shows

important properties of the ListView control.

 TABLE 3-5 Important Properties of the ListView Control

 PROPERTY DESCRIPTION

 Columns Contains the collection of columns to be displayed when the View

property is set to Details

 Groups Contains an optional collection of groups that can be used to catego-

rize the items contained in the Items collection

 Items A collection of ListViewItems that is displayed in the ListView control

 LargeImageList The ImageList component from which images for ListViewItems are

drawn when the View property is set to LargeIcon

 ShowGroups Determines whether the groups contained in the Groups collection

are shown

 SmallImageList The ImageList component from which images for ListViewItems are

drawn when the View property is set to SmallIcon

 View Indicates the manner in which ListView items are displayed

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 99

 The most important property in the ListView control is the Items property. This property

contains a collection of ListViewItem objects. Unlike the list-based controls examined earlier,

ListViewItems are specifi c objects that contain additional information about the item being

displayed, such as icons that are shown in the control. Table 3-6 shows important properties

of the ListViewItem class.

 TABLE 3-6 Important Properties of the ListViewItem Class

 PROPERTY DESCRIPTION

 Group The group, if any, in the ListView control’s Groups collection that this

ListView Item belongs to.

 ImageIndex The index, if any, of the image to be used for this item when the View prop-

erty is set to LargeIcon or SmallIcon. If the ImageIndex property is set, the

ImageKey property is set to “.”

 ImageKey The key of the image, if any, to be used for this item when the View prop-

erty is set to LargeIcon or SmallIcon. If the ImageKey property is set, the

ImageIndex property is set to -1.

 SubItems Contains the subitems that will be shown when the View property is set

to Details. These items should correspond to the columns in the ListView

control’s Columns collection.

 Text The text that is shown in the ListView property.

 You can add ListViewItems to the ListView and edit the properties of individual ListView-

Items by clicking the Items property of the ListView control to open the ListView Item Collec-

tion Editor, shown in Figure 3-4.

 The ListView control organizes the images associated with the ListViewItems in ImageList

objects that are exposed in the SmallImageList and LargeImageList properties. The ImageList

class will be discussed in greater detail in Lesson 2, “Creating and Confi guring Value-Setting,

Date-Setting, and Image-Display Controls” of this chapter. You can set the images associated

with a particular ListViewItem by setting either the ImageIndex or ImageKey property of each

ListViewItem. The View property determines if the ListView items are shown with large images,

with small images, or in a view that exposes the subitems of the ListViewItems.

 100 CHAPTER 3 Advanced Windows Forms Controls

 FIGURE 3-4 The ListViewItem Collection Editor

 TO DISPLAY A LIST OF ITEMS WITH ICONS IN A LISTVIEW CONTROL

 1. In the Designer, drag an ImageList control from the Toolbox to a design surface that

already contains a ListView control.

 2. In the Properties window, click the Images property of the ImageList to add images to

the Images collection.

 3. In the Designer, select the ListView control. In the Properties window, set the Small-

ImageList, LargeImageList, or both to the ImageList object.

 4. In the Properties window, click Items to add ListViewItems to the ListView. In the

ListViewItem Collection Editor, set either the ImageIndex or the ImageKey property for

each ListViewItem to the appropriate image in the ImageList. Also, set any other prop-

erties, such as Text, at this point.

 5. In the Designer, select the ListView control. In the Properties window, set the View

property to either LargeIcon or SmallIcon.

 TreeView Control
 The TreeView control allows you to display a list of objects in a hierarchical manner. Each

object in the TreeView control represents an instance of the TreeNode class, which contains

information about the location of the node within the TreeView control. Nodes contain-

ing child nodes in the TreeView control can be collapsed and expanded. Figure 3-5 shows a

TreeView control in a form.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 101

 FIGURE 3-5 The TreeView control

 The primary property of the TreeView control is the Nodes property. This property contains

the collection of TreeNodes that comprise the root objects in the TreeView. Each individual

TreeNode object contains its own collection of TreeNodes that represent child nodes of that

node. Table 3-7 describes some of the important properties of the TreeNode class.

 TABLE 3-7 Important Properties of the TreeNode Class

 PROPERTY DESCRIPTION

 FirstNode Returns the fi rst node in the current group of child nodes.

 LastNode Returns the last node in the current group of child nodes.

 NextNode Returns the next sibling tree node.

 NextVisibleNode Returns the next visible node.

 Nodes Returns the collection of child nodes belonging to this node.

 Parent Returns the parent node of the current node. If the current node

is a root node in the TreeView, accessing this property will return

null.

 PrevNode Returns the previous sibling tree node.

 PrevVisibleNode Returns the previous visible node.

 TreeView Returns a reference to the TreeView control that the TreeNode is

contained in.

 Adding and Removing Nodes from the TreeView Controls

 At design time you can add nodes to a TreeView control by clicking the Nodes property in the

Properties window to display the TreeNode Editor (shown in Figure 3-6). You can add new

root nodes or new child nodes and set the properties of each TreeNode.

 102 CHAPTER 3 Advanced Windows Forms Controls

 FIGURE 3-6 The TreeNode Editor

 At run time, you can create new TreeNode objects and add them as root nodes to the

TreeView control or add them as child nodes to another TreeNode. For both of these proce-

dures, you use the Nodes.Add method, as shown here:

 ' VB

Dim aNode As New TreeNode("New Node")

' Add a child node to the new node

aNode.Nodes.Add(New TreeNode("New Child"))

' Adds aNode and its child As a new root node in a TreeView control named TreeView1

TreeView1.Nodes.Add(aNode)

' Adds a second child node to the first node in TreeView1

TreeView1.Nodes(0).Nodes.Add(New TreeNode("Second Child"))

// C#

TreeNode aNode = new TreeNode("New Node");

// Add a child node to the new node

aNode.Nodes.Add(new TreeNode("New Child"));

// Adds aNode and its child as a new root node in a TreeView control named TreeView1

treeView1.Nodes.Add(aNode);

// Adds a second child node to the first node in TreeView1

treeView1.Nodes[0].Nodes.Add(new TreeNode("Second Child"));

 You can remove nodes from the Nodes collection by using the Remove and RemoveAt

methods. The Remove method takes a reference to a particular node as a parameter and

removes it from the collection if it exists in the collection. If the specifi ed node does not exist

in the collection, this method call is ignored. The RemoveAt method removes the node at a

specifi ed index. If the specifi ed index is not present in the nodes collection, an Argument-

OutOfRange exception is thrown. The following example demonstrates the Remove and

RemoveAt methods:

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 103

 ' VB

' Removes the node named aNode from the collection

TreeView1.Nodes.Remove(aNode)

' Removes the node at index 3 from the collection.

TreeView1.Nodes.RemoveAt(3)

// C#

// Removes the node named aNode from the collection

treeView1.Nodes.Remove(aNode);

// Removes the node at index 3 from the collection.

treeView1.Nodes.RemoveAt(3);

 Expanding and Collapsing Nodes

 The TreeView control presents a hierarchical view of nodes that can be expanded or collapsed

to reveal or hide the child nodes as appropriate. You can expand or collapse child nodes

programmatically at run time by using the Expand and Collapse methods, as shown in the

following example:

 ' VB

' Expands the child nodes of a TreeNode named aNode

aNode.Expand()

' Collapses the child nodes of a TreeNode named aNode

aNode.Collapse()

// C#

// Expands the child nodes of a TreeNode named aNode

aNode.Expand();

// Collapses the child nodes of a TreeNode named aNode

aNode.Collapse();

 NumericUpDown Control
 The NumericUpDown control allows you to set a range of numbers that a user can browse

and select. A range of numbers is presented in the control, and the user can click the up and

down arrows to increase or decrease the number. Table 3-8 shows important properties of

the NumericUpDown control.

 TABLE 3-8 Important Properties of the NumericUpDown Control

 PROPERTY DESCRIPTION

 Hexadecimal Indicates whether the numeric value will be shown in hexadecimal

 Increment Gets or sets the amount to increment or decrement with each

button click

 Maximum Indicates the maximum value for the control

 104 CHAPTER 3 Advanced Windows Forms Controls

 PROPERTY DESCRIPTION

 Minimum Indicates the minimum value for the control

 ThousandsSeparator Indicates whether the culture-appropriate thousands separator

will be used when displaying values greater than 1000

 Value Gets or sets the current value of the control

 TO CONFIGURE THE NUMERICUPDOWN CONTROL

 1. Set the Minimum property to the minimum numeric value for the control.

 2. Set the Maximum property to the maximum numeric value for the control.

 3. Set the Increment property to the amount you want to increment and decrement with

each arrow button click.

 4. If desired, set the Value property to a default value.

 DomainUpDown Control
 The DomainUpDown control is similar to the NumericUpDown control in that it allows users to

browse a specifi ed series of data and set a value for the control. Instead of browsing numeric

values, however, the DomainUpDown control allows the user to browse a collection of preset

strings. Table 3-9 describes the important properties of the DomainUpDown control.

 TABLE 3-9 Important Properties of the DomainUpDown Control

 PROPERTY DESCRIPTION

 Items Contains the collection of strings that are displayed in the DomainUpDown

control

 ReadOnly Indicates whether the user can alter the Text of the control

 Text Gets or sets the text of the control

 The Items collection contains the strings that are displayed in the DomainUpDown control.

You can add strings by clicking the Items property in the Properties window to display the

String Collection Editor. When ReadOnly is set to False, the user can choose to type a string

in the DomainUpDown control instead of choosing one of the strings. Note that strings typed

by the user are not added to the Items collection. Also note that the Text property defi nes the

default value for the control, not the Items collection.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 105

Quick Check

 1. What is the purpose of the TreeView control?

 2. What is the purpose of a ListView control and when would you use one?

Quick Check Answers

 1. The TreeView control allows you to display a list of data in a hierarchically related

manner.

 2. The ListView control provides a highly confi gurable control that allows you to

display lists of data in a variety of ways. You can use a ListView control when you

want to provide different options to the user for the display of list data, such as

providing icons or details about the data.

 LAB The Adventure Works Ski Instructor Reservation Form

Over the next two labs, you will use what you have learned in this lesson and the next to add

functionality to a simple application designed to reserve ski instructors. In this lab, you will

add a ComboBox that allows the user to select the mountain they want to ski on, a ListView

control to select a ski instructor, and a NumericUpDown control to select the length of the

lesson.

EXERCISE 1 The Ski Instructor Reservation Form

 1. In Visual Studio, open the partial solution for Lesson 1, “Creating and Confi guring List-

Display Controls.” This solution can be installed from the companion CD.

 2. In Form1, beneath the Name TextBox, add a Label control and a ComboBox control. Set

the Text of the Label control to Choose Ski Run.

 3. Set the DropDownStyle property of the ComboBox to DropDownList.

 4. Add the following items to the ComboBox Items property: Camelback, Powder Point,

and The Plunge.

 5. Add a Label control and a NumericUpDown control to the form. Set the Text property

of the Label to Lesson Length.

 6. Set the Minimum property of the NumericUpDown control to 1 and the Maximum

property to 3.

 7. Add a Label control and a ListView control to the form. Set the Text property of the

Label control to Choose Instructor.

 8. In the Properties window, set the View property of the ListView control to SmallIcon. In

Lesson 2, “Creating and Confi guring Value-Setting, Date-Setting, and Image-Display

Controls,” you will associate the items in this list with images.

Quick Check

1. What is the purpose of the TreeView control?w

2. What is the purpose of a ListView control and when would you use one?w

Quick Check Answers

1. The TreeView control allows you to display a list of data in a hierarchically related w

manner.

2. The ListView control provides a highly confi gurable control that allows you tow

display lists of data in a variety of ways. You can use a ListView control when you w

want to provide different options to the user for the display of list data, such as

providing icons or details about the data.

Q

 106 CHAPTER 3 Advanced Windows Forms Controls

 9. In the Properties window, click the Items property to add four ListViewItems to the

ListView. In the ListViewItem Collection Editor, set their Text properties to Sandy, Jack,

Libby, and Christa.

 10. Add a Button control to the form and set the Text property to Make Reservation.

 11. In the Designer, double-click the button and add the following code to the Button_

Click event handler:

 ' VB

If ListView1.SelectedItems.Count > 0 Then

 MsgBox("Your reservation with " & listView1.SelectedItems(0).Text & _

 " is confirmed.")

End If

// C#

if (listView1.SelectedItems.Count > 0)

{

 MessageBox.Show("Your reservation with " + listView1.SelectedItems[0].Text +

 " is confirmed.");

}

 12. Press F5 to test your application.

 Lesson Summary
 List-based controls are used to organize and present lists of information to the user.

The ListBox, ComboBox, and CheckedListBox controls organize items through the Items

property and share many common methods and properties.

 The ListBox control allows you to display a selection of items to the user and enables

the user to select one or more items from that list.

 The ComboBox control can appear similar to a ListBox control or as a drop-down list.

You can require the user to select from a list or choose to allow them to type an entry

that is not present in the list.

 The CheckedListBox control allows you to display a list of items with a check box beside

each one, enabling the user to check as many items as desired. Although multiple

items can be checked, only one item can be selected in the CheckedListBox at any time.

 The ListView control allows specialized displays of lists of items. Items can be displayed

in association with icons that are provided by an ImageList component or with addi-

tional columns of subitems.

 The TreeView control allows you to display lists of items in a hierarchical format. Each

node contains a collection of child nodes, which can themselves have child nodes.

Nodes can be expanded or collapsed.

 Lesson 1: Creating and Confi guring List-Display Controls CHAPTER 3 107

 The NumericUpDown control allows the user to click up or down arrows to select a

numeric value. The DomainUpDown control allows the user to click up or down arrows

to select from a preselected set of options.

Lesson Review
You can use the following questions to test your knowledge of the information in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following properties and methods can be used to fi nd the index of a

selected item in a ListBox control? (Choose all that apply.)

A. ListBox.IndexOf

B. ListBox.SelectedIndex

C. ListBox.SelectedIndices

D. ListBox.Select

 2. Which of the following methods cannot be used to add an item to the Items collection

of a ComboBox, ListBox, or CheckedListBox control?

 A. Items.Add

 B. Items.Insert

C. Items.AddRange

D. Items.Contains

 3. Which of the following is NOT a valid setting for the View property of the ListView

control?

A. LargeIcon

B. Details

C. Tree

D. SmallIcon

NOTE ANSWERSE

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 108 CHAPTER 3 Advanced Windows Forms Controls

Lesson 2: Creating and Confi guring Value-Setting,
Date-Setting, and Image-Display Controls

Allowing users to select or choose from a set of options, to set dates, and to work with images

are common scenarios for user interface design. In this lesson, you will learn to use value-

setting controls, such as CheckBox, RadioButton, and TrackBar, and date-setting controls,

such as DateTimePicker and MonthCalendar. You will also learn to work with images using the

ImageList component and the PictureBox control.

After this lesson, you will be able to:

 Set two or more mutually exclusive options in the user interface using a

RadioButton.

 Use the CheckBox control to indicate whether a condition is on or off.

 Allow navigation through a large amount of information or visually adjust a

numeric setting using a TrackBar.

 Allow the user to select a single item from a list of dates or times using the Date-

TimePicker control.

 Present an intuitive graphical interface for users to view and set date information

using the MonthCalendar.

 Add images to or remove images from the ImageList component.

 Display graphics using the PictureBox control.

Estimated lesson time: 45 minutes

Value-Setting Controls
Value-setting controls allow the user to set values or pick options from a preset list in the user

interface. The CheckBox control allows a user to select or clear particular options in a non-

exclusive manner, while the RadioButton allows you to present a range of options to the user,

only one of which can be selected. The TrackBar control allows the user to rapidly set a value

in a graphical interface.

The CheckBox Control
The CheckBox control is a very familiar control to users. It allows the user to mark a check box

next to a label to indicate acceptance or rejection of the option presented. CheckBox controls

function in a nonexclusive manner—you can have multiple CheckBox controls on a single

form, and any combination of them can be checked or cleared at a single time. Table 3-10

shows important properties of the CheckBox control.

After this lesson, you will be able to:

Set two or more mutually exclusive options in the user interface using a

RadioButton.

Use the CheckBox control to indicate whether a condition is on or off.x

Allow navigation through a large amount of information or visually adjust a

numeric setting using a TrackBar.rr

Allow the user to select a single item from a list of dates or times using the Date-

TimePicker control.r

Present an intuitive graphical interface for users to view and set date information

using the MonthCalendar.rr

Add images to or remove images from the ImageList component.t

Display graphics using the PictureBox control.x

Estimated lesson time: 45 minutes

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 109

 TABLE 3-10 Important Properties of the CheckBox Control

 PROPERTY DESCRIPTION

 AutoCheck Determines whether the CheckBox is automatically checked when the

text is clicked.

 Checked Gets or sets whether the CheckBox is checked.

 CheckState Returns the CheckState of the control. Possible values for this property

are Checked, Unchecked, and Indeterminate.

 Text The text displayed next to the check box.

 ThreeState Determines whether the CheckBox control allows two check states or

three.

 The most common use for the CheckBox control is to allow the user to make a binary deci-

sion about an option by either checking the box or not checking it. Typically, the check box is

used for nonexclusive options—that is, checking a particular check box usually does not affect

the state of other text boxes. Figure 3-7 shows an example of a hypothetical pizza order form.

Radio buttons are used to choose between the exclusive options Pizza or Calzone, and Check-

Box controls are used to select toppings for the pizza or calzone that is selected.

 FIGURE 3-7 Example of CheckBox and RadioButton controls

 You can programmatically determine if a CheckBox control is checked by accessing the

Checked property. This property returns True if the control is checked and False if the control

is cleared or indeterminate.

 A less common use for the CheckBox is to allow the user to choose among three settings:

Checked, Unchecked, or Indeterminate. This can be useful to indicate to the user that a con-

scious decision must be made for each option rather than simply setting a default option. You

enable three-state CheckBox controls by setting the ThreeState property to True. This allows

the user to cycle through the three states, rather than just the two, for the check box. You can

determine the state of the check box by accessing the CheckState property.

 Note that you can set the CheckState property to Indeterminate at design time even if

you set the ThreeState property to False. This causes the CheckBox controls to start in the

 110 CHAPTER 3 Advanced Windows Forms Controls

indeterminate state, but once the user makes a selection, the CheckBox must be either

checked or cleared. In this case the user is not allowed to reset the check box to indeterminate.

 The RadioButton Control
 The RadioButton control is used to present exclusive options to the user. The hypothetical

pizza order form in Figure 3-7 demonstrates the use of RadioButton controls, allowing the

user to choose either a pizza or a calzone, but not both. Table 3-11 shows important proper-

ties of the RadioButton control.

 TABLE 3-11 Important Properties of the RadioButton Control

 PROPERTY DESCRIPTION

 CHECKED Indicates whether the RadioButton is selected

 Text The text displayed next to the radio button

 You can determine if a particular RadioButton is selected by accessing the Checked prop-

erty, which returns True if selected.

 All RadioButton controls in a given container control are exclusive of one another. That

means that if one RadioButton control is selected, the others will all be cleared. This has the

net effect of allowing the user to choose only one of a group of options.

 If you want to have several exclusive groups of RadioButton controls, the most common

method is to group them in a GroupBox control. Each group of RadioButton controls in a

particular GroupBox will be exclusive of one another but unaffected by other RadioButton

controls in other GroupBox containers. An example of RadioButton controls in GroupBox con-

tainers is shown in Figure 3-8.

 FIGURE 3-8 Example of grouped RadioButton controls

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 111

 The TrackBar Control
 The TrackBar control provides a simple interface that allows the user to set a value from

a predetermined range of values by graphically manipulating a slider with the mouse or

keyboard commands. This allows the user to rapidly set a value from a potentially very large

range. Table 3-12 shows important properties of the TrackBar control.

 TABLE 3-12 Important Properties of the TrackBar Control

 PROPERTY DESCRIPTION

LargeChange The number of positions the slider moves in response to mouse

clicks or the Page Up and Page Down keys

 Maximum The maximum value for the TrackBar

 Minimum The minimum value for the TrackBar

 SmallChange The number of positions the slider moves in response to arrow

key keystrokes

 TickFrequency The number of positions between tick marks on the TrackBar

 TickStyle Indicates where ticks appear on the TrackBar

 Value The value returned by the TrackBar

 The Trackbar control is shown in Figure 3.9.

 FIGURE 3-9 The TrackBar control

 The TrackBar control can return an integer value in any range between the values of the

Minimum and Maximum properties. The user can set this value by manipulating the graphical

slider on the track bar. Clicking the control or using the Page Up and Page Down keys while

the control is selected causes the value to change by the increment set in the LargeChange

property. Using the arrow keys while the control is selected causes the value to change by the

increment set in the SmallChange property. The user can also grab the slider with the mouse

and adjust it to whatever value is needed. The Value property indicates the current value of

the track bar.

 112 CHAPTER 3 Advanced Windows Forms Controls

 Choosing Dates and Times
 User interfaces frequently require that the user be allowed to set a date or time. For example,

an application that allowed a user to make a reservation would require that a date for the res-

ervation be entered. Visual Studio provides two controls that enable date and time choosing:

the DateTimePicker and the MonthCalendar.

 DateTimePicker Control
 The DateTimePicker control allows the user to set a date, a time, or both, in an easy-to-

 understand graphical interface. The interface is similar to a ComboBox control. The user can

click the drop-down box to display a calendar interface that allows the user to choose a day

from a calendar or type a time into the text area in the DateTimePicker. The chosen day or

time is then displayed in the text area of the DateTimePicker, and the Value property is set to

the chosen DateTime. Table 3-13 shows important properties of the DateTimePicker control.

 TABLE 3-13 Important Properties of the DateTimePicker Control

 PROPERTY DESCRIPTION

 CustomFormat The custom DateTime format to be used when the Format property is

set to Custom.

 Format Sets the format for the DateTime format that is displayed in the

DateTimePicker. Can be set to Long, which displays the value in long

date format; Short, which displays the value in short date format; Time,

which displays the time only; or Custom, which uses the custom Date-

Time format indicated by the CustomFormat property.

 MaxDate The maximum DateTime value the DateTimePicker will accept.

 MinDate The minimum DateTime value the DateTimePicker will accept.

 Value The DateTime value that the DateTimePicker is currently set to.

 When the Format property is set to Long or Short, only the date is displayed and the date

can be set only through the graphical interface. When the Format property is set to Time,

the user can type a new time value into the text area of the DateTimePicker. The user can still

choose a day through the drop-down interface. Although this day is refl ected in the Value

property, it is not displayed when the Format property is set to Time.

 MonthCalendar Control
 The MonthCalendar control is a highly confi gurable control that allows the user to select a

range of dates in a highly intuitive interface. Table 3-14 shows the important properties of the

MonthCalendar control.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 113

 TABLE 3-14 Important Properties of the MonthCalendar Control

 PROPERTY DESCRIPTION

 AnnuallyBoldedDates Contains an array of dates and times that will appear bold

every year

 BoldedDates Contains an array of dates and times that will appear bold

 FirstDayOfWeek Determines which day of the week is set as the fi rst day of the

week in the MonthCalendar control

 MaxDate Sets the maximum date that can be chosen in the MonthCalendar

 MinDate Sets the minimum date that can be chosen in the MonthCalendar

 MaxSelectionCount Sets the maximum number of days that can be selected in the

MonthCalendar

 MonthlyBoldedDates Contains an array of dates and times that will appear bold every

month in the MonthCalendar

 SelectionEnd Indicates the ending date and time of the SelectionRange

property

 SelectionRange Contains the range of dates selected by the user

 SelectionStart Indicates the starting date and time of the SelectionRange

property

 The user can select a single date by clicking a date in the MonthCalendar or a continuous

range of dates by holding down the Shift key while clicking the starting date and the ending

date. The range of dates selected cannot be a greater number of days than the MaxSelection-

Count property indicates.

 At run time you can retrieve the selected dates by accessing the SelectionStart and Selec-

tionEnd properties, which expose the Start and End properties of the SelectionRange prop-

erty. The following example demonstrates how to access the SelectionStart and SelectionEnd

properties:

 ' VB

MsgBox("Your vacation starts on " & _

 MonthCalendar1.SelectionStart.ToLongDateString & _

 " and ends on " & MonthCalendar1.SelectionEnd.ToLongDateString)

// C#

MessageBox.Show("Your vacation starts on " +

 monthCalendar1.SelectionStart.ToLongDateString() + " and ends on " +

 monthCalendar1.SelectionEnd.ToLongDateString());

 114 CHAPTER 3 Advanced Windows Forms Controls

 Working with Images
 Images allow you to liven up your user interface as well as provide important information to

the user. Visual Studio contains several components and controls that facilitate the display of

images. The PictureBox control is an all-around control that displays pictures in different for-

mats. The ImageList manages and organizes a collection of images and can be used to display

images in ListView or to organize images for other controls.

 PictureBox Control
 The PictureBox control is the basic control used for displaying images in the user interface.

The PictureBox control can display pictures in a variety of formats, including .bmp, .jpg, .gif,

metafi les, and icons. You can display images that are present in application resource fi les or

compiled into the application, or you can load images from a Web or disk address. Table 3-15

describes important properties of the PictureBox control.

 TABLE 3-15 Important Properties of the PictureBox Control

 PROPERTY DESCRIPTION

 ErrorImage The image that will be displayed if the selected image fails to load

 Image The image to be loaded in the PictureBox

 ImageLocation A Web or disk address to load the image from

 InitialImage The image to be displayed in the PictureBox while the image is loading

 SizeMode Determines how the control handles image placement and sizing

 You can set the Image property at design time by clicking it in the Properties window,

which opens the Select Resource dialog box, shown in Figure 3-10.

 You can select an image resource that is already present in a project resource fi le by

selecting the Project Resource File radio button and selecting the .resx fi le that contains the

image. Or you can import a new image into a resource fi le by clicking the Import button and

navigating to the image you want to import. The selected image is added to the selected

.resx fi le. You can also import the image as a local resource by selecting the Local Resource

radio button and clicking the Import button to browse to the image you want to import.

Importing an image as a local resource makes it available only to the PictureBox control and

unavailable to the rest of the application.

 Instead of loading an image from a resource, you can specify a URL from which to load an

image by setting the ImageLocation property. When the ImageLocation property is set, the

image is loaded from the specifi ed address and the Image property is set to that image.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 115

 FIGURE 3-10 The Select Resource dialog box

 At run time you can set the Image property to an instance of an image, as shown in the

following example:

' VB

Dim anImage As New System.Drawing.Bitmap("C:\anImage.bmp")

PictureBox1.Image = anImage

// C#

System.Drawing.Bitmap anImage = new

 System.Drawing.Bitmap(@"C:\anImage.bmp");

pictureBox1.Image = anImage;

 ImageList Component
 The ImageList component is not a control as such, but it is a component that allows you to

organize groups of images. Although it has no visual representation itself, it can supply images

to other controls, such as a ListView, or serve as a repository for images to be loaded into a

picture box. You can set the size and color depth for the images and iterate through them as

you would a collection. Table 3-16 shows important properties of the ImageList component.

TABLE 3-16 Important Properties of the ImageList Component

 PROPERTY DESCRIPTION

 ColorDepth Sets the color depth for the images contained in the ImageList component

 Images The collection of images organized by the ImageList component

 ImageSize Sets the size for the images contained in the ImageList control

 116 CHAPTER 3 Advanced Windows Forms Controls

 You can add new items to the ImageList control by clicking the Images property in the

Properties window. This opens the Images Collection Editor, shown in Figure 3-11.

FIGURE 3-11 The Image Collection Editor

 You can use the Images Collection Editor to add or remove images. You can also use it to

change their order. Once you have added images to the ImageList component, you can set

the color depth for each image by setting the ColorDepth property and you can set all of the

images to a specifi ed size by setting the ImageSize property.

 At run time you can access the images contained in the ImageList by means of the Images

collection, as shown in the following example:

 ' VB

PictureBox1.Image = ImageList1.Images(0)

// C#

pictureBox1.Image = imageList1.Images[0];

 You can use ImageList components to provide images to other controls in your user

interface. Several controls, such as Button, CheckBox, RadioButton, and others, host ImageList,

ImageKey, and ImageIndex properties. You can provide images from an ImageList component

to these controls by setting these properties.

 TO PROVIDE AN IMAGE TO A CONTROL FROM AN IMAGELIST COMPONENT

 1. Set the ImageList property of the control to the ImageList component that hosts the

image you want to provide.

 2. Set either the ImageIndex property or the ImageKey property to the appropriate image

in the ImageList.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 117

Quick Check

 1. What is the difference between how a RadioButton control and a CheckBox con-

trol are used?

 2. What is the purpose of an ImageList control and how is it used?

Quick Check Answers

 1. Radio buttons allow the user to choose a single option from a set of mutually

exclusive options. Checkbox controls allow the user to select multiple options,

usually without regard to whether any other options in the group are selected.

 2. An ImageList control is used to organize a set of related images. An ImageList

is generally used to provide images to the controls on a form. You can set the

ImageList property of the controls on a form to an instance of the ImageList and

then set either the ImageIndex or the ImageKey property to specify the image.

LAB Adventure Works Ski Instructor Reservation Form

In this lab, you will build on the solution you created in the lab in Lesson 1. You will add a

group of CheckBox controls to allow the user to indicate required ski rental equipment, a

group of RadioButton controls to allow the user to indicate his or her ski skill level, and an

ImageList component to integrate with the ListView control so the user will be able to see

faces to go with the names.

 EXERCISE 1 Adding to the Ski Instructor Reservation Form

 1. Open the solution you completed in Lesson 1 or open the Lesson 1 completed solution

from the CD.

 2. Open Form1 in Design view. Drag a GroupBox onto the form. Set the Text property of

the GroupBox to Rental Equipment.

 3. Drag three CheckBox controls into the GroupBox. Set the Text properties of the Check-

Box controls to Skis, Poles, and Boots.

 4. Drag a GroupBox onto the form. Set the Text property of the GroupBox to Skill Level.

 5. Drag three RadioButton controls into the GroupBox. Set the Text properties of the

RadioButton controls to Beginner, Intermediate, and Advanced.

 6. Drag a Label control and a DateTimePicker control onto the form. Set the Text property

of the Label to Select Lesson Time.

 7. Set the Format property of the DateTimePicker to Time.

 8. Drag an ImageList component from the Toolbox onto the form.

 9. In the Properties window, set the ImageSize property of the ImageList component to

32,32 and set the ColorDepth property to Depth16Bit.

Quick Check

1. What is the difference between how a RadioButton control and a CheckBox con-x

trol are used?

2. What is the purpose of an ImageList control and how is it used?t

Quick Check Answers

1. Radio buttons allow the user to choose a single option from a set of mutually

exclusive options. Checkbox controls allow the user to select multiple options,x

usually without regard to whether any other options in the group are selected.

2. An ImageList control is used to organize a set of related images. An t ImageList

is generally used to provide images to the controls on a form. You can set the

ImageList property of the controls on a form to an instance of thet ImageList andt

then set either the ImageIndex or thex ImageKey property to specify the image.y

Q

 118 CHAPTER 3 Advanced Windows Forms Controls

 10. In the Properties window, click Images to add four images to the ImageList component.

You will fi nd sample images on the Companion CD in the Images subfolder of the Code

folder.

 11. In the Designer, select the ListView control. In the Properties window, set the Small-

ImageList property to ImageList1.

 12. In the Properties window, click Items to open the ListViewItem Collection Editor. In the

ListViewItem Collection Editor, set the ImageIndex property for ListViewItems 0,1,2,

and 3 to 0,1,2, and 3, respectively. Images should now display next to the icons in the

ListView control.

 13. Press F5 to build and test your application.

 Lesson Summary
 The CheckBox control allows users to select options nonexclusively. You can use groups

of CheckBox controls to allow the user to select multiple options.

 The RadioButton control allows you to present a group of exclusive options to the user.

You can use groups of RadioButton controls to present a list of options, only one of

which can be chosen.

 The TrackBar control allows the user to rapidly and graphically set a numeric value by

adjusting a slider with mouse or keyboard commands.

 The DateTimePicker control allows the user to set a date or time. When set to Time

format, times can be typed into the DateTimePicker. Days can be chosen from the

drop-down calendar interface.

 The MonthCalendar control is a highly confi gurable control that allows the user to

select a range of dates from an intuitive user interface. You can confi gure bold dates

and set the maximum length of the date range to be selected by the user.

 The PictureBox control is an all-purpose control for displaying images in the user inter-

face. It can display images in a variety of formats. The ImageList component organizes

a collection of images and can set images to a common size and color depth.

 Lesson 2: Creating and Confi guring Value-Setting, Date-Setting, and Image-Display Controls CHAPTER 3 119

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following are possible values for the Checked property of a CheckBox

control? (Choose all that apply.)

A. Checked

B. False

C. Indeterminate

D. Unchecked

E. True

F. NotChecked

 2. You are designing an application that asks the user to select a period ranging from

one day to seven days in a given month. Which of the following confi gurations for a

MonthCalendar control are best choices to facilitate this functionality? (Choose all that

apply.)

A. Set the MaxSelectionCount property to 7.

 B. Set the SelectionRange property to the fi rst and last days of the month in question.

C. Set the MaxDate property to the last day of the month in question.

D. Set the MinDate property to the fi rst day of the month in question.

 3. Which of the following code examples correctly associates an image from an ImageList

component with a Button control? Assume an ImageList component named ImageList1

and a Button control named Button1. (Choose all that apply.)

A. ' VB

Button1.Image = ImageList1

// C#

button1.Image = imageList1;

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 120 CHAPTER 3 Advanced Windows Forms Controls

 B. ' VB

Button1.ImageList = ImageList1

Button1.ImageKey = ImageList1.Images(0)

// C#

button1.ImageList1 = imageList1;

button1.ImageKey = imageList1.Images(0);

 C. ' VB

Button1.ImageList = ImageList1

Button1.ImageIndex = 0

// C#

button1.ImageList = imageList1;

button1.ImageIndex = 0;

 D. ' VB

Button1.ImageList = ImageList1

Button1.ImageKey = "myImage"

// C#

button1.ImageList = imageList1;

button1.ImageKey = "myImage";

Lesson 3: Confi guring the WebBrowser Control and
the NotifyIcon Component and Creating Access Keys

Visual Studio provides several ways to extend the user interface. The WebBrowser control pro-

vides an all-purpose control for viewing HTML fi les and loading content from the World Wide

Web. The NotifyIcon component allows you to notify users when processes are running in the

background, and access keys provide additional options to the user for navigating between

controls.

After this lesson, you will be able to:

 Confi gure properties and use methods of the WebBrowser control.

 Add application icons to the task bar with NotifyIcon.

 Associate a context menu with a NotifyIcon component.

 Create an access key for a control.

 Estimated lesson time: 30 minutes

 The WebBrowser Control
 The WebBrowser control provides all of the functionality required to load and display HTML

pages and other fi le types, as well as the functionality needed to navigate to locations on the

World Wide Web. You can confi gure the WebBrowser to expose online help for your applica-

tion, to load and print documents, or to display fi les in a variety of formats. Table 3-17 shows

important properties of the WebBrowser control.

 TABLE 3-17 Important Properties of the WebBrowser Control

 PROPERTY DESCRIPTION

 AllowWebBrowserDrop Determines if documents dropped into the WebBrowser

control are automatically opened

 CanGoBack Returns whether the WebBrowser control is able to navi-

gate backward

 CanGoForward Returns whether the WebBrowser control is able to navi-

gate forward

 Document Returns the current HTML document in the WebBrowser

control

 DocumentStream Returns the stream associated with the current document

 DocumentText Returns a string representation of the current document

 DocumentTitle Returns the title of the current document

After this lesson, you will be able to:

Confi gure properties and use methods of the WebBrowser control.r

Add application icons to the task bar with NotifyIcon.

Associate a context menu with a NotifyIcon component.

Create an access key for a control.

Estimated lesson time: 30 minutes

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 121

 122 CHAPTER 3 Advanced Windows Forms Controls

 PROPERTY DESCRIPTION

 DocumentType Returns the type of the current document

 IsOffl ine Returns whether the system is offl ine

 IsWebBrowserContextMenu-

Enabled

Determines if the standard Microsoft Internet Explorer

context menu is enabled for the WebBrowser

 ScriptErrorsSuppressed Determines whether script errors that occur in the docu-

ment are suppressed or shown in a dialog box

 ScrollBarsEnabled Determines whether scrollbars are enabled for the control

 URL Gets or sets the URL for the current document

 WebBrowserShortcutsEnabled Gets or sets whether standard Internet Explorer keyboard

shortcuts are enabled for the WebBrowser

The WebBrowser control also contains a variety of methods that enable navigation within

the WebBrowser. Table 3-18 describes important methods of the WebBrowser control.

 TABLE 3-18 Important Methods of the WebBrowser Control

 METHOD DESCRIPTION

 GoBack Navigates to the previous page in the navigation history if

one is available

 GoForward Navigates to the next page in the navigation history if one

is available

 GoHome Navigates to the browser’s home page

 GoSearch Navigates to the browser’s search page

 Navigate Navigates to the specifi ed URL

 Print Prints the current document

 ShowPageSetupDialog Displays the Internet Explorer page setup dialog box

 ShowPrintDialog Displays the Internet Explorer print dialog box

 ShowPrintPreviewDialog Displays the Internet Explorer print preview dialog box

 ShowPropertiesDialog Displays the Internet Explorer properties dialog box

 ShowSaveAsDialog Displays the Internet Explorer Save As dialog box if the

document is of a type other than an HTML page

 Stop Cancels any pending navigation and stops any dynamic

page elements

 Navigating the Web with the WebBrowser Control

 The WebBrowser control provides methods that enable navigation of the Web in your

application. The primary method for navigation is the Navigate method. This method takes a

string argument that indicates the URL for the document to be loaded into the WebBrowser

control. The following example demonstrates the Navigate method:

' VB

WebBrowser1.Navigate("www. Microsoft.com")

// C#

webBrowser1.Navigate("www. Microsoft.com");

 Once navigation is complete, the WebBrowser control raises the DocumentCompleted

event. By handling this event, you can execute code after the document has loaded.

 You can use other methods of the WebBrowser control to access your document history.

The GoBack method navigates to the previous page in the document history, and the GoFor-

ward method navigates to the next page in the document history. If no page is available in

the document history, there is no effect.

 Working with Documents in the WebBrowser Control

 You can also use the Navigate method to load other documents into the WebBrowser control.

The following example demonstrates how to load a Microsoft Offi ce Word document into the

WebBrowser control:

 ' VB

WebBrowser1.Navigate("C:\Test.doc")

// C#

webBrowser1.Navigate(@"C:\Test.doc");

 When working with documents in the WebBrowser control, you can allow the user to save

the document by using the ShowSaveAsDialog method. This method displays the Save As

dialog box and allows the user to choose a format to save the document.

 You can also use the WebBrowser control for printing documents. You can call the

ShowPrintDialog and ShowPrintPreview methods to enable printing of the document. These

methods show the Print dialog box and the Print Preview dialog box, respectively, and allow

the user to continue on to printing the document.

 The NotifyIcon Component
 The NotifyIcon component is not a control but a component that represents an icon that

appears in the system tray. The NotifyIcon component is usually used with applications that

run in the background. They can provide information about the program execution by dis-

playing balloon tips, and you can associate a ContextMenuStrip with the NotifyIcon to allow

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 123

 124 CHAPTER 3 Advanced Windows Forms Controls

the user to execute commands from a context menu. Table 3-19 shows important properties

of the NotifyIcon component.

 TABLE 3-19 Important Properties of the NotifyIcon Component

 PROPERTY DESCRIPTION

 BallonTipIcon The icon that will be shown in the balloon tip. This property can be

set to None, which displays no icon, or to Info, Warning, or Error.

 BalloonTipText Sets the text that is displayed in the balloon tip.

 BalloonTipTitle Sets the title of the balloon tip.

 ContextMenuStrip Gets or sets the ContextMenuStrip associated with the NotifyIcon.

 Icon The icon that is shown in the system tray.

 Text The text that is shown when the user’s mouse rests on the icon in

the system tray.

 Visible Indicates whether the icon is visible in the system tray.

 To display a NotifyIcon in the system tray, you must set the Icon property to the icon you

want to display and set the Visible property to True. You can add icons to your project by cre-

ating a new instance of the System.Drawing.Icon class or by adding existing icon fi les to your

project by choosing Add Existing Item from the Project menu.

 The NotifyIcon component contains properties that govern the display of the balloon tip.

You can use the balloon tip to display information to the user. You can set the Icon, Text, and

Title of the balloon tip by setting the BalloonTipIcon, BalloonTipText, and

BalloonTipTitle properties, respectively. After the appropriate properties are set, you can dis-

play the balloon tip by calling the ShowBalloonTip method. The ShowBalloonTip method takes

a parameter that indicates the number of seconds that the balloon tip is shown. Following is

an example of the ShowBalloonTip method:

 ' VB

NotifyIcon1.ShowBalloonTip(12)

// C#

notifyIcon1.ShowBalloonTip(12);

 You can associate a ContextMenuStrip with the NotifyIcon component to allow users to

execute commands from the menu by right-clicking the icon. You can associate a Context-

MenuStrip with the NotifyIcon component by clicking the ContextMenuStrip property in the

Properties window and setting the property to a ContextMenuStrip in your solution. Creating

ContextMenuStrips will be discussed in detail in Chapter 4, “ToolStrips, Menus, and Events.”

Creating Access Keys
Access keys enable the user to move the focus to a particular control by pressing the Alt key

and the access key you have defi ned for a particular control. In Chapter 2 you learned how

to use a Label control to create an access key for another control. The following procedure

describes how to create access keys for individual controls.

NOTE CREATING AN ACCESS KEY FOR A CONTROL

To create an access key for a control with this procedure, the control must be capable of

receiving the focus, it must have a Text property, and it must have a UseMnemonic prop-

erty. If the control you want to create an access key for can receive the focus but does not

have a UseMnemonic property, use the procedure described in Chapter 2. If the control

cannot receive the focus, you cannot create an access key for it by any procedure.

TO CREATE AN ACCESS KEY FOR A CONTROL

 1. Set the Text property to the text you want the control to display.

 2. In the Text property, prepend the letter that you want to make the access key with the

ampersand (&) symbol.

 3. In the Properties window, set the UseMnemonic property to True. The letter preceded

by the ampersand symbol appears underlined, and at run time the user is able to shift

the focus to the control by pressing the Alt key along with the underlined key.

Quick Check

 What is the purpose of access keys?

Quick Check Answer

 Access keys allow you to provide keyboard shortcuts that move the focus to

the control that the access key is associated with.

LAB Creating a Web Browser

In this lab, you will create a limited but functional Web browser. You will add controls to facili-

tate backward and forward navigation, as well as allowing a user to type a URL and navigate

to the specifi ed location.

EXERCISE 1 Creating a Web Browser

 1. In Visual Studio, start a new Windows Forms project.

 2. In the Properties window for Form1, set the Size property to 600;400.

 3. From the Toolbox, drag a SplitContainer onto the form.

NOTE CREATING AN ACCESS KEY FOR A CONTROL

To create an access key for a control with this procedure, the control must be capable of

receiving the focus, it must have a Text property, and it must have a t UseMnemonic prop-c

erty. If the control you want to create an access key for can receive the focus but does not

have a UseMnemonic property, use the procedure described in Chapter 2. If the control c

cannot receive the focus, you cannot create an access key for it by any procedure.

Quick Check

What is the purpose of access keys?

Quick Check Answer

Access keys allow you to provide keyboard shortcuts that move the focus to

the control that the access key is associated with.

Q

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 125

 126 CHAPTER 3 Advanced Windows Forms Controls

 4. From the Toolbox, drag a WebBrowser control onto Panel2.

 5. From the Toolbox, drag three Button controls and a TextBox control onto Panel1.

 6. Set the Text property of the Button controls to &Back, &Forward, and &Navigate.

 7. Set the UseMnemonic property of each Button control to True.

 8. Select the SplitContainer. In the Properties window, set the Orientation property to

Horizontal and adjust the size of Panel1 so that just the buttons are showing. Set the

FixedPanel property to Panel1.

 9. In the Designer, double-click the Back button to open the Button_Click event handler

for this button. Add the following line of code:

 ' VB

WebBrowser1.GoBack()

// C#

webBrowser1.GoBack();

 10. In the Designer, double-click the Forward button to open the Button_Click event han-

dler for this button. Add the following line of code:

 ' VB

WebBrowser1.GoForward()

// C#

webBrowser1.GoForward();

 11. In the Designer, double-click the Navigate button to open the Button_Click event han-

dler for this button. Add the following line of code:

 ' VB

WebBrowser1.Navigate(TextBox1.Text)

// C#

webBrowser1.Navigate(textBox1.Text);

 12. Press F5 to build and test your application.

 Lesson Summary
 The WebBrowser control encapsulates all of the functionality necessary to access the

Internet and load a variety of document types. It contains methods that facilitate navi-

gation of the World Wide Web and the fi le system.

 The NotifyIcon component allows you to set an icon in the system tray and provide

notifi cations to users regarding processes running in the background. You can display

messages to the user through balloon tips and enable commands by associating a

ContextMenuStrip with the NotifyIcon.

 You can use the Text and UseMnemonic properties to defi ne access keys for controls

that can receive the focus. Only controls that are capable of receiving the focus can

have access keys defi ned for them. If a control can receive the focus but does not have

Text or UseMnemonic properties, you can defi ne an access key with a Label control, as

described in Chapter 2.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following methods can be used to print the current document in a Web-

Browser control? (Choose all that apply.)

A. WebBrowser.Print

B. WebBrowser.ShowPrintDialog

C. WebBrowser.ShowPrintPreviewDialog

D. WebBrowser.ShowPropertiesDialog

 2. You are designing an application that runs in the background and want to enable the

application to notify the user when a severe error occurs. Which of the following prop-

erties of the NotifyIcon component can facilitate this functionality? (Choose all that

apply.)

A. BalloonTipIcon

B. BalloonTipText

C. BalloonTipTitle

D. Text

 3. Which of the following are required to create an access key for a control without using

an associated label? (Choose all that apply.)

 A. The Enabled property must be set to True.

 B. The control must have a Text property.

 C. The UseMnemonic property must be set to True.

 D. The control must be of a type that is able to receive the focus.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 3: Confi guring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys CHAPTER 3 127

 128 CHAPTER 3 Advanced Windows Forms Controls

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 List-based controls are used to organize and present lists of information to the user.

Basic list-based controls, such as ListBox, ComboBox, and CheckedListBox, organize their

contents in the Items property, which exposes common methods for adding, removing,

and otherwise manipulating contained items.

 Specialized list-based controls, such as ListView and TreeView, are designed to fi ll

specifi c roles. The ListView control allows you to display icons and other information

about its contained members. The TreeView control displays contained members in a

hierarchical tree display that the user can expand or collapse as needed.

 Value-setting controls allow the user to set a value through the user interface. Check-

Box and RadioButton controls set Boolean values for their Checked property, allowing

the user to choose yes or no to a set of presented options.

 The ImageList component organizes images and makes them available to controls in

the application. Controls that expose an ImageList property can reference a given

image list and display contained images.

 The WebBrowser control is an all-purpose control for browsing the Web and fi le sys-

tem. It allows you to work with a variety of document types and contains methods that

facilitate navigation, printing, and saving documents.

 The NotifyIcon component can display information about a process that is running in

the background. You can display information by setting the BalloonTip properties and

showing the balloon tip. You can expose commands to the user by associating a

ContextMenuStrip with the NotifyIcon component.

 You can use the Text and UseMnemonic properties to designate access keys for a

control. Any control that can receive the focus and has Text and UseMnemonic proper-

ties can defi ne its own access key. If a control can receive the focus but does not have

Text or UseMnemonic properties, you can defi ne an access key using a Label control as

shown in Chapter 2.

 Chapter Review CHAPTER 3 129

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

 access keys

 list

 list-based control

 value-setting control

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about how to use controls

to design user interfaces. You can fi nd answers to these questions in the “Answers” section at

the end of this book.

 Case Scenario 1: Incorporating List-Based Controls into the User

Interface

 Humongous Insurance has grown so large that it needs some help keeping track of its

employees. You have been put on the team that will design the new human resources appli-

cation. Other developers will supply a programmatic representation of the organization chart

and a database of information about the employees. Your job is to create a user interface

that allows the user to browse the organization chart and allows additional information about

each employee to be displayed in the user interface.

 QUESTIONS

 Answer the following questions for your manager:

 1. What is your suggested control layout for the user interface? How will you be able to

display the organization chart in a compact, easy-to-browse format?

 2. How can we display photos of our employees as part of this application?

 Case Scenario 2: Working with Files and Background Processes

 As part of its document backup plan, Humongous Insurance has created an automated

program that reads its electronic documents in a variety of different formats (such as .doc,

.txt, and .htm), saves them to a backup location, and prints a hard copy on a high-throughput

printer. For the most part, this application works fi ne without user interaction and displays no

user interface. Occasionally, however, a problem occurs with a document that requires user

intervention. You have been put in charge of designing the user interface for the rare occa-

sions that do arise.

 130 CHAPTER 3 Advanced Windows Forms Controls

TECHNICAL REQUIREMENTS

 The user interface must display only when there is a problem and cannot be launched

without action by a user.

 The user must be able to examine the document and manually save and print it.

 QUESTIONS

 Answer the following questions for your manager:

 1. How can we warn the user of a problem without displaying the user interface at all

times? How will we allow the user to launch a user interface when there is a problem?

 2. When there is a problem, how can we design the user interface so that the user is able

to examine, print, and save individual fi les?

 Suggested Practices

 To master the Add and Confi gure a Windows Forms Control exam objective, complete the

following practices, as well as the practices in Chapter 2.

 Practice 1 Build an application that duplicates the functionality of Windows Explorer.

You should be able to display a directory tree in one pane and fi les in a particular

directory in another pane.

 Practice 2 Build an application that acts like an appointment book. It should allow

the user to choose a date and time, add information about the appointment, track and

display details about the appointment, and visually display to the user on a Month-

Calendar control what days have appointments set.

 Practice 3 Expand the Web browser you created in Lesson 3, “Confi guring the Web-

Browser Control and the NotifyIcon Component and Creating Access Keys,” to disable

the Back and Forward buttons if webBrowser1.CanGoBack or webBrowser1.CanGo-

Forward are False. You can do this by handling the WebBrowser.CanGoBackChanged

and WebBrowser.CanGoForwardChanged events. Also, allow the user to navigate to a

page by typing an address in the TextBox control and pressing Enter.

 Take a Practice Test CHAPTER 3 131

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 4 133

 C H A P T E R 4

 Tool Strips, Menus, and
Events

 This chapter describes additional ways to extend the user interface (UI). Tool strips allow

you to create useful toolbars in a manner consistent with the look and feel of Microsoft

Offi ce. Menus allow you to defi ne custom commands that the user can execute. Events are

raised by controls in response to changes in application conditions or user interaction. By

handling events, you can cause code that you write to execute in response to events.

 Exam objectives in this chapter:

 Add and confi gure a Windows Forms control.

 Display images by using Windows Forms controls.

 Create and confi gure menus.

 Create and confi gure a MenuStrip component on a Windows Form.

 Change the displayed menu structure programmatically.

 Create and confi gure the ContextMenuStrip on a Windows Form.

 Create event handlers for Windows Forms and controls.

 Use the Windows Forms Designer to create event handlers.

 Manage mouse and keyboard events within Windows Forms applications.

 Program a Windows Forms application to recognize modifi er keys.

 Use the Windows Forms Designer to create default event handlers.

 Assign event handlers at run time to respond to system or user events

dynamically.

 Connect multiple events to a single event handler.

 Use the Code Editor to override methods defi ned in the base class.

 Lessons in this chapter:

 Confi guring Tool Strips 135

 Creating and Confi guring Menus 147

 Using Events and Event Handlers 164

 134 CHAPTER 4 Tool Strips, Menus, and Events

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft .NET Framework .

 Completed Chapter 3, “Advanced Windows Forms Controls,” or have a good under-

standing of Windows Forms controls and the Visual Studio IDE .

 REAL WORLD

Matt Stoecker

 The ToolStrip and MenuStrip controls in the .NET Framework have dramatically

improved the speed with which I can develop a UI. The ToolStrip control allows

me to create UIs that are consistent with Offi ce applications and to create a more

familiar experience for the user, which leads to more rapid adoption and, ultimately,

increased productivity.

REAL WORLD

Matt Stoecker

The ToolStrip and MenuStrip controls in the .NET Framework have dramatically

improved the speed with which I can develop a UI. The ToolStrip control allows

me to create UIs that are consistent with Offi ce applications and to create a more

familiar experience for the user, which leads to more rapid adoption and, ultimately,

increased productivity.

 Lesson 1: Confi guring Tool Strips CHAPTER 4 135

Lesson 1: Confi guring Tool Strips

 The ToolStrip control is designed to facilitate the creation of custom toolbars that have the

look and feel of Offi ce and Microsoft Internet Explorer toolbars. Using the ToolStrip control,

you can rapidly develop highly confi gurable, professional-looking toolbars that expose your

custom functionality.

After this lesson, you will be able to:

 Confi gure a tool strip to create a tool bar.

 Confi gure a status strip to create a status bar.

 Add various tool strip items to a ToolStrip control.

 Add an image to a tool strip item.

 Enable repositioning of tool strip items by the user.

 Add a ToolStrip control to a ToolStripContainer.

 Merge two tool strips.

 Estimated lesson time: 30 minutes

 Overview of the ToolStrip Control
 The ToolStrip control enables you to create toolbars that have a professional and consistent

look and feel. ToolStrip controls are containers for ToolStripItems, which are controls that are

designed to be hosted inside a tool strip. You can use ToolStripItems to give the user a wide

variety of options and functionality.

 ToolStrip controls encapsulate much of the functionality required for managing a toolbar.

They manage the layout and positioning of their contained tool strip controls, allow the user

to reorder the tool strip items, manage rendering, and create overfl ow buttons when a tool

strip hosts more tool strip items than it can display. Table 4-1 shows some of the important

properties of the ToolStrip control.

 TABLE 4-1 Important Properties of the ToolStrip Control

 PROPERTY DESCRIPTION

 AllowItemReorder Indicates whether the user can reorder items. When set to True,

contained tool strip items can be reordered when the user holds

down the Alt key and grabs the item with the mouse.

 AllowMerge Indicates whether this tool strip can be merged with another tool

strip.

After this lesson, you will be able to:

Confi gure a tool strip to create a tool bar.

Confi gure a status strip to create a status bar.

Add various tool strip items to a ToolStrip control.

Add an image to a tool strip item.

Enable repositioning of tool strip items by the user.

Add a ToolStrip control to a ToolStripContainer.rr

Merge two tool strips.

Estimated lesson time: 30 minutes

 136 CHAPTER 4 Tool Strips, Menus, and Events

 PROPERTY DESCRIPTION

 CanOverfl ow Indicates whether tool strip items can be automatically moved to

the overfl ow button when needed.

 Dock Indicates how the tool strip is docked. Although ToolStrip controls

can be free in the form, they are usually docked to one of the form

edges.

 LayoutStyle Indicates how the controls on the tool strip are laid out. A value

of HorizontalStackWithOverFlow indicates that items are stacked

horizontally and overfl ow as needed. VerticalStackWithOverFlow

stacks items vertically and overfl ows as needed. StackWithOverfl ow

determines the stack model appropriate to the Dock property of

the tool strip. Flow allows the items to stack horizontally or verti-

cally as needed, and Table arranges all of the items fl ush left.

 RenderMode Determines how the tool strip items are rendered. System uses sys-

tem settings, Professional indicates an Offi ce-style appearance, and

ManagerRenderMode gets the setting automatically.

 ShowItemToolTips Indicates whether tooltips for individual tool strip items are dis-

played.

 Stretch When hosted in a ToolStripContainer, indicates whether the tool

strip stretches to the full length of the ToolStripPanel.

 TextDirection Indicates the direction of the text in controls hosted in the tool

strip.

 The StatusStrip control is very similar to the ToolStrip control and can host the same con-

trols that a ToolStrip control can. The primary differences are in the default setting for the

properties. StatusStrip controls are designed to dock at the bottom of the form and give the

user status updates, and they have default properties set to values that facilitate this function-

ality. ToolStrip controls are designed for a variety of tool-based roles and have default values

for properties that indicate a more generalized role.

 Adding Tool Strip Items to a Tool Strip

 At design time you can add tool strip items to a tool strip by choosing appropriate items from

the drop-down menu in the Designer, as shown in Figure 4-1.

 The item you choose from the menu is added to the tool strip, and an instance of it is

added to your application. You can set properties for the item in the Properties window and

refer to the item in code.

 Lesson 1: Confi guring Tool Strips CHAPTER 4 137

 FIGURE 4-1 Adding a tool strip item at design time

 At run time you can dynamically add items to a tool strip by using the ToolStrip.Items.Add

method. This method allows you to specify a reference to an existing tool strip item and add

it to the toolbar, or it will create and add a new tool strip item when you specify text or an

image. An example is shown here:

 ' VB

Dim aToolStripItem As ToolStripItem

Dim bToolStripItem As ToolStripItem

aToolStripItem = myToolStrip.Items.Add("New Item")

bToolStripItem = myToolStrip.Items.Add(anImage)

// C#

ToolStripItem aToolStripItem;

ToolStripItem bToolStripItem;

aToolStripItem = myToolStrip.Items.Add("New Item");

bToolStripItem = myToolStrip.Items.Add(anImage);

 In this example a new tool strip item is added when text or an image is specifi ed in the call

to the Add method. When items are added in this way, the resulting item is always a ToolStrip-

Button object. The ToolStrip.Items.Add method returns a reference to the new item so you can

set properties and events for it at run time.

 You can also create a new tool strip item and then add it directly, as shown here:

 ' VB

Dim aComboBox As New ToolStripComboBox()

myToolStrip.Items.Add(aComboBox)

// C#

ToolStripComboBox aComboBox = new ToolStripComboBox();

myToolStrip.Items.Add(aComboBox);

 By following this example, you can create a tool strip item of any kind and add it to a tool

strip at run time.

 138 CHAPTER 4 Tool Strips, Menus, and Events

 Tool Strip Items
 The .NET Framework provides several items designed to be hosted in tool strips. Items such

as the ToolStripLabel, ToolStripButton, ToolStripTextBox, ToolStripComboBox, and ToolStrip-

ProgressBar controls are similar to the Label, Button, TextBox, ComboBox, and ProgressBar

controls, but they are designed to be hosted in tool strips. ToolStripSplitButton, ToolStripDrop-

DownButton, and ToolStripSeparator are designed to provide functionality specifi c to tool

strips.

 Common Properties of Tool Strip Items

 Tool strip items have several common properties that govern their behavior in the tool strip.

Table 4-2 demonstrates the most important properties that all tool strip items share.

 TABLE 4-2 Important Properties of Tool Strip Items

 PROPERTY DESCRIPTION

 MergeAction Determines how a tool strip item behaves with the tool strip that

contains it when it is merged with another tool strip. Possible values

are Append, Insert, MatchOnly, Remove, and Replace. Merging tool

strips will be discussed later in this lesson.

 MergeIndex Indicates where a tool strip item appears in a merged tool strip if

the MergeAction property is set to Insert.

 ToolTipText Gets or sets the text that is shown in a tooltip when the mouse hov-

ers over the tool strip item if the ToolStrip.ShowItemToolTips prop-

erty is set to True. Note that the ToolStripSeparator control does not

have this property.

 ToolStripLabel

 The ToolStripLabel control combines the functionality of the Label control and the LinkLabel

control. When the IsLink property is set to False, the ToolStripLabel displays the text contained

in its Text property in the tool strip and acts similarly to a basic Label control. When the IsLink

property is set to True, the control behaves like a LinkLabel control. You can program actions

to be taken when the label is clicked in the ToolStripLabel.Click event handler.

 ToolStripButton

 The ToolStripButton control is analogous to the familiar Button control. It appears on the tool

strip as a button, usually displaying an icon that indicates its function. The user can click the

button to execute an action. Clicking the button executes code in the ToolStripButton.Click

event handler.

 Lesson 1: Confi guring Tool Strips CHAPTER 4 139

 ToolStripSeparator

 The ToolStripSeparator control is basically a visual cue that separates items in a tool strip from

other items in a tool strip. Although it can respond to mouse clicks through the ToolStripSepa-

rator.Click event handler, it is primarily used to provide visual feedback.

 ToolStripComboBox

 The ToolStripComboBox control is similar to the ComboBox control but is hosted in a tool strip.

Like the ComboBox, it can be set to styles of Simple, DropDown, or DropDownList, and the

items are found in the Items collection. When an item is selected or typed into the ToolStrip-

ComboBox, that item is exposed through the Text property.

 ToolStripTextBox

 The ToolStripTextBox is very similar to the basic TextBox control. The user can type a string

into the text box, and this string will be programmatically accessible through the ToolStrip-

TextBox.Text property. The main difference in functionality is that the ToolStripTextBox does

not have a MultiLine property and, thus, can have only one line.

 ToolStripProgressBar

 The ToolStripProgressBar is a control that is designed to provide feedback to the user when

progress is made on a time-consuming task, and it functions very similarly to the standard

ProgressBar control. The Minimum and Maximum properties set the minimum and maximum

values for the ToolStripProgressBar, and the Value property determines the current setting.

The visual appearance is set by the Style property, and when Style is set to Blocks or Continu-

ous, the Value property is refl ected in the visual interface as a percentage of the maximum

that is fi lled in the progress bar. When it is set to Marquee, blocks continuously move across

the progress bar at the rate specifi ed by the MarqueeAnimationSpeed property. At run time

you can advance the value of the ToolStripProgressBar either by setting the Value property

directly or by using the Increment and PerformStep methods.

 ToolStripDropDownButton

 The ToolStripDropDownButton allows you to create a drop-down menu that appears when

the button is clicked. At design time you can create the menu by typing text for menu items

in the menu designer, as shown in Figure 4-2.

 Each menu item has its own ToolStripMenuItem.Click event that you can respond to.

 140 CHAPTER 4 Tool Strips, Menus, and Events

FIGURE 4-2 Creating a menu with the ToolStripDropDownButton

 ToolStripSplitButton

 The ToolStripSplitButton control combines the functionality of the ToolStripButton and Tool-

StripDropDownButton controls. This control exposes a button that a user can click to execute

code, but it also exposes a drop-down menu in the style of the ToolStripDropDownButton

control. You can handle the ToolStripSplitButton.Click event to write code for the button clicks,

or you can write code that is executed for each ToolStripMenuItem.Click event.

 Displaying Images on Tool Strip Items
 The ToolStripButton, ToolStripDropDownButton, and ToolStripSplitButton controls can display

text, images, or a combination of both. Table 4-3 shows how the properties of these controls

govern how images are displayed.

 TABLE 4-3 Image Display Properties of ToolStripButton Controls

 PROPERTY DESCRIPTION

 DisplayStyle Determines whether the control is displayed with text,

image, or both

 Image Gets or sets the image associated with this control

 ImageAlign Indicates how the image is aligned in the control

 ImageScaling Specifi es whether the image will be resized to fi t the

control

 ImageTransparentColor Indicates the color in the image that will appear as trans-

parent when rendered in the UI

 Lesson 1: Confi guring Tool Strips CHAPTER 4 141

 TO DISPLAY AN IMAGE ON A TOOL STRIP

 1. Select the control. In the Properties window, ensure that the DisplayStyle property is

set to Image or ImageAndText.

 2. In the Properties window, select the image for the control by clicking the Image prop-

erty and selecting or browsing to the appropriate image in the Select Resource dialog

box.

 The ToolStripContainer
 The ToolStripContainer class is a specialized container control designed specifi cally for con-

taining tool strips and enabling rafting, which is the process by which a user can grab a tool

strip and move it from one edge of the container to another.

 The ToolStripContainer contains fi ve panels: four ToolStripPanels (one on each edge of the

form) and one ContentPanel. The most common scenario for the ToolStripContainer is to add

it to a form and set the Dock property to Fill. This results in the ToolStripContainer fi lling the

entire form and having tool strip panels available on all sides.

 At design time you can add a tool strip to a tool strip container by dragging it from the

Toolbox onto one of the tool strip panels. You can control which tool strip panels are available

to the user by setting the TopToolStripPanelVisible, BottomToolStripPanelVisible, LeftToolStrip-

PanelVisible, and RightToolStripPanelVisible properties. When these properties are set to True,

the corresponding panel is available for tool strip rafting at run time. When they are set to

False, the panel is not available.

 Merging Tool Strips
 You can merge ToolStrip controls at run time and incorporate their items into a single tool

strip. You merge tool strips by invoking the ToolStripManager.Merge method, as shown here:

 ' VB

ToolStripManager.Merge(sourceToolStrip, targetToolStrip)

// C#

ToolStripManager.Merge(sourceToolStrip, targetToolStrip);

 The ToolStripManager is a static class that manages the display and layout of the tool strips

on a form. Because it is a static class, there is no need to instantiate it—you can invoke the

methods directly.

 The preceding example takes the fi rst tool strip, sourceToolStrip, and merges it with the

second tool strip (targetToolStrip). The tool strip items on sourceToolStrip are then merged

with the items on targetToolStrip, as is determined by their MergeAction property value. Table

4-4 summarizes the merge action taken by the MergeAction property value.

 142 CHAPTER 4 Tool Strips, Menus, and Events

TABLE 4-4 ToolStripItem MergeAction Property Values and Merge Actions

MERGEACTION VALUE ACTION TAKEN

Append Appends the item at the end of the list of items.

Insert Inserts the item at the location specifi ed by the MergeIndex

property.

MatchOnly Looks for a match but takes no action.

Remove If a matching tool strip item is found, it is removed from the

resulting tool strip.

Replace If a matching tool strip item is found, it is replaced with this tool

strip.

When tool strips are merged, each tool strip item in the source tool strip is compared to

each tool strip item in the target tool strip. The comparison is based on the Text property of

each tool strip item. Thus, if any two tool strip items have the same Text property, they are

considered a match, even if they are different types (for example, a ToolStripLabel and a Tool-

StripButton that both have a Text property that is set to Execute is considered a match). If a

match is found and the source tool strip item has the Merge Action property set to MatchOnly,

Remove, or Replace, then the appropriate action is taken. Otherwise, the tool strip item is

appended or inserted, as determined by the MergeAction property.

For tool strips to be merged successfully, they must have their AllowMerge property set to

True.

Quick Check

 1. What is the purpose of the ToolStrip control?

 2. What kinds of ToolStripItems can be hosted in a ToolStrip control?

Quick Check Answers

 1. The ToolStrip control is used to host ToolStripItems that can be used to expose

commonly used commands or provide frequently used functionality in an envi-

ronment that is highly confi gurable at run time.

 2. The ToolStrip can host any kind of ToolStripItem, including ToolStripMenuItem

controls.

Quick Check

1. What is the purpose of the ToolStrip control?

2. What kinds of ToolStripItems can be hosted in a ToolStrip control?

Quick Check Answers

1. The ToolStrip control is used to host ToolStripItems that can be used to expose

commonly used commands or provide frequently used functionality in an envi-

ronment that is highly confi gurable at run time.

2. The ToolStrip can host any kind of ToolStripItem, including ToolStripMenuItem

controls.

Q

 Lesson 1: Confi guring Tool Strips CHAPTER 4 143

 LAB 1 Creating a ToolStrip–Based Web Browser

 In this lab, you will explore the functionality of ToolStrip and ToolStripItem controls by creating

a simple Web browser that uses ToolStripItem controls to enable its functionality. In the fi rst

exercise, you will add a tool strip that implements basic Web browser functionality. In the

second exercise, you will add a tool strip that allows the user to search the Web.

 EXERCISE 1 Creating a Web Browser

 1. Start a new Windows Forms Project.

 2. From the Toolbox, drag a ToolStripContainer onto the form. Set the Dock property to

Fill.

 3. Enlarge the form to a comfortable size for a Web browser.

 4. From the Toolbox, drag a WebBrowser control into the center panel of the ToolStrip-

Container.

 5. From the Toolbox, drag a ToolStrip control to the top panel of the ToolStripContainer.

 6. Using the drop-down menu in the ToolStrip, add the following controls to the tool

strip in this order: two ToolStripButton controls, a ToolStripComboBox, and two more

ToolStripButton controls.

 7. In the Properties window, set the Name, Image, and ToolTipText properties of the Tool-

StripButton controls, as shown in the following table. You can fi nd the image fi les in the

solutions installed from the CD.

 DEFAULT NAME NEW NAME IMAGE TOOLTIPTEXT

 ToolStripButton1 BackButton Back.bmp Navigate Back

 ToolStripButton2 ForwardButton Forward.bmp Navigate Forward

 ToolStripButton3 GoButton Go.bmp Navigate

 ToolStripButton4 StopButton Stop.bmp Stop Navigation

 8. Double-click the BackButton button and add the following code to the BackButton_

Click event handler:

 ' VB

WebBrowser1.GoBack()

// C#

webBrowser1.GoBack();

 9. Double-click the ForwardButton button and add the following code to the ForwardBut-

ton_Click event handler:

 ' VB

WebBrowser1.GoForward()

 144 CHAPTER 4 Tool Strips, Menus, and Events

// C#

webBrowser1.GoForward();

 10. Double-click the GoButton button and add the following code to the GoButton.Click

event handler:

 ' VB

If Not ToolStripComboBox1.Text = "" Then

 WebBrowser1.Navigate(ToolStripComboBox1.Text)

 ToolStripComboBox1.Items.Add(ToolStripComboBox1.Text)

 If ToolStripComboBox1.Items.Count = 11 Then

 ToolStripComboBox1.Items.RemoveAt(0)

 End If

End If

// C#

if (!(toolStripComboBox1.Text == ""))

{

 webBrowser1.Navigate(toolStripComboBox1.Text);

 toolStripComboBox1.Items.Add(toolStripComboBox1.Text);

 if (toolStripComboBox1.Items.Count == 11)

 {

 toolStripComboBox1.Items.RemoveAt(0);

 }

}

 11. Double-click the StopButton button and add the following code to the StopButton_

Click event handler:

 ' VB

WebBrowser1.Stop()

// C#

webBrowser1.Stop();

 12. Press F5 to test your application.

 EXERCISE 2 Adding a Search Tool Strip

 1. From the Toolbox, drag a second ToolStrip onto the Top panel of the ToolStripContainer.

 2. In the ToolStrip designer, add a ToolStripTextBox and a ToolStripButton to the new tool

strip.

 3. In the Properties window, set the Text property of the ToolStripButton to Search MSN

and the DisplayStyle property to Text.

 4. Double-click the tool strip button and add the following code to its event handler:

 ' VB

WebBrowser1.Navigate("http://search.msn.com/results.aspx?q=" & _

 Lesson 1: Confi guring Tool Strips CHAPTER 4 145

 ToolStripTextBox1.Text)

// C#

webBrowser1.Navigate(@"http://search.msn.com/results.aspx?q=" +

 toolStripTextBox1.Text);

 5. Press F5 to test your application. Note that the two tool strips can be individually posi-

tioned and moved to other panels in the ToolStripContainer.

Lesson Summary
 The ToolStrip control is a host for ToolStripMenuItem controls that you can use to

create toolbar-style functionality for your forms. Toolbars provide support for item

reordering, rafting, and overfl ow of items onto the overfl ow button.

 Many tool strip items duplicate functionality of full-size Windows Forms controls, such

as ToolStripLabel, ToolStripButton, ToolStripTextBox, ToolStripComboBox, and ToolStrip-

ProgressBar. Tool strip controls that do not have analogous Windows Forms controls

include ToolStripSeparator, ToolStripDropDownButton, and ToolStripSplitButton.

 You can display images on the ToolStripItems control with the Image property.

 The ToolStripContainer control allows you to create forms that include support for raft-

ing toolbars.

 The ToolStripManager class is a static class that exposes methods for tool strip manage-

ment. You can use the ToolStripManager.Merge method to merge tool strips.

Lesson Review
You can use the following questions to test your knowledge of the information in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following code snippets will correctly merge two tool strips named aTool-

Strip and bToolStrip?

A. ' VB

aToolStrip.Merge(bToolStrip)

// C#

aToolStrip.Merge(bToolStrip);

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 146 CHAPTER 4 Tool Strips, Menus, and Events

 B. ' VB

ToolStripManager.Merge(aToolStrip, bToolStrip)

// C#

ToolStripManager.Merge(aToolStrip, bToolStrip);

 C. ' VB

Dim aManager As New ToolStripManager()

aManager.Merge(aToolStrip, bToolStrip)

// C#

ToolStripManager aManager = new ToolStripManager();

aManager.Merge(aToolStrip, bToolStrip);

 D. ' VB

ToolStrip.Merge(aToolStrip, bToolStrip)

// C#

ToolStrip.Merge(aToolStrip, bToolStrip);

 2. Which of the following code snippets will add a new ToolStripButton to a tool strip

named aToolStrip?

 A. ' VB

aToolStrip.Items.Add(New ToolStripButton("Click me"))

// C#

aToolStrip1.Items.Add(new ToolStripButton("Click me"));

 B. ' VB

ToolStripManager.Add(aToolStrip, New ToolStripButton("Click me"))

// C#

ToolStripManager.Add(aToolStrip, new ToolStripButton("Click me"));

 C. ' VB

aToolStrip.Buttons.Add(New ToolStripButton("Click me"))

// C#

aToolStrip.Buttons.Add(new ToolStripButton("Click me"));

 D. ' VB

aToolStrip.Items.NewItem(Items.ToolStripButton("Click me"))

// C#

aToolStrip.Items.NewItem(Items.ToolStripButton("Click me"));

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 147

Lesson 2: Creating and Confi guring Menus

Menus have always been a part of Windows Forms applications. They give the user quick and

easy access to important application commands in an easy-to-understand, easy-to-browse

interface. The .NET Framework version 2.0 introduced MenuStrips, which allow the rapid cre-

ation of Forms menus as well as context menus (also known as shortcut menus, which appear

when the user right-clicks an object). In this lesson you will learn how to create menus and

context menus and confi gure them for use in your application.

After this lesson, you will be able to:

 Create and confi gure a MenuStrip component on a Windows Form.

 Change the Displayed menu structure programmatically.

 Create and confi gure the ContextMenuStrip component on a Windows Form.

Estimated lesson time: 30 minutes

Overview of the MenuStrip Control
The MenuStrip control is essentially a ToolStrip control that is optimized for the display of

ToolStripMenuItems. The MenuStrip control derives from ToolStrip and can host all of the tool

strip items described in the previous lesson. Its primary function, however, is to host ToolStrip-

MenuItems.

ToolStripMenuItems are the controls that provide the visual representation for items on a

menu. They can appear as text, an image, or both, and can execute code found in their Tool-

StripMenuItem.Click event handlers when clicked. Each ToolStripMenuItem can contain its own

set of menu items, allowing for the creation of nested menus.

 The menu strip exposes many properties that affect the behavior of its hosted ToolStrip-

MenuItems. Important properties of the MenuStrip control are shown in Table 4-5.

 TABLE 4-5 Important Properties of the MenuStrip Control

 PROPERTY DESCRIPTION

 AllowItemReorder Indicates whether the user can reorder items. When set to True,

contained items can be reordered when the user holds down the

Alt key and grabs the item with the mouse.

 AllowMerge Indicates whether this menu strip can be merged with another tool

strip.

 Dock Indicates how the menu strip is docked. Although MenuStrip con-

trols can be free in the form, they are usually docked to one of the

form edges.

After this lesson, you will be able to:

Create and confi gure a MenuStrip component on a Windows Form.

Change the Displayed menu structure programmatically.

Create and confi gure the ContextMenuStrip component on a Windows Form.

Estimated lesson time: 30 minutes

 148 CHAPTER 4 Tool Strips, Menus, and Events

 PROPERTY DESCRIPTION

 LayoutStyle Indicates how the controls on the tool strip are laid out. A value

of HorizontalStackWithOverfl ow indicates that items are stacked

horizontally and overfl ow as needed. VerticalStackWithOverfl ow

stacks items vertically and overfl ows as needed. StackWithOverfl ow

determines the stack model appropriate to the Dock property of

the tool strip. Flow allows the items to stack horizontally or verti-

cally as needed, and Table arranges all of the items fl ush left.

 RenderMode Determines how the tool strip items are rendered. System uses

system settings, Professional indicates an Offi ce-style appearance,

and ManagerRenderMode gets the setting automatically.

 ShowItemToolTips Indicates whether tooltips for individual tool strip items are

displayed.

 Stretch When hosted in a ToolStripContainer, indicates whether the tool

strip stretches to the full length of the ToolStripPanel.

 TextDirection Indicates the direction of the text in controls hosted in the tool

strip.

 Note that the properties of the MenuStrip control are very similar to the properties of the

ToolStrip control. Because MenuStrip derives from ToolStrip, it exposes most of the same prop-

erties as the ToolStrip control and encapsulates most of the same functionality.

 ToolStripMenuItems provide all of the functionality that is expected of menus. Table 4-6

explains some of the important properties of the ToolStripMenuItem control.

TABLE 4-6 Important Properties of the ToolStripMenuItem Control

 PROPERTY DESCRIPTION

 AutoSize Determines whether the menu item is automatically sized to

fi t the text.

 Checked Determines whether the menu item appears as checked.

 CheckOnClick Determines whether the menu item is automatically checked

when clicked.

 CheckState Returns the CheckState of the menu item. The CheckState can

be Checked, Unchecked, or Indeterminate.

 DisplayStyle Determines how the tool strip menu item is displayed. This

property can be set to None, which provides no visual repre-

sentation; Text, which shows only text; Image, which displays

the item only with an image; or ImageAndText, which displays

the image next to the text.

 DoubleClickEnabled Determines whether the DoubleClick event fi res.

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 149

 PROPERTY DESCRIPTION

 DropDownItems Contains a collection of tool strip items (usually tool strip

menu items, but not necessarily) that appear in the drop-

down list when this item is chosen.

 Enabled Determines whether the tool strip menu item is enabled.

 Image Sets the image to be associated with this tool strip menu item.

 MergeAction Determines the action taken by this tool strip menu item

when menus are merged.

 MergeIndex Determines the order of items in the resultant menu after

menus are merged.

 ShortcutKeyDisplayString Sets a custom string for the shortcut key that is displayed next

to the menu item. If shortcut keys are enabled and this prop-

erty is left blank, the actual key combination is displayed.

 ShortcutKeys Defi nes the key combination that will act as a shortcut to

execute the menu command.

 ShowShortcutKeys Indicates whether shortcut keys are displayed.

 Text Gets or sets the text displayed in the menu item.

 TextImageRelation Determines how the text and image are displayed together

when the DisplayStyle property is set to ImageAndText.

 Creating Menu Strips and Tool Strip Menu Items
 You can create a MenuStrip at design time in the same way that you create any control: by

dragging it from the Toolbox onto the design surface. Once it has been added to the design

surface, an interface for creating tool strip menu items appears. You can type a string into

the box in the menu strip to create a new tool strip menu item. After a new item has been

created, additional boxes appear to the right and beneath the newly created tool strip menu

item to allow you to create more items or subitems of the fi rst item. This interface disappears

if you move the focus elsewhere in the designer, but you can make it reappear by clicking the

tool strip menu item. The ToolStripMenuItem control design interface is shown in Figure 4-3.

 Note that the default naming scheme for the ToolStripMenuItem control is different from

the default naming scheme for other controls. Although controls such as Button are

appended with a number when added to the form (such as Button1), tool strip menu items

are prepended with the text of the menu item. For example, if you created a File menu item,

the default name would be fi leToolStripMenuItem. You can rename a menu item by changing

the Name property in the Properties window.

 150 CHAPTER 4 Tool Strips, Menus, and Events

FIGURE 4-3 The ToolStripMenuItem control design interface

 Changing Properties for Multiple Tool Strip Menu Items at Once

 At times you might want to edit properties for several menu items (or any control) at the same

time. You would usually do this to ensure that all controls have the same setting for a particu-

lar property. If you edit properties for a selection of different types of controls, the Properties

window displays only those properties and events that all controls have in common.

 TO CHANGE MULTIPLE MENU ITEM PROPERTIES AT ONCE

 1. While holding down the Ctrl key, click each menu item you want to edit to select it.

 2. Make the appropriate changes in the Properties window. Changes you make will be

made to all selected menu items.

 You can also add tool strip menu items to menu strips programmatically at run time.

You can either add a preexisting menu item (for example, an item on another menu strip)

or create a brand new menu item and add it to the menu strip. The following code example

demonstrates each of these techniques:

 ' VB

' Adds an existing ToolStripMenuItem to the MenuStrip

MenuStrip1.Items.Add(OpenToolStripMenuItem)

' Creates a new ToolStripMenuItem and adds it to the MenuStrip

Dim HelpToolStripMenuItem As New ToolStripMenuItem("Help")

MenuStrip1.Items.Add(HelpToolStripMenuItem)

// C#

// Adds an existing ToolStripMenuItem to the MenuStrip

menuStrip1.Items.Add(OpenToolStripMenuItem);

// Creates a new ToolStripMenuItem and adds it to the MenuStrip

ToolStripMenuItem HelpToolStripMenuItem = new

 ToolStripMenuItem("Help");

menuStrip1.Items.Add(HelpToolStripMenuItem);

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 151

 You can also use the MenuStrip.Items.Add method to add new tool strip menu items even

if you don’t have a reference to an existing tool strip menu item. The following example

shows how you can specify text or an image to create a tool strip menu item and get a refer-

ence to it:

 ' VB

Dim newMenuItem1 As ToolStripMenuItem

Dim newMenuItem2 As ToolStripMenuItem

' Adds a new menu item by specifying text

newMenuItem1 = MenuStrip1.Items.Add("File")

' Adds a new menu item by specifying an image

newMenuItem2 = MenuStrip1.Items.Add(anImage)

// C#

ToolStripMenuItem newMenuItem1;

ToolStripMenuItem newMenuItem2;

// Adds a new menu item by specifying text

newMenuItem1 = MenuStrip1.Items.Add("File");

// Adds a new menu item by specifying an image

newMenuItem2 = MenuStrip1.Items.Add(anImage);

 You can use similar techniques to add new or existing tool strip menu items to the drop-

down items of an existing tool strip menu item. This has the effect of creating new items in a

submenu. The following example demonstrates programmatically adding a tool strip menu

item to the DropDownItems collection of an existing tool strip menu item:

 ' VB

Dim newMenuItem1 As ToolStripMenuItem

Dim newMenuItem2 As ToolStripMenuItem

' Adds an existing ToolStripMenuItem to another existing ToolStripMenuItem

FileToolStripMenuItem.DropDownItems.Add(OpenToolStripMenuItem)

' Creates a new ToolStripMenuItem and adds it to the MenuStrip

Dim HelpToolStripMenuItem As New ToolStripMenuItem("Help")

FileToolStripMenuItem.DropDownItems.Add(HelpToolStripMenuItem)

' Adds a new menu item by specifying text

newMenuItem1 = FileToolStripMenuItem.DropDownItems.Add("Open")

' Adds a new menu item by specifying an image

newMenuItem2 = FileToolStripMenuItem.DropDownItems.Add(anImage)

// C#

ToolStripMenuItem newMenuItem1;

ToolStripMenuItem newMenuItem2;

// Adds an existing ToolStripMenuItem to another existing ToolStripMenuItem

FileToolStripMenuItem.DropDownItems.Add(OpenToolStripMenuItem);

// Creates a new ToolStripMenuItem and adds it to the MenuStrip

ToolStripMenuItem HelpToolStripMenuItem = new ToolStripMenuItem("Help");

 152 CHAPTER 4 Tool Strips, Menus, and Events

FileToolStripMenuItem.DropDownItems.Add(HelpToolStripMenuItem);

// Adds a new menu item by specifying text

newMenuItem1 = (ToolStripMenuItem)FileToolStripMenuItem.DropDownItems.Add("Open");

// Adds a new menu item by specifying an image

newMenuItem2 = (ToolStripMenuItem)FileToolStripMenuItem.DropDownItems.Add(anImage);

 Copying Menu Items at Design Time

 At times you might want to copy menu items from one location to another. For example,

if you are creating different menus but you want to have a common set of options among

them, you can easily copy menu items by copying and pasting in the Designer.

 TO COPY MENU ITEMS AT DESIGN TIME

 1. In the Designer, right-click the menu item you want to copy and choose Copy from the

context menu.

 2. In the Designer, right-click the menu item that is the intended location of the copied

menu and choose Paste from the context menu. The menu item is copied into the new

location.

 Note that with this procedure you can copy top-level items to sublevel items, sublevel

items to top-level items, top-level items to top-level items, or sublevel items to sublevel items.

 Adding Enhancements to Menus
 Menus can display a variety of enhancements that streamline the user experience and

enhance usability. This section covers how to create check marks, access keys, separator bars,

and shortcut keys on menu items.

 Adding Check Marks to Menu Items

 You can display check marks next to any menu item except a top-level menu item. This is use-

ful when you want to indicate to the user that a menu option is selected or enabled. You can

display a check mark beside a menu item by setting the Checked property to True, as shown

here:

 ' VB

OptionToolStripMenuItem.Checked = True

// C#

optionToolStripMenuItem.Checked = true;

 Alternatively, you can defi ne whether the menu item is selected by setting the CheckState

property to Checked, as shown here:

 ' VB

OptionToolStripMenuItem.CheckState = CheckState.Checked

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 153

// C#

optionToolStripMenuItem.CheckState = CheckState.Checked;

 The Checked property is a Boolean property that returns whether an item is checked. If

the item is checked, the Checked property returns True. If the item is in any other state, the

Checked property returns False. The CheckState property on the other hand, indicates the

actual state of the menu item and returns either CheckState.Checked, CheckState.Unchecked,

or Checkstate.Indeterminate.

 If you want a menu item to appear checked when the user clicks the item, you can set

the CheckOnClick property to True. This causes the check mark on the menu item to toggle

between checked and unchecked each time the user clicks the menu item. You can program-

matically change the check state or determine if the menu item is checked by using the Tool-

StripMenuItem.CheckState property or the ToolStripMenuItem.Checked property.

 Adding Separator Bars to Menus

 It can be useful to add separator bars to menus to set groups of menu options apart from

one another. You can add a separator to any submenu at design time by choosing Separator

from the drop-down box in the menu item design interface, as shown in Figure 4-4.

 FIGURE 4-4 Choosing a separator in the menu item design interface

 Note that if you want to add a separator to a top-level menu, you must do so program-

matically by creating a new instance of the ToolStripSeparator control and inserting it into the

correct location in the MenuStrip.Items collection, as shown here:

 ' VB

Dim aSeparator As New ToolStripSeparator

MenuStrip1.Items.Insert(1, aSeparator)

// C#

ToolStripSeparator aSeparator = new ToolStripSeparator();

menuStrip1.Items.Insert(1, aSeparator);

 154 CHAPTER 4 Tool Strips, Menus, and Events

 Creating Access Keys

 Access keys enable you to access menu items by defi ning keys that, when pressed in combi-

nation with the Alt key, will execute the menu command. For example, if a File menu defi nes

the F key as an access key, when Alt+F is pressed, the File menu opens. Menus that contain

submenus open when the access key combination is pressed, and menus that invoke com-

mands will invoke those commands. Note that the menu item must be visible for the access

key to function. Thus, if you defi ne an access key for an Open menu item that exists in the File

submenu, the File menu must be opened fi rst for the access key combination to function.

 You can create an access key for a menu by preceding the letter you want to defi ne the

access key for with an ampersand (&) symbol. For example, to create an Alt+F access key com-

bination for the File menu, you would set the FileToolStripMenuItem’s Text property to &File.

 Creating Shortcut Keys

 Unlike access keys, shortcut keys are a combination of keystrokes that allow direct invocation

of a menu item whether the menu item is visible or not. For example, you might defi ne the

Ctrl+E key combination to be a shortcut key for the Exit menu command in the File menu.

Even if the File menu is not open, Ctrl+E causes the Exit menu command to be executed. Also,

unlike access keys, you cannot create shortcut keys for top-level menus—you can create them

only for items in submenus.

 You can create a shortcut key at design time by setting the ShortcutKeys property in the

Properties window. Clicking the ShortcutKeys property launches a visual interface that enables

you to defi ne a key combination. This interface is shown in Figure 4-5.

 FIGURE 4-5 The ShortcutKeys property user interface

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 155

 If you want to display the shortcut key combination next to the menu item, you can set

the ShowShortcutKeys property of the ToolStripMenuItem control to True. You can also defi ne

custom text to be shown instead of the key combination. If you want to defi ne custom text,

you can set it in the ShortcutKeyDisplayString property.

 Moving Items Between Menus
 You can move items from one menu to another at run time. This allows you to dynamically

customize menus for special purposes. You can move a menu item to a new menu strip by

using the MenuStrip.Items.Add method to add it to the new menu strip. It is removed from

the previous menu strip automatically. If you want to add the menu item to a particular

location in the new menu strip, you can use the Insert method to add it at a particular index.

Examples are shown here:

 ' VB

' Adds the FileToolStripMenuItem

MenuStrip2.Items.Add(FileToolStripMenuItem)

' Inserts FileToolStripMenuItem to the location corresponding to index 1

MenuStrip2.Items.Insert(1, FileToolStripMenuItem)

// C#

// Adds the FileToolStripMenuItem

menuStrip2.Items.Add(FileToolStripMenuItem);

// Inserts FileToolStripMenuItem to the location corresponding to index 1

menuStrip2.Items.Insert(1, FileToolStripMenuItem);

 You can also use the analogous methods of the ToolStripMenuItem.DropDownItems prop-

erty to move items from one menu to another. Examples are shown here:

 ' VB

' Adds the FileToolStripMenuItem

AppToolStripMenuItem.DropDownItems.Add(FileToolStripMenuItem)

' Inserts FileToolStripMenuItem to the location corresponding to index 1

AppToolStripMenuItem.DropDownItems.Insert(1, FileToolStripMenuItem)

// C#

// Adds the FileToolStripMenuItem

AppToolStripMenuItem.DropDownItems.Add(FileToolStripMenuItem);

// Inserts FileToolStripMenuItem to the location corresponding to index 1

AppToolStripMenuItem.DropDownItems.Insert(1, FileToolStripMenuItem);

 156 CHAPTER 4 Tool Strips, Menus, and Events

 Disabling, Hiding, and Deleting Menu Items
 At times it makes sense to remove certain options from a menu. You might want a menu item

to be disabled when conditions aren’t appropriate for it to be invoked, or you might want

to hide a menu item that shouldn’t be displayed. In some cases you might want to delete a

menu item completely.

 You can disable a menu item by setting the Enabled property to False. This causes the

menu item to appear dimmed. It is still visible to the user, but it cannot be invoked by mouse

clicks or keystrokes.

 You can hide a menu item by setting the Visible property to False. This keeps the menu

item from appearing in the menu. Note, however, that it does not disable the menu item,

and if the Enabled property is set to True, the menu item can still be invoked through short-

cut keys if they have been defi ned for this menu item. Hide menu items sparingly; if a user is

looking for a specifi c menu item, it is typically better for the user to see it dimmed because

the Enabled property has been set to False. Otherwise, the user might continue looking for

the hidden menu item on other menus.

 If you need to delete a menu item from a menu entirely, you can do so by using the

MenuStrip.Items.Remove and MenuStrip.Items.RemoveAt methods to remove an item from a

top-level menu. Or you can use the ToolStripMenuItem.DropDownItems.Remove and Tool-

StripMenuItem.DropDownItems.RemoveAt methods to remove an item from a submenu, as

shown in the following examples:

 ' VB

'Removes FileToolStripMenuItem from MenuStrip1

MenuStrip1.Items.Remove(FileToolStripMenuItem)

' Removes FileToolStripMenuItem from AppToolStripMenuItem

AppToolStripMenuItem.DropDownItems.Remove(FileToolStripMenuItem)

' Removes the ToolStripMenuItem at index 4 from MenuStrip1

MenuStrip1.Items.RemoveAt(4)

' Removes the ToolStripMenuItem at index 4 from AppToolStripMenuItem

AppToolStripMenuItem.DropDownItems.RemoveAt(4)

// C#

// Removes FileToolStripMenuItem from menuStrip1

menuStrip1.Items.Remove(FileToolStripMenuItem);

// Removes FileToolStripMenuItem from AppToolStripMenuItem

AppToolStripMenuItem.DropDownItems.Remove(FileToolStripMenuItem);

// Removes the ToolStripMenuItem at index 4 from menuStrip1

menuStrip1.Items.RemoveAt(4);

// Removes the ToolStripMenuItem at index 4 from AppToolStripMenuItem

AppToolStripMenuItem.DropDownItems.RemoveAt(4);

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 157

 Merging Menus
 Menus can be merged at run time and their items incorporated into a single menu. You can

merge MenuStrips or ContextMenuStrips (which are covered in greater detail later in this les-

son), or both. In fact, you can even merge MenuStrip controls with ToolStrip controls. Like tool

strips, you merge menu strips by invoking the ToolStripManager.Merge method on the static

ToolStripManager class, as shown here:

 ' VB

ToolStripManager.Merge(sourceMenuStrip, targetMenuStrip)

// C#

ToolStripManager.Merge(sourceMenuStrip, targetMenuStrip);

 The preceding example takes the fi rst menu strip, sourceMenuStrip, and merges it with the

second menu strip (targetMenuStrip). The tool strip menu items on sourceMenuStrip are then

merged with the items on targetMenuStrip, as determined by their MergeAction property

value. Table 4-7 summarizes the merge action taken by MergeAction property value.

 TABLE 4-7 ToolStripItem MergeAction Property Values and Merge Actions

 MERGEACTION VALUE ACTION TAKEN

 Append Appends the item at the end of the list of items.

 Insert Inserts the item at the location specifi ed by the MergeIndex

property.

 MatchOnly Looks for a match but takes no action.

 Remove If a matching tool strip item is found, it is removed from the result-

ing tool strip.

 Replace If a matching tool strip item is found, it is replaced with this tool

strip.

 When menu strips are merged, each tool strip menu item in the source menu strip is

compared to each menu item in the target menu strip. The comparison is based on the Text

property of each menu item. Thus, if any two tool strip menu items have the same Text prop-

erty, they are considered a match. If a match is found, and the source tool strip menu item

has the MergeAction property set to MatchOnly, Remove, or Replace, the appropriate action

will be taken. Otherwise, the tool strip menu item is appended or inserted, as determined by

the MergeAction property.

 For menu strips to be merged successfully, they must have their AllowMerge property set

to True.

 158 CHAPTER 4 Tool Strips, Menus, and Events

 Switching Between MenuStrip Controls Programmatically
 As application conditions change, adding and removing menu items might not be suffi cient

to meet the needs of your application, and you might opt to completely replace a menu

strip with another menu strip. You can remove a MenuStrip control from the form entirely by

removing it from the form’s Controls collection, and you can likewise add a new MenuStrip

control by adding it to the form’s Controls collection. The following example demonstrates

how to remove MenuStrip1 from the form and replace it with MenuStrip2 at run time:

 ' VB

Me.Controls.Remove(MenuStrip1)

Me.Controls.Add(MenuStrip2)

// C#

this.Controls.Remove(MenuStrip1);

this.Controls.Add(MenuStrip2);

 Note that the menu strip you add should not already be a member of the form’s Controls

collection.

 Context Menus and the ContextMenuStrip Control
 Context menus are familiar to all users of Windows Forms applications. These shortcut menus

are displayed when the user right-clicks an object. The ContextMenuStrip control allows you

to create context menus and associate them with a selected object.

 The ContextMenuStrip control is similar to the MenuStrip control. Both controls have an

intuitive design interface that allows you to create tool strip menu items quickly, and both

expose a collection of tool strip menu items in the Items property. The main difference

between the ContextMenuStrip and the MenuStrip controls is that the ContextMenuStrip

control does not have a top-level menu and is not visible at run time unless invoked by right-

clicking the control that it is associated with.

 Adding and Removing Context Menu Items

 You can easily add and remove items from a context menu strip by using the ContextMenu-

Strip.Items.Add and ContextMenuStrip.Items.Remove methods, as shown in the following

example:

 ' VB

' Adds an item to the ContextMenuStrip

ContextMenuStrip1.Items.Add(ExitToolStripMenuItem)

' Removes an item from the ContextMenuStrip

ContextMenuStrip1.Items.Remove(ExitToolStripMenuItem)

// C#

// Adds an item to the ContextMenuStrip

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 159

contextMenuStrip1.Items.Add(ExitToolStripMenuItem);

// Removes an item from the ContextMenuStrip

contextMenuStrip1.Items.Remove(ExitToolStripMenuItem);

 Associating a ContextMenuStrip Property with a Control

 All controls that can display a context menu expose a ContextMenuStrip property that rep-

resents the context menu associated with that control. When this property is set to a valid

ContextMenuStrip control, the context menu appears when the user right-clicks the control at

run time. You can set this property at design time in the Properties window.

 You can also set the ContextMenuStrip property for a control at run time. The following

example demonstrates how to create a context menu dynamically from preexisting menu

items and then associate it with a control:

 ' VB

ContextMenuStrip1.Items.Add(ExitToolStripMenuItem)

ContextMenuStrip1.Items.Add(OpenToolStripMenuItem)

Button1.ContextMenuStrip = ContextMenuStrip1

// C#

contextMenuStrip1.Items.Add(ExitToolStripMenuItem);

contextMenuStrip1.Items.Add(OpenToolStripMenuItem);

button1.ContextMenuStrip = contextMenuStrip1;

 Copying Menu Items from Existing Menu Strips at Run Time

 You will frequently want to create context menus that also expose the same menu items as

items in regular menus. Although a single tool strip menu item can belong to only one menu

strip at a time, it is easy to create an exact copy of a menu item at run time. The ToolStrip-

MenuItem constructor has several overloads that allow you to specify the text, image, and

click event handler. The following example demonstrates how to make a copy of an existing

tool strip menu item named ExitToolStripMenuItem and add it to a ContextMenuStrip control

named ContextMenuStrip1. This example assumes the existence of a method named ExitTool-

StripMenuItem_Click, which is the event handler for the ExitToolStripMenuItem.Click event.

 ' VB

Dim anItem As ToolStripMenuItem

anItem = New ToolStripMenuItem(ExitToolStripMenuItem.Text, _

 ExitToolStripMenuItem.Image, New EventHandler(addressof _

 ExitToolStripMenuItem_Click))

ContextMenuStrip1.Items.Add(anItem)

// C#

ToolStripMenuItem anItem;

anItem = new ToolStripMenuItem(ExitToolStripMenuItem.Text,

 ExitToolStripMenuItem.Image, new

 160 CHAPTER 4 Tool Strips, Menus, and Events

 EventHandler(ExitToolStripMenuItem_Click));

ContextMenuStrip1.Items.Add(anItem);

Quick Check

 1. What is the difference between a MenuStrip and a ContextMenuStrip?

 2. How do you associate a ContextMenuStrip with a control?

Quick Check Answers

 1. A ContextMenuStrip is designed to be shown when the user right-clicks on a

control. Thus it contains no top-level elements and has no visual presence on the

form until a control is right-clicked.

 2. You can associate a ContextMenuStrip with a control by setting that control’s

ContextMenuStrip property.

LAB 2 Adding File Browsing Capability to Your Web Browser

In this lab, you will extend the capabilities of the Web browser you created in Lesson 1, “Con-

fi guring Tool Strips.” You will add a menu with menu items that allow you to browse, print, or

save a fi le.

EXERCISE 1 Extending the Capabilities of Your Web Browser

 1. Open your completed lab from Lesson 1 or load the Lab 1 solution from the folder on

the companion CD.

 2. Open Form1. In the Designer, drag a MenuStrip control from the Toolbox to the top

panel of the ToolStripContainer.

 3. Add a top-level tool strip menu item named &File to the menu strip.

 4. Add the following submenu items to the File tool strip menu item: &Open, &Print,

P&rint Preview, &Save, and &Exit.

 5. From the Toolbox, drag an OpenFileDialog component onto the form.

 6. In the Designer, double-click OpenToolStripMenuItem to open the code window to the

OpenToolStripMenuItem_Click event handler. Add the following code to this method:

' VB

Dim result As DialogResult

result = OpenFileDialog1.ShowDialog()

If result = System. Windows.Forms.DialogResult.OK Then

 WebBrowser1.Navigate(OpenFileDialog1.FileName)

End If

Quick Check

1. What is the difference between a MenuStrip and a ContextMenuStrip?

2. How do you associate a ContextMenuStrip with a control?

Quick Check Answers

1. A ContextMenuStrip is designed to be shown when the user right-clicks on a

control. Thus it contains no top-level elements and has no visual presence on the

form until a control is right-clicked.

2. You can associate a ContextMenuStrip with a control by setting that control’s

ContextMenuStrip property.

Q

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 161

// C#

DialogResult result;

result = openFileDialog1.ShowDialog();

if (result == System. Windows.Forms.DialogResult.OK)

 webBrowser1.Navigate(openFileDialog1.FileName);

 7. Double-click the PrintToolStripMenuItem to open its Click event handler and add the

following code:

 ' VB

WebBrowser1.ShowPrintDialog()

// C#

webBrowser1.ShowPrintDialog();

 8. Double-click the PrintPreviewToolStripMenuItem and add the following line to its Click

event handler:

 ' VB

WebBrowser1.ShowPrintPreviewDialog()

// C#

webBrowser1.ShowPrintPreviewDialog();

 9. Double-click the SaveToolStripMenuItem and add the following line to its Click event

handler:

 ' VB

WebBrowser1.ShowSaveAsDialog()

// C#

webBrowser1.ShowSaveAsDialog();

 10. Double-click the ExitToolStripMenuItem and add the following line to its Click event

handler:

 ' VB

Application.Exit()

// C#

Application.Exit();

 11. In the Properties window, set the ShortCutKeys property of ExitToolStripMenuItem to

Ctrl+E.

 12. Press F5 to test your application.

 162 CHAPTER 4 Tool Strips, Menus, and Events

Lesson Summary
 The MenuStrip control is the host for ToolStripMenuItems, which represent individual

menu items. The top-level menu items in a menu strip are contained in the Items col-

lection.

 Individual tool strip menu items can host their own submenus, which are contained in

the DropDownItems collection.

 Individual menu items can be displayed with check marks next to the menu items and

can have access keys and shortcut keys to allow keyboard-based navigation.

 Menus can be merged by using the ToolStripManager.Merge method. The confi gura-

tion of the menu resulting from a merge is determined by the individual ToolStrip-

MenuItem, MergeAction, and MergeIndex properties.

 ContextMenuStrip allows you to create context menus for your application. Menus

created with the ContextMenuStrip control are not visible at run time and do not host a

top-level menu, but otherwise they behave like MenuStrip controls. You can associate a

ContextMenuStrip with a control by setting the control’s ContextMenuStrip property.

 Lesson Review
 You can use the following questions to test your knowledge of the information in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following are required to create an access key for a menu item?

 A. The UseMnemonic property for the ToolStripMenuItem must be set to True.

B. The AccessKeys property must be set to the correct key.

C. The letter for the access key in the Text property must be preceded by an amper-

sand (&) symbol.

D. The ShortCutKeys property must be set to Ctrl plus the letter for the access key.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Creating and Confi guring Menus CHAPTER 4 163

 2. Which of the following code snippets will add a new menu named Menu1 to a form at

run time?

 A. ' VB

ToolStripManager.Menus.Add(Menu1)

// C#

ToolStripManager.Menus.Add(Menu1);

 B. ' VB

ToolStripManager.Merge(Form1, Menu1)

// C#

ToolStripManager.Merge(Form1, Menu1);

 C. ' VB

ToolStripManager.Controls.Add(Menu1)

// C#

ToolStripManager.Controls.Add(Menu1);

 D. ' VB

Me.Controls.Add(Menu1)

// C#

this.Controls.Add(Menu1);

 3. Which of the following are required to associate and enable a context menu strip

named ContextMenu1 with a button named Button1?

 A. The ContextMenuStrip property for Button1 must be set to ContextMenu1.

 B. The ShowPopUp property for Button1 must be set to True.

 C. Button1 must call the ContextMenu1.ShowPopUp method in its RightClick event

handler.

 D. The ContextMenu1.Control property must be set to Button1.

 164 CHAPTER 4 Tool Strips, Menus, and Events

Lesson 3: Using Events and Event Handlers

Events are messages that represent something interesting happening in your application.

When an event is raised, other parts of your application are given an opportunity to respond

to those events by executing methods called event handlers. In this lesson you will learn how

to work with form and control events, how to assign event handlers at design time, and how

to assign event handlers at run time. You will also learn how to use the Code Editor to over-

ride methods that are defi ned in your base class.

After this lesson, you will be able to:

 Use the Windows Forms Designer to create default event handlers.

 Use the Windows Forms Designer to create event handlers.

 Manage mouse and keyboard events within Windows Forms applications.

 Program a Windows Forms application to recognize modifi er keys.

 Assign event handlers at run time to respond to system or user events

dynamically.

 Connect multiple events to a single event handler.

 Use the Code Editor to override methods defi ned in the base class.

Estimated lesson time: 30 minutes

Overview of Events
Events are members of the class or control that raises them. You’ve been using events

throughout the labs in this book. Whenever you create an OnClick method, you are respond-

ing to that control’s Click event. An event represents a message that is sent to the rest of

the application. When something noteworthy happens, a control or class can raise an event,

which sends out the message. This message can wrap any arguments that contain informa-

tion about the event and send them out to the rest of the application. A method that has the

same signature as the event (that is, it has the same number and types of parameters) can

handle the event, which means that the method is executed when the event occurs. An event

can be handled by more than one method, and a given method can handle more than one

event.

Controls and forms can raise a variety of events in response to user input. The most famil-

iar event is the Click event, which is raised by almost all controls when the mouse is positioned

on the control and the left mouse button is clicked. Other common events exposed by con-

trols include events that respond to mouse and keyboard input. Some common events raised

by controls are shown in Table 4-8.

After this lesson, you will be able to:

Use the Windows Forms Designer to create default event handlers.

Use the Windows Forms Designer to create event handlers.

Manage mouse and keyboard events within Windows Forms applications.

Program a Windows Forms application to recognize modifi er keys.

Assign event handlers at run time to respond to system or user events

dynamically.

Connect multiple events to a single event handler.

Use the Code Editor to override methods defi ned in the base class.

Estimated lesson time: 30 minutes

 Lesson 3: Using Events and Event Handlers CHAPTER 4 165

 TABLE 4-8 Common Events Raised by Controls

 EVENT DESCRIPTION

 Click Occurs when the left mouse button is clicked. Depending on

the control, it can also occur with certain keyboard input—for

example, when the control is selected and the Enter key is pressed.

 DoubleClick Occurs when the left mouse button is clicked twice rapidly. Not all

controls respond to the DoubleClick event.

 KeyDown Occurs when a key is pressed when a control has the focus. Con-

tains different information from the KeyPress event.

 KeyPress Occurs when a key is pressed when a control has the focus. Con-

tains different information from the KeyDown event.

 KeyUp Occurs when a key is released while the control has the focus.

 MouseClick Occurs when the mouse clicks a control.

 MouseDoubleClick Occurs when the mouse double-clicks a control.

 MouseDown Occurs when the mouse pointer is over a control and the mouse

button is pressed.

 MouseEnter Occurs when the mouse pointer enters the control.

 MouseHover Occurs when the mouse pointer rests on the control.

 MouseLeave Occurs when the mouse pointer exits the control.

 MouseMove Occurs when the mouse moves over the control.

 MouseUp Occurs when a mouse button is released over the control.

 MouseWheel Occurs when the mouse wheel moves while the control has the

focus.

 Each event carries some information about itself to the method that handles it. Events

raised by controls usually contain two parameters: a parameter that carries an object refer-

ence to the control that raised it and a parameter that derives from the EventArgs class that

carries event arguments. In some events, such as the Click event, the EventArgs argument

carries practically no information. In others, such as the MouseClick event, a great deal of

information about the state of the mouse is carried in the MouseClickEvent Args argument.

 Creating Event Handlers in the Designer
 You can create event handlers in the Designer by using the Properties window. Click the

“lightning bolt” button in the Properties window (shown in Figure 4-6).

 166 CHAPTER 4 Tool Strips, Menus, and Events

 FIGURE 4-6 The Events button in the Properties window

 The Properties window displays the events that the control can raise, as shown in Figure 4-7.

 FIGURE 4-7 The Properties window configured to display events

 Creating Default Event Handlers

 You can create default event handlers for an event through the Properties window. A default

event handler is a method that handles a given event for a control and has a descriptive

name. For example, the default event handler for the Click event of a button named Button1

would be called Button1_Click. The following procedure describes how to create a default

event handler.

 TO CREATE A DEFAULT EVENT HANDLER

 1. In the Designer, select the control. In the Properties window, click the “lightning bolt”

button to list events for that control.

 2. Double-click the entry for the event for which you want to create the default event

handler. The method is created with the proper signature, and the Code Editor opens

to the new method.

 3. Add the code that you want to execute when the event is raised.

 Lesson 3: Using Events and Event Handlers CHAPTER 4 167

 Creating Event Handlers in the Designer

 In addition to default event handlers, you can use the designer to assign other methods to

handle events raised by controls. The following procedure describes how to create an event

handler other than the default event handler.

 TO CREATE AN EVENT HANDLER OTHER THAN THE DEFAULT EVENT HANDLER

 1. In the Code Editor, create a method whose signature matches the signature of the

event that you want to handle. For example, if you wanted to handle the Button.Click

event, you would create a Sub (void) method with Object and EventArgs parameters.

 2. In the Designer, select the control for which you want to create an event handler. In the

Properties window, click the lightning bolt to list the events for this control.

 3. Single-click the cell next to the event you want to create a handler for. A drop-down

arrow appears.

 4. Click the drop-down arrow to display a list of methods that match the signature of the

event. Choose the method you created in the Code Editor.

 Assigning Multiple Events to the Same Event Handler

 You can assign multiple events to the same event handler. All that is required is that the

signature of the method matches the signature of the event. You can assign multiple events in

a single control to a single event handler, or you can assign events from several controls to a

single event handler. An example of when this might be useful would be in an application like

a calculator. You might have the Button controls that are used to input numbers all share the

same Click event handler, programming logic into the event handler to distinguish between

the buttons that are clicked.

 You can assign multiple events to the same event handler in the same way that you assign

an individual event. Select the control and then, in the Properties window, select the event for

which you want to assign a handler. Choose the method for the event handler from the drop-

down menu. Repeat the process for each event you want to assign a handler to.

 Managing Mouse and Keyboard Events
 Most of the events involved in interacting with the user are mouse and keyboard events.

Controls can raise events in response to mouse clicks or a variety of keystrokes and can detect

whether modifi er keys such as Ctrl, Alt, or Shift are pressed. This section describes how to

respond to mouse and keyboard events.

 Mouse Events

 Controls can interact with the mouse in several ways. Controls raise events when the mouse

enters the control, when it leaves the control, when it moves over the control, when it clicks,

when it hovers over the control, or when the mouse wheel moves while the control has the

focus.

 168 CHAPTER 4 Tool Strips, Menus, and Events

 CLICK AND DOUBLECLICK

The most familiar mouse events are the Click and DoubleClick events. When the mouse

 pointer is over a control and the left button is pressed and released, the control raises the

Click event. This event is also raised when the control has the focus and the Enter key is

pressed. The DoubleClick event is raised when the left mouse button is clicked twice in rapid

succession. Note that not all controls respond to the DoubleClick event.

 The Click and DoubleClick events have a fairly simple signature. They return an Object

reference to the control that raised the event (the parameter that Visual Studio names Sender

when it generates a handler) and an instance of the EventArgs class that carries no useful

information about the event. The following code example demonstrates the appropriate

signature for an event handler that handles the Click or DoubleClick event:

 ' VB

Private Sub ClickHandler(ByVal sender As System. Object, ByVal e As _

 System.EventArgs)

 ' Insert code to be executed when the event is raised

End Sub

// C#

private void ClickHander(object sender, EventArgs e)

{

 // Insert code to be executed when the event is raised

}

 You can assign any method with this signature to handle the Click or DoubleClick events.

 MOUSE MOVEMENT EVENTS

Controls raise events that track the movement of the mouse pointer into and out of the

bounds of the control. These events are described in Table 4-9.

 TABLE 4-9 Mouse Movement Events

 EVENT DESCRIPTION

 MouseEnter This event is raised when the mouse pointer enters a control.

 MouseHover This event is raised when the mouse pointer hovers over the control.

 MouseLeave This event is raised when the mouse pointer exits the control.

 Like the Click event, these events pass relatively little information to the methods that

handle them. Their event handlers also require an Object parameter representing the sender

of the event and an EventArgs parameter.

 Lesson 3: Using Events and Event Handlers CHAPTER 4 169

 OTHER MOUSE EVENTS

Although the events described previously are useful for tracking mouse movement and clicks,

they provide practically no information about the event itself. If you want to retrieve more

information about the event, such as the position of the mouse, use one of the mouse events

that pass an instance of MouseEventArgs in its signature. These events are shown in Table 4-10.

 TABLE 4-10 Mouse Events That Pass MouseEventArgs

 EVENT DESCRIPTION

 MouseClick This event is raised when a mouse button is pressed and released

on a control.

 MouseDoubleClick This event is raised when a mouse button is clicked twice on a

control.

 MouseDown This event is raised when a mouse button is pressed over a control.

 MouseMove This event is raised when the mouse moves over the control.

 MouseUp This event is raised when a mouse button is released over a con-

trol.

 MouseWheel This event is raised when the mouse wheel is moved while the

control has the focus.

 All of the events shown in Table 4-10 require a handler with two parameters: an object

parameter that represents the control that raised the event and an instance of MouseEven-

tArgs. The following example demonstrates an event handler for any of these methods:

 ' VB

Private Sub MouseHandler(ByVal sender As System.Object, ByVal e As _

 System.MouseEventArgs)

 ' Insert code to handle your event here

End Sub

// C#

private void MouseHandler(object sender, MouseEventArgs e)

{

 // Insert code to handle your event here

}

 The instance of MouseEventArgs that is passed to the event handler contains a large

amount of information about the event. It contains properties that describe what buttons

were clicked, how many times they were clicked, the location of the mouse, and how far the

mouse wheel was turned. Table 4-11 shows the MouseEventArgs properties.

 170 CHAPTER 4 Tool Strips, Menus, and Events

 TABLE 4-11 MouseEventArgs Properties

 PROPERTY DESCRIPTION

 Button Indicates which button was pressed

 Clicks Indicates how many times the button was pressed

 Delta Indicates the number of clicks the mouse wheel has moved

 Location Indicates the current location of the mouse

 X Indicates the X coordinate of the mouse

 Y Indicates the Y coordinate of the mouse

 Keyboard Events

 Controls that can receive keyboard input can raise three keyboard events:

 KeyDown

 KeyPress

 KeyUp

 KEYDOWN AND KEYUP

The KeyDown and KeyUp events are raised when a key is pressed and a key is released,

respectively. The control that has the focus raises the event. When these events are raised,

they package information about which key or combination of keys were pressed or released

in an instance of KeyEventArgs that is passed to the method that handles the event. Table

4-12 describes the properties of KeyEventArgs.

 TABLE 4-12 KeyEventArgs Properties

 PROPERTY DESCRIPTION

 Alt Gets a value indicating whether the Alt key was pressed

 Control Gets a value indicating whether the Ctrl key was pressed

 Handled Gets or sets a value indicating whether the event was handled

 KeyCode Returns an enum value representing which key was pressed

 KeyData Returns data representing the key that was pressed, together with

whether the Alt, Ctrl, or Shift key was pressed

 KeyValue Returns an integer representation of the KeyData property

 Modifi ers Gets the modifi er fl ags for the event, indicating what combination of

Alt, Ctrl, or Shift key was pressed

 Lesson 3: Using Events and Event Handlers CHAPTER 4 171

 PROPERTY DESCRIPTION

 Shift Gets a value indicating whether the Shift key was pressed

 SuppressKeyPress Gets or sets a value indicating whether the key event should be

passed on to the underlying control

 The KeyUp and KeyDown events determine what key and what modifi er keys, if any, were

pressed. This information is exposed through properties in the KeyEventArgs reference that is

passed to the event handler.

 DETERMINING WHEN MODIFIER KEYS HAVE BEEN PRESSED

The KeyEventArgs properties Alt, Control, and Shift return a Boolean value that indicates if

the Alt, Ctrl, and Shift keys are pressed, respectively. A value of True is returned if the key is

pressed, and False is returned if the key is not pressed. The following code demonstrates a

KeyUp event handler that checks whether the Ctrl key is pressed:

 ' VB

Private Sub TextBox1_KeyUp(ByVal sender As System.Object, ByVal e As _

 System. Windows.Forms.KeyEventArgs) Handles TextBox1.KeyUp

 If e.Control = True Then

 MsgBox("The CTRL key is still down")

 End If

End Sub

// C#

private void textBox1_KeyUp(object sender,

 e System. Windows.Forms.KeyEventArgs)

{

 if (e.Control == true)

 MessageBox.Show("The CTRL key is still down");

}

 KEYPRESS

When a user presses a key that has a corresponding ASCII value, the KeyPress event is raised.

Keys with a corresponding ASCII value include any alphabetic or numeric characters (alphanu-

meric a–z, A–Z, and 0–9), as well as some special keyboard characters, such as the Enter and

Backspace keys. If a key or key combination does not produce an ASCII value, such as the Alt,

Ctrl, or Shift key, it will not raise the KeyPress event.

 This event is most useful for intercepting keystrokes and evaluating them. When this event

is raised, an instance of KeyPressEventArgs is passed to the event handler as a parameter.

The KeyPressEventArgs exposes the character representation of the key(s) pressed through

the KeyPressEventArgs.KeyChar property. You can use this property to evaluate keystrokes

received by your application.

 172 CHAPTER 4 Tool Strips, Menus, and Events

 Creating Event Handlers at Run Time
 You can create event handlers for events and add them in code at run time by associating

an existing event with an existing method. You might want to create an event handler at run

time to modify the way an application responds to events. Visual Basic and Microsoft Visual

C# have somewhat different methods for creating event handlers at run time, so this section

presents separate procedures for each.

 TO CREATE OR REMOVE AN EVENT HANDLER AT RUN TIME IN VISUAL BASIC

 1. Create a Sub whose signature matches the signature for the event. Use the AddHandler

keyword to associate the event handler with the event. The AddressOf operator must

be used to create a delegate at run time. An example is shown here:

 ' VB

AddHandler Button1.Click, AddressOf myEventHandler

 2. You can remove an event handler at run time by using the RemoveHandler keyword, as

shown here:

 ' VB

RemoveHandler Button1.Click, AddressOf myEventHandler

 TO CREATE OR REMOVE AN EVENT HANDLER AT RUN TIME IN C#

 1. Create a method whose signature matches the signature for the event. Unlike Visual

Basic, this method can return a value. Use the += operator to associate the method

with the event. Here is an example:

 // C#

button1.Click += myMethod;

 2. You can remove an event handler at run time by using the -= operator, as shown here:

 // C#

button1.Click -= myMethod;

 Overriding Methods in the Code Editor
 When you inherit from a base class, your class automatically gains all of the implementation

and functionality of that base class. At times you will want to override a method that has been

defi ned in a base class. For example, if you want to create a new visual representation for a

control that inherits from a standard Windows Forms control, you must override the Paint

method. You must also override virtual (MustOverride) methods in abstract classes, and you

can override methods to provide functionality that is different from what the base class might

provide.

 The Code Editor allows you to override methods easily in your base class. In the Code Edi-

tor, inside the class body but outside of a method, type Overrides (Visual Basic) or override

 Lesson 3: Using Events and Event Handlers CHAPTER 4 173

(C#). An IntelliSense window showing all of the overridable methods in the base class appears.

Choose the method you want to override from the window and the rest of the method is

stubbed out for you automatically. All you have to do then is add the implementation. The

Code Editor and IntelliSense window are shown in Figures 4-8 and 4-9.

 FIGURE 4-8 Overriding a method in Visual Basic

 FIGURE 4-9 Overriding a method in C#

 174 CHAPTER 4 Tool Strips, Menus, and Events

Quick Check

 Briefl y explain what an event is and how it works in the application’s execu-

tion cycle.

Quick Check Answer

 An event is a notifi cation that is sent from a control or component to the rest

of the application. When an event is fi red, any methods that are registered to

handle that event will execute.

LAB 3 Practice with Mouse Events

In this lab, you will create a simple application that tracks the mouse events that happen to a

particular control.

EXERCISE 1 Creating the Event Monitor

In Visual Studio, create a new Windows Forms application.

 1. From the Toolbox, drag a Label control and a ListBox control onto the form.

 2. In the Properties window, set the Label1.Text property to Mouse Here!

 3. Select Label1. In the Properties window, generate default event handlers for Click,

DoubleClick, MouseClick, MouseDoubleClick, MouseDown, MouseEnter, MouseHover,

MouseLeave, MouseMove, and MouseUp.

 4. In the Code Editor, add code to each of the default event handlers, as shown in the

Table 4-13.

TABLE 4-13 Code for Default Event Handlers

 EVENT HANDLER VISUAL BASIC C#

 Click ListBox1.Items.Add (“Click”) listBox1.Items.Add (“Click”);

 DoubleClick ListBox1.Items.Add

(“DoubleClick”)

listBox1.Items.Add

(“DoubleClick”);

 MouseClick ListBox1.Items.Add

(“MouseClick”)

listBox1.Items.Add

(“MouseClick”);

 MouseDoubleClick ListBox1.Items.Add

(“MouseDoubleClick”)

listBox1.Items.Add

(“MouseDoubleClick”);

 MouseDown ListBox1.Items.Add

(“MouseDown”)

listBox1.Items.Add

(“MouseDown”);

 MouseEnter ListBox1.Items.Add

(“MouseEnter”)

listBox1.Items.Add

(“MouseEnter”);

Quick Check

Briefl y explain what an event is and how it works in the application’s execu-

tion cycle.

Quick Check Answer

An event is a notifi cation that is sent from a control or component to the rest

of the application. When an event is fi red, any methods that are registered to

handle that event will execute.

Q

 Lesson 3: Using Events and Event Handlers CHAPTER 4 175

 EVENT HANDLER VISUAL BASIC C#

 MouseHover ListBox1.Items.Add

(“MouseHover”)

listBox1.Items.Add

(“MouseHover”);

 MouseLeave ListBox1.Items.Add

(“MouseLeave”)

listBox1.Items.Add

(“MouseLeave”);

 MouseMove ListBox1.Items.Add

(“MouseMove”)

listBox1.Items.Add

(“MouseMove”);

 MouseUp ListBox1.Items.Add

(“MouseUp”)

listBox1.Items.Add

(“MouseUp”);

 5. Press F5 to test your application. Move the mouse pointer over the label and perform

various mouse operations. Note that each mouse event is recorded in the ListBox, and

note the order in which events occur. To further study the order in which mouse events

occur, you can remove the event handler for the MouseMove event, which will reduce

the number of events recorded.

 Lesson Summary
 Events represent a programmatic notifi cation that something interesting has happened

in the application. You can assign methods called event handlers to execute in

response to an event. Event handlers must have a signature that matches the event

that they handle.

 You can create event handlers in the Designer through the Properties window. You can

create a default event handler or assign the event to any method or methods that have

the correct signature.

 Controls can respond to events that are raised by the mouse and keyboard. Mouse-

EventArgs, KeyEventArgs, and KeyPressEventArgs provide detailed information regard-

ing the state of the mouse or keyboard to their respective events.

 You can add and remove event handlers at run time by using the AddHandler and

RemoveHandler keywords for Visual Basic and the += and -= operators for C#.

 You can override methods that can be overridden in the base class in the Visual Studio

Code Editor. The IntelliSense window provides a list of available methods and can auto-

matically stub overridden methods in the Code Editor.

 Lesson Review
 You can use the following questions to test your knowledge of the information in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 176 CHAPTER 4 Tool Strips, Menus, and Events

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following properties of an instance e of the KeyEventArgs class can

be used in a KeyDown event handler to determine if the Ctrl key has been pressed?

(Choose all that apply.)

A. e.Control

B. e.KeyCode

C. e.KeyData

D. e.Modifi ers

 2. Which of the following code examples will add a new event handler named ClickHan-

dler to the Button1.Click event at run time?

A. ' VB

Button1.Click.AddHandler(ClickHandler)

// C#

ClickHandler += Button1.Click;

B. ' VB

AddHandler(Button1.Click, ClickHandler)

// C#

AddHandler(Button1.Click, ClickHandler);

C. ' VB

AddHandler Button1.Click, AddressOf ClickHandler

// C#

Button1.Click += ClickHandler;

D. ' VB

Button1.Click += AddressOf ClickHandler

// C#

Button1.Click ++ ClickHandler;

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Chapter Review CHAPTER 4 177

Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 ToolStrip controls can host a wide range of functionality. ToolStripItems duplicate

the functionality of several other Windows Forms controls, as well as combine some

 Windows Forms functionality with menu functionality.

 Tool strips support rafting, merging, rearrangement of controls, and overfl ow of

controls.

 MenuStrip controls are used to create menus for forms and host ToolStripMenuItem

controls, which represent menu entries and commands.

 MenuStrip controls derive from ToolStrip and expose similar functionality. Menus can

be merged using the ToolStripManager class.

 The ContextMenuStrip control is used for creating context menus. You can associate a

context menu with a control by setting the ContextMenuStrip property.

 The Properties window can be used to create default event handlers or to assign pre-

existing methods to handle events.

 A variety of mouse and keyboard events are raised in response to user actions. The

MouseEventArgs parameter in many of the mouse events provides detailed information

on the state of the mouse, and the KeyEventArgs and KeyPressEventArgs parameters

provide information on the state of the keyboard.

 Event handlers can be created at run time and used to dynamically associate events

with methods.

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

 event

 event handler

 178 CHAPTER 4 Tool Strips, Menus, and Events

 MenuStrip

 ToolStrip

 ToolStripItem

 ToolStripMenuItem

 transaction

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about how to use controls

to design UIs. You can fi nd answers to these questions in the “Answers” section at the end of

this book.

 Case Scenario 1: Designing a Complex User Interface

 You’ve been moving up in the world at Trey Research, your current employer. You’ve been

asked to design the front end of an insurance application for Humongous Insurance, one

of your clients. True to their name, they want a humongous front end, with an enormous

amount of options and commands available to the user. Your task is to provide full function-

ality for your client while at the same time creating an application that is intuitive and easy

to use.

 QUESTIONS

 Answer the following questions for your manager:

 1. How can we make all of these commands available without making the UI completely

impossible to use?

 2. How can we make all of these commands intuitive and easy to learn?

 Case Scenario 2: More Humongous Requirements

 Now that you’ve successfully implemented menus and toolbars for Humongous Insurance,

you must implement a series of keyboard commands.

 TECHNICAL REQUIREMENTS

 All main menu items must have access keys.

 Key menu items must have shortcut keys that are accessible by the user.

 Certain TextBox controls on the form must autofi ll when Ctrl key combinations are

pressed.

 QUESTION

 How can this functionality be implemented?

 Take a Practice Test CHAPTER 4 179

Suggested Practices

 Practice 1 Create toolbars with similar members and practice merging them together,

changing the MergeIndex and MergeAction properties of each tool strip item.

 Practice 2 Build an application similar to the application from Lab 3, “Practice with

Mouse Events,” that monitors keyboard events.

 Practice 3 Build an application that consists of a form with a single button that the

user can chase around the form with the mouse but can never actually click.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 5 181

 C H A P T E R 5

 Confi guring Connections and
Connecting to Data

 Typically, most real-world applications use databases as a store for the data in that

application. For example, inventory systems, contact management systems, and airline

reservation systems store data in a database and then retrieve the necessary records into

the application as needed. In other words, the data that an application uses is stored in

a database external to the actual application, and it is retrieved into the application as

required by the program.

 When creating applications that work with data, the Microsoft .NET Framework pro-

vides many classes that aid in the process. The classes that you use for common data tasks,

such as communicating, storing, fetching, and updating data, are all located in the System.

Data namespace. The classes in the System.Data namespace make up the core data access

objects in the .NET Framework. These data access classes are collectively known as ADO.

NET.

 Before you can begin working with data in an application, you must fi rst establish and

open a connection to communicate with the desired data source. This chapter describes

how to create the various connection objects that are used to connect applications to dif-

ferent data sources and sets the basis for working with data in the following chapters. After

learning to establish connections to databases in this chapter, we will move on to Chapter 6,

“Working with Data in a Connected Environment,” which provides instructions for running

queries, saving data, and creating database objects directly between your application and

a database. Chapter 7, “Create, Add, Delete, and Edit Data in a Disconnected Environment,”

describes how to create DataSet and DataTable objects that allow you to temporarily store

data while the data is being used in a running application. Finally, Chapter 8, “Implementing

Data-Bound Controls,” provides information on binding data to be displayed and worked

with in Windows Forms controls.

 Typically, data sources are relational databases like Microsoft SQL Server and Oracle, but

you can also connect to data in fi les such as Microsoft Offi ce Access (.mdb) and SQL Server

(.mdf) database fi les. The connection object you use is based on the type of data source

your application needs to communicate with.

 182 CHAPTER 5 Confi guring Connections and Connecting to Data

 Exam objectives in this chapter:

 Manage connections and transactions.

 Confi gure a connection to a database using the Data Source Confi guration Wizard.

 Confi gure a connection to a database using Server Explorer.

 Confi gure a connection to a database using the Connection class.

 Connect to a database using specifi c database connection objects.

 Enumerate instances of SQL Server.

 Open an ADO.NET connection to a database.

 Close an ADO.NET connection to a database by using the Close method of the

connection object.

 Protect access to the connection details of a data source.

 Create a connection designed for reuse in a connection pool.

 Control a connection pool by confi guring ConnectionString values based on

database type.

 Use the Connection events to detect database information.

 Handle exceptions when connecting to a database.

 Lessons in this chapter:

 Creating and Confi guring Connection Objects 184

 Connecting to Data Using Connection Objects 195

 Working with Connection Pools 208

 Handling Connection Errors 214

 Enumerating the Available SQL Servers on a Network 219

 Securing Sensitive Connection String Data 223

 Before You Begin CHAPTER 5 183

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book.

 Microsoft Visual Studio 2008 Professional Edition installed on your computer.

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the .NET

Framework.

 A basic understanding of relational databases.

 Available data sources, including SQL Server 2005 or later (SQL Server 2005 Express

Edition or later is acceptable), the Northwind sample database for SQL Server, and the

Nwind.mdb Access database fi le. Directions for setting up the sample databases are

located in the Setting up Sample Databases Read Me fi le on the companion CD.

 REAL WORLD

Steve Stein

 At a previous employer, I was responsible for extracting data from an arcane

proprietary database that was virtually impossible to connect to directly.

As a result, time-consuming reports were periodically generated that were then

imported into a workable database management system for further processing.

Thinking back, I realize how much easier life would have been if I had been able to

spin up a connection object and communicate directly with the data source with-

out the need for the intermediary process of creating reports and exporting and

importing data.

REAL WORLD

Steve Stein

At a previous employer, I was responsible for extracting data from an arcane

proprietary database that was virtually impossible to connect to directly.

As a result, time-consuming reports were periodically generated that were then

imported into a workable database management system for further processing.

Thinking back, I realize how much easier life would have been if I had been able to

spin up a connection object and communicate directly with the data source with-

out the need for the intermediary process of creating reports and exporting and

importing data.

 184 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson 1: Creating and Confi guring Connection
Objects

This lesson describes the two ways to create and confi gure connection objects:

 Through a user interface (UI), using the Add Connection dialog box

 Programmatically, by handcrafting the objects in code

Whether you choose to create connections through the UI or programmatically, the result

is the same—a confi gured connection object ready to open a connection and communicate

with your data source. For this lesson, we will focus only on creating connection objects as

opposed to actually connecting and communicating with a data source. In Lesson 2, “Con-

necting to Data Using Connection Objects,” we will move on to the next level to open the

connection and retrieve information from the data source.

After this lesson, you will be able to:

 Confi gure a connection to a database using the Server Explorer.

 Confi gure a connection to a database using the Data Source Confi guration

Wizard.

 Confi gure a connection to a database using the Connection class.

 Connect to a database using specifi c database connection objects.

Estimated lesson time: 30 minutes

What Is a Connection Object?
A connection object is simply a representation of an open connection to a data source. The

easiest way to describe a connection object is, fi rst, to explain what a connection object is

not! A connection object does not fetch or update data, it does not execute queries, and it

does not contain the results of queries. It is merely the pipeline through which commands and

queries send their SQL statements and receive results. Although connection objects typically

can be thought of as the place where you set your connection string, they have additional

methods for working with the connection, such as methods that open and close connections,

as well as methods for working with connection pools and transactions. Essentially, connec-

tion objects provide a conduit for sending commands to a database and retrieving data and

information into your application, as shown in Figure 5-1.

After this lesson, you will be able to:

Confi gure a connection to a database using the Server Explorer.

Confi gure a connection to a database using the Data Source Confi guration

Wizard.

Confi gure a connection to a database using the Connection class.

Connect to a database using specifi c database connection objects.

Estimated lesson time: 30 minutes

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 185

Information from

the data source

and returned data

Database

Command and

queries

Connection Object

 FIGURE 5-1 Connection objects are your application’s communication pipeline to a database

 Creating Connections in Server Explorer
 To simplify the process of creating applications that access data, Visual Studio provides the

Server Explorer window as a central location to manage data connections independent of any

actual projects. In other words, you can create data connections in Server Explorer and access

them in any project. Data connections created in Server Explorer are user-specifi c settings in

Visual Studio that display the connections each time you open Visual Studio (instead of creat-

ing connections as part of developing a specifi c application that stores them in that applica-

tion). Of course, you can create data connections as part of the development process from

within an open project, but that is covered in the next section.

 Creating Connections Using Data Wizards
 Visual Studio provides a few wizards that simplify the process of creating applications that

access data and that create data connections as a result of completing the wizards. The main

wizard for bringing data into an application is the Data Source Confi guration Wizard. When

you run the Data Source Confi guration Wizard and select the database path, you end up with

a confi gured connection object ready to use in your application. In addition to creating a

confi gured connection object, the Data Source Confi guration Wizard allows you to select the

database objects you want to use in your application.

 Creating Connection Objects Programmatically
 When you do not want to use the visual tools previously described and need to create your

connections manually, it is easy to create connection objects in code programmatically. The

fi rst step is to decide which type of connection object to create. The choice is fairly simple

because it depends on the back-end data source your application needs to communicate with.

 Table 5-1 lists the primary connection objects available in ADO.NET and the data sources

they are designed to access.

 186 CHAPTER 5 Confi guring Connections and Connecting to Data

 TABLE 5-1 Connection Objects

 NAME TARGET DATA SOURCE

 SqlConnection SQL Server 7.0 and later databases

 OleDbConnection OLE DB data sources (such as Offi ce Access databases through

Jet 4.0)

 OdbcConnection Open database connectivity (ODBC) data sources such as a

Data Source Name (DSN) as defi ned in the ODBC Data Source

Administrator dialog box

 OracleConnection Oracle 7.3, 8i, or 9i databases

 The properties, methods, and events associated with the connection objects in this table

vary because each connection object is designed to effi ciently connect and interact with its

respective data sources. However, each connection object contains the same base properties,

methods, and events that are inherited from the System.Data.Common.DbConnection class.

 Table 5-2 lists the properties common to all connection objects.

 TABLE 5-2 Connection Properties

 NAME DESCRIPTION

 ConnectionString Gets or sets the string used to open the connection.

 ConnectionTimeout Read only. Gets the time to wait while establishing a connection

before terminating the attempt and generating an error.

 Database Read only. Gets the name of the current database after a connec-

tion is opened or the database name specifi ed in the connection

string before the connection is opened.

 DataSource Read only. Gets the name of the database server to which it is

connected.

 ServerVersion Read only. Gets a string that represents the version of the server

to which the object is connected.

 State Read only. Gets a combination of System.Data.ConnectionState

values that describes the state of the connection.

 Table 5-3 lists the methods common to all connection objects.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 187

 TABLE 5-3 Connection Methods

 NAME DESCRIPTION

 BeginDbTransaction Starts a database transaction.

 BeginTransaction Starts a database transaction.

 ChangeDatabase Changes the current database for an open connection.

 Close Closes the connection to the database. This is the preferred

method of closing any open connection.

 CreateCommand Creates and returns a System.Data.Common.DbCommand object

associated with the current connection.

 CreateDbCommand Creates and returns a System.Data.Common.DbCommand object

associated with the current connection.

 EnlistTransaction Enlists in the specifi ed transaction as a distributed transaction.

 GetSchema Returns schema information for the data source of this System.

Data.Common.DbConnection class.

 New Initializes a new instance of the System.Data.Common.DbConnec-

tion class.

 OnStateChange Raises the System.Data.Common.DbConnection.StateChange event.

 Open Opens a database connection with the settings specifi ed by the

System.Data.Common.DbConnection.ConnectionString.

 Table 5-4 lists the events common to all connection objects.

 TABLE 5-4 Connection Events

 NAME DESCRIPTION

 StateChange Occurs when the state of the connection changes

 InfoMessage Occurs when the server returns a warning or informational message

 To create connections programmatically using the four primary data providers, you start

by instantiating a new connection object and setting its ConnectionString property that you

will use to open the connection.

 188 CHAPTER 5 Confi guring Connections and Connecting to Data

NOTE SYSTEM.DATA.ORACLECLIENT REFERENCE

By default, Microsoft Windows applications in Visual Studio are created with references

to the System.Data.SqlClient, System.Data.OleDb, and System.Data.Odbc namespaces, so

these are immediately available to be coded against and appear in IntelliSense with no

further action. By default, a reference to the System.Data.OracleClient namespace is not

included and must be added to your application to create OracleConnection objects.

 Creating SQL Server Connection Objects in Code

You create SqlConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string

to the SqlConnection.ConnectionString property after instantiating the connection. Be sure to

replace ServerName and DatabaseName with valid values for your environment. To eliminate

the need to qualify the objects fully in code, add an Imports System.Data.SqlClient statement

(Visual Basic) or using System.Data.SqlClient; statement (C#) to the top of your code fi le. Use

the WithEvents keyword (in Visual Basic) or create event handlers in C# if your application

needs to respond to the connection objects events.

' VB

 Private WithEvents ConnectionToSql As New SqlConnection _

 ("Data Source=ServerName;Initial Catalog=DatabaseName;Integrated Security=True")

// C#

SqlConnection ConnectionToSql = new SqlConnection

 ("Data Source=ServerName;Initial Catalog=DatabaseName;Integrated Security=True");

Creating OLE DB Connection Objects in Code

You create OleDbConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string to

the OleDbConnection.ConnectionString property after instantiating the connection. Be sure to

replace the data source with a valid path if you are connecting to an Offi ce Access database,

or replace the connection string with a valid connection string for the OLE DB data source

you want to connect to. To eliminate the need to fully qualify the objects in code, add an

Imports System.Data.OleDb statement (Visual Basic) or using System.Data.OleDb; statement

(C#) to the top of your code fi le.

' VB

Private WithEvents ConnectionToOleDb As New System.Data.OleDb.OleDbConnection _

 ("Provider= Microsoft.Jet.OLEDB.4.0;Data Source=""Nwind.mdb"";Persist Security

Info=False")

NOTE SYSTEM.DATA.ORACLECLIENT REFERENCET

By default, Microsoft Windows applications in Visual Studio are created with references

to the System.Data.SqlClient, System.Data.OleDb, and System.Data.Odbc namespaces, soc

these are immediately available to be coded against and appear in IntelliSense with no

further action. By default, a reference to the System.Data.OracleClient namespace is nott

included and must be added to your application to create OracleConnection objects.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 189

// C#

System.Data.OleDb.OleDbConnection ConnectionToOleDb = new System.Data.OleDb.

OleDbConnection

 ("Provider= Microsoft.Jet.OLEDB.4.0;Data Source=\"Nwind.mdb";Persist Security

Info=False");

 Creating ODBC Connection Objects in Code

 You create OdbcConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string

to the OdbcConnection.ConnectionString property after instantiating the connection. Be sure

to replace the connection string with a valid connection string for the ODBC data source you

want to connect to. To eliminate the need to qualify the objects fully in code, add an Imports

System.Data.Odbc statement (Visual Basic) or using System.Data.Odbc; statement (C#) to the

top of your code fi le.

 ' VB

 Private WithEvents ConnectionToOdbc As New OdbcConnection _

 ("Dsn=MS Access Database;dbq=C:\Nwind.mdb;defaultdir=C:\DataSources;" & _

 "driverid=281;fil=MS Access;maxbuffersize=2048;pagetimeout=5;uid=admin")

// C#

OdbcConnection ConnectionToOdbc = new OdbcConnection

 ("Dsn=MS Access Database;dbq=C:\\DataSources;" +

 "driverid=281;fil=MS Access;maxbuffersize=2048;pagetimeout=5;uid=admin");

 Creating Oracle Connection Objects in Code

 You create OracleConnection objects with the New keyword. You can instantiate the connec-

tion and set the connection string in the same call, or you can assign the connection string to

the OracleConnection.ConnectionString property after instantiating the connection. Be sure to

replace the connection string with a valid one for the Oracle database you want to connect

to. To eliminate the need to qualify the objects fully in code, add an Imports System.Data.

OracleClient statement (Visual Basic) or using System.Data.OracleClient; statement (C#) to the

top of your code fi le.

 ' VB

 Private WithEvents ConnectionToOracle As New OracleConnection _

 ("Data Source=Oracle8i;Integrated Security=yes")

// C#

private OracleConnection ConnectionToOracle = new OracleConnection

 ("Data Source=Oracle8i;Integrated Security=yes");

 190 CHAPTER 5 Confi guring Connections and Connecting to Data

LAB Creating New Data Connections

In this lab you will practice creating new Data Connections in Server Explorer and using the

Data Source Confi guration Wizard.

EXERCISE 1 Creating Connections in Server Explorer

 The following steps describe how to create a Data Connection (a connection to a database) in

Server Explorer:

 1. If the Server Explorer window is not visible, select Server Explorer from the View menu.

 2. Right-click the Data Connections node and select Add Connection.

 The fi rst time you add a connection in Visual Studio, the Choose Data Source dialog

box opens.

 NOTE ADD CONNECTION DIALOG BOX

 If the Add Connection dialog box opens instead of the Choose Data Source dialog box,

click the Change button located at the top of the Add Connection dialog box.

 The Choose Data Source dialog box (or the similar Change Data Source dialog box) is

where you select the data source you want to connect to, as well as the data pro-

vider to use for the connection. Notice how the proper data provider is automatically

populated when you select different data sources. You can choose any valid provider

you want for any selected data source, but Visual Studio automatically selects the most

appropriate data provider based on the selected data source.

 For the fi rst connection, we’ll create a connection to the Northwind Traders sample

database in SQL Server.

 3. Select Microsoft SQL Server for the data source and click OK.

 The Add Connection dialog box now appears with Microsoft SQL Server as the

selected data source.

 NOTE .NET FRAMEWORK DATA PROVIDERS

 The .NET Framework Data Provider for SQL Server is designed to connect to SQL Server

7 and later versions. When connecting to SQL Server 6 or earlier, select the <other>

data source and select the .NET Framework Data Provider for OLE DB. Then, in the Add

Connection dialog box, select the Microsoft OLE DB Provider for SQL Server.

 4. Type the name of your SQL Server in the server name area.

 5. Select the appropriate method of authentication to access your SQL Server.

 6. Choose the Select Or Enter A Database Name option and select the Northwind data-

base from the drop-down list.

NOTE ADD CONNECTION DIALOG BOXE

If the Add Connection dialog box opens instead of the Choose Data Source dialog box,

click the Change button located at the top of the Add Connection dialog box.

NOTE .NET FRAMEWORK DATA PROVIDERS

The .NET Framework Data Provider for SQL Server is designed to connect to SQL Server

7 and later versions. When connecting to SQL Server 6 or earlier, select the <other>

data source and select the .NET Framework Data Provider for OLE DB. Then, in the Add

Connection dialog box, select the Microsoft OLE DB Provider for SQL Server.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 191

 7. You can verify the connection is valid by clicking Test Connection and then clicking OK

to close the dialog box and create the connection in Server Explorer.

After creating the connection, the Properties window provides information related to

the connection, as well as information related to the actual database you are con-

nected to.

 8. Select the connection you just created in the Server Explorer window to view the avail-

able information in the properties window.

 NOTE CONNECTION PROPERTIES

 The available properties are based on the type of data source you are connected to as

well as the state of the connection. If the connection is closed, you might see only a

small list of properties made up of the connection string used to connect to the data-

base, the specifi c .NET Framework data provider used by the connection, and the state

of the connection. To view additional properties, it is necessary to open the connection

by expanding the Connection node in Server Explorer. Once open, the connection pro-

vides additional properties, such as the database owner, whether the database is case

sensitive, and the type of database and version number.

 EXERCISE 2 Creating Connections Using the Data Source Confi guration Wizard

 To create data connections using the Data Source Confi guration Wizard, perform the follow-

ing steps:

 1. Create a Windows Forms application.

 2. Select Add New Data Source from the Data menu.

 3. The default data source type is Database, so just click Next.

 4. The Choose Your Data Connection page of the wizard is where you create your con-

nection object.

 NOTE AVAILABLE CONNECTIONS

 The drop-down list is populated with the connections already available in Server

Explorer. If you completed the previous section and created a data connection to the

Northwind database, it will be available in this drop-down list.

 5. For this exercise we will create a new connection, so click the New Connection button

to open the Add Connection dialog box.

 NOTE ADD CONNECTION DIALOG BOX

 Just like adding a new connection to Server Explorer, you use the Add Connection dia-

log box to create the connection. Basically, when creating new connections through the

UI, whether using one of the data wizards or Server Explorer, the Add Connection dialog

box is always used.

NOTE CONNECTION PROPERTIES

The available properties are based on the type of data source you are connected to as

well as the state of the connection. If the connection is closed, you might see only a

small list of properties made up of the connection string used to connect to the data-

base, the specifi c .NET Framework data provider used by the connection, and the state

of the connection. To view additional properties, it is necessary to open the connection

by expanding the Connection node in Server Explorer. Once open, the connection pro-

vides additional properties, such as the database owner, whether the database is case

sensitive, and the type of database and version number.

NOTE AVAILABLE CONNECTIONS

The drop-down list is populated with the connections already available in Server

Explorer. If you completed the previous section and created a data connection to the

Northwind database, it will be available in this drop-down list.d

NOTE ADD CONNECTION DIALOG BOX

Just like adding a new connection to Server Explorer, you use the Add Connection dia-

log box to create the connection. Basically, when creating new connections through the

UI, whether using one of the data wizards or Server Explorer, the Add Connection dialog

box is always used.

 192 CHAPTER 5 Confi guring Connections and Connecting to Data

 6. Type the name of your SQL server in the server name area.

 7. Select the appropriate method of authentication to access your SQL server.

 8. Choose the Select Or Enter A Database Name option and select the Northwind data-

base from the drop-down list.

 9. You can verify that the connection is valid by clicking Test Connection and then click-

ing OK to close the dialog box.

NOTE INCLUDING SENSITIVE DATA

If your connection uses SQL authentication and requires a user name and password to

connect to your database, the option to include or exclude sensitive data in the connec-

tion string is enabled. By default, the connection string does not include sensitive data,

and you need to provide this information in your application when you attempt to open

the connection and connect to the database. You can select the option to include sensi-

tive data in the connection string, but this is not considered best practice because users

who have access to the connection string might be able to view the password. Using

Integrated Security is the recommended option.

At this point in the wizard, you have successfully created your data connection and can

view the connection string by expanding the Connection string node. To add the con-

nection to your project, fi nish the wizard by completing the following steps.

 10. Click Next. You are presented with the option of saving the Connection string in

the application confi guration fi le as well as providing a name for the connection. By

default, the selection is set to save the connection; this is probably a good idea for

most applications. Saving your connection in the application confi guration fi le would

be advantageous if, after deployment, you wanted to point to a different data source.

Then you (or a systems administrator) could easily modify the confi guration setting

rather than having to change the connection string in code and recompile and rede-

ploy the application. Once a connection string is saved to the application confi gura-

tion fi le, you can access and modify it using the Project Designer. Open the Project

Designer by clicking the My Project toolbar button (VB) or the Properties toolbar but-

ton (C#) in Solution Explorer. After the Project Designer opens, click the Settings tab to

access the connection strings stored in your application.

 11. The Choose Your Database Objects page of the wizard allows you to select the Tables,

Views, Stored Procedures, and so on to be used in your application. For this lesson,

expand the Tables node and select the Customers and Orders tables.

 12. Click Finish. A typed dataset with the connection object defi ned in the wizard is added

to your project.

Now that you’ve completed the wizard, let’s take a look at where the connection is and

what it contains. The connection created as a result of running the wizard is located within

NOTE INCLUDING SENSITIVE DATA

If your connection uses SQL authentication and requires a user name and password to

connect to your database, the option to include or exclude sensitive data in the connec-

tion string is enabled. By default, the connection string does not include sensitive data,

and you need to provide this information in your application when you attempt to open

the connection and connect to the database. You can select the option to include sensi-

tive data in the connection string, but this is not considered best practice because users

who have access to the connection string might be able to view the password. Using

Integrated Security is the recommended option.

 Lesson 1: Creating and Confi guring Connection Objects CHAPTER 5 193

the designer-generated dataset code fi le. To view the actual connection object, open the

dataset in the Dataset Designer by double-clicking the dataset object in Solution Explorer.

(The Dataset object is the NorthwindDataSet.xsd node.) Select the title bar of a TableAdapter

on the design surface (for example, select CustomersTableAdapter). The connection informa-

tion is available in the Properties window, where you can expand the node and see the name,

modifi er, and connection string.

NOTE CONNECTIONSTRING PROPERTY

The ConnectionString property displays the connection string saved in the application

confi guration fi le. Modifying the connection string here in the Properties window is the

same as editing the connection string in the Settings fi le and affects all connections that

reference that setting.

Quick Check

 1. How do I decide which connection object I need to create?

 2. What is the minimum information required to create a connection object?

Quick Check Answers

 1. Choose a connection object by selecting the .NET Framework Data Provider that is

designed to work best with your particular data source.

 2. At the least, you need to know the valid connection string that you can use to connect

to your data source.

 Lesson Summary
 Connection objects provide two-way communication between your application and a

data source.

 Connection objects can be added to Server Explorer, where they can then be easily

incorporated into future projects.

 To create connection objects, you must have a valid connection string and the proper

credentials to access the data source.

 Connection objects can be created either through the UI or programmatically, depend-

ing on user preference and development style.

 There are four primary connection objects, one for each of the .NET Framework Data

Providers.

NOTE CONNECTIONSTRING PROPERTY

The ConnectionString property displays the connection string saved in the application

confi guration fi le. Modifying the connection string here in the Properties window is the

same as editing the connection string in the Settings fi le and affects all connections that

reference that setting.

Quick Check

1. How do I decide which connection object I need to create?

2. What is the minimum information required to create a connection object?

Quick Check Answers

1. Choose a connection object by selecting the .NET Framework Data Provider that is

designed to work best with your particular data source.

2. At the least, you need to know the valid connection string that you can use to connect

to your data source.

Q

 194 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Where is the connection object located that was created as a result of running the

Data Source Confi guration Wizard?

 A. In the application confi guration fi le

B. In the Data Sources window

C. In the designer-generated dataset code fi le

D. In the generated form code

 2. When should you use the OleDbConnection object? (Choose all that apply.)

 A. When connecting to an Oracle database

B. When connecting to an Offi ce Access database

C. When connecting to SQL Server 6.x or later

D. When connecting to SQL Server 2000

E. When connecting to SQL Server 2000

 3. What user interface component is used to create connections?

 A. The Data Source Confi guration Wizard

B. The Server Explorer window

C. The Add Connection dialog box

D. The Properties window

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 195

Lesson 2: Connecting to Data Using Connection
Objects

Now that you have learned how to create connection objects using the primary .NET data

providers, let’s start using them and actually connect to some data sources. This lesson will

explain how to use a connection object and open a connection to a data source. After open-

ing the connection, you will verify that the connection is opened by examining the Connec-

tionState property. Once you verify that the connection state is opened, you will also cause

the InfoMessage event to fi re and display the message returned by the data source.

After this lesson, you will be able to:

 Open an ADO.NET connection to a database.

 Close an ADO.NET connection to a database by using the Close method of the

connection object.

 Use the connection events to detect database information.

Estimated lesson time: 45 minutes

Opening and Closing Data Connections
Open and close connections using the appropriately named Open and Close methods. To

open a connection to a database, the connection object must contain a connection string

that points to a valid data source, as well as enough information to pass the appropriate

credentials to the data source. When connections are opened and closed, you can keep an

eye on the state of the connection by responding to the StateChange event. The following

example shows how to open and close connections and how to update the text in a label in

reaction to the StateChange event. We will also demonstrate how you can use the InfoMes-

sage event to provide informational messages from a data source to the application. And,

fi nally, we will demonstrate how the connection object can provide information about the

data source by retrieving metadata (for example, the server version number) from an open

connection.

Connection Events
Connection objects provide the StateChanged and InfoMessage events to provide information

to your application regarding the status of the database and information pertaining to com-

mands executed using a specifi c connection object.

 StateChanged event This event is raised when the current state of the database

changes from Open to Closed.

After this lesson, you will be able to:

Open an ADO.NET connection to a database.

Close an ADO.NET connection to a database by using the Close method of the

connection object.

Use the connection events to detect database information.

Estimated lesson time: 45 minutes

 196 CHAPTER 5 Confi guring Connections and Connecting to Data

 InfoMessage event In addition to monitoring the state of a connection, each connec-

tion object provides an InfoMessage event that is raised when warnings or messages

are returned from the server. Informational messages are typically provided when

low-severity errors are returned by the data source that the connection object is con-

nected to. For example, SQL Server errors with a severity of 10 or less are provided to

the InfoMessage event.

NOTE SEVERITY LEVELS

Each error message in SQL Server has an associated severity level. The severity level, as its

name implies, provides a clue to the type of error being returned. Severity levels range

from 0 through 25. Errors with severity levels between 0 and 19 can typically be handled

without user intervention, but errors with severity levels between 20 and 25 typically cause

your connection to close. For more information on SQL Server errors and severity levels,

see the Error Message Severity Levels topic in the SQL Books Online.

LAB Practice Opening and Closing Data Connections

In this lab you will practice working with connection objects by opening and closing connec-

tions and displaying connection information to the user.

EXERCISE 1 Opening and Closing Data Connections

To demonstrate working with connection objects, perform the following steps:

 1. Create a new Windows application and name it DataConnections.

 2. Because Windows applications are not created with a reference to the System.Data.

OracleClient namespace, from the Project menu, select the Add Reference command,

locate the System.Data.OracleClient component, and click OK.

 3. Add 12 buttons to the form, setting the Name and Text properties as shown in

Table 5-5.

NOTE SIMILAR CONNECTIONS

No matter which connection objects you use, the methods for opening and closing,

handling events, and so on, are the same. Feel free to only set up the example using the

connection object for the provider you are interested in working with.

NOTE SEVERITY LEVELS

Each error message in SQL Server has an associated severity level. The severity level, as its

name implies, provides a clue to the type of error being returned. Severity levels range

from 0 through 25. Errors with severity levels between 0 and 19 can typically be handled

without user intervention, but errors with severity levels between 20 and 25 typically cause

your connection to close. For more information on SQL Server errors and severity levels,

see the Error Message Severity Levels topic in the SQL Books Online.

NOTE SIMILAR CONNECTIONS

No matter which connection objects you use, the methods for opening and closing,

handling events, and so on, are the same. Feel free to only set up the example using the

connection object for the provider you are interested in working with.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 197

 TABLE 5-5 Button Settings for Data Connections Form

 NAME PROPERTY TEXT PROPERTY

 OpenSqlButton Open SQL

 OpenOleDbButton Open OLE DB

 OpenOdbcButton Open ODBC

 OpenOracleButton Open Oracle

 CloseSqlButton Close SQL

 CloseOleDbButton Close OLE DB

 CloseOdbcButton Close ODBC

 CloseOracleButton Close Oracle

 GetSqlInfoButton Get SQL Info

 GetOleDbInfoButton Get OLE DB Info

 GetOdbcInfoButton Get ODBC Info

 GetOracleInfoButton Get Oracle Info

 4. Add four labels to the form, setting the Name and Text properties as shown in Table

5-6.

 TABLE 5-6 Label Settings for Data Connections Form

 NAME PROPERTY TEXT PROPERTY

 SqlConnectionStateLabel Closed

 OleDbConnectionStateLabel Closed

 OdbcConnectionStateLabel Closed

 OracleConnectionStateLabel Closed

 Arrange the controls so the form layout looks similar to Figure 5-2.

 To create the connection objects for this lesson, you will take the code examples from

Lesson 1, “Creating and Confi guring Connection Objects,” and add them to your form

as follows.

 198 CHAPTER 5 Confi guring Connections and Connecting to Data

FIGURE 5-2 Form with controls arranged in preparation for creating connection objects

 5. Open the form you just created in code view.

 6. Add the code to create all four connection objects so that you end up with code that

looks like the following:

IMPORTANT CONNECTION STRINGS

Be sure to modify the connection strings to point to your specifi c server and database

for each provider.

' VB

Imports System.Data.SqlClient

Imports System.Data.OleDb

Imports System.Data.Odbc

Imports System.Data.OracleClient

Public Class Form1

 ' Declare the connection objects for the four data providers

 Private WithEvents ConnectionToSql As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True")

 Private WithEvents ConnectionToOleDb As New _

 System.Data.OleDb.OleDbConnection(_

 "Provider= Microsoft.Jet.OLEDB.4.0;Data Source=""C:\DataSources\Nwind.

mdb"";" & _

 "Persist Security Info=False")

 Private WithEvents ConnectionToOdbc As New OdbcConnection(_

 "Dsn=MS Access Database;dbq=C:DataSources\Nwind.mdb;defaultdir=C:\

DataSources;" & _

 "driverid=281;fil=MS Access;maxbuffersize=2048;pagetimeout=5;uid=admin")

 Private WithEvents ConnectionToOracle As New OracleConnection("Data

Source=MyOracleDB;Integrated Security=yes;")

End Class

IMPORTANT CONNECTION STRINGS

Be sure to modify the connection strings to point to your specifi c server and database

for each provider.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 199

// C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

using System.Data.OleDb;

using System.Data.Odbc;

using System.Data.OracleClient;

namespace DataConnections

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 // Declare the connection objects for the four data providers

 private SqlConnection ConnectionToSql = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True");

 private OleDbConnection ConnectionToOleDb = new

 System.Data.OleDb.OleDbConnection(

 "Provider= Microsoft.Jet.OLEDB.4.0;Data Source=C:\\DataSources\\

Nwind.mdb");

 private OdbcConnection ConnectionToOdbc = new OdbcConnection(

 "Dsn=MS Access Database;dbq=C:\\DataSources\\Nwind.mdb;" +

 "defaultdir=C:\\DataSources;driverid=281;fil=MS

Access;maxbuffersize=2048;" +

 "pagetimeout=5;uid=admin");

 private OracleConnection ConnectionToOracle = new OracleConnection(

 "Data Source=MyOracleDB;Integrated Security=yes;");

 }

}

 To open connections to a database, use the connection object’s Open method. To

demonstrate this, you will call the Open method for each connection when the open

buttons are clicked.

 200 CHAPTER 5 Confi guring Connections and Connecting to Data

 7. Create event handlers for the open buttons for each provider and add the following

code, which opens the connection to the database when the open buttons are clicked:

 ' VB

Private Sub OpenSqlServerButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenSqlServerButton.Click

 ConnectionToSql.Open()

End Sub

Private Sub OpenOleDbButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenOleDbButton.Click

 ConnectionToOleDb.Open()

End Sub

Private Sub OpenOdbcButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenOdbcButton.Click

 ConnectionToOdbc.Open()

End Sub

Private Sub OpenOracleButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles OpenOracleButton.Click

 ConnectionToOracle.Open()

End Sub

// C#

private void OpenSqlServerButton_Click(object sender, EventArgs e)

{

 ConnectionToSql.Open();

}

private void OpenOleDbButton_Click(object sender, EventArgs e)

{

 ConnectionToOleDb.Open();

}

private void OpenOdbcButton_Click(object sender, EventArgs e)

{

 ConnectionToOdbc.Open();

}

private void OpenOracleButton_Click(object sender, EventArgs e)

{

 ConnectionToOracle.Open();

}

 To close database connections, use the connection object’s Close method. Technically,

you can also call the Dispose method of the connection object to close the connection,

but the preferred technique is to call the Close method. It is worth noting that calling the

Close method also rolls back all pending transactions and releases the connection back

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 201

to the connection pool. To implement this, create event handlers for the close buttons

for each provider and add code to call the Close method to the body of the handler.

 8. Add the Close methods into the event handlers to close the connection to the data-

base when the close buttons are clicked.

 ' VB

Private Sub CloseSqlButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseSqlButton.Click

 ConnectionToSql.Close()

End Sub

Private Sub CloseOleDbButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseOleDbButton.Click

 ConnectionToOleDb.Close()

End Sub

Private Sub CloseOdbcButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseOdbcButton.Click

 ConnectionToOdbc.Close()

End Sub

Private Sub CloseOracleButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles CloseOracleButton.Click

 ConnectionToOracle.Close()

End Sub

// C#

private void CloseSqlButton_Click(object sender, EventArgs e)

{

 ConnectionToSql.Close();

}

private void CloseOleDbButton_Click(object sender, EventArgs e)

{

 ConnectionToOleDb.Close();

}

private void CloseOdbcButton_Click(object sender, EventArgs e)

{

 ConnectionToOdbc.Close();

}

private void CloseOracleButton_Click(object sender, EventArgs e)

{

 ConnectionToOracle.Close();

}

 202 CHAPTER 5 Confi guring Connections and Connecting to Data

 When the state of a connection changes, the value in the CurrentState property of the

connection object is updated to refl ect the connection’s current state. When you are

opening and closing a connection, you can inspect the value in this property to verify

that the connection is actually opening and closing. Each connection object raises a

StateChange event that you can respond to in order to monitor the state of the con-

nection. To populate the connection-state labels, we need to create event handlers

for the StateChange events for each provider. Inside the StateChange event handlers,

add code that updates the connection-state labels with the value of the connection’s

 CurrentState property, which is provided as an event argument.

 9. Add the following code to the form, which updates the connection-state label values

whenever the current state of a connection changes. Create the form load handler for

C# so you can add the StateChange event handlers.

 ' VB

Private Sub ConnectionToSql_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToSql.StateChange

 SqlConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

Private Sub ConnectionToOleDb_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToOleDb.StateChange

 OleDbConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

Private Sub ConnectionToOdbc_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToOdbc.StateChange

 OdbcConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

Private Sub ConnectionToOracle_StateChange(ByVal sender As Object, _

 ByVal e As System.Data.StateChangeEventArgs) _

 Handles ConnectionToOracle.StateChange

 OracleConnectionStateLabel.Text = e.CurrentState.ToString

End Sub

// C#

private void Form1_Load(object sender, EventArgs e)

{

 ConnectionToSql.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToSql_StateChange);

 ConnectionToOleDb.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToOleDb_StateChange);

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 203

 ConnectionToOdbc.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToOdbc_StateChange);

 ConnectionToOracle.StateChange += new

 System.Data.StateChangeEventHandler(this.ConnectionToOracle_StateChange);

}

private void ConnectionToSql_StateChange(object sender,

 StateChangeEventArgs e)

{

 SqlConnectionStateLabel.Text = e.CurrentState.ToString();

}

private void ConnectionToOleDb_StateChange(object sender,

 StateChangeEventArgs e)

{

 OleDbConnectionStateLabel.Text = e.CurrentState.ToString();

}

private void ConnectionToOdbc_StateChange(object sender,

 StateChangeEventArgs e)

{

 OdbcConnectionStateLabel.Text = e.CurrentState.ToString();

}

private void ConnectionToOracle_StateChange(object sender,

 StateChangeEventArgs e)

{

 OracleConnectionStateLabel.Text = e.CurrentState.ToString();

}

 10. Press F5 to run the application and test the form to see the functionality you have so

far.

 11. When the form opens, click the Open SQL button and verify that the connection-state

label changes to show that the connection is now open.

 12. Click the Close SQL button and verify that the connection-state label changes to refl ect

the current state of the connection, which is now closed.

 To demonstrate use of the InfoMessage event, you need to create an event handler to

process the message. To eliminate the need to create a database object that throws

an error with a low severity, you can take advantage of a feature built into the SqlCon-

nection object that allows you to capture errors with severities up to severity level 16

by setting the connection object’s FireInfoMessageEventOnUserErrors property to True

before executing a method that will force an error to be thrown.

 13. Add the following code, which will handle the click event for GetSqlInfoButton and the

SqlConnection object’s InfoMessage event.

 204 CHAPTER 5 Confi guring Connections and Connecting to Data

 Upon examination of the code in the button-click event, you can see that you are

going to change the database on the connection to an invalid name, which will raise

an error with severity level 11 and cause the InfoMessage event to fi re. When the event

fi res, the code in the InfoMessage event handler opens a message box displaying the

error.

 ' VB

Private Sub GetSqlInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetSqlInfoButton.Click

 ConnectionToSql.FireInfoMessageEventOnUserErrors = True

 ConnectionToSql.ChangeDatabase("Northwind1")

End Sub

Private Sub ConnectionToSql_InfoMessage(ByVal sender As Object, _

 ByVal e As System.Data.SqlClient.SqlInfoMessageEventArgs) _

 Handles ConnectionToSql.InfoMessage

 MsgBox(e.Message)

End Sub

// C#

// Add this line of code into the form load handler to hook up the InfoMessage

handler.

ConnectionToSql.InfoMessage += new

 System.Data.SqlClient.SqlInfoMessageEventHandler(this.ConnectionToSql_

InfoMessage);

private void GetSqlInfoButton_Click(object sender, EventArgs e)

{

 ConnectionToSql.FireInfoMessageEventOnUserErrors = true;

 ConnectionToSql.ChangeDatabase("Northwind1");

}

private void ConnectionToSql_InfoMessage(object sender,

 SqlInfoMessageEventArgs e)

{

 MessageBox.Show(e.Message);

}

 In addition to the previous types of information available from connection objects, you

can also return some metadata from the data source you are connected to. In Lesson 1,

“Creating and Confi guring Connection Objects,” we examined the connection prop-

erties in the Properties window for the connections available in Server Explorer. This

information is available at run time from the connection object as well. As an example,

add a few more lines of code to your application and implement the Get Info buttons

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 205

of the remaining connections to return the server versions of the data sources they are

connected to.

 14. Add the following code to the bottom of the form:

 ' VB

Private Sub GetOleDbInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetOleDbInfoButton.Click

 MsgBox(ConnectionToOleDb.ServerVersion.ToString, "Server Version")

End Sub

Private Sub GetOdbcInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetOdbcInfoButton.Click

 MsgBox(ConnectionToOdbc.ServerVersion.ToString, "Server Version")

End Sub

Private Sub GetOracleInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetOracleInfoButton.Click

 MsgBox(ConnectionToOracle.ServerVersion.ToString, "Server Version")

End Sub

// C#

private void GetOleDbInfoButton_Click(object sender, EventArgs e)

{

 MessageBox.Show(ConnectionToOleDb.ServerVersion.ToString(), "Server Version");

}

private void GetOdbcInfoButton_Click(object sender, EventArgs e)

{

 MessageBox.Show(ConnectionToOdbc.ServerVersion.ToString(), "Server Version");

}

private void GetOracleInfoButton_Click(object sender, EventArgs e)

{

 MessageBox.Show(ConnectionToOracle.ServerVersion.ToString(), "Server

Version");

}

 Now let’s run the application one more time to check out the additional functional-

ity and verify that the info message and metadata is available from the connection

objects.

 15. Press F5 to run the application.

 16. Click the Open SQL button to open the connection to the SQL server and update the

connection-state label.

 17. Click the Get SQL Info button to change the database to the invalid Northwind1 data-

base and raise the InfoMessage event that will display in the message box.

 206 CHAPTER 5 Confi guring Connections and Connecting to Data

IMPORTANT POSSIBLE INVALID OPERATION EXCEPTION

The connection must be open or an Invalid Operation exception is thrown and the Info-

Message event does not fi re.

 18. Click the Close SQL button to close the connection to SQL Server and update the

connection-state label.

 19. Click the Open OLE DB button to open the connection to the OLE DB data source and

update the connection-state label.

 20. Click the Get OLE DB Info button to retrieve the server version of the OLE DB data

source.

 21. Click the Close OLE DB button to close the connection and update the connection-

state label.

 22. Save the application.

IMPORTANT SAVE THE APPLICATION

Save this application because you will use it in Lesson 4, “Handling Connection Errors.”

Lesson Summary
 Open connections by calling the Open method of a connection object.

 Close connections by calling the Close method of a connection object.

 Determine whether a connection is opened or closed by monitoring the StateChanged

event.

 Use the InfoMessage event to process any warnings or informational messages that are

returned from the server.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

IMPORTANT POSSIBLE INVALID OPERATION EXCEPTION

The connection must be open or an Invalid Operation exception is thrown and the Info-

Message event does not fi re.

IMPORTANT SAVE THE APPLICATION

Save this application because you will use it in Lesson 4, “Handling Connection Errors.”

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Connecting to Data Using Connection Objects CHAPTER 5 207

 1. What is the minimal information needed by a connection string to open a connection

to a SQL Server 2000 or SQL Server 2005 database? (Choose all that apply.)

 A. A valid data source

 B. A valid provider name

 C. A valid fi lepath

 D. Appropriate credentials or Integrated Security settings

 2. What happens when you call the Close method of a connection object? (Choose all

that apply.)

 A. The connection is destroyed.

 B. The connection is returned to the connection pool.

 C. The StateChange event is fi red.

 D. All noncommitted pending transactions are rolled back.

 3. What types of information does the InfoMessage event typically expose?

 A. Information regarding the current state of a connection

 B. High-severity SQL Server errors (severity 17 and above)

 C. Low-severity SQL Server errors (severity 10 and below)

 D. Network errors that are encountered when attempting to open a connection

 208 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson 3: Working with Connection Pools

This lesson explains what connection pooling is and how to control connection pooling

options when creating and confi guring connection objects.

After this lesson, you will be able to:

 Confi gure a connection for connection pooling by confi guring connection string

values.

Estimated lesson time: 30 minutes

What Is Connection Pooling?
Connection pooling allows you to reuse existing connections so you don’t have to continu-

ously create and dispose of connections that have the same confi guration. In other words,

opening and closing connections that use the same connection string and credentials can

reuse a connection that is available in the pool. Typical applications use the same connection

objects to continuously fetch and update data from a database. Connection pooling provides

a much higher level of performance by eliminating the need for the database to constantly

create and dispose of connections.

Connection pools are separated by process, application domain, and connection string.

For connection strings that use Integrated Security, a separate pool is created for each unique

identity.

Controlling Connection Pooling Options
When you create ADO.NET connection objects, connection pooling is enabled by default.

You can control connection pooling behavior (or disable pooling altogether) by setting con-

nection string keywords specifi c to connection pooling. For example, to specifi cally disable

connection pooling, you set Pooling=False in your connection string. Table 5-7 provides a list

of connection string keywords that you can use to control how a specifi c connection interacts

with the connection pool. Not all keywords are available for every provider. For example, the

OLE DB provider controls connection pooling (also known as resource or session pooling)

based on the value set for the OLE DB Services keyword in the connection string.

After this lesson, you will be able to:

Confi gure a connection for connection pooling by confi guring connection string

values.

Estimated lesson time: 30 minutes

 Lesson 3: Working with Connection Pools CHAPTER 5 209

 TABLE 5-7 Connection Pooling Connection String Keywords

 NAME DEFAULT DESCRIPTION

 Connection

Lifetime

0 When a connection is returned to the pool, if its creation

time was longer than x seconds ago, with x being the value

of this property, then the connection is destroyed. Values

are in seconds, and a value of 0 indicates the maximum con-

nection timeout.

 Connection

Reset

True Determines whether the database connection is reset when

being drawn from the pool. For SQL Server 7.0, setting to

False avoids making an additional server round trip when

obtaining a connection, but the connection state, such as

database context, is not being reset.

 Enlist True If you want to use a connection as part of a transaction, you

can set this to True and the pooler will automatically enlist

the connection in the creation thread’s current transaction

context.

 Load Balance

Timeout

0 The minimum number of seconds for the connection to live

in the connection pool before being destroyed.

 Max Pool Size 100 The maximum number of connections allowed in the pool

for this specifi c connection string. In other words, if your

application continuously connects to the database, you

might need to increase the Max Pool Size. For example, if

your application has many users who all use the same con-

nection string and you might need more than 100 connec-

tions, you would want to increase the Max Pool Size. This

might happen when many users are accessing the database

server using a common client or Web page.

 Min Pool Size 0 The minimum number of connections allowed in the pool.

 Pooling True When true, the SqlConnection object is drawn from the

appropriate pool or, if it is required, is created and added to

the appropriate pool. Recognized values are True, False, Yes,

and No.

 In addition to connection string properties that control connection pooling behavior, there

are also methods available on connection objects that can affect the pool as well. You typi-

cally use the available methods when you are closing connections in your application and you

know they will not be used again. This clears the connection pool by disposing of the connec-

tions instead of returning them to the pool when they are closed. Any connections that are

already in the pool and open will be disposed of the next time they are closed. Table 5-8 lists

the available methods for interacting with connection pools.

 210 CHAPTER 5 Confi guring Connections and Connecting to Data

 TABLE 5-8 Connection Pooling Specific Methods

 NAME OBJECT DESCRIPTION

 ClearAllPools SqlConnection and

OracleConnection

Empties all connection pools for a specifi c

provider

 ClearPool SqlConnection and

OracleConnection

Empties the connection pool associated

with the specifi ed connection

 ReleaseObjectPool OleDbConnection and

OdbcConnection

Indicates that the object pool can be

released when the last underlying connec-

tion is released

 Confi guring Connections to Use Connection Pooling
 By default, all .NET Framework Data Providers available in ADO.NET have connection pooling

turned on, but the level of control available for working with connection pooling varies based

on the provider being used.

 Confi guring Connection Pooling with SQL Server Connections

 By default, the SqlConnection object automatically uses connection pooling. Each time you

call SqlConnection.Open with a unique connection string, a new pool is created. You control

connection pooling behavior by setting the connection pool keywords in the connection

string, as described earlier in Table 5-7. For example, consider a connection where you want

to set the minimum pool size. By assigning a value greater than zero to the Min Pool Size

keyword, you ensure that the pool is not destroyed until after the application ends. To set the

minimum pool size to 5, use a connection string similar to the following:

 Data Source=SqlServerName;Initial Catalog=DatabaseName;

 Integrated Security=True;Min Pool Size=5

 The minimum pool size is 0 by default, which means that each connection needs to be

created and initialized as it is requested. By increasing the minimum pool size in the connec-

tion string, the indicated number of connections are created immediately and are then ready

to use, which can reduce the time it takes to establish the connection on those initial connec-

tions.

 Confi guring Connection Pooling with OLE DB Connections

 The OLE DB connection object (OleDbConnection) automatically pools connections through

the use of OLE DB session pooling. You control how OLE DB connections use pooling by add-

ing an OLE DB Services keyword to the connection string and setting its value based on the

combination of services you want to enable or disable for the connection.

 The following connection strings explicitly enable connection pooling by setting the OLE

DB Services keyword to -1.

 Lesson 3: Working with Connection Pools CHAPTER 5 211

 OLE DB connection string for an Offi ce Access database (assumes the Nwind.mdb fi le

exists in the following path: C:\DataSources\Nwind.mdb):

 Provider= Microsoft.Jet.OLEDB.4.0;Data Source=C:\DataSources\Nwind.mdb;

 OLE DB Services=-1

 OLE DB Connection for a SQL Server database (replace ServerName and DatabaseName

with valid values for your data source):

 Provider=SQLOLEDB;Data Source=ServerName;OLE DB Services=-1;

 Integrated Security=SSPI;Initial Catalog=DatabaseName

 The following connection strings disable connection pooling and automatic transaction

enlistment by setting the OLE DB Services keyword to -4:

 Provider= Microsoft.Jet.OLEDB.4.0;Data Source=C:\DataSources\Nwind.mdb;OLE DB Services=-4

 Table 5-9 lists the OLE DB Services values to set in an OLE DB connection string.

 TABLE 5-9 OLE DB Connection String Settings for OLE DB Services

 OLE DB SERVICE

CONNECTION STRING

KEYWORD/VALUE

 All services on “OLE DB Services = -1;”

 All services except Pooling and AutoEnlistment of trans-

actions

“OLE DB Services = -4;”

 All services except Client Cursor “OLE DB Services = -5;”

 All services except Pooling, AutoEnlistment, and Client

Cursor

“OLE DB Services = -8;”

 No services (all services disabled) “OLE DB Services = 0;”

 Confi guring Connection Pooling with ODBC Connections

 To enable or disable connection pooling for connections that use the ODBC connection

object (OdbcConnection), you must use the ODBC Data Source Administrator dialog box in

 Windows.

 ACCESSING THE ODBC DATA SOURCE ADMINISTRATOR DIALOG BOX

 Access the ODBC Data Source Administrator dialog box by performing the following steps:

 1. In the Administrative Tools folder on your Start menu, open Data Sources (ODBC).

 2. Click the Connection Pooling tab.

 3. Double-click the driver from the list of available ODBC drivers that you want to set

connection pooling options for.

 212 CHAPTER 5 Confi guring Connections and Connecting to Data

 4. In the Set Connection Pooling Attributes dialog box, select the option to either pool

connections or not pool connections. If you select the option to pool connections, you

can also set the number of seconds for unused connections to remain in the pool (the

connection lifetime).

 5. Click OK to save the settings and repeat for other drivers if desired.

IMPORTANT ODBC SETTINGS

The settings for a particular ODBC driver are in effect for all applications/connections

that use that particular driver.

Confi guring Connection Pooling with Oracle Connections

Connections that use the .NET Framework Data Provider for Oracle automatically use connec-

tion pooling by default. You can control how the connection uses pooling by setting connec-

tion string keywords.

Table 5-10 describes the connection string keywords available for altering connection

pooling activities.

TABLE 5-10 Oracle Connection String Settings for Connection Pooling

NAME DEFAULT DESCRIPTION

Connection

Lifetime

0 When a connection is returned to the pool, its creation

time is compared with the current time and the connec-

tion is destroyed if that time span exceeds the value speci-

fi ed. Values are in seconds and a value of 0 indicates the

maximum connection timeout.

 Enlist True When true, the pooler automatically enlists the connec-

tion in the creation thread’s current transaction context.

Recognized values are True, False, Yes, and No.

 Max Pool Size 100 The maximum number of connections allowed in the pool.

 Min Pool Size 0 The minimum number of connections allowed in the pool.

 Pooling True When true, the OracleConnection object is drawn from the

appropriate pool or, if it is required, is created and added

to the appropriate pool.

IMPORTANT ODBC SETTINGS

The settings for a particular ODBC driver are in effect for all applications/connections

that use that particular driver.

 Lesson 3: Working with Connection Pools CHAPTER 5 213

Lesson Summary
 Connection pooling is enabled by default.

 Connection pooling options are set in the connection string except for the ODBC pro-

vider, which uses the ODBC Data Source Administrator dialog box in Windows.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 1. What determines the connection pool that a connection should use? (Choose all that

apply.)

A. A connection string

B. The identity or credentials of the user opening the connection

C. The database being connected to

D. The connection object used to connect to the database

 2. What are the recommended techniques for enabling connection pooling on for a SQL

Server 2000 or SQL Server 2005 database? (Choose all that apply.)

 A. Setting the OLE DB Services connection string keyword to -4

B. Opening a connection and not explicitly disabling pooling

C. Setting the connection string keyword Pooling = True in the connection string

 D. Using the Connection Pooling tab of the ODBC Data Source Administrator dialog

box

 3. How do I explicitly turn on connection pooling for an OLE DB data source?

 A. By setting the OLE DB Services connection string keyword to 0

 B. By setting the OLE DB Services connection string keyword to -4

 C. By setting the OLE DB Services connection string keyword to -1

 D. By setting the OLE DB Services connection string keyword to -7

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 214 CHAPTER 5 Confi guring Connections and Connecting to Data

Lesson 4: Handling Connection Errors

This lesson explains how to handle errors that are thrown while you are working with SQL

Server. ADO.NET provides two classes specifi cally for processing errors: the SqlException class

and the SqlError class. Let’s see how to work with these classes and how to catch and handle

errors that might be returned from the data source.

After this lesson, you will be able to:

 Handle exceptions when connecting to a database.

 Use the SqlException class to detect connection errors.

 Use the SqlError class to detect connection errors.

Estimated lesson time: 20 minutes

When SQL Server returns a warning or an error, the .NET Framework Data Provider for SQL

Server creates and throws a SqlException that you can catch in your application to deal with

the problem. When SqlException is thrown, inspect the SqlException.Errors property to access

the collection of errors that is returned from the SQL server. The SqlException.Errors property

is a SqlErrorCollection class (a collection of SqlError classes) that always contains at least one

SqlError object.

MORE INFO SQL SERVER ERRORS

SqlConnection remains open for messages with a severity level of 19 and below, but it typi-

cally closes automatically when the severity is 20 or greater.

LAB Handling Database Connection Errors

In this lab you will practice catching a SqlException in your application.

 EXERCISE 1 Handling Database Connection Errors

 In this lab you will practice working with database connection errors (specifi cally, the

SqlException and SqlError objects) in your application. To do this, let’s create a Windows

application.

 1. Create a new Windows application and name it HandlingConnectionErrors.

 2. Add three buttons to the form and set the following properties:

Button1:

 Name = GoodConnectButton

 Text = Connect (valid connection string)

After this lesson, you will be able to:

Handle exceptions when connecting to a database.

Use the SqlException class to detect connection errors.

Use the SqlError class to detect connection errors.r

Estimated lesson time: 20 minutes

MORE INFO SQL SERVER ERRORS

SqlConnection remains open for messages with a severity level of 19 and below, but it typi-

cally closes automatically when the severity is 20 or greater.

 Lesson 4: Handling Connection Errors CHAPTER 5 215

 Button2:

 Name = ConnectToInvalidUserButton

 Text = Connect to invalid user

Button3:

 Name = ConnectToInvalidDatabaseButton

 Text = Connect to invalid database

 3. Double-click each button to create the button click event handlers and switch to code

view.

 4. Add an Imports statement (using in C#) for the System.Data.SqlClient namespace.

 5. The following code creates a new connection based on the connection string passed

into it, attempts to open the connection, and then displays any errors it encounters.

Add this code below the button click event handlers:

 ' VB

Private Sub ConnectToDatabase(ByVal connectionString As String)

 Dim connection As New SqlConnection(connectionString)

 Try

 connection.Open()

 Catch ex As SqlException

 Dim errorMessage As String = ""

 ' Iterate through all errors returned

 ' You can check the error numbers to handle specific errors

 For Each ConnectionError As SqlError In ex.Errors

 errorMessage += ConnectionError.Message & " (error: " & _

 ConnectionError.Number.ToString & ")" & Environment.NewLine

 If ConnectionError.Number = 18452 Then

 MessageBox.Show(_

 "Invalid Login Detected, please provide valid credentials!")

 End If

 Next

 MessageBox.Show(errorMessage)

 Finally

 connection.Close()

 End Try

End Sub

// C#

private void ConnectToDatabase(string connectionString)

{

 SqlConnection connection = new SqlConnection(connectionString);

 216 CHAPTER 5 Confi guring Connections and Connecting to Data

 try

 {

 connection.Open();

 }

 catch (SqlException ex)

 {

 string errorMessage = "";

 // Iterate through all errors returned

 // You can check the error numbers to handle specific errors

 foreach (SqlError ConnectionError in ex.Errors)

 {

 errorMessage += ConnectionError.Message + " (error: " +

 ConnectionError.Number.ToString() + ")" + Environment.NewLine;

 if (ConnectionError.Number == 18452)

 {

 MessageBox.Show(

 "Invalid Login Detected, please provide valid credentials!");

 }

 }

 MessageBox.Show(errorMessage);

 }

 finally

 {

 connection.Close();

 }

}

 6. Add the following code so the three button click event handlers look like the following:

 ' VB

Private Sub GoodConnectButton_Click _

 (ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles GoodConnectButton.Click

 ' This is a valid connection string

 Dim GoodConnection As String = _

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True;"

 ConnectToDatabase(GoodConnection)

End Sub

Private Sub ConnectToInvalidUserButton_Click _

 (ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ConnectToInvalidUserButton.Click

 ' This connection string has invalid credentials

 Dim InvalidUserConnection As String = _

 Lesson 4: Handling Connection Errors CHAPTER 5 217

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;User ID = InvalidUser"

 ConnectToDatabase(InvalidUserConnection)

End Sub

Private Sub ConnectToInvalidDatabaseButton_Click _

 (ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ConnectToInvalidDatabaseButton.Click

 ' This connection string has an invalid/unavailable database

 Dim InvalidDatabaseConnection As String = _

 "Data Source=.\sqlexpress;Initial Catalog=InvalidDatabase;" & _

 “Integrated Security=True"

 ConnectToDatabase(InvalidDatabaseConnection)

End Sub

// C#

private void GoodConnectButton_Click(object sender, EventArgs e)

{

 // This is a valid connection string

 String GoodConnection =

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True";

 ConnectToDatabase(GoodConnection);

}

private void ConnectToInvalidUserButton_Click(object sender, EventArgs e)

{

 // This connection string has invalid credentials

 String InvalidUserConnection =

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;User ID =

InvalidUser";

 ConnectToDatabase(InvalidUserConnection);

}

private void ConnectToInvalidDatabaseButton_Click(object sender, EventArgs e)

{

 // This connection string has an invalid/unavailable database

 String InvalidDatabaseConnection =

 "Data Source=.\\sqlexpress;Initial Catalog=InvalidDatabase;" +

 “Integrated Security=True";

 ConnectToDatabase(InvalidDatabaseConnection);

}

 7. Run the application.

 8. Click the Connect button. No errors should be raised.

 218 CHAPTER 5 Confi guring Connections and Connecting to Data

 9. Click the Connect To Invalid User button. The code to catch the specifi c login error

(error 18452) is executed.

 10. Click the Connect To Invalid Database button. You can see that an error was raised and

is displayed in the message box.

Lesson Summary
 A SqlException object is created when an error is detected on the SQL server.

 Every instance of a SqlException exception contains at least one SqlError warning that

contains the actual error information from the server.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. What types of errors will cause a SqlConnection object to close? (Choose all that apply.)

 A. Errors wth a severity level of 1 through 9

 B. Errors wth a severity level of 10 through 19

 C. Errors wth a severity level of 20 through 29

 D. Errors wth a severity level of 30 or greater

 2. What property contains the actual error message returned by SQL Server? (Choose all

that apply.)

 A. SqlException.Source

 B. SqlException.Message

 C. SqlError.Class

 D. SqlError.Message

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 5: Enumerating the Available SQL Servers on a Network CHAPTER 5 219

Lesson 5: Enumerating the Available SQL Servers on a
Network

This lesson describes how to return a list of visible SQL Server instances on a network compa-

rable to the Server Name drop-down list in the Add Connection dialog box.

After this lesson, you will be able to:

 Enumerate through instances of SQL Server.

Estimated lesson time: 20 minutes

The .NET Framework offers applications a way to discover SQL Server instances on a

network so your programs can process this information when necessary. To retrieve the list

of available SQL Servers, use the Instance property of the SqlDataSourceEnumerator class and

call the GetDataSources method. The GetDataSources method returns a DataTable that con-

tains information for each SQL server that is visible on the network. The returned data table

contains the columns listed in Table 5-11.

TABLE 5-11 DataTable Schema Returned by the GetDataSources Method

COLUMN NAME DESCRIPTION

ServerName Name of the SQL server containing the visible instance

InstanceName Name of the server instance, or empty for servers running

default instances

IsClustered Indicates whether the server is part of a cluster

Version The version number of the SQL server

Why Do Only Some or No SQL Servers Appear in My Grid?

Depending on how your network or even your individual machine is set up, the list of avail-

able servers might or might not be complete. In addition to things such as network traf-

fi c and timeout issues, the way your network implements security can cause servers to be

hidden from the returned list as well. If you are running SQL Server 2005, a service named

SQL Browser needs to be running for you to see SQL Server instances. And even if your SQL

Browser service is running, your fi rewall might be blocking the request for SQL information.

The fi rewall is likely to be blocking communication requests through port 1433, which is the

After this lesson, you will be able to:

Enumerate through instances of SQL Server.

Estimated lesson time: 20 minutes

 220 CHAPTER 5 Confi guring Connections and Connecting to Data

default port that SQL Server default instances are set up to use. There are obvious security

implications concerning turning on the SQL Browser service as well as enabling communica-

tions through specifi c ports through your fi rewall, but these are beyond the scope of this

book. A good resource is the “SQL Browser Service” section of SQL Server 2005 Books Online,

and I encourage you to read that before changing any settings on your fi rewall or SQL Server

confi guration.

LAB Returning the List of Visible SQL Servers

In this lab you will practice enumerating the SQL Servers on your network.

EXERCISE 1 Enumerating the SQL Servers on a Network

To demonstrate how to retrieve the list of visible SQL servers, let’s create a small application

to display the information returned from the GetDataSources method in a DataGridView.

 1. Create a new Windows application named SqlServerEnumerator.

 2. Add a DataGridView to the form and name it VisibleSqlServers.

NOTE DATAGRIDVIEW

The DataGridView is the control typically used for displaying data. The DataGridView is

discussed in more detail in Chapter 8.

 3. Add a Button control below the grid and set its Name property to GetDataSources-

Button.

 4. Set the Button’s Text property to Get Visible Servers.

 5. Double-click the Get Visible Servers button to create the Click handler and switch to

code view.

 6. Add code so that the handler looks like the following:

 ' VB

Dim instance As System.Data.Sql.SqlDataSourceEnumerator = _

 System.Data.Sql.SqlDataSourceEnumerator.Instance

VisibleSqlServers.DataSource = instance.GetDataSources

// C#

System.Data.Sql.SqlDataSourceEnumerator instance =

 System.Data.Sql.SqlDataSourceEnumerator.Instance;

VisibleSqlServers.DataSource = instance.GetDataSources();

 Now run the application and click the Get Visible Servers button. All visible SQL servers

on your network appear in the grid, looking similar to Figure 5-3.

NOTE DATAGRIDVIEW

The DataGridView is the control typically used for displaying data. Thew DataGridView is w

discussed in more detail in Chapter 8.

 Lesson 5: Enumerating the Available SQL Servers on a Network CHAPTER 5 221

FIGURE 5-3 Grid showing all visible SQL servers on your network

Lesson Summary
You can use the SqlDataSourceEnumerator object to return a list of visible SQL servers

on a network.

The list of servers returned might not be complete, due to factors such as fi rewall set-

tings and protocol confi gurations on the SQL Server services.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 1. What object is used to return the list of visible SQL Servers?

 A. VisibleSqlServers

 B. GetDataSources

 C. SqlDataSourceEnumerator

 D. ServerName

 2. What factors can cause SQL servers to be invisible on the network? (Choose all that

apply.)

A. The computer’s fi rewall settings

 B. The amount of network traffi c

C. The availability of the SQL Browser service

D. The Visibility property of the SQL Server

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 222 CHAPTER 5 Confi guring Connections and Connecting to Data

 3. Which of the following pieces of information is available through the SqlServerEnu-

merator object? (Choose all that apply.)

 A. The name of the SQL server

 B. The number of databases currently on the server

 C. The version number of the server

 D. The instance name for servers that are not running default instances

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 223

Lesson 6: Securing Sensitive Connection String Data

Because of the sensitive nature of most data in real-world scenarios, it is extremely important

to protect your servers and databases from unauthorized access. To ensure limited access to

your data source, it is a best practice to secure information like user IDs, data source names,

and, of course, passwords. Storing this type of information as plain text is not recommended

because of the obvious security risk. It is also worth noting that plain text saved in compiled

applications is easily decompiled, rendering your data accessible by persons with question-

able intent.

After this lesson, you will able to:

 Protect access to a data source’s connection details.

 Estimated lesson time: 45 minutes

 REAL WORLD

 Steve Stein

 In another of my previous jobs (okay, I’ve had a few!), I took a position as a system

administrator for a local mortgage company. My fi rst task was to get familiar with

the infrastructure of their company network. I immediately realized that basically

every employee was set up with an administrator account and had access to the

entire network. Although this story isn’t specifi c to securing connection strings, it

does provide insight into how important it is to lock down your sensitive data!

 The suggested method of implementing security in applications that access data is to use

 Windows Authentication (also known as Integrated Security). To further protect sensitive con-

nection information when using Integrated Security, it is also recommended that you set the

Persist Security Information keyword to False in the connection string. This ensures that the

credentials used to open the connection are discarded and not stored where someone might

be able to retrieve them.

Table 5-12 provides the key/value pairs to set in the connection string for implementing

Integrated Security in the four .NET Framework Data Providers.

After this lesson, you will able to:

Protect access to a data source’s connection details.

Estimated lesson time: 45 minutes

REAL WORLD

Steve Stein

In another of my previous jobs (okay, I’ve had a few!), I took a position as a system

administrator for a local mortgage company. My fi rst task was to get familiar with

the infrastructure of their company network. I immediately realized that basically

every employee was set up with an administrator account and had access to the

entire network. Although this story isn’t specifi c to securing connection strings, it

does provide insight into how important it is to lock down your sensitive data!

 224 CHAPTER 5 Confi guring Connections and Connecting to Data

 TABLE 5-12 Connection String Keywords for Turning On Integrated Security

 DATA PROVIDER KEY/VALUE PAIR

 SqlClient Integrated Security=True

 SqlClient and OleDb Integrated Security=SSPI

 Odbc Trusted_Connection=Yes

 OracleClient Integrated Security=Yes

 As stated earlier, if you absolutely must use a connection string that contains sensitive

information, do not store the connection string in the compiled application. As an alternative,

you can use the application confi guration fi le (app.confi g). The app.confi g fi le stores connec-

tion strings as Extensible Markup Language (XML), and your application gets its connection

information by querying this fi le at run time (as opposed to compiling the connection string

into the application itself). By default, the application confi guration fi le stores its information

unencrypted, as shown in Figure 5-4.

 FIGURE 5-4 An unencrypted configuration file

 Securing Data in Confi guration Files
 Now that you’ve moved your sensitive connection string data out of the compiled application

and into the application’s confi guration fi le, the connection string is still unencrypted and can

be read by anyone with permission to open the confi guration fi le. Therefore, you still need

a way to prevent unauthorized personnel from viewing the connection information if they

somehow gain access to your confi guration fi le. The suggested method of securing confi gura-

tion fi les is to encrypt the sections that contain sensitive information, as shown in Figure 5-5.

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 225

 FIGURE 5-5 An encrypted configuration file

 The suggested approach to encrypting confi guration data is to use a protected-

 confi guration provider. Two protected-confi guration providers are available in the .NET

Framework, as well as a base class that you can use to implement your own if the two avail-

able providers are not suffi cient for your application.

 LAB Securing a Confi guration File

 In this lab you will practice encrypting and decrypting a confi guration fi le.

 EXERCISE 1 Encrypting and Decrypting a Confi guration File

 In this lesson you will see how to use the DpapiProtectedConfi gurationProvider to encrypt

and decrypt the ConnectionStrings section of the app.confi g fi le.

 1. Create a new Windows Application and name it SecuringConnectionStrings.

 2. Add a reference to the System.Confi guration namespace.

 3. Add two buttons to the form, setting the Name and Text properties to the following:

 NAME PROPERTY TEXT PROPERTY

 EncryptButton Encrypt

 DecryptButton Decrypt

 4. Create a data source and add a connection string to the application confi guration fi le

by running the Data Source Confi guration Wizard.

 5. Create event handlers for the button-click events.

 226 CHAPTER 5 Confi guring Connections and Connecting to Data

 6. Switch to code view and paste the following code into the editor:

 The following code locates the connection string setting in the application’s confi gura-

tion fi le. The connection string setting is marked for encryption by calling the Protect-

Section method. Setting the ForceSave property to True ensures the confi guration fi le is

saved whether changes are made or not; and the Confi guration.Save call saves the fi le

once it has been encrypted.

 ' VB

Imports System

Imports System.Configuration

Public Class Form1

 Private Sub EncryptConnectionString()

 ' Get the configuration file

 Dim config As System.Configuration.Configuration = _

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

 ' Create the provider name

 Dim provider As String = _

 "DataProtectionConfigurationProvider"

 ' Encrypt the ConnectionStrings

 Dim connStrings As ConfigurationSection = _

 config.ConnectionStrings

 connStrings.SectionInformation.ProtectSection(provider)

 connStrings.SectionInformation.ForceSave = True

 config.Save(ConfigurationSaveMode.Full)

 End Sub

 Private Sub DecryptConnectionString()

 ' Get the configuration file

 Dim config As System.Configuration.Configuration = _

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

 ' Decrypt the ConnectionStrings

 Dim connStrings As ConfigurationSection = _

 config.ConnectionStrings

 connStrings.SectionInformation.UnprotectSection()

 connStrings.SectionInformation.ForceSave = True

 config.Save(ConfigurationSaveMode.Full)

 End Sub

 Private Sub EncryptButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles EncryptButton.Click

 EncryptConnectionString()

 End Sub

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 227

 Private Sub DecryptButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles DecryptButton.Click

 DecryptConnectionString()

 End Sub

End Class

// C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Configuration;

namespace SecuringConnectionStrings

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void EncryptConnectionString()

 {

 // Get the configuration file

 System.Configuration.Configuration config =

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.

None);

 // Create the provider name

 string provider = "DataProtectionConfigurationProvider";

 //Encrypt the connectionStrings

 ConfigurationSection connstrings = config.ConnectionStrings;

 connstrings.SectionInformation.ProtectSection(provider);

 connstrings.SectionInformation.ForceSave = true;

 config.Save(ConfigurationSaveMode.Full);

 }

 private void DecryptConnectionString()

 {

 //Get the configuration file

 System.Configuration.Configuration config =

 228 CHAPTER 5 Confi guring Connections and Connecting to Data

 ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.

None);

 // Decrypt the connectionStrings

 ConfigurationSection connstrings = config.ConnectionStrings;

 connstrings.SectionInformation.UnprotectSection();

 connstrings.SectionInformation.ForceSave = true;

 config.Save(ConfigurationSaveMode.Full);

 }

 private void EncryptButton_Click(object sender, EventArgs e)

 {

 EncryptConnectionString();

 }

 private void DecryptButton_Click(object sender, EventArgs e)

 {

 DecryptConnectionString();

 }

 }

}

 7. Run the application and click the Encrypt button.

 8. While the application is running, navigate to the project’s folder and locate the con-

fi guration fi le (SecuringConnectionStrings.vshost.exe.confi g).

 9. Open the fi le and verify that the ConnectionStrings section is encrypted.

 10. Go back to the form and click the Decrypt button.

 11. Reopen the .confi g fi le and notice that the connection string has reverted back to plain

text.

 Lesson Summary
 Windows Authentication (also called Integrated Security) is the suggested method for

connecting to data securely.

 Store connection strings that contain sensitive information in the application confi gu-

ration fi le and encrypt all settings that contain confi dential information.

 Lesson 6: Securing Sensitive Connection String Data CHAPTER 5 229

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 1. What is the connection string’s key/value pair for using Windows Authentication in SQL

Server 2000 and SQL Server 2005? (Choose all that apply.)

 A. Integrated Security = yes

B. Integrated Security =SSPI

C. Integrated Security = True

D. Trusted_Connection = Yes

 2. If you must use a user name and password to connect to a database, where should you

store the sensitive information?

 A. Compiled in the application

B. In an encrypted application confi guration fi le

C. In a resource fi le deployed with the application

 D. In the registry

 3. What is the recommended method for securing sensitive connection string

information?

A. Encrypting the data in the application confi guration fi le

B. Using a code obfuscator

C. Using Integrated Security (Windows Authentication)

D. Querying the user for his or her credentials at run time

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of this book.

 230 CHAPTER 5 Confi guring Connections and Connecting to Data

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the additional practices.

 Take a practice test.

 Chapter Summary
 You create connection objects by setting a valid connection string and enabling com-

munication between your application and a data source. ADO.NET provides four pri-

mary connection objects that you can use to connect to almost any standard database.

 Connection objects contain several properties, methods, and events that are used for

opening and closing connections to a data source, providing information on the cur-

rent state of the connection and surfacing warnings and informational messages from

a data source.

 Connection objects enable connection pooling by default. By setting connection–

pooling specifi c connection string keywords, you can control how connections interact

with the connection pool.

 By wrapping connection calls in a try-catch block, you can process errors returned

from SQL Server by using the SqlException and SqlError classes.

 By using Windows Authentication and application confi guration fi les, you can protect

sensitive information such as passwords in your programs.

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

 connection object

 connection pool

 connection string

 encryption

 Integrated Security

 Suggested Practices CHAPTER 5 231

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about confi guring con-

nections and connecting to data. You can fi nd answers to these questions in the “Answers”

section at the end of this book.

 Case Scenario 1: Troubleshooting a SQL Connection

 You just landed a sweet job at the Alpine Ski House and have been assigned to maintain the

application that keeps track of inventory in the ski rental hut. The client application connects

to a SQL Server database where the inventory data is stored. You decide to test the applica-

tion before the season begins, and the fi rst time you run the application and try to check

inventory you get an unhandled exception originating from the SQL server.

 How can you modify the application so that users can better identify and troubleshoot

connection problems?

 Case Scenario 2: Securing Sensitive Data

 You are working as an application developer at Contoso Pharmaceuticals and have been

asked to rewrite their in-house research and development application. The fi rst thing you

notice is that they store user name and password information in plain text within the applica-

tion code base.

 Create a list of suggested remedies to present to upper management.

 Suggested Practices

 To gain further knowledge on the subject of working with connections, complete the follow-

ing practices.

 Practice 1 Create an application that targets different databases, which can be

selected when the application starts.

 Practice 2 Design a reusable block of code that can be used to handle SQL Server

errors of any severity.

 Practice 3 Create a component that writes to a log every time a connection to a

database is opened.

 232 CHAPTER 5 Confi guring Connections and Connecting to Data

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 6 233

 C H A P T E R 6

 Working with Data in a
Connected Environment

 This chapter describes how to use Command objects to execute SQL statements, call

stored procedures, and perform catalog operations against a database from within

your applications. In addition to describing how to execute commands, it explains the

DataReader object that provides access to the data returned from the database when

executing commands. Querying data using LINQ (Language Integrated Query) is also cov-

ered in this chapter.

 Exam objectives in this chapter:

 Create, add, delete, and edit data in a connected environment.

 Retrieve data by using a DataReader object.

 Build SQL commands in Server Explorer.

 Build SQL commands in code.

 Create parameters for a Command object.

 Perform database operations by using a Command object.

 Retrieve data from a database by using a Command object.

 Perform asynchronous operations by using a Command object.

 Perform bulk copy operations.

 Store and retrieve binary large object (BLOB) data types in a database.

 Manage connections and transactions.

 Perform transactions by using the Transaction object.

 Query data from data sources by using LINQ.

 Query using LINQ to SQL.

 Query using LINQ to Objects.

 Query using LINQ to Microsoft ADO.NET.

 Query using LINQ to XML.

 234 CHAPTER 6 Working with Data in a Connected Environment

Lessons in this chapter:

 Creating and Executing Command Objects 235

 Working with Parameters in SQL Commands 255

 Saving and Retrieving BLOB Values in a Database 275

 Performing Bulk Copy Operations 291

 Performing Transactions by Using the Transaction Object 303

 Querying Data by Using LINQ 312

 Before You Begin

 To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft .NET Framework .

 Available data sources, including Microsoft SQL Server (SQL Server Express Edition

is acceptable), the Northwind Traders sample database for SQL Server, and the

Nwind.mdb Microsoft Offi ce Access database fi le .

 A basic understanding of relational databases .

 Completed the exercises or understood the concepts presented in Chapter 5, “Confi g-

uring Connections and Connecting to Data.”

 REAL WORLD

Steve Stein

 When I originally set out to learn how to program data access applications

in the fi rst version of ADO.NET, I struggled to understand the relationships

between the many different objects in the System.Data namespace. I later real-

ized that I was trying to understand the more complex DataSet and DataAdapter

objects without establishing a foundation of knowledge about the underlying

objects that the DataSet and DataAdapter are made up of—specifi cally, the Con-

nection, Command, and Parameter objects. A solid understanding of working with

these data infrastructure objects allowed me to truly understand the inner work-

ings of the more complex objects that you typically use in most Microsoft Windows

applications.

REAL WORLD

Steve Stein

When I originally set out to learn how to program data access applications

in the fi rst version of ADO.NET, I struggled to understand the relationships

between the many different objects in the System.Data namespace. I later real-

ized that I was trying to understand the more complex DataSet andt DataAdapter

objects without establishing a foundation of knowledge about the underlying

objects that the DataSet andt DataAdapter are made up of—specifi cally, ther Con-

nection, Command, anddd Parameter objects. A solid understanding of working with r

these data infrastructure objects allowed me to truly understand the inner work-

ings of the more complex objects that you typically use in most Microsoft Windows

applications.

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 235

Lesson 1: Creating and Executing Command Objects

This lesson describes how to execute SQL statements, call stored procedures, and perform

catalog operations (for example, creating database objects like tables and stored procedures)

against a database using Command objects. This lesson will also explain how to use the

DataReader object that will contain the data returned from executing commands and how to

iterate through the DataReader and access the returned data.

After this lesson, you will be able to:

 Build SQL commands in code.

 Perform database operations by using the Command object.

 Perform asynchronous operations using the Command object.

 Retrieve data from a database by using a Command object.

 Retrieve data by using a DataReader object.

 Estimated lesson time: 60 minutes

 What Are Command Objects?
 To execute SQL statements and stored procedures against a database (from your application),

you use Command objects. Command objects contain the necessary information to execute

SQL statements, stored procedures, functions, and so on, against a data source; return data

to your application; and perform database catalog operations such as creating, altering, and

deleting database objects. In other words, you can use Command objects to execute any valid

SQL statement.

 NOTE SQL STATEMENTS AND STORED PROCEDURES

 SQL (which means Structured Query Language) statements are the actual commands

that are sent to a SQL server when executing commands. You can run commands that

 manipulate data or change the defi nition of the database itself. Stored procedures are SQL

statements that are saved in the database and can be reused and executed when neces-

sary. If you fi nd yourself continuously running the same SQL command (or the same set or

batch of SQL commands), you might want to consider creating some stored procedures to

simplify your data access logic.

 Just like Connection objects, there are Command objects for each of the .NET Framework

Data Providers. Select the specifi c Command object that coincides with the .NET Framework

Data Provider being used to communicate with your data source. If you are using the .NET

Framework Data Provider for SQL Server, you would use a SqlCommand object; similarly,

After this lesson, you will be able to:

Build SQL commands in code.

Perform database operations by using the Command object.d

Perform asynchronous operations using the Command object.d

Retrieve data from a database by using a Command object.d

Retrieve data by using a DataReader object.r

Estimated lesson time: 60 minutes

NOTE SQL STATEMENTS AND STORED PROCEDURES

SQL (which means Structured Query Language) statements are the actual commands

that are sent to a SQL server when executing commands. You can run commands that

 manipulate data or change the defi nition of the database itself. Stored procedures are SQL

statements that are saved in the database and can be reused and executed when neces-

sary. If you fi nd yourself continuously running the same SQL command (or the same set or

batch of SQL commands), you might want to consider creating some stored procedures to

simplify your data access logic.

 236 CHAPTER 6 Working with Data in a Connected Environment

if you are using the .NET Framework Data Provider for OLE DB, you would use an OleDb-

Command object.

 The primary properties of a Command object are the CommandText, CommandType, and

Connection properties. Set the CommandType property to a value representing the command

you want to execute against the data source. For example, to execute a standard SQL state-

ment, set the CommandType property to Text (SqlCommand.CommandType = CommandType.

Text) and then set the CommandText property to a string representing the SQL statement

you want to run. To execute a stored procedure, set the CommandType property to Stored-

Procedure (SqlCommand.CommandType = CommandType.StoredProcedure), and then set the

CommandText property to the name of the stored procedure. Additionally, you can confi gure

Command objects to execute asynchronously or within a specifi c transaction context.

 Table 6-1 lists the primary .NET Framework Data Provider Command objects that are avail-

able in ADO.NET and the data sources they are designed to access.

 TABLE 6-1 Command Objects

 NAME DATA TARGET SOURCE

 SqlCommand SQL Server 2000 and SQL Server 2005 databases

 OleDbCommand OLE DB data sources (such as Access databases through Jet 4.0)

 OdbcCommand Open database connectivity (ODBC) data sources, such as a Data

Source Name (DSN) as defi ned in the ODBC Data Source Admin-

istrator dialog box

 OracleCommand Oracle 7.3, 8i, or 9i databases

 Table 6-2 lists the common properties for the .NET Framework Data Provider Command

objects.

 TABLE 6-2 Common Command Object Properties

 NAME DESCRIPTION

 CommandText Set this to any valid SQL statement or the name of any valid

stored procedure. The CommandType value determines the

manner of execution.

 CommandTimeout The time in seconds before terminating the attempt to execute a

command.

 CommandType Typically set to either Text (execute the CommandText as a SQL

statement) or StoredProcedure (execute the stored procedure

specifi ed in the CommandText property).

 Connection Set this to the connection object this command should use.

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 237

 NAME DESCRIPTION

 Parameters The command’s parameters collection. When running param-

eterized queries or stored procedures, you must add parameter

objects to this collection.

 Transaction The SqlTransaction within which the SqlCommand executes.

 Table 6-3 lists the common methods for the .NET Framework Data Provider Command

objects.

 TABLE 6-3 Common Command Object Methods

 NAME DESCRIPTION

 Cancel Tries to cancel the execution of the command.

 ExecuteNonQuery Executes SQL statements or stored procedures that do not return

data.

 ExecuteReader Executes commands that return tabular (or rows of) data.

 ExecuteScalar Executes SQL statements or stored procedures that return a single

value. If you call ExecuteScalar with a statement that returns rows

of data, the query executes but returns only the fi rst column of the

fi rst row returned by the query. Additional columns or rows are

ignored.

 ExecuteXMLReader Returns XML formatted data. Returns a System.Xml.XmlReader

object.

 Table 6-4 lists the common events for .NET Framework Data Provider Command objects.

 TABLE 6-4 Common Command Object Events

 NAME DESCRIPTION

 Disposed Fires when the command is disposed

 StatementCompleted (SqlCommand only) Occurs when a SQL statement completes

 Creating and Confi guring Command Objects
 You create Command objects by declaring an instance of the desired Command object and

setting the CommandType and CommandText properties. To execute the command, you must

also set the command’s Connection property to a valid Connection object.

 238 CHAPTER 6 Working with Data in a Connected Environment

 Creating a Command Object That Executes a SQL Statement

 To execute commands that run SQL statements against a database, set the CommandType

property to Text and set the CommandText property to the SQL statement you want to

execute.

 The following code shows how to instantiate a Command object that executes a SELECT

query that returns all customers in the Northwind Traders sample database:

 ' VB

Dim CustomersCommand As New SqlCommand

CustomersCommand.Connection = NorthwindConnection

CustomersCommand.CommandType = CommandType.Text

CustomersCommand.CommandText = "SELECT CustomerID, CompanyName FROM Customers"

// C#

SqlCommand CustomersCommand = new SqlCommand();

CustomersCommand.Connection = NorthwindConnection;

CustomersCommand.CommandType = CommandType.Text;

CustomersCommand.CommandText = "SELECT CustomerID, CompanyName FROM Customers";

 Creating a Command Object That Executes a Stored Procedure

 To execute commands that run existing stored procedures in a database, set the Command-

Type property to StoredProcedure and set the CommandText property to the name of the

stored procedure you want to execute.

 The following code shows how to instantiate a Command object that executes a stored

procedure named “Ten Most Expensive Products” in the Northwind Traders sample database:

 ' VB

Dim TopTenCommand As New SqlCommand

TopTenCommand.Connection = NorthwindConnection

TopTenCommand.CommandType = CommandType.StoredProcedure

TopTenCommand.CommandText = "Ten Most Expensive Products"

// C#

SqlCommand TopTenCommand = new SqlCommand();

TopTenCommand.Connection = NorthwindConnection;

TopTenCommand.CommandType = CommandType.StoredProcedure;

TopTenCommand.CommandText = "Ten Most Expensive Products";

 Creating a Command Object That Performs Catalog Operations

 To execute commands that run DDL (Data Defi nition Language) actions, create commands

that run SQL statements and call the ExecuteNonQuery method of the command. For exam-

ple, to create a new table in a database using a Command object, you can use code similar to

the following:

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 239

 ' VB

Dim CreateTableCommand As New SqlCommand

CreateTableCommand.Connection = NorthwindConnection

CreateTableCommand.CommandType = CommandType.Text

CreateTableCommand.CommandText = "CREATE TABLE SalesPersons (" & _

 "[SalesPersonID] [int] IDENTITY(1,1) NOT NULL, " & _

 "[FirstName] [nvarchar](50) NULL, " & _

 "[LastName] [nvarchar](50) NULL)"

// C#

SqlCommand CreateTableCommand = new SqlCommand();

CreateTableCommand.Connection = NorthwindConnection;

CreateTableCommand.CommandType = CommandType.Text;

CreateTableCommand.CommandText = "CREATE TABLE SalesPersons (" +

 "[SalesPersonID] [int] IDENTITY(1,1) NOT NULL, " +

 "[FirstName] [nvarchar](50) NULL, " +

 "[LastName] [nvarchar](50) NULL)";

 Creating a Command Object That Returns a Single Value

 To execute commands that return single values (scalar values), set the CommandText property

to a SQL statement or stored procedure that returns a single value and call the ExecuteSca-

lar method of the command. Declare a variable with the data type of the single value being

returned from the database and cast the results of the ExecuteScalar call to the expected

data type. (The ExecuteScalar method returns an Object, so you must cast the ExecuteScalar

method to the equivalent of the returned data type.) In the following example the SQL state-

ment returns an Integer, so you cast the ExecuteScalar call to an Integer. For example, to return

the results of a SQL statement that runs an aggregate function (such as the count of custom-

ers), use code similar to the following:

 ' VB

Dim ExecuteScalarCommand As New SqlCommand

ExecuteScalarCommand.Connection = NorthwindConnection

ExecuteScalarCommand.CommandType = CommandType.Text

ExecuteScalarCommand.CommandText = "SELECT Count(*) FROM Customers"

' Open the connection and execute the command

ExecuteScalarCommand.Connection.Open()

Dim CustomerCount As Integer = CInt(ExecuteScalarCommand.ExecuteScalar)

MessageBox.Show("There are " & CustomerCount.ToString & " customers")

ExecuteScalarCommand.Connection.Close()

// C#

SqlCommand ExecuteScalarCommand = new SqlCommand();

 240 CHAPTER 6 Working with Data in a Connected Environment

ExecuteScalarCommand.Connection = NorthwindConnection;

ExecuteScalarCommand.CommandType = CommandType.Text;

ExecuteScalarCommand.CommandText = "SELECT Count(*) FROM Customers";

// Open the connection and execute the command

ExecuteScalarCommand.Connection.Open();

int CustomerCount = (int)ExecuteScalarCommand.ExecuteScalar();

MessageBox.Show("There are " + CustomerCount.ToString() + " customers");

ExecuteScalarCommand.Connection.Close();

 In the preceding example, when the command is executed, the value returned from the

database is assigned to the CustomerCount variable and displayed in a message box for

verifi cation.

 Creating a Command Object That Returns XML Data

 You can also execute commands that return data formatted as XML. To execute commands

that return XML data, create commands that run SQL statements that return XML or retrieve

existing XML-formatted data from your database. Set the CommandText property to a SQL

statement that returns XML and call the ExecuteXMLReader method of the command. Calling

the ExecuteXMLReader method returns a System.Xml.XmlReader object, which is similar to a

data reader, except that it is specifi cally for accessing XML-formatted data.

 For example, to return the results of a SQL statement as well-formed XML, use code similar

to the following:

 ' VB

Dim ExecuteXMLCommand As New SqlCommand

ExecuteXMLCommand.Connection = NorthwindConnection

ExecuteXMLCommand.CommandType = CommandType.Text

' Add the For XML Auto clause to return the data as well-formed XML

ExecuteXMLCommand.CommandText = "SELECT CustomerID FROM Customers For XML Auto"

ExecuteXMLCommand.Connection.Open()

Dim reader As System.Xml.XmlReader = ExecuteXMLCommand.ExecuteXmlReader

' Add code here to iterate through the XMLReader

reader.Close()

ExecuteXMLCommand.Connection.Close()

// C#

SqlCommand ExecuteXMLCommand = new SqlCommand();

ExecuteXMLCommand.Connection = NorthwindConnection;

ExecuteXMLCommand.CommandType = CommandType.Text;

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 241

// Add the For XML Auto clause to return the data as well-formed XML

ExecuteXMLCommand.CommandText = "SELECT CustomerID FROM Customers For XML Auto";

ExecuteXMLCommand.Connection.Open();

System.Xml.XmlReader reader = ExecuteXMLCommand.ExecuteXmlReader();

// Add code here to iterate through the XMLReader;

reader.Close();

ExecuteXMLCommand.Connection.Close();

Creating SQL Commands (SQL Statements) with the Query
Designer
When confi guring command objects, you can use the Query Designer to assist in creating

SQL statements for your Command objects to execute against the database.

To create queries with the Query Designer, select a database in Server Explorer and select

New Query from the Data menu. The Query Designer opens, presenting a list of available

objects (tables, views, and so on) in the database to which you can add your query.

After adding the tables and selecting columns, you can customize the query by adding

sorting and fi ltering for desired columns. Additional commands, as well as the command to

run the query, are available on the Query Designer menu.

 Performing Database Operations Using Command Objects

After confi guring a Command object with the SQL statement or stored procedure you want

to run, you must then explicitly execute the command to return data from the database. A

couple of the preceding code examples gave a glimpse of how to call some of the available

execute methods of a command. Let’s look in a bit more depth at all the available methods of

executing commands.

Each .NET Framework Data Provider Command object exposes three main execution meth-

ods that can be used to return data, to update data, to call stored procedures and functions,

and so on, or to perform catalog operations, such as executing DDL commands against a data

source.

 Table 6-5 describes the available execution methods for the .NET Framework Data

Providers.

 NOTE ASYNCHRONOUS METHODS

 Additional methods for executing asynchronous commands will be explained later in this

chapter.

NOTE ASYNCHRONOUS METHODS

Additional methods for executing asynchronous commands will be explained later in this

chapter.

 242 CHAPTER 6 Working with Data in a Connected Environment

TABLE 6-5 Command Object Execution Methods

METHOD DESCRIPTION

ExecuteReader Use this method when running SQL statements or stored proce-

dures that return tabular data (rows of data).

ExecuteScalar Use this method when running SQL statements that return a

single value.

ExecuteNonQuery Use this method when performing catalog operations such as

creating database objects, running stored procedures that do

not return data, or performing Insert, Update, and Delete state-

ments when you do not need to return data.

 ExecuteXmlReader

(SqlCommand only)

Use this method to run SQL statements or stored procedures

that return data formatted as XML.

 Quick Check

 1. What CommandType setting do you use to execute a SQL statement that creates

a new table in a database?

 2. What data type is returned when calling the ExecuteScalar method of a

command?

 3. What are the three main properties you must set to execute a Command object?

Quick Check Answers

 1. You set the CommandType to CommandType.Text because you set the

CommandText property to a standard CREATE TABLE SQL statement.

2. ExecuteScalar returns an Object, which is why you must cast the return value to

the type of the data returned.

3. Connection, CommandType, and CommandText.

Executing Commands Asynchronously

In addition to the execution commands listed in Table 6-5, an additional set of commands are

specifi cally used for asynchronous calls to a database. Executing commands asynchronously is

the process of having the command execute on a separate thread from the rest of your appli-

cation so users do not have to wait for the command to complete before continuing work in

other parts of the application. For example, commands that are not executed asynchronously

can cause your form to “freeze” until the command has completed. When you know the

execution will take some time and you need to perform other tasks in your application while

waiting for the command to complete, you might want to execute commands asynchronously.

Quick Check

1. What CommandType setting do you use to execute a SQL statement that creates

a new table in a database?

2. What data type is returned when calling the ExecuteScalar method of ar

command?

3. What are the three main properties you must set to execute a Command object?

Quick Check Answers

1. You set the CommandType to CommandType.Text because you set thet

CommandText property to a standardt CREATE TABLE SQL statement.

2. ExecuteScalar returns an r Object, which is why you must cast the return value to t

the type of the data returned.

3. Connection, CommandType, and CommandText.

Q

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 243

 Table 6-6 provides a list of Command object methods that are used for asynchronous

execution.

 TABLE 6-6 Asynchronous Specific Command Object Methods

 METHOD DESCRIPTION

 BeginExecuteNonQuery Starts the asynchronous version of the ExecuteNonQuery

method.

 BeginExecuteReader Starts the asynchronous version of the ExecuteReader

method.

 BeginExecuteXmlReader

(SQLCommand only)

Starts the asynchronous version of the ExecuteXmlReader

method.

 EndExecuteNonQuery Call this method after the StatementComplete event fi res to

complete execution of the command.

 EndExecuteReader Call this method after the StatementComplete event fi res

to access the DataReader with the data returned by the

command.

 EndExecuteXMLReader

(SQLCommand only)

Call this method after the StatementComplete event fi res

to access the XmlReader with the data returned by the

command.

 When you are executing commands asynchronously, you explicitly call the Begin and End

methods of the selected Command object. Calling the Begin method sends the command

(SQL statement or stored procedure call) to the database, and then you can perform other

operations in your application. When the command fi nishes executing, the StatementCom-

pleted event fi res, notifying the application that it can call the End method of the command

and access the data for further processing.

 The following code shows how you can continue processing even while a command is in

the process of executing:

 ' VB

Dim results As New System.Text.StringBuilder

Dim NorthWindConnection As New SqlConnection("Data Source=.\;Initial Catalog=Northwind;"

& _

 Integrated Security=True; asynchronous processing = true")

Dim command1 As New SqlCommand("WAITFOR DELAY '00:00:05'; " & _

 Select * From [Order Details]", NorthWindConnection)

NorthWindConnection.Open()

Dim r As IAsyncResult = command1.BeginExecuteReader

 244 CHAPTER 6 Working with Data in a Connected Environment

MessageBox.Show("The command has been executed but processing is free to display" & _

 " this message before the results have been returned!")

Dim reader As SqlDataReader = command1.EndExecuteReader(r)

While reader.Read

 For i As Integer = 0 To reader.FieldCount - 1

 results.Append(reader(i).ToString & vbTab)

 Next

 results.Append(Environment.NewLine)

End While

reader.Close()

command1.Connection.Close()

MessageBox.Show(results.ToString)

// C#

System.Text.StringBuilder results = new System.Text.StringBuilder();

SqlConnection NorthWindConnection = new SqlConnection("Data Source=.\\;Initial

Catalog=Northwind;" +

 "Integrated Security=True; asynchronous processing = true");

SqlCommand command1 = new SqlCommand("WAITFOR DELAY '00:00:05'; " +

 "Select * From [Order Details]", NorthWindConnection);

NorthWindConnection.Open();

IAsyncResult r = command1.BeginExecuteReader();

MessageBox.Show("The command has been executed but processing is free " +

 "to display this message before the results have been returned!");

SqlDataReader reader = command1.EndExecuteReader(r);

while (reader.Read())

{

 for (int i = 0; i < reader.FieldCount; i++)

 {

 results.Append(reader[i].ToString() + "\t");

 }

 results.Append(Environment.NewLine);

}

reader.Close();

command1.Connection.Close();

MessageBox.Show(results.ToString());

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 245

Executing Multiple SQL Statements Using a DataReader

In addition to returning the results from a single SQL statement, you can use a Command

object and DataReader to return the results of multiple SQL statements. To execute more

than one SQL statement, set the CommandText property of a Command object to multiple

SQL statements separated by semicolons (;). After calling the ExecuteReader method, the

DataReader will hold the number of result sets equal to the number of SQL statements exe-

cuted. To access the data returned by the additional statements, call the NextResult method

of the DataReader.

For example, the following code creates a SqlCommand and sets it to call two separate SQL

statements that return data from different tables. To access the additional data, check the

value of the DataReader.NextResult method. If it returns True, another result set is available in

the reader; if it returns False, the reader is done.

NOTE UPDATING A PREVIOUS EXERCISE

You can modify the code for the fi rst lab in this chaper in the ExecuteSqlButton event han-

dler with the following example to try out returning multiple result sets.

' VB

ExecuteSqlCommand.CommandText = "SELECT CustomerID, CompanyName" _

 & "FROM Customers; SELECT ProductName, UnitsInStock FROM Products"

Dim reader As SqlDataReader = ExecuteSqlCommand.ExecuteReader

Dim MoreResults As Boolean = True

Do While MoreResults

 While reader.Read

 For i As Integer = 0 To reader.FieldCount - 1

 results.Append(reader(i).ToString & vbTab)

 Next

 results.Append(Environment.NewLine)

 End While

 MoreResults = reader.NextResult()

Loop

// C#

ExecuteSqlCommand.CommandText = "SELECT CustomerID, CompanyName FROM " +

 "Customers; SELECT ProductName, UnitsInStock FROM Products";

SqlDataReader reader = ExecuteSqlCommand.ExecuteReader();

NOTE UPDATING A PREVIOUS EXERCISE

You can modify the code for the fi rst lab in this chaper in the ExecuteSqlButton event han-

dler with the following example to try out returning multiple result sets.

 246 CHAPTER 6 Working with Data in a Connected Environment

bool MoreResults = false;

do

{

 while (reader.Read())

 {

 for (int i = 0; i < reader.FieldCount; i++)

 {

 results.Append(reader[i].ToString() + "\t");

 }

 results.Append(Environment.NewLine);

 }

 MoreResults = reader.NextResult();

} while (MoreResults);

 LAB Executing SQL Statements and Calling Stored Procedures

 In this lab you will use Command objects to execute SQL statements and stored procedures as

well as use DataReaders to iterate through the returned data.

 EXERCISE 1 Executing SQL Statements and Calling Stored Procedures

 In this exercise you will create a Windows Forms application and demonstrate creating com-

mands and executing the many types of queries, stored procedures, and functions that would

be used in a real-world data application.

 1. Create a Windows Forms application and name it ExecutingCommands.

 2. Add a TextBox to Form1 and set the following properties:

 Name = ResultsTextBox

 MultiLine = True

 ScrollBars = Both

 3. Add a Button below the TextBox and set the following properties:

 Name = ExecuteSqlButton

 Text = Execute SQL

 4. Add a second Button and set the following properties:

 Name = ExecuteSprocButton

 Text = Execute Sproc

 5. Add a third Button and set the following properties:

 Name = CreateTableButton

 Text = Create Table

 Arrange the controls so they appear similar to Figure 6-1.

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 247

FIGURE 6-1 Form with controls arranged for executing Command objects

Now let’s write some code and implement functionality to execute a command that

runs a simple SQL SELECT statement and populates the textbox with a list of Cus-

tomerID and CompanyName values from the Northwind Traders Customers table.

Remember from the preceding table that, when running SQL statements, you need

to call the ExecuteReader method of the Command object. Calling the ExecuteReader

method returns a DataReader object to access the data returned by the SQL statement.

The DataReader represents a read-only stream of rows that must be read sequentially

while moving through the reader. In other words, once the reader is returned, all you

can do is read the data out of it until the reader is empty, and then you close and

dispose of the reader.

 6. Double-click the Execute SQL button to create the button-click event handler and

switch to code view.

 7. Add code to the Form1 class to set Option Strict on, add a reference to the SqlClient

namespace, and create a form-scoped connection to the Northwind Traders database.

NOTE NORTHWIND CONNECTION STRING

Replace the NorthwindConnection with a valid connection string to the Northwind

Traders database.

' VB

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

 Private NorthwindConnection As New SqlConnection(_

 "Data Source=.\sqlexpress ;Initial Catalog=Northwind;" & _

 “Integrated Security=True")

 Private Sub ExecuteSqlButton_Click(_

NOTE NORTHWIND CONNECTION STRING

Replace the NorthwindConnection with a valid connection string to the Northwind

Traders database.

 248 CHAPTER 6 Working with Data in a Connected Environment

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ExecuteSqlButton.Click

 End Sub

End Class

 // C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace ExecutingCommands

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection NorthwindConnection =

 new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;" +

 "Integrated Security=True");

 }

}

 8. Add the following code to the ExecuteSqlButton_Click event handler:

 ' VB

' Create a StringBuilder to store the results of the query

Dim results As New System.Text.StringBuilder

' Create an instance of the Command object

Dim ExecuteSqlCommand As New SqlCommand

' Set the command's connection to the Northwind database

ExecuteSqlCommand.Connection = NorthwindConnection

' Executing SQL statements uses CommandType = Text

ExecuteSqlCommand.CommandType = CommandType.Text

' The CommandText is set to the SQL statement we want to run

ExecuteSqlCommand.CommandText = _

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 249

 "SELECT CustomerID, CompanyName FROM Customers"

' You must open the connection before executing the command

ExecuteSqlCommand.Connection.Open()

' Assign the results of the SQL statement to a data reader

Dim reader As SqlDataReader = ExecuteSqlCommand.ExecuteReader

While reader.Read

 For i As Integer = 0 To reader.FieldCount - 1

 results.Append(reader(i).ToString & vbTab)

 Next

 results.Append(Environment.NewLine)

End While

' Close the data reader and the connection

reader.Close()

ExecuteSqlCommand.Connection.Close()

ResultsTextBox.Text = results.ToString

 // C#

//Create a StringBuilder to store the results of the query

System.Text.StringBuilder results = new System.Text.StringBuilder();

// Create an instance of the Command object

SqlCommand ExecuteSqlCommand = new SqlCommand();

// Set the command's connection to the Northwind database

ExecuteSqlCommand.Connection = NorthwindConnection;

// Executing SQL statements uses CommandType = Text

ExecuteSqlCommand.CommandType = CommandType.Text;

// The CommandText is set to the SQL statement we want to run

ExecuteSqlCommand.CommandText =

 "SELECT CustomerID, CompanyName FROM Customers";

// You must open the connection before executing the command

ExecuteSqlCommand.Connection.Open();

// Assign the results of the SQL statement to a data reader

SqlDataReader reader = ExecuteSqlCommand.ExecuteReader();

while (reader.Read())

 250 CHAPTER 6 Working with Data in a Connected Environment

{

 for (int i = 0; i < reader.FieldCount; i++)

 {

 results.Append(reader[i].ToString() + "\t");

 }

 results.Append(Environment.NewLine);

}

// Close the data reader and the connection

reader.Close();

ExecuteSqlCommand.Connection.Close();

ResultsTextBox.Text = results.ToString();

 9. Run the application and click the Execute SQL button (see Figure 6-2).

 FIGURE 6-2 Form displaying data after executing the SQL command

 10. Now write some code and implement functionality to execute a command that runs a

stored procedure. Remember that when running stored procedures that return rows,

you still call the ExecuteReader method of the Command object. Double-click the

Execute Sproc button to create the button-click event handler and switch to code view.

 For this handler you will copy and reuse much of the code from the foregoing exam-

ple. Typically, in an effi cient production application, you would refactor similar code

out into its own method but, for the sake of clarity in this demonstration, just copy the

code you want to reuse into the additional button-click event handlers.

 The main difference between calling a standard SQL command and calling a stored

procedure is that when calling a stored procedure you set the CommandType property

to StoredProcedure and set the CommandText property to the name of the stored pro-

cedure (Ten Most Expensive Products in this exercise). Then you call the ExecuteReader

method just like executing a SQL statement and iterate through the reader exactly as

before.

 11. The ExecuteSprocButton_Click event handler should look similar to the following:

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 251

 ' VB

Dim results As New System.Text.StringBuilder

Dim ExecuteSprocCommand As New SqlCommand

ExecuteSprocCommand.Connection = NorthwindConnection

ExecuteSprocCommand.CommandType = CommandType.StoredProcedure

ExecuteSprocCommand.CommandText = "Ten Most Expensive Products"

ExecuteSprocCommand.Connection.Open()

Dim reader As SqlDataReader = ExecuteSprocCommand.ExecuteReader

While reader.Read

 For i As Integer = 0 To reader.FieldCount - 1

 results.Append(reader(i).ToString & vbTab)

 Next

 results.Append(Environment.NewLine)

End While

reader.Close()

ExecuteSprocCommand.Connection.Close()

ResultsTextBox.Text = results.ToString

 // C#

System.Text.StringBuilder results = new System.Text.StringBuilder();

SqlCommand ExecuteSprocCommand = new SqlCommand();

ExecuteSprocCommand.Connection = NorthwindConnection;

ExecuteSprocCommand.CommandType = CommandType.StoredProcedure;

ExecuteSprocCommand.CommandText = "Ten Most Expensive Products";

ExecuteSprocCommand.Connection.Open();

SqlDataReader reader = ExecuteSprocCommand.ExecuteReader();

while (reader.Read())

{

 for (int i = 0; i <reader.FieldCount;i++)

 {

 results.Append(reader[i].ToString() + "\t");

 }

 results.Append(Environment.NewLine);

}

reader.Close();

ExecuteSprocCommand.Connection.Close();

ResultsTextBox.Text = results.ToString();

 252 CHAPTER 6 Working with Data in a Connected Environment

 12. Run the application and click the Execute Sproc button.

 13. Let’s add some more functionality by writing some code to perform a catalog opera-

tion and execute a command that creates a new table in the database. Remember that

performing catalog operations requires the use of the ExecuteNonQuery method of

the Command object. For this method you do not use a data reader because the com-

mand will not return any data. After creating the table, simply inspect the database in

Server Explorer and verify that the command executed successfully. Double-click the

Create Table button to create the button-click event handler and switch to code view.

 14. Add the following code to the CreateTableButton_Click event handler:

 ' VB

Dim CreateTableCommand As New SqlCommand

CreateTableCommand.Connection = NorthwindConnection

CreateTableCommand.CommandType = CommandType.Text

CreateTableCommand.CommandText = "CREATE TABLE SalesPersons (" & _

 "[SalesPersonID] [int] IDENTITY(1,1) NOT NULL, " & _

 "[FirstName] [nvarchar](50) NULL, " & _

 "[LastName] [nvarchar](50) NULL)"

CreateTableCommand.Connection.Open()

CreateTableCommand.ExecuteNonQuery()

CreateTableCommand.Connection.Close()

 // C#

SqlCommand CreateTableCommand = new SqlCommand();

CreateTableCommand.Connection = NorthwindConnection;

CreateTableCommand.CommandType = CommandType.Text;

CreateTableCommand.CommandText = "CREATE TABLE SalesPersons (" +

 "[SalesPersonID] [int] IDENTITY(1,1) NOT NULL, " +

 "[FirstName] [nvarchar](50) NULL, " +

 "[LastName] [nvarchar](50) NULL)";

CreateTableCommand.Connection.Open();

CreateTableCommand.ExecuteNonQuery();

CreateTableCommand.Connection.Close();

 15. Run the application and click the Create Table button. Navigate to Server Explorer and

refresh the Tables node of the Northwind Traders database. Verify the existence of the

new SalesPersons table.

 Lesson 1: Creating and Executing Command Objects CHAPTER 6 253

Lesson Summary
 Command objects are used to execute SQL statements and stored procedures against

a database.

 There are specifi c Command objects for each of the .NET Framework Data Providers.

 The CommandType property determines whether a command executes a SQL state-

ment or stored procedure.

 Commands can also be used to perform catalog operations on a database.

 Commands can be executed asynchronously.

 DataReader objects are created when command execution returns tabular data.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. What are the Command object property settings to execute a stored procedure?

(Choose all that apply.)

 A. CommandType = Text, CommandText = stored procedure name

 B. CommandType = Text, CommandText = SQL syntax to execute the stored

procedure

 C. CommandType = StoredProcedure, CommandText = SQL syntax to execute the

stored procedure

 D. CommandType = StoredProcedure, CommandText = stored procedure name

 2. What should you do to access the returned tabular data after starting execution of a

command that runs asynchronously? (Choose all that apply.)

 A. Call the EndExecuteNonQuery method.

 B. Call the EndExecuteReader method.

 C. Wait for the StatementCompleted event to fi re and iterate through the DataReader.

 D. Wait for the StatementCompleted event to fi re, call the EndExecuteReader method,

and then iterate through the DataReader.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 254 CHAPTER 6 Working with Data in a Connected Environment

 3. How do you execute multiple SQL statements using a DataReader?

 A. Call the ExecuteReader method of two Command objects and assign the results to

the same instance of a DataReader.

 B. Call the ExecuteReader method of a single Command object twice.

 C. Set the Command.CommandText property to multiple SQL statements delimited by

a semicolon.

 D. Set the Command.CommandType property to multiple result sets.

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 255

Lesson 2: Working with Parameters in SQL Commands

This lesson describes how to create parameters in Command objects. It explains how to add

parameters to SQL statements and stored procedures, and it describes how to assign values

to parameters that are passed to the data source, as well as how to read parameter values

that are returned from the data source.

 After this lesson, you will be able to:

 Create parameters for a Command object.

Estimated lesson time: 60 minutes

What Are Parameters and Why Should I Use Them?
You can think of a parameter as a type of variable that you can use to pass and return values

between your application and a database. Just like a variable in your application, parameters

are created to contain a certain data type. Parameter data types are assigned using the types

defi ned in the System.Data.SqlDbType enumeration. The SqlDbType enumeration contains a

list of the types available in SQL Server, as opposed to application variables that are typically

assigned one of the .NET Framework base data types.

 You pass parameter values to SQL statements (and stored procedures) when you want

to change the criteria of your queries quickly. A typical use of a parameter is in the WHERE

clause of a SQL query. Parameters also allow you to control how user input is entered into a

query and virtually eliminates potential SQL injection attacks.

MORE INFO SQL PARAMETER SYNTAX

SQL Server uses the @ symbol as a prefi x to denote named parameters, so syntax like @

City in a SQL statement represents a parameter. Other databases (for example, Microsoft

Offi ce Access and OLE DB data sources) do not use named parameters but, instead, repre-

sent parameters with a question mark (?) symbol. When working with these types of data

sources, the order of parameters is used to track what parameter values are used for each

parameter.

For example, you can use a parameter to pass in the value for the City column and quickly

change the results of your query by changing the value of the parameter. Assigning differ-

ent values to the parameter and running the query determines the result set that the query

returns. The following SQL statements illustrate this:

--SQL statement with named parameter

SELECT CustomerID, CompanyName, City

After this lesson, you will be able to:

Create parameters for a Command object.d

Estimated lesson time: 60 minutes

MORE INFO SQL PARAMETER SYNTAX

SQL Server uses the @ symbol as a prefi x to denote named parameters, so syntax like @

City in a SQL statement represents a parameter. Other databases (for example, Microsoft

Offi ce Access and OLE DB data sources) do not use named parameters but, instead, repre-

sent parameters with a question mark (?) symbol. When working with these types of data

sources, the order of parameters is used to track what parameter values are used for each

parameter.

 256 CHAPTER 6 Working with Data in a Connected Environment

FROM Customers

WHERE City = @City

--SQL statement with 'unnamed' parameter

SELECT CustomerID, CompanyName, City

FROM Customers

WHERE City = ?

Types of Parameters
When executing Command objects, you typically use parameters to send data to the

database. This type of parameter is referred to as an Input parameter. In addition to Input

parameters, you might also want to use a parameter to retrieve information coming out of

the database; this type of parameter is called an Output parameter. There is also a third type

of parameter, which is referred to as an InputOutput parameter. InputOutput parameters

are used to both send and receive data when executing a command. The type of parameter

is designated in the Direction property of the parameter and is assigned a value from the

ParameterDirection enumeration. In other words, when you are creating a parameter, you can

set its Direction property to Input, Output, InputOutput, or ReturnValue.

NOTE DEFAULT PARAMETER DIRECTION

Parameters are Input parameters by default.

Creating Parameters
You create parameters by declaring an instance of the Parameter class and setting its name

and data type to coincide with the parameter name and data type that the data source

expects. You can also set the parameter’s ParameterDirection property to choose the type of

parameter to create.

The following code creates an Input parameter:

' VB

 Dim TotalCostParameter as New SqlParameter

TotalCostParameter.ParameterName = "@TotalCost"

TotalCostParameter.SqlDbType = SqlDbType.Money

// C#

SqlParameter TotalCostParameter = new SqlParameter();

TotalCostParameter.ParameterName = "@TotalCost";

TotalCostParameter.SqlDbType = SqlDbType.Money;

The following code creates an Output parameter:

' VB

Dim TotalCostParameter As New SqlParameter("@TotalCost", SqlDbType.Money)

NOTE DEFAULT PARAMETER DIRECTION

Parameters are Input parameters by default.t

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 257

TotalCostParameter.Direction = ParameterDirection.Output

// C#

SqlParameter TotalCostParameter = new SqlParameter("@TotalCost", SqlDbType.Money);

TotalCostParameter.Direction = ParameterDirection.Output;

 Adding Parameters to Command Objects
 Command objects have a Parameters property that represents a collection of parameters

for that command (for example, the SQLCommand.Parameters property). After you create

a parameter, you must add it to the Parameters collection of the Command object that will

execute the SQL statement or stored procedure that uses the parameter.

 The following code illustrates how to add a parameter to a Command object (assuming the

GetCostCommand already exists):

 ' VB

 GetCostCommand.Parameters.Add(TotalCostParameter)

// C#

 GetCostCommand.Parameters.Add(TotalCostParameter);

 LAB Working with Parameters

 In this lab you will practice using parameters in Command objects. You will pass parameters

to stored procedures as well as SQL statements.

 EXERCISE 1 Creating and Executing a Parameterized SQL Statement

 For this exercise, create a form that executes a parameterized query by allowing the user to

enter a value into a text box that will be passed to the database as the parameter in a query.

 1. Create a new Windows Forms application and name it ParameterizedQueries.

 2. Add a TextBox to the form and set the following properties:

 Name = CityTextBox

 Text = London

 3. Add a second TextBox and set the following properties:

 Name = ResultsTextBox

 MultiLine = True

 4. Add a Button and set the following properties. The form should resemble Figure 6-3:

 Name = ExecuteSqlButton

 Text = Execute SQL

 258 CHAPTER 6 Working with Data in a Connected Environment

 FIGURE 6-3 Form with controls for executing the parameterized SQL statement

 5. Double-click the Execute SQL button to create the button-click event handler and

switch the form to code view.

 6. Add references to the System.Data and System.Data.SqlClient namespaces.

 7. Add code to create a connection on the form.

 At this point your form code should look like the following (substitute a valid connec-

tion string for NorthwindConnection):

 ' VB

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

 Private NorthwindConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;" & _

 "Integrated Security=True")

 Private Sub ExecuteSqlButton_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles ExecuteSqlButton.Click

 End Sub

End Class

 // C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 259

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace ParameterizedQueries

{

 public partial class Form1 : Form

 {

 private SqlConnection NorthwindConnection = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True");

 public Form1()

 {

 InitializeComponent();

 }

 private void ExecuteSqlButton_Click(object sender, EventArgs e)

 {

 }

 }

}

 8. Add the following code to the ExecuteSqlButton_Click method to create a new com-

mand object and set it to the parameterized query:

 ' VB

' Create a new Command object

Dim CustomersByCityCommand As New SqlCommand

' Set the command properties

CustomersByCityCommand.Connection = NorthwindConnection

CustomersByCityCommand.CommandType = CommandType.Text

CustomersByCityCommand.CommandText = _

 "SELECT CustomerID, CompanyName, City " & _

 "FROM Customers " & _

 "WHERE City = @City"

 // C#

// Create a new Command object

SqlCommand CustomersByCityCommand = new SqlCommand();

// Set the command properties

CustomersByCityCommand.Connection = NorthwindConnection;

CustomersByCityCommand.CommandType = CommandType.Text;

CustomersByCityCommand.CommandText =

 260 CHAPTER 6 Working with Data in a Connected Environment

 "SELECT CustomerID, CompanyName, City " +

 "FROM Customers " +

 "WHERE City = @City";

 9. Add the following code below the previous code (but still within the event handler) to

create the parameter and assign it to the command:

 ' VB

' Create the @City parameter

Dim CityParameter As New SqlParameter

' Set its name and data type

CityParameter.ParameterName = "@City"

CityParameter.SqlDbType = SqlDbType.NVarChar

' Since the City column in the database allows

' null values we can set the IsNullable property

' to allow null values.

CityParameter.IsNullable = True

' Add the parameter to the Command object

CustomersByCityCommand.Parameters.Add(CityParameter)

 // C#

// Create the @City parameter

SqlParameter CityParameter = new SqlParameter();

// Set its name and data type

CityParameter.ParameterName = "@City";

CityParameter.SqlDbType = SqlDbType.NVarChar;

// Since the City column in the database allows

// null values we can set the IsNullable property

// to allow null values.

CityParameter.IsNullable = true;

// Add the parameter to the Command object

CustomersByCityCommand.Parameters.Add(CityParameter);

 10. Add the following code that will set the value of the parameter to whatever is typed

into the text box, set the code to run the query, and display the results in ResultsText-

Box. (Add this code below the previously added code but continue to keep it within the

event handler.)

 ' VB

' Set the parameters value to the

' the text in the CityTextBox

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 261

CityParameter.Value = CityTextBox.Text

' Create a StringBuilder to store the results of the query

Dim results As New System.Text.StringBuilder

' You must open the connection before executing the command

CustomersByCityCommand.Connection.Open()

' Assign the results of the SQL statement to a data reader

Dim reader As SqlDataReader = CustomersByCityCommand.ExecuteReader

While reader.Read

 For i As Integer = 0 To reader.FieldCount - 1

 results.Append(reader(i).ToString & vbTab)

 Next

 results.Append(Environment.NewLine)

End While

' Close the data reader and the connection

reader.Close()

CustomersByCityCommand.Connection.Close()

ResultsTextBox.Text = results.ToString

 // C#

// Set the parameters value to the

// text in the CityTextBox

CityParameter.Value = CityTextBox.Text;

// Create a StringBuilder to store the results of the query

System.Text.StringBuilder results = new System.Text.StringBuilder();

// You must open the connection before executing the command

CustomersByCityCommand.Connection.Open();

// Assign the results of the SQL statement to a data reader

SqlDataReader reader = CustomersByCityCommand.ExecuteReader();

while (reader.Read())

{

 for (int i=0; i < reader.FieldCount; i++)

 {

 results.Append(reader[i].ToString() + "\t");

 }

 results.Append(Environment.NewLine);

 262 CHAPTER 6 Working with Data in a Connected Environment

}

// Close the data reader and the connection

reader.Close();

CustomersByCityCommand.Connection.Close();

ResultsTextBox.Text = results.ToString();

 11. Run the application and click the Execute SQL button. As shown in Figure 6-4, the

application displays the command results.

 FIGURE 6-4 Form displaying data after executing the parameterized SQL statement

 12. Type Madrid and rerun the query (click the Execute SQL button).

 13. Verify that the results show only customers from the city value passed in to the

parameter.

 EXERCISE 2 Creating and Executing a Parameterized Stored Procedure

 1. Create a new Windows Forms application and name it

ParameterizedStoredProcedure.

 2. Add a TextBox to the form and set the following properties:

 Name = CategoryNameTextBox

 Text = Beverages

 3. Add a second TextBox and set the following properties:

 Name = OrdYearTextBox

 Text = 1997

 4. Add a third TextBox and set the following properties:

 Name = ResultsTextBox

 MultiLine = True

 ScrollBars = Both

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 263

 5. Add a Button and set the following properties:

 Name = ExecuteStoredProcedureButton

 Text = Execute Stored Procedure

 The form should now resemble Figure 6-5:

 FIGURE 6-5 Form with controls for executing the parameterized stored procedure

 6. Double-click the Execute Stored Procedure button to create the button-click event

handler and switch the form to code view.

 7. Add references to the System.Data and System.Data.SqlClient namespaces.

 8. Add code to create a connection on the form.

 At this point your form code should look like the following (substitute a valid connec-

tion string for NorthwindConnection):

 ' VB

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

 Private NorthwindConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;" & _

 "Integrated Security=True")

 Private Sub ExecuteStoredProcedureButton_Click(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles ExecuteStoredProcedureButton.Click

 End Sub

End Class

 264 CHAPTER 6 Working with Data in a Connected Environment

 // C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace ParameterizedStoredProcedure

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection NorthwindConnection = new SqlConnection(

 "Data Source=.\\sqlexpress ;Initial Catalog=Northwind;" +

 "Integrated Security=True");

 private void ExecuteStoredProcedureButton_Click(object sender, EventArgs

e)

 {

 }

 }

}

 9. Add the following code to the ExecuteStoredProcedureButton_Click method to create a

new Command object and set it to the SalesByCategory stored procedure:

 ' VB

' Create a new Command object

Dim SalesByCategoryCommand As New SqlCommand

' Set the command properties

SalesByCategoryCommand.Connection = NorthwindConnection

SalesByCategoryCommand.CommandType = CommandType.StoredProcedure

SalesByCategoryCommand.CommandText = "SalesByCategory"

 // C#

// Create a new Command object

SqlCommand SalesByCategoryCommand = new SqlCommand();

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 265

// Set the command properties

SalesByCategoryCommand.Connection = NorthwindConnection;

SalesByCategoryCommand.CommandType = CommandType.StoredProcedure;

SalesByCategoryCommand.CommandText = "SalesByCategory";

 10. This stored procedure takes two parameters, so add the following code below the

previous code to create the parameters and assign them to the command:

 ' VB

' Create the @CategoryName parameter

Dim CategoryNameParameter As New SqlParameter

' Set its name and data type

CategoryNameParameter.ParameterName = "@CategoryName"

CategoryNameParameter.SqlDbType = SqlDbType.NVarChar

' Create the OrdYear parameter

Dim OrdYearParameter As New SqlParameter("@OrdYear", SqlDbType.NVarChar)

' Add the parameters to the Commmand object

SalesByCategoryCommand.Parameters.Add(CategoryNameParameter)

SalesByCategoryCommand.Parameters.Add(OrdYearParameter)

 // C#

// Create the @CategoryName parameter

SqlParameter CategoryNameParameter = new SqlParameter();

// Set its name and data type

CategoryNameParameter.ParameterName = "@CategoryName";

CategoryNameParameter.SqlDbType = SqlDbType.NVarChar;

// Create the OrdYear parameter

SqlParameter OrdYearParameter = new SqlParameter("@OrdYear",

 SqlDbType.NVarChar);

// Add the parameters to the Commmand object

SalesByCategoryCommand.Parameters.Add(CategoryNameParameter);

SalesByCategoryCommand.Parameters.Add(OrdYearParameter);

 11. Add the code that will set the value of the parameters to whatever is typed into the

two text boxes, set the code to run the query, and display the results in ResultsTextBox.

 ' VB

' Set the parameter values to the

' text in the CategoryNameTextBox

' and the OrdYearTextBox

 266 CHAPTER 6 Working with Data in a Connected Environment

CategoryNameParameter.Value = CategoryNameTextBox.Text

OrdYearParameter.Value = OrdYearTextBox.Text

' Create a StringBuilder to store the results of the query

Dim results As New System.Text.StringBuilder

' Open the connection before executing the command

SalesByCategoryCommand.Connection.Open()

' Assign the results of the SQL statement to a data reader

Dim reader As SqlDataReader = SalesByCategoryCommand.ExecuteReader

While reader.Read

 For i As Integer = 0 To reader.FieldCount - 1

 results.Append(reader(i).ToString & vbTab)

 Next

 results.Append(Environment.NewLine)

End While

' Close the data reader and the connection

reader.Close()

SalesByCategoryCommand.Connection.Close()

ResultsTextBox.Text = results.ToString

 // C#

// Set the parameter values to the

// text in the CategoryNameTextBox

// and the OrdYearTextBox

CategoryNameParameter.Value = CategoryNameTextBox.Text;

OrdYearParameter.Value = OrdYearTextBox.Text;

// Create a StringBuilder to store the results of the query

System.Text.StringBuilder results = new System.Text.StringBuilder();

// Open the connection before executing the command

SalesByCategoryCommand.Connection.Open();

// Assign the results of the SQL statement to a data reader

SqlDataReader reader = SalesByCategoryCommand.ExecuteReader();

while (reader.Read())

{

 for(int i = 0; i < reader.FieldCount; i++)

 {

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 267

 results.Append(reader[i].ToString() + "\t");

 }

 results.Append(Environment.NewLine);

}

// Close the data reader and the connection

reader.Close();

SalesByCategoryCommand.Connection.Close();

ResultsTextBox.Text = results.ToString();

 12. Run the application and click the Execute Stored Procedure button (see Figure 6-6).

 FIGURE 6-6 Form displaying data after executing the parameterized stored procedure

 13. Try typing another category name and executing the stored procedure, verifying

that the results are now displaying a list of products from the selected category. (For

example, type Condiments, Seafood, or Produce.)

 EXERCISE 3 Using InputOutput and Output Parameters

 1. Create a new Windows Forms application and name it InputOutputParameters.

 2. Add a TextBox to the form and set the following properties:

 Name = OrderIDTextBox

 Text = 10250

 3. Add a second TextBox and set its Name property to FreightCostTextBox.

 4. Add a Button and set the following properties:

 Name = GetFreightCostButton

 Text = Get Freight Cost

 Below the button, add a second set of controls.

 268 CHAPTER 6 Working with Data in a Connected Environment

 5. Add a TextBox and set the following properties:

 Name = CompanyNameTextBox

 Text = Alfreds Futterkiste

 6. Add another TextBox and set its Name property to ContactNameTextBox.

 7. Add a Button and set the following properties. The form should now resemble

Figure 6-7:

 Name = GetContactNameButton

 Text = Get Contact Name

 FIGURE 6-7 Form with controls for demonstrating InputOutput parameters

 8. Double-click the Get Freight Cost button to create an event handler.

 9. Add references to the System.Data and System.Data.SqlClient namespaces.

 10. Add code to create a connection on the form.

 At this point, your form code should look like the following (substitute a valid connec-

tion string for NorthwindConnection):

 ' VB

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

 Private NorthwindConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;" & _

 "Integrated Security=True")

 Private Sub GetFreightCostButton_Click(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles GetFreightCostButton.Click

 End Sub

End Class

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 269

// C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace InputOutputParameters

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection NorthwindConnection = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;" +

 "Integrated Security=True");

 private void GetFreightCostButton_Click(object sender, EventArgs e)

 {

 }

 }

}

IMPORTANT ADDITIONAL STORED PROCEDURES REQUIRED

Exercises in this chapter use some stored procedures that may not be available in all ver-

sions of the Northwind sample database. If your version of Northwind does not include

the GetContactName, GetFreightCost, or SalesByCategory stored procedures, you can

easily add them. Follow the instructions in the Setting Up Sample Databases Read Me fi le

included in the sample fi les.

 11. Add the following code to the GetFreightCostButton_Click event handler:

 ' VB

' Create a new Command object

Dim GetFreightCost As New SqlCommand

' Set the command properties

GetFreightCost.Connection = NorthwindConnection

IMPORTANT ADDITIONAL STORED PROCEDURES REQUIREDT

Exercises in this chapter use some stored procedures that may not be available in all ver-

sions of the Northwind sample database. If your version of d Northwind does not include d

the GetContactName, GetFreightCost, or t SalesByCategory stored procedures, you cany

easily add them. Follow the instructions in the Setting Up Sample Databases Read Me fi le

included in the sample fi les.

 270 CHAPTER 6 Working with Data in a Connected Environment

GetFreightCost.CommandType = CommandType.StoredProcedure

GetFreightCost.CommandText = "GetFreightCost"

' Create the Output parameter to receive the freight cost

Dim FreightCostParameter As New SqlParameter

FreightCostParameter.Direction = ParameterDirection.Output

' Set its name and data type

FreightCostParameter.ParameterName = "@Freight"

FreightCostParameter.SqlDbType = SqlDbType.Money

' Create the OrderID parameter and set its value

Dim OrderIDParameter As New SqlParameter("@OrderID", SqlDbType.Int)

OrderIDParameter.Value = OrderIDTextBox.Text

' Add both parameters to the Commmand object

GetFreightCost.Parameters.Add(FreightCostParameter)

GetFreightCost.Parameters.Add(OrderIDParameter)

' open the connection before executing the command

GetFreightCost.Connection.Open()

' Execute the sproc; because we are using parameters

' to access the data we call ExecuteNonQuery instead of

' ExecuteReader.

GetFreightCost.ExecuteNonQuery()

GetFreightCost.Connection.Close()

FreightCostTextBox.Text = Format(FreightCostParameter.Value, "c")

 // C#

// Create a new Command object

SqlCommand GetFreightCost = new SqlCommand();

// Set the command properties

GetFreightCost.Connection = NorthwindConnection;

GetFreightCost.CommandType = CommandType.StoredProcedure;

GetFreightCost.CommandText = "GetFreightCost";

// Create the Output parameter to receive the freight cost

SqlParameter FreightCostParameter = new SqlParameter();

FreightCostParameter.Direction = ParameterDirection.Output;

// Set its name and data type

FreightCostParameter.ParameterName = "@Freight";

FreightCostParameter.SqlDbType = SqlDbType.Money;

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 271

// Create the OrderID parameter and set its value

SqlParameter OrderIDParameter = new SqlParameter("@OrderID", SqlDbType.Int);

OrderIDParameter.Value = OrderIDTextBox.Text;

// Add both parameters to the Commmand object

GetFreightCost.Parameters.Add(FreightCostParameter);

GetFreightCost.Parameters.Add(OrderIDParameter);

// open the connection before executing the command

GetFreightCost.Connection.Open();

// Execute the sproc; because we are using parameters

// to access the data we call ExecuteNonQuery instead of

// ExecuteReader.

GetFreightCost.ExecuteNonQuery();

GetFreightCost.Connection.Close();

FreightCostTextBox.Text = FreightCostParameter.Value.ToString();

 12. Run the application and click the Get Freight Cost button.

 The Freight Cost text box displays 65.83, the cost of freight for order number 10250.

Type other valid OrderID numbers into the Order Id text box and run the stored pro-

cedure to verify that the output parameter contains the correct freight cost for those

orders.

 Now that you’ve seen how to use output parameters that return data from the

database, let’s implement the Get Contact Name functionality and see how to use

InputOutput parameters to both send data into the database as well as return data

from the database.

 13. Double-click the Get Contact Name button to create an event handler.

 14. Add the following code to the GetContactName_Click handler:

 ' VB

' Create a new Command object

Dim GetContactNameCommand As New SqlCommand

' Set the command properties

GetContactNameCommand.Connection = NorthwindConnection

GetContactNameCommand.CommandType = CommandType.StoredProcedure

GetContactNameCommand.CommandText = "GetContactName"

' Create the InputOutput parameter to send and receive data

Dim NameParameter As New SqlParameter

NameParameter.Direction = ParameterDirection.InputOutput

' Set its name, data type, and value

NameParameter.ParameterName = "@Name"

 272 CHAPTER 6 Working with Data in a Connected Environment

NameParameter.SqlDbType = SqlDbType.NVarChar

NameParameter.Value = CompanyNameTextBox.Text

' Add the parameters to the Commmand object

GetContactNameCommand.Parameters.Add(NameParameter)

' Open the connection before executing the command

GetContactNameCommand.Connection.Open()

' Execute the sproc

GetContactNameCommand.ExecuteNonQuery()

GetContactNameCommand.Connection.Close()

ContactNameTextBox.Text = NameParameter.Value.ToString

 // C#

// Create a new Command object

SqlCommand GetContactNameCommand = new SqlCommand();

// Set the command properties

GetContactNameCommand.Connection = NorthwindConnection;

GetContactNameCommand.CommandType = CommandType.StoredProcedure;

GetContactNameCommand.CommandText = "GetContactName";

// Create the InputOutput parameter to send and receive data

SqlParameter NameParameter = new SqlParameter();

NameParameter.Direction = ParameterDirection.InputOutput;

// Set its name, data type, and value

NameParameter.ParameterName = "@Name";

NameParameter.SqlDbType = SqlDbType.NVarChar;

NameParameter.Value = CompanyNameTextBox.Text;

// Add the parameters to the Commmand object

GetContactNameCommand.Parameters.Add(NameParameter);

// Open the connection before executing the command

GetContactNameCommand.Connection.Open();

// Execute the sproc

GetContactNameCommand.ExecuteNonQuery();

GetContactNameCommand.Connection.Close();

ContactNameTextBox.Text = NameParameter.Value.ToString();

 15. Run the application and click the Get Contact Name button.

 Lesson 2: Working with Parameters in SQL Commands CHAPTER 6 273

The Contact Name text box displays the contact name record for Alfreds Futterkiste,

Maria Anders. Type other valid company names from the Customers table, click the Get

Contact Name button, and the Contact Name text box displays their contacts.

Lesson Summary
 Command objects contain collections of Parameter objects that move data back and

forth between the application and the database.

 Parameters can be Input parameters, Output parameters, or InputOutput parameters.

 Parameters are assigned data types consistent with the database data types (as

opposed to the .NET Framework data types).

 To facilitate passing user input to a SQL statement using parameters, a parameter can

be assigned the value from a control at run time such as a TextBox control.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. When would you typically use an Input parameter? (Choose all that apply.)

 A. When the parameter value is created based on user input

 B. When the parameter is used to send data from the application to the database

 C. When the command is set to execute a statement with a WHERE clause

 D. When the parameter value is passed to an INSERT statement

 2. What are the three primary kinds of parameters?

 A. Input, Integer, String

 B. Integer, String, DateTime

 C. int, varchar, nvarchar

 D. Input, Output, InputOutput

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 274 CHAPTER 6 Working with Data in a Connected Environment

 3. How do you determine the actual SQL data type of a SqlParameter (the type expected

by the SQL Server)?

 A. It is the .NET Framework data type in your application that the parameter

represents.

 B. It is the type of column or data in SQL Server that the command expects.

 C. It is the type of column in a DataTable that it represents.

 D. It is any type defi ned in the SqlDbDataType enumeration.

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 275

Lesson 3: Saving and Retrieving BLOB Values in a
Database

This lesson describes how to work with BLOBs (binary large objects) using Command objects.

In a database, BLOBs are more complex than simple strings containing names and addresses

or numeric values containing integers or money values. BLOBs are things like graphics and

photos, documents saved in binary formats, and even complete assemblies or executables

that you want to store in a database. Unlike running queries or stored procedures that return

“simple” data types, working with binary objects is a little more complex.

After this lesson, you will be able to:

 Obtain BLOB values from a database using a DataReader object.

Estimated lesson time: 45 minutes

Working with BLOBs
Saving and fetching binary data presents interesting problems that you typically do not

encounter when querying standard rows of data. The problems arise because you will prob-

ably not want to move the entire BLOB in one piece. Instead, you typically need to break it

up into smaller portions. For example, consider having to move a large binary object that is

several megabytes in size. Loading the entire BLOB into a variable consumes a lot of memory

and can seriously affect the performance of your application. Imagine having to work with a

table of these BLOBs; you can quickly see the dilemma.

The good thing is that the .NET Framework provides classes that are specifi cally designed

for moving large amounts of binary data. Specifi cally, access to these classes—for example,

the BinaryReader and BinaryWriter classes, the FileStream and MemoryStream classes, and so

on—is enabled in the System.IO namespace. Although this lesson does not use all the avail-

able stream objects, it should provide enough of a start for you to understand the basics of

saving and fetching binary data from a database.

 BLOBs and the DataReader

 In previous lessons you have seen that the main ADO.NET object for accessing retrieved data

is the DataReader. Although the DataReader provides an easy model for working with records

where the number of columns and layout of the data are known, (meaning you have been

able to easily iterate through the reader and display the data), it also provides a means for

returning BLOB data. By setting its CommandBehavior to SequentialAccess, you can then call

the GetBytes method, which allows you to read the data in smaller, user-defi nable amounts.

The bytes that make up a BLOB are transported in and out of the database to your applica-

tion using byte arrays.

After this lesson, you will be able to:

Obtain BLOB values from a database using a DataReader object.

Estimated lesson time: 45 minutes

 276 CHAPTER 6 Working with Data in a Connected Environment

 The following exercise demonstrates how to read and write binary data to the database,

providing two distinctly different models. In the fi rst model, you know how big your data is

and you save it in one action. This is illustrated in the SaveBlobToDatabase method. In the

FetchBlobFromDatabase method, you read the bits into a fi le, but you do it in small chunks

defi ned by the BufferSize variable.

 LAB Working with BLOBs

 In this lab you will practice storing and fetching BLOBs to a database.

 EXERCISE 1 Saving and Retrieving BLOB Values

 This sample application demonstrates several of the concepts explained in this chapter. In

addition to just saving and fetching BLOB values, it also sets up some infrastructure for the

application that uses Command objects to create a new table in the database (to hold the

BLOB values) and executes parameterized queries to populate the list of available BLOBs and

retrieve the BLOB value. The code has been compartmentalized, so it should be very easy to

parse the routines that are important to you.

 1. Create a new Windows Forms application and name it BLOBSample.

 2. Add a ComboBox to the form and set its Name property to BlobList.

 3. Add a Button below the ComboBox and set the following properties:

 Name = RefreshBlobListButton

 Text = Refresh List

 4. Add a second Button and set the following properties:

 Name = SaveBlobButton

 Text = Save BLOB to Database

 5. Add a third Button and set the following properties (see Figure 6-8):

 Name = FetchBlobButton

 Text = Fetch BLOB from Database

 FIGURE 6-8 Form with controls for manipulating BLOB data

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 277

 6. Double-click the form to create a Form_Load event handler.

 Because this lesson’s objective is to explain working with BLOB values, let’s just add all

the infrastructure code at once and get the form set up. You can analyze this code at

your leisure!

 7. Replace the Form1 code with the following:

 ' VB

Imports System.Data

Imports System.Data.SqlClient

Imports System.IO

Public Class Form1

 Private NorthwindConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True")

 Private CompleteFilePath As String = ""

 Private SavePath As String = ""

Private Sub GetCompleteFilePath()

 Dim OpenDialog As New OpenFileDialog

 OpenDialog.Title = "Select Document File to Save"

 OpenDialog.ShowDialog()

 CompleteFilePath = OpenDialog.FileName

End Sub

Private Sub GetSavePath()

 Dim SavePathDialog As New FolderBrowserDialog

 SavePathDialog.Description = "Select a folder to restore BLOB file to"

 SavePathDialog.ShowDialog()

 SavePath = SavePathDialog.SelectedPath

End Sub

' Create a table to hold our BLOB values

Private Sub CreateDocumentStorageTable()

 Dim CreateTableCommand As New SqlCommand

 CreateTableCommand.Connection = NorthwindConnection

 CreateTableCommand.CommandType = CommandType.Text

 CreateTableCommand.CommandText = _

 "IF OBJECT_ID ('DocumentStorage') IS NOT NULL " & _

 "DROP TABLE DocumentStorage; " & _

 "CREATE TABLE DocumentStorage(" & _

 "DocumentID int IDENTITY(1,1) NOT NULL, " & _

 278 CHAPTER 6 Working with Data in a Connected Environment

 "FileName nvarchar(255) NOT NULL, " & _

 "DocumentFile varbinary(max) NOT NULL)"

 CreateTableCommand.Connection.Open()

 CreateTableCommand.ExecuteNonQuery()

 CreateTableCommand.Connection.Close()

End Sub

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim response As DialogResult = _

 MessageBox.Show("Create the Document Storage Table?" & _

 Environment.NewLine & _

 "Click Yes to create a new DocumentStorage table. " & _

 "Click No if you already have one!", _

 "Create DocumentStorage table", MessageBoxButtons.YesNo, _

 MessageBoxIcon.Question, MessageBoxDefaultButton.Button2)

 Select Case response

 Case Is = Windows.Forms.DialogResult.Yes

 CreateDocumentStorageTable()

 Case Is = Windows.Forms.DialogResult.No

 refreshBlobList()

 End Select

End Sub

Private Sub refreshBlobList()

 Dim GetBlobListCommand As New SqlCommand(_

 "SELECT FileName FROM DocumentStorage", NorthwindConnection)

 Dim reader As SqlDataReader

 GetBlobListCommand.Connection.Open()

 reader = GetBlobListCommand.ExecuteReader

 While reader.Read

 BlobList.Items.Add(reader(0))

 End While

 reader.Close()

 GetBlobListCommand.Connection.Close()

 BlobList.SelectedIndex = 0

End Sub

End Class

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 279

 // C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

using System.IO;

namespace BLOBSample

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection NorthwindConnection = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;" +

 "Integrated Security=True");

 private String CompleteFilePath = "";

 private String SavePath = "";

 private void GetCompleteFilePath()

 {

 OpenFileDialog OpenDialog = new OpenFileDialog();

 OpenDialog.Title = "Select Document to Save";

 OpenDialog.ShowDialog();

 CompleteFilePath = OpenDialog.FileName;

 }

 private void GetSavePath()

 {

 FolderBrowserDialog SavePathDialog = new FolderBrowserDialog();

 SavePathDialog.Description = "Select a folder to restore BLOB file

to";

 SavePathDialog.ShowDialog();

 SavePath = SavePathDialog.SelectedPath;

 }

 // Create a table to hold our BLOB values.

 private void CreateDocumentStorageTable()

 {

 280 CHAPTER 6 Working with Data in a Connected Environment

 SqlCommand CreateTableCommand = new SqlCommand();

 CreateTableCommand.Connection = NorthwindConnection;

 CreateTableCommand.CommandType = CommandType.Text;

 CreateTableCommand.CommandText =

 "IF OBJECT_ID ('DocumentStorage') IS NOT NULL " +

 "DROP TABLE DocumentStorage; " +

 "CREATE TABLE DocumentStorage(" +

 "DocumentID int IDENTITY(1,1) NOT NULL, " +

 "FileName nvarchar(255) NOT NULL, " +

 "DocumentFile varbinary(max) NOT NULL)";

 CreateTableCommand.Connection.Open();

 CreateTableCommand.ExecuteNonQuery();

 CreateTableCommand.Connection.Close();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 DialogResult response = MessageBox.Show(

 "Create the Document Storage Table?" +

 Environment.NewLine +

 "Click Yes to create a new DocumentStorage table." +

 "Click No if you already have one!",

 "Create DocumentStorage table", MessageBoxButtons.YesNo,

 MessageBoxIcon.Question,

 MessageBoxDefaultButton.Button2);

 switch (response)

 {

 case DialogResult.Yes:

 CreateDocumentStorageTable();

 break;

 case DialogResult.No:

 RefreshBlobList();

 break;

 }

 }

 private void RefreshBlobList()

 {

 SqlCommand GetBlobListCommand = new SqlCommand(

 "SELECT FileName FROM DocumentStorage", NorthwindConnection);

 SqlDataReader reader;

 GetBlobListCommand.Connection.Open();

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 281

 reader = GetBlobListCommand.ExecuteReader();

 while (reader.Read())

 {

 BlobList.Items.Add(reader[0]);

 }

 reader.Close();

 GetBlobListCommand.Connection.Close();

 BlobList.SelectedIndex = 0;

 }

 }

}

 8. Add the following code to save the BLOB to the database:

 ' VB

Private Sub SaveBlobToDatabase()

 ' This call lets you select a

 ' binary file to save As a BLOB

 ' in the database.

 GetCompleteFilePath()

 ' The BLOB holds the byte array to save.

 Dim BLOB() As Byte

 ' The FileStream is the stream of bytes

 ' that represent the binary file.

 Dim FileStream As New IO.FileStream(_

 CompleteFilePath, IO.FileMode.Open, IO.FileAccess.Read)

 ' The reader reads the binary data from the FileStream.

 Dim reader As New IO.BinaryReader(FileStream)

 ' The BLOB is assigned the bytes from the reader.

 ' The file length is passed to the ReadBytes method

 ' telling it how many bytes to read.

 BLOB = _

 reader.ReadBytes(CInt(My.Computer.FileSystem.GetFileInfo(_

 CompleteFilePath).Length))

 FileStream.Close()

 reader.Close()

 ' Create a command object to save

 ' the BLOB value.

 Dim SaveDocCommand As New SqlCommand

 SaveDocCommand.Connection = NorthwindConnection

 282 CHAPTER 6 Working with Data in a Connected Environment

 SaveDocCommand.CommandText = "INSERT INTO DocumentStorage" & _

 "(FileName, DocumentFile)" & _

 "VALUES (@FileName, @DocumentFile)"

 ' Create parameters to store the filename and BLOB data.

 Dim FileNameParameter As New SqlParameter("@FileName", SqlDbType.NChar)

 Dim DocumentFileParameter As New SqlParameter(_

 "@DocumentFile", SqlDbType.Binary)

 SaveDocCommand.Parameters.Add(FileNameParameter)

 SaveDocCommand.Parameters.Add(DocumentFileParameter)

 ' Parse the filename out of the complete path

 ' and assign it to the parameter.

 FileNameParameter.Value = _

 CompleteFilePath.Substring(CompleteFilePath.LastIndexOf("\") + 1)

 ' Set the DocumentFile parameter to the BLOB Value.

 DocumentFileParameter.Value = BLOB

 ' Execute the command and save the BLOB to the database.

 Try

 SaveDocCommand.Connection.Open()

 SaveDocCommand.ExecuteNonQuery()

 MessageBox.Show(FileNameParameter.Value.ToString & _

 " saved to database.", "BLOB Saved!", MessageBoxButtons.OK, _

 MessageBoxIcon.Information)

 Catch ex As Exception

 MessageBox.Show(ex.Message, "Save Failed", _

 MessageBoxButtons.OK, MessageBoxIcon.Error)

 Finally

 SaveDocCommand.Connection.Close()

 End Try

End Sub

 // C#

private void SaveBlobToDatabase()

{

 // This call lets you select the

 // binary file to save As a BLOB

 // in the database.

 GetCompleteFilePath();

 // The BLOB holds the byte array to save.

 byte[] BLOB;

 // The FileStream is the stream of bytes

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 283

 // that represent the binary file.

 System.IO.FileStream FileStream = new System.IO.FileStream(

 CompleteFilePath, System.IO.FileMode.Open, System.IO.FileAccess.Read);

 // The reader reads the binary data from the FileStream.

 System.IO.BinaryReader reader =

 new System.IO.BinaryReader(FileStream);

 // The BLOB is assigned the bytes from the reader.

 // The file length is passed to the ReadBytes method

 // telling it how many bytes to read.

 System.IO.FileInfo file = new FileInfo(CompleteFilePath);

 BLOB = reader.ReadBytes((int)(file.Length));

 FileStream.Close();

 reader.Close();

 // Create a command object to save

 // the BLOB value.

 SqlCommand SaveDocCommand = new SqlCommand();

 SaveDocCommand.Connection = NorthwindConnection;

 SaveDocCommand.CommandText = "INSERT INTO DocumentStorage" +

 "(FileName, DocumentFile)" +

 "VALUES (@FileName, @DocumentFile)";

 // Create parameters to store the filename and BLOB data.

 SqlParameter FileNameParameter = new SqlParameter("@FileName",

 SqlDbType.NChar);

 SqlParameter DocumentFileParameter = new SqlParameter(

 "@DocumentFile", SqlDbType.Binary);

 SaveDocCommand.Parameters.Add(FileNameParameter);

 SaveDocCommand.Parameters.Add(DocumentFileParameter);

 // Parse the filename out of the complete path

 // and assign it to the parameter.

 FileNameParameter.Value = CompleteFilePath.Substring(

 CompleteFilePath.LastIndexOf("\\")+ 1);

 // Set the DocumentFile parameter to the BLOB Value.

 DocumentFileParameter.Value = BLOB;

 // Execute the command and save the BLOB to the database.

 try

 {

 284 CHAPTER 6 Working with Data in a Connected Environment

 SaveDocCommand.Connection.Open();

 SaveDocCommand.ExecuteNonQuery();

 MessageBox.Show(FileNameParameter.Value.ToString() + " saved to

database.",

 "BLOB Saved!", MessageBoxButtons.OK, MessageBoxIcon.Information);

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message, "Save Failed", MessageBoxButtons.OK,

 MessageBoxIcon.Error);

 }

 finally

 {

 SaveDocCommand.Connection.Close();

 }

}

 9. Add the following code to retrieve the BLOB from the database and write it back out as

a fi le:

 ' VB

Private Sub FetchBlobFromDatabase()

 ' Verify there is a BLOB selected to retrieve.

 If BlobList.Text = "" Then

 MessageBox.Show("Select a BLOB to fetch from the ComboBox")

 Exit Sub

 End If

 ' Get the path to save the BLOB to.

 GetSavePath()

 ' Create the Command object to fetch the selected BLOB.

 Dim GetBlobCommand As New SqlCommand(_

 "SELECT FileName, DocumentFile " & _

 "FROM DocumentStorage " & _

 "WHERE FileName = @DocName", NorthwindConnection)

 GetBlobCommand.Parameters.Add("@DocName", SqlDbType.NVarChar).Value = _

 BlobList.Text

 ' Current index to write the bytes to

 Dim CurrentIndex As Long = 0

 ' number of bytes to store in the BLOB.

 Dim BufferSize As Integer = 100

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 285

 ' Actual number of bytes returned when calling GetBytes.

 Dim BytesReturned As Long

 ' The Byte array used to hold the buffer.

 Dim Blob(BufferSize - 1) As Byte

 GetBlobCommand.Connection.Open()

 Dim reader As SqlDataReader = _

 GetBlobCommand.ExecuteReader(CommandBehavior.SequentialAccess)

 Do While reader.Read

 ' Create or open the selected file.

 Dim FileStream As New IO.FileStream(SavePath & "\" & _

 reader("FileName").ToString, IO.FileMode.OpenOrCreate, IO.FileAccess.

Write)

 ' Set the writer to write the BLOB to the file.

 Dim writer As New IO.BinaryWriter(FileStream)

 ' Reset the index to the beginning of the file.

 CurrentIndex = 0

 ' Set the BytesReturned to the actual number of bytes returned

 ' by the GetBytes call.

 BytesReturned = reader.GetBytes(1, CurrentIndex, Blob, 0, BufferSize)

 ' If the BytesReturned fills the buffer keep appending to the file.

 Do While BytesReturned = BufferSize

 writer.Write(Blob)

 writer.Flush()

 CurrentIndex += BufferSize

 BytesReturned = reader.GetBytes(1, CurrentIndex, Blob, 0, BufferSize)

 Loop

 ' When the BytesReturned no longer fills the buffer, write the remaining

bytes.

 writer.Write(Blob, 0, CInt(BytesReturned - 1))

 writer.Flush()

 writer.Close()

 FileStream.Close()

 Loop

 reader.Close()

 286 CHAPTER 6 Working with Data in a Connected Environment

 GetBlobCommand.Connection.Close()

End Sub

 // C#

private void FetchBlobFromDatabase()

{

 // Verify there is a BLOB selected to retrieve.

 if (BlobList.Text == "")

 {

 MessageBox.Show("Select a BLOB to fetch from the ComboBox");

 return;

 }

 // Get the path to save the BLOB to.

 GetSavePath();

 // Create the Command object to fetch the selected BLOB.

 SqlCommand GetBlobCommand = new SqlCommand(

 "SELECT FileName, DocumentFile " +

 "FROM DocumentStorage " + "WHERE FileName = @DocName",

 NorthwindConnection);

 GetBlobCommand.Parameters.Add(

 "@DocName", SqlDbType.NVarChar).Value = BlobList.Text;

 // Current index to write the bytes to.

 long CurrentIndex = 0;

 // number of bytes to store in the BLOB.

 int BufferSize = 100;

 // Actual number of bytes returned when calling GetBytes.

 long BytesReturned ;

 // The Byte array used to hold the buffer.

 byte[] Blob = new byte[BufferSize];

 GetBlobCommand.Connection.Open();

 SqlDataReader reader =

 GetBlobCommand.ExecuteReader(CommandBehavior.SequentialAccess);

 while(reader.Read())

 {

 // Create or open the selected file.

 System.IO.FileStream FileStream = new System.IO.FileStream(SavePath + "\\"

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 287

+

 reader["FileName"].ToString(), System.IO.FileMode.OpenOrCreate,

 System.IO.FileAccess.Write);

 // Set the writer to write the BLOB to the file.

 System.IO.BinaryWriter writer = new System.IO.BinaryWriter(FileStream);

 // Reset the index to the beginning of the file.

 CurrentIndex = 0;

 // Set the BytesReturned to the actual number

 // of bytes returned by the GetBytes call.

 BytesReturned = reader.GetBytes(1, CurrentIndex, Blob, 0, BufferSize);

 // If the BytesReturned fills the buffer keep appending to the file.

 while (BytesReturned == BufferSize)

 {

 writer.Write(Blob);

 writer.Flush();

 CurrentIndex += BufferSize;

 BytesReturned = reader.GetBytes(1, CurrentIndex, Blob, 0, BufferSize);

 }

 // When the BytesReturned no longer fills the buffer, write the remaining

bytes.

 writer.Write(Blob, 0, (int)(BytesReturned));

 writer.Flush();

 writer.Close();

 FileStream.Close();

 }

 reader.Close();

 GetBlobCommand.Connection.Close();

}

 10. Double-click each of the three buttons to create the button-click event handlers and

add the following code to the form:

 ' VB

Private Sub SaveBlobButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles SaveBlobButton.Click

 SaveBlobToDatabase()

End Sub

Private Sub FetchBlobButton_Click(ByVal sender As System.Object, _

 288 CHAPTER 6 Working with Data in a Connected Environment

 ByVal e As System.EventArgs) _

 Handles FetchBlobButton.Click

 FetchBlobFromDatabase()

End Sub

Private Sub RefreshBlobListButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles RefreshBlobListButton.Click

 refreshBlobList()

End Sub

// C#

private void RefreshBlobListButton_Click(object sender, EventArgs e)

{

 RefreshBlobList();

}

private void SaveBlobButton_Click(object sender, EventArgs e)

{

 SaveBlobToDatabase();

}

private void FetchBlobButton_Click(object sender, EventArgs e)

{

 FetchBlobFromDatabase();

}

 11. Run the application. When the application starts, you have the option of creating the

table that stores the BLOB values. If you select Yes, the table is created, replacing any

existing DocumentStorage table with a new one.

CAUTION EXISTING DOCUMENTSTORAGE TABLE IN YOUR DATABASE

If you already have a DocumentStorage table in your database and select Yes to create

one, the existing table is dropped, along with any records it might contain.

 12. Click the Save BLOB To Database button and navigate to any Microsoft Offi ce Word

document on your hard disk drive. As soon as you select a fi le, it is saved to the data-

base and a confi rmation message appears.

NOTE BINARY FILE TYPES

Even though the sample indicates that you should save a document, you can actually

select and save any binary fi le into the database.

 13. Click the Refresh List button. The fi le you just saved appears in the combo box.

CAUTION EXISTING DOCUMENTSTORAGE TABLE IN YOUR DATABASE

If you already have a DocumentStorage table in your database and select Yes to create

one, the existing table is dropped, along with any records it might contain.

NOTE BINARY FILE TYPES

Even though the sample indicates that you should save a document, you can actually

select and save any binary fi le into the database.

 Lesson 3: Saving and Retrieving BLOB Values in a Database CHAPTER 6 289

 14. Click the Fetch BLOB From Database button and select a folder to save the fi le (BLOB

data) out to.

NOTE SAVE LOCATION

Select a different folder than the one containing the original fi le.

 15. Click OK and the BLOB is retrieved from the database and written out to the fi le loca-

tion specifi ed. Navigate to the folder you selected and verify that the fi le is there.

Lesson Summary
 BLOBs are large binary objects that can be saved to and retrieved from a database.

 BLOBs typically need to be transferred in sections rather than as one big piece.

 DataReaders can read large binary objects as well as standard data types.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Why is moving BLOB data to and from a database more complex than manipulating

standard data types? (Choose all that apply.)

 A. Because BLOB data typically is transferred with a “stream” object

 B. Because BLOB data is not in a readable format

 C. Because BLOB data tends to be large and typically needs to be transferred in

smaller pieces

 D. Because BLOB data cannot be read into a DataReader

 2. How do you confi gure a command to return binary large objects?

 A. By setting its Connection property to read binary data

 B. By calling the ExecuteNonQuery method and reading the results into a

BinaryReader

 C. By calling the ExecuteReader method and casting the DataReader to a

BufferedStream

 D. By setting the CommandBehavior to SequentialAccess in the ExecuteReader meth-

ods constructor

NOTE SAVE LOCATION

Select a different folder than the one containing the original fi le.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 290 CHAPTER 6 Working with Data in a Connected Environment

 3. How do you transfer the individual chunks of binary data returned in a DataReader

into a byte array?

 A. Call the DataReader.GetData method and add the results to the byte array.

 B. Call DataReader.Read and access the bytes through a column ordinal.

 C. Call the DataReader.GetBytes method and add the results to the byte array.

 D. Call the DataReader.GetSqlByte method and add the results to the byte array.

 Lesson 4: Performing Bulk Copy Operations CHAPTER 6 291

Lesson 4: Performing Bulk Copy Operations

This lesson describes how to copy large amounts of data quickly by using the SqlBulkCopy

object provided by the System.Data.SqlClient namespace and the BULK INSERT SQL state-

ment in SQL Server. In addition to performing an individual bulk copy operation, you will also

learn how to perform a set of bulk copy operations wrapped within a transaction.

After this lesson, you will be able to:

 Perform bulk copy operations to copy data to SQL Server.

 Perform bulk copy operations in transactions.

 Execute the SQL Server Transact-SQL BULK INSERT statement by using the Sql-

Command object.

 Estimated lesson time: 45 minutes

 Why Perform Bulk Copies?
 Copying large amounts of data from one database table to another (or from a fi le to a

database table) can take a lot of time and resources if you simply create an application that

reads individual rows out of the original data source and then insert the individual rows into

the destination data source. To move many records (or entire tables) of data, use the .NET

Framework and SQL Server bulk copy features, which perform the transfer more effi ciently

than transferring individual records.

 LAB Bulk Copying

 In this lab you will bulk copy data from one table to another.

 Creating Tables to Copy Data Into

 To understand how to perform a bulk copy operation, you need tables to copy data into. A

quick way to create the tables is to use Server Explorer and the Visual Studio database tools to

do some cutting and pasting! To create CustomerHistory and OrderHistory tables, which you

will use to bulk copy the Customer and Order table data into, complete the following steps:

 1. In Server Explorer, expand the Tables node for the Northwind database.

 2. Right-click the Customers table and select Open Table Defi nition.

 3. Select the fi rst row by clicking the box with the key icon.

 4. Press Ctrl+A to select all the rows.

 5. Press Ctrl+C to copy them to the Clipboard.

 6. Right-click the Tables node in Server Explorer and select Add New Table.

After this lesson, you will be able to:

Perform bulk copy operations to copy data to SQL Server.

Perform bulk copy operations in transactions.

Execute the SQL Server Transact-SQL BULK INSERT statement by using theT Sql-

Command object.

Estimated lesson time: 45 minutes

 292 CHAPTER 6 Working with Data in a Connected Environment

 7. Select the empty row (not a cell but the entire row) and press Ctrl+V to paste the table

defi nition into the row.

 8. Select only the CustomerID row. Right-click the CustomerID row and select Set Primary

Key.

 9. Save the table and name it CustomerHistory.

 10. Repeat steps 2 through 7 with the Orders table, set OrderID as the primary key, and

save the table with the name OrderHistory.

 EXERCISE 1 Perform Bulk Copy Operations to Copy Data to SQL Server

 In this fi rst bulk copy exercise, you will load all the records from the Customers table into a

DataReader and then copy them into the CustomerHistory table using the SqlBulkCopy object.

 1. Create a new Windows Forms application and name it BulkCopySample.

 2. Add a Button to the form and set the following properties:

 Name = CopyCustomersButton

 Text = Copy Customers

 3. Add a second Button to the form and set the following properties:

 Name = CopyOrdersButton

 Text = Copy Orders

 4. Double-click the Copy Customers button to create an event handler.

 5. Add references to the System.Data and System.Data.SqlClient namespaces.

 6. Add code to create two connections on the form, a SourceConnection and a

Destination Connection. For this example, you can use two connections to the same

Northwind database.

 At this point your code should look like the following (substitute a valid connection

string for the SourceConnection and DestinationConnection objects):

 ' VB

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

 Private SourceConnection As New SqlConnection(_

 "Data Source=.\sqlexpress ;Initial Catalog=Northwind;" & _

 "Integrated Security=True")

 Private DestinationConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind; " & _

 "Integrated Security=True")

 Private Sub CopyCustomersButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Lesson 4: Performing Bulk Copy Operations CHAPTER 6 293

 Handles CopyCustomersButton.Click

 End Sub

End Class

 // C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace BulkCopySample

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection SourceConnection = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind; " +

 "Integrated Security=True");

 private SqlConnection DestinationConnection = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind; " +

 "Integrated Security=True");

 private void CopyCustomersButton_Click(object sender, EventArgs e)

 {

 }

 }

}

 7. Add code to bulk copy the data from the Customers table into the CustomerHistory

table. Add the following code below the CopyCustomerButton_Click event handler:

 ' VB

Private Sub BulkCopyCustomers()

 Dim GetCustomersCommand As New SqlCommand(_

 "SELECT * FROM Customers", _

 SourceConnection)

 294 CHAPTER 6 Working with Data in a Connected Environment

 SourceConnection.Open()

 Dim reader As SqlDataReader = GetCustomersCommand.ExecuteReader

 Dim BulkCopier As New SqlBulkCopy(DestinationConnection)

 DestinationConnection.Open()

 BulkCopier.DestinationTableName = "CustomerHistory"

 BulkCopier.WriteToServer(reader)

 reader.Close()

 SourceConnection.Close()

 DestinationConnection.Close()

End Sub

 // C#

private void BulkCopyCustomers()

{

 SqlCommand GetCustomersCommand = new SqlCommand(

 "SELECT * FROM Customers", SourceConnection);

 SourceConnection.Open();

 SqlDataReader reader = GetCustomersCommand.ExecuteReader();

 SqlBulkCopy BulkCopier = new SqlBulkCopy(DestinationConnection);

 DestinationConnection.Open();

 BulkCopier.DestinationTableName = "CustomerHistory";

 BulkCopier.WriteToServer(reader);

 reader.Close();

 SourceConnection.Close();

 DestinationConnection.Close();

}

 8. Add a line to the CopyCustomerButton_Click event handler to call the BulkCopyCus-

tomers method.

 9. Add code to bulk copy the data from the Orders table into the OrderHistory table. Add

the following code below the BulkCopyCustomers method:

 ' VB

Private Sub BulkCopyOrders()

 Dim GetOrdersCommand As New SqlCommand("SELECT * FROM Orders",

 SourceConnection)

 SourceConnection.Open()

 Dim reader As SqlDataReader = GetOrdersCommand.ExecuteReader

 Lesson 4: Performing Bulk Copy Operations CHAPTER 6 295

 Dim BulkCopier As New SqlBulkCopy(DestinationConnection)

 DestinationConnection.Open()

 BulkCopier.DestinationTableName = "OrderHistory"

 BulkCopier.WriteToServer(reader)

 reader.Close()

 SourceConnection.Close()

 DestinationConnection.Close()

End Sub

// C#

private void BulkCopyOrders()

{

 SqlCommand GetOrdersCommand = new SqlCommand(

 "SELECT * FROM Orders", SourceConnection);

 SourceConnection.Open();

 SqlDataReader reader = GetOrdersCommand.ExecuteReader();

 SqlBulkCopy BulkCopier = new SqlBulkCopy(DestinationConnection);

 DestinationConnection.Open();

 BulkCopier.DestinationTableName = "OrderHistory";

 BulkCopier.WriteToServer(reader);

 reader.Close();

 SourceConnection.Close();

 DestinationConnection.Close();

}

 10. Double-click the Copy Orders button and add a line to the CopyOrdersButton_Click

event handler to call the BulkCopyOrders method.

 11. Run the application.

 12. Click the Copy Customers button.

 13. Click the Copy Orders button.

 14. Close the form. In Server Explorer in Visual Studio, right-click the CustomerHistory and

OrderHistory tables and select Show Table Data.

 Verify that the data from the Customers and Orders tables were successfully copied into

the CustomerHistory and OrderHistory tables.

 IMPORTANT SAVE THE APPLICATION!

 The next section builds on this example, so do not discard the application.

IMPORTANT SAVE THE APPLICATION!

The next section builds on this example, so do not discard the application.

 296 CHAPTER 6 Working with Data in a Connected Environment

Add Functionality to Demonstrate Executing the SQL BULK INSERT

Statement

In addition to copying a large amount of data with the SqlBulkCopy object, you can also con-

fi gure Command objects to take advantage of SQL Server features that perform effi cient bulk

copying. SQL Server provides a BULK INSERT statement for copying data from data fi les into

SQL tables. You can create data fi les with the .bcp utility provided by SQL Server. Although

creating data and format fi les is beyond the scope of this book, they are included in the

sample fi les installed from the CD for this example.

Copy the Customers.fmt and NorthwindCustomers.txt fi les from the installed sample fi les

to the C:\DataSources directory. (You can actually copy these anywhere on your hard disk

drive, as long as you point to the correct path in the code example.)

NOTE DATA FILE LOCATION

When executing the BulkInsertStatement in the example below, keep in mind that the path

being passed to the statement is relative to the database server. So be sure that the fi le

exists at the indicated path on the server before executing the command.

The NorthwindCustomers.txt fi le contains all 91 records from the Customers table and the

SQL BULK INSERT statement will populate the CustomerHistory table created in the previous

section.

 1. Delete all the records from the CustomerHistory table so that it is empty.

 2. Add a button to the form (below the Copy Orders button) and set the following

properties:

 Name = ExecuteBulkInsertButton

 Text = BULK INSERT

 3. Double-click the BULK INSERT button and add the following code into the button-click

event handler (modify the path if necessary):

' VB

Dim BulkInsertStatement As String = "BULK INSERT CustomerHistory " & _

 "FROM 'C:\Datasources\NorthwindCustomers.txt'"

Dim BulkInsertCommand As New SqlCommand(BulkInsertStatement, _

 SourceConnection)

Try

 SourceConnection.Open()

 BulkInsertCommand.ExecuteNonQuery()

Catch ex As Exception

 MessageBox.Show(ex.Message)

NOTE DATA FILE LOCATION

When executing the BulkInsertStatement in the example below, keep in mind that the path t

being passed to the statement is relative to the database server. So be sure that the fi le

exists at the indicated path on the server before executing the command.

 Lesson 4: Performing Bulk Copy Operations CHAPTER 6 297

Finally

 SourceConnection.Close()

End Try

 // C#

string BulkInsertStatement = "BULK INSERT CustomerHistory " +

 "FROM 'C:\\Datasources\\NorthwindCustomers.txt'";

SqlCommand BulkInsertCommand = new SqlCommand(BulkInsertStatement,

 SourceConnection);

try

{

 SourceConnection.Open();

 BulkInsertCommand.ExecuteNonQuery();

}

catch (Exception ex)

{

 MessageBox.Show(ex.Message);

}

finally

{

 SourceConnection.Close();

}

 4. Run the application.

 5. Click the BULK INSERT button.

 6. Inspect the data in the CustomerHistory table and verify that it was successfully

inserted. If the table is already opened in the document window, you might need to

refresh it.

 EXERCISE 2 Perform Bulk Copy Operations in a Transaction

 In this next bulk copy exercise, you will perform basically the same bulk copy action as you

did in the last exercise, using only the Customers data. This time, however, you will wrap the

copy operation in a transaction. You will set the batch size to copy 50 records at a time, caus-

ing two separate sets of rows to copy because the Customers table contains 91 records.

 1. Create a new Windows Forms application and name it BulkCopyTransaction.

 2. Add a Button to the form and set the following properties:

 Name = PrepareTableButton

 Text = Prepare Table

 3. Add a second Button to the form and set the following properties:

 Name = BulkCopyButton

 Text = Execute Bulk Copy

 298 CHAPTER 6 Working with Data in a Connected Environment

 4. Double-click the Execute Bulk Copy button to create an event handler.

 5. Add references to the System.Data and System.Data.SqlClient namespaces.

 6. This example needs only one connection, so add a SourceConnection to the form.

When using an internal transaction, the SqlBulkCopy object creates the destination

connection when it is instantiated.

 At this point your form code should look like the following (substitute a valid connec-

tion string for the SourceConnection object):

 ' VB

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

 Private SourceConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True")

 Private Sub BulkCopyButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles BulkCopyButton.Click

 End Sub

End Class

 // C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace BulkCopyTransaction

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection SourceConnection = new SqlConnection(

 Lesson 4: Performing Bulk Copy Operations CHAPTER 6 299

 "Data Source=.\\SqlExpress;Initial Catalog=Northwind;" +

 "Integrated Security=True");

 private void BulkCopyButton_Click(object sender, EventArgs e)

 {

 }

 }

}

 To verify that the transaction performs as expected, you actually want part of the bulk

copy operation to fail. To accomplish this, leave a single record in the Customer History

table to force a primary key violation and cause the transaction to roll back the active

batch without updating any records. To leave this “spoiler” record, you’ll create a Pre-

pareTable method that deletes all records in the CustomerHistory table except for the

record for White Clover Markets (WHITC).

 7. Double-click the Prepare Table button and add the following code to the event

handler:

 ' VB

Dim GetCustomersCommand As New SqlCommand(_

 "DELETE FROM CustomerHistory WHERE CustomerID <> 'WHITC'", _

 SourceConnection)

SourceConnection.Open()

GetCustomersCommand.ExecuteNonQuery()

SourceConnection.Close()

 // C#

SqlCommand GetCustomersCommand = new SqlCommand(

 "DELETE FROM CustomerHistory WHERE CustomerID <> 'WHITC'",

 SourceConnection);

SourceConnection.Open();

GetCustomersCommand.ExecuteNonQuery();

SourceConnection.Close();

 8. Add the following code to the form:

 These methods are the code that performs the actual Bulk Copy operation using the

SqlBulkCopy object. The source and destination connections are used to transfer the

data, 50 records at a time (BatchSize property). The DestinationTableName is where the

data is copied to.

 ' VB

Private Sub BulkCopyCustomers()

 Dim GetCustomersCommand As New SqlCommand(_

 "SELECT * FROM Customers", SourceConnection)

 SourceConnection.Open()

 300 CHAPTER 6 Working with Data in a Connected Environment

 Dim reader As SqlDataReader = GetCustomersCommand.ExecuteReader

 Dim BulkCopier As New SqlBulkCopy(_

 SourceConnection.ConnectionString, _

 SqlBulkCopyOptions.UseInternalTransaction)

 BulkCopier.BatchSize = 50

 BulkCopier.DestinationTableName = "CustomerHistory"

 Try

 BulkCopier.WriteToServer(reader)

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Finally

 BulkCopier.Close()

 reader.Close()

 SourceConnection.Close()

 End Try

End Sub

 // C#

private void BulkCopyCustomers()

{

 SqlCommand GetCustomersCommand = new SqlCommand(

 "SELECT * FROM Customers", SourceConnection);

 SourceConnection.Open();

 SqlDataReader reader = GetCustomersCommand.ExecuteReader();

 SqlBulkCopy BulkCopier = new SqlBulkCopy(

 SourceConnection.ConnectionString,

 SqlBulkCopyOptions.UseInternalTransaction);

 BulkCopier.BatchSize = 50;

 BulkCopier.DestinationTableName = "CustomerHistory";

 try

 {

 BulkCopier.WriteToServer(reader);

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 finally

 {

 BulkCopier.Close();

 reader.Close();

 Lesson 4: Performing Bulk Copy Operations CHAPTER 6 301

 SourceConnection.Close();

 }

}

 9. Add the BulkCopyCustomers method call into the BulkCopyButton_Click event handler.

 10. Run the application and click the Prepare Table button.

 11. With the application running, in Server Explorer, right-click the CustomerHistory table

and select Show Table Data.

 12. If the CustomerHistory table was fi lled with data from the last exercise, you should now

see only the record for White Clover Markets. Make sure you select this record and

delete it. (If you didn’t complete the last exercise and your table is already empty, that’s

fi ne.)

 13. In the running application and click the Execute Bulk Copy button. The operation

should complete successfully and copy the entire Customers table into the Customer-

History table.

 14. Go back to Server Explorer and look at the data in the CustomerHistory table; it should

contain all 91 records.

 15. Go back to the running form and, once again, click the Prepare Table button.

 16. Inspect the table data. Now there should be only the White Clover Markets record.

 17. Go back to the running form and click the Execute Bulk Copy button.

 This time you should get a message box indicating a primary key violation. This is due

to the attempted insertion of the existing White Clover Markets record.

 18. Click OK in the message box and inspect the table data again.

 What you see are 51 records—the fi rst bulk copy batch of 50 (the batch size you set in

code) and the original WHITC record. Notice that the records between the fi ftieth and

WHITC (which is actually the eighty-ninth record in the table) did not get inserted; the

transaction rolled those inserts back because they were all part of the same batch that

was part of the internal transaction.

 Lesson Summary
 Bulk copying provides an effi cient way to copy large amounts of data.

 The SqlBulkCopy object provides a .NET Framework class to perform bulk copy opera-

tions in your application.

 The SQL BULK INSERT statement provides a way to perform bulk copy operations using

the resources in SQL Server.

 Bulk copy operations can be performed from within a transaction.

 302 CHAPTER 6 Working with Data in a Connected Environment

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. How many connection objects are needed to perform a bulk copy operation using the

SqlBulkCopy object? (Choose all that apply.)

 A. One connection for each database the application needs to connect to

 B. Two connections for each database the application needs to connect to

 C. Two connections total, one connection for the source database, and one connec-

tion for the destination database

 2. Where does the SQL BULK INSERT statement usually get the data to copy?

 A. From a data fi le created with the .bcp utility

 B. From a query executed by a Command object

 C. From a DataReader

 D. From a database table in either the same or another database

 3. How many records are copied when performing a bulk copy operation in an internal

transaction that fails?

 A. All records up until the transaction fails.

 B. It depends on the batch size and how many successful batches were copied before

the transaction failed .

 C. All records from all batches except for the batch where the transaction failed.

 D. No records are copied because the transaction failed.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 5: Performing Transactions by Using the Transaction Object CHAPTER 6 303

Lesson 5: Performing Transactions by Using the
Transaction Object

This lesson describes how to perform transactions while running database operations using

the Transaction object.

After this lesson, you will be able to:

 Perform transactions by using the Transaction object.

Estimated lesson time: 30 minutes

What Is a Transaction?
Transactions are commands that are executed as a group with the premise that if any com-

mand in the group fails, the entire transaction can be aborted and any changes already made

by any commands in the group can be rolled back as if none of the commands were ever

executed. Transactions are crucial to maintaining the integrity of the data in a database.

 REAL WORLD

Steve Stein

 I used to work with a proprietary inventory application that would allow purchase

orders to be received into the system and closed out even in situations when

the vendor database was unavailable. Basically, this caused the accounts payable

system to deny payment when the bills came in for the items on the “disconnected”

purchase orders. This was rare and occurred only when several events happened at

the right time, but was obviously a fl aw in the transaction that fl agged the goods as

received into inventory and ready for payment.

How to Create Transactions
Just like Connection and Command objects, each .NET Framework Data Provider offers a

Transaction object for performing transactions. You create transactions by instantiating the

provider-specifi c Transaction object and assigning it the transaction returned from calling the

BeginTransaction method on connection objects.

After this lesson, you will be able to:

Perform transactions by using the Transaction object.

Estimated lesson time: 30 minutes

REAL WORLD

Steve Stein

Iused to work with a proprietary inventory application that would allow purchase

orders to be received into the system and closed out even in situations when

the vendor database was unavailable. Basically, this caused the accounts payable

system to deny payment when the bills came in for the items on the “disconnected”

purchase orders. This was rare and occurred only when several events happened at

the right time, but was obviously a fl aw in the transaction that fl agged the goods as

received into inventory and ready for payment.

 304 CHAPTER 6 Working with Data in a Connected Environment

The following code illustrates creating a transaction:

' VB

Dim transaction As SqlTransaction

transaction = NorthwindConnection.BeginTransaction()

// C#

SqlTransaction transaction;

transaction = NorthwindConnection.BeginTransaction();

Setting the Isolation Level of a Transaction
Isolation levels in a transaction control whether other threads can access the data while the

processes within your transaction are accessing it. Because of the nature of transactions, the

modifi cation of several records in related tables is a typical action. Setting isolation levels

provides a way to balance the level of data integrity issues and concurrent access to the data

accessed by a transaction.

The Transaction object’s IsolationProperty is set by passing one of the values in Table 6-7

when calling the connection’s BeginTransaction method. For example, if you wanted to set the

isolation level to Snapshot isolation in the previous example, you could have used the follow-

ing line of code to begin the transaction:

NOTE ISOLATION LEVELS

Not every database supports all available isolation levels, so this line of code might not be

applicable with the database server you are using.

' VB

transaction = NorthwindConnection.BeginTransaction(IsolationLevel.Snapshot)

// C#

transaction = NorthwindConnection.BeginTransaction(IsolationLevel.Snapshot);

Table 6-7 lists the possible values for the Transaction object’s IsolationLevel property.

TABLE 6-7 Isolation Levels

NAME DESCRIPTION

Chaos Pending changes from highly isolated transactions cannot be

overwritten.

ReadCommitted Shared locks are held while the data is being read to avoid dirty

reads, but the data can be changed before the end of the transac-

tion, resulting in nonrepeatable reads or phantom data.

NOTE ISOLATION LEVELS

Not every database supports all available isolation levels, so this line of code might not be

applicable with the database server you are using.

 Lesson 5: Performing Transactions by Using the Transaction Object CHAPTER 6 305

 NAME DESCRIPTION

 ReadUncommitted A dirty read is possible, meaning that no shared locks are issued

and no exclusive locks are honored.

 RepeatableRead Locks are placed on all data that is used in a query, preventing other

users from updating the data. Prevents nonrepeatable reads, but

phantom rows are still possible.

 Serializable A range lock is placed on the dataset, preventing other users from

updating or inserting rows into the dataset until the transaction is

complete.

 Snapshot Reduces blocking by storing a version of data that one application

can read while another is modifying the same data. Indicates that

from one transaction you cannot see changes made in other trans-

actions, even if you requery.

 Unspecifi ed A different isolation level than the one specifi ed is being used, but

the level cannot be determined.

When using OdbcTransaction, if you do not set IsolationLevel or you

set IsolationLevel to Unspecifi ed, the transaction executes according

to the default isolation level of the underlying ODBC driver.

 Enlisting in a Distributed Transaction
 In addition to starting new transactions and setting isolation levels of a transaction, you can

confi gure your connection to enlist in an existing distributed transaction. A distributed trans-

action is a transaction that spans many resources, such as multiple SQL Server databases (as

opposed to a local transaction that typically uses a single database).

 The following code shows how to enlist in a distributed transaction and assumes that the

activeTransaction variable is set to an existing distributed transaction:

 ' VB

NorthwindConnection.EnlistTransaction(activeTransaction)

// C#

NorthwindConnection.EnlistTransaction(activeTransaction);

 LAB Performing Transactions

 In this lab you will practice working with the Transaction object using the Commit and Roll-

back methods.

 306 CHAPTER 6 Working with Data in a Connected Environment

 EXERCISE 1 Performing Transactions with the Transaction Object

 To demonstrate using a transaction, the following example will attempt to execute two

separate commands that will insert records into two different tables. In an effort to provide

clarity to the example, the transaction will be committed or rolled back based on user input.

In a real-world scenario, you would likely execute the Commit and Rollback methods based on

error conditions or business logic in your application, but the process to accept or abort the

transaction is exactly the same.

 1. Create a new Windows Forms application named PerformingTransactions.

 2. Add a Button to the form and set the following properties:

 Name = PerformTransactionButton

 Text = Perform Transaction

 3. Double-click the Perform Transaction button.

 4. Add references to the System.Data and System.Data.SqlClient namespaces.

 5. Add code to create a Northwind connection on the form.

 6. At this point, the form code should look similar to the following:

 ' VB

Imports System.Data

Imports System.Data.SqlClient

Public Class Form1

 Private NorthwindConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;Integrated

Security=True")

 Private Sub PerformTransactionButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles PerformTransactionButton.Click

 End Sub

End Class

 // C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace PerformingTransactions

{

 Lesson 5: Performing Transactions by Using the Transaction Object CHAPTER 6 307

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection NorthwindConnection = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;" +

 "Integrated Security=True");

 private void PerformTransactionButton_Click(object sender, EventArgs e)

 {

 }

 }

}

 7. Add the following code to the form to allow the application to work every time the

button is clicked:

 ' VB

Private Sub DeleteExtraRecords()

 ' If you have already run the application,

 ' delete the two records to prevent a primary

 ' key violation.

 Dim Command1 As New SqlCommand(_

 "DELETE FROM Territories WHERE TerritoryID = 98012; " & _

 "DELETE FROM Region WHERE RegionID = 10", NorthwindConnection)

 NorthwindConnection.Open()

 Command1.ExecuteNonQuery()

 NorthwindConnection.Close()

End Sub

 // C#

private void DeleteExtraRecords()

{

 // If you have already run the application

 // delete the two records to prevent a primary

 // key violation.

 SqlCommand Command1 = new SqlCommand(

 "DELETE FROM Territories WHERE TerritoryID = 98012; " +

 "DELETE FROM Region WHERE RegionID = 10", NorthwindConnection);

 NorthwindConnection.Open();

 Command1.ExecuteNonQuery();

 NorthwindConnection.Close();

}

 308 CHAPTER 6 Working with Data in a Connected Environment

 8. The following code creates the Transaction object and the commands and executes

them within the transaction. Add this code to the form:

 ' VB

Private Sub PerformTransaction()

 ' Remove the records from this example

 ' so it works each time the button is clicked!

 DeleteExtraRecords()

 ' Create the transaction

 Dim transaction As SqlTransaction

 ' Create two commands to execute in the transaction

 Dim Command1 As New SqlCommand("INSERT INTO Region" & _

 "(RegionID, RegionDescription)" & _

 "VALUES (10,'Northwest')", NorthwindConnection)

 Dim Command2 As New SqlCommand("INSERT INTO Territories" & _

 "(TerritoryID, TerritoryDescription, RegionID)" & _

 "VALUES (98012, 'Bothell', 10)", NorthwindConnection)

 ' Open the connection and begin the transaction

 NorthwindConnection.Open()

 transaction = NorthwindConnection.BeginTransaction

 ' Set the commands to execute within the transaction

 Command1.Transaction = transaction

 Command2.Transaction = transaction

 ' Execute the commands

 Command1.ExecuteNonQuery()

 Command2.ExecuteNonQuery()

 ' After executing the commands display a dialog

 ' that allows the user to complete or abort the

 ' transaction.

 Dim response As DialogResult = MessageBox.Show(_

 "Commands have already been executed." & _

 Environment.NewLine & "Proceed with transaction?", _

 "Performing Transaction", MessageBoxButtons.YesNo)

 ' Process the response and either

 ' commit or roll back.

 Select Case response

 Case Windows.Forms.DialogResult.Yes

 transaction.Commit()

 Case Windows.Forms.DialogResult.No

 Lesson 5: Performing Transactions by Using the Transaction Object CHAPTER 6 309

 transaction.Rollback()

 End Select

 NorthwindConnection.Close()

End Sub

 // C#

private void PerformTransaction()

{

 // Remove the records from this example

 // so it works each time the button is clicked!

 DeleteExtraRecords();

 // Create the transaction

 SqlTransaction transaction;

 // Create two commands to execute in the transaction

 SqlCommand Command1 = new SqlCommand("INSERT INTO Region" +

 "(RegionID, RegionDescription)" +

 "VALUES (10,'Northwest')", NorthwindConnection);

 SqlCommand Command2 = new SqlCommand("INSERT INTO Territories" +

 "(TerritoryID, TerritoryDescription, RegionID)" +

 "VALUES (98012, 'Bothell', 10)", NorthwindConnection);

 // Open the connection and begin the transaction

 NorthwindConnection.Open();

 transaction = NorthwindConnection.BeginTransaction();

 // Set the commands to execute within the transaction

 Command1.Transaction = transaction;

 Command2.Transaction = transaction;

 // Execute the commands

 Command1.ExecuteNonQuery();

 Command2.ExecuteNonQuery();

 // After executing the commands display a dialog

 // that allows the user to complete or abort the

 // transaction.

 DialogResult response = MessageBox.Show(

 "Commands have already been executed." +

 Environment.NewLine + "Proceed with transaction?", "Performing

 Transaction",

 MessageBoxButtons.YesNo);

 310 CHAPTER 6 Working with Data in a Connected Environment

 // Process the response and either

 // commit or roll back.

 switch (response)

 {

 case DialogResult.Yes:

 transaction.Commit();

 break;

 case DialogResult.No:

 transaction.Rollback();

 break;

 }

 NorthwindConnection.Close();

}

 9. Add code to the Perform Transaction button’s click event to call the PerformTransaction

method.

 10. Run the application and click the Perform Transaction button.

 11. Select Yes to commit the transaction.

 12. Inspect the Region and Territories tables and verify that the new records for Northwest

and Bothell were inserted.

 13. Click the Perform Transaction button again (which initially deletes the records that

were added in the preceding step 11) but, this time, select No in the dialog box to roll

back the transaction.

 14. Inspect the Region and Territories table once more and verify that the records were

not inserted. If you still see the records, you might have to refresh the data in the Show

Data window.

 Lesson Summary
 Transactions provide a way to maintain the integrity of your data by allowing a set of

commands to be rolled back if one of them does not complete successfully.

 Transactions are provider-specifi c.

 Transactions are created with the BeginTransaction method of a Connection object.

 The availability of data (that is being modifi ed by a transaction) can be controlled by

setting the isolation level of a transaction.

 Commands can be set to enlist in existing distributed transactions, as well as in local

transactions.

 Lesson 5: Performing Transactions by Using the Transaction Object CHAPTER 6 311

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. How do you create a new transaction?

 A. Assign a transaction variable the return value of the Connection.BeginTransaction

method.

 B. Declare a new instance of the Transaction class.

 C. Call the Command.CreateTransaction method.

 D. Declare a new Command.Transaction object.

 2. What is the main purpose of a transaction?

 A. To validate that multiple commands complete successfully

 B. To handle exceptions that may occur on the database during command execution

 C. To abort the outcome of an executed command and return data to the state it was

in prior to the transaction

 D. To provide an option to abort the outcome of executed commands and return

data to the state it was in prior to the transaction

 3. What is the difference between a local transaction and a distributed transaction?

 A. Local transactions are performed on a single database table, but distributed trans-

actions are performed on multiple database tables.

 B. Local transactions are performed on a single database, but distributed transactions

are performed on multiple databases on the same server.

 C. Local transactions are performed on a single database server, but distributed

transactions can be performed across multiple database servers.

 D. Local transactions are performed on a database on the local machine, but distrib-

uted transactions are performed on a database on a remote machine.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 312 CHAPTER 6 Working with Data in a Connected Environment

Lesson 6: Querying Data by Using LINQ

This lesson describes how to use LINQ to query data from several data sources.

After this lesson, you will be able to:

 Query data from objects using LINQ.

 Query data from SQL databases using LINQ.

 Query data from XML using LINQ.

 Query data from DataSets using LINQ.

Estimated lesson time: 60 minutes

What Is LINQ?
LINQ is a technology that provides query functionality directly in Visual Basic and C# pro-

gramming languages. LINQ queries are language constructs similar to any other defi ned code

block, such as methods and class defi nitions.

To be able to use LINQ queries to retrieve data, the data must be in a LINQ-enabled data

source. Currently, you can run LINQ queries against any .NET Framework collection that

implements IEnumerable, IEnumerable(T), or any collection that implements an interface that

inherits from IEnumerable(T), blocks of XML and XML Documents, SQL Server databases, and

ADO.NET dataSets.

LINQ providers are available for running LINQ Queries on each of the listed data sources.

Refer to Table 6-8 and select the proper LINQ provider for the intended data source:

Table 6-8 lists the LINQ providers and the data sources they are designed to query.

TABLE 6-8 LINQ Providers

NAME DATA SOURCE

LINQ to Objects LINQ-enabled .NET Framework collections

LINQ to XML Blocks of XML and XML documents

LINQ to SQL SQL Server databases

LINQ to Datasets ADO.NET datasets

After this lesson, you will be able to:

Query data from objects using LINQ.

Query data from SQL databases using LINQ.

Query data from XML using LINQ.

Query data from DataSets using LINQ.

Estimated lesson time: 60 minutes

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 313

 LINQ Queries
 The LINQ query by itself defi nes only the shape and structure of the data returned by the

query, not the actual data. The data is available after executing the query. The process of

targeting a data source with a LINQ query and accessing the data has three stages:

 1. The data source

 2. Query creation

 3. Query execution

 The Data Source

 The data source is any .NET Framework collection that implements IEnumer-

able, IEnumerable(T), or any collection that implements an interface that inherits from

IEnumerable(T), Blocks of XML and XML Documents, SQL Server databases, and ADO.NET

DataSets.

 Query Creation

 Query creation is the LINQ query that determines the data to retrieve from the data source.

In addition to the actual data to return, LINQ queries can also specify additional information,

such as sort order, and grouping of the returned data.

 The following code shows a LINQ query that returns all buttons on a form:

 var buttonsQuery =

 from Control buttons in this.Controls

 where (buttons is Button)

 orderby buttons.Text

 select buttons;

 The variable that will contain the results of the query is called the range variable. In the

above example, the variable is named buttonsQuery.

 Query Execution

 Query execution is typically deferred until the query is iterated over with a foreach loop. In

the case of aggregate functions, such as Sum, Count, and Average, these queries execute

immediately and do not need to be iterated over.

 To force immediate execution of a query, call the ToList or ToArray methods of the query’s

range variable, as shown in the following example.

 var buttonsQuery =

 from Control buttons in this.Controls

 where (buttons is Button)

 orderby buttons.Text

 select buttons.ToList();

 314 CHAPTER 6 Working with Data in a Connected Environment

 In the example LINQ query shown above, you force the query to execute immediately by

calling buttons.ToList().

 LAB LINQ Queries

 In this lab you will create several applications that will demonstrate querying different data

sources using LINQ queries.

 EXERCISE 1 LINQ to Objects

 To demonstrate LINQ to Objects, we will create an application that runs LINQ queries and

displays the results in a list box.

 1. Create a new Windows Forms application named LinqToObjects.

 2. Set the following properties for Form1:

 Name = LinqToObjectsForm

 Text = LINQ to Objects

 3. Add a Label to the form and set the following properties:

 Name = infoLabel

 Text = Query results:

 BorderStyle = Fixed3D

 4. Add a ListBox to the form and set the following properties:

 Name = resultsListBox

 5. Add a Button to the form and set the following properties:

 Name = query1Button

 Text = 1st LINQ Query

 6. Add a Button to the form and set the following properties:

 Name = query2Button

 Text = 2nd LINQ Query

 7. Add a Button to the form and set the following properties:

 Name = query3Button

 Text = 3rd LINQ Query

 Arrange all the controls as shown in Figure 6-9.

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 315

 FIGURE 6-9 Form with controls for running LINQ queries

 8. Double-click the 1st LINQ Query button.

 9. Add code to the query1Button click event handler to run the fi rst LINQ query. The code

should appear similar to the following:

 ' VB

Private Sub query1Button_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles query1Button.Click

 resultsListBox.Items.Clear()

 Dim Query As IEnumerable(Of Control) = _

 From buttons As Control In Me.Controls _

 Where TypeOf (buttons) Is Button _

 Order By buttons.Text _

 Select buttons

 Dim buttonCount As Integer = Query.Count

 infoLabel.Text = "The following " + Query.Count().ToString() _

 + " buttons are on this form:"

 For Each b As Button In Query

 resultsListBox.Items.Add(b.Name)

 Next

End Sub

 // C#

private void query1Button_Click(object sender, EventArgs e)

{

 resultsListBox.Items.Clear();

 IEnumerable<Control> Query =

 from Control buttons in this.Controls

 where (buttons is Button)

 316 CHAPTER 6 Working with Data in a Connected Environment

 orderby buttons.Text

 select buttons;

 int buttonCount = Query.Count();

 infoLabel.Text = "The following " + Query.Count().ToString() +

 " buttons are on this form:";

 foreach (Button b in Query)

 {

 resultsListBox.Items.Add(b.Name);

 }

}

 10. Run the application and click the 1st LINQ Query button. Verify that the names of all

the buttons on the form appear in resultsListBox, as shown in Figure 6-10.

 FIGURE 6-10 The names of all Button controls on the form after clicking the 1st LINQ Query
button

 11. In Visual Studio double-click the 2nd LINQ Query button.

 12. Add code to the query2Button click event handler to run the second LINQ query. The

code should appear similar to the following:

 ' VB

Private Sub query2Button_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles query2Button.Click

 Dim p1 As New Player With {.Name = "Alfreds Futterkiste", _

 .Scores = New List(Of Integer)}

 p1.Scores.Add(156)

 p1.Scores.Add(187)

 p1.Scores.Add(207)

 Dim p2 As New Player With {.Name = "Eastern Connection", _

 .Scores = New List(Of Integer)}

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 317

 p2.Scores.Add(127)

 p2.Scores.Add(156)

 p2.Scores.Add(198)

 Dim p3 As New Player With {.Name = "Hanari Carnes", _

 .Scores = New List(Of Integer)}

 p3.Scores.Add(144)

 p3.Scores.Add(148)

 p3.Scores.Add(203)

 Dim p4 As New Player With {.Name = "Island Trading", _

 .Scores = New List(Of Integer)}

 p4.Scores.Add(158)

 p4.Scores.Add(167)

 p4.Scores.Add(144)

 Dim p5 As New Player With {.Name = "Simons bistro", _

 .Scores = New List(Of Integer)}

 p5.Scores.Add(188)

 p5.Scores.Add(173)

 p5.Scores.Add(189)

 players.Clear()

 players.Add(p1)

 players.Add(p2)

 players.Add(p3)

 players.Add(p4)

 players.Add(p5)

 resultsListBox.Items.Clear()

 Dim query = From p As Player In players _

 Where p.Scores.Average > 160 _

 Select p

 infoLabel.Text = "The following players have score averages over 160:"

 For Each plyr In query

 resultsListBox.Items.Add(plyr.Name & ": avg=" & plyr.Scores.Average())

 Next

End Sub

Public players As List(Of Player) = New List(Of Player)

Public Class Player

 318 CHAPTER 6 Working with Data in a Connected Environment

 Private _Name As String = ""

 Public Property Name() As String

 Get

 Return _Name

 End Get

 Set(ByVal value As String)

 _Name = value

 End Set

 End Property

 Private _scores As List(Of Integer)

 Public Property Scores() As List(Of Integer)

 Get

 Return _scores

 End Get

 Set(ByVal value As List(Of Integer))

 _scores = value

 End Set

 End Property

End Class

 // C#

private void query2Button_Click(object sender, EventArgs e)

{

 resultsListBox.Items.Clear();

 var query = from Player p in players

 where p.Scores.Average() > 160

 select p;

 infoLabel.Text = "The following players have score averages over 160:";

 foreach (Player p1 in query)

 resultsListBox.Items.Add(p1.Name + ": avg=" + p1.Scores.Average());

}

public class Player

{

 public string Name { get; set; }

 public List<int> Scores { get; set; }

}

public List<Player> players = new List<Player>

{

 new Player {Name="Alfreds Futterkiste",

 Scores = new List<int>{156,187,207}},

 new Player {Name="Eastern Connection",

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 319

 Scores = new List<int>{127,156,198}},

 new Player {Name="Hanari Carnes",

 Scores = new List<int>{144,148,203}},

 new Player {Name="Island Trading",

 Scores = new List<int>{158,167,144}},

 new Player {Name="Simons bistro",

 Scores = new List<int>{188,173,189}}

};

 13. Run the application and click the 2nd LINQ Query button. Verify that the names of all

the players with scores averaging greater than 160 appear in resultsListBox, as shown in

Figure 6-11.

 FIGURE 6-11 The names of all players with average scores over 160 on the form after clicking the

2nd LINQ Query button

 14. In Visual Studio, double-click the 3rd LINQ Query button.

 15. Add code to the query3Button click event handler to run the 3rd LINQ query. The code

should appear similar to the following:

 ' VB

Private Sub query3Button_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles query3Button.Click

 Dim p1 As New Player With {.Name = "Alfreds Futterkiste", _

 .Scores = New List(Of Integer)}

 p1.Scores.Add(156)

 p1.Scores.Add(187)

 p1.Scores.Add(207)

 Dim p2 As New Player With {.Name = "Eastern Connection", _

 .Scores = New List(Of Integer)}

 p2.Scores.Add(127)

 p2.Scores.Add(156)

 p2.Scores.Add(198)

 320 CHAPTER 6 Working with Data in a Connected Environment

 Dim p3 As New Player With {.Name = "Hanari Carnes", _

 .Scores = New List(Of Integer)}

 p3.Scores.Add(144)

 p3.Scores.Add(148)

 p3.Scores.Add(203)

 Dim p4 As New Player With {.Name = "Island Trading", _

 .Scores = New List(Of Integer)}

 p4.Scores.Add(158)

 p4.Scores.Add(167)

 p4.Scores.Add(144)

 Dim p5 As New Player With {.Name = "Simons bistro", _

 .Scores = New List(Of Integer)}

 p5.Scores.Add(188)

 p5.Scores.Add(173)

 p5.Scores.Add(189)

 players.Clear()

 players.Add(p1)

 players.Add(p2)

 players.Add(p3)

 players.Add(p4)

 players.Add(p5)

 resultsListBox.Items.Clear()

 Dim query = From p In players _

 Select p _

 Group By Over200 = p.Scores.Max() > 200 _

 Into Over200Group = Group

 infoLabel.Text = "Players with high scores over 200:"

 For Each ovr200 In query

 resultsListBox.Items.Add(ovr200.Over200.ToString)

 For Each p In ovr200.Over200Group

 resultsListBox.Items.Add(vbTab & p.Name)

 Next

 Next

End Sub

 // C#

private void query3Button_Click(object sender, EventArgs e)

{

 resultsListBox.Items.Clear();

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 321

 var query = from Player p in players

 group new { p.Name }

 by p.Scores.Max() > 200 into Over200Group

 select Over200Group;

 infoLabel.Text = "Players with high scores over 200:";

 foreach (var over200Group in query)

 {

 resultsListBox.Items.Add(over200Group.Key.ToString());

 foreach (var p in over200Group)

 resultsListBox.Items.Add("\t" + p.Name);

 }

}

 16. Run the application and click the 3rd LINQ Query button. Verify that the names of all

the players who scored over 200 appear in the True group and players with high scores

below 200 appear in the False group, as shown in Figure 6-12.

 FIGURE 6-12 The names of players grouped if they scored over 200

 EXERCISE 2 LINQ to SQL

 To demonstrate LINQ to SQL, we will create an application that runs LINQ queries and dis-

plays the results in a list box.

 LINQ to SQL requires a reference to the System.Data.Linq namespace. You must also map

your data object model to your database using the Table and Column attributes to point to

the respective database tables and columns.

 The LINQ to SQL object that contains the information to connect to the database is the

DataContext object.

 322 CHAPTER 6 Working with Data in a Connected Environment

 1. Create a new Windows Forms application named LinqToSQL.

 2. Add a reference to System.Data.Linq. Add using (or Imports) statements for System.

Data.Linq, and System.Data.Linq.Mapping to Form1.

 3. Set the following properties for Form1:

 Name = LinqToSqlForm

 Text = LINQ to SQL

 4. Add a ComboBox to the form and set the following properties:

 Name = countryComboBox

 5. Add a DataGridView to the form and set the following properties:

 Name = resultsGrid

 6. Add a Button to the form and set the following properties:

 Name = saveButton

 Text = Save

 7. Add a reference for your project to System.Data.Linq. Then open the form in the code

editor and add an Imports (using in C#) statement for System.Data.Linq.Mapping as

well as the following code to the form class:

 ' VB

<Table(Name:="Customers")> _

Public Class Customer

 Private _CustomerID As String

 <Column(IsPrimaryKey:=True, Storage:="_CustomerID")> _

 Public Property CustomerID() As String

 Get

 Return _CustomerID

 End Get

 Set(ByVal value As String)

 _CustomerID = value

 End Set

 End Property

 Private _CompanyName As String

 <Column(Storage:="_CompanyName")> _

 Public Property CompanyName() As String

 Get

 Return _CompanyName

 End Get

 Set(ByVal value As String)

 _CompanyName = value

 End Set

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 323

 End Property

 Private _Country As String

 <Column(Storage:="_Country")> _

 Public Property Country() As String

 Get

 Return _Country

 End Get

 Set(ByVal value As String)

 _Country = value

 End Set

 End Property

End Class

 // C#

[Table(Name = "Customers")]

public class Customer

{

 private string _CustomerID;

 [Column(IsPrimaryKey = true, Storage = "_CustomerID")]

 public string CustomerID

 {

 get

 {

 return this._CustomerID;

 }

 set

 {

 this._CustomerID = value;

 }

 }

 private string _CompanyName;

 [Column(Storage = "_CompanyName")]

 public string CompanyName

 {

 get

 {

 return this._CompanyName;

 }

 324 CHAPTER 6 Working with Data in a Connected Environment

 set

 {

 this._CompanyName = value;

 }

 }

 private string _Country;

 [Column(Storage = "_Country")]

 public string Country

 {

 get

 {

 return this._Country;

 }

 set

 {

 this._Country = value;

 }

 }

}

 8. Add code at the class level to create the DataContext and a table to query against. The

code should appear as follows:

 ' VB

Dim db As New DataContext(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;" & _

 "Integrated Security=True")

Dim Customers As Table(Of Customer)

 // C#

DataContext db =

 new DataContext("Data Source=.\\sqlexpress;Initial Catalog=Northwind;" +

 "Integrated Security=True");

Table<Customer> Customers;

 9. Create a form load event handler and add code to query the Customers table. The

code should appear similar to the following:

 ' VB

' Get a typed table to run queries.

Customers = db.GetTable(Of Customer)()

' Query for a list of Countries.

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 325

Dim countriesQuery = From cust In Customers _

 Select cust.Country

For Each cust In countriesQuery.Distinct

 countryComboBox.Items.Add(cust.ToString())

Next

countryComboBox.SelectedIndex = 0

 // C#

private void LinqToSqlForm_Load(object sender, EventArgs e)

{

 // Get a typed table to run queries.

 Customers = db.GetTable<Customer>();

 // Query for a list of Countries.

 var countriesQuery =

 from cust in Customers

 select cust.Country;

 foreach (var cust in countriesQuery.Distinct())

 countryComboBox.Items.Add(cust.ToString());

 countryComboBox.SelectedIndex = 0;

}

 10. Run the application and click the drop-down list on the combo box. Verify that the

names of all the countries appear in the list as shown in Figure 6-13.

 FIGURE 6-13 The names of countries after clicking the combo box

 326 CHAPTER 6 Working with Data in a Connected Environment

 11. Create an event handler for the countryComboBox control’s SelectedIndexChanged

event. Add code to populate the grid with customers from the selected country. The

code should appear as follows:

 ' VB

Private Sub countryComboBox_SelectedIndexChanged(_

 ByVal sender As System.Object, ByVal e As System.EventArgs) _

 Handles countryComboBox.SelectedIndexChanged

 Dim query = From cust In Customers _

 Where cust.Country = countryComboBox.SelectedItem.ToString _

 Select cust

 resultsGrid.DataSource = query

End Sub

 // C#

private void countryComboBox_SelectedIndexChanged(object sender, EventArgs e)

{

 var query =

 from cust in Customers

 where cust.Country == countryComboBox.SelectedItem.ToString()

 select cust;

 resultsGrid.DataSource = query;

}

 12. Run the application and click the drop-down list on the combo box to select different

countries. Verify that the customers from the selected country appear in the grid as

shown in Figure 6-14.

 FIGURE 6-14 Customers from a selected country

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 327

 13. In Visual Studio double-click the Save button.

 14. Add code to the saveButton click event handler to submit changes to the database. The

code should appear similar to the following:

 ' VB

Private Sub saveButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles saveButton.Click

 Try

 db.SubmitChanges()

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 End Try

End Sub

 // C#

private void saveButton_Click(object sender, EventArgs e)

{

 try

 {

 db.SubmitChanges();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

}

 15. Run the application and change a value in the CompanyName column.

 16. Click the Save button to save the changes to the database. Verify that your changes

were persisted to the database.

 EXERCISE 3 LINQ to XML

 To demonstrate LINQ to XML, we will create an application that runs LINQ queries against an

XML fi le and displays the results in a list box.

 1. Create a new Windows Forms application named LinqToXml.

 2. Add an XML fi le to the project and name it NorthwindProducts.xml.

 3. Replace the contents of NorthwindProducts.xml with the following (also available in

the samples installed from the companion CD):

 <?xml version="1.0" standalone="yes"?>

<NorthwindProducts>

 <Products>

 <ProductID>11</ProductID>

 <ProductName>Queso Cabrales</ProductName>

 328 CHAPTER 6 Working with Data in a Connected Environment

 <QuantityPerUnit>1 kg pkg.</QuantityPerUnit>

 <UnitPrice>21.0000</UnitPrice>

 <UnitsInStock>22</UnitsInStock>

 <UnitsOnOrder>30</UnitsOnOrder>

 <ReorderLevel>30</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>30</ProductID>

 <ProductName>Nord-Ost Matjeshering</ProductName>

 <QuantityPerUnit>10 - 200 g glasses</QuantityPerUnit>

 <UnitPrice>25.8900</UnitPrice>

 <UnitsInStock>10</UnitsInStock>

 <UnitsOnOrder>0</UnitsOnOrder>

 <ReorderLevel>15</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>47</ProductID>

 <ProductName>Zaanse koeken</ProductName>

 <QuantityPerUnit>10 - 4 oz boxes</QuantityPerUnit>

 <UnitPrice>9.5000</UnitPrice>

 <UnitsInStock>36</UnitsInStock>

 <UnitsOnOrder>0</UnitsOnOrder>

 <ReorderLevel>0</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>12</ProductID>

 <ProductName>Queso Manchego La Pastora</ProductName>

 <QuantityPerUnit>10 - 500 g pkgs.</QuantityPerUnit>

 <UnitPrice>38.0000</UnitPrice>

 <UnitsInStock>86</UnitsInStock>

 <UnitsOnOrder>0</UnitsOnOrder>

 <ReorderLevel>0</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>71</ProductID>

 <ProductName>Flotemysost</ProductName>

 <QuantityPerUnit>10 - 500 g pkgs.</QuantityPerUnit>

 <UnitPrice>21.5000</UnitPrice>

 <UnitsInStock>26</UnitsInStock>

 <UnitsOnOrder>0</UnitsOnOrder>

 <ReorderLevel>0</ReorderLevel>

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 329

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>19</ProductID>

 <ProductName>Teatime Chocolate Biscuits</ProductName>

 <QuantityPerUnit>10 boxes x 12 pieces</QuantityPerUnit>

 <UnitPrice>9.2000</UnitPrice>

 <UnitsInStock>25</UnitsInStock>

 <UnitsOnOrder>0</UnitsOnOrder>

 <ReorderLevel>5</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>1</ProductID>

 <ProductName>Chai </ProductName>

 <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>

 <UnitPrice>18.0000</UnitPrice>

 <UnitsInStock>39</UnitsInStock>

 <UnitsOnOrder>0</UnitsOnOrder>

 <ReorderLevel>10</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>68</ProductID>

 <ProductName>Scottish Longbreads</ProductName>

 <QuantityPerUnit>10 boxes x 8 pieces</QuantityPerUnit>

 <UnitPrice>12.5000</UnitPrice>

 <UnitsInStock>6</UnitsInStock>

 <UnitsOnOrder>10</UnitsOnOrder>

 <ReorderLevel>15</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>69</ProductID>

 <ProductName>Gudbrandsdalsost</ProductName>

 <QuantityPerUnit>10 kg pkg.</QuantityPerUnit>

 <UnitPrice>36.0000</UnitPrice>

 <UnitsInStock>26</UnitsInStock>

 <UnitsOnOrder>0</UnitsOnOrder>

 <ReorderLevel>15</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

 <Products>

 <ProductID>48</ProductID>

 <ProductName>Chocolade</ProductName>

 330 CHAPTER 6 Working with Data in a Connected Environment

 <QuantityPerUnit>10 pkgs.</QuantityPerUnit>

 <UnitPrice>12.7500</UnitPrice>

 <UnitsInStock>15</UnitsInStock>

 <UnitsOnOrder>70</UnitsOnOrder>

 <ReorderLevel>25</ReorderLevel>

 <Discontinued>false</Discontinued>

 </Products>

</NorthwindProducts>

 4. Save and close NorthwindProducts.xml.

 5. Select NorthwindProducts.xml (in Solution Explorer) and set the Copy To Output Direc-

tory property to Copy If Newer.

 6. Set the following properties for Form1:

 Name = LinqToXmlForm

 Text = LINQ to XML

 7. Add a ListBox to the form and set the following properties:

 Name = resultsListBox

 8. Add a Button to the form and set the following properties:

 Name = LoadProductsButton

 Text = Load Products

 9. Add a Button to the form and set the following properties:

 Name = GetProductInfoButton

 Text = Get Product Info

 10. Add a TextBox to the form and set the following properties:

 Name = quantityPerUnitTextBox

 11. Add a Label above the quantityPerUnitTextBox and set the following properties:

 Text = Quantity Per Unit

 12. Add a TextBox to the form and set the following properties:

 Name = unitPriceTextBox

 13. Add a Label above the unitPriceTextBox and set the following properties:

 Text = Unit Price:

 14. Add a TextBox to the form and set the following properties:

 Name = unitsInStockTextBox

 15. Add a Label above the unitsInStockTextBox and set the following properties:

 Text = Units In Stock:

 Arrange the controls so they appear similar to Figure 6-15.

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 331

 FIGURE 6-15 Form with controls arranged for running a LINQ to XML query

 16 Double-click the Load Products button.

 17. Add a using (or Imports) statement for the System.Xml.Linq namespace.

 18. Add code to load the product list from the XML fi le:

 ' VB

Private Sub LoadProductsButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles LoadProductsButton.Click

 Dim root As XElement = XElement.Load("NorthwindProducts.xml")

 Dim product As IEnumerable(Of XElement) = _

 From el In root.Descendants("Products") _

 Order By (el.Element("ProductName").Value) _

 Select el

 For Each el In product

 resultsListBox.Items.Add(el.Element("ProductName").Value)

 Next

 resultsListBox.SelectedIndex = 0

End Sub

 // C#

private void LoadProductsButton_Click(object sender, EventArgs e)

{

 XElement root = XElement.Load("NorthwindProducts.xml");

 IEnumerable<XElement> product =

 332 CHAPTER 6 Working with Data in a Connected Environment

 from el in root.Descendants("Products")

 orderby el.Element("ProductName").Value

 select el;

 foreach (XElement el in product)

 {

 resultsListBox.Items.Add(el.Element("ProductName").Value);

 }

 resultsListBox.SelectedIndex = 0;

}

 19. Run the application and click the Load Products button. Verify that the list of products

appears in the list box, as shown in Figure 6-16.

FIGURE 6-16 List of products after clicking the Load Products button

 20. In Visual Studio double-click the Get Product Info button.

 21. Add code to load the product details from the XML fi le:

 ' VB

Private Sub GetProductInfoButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles GetProductInfoButton.Click

 Dim root As XElement = XElement.Load("NorthwindProducts.xml")

 Dim product As IEnumerable(Of XElement) = _

 From el In root.Descendants("Products") _

 Where (el.Element("ProductName").Value = _

 resultsListBox.SelectedItem.ToString) _

 Select el

 For Each el In product

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 333

 quantityPerUnitTextBox.Text = el.Element("QuantityPerUnit").Value

 unitPriceTextBox.Text = el.Element("UnitPrice").Value

 unitsInStockTextBox.Text = el.Element("UnitsInStock").Value

 Next

End Sub

 // C#

private void GetProductInfoButton_Click(object sender, EventArgs e)

{

 XElement root = XElement.Load("NorthwindProducts.xml");

 IEnumerable<XElement> product =

 from el in root.Descendants("Products")

 where (el.Element("ProductName").Value ==

 resultsListBox.SelectedItem.ToString())

 select el;

 foreach (XElement el in product)

 {

 quantityPerUnitTextBox.Text = el.Element("QuantityPerUnit").Value;

 unitPriceTextBox.Text = el.Element("UnitPrice").Value;

 unitsInStockTextBox.Text = el.Element("UnitsInStock").Value;

 }

}

 22. Run the application and select a product in the list. Click the Get Product Info button.

Verify that the details for the selected product appear in the textboxes as shown in

Figure 6-17.

 FIGURE 6-17 Product details after clicking the Get Product Info button

 334 CHAPTER 6 Working with Data in a Connected Environment

 EXERCISE 4 LINQ to DataSet

 To demonstrate LINQ to DataSet, we will create an application that runs LINQ queries against

a dataset and displays the results in a list box.

 1. Create a new Windows Forms application named LinqToDataSet.

 2. Set the following properties for Form1:

 Name = LinqToDataSetForm

 Text = LINQ to DataSet

 3. Add a ComboBox to the form and set the following properties:

 Name = countryComboBox

 4. Add a ListBox to the form and set the following properties:

 Name = resultsListBox

 5. Add a Button to the form and set the following properties:

 Name = GetCustomersButton

 Text = Get Customers

 6. From the Data menu, click Add New Data Source to create a dataset by running the

Data Source Confi guration Wizard.

 7. Select Database and click Next on the Choose A Data Source Type page.

 8. Select or create a connection to the Northwind sample database.

 9. Click Next until you get to the Choose Your Database Objects page.

 10. Select the Customers table and click Finish to create the dataset.

 11. Create a form load event handler and add the following code to the form class:

 ' VB

Dim northwindDataSet As NorthwindDataSet = New NorthwindDataSet

Dim customersTableAdapter As _

 NorthwindDataSetTableAdapters.CustomersTableAdapter = _

 New NorthwindDataSetTableAdapters.CustomersTableAdapter

Private Sub LinqToDataSetForm_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 customersTableAdapter.Fill(northwindDataSet.Customers)

 Dim countriesQuery = _

 From cust In northwindDataSet.Customers.AsEnumerable() _

 Order By cust.Country _

 Select cust.Country

 For Each cust In countriesQuery.Distinct

 countryComboBox.Items.Add(cust.ToString())

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 335

 Next

 countryComboBox.SelectedIndex = 0

End Sub

 // C#

NorthwindDataSet northwindDataSet =

 new NorthwindDataSet();

NorthwindDataSetTableAdapters.CustomersTableAdapter customersTableAdapter =

 new NorthwindDataSetTableAdapters.CustomersTableAdapter();

private void LinqToDataSetForm_Load(object sender, EventArgs e)

{

 customersTableAdapter.Fill(northwindDataSet.Customers);

 var countriesQuery =

 from cust in northwindDataSet.Customers.AsEnumerable()

 orderby cust.Country

 select cust.Country;

 foreach (var cust in countriesQuery.Distinct())

 countryComboBox.Items.Add(cust.ToString());

 countryComboBox.SelectedIndex = 0;

}

 12. Double-click the Get Customers button.

 13. Add code to return a list of customers from the selected country:

 ' VB

Private Sub GetCustomersButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles getCustomersButton.Click

 resultsListBox.Items.Clear()

 Dim query = _

 From customer In northwindDataSet.Customers.AsEnumerable() _

 Where customer.Country = countryComboBox.SelectedItem.ToString _

 Select customer

 For Each cust In query

 resultsListBox.Items.Add(cust.CompanyName)

 Next

End Sub

 // C#

private void GetCustomersButton_Click(object sender, EventArgs e)

 336 CHAPTER 6 Working with Data in a Connected Environment

{

 resultsListBox.Items.Clear();

 var query =

 from customer in

 northwindDataSet.Customers.AsEnumerable()

 where customer.Country == countryComboBox.SelectedItem.ToString()

 select customer;

 foreach (var cust in query)

 {

 resultsListBox.Items.Add(cust.CompanyName);

 }

}

 14. Run the application and select a country in the list. Click the Get Customers button.

Verify that the list of customers from the selected country appears in the listbox.

Lesson Summary
 LINQ provides the ability to query for data directly within the VB and C# programming

languages.

 LINQ to Objects provides the ability to run LINQ queries against any .NET Framework

collection that implements IEnumerable, IEnumerable(T), or any collection that imple-

ments an interface that inherits from IEnumerable(T).

 LINQ to SQL enables running LINQ queries against SQL Server databases.

 LINQ to XML enables running LINQ queries against blocks of XML and XML

documents.

 LINQ to DataSet enables running LINQ queries against ADO.NET datasets.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 6: Querying Data by Using LINQ CHAPTER 6 337

 1. What types of Objects can you query using LINQ?

 A. DataTables and DataSets

 B. Any .NET Framework collection that implements IEnumerable(T)

 C. Collections that implement interfaces that inherit from IEnumerable(T)

 D. A, B, and C

 2. When do LINQ queries actually run?

 A. When they are iterated over in a foreach loop

 B. When calling the ToArray() method on the range variable

 C. When calling the ToList() method on the range variable

 D. A, B, and C

 3. What object contains the connection information when using LINQ to SQL?

 A. The SqlConnection object

 B. The DataConnection object

 C. The DataContext object

 D. The Table and Column attributes

 338 CHAPTER 6 Working with Data in a Connected Environment

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the additional practices.

 Take a practice test.

 Chapter Summary
 SQL statements and stored procedures can be run using provider-specifi c Command

objects.

 Data returned by Command objects can be accessed through provider-specifi c

DataReader objects.

 Command objects have parameter collections that can contain one or more param-

eters for executing parameterized queries and stored procedures.

 BLOB data can be saved and retrieved from a database using DataReader and Stream

objects.

 Bulk copy operations can be performed using the SqlBulkCopy object, as well as by

executing a SQL BULK INSERT statement.

 Commands can be executed within the context of a local transaction, or a command

can be enlisted in a distributed transaction.

 Key Terms
 BLOB

 parameter

 transaction

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about working with data in

a connected environment. You can fi nd answers to these questions in the “Answers” section at

the end of this book.

 Suggested Practices CHAPTER 6 339

 Case Scenario 1: Troubleshooting a Nonperforming Application

 You’ve been contracted by The Phone Company to investigate why its Customer Relationship

Management (CRM) application is running slow, causing support techs to spend an unrea-

sonable amount of time waiting for queries to execute. After several days of analyzing the

company’s code base and backend database, you conclude that the lack of performance is

due to the exponential increase of its customer base, which is causing too many records to be

fetched when running queries that were not designed with scalability in mind. You also notice

the archiving utility is constantly running, moving individual records from current to history.

List the potential improvements you can make to the application.

 Case Scenario 2: Preventing the Inventory System from Selling

Unavailable Products

 Your biggest customer, Wide World Importers, is now selling items from many new manufac-

turers around the globe. Its system is set up to forward orders to the correct manufacturers

if local warehouses are out of stock so items can be drop-shipped to the proper customers.

The main problem this poses is that they seem to be forwarding orders for items that are not

in stock or have longer than acceptable lead times, and it’s causing customers to become

extremely upset.

 Given that each manufacturer exposes its inventory information and projected manufac-

ture date for new inventory, what modifi cations can you make to the Wide World Importers

sales application to remedy this problem?

 Suggested Practices

 To gain further knowledge on the subject of working with data in a connected environment,

complete the following practices:

 Practice 1 Create an application that saves data to the Northwind Employees table

and allows you to select a picture from your hard disk drive to save in the Photo

column.

 Practice 2 Create an application that queries the Northwind Customers table and has

separate commands to return data based on CompanyName, City, or PostalCode.

 Practice 3 Create an application that bulk copies all Northwind Orders that have

already shipped into a ShippedOrders table.

 340 CHAPTER 6 Working with Data in a Connected Environment

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 7 341

 C H A P T E R 7

 Create, Add, Delete, and
Edit Data in a Disconnected
Environment

 This chapter describes how to work with data loaded from a database or Extensible

Markup Language (XML) document into your application. ADO.NET provides several

objects, such as DataSet and DataTable objects, for caching data in applications so that

you can disconnect from the database and work with the data in your application and then

reconnect when you are ready to save your updates back to the data source.

 Exam objectives in this chapter:

 Create, add, delete, and edit data in a disconnected environment.

 Create a DataSet through a User Interface (UI).

 Create a DataSet programmatically.

 Add a DataTable to a DataSet.

 Add a relationship between tables within a DataSet.

 Navigate a relationship between tables.

 Merge DataSet contents.

 Copy DataSet contents.

 Create a typed DataSet.

 Create DataTables.

 Manage data within a DataTable.

 Create and use DataViews.

 Represent data in a DataSet by using XML.

 Use the OleDbDataAdapter object to access an ADO Recordset or Record.

 Generate DataAdapter commands automatically by using the CommandBuilder

object.

 Generate DataAdapter commands programmatically.

 342 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 Populate a DataSet by using a DataAdapter.

 Update a database by using a DataAdapter.

 Resolve confl icts between a DataSet and a database by using a DataAdapter.

 Respond to changes made to data at the data source by using DataAdapter events.

 Perform batch operations by using DataAdapters.

 Lessons in this chapter:

 Creating DataSet Objects 343

 Creating DataTable Objects 360

 Creating DataAdapter Objects 370

 Working with Data in DataTable Objects 385

 Working with XML in DataSet Objects 399

 Creating and Using DataView Objects 408

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft .NET Framework .

 Available data sources, including Microsoft SQL Server (SQL Server Express Edition

is acceptable), the Northwind sample database for SQL Server, and the Nwind.mdb

 Microsoft Offi ce Access database fi le .

 A basic understanding of relational databases .

 Completed the exercises or understood the concepts presented in Chapter 5, “Confi g-

uring Connections and Connecting to Data,” and Chapter 6, “Working with Data in a

Connected Environment.”

 REAL WORLD

Steve Stein

 I always spent way too much time whenever I needed to create objects to cache

data in my applications. With DataSet objects, the standard database structures

are already there, so quickly creating a representative object model for my data is

really easy.

REAL WORLD

Steve Stein

Ialways spent way too much time whenever I needed to create objects to cache

data in my applications. With DataSet objects, the standard database structurest

are already there, so quickly creating a representative object model for my data is

really easy.

 Lesson 1: Creating DataSet Objects CHAPTER 7 343

Lesson 1: Creating DataSet Objects

DataSet objects are available in the System.Data namespace and are used as an in-memory

cache of the data being used in your application. DataSet objects contain DataTable objects

that can be related with DataRelation objects much like the structure of a relational database.

After this lesson, you will be able to:

 Create a DataSet through a UI.

 Create a typed DataSet.

 Create a DataSet programmatically.

 Add a DataTable to a DataSet.

 Add a relationship between tables within a DataSet.

 Navigate a relationship between tables.

 Estimated lesson time: 45 minutes

 DataSet Objects
Datasets are objects that you use to temporarily store the data that is used in your applica-

tion. There are basically two distinct kinds of DataSet objects: typed and untyped. Untyped

DataSets are the standard generic instances of the DataSet class where you manually build

up the DataSet defi nition (schema) by creating DataTable objects (untyped DataTable objects)

and adding them to the Tables collection in the DataSet. You can access untyped DataTable

and DataColumn objects through their collection indices. Typed DataSet objects derive their

schema from an .xsd fi le and contain explicitly typed collections (such as a specifi c Customers-

Table object).

There are three distinct ways to create DataSet objects in Visual Studio:

 Declare a new DataSet object programmatically in the code editor, which results in an

empty DataSet that requires creating DataTable and optional DataRelation objects to

be added to the DataSet.

 Use design-time tools like the DataSet Designer and the Data Source Confi guration

Wizard, which assists in the creation of typed DataSet objects by stepping you through

the process of selecting or creating a data connection and then allowing you to select

database objects available from that connection to build up a typed DataSet and have

most, if not all, of the necessary code generated for you.

 Drag a DataSet object from the Toolbox onto a form and use the Table and Column

Collection editors to build up the schema of your DataSet.

This lesson describes how to create DataSet objects using each of these methods.

After this lesson, you will be able to:

Create a DataSet through a UI. t

Create a typed DataSet.

Create a DataSet programmatically.t

Add a DataTable to a DataSet.

Add a relationship between tables within a DataSet.

Navigate a relationship between tables.

Estimated lesson time: 45 minutes

 344 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

NOTE GENERATING DATASET OBJECTS

You can also create DataSet objects based on confi gured DataAdapter objects. This will be

covered in Lesson 3, “Creating DataAdapter Objects,” of this chapter.

Creating DataSet Objects Programmatically
You create DataSet objects by declaring instances of them. You can optionally provide the

name of the DataSet. For example, the following code example creates a new DataSet named

NorthwindDataSet:

' VB

Dim NorthwindDataset As New DataSet ("NorthwindDataset")

// C#

DataSet NorthwindDataset = new DataSet ("NorthwindDataset");

Adding DataTable Objects to a DataSet

After declaring a new DataSet, you need to add DataTable objects to it to actually hold the

data in your application. The following code sample shows how to add a CustomersTable and

OrdersDataTable to the NorthwindDataset:

' VB

' Create some DataTables

Dim CustomersTable As New DataTable

Dim OrdersDataTable As New DataTable

' Add DataTables to the Dataset’s Tables collection.

NorthwindDataset.Tables.Add(CustomersTable)

NorthwindDataset.Tables.Add(OrdersDataTable)

// C#

// Create some DataTables

DataTable CustomersTable = new DataTable ();

DataTable OrdersDataTable = new DataTable ();

// Add DataTables to the Dataset’s Tables collection.

NorthwindDataset.Tables.Add(CustomersTable);

NorthwindDataset.Tables.Add(OrdersDataTable);

Adding a Relationship Between Tables in a DataSet

After adding tables to a DataSet, you can use DataRelation objects to represent the relation

between DataTable objects just like the relationships between tables in a database. Create

relationships in DataSet objects by declaring DataRelation objects and providing the columns

NOTE GENERATING DATASET OBJECTST

You can also create DataSet objects based on confi gured t DataAdapter objects. This will be

covered in Lesson 3, “Creating DataAdapter Objects,” of this chapter.

 Lesson 1: Creating DataSet Objects CHAPTER 7 345

from the parent and child tables to the DataRelation constructor. After creating the relation-

ship, you must add it to the Relations collection of the DataSet.

 The following code sample creates a relationship in the NorthwindDataSet and assumes

the Customers and Orders DataTable objects each have a CustomerID column that is used to

relate the table’s data together:

 ' VB

' Create the new relationship.

Dim CustomersOrders As New DataRelation ("CustomersOrders", _

 CustomersTable.Columns("CustomerID"), OrdersTable.Columns("CustomerID"))

' Add the relationship to the DataSet.

NorthwindDataset.Relations.Add(CustomersOrders)

// C#

// Create the new relationship.

DataRelation CustomersOrders = new DataRelation ("CustomersOrders",

 CustomersTable.Columns["CustomerID"], OrdersTable.Columns["CustomerID"]);

// Add the relationship to the DataSet.

NorthwindDataset.Relations.Add(CustomersOrders);

 Navigate a Relationship Between Tables

 To access related records in DataTable objects, you must fi rst select a DataRow from either

the parent or child table and then call either the GetParentRow method or the GetChildRows

method of the DataRow. Calling the GetParentRow method returns a single DataRow rep-

resenting the parent record. Calling the GetChildRows method returns an array of DataRow

objects representing all rows that are related to the selected parent.

 RETURNING THE PARENT ROW OF A SELECTED CHILD RECORD

The following example returns the Customer of a selected Order:

 ' VB

Dim Customer As DataRow = SelectedOrdersRow.GetParentRow("FK_Orders_Customers")

// C#

DataRow Customer = SelectedOrdersRow.GetParentRow("FK_Orders_Customers");

 RETURNING THE RELATED CHILD ROWS OF A SELECTED PARENT ROW

The following example returns the orders of a selected Customer:

 ' VB

Dim Orders() As DataRow = SelectedCustomersRow.GetChildRows("FK_Orders_Customers")

// C#

DataRow Orders() = SelectedCustomersRow.GetChildRows("FK_Orders_Customers");

 346 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 Merging DataSet Contents

 You can take the contents from one DataSet (the source dataset) and merge it with the con-

tents of another DataSet (the target dataset) using the DataSet.Merge method.

 When merging datasets, the actual data is combined depending on whether a similar

record exists in the DataSet into which it will be merged. For example, if you merge two data-

sets that both contain a record with the same primary key, the values in the target DataSet

are overwritten with the new values in the source DataSet. You can control this behavior and

restrict changes from being made in the target DataSet by passing in a true or false value to

the PreserveChanges fl ag in the Merge method. In addition to merging the actual data, when

you merge two datasets that have tables with differing schema, you can pass an optional

MissingSchemaAction parameter to the Merge method that controls the behavior of the

merge when the source DataSet has objects that are not currently in the target DataSet. The

following are valid values for the MissingSchemaAction parameter:

 Add (default) All schema items in the source DataSet are added to the target DataSet

and populated.

 AddWithKey All schema items and primary key settings are added to the target

DataSet.

 Error An exception will be thrown when the schemas in the source and target data-

sets do not match.

 Ignore All schema inconsistencies between the source and target datasets are

ignored.

 In the following code example, the contents of OldSalesDataSet are merged into the con-

tents of SalesHistoryDataSet. The PreserveChanges parameter is set to True and any schema

differences are ignored.

 ' VB

SalesHistoryDataSet.Merge(OldSalesDataSet, True, _

 MissingSchemaAction.Ignore)

// C#

SalesHistoryDataSet.Merge(OldSalesDataSet, true,

 MissingSchemaAction.Ignore);

 Copying DataSet Contents

 In some situations you might need to create a copy of the data in a DataSet. For example, you

might need to manipulate a copy of the data and perform some processing, but you might

not want to modify the original data. To create a copy of a DataSet, you simply create a new

DataSet object and assign it the return value of the DataSet.Copy method. The following code

example demonstrates this:

 ' VB

Dim CopyOfDataSet As New DataSet

CopyOfDataSet = OriginalDataSet.Copy

 Lesson 1: Creating DataSet Objects CHAPTER 7 347

// C#

DataSet CopyOfDataSet = new DataSet();

CopyOfDataSet = OriginalDataSet.Copy();

 LAB Creating DataSet Objects

 In this lab you will create typed and untyped DataSet objects.

 EXERCISE 1 Creating a DataSet with the DataSet Designer

 The DataSet Designer is a design-time tool that assists in the creation of typed DataSet

objects by allowing you to drag database tables from Server Explorer onto the design surface.

As you drop tables on the surface, they are added to the DataSet as typed objects that make

programming as simple as writing the table and column names you want to access.

 1. Create a Windows Forms application and name it DataSetDesignerExample.

 2. From the Project menu, select Add New Item.

 3. Select the DataSet template and name it NorthwindDataSet.xsd.

 4. Navigate to the Customers table in Server Explorer and drag it onto the design surface.

 5. Navigate to the Orders table in Server Explorer and drag it onto the design surface.

 After you drop the Customers and Orders tables onto the DataSet Designer, the design

surface should look similar to Figure 7-1.

 FIGURE 7-1 Customers and Orders DataTable objects and TableAdapter objects as seen in the
DataSet Designer

 348 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 6. Build the project before moving on to the next step.

 7. Drag a ListBox onto Form1 and name it CustomersListBox.

 8. Drag a Button onto Form1 and set the following properties:

 Name = GetCustomersButton

 Text = Get Customers

 9. Double-click the Get Customers button and add the following code to the Get-

CustomersButton_Click event handler:

 ' VB

' Instantiate a Northwind typed dataset.

Dim NorthwindDataSet1 As New NorthwindDataSet

' Instantiate a CustomersTableAdapter.

Dim CustomersTableAdapter1 As New _

 NorthwindDataSetTableAdapters.CustomersTableAdapter

' Call the default Fill method to load all customers into the

' Customers DataTable.

CustomersTableAdapter1.Fill(NorthwindDataSet1.Customers)

' Loop through the rows in the Customers table and add the value

' from the CompanyName column to the ListBox.

For Each NWCustomer As NorthwindDataSet.CustomersRow In _

 NorthwindDataSet1.Customers.Rows

 CustomersListBox.Items.Add(NWCustomer.CompanyName)

Next

// C#

// Instantiate a Northwind typed dataset.

NorthwindDataSet NorthwindDataSet1 = new NorthwindDataSet ();

// Instantiate a CustomersTableAdapter.

NorthwindDataSetTableAdapters.CustomersTableAdapter

 CustomersTableAdapter1 = new

 NorthwindDataSetTableAdapters.CustomersTableAdapter();

// Call the default Fill method to load all customers into the

// Customers DataTable.

CustomersTableAdapter1.Fill(NorthwindDataSet1.Customers);

 Lesson 1: Creating DataSet Objects CHAPTER 7 349

// Loop through the rows in the Customers table and add the

// value from the CompanyName column to the ListBox.

foreach (NorthwindDataSet.CustomersRow NWCustomer in

 NorthwindDataSet1.Customers.Rows)

{

 CustomersListBox.Items.Add(NWCustomer.CompanyName);

}

 10. Run the application and click the Get Customers button. Verify that the CompanyName

from each customer is displayed in the CustomersListBox similarly to Figure 7-2.

FIGURE 7-2 The CompanyName from all customers appearing in the CustomersListBox after you
click the Get Customers button

EXERCISE 2 Creating a Typed DataSet with the Data Source Confi guration Wizard

This exercise provides instructions for creating a strongly typed DataSet using the Data

Source Confi guration Wizard.

 1. Create a Windows Forms application and name it DataSourceWizardExample.

 2. Start the Data Source Confi guration Wizard by selecting Add New Data Source from

the Data menu.

NOTE DATA MENU

If the Data menu is not available, open the form in Design view.

 3. Leave the default selection of Database on the Choose A Data Source Type page, as

shown in Figure 7-3. Then click Next.

NOTE DATA MENU

If the Data menu is not available, open the form in Design view.

 350 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 FIGURE 7-3 The Choose A Data Source Type page of the Data Source Configuration Wizard

 4. The list box displays the available data connections from Server Explorer. Select a

connection to the Northwind sample database or create a new data connection on

the Choose Your Data Connection page, as shown in Figure 7-4. Then click Next. If

prompted, click Yes to add the database to your project.

 FIGURE 7-4 The Choose Your Data Connection page of the Data Source Configuration Wizard

 5. After selecting the desired data connection, you are given the option of saving it to the

application confi guration fi le. Leave the default option selected, as shown in Figure 7-5.

Then click Next.

 Lesson 1: Creating DataSet Objects CHAPTER 7 351

 FIGURE 7-5 The Save The Connection String To The Application Configuration File page of the

Data Source Configuration Wizard

 6. Expand the Tables node, as shown in Figure 7-6, and select check box next to the Cus-

tomers table on the Choose Your Database Objects page.

 FIGURE 7-6 The Choose Your Database Objects page of the Data Source Configuration Wizard

 7. Click Finish to complete the wizard and add the typed DataSet to your project.

 After completing the wizard, the data source is available in the Data Sources window,

which enables the quick construction of data-bound forms.

 8. With Form1 in Design view, select Show Data Sources from the Data menu.

 352 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 9. Drag the Customers node from the Data Sources window onto Form1, as shown in

Figure 7-7.

 FIGURE 7-7 Form1 in the Visual Studio IDE after you drop the Customers node from the Data
Sources window

 Visual Studio adds code to fi ll the Customers DataTable to the form as a result of drop-

ping the Customers table from the Data Sources window.

 10. Run the application and verify that the Customers table data appears on the form, as

shown in Figure 7-8.

 FIGURE 7-8 The Customers data displayed on Form1

 Lesson 1: Creating DataSet Objects CHAPTER 7 353

 EXERCISE 3 Confi guring Untyped DataSet Objects

 Create untyped DataSet objects by dragging DataSet objects from the Toolbox onto a form.

 1. Create a Windows Forms application and name it UntypedDataSet.

 2. From the Data tab of the Toolbox, drag a DataSet object onto Form1.

 3. In the Add DataSet dialog box, select the Untyped DataSet option and click OK.

 4. Drag a DataGridView onto the form.

 5. Select the dataSet1 instance in the component tray and navigate to the Tables prop-

erty in the Properties window. Click the ellipsis in the Tables property to open the

Tables Collection Editor.

 6. Add a table and set its Name and TableName properties to Categories.

 7. Select the Columns property and click the ellipsis to open the Columns Collection

Editor.

 8. Add a column and set the following properties:

 AllowDBNull = False

 AutoIncrement = True

 ColumnName = CategoryID

 DataType = System.Int32

 Name = CategoryID

 9. Add a second column and set the following properties:

 AllowDBNull = False

 ColumnName = CategoryName

 Name = CategoryName

 10. Close the Columns Collection Editor. Click the ellipsis for the Constraints property to

open the Constraints Collection Editor, and then click Add to add a Unique constraint.

 11. In the Unique Constraint dialog box, select the CategoryID column and the Primary

Key check box and click OK.

 12. Close the Constraints Collection Editor and the Tables Collection Editor.

 13. Add a Button to the form and set the following properties:

 Name = FillDataSetButton

 Text = Fill DataSet

 14. Create a Form1_Load event handler and add the following code:

 ' VB

DataGridView1.DataSource = DataSet1.Tables("Categories")

DataGridView1.SelectionMode = _

 DataGridViewSelectionMode.FullRowSelect

 354 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

// C#

dataGridView1.DataSource = dataSet1.Tables["Categories"];

dataGridView1.SelectionMode =

 DataGridViewSelectionMode.FullRowSelect;

 15. Create a FillDatasetButton_Click event handler and add the following code to it:

 ' VB

Dim newRow As DataRow = DataSet1.Tables("Categories").NewRow()

newRow.Item("CategoryName") = "Beverages"

DataSet1.Tables("Categories").Rows.Add(newRow)

Dim newRow2 As DataRow = DataSet1.Tables("Categories").NewRow()

newRow2.Item("CategoryName") = "Condiments"

DataSet1.Tables("Categories").Rows.Add(newRow2)

Dim newRow3 As DataRow = DataSet1.Tables("Categories").NewRow()

newRow3.Item("CategoryName") = "Seafood"

DataSet1.Tables("Categories").Rows.Add(newRow3)

// C#

DataRow newRow = dataSet1.Tables["Categories"].NewRow();

newRow["CategoryName"] = "Beverages";

dataSet1.Tables["Categories"].Rows.Add(newRow);

DataRow newRow2 = dataSet1.Tables["Categories"].NewRow();

newRow2["CategoryName"] = "Condiments";

dataSet1.Tables["Categories"].Rows.Add(newRow2);

DataRow newRow3 = dataSet1.Tables["Categories"].NewRow();

newRow3["CategoryName"] = "Seafood";

dataSet1.Tables["Categories"].Rows.Add(newRow3);

 16. With Form1 in Design view, select dataSet1 in the component tray.

 17. From the Tables property in the Property window, open the Tables Collection Editor

and add another table to the DataSet.

 18. Set its Name and TableName properties to Products.

 19. Add a column and set the following properties:

 AllowDBNull = False

 AutoIncrement = True

 ColumnName = ProductID

 DataType = System.Int32

 Name = ProductID

 Lesson 1: Creating DataSet Objects CHAPTER 7 355

 20. Add a column and set the following properties:

 AllowDBNull = False

 ColumnName = ProductName

 DataType = System.String

 Name = ProductName

 21. Add a column and set the following properties:

 AllowDBNull = False

 ColumnName = CategoryID

 DataType = System.Int32

 Name = CatID

 22. Click Close. Select the Constraints property for the Products table and click Add to add

a Unique constraint.

 23. Select the ProductID column and the Primary Key check box and click OK.

 24. Add a Foreign Key Constraint and set the following:

 Parent table = Categories

 Child table = Products

 Key columns = CategoryID

 Foreign Key columns = CategoryID

 25. Click OK.

 26. Close the Collection Editors, and then close the Table Collection Editor.

 27. Select dataSet1 in the component tray and add a DataRelation by clicking the ellipsis in

the Relations property of dataSet1.

 28. Click Add in the Relations Collection Editor. Set the following in the Relations dialog

box:

 Name = CategoriesProducts

 Parent table = Categories

 Child table = Products

 Key columns = CategoryID

 Foreign Key columns = CategoryID

 29. Close the dialog boxes.

 30. Add the following code to the bottom of the FillDatasetButton_Click event handler:

 ' VB

Dim newRow4 As DataRow = DataSet1.Tables("Products").NewRow()

newRow4.Item("CategoryID") = 1

 356 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

newRow4.Item("ProductName") = "Chai"

DataSet1.Tables("Products").Rows.Add(newRow4)

Dim newRow5 As DataRow = DataSet1.Tables("Products").NewRow()

newRow5.Item("CategoryID") = 2

newRow5.Item("ProductName") = "Aniseed Syrup"

DataSet1.Tables("Products").Rows.Add(newRow5)

Dim newRow6 As DataRow = DataSet1.Tables("Products").NewRow()

newRow6.Item("CategoryID") = 3

newRow6.Item("ProductName") = "Ikura"

DataSet1.Tables("Products").Rows.Add(newRow6)

Dim newRow7 As DataRow = DataSet1.Tables("Products").NewRow()

newRow7.Item("CategoryID") = 1

newRow7.Item("ProductName") = "Chang"

DataSet1.Tables("Products").Rows.Add(newRow7)

Dim newRow8 As DataRow = DataSet1.Tables("Products").NewRow()

newRow8.Item("CategoryID") = 2

newRow8.Item("ProductName") = "Chef Anton’s Gumbo Mix"

DataSet1.Tables("Products").Rows.Add(newRow8)

Dim newRow9 As DataRow = DataSet1.Tables("Products").NewRow()

newRow9.Item("CategoryID") = 3

newRow9.Item("ProductName") = "Boston Crab Meat"

DataSet1.Tables("Products").Rows.Add(newRow9)

// C#

DataRow newRow4 = dataSet1.Tables["Products"].NewRow();

newRow4["CategoryID"] = 1;

newRow4["ProductName"] = "Chai";

dataSet1.Tables["Products"].Rows.Add(newRow4);

DataRow newRow5 = dataSet1.Tables["Products"].NewRow();

newRow5["CategoryID"] = 2;

newRow5["ProductName"] = "Aniseed Syrup";

dataSet1.Tables["Products"].Rows.Add(newRow5);

DataRow newRow6 = dataSet1.Tables["Products"].NewRow();

newRow6["CategoryID"] = 3;

newRow6["ProductName"] = "Ikura";

dataSet1.Tables["Products"].Rows.Add(newRow6);

DataRow newRow7 = dataSet1.Tables["Products"].NewRow();

newRow7["CategoryID"] = 1;

 Lesson 1: Creating DataSet Objects CHAPTER 7 357

newRow7["ProductName"] = "Chang";

dataSet1.Tables["Products"].Rows.Add(newRow7);

DataRow newRow8 = dataSet1.Tables["Products"].NewRow();

newRow8["CategoryID"] = 2;

newRow8["ProductName"] = "Chef Anton’s Gumbo Mix";

dataSet1.Tables["Products"].Rows.Add(newRow8);

DataRow newRow9 = dataSet1.Tables["Products"].NewRow();

newRow9["CategoryID"] = 3;

newRow9["ProductName"] = "Boston Crab Meat";

dataSet1.Tables["Products"].Rows.Add(newRow9);

 31. Create an event handler for the DataGridView1_CellDoubleClick event and add the fol-

lowing code:

 ' VB

' Get the CategoryID of the selected row

Dim Category As Integer = _

 CInt(DataGridView1.SelectedRows(0).Cells("CategoryID").Value)

' Get the underlying DataRow that is selected

Dim rows() As DataRow = _

 DataSet1.Tables("Categories").Select(_

 "CategoryID = " & Category)

' Use the GetChildRows method to navigate the relationship and return

' the related records

Dim ProductList As String = ""

For Each r As DataRow In _

 rows(0).GetChildRows("CategoriesProducts")

 ProductList += r.Item("ProductName").ToString & _

 Environment.NewLine

Next

' Display the products in a message box

MessageBox.Show(ProductList)

// C#

// Get the CategoryID of the selected row

int Category =

 (int)dataGridView1.SelectedRows[0].Cells[

 "CategoryID"].Value;

// Get the underlying DataRow that is selected

DataRow[] rows =

 dataSet1.Tables["Categories"].Select(

 "CategoryID = " + Category);

 358 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

// Use the GetChildRows method to navigate the relationship

// and return the related records

string ProductList = "";

foreach (DataRow r in rows[0].GetChildRows(

 "CategoriesProducts"))

{

 ProductList += r["ProductName"].ToString() +

 Environment.NewLine;

}

// Display the products in a message box

MessageBox.Show(ProductList);

 32. Run the application and click the Fill Dataset button.

 33. Double-click one of the categories in the grid to open a message box displaying the

related products.

Lesson Summary
 Create DataSet objects programmatically by instantiating new DataSet objects in code

and adding DataTable and DataRelation objects, much like tables and relationships in a

database.

 Create typed DataSet objects with the DataSet Designer and the Data Source Confi gu-

ration Wizard.

 Typed DataSet objects are automatically created with TableAdapter objects that have

methods that fi ll and update the data in the data tables of the DataSet.

 You can create untyped and typed DataSet objects by dragging a DataSet object from

the data Toolbox onto a form.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 1: Creating DataSet Objects CHAPTER 7 359

 1. What is a DataSet? (Choose all that apply.)

 A. A pointer to a remote database

 B. A collection of DataTable and DataRelation objects

 C. An in-memory cache of data

 D. A collection of records from a database

 2. What are the three main objects when working with a DataSet?

 A. DataTable, DataRelation, and DataAdapter

 B. DataTable, DataColumn, and DataRelation

 C. DataTable, DataRelation, and Constraint

 D. DataTable, DataColumn, and type

 3. How do you programmatically access related records in a DataSet?

 A. By calling the GetParentRow and GetChildRows methods of a DataSet

 B. By calling the GetParentRow and GetChildRows methods of a DataTable

 C. By calling the GetParentRow and GetChildRows methods of a DataRow

 D. By accessing the ParentColumns and ChildColumns of a DataRelation

 360 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

Lesson 2: Creating DataTable Objects

This lesson describes how to create DataTable objects, which are ADO.NET objects in the

System.Data namespace that provide in-memory storage for the data in your application

similar to a table in a database. You can add DataTable objects to DataSet objects and relate

them to other DataTable objects using a DataRelation object, or you can use DataTable

objects as stand-alone objects independent of DataSet objects.

Once you have created a DataTable object, defi ne the schema of the table by creating

and adding columns and constraints similar to tables in a database. This lesson will focus on

creating and confi guring the DataTable, preparing it to receive data. The process of fi lling the

DataTable with data, as well as manipulating the data in the table, will be covered later in this

chapter.

After this lesson, you will be able to:

 Create DataTable objects.

 Create a DataTable.

 Add a DataTable to a DataSet.

 Defi ne the schema of a DataTable.

 Add columns to a table.

 Create expression columns.

 Create AutoIncrementing columns.

 Defi ne a primary key for a table.

 Add constraints to a table.

Estimated lesson time: 45 minutes

How to Create DataTable Objects
You create DataTable objects by declaring an instance of the DataTable object. You can

optionally provide the name of the DataTable as well as the Namespace that will be used

when rendering the data in XML. For example, the following code example creates a new

DataTable named SalesData:

' VB

Private SalesDataTable As New DataTable("SalesData")

// C#

Private DataTable SalesDataTable = new DataTable("SalesData");

After this lesson, you will be able to:

Create DataTable objects.

Create a DataTable.

Add a DataTable to a DataSet.

Defi ne the schema of a DataTable.

Add columns to a table.

Create expression columns.

Create AutoIncrementing columns.

Defi ne a primary key for a table.

Add constraints to a table.

Estimated lesson time: 45 minutes

 Lesson 2: Creating DataTable Objects CHAPTER 7 361

 How to Add a DataTable to a DataSet
 DataTable objects can be used as stand-alone objects but, when representing relational data

in your application, it is much more useful to work with DataTable objects as part of DataSet

objects where you can relate them together with DataRelation objects and access related

records, much like working with a database. For example, the following code sample creates a

new DataTable and adds it to a DataSet:

 ' VB

' Create a new Dataset.

Dim NorthwindDataset As New DataSet("NorthwindData")

' Create a new DataTable.

Dim CustomersTable As New DataTable("Customers")

' Add the Datatable to the Dataset’s Tables collection.

NorthwindDataset.Tables.Add(CustomersTable)

// C#

// Create a new DataSet.

DataSet NorthwindDataset = new DataSet("NorthwindData");

// Create a new DataTable.

DataTable CustomersTable = new DataTable("Customers");

// Add the DataTable to the Dataset’s Tables collection.

NorthwindDataset.Tables.Add(CustomersTable);

 How to Create Expression Columns in DataTable Objects
 You can add expression columns to a DataTable when you want to store the results of a calcu-

lation between existing columns as an additional column in the table. In other words, you can

perform a calculation on existing columns and store the results in an additional column (the

expression column). For example, consider the Order Details table in the Northwind database.

The table contains a UnitPrice column and a Quantity column. What the table does not have

is a TotalPrice (also called an ExtendedPrice) column. If you wanted to add a column that

displayed (or stored) the total price of a row in the Order Details table, you could do this by

adding an expression column. The following code example shows how to create an expression

column and add it to the NorthwindDataSet.Order_Details table:

 ' VB

 ' Create a new DataColumn and set its name and data type.

Dim TotalPriceColumn As New DataColumn("TotalPrice", GetType(System.Double))

' Set the column’s Expression property to the desired expression,

' in this case the UnitPrice x Quantity, which is the total price

 362 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

' of this record.

TotalPriceColumn.Expression = ("UnitPrice * Quantity")

' Now add the column to the DataTable

NorthwindDataSet.Order_Details.Columns.Add(TotalPriceColumn)

// C#

// Create a new DataColumn and set its name and data type.

DataColumn TotalPriceColumn = new DataColumn

 ("TotalPrice", System.Type.GetType("System.Double"));

// Set the column’s Expression property to the desired expression,

// in this case the UnitPrice x Quantity, which is the total price of this record.

TotalPriceColumn.Expression = ("UnitPrice * Quantity");

// Now add the column to the DataTable

northwindDataSet.Order_Details.Columns.Add(TotalPriceColumn);

 How to Create Autoincrementing Columns in DataTable
Objects
 The DataTable itself assigns values to an autoincrementing column in the table. This is typical

of a table that contains information, such as order information, where it is desirable to have a

unique OrderID, but the actual value of the OrderID column isn’t important other than that it

needs to be unique. DataColumn objects provide specifi c properties to create autoincrement-

ing columns where you can set the starting value, called the AutoIncrementSeed, as well as the

increment, or number added to the last value, which is called the AutoIncrementStep.

 The following code sample shows how to create an autoincrement column that creates

records with a SalesOrderID value starting at 100 and adds 5 to the previous value with each

new row added. In other words, the fi rst record created has a value of 100 in the SalesOrderID

column, the next row has a value of 105, the next row 110, and so on.

 ' VB

' Create the SalesOrderID column and set its data type to an integer.

SalesTable.Columns.Add("SalesOrderID", Type.GetType("System.Int32"))

' Setting the AutoIncrement property to True makes this an

' autoincrement column!

SalesTable.Columns("SalesOrderID").AutoIncrement = True

' Provide the starting value in the AutoIncrementSeed property.

SalesTable.Columns("SalesOrderID").AutoIncrementSeed = 100

 Lesson 2: Creating DataTable Objects CHAPTER 7 363

' The amount added to the previous row’s value is determined by the

' AutoIncrementStep value.

SalesTable.Columns("SalesOrderID").AutoIncrementStep = 5

// C#

// Create the SalesOrderID column and set its data type to an integer.

SalesTable.Columns.Add("SalesOrderID", Type.GetType("System.Int32"));

// Setting the AutoIncrement property to true makes this an

// autoincrement column!

SalesTable.Columns["SalesOrderID"].AutoIncrement = true;

// Provide the starting value in the AutoIncrementSeed property.

SalesTable.Columns["SalesOrderID"].AutoIncrementSeed = 100;

// The amount added to the previous row’s value is determined by the

// AutoIncrementStep value.

SalesTable.Columns["SalesOrderID"].AutoIncrementStep = 5;

 How to Add Constraints to a DataTable
 You can create DataTable objects with constraints similar to tables in databases. For example,

you can designate columns in a DataTable to be foreign keys, or you can designate columns

to contain unique values when it is inappropriate for a table to contain records with duplicate

values in a column.

 How to Create a Foreign Key Constraint

 You create foreign key constraints by creating an instance of the ForeignKeyConstraint class

and assigning the desired column or columns from the parent and child tables to the con-

straint. For example, the following bit of code creates a new foreign key constraint between

the OrderID columns from the Orders and OrderDetails tables in Northwind:

 ' VB

Dim ForeignKey As New ForeignKeyConstraint("FK_Orders_OrderDetails", _

 NorthwindDataset.Orders.Columns("OrderID"), _

 NorthwindDataset.Order_Details.Columns("OrderID"))

NorthwindDataset.Orders.Constraints.Add(ForeignKey)

// C#

ForeignKeyConstraint ForeignKey = new ForeignKeyConstraint("FK_Orders_OrderDetails",

 NorthwindDataset.Orders.Columns["OrderID"],

 NorthwindDataset.Order_Details.Columns["OrderID"]);

NorthwindDataset.Orders.Constraints.Add(ForeignKey);

 364 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

How to Create a Unique Constraint

You create unique constraints by creating an instance of the UniqueConstraint class and

assigning the column to contain unique values to the constructor. For example, the follow-

ing bit of code places a unique constraint on the OrderID column in the Orders table in

Northwind:

 ' VB

 Dim Unique As New UniqueConstraint(NorthwindDataSet.Orders.OrderIDColumn)

NorthwindDataSet.Orders.Constraints.Add(Unique)

// C#

UniqueConstraint unique = new UniqueConstraint(NorthwindDataSet.Orders.OrderIDColumn);

northwindDataSet.Orders.Constraints.Add(unique);

 Quick Check

 1. How do you add DataTables to a DataSet?

 2. How do you display the computation of existing columns in a table?

Quick Check Answers

 1. Add the table to the DataSet.Tables collection.

 2. By creating an expression column.

LAB Creating DataTable Objects

In this lab you will create DataTable objects.

EXERCISE 1 Creating a DataTable

The following example describes how to create a DataTable as well as how to create a new

row of data and add it to the table. For demonstration purposes, the DataTable is displayed in

a DataGridView.

 1. Create a Windows Forms application and name it CreatingDataTables.

 2. Add a DataGridView to Form1 and name it TableGrid.

 3. Add a Button to the form and set the following properties:

 Name = CreateTableButton

 Text = Create Table

 4. Add a second Button to the form and set the following properties:

 Name = AddRowButton

 Text = Add Row

 5. Double-click each button to create the button click event handlers.

Quick Check

1. How do you add DataTables to a DataSet?

2. How do you display the computation of existing columns in a table?

Quick Check Answers

1. Add the table to the DataSet.Tables collection.

2. By creating an expression column.

Q

 Lesson 2: Creating DataTable Objects CHAPTER 7 365

 6. Add the following code to the form (global to the form, outside any methods):

 ' VB

' Instantiate a new table (global to the form).

Private CustomersTable As New DataTable("Customers")

// C#

// Instantiate a new table (global to the form).

private DataTable CustomersTable = new DataTable("Customers");

 7. Add the following code to the CreateTableButton_Click event handler:

 ' VB

' Set the DataGridView to display the table

TableGrid.DataSource = CustomersTable

' Define the schema of the table by adding DataColumn objects to

' the table’s Columns collection.

CustomersTable.Columns.Add("CustomerID", Type.GetType("System.String"))

CustomersTable.Columns.Add("CompanyName", Type.GetType("System.String"))

CustomersTable.Columns.Add("ContactName", Type.GetType("System.String"))

CustomersTable.Columns.Add("ContactTitle", Type.GetType("System.String"))

CustomersTable.Columns.Add("Address", Type.GetType("System.String"))

CustomersTable.Columns.Add("City", Type.GetType("System.String"))

CustomersTable.Columns.Add("Region", Type.GetType("System.String"))

CustomersTable.Columns.Add("PostalCode", Type.GetType("System.String"))

CustomersTable.Columns.Add("Country", Type.GetType("System.String"))

CustomersTable.Columns.Add("Phone", Type.GetType("System.String"))

CustomersTable.Columns.Add("Fax", Type.GetType("System.String"))

' Set the CustomerID column As the primary key

Dim KeyColumns(1) As DataColumn

KeyColumns(0) = CustomersTable.Columns("CustomerID")

CustomersTable.PrimaryKey = KeyColumns

' Set the CustomerID and CompanyName columns

' to disallow Null values.

CustomersTable.Columns("CustomerID").AllowDBNull = False

CustomersTable.Columns("CompanyName").AllowDBNull = False

// C#

// Set the DataGridView to display the table

TableGrid.DataSource = CustomersTable;

// Define the schema of the table

// by adding DataColumn objects to

// the table’s Columns collection.

 366 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

CustomersTable.Columns.Add("CustomerID", Type.GetType("System.String"));

CustomersTable.Columns.Add("CompanyName", Type.GetType("System.String"));

CustomersTable.Columns.Add("ContactName", Type.GetType("System.String"));

CustomersTable.Columns.Add("ContactTitle", Type.GetType("System.String"));

CustomersTable.Columns.Add("Address", Type.GetType("System.String"));

CustomersTable.Columns.Add("City", Type.GetType("System.String"));

CustomersTable.Columns.Add("Region", Type.GetType("System.String"));

CustomersTable.Columns.Add("PostalCode", Type.GetType("System.String"));

CustomersTable.Columns.Add("Country", Type.GetType("System.String"));

CustomersTable.Columns.Add("Phone", Type.GetType("System.String"));

CustomersTable.Columns.Add("Fax", Type.GetType("System.String"));

// Set the CustomerID column as the primary key

DataColumn[] KeyColumns = new DataColumn[1];

KeyColumns[0] = CustomersTable.Columns["CustomerID"];

CustomersTable.PrimaryKey = KeyColumns;

// Set the CustomerID and CompanyName columns

// to disallow Null values.

CustomersTable.Columns["CustomerID"].AllowDBNull = false;

CustomersTable.Columns["CompanyName"].AllowDBNull = false;

 8. Add the following code to the AddRowButton_Click event handler:

 ' VB

' Create a record (DataRow) to add to the table.

Dim CustRow As DataRow = CustomersTable.NewRow

With CustRow

 .Item("CustomerID") = "ALFKI"

 .Item("CompanyName") = "Alfreds Futterkiste"

 .Item("ContactName") = "Maria Anders"

 .Item("ContactTitle") = "Sales Representative"

 .Item("Address") = "Obere Str. 57"

 .Item("City") = "Berlin"

 .Item("Region") = Nothing

 .Item("PostalCode") = "12209"

 .Item("Country") = "Germany"

 .Item("Phone") = "030-0074321"

 .Item("Fax") = "030-0076545"

End With

' Add the record to the table.

CustomersTable.Rows.Add(CustRow)

 Lesson 2: Creating DataTable Objects CHAPTER 7 367

// C#

// Create a record (DataRow) to add to the table.

DataRow CustRow = CustomersTable.NewRow();

Object[] CustRecord = {

 "ALFKI",

 "Alfreds Futterkiste",

 "Maria Anders",

 "Sales Representative",

 "Obere Str. 57",

 "Berlin",

 null,

 "12209",

 "Germany",

 "030-0074321",

 "030-0076545"};

CustRow.ItemArray = CustRecord;

// Add the record to the table.

CustomersTable.Rows.Add(CustRow);

 9. Run the application and click the Create Table button.

 The grid displays an empty data table with the columns, as shown in Figure 7-9.

 FIGURE 7-9 Form after you click the Create Table button

 10. Click the Add Row button, and a new record is added to the table, as shown in Figure

7-10.

 368 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

FIGURE 7-10 Form after you click the Add Row button

 11. Click the Add Row button again and note the exception that occurs.

Lesson Summary
DataTable objects contain columns (DataColumn objects) and constraints just like

tables in a database.

DataColumn and Constraint objects defi ne the schema of a DataTable.

Constraints are created and added to the DataTable.Constraints collection.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Creating DataTable Objects CHAPTER 7 369

 1. What are the steps to create a DataTable programmatically?

 A. Run the Data Source Confi guration Wizard.

 B. Instantiate a new DataTable and add DataColumn objects to the DataTable

.Columns collection.

 C. Add a new DataSet object to your project.

 D. Instantiate a new DataSet object.

 2. On what object would you set the properties to create a primary key for a DataTable?

 A. DataSet

 B. DataTable

 C. DataColumn

 D. DataRelation

 3. How do you specify that a DataColumn in a DataTable is part of a foreign key?

 A. Set the DataColumn.ForeignKey property to True.

 B. Set the DataTable.ForeignKey property to the desired DataColumn.

 C. Instantiate a new ForeignKey class and add it to the DataTable.Constraints

collection.

 D. Defi ne the foreign key in the DataRelation object.

 370 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

Lesson 3: Creating DataAdapter Objects

DataAdapter objects contain the connection information as well as the SELECT, UPDATE,

INSERT, and DELETE commands needed to fetch and update data from a database and

populate DataTable and DataSet objects. This lesson describes how to create and work with

DataAdapter objects in ADO.NET.

After this lesson, you will be able to:

 Generate a strongly typed DataSet.

 Use the OleDbDataAdapter object to access an ADO Recordset or record.

 Generate DataAdapter commands automatically, using the CommandBuilder

object.

 Generate DataAdapter commands programmatically.

 Populate a DataSet with a DataAdapter.

 Update the database with a DataAdapter.

 Resolve confl icts between a DataSet and a database, using the DataAdapter.

 Respond to changes made to data at the data source by using DataAdapter

events.

 Detect and respond to the RowUpdating event.

 Detect and respond to the RowUpdated event.

 Detect and respond to the FillError event.

 Perform batch operations using DataAdapter objects.

 Perform batch updates with a DataAdapter.

 Handle batch update-related events and errors.

 Estimated lesson time: 45 minutes

 What Is a DataAdapter?
 DataAdapter objects are provider-specifi c objects (meaning there are specifi c data adapters

for each provider—for example, SqlDataAdapter and OleDbDataAdapter objects). Data-

Adapter objects contain information, such as a data connection and commands, that enables

your application to communicate with a database and fi ll a DataSet object’s DataTable objects

with data, as well as send updated data back to the database after changes are made to the

data in your application’s DataTable objects.

After this lesson, you will be able to:

Generate a strongly typed DataSet.

Use the OleDbDataAdapter object to access an ADO Recordset or record. r

Generate DataAdapter commands automatically, using the r CommandBuilder

object.

Generate DataAdapter commands programmatically. r

Populate a DataSet with a t DataAdapter.rr

Update the database with a DataAdapter.rr

Resolve confl icts between a DataSet and a database, using the t DataAdapter.rr

Respond to changes made to data at the data source by using DataAdapter

events.

Detect and respond to the RowUpdating event.

Detect and respond to the RowUpdated event. d

Detect and respond to the FillError event.

Perform batch operations using DataAdapter objects.

Perform batch updates with a DataAdapter.rr

Handle batch update-related events and errors.

Estimated lesson time: 45 minutes

 Lesson 3: Creating DataAdapter Objects CHAPTER 7 371

 How to Create DataAdapter Objects
 You can create DataAdapter objects through the UI, using the Data Adapter Confi guration

Wizard, or programmatically, by instantiating an instance of the desired provider-specifi c

adapter and passing in a SELECT statement and a valid Connection object to the constructor.

The practices in this lesson provide detailed instructions for creating adapters both through

the UI and programmatically.

 The following code shows how to instantiate a new DataAdapter by passing in the initial

SELECT statement and a valid Connection object to the constructor:

 ' VB

 ' Create the SqlDataAdapter

Dim SqlDataAdapter1 as New SqlDataAdapter(_

 "SELECT * FROM Shippers", NorthwindConnection)

// C#

// Create the SqlDataAdapter

private SqlDataAdapter SqlDataAdapter1 = new SqlDataAdapter(

 "SELECT * FROM Shippers", NorthwindConnection);

 DataAdapter Commands
 You typically confi gure DataAdapter objects by specifying a single SELECT statement, which

the DataAdapter uses to fetch data and populate a DataTable in a DataSet. It’s important

to understand how the DataAdapter uses that SELECT statement as the basis for automati-

cally generating the INSERT, UPDATE, and DELETE statements that are needed to save

changes made in the DataSet back to the database when calling the Update method of the

DataAdapter. The DataAdapter generates these additional commands for you as part of the

DataAdapter Confi guration Wizard (or DataSource Confi guration Wizard, depending on your

method of confi guring data objects).

 When you are creating DataAdapters programmatically, you might want to create the

commands manually, or, when using complex queries, you might need to manually con-

fi gure the commands used for updating. There are two ways to confi gure commands for

a DataAdapter: you can create Command objects and assign them to their corresponding

DataAdapter properties or you can use a CommandBuilder object.

 Creating Command Objects for a DataAdapter

 You create the SELECT, INSERT, UPDATE, and DELETE commands for the DataAdapter by

coding individual valid commands for your particular database and assigning them to the

corresponding DataAdapter command property. For example, the following code shows how

to create the individual commands for a DataAdapter named SqlDataAdapter1. This example

assumes a valid NorthwindConnection object, as well as valid SQL statements for each com-

mand. (See the CreatingDataAdapterCommands sample installed from the CD.)

 372 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 ' VB

 ' Create the SqlDataAdapter

Dim SqlDataAdapter1 As New SqlDataAdapter("SELECT * FROM Shippers", _

 NorthwindConnection)

Dim InsertCommand As New SqlCommand("Valid SQL INSERT statement", NorthwindConnection)

' configure any necessary parameters for your command

Dim UpdateCommand As New SqlCommand("Valid SQL UPDATE statement", NorthwindConnection)

' configure any necessary parameters for your command

Dim DeleteCommand As New SqlCommand("Valid SQL DELETE statement", NorthwindConnection)

' configure any necessary parameters for your command

' Add the commands to the DataAdapter

SqlDataAdapter1.InsertCommand = InsertCommand

SqlDataAdapter1.UpdateCommand = UpdateCommand

SqlDataAdapter1.DeleteCommand = DeleteCommand

// C#

// Create the SqlDataAdapter

private SqlDataAdapter SqlDataAdapter1 = new SqlDataAdapter

 ("SELECT * FROM Shippers", NorthwindConnection);

SqlCommand InsertCommand = new SqlCommand("Valid SQL INSERT statement",

 NorthWindConnection);

// configure any necessary parameters for your command

SqlCommand UpdateCommand = new SqlCommand("Valid SQL UPDATE statement",

 NorthWindConnection);

// configure any necessary parameters for your command

SqlCommand DeleteCommand = new SqlCommand("Valid SQL DELETE statement",

 NorthWindConnection);

// configure any necessary parameters for your command

// Add the commands to the DataAdapter

SqlDataAdapter1.InsertCommand = InsertCommand;

SqlDataAdapter1.UpdateCommand = UpdateCommand;

SqlDataAdapter1.DeleteCommand = DeleteCommand;

 Lesson 3: Creating DataAdapter Objects CHAPTER 7 373

 Using a CommandBuilder to Generate Commands for a DataAdapter

 If your DataAdapter uses a SELECT statement that fetches data from a single table, you can

use a CommandBuilder to automatically generate the INSERT, UPDATE, and DELETE state-

ments for the adapter. Another requirement for using a CommandBuilder is that your SELECT

statement must return at least one primary key or unique column from the table.

 To generate commands automatically using a CommandBuilder, instantiate a new Com-

mandBuilder object in code and pass the DataAdapter for which you want to generate the

commands into the constructor.

 The following code shows how to generate commands for a DataAdapter named SqlData-

Adapter1 using a CommandBuilder:

 ' VB

' Instantiate a DataAdapter with a valid SELECT statement

Dim SqlDataAdapter1 As New SqlDataAdapter("Valid Single Table SELECT Statement")

' Instantiate a CommandBuilder for SqlDataAdapter1

Dim commands As New SqlCommandBuilder(SqlDataAdapter1)

// C#

// Instantiate a DataAdapter with a valid SELECT statement

SqlDataAdapter SqlDataAdapter1 = new SqlDataAdapter(

 "Valid Single Table SELECT Statement");

// Instantiate a CommandBuilder for SqlDataAdapter1

SqlCommandBuilder commands = new SqlCommandBuilder(SqlDataAdapter1);

 Generating Typed DataSet Objects from DataAdapter
Objects
 You can generate strongly typed DataSet objects based on the information contained in a

confi gured DataAdapter by selecting the Generate DataSet command on the Data menu. You

need an existing DataAdapter confi gured with a SelectCommand to successfully generate a

typed DataSet using the Generate DataSet command.

 Resolving Confl icts Between a DataSet and a Database
Using the DataAdapter
 DataAdapter objects provide two specifi c properties that assist in resolving confl icts that

might occur when you are attempting to fi ll a DataSet with a DataAdapter. These are the

MissingMappingAction property and the MissingSchemaAction property. These confl icts typi-

cally occur when changes have been made to the database schema or to the dataset schema.

For example, if columns are added to a table in the database and you attempt to perform

a SELECT * from that table, the adapter uses these properties to decide what to do with the

extra column and data.

 374 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 MissingMappingAction

 The MissingMappingAction property determines what your application should do when it

attempts to fi ll data into a DataSet and the DataSet does not contain any matching table or

column mappings that the DataAdapter is trying to fi ll. Set the MissingMappingAction prop-

erty to one of the values in the MissingMappingAction enumeration shown in Table 7-1.

 TABLE 7-1 MissingMappingAction Enumerations

 NAME DESCRIPTION

 Error Setting the MissingMappingAction to Error will throw an Invalid-

OperationException if the DataAdapter attempts to fi ll data in a

column or table that does not exist.

 Ignore No action is taken. Any data that is targeted to a column or table

that does not exist is discarded.

 Passthrough The column or table is created in the DataSet and populated with

the available data.

 MissingSchemaAction

 The MissingSchemaAction property determines what your application should do when it

attempts to fi ll data into a DataSet and the DataSet does not contain the expected schema

that the DataAdapter is trying to fi ll. Set the MissingSchemaAction property to one of the

values in the MissingSchemaAction enumeration shown in Table 7-2.

 TABLE 7-2 MissingSchemaAction Enumeration

 NAME DESCRIPTION

 Add The column or table is created in the DataSet and populated with the

available data.

 AddWithKey The column is created (including any primary key information associated

with the column) in the DataSet and populated with the available data.

 Error Setting the MissingMappingAction to Error will throw an InvalidOpera-

tionException if the DataAdapter attempts to fi ll data in a column or table

that does not exist.

 Ignore No action is taken. Any data that is targeted to a column or table that

does not exist is discarded.

 Lesson 3: Creating DataAdapter Objects CHAPTER 7 375

Performing Batch Operations Using DataAdapter Objects
DataAdapter objects provide the opportunity to execute commands in batches through the

DataAdapter.UpdateBatchSize property. Execute commands in batches when you are updat-

ing large numbers of records and want to reduce round trips to the database.

Performing Batch Updates with a DataAdapter

 Set the UpdateBatchSize property of the DataAdapter to an integer representing the number

of statements to execute as a batch. For example, to send batches of fi ve statements at a time,

you would set UpdateBatchSize = 5. Setting UpdateBatchSize = 0 causes the batch size to

default to the largest batch size the server can process.

 Handling Batch Update-Related Events and Errors

 When performing batch updates, the DataAdapter fi res a RowUpdating event for each row

being updated but fi res only one RowUpdated event for the entire batch.

 REAL WORLD

 Steve Stein

 One of the fi rst applications I ever worked on had a back-end database that

contained about 20 or so tables. The number of custom objects that were used

to perform queries and updates to the data in all these different tables was ridicu-

lous! DataAdapters would have provided me with a more organized infrastructure

and taken care of creating most, if not all, of the actual update logic for me.

 LAB Working with DataAdapter Objects

 In this lab you will create DataAdapters.

 EXERCISE 1 Creating a DataAdapter with the Data Adapter Confi guration Wizard

 1. Create a Windows Forms application and name it DataAdapterWizardExample.

 In this version of Visual Studio, DataAdapter objects have been removed from the

Toolbox, so fi rst add the SqlDataAdapter back into the Toolbox for this example.

 2. Right-click the Data tab of the Toolbox and select Choose Items.

 3. In the Choose Toolbox Items dialog box, select the SqlDataAdapter item in the .NET

Framework Components tab and click OK.

 This adds the SqlDataAdapter item into the Toolbox.

REAL WORLD

Steve Stein

One of the fi rst applications I ever worked on had a back-end database that

contained about 20 or so tables. The number of custom objects that were used

to perform queries and updates to the data in all these different tables was ridicu-

lous! DataAdapters would have provided me with a more organized infrastructure

and taken care of creating most, if not all, of the actual update logic for me.

 376 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 4. Drag the SqlDataAdapter object onto Form1 to start the Data Adapter Confi guration

Wizard.

 5. On the Choose Your Data Connection page, select a connection to the Northwind

database (or create a new connection if necessary).

 6. On the Choose A Command Type page, leave the default setting of Use SQL State-

ments and click Next.

 7. On the Generate The SQL Statements page, type the following SQL statement:

 SELECT * FROM Customers

 8. Click Finish to complete the wizard and add an instance of the confi gured SqlData-

Adapter to the form.

 9. Generate a strongly typed DataSet based on the confi gured adapter by selecting

Generate DataSet on the Data menu..

 You will notice that SqlDataAdapter1 is selected in the dialog box; this is the informa-

tion that will be used to generate the strongly typed DataSet.

 10. Replace the name of DataSet1 with NorthwindDataSet1 in the Generate DataSet

dialog box; click OK to create a new DataSet and add it to the project.

 11. Drag a DataGridView onto Form1.

 12. Double-click an empty area of the form to create a Form_Load event handler.

 13. Add the following code to the Form_Load event handler:

 ' VB

' Set the grid to display the customers table

DataGridView1.DataSource = NorthwindDataSet1.Customers

' Call the Fill method of the DataAdapter to load the customers

' table with data.

SqlDataAdapter1.Fill(NorthwindDataSet1.Customers)

// C#

// Set the grid to display the customers table

dataGridView1.DataSource = NorthwindDataSet1.Customers;

// Call the Fill method of the DataAdapter to load the customers

// table with data.

sqlDataAdapter1.Fill(NorthwindDataSet1.Customers);

 14. Run the application and verify that the Customers table appears in the grid.

 15. Add a Button to the form and set the following properties:

 Name = UpdateButton

 Text = Save Changes

 Lesson 3: Creating DataAdapter Objects CHAPTER 7 377

 16. Double-click the Save Changes button to create the button-click event handler.

 17. Add the following code to the UpdateButton_Click event handler:

 ' VB

' Call the Update method of the data adapter to save the changes

' to the database.

SqlDataAdapter1.Update(NorthwindDataSet1)

// C#

// Call the Update method of the data adapter to save the

// changes to the database.

sqlDataAdapter1.Update(NorthwindDataSet1);

 18. DataAdapter objects expose events that can be used when performing operations

against a data source—for example, the RowUpdating, RowUpdated, and FillError

events. The following steps add code and logic to the example that demonstrates

working with these events.

 19. For Visual Basic, in the Class Name drop-down list (the left-side combobox on top of

the code editor), select SqlDataAdapter1. Create an event handler for the RowUpdating

event by selecting RowUpdating from the Method Name drop-down list.

 20. For C# projects, select the SqlDataAdapter1 control in the component tray and use the

Events button in the Properties window to create a RowUpdating event handler.

 21. Add the following code to the RowUpdating event handler:

 ' VB

' Create a Customer Row and assign it the row being changed

Dim CustRow As NorthwindDataSet1.CustomersRow = CType(_

 e.Row, NorthwindDataSet1.CustomersRow)

' Display a dialog to confirm the update

Dim response As DialogResult = MessageBox.Show(_

 "Continue updating " & _

 CustRow.CustomerID.ToString & "?", "Continue Update?", _

 MessageBoxButtons.YesNo)

' Cancel the update if user selects No

If response = Windows.Forms.DialogResult.No Then

 e.Status = UpdateStatus.SkipCurrentRow

End If

// C#

// Create a Customer Row and assign it the row being changed

NorthwindDataSet1.CustomersRow CustRow =

 (NorthwindDataSet1.CustomersRow)e.Row;

// Display a dialog to confirm the update

 378 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

DialogResult response = MessageBox.Show("Continue updating " +

 CustRow.CustomerID.ToString() + "?", "Continue Update?",

 MessageBoxButtons.YesNo);

// Cancel the update if user selects No

if (response == DialogResult.No)

{

 e.Status = UpdateStatus.SkipCurrentRow;

}

 22. Create an event handler for the RowUpdated event by selecting RowUpdated from

the Method Name drop-down list. (For C# projects, select the SqlDataAdapter control

in the component tray and use the Events button in the Properties window to create

events.)

 23. Add the following code to the RowUpdated event handler:

 ' VB

' Create a Customer Row and assign it the row being changed

Dim CustRow As NorthwindDataSet1.CustomersRow = CType(_

 e.Row, NorthwindDataSet1.CustomersRow)

MessageBox.Show(CustRow.CustomerID.ToString & _

 " has been updated")

// C#

// Create a Customer Row and assign it the row being changed

NorthwindDataSet1.CustomersRow CustRow =

 (NorthwindDataSet1.CustomersRow)e.Row;

MessageBox.Show(CustRow.CustomerID.ToString() +

 " has been updated");

 24. Create an event handler for the FillError event by selecting FillError from the Method

Name drop-down list. (For C# projects, select the SqlDataAdapter control in the com-

ponent tray and use the Events button in the Properties window to create events.)

 25. Add the following code to the FillError event handler:

 ' VB

' Display a dialog to respond to the error

Dim response As DialogResult = MessageBox.Show(_

 "The following error occurred while Filling the DataSet: " & _

 e.Errors.Message.ToString & " Continue attempting to fill?", _

 "FillError Encountered", MessageBoxButtons.YesNo)

' Attempt to continue if user selects Yes

If response = Windows.Forms.DialogResult.Yes Then

 e.Continue = True

 Lesson 3: Creating DataAdapter Objects CHAPTER 7 379

Else

 e.Continue = False

End If

// C#

// Display a dialog to respond to the error

DialogResult response = MessageBox.Show(

 "The following error occurred while Filling the DataSet: " +

 e.Errors.Message.ToString() + " Continue attempting to fill?",

 "FillError Encountered", MessageBoxButtons.YesNo);

// Attempt to continue if user selects Yes

if (response == DialogResult.Yes)

{

 e.Continue = true;

}

else

{

 e.Continue = false;

}

 26. Run the application and change some values in at least two records.

 27. Click the Save Changes button.

 At this point the data adapter events allow you to respond to the dialog box asking

whether to continue the update. Notice how you can individually handle each specifi c

row the adapter is attempting to update.

 EXERCISE 2 Creating DataAdapters in Code

 1. Create a Windows Forms application and name it ProgrammingDataAdapters.

 2. Add a DataGridView to the form.

 3. In code view add the System.Data.SqlClient namespace to the form.

 4. In code view add a Connection object for the Northwind database.

 5. At this point your form code should look like the following:

 ' VB

Imports System.Data.SqlClient

Public Class Form1

 Private NorthwindConnection As New SqlConnection(_

 "Data Source=.\sqlexpress;Initial Catalog=Northwind;" & _

 "Integrated Security=True")

End Class

 380 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

// C#

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System. Windows.Forms;

using System.Data.SqlClient;

namespace ProgrammingDataAdapters

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private SqlConnection NorthwindConnection = new SqlConnection(

 "Data Source=.\\sqlexpress;Initial Catalog=Northwind;" +

 "Integrated Security=True");

 }

}

 6. Add code to create a DataAdapter below the NorthwindConnection.

 ' VB

Private SqlDataAdapter1 As New SqlDataAdapter(_

 "SELECT * FROM Customers", NorthwindConnection)

// C#

private SqlDataAdapter SqlDataAdapter1;

 7. Because DataAdapters are used to fi ll DataSets, add code below the preceding lines to

create a new NorthwindDataSet with a Customers table:

 ' VB

Private NorthwindDataset As New DataSet("Northwind")

Private CustomersTable As New DataTable("Customers")

// C#

private DataSet NorthwindDataset = new DataSet("Northwind");

private DataTable CustomersTable = new DataTable("Customers");

 8. Create a Form_Load event handler and add the following code to it:

 ' VB

NorthwindDataset.Tables.Add(CustomersTable)

 Lesson 3: Creating DataAdapter Objects CHAPTER 7 381

SqlDataAdapter1.Fill(NorthwindDataset.Tables("Customers"))

DataGridView1.DataSource = NorthwindDataset.Tables("Customers")

// C#

SqlDataAdapter1 = new SqlDataAdapter("SELECT * FROM Customers",

 NorthwindConnection);

NorthwindDataset.Tables.Add(CustomersTable);

SqlDataAdapter1.Fill(NorthwindDataset.Tables["Customers"]);

dataGridView1.DataSource = NorthwindDataset.Tables["Customers"];

 9. At this point the DataAdapter contains only a SELECT command. Create a Command-

Builder that will provide the additional INSERT, UPDATE, and DELETE commands that

are required for updating the database with changes when the DataAdapter.Update

method is called. Add the following code beneath the previously added lines in the

Form_Load event handler:

 ' VB

Dim commands As New SqlCommandBuilder(SqlDataAdapter1)

// C#

SqlCommandBuilder commands = new SqlCommandBuilder(SqlDataAdapter1);

 10. Add a Button to the form and set the following properties:

 Name = UpdateButton

 Text = Save Changes

 11. Double-click the Save Changes button and add the following code to the UpdateBut-

ton_Click event handler:

 ' VB

NorthwindDataset.EndInit()

SqlDataAdapter1.Update(NorthwindDataset.Tables("Customers"))

// C#

NorthwindDataset.EndInit();

SqlDataAdapter1.Update(NorthwindDataset.Tables["Customers"]);

 12. Run the application and change a value in one of the records in the grid.

 13. Click the Save Changes button to send the updated value to the database.

 14. Verify that the changes were saved to the database.

 EXERCISE 3 Access an ADO Recordset or Record with a Data Adapter

 1. Create a new Windows Forms application and name it AccessingRecordsets.

 2. Add a reference to the ADO objects. From the Project menu, select Add Reference.

 3. Select the COM tab.

 4. Select Microsoft ActiveX Data Objects 2.8 Library and click OK.

 382 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 5. Add a DataGridView to the form.

 6. Add a Button to the form and set the following properties:

 Name = FillRecordSetButton

 Text = Fill Recordset

 7. Switch to code view and add the following method to the form:

 If you are using SQL Server 7 or later, you must change the Provider in line 5 to SQLN-

CLI instead of SQLOLEDB.

 ' VB

Private Function GetRecordset() As ADODB.Recordset

 ' Set to a valid OleDb connection string to the

 ' Northwind database.

 Dim NorthwindOleDbConnection As String = _

 "Provider=SQLOLEDB;Data Source=.\sqlexpress;" & _

 "Integrated Security=SSPI;Initial Catalog=Northwind"

 ' Create the New Recordset

 Dim rs As New ADODB.Recordset()

 rs.Open("SELECT * FROM Customers", _

 NorthwindOleDbConnection, _

 ADODB.CursorTypeEnum.adOpenStatic, _

 ADODB.LockTypeEnum.adLockBatchOptimistic)

 Return rs

End Function

// C#

private ADODB.Recordset GetRecordset()

{

 // Set to a valid OleDb connection string to the

 // Northwind database.

 String NorthwindOleDbConnection =

 "Provider=SQLOLEDB;Data Source=.\\sqlexpress;" +

 "Integrated Security=SSPI;Initial Catalog=Northwind";

 // Create the New Recordset

 ADODB.Recordset rs = new ADODB.Recordset();

 rs.Open("SELECT * FROM Customers", NorthwindOleDbConnection,

 ADODB.CursorTypeEnum.adOpenStatic,

 ADODB.LockTypeEnum.adLockBatchOptimistic, 0);

 return rs;

}

 8. Double-click the Fill Recordset button and add the following code to the button-click

event handler:

 Lesson 3: Creating DataAdapter Objects CHAPTER 7 383

 ' VB

' Create a new DataTable to hold our data

Dim CustomersTable As New DataTable("Customers")

' Create a new DataAdapter to fill the DataTable

Dim Adapter As New OleDb.OleDbDataAdapter

' Fill the Customers DataTable with the

' ADO Recordset.

Adapter.Fill(CustomersTable, GetRecordset())

' Display the Customers table in the DataGridView.

DataGridView1.DataSource = CustomersTable

// C#

// Create a new DataTable to hold our data

DataTable CustomersTable = new DataTable("Customers");

// Create a new DataAdapter to fill the DataTable

System.Data.OleDb.OleDbDataAdapter Adapter =

 new System.Data.OleDb.OleDbDataAdapter();

// Fill the Customers DataTable with the

// ADO Recordset.

Adapter.Fill(CustomersTable, GetRecordset());

// Display the Customers table in the DataGridView.

dataGridView1.DataSource = CustomersTable;

 9. Run the application and click the Fill Recordset button.

 10. The customers table is fi lled by the OleDbDataAdapter, fi lling the DataTable with the

Recordset.

 Lesson Summary
 DataAdapter objects contain a Connection object.

 DataAdapter objects contain individual INSERT, UPDATE, and DELETE commands (in

addition to the SELECT command) to save changes back to the database.

 You can generate a typed DataSet based on the SELECT command of a confi gured

DataAdapter.

 You can use a CommandBuilder object to automatically generate the INSERT, UPDATE,

and DELETE commands of a DataAdapter based on a valid (single table) SELECT

command.

 384 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 Resolve confl icts when fi lling data by using the MissingSchemaAction and Missing-

MappingAction properties.

 You can use an OleDbDataAdapter to fi ll DataSet objects using ADO Recordsets.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. What are the main objects that make up a DataAdapter?

 A. Connection and DataTable objects

 B. Connection and Command objects

 C. DataTable and DataSet objects

 D. Command and DataSet objects

 2. How do you confi gure a DataAdapter to save changes back to a database? (Choose all

that apply.)

 A. Instantiate a CommandBuilder object and pass it a DataAdapter with a confi gured

SELECT command.

 B. Call the DataAdapter.Update method.

 C. Assign a valid Command object to the DataAdapter object’s InsertCommand,

UpdateCommand, and DeleteCommand properties.

 D. Call the DataAdapter.Fill method.

 3. How do you use a DataAdapter to access an ADO recordset?

 A. Create a recordset and call the DataSet.Fill method.

 B. Create a DataSet and set its DataSource property to the recordset.

 C. Call the DataAdapter.Fill method and pass the recordset as an argument.

 D. Set the DataAdapter command’s CommandText to the name of the recordset.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 4: Working with Data in DataTable Objects CHAPTER 7 385

Lesson 4: Working with Data in DataTable Objects

This lesson describes how to load data into a DataTable and how to insert, update, and delete

rows in a DataTable. In addition to explaining how to modify the data in a DataTable, this

lesson also describes how to inspect the row state and row version of a record to determine

what changes have been made to the data since the last update.

 After this lesson, you will be able to:

 Manage data within a DataTable.

 Add data to a table.

 View data in a table.

 Edit data in a row.

 Use row states and row versions.

 Add a row to a table.

 Delete a row from a table.

 Add and read row error information.

 Accept or reject changes to rows in a DataTable.

 Handle DataTable events.

Estimated lesson time: 30 minutes

Adding Data to a DataTable
To add data to a DataTable, you create a new DataRow. For typed DataSet objects, create a

row of the typed table—for example, create a new CustomersRow. After creating a new row,

set the individual columns to the desired values. After creating the row and setting the values,

you must add the row to the DataTable by adding it to the DataTable.Rows collection.

 The following example creates a new row, sets a couple of column values, and adds the

row to the Customers table. Because the NewRow method returns an untyped DataRow, it is

cast to a typed CustomersRow.

 ' VB

 Dim NewRow As NorthwindDataset.CustomersRow = _

 CType(NorthwindDataset1.Customers.NewRow, NorthwindDataset.CustomersRow)

NewRow.CustomerID = "WINGT"

NewRow.CompanyName = "Wingtip Toys"

NewRow.ContactName = "Steve Lasker"

NorthwindDataset1.Customers.Rows.Add(NewRow)

After this lesson, you will be able to:

Manage data within a DataTable.

Add data to a table.

View data in a table.

Edit data in a row.

Use row states and row versions.

Add a row to a table.

Delete a row from a table.

Add and read row error information.

Accept or reject changes to rows in a DataTable.

Handle DataTable events.

Estimated lesson time: 30 minutes

 386 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

// C#

NorthwindDataset.CustomersRow NewRow =

 (NorthwindDataset.CustomersRow)NorthwindDataset1.Customers.NewRow;

NewRow.CustomerID = "WINGT";

NewRow.CompanyName = "Wingtip Toys";

NewRow.ContactName = "Steve Lasker";

…

NorthwindDataset1.Customers.Rows.Add(NewRow);

 Editing Data in a DataTable
 You modify values in individual columns of a DataTable by selecting the DataRow you want to

edit and assigning a new value to the desired column.

 For example, the following code changes the CompanyName column of the SelectedRow

to the value assigned, in this case, “Contoso”:

 ' VB

 SelectedRow("CompanyName") = "Contoso"

// C#

SelectedRow["CompanyName"] = "Contoso";

 Deleting Data in a DataTable
 To delete rows from a DataTable, call the DataRow.Delete method, which sets the row’s Row-

State to Deleted. This allows you to iterate through the deleted rows prior to committing the

deletion (by calling the DataAdapter.Update method or by calling AcceptChanges).

 The following code sample marks the selected row for deletion from the DataTable. The

row will be permanently removed from the table the next time AcceptChanges is called.

 ' VB

 SelectedRow.Delete

// C#

SelectedRow.Delete();

 Maintaining Changes to DataRow Objects
 Changes to DataRow objects that have not yet been accepted or rejected are maintained by

the RowState and DataRowVersion enumerations.

 The RowState is used to determine the state of a row. When fi rst populated, the rows in

a DataTable have a RowState of Unchanged. Table 7-3 describes the different values of the

RowState enumeration.

 Lesson 4: Working with Data in DataTable Objects CHAPTER 7 387

 TABLE 7-3 RowState Enumeration

 VALUE DESCRIPTION

 Unchanged No changes have been made since the last AcceptChanges call or since

the initial fi lling of the DataTable.

 Added This row has been added since the last AcceptChanges call.

 Modifi ed This row has been updated since the last AcceptChanges call.

 Deleted This row has been deleted from the DataTable since the last

AcceptChanges call.

 Detached This row has not yet been added to any DataTable.Rows collection.

 In addition to RowState, each row also maintains different versions after changes are made.

You access these differing versions by passing a value from the DataRowVersion enumera-

tion as an argument in addition to the column index when accessing the data in a row. For

example, you can access the current and original values of a column in a specifi c DataRow to

perform processing prior to calling AcceptChanges.

 Accepting and Rejecting Changes to a DataTable
 Once you have decided that all changes to a row are valid, you can accept the modifi cations

by calling the DataRow.AcceptChanges method. Calling the AcceptChanges method sets the

RowState of the row to Unchanged and commits all current values to original. You can call

AcceptChanges on the DataRow, the DataTable, or the entire DataSet. If you decide to abort

changes instead of accepting them, call the RejectChanges method of the DataRow, DataTable,

or DataSet.

 DataTable Events
 DataTable objects expose several events that are raised when changes are being made to the

data in the table.

 The main events available when working with DataTable objects are listed in Table 7-4.

 TABLE 7-4 DataTable Events

 EVENT DESCRIPTION

 ColumnChanged Raised after a value is inserted into a column

 ColumnChanging Raised when a value is submitted to change a column

 RowChanged Raised after a row in the table has been edited

 RowChanging Raised when a row in the table is edited

 388 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

EVENT DESCRIPTION

RowDeleted Raised after a row is marked for deletion

RowDeleting Raised when a row is marked for deletion

Row Errors
When errors are encountered during the processing of DataRows, a value is added to the

RowError property. The RowError property is a string that is typically set to an error message

describing the error, but it can be set to any string and used as needed in your application.

Once a DataRow.RowError property is assigned, the DataTable.HasErrors property is auto-

matically set to True, indicating that errors exist in the DataTable. When it is determined that

errors exist, you can use the DataTable.GetErrors method to return an array of DataRows

containing all rows that have errors or, more specifi cally, all rows with a RowError value other

than null (nothing, or the empty string).

To remove an error, set the DataRow.RowError property to an empty string.

Quick Check

 1. How do you add data to a DataTable?

 2. How do you commit pending modifi cations to the data in a DataTable?

 Quick Check Answers

 1. Create a new DataRow and add it to the DataTable.Rows collection.

 2. By calling AcceptChanges on the DataRow, DataTable, or DataSet.

 LAB Working with Data in a DataTable

 In this lab you will manipulate the data in a DataTable.

 EXERCISE 1 Working with DataTable Objects

 This practice will provide code examples that demonstrate adding data to a table, deleting

rows in a table, and editing existing values in a data row. It will also demonstrate how to view

the RowState and DataRowVersion information for records in a DataTable. After modifying

records, the AcceptChanges and RejectChanges methods will be demonstrated as well.

 1. Create a Windows Forms application and name it WorkingWithDataTables.

 2. Add a DataGridView to the form and change its Name property to

CustomersDataGridView.

 3. Add a Button to the form and set the following properties:

Quick Check

1. How do you add data to a DataTable?

2. How do you commit pending modifi cations to the data in a DataTable?

Quick Check Answers

1. Create a new DataRow and add it to the w DataTable.Rows collection.

2. By calling AcceptChanges on the DataRow, ww DataTable, or DataSet.

Q

 Lesson 4: Working with Data in DataTable Objects CHAPTER 7 389

 Name = FillTableButton

 Text = Fill Table

 4. Drop a SqlDataAdapter from the Toolbox onto the form to start the Data Adapter Con-

fi guration Wizard.

NOTE SQLDATAADAPTER TOOLBOX ITEM

If the SqlDataAdapter is not in the Toolbox, right-click the Data tab of the Toolbox,

select Choose Items, and then select the SqlDataAdapter item on the .NET Framework

Components tab. Click OK.

 5. Select or create a new connection to the Northwind database and click Next.

 6. Leave the default option set to Use SQL Statements, and then click Next.

 7. Type SELECT * FROM Customers on the Generate The SQL Statements page and click

Finish.

The adapter and related Connection object are added to the form and appear in the

component tray.

 8. Right-click SqlDataAdapter1 in the component tray and select Generate DataSet.

 9. In the Generate DataSet dialog box, replace DataSet1 with NorthwindDataSet and

click OK.

An instance of the NorthwindDataSet is added to the form and appears in the compo-

nent tray, as shown in Figure 7-11.

FIGURE 7-11 Form1 in the Visual Studio IDE after configuring the DataAdapter and generating the
DataSet

NOTE SQLDATAADAPTER TOOLBOX ITEM

If the SqlDataAdapter is not in the Toolbox, right-click the Data tab of the Toolbox, r

select Choose Items, and then select the SqlDataAdapter item on the .NET Framework

Components tab. Click OK.

 390 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 10. Add the System.Data.SqlClient namespace to your form.

 11. Create a Form Load event handler and add the following code to the Form1_Load

event handler:

 ' VB

CustomersDataGridView.DataSource = NorthwindDataset1.Customers

' For this example we will turn off the ability to edit

' directly in a cell.

CustomersDataGridView.MultiSelect = False

CustomersDataGridView.SelectionMode = _

 DataGridViewSelectionMode.CellSelect

CustomersDataGridView.EditMode = _

 DataGridViewEditMode.EditProgrammatically

// C#

CustomersDataGridView.DataSource = NorthwindDataset1.Customers;

// For this example we will turn off the ability to edit

// directly in a cell.

CustomersDataGridView.MultiSelect = false;

CustomersDataGridView.SelectionMode =

 DataGridViewSelectionMode.CellSelect;

CustomersDataGridView.EditMode =

 DataGridViewEditMode.EditProgrammatically;

 12 Create a button-click event handler for the FillTableButton and add the following code:

 ' VB

SqlDataAdapter1.Fill(NorthwindDataset1.Customers)

// C#

sqlDataAdapter1.Fill(NorthwindDataset1.Customers);

 13. Add a Button to the form and set the following properties:

 Name = AddRowButton

 Text = Add Row

 14. Create a button-click event handler for the AddRowButton and add the following code:

 ' VB

' Create a new instance of a Customers row.

Dim NewRow As NorthwindDataset.CustomersRow = _

 CType(NorthwindDataset1.Customers.NewRow, _

 NorthwindDataset.CustomersRow)

' Set the values for each column in the row.

With NewRow

 .CustomerID = "WINGT"

 Lesson 4: Working with Data in DataTable Objects CHAPTER 7 391

 .CompanyName = "Wingtip Toys"

 .ContactName = "Steve Lasker"

 .ContactTitle = "CEO"

 .Address = "1234 Main Street"

 .City = "Buffalo"

 ._Region = "NY"

 .PostalCode = "98052"

 .Country = "USA"

 .Phone = "206-555-0111"

 .Fax = "206-555-0112"

End With

' Add the new row to the Rows collection of the Customers table.

Try

 NorthwindDataset1.Customers.Rows.Add(NewRow)

Catch ex As Exception

 MessageBox.Show(ex.Message, "Add Row Failed")

End Try

// C#

// Create a new instance of a Customers row.

NorthwindDataSet.CustomersRow NewRow =

 (NorthwindDataSet.CustomersRow)NorthwindDataset1.Customers.NewRow();

// Set the values for each column in the row.

NewRow.CustomerID = "WINGT";

NewRow.CompanyName = "Wingtip Toys";

NewRow.ContactName = "Steve Lasker";

NewRow.ContactTitle = "CEO";

NewRow.Address = "1234 Main Street";

NewRow.City = "Buffalo";

NewRow.Region = "NY";

NewRow.PostalCode = "98052";

NewRow.Country = "USA";

NewRow.Phone = "206-555-0111";

NewRow.Fax = "206-555-0112";

// Add the new row to the Rows collection of the Customers table.

try

{

 NorthwindDataset1.Customers.Rows.Add(NewRow);

}

catch (Exception ex)

{

 MessageBox.Show(ex.Message, "Add Row Failed");}

 392 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 15. Add the following code to the form class. This returns the CustomersRow selected in

the grid:

 ' VB

Private Function GetSelectedRow() As NorthwindDataset.CustomersRow

 ' Get the selected DataRow

 Dim SelectedCustomerID As String = _

 CustomersDataGridView.CurrentRow.Cells(_

 "CustomerID").Value.ToString

 ' Using the SelectedCustomerID get the selected row.

 Dim SelectedRow As NorthwindDataset.CustomersRow = _

 NorthwindDataset1.Customers.FindByCustomerID(_

 SelectedCustomerID)

 Return SelectedRow

End Function

// C#

private NorthwindDataSet.CustomersRow GetSelectedRow()

{

 // Get the selected DataRow

 String SelectedCustomerID =

 CustomersDataGridView.CurrentRow.Cells[

 "CustomerID"].Value.ToString();

 // Using the SelectedCustomerID get the selected row.

 NorthwindDataSet.CustomersRow SelectedRow =

 NorthwindDataset1.Customers.FindByCustomerID(

 SelectedCustomerID);

 return SelectedRow;

}

 16. Add a Button to the form and set the following properties:

 Name = DeleteRowButton

 Text = Delete Row

 17. Create a button-click event handler for the DeleteRowButton and add the following

code:

 ' VB

' Call the Delete method of the selected row to mark it as deleted in the

DataTable

GetSelectedRow.Delete()

 Lesson 4: Working with Data in DataTable Objects CHAPTER 7 393

// C#

// Call the Delete method of the selected row to mark it as deleted in the

DataTable

GetSelectedRow().Delete();

 18. Add three Button controls to the form and set the following properties:

 Name = UpdateValueButton

 Text = Update Value

 Name = AcceptChangesButton

 Text = Accept Changes

 Name = RejectChangesButton

 Text = Reject Changes

 19. Add a TextBox next to the UpdateValueButton and set its Name property to

CellValueTextBox.

 20. Add three more TextBox objects and set the Name properties to the following:

 OriginalDRVTextBox

 CurrentDRVTextBox

 RowStateTextBox

 The form layout should appear similar to Figure 7-12.

 FIGURE 7-12 The Form layout

 21. Add the following code to the form class to update the text boxes with the row ver-

sions and row state:

 ' VB

Private Sub UpdateRowVersionDisplay()

 ' Display the Original and Current DataRowVersion of the

 394 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 ' selected Cell

 Try

 CurrentDRVTextBox.Text = GetSelectedRow.Item _

 (CustomersDataGridView.CurrentCell.OwningColumn.Name, _

 DataRowVersion.Current).ToString

 Catch ex As Exception

 CurrentDRVTextBox.Text = ex.Message

 End Try

 Try

 OriginalDRVTextBox.Text = GetSelectedRow.Item _

 (CustomersDataGridView.CurrentCell.OwningColumn.Name, _

 DataRowVersion.Original).ToString

 Catch ex As Exception

 OriginalDRVTextBox.Text = ex.Message

 End Try

 ' Display the current RowState of the selected row

 RowStateTextBox.Text = GetSelectedRow.RowState.ToString

End Sub

// C#

private void UpdateRowVersionDisplay()

{

 // Display the Original and Current DataRowVersion of the

 // selected Cell

 try

 {

 CurrentDRVTextBox.Text = GetSelectedRow()

 [CustomersDataGridView.CurrentCell.OwningColumn.Name,

 DataRowVersion.Current].ToString();

 }

 catch (Exception ex)

 {

 CurrentDRVTextBox.Text = ex.Message;

 }

 try

 {

 OriginalDRVTextBox.Text = GetSelectedRow()

 [CustomersDataGridView.CurrentCell.OwningColumn.Name,

 DataRowVersion.Original].ToString();

 }

 catch (Exception ex)

 {

 Lesson 4: Working with Data in DataTable Objects CHAPTER 7 395

 OriginalDRVTextBox.Text = ex.Message;

 }

 // Display the current RowState of the selected row

 RowStateTextBox.Text = GetSelectedRow().RowState.ToString();

}

 22. Create an event handler for the UpdateValueButton_Click event and add the following

code:

 ' VB

GetSelectedRow(CustomersDataGridView.CurrentCell.OwningColumn.Name) = _

 CellValueTextBox.Text

UpdateRowVersionDisplay()

// C#

GetSelectedRow()[CustomersDataGridView.CurrentCell.OwningColumn.Name] =

 CellValueTextBox.Text;

UpdateRowVersionDisplay();

 23. Create an event handler for the CustomersDataGridView_CellClick event and add the

following code:

 ' VB

' Populate the CellValueTextBox with the selected cell

CellValueTextBox.Text = _

 CustomersDataGridView.CurrentCell.Value.ToString

' Refresh the other text boxes

UpdateRowVersionDisplay()

// C#

// Populate the CellValueTextBox with the selected cell

CellValueTextBox.Text =

 CustomersDataGridView.CurrentCell.Value.ToString();

// Refresh the other text boxes

UpdateRowVersionDisplay();

 24. Create an event handler for the AcceptChangesButton.Click event and add the follow-

ing code:

 ' VB

GetSelectedRow().AcceptChanges()

UpdateRowVersionDisplay()

// C#

GetSelectedRow().AcceptChanges();

UpdateRowVersionDisplay();

 396 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 25. Create an event handler for the RejectChangesButton and add the following code:

 ' VB

GetSelectedRow().RejectChanges()

UpdateRowVersionDisplay()

// C#

GetSelectedRow().RejectChanges();

UpdateRowVersionDisplay();

 26. Run the application and click the Fill Table button.

 27. Click around the grid and notice that the Original and Current values show as the same

and the RowState display reads Unchanged.

 28. Now click the cell that contains Maria Anders (assuming you haven’t altered that

record in previous exercises) and type MariaAndersEdited in the CellValueTextBox.

 29. Click the Update Value button and notice that the value is updated in the grid, the

Current and Original text boxes display the different versions of the record, and the

RowState has been changed to read Modifi ed.

 30. Click the Add Row button.

 31. Scroll down to the bottom of the grid and select one of the cells in the new record

(WINGT).

 Notice, as shown in Figure 7-13, that the RowState is Added to refl ect that this is a new

row and the Original text box shows that there is no original data—again because this

is a new row.

 FIGURE 7-13 Form after clicking the Add Row button

 Lesson 4: Working with Data in DataTable Objects CHAPTER 7 397

 32. Scroll back to the row with the MariaAndersEdited fi eld and select it.

 33. Click the Reject Changes button and inspect the row version and row state values.

 34. Scroll to the WINGT record and select it.

 35. Click the Accept Changes button and inspect the row version and row state values.

 Lesson Summary
 Add data to a DataTable by creating a new DataRow and adding it to the DataTable.

Rows collection.

 Edit data in a DataTable by setting the values of the individual DataColumn objects in a

DataRow.

 Delete rows in a DataTable by calling the Delete method of a DataRow.

 Monitor and keep track of changes to DataRow objects by using the RowState and

RowVersion enumerations.

 DataTable events are raised as data is changed in specifi c DataColumn objects or entire

DataRow objects.

 Set the RowError property of a DataRow to indicate a row with an error.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. What should you do when adding a new row to a DataTable?

 A. Create an instance of a DataRow and call the Update method of the DataAdapter.

 B. Create an instance of a DataRow (or typed row), and add it to the Rows collection

of the DataTable.

 C. Call the DataTable.NewRow method.

 D. Create an instance of a DataRow.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 398 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 2. How do you access the original value in the CustomerID column?

 A. OriginalValue = DataRow(“CustomerID”).DataRowVersion.Original

 B. OriginalValue = DataColumn(“CustomerID”).Original

 C. OriginalValue = DataRow(“CustomerID”, DataRowVersion.Original)

 D. OriginalValue = DataRow(“CustomerID”)

 3. What DataTable event would you handle to validate for an acceptable value in a

column? (Choose all that apply.)

 A. ColumnChanged

 B. ColumnChanging

 C. RowChanged

 D. RowChanging

 Lesson 5: Working with XML in DataSet Objects CHAPTER 7 399

Lesson 5: Working with XML in DataSet Objects

This lesson describes how to use DataSet objects when working with data formatted as

Extensible Markup Language (XML). DataSet objects can be fi lled from an XML document

or an XML stream, and they can load or write out their schema information. DataSet objects

have several methods for working with XML data. These will be described in the following

examples.

After this lesson, you will be able to:

 Represent data in a DataSet using XML.

 Load a DataSet from an XML stream or document.

 Write a DataSet as XML data.

 Load DataSet schema information from an XML stream or document.

 Write DataSet schema information as XML schema (XSD).

 Synchronize a DataSet with an XmlDataDocument.

 Perform an XPath query on a DataSet.

 Apply an XSLT transform to a DataSet.

 Create nested DataRelation objects in a DataSet to represent XML data.

 Generate DataSet relational structures from XML schema (XSD).

 Map XML schema (XSD) constraints to DataSet constraints.

 Infer DataSet structures from an XML stream or document.

 Estimated lesson time: 60 minutes

 Writing a DataSet as XML Data
 To save the data in a DataSet as XML-formatted data, use the WriteXml method of the

DataSet. You can save the XML data directly to a fi le, or you can write it to a stream. Call the

WriteXml method of a DataSet to save the contents of all tables in the DataSet as XML or call

the WriteXml method of an individual DataTable to write the data from only that table.

 The following code example saves the data in the NorthwindDataSet to a fi le named

Northwind.xml:

 ' VB

NorthwindDataset.WriteXml("Northwind.xml")

// C#

NorthwindDataset.WriteXml("Northwind.xml");

After this lesson, you will be able to:

Represent data in a DataSet using XML.t

Load a DataSet from an XML stream or document. t

Write a DataSet as XML data.t

Load DataSet schema information from an XML stream or document.t

Write DataSet schema information as XML schema (XSD). t

Synchronize a DataSet with an t XmlDataDocument.

Perform an XPath query on a DataSet.

Apply an XSLT transform to a DataSet.

Create nested DataRelation objects in a DataSet to represent XML data.t

Generate DataSet relational structures from XML schema (XSD).t

Map XML schema (XSD) constraints to DataSet constraints. t

Infer DataSet structures from an XML stream or document.t

Estimated lesson time: 60 minutes

 400 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 Writing DataSet Schema Information as XML Schema
 To save a DataSet object’s schema information, use the WriteXmlSchema method of the

DataSet. You can save the XML schema information directly to a fi le, or you can write it to a

stream. Call the WriteXmSchema method of a DataSet to save the schema of the entire Data-

Set or call the WriteXmlSchema method of an individual DataTable to write the schema from

only that table.

 The following code example saves the data in the NorthwindDataSet object’s schema

information to a fi le named Northwind.xsd:

 ' VB

NorthwindDataset.WriteXmlSchema("Northwind.xsd")

// C#

NorthwindDataset.WriteXmlSchema("Northwind.xsd");

 Loading a DataSet from an XML Stream or Document
 To load XML data into a DataSet, use the ReadXml method of the DataSet. You can read the

XML data directly from a fi le, or you can read it from a stream. Call the ReadXml method of a

DataSet to load the entire DataSet or call the ReadXml method of an individual DataTable to

load only the data for that table.

 The following code example loads the NorthwindDataSet from the contents of a fi le

named Northwind.xml:

 ' VB

NorthwindDataset.ReadXml("Northwind.xml")

// C#

NorthwindDataset.ReadXml("Northwind.xml");

 Loading DataSet Schema Information from an XML Stream
or Document
 To load schema information into a DataSet, use the ReadXmlSchema method of the DataSet.

Load the XML schema information directly from an .xsd fi le or read it from a stream. Call the

ReadXmlSchema method of a DataSet to load the entire DataSet or call the ReadXmlSchema

method of an individual DataTable to load the schema for only that table.

 The following code example reads the schema information into the NorthwindDataSet

from a fi le named Northwind.xsd:

 ' VB

NorthwindDataset.ReadXmlSchema("Northwind.xsd")

 Lesson 5: Working with XML in DataSet Objects CHAPTER 7 401

// C#

NorthwindDataset.ReadXmlSchema("Northwind.xsd");

 Synchronizing a DataSet with an XmlDataDocument
 When working with XML data and DataSet objects, you typically need to manipulate data

through the DataSet classes as well as XML classes available in the .NET Framework. Keeping

your DataSet and XmlDataDocument in synch allows you to process the data using whichever

method of access you prefer while working on the same data source.

 The following code example shows how to create a new XmlDataDocument and synchro-

nize it with the NorthwindDataSet:

 ' VB

Dim NwDataDocument As New XmlDataDocument(NorthwindDataset)

// C#

XmlDataDocument NwDataDocument = new XmlDataDocument(NorthwindDataset);

 Performing an XPath Query on a DataSet
 You can perform XPath queries against data in a DataSet after synchronizing a DataSet with

an XmlDataDocument. Pass an XPath query to the XmlDataDocument.DocumentElement.

SelectNodes method. The SelectNodes method returns the data as a collection of Xml.Xml-

Node objects.

 The following code example shows how to execute an XPath query and iterate through the

results:

 ' VB

Dim row As DataRow

Dim NwDataDocument As New Xml.XmlDataDocument(NorthwindDataset)

Dim CustomerNodes As Xml.XmlNodeList = NwDataDocument.DocumentElement.SelectNodes("*")

For Each xmlNode As Xml.XmlNode In CustomerNodes

 row = NwDataDocument.GetRowFromElement(CType(xmlNode, Xml.XmlElement))

 If row IsNot Nothing Then

 ' access data through row indices for example:

 MessageBox.Show(row(1).ToString())

 End If

Next

// C#

DataRow row;

Xml.XmlDataDocument NwDataDocument = new Xml.XmlDataDocument(NorthwindDataset)

Xml.XmlNodeList CustomerNodes = NwDataDocument.DocumentElement.SelectNodes("*");

foreach (Xml.XmlNode xmlNode In CustomerNodes)

{

 402 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 row = NwDataDocument.GetRowFromElement((Xml.XmlElement)xmlNode);

 if (row != null)

 {

 // access data through row indices for example:

 MessageBox.Show(row[1].ToString());

 }

}

 LAB Working with XML in DataSets

 In this lab you will load and save XML data to a Dataset.

 EXERCISE 1 Saving a DataSet Object as XML

 This example takes the data from a DataSet and saves it as formatted XML in a fi le named

Northwind.xml.

 1. Create a Windows Forms application and name it SavingDataSetsAsXml.

 2. Drag a SqlDataAdapter onto the form to start the Data Adapter Confi guration Wizard.

 3. Select a connection to the Northwind sample database.

 4. On the Choose A Command Type page, select the default value of Use SQL Statements.

Then click Next.

 5. On the Generate The SQL Statements page, type SELECT * FROM Customers. Then

click Finish.

 6. Change the name from SqlDataAdapter1 to CustomersAdapter.

 7. Drag a second SqlDataAdapter onto the form to start the Data Adapter Confi guration

Wizard again.

 8. On the Choose A Command Type page, select the default value of Use SQL Statements.

Then click Next.

 9. Type SELECT * FROM Orders in the Generate The SQL Statements page. Then click

Finish.

 10. Change the name from SqlDataAdapter1 to OrdersAdapter.

 11. Right-click the CustomersAdapter in the component tray and select Generate DataSet.

 12. Name the new DataSet NorthwindDataSet (replacing DataSet1). Select both the Cus-

tomers and Orders tables and click OK.

 13. Drag a DataGridView onto the form and set its Name property to CustomersGrid.

 14. Drag a Button onto the form and set the following properties:

 Name = FillDataSetButton

 Text = Fill DataSet

 Lesson 5: Working with XML in DataSet Objects CHAPTER 7 403

 15. Drag a second Button onto the form and set the following properties:

 Name = SaveXmlDataButton

 Text = Save XML Data

 16. Drag a third Button onto the form and set the following properties:

 Name = SaveXmlSchemaButton

 Text = Save XML Schema

 17. Double-click the Fill DataSet button to create the button-click event handler.

 18. Add the following code to the FillDataSetButton_Click event handler:

 ' VB

' Fill the Customers and Orders tables.

CustomersAdapter.Fill(NorthwindDataSet1.Customers)

OrdersAdapter.Fill(NorthwindDataSet1.Orders)

' Bind the grid to the Customers table.

CustomersGrid.DataSource = NorthwindDataSet1.Customers

// C#

// Fill the Customers and Orders tables.

CustomersAdapter.Fill(northwindDataSet1.Customers);

OrdersAdapter.Fill(northwindDataSet1.Orders);

// Bind the grid to the Customers table.

CustomersGrid.DataSource = northwindDataSet1.Customers;

 19. Double-click the Save Xml Data button to create the button-click event handler.

 20. Add the following code to the SaveXmlDataButton_Click event handler:

 ' VB

Try

 NorthwindDataset1.WriteXml("C:\DataSources\Northwind.xml")

 MessageBox.Show("Data saved As Northwind.xml")

Catch ex As Exception

 MessageBox.Show(ex.Message)

End Try

// C#

try

{

 northwindDataSet1.WriteXml(@"C:\DataSources\Northwind.xml");

 MessageBox.Show("Data saved as Northwind.xml");

}

 404 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

catch (Exception ex)

{

 MessageBox.Show(ex.Message);

}

 21. Double-click the Save Xml Schema button to create the button-click event handler.

 22. Add the following code to the SaveXmlSchemaButton_Click event handler:

 ' VB

Try

 NorthwindDataset1.WriteXmlSchema("C:\DataSources\Northwind.xsd")

 MessageBox.Show("Schema saved As Northwind.xsd")

Catch ex As Exception

 MessageBox.Show(ex.Message)

End Try

// C#

try

{

 northwindDataSet1.WriteXmlSchema(@"C:\DataSources\Northwind.xsd");

 MessageBox.Show("Schema saved as Northwind.xsd");

}

catch (Exception ex)

{

 MessageBox.Show(ex.Message);

}

 23. Run the application and click the Fill DataSet button.

 The NorthwindDataSet is fi lled with data and the Customers table is displayed in the

grid.

 24. Click the Save Xml Data button.

 The Northwind.xml fi le is saved to the C:\Datasources directory.

 25. Click the Save Xml Schema button.

 The Northwind.xsd fi le is saved to the C:\Datasources directory.

 26. Navigate to the C:\Datasources directory and open the Northwind.xml and Northwind.

xsd fi les to verify that the data and schema information was saved to the fi les.

 The Northwind.xml and Northwind.xsd fi les are required for the next practice.

 EXERCISE 2 Loading DataSet Objects with XML Data

 This example creates an untyped DataSet and defi nes its schema based on the contents of the

Northwind.xsd fi le. After you load the schema information, you will load the DataSet with the

contents of the Northwind.xml fi le and display it in a grid. This practice expects the North-

wind.xml and Northwind.xsd fi les to be available in the C:\Datasources directory.

 Lesson 5: Working with XML in DataSet Objects CHAPTER 7 405

 1. Create a Windows Forms application and name it LoadDataSetsWithXml.

 2. Add a DataGridView to the form and name it CustomersGrid.

 3. Add another DataGridView to the form and name it OrdersGrid.

 4. Drag a Button onto the form and set the following properties:

 Name = LoadSchemaButton

 Text = Load Schema

 5. Drag a Button onto the form and set the following properties:

 Name = LoadDataButton

 Text = Load Data

 6. Create an instance of the NorthwindDataSet at form level:

 ' VB

Private NorthwindDataset As New DataSet("Northwind")

// C#

DataSet NorthwindDataset = new DataSet("Northwind");

 7. Create an event handler for the LoadSchemaButton_Click event (double-click the Load

Schema button) and add the following code:

 ' VB

' Read the schema information (.xsd file) into the dataset.

NorthwindDataset.ReadXmlSchema("C:\Datasources\Northwind.xsd")

' Bind the CustomersGrid and OrdersGrid to display the data.

CustomersGrid.DataSource = NorthwindDataset.Tables("Customers")

OrdersGrid.DataSource = NorthwindDataset.Tables("Orders")

// C#

// Read the schema information (.xsd file) into the dataset.

NorthwindDataset.ReadXmlSchema(@"C:\Datasources\Northwind.xsd");

// Bind the CustomersGrid and OrdersGrid to display the data.

CustomersGrid.DataSource = NorthwindDataset.Tables["Customers"];

OrdersGrid.DataSource = NorthwindDataset.Tables["Orders"];

 8. Create an event handler for the LoadDataButton_Click event (double-click the Load

Data button) and add the following code:

 ' VB

' Read the xml data into the dataset.

NorthwindDataset.ReadXml ("C:\Datasources\Northwind.xml")

 406 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

// C#

// Read the schema xml data into the dataset

NorthwindDataset.ReadXml(@"C:\Datasources\Northwind.xml");

 9. Run the application and click the Load Schema button.

The grids display the columns for the Customers and Orders tables based on the

schema information loaded from the Northwind.xsd fi le.

 10. Click the Load Data button.

The contents of the Northwind.xml fi le are loaded into the DataSet and displayed in

their respective grids on the form.

Lesson Summary
 The data in a DataSet can be written out as XML data.

 The schema of a DataSet can be written out as XML schema (an .xsd fi le).

 The data in an XML fi le or document can be loaded into a DataSet.

 The schema information in an .xsd fi le can be loaded into a DataSet.

 A DataSet and an XMLDataDocument can be kept in synch so you can manipulate the

data and have it be refl ected in both objects.

 XPath queries can be performed on DataSet data.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. How do you load the schema information from an .xsd fi le into a DataSet?

 A. Call the GetXmlSchema method passing in the path to the .xsd fi le to the method.

 B. Call the ReadXml method passing in the path to the .xsd fi le to the method.

 C. Call the ReadXmlSchema method passing in the path to the .xsd fi le to the method.

 D. Set the DataSet ’s Name property to the .xsd fi lename.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 5: Working with XML in DataSet Objects CHAPTER 7 407

 2. How do you synchronize a DataSet with an XmlDataDocument?

 A. By passing the XmlDataDocument to the DataSet.GetXml method

 B. By declaring a new instance of an XmlDataDocument and passing in the name of

the DataSet you want to synchronize with

 C. By calling the XmlDataDocument.Load method

 D. By calling the XmlDataDocument.Synch method

 3. How do you execute an XPath query on a DataSet?

 A. Synchronize with an XML document and perform the XPath query on the raw XML.

 B. Pass the XPath query as a string to the DataTable.Select method.

 C. Pass the XPath query as a string to the DocumentElement.SelectNodes method of a

synchronized XmlDataDocument.

 D. Pass the XPath query as a string to the DataTable.Find method.

 408 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

Lesson 6: Creating and Using DataView Objects

 This lesson describes how to work with DataView objects (System.Data.DataView). DataView

objects provide a way to work with DataTable objects. They can be displayed in data-bindable

controls, such as a DataGridView. DataView objects provide sorting and fi ltering capabilities,

as well as the ability to modify the data in the related DataTable.

 After this lesson, you will be able to:

 Create and use DataView objects.

 Create a DataView.

 Sort and fi lter data using a DataView.

 View data using a DataView.

 Search for data within a DataView.

 Navigate relationships using a DataView.

 Modify data using a DataView.

 Handle DataView events.

 Set default table views using a DataViewManager.

 Estimated lesson time: 45 minutes

 Creating DataView Objects
 You can create new DataView objects or reference an existing DataView. Create new Data-

View objects by generating a new instance of a DataView and passing in the name of the

DataTable for the view to represent or display. DataTable objects actually have a Default-

View property that contains the DataView the table uses by default. Reference this existing

DataView by assigning an instance of a DataView to the DataTable.DefaultView property.

DataView objects offer the advantage of allowing you to bind multiple controls to the same

data source and to display different records or different sort orders.

 The following code samples show how to create DataView objects as previously described:

 ' VB

' Create a new DataView

Dim CustomersDataView As New DataView(NorthwindDataset.Customers)

' Create a reference to the DataTable’s default DataView

Dim CustomersDataView As DataView = Northwind.Customers.DefaultView

// C#

// Create a new DataView

After this lesson, you will be able to:

Create and use DataView objects. w

Create a DataView. ww

Sort and fi lter data using a DataView. ww

View data using a DataView.ww

Search for data within a DataView. ww

Navigate relationships using a DataView.ww

Modify data using a DataView.ww

Handle DataView events.w

Set default table views using a DataViewManager. rr

Estimated lesson time: 45 minutes

 Lesson 6: Creating and Using DataView Objects CHAPTER 7 409

DataView CustomersDataView = new DataView(NorthwindDataset.Customers);

// Create a reference to the DataTable’s default DataView

DataView CustomersDataView = Northwind.Customers.DefaultView;

 Sorting and Filtering Data Using a DataView
 You sort data in a DataView by setting the DataView.Sort property to the column name you

want to sort on. To sort on multiple columns, separate column names with a comma (,). Com-

plete the Sort expression with ASC to sort in ascending order or DESC to sort in descending

order. (ASC is the default behavior.)

 The following code sample sorts the DataView in descending order on the ContactName

column:

 ' VB

CustomersDataView.Sort = "ContactName DESC"

// C#

CustomersDataView.Sort = "ContactName DESC";

 Viewing Data Using a DataView
 In most cases you will bind DataView objects to controls such as the DataGridView or, per-

haps, bind each column in a DataRowView to individual controls, such as TextBox objects. For

situations in which you need to programmatically access the data in a DataView, it is impor-

tant to note that a DataView contains a collection of DataRowView objects that represent the

rows in the related DataTable. Each DataRowView contains an array representing the columns

in the row. To access the individual values in each column, iterate over the DataRowView

objects and read the column through the index or column name.

 The following code example assigns the values of the fi rst and second columns to the

RowValues variable:

 ' VB

' Access column values by passing the column name to access the DataRowView column

Dim FullName As String = DataRowView("FirstName").ToString() & " " & _

 DataRowView("LastName").ToString()

' Access column values by passing the column index to access the DataRowView column

Dim FullName As String = DataRowView(0).ToString() & " " & DataRowView(1).ToString()

// C#

// Access column values by passing the column name to access the DataRowView column

string FullName = DataRowView("FirstName").ToString() + " " +

DataRowView("LastName").ToString();

 410 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

// Access column values by passing the column index to access the DataRowView column

string FullName = DataRowView(0).ToString() + " " + DataRowView(1).ToString();

 Modifying the Data in a DataView
 You can edit values in a row by accessing the individual column values in a DataRowView and

assigning the new value to the column (item array of the DataRowView).

 The following code sample assigns a value of Steve to the FirstName column of the

selected DataRowView:

 ' VB

 ' Edit column values by passing the column name

' to access the DataRowView column and assigning the new value

DataRowView("FirstName") = "Steve"

' Edit column values by passing the column index

' to access the DataRowView column and assigning the new value

DataRowView(0) = "Steve"

// C#

// Edit column values by passing the column name

// to access the DataRowView column and assigning the new value

DataRowView("FirstName") = "Steve"

// Edit column values by passing the column index

// to access the DataRowView column and assigning the new value

DataRowView(0) = "Steve"

 Searching Data in a DataView
 Search for records in a DataView using the Find and FindRows methods. Pass a value to the

Find or FindRows method and both methods search for that value in the column set in the

Sort property. In other words, if the DataView.Sort is set to CustomerID, pass CustomerID val-

ues to the Find and FindRows methods; if the DataView.Sort property is set to ContactName,

pass ContactName values to the Find and FindRows methods.

 The following code example sets the sort key to the CustomerID column and then it calls

the Find method and passes in ALFKI (the customer ID) as the search string:

 ' VB

 CustomersDataView.Sort = "CustomerID"

Dim FoundRow As Integer

FoundRow = CustomersDataView.Find("ALFKI")

Dim s As String = CustomersDataView.Item(FoundRow)("CompanyName").ToString

 Lesson 6: Creating and Using DataView Objects CHAPTER 7 411

// C#

CustomersDataView.Sort = "CustomerID";

int FoundRow;

FoundRow = CustomersDataView.Find("ALFKI");

string s = CustomersDataView.Item[FoundRow]["CompanyName"].ToString();

 Navigating Related Data in a DataView
 You can retrieve records from related tables using DataViews as long as the DataTable associ-

ated with the DataView is related to another DataTable through a DataRelation object. To

display the related records, call the CreateChildView method of a DataRowView and pass in

the name of the DataRelation that relates the DataTable objects. This creates a new DataView

containing only the related records.

 The following code creates a DataView made up of orders for a selected customer:

 ' VB

OrdersDataView = CustomersDataRowView.CreateChildView("FK_Orders_Customers")

OrdersDataGridView.DataSource = OrdersDataView

// C#

OrdersDataView = CustomersDataRowView.CreateChildView("FK_Orders_Customers");

OrdersDataGridView.DataSource = OrdersDataView;

 Working with DataView Events
 The main event to program against for a DataView is the ListChanged event. The ListChanged

event is raised when data or schema changes occur in the underlying DataTable or when

changes are made to a DataRelation attached to the DataView object’s table.

 Setting the DataTable Object’s Default Table Views Using a
DataViewManager
 A DataViewManager is basically a collection of DataViewSetting objects that are used to set

the default sorting and fi ltering behavior of each DataTable in a DataSet.

 You can use a DataViewManager as a data source for data-bound controls. For example,

if you create a DataViewManager to manage several tables from the NorthwindDataSet, you

can use code similar to the following to bind it to the individual tables:

 ' VB

Dim dvm As New DataViewManager(NorthwindDataSet1)

OrdersDataGridView.DataSource = dvm.DataViewSettings("Customers").Table

// C#

DataViewManager dvm = new DataViewManager(NorthwindDataSet1);

OrdersDataGridView.DataSource = dvm.DataViewSettings("Customers").Table;

 412 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 LAB Working with DataView Objects

 In this lab you will use DataView objects to sort and fi lter the data displayed from a DataTable.

 EXERCISE 1 Working with DataView Objects

 This example demonstrates sorting and fi ltering using a DataView.

 1. Create a Windows Forms application and name it DataViewExample.

 2. Add a DataGridView to the form and set its Name property to CustomersGrid.

 3. Add a TextBox and set the following properties:

 Name = SortTextBox

 Text = CustomerID

 4. Add a second TextBox and set the following properties:

 Name = FilterTextBox

 Text = City = ‘London’

 5. Add a Button to the form and set the following properties:

 Name = SetDataViewPropertiesButton

 Text = Set DataView Properties

 6. Add a second Button and set the following properties. Your form should resemble

Figure 7-14.

 Name = AddRowButton

 Text = Add Row

 FIGURE 7-14 Suggested initial control layout for a DataView example

 7. Create a new Data Source by selecting Add New Data Source from the Data menu.

 8. Select Database and click Next.

 9. Select a valid data connection to the Northwind sample database.

 10. Select the defaults until the Choose Your Database Objects page appears.

 11. Select the Customers and Orders tables and click Finish.

 12. Build the project.

 Lesson 6: Creating and Using DataView Objects CHAPTER 7 413

 13. Locate the CustomersTableAdapter in the Toolbox and drag it onto the form.

 14. Locate the OrdersTableAdapter in the Toolbox and drag it onto the form.

 15. Locate the NorthwindDataSet in the Toolbox and drag it onto the form.

 16. Double-click an empty area on the form to create the Form1_Load event handler.

 17. Add the following code within the Form1 class. (Paste this code outside of the Form1_

Load event handler.)

 ' VB

' Create a DataView for the Customers and

' Orders tables.

Private WithEvents CustomersDataView As DataView

Private WithEvents OrdersDataView As DataView

// C#

// Create a DataView for the Customers and

// Orders tables.

DataView customersDataView;

DataView ordersDataView;

 18. Add the following code to the Form1_Load event handler:

 ' VB

' Load the Customers and Orders tables with data

CustomersTableAdapter1.Fill(NorthwindDataSet1.Customers)

OrdersTableAdapter1.Fill(NorthwindDataSet1.Orders)

' Set the DataViews to use the Customers and Orders tables

CustomersDataView = New DataView (NorthwindDataSet1.Customers)

OrdersDataView = New DataView (NorthwindDataSet1.Orders)

' Set the initial Sort order of the DataView

CustomersDataView.Sort = "CustomerID"

' Set the CustomersGrid to display the CustomersDataView

CustomersGrid.DataSource = CustomersDataView

// C#

// Load the Customers and Orders tables with data

customersTableAdapter1.Fill(northwindDataSet1.Customers);

ordersTableAdapter1.Fill(northwindDataSet1.Orders);

// Set the DataViews to use the Customers and Orders tables

customersDataView = new DataView (northwindDataSet1.Customers);

ordersDataView = new DataView (northwindDataSet1.Orders);

// Set the initial Sort order of the DataView

 414 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

customersDataView.Sort = "CustomerID";

// Set the CustomersGrid to display the CustomersDataView

CustomersGrid.DataSource = customersDataView;

 19. Run the application.

 The form opens, displaying the CustomersDataView in the grid, as shown in Figure

7-15.

 FIGURE 7-15 CustomersGrid displaying the CustomersDataView

 20. Close the application.

 21. Double-click the Set DataView Properties button and add the following code to the

button-click event handler:

 ' VB

CustomersDataView.Sort = SortTextBox.Text

CustomersDataView.RowFilter = FilterTextBox.Text

// C#

customersDataView.Sort = SortTextBox.Text;

customersDataView.RowFilter = FilterTextBox.Text;

 22. Run the application and notice that all customers appear in the grid.

 23. Click the Set DataView Properties button and notice that only customers with a value

of London in their City column appear in the grid.

 24. Change the Filter text box to City = ‘Madrid’.

 25. Click the Set DataView Properties button. Now only customers from Madrid appear in

the grid.

 26. Close the application.

 27. Double-click the Add Row button and add the following code to the button-click event

handler:

 ' VB

' Create a new row

 Lesson 6: Creating and Using DataView Objects CHAPTER 7 415

Dim newCustomerRow As DataRowView = CustomersDataView.AddNew()

' Set a couple of column values

newCustomerRow("CustomerID") = "WINGT"

newCustomerRow("CompanyName") = "Wing Tip Toys"

' Commit the row by explicitly ending the edit

newCustomerRow.EndEdit()

// C#

// Create a new row

DataRowView newCustomerRow = customersDataView.AddNew();

// Set a couple of column values

newCustomerRow["CustomerID"] = "WINGT";

newCustomerRow["CompanyName"] = "Wing Tip Toys";

// Commit the row by explicitly ending the edit

newCustomerRow.EndEdit();

 28. Add another Button (under the Add Row button) and set the following properties:

 Name = GetOrdersButton

 Text = Get Orders

 29. Add another DataGridView below the Customers grid and set its Name property to

OrdersGrid.

 30. Double-click the Get Orders button and add the following code to the button-click

event handler:

 ' VB

' Get the CustomerID for the row selected in the CustomersGrid

Dim selectedCustomerID As String = _

 CStr(CustomersGrid.SelectedCells(0).OwningRow.Cells(_

 "CustomerID").Value)

' Create a DataRowView and assign it the selected row.

Dim selectedRow As DataRowView = CustomersDataView _

 (CustomersDataView.Find(selectedCustomerID))

' Call the CreateChildView method to navigate the relationship and create a

' new DataView based on the related records.

OrdersDataView = selectedRow.CreateChildView(_

 NorthwindDataSet1.Relations("FK_Orders_Customers"))

' Set the OrdersGrid to display the related Dataview

OrdersGrid.DataSource = OrdersDataView

 416 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

// C#

// Get the CustomerID for the row selected in the CustomersGrid

string selectedCustomerID =

 (string)CustomersGrid.SelectedCells[0].OwningRow.Cells[

 "CustomerID"].Value;

// Create a DataRowView and assign it the selected row.

DataRowView selectedRow = customersDataView [

 customersDataView.Find(selectedCustomerID)];

// Call the CreateChildView method to

// navigate the relationship and create a

// new DataView based on the related records.

ordersDataView = selectedRow.CreateChildView

 (northwindDataSet1.Relations["FK_Orders_Customers"]);

// Set the OrdersGrid to display the related Dataview

OrdersGrid.DataSource = ordersDataView;

 31. Run the application and click the Get Orders button.

 32. Select a different customer and click the Get Orders button to display the orders of the

selected customer.

 Lesson Summary
 DataView objects provide access to DataTable objects with easy sorting and fi ltering

capabilities.

 Sort and fi lter DataView objects using the Sort and RowFilter properties.

 A DataView contains a DataRowView, representing each DataRow in a DataTable.

 Search for specifi c records in a DataView with the Find and FindRows methods.

 DataView objects can navigate relationships and can retrieve related records.

 DataView objects raise a ListChanged event when modifi cations are made to the data

in a DataTable.

 Lesson 6: Creating and Using DataView Objects CHAPTER 7 417

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. How do you access the individual columns in the rows of a DataView? (Choose all that

apply.)

 A. Through the DataColumn in the DataTable

 B. Through the associated DataTable object’s DataRow

 C. Through the indexer of a DataRowView

 D. Through the associated DataTable object’s DataColumn

 2. What is returned when calling the DataView.Find method?

 A. An individual DataRow

 B. The index of the found row in the DataView

 C. An individual DataRowView

 D. A collection of DataRow objects

 3. How do you access an order for a selected customer?

 A. Call the GetChildRows method of the DataView.

 B. Call the CreateChildView method of the DataView.

 C. Call the CreateChildView method of the DataRowView.

 D. Call the GetParentRow method of the DataView.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 418 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the additional practices.

 Take a practice test.

 Chapter Summary
 Create DataSet objects programmatically by instantiating new DataSet objects in code

and adding DataTable and DataRelation subjects, much like tables and relationships in

a database.

 Create typed DataSet objects with the DataSet Designer and the Data Source Confi gu-

ration Wizard.

 DataTable objects contain columns (DataColumn objects) and constraints just like

tables in a database.

 DataAdapter objects contain a Connection object.

 DataAdapters contain individual INSERT, UPDATE, and DELETE commands (in addition

to the SELECT command) to save changes back to the database.

 You can use an OleDbDataAdapter to fi ll DataSet objects using ADO recordsets.

 Add data to a DataTable by creating a new DataRow and adding it to the DataTable.

Rows collection.

 Edit data in a DataTable by setting the values of the individual DataColumns in a

DataRow.

 Delete rows in a DataTable by calling the Delete method of a DataRow.

 Set the RowError property of a DataRow to indicate a row with an error.

 The data in a DataSet can be written out as XML data.

 The schema of a DataSet can be written out as XML schema (an .xsd fi le).

 A DataSet and an XMLDataDocument can be kept in synch so you can manipulate the

data and have it be refl ected in both objects.

 XPath queries can be performed on DataSet data.

 Chapter Review CHAPTER 7 419

 DataView objects provide access to DataTable objects with easy sorting and fi ltering

capabilities.

 A DataView contains a DataRowView, representing each DataRow in a DataTable.

 Search for specifi c records in a DataView with the Find and FindRows methods.

 DataView objects can navigate relationships and can retrieve related records.

 Key Terms
 Do you know what the key terms mean? You can check your answers by looking up the terms

in the glossary at the end of the book.

 DataAdapter

 DataColumn

 DataSet

 DataTable

 DataView

 Case Scenarios
 In the following case scenarios, apply what you’ve learned about working with data in a dis-

connected environment. You can fi nd answers to these questions in the “Answers” section at

the end of this book.

 Case Scenario 1: Upgrading an Old Application

 You just landed a huge contract with Humongous Insurance and have been asked to update

their pending-claims database. Their system is old, and the amount of data is astronomical.

Upon initial investigation, you verify the use of many temporary comma-delimited fi les, as well

as an outdated object model that is being used to represent their application’s in-memory

data.

 List the potential improvements you can make to the application.

 Case Scenario 2: Slow System Performance

 Your technology-challenged brother-in-law just inherited fi ve Southridge Video locations.

Somehow, it has become your job to troubleshoot the application used to charge customers

for renting videos. After examining the system, you realize that every transaction processes

the store’s entire inventory of movies.

 List the potential improvements you can make to the application.

 420 CHAPTER 7 Create, Add, Delete, and Edit Data in a Disconnected Environment

Suggested Practices
To gain further knowledge on the subject of working with data in a connected environment,

complete the following practices.

 Practice 1 Create a new SQL Server database, and then create a DataSet and Data-

Table object based on this new database.

 Practice 2 Create an application that writes a single XML fi le for the Northwind

Customers, Orders, and OrderDetails tables. Then create a second application that uses

these three XML fi les as the data source to fi ll the project’s DataSet.

 Practice 3 Create an application that uses the DataViewManager object to display the

data from several DataTable objects on a form.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 8 421

 C H A P T E R 8

 Implementing Data-Bound
Controls

 This chapter describes how to display data on Windows Forms. When controls on a form

are data-bound, the underlying data source stays in synch with the values in the con-

trols. Windows Forms provide classes for binding data between a Windows Form control,

such as a TextBox, and data from a data source. Data binding allows you to bring data into

your application, typically into a dataset, and then allows users to modify that data by edit-

ing values in controls bound to that data and sending the changes back to the database.

The data-binding infrastructure handles most of the behind-the-scenes tasks, such as keep-

ing the control in synch with the DataTable.

 Exam objectives in this chapter:

 Implement data-bound controls.

 Use the DataGridView control to display and update the tabular data contained in a

data source.

 Use a simple data-bound control to display a single data element on a Windows

Form.

 Implement complex data binding to integrate data from multiple sources.

 Navigate forward and backward through records in a dataset in Windows Forms.

 Enhance navigation through a dataset by using the DataNavigator component.

 Defi ne a data source by using a DataConnector component.

 Create data forms by using the Data Source Confi guration Wizard and Data Sources

window.

 Lessons in this chapter:

 Creating a Data-Bound Form with the Data Sources Wizard 423

 Implementing Data-Bound Controls 429

 Working with the DataGridView 438

 422 CHAPTER 8 Implementing Data-Bound Controls

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

“Introduction” at the beginning of the book.

 Microsoft Visual Studio installed on your computer.

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft .NET Framework.

 Available data sources, including Microsoft SQL Server (SQL Server Express Edition is

acceptable), the Northwind Traders sample database for SQL Server, and (if you want to

use the Access version of the database) the Nwind.mdb Microsoft Offi ce Access data-

base fi le.

 A basic understanding of relational databases.

 Completed the exercises or understood the concepts presented in Chapter 5, “Confi g-

uring Connections and Connecting to Data.”

 REAL WORLD

Steve Stein

 Some of my fi rst applications that accessed data had more code written to move

data in and out of the user interface than the code to load, validate, and update

data combined. If you consider the maintenance nightmare of such an application

paired with the fl awed logic I was typically guilty of introducing into applications

back then, you can imagine the countless hours involved. Using Windows Forms

data binding is an excellent way to present data to users.

REAL WORLD

Steve Stein

Some of my fi rst applications that accessed data had more code written to move

data in and out of the user interface than the code to load, validate, and update

data combined. If you consider the maintenance nightmare of such an application

paired with the fl awed logic I was typically guilty of introducing into applications

back then, you can imagine the countless hours involved. Using Windows Forms

data binding is an excellent way to present data to users.

 Lesson 1: Creating a Data-Bound Form with the Data Sources Wizard CHAPTER 8 423

Lesson 1: Creating a Data-Bound Form with the Data
Sources Wizard

This lesson describes how to create a Windows Form that displays data in a DataGridView

using the Data Source Confi guration Wizard and the Data Sources window.

After this lesson, you will be able to:

 Create data forms by using the Data Form Wizard.

 Run the Data Source Confi guration Wizard to create data-bound Windows Forms

and understand what options you can choose and what the wizard generates.

Estimated lesson time: 20 minutes

What Does the Wizard Create?
Running the Data Source Confi guration Wizard creates a typed DataSet in your application

and populates the Data Sources window with the objects selected while running the wizard.

After running the wizard, you still need to drag items onto your form to create the instances

of the objects needed to access the data.

LAB Creating a Data-Bound Windows Form

In this lab you will create a Windows Form with controls bound to data.

EXERCISE 1 Create a Data-Bound Form with the Data Sources Wizard

Let’s now create a Windows Forms application and demonstrate creating a data source and

binding controls to data by dragging items from the Data Sources window.

 1. Create a Windows Forms application and name it DataSourcesWizardExample.

 2. Start the Data Source Confi guration Wizard by selecting Add New Data Source from

the Data menu.

 3. On the Choose A Data Source Type page, leave the default selection of Database and

click Next.

After this lesson, you will be able to:

Create data forms by using the Data Form Wizard.

Run the Data Source Confi guration Wizard to create data-bound Windows Forms

and understand what options you can choose and what the wizard generates.

Estimated lesson time: 20 minutes

 424 CHAPTER 8 Implementing Data-Bound Controls

 4. On the Choose Your Data Connection page, select a connection to the Northwind

sample database or create a new connection if needed.

 5. Click Next, keeping the default values until you get to the Choose Your Database

Objects page. Select the following from the Tables node:

 Customers

 Orders

 Order Details

 6. Click Finish to add the dataset to your project.

 7. On the Data menu, select Show Data Sources to display the Data Sources window.

 The Data Sources window should appear similar to Figure 8-1.

 FIGURE 8-1 Data Sources window displaying the Customers, Order Details, and Orders tables

from the NorthwindDataSet

 8. Drag the Customers node from the Data Sources window onto Form1.

 A DataGridView and BindingNavigator are added to the form, and several data-related

objects appear in the component tray, as shown in Figure 8-2.

 Lesson 1: Creating a Data-Bound Form with the Data Sources Wizard CHAPTER 8 425

 FIGURE 8-2 Form1 and additional components after dragging the Customers node from the Data
Sources window

 9. Run the application.

 At this point, you have a working application with a DataGridView that is data-bound

to the Customers table. If you switch to code view in the Integrated Development

Environment (IDE), you can see that code has been added to fi ll the DataGridView with

data in the form load event and code has been added to the Save button of the Bind-

ingNavigator to send updates back to the database.

 The running application should display the Customers data, as shown in Figure 8-3.

 426 CHAPTER 8 Implementing Data-Bound Controls

 FIGURE 8-3 Form displaying data from the Customers table

 10. Stop the application and open the form in design view.

 11. Expand the Customers node in the Data Sources window.

 12. Drag the Orders node (nested within the Customers node) onto the form.

 Notice that the OrdersBindingSource and OrdersTableAdapter are added to the compo-

nent tray.

 13. Run the application.

 Click a row in the Customers table. Notice that the Orders DataGridView displays all

orders for the selected customer, as shown in Figure 8-4.

 Lesson 1: Creating a Data-Bound Form with the Data Sources Wizard CHAPTER 8 427

 FIGURE 8-4 Form displaying Orders data for the selected customer

 Lesson Summary
 Populate the Data Sources window by running the Data Source Confi guration Wizard.

 Drag items from the Data Sources window to create data-bound controls on a form.

 Code to fi ll the form's controls with data and to save changes back to the database is

automatically added to the form.

 In the Data Sources window, related records are displayed as nested nodes in the tree

view.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 428 CHAPTER 8 Implementing Data-Bound Controls

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. How do you add items to the Data Sources window? (Choose all that apply.)

 A. Select Add New Data Source from the Data Sources window.

 B. Drag a DataSet from the Toolbox onto a form.

 C. Select Add New Data Source from the Data menu.

 D. Run the Data Source Confi guration Wizard.

 2. How do you create data-bound controls on a Windows Form?

 A. Drag items from Server Explorer onto the Dataset Designer.

 B. Drag items from the Data Sources window onto a form.

 C. Drag items from the Toolbox onto a form.

 D. Set data-related Form properties in the Properties window.

 3. How do you bind controls to display data from related tables on a Windows Form?

 A. By selecting the main node of the related table in the Data Sources window and

dragging it onto a form

 B. By selecting the child node in the Data Sources window and dragging it onto a

form

 C. By dragging a Relation object onto the Dataset Designer

 D. By binding to the child DataTable in the DataSet

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Implementing Data-Bound Controls CHAPTER 8 429

Lesson 2: Implementing Data-Bound Controls

This lesson describes how to bind Windows Forms controls to data and navigate forward and

back through the bound data. You can bind simple controls such as a TextBox or a Label or

even a MonthCalendar to a single element of data, or you can bind more complex controls,

such as the DataGridView and ComboBox, to multiple elements of data. This lesson will also

describe how to use a BindingSource as the source of your data. With BindingSource compo-

nents, you can easily redirect the underlying source of your data.

After this lesson, you will be able to:

 Use a simple data-bound control to display a single data element on a Windows

Form.

 Implement complex data binding to integrate data from multiple sources.

 Navigate forward and backward through records in a dataset in Windows Forms.

 Enhance navigation through a dataset by using the DataNavigator component.

 Defi ne a data source by using a DataConnector component.

Estimated lesson time: 45 minutes

Binding Controls to Data
Binding controls to data is simply describing the process of displaying data (such as data from

a database) in Windows Forms controls.

Simple data binding describes the process of displaying a single element of data in a

control—for example, a TextBox displaying the value from a single column in a table, such as

a company name.

Complex data binding describes the process of binding a control to more than one source

of data. For example, consider a combo box that displays a list of category names. What if the

table you are displaying has only a category ID, such as the Products and Categories tables in

the Northwind sample database? You can use complex data binding to display the value from

a column in one DataTable based on a foreign key value in another DataTable.

Simple Data Binding

Simple data binding is the process of binding a single element of data to a single control

property, such as a TextBox displaying the ProductName column from a table (in its Text

property).

After this lesson, you will be able to:

Use a simple data-bound control to display a single data element on a Windows

Form.

Implement complex data binding to integrate data from multiple sources.

Navigate forward and backward through records in a dataset in Windows Forms.

Enhance navigation through a dataset by using the DataNavigator component.r

Defi ne a data source by using a DataConnector component.r

Estimated lesson time: 45 minutes

 430 CHAPTER 8 Implementing Data-Bound Controls

 The following code shows how to bind the ProductName column from a DataTable to a

TextBox named TextBox1:

 ' VB

TextBox1.DataBindings.Add("Text", productsBindingSource, "ProductName")

// C#

TextBox1.DataBindings.Add("Text", productsBindingSource, "ProductName");

 Complex Data Binding

 Complex data binding is binding more than one element of data to more than one property

of a control—for example, a DataGridView control that displays an entire table or a List con-

trol that displays multiple columns of data.

 Controls that enable complex data binding typically contain a DataSource property and

a DataMember property. The DataSource property typically is a BindingSource or DataSet

object. The DataMember property typically is the table or collection to actually display.

 The following code shows how to bind a DataGridView to the Northwind Customers table

using a BindingSource component:

 ' VB

Dim customersBindingSource As New BindingSource(NorthwindDataSet1, "Customers")

DataGridView1.DataSource = customersBindingSource

// C#

BindingSource customersBindingSource = new BindingSource(northwindDataSet1,

"Customers");

DataGridView1.DataSource = customersBindingSource;

 The following code shows how to bind a DataGridView to the Northwind Customers table

using a dataset:

 ' VB

DataGridView1.DataSource = NorthwindDataSet1

DataGridView1.DataMember = "Customers"

// C#

DataGridView1.DataSource = northwindDataSet1;

DataGridView1.DataMember = "Customers";

 Lesson 2: Implementing Data-Bound Controls CHAPTER 8 431

 REAL WORLD

Steve Stein

 During the initial release of the .NET Framework, one of my projects was to

create a client form to display data. Because my specifi c task did not suit itself

to using a grid, I designed the form with individual controls. Trying to work out

my data binding and navigation logic was quite diffi cult due to the complexity of

working with the CurrencyManager and other data binding objects. Introducing the

BindingSource and BindingNavigator components simplifi ed the process of navigat-

ing through my data down to a couple of button clicks!

 Navigating Records in a DataSet

To navigate the records in a data source, use a BindingNavigator component. Assign the

Binding Navigator.BindingSource property a valid BindingSource component, and you can use

the BindingNavigator to move back and forth through the records in that data source.

The BindingNavigator uses the navigational methods available on the BindingSource to

navigate records. For example, MoveNext and MovePrevious methods are available on the

BindingSource.

Defi ning a Data Source Using a BindingSource Component

The BindingSource component contains the information that controls need to bind to a

BindingSource by passing it a reference to a DataTable in a DataSet. By binding to the Binding-

Source instead of to the DataSet, you can easily redirect your application to another source of

data without having to redirect all the data binding code to point to the new data source.

The following code shows how to create a BindingSource and assign it a reference to the

Northwind Customers table:

' VB

customersBindingSource = New BindingSource(NorthwindDataSet1, "Customers")

// C#

customersBindingSource = new BindingSource(northwindDataSet1, "Customers");

REAL WORLD

Steve Stein

During the initial release of the .NET Framework, one of my projects was to

create a client form to display data. Because my specifi c task did not suit itself

to using a grid, I designed the form with individual controls. Trying to work out

my data binding and navigation logic was quite diffi cult due to the complexity of

working with the CurrencyManager and other data binding objects. Introducing ther

BindingSource and BindingNavigator components simplifi ed the process of navigat-r

ing through my data down to a couple of button clicks!

 432 CHAPTER 8 Implementing Data-Bound Controls

Quick Check

 1. What is the difference between simple and complex binding?

 2. How do you navigate back and forth through the records in a DataTable?

Quick Check Answers

 1. Simple binding binds an individual bit of data (such as a fi eld or column) to a

single property of the control to bind to, whereas complex binding binds mul-

tiple bits of data to multiple properties of a control.

 2. By calling the Move methods of a BindingSource component or by using a

BindingNavigator.

LAB Data Binding Controls

In this lab you will bind data to Windows Forms controls.

EXERCISE 1 Simple Data Binding

This practice creates a Windows Forms application and shows how to implement simple data-

bound controls. This example will confi gure the data binding in code (as opposed to dragging

items from the Data Sources window).

 1. Create a Windows Forms application and name it SimpleDataBindingExample.

 2. From the Data Sources window, click Add New Data Source. (You will create a new

typed dataset by running the Data Source Confi guration Wizard.)

 3. Leave the default selection of Database (on the Choose A Data Source Type page) and

click Next.

 4. On the Choose Your Data Connection page, select a connection to the Northwind

sample database or, if necessary, create a new connection.

 5. Click Next, keeping the default values until you get to the Choose Your Database

Objects page and select Products from the Tables node.

 6. Click Finish to add the dataset to your project.

 7. Build the project.

 8. Drag a NorthwindDataSet object from the Toolbox onto the form. (You must build the

project for the NorthwindDataSet to appear in the Toolbox.)

 9. Drag a ProductsTableAdapter object from the Toolbox onto the form.

Now that we have a dataset (and TableAdapter to fi ll it), we can create some controls to

display and navigate the data in the dataset (NorthwindDataSet).

 10. Add a TextBox control to the form and set its Name property to ProductIDTextBox.

Quick Check

1. What is the difference between simple and complex binding?

2. How do you navigate back and forth through the records in a DataTable?

Quick Check Answers

1. Simple binding binds an individual bit of data (such as a fi eld or column) to a

single property of the control to bind to, whereas complex binding binds mul-

tiple bits of data to multiple properties of a control.

2. By calling the Move methods of a BindingSource component or by using a

BindingNavigator.rr

Q

 Lesson 2: Implementing Data-Bound Controls CHAPTER 8 433

 11. Add another TextBox to the form and set its Name property to ProductNameTextBox.

 12. Now add a couple of buttons for navigating the records. First, add a Button control

and set the following properties:

 Name = PreviousButton

 Text = Previous

 13. Add another Button control and set the following properties:

 Name = NextButton

 Text = Next

 14. Double-click an empty area on the form to create a Form1_Load event handler.

 15. Add code to create a BindingSource global to the form, and then add the code to con-

fi gure the data binding in the Form1_Load event handler so your form code looks like

the following:

 ' VB

' Create a BindingSource for the Products table

Private productsBindingSource As BindingSource

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 ' Load the products table with data

 ProductsTableAdapter1.Fill(NorthwindDataSet1.Products)

 ' Create a BindingSource to the Products table

 productsBindingSource = New _

 BindingSource(NorthwindDataSet1, "Products")

 ' Configure the bindings of the TextBoxes

 ProductIDTextBox.DataBindings.Add(_

 "Text", productsBindingSource, "ProductID")

 ProductNameTextBox.DataBindings.Add(_

 "Text", productsBindingSource, "ProductName")

End Sub

// C#

//Create a BindingSource for the Products table

private BindingSource productsBindingSource;

private void Form1_Load(object sender, EventArgs e)

{

 // Load the products table with data

 productsTableAdapter1.Fill(northwindDataSet1.Products);

 434 CHAPTER 8 Implementing Data-Bound Controls

 // Create a BindingSource to the Products table

 productsBindingSource = new BindingSource(

 northwindDataSet1, "Products");

 // Configure the bindings of the TextBoxes

 ProductIDTextBox.DataBindings.Add(

 "Text", productsBindingSource, "ProductID");

 ProductNameTextBox.DataBindings.Add(

 "Text", productsBindingSource, "ProductName");

}

 16. Double-click the Previous button and add the following code, which navigates back to

the previous record in the data source of BindingSource:

 ' VB

productsBindingSource.MovePrevious()

// C#

productsBindingSource.MovePrevious();

 17. Double-click the Next button and add the following code, which navigates to the next

record in the data source of BindingSource:

 ' VB

productsBindingSource.MoveNext()

// C#

productsBindingSource.MoveNext();

 18. Run the application.

 Click the Next and Previous buttons to move back and forth through the data in the

Products table. Each text box is bound to a single column in the data table, and the

BindingSource object handles the low-level maintenance.

 EXERCISE 2 Complex Data Binding

 This practice creates a Windows Forms application and shows how to implement a complex

data-bound control (DataGridView). This example will confi gure the data binding in code (as

opposed to dragging items from the Data Sources window).

 1. Create a Windows Forms application and name it ComplexDataBindingExample.

 2. From the Data Sources window, click Add New Data Source. (You will create a new

typed dataset by running the Data Source Confi guration Wizard.)

 3. Leave the default selection of Database (on the Choose a Data Source Type page) and

click Next.

 Lesson 2: Implementing Data-Bound Controls CHAPTER 8 435

 4. On the Choose Your Data Connection page, select a connection to the Northwind

sample database or create a new connection if needed.

 5. Click Next, keeping the default values until you get to the Choose Your Database

Objects page and select Products from the Tables node.

 6. Click Finish to add the dataset to your project.

 7. Build the project.

 8. Drag a NorthwindDataSet object from the Toolbox onto the form. (You must build the

project for the NorthwindDataSet to appear in the Toolbox.)

 9. Drag a ProductsTableAdapter from the Toolbox onto the form.

 10. Drag a DataGridView onto the form and set its Name property to ProductsGrid.

 11. Drag a Button control onto the form and set the following properties:

 Name = BindGridButton

 Text = Bind Grid

 12. Double-click the button and add the following code to the button-click event handler:

 ' VB

' Load the products table with data from the database

ProductsTableAdapter1.Fill(NorthwindDataSet1.Products)

' Create a new BindingSource component

Dim ProductsBindingSource As New _

 BindingSource(NorthwindDataSet1, "Products")

' Bind the grid to the BindingSource component

ProductsGrid.DataSource = ProductsBindingSource

// C#

// Load the products table with data from the database

productsTableAdapter1.Fill(northwindDataSet1.Products);

// Create a new BindingSource component

BindingSource productsBindingSource = new

 BindingSource(northwindDataSet1, "Products");

// Bind the grid to the BindingSource component

ProductsGrid.DataSource = productsBindingSource;

 13. Drag a BindingNavigator onto the form.

 14. Add the following line of code to the end of the button-click event code added

previously:

 ' VB

' Hook the navigator to the BindingSource

 436 CHAPTER 8 Implementing Data-Bound Controls

BindingNavigator1.BindingSource = ProductsBindingSource

// C#

// Hook the navigator to the BindingSource

bindingNavigator1.BindingSource = productsBindingSource;

 15. Run the application.

 16. Click the Bind Grid button and the Products table data is loaded into the DataGridView

control. You can navigate back and forth using the BindingNavigator because it is con-

fi gured to use the same BindingSource object as the grid. Because the BindingSource

object already was confi gured to use the Products table, the DataGridView.DataSource

property needed only to be set to the ProductsBindingSource object without setting

the DataMember property.

 Lesson Summary
 Simple data binding displays a single element of data in a control.

 Complex data binding binds multiple elements of data to multiple properties of a

control.

 Navigate data in a DataSet using a BindingNavigator component.

 Use BindingSource components as a way to abstract the actual data source in code.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. What does it mean for a control to implement “simple” data binding?

 A. The control displays only a single column of data.

 B. The control displays data only as strings, such as in TextBox or ListBox controls.

 C. The control can display only native data types.

 D. The control has a single property bound to a single column of data.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Implementing Data-Bound Controls CHAPTER 8 437

 2. What two main pieces of information do you need when binding to a complex data-

bound control?

 A. The name of the database and the name of the data table

 B. The name of the database and the name of the dataset

 C. The object data source, such as a BindingSource or a DataSet, and the list to dis-

play, such as a DataTable

 D. The name of the DataSet and the name of the control

 3. Why use a BindingSource component? (Choose all that apply.)

 A. The BindingSource component provides a level of abstraction between bound

controls and a data source, simplifying the process of redirecting your application

to use a different data source.

 B. The BindingSource component provides methods to navigate back and forth

through a DataTable.

 C. The BindingSource component contains the methods necessary for sending

updates back and forth between the application and the database.

 D. The BindingSource provides events through which you can add validation logic to

your code.

 438 CHAPTER 8 Implementing Data-Bound Controls

Lesson 3: Working with the DataGridView

This lesson describes how to confi gure and work with data in a DataGridView control. The

DataGridView can display many types of data, but it typically is used to display the contents

of a DataTable in a DataSet.

 After this lesson, you will be able to:

 Use the DataGridView control to display and update the tabular data contained

in a data source.

 Bind a DataGridView control to a data source.

 Confi gure a DataGridView to use multiple data sources.

 Manage columns in a DataGridView control by using the Edit Columns dialog

box.

 Format a DataGridView control by using styles.

 Format a DataGridView control by using custom painting.

 Confi gure the column and cell types of a DataGridView control.

 Add tables and columns to a DataGridView control.

 Delete columns in a DataGridView control.

 Respond to clicks in a DataGridView control.

 Validate input with a DataGridView control.

 Change displayed data at run time in a DataGridView control.

 Estimated lesson time: 60 minutes

 Displaying a Dataset in the DataGridView Control
 To display a dataset in a DataGridView control or, more specifi cally, to display a DataTable in

a DataGridView, set the DataSource property of the DataGridView to the DataSet and set the

DataMember property of the DataGridView to the name of the DataTable. For example, the

following code displays the Northwind Customers table in a DataGridView:

 ' VB

DataGridView1.DataSource = NorthwindDataSet1

DataGridView1.DataMember = "Customers"

//C#

DataGridView1.DataSource = northwindDataSet1;

DataGridView1.DataMember = "Customers";

After this lesson, you will be able to:

Use the DataGridView control to display and update the tabular data containedw

in a data source.

Bind a DataGridView control to a data source.w

Confi gure a DataGridView to use multiple data sources.w

Manage columns in a DataGridView control by using the Edit Columns dialog w

box.

Format a DataGridView control by using styles.w

Format a DataGridView control by using custom painting.w

Confi gure the column and cell types of a DataGridView control.w

Add tables and columns to a DataGridView control.w

Delete columns in a DataGridView control.w

Respond to clicks in a DataGridView control.w

Validate input with a DataGridView control.w

Change displayed data at run time in a DataGridView control.

Estimated lesson time: 60 minutes

 Lesson 3: Working with the DataGridView CHAPTER 8 439

 You can also set a DataGridView control to display a dataset using the smart tag available

on a DataGridView control by selecting the DataSet in the Choose Data Source ComboBox

available on the smart tag. The Choose Data Source command allows you to select a DataSet

and DataTable to display from the DataSet list already defi ned in your project, or you can

create a new DataSet to display by selecting Add Project Data Source on the smart tag, which

starts the Data Source Confi guration Wizard.

 Confi guring DataGridView Columns
 There are six built-in types of columns you can use in a DataGridView, as outlined in Table 8-1.

When adding columns to a DataGridView, select the type of column based on the data you

plan to display in it.

 TABLE 8-1 DataGridView Column Types

 COLUMN TYPE DESCRIPTION

 DataGridViewTextBoxColumn Use this column type to display text and numeric

values. A data-bound DataGridView automatically

generates this type of column when binding to

strings and numeric values.

 DataGridViewCheckBoxColumn Use this column to display Boolean values. A

DataGridView automatically generates this type of

column when binding to Boolean values.

 DataGridViewImageColumn Use this column to display images. A DataGridView

automatically generates this type of column when

binding to Image and Icon objects. You can also bind

a DataGridViewImage column to a byte array.

 DataGridViewButtonColumn Use this column to provide users with a button

control.

 DataGridViewComboBoxColumn Use this column type to present lists of choices. This

would typically be used for lookups to other tables.

 DataGridViewLinkColumn Use this column type to display links to other data.

 Custom Column If none of the preceding column types provides

the specifi c functionality you require, you can

always create a custom column type. To create a

custom column, defi ne your class to inherit from

DataGridViewColumn or any class with a base class

of DataGridViewColumn. (For example, inherit from

DataGridViewTextBoxColumn to extend the function-

ality of that type.)

 440 CHAPTER 8 Implementing Data-Bound Controls

 Adding Tables and Columns to a DataGridView
 To display a table in a DataGridView, you defi ne the columns that make up the schema of

the table and add them to the DataGridView. You can add columns to a DataGridView with

Designers using the Add Column dialog box or programmatically in code.

 First, decide which type of column to use (refer to Table 8-1) and then use one of the fol-

lowing procedures to add the column to your DataGridView.

 Adding Columns to a DataGridView Using the Designer

 To add columns to a DataGridView in the Designer, follow these steps:

 1. Select the DataGridView on your form.

 2. Open the smart tag of the DataGridView.

 3. Select Add Column.

 4. In the Add Column dialog box, defi ne the column by setting the appropriate values in

the dialog box.

 Adding Columns to a DataGridView Programmatically

 To add columns to a DataGridView in code, create an instance of the appropriate type of

column, defi ne the column by setting the appropriate properties, and then add the column to

the DataGridView.Columns collection.

 For example, the following code sample creates a new text box column named

ProductName:

 ' VB

Dim ProductNameColumn As New DataGridViewTextBoxColumn

ProductNameColumn.Name = "ProductName"

ProductNameColumn.HeaderText = "Product Name"

ProductNameColumn.ValueType = System.Type.GetType("System.String")

DataGridView1.Columns.Add(ProductNameColumn)

// C#

DataGridViewTextBoxColumn ProductNameColumn = new DataGridViewTextBoxColumn();

ProductNameColumn.Name = "ProductName";

ProductNameColumn.HeaderText = "Product Name";

ProductNameColumn.ValueType = System.Type.GetType("System.String");

DataGridView1.Columns.Add(ProductNameColumn); .

 Deleting Columns in the DataGridView
 You can delete columns in a DataGridView by using the Designer in Visual Studio, or pro-

grammatically in code.

 Lesson 3: Working with the DataGridView CHAPTER 8 441

 Deleting Columns in a DataGridView Using the Designer

 To delete columns in a DataGridView using the Designer, complete the following steps:

 1. Select the DataGridView on your form.

 2. Open the smart tag for the DataGridView.

 3. Select Edit Columns.

 4. In the Edit Columns dialog box, select the column you want to remove from the

DataGridView.

 5. Click the Remove button.

 Deleting Columns in a DataGridView Programmatically

 To delete columns in a DataGridView in code, call the Remove method and provide the name

of the column you want to delete. For example, the following code example deletes a column

named ProductName from DataGridView1:

 ' VB

DataGridView1.Columns.Remove("ProductName")

// C#

DataGridView1.Columns.Remove["ProductName"];

 Determining the Clicked Cell in a DataGridView
 To determine the clicked cell, use the DataGridView.CurrentCell property. The CurrentCell

provides a reference to the currently selected cell and provides properties to access the value

of the data in the cell, as well as the row and column index of the cell’s current location in the

DataGridView. For example:

 ' VB

Dim CurrentCellValue As String

CurrentCellValue = CustomersDataGridView.CurrentCell.Value.ToString

// C#

String CurrentCellValue;

CurrentCellValue = CustomersDataGridView.CurrentCell.Value.ToString();

 Validating Input in the DataGridView
 To validate input in an individual cell in a DataGridView, handle the DataGridView.CellValidat-

ing event and cancel the edit if the value fails validation. The CellValidating event is raised

when a cell loses focus. Add code to the event handler for the CellValidating event to verify

that the values in specifi c columns conform to your business rules and application logic. The

event arguments contain the proposed value in the cell, as well as the row and column index

of the cell being edited.

 442 CHAPTER 8 Implementing Data-Bound Controls

 For example, the following code validates that the ProductName column does not contain

an empty string (use this sample for a DataGridView that is not bound to data):

 ' VB

If DataGridView1.Columns(e.ColumnIndex).Name = "ProductName" Then

 If e.FormattedValue.ToString = "" Then

 dataGridView1.Rows(e.RowIndex).ErrorText = "Product Name is a required field"

 e.Cancel = True

 Else

 dataGridView1.Rows(e.RowIndex).ErrorText = ""

 End If

End If

// C#

if (DataGridView1.Columns[e.ColumnIndex].Name == "ProductName")

{

 if (e.FormattedValue.ToString() == "")

 {

 DataGridView1.Rows[e.RowIndex].ErrorText = "Product Name is a required field";

 e.Cancel = true;

 }

 else

 {

 DataGridView1.Rows[e.RowIndex].ErrorText = "";

 }

}

 The following code also validates that the ProductName column does not contain an

empty string. Use this example for a DataGridView that is bound to data. The difference from

the preceding example is shown in bold.

 ' VB

If DataGridView1.Columns(e.ColumnIndex).DataPropertyName = "ProductName" Then

 If e.FormattedValue.ToString = "" Then

 dataGridView1.Rows(e.RowIndex).ErrorText = "Product Name is a required field"

 e.Cancel = True

 Else

 dataGridView1.Rows(e.RowIndex).ErrorText = ""

 End If

End If

// C#

if (DataGridView1.Columns[e.ColumnIndex].DataPropertyName == "ProductName")

{

 if (e.FormattedValue.ToString() == "")

 {

 DataGridView1.Rows[e.RowIndex].ErrorText = "Product Name is a required field";

 Lesson 3: Working with the DataGridView CHAPTER 8 443

 e.Cancel = true;

 }

 else

 {

 DataGridView1.Rows[e.RowIndex].ErrorText = "";

 }

}

 Format a DataGridView Using Styles
 Format the look of a DataGridView by setting the grid’s cell styles. Although each cell can

have a specifi c style applied to it, many cells typically share the same style.

 The DataGridView provides several built-in default cell styles that you can customize and

use, or you can create new cell styles and apply them to your DataGridView cells. The follow-

ing example demonstrates how to apply a style.

 Format a DataGridView Control by Using Custom Painting
 To format a DataGridView using custom painting, you can handle the CellPainting event

and insert your own custom painting code. When you handle the CellPainting event, the

DataGridViewCellPaintingEventArgs provide access to many properties that simplify custom

painting. When you handle the CellPainting event, be sure to set e.Handled to True so the grid

does not call its own cell painting routine.

 To paint all cells LightSkyBlue, place the following code in the CellPainting event handler:

 ' VB

' Paint the cell background color LightSkyBlue

e.Graphics.FillRectangle(Brushes.LightSkyBlue, e.CellBounds)

' Draw the contents of the cell

If Not (e.Value Is Nothing) Then

 e.Graphics.DrawString(e.Value.ToString, e.CellStyle.Font, _

 Brushes.Black, e.CellBounds.X, e.CellBounds.Y)

End If

e.Handled = True

// C#

// Paint the cell background color LightSkyBlue

e.Graphics.FillRectangle(Brushes.LightSkyBlue, e.CellBounds);

// Draw the contents of the cell

if (e.Value != null)

{

 e.Graphics.DrawString(e.Value.ToString(), e.CellStyle.Font,

 Brushes.Black, e.CellBounds.X, e.CellBounds.Y);

}

e.Handled = true;

 444 CHAPTER 8 Implementing Data-Bound Controls

Quick Check

 1. What properties do you set on a DataGridView to display a specifi c DataTable?

 2. How do you determine what cell is clicked in a DataGridView?

Quick Check Answers

 1. Set the DataSource property to the DataSet and the DataMember property to

the name of the DataTable.

 2. Inspect the DataGridView.CurrentCell property.

LAB Working with the DataGridView

In this lab you will work with data in a DataGridView control.

EXERCISE 1 Working with the DataGridView

Now let’s create a Windows Forms application and demonstrate how to manipulate the defi -

nition as well as the columns and data in a DataGridView control.

 1. Create a Windows Forms application and name it DataGridViewExample.

 2. Open the Data Sources window (on the Data menu, select Show Data Sources).

 3. Click Add New Data Source to start the Data Source Confi guration Wizard.

 4. Leave the default of Database and click Next.

 5. Select (or create) a connection to the Northwind sample database and click Next.

 6. Expand the Tables node. Select the Customers table, and then click Finish.

 7. Drag the Customers node from the Data Sources window onto the form.

 At this point you can actually run the application and the form appears with the Cus-

tomers table loaded into the DataGridView.

 8. Drag two Button controls onto the form below the DataGridView and set the following

properties:

 Button1:

•• Name = AddColumnButton

•• Text = Add Column

 Button2:

•• Name = DeleteColumnButton

•• Text = Delete Column

 9. Double-click the Add Column button to create the button-click event handler and to

open the form in code view.

Quick Check

1. What properties do you set on a DataGridView to display a specifi cw DataTable?

2. How do you determine what cell is clicked in a DataGridView?

Quick Check Answers

1. Set the DataSource property to the DataSet and the t DataMember property tor

the name of the DataTable.

2. Inspect the DataGridView.CurrentCell property.l

Q

 Lesson 3: Working with the DataGridView CHAPTER 8 445

 10. Add the following code to Form1. The additional code in the Form1_Load event creates

a new column on the DataTable, and the code in the AddColumnButton_Click event

handler adds a new column to the DataGridView:

 ' VB

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 'TODO: This line of code loads data into the

 'NorthwindDataSet.Customers table. You can move, or remove

 'it, As needed.

 Me.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers)

 ' Add a new column to the Customers DataTable

 ' to be used to demonstrate adding and removing

 ' columns in a DataGridView in the methods below

 Dim Location As New DataColumn("Location")

 Location.Expression = "City + ', ' + Country"

 NorthwindDataSet.Customers.Columns.Add(Location)

End Sub

Private Sub AddColumnButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles AddColumnButton.Click

 Dim LocationColumn As New DataGridViewTextBoxColumn

 LocationColumn.Name = "LocationColumn"

 LocationColumn.HeaderText = "Location"

 LocationColumn.DataPropertyName = "Location"

 CustomersDataGridView.Columns.Add(LocationColumn)

End Sub

// C#

private void Form1_Load(object sender, EventArgs e)

{

 // TODO: This line of code loads data into the

 // northwindDataSet.Customers table. You can move, or

 // remove it, as needed.

 this.customersTableAdapter.Fill(this.northwindDataSet.Customers);

 // Add a new column to the Customers DataTable

 // to be used to demonstrate adding and removing

 // columns in a DataGridView in the methods below

 DataColumn Location = new DataColumn("Location");

 Location.Expression = "City + ', ' + Country";

 northwindDataSet.Customers.Columns.Add(Location);

}

 446 CHAPTER 8 Implementing Data-Bound Controls

private void AddColumnButton_Click(object sender, EventArgs e)

{

 DataGridViewTextBoxColumn LocationColumn = new

 DataGridViewTextBoxColumn();

 LocationColumn.Name = "LocationColumn";

 LocationColumn.HeaderText = "Location";

 LocationColumn.DataPropertyName = "Location";

 customersDataGridView.Columns.Add(LocationColumn);

}

 11. Double-click the Delete Column Button to create the DeleteColumnButton_Click event

handler. Add the following code to the DeleteColumnButton_Click event handler:

 ' VB

Try

 CustomersDataGridView.Columns.Remove("LocationColumn")

Catch ex As Exception

 MessageBox.Show(ex.Message)

End Try

// C#

try

{

 customersDataGridView.Columns.Remove("LocationColumn");

}

catch (Exception ex)

{

 MessageBox.Show(ex.Message);

}

 12. Drag another Button onto the form and set the following properties:

 Name = GetClickedCellButton

 Text = Get Clicked Cell

 13. Drag a Label onto the form and place it next to the Get Clicked Cell button.

 14. Double-click the Get Clicked Cell button and add the following code to the GetClicked-

CellButton_Click event handler:

 ' VB

Dim CurrentCellInfo As String

CurrentCellInfo = _

 CustomersDataGridView.CurrentCell.Value.ToString & _

 Environment.NewLine

CurrentCellInfo += "Column: " & _

 CustomersDataGridView.CurrentCell.OwningColumn.DataPropertyName & _

 Environment.NewLine

CurrentCellInfo += "Column Index: " & CustomersDataGridView.CurrentCell.

 Lesson 3: Working with the DataGridView CHAPTER 8 447

ColumnIndex.ToString & _

 Environment.NewLine

CurrentCellInfo += "Row Index: " & _

 CustomersDataGridView.CurrentCell.RowIndex.ToString

Label1.Text = CurrentCellInfo

// C#

string CurrentCellInfo;

CurrentCellInfo = customersDataGridView.CurrentCell.Value.ToString() +

 Environment.NewLine;

CurrentCellInfo += "Column: " +

 customersDataGridView.CurrentCell.OwningColumn.DataPropertyName +

 Environment.NewLine;

CurrentCellInfo += "Column Index: " + customersDataGridView.CurrentCell.

ColumnIndex.ToString() +

 Environment.NewLine;

CurrentCellInfo += "Row Index: " +

 customersDataGridView.CurrentCell.RowIndex.ToString();

label1.Text = CurrentCellInfo;

 15. Create an event handler for the CustomersDataGridView.CellValidating event. (Select

CustomersDataGridView on the form, click the Events button in the Properties window,

and double-click the CellValidating event.)

 16. Add the following code to the CellValidating event handler:

 ' VB

If CustomersDataGridView.Columns(e.ColumnIndex).DataPropertyName = _

 "ContactName" Then

 If e.FormattedValue.ToString = "" Then

 CustomersDataGridView.Rows(e.RowIndex).ErrorText = _

 "ContactName is a required field"

 e.Cancel = True

 Else

 CustomersDataGridView.Rows(e.RowIndex).ErrorText = ""

 End If

End If

// C#

if (customersDataGridView.Columns[e.ColumnIndex].DataPropertyName ==

 "ContactName")

{

 if (e.FormattedValue.ToString() == "")

 {

 customersDataGridView.Rows[e.RowIndex].ErrorText =

 448 CHAPTER 8 Implementing Data-Bound Controls

 "ContactName is a required field";

 e.Cancel = true;

 }

 else

 {

 customersDataGridView.Rows[e.RowIndex].ErrorText = "";

 }

}

 17. Drag another Button onto the form and set the following properties:

 Name = ApplyStyleButton

 Text = Apply Style

 18. Double-click the Apply Style button and add the following code to the ApplyStyleBut-

ton_Click event handler:

 ' VB

CustomersDataGridView.AlternatingRowsDefaultCellStyle.BackColor = _

 Color.LightGray

// C#

customersDataGridView.AlternatingRowsDefaultCellStyle.BackColor =

 Color.LightGray;

 19. Run the application.

 20. Click the Add Column button, and then scroll to the end of the columns to verify that

the new Location column is there.

 21. Click the Delete Column button and verify that the Location column is deleted from

the DataGridView.

 22. Select any cell in the grid, and then click the Get Clicked Cell button. The Label displays

the contents of the cell, the name of the column the cell is in, and the column and row

index of the cell.

 23. Finally, click the Apply Style button. The AlternatingRowCellStyle is set up to display

alternating rows with a light gray background.

 Lesson Summary
 The DataGridView is the preferred control for displaying tabular data, such as a

DataTable.

 You can add and remove columns to a DataGridView in the Designer by using the

Add Column and Edit Column dialog boxes available from the smart tag of the

DataGridView.

 The DataGridView.CurrentCell property provides access to the currently selected cell in

a DataGridView.

 Lesson 3: Working with the DataGridView CHAPTER 8 449

 The DataGridView raises a CellValidating event through which you can add code that

verifi es that the value in a column conforms to your business rules and application

logic.

 You can format the look of a DataGridView using styles and custom painting.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. What is the best way to determine what cell a user clicks in a DataGridView?

 A. Use the column and row index of the selected cell.

 B. Use the DataGridView.CurrentCell property.

 C. Use the cursor position’s x and y coordinates.

 D. Use the currently selected column and row in the bound DataTable to determine

the clicked cell.

 2. What is the preferred method of validating input in a DataGridView?

 A. By adding validation code to the CellPainting event handler

 B By adding validation code to the DataGridView.CellClick event handler

 C. By adding validation code to the DataGridView.CellValidating event handler

 D. By adding code to the DataGridView partial class fi le

 3. What is the best way to display a Boolean value in a DataGridView?

 A. Confi gure a DataGridViewTextBoxColumn and display True or False.

 B. Confi gure a DataGridViewCheckBoxColumn to display a check box that is selected

or cleared.

 C. Confi gure a DataGridViewButtonColumn to display a button that indicates pressed

or not pressed.

 D. Confi gure a custom column to display Yes or No.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 450 CHAPTER 8 Implementing Data-Bound Controls

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the additional practices.

 Take a practice test.

 Chapter Summary
 Populate the Data Sources window by running the Data Source Confi guration Wizard.

 Drag items from the Data Sources window to create data-bound controls on a form.

 Code to fi ll the table with data and to save changes back to the database is automati-

cally added to the form.

 In the Data Sources window, related records are displayed as nested nodes in the tree

view.

 Simple data binding displays a single element of data in a control.

 Complex data binding binds multiple elements of data to multiple properties of a

control.

 Navigate data in a DataSet using a BindingNavigator component.

 Use BindingSource components as a way to abstract the actual data source in code.

 The DataGridView is the preferred control for displaying tabular data such as a

DataTable.

 You can add and remove columns to a DataGridView in the Designer using the

Add Column and Edit Column dialog boxes available from the smart tag of the

DataGridView.

 The DataGridView.CurrentCell property provides access to the currently selected cell in

a DataGridView.

 The DataGridView raises a CellValidating event through which you can add code that

verifi es that the value in a column conforms to your business rules and application

logic.

 You can format the look of a DataGridView using styles and custom painting.

 Suggested Practices CHAPTER 8 451

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

 BindingSource

 data binding

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about implementing data-

bound controls. You can fi nd answers to these questions in the “Answers” section at the end

of this book.

 Case Scenario 1: Upgrading an Old Application

 You have been asked to upgrade the software that keeps track of donations at the Baldwin

Museum of Science. Upon initial inspection, you see that each record is displayed on a sepa-

rate form so you must navigate sequentially to go from one museum record to the next. In

addition to the many forms, the application has a separate component that is specifi cally for

keeping the database and the forms in synch.

 List the potential improvements you can make to the application.

 Case Scenario 2: Preventing Recompilation of a Large Application

 You just landed a developer’s dream job at City Power & Light. Your next big project is writing

the next-generation software that runs the power grid for the entire city!

 You know you are going to be working on this application for quite some time before it

goes live, and the main database won’t be available until the application is actually deployed.

You will need to design this application to easily switch between the test and production

databases.

 What would you do to facilitate this architecture?

 Suggested Practices

 To gain further knowledge on the subject of working with data in a connected environment,

complete the following practices.

 Practice 1 Create an application that displays data from the Categories and Products

tables using the Data Sources window.

 452 CHAPTER 8 Implementing Data-Bound Controls

 Practice 2 Create an application that displays data from the Customers table in a

DataGridView and then displays the selected customer’s orders in the same DataGrid-

View when a button is clicked.

 Practice 3 Create an application that displays the data from the Products table and

format the cells that contain discontinued products with dimmed text.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 9 453

 C H A P T E R 9

 Working with XML

 Extensible Markup Language (XML) is a universally used format for communication and

storage of information. XML is extensible, platform-independent, and because it is a

text-based format, it can be read and written with standard text-editing tools. This chapter

describes how to use the Microsoft .NET Framework to read and write XML.

 Exam objectives in this chapter:

 Read, write, and validate XML by using the XmlReader class and the XmlWriter class.

 Read XML data by using the XmlReader.

 Read all XML element and attribute content.

 Read specifi c element and attribute content.

 Read XML data by using the XmlTextReader class.

 Read node trees by using the XmlNodeReader class.

 Validate XML data by using the XmlValidatingReader.

 Write XML data by using the XmlWriter class.

 Manage XML with the XML Document Object Model (DOM).

 Read XML data into the DOM.

 Modify an XML document by adding and removing nodes.

 Modify nodes within an XML document.

 Write data in XML format from the DOM.

 Work with nodes in the XML DOM.

 Handle DOM events.

 Modify the XML declaration.

 Lessons in this chapter:

 Reading and Writing XML with the XmlReader and XmlWriter

Classes 455

 Managing XML with the XML Document Object Model 476

 454 CHAPTER 9 Working with XML

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft .NET Framework .

 An understanding of basic XML structure .

 REAL WORLD

Matt Stoecker

 The rise of XML use in the computing world has been meteoric. When writing

applications to parse information from a variety of sources, I invariably need to

process XML. The .NET Framework XML classes make it easy to incorporate XML into

your applications.

REAL WORLD

Matt Stoecker

The rise of XML use in the computing world has been meteoric. When writing

applications to parse information from a variety of sources, I invariably need to

process XML. The .NET Framework XML classes make it easy to incorporate XML into

your applications.

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 455

Lesson 1: Reading and Writing XML with the
XmlReader and XmlWriter Classes

The System.XML namespace supplies the XmlReader and XmlWriter classes for rapidly reading

and writing XML. The XmlReader and XmlWriter classes are abstract classes that provide the

basic interface for parsing XML and are implemented in a variety of classes. This lesson will

discuss how to use the XmlReader and XmlWriter classes, as well as some of their most com-

mon implementations.

 After this lesson, you will be able to:

 Read XML data by using the XmlReader.

 Read all XML element and attribute content.

 Read specifi c element and attribute content.

 Read XML data by using the XmlTextReader class.

 Read node trees by using the XmlNodeReader class.

 Validate XML data by using the XmlValidatingReader.

 Write XML data by using the XmlWriter class.

 Estimated lesson time: 45 minutes

 The XmlReader Class
 The XmlReader class is an abstract class that provides the base implementation for the dif-

ferent XML reader classes in the System.Xml namespace. XmlReader and its derivative classes

provide rapid, noncached, forward-only access to an XML document. Simply put, this means

that you can use an instance of a class derived from XmlReader to start at the beginning of

an XML document and read through it from start to fi nish. Once content has been read and

passed, however, it cannot be returned to and the content is lost unless it has been saved or

otherwise used by your application. Table 9-1 describes some of the important methods of

XmlReader, and Table 9-2 explains some of the important properties of XmlReader.

 TABLE 9-1 Important Methods of XmlReader

 METHOD DESCRIPTION

 Create Returns a new instance of an implementation of the XmlReader

class.

 GetAttribute Gets the value of the attribute with the specifi ed index or name.

 IsStartElement Calls MoveToContent and tests if the current node is a start ele-

ment or an empty element tag.

After this lesson, you will be able to:

Read XML data by using the XmlReader.rr

Read all XML element and attribute content.

Read specifi c element and attribute content.

Read XML data by using the XmlTextReader class.r

Read node trees by using the XmlNodeReader class.

Validate XML data by using the XmlValidatingReader.rr

Write XML data by using the XmlWriter class.

Estimated lesson time: 45 minutes

 456 CHAPTER 9 Working with XML

 METHOD DESCRIPTION

 MoveToAttribute Moves to the attribute with the specifi ed index or name.

 MoveToContent Checks to see if the current node is a content node; if not, moves

to the next content node or end of fi le.

 MoveToElement Moves the reader to the element containing the current attri-

bute. You can use this method to move the reader back to the

node when it is positioned on an attribute.

 MoveToFirstAttribute Moves the reader to the fi rst attribute in the node.

 MoveToNextAttribute Moves the reader to the next attribute in the node.

 Read Reads the next node in the stream.

 ReadInnerXml Returns all the XML content in the current node and all of its

children. The start and end nodes are excluded.

 ReadOuterXml Returns all XML content of the current node and all of its

children.

 Skip Skips the children of the current node.

 TABLE 9-2 Important Properties of XmlReader

 PROPERTY DESCRIPTION

 AttributeCount Gets the number of attributes on a current node.

 EOF Returns True if the reader is at the end of the fi le. Otherwise, it

returns False.

 HasAttributes Determines whether the current node has attributes.

 HasValue Determines whether the current node can have a value.

 Item Exposes the collection of attributes for the current node. You can

get the value of an attribute by specifying the index or name.

 Name Gets the qualifi ed name of the current node.

 NodeType Gets the type of the current node.

 Value Gets the value of the current node.

 These members are found in all implementations of XmlReader, including XmlText Reader,

XmlNodeReader, and the default implementations of XmlReader returned by XmlReader.

Create.

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 457

 Creating an XmlReader Implementation

 Although XmlReader is an abstract class, it exposes a static method called Create that returns

a default implementation of XmlReader that will read an existing XML stream or an XML fi le.

The following example demonstrates how to create a new implementation of XmlReader:

 ' VB

Dim aReader As XmlReader

' Creates a reader that reads a stream called XmlStream

aReader = XmlReader.Create(XmlStream)

' Creates a reader that reads a file located at C:\SampleXml.xml

aReader = XmlReader.Create("C:\SampleXml.xml")

// C#

XmlReader aReader;

// Creates a reader that reads a stream called XmlStream

aReader = XmlReader.Create(XmlStream);

// Creates a reader that reads a file located at C:\SampleXml.xml

aReader = XmlReader.Create(@"C:\SampleXml.xml");

 Reading XML Content

 The primary method for reading XML content in an XML fi le is the Read method, which reads

the current XML node and advances the reader to the next node in the fi le or stream. The

Read method returns a Boolean value that indicates whether the read was successful. You

can use this method to read all nodes in an XML fi le sequentially, as shown in the following

example:

' VB

' Assumes an XmlReader named myReader

While myReader.Read()

 ' Do something with the nodes here

End While

// C#

// Assumes an XmlReader named myReader

while (myReader.Read())

{

 // Do something with the nodes here

}

 When a node is being read, the name and value of the current node is available through

the Name and Value properties of XmlReader. Tables 9-3 and 9-4 describe what is returned by

these properties depending on the type of node being read.

 458 CHAPTER 9 Working with XML

 TABLE 9-3 Return Values of the Name Property

 NODE TYPE WHAT IS RETURNED

 Attribute The name of the attribute

 DocumentType The document type name

 Element The tag name

 EntityReference The name of the entity referenced

 ProcessingInstruction The target of the processing instruction

 XmlDeclaration The literal string XML

 All other nodes Empty string

 TABLE 9-4 Return Values of the Value Property

 NODE TYPE WHAT IS RETURNED

 Attribute The value of the attribute

 CDATA The content of the CDATA section

 Comment The content of the comment

 DocumentType The internal subset

 ProcessingInstruction The entire content, excluding the target

 Signifi cantWhitespace The white space between markups in a mixed-content

model

 Text The content of the text node

 Whitespace The white space between markups

 XmlDeclaration The content of the declaration

 All other nodes An empty string

 The following example demonstrates how these properties can be used:

 ' VB

While myReader.Read()

 If myReader.NodeType = Xml.XmlNodeType.Element Then

 MsgBox(myReader.Name)

 ElseIf myReader.NodeType = Xml.XmlNodeType.Text Then

 MsgBox(myReader.Value)

 End If

End While

// C#

while (myReader.Read())

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 459

{

 if (myReader.NodeType == Xml.XmlNodeType.Element)

 MessageBox.Show(myReader.Name);

 else if (myReader.NodeType == Xml.XmlNodeType.Text)

 MessageBox.Show(myReader.Value);

}

 Reading Attribute Content

 You can also use XmlReader to read the attributes of a given node and the values of those

attributes. The MoveToAttribute, MoveToFirstAttribute, and MoveToNextAttribute methods

control navigation through the attributes of a given node. When one of these methods is

called, the Name property of XmlReader exposes the name of the attribute and the Value

property of XmlReader exposes the value of the attribute.

 Moving within attributes is the only time XmlReader can move backward. You could, for

example, read the fi fth attribute of a node and then move back to the fi rst attribute. Once

you have visited a new node, however, you cannot revisit the attributes of a previous node.

 THE MOVETOATTRIBUTE METHOD

You can use the MoveToAttribute method to move the reader to a specifi c attribute in an XML

node. This method allows you to specify the name of an attribute or the index of an attribute

and move directly to it, and it returns a Boolean value that indicates whether the move is

successful. If the specifi ed attribute or index is not found, the method returns False and the

position of the reader does not change. The following example demonstrates how to use the

MoveToAttribute method given this XML node:

 <Flowers Name="Rose" Varietal="Shiraz" Color="Red" Thorns="Yes">

' VB

' Assumes an XmlReader named myReader that is positioned on the node shown above

If myReader.MoveToAttribute("Color")

 MsgBox(myReader.Value)

End If

// C#

// Assumes an XmlReader named myReader that is positioned on the node shown above

if (myReader.MoveToAttribute("Color"))

 MessageBox.Show(myReader.Value);

 ReadInnerXml and ReadOuterXml

 You can use the ReadInnerXml and ReadOuterXml methods to return portions of the XML fi le

as strings. The ReadInnerXml method returns the contents of the current XML node, includ-

ing child nodes but excluding the opening and closing nodes themselves. The ReadOuterXml

 460 CHAPTER 9 Working with XML

method returns the contents of the current XML node, including child nodes as well as the

opening and closing nodes. For example, consider the following XML fragment:

 <text1>mytext<subtext1>mysubtext</subtext1></text1><text2></text2>

 If XmlReader is positioned on <text1>, ReadInnerXml returns the following string:

 mytext<subtext1>mysubtext</subtext1>

 and moves the position of XmlReader to <text2>. Given the same XML fragment, Read-

OuterXml returns the following string:

 <text1>mytext<subtext1>mysubtext</subtext1></text1>

 and moves the reader position to <text2>.

 READING ATTRIBUTES WITH READINNERXML AND READOUTERXML

If XmlReader has been positioned on an attribute, you can use ReadInnerXml and Read-

OuterXml to return strings based on the attribute content. For example, consider the

following XML fragment:

 <text1 length="12" color="blue">moo</text1>

 If the XmlReader is positioned on the length attribute, ReadInnerXml returns the following

string:

 12

 and does not advance the position of the reader. Likewise, given the same fragment and

starting position, ReadOuterXml returns the following string:

 length="12"

 Again, the position of the reader is not changed.

 MoveToContent

 You can use the MoveToContent method to skip over nodes that do not contain content, such

as white space, comments, or processing instructions. The MoveToContent method checks

to see if the current node is a content node. If it is, no action is taken. If the current node is

not a content node, it moves the position of the reader to the next content-containing node.

MoveToContent considers the following node types to be content nodes: CDATA, Element,

EndElement, EntityReference, EndEntity, or any non-white-space text. When MoveToContent is

called, the reader stops at the fi rst of any of these nodes that it encounters. It skips over any

of the following types of nodes: ProcessingInstruction, DocumentType, Comment, Whitespace,

or Signifi cantWhitespace. The following demonstrates how to call MoveToContent:

 ' VB

' Assumes an XmlReader named myReader

myReader.MoveToContent()

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 461

// C#

// Assumes an XmlReader named myReader

myReader.MoveToContent();

 Skip

 Calling the Skip method causes XmlReader to skip all of the child nodes of the current node

and to continue to the next node at the same level. For example, consider the following XML

fragment:

 <text1>

 <text2>

 </text2>

</text1>

<text3>

</text3>

 If the reader is positioned on <text1> and the Skip method is called, the reader is

advanced to the <text3> node. The following example demonstrates the use of the Skip

method:

 ' VB

myReader.Skip()

// C#

myReader.Skip();

 The XmlTextReader Class

 The XmlTextReader class is an implementation of the XmlReader class. You can use all of the

methods previously described in this lesson for the XmlReader class for the XmlTextReader

class as well. The XmlTextReader is designed to read text either in a fi le or in a stream. You

can create an XmlTextReader object that will read a specifi c stream or fi le by specifying the

appropriate stream or fi le at instantiation, as shown in the following code:

 ' VB

Dim aReader As XmlTextReader

' Creates an XmlTextReader that reads a stream called XmlStream

aReader = New XmlTextReader(XmlStream)

' Creates a reader that reads a file located at C:\SampleXml.xml

aReader = New XmlTextReader("C:\SampleXml.xml")

// C#

XmlTextReader aReader;

// Creates an XmlTextReader that reads a stream called XmlStream

aReader = new XmlTextReader(XmlStream);

// Creates a reader that reads a file located at C:\SampleXml.xml

aReader = new XmlTextReader("C:\\SampleXml.xml");

 462 CHAPTER 9 Working with XML

XmlNodeReader

XmlNodeReader is another derivative class of XmlReader and is designed to read the XML

content of an XmlNode object, which is generally part of an XML Document Object Model

(DOM) subtree. You can create an XmlNodeReader by specifying the appropriate XmlNode, as

shown here:

' VB

Dim aReader As XmlNodeReader

' Creates an XmlNodeReader that reads an XmlNode named Node

aReader = New XmlNodeReader(Node)

// C#

XmlNodeReader aReader;

// Creates an XmlNodeReader that reads an XmlNode named Node

aReader = new XmlNodeReader(Node);

Validating XML with XmlValidatingReader

The XmlValidatingReader allows you to validate XML against a given schema. As the docu-

ment is read, it is checked for validity against the specifi ed schema. XmlValidatingReader

wraps an existing XmlReader instance. You can create an XmlValidatingReader instance, as

shown here:

' VB

' Assumes the existence of an XmlReader named aReader

Dim aValReader As XmlValidatingReader

aValReader = New XmlValidatingReader(aReader)

// C#

// Assumes the existence of an XmlReader named aReader

XmlValidatingReader aValReader;

aValReader = new XmlValidatingReader(aReader);

NOTE XMLVALIDATINGREADER: OBSOLETE

 The 70-505 exam objectives were created when version 2.0 of the .NET Framework was still

under development. Between the time the objectives were released and the time the .NET

Framework was released, XmlValidatingReader was made obsolete and was replaced by val-

idating functionality built into the XmlReader class. To provide coverage for the exam, this

book covers both classes. In the real world, you should always use XmlReader to validate

XML documents.

 XmlValidatingReader scans the XML for any schema, detecting both inline schema and

referenced schema. Referenced schema are loaded, or you can preload them by adding them

to the Schemas property.

NOTE XMLVALIDATINGREADER: OBSOLETE

The 70-505 exam objectives were created when version 2.0 of the .NET Framework was still

under development. Between the time the objectives were released and the time the .NET

Framework was released, XmlValidatingReader was made obsolete and was replaced by val-r

idating functionality built into the XmlReader class. To provide coverage for the exam, this r

book covers both classes. In the real world, you should always use XmlReader to validater

XML documents.

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 463

 The type of schema validation is determined by the ValidationType property. The possible

values for the ValidationType property are shown in Table 9-5.

 TABLE 9-5 ValidationType Property Values

 VALUE DESCRIPTION

 None No validation type. Setting the property to this value creates a nonvalidating

reader.

 Auto Examines the contents of the document and determines the most appropri-

ate validation type.

 DTD Validates according to the indicated document type defi nition (DTD).

 Schema Validates according to inline or referenced extensible schema defi nition (XSD)

schema.

 XDR Validates according to inline or referenced XML-Data Reduced (XDR) schema.

 The XML is validated by calling the Read method. This calls the Read method on the

wrapped XmlReader instance and advances the reader to the next node. It also validates

the new node according to the specifi ed validation type and schema. If a validation error is

encountered, it raises a ValidationEvent. If the ValidationEvent is handled, execution contin-

ues. If no event handler for the ValidationEvent is found, an XmlSchemaException is thrown. A

ValidationEvent is also raised in the case of validation warnings, but in this case no exception

is thrown if the event is not handled.

 HANDLING VALIDATION ERRORS

When validating XML documents, you can create an event handler for the ValidationEvent to

take appropriate action when a validation error is detected. The ValidationEventArgs param-

eter of the ValidationEvent contains a variety of information about the validation error or

warning. This information is summarized in Table 9-6.

 TABLE 9-6 Properties of the ValidationEventArgs Class

 PROPERTY DESCRIPTION

 Exception Contains the exception associated with the event if it exists. If there is an

exception and this event is not handled, this exception is thrown.

 Message Contains an informative message about the validation event.

 Severity Describes the severity of the event, either Warning or Error. If the severity is

Error, an exception is thrown if this event is not handled.

 A ValidationEvent handler requires a signature that contains an object parameter that

represents the sender of the event and a ValidationEventArgs parameter. The following code

shows an example of a ValidationEvent handler:

 464 CHAPTER 9 Working with XML

 ' VB

Private Sub ValidationHandler(ByVal sender As Object, ByVal e As _

 Xml.Schema.ValidationEventArgs)

 ' Code to handle the event goes here

End Sub

// C#

private void ValidationHandler(object sender,

 Xml.Schema.ValidationEventArgs e)

{

 // Code to handle the event goes here

}

 After creating the method, you need to add the method as a handler for the Validation-

Event, as shown in the following code:

 ' VB

AddHandler aReader.ValidationEventHandler, Addressof myHandler

// C#

aReader.ValidationEventHandler += myHandler;

 Validating XML with XmlReader

 You can also use the XmlReader.Create method to create an instance of XmlReader that can

validate XML. The XmlReader.Create method can accept an instance of the XmlReaderSettings

class that allows you to specify the validation type by setting the XmlReaderSettings.Valida-

tionType property. The available validation types are the same as the types shown in Table

9-5. You can specify a method to handle ValidationEvents by adding a handler to the Valida-

tionEventHandler. The behavior is identical to the behavior of the XmlValidatingReader. The

following example demonstrates how to create an instance of XmlReader that validates the

specifi ed fi le using an event handler shown afterward:

 ' VB

Dim aReader As Xml.XmlReader

Dim settings As New Xml.XmlReaderSettings()

settings.ValidationType = Xml.ValidationType.Schema

AddHandler settings.ValidationEventHandler, AddressOf settings_ValidationEventHandler

aReader = Xml.XmlReader.Create("C:\myfile.xml", settings)

// C#

System.Xml.XmlReader aReader;

System.Xml.XmlReaderSettings settings = new System.Xml.XmlReaderSettings();

settings.ValidationType = System.Xml.ValidationType.Schema;

settings.ValidationEventHandler += new

 System.Xml.Schema.ValidationEventHandler(settings_ValidationEventHandler);

aReader = System.Xml.XmlReader.Create(@"C:\myfile.xml", settings);

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 465

 And the event handler must have a signature matching the following methods:

 ' VB

Sub settings_ValidationEventHandler _

 (ByVal sender As Object, ByVal e As System.Xml.Schema.ValidationEventArgs)

 ' TODO: Add validation event handler

End Sub

// C#

void settings_ValidationEventHandler(object sender, System.Xml.Schema.

ValidationEventArgs e)

{

 // TODO: Add validation event handler

}

 You can also create a reader that validates by wrapping a preexisting XML reader. To do

this, you specify the reader instead of a Uniform Resource Identifi er (URI) that specifi es a fi le.

The following example replaces the last line in the previous example and demonstrates how

to specify a preexisting XmlReader instance named theReader:

 ' VB

aReader = Xml.XmlReader.Create(theReader, settings)

// C#

aReader = System.Xml.XmlReader.Create(theReader, settings);

 Writing XML with the XmlWriter Class
 The XmlWriter class allows you to write XML to a fi le, console, stream, or other output types. It

is an abstract class that can be implemented in descendant classes, but you can also create an

instance of the default implementation of the XmlWriter class by calling the static XmlWriter.

Create method, as shown here:

 ' VB

' The parameter can be a stream, a file, StringBuilder, TextWriter, or XmlWriter.

Dim aWriter As XmlWriter

aWriter = XmlWriter.Create(parameter)

// C#

// The parameter can be a stream, a file, StringBuilder, TextWriter, or XmlWriter.

XmlWriter aWriter;

aWriter = XmlWriter.Create(parameter);

 When you create an instance of XmlWriter, you can also specify an instance of XmlWriter-

Settings The XmlWriterSettings instance determines, among other things, the format of the

XML that XmlWriter writes. The following example demonstrates how to create an implemen-

tation of XmlWriter with an XmlWriterSettings instance:

 466 CHAPTER 9 Working with XML

 ' VB

' The parameter can be a stream, a file, StringBuilder, TextWriter, or XmlWriter.

Dim aWriter As XmlWriter

Dim mySettings As New XmlWriterSettings()

' Configures the writer to indent elements

mySettings.Indent = True

aWriter = XmlWriter.Create(parameter, mySettings)

// C#

// The parameter can be a stream, a file, StringBuilder, TextWriter, or XmlWriter.

XmlWriter aWriter;

XmlWriterSettings mySettings = new XmlWriterSettings();

// Configures the writer to indent elements

mySettings.Indent = true;

aWriter = XmlWriter.Create(parameter, mySettings);

 Formatting XML Output

 When you create an XmlWriter implementation using an instance of XmlWriterSettings, you

can specify a number of properties that control the format of the XML output. Table 9-7

describes the formatting properties of the XmlWriterSettings class.

 TABLE 9-7 Formatting Properties of XmlWriterSettings

 PROPERTY DESCRIPTION

 Indent Determines whether to indent elements.

 IndentChars Contains the character string used for indenting. By default,

this string is two spaces. If Indent is set to False, this property

has no effect.

 NewLineChars Indicates the character used to create a new line.

 NewLineHandling Indicates whether to normalize line breaks in the output.

 NewLineOnAttributes Indicates whether to write attributes on a new line.

 To control the output formatting for XmlWriter, you create a new instance of XmlWriter-

Settings, set the properties to the correct settings for the output format you desire, and then

use the appropriate form of XmlWriter.Create to create the writer.

 Writing Elements

 The XmlWriter class contains methods that allow you to write elements to the output fi le or

stream. Table 9-8 describes methods of the XmlWriter class that are used for writing elements.

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 467

 TABLE 9-8 Element-Writing Methods of XmlWriter

 METHOD DESCRIPTION

 WriteComment Writes an XML comment to the output.

 WriteElementString Writes a complete element string, including opening and

closing tags.

 WriteEndElement Writes the end element for an element. If the element con-

tains no content, a short tag (“/>”) is written. Otherwise, the

full end tag is written.

 WriteFullEndElement Always writes the full end tag, whether the element contains

content or not.

 WriteStartDocument Writes the starting element for an XML document.

 WriteStartElement Writes a start element.

 WRITING A SIMPLE ELEMENT

You can use the WriteElementString method to write a complete element with content. You

should use this method when you do not need to write attribute content into a node. You

specify the name of the node and the text value to be contained in the node. The following

example demonstrates the use of this method:

 ' VB

myWriter.WriteElementString("Name", "Libby")

// C#

myWriter.WriteElementString("Name", "Libby");

 The output of this method is the following element:

<Name>Libby</Name>

 WRITING COMPLICATED ELEMENTS

For writing more complicated elements, you can use the WriteStartElement and WriteEnd-

Element methods. These methods allow you to begin a node, write any special content (such

as child nodes or attributes, which will be discussed later in this chapter), and then close the

node. The following example demonstrates how to use the WriteStartElement and WriteEnd-

Element methods:

 ' VB

myWriter.WriteStartElement("FirstNames")

myWriter.WriteElementString("Name", "Libby")

myWriter.WriteEndElement()

 468 CHAPTER 9 Working with XML

// C#

myWriter.WriteStartElement("FirstNames");

myWriter.WriteElementString("Name", "Libby");

myWriter.WriteEndElement();

This code example creates the following output:

<FirstNames>

 <Name>Libby</Name

</FirstNames>

Writing Attributes

The WriteAttributeString method allows you to write attributes to the elements created with

WriteStartElement. You can specify the name and the value for the attribute in the method.

The following example demonstrates the use of the WriteAttributeString method:

' VB

myWriter.WriteStartElement("FirstNames")

myWriter.WriteAttributeString("Nicknames", "Ok")

myWriter.WriteElementString("Name", "Libby")

myWriter.WriteEndElement()

// C#

myWriter.WriteStartElement("FirstNames");

myWriter.WriteAttributeString("Nicknames", "Ok");

myWriter.WriteElementString("Name", "Libby");

myWriter.WriteEndElement();

This example generates the following output:

<FirstNames Nicknames="Ok">

 <Name>Libby</Name>

</FirstNames>

Quick Check

 1. Briefl y describe the XmlReader class.

 2. What are two classes you can use to validate XML against a preexisting schema?

Quick Check Answers

 1. The XmlReader class provides rapid, forward-only access to data contained in XML

format. The XmlReader class can read strings, streams, or other forms of XML.

 2. You can use both the XmlValidatingReader and the XmlReader classes to validate

XML against a schema. If you use XmlReader, you must confi gure it appropriately

using an instance of XmlReaderSettings.

Quick Check

1. Briefl y describe the XmlReader class.r

2. What are two classes you can use to validate XML against a preexisting schema?

Quick Check Answers

1. The XmlReader class provides rapid, forward-only access to data contained in XML r

format. The XmlReader class can read strings, streams, or other forms of XML.r

2. You can use both the XmlValidatingReader and ther XmlReader classes to validater

XML against a schema. If you use XmlReader, you must confi gure it appropriatelyrr

using an instance of XmlReaderSettings.

Q

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 469

 LAB Create an Application that Reads an XML File

 In this lab, you will create an application that reads an XML fi le and displays the elements,

attributes, and text of that fi le.

 EXERCISE 1 Reading XML into a Tree View

 In Visual Studio, create a new Windows Forms Application project. Then, follow these steps:

 1. From the Toolbox, drag a TreeView, a Button, and an OpenFileDialog control onto the

form.

 2. Set the properties of the form and controls as shown here:

 CONTROL/FORM PROPERTY VALUE

 Form1 Text Read XML

 Button1 Text Read XML

 OpenFileDialog1 Filter XML Files | *.xml

 3. Right-click the Designer, and then click View Code to open the code window.

 4. In the code window, add the following line of code to the top of the code editor:

 ' VB

Imports System.Xml

// C#

using System.Xml;

 5. In the Designer, double-click the Button1 button to open the Button1_Click event han-

dler. Add the following code to the Button1_Click event handler:

 ' VB

' Clears the TreeView control

TreeView1.Nodes.Clear()

' Creates a new XmlReader and reads the XML file found in the

' open file dialog box.

Dim aReader As XmlReader

OpenFileDialog1.ShowDialog()

If Not OpenFileDialog1.FileName = "" Then

 aReader = XmlReader.Create(OpenFileDialog1.FileName)

End If

Dim aNode As TreeNode

Dim bNode As TreeNode

Dim parentNode As TreeNode

' Loops through the nodes of the XML file

While aReader.Read

 Select Case aReader.NodeType

 470 CHAPTER 9 Working with XML

 ' If an element is found, it creates a new node, reads the

 ' attributes, and Adds the name of the element and the

 ' attributes as a new node to the Treeview

 Case XmlNodeType.Element

 aNode = New TreeNode(aReader.Name)

 If aReader.AttributeCount > 0 Then

 Dim i As Integer

 aReader.MoveToFirstAttribute()

 aNode.Text &= " " & aReader.Name & "=" & aReader.Value

 For i = 1 To aReader.AttributeCount - 1

 aReader.MoveToNextAttribute()

 aNode.Text &= " " & aReader.Name & "=" & _

 aReader.Value

 Next

 End If

 If parentNode Is Nothing Then

 TreeView1.Nodes.Add(aNode)

 Else

 parentNode.Nodes.Add(aNode)

 End If

 parentNode = aNode

 ' When an EndElement is encountered, the parent element is set

 ' one level up.

 Case XmlNodeType.EndElement

 parentNode = parentNode.Parent

 ' When a Text node is encountered, a new node is made As a

 ' child node containing the text is created

 Case XmlNodeType.Text

 bNode = New TreeNode(aReader.Value)

 aNode.Nodes.Add(bNode)

 Case Else

 End Select

End While

// C#

// Clears the TreeView control

treeView1.Nodes.Clear();

// Creates a new XmlReader and reads the XML file found in the open

// file dialog box.

XmlReader aReader;

openFileDialog1.ShowDialog();

aReader = XmlReader.Create(openFileDialog1.FileName);

TreeNode aNode = new TreeNode();

TreeNode bNode;

TreeNode parentNode = new TreeNode();

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 471

// Loops through the nodes of the XML file

while (aReader.Read())

{

 switch (aReader.NodeType)

 {

 // If an element is found, it creates a new node, reads the

 // attributes, and Adds the name of the element and the

 // attributes as a new node to the Treeview

 case XmlNodeType.Element:

 aNode = new TreeNode(aReader.Name);

 if (aReader.AttributeCount > 0)

 {

 aReader.MoveToFirstAttribute();

 aNode.Text += " " + aReader.Name + "=" + aReader.Value;

 for (int i = 1; i < aReader.AttributeCount; i++)

 {

 aReader.MoveToNextAttribute();

 aNode.Text += " " + aReader.Name + "=" +

 aReader.Value;

 }

 }

 if (parentNode.Text == "")

 treeView1.Nodes.Add(aNode);

 else

 parentNode.Nodes.Add(aNode);

 parentNode = aNode;

 // When an EndElement is encountered, the parent element is

 // set one level up.

 break;

 case XmlNodeType.EndElement:

 parentNode = parentNode.Parent;

 break;

 // When a Text node is encountered, a new node is made as a

 // child node containing the text is created

 case XmlNodeType.Text:

 bNode = new TreeNode(aReader.Value);

 aNode.Nodes.Add(bNode);

 break;

 }

}

 6. Press F5 to run the application. Click the Read XML button and navigate to an XML fi le,

such as Bookstore.Xml, in the samples installed from the companion CD. Note that the

XML fi le is read and the nodes are translated into a tree view.

 472 CHAPTER 9 Working with XML

Lesson Summary
 The XmlReader class is an abstract class that provides uncached, forward-only access

to XML contained in a fi le or stream. XmlReader is implemented in the XmlTextReader,

XmlNodeReader, and XmlValidatingReader classes. You can also obtain an instance of a

default implementation of XmlReader through the XmlReader.Create method.

 The Read method reads the current node of the XML content in XmlReader and

advances the reader to the next node. Once a node has been read, that instance of

XmlReader cannot revisit it.

 Attributes can be read with the MoveToAttribute method. While using the MoveTo-

Attribute method, you can freely move back and forth between attributes in an

element. This is the only exception to forward-only access in the XmlReader class.

 The XmlReader.MoveToContent method can be used to skip noncontent-containing

nodes and move the reader to the next content-containing node.

 XmlValidatingReader validates the XML read by XmlReader against an inline or refer-

enced schema. When a validation error occurs, a ValidationError event is raised, which

you can handle. The ValidationErrorEventArgs instance passed in that event provides

information about the validation error. You can also validate XML with the XmlReader

class.

 The XmlWriter class is an abstract class that provides methods for writing XML. You can

obtain an instance of the default implementation of XmlWriter through the XmlWriter.

Create method.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following code samples will create a new instance of the XmlReader class?

A. ' VB

Dim aReader As New XmlReader()

// C#

XmlReader aReader = new XmlReader();

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 473

 B. ' VB

Dim aReader As XmlReader

aReader = XmlReader.Create()

// C#

XmlReader aReader;

aReader = XmlReader.Create();

 C. ' VB

Dim aReader As XmlReader

aReader = XmlReader.Create("myXml.xml")

// C#

XmlReader aReader;

aReader = XmlReader.Create("myXml.xml");

 D. ' VB

Dim aReader As New XmlReader("myXml.xml")

// C#

XmlReader aReader = new XmlReader("myXml.xml");

 2. Given the following XML fragment

 <text1 length="12" color="blue'>moo</text1>

 and an instance of XmlReader named myReader that is positioned on the text1 node,

which of the following code samples can you use to display the value (but not the

name) of the length attribute? (Choose all that apply.)

 A. ' VB

myReader.MoveToAttribute("length")

MsgBox(myReader.Value)

// C#

myReader.MoveToAttribute("length");

MessageBox.Show(myReader.Value);

 B. ' VB

myReader.MoveToAttribute(0)

MsgBox(myReader.Value)

// C#

myReader.MoveToAttribute(0);

MessageBox.Show(myReader.Value);

 474 CHAPTER 9 Working with XML

 C. ' VB

myReader.MoveToAttribute("length")

MsgBox(myReader.ReadInnerXml)

// C#

myReader.MoveToAttribute("length");

MessageBox.Show(myReader.ReadInnerXml);

 D. ' VB

myReader.MoveToAttribute("length")

MsgBox(myReader.ReadOuterXml)

// C#

myReader.MoveToAttribute("length");

MessageBox.Show(myReader.ReadOuterXml);

 3. Given an instance of XmlWriter named myWriter, which of the following code samples

will generate the following XML fragment?

 <colors>

 <color>blue</color>

</colors>

 A. ' VB

myWriter.WriteStartElement("colors")

myWriter.WriteElementString("color", "blue")

myWriter.WriteEndElement()

// C#

myWriter.WriteStartElement("colors");

myWriter.WriteElementString("color", "blue");

myWriter.WriteEndElement();

 B. ' VB

myWriter.WriteStartElement("colors")

myWriter.WriteElementString("color", "blue")

myWriter.WriteEndElement("colors")

// C#

myWriter.WriteStartElement("colors");

myWriter.WriteElementString("color", "blue");

myWriter.WriteEndElement("colors");

 Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes CHAPTER 9 475

 C. ' VB

myWriter.WriteElementString("colors")

myWriter.WriteElementString("color", "blue")

myWriter.WriteElementString("/colors")

// C#

myWriter.WriteElementString("colors");

myWriter.WriteElementString("color", "blue");

myWriter.WriteElementString("/colors");

 D. ' VB

myWriter.WriteStartElement("colors")

myWriter.WriteStartElement("color", "blue")

myWriter.WriteEndElement()

// C#

myWriter.WriteStartElement("colors");

myWriter.WriteStartElement("color", "blue");

myWriter.WriteEndElement();

 476 CHAPTER 9 Working with XML

Lesson 2: Managing XML with the XML Document
Object Model

The XML Document Object Model (DOM) is a hierarchical representation of a fl at XML fi le.

Platform-specifi c implementations of the XML DOM allow you to navigate the XML docu-

ment, perform complicated searches, and modify the XML structure in a nonlinear fashion.

The .NET Framework allows access to the XML DOM through the XmlDocument class.

After this lesson, you will be able to:

 Read XML data into the DOM.

 Modify an XML document by adding and removing nodes.

 Modify nodes within an XML document.

 Write data in XML format from the DOM.

 Work with nodes in the XML DOM.

 Handle DOM events.

 Modify the XML declaration.

Estimated lesson time: 45 minutes

The XmlDocument Class
The XML DOM is exposed through the System.Xml.XmlDocument class. This class allows you

to read an XML fi le into memory and then manipulate the structure through a variety of

methods, as well as to perform searches and retrieve nodes.

The XmlDocument class exposes an XML document as a hierarchical collection of Xml-

Node objects. Because the XmlDocument class extends XmlNode itself, you can think of the

XmlDocument as the root node. Access to the child nodes of the XmlDocument is available

through the ChildNodes property, or you can access specifi c elements through the XmlDocu-

ment.Item property.

Reading XML into the DOM

You can read an existing XML document into the DOM by creating a new instance of the Xml-

Document class and then loading the XML from a Stream, String (containing the fi le name),

TextWriter, or XmlWriter, as shown in the following example:

' VB

Dim aDocument As New XmlDocument()

' The parameter must be a String, Stream, TextWriter, or XmlWriter

aDocument.Load(parameter)

After this lesson, you will be able to:

Read XML data into the DOM.

Modify an XML document by adding and removing nodes.

Modify nodes within an XML document.

Write data in XML format from the DOM.

Work with nodes in the XML DOM.

Handle DOM events.

Modify the XML declaration.

Estimated lesson time: 45 minutes

 Lesson 2: Managing XML with the XML Document Object Model CHAPTER 9 477

// C#

XmlDocument aDocument = new XmlDocument();

// The parameter must be a String, Stream, TextWriter, or XmlWriter

aDocument.Load(parameter);

 The Load method does not validate the XML that is loaded into XmlDocument. To validate

XML against a schema, pass it an instance of XmlValidatingReader or an instance of Xml-

Reader with appropriate validation options in the Load method.

 The Load method preserves all signifi cant white space, and it preserves all white space if

the XmlDocument.PreserveWhiteSpace property is set to True. If you do not want to preserve

white space, you can use the LoadXml method.

 Modifying an XML Document

 You can add, remove, and copy XML nodes by using methods built into the XmlDocument

class.

 CREATING NEW NODES

The XmlDocument class allows you to create and insert new nodes into the XML document

you are working with. The methods that create new nodes are described in Table 9-9.

 TABLE 9-9 XmlDocument Methods for Creating New Nodes

 METHOD DESCRIPTION

 CreateComment Creates a comment node

 CreateCDataSection Creates a CData section

 CreateDocumentFragment Creates a new document fragment

 CreateDocumentType Creates a new Document Type node

 CreateElement Creates a new element

 CreateProcessingInstruction Creates a new processing instruction node

 CreateTextNode Creates a new text node

 CreateXmlDeclaration Creates a new XML declaration node

 CreateWhitespace Creates a new white space node

 CreateSignifi cantWhitespace Creates a new signifi cant white space node

 Each of these methods has its own constructor and requires different parameters. Once

you have created a new node, you must insert it into an instance of XmlDocument by using

one of the methods shown in Table 9-10.

 478 CHAPTER 9 Working with XML

 TABLE 9-10 Node Insertion Methods of the XmlDocument Class

 METHOD DESCRIPTION

 InsertBefore Inserts the new node into the document before a specifi ed

node

 InsertAfter Inserts the new node into the document after a specifi ed node

 AppendChild Adds the specifi ed node to the end of the list of child nodes of

the node calling this method

 PrependChild Adds the specifi ed node to the beginning of the list of child

nodes of the node calling this method

 The following code example demonstrates how to create a new element and a new text

node, add the element to an instance of XmlDocument, and then insert the text into the

newly created element:

 ' VB

' Declares the new XmlDocument, XmlElement, and XmlText

Dim aDocument As New Xml.XmlDocument

Dim anElement As Xml.XmlElement

Dim aText As Xml.XmlText

' Creates a new node

anElement = aDocument.CreateElement("TestNode")

' creates the new text node

aText = aDocument.CreateTextNode("This is the test text")

' Declares a new node to hold the reference to the new node that will be

' returned when anElement is inserted into the XmlDocument

Dim node As Xml.XmlNode

' Inserts anElement into the XmlDocument

node = aDocument.AppendChild(anElement)

' Inserts the text into the newly-created node

node.AppendChild(aText)

// C#

// Declares the new XmlDocument, XmlElement, and XmlText

Xml.XmlDocument aDocument = new Xml.XmlDocument;

Xml.XmlElement anElement;

Xml.XmlText aText;

// Creates a new node

anElement = aDocument.CreateElement("TestNode");

// creates the new text node

aText = aDocument.CreateTextNode("This is the test text");

// Declares a new node to hold the reference to the new node that will be

// returned when anElement is inserted into the XmlDocument

XmlNode node;

// Inserts anElement into the XmlDocument

 Lesson 2: Managing XML with the XML Document Object Model CHAPTER 9 479

node = aDocument.AppendChild(anElement);

// Inserts the text into the newly-created XmlDocumentnode

node.AppendChild(aText);

 The following XML is generated by the above example:

 <TestNode>This is the test text</TestNode>

 COPYING EXISTING NODES

You can create a copy of an existing node by using the XmlNode.CloneNode method. This

method creates a copy of an existing node that can then be inserted into the instance of Xml-

Document. The following example demonstrates the CloneNode method:

 ' VB

' Assumes a node called aNode

Dim bNode As Xml.XmlNode

bNode = aNode.CloneNode()

' bNode is now ready to be inserted into the XmlDocument

// C#

// Assumes a node called aNode

Xml.XmlNode bNode;

bNode = aNode.CloneNode();

// bNode is now ready to be inserted into the XmlDocument

 REMOVING EXISTING NODES

You can remove existing nodes by obtaining a reference to the parent of the node you want

to remove and then calling RemoveChild. Here is an example:

 ' VB

aNode.RemoveChild(ChildNode)

// C#

aNode.RemoveChild(ChildNode);

 Modifying Nodes Within an Instance of XmlDocument

 You can use the methods exposed by the XmlDocument and XmlNode classes to modify exist-

ing nodes within an instance of XmlDocument. You can change the value of value-containing

nodes, replace existing nodes, modify content, and set attribute values programmatically.

 CHANGING THE VALUE OF EXISTING NODES

For nodes that have a value (Attribute, CDATA, Comment, DocumentType, ProcessingInstruc-

tion, Signifi cantWhitespace, Text, Whitespace, XmlDeclaration), you can change the value

directly by changing the XmlNode.Value property. The following example demonstrates how

to change the value of an XmlText element:

 480 CHAPTER 9 Working with XML

 ' VB

Dim aText As New Xml.XmlText("Text1")

' Changes the value of the text element to 'Text2'

aText.Value = "Text2"

// C#

Xml.XmlText aText = new Xml.XmlText("Text1");

// Changes the value of the text element to 'Text2'

aText.Value = "Text2";

 REPLACING AN ENTIRE SET OF CHILD NODES

If you want to replace all of the child nodes of one node with another set of nodes, you can

do so by setting the XmlNode.InnerXml property. The InnerXml property of an XmlNode is

a string that contains all content and child nodes of the node but excludes the starting and

ending elements. By setting the InnerXml property, you can replace the existing child nodes

with a string that contains your new child nodes. Here is an example:

 ' VB

' Assumes an XmlNode called aNode

Dim aString As String = "<Test>TestChildNodes</Test>"

aNode.InnerXml = aString

// C#

// Assumes an XmlNode called aNode

String aString = "<Test>TestChildNodes</Test>'

aNode.InnerXml = aString;

REPLACING SPECIFIC NODES

You can replace individual nodes by using the XmlNode.ReplaceChild method. This method

allows you to specify a child node of your XmlNode and to specify an XmlNode to replace it

with. The following example shows how to use the ReplaceChild method:

 ' VB

' This example replaces the child node named OldNode with the node named

' NewNode. The parent node in this example is called aNode.

aNode.ReplaceChild(NewNode, OldNode)

// C#

// This example replaces the child node named OldNode with the node named

// NewNode. The parent node in this example is called aNode.

aNode.ReplaceChild(NewNode, OldNode);

 Lesson 2: Managing XML with the XML Document Object Model CHAPTER 9 481

 REPLACING OR REMOVING A RANGE OF CHARACTERS

For nodes that inherit from the XmlCharacterData class (these are XmlCDataSection, XmlCom-

ment, XmlSignifi cantWhitespace, XmlText, and XmlWhitespace), you can replace or remove

characters using the ReplaceData method, which takes three parameters. The fi rst parameter

is the starting character in the existing character data to replace. The second parameter is the

length of the characters to be replaced. The third parameter is a string that will be inserted

into the character data at the point specifi ed. The following example demonstrates the

ReplaceData method:

 ' VB

Dim aText As New XmlText("myText")

aText.ReplaceData(0, 2, "your")

' The resulting value of aText is 'yourText'

// C#

XmlText aText = new XmlText("myText");

aText.ReplaceData(0, 2, "your");

// The resulting value of aText is 'yourText'

 SETTING OR UPDATING AN ATTRIBUTE

You can add an attribute to an element or update the value of an existing attribute by using

the SetAttribute method, as shown here:

 ' VB

anElement.SetAttribute("Color", "Blue")

// C#

anElement.SetAttribute("Color", "Blue");

 The code shown in this example sets the Color attribute of anElement to Blue. If anElement

does not have a Color attribute, it creates a new Color attribute and sets the value to Blue.

 Writing XML with XmlDocument

 You can write the content of an XmlDocument to a fi le, stream, console, or other output

format with the XmlDocument.WriteTo method. This method writes all of the nodes in the

XmlDocument to a specifi ed XmlWriter. This is functionally equivalent to writing the OuterXml

property. You can also write the content of the XmlDocument excluding the opening and

closing nodes with the WriteContentTo method. This is functionally equivalent to writing the

InnerXml property. The following example demonstrates how to write the nodes of an Xml-

Document named aDocument to a fi le called myFile.xml:

 ' VB

Dim aWriter As Xml.XmlWriter

aWriter = Xml.XmlWriter.Create("myFile.xml")

aDocument.WriteTo(aWriter)

 482 CHAPTER 9 Working with XML

// C#

XmlWriter aWriter;

aWriter = Xml.XmlWriter.Create("myFile.xml");

aDocument.WriteTo(aWriter);

 Working with XmlNamedNodeMap

 The XmlNamedNodeMap organizes a collection of nonhierarchical XML nodes such as attri-

butes or entities. The following three properties return an XmlNamedNodeMap:

 XmlElement.Attributes

 XmlDocumentType.Entities

 XmlDocumentType.Notations

 The XmlNamedNodeMap class allows access to XmlNodes by the name of the node. Table

9-11 describes the important methods of the XmlNamedNodeMap.

 TABLE 9-11 Important Methods of the XmlNamedNodeMap

 METHOD DESCRIPTION

 GetNamedItem Retrieves the XmlNode with the specifi ed name

 Item Retrieves the node with the specifi ed index

 RemoveNamedItem Removes the specifi ed node from the

XmlNamedNodeMap

 SetNamedItem Adds an existing XmlNode to the XmlNamedNodeMap

 Working with XmlNodeList

 The XmlNodeList class represents an ordered list of nodes. The following methods and prop-

erties return an XmlNodeList:

 XmlNode.ChildNodes

 XmlDocument.GetElementsByTagName

 XmlElement.GetElementsByTagName

 XmlNode.SelectNodes

 The XmlNodeList class allows access to the nodes contained in it by the index of the node

through the Item method. The Count property returns the number of nodes in the Xml-

NodeList. The following code example demonstrates how to loop through each node in an

XmlNodeList named xList:

 ' VB

Dim j As Integer

For j = 0 To xList.Count – 1

 Lesson 2: Managing XML with the XML Document Object Model CHAPTER 9 483

 MsgBox(xList.Item(j).InnerXml)

Next

// C#

for (int j = 0; j < xList.Count; j++)

{

 MessageBox.Show(xList.Item(j).InnerXml);

}

 Handling DOM Events

 The XmlDocument class raises events in response to changes in the node structure. You can

handle these events to execute code when the structure of the XML document changes. Table

9-12 describes the events that the XmlDocument class raises.

 TABLE 9-12 Events Raised by the XmlDocument Class

 EVENT DESCRIPTION

 NodeInserting Raised when a node is about to be inserted into another node

 NodeInserted Raised when a node has been inserted into another node

 NodeRemoving Raised when a node is about to be removed from the

document

 NodeRemoved Raised when a node has been removed from the document

 NodeChanging Raised when a node is about to be changed

 NodeChanged Raised when a node has been changed

 You can create event handlers that execute code in response to these events. Event han-

dlers for XmlDocument events have the following signature:

 ' VB

Sub DocHandler(ByVal source As Object, ByVal e As XmlNodeChangedEventArgs)

End Sub

// C#

void DocHander(object source, XmlNodeChangedEventArgs e)

{}

 You can create an event handler for any of these events by the method described in Chap-

ter 4, “Tool Strips, Menus, and Events.”

 The XmlNodeChangedEventArgs parameter in the event handler conveys information

about the event that has been handled. Table 9-13 describes the properties of the Xml-

NodeChangedEventArgs class.

 484 CHAPTER 9 Working with XML

 TABLE 9-13 Properties of the XmlNodeChangedEventArgs Class

 PROPERTY DESCRIPTION

 Action Gets a value that indicates what kind of node change event is

occurring

 NewParent Gets the value of ParentNode after the operation completes

 Node Gets the node that is being added, removed, or changed

 OldParent Gets the value of ParentNode before the operation completes

 Modifying the XML Declaration

 The XmlDeclaration node is the fi rst node in a complete XmlDocument instance. It specifi es

the XML version that is used, whether the XmlDocument is a stand-alone document, and the

encoding used by the document.

 You can create an XmlDeclaration node with the XmlDocument.CreateXmlDeclaration

method. The CreateXmlDeclaration method requires the following parameters:

 Version Currently, this parameter must always be set to “1.0”. Other versions are not

currently supported.

 Encoding Represents the encoding used to encode characters in the XmlDocument

class. The encoding determines the character page used to display characters in this

document. Because different countries use different character sets, set the Encod-

ing property to the encoding appropriate for the locale where it will be used. If this

parameter is set to null or Nothing, the default value of UTF-8 is used but no value is

written to the declaration node.

 Standalone Indicates whether the document is independent of external resources.

Property must be set to either yes or no. If this parameter is set to null or Nothing, no

value is written to the declaration.

 The following code example demonstrates how to create an instance of XmlDeclaration

and insert it into an XmlDocument document:

 ' VB

Dim aDoc As New Xml.XmlDocument()

Dim aDecl As Xml.XmlDeclaration

' Creates a new XmlDeclaration and sets the encoding value to ISO-8859-1

aDecl = aDoc.CreateXmlDeclaration("1.0", "ISO-8859-1", "yes")

' Adds the XmlDeclaration

aDoc.AppendChild(aDecl)

// C#

Xml.XmlDocument aDoc = new Xml.XmlDocument();

Xml.XmlDeclaration aDecl;

// Creates a new XmlDeclaration and sets the encoding value to ISO-8859-1

 Lesson 2: Managing XML with the XML Document Object Model CHAPTER 9 485

aDecl = aDoc.CreateXmlDeclaration("1.0", "ISO-8859-1", "yes");

// Adds the XmlDeclaration

aDoc.AppendChild(aDecl);

Note than an XmlDeclaration node must be inserted into the fi rst position in an XmlDocu-

ment class. Any attempt to insert an XmlDeclaration node into a different position will result

in an exception being thrown.

 Quick Check

 1. What is the purpose of the XmlDocument class?

 2. How can you replace an entire set of child nodes on a given XmlNode?

 Quick Check Answers

 1. The XmlDocument class provides programmatic, in-memory access to the nodes

and structure of an existing XML document.

 2. You can replace all of the child nodes of a given XmlNode object by setting the

XmlNode.InnerXml property.

 LAB Use the XmlDocument Class

 In this lab, you will add XmlDocument functionality to a preexisting partial solution. You will

load the content from the BookStore.xml fi le into an XmlDocument instance, and then you will

add new elements to the XmlDocument instance.

 EXERCISE 1 Add XMLDocument Functionality to a Partial Solution

 1. From the samples installed from the companion CD, load the partial solution for the

language you are working in.

 2. Open Form1 in the Designer. Then, double-click the Load XML button to open the

btnLoadXml_Click event handler.

 3. Beneath the content already in this method, add the following code:

 ' VB

doc.Load(OpenFileDialog1.FileName)

// C#

doc.Load(openFileDialog1.FileName);

 4. In the Designer, double-click the View XML button to open the btnViewXml_Click event

handler.

 5. Add the following code to this method:

 ' VB

Dim aForm As New Form2

Quick Check

1. What is the purpose of the XmlDocument class?

2. How can you replace an entire set of child nodes on a given XmlNode?

Quick Check Answers

1. The XmlDocument class provides programmatic, in-memory access to the nodest

and structure of an existing XML document.

2. You can replace all of the child nodes of a given XmlNode object by setting the

XmlNode.InnerXml property.l

Q

 486 CHAPTER 9 Working with XML

aForm.TextBox1.Text = doc.OuterXml

aForm.ShowDialog()

// C#

Form2 aForm = new Form2();

aForm.textBox1.Text = doc.OuterXml;

aForm.ShowDialog();

 6. In the Designer, double-click the Add Book button to open the btnAddBook_Click

event handler.

 7. Beneath the fi rst line of code already in this method (for Visual Basic) or within the if

block (for C#), add the following code:

 ' VB

If doc.OuterXml = "" Then

 MsgBox("Please load the XML file first")

 Exit Sub

End If

Dim aList As Xml.XmlNodeList

Dim aNode As Xml.XmlNode

Dim anElement As Xml.XmlElement

aList = doc.GetElementsByTagName("book")

aNode = aList.Item(aList.Count - 1)

' Creates a new element

anElement = doc.CreateElement("book")

' Sets attributes on the element

anElement.SetAttribute("ISBN", txtISBN.Text)

anElement.SetAttribute("Title", txtTitle.Text)

anElement.SetAttribute("Price", txtPrice.Text)

' If there are chapters, creates the elements and adds them

If Not ListView1.Items.Count = 0 Then

 For Each j As ListViewItem In ListView1.Items

 Dim bElement As Xml.XmlElement

 bElement = doc.CreateElement("chapter")

 bElement.SetAttribute("num", j.SubItems(0).Text)

 bElement.SetAttribute("name", j.SubItems(1).Text)

 Dim atext As Xml.XmlText

 atext = doc.CreateTextNode(j.SubItems(2).Text)

 bElement.AppendChild(atext)

 anElement.AppendChild(bElement)

 Next

End If

 Lesson 2: Managing XML with the XML Document Object Model CHAPTER 9 487

' Inserts the node to the correct slot

aNode.ParentNode.InsertAfter(anElement, aNode)

' clears the UI

txtChapterName.Text = ""

txtChapterText.Text = ""

txtISBN.Text = ""

txtPrice.Text = ""

txtTitle.Text = ""

ListView1.Clear()

// C#

if (doc.OuterXml == "")

{

 MessageBox.Show("Please load the XML file first");

 return;

}

System.Xml.XmlNodeList aList;

System.Xml.XmlNode aNode;

System.Xml.XmlElement anElement;

aList = doc.GetElementsByTagName("book");

aNode = aList.Item(aList.Count - 1);

// Creates a new element

anElement = doc.CreateElement("book");

// Sets attributes on the element

anElement.SetAttribute("ISBN", txtISBN.Text);

anElement.SetAttribute("Title", txtTitle.Text);

anElement.SetAttribute("Price", txtPrice.Text);

// If there are chapters, creates the elements and adds them

if (!(listView1.Items.Count == 0))

{

 System.Xml.XmlElement bElement;

 System.Xml.XmlText atext;

 foreach (ListViewItem j in listView1.Items)

 {

 bElement = doc.CreateElement("chapter");

 bElement.SetAttribute("num", j.SubItems[0].Text);

 bElement.SetAttribute("name", j.SubItems[1].Text);

 atext = doc.CreateTextNode(j.SubItems[2].Text);

 bElement.AppendChild(atext);

 anElement.AppendChild(bElement);

 }

}

 488 CHAPTER 9 Working with XML

// Inserts the node to the correct slot

aNode.ParentNode.InsertAfter(anElement, aNode);

// clears the UI

txtChapterName.Text = "";

txtChapterText.Text = "";

txtISBN.Text = "";

txtPrice.Text = "";

txtTitle.Text = "";

listView1.Clear();

 8. Press F5 to compile and run your application.

 9. Press the Load Xml button and navigate to the Bookstore.xml fi le located in the

samples installed from the companion CD. Select the fi le to load it into the XmlDocu-

ment instance.

 10. Press the View Xml button to view the XML. Then, close Form2.

 11. In Form1, add entries for ISBN, Title, and Price.

 12. Add entries for Chapter Name and Chapter Text and click the Add Chapter button.

Repeat this step as many times as you like.

 13. Press the Add Book button to add the book data to your XmlDocument class.

 14. Click the View Xml button to view the updated XML. Note that the book you added

appears at the end of the XML fi le.

 Lesson Summary
 The XmlDocument class provides an in-memory representation of XML data that can be

modifi ed in a direction-independent manner. XML data can be read into an XmlDocu-

ment instance through the XmlDocument.Load and XmlDocument.LoadXml methods.

 The XmlDocument class contains methods for creating all the different kinds of XML

nodes. Once you have created a node, you must insert it into the XML represented by

the XmlDocument class by a separate method.

 The XmlDocument class exposes several methods and properties that provide for the

direct modifi cation of the XML that it contains. You can change the value of existing

nodes, replace specifi c nodes or an entire set of nodes, replace a range of characters in

a value, or set attribute values.

 You can write XML from the XML document to an instance of the XmlWriter class by

using the XmlDocument.WriteTo method.

 XmlNamedNodeMap consists of an unordered set of XmlNode instances that can

be accessed by index or name. XmlNodeList represents an ordered set of XmlNode

instances that can be accessed by index.

 The XmlDocument class raises events in response to changes in the XML structure. You

can handle these events to execute code in response to changes in the XML.

 Lesson 2: Managing XML with the XML Document Object Model CHAPTER 9 489

 The XML declaration provides information about the XML version and the encoding

used for the XML data. You can set the encoding property to a value appropriate for

different international locales.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Given an XmlDocument named myDoc and an XmlNode that it contains named

my Node, which of the following code samples will create a new element named Test

and add it as a child of myNode?

 A. ' VB

Dim anElement As XmlElement

anElement = myDoc.CreateElement("Test")

myNode.AppendChild(anElement)

// C#

XmlElement anElement;

anElement = myDoc.CreateElement("Test");

myNode.AppendChild(anElement);

 B. ' VB

anElement = myDoc.CreateElement("Test")

myNode.AppendChild("Test")

// C#

anElement = myDoc.CreateElement("Test");

myNode.AppendChild("Test");

 C. ' VB

Dim anElement As XmlElement

anElement = myDoc.CreateElement("Test")

myDoc.AppendChild(anElement)

// C#

XmlElement anElement;

anElement = myDoc.CreateElement("Test");

myDoc.AppendChild(anElement);

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 490 CHAPTER 9 Working with XML

 D. ' VB

Dim anElement As XmlElement

anElement = myNode.CreateElement("Test")

myNode.AppendChild(anElement)

// C#

XmlElement anElement;

anElement = myNode.CreateElement("Test");

myNode.AppendChild(anElement);

 2. Given an instance of XmlNode named Node1 that has a child node named child-

Node and a string aString that contains a set of XML nodes, you want to replace the

child node of Node1 with the XML contained in aString. Which of the following code

samples is correct for this scenario?

 A. ' VB

Node1.ReplaceChild(childNode, aString)

// C#

Node1.ReplaceChild(childNode, aString);

 B. ' VB

Node1.InnerXml = aString

// C#

Node1.InnerXml = aString;

 C. ' VB

Node1.Value = aString

// C#

Node1.Value = aString;

 D.

 ' VB

Node1.OuterXml = aString

// C#

Node1.OuterXml = aString;

 Chapter Review CHAPTER 9 491

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 The XmlReader class is an abstract class. Implementations of this class provide non-

cached, forward-only access to an XML fi le or stream. XmlTextReader, XmlNodeReader,

and XmlValidatingReader all provide implementations of the XmlReader class. The

XmlReader.Read method advances the reader to the next node of the XML and reads

the name and value of that node. You can navigate the attributes of an element with

the MoveToAttribute method.

 The XmlWriter class is an abstract class. Implementations of this class are used for writ-

ing XML content in a forward-based manner. You can obtain an instance of a default

implementation of XmlWriter through the XmlWriter.Create method.

 The XmlDocument class provides an in-memory representation of XML data. It

provides methods for creating XML nodes, inserting them into the XML document,

copying nodes, removing nodes, and modifying nodes.

 The XmlDocument class raises events in response to changes in the XML structure. You

can handle these events to execute code in response to these changes.

 Key Terms
 XmlDocument

 XmlNode

 XmlReader

 XmlWriter

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about working with XML.

You can fi nd answers to these questions in the “Answers” section at the end of this book.

 492 CHAPTER 9 Working with XML

 Case Scenario 1: Report Archiving

 You’re moving up in the world of the Humongous Insurance company, and they’ve put you on

another very important project. One thing that they love at Humongous Insurance is paper-

work. Recently, affi liate offi ces all over the world have switched to sending weekly reports to

the home offi ce in XML format. These reports all need to be stored and archived and will be

compressed using a proprietary technology in-house. Your job is to make sure that reports

coming in can be automatically parsed and fed into the compression application.

 QUESTIONS

 1. How can we automatically parse incoming reports?

 2. How can we ensure that reports conform to our published schema?

 3. How can we ensure that a human being can correct errors when they occur?

 Case Scenario 2: The Merger

 Humongous Insurance has just acquired Trey Research. The main reason for the acquisition of

Trey Research was a vast store of proprietary paperwork in custom XML formats. The acquisi-

tion is now complete and Humongous Insurance needs to replace the name of Trey Research

with its own, as well as with some other particulars. Unfortunately, due to variations in some

of the content, a textual fi nd-and-replace is out of the question and the content must be

replaced based on the element name that surrounds the content, not on the content itself.

 QUESTION

 How can we create a simple application that can quickly replace some of the infor-

mation contained in these nodes with our own information but leave the rest of the

documents intact?

 Suggested Practices

 Practice 1 Build an application that allows the user to enter data into a grid and then

uses the XmlWriter class to write it to an XML fi le.

 Practice 2 Create a subclass of XmlDocument that validates the structure of the XML

against an inline or referenced schema whenever the structure of the XML changes.

Use the Document Object Model (DOM) events to write the XML content of the Xml-

Document instance to a stream that is read by XmlValidatingReader that raises events

when an error occurs.

 Take a Practice Test CHAPTER 9 493

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 10 495

 C H A P T E R 1 0

 Printing in Windows Forms

 Creating printed documents is an essential task in most business environments, but it can

be complicated and confusing. Microsoft Visual Studio 2008 provides several classes

and dialog boxes that simplify the task of programming printing. This chapter describes the

various print dialog boxes, the PrintDocument component, and the PrintPreview control.

 Exam objectives in this chapter:

 Manage the print process by using print dialogs.

 Confi gure Windows Forms print options at run time.

 Change the printers attached to a user’s computer in Windows Forms.

 Confi gure the PrintPreviewDialog control.

 Display a Print Preview window in Windows applications.

 Set page details for printing using the PageSetupDialog component.

 Construct print documents.

 Confi gure the PrintDocument component.

 Print a text document in a Windows form.

 Print graphics in a Windows form.

 Print a document by using the PrintDialog component.

 Alert users to the completion of a print job.

 Create a customized PrintPreview component.

 Set the Document property to establish the document to be previewed.

 Set the Columns and Rows properties to establish the number of pages displayed

horizontally and vertically on the control.

 Set the UseAntiAlias property to True to make the text appear smoother.

 Set the Zoom property to establish the relative zoom level when the document

preview appears.

 Set the StartPage property to establish which document page is displayed when

the document preview appears.

 Set additional properties.

 Add custom methods and events to a PrintPreviewControl.

 496 CHAPTER 10 Printing in Windows Forms

Lessons in this chapter:

 Managing the Print Process by Using Print Dialog Boxes 497

 Constructing Print Documents 506

 Creating a Customized PrintPreview Component 519

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book .

 Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft .NET Framework .

 REAL WORLD

Matt Stoecker

 The process of creating print documents can be frustrating and diffi cult. Before

the .NET Framework was introduced, I found the process of actually getting a

document to the printer to be so diffi cult that I avoided it whenever I could. With

the introduction of the .NET Framework, printing is now easy to code and it is easier

to create added value in the applications I create.

REAL WORLD

Matt Stoecker

The process of creating print documents can be frustrating and diffi cult. Before

the .NET Framework was introduced, I found the process of actually getting a

document to the printer to be so diffi cult that I avoided it whenever I could. With

the introduction of the .NET Framework, printing is now easy to code and it is easier

to create added value in the applications I create.

 Lesson 1: Managing the Print Process by Using Print Dialog Boxes CHAPTER 10 497

Lesson 1: Managing the Print Process by Using Print
Dialog Boxes

When printing a document, a user typically wants to have a high level of confi gurability over

the printing process. Users typically want to be able to choose options like paper orientation,

margins, and paper size. The .NET Framework contains classes that allow you to give your

users a broad range of options while still retaining control over the range of options you offer.

After this lesson, you will be able to:

 Confi gure Windows Forms print options at run time.

 Change the printers attached to a user’s machine in Windows Forms.

 Confi gure the PrintPreviewDialog control.

 Display a Print Preview in Windows applications.

 Set page details for printing using the PageSetupDialog component.

 Estimated lesson time: 45 minutes

 The PrinterSettings Class
 The class that contains all of the information about a print job and the page settings associ-

ated with that print job is the PrinterSettings class. Each PrintDocument component exposes

an instance of the PrinterSettings class and accesses this instance to get the settings for the

print job. Most of this is done automatically, and the developer need not worry about access-

ing the PrinterSettings class directly. When the user needs to confi gure settings for a print job,

you can enable the user to make appropriate selections by displaying the PrintDialog compo-

nent and the PageSetupDialog component.

 The PrintDialog Component
 The PrintDialog component encapsulates a Print dialog box. This dialog box can be displayed

to the user at run time to allow the user to confi gure a variety of options for printing and also

to choose a printer. The PrintDialog component at run time is shown in Figure 10-1.

After this lesson, you will be able to:

Confi gure Windows Forms print options at run time.

Change the printers attached to a user’s machine in Windows Forms.

Confi gure the PrintPreviewDialog control.

Display a Print Preview in Windows applications.

Set page details for printing using the PageSetupDialog component.

Estimated lesson time: 45 minutes

 498 CHAPTER 10 Printing in Windows Forms

 FIGURE 10-1 The PrintDialog component at run time

 The PrintDialog component also exposes to the developer a variety of properties that

allow him or her to confi gure the interface of the PrintDialog component when it is shown.

The important properties of the PrintDialog component are described in Table 10-1.

 TABLE 10-1 Important Properties of the PrintDialog Component

 PROPERTY DESCRIPTION

 AllowCurrentPage Indicates whether the Current Page option button is

displayed.

 AllowPrintToFile Indicates whether the Print To File check box is enabled.

 AllowSelection Indicates whether the Selection option button is enabled.

 AllowSomePages Indicates whether the Pages option button is enabled.

 Document The PrintDocument that is associated with the PrintDialog.

 PrinterSettings The PrinterSettings object associated with the selected printer.

These settings are modifi ed when the user changes settings in

the dialog box.

 PrintToFile Indicates whether the Print To File check box is selected.

 ShowHelp Indicates whether the Help button is shown.

 ShowNetwork Indicates whether the Network button is shown.

 Lesson 1: Managing the Print Process by Using Print Dialog Boxes CHAPTER 10 499

 Modifying Selected Print Options with the PrintDialog Component

 When the PrintDialog component is shown, the user can make changes to the confi guration

of the print job by setting options that are displayed in the Print dialog box. You can restrict

the options displayed by modifying the properties of the PrintDialog component. This gener-

ally involves setting one of the Boolean properties described in Table 10-1 to True to enable

the option or to False to disable the option. The following example demonstrates how to

enable the user to select a range of pages to print:

 ' VB

PrintDialog1.AllowSomePages = True

// C#

printDialog1.AllowSomePages = true;

 By setting the properties described in Table 10-1, you can confi gure your PrintDialog

component to allow or restrict whatever options you desire. For example, the following code

example demonstrates how to create a PrintDialog component that allows the user to print all

pages, the current page, a selection, or a specifi ed range of pages:

 ' VB

PrintDialog1.AllowCurrentPage = True

PrintDialog1.AllowSomePages = True

PrintDialog1.AllowSelection = True

// C#

printDialog1.AllowCurrentPage = true;

printDialog1.AllowSomePages = true;

printDialog1.AllowSelection = true;

 Changing the Selected Printer at Run Time

 The PrintDialog component allows the user to change the selected printer at run time by

choosing a printer displayed in the Print dialog box. When the user selects a new printer, the

PrinterSettings property is updated to refl ect this.

 Using the PrintDialog to Print a PrintDocument Component

 After options have been selected, you can query the DialogResult returned by the PrintDialog.

ShowDialog method. If the DialogResult is OK, you can print the associated PrintDocument

component by calling the PrintDocument.Print method. An example is shown here:

 ' VB

Dim aResult As DialogResult

aResult = PrintDialog1.ShowDialog()

If aResult = Windows.Forms.DialogResult.OK Then

 PrintDialog1.Document.Print()

End If

 500 CHAPTER 10 Printing in Windows Forms

// C#

DialogResult aResult;

aResult = PrintDialog1.ShowDialog();

if (aResult == DialogResult.OK)

 PrintDialog1.Document.Print();

 The PageSetupDialog Component
 The PageSetupDialog component enables users to select options about the setup of the

pages for a print job. A PageSetupDialog component at run time is shown in Figure 10-2.

 FIGURE 10-2 The PageSetupDialog component at run time

 Changes made by the user in the PageSetupDialog are automatically refl ected in the

PrinterSettings class of the PrintDocument component that is associated with the PageSetup-

Dialog component. You can set the options that will be displayed to the user by setting the

properties of the PageSetupDialog component. Important properties of the PageSetupDialog

component are shown in Table 10-2.

 TABLE 10-2 Important Properties of the PageSetupDialog Component

 PROPERTY DESCRIPTION

 AllowMargins Indicates whether the margins section of the dialog box is

enabled

 AllowOrientation Indicates whether the orientation section of the dialog box

(landscape versus portrait) is enabled

 Lesson 1: Managing the Print Process by Using Print Dialog Boxes CHAPTER 10 501

 PROPERTY DESCRIPTION

 AllowPaper Indicates whether the paper section of the dialog box

(paper source and paper size) is enabled

 AllowPrinter Indicates whether the printer button is enabled

 Document The PrintDocument associated with this component

 EnableMetric Indicates whether the margin settings, when displayed in

millimeters, should be automatically converted to and from

hundredths of an inch

 MinMargins Indicates the minimum margins, in hundredths of an inch,

that the user is allowed to select

 ShowHelp Indicates whether the Help button is visible

 ShowNetwork Indicates whether the Network button is visible

 To show a PageSetupDialog, the component must be associated with an instance of the

PageSettings class. The preferred way of doing this is to set the Document property to an

instance of the PrintDocument class, which automatically sets the PrintDocument.PrinterSet-

tings instance to the PageSetupDialog.PrinterSettings property. The following code example

demonstrates how to set the Document property of the PageSetupDialog component and

then display it to the user:

 ' VB

' Assumes an instance of PrintDocument named PrintDocument1 and an

' instance of PageSetupDialog named PageSetupDialog1.

PageSetupDialog1.Document = PrintDocument1

PageSetupDialog1.ShowDialog()

// C#

// Assumes an instance of PrintDocument named printDocument1 and an

// instance of PageSetupDialog named pageSetupDialog1.

pageSetupDialog1.Document = printDocument1;

pageSetupDialog1.ShowDialog();

 The PrintPreviewDialog Component
 The PrintPreviewDialog component is a self-contained dialog box that allows you to preview a

print document. It does so by calling the Print method of the PrintDocument component that

is specifi ed in the component’s Document property and redirecting the output to a graphical

representation of the page contained in the dialog box. The PrintDocumentDialog component

is shown at run time in Figure 10-3.

 502 CHAPTER 10 Printing in Windows Forms

FIGURE 10-3 The PrintDocumentDialog component at run time

The dialog box allows the user to view each page before printing, adjust the number of

pages displayed, and adjust the zoom factor so that pages can be viewed close up or at a

distance. After viewing the preview, the user can choose to print the document by clicking the

Print button, which calls the Print method of the PrintDocument component and directs the

output to the printer. The following code example demonstrates how to associate a Print-

Document component with a PrintPreviewDialog component and display it to the user at run

time:

' VB

PrintPreviewDialog1.Document = PrintDocument1

PrintPreviewDialog1.ShowDialog()

// C#

printPreviewDialog1.Document = printDocument1;

printPreviewDialog1.ShowDialog();

Quick Check

 1. What is the purpose of the PrintDialog component?

 2. What is the purpose of the PrintPreview component?

Quick Check Answers

 1. The PrintDialog component represents a Print dialog box and allows you to

confi gure print options for presentation to the user. At run time you can call the

PrintDialog.ShowDialog method to display the Print dialog box to the user.

 2. The PrintPreviewDialog component represents a Print Preview dialog box and

allows you to confi gure options for displaying the document to the user prior to

actually sending it to the printer.

Quick Check

1. What is the purpose of the PrintDialog component?

2. What is the purpose of the PrintPreview component?w

Quick Check Answers

1. The PrintDialog component represents a Print dialog box and allows you to

confi gure print options for presentation to the user. At run time you can call the

PrintDialog.ShowDialog method to display the Print dialog box to the user.

2. The PrintPreviewDialog component represents a Print Preview dialog box and

allows you to confi gure options for displaying the document to the user prior to

actually sending it to the printer.

Q

 Lesson 1: Managing the Print Process by Using Print Dialog Boxes CHAPTER 10 503

 LAB Use PrintDialog Components

 In this lab, you will create a simple application that enables the user to use PageSetupDialog,

PrintDialog, and PrintPreviewDialog to control the printing of a test document. A completed

sample can be found in the fi les installed from the companion CD.

 EXERCISE 1 Using PrintDialog Components

 1. Open the partial solution for Chapter 10, Lab 1 from the sample fi les installed from the

CD. Open Form1. Note that it already has a PrintDocument component named Print-

Document1 and that code is in the event handler for the PrintPage event.

 2. From the Toolbox, drag a MenuStrip onto the form. Add a top-level menu item named

File.

 3. Beneath the File menu item, add the following menu items: Page Setup, Print, Print

Preview.

 4. From the Toolbox, drag a PageSetupDialog component, a PrintDialog component, and

a PrintPreviewDialog component onto the form.

 5. In the Properties window, set the Document property of each dialog component to

PrintDocument1.

 6. In the Properties window, set the AllowSomePages property of PrintDialog1 to True.

 7. In the Designer, double-click Page Setup menu item and add the following code:

 ' VB

PageSetupDialog1.ShowDialog()

// C#

pageSetupDialog1.ShowDialog();

 8. In the Designer, double-click the Print menu item and add the following code:

 ' VB

If PrintDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

 PrintDocument1.Print()

End If

// C#

if (printDialog1.ShowDialog() == DialogResult.OK)

 printDocument1.Print();

 9. In the Designer, double-click the Print Preview menu item and add the following code:

 ' VB

PrintPreviewDialog1.ShowDialog()

// C#

printPreviewDialog1.ShowDialog();

 504 CHAPTER 10 Printing in Windows Forms

 10. Press F5 to run your application. Choose each of the menu items to demonstrate how

to open the different print dialog boxes.

Lesson Summary
 The PrintDialog component represents a Print dialog box. By setting the Document

property of a PrintDialog component, you can enable the user to change the print

settings for that document. The PrintDialog component exposes several properties that

allow you to set what options the user can confi gure.

 The PageSetupDialog component represents a Page Setup dialog box. By setting the

Document property of a PageSetupDialog component, you can enable the user to

change the page settings for that document. The PageSetup component exposes sev-

eral properties that allow you to set what options the user can confi gure.

 The PrintPreviewDialog component represents a Print Preview dialog box. The Docu-

ment property indicates the PrintDocument component that is currently being

previewed. The PrintPreviewDialog component allows the user to confi gure the presen-

tation of the previewed document through buttons in the user interface.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which component would you use to allow the user to add a new printer at run time?

A. PrintPreviewDialog component

B. PageSetupDialog component

C. PrintDialog component

D. PrintPreviewControl component

 2. Which of the following is required to display a PrintDocument in a PrintPreviewDialog

component? (Choose all that apply.)

A. You must set the PrintPreviewDialog.Document property.

B. You must call the PrintPreviewDialog.Print method.

C. You must call either the PrintPreviewDialog.Show or the PrintPreviewDialog.Show-

Dialog method.

D. You must raise the PrintPreviewDialog.PrintPages event.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 1: Managing the Print Process by Using Print Dialog Boxes CHAPTER 10 505

 3. Which of the following can you not enable a user to do with the PageSetupDialog

component?

 A. Set the page orientation

 B. Set the paper tray

 C. Add a printer

 D. Set the page margins

 506 CHAPTER 10 Printing in Windows Forms

Lesson 2: Constructing Print Documents

The PrintDocument component represents a document that is sent to a printer. You can use

the PrintDocument component to print text documents or graphical documents. In this lesson

you will learn how to confi gure the PrintDocument component and use it to create printed

documents.

After this lesson, you will be able to:

 Confi gure the PrintDocument component.

 Print a text document in a Windows form.

 Print graphics in a Windows form.

 Print a document by using the PrintDialog component.

 Alert users to the completion of a print job.

Estimated lesson time: 45 minutes

The PrintDocument Component
A printed document is represented by the PrintDocument component. It is a component that

does not have a visual representation at run time but that appears in the component tray at

design time and can be dragged from the Toolbox to the design surface. The PrintDocument

component encapsulates all of the information necessary to print a page.

Overview of Printing

In the .NET Framework printing model, printed content is provided directly by the application

logic. A print job is initiated by the PrintDocument.Print method. This starts the print job and

then raises one or more PrintPage events. If there is no client method to handle this event,

printing does not take place. By providing a method to handle this event, you specify the

content to be printed.

If the print job contains multiple pages, one PrintPage event is raised for each page in

the job. This, in turn, causes the method handling the PrintPage event to execute multiple

times. Thus, that method must implement functionality to track the print job and ensure that

successive pages of a multipage document are printed. Otherwise, the fi rst page of the docu-

ment will print multiple times.

The PrintPage Event

The PrintPage event is the main event involved in printing documents. To actually send

content to the printer, you must handle this event and provide code to render the content in

the PrintPage event handler. All of the objects and information needed to send content to the

After this lesson, you will be able to:

Confi gure the PrintDocument component.t

Print a text document in a Windows form.

Print graphics in a Windows form.

Print a document by using the PrintDialog component.

Alert users to the completion of a print job.

Estimated lesson time: 45 minutes

 Lesson 2: Constructing Print Documents CHAPTER 10 507

printer are wrapped in the PrintPageEventArgs object, which is received by the handler for

this event. Table 10-3 describes the properties of the PrintPageEventArgs object.

 TABLE 10-3 Properties of the PrintPageEventArgs Object

 PROPERTY DESCRIPTION

 Cancel Indicates whether a print job should be cancelled. You can can-

cel a pending print job by setting the Cancel property to True.

 Graphics The Graphics object is used to render content to the printed

page. It encapsulates the drawing surface represented by the

printer.

 HasMorePages Gets or sets a value that indicates whether additional pages

should be printed. Set this property to True in the event handler

to raise the event again.

 MarginBounds Gets the Rectangle object that represents the portion of the

page within the margins.

 PageBounds Gets the Rectangle object that represents the total page area.

 PageSettings Gets or sets the PageSettings object for the current page.

 Content is rendered to the printed page by the Graphics object provided in the PrintPa-

geEventArgs object. The printed page behaves just like a form, control, or any other drawing

surface that can be represented by a Graphics object. To render content, you use the same

methods that you use to render content to a form. The following code example demonstrates

a simple method to print a page:

 ' VB

' This method inscribes an ellipse inside the bounds of the page. This

' method must handle the PrintPage event in order to send content to the printer

Public Sub PrintEllipse(ByVal sender As System.Object, ByVal e As _

 System.Drawing.Printing.PrintPageEventArgs)

 e.Graphics.DrawEllipse(Pens.Black, e.MarginBounds)

End Sub

// C#

// This method inscribes an ellipse inside the bounds of the page. This

// method must handle the PrintPage event in order to send content to the printer

public void PrintEllipse(object sender, System.Drawing.Printing.PrintPageEventArgs e)

{

 e.Graphics.DrawEllipse(Pens.Black, e.MarginBounds);

}

 The MarginBounds and PageBounds properties represent areas of the page surface. You

can specify printing to occur inside the margin bounds of the page by calculating printing

coordinates based on the MarginBounds rectangle. Printing that is to take place outside of

 508 CHAPTER 10 Printing in Windows Forms

the margin bounds, such as headers or footers, can be specifi ed by calculating the printing

coordinates based on the PageBounds rectangle. Print coordinates are in pixels by default.

 You can specify that a print job has multiple pages by using the HasMorePages property.

By default, this property is set to False. When your application logic determines that multiple

pages are required to print a job, you should set this property to True. When the last page is

printed, you should reset the property to False. Note that the method handling the PrintPage

event must keep track of the number of pages in the job. Failure to do so can cause unex-

pected results while printing. For example, if you fail to set the HasMorePages property to

False after the last page is printed, the application will continue to raise PrintPage events.

 You can cancel a pending print job without fi nishing by setting the Cancel property to

True. You might do this, for example, if the user clicked a Cancel button on your form.

 You can create an event handler for the PrintPage event by double-clicking the PrintDocu-

ment instance in the Designer to create a default event handler.

 Printing Graphics
 Printing graphics is essentially the same as rendering them to the screen. You use the Graph-

ics object supplied by PrintPageEventArgs to render graphics to the screen. Simple shapes can

be printed or complex shapes can be created and printed using the GraphicsPath object. The

following code example shows how to print a complex shape with a GraphicsPath object:

 ' VB

' This method must handle the PrintPage event

Public Sub PrintGraphics(ByVal Sender As System.Object, _

 ByVal e As System.Drawing.Printing.PrintPageEventArgs)

 Dim myPath As New System.Drawing.Drawing2D.GraphicsPath()

 myPath.AddPolygon(New Point() {New Point(1,1), New Point(12, 55), _

 New Point(34, 8), New Point(52, 53), New Point(99, 5)})

 myPath.AddRectangle(New Rectangle(33, 43, 20, 20))

 e.Graphics.DrawPath(Pens.Black, myPath)

End Sub

// C#

// This method must handle the PrintPage event

public void PrintGraphics(object sender, System.Drawing.Printing.PrintPageEventArgs e)

{

 System.Drawing.Drawing2D.GraphicsPath myPath = new

 System.Drawing.Drawing2D.GraphicsPath();

 myPath.AddPolygon(new Point[] {new Point(1,1),

 new Point(12, 55), new Point(34, 8), new Point(52, 53), new Point(99, 5)});

 myPath.AddRectangle(new Rectangle(33, 43, 20, 20));

 e.Graphics.DrawPath(Pens.Black, myPath);

}

 Lesson 2: Constructing Print Documents CHAPTER 10 509

 To print a graphics job that has multiple pages, you must manually divide the job among

pages and implement the appropriate logic. For example, the following method uses 12

pages to draw an ellipse that is six times as long as the page and two times as wide:

 ' VB

' These two variables are used to keep track of which page is printing

Private x As Integer

Private y As Integer

' This method must handle the PrintPages event

Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, _

 ByVal e As System.Drawing.Printing.PrintPageEventArgs)

 ' Draws the Ellipse at different origination points, which has the

 ' effect of sending successive page-sized pieces of the ellipse to the

 ' printer based on the value of x and y

 e.Graphics.FillEllipse(Brushes.Blue, New _

 RectangleF(-e.PageBounds.Width * x, -e.PageBounds.Height * y, _

 e.PageBounds.Width * 2, e.PageBounds.Height * 6))

 y += 1

 If y = 6 And x = 0 Then

 y = 0

 x += 1

 e.HasMorePages = True

 ElseIf y = 6 And x = 1 Then

 ' The print job is finished

 e.HasMorePages = False

 Else

 ' Fires the print event again

 e.HasMorePages = True

 End If

End Sub

// C#

// These two variables are used to keep track of which page is printing

int x;

int y;

// This method must handle the PrintPages event

private void printDocument1_PrintPage(object sender, System.Drawing.Printing.

PrintPageEventArgs e)

{

 // Draws the Ellipse at different origination points, which has the

 // effect of sending successive page-sized pieces of the ellipse to the

 // printer based on the value of x and y

 e.Graphics.FillEllipse(Brushes.Blue, new RectangleF(-e.PageBounds.Width

 * x, -e.PageBounds.Height * y, e.PageBounds.Width * 2,

 e.PageBounds.Height * 6));

 y += 1;

 510 CHAPTER 10 Printing in Windows Forms

 if (y == 6 & x == 0)

 {

 y = 0;

 x ++;

 e.HasMorePages = true;

 }

 else if (y == 6 & x == 1)

 {

 // The print job is finished

 e.HasMorePages = false;

 }

 else

 {

 // Fires the print event again

 e.HasMorePages = true;

 }

}

 In this example the method redraws the complete ellipse each time it is executed but the

point of origin is changed, so successive “slices” of the ellipse are printed each time the appli-

cation executes.

 Printing Images

 You can use the Graphics object contained in the PrintPageEventArgs to send image content

to the printer with the Graphics.DrawImage method, as shown here:

 ' VB

' Assumes an image called myImage. This method must handle the PrintPages event

Private Sub PrintDocument1_PrintPage(ByVal sender As System.Object, _

 ByVal e As System.Drawing.Printing.PrintPageEventArgs)

 e.Graphics.DrawImage(myImage, New PointF(0,0))

End Sub

// C#

// Assumes an image called myImage. This method must handle the PrintPages event

private void PrintDocument1_PrintPage(object sender,

 System.Drawing.Printing.PrintPageEventArgs e)

{

 e.Graphics.DrawImage(myImage, new PointF(0,0));

}

 Note that when printing an image that is larger than a single page, you must handle the

paging manually, as you would for printing any other print job.

 Lesson 2: Constructing Print Documents CHAPTER 10 511

 Printing Text
 Printing text is similar to printing graphics. Text is printed through the Graphics.DrawString

method, which renders a string in the specifi ed font to the printer. As with rendering text to

the screen, to print you must specify a font for rendering the text, the text to render, a Brush

object, and coordinates at which to print. For example:

 ' VB

Dim myFont As New Font("Tahoma", 12, FontStyle.Regular, GraphicsUnit.Pixel)

Dim Hello As String = "Hello World!"

e.Graphics.DrawString(Hello, myFont, Brushes.Black, 20, 20)

// C#

Font myFont = new Font("Tahoma", 12, FontStyle.Regular, GraphicsUnit.Pixel);

string Hello = "Hello World!";

e.Graphics.DrawString(Hello, myFont, Brushes.Black, 20, 20);

 Note that when printing text, you must take steps in your code to ensure that you do

not attempt to print outside the bounds of the page. If you do attempt to print outside the

bounds of the page, content that falls outside the bounds will not be printed.

 Printing Multiple Lines

 When printing multiple lines of text, such as an array of strings or lines read from a text fi le,

you must include logic to calculate the line spacing. You can calculate the number of lines per

page by dividing the height of the margin bounds by the height of the font. Similarly, you can

calculate the position of each line by multiplying the line number by the height of the font.

The following code example demonstrates how to print an array of strings called myStrings:

 ' VB

Dim ArrayCounter As Integer = 0

' This method handles a PrintDocument.PrintPage event. It assumes

' an array of strings called myStrings() has been declared and

' populated elsewhere in the application. It also assumes a font for

' printing has been initialized and called myFont

Private Sub PrintStrings(sender As Object, e As System.Drawing.Printing.

PrintPageEventArgs)

 ' Declares the variables that will be used to keep track of spacing and paging

 Dim LeftMargin As Single = e.MarginBounds.Left

 Dim TopMargin As Single = e.MarginBounds.Top

 Dim MyLines As Single = 0

 Dim YPosition As Single = 0

 Dim Counter As Integer = 0

 Dim CurrentLine As String

 ' Calculate the number of lines per page.

 MyLines = e.MarginBounds.Height / myFont.GetHeight(e.Graphics)

 ' Prints each line of the array, but stops at the end of a page

 512 CHAPTER 10 Printing in Windows Forms

 While Counter < MyLines And ArrayCounter <= myStrings.Length -1

 CurrentLine = myStrings(ArrayCounter)

 YPosition = TopMargin + Counter * myFont.GetHeight(e.Graphics)

 e.Graphics.DrawString(CurrentLine, myFont, Brushes.Black, _

 LeftMargin, YPosition, New StringFormat())

 Counter += 1

 ArrayCounter += 1

 End While

 ' If more lines exist, print another page

 If Not (ArrayCounter = myStrings.Length -1) Then

 e.HasMorePages = True

 Else

 e.HasMorePages = False

 End If

End Sub

// C#

int ArrayCounter = 0;

private void PrintStrings(object sender, System.Drawing.Printing.PrintPageEventArgs e)

{

 // Declares the variables that will be used to keep track of spacing and paging

 float LeftMargin = e.MarginBounds.Left;

 float TopMargin = e.MarginBounds.Top;

 float MyLines = 0;

 float YPosition = 0;

 int Counter = 0;

 string CurrentLine;

 // Calculate the number of lines per page

 MyLines = e.MarginBounds.Height / myFont.GetHeight(e.Graphics);

 // Prints each line of the array, but stops at the end of a page

 while (Counter < MyLines && ArrayCounter <= myStrings.Length -1)

 {

 CurrentLine = myStrings[ArrayCounter];

 YPosition = TopMargin + Counter * myFont.GetHeight(e.Graphics);

 e.Graphics.DrawString(CurrentLine, myFont, Brushes.Black, LeftMargin,

 YPosition, new StringFormat());

 Counter ++;

 ArrayCounter++;

 }

 // If more lines exist, print another page

 if (!(ArrayCounter == myStrings.GetLength(0) -1))

 e.HasMorePages = true;

 else

 e.HasMorePages = false;

}

 Lesson 2: Constructing Print Documents CHAPTER 10 513

 Notifying the User When Printing Is Complete
 Because printing can be time-consuming and because the process is carried out asynchro-

nously, it can be useful to inform the user when a print job has fi nished. You can create a

notifi cation of the end of printing by handling the PrintDocument.EndPrint event.

 The PrintDocument.EndPrint event is raised after all pages of a print job have been

printed. It has a signature that is the same as the PrintPages event—that is, it includes an

object that represents the sender of the event and an instance of System.Drawing.Printing.

PrintPageEvent Args. The following example demonstrates how to notify the user with a mes-

sage box when the print job is complete:

 ' VB

Private Sub PrintDocument1_EndPrint(ByVal sender As System.Object, _

 ByVal e As System.Drawing.Printing.PrintEventArgs) Handles PrintDocument1.EndPrint

 MsgBox("Your print job is complete")

End Sub

// C#

// This method handles the PrintDocument.EndPrint method

private void PrintDocument1_EndPrint(object sender System.Drawing.Printing.

PrintEventArgs e)

{

 MessageBox.Show("Your print job is complete")

}

 Security and Printing
 Printing is a secured activity, and permission to print is defi ned by the PrintingPermission

class. The PrintingPermission class can specify four PrintingPermissionLevel values that detail

the various secure printing environments. These levels are:

 AllPrinting Provides unrestricted access to the printer.

 DefaultPrinting Enables programmatic printing to the default printer and access to

other printers through a printer dialog box.

 SafePrinting Allows printing only through a printer dialog box.

 NoPrinting Allows no access to the printers.

 To protect against malicious code, applications run in the intranet or Internet security

zones are granted the DefaultPrinting permission by default. If your application requires

unrestricted printing, you can require that permission by adding an instance of the Printing-

Permission attribute to your class or method, as shown below:

 ' VB

<Printing.PrintingPermission(Security.Permissions.SecurityAction.RequestMinimum, _

 level:=Printing.PrintingPermissionLevel.AllPrinting)> _

Public Class myPrintClass

 514 CHAPTER 10 Printing in Windows Forms

 'Class implementation omitted

End Class

// C#

[Printing.PrintingPermission(System.Security.Permissions.SecurityAction.RequestMinimum,

 Level=System.Drawing.Printing.PrintingPermissionLevel.AllPrinting)]

public class myPrintClass

{

 // Class implementation omitted

}

Quick Check

 1. What object represents the printer and can be used to send text, shapes, and

images to the printer?

 2. What method is used to print text?

Quick Check Answers

 1. The PrintPageEventArgs.Graphics object is the Graphics object that represents

the printed page. It encapsulates all of the methods required to draw text,

shapes, and images on a printed page.

 2. The Graphics.DrawString method is used to print text to the printer. You should

use the Graphics object provided by the PrintPageEventArgs instance in the

PrintPage event handler.

LAB Create a Print Document

In this lab, you will expand on the solution you created in Lesson 1, “Managing the Print

Process by Using Print Dialog Boxes,” and create an application that allows the user to open a

text fi le and print the contents.

EXERCISE 1 Creating a Print Document

 1. From the Toolbox, drag an OpenFileDialog box onto the form.

 2. In the Properties window, set the Filter property of OpenFileDialog1 to Text Files |

*.txt.

 3. Beneath the FileMenuItem, add a menu item named Open File.

 4. Double-click the Open File menu item to open the code editor to the OpenFileTool-

StripMenuItem_Click event handler.

 5. Outside of the OpenFileToolStripMenuItem_Click event handler, add the following code:

 ' VB

Dim s As String

Quick Check

1. What object represents the printer and can be used to send text, shapes, and

images to the printer?

2. What method is used to print text?

Quick Check Answers

1. The PrintPageEventArgs.Graphics object is the Graphics object that represents

the printed page. It encapsulates all of the methods required to draw text,

shapes, and images on a printed page.

2. The Graphics.DrawString method is used to print text to the printer. You should

use the Graphics object provided by the PrintPageEventArgs instance in the

PrintPage event handler.

Q

 Lesson 2: Constructing Print Documents CHAPTER 10 515

Dim strings As String()

Dim ArrayCounter As Integer = 0

// C#

string s;

string[] strings;

int ArrayCounter = 0;

 6. Inside the OpenFileToolStripMenuItem_Click event handler, add the following code:

 ' VB

Dim aResult As Windows.Forms.DialogResult

aResult = OpenFileDialog1.ShowDialog

If aResult = Windows.Forms.DialogResult.OK Then

 Dim aReader As New _

 System.IO.StreamReader(OpenFileDialog1.FileName)

 s = aReader.ReadToEnd

 aReader.Close()

 strings = s.Split(ControlChars.CrLf)

End If

// C#

System. Windows.Forms.DialogResult aResult;

aResult = openFileDialog1.ShowDialog();

if (aResult == System. Windows.Forms.DialogResult.OK)

{

 System.IO.StreamReader aReader = new

 System.IO.StreamReader(openFileDialog1.FileName);

 s = aReader.ReadToEnd();

 aReader.Close();

 strings = s.Split('\n');

}

 7. In the PrintDocument1_PrintPage event handler, replace the existing code with the

following code:

 ' VB

Dim LeftMargin As Single = e.MarginBounds.Left

Dim TopMargin As Single = e.MarginBounds.Top

Dim MyLines As Single = 0

Dim YPosition As Single = 0

Dim Counter As Integer = 0

Dim CurrentLine As String

MyLines = e.MarginBounds.Height / _

 Me.Font.GetHeight(e.Graphics)

 While Counter < MyLines And ArrayCounter <= strings.Length - 1

 CurrentLine = strings(ArrayCounter)

 YPosition = TopMargin + Counter * Me.Font.GetHeight(e.Graphics)

 516 CHAPTER 10 Printing in Windows Forms

 e.Graphics.DrawString(CurrentLine, Me.Font, Brushes.Black, _

 LeftMargin, YPosition, New StringFormat())

 Counter += 1

 ArrayCounter += 1

 End While

 If Not (ArrayCounter >= strings.Length - 1) Then

 e.HasMorePages = True

 Else

 e.HasMorePages = False

 End If

// C#

float LeftMargin = e.MarginBounds.Left;

float TopMargin = e.MarginBounds.Top;

float MyLines = 0;

float YPosition = 0;

int Counter = 0;

string CurrentLine;

MyLines = e.MarginBounds.Height /

 this.Font.GetHeight(e.Graphics);

while (Counter < MyLines && ArrayCounter <= strings.Length - 1)

{

 CurrentLine = strings[ArrayCounter];

 YPosition = TopMargin + Counter * this.Font.GetHeight(e.Graphics);

 e.Graphics.DrawString(CurrentLine, this.Font, Brushes.Black,

 LeftMargin, YPosition, new StringFormat());

 Counter++;

 ArrayCounter++;

}

if (!(ArrayCounter >= strings.GetLength(0) - 1))

 e.HasMorePages = true;

else

 e.HasMorePages = false;

 8. Press F5 to run the application. Choose Open File from the fi le menu and open a text

fi le on your computer. Choose Print Preview from the File menu to view the fi le in the

Print Preview dialog box. Print the fi le. Experiment with other page and print settings.

 Lesson Summary
 A printed document is represented by a PrintDocument component. The PrintDocu-

ment component raises the PrintPage event when the Print method is called. Methods

that handle the PrintPage event contain all of the logic that actually draws the shapes

to be printed.

 Lesson 2: Constructing Print Documents CHAPTER 10 517

 The PrintPageEventArgs object that is passed as a parameter to methods handling the

PrintPage event contains a Graphics object that represents the printed page. You use

the methods of the Graphics class to draw shapes and strings to the printer.

 If multiple pages must be printed, you must set the HasMorePages property of the

PrintPageEventArgs object to True. This will cause the PrintPage event to be raised

again and the method(s) handling this event to be executed. You must create logic that

keeps track of the page count and whether more pages remain to be printed.

 You can notify the user at the end of a print job by creating a notifi cation in the Print-

Document_EndPrint event handler.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following lines of code should be used to print an additional page in the

method handling the PrintPages event?

 A. ' VB

e.PrintPages

// C#

e.PrintPages();

 B. ' VB

e.HasMorePages = True

// C#

e.HasMorePages = true;

 C. ' VB

e.HasMorePages()

// C#

e.HasMorePages();

 D. ' VB

e.Cancel = False

// C#

e.Cancel = false;

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 518 CHAPTER 10 Printing in Windows Forms

 2. Which of the following lines of code will correctly calculate the number of lines that

can be printed within the margins of a page in a font named myFont?

 A. ' VB

MyLines = e.MarginBounds.Height / myFont.GetHeight(e.Graphics)

// C#

MyLines = e.MarginBounds.Height / myFont.GetHeight(e.Graphics);

 B. ' VB

MyLines = e.MarginBounds.Height / myFont.GetHeight()

// C#

MyLines = e.MarginBounds.Height / myFont.GetHeight();

 C. ' VB

MyLines = e.MarginBounds.Height / e.Graphics.GetHeight(myFont)

// C#

MyLines = e.MarginBounds.Height / e.Graphics.GetHeight(myFont);

 D. ' VB

MyLines = e.PageBounds.Height / myFont.GetHeight(e.Graphics)

// C#

MyLines = e.PageBounds.Height / myFont.GetHeight(e.Graphics);

 3. Which event of the PrintDocument component should be handled to alert the user to

the completion of a print job?

 A. BeginPrint

 B. EndPrint

 C. PrintPage

 D. QueryPageSettings

 Lesson 3: Creating a Customized PrintPreview Component CHAPTER 10 519

Lesson 3: Creating a Customized PrintPreview
Component

Although the PrintPreviewDialog component gives you a simple and easy way to provide

the print-preview functionality in your applications, it is diffi cult to customize. For custom

print-preview applications, you can use the PrintPreview control to create a customized Print-

Preview component.

After this lesson, you will be able to:

 Set the Document property to establish the document to be previewed.

 Set the Columns and Rows properties to establish the number of pages displayed

horizontally and vertically on the control.

 Set the UseAntiAlias property to True to make the text appear smoother (it can

also make the display slower).

 Set the Zoom property to establish the relative zoom level when the document

preview appears.

 Set the StartPage property to establish which document page is displayed when

the document preview appears.

 Set additional properties.

 Add custom methods and events to a PrintPreviewControl.

Estimated lesson time: 45 minutes

The PrintPreviewControl
The PrintPreviewControl is the control at the center of the PrintPreviewDialog component. It

encapsulates all the functionality required to preview a PrintDocument component by calling

the PrintDocument.Print method and redirecting the output to the control rather than to the

printer. It also contains properties that control the Zoom level, the page layout, and which

page is displayed. Important properties of the PrintPreviewControl are shown in Table 10-4.

 TABLE 10-4 Important Properties of the PrintPreviewControl

 PROPERTY DESCRIPTION

 AutoZoom Gets or sets a value indicating whether resizing the control or

changing the number of pages shown automatically adjusts the

Zoom property.

 Columns Gets or sets the number of pages that are displayed horizontally

across the screen.

After this lesson, you will be able to:

Set the Document property to establish the document to be previewed.t

Set the Columns and Rows properties to establish the number of pages displayed

horizontally and vertically on the control.

Set the UseAntiAlias property to True to make the text appear smoother (it can

also make the display slower).

Set the Zoom property to establish the relative zoom level when the document

preview appears.

Set the StartPage property to establish which document page is displayed when

the document preview appears.

Set additional properties.

Add custom methods and events to a PrintPreviewControl.

Estimated lesson time: 45 minutes

 520 CHAPTER 10 Printing in Windows Forms

 PROPERTY DESCRIPTION

 Document The instance of PrintDocument that is associated with the

PrintPreviewControl.

 Rows Gets or sets the number of pages that are displayed vertically on

the screen.

 StartPage Gets or sets the page of the PrintDocument to be displayed in

the fi rst page of the control.

 UseAntiAlias Gets or sets a value indicating whether antialiasing is used.

Antialiasing makes text in the control appear smoother at the

cost of performance.

 Zoom Gets or sets the Zoom level of the document.

 The PrintPreviewControl inherits from the Control class and exposes several other proper-

ties that are inherited from the Control class. You can set these at design time or at run time,

as you would any other control.

 Setting the Document Property

 The Document property represents the PrintDocument that is currently associated with the

PrintPreviewControl. The PrintPreviewControl calls the PrintDocument.Print method and

redirects the output of the PrintPages event handler to the PrintPreviewControl instead of to

the printer. The following code example demonstrates how to set the PrintPreviewControl.

Document property:

 ' VB

' Assumes a PrintDocument named PrintDocument1

PrintPreviewControl1.Document = PrintDocument1

// C#

// Assumes a PrintDocument named printDocument1

printPreviewControl1.Document = printDocument1;

 You can also set the PrintPreviewControl.Document property in the Properties window.

 Setting Columns and Rows

 The Columns property and the Rows property determine how many pages are shown in the

PrintPreviewControl. The Columns property represents the number of pages shown across. For

example, if the Columns property is set to 3, a maximum of three pages will be shown hori-

zontally. (If the PrintDocument being previewed has fewer than three pages, only the pages it

contains will be shown.) Likewise, if the Rows property is set to 3, a maximum of three pages

will be shown vertically. The Rows and Columns properties multiplied together represent the

total number of pages that will be displayed in the PrintPreviewControl. For example, if Rows

 Lesson 3: Creating a Customized PrintPreview Component CHAPTER 10 521

is set to 3 and Columns is set to 4, the total number of pages that can be displayed at one

time is 12. The following example demonstrates how to set the Rows and Columns properties:

 ' VB

PrintPreviewControl1.Rows = 3

PrintPreviewControl1.Columns = 4

// C#

printPreviewControl1.Rows = 3;

printPreviewControl1.Columns = 4;

 You can also set the Rows and Columns properties in the Properties window at design

time.

 Antialiasing

 Antialiasing is a technology that smoothes the edges of drawn graphics and text to improve

their appearance or readability. It does so by setting pixels on the edge of the shape being

drawn to partially transparent colors. This causes the edges of the shape to appear smooth to

the eye. The tradeoff for this smoother appearance is slightly decreased performance. If you

desire a smoother appearance, you can use antialiasing by setting the PrintPreviewControl.

UseAntiAlias property to True. For better performance, you can set the UseAntiAlias property

to False. The following code example demonstrates how to set the UseAntiAlias property:

 ' VB

PrintPreviewControl1.UseAntiAlias = True

// C#

printPreviewControl1.UseAntiAlias = true;

 Zooming

 The Zoom property determines how large a page appears in the PrintPreview control. A value

of 1.0 represents full size. Larger values represent proportional increases in the size—for

example, a value of 5 will display the page at 500 percent of full size. Values of less than 1 are

also allowed. A value of 0.25, for example, displays the page at 25 percent. The following code

example demonstrates how to set the PrintPreviewControl.Zoom property:

 ' VB

' Displays the page at 250% of normal size

PrintPreviewControl1.Zoom = 2.5

// C#

// Displays the page at 250% of normal size

printPreviewControl1.Zoom = 2.5;

 You can also zoom automatically by setting the AutoZoom property to True. When this

property is set to True, the document displayed in the PrintPreviewControl is automatically

 522 CHAPTER 10 Printing in Windows Forms

resized when the PrintPreviewControl is resized. The following example demonstrates how to

set the AutoZoom property to True:

 ' VB

PrintPreviewControl1.AutoZoom = True

// C#

printPreviewControl1.AutoZoom = true;

 When the AutoZoom property is set to True, the Zoom property is automatically changed

when the control is resized.

 Setting the Start Page

 The StartPage property allows you to set the page displayed fi rst in the PrintPreviewCon-

trol. When the control displays Page, this property indicates the page that is displayed.

When more than one page is displayed in this control, this property indicates the page that

is displayed in the upper left-hand corner. You can set the StartPage property only at run

time—you cannot set it in the Properties window. The following example demonstrates how

to set the StartPage property:

 ' VB

PrintPreviewControl1.StartPage = 3

// C#

printPreviewControl1.StartPage = 3;

 Note that if the Columns and Rows properties are set so that all of the pages of the Print-

Document can be displayed, all pages of the PrintDocument will be displayed and the fi rst

page will show in the upper left-hand corner of the PrintPreviewControl.

 Adding Methods and Events to the PrintPreviewControl

 Although the properties of the PrintPreviewControl that have been discussed in this lesson

allow a considerable amount of customization, you might want to customize the PrintPreview-

Control further by adding methods or events. For example, you might want to add a method

to add columns or rows. You can create a customized PrintPreviewControl by creating a new

class that inherits the PrintPreviewControl and adding methods or events. The following code

example demonstrates a class that inherits from PrintPreviewControl and adds a method to

add a column:

 ' VB

Public Class MyPrintPreviewControl

 Inherits PrintPreviewControl

 Public Sub AddColumn()

 Me.Columns += 1

 End Sub

End Class

 Lesson 3: Creating a Customized PrintPreview Component CHAPTER 10 523

// C#

public class MyPrintPreviewControl:PrintPreviewControl

{

 public void AddColumn()

 {

 this.Columns++;

 }

}

 LAB Create a Customized PrintPreview Form

 In this exercise, you will create a customized PrintPreview form and add it to the solution you

created in Lesson 2, “Constructing Print Documents.” You will add a PrintPreviewControl to

a form and add controls that allow the user to specify the number of rows and columns, to

specify the magnifi cation, and to turn antialiasing on and off.

 EXERCISE 1 Creating a Customized PrintPreview Form

 1. Open the solution you completed in Lesson 2, “Constructing Print Documents,” or open

the completed Lesson 2 solution in the sample fi les installed from the companion CD.

 2. Add a new Form to the project.

 3. From the Toolbox, drag a SplitContainer onto the form. The Orientation property

should be set to Vertical.

 4. From the Toolbox, drag a PrintPreviewControl onto Panel2 and set the Dock property

to Fill.

 5. For C# only: set the Modifi ers property of printPreviewControl1 to Internal.

 6. From the Toolbox, add three Label controls, three NumericUpDown controls, one

Checkbox control, and one Button control onto Panel1. Associate the labels with the

corresponding NumericUpDown controls and set the properties as described in the

following table:

 CONTROL PROPERTY VALUE

 Label1 Text Rows

 Label2 Text Columns

 Label3 Text Magnifi cation

 NumericUpDown1 Minimum 1

 NumericUpDown1 Maximum 8

 NumericUpDown2 Minimum 1

 NumericUpDown2 Maximum 8

 NumericUpDown3 Minimum 25

 524 CHAPTER 10 Printing in Windows Forms

 CONTROL PROPERTY VALUE

 NumericUpDown3 Maximum 500

 NumericUpDown3 Increment 25

 CheckBox1 Text AntiAlias

 Button1 Text Print

 7. Double-click the NumericUpDown1 control and add the following code to the

Numeric UpDown_ValueChanged event handler:

 ' VB

PrintPreviewControl1.Rows = NumericUpDown1.Value

// C#

printPreviewControl1.Rows = (int)numericUpDown1.Value;

 8. In the Designer, double-click the NumericUpDown2 control and add the following

code to the NumericUpDown2_ValueChanged event handler:

 ' VB

PrintPreviewControl1.Columns = NumericUpDown2.Value

// C#

printPreviewControl1.Columns = (int)numericUpDown2.Value;

 9. In the Designer, double-click the NumericUpDown3 control and add the following code

to the NumericUpDown3_ValueChanged event handler:

 ' VB

PrintPreviewControl1.Zoom = NumericUpDown3.Value / 100

// C#

printPreviewControl1.Zoom = (double)numericUpDown3.Value / 100;

 10. In the Designer, double-click the CheckBox1 control and add the following code to the

CheckBox1_CheckChanged event handler:

 ' VB

PrintPreviewControl1.UseAntiAlias = CheckBox1.Checked

// C#

printPreviewControl1.UseAntiAlias = checkBox1.Checked;

 11. In the Designer, double-click the Print button and add the following code to the

 Button1_Click event handler:

 ' VB

Me.DialogResult = Windows.Forms.DialogResult.OK

 Lesson 3: Creating a Customized PrintPreview Component CHAPTER 10 525

// C#

this.DialogResult = System. Windows.Forms.DialogResult.OK;

 12. In the Code Editor for Form1, comment out the existing code in the PrintPreviewTool-

StripMenuItem_Click event handler and add the following code:

 ' VB

Dim aForm As New Form2

Dim aResult As Windows.Forms.DialogResult

aForm.PrintPreviewControl1.Document = PrintDocument1

aResult = aForm.ShowDialog

If aResult = Windows.Forms.DialogResult.Ok Then

 PrintDocument1.Print

End If

// C#

Form2 aForm = new Form2();

System. Windows.Forms.DialogResult aResult;

aForm.printPreviewControl1.Document = printDocument1;

aResult = aForm.ShowDialog();

if (aResult == System. Windows.Forms.DialogResult.OK)

 printDocument1.Print();

 Press F5 to build and run your application. Select a text fi le with the Open File menu

command, and then click Print Preview to test your new PrintPreview form.

 Lesson Summary
 The PrintPreviewControl is the control at the heart of the PrintPreviewDialog and

contains all of the functionality required to call the PrintPages event and redirect the

output to the control. The Document property represents the PrintDocument compo-

nent that is previewed.

 The PrintPreviewControl exposes properties that allow you to set the number of rows,

number of columns, the zoom level, whether to use antialiasing, and the start page.

You can set these properties to confi gure your control.

 If you need to add methods or events to your PrintPreviewControl, you can create a

class that inherits the PrintPreviewControl and add members as necessary.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 526 CHAPTER 10 Printing in Windows Forms

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following values for the Zoom property will cause the document to be

previewed at 250 percent of normal size?

A. 250

B. 25

C. 2.5

D. .25

 2. Which of the following lines of code do you use to make previewed documents in a

PrintPreviewControl named PrintPreviewControl1 appear smoother?

A. ' VB

PrintPreviewControl1.UseAntiAlias()

// C#

printPreviewControl1.UseAntiAlias();

B. ' VB

PrintPreviewControl1.UseAntiAlias = True

// C#

printPreviewControl1.UseAntiAlias = true;

C. ' VB

PrintPreviewControl1.Document.UseAntiAlias()

// C#

printPreviewControl1.Document.UseAntiAlias();

D. ' VB

PrintPreviewControl1.Document.UseAntiAlias = True

// C#

printPreviewControl1.Document.UseAntiAlias = true;

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Chapter Review CHAPTER 10 527

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 The PrintDocument component is the primary component involved in printing and

represents a printed page. Data is sent to the printer by handling the PrintDocument.

PrintPages event. Methods that handle this event receive a PrintPageEventArgs object

that contains a variety of properties useful in printing, including the Graphics object

that represents the printer. Text is drawn to the printer by using the Graphics.Draw-

String method, and graphics are drawn to the printer by using the graphics-drawing

methods of the Graphics class. Multiple pages are printed by setting the HasMore Pages

property of the PrintEventArgs object to True.

 You can use several dialog box components to assist the user with printing tasks. The

PrintDialog component allows users to control print options and add new printers. The

PageSetupDialog component allows the user to set options for the pages and paper.

The PrintPreviewDialog component allows the user to view a representation of the

printed document before it is actually printed.

 You can create a customized PrintPreview form by using the PrintPreviewControl. The

PrintPreviewControl displays a preview of the document indicated by its Document

property and includes properties that control the look and feel of the preview, such as

Columns, Rows, UseAntiAlias, Zoom, AutoZoom, and StartPage. If needed, you can add

methods and events to the PrintPreviewControl class by creating a derived class.

 Key Terms
 Graphics object

 PrintDocument

 PrintPreview

 528 CHAPTER 10 Printing in Windows Forms

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about printing in Windows

forms. You can fi nd answers to these questions in the “Answers” section at the end of this

book.

 Case Scenario 1: A Better PrintPreview Control

 Our clients at Fabrikam, Inc., have retained us to help them implement solutions for handling

their document processing needs. They need to print very large documents and would like

to have a PrintPreview control that displays only one page at a time but displays each page in

turn without user intervention or that can be confi gured to display every second page, third

page, fourth page, and so on.

 QUESTIONS

 1. What general strategy could you use to create a component with the required

functionality?

 2. How could you implement the ability to display every second, third, or fourth page?

 Case Scenario 2: A Simple Report Tool

 Fabrikam, Inc., has also asked your company to create a tool to print simple reports. The

company already uses an application to display data from its database in a Windows form by

using a group of data-bound labels and images. The form is the size of a piece of paper, and

they would like the report to resemble the form as closely as possible.

 QUESTIONS

 1. What strategies can you use to implement a simple report tool that accurately refl ects

the look and feel of the preexisting form?

 2. Can you automate the application so that each record in the database is printed? How

would you handle printing multiple pages?

 Suggested Practices

 Practice 1 Expand the solution completed in Lesson 2, “Constructing Print Docu-

ments,” to allow the user to select a font and write logic to automatically readjust line

length to fi t that font.

 Pratice 2 Expand the solution completed in Lesson 2 to allow the user to create a

header or a footer that will be included on each page.

 Practice 3 Create a customized PrintPreview component that displays each page of a

PrintDocument in a continually rotating fashion.

 Take a Practice Test CHAPTER 10 529

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 11 531

 C H A P T E R 1 1

 Advanced Topics in Windows
Forms

 Beyond using controls, data access, Extensible Markup Language (XML), and print sup-

port, additional functionality built into Windows Forms enhances the usability and

usefulness of your applications. This chapter will examine implementing drag-and-drop

functionality, internationalization, and multiple document interface (MDI) forms.

 Exam objectives in this chapter:

 Perform drag-and-drop operations.

 Perform drag-and-drop operations within a Windows Forms application.

 Perform drag-and-drop operations between applications.

 Perform a drag-and-drop operation with a TreeView control.

 Implement globalization and localization for a Windows Forms application.

 Implement globalization and localization within a Windows Forms application.

 Create and confi gure MDI forms.

 Create MDI parent forms.

 Create MDI child forms.

 Identify the active MDI child form.

 Send data to the active MDI child form.

 Arrange MDI child forms.

 Create a window list menu for an MDI application.

 Lessons in this chapter:

 Implementing Drag-and-Drop Functionality 533

 Implementing Globalization and Localization for a Windows

Forms Application 543

 Implementing MDI Forms 553

 532 CHAPTER 11 Advanced Topics in Windows Forms

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the .NET

Framework .

 REAL WORLD

Matt Stoecker

 The business world is getting smaller every day, and I fi nd that there are increas-

ing demands put on my applications to provide support for a variety of global

customers. Without Visual Studio internationalization, creating software for mul-

tiple countries would be extremely time-consuming and diffi cult.

REAL WORLD

Matt Stoecker

The business world is getting smaller every day, and I fi nd that there are increas-

ing demands put on my applications to provide support for a variety of global

customers. Without Visual Studio internationalization, creating software for mul-

tiple countries would be extremely time-consuming and diffi cult.

 Lesson 1: Implementing Drag-and-Drop Functionality CHAPTER 11 533

Lesson 1: Implementing Drag-and-Drop Functionality

Drag-and-drop functionality refers to being able to grab data, such as a string or an object,

by pressing and holding down the left mouse button, moving the mouse with the left but-

ton held down over another control that is able to accept the data, and then releasing the

mouse button to transfer the data. Drag-and-drop functionality is implemented primarily by

handling events. In this lesson, you will learn how to implement basic drag-and-drop func-

tionality, to implement drag-and-drop functionality between applications, and to implement

drag-and-drop functionality in a TreeView control.

After this lesson, you will be able to:

 Perform drag-and-drop operations within a Windows Forms application.

 Perform drag-and-drop operations between applications.

 Perform a drag-and-drop operation with a TreeView control.

 Estimated lesson time: 45 minutes

 Implementing Drag-and-Drop Functionality
 Drag-and-drop functionality is ubiquitous in Windows Forms programming. It refers to

allowing the user to grab data—such as text, an image, or another object—with the mouse

and drag it to another control. When the mouse button is released over the other control,

the data that is being dragged is dropped onto the control and a variety of effects can then

occur.

 Dragging and dropping is similar to cutting and pasting. The mouse pointer is positioned

over a control and the mouse button is pressed. Data is copied from a source control; when

the mouse button is released, the drop action is completed. All code for copying the data

from the source control and any actions taken on the target control must be explicitly coded.

 The drag-and-drop process is primarily an event-driven process. There are events that

occur on the source control and events that occur on the target control. The drag-and-drop

events for the source control are described in Table 11-1. The drag-and-drop events for the

target control are described in Table 11-2.

After this lesson, you will be able to:

Perform drag-and-drop operations within a Windows Forms application.

Perform drag-and-drop operations between applications.

Perform a drag-and-drop operation with a TreeView control.w

Estimated lesson time: 45 minutes

 534 CHAPTER 11 Advanced Topics in Windows Forms

 TABLE 11-1 Source Control Events Involved in Implementing Drag-and-Drop

 EVENT DESCRIPTION

 MouseDown Occurs when the mouse button is pressed while the pointer is

over the control. In general, the DoDragDrop method is called in

the method that handles this event.

 GiveFeedBack Provides an opportunity for the user to set a custom mouse

pointer.

 QueryContinueDrag Enables the drag source to determine whether a drag event

should be cancelled.

 TABLE 11-2 Target Control Events Involved in Implementing Drag-and-Drop

 EVENT DESCRIPTION

 DragEnter Occurs when an object is dragged within a control’s bounds. The handler

for this event receives a DragEventArgs object.

 DragOver Occurs when an object is dragged over a target control. The handler for

this event receives a DragEventArgs object.

 DragDrop Occurs when the mouse button is released over a target control. The

handler for this event receives a DragEventArgs object.

 DragLeave Occurs when an object is dragged out of the control’s bounds.

 In addition, the DoDragDrop method on the source control is required to initiate the drag-

and-drop process and the target control must have the AllowDrop property set to True.

 The General Sequence of a Drag-and-Drop Operation

 The general sequence of events that takes place in a drag-and-drop operation is as follows:

 1. The drag-and-drop operation is initiated by calling the DoDragDrop method on the

source control. This is usually done in the MouseDown event handler. DoDragDrop

copies the desired data from the source control to a new instance of DataObject and

sets fl ags that specify which effects are allowed with this data.

 2. The GiveFeedBack and QueryContinueDrag events are raised at this point. The

GiveFeedback event handler can set the mouse pointer to a custom shape, and the

QueryContinueDrag event handler can be used to determine if the drag operation

should be continued or aborted.

 3. The mouse pointer is dragged over a target control. Any control that has the Allow-

Drop property set to True is a potential drop target. When the mouse pointer enters a

control with the AllowDrop property set to True, the DragEnter event for that control is

raised. The DragEventArgs object that the event handler receives can be examined to

 Lesson 1: Implementing Drag-and-Drop Functionality CHAPTER 11 535

determine if data appropriate for the target control is present. If so, the Effect property

of the DragEventArgs object can then be set to an appropriate value.

 4. The user releases the mouse button over a valid target control, raising the DragDrop

event. The code in the DragDrop event handler then obtains the dragged data and

takes whatever action is appropriate in the target control.

 The DragDropEffects Enumeration

 To complete a drag-and-drop operation, the drag effect specifi ed in the DoDragDrop method

must match the value of the Effect parameter of the DragEventArgs object associated with the

drag-and-drop event, which is generally set in the DragEnter handler. The Effect property is

an instance of the DragDropEffects enumeration. The members of the DragDropEffects enu-

meration are described in Table 11-3.

TABLE 11-3 DragDropEffects Enumeration Members

 MEMBER EXPLANATION

 All Data is copied, removed from the drag source, and scrolled in the target.

 Copy The data is copied to the target.

 Link The data is linked to the target.

 Move The data is moved to the target.

 None The target does not accept the data.

 Scroll Scrolling is about to start or is currently occurring in the target.

 Note that the main function of the Effect parameter is to change the mouse cursor when it

is over the target control. The value of the Effect parameter has no actual effect on the action

that is executed except that when the Effect parameter is set to None, no drop can take place

on that control because the DragDrop event will not be raised.

 Initiating the Drag-and-Drop Operation

 The drag-and-drop operation is initiated by calling the DoDragDrop method on the source

control. The DoDragDrop method takes two parameters: an Object, which represents the data

to be copied to the DataObject, and an instance of DragDropEffects, which specifi es what

drag effects will be allowed with this data. The following example demonstrates how to copy

the text from a text box and set the allowed effects to Copy or Move:

 ' VB

Private Sub TextBox1_MouseDown(ByVal sender As System.Object, _

 ByVal e As System. Windows.Forms.MouseEventArgs) _

 Handles TextBox1.MouseDown

 TextBox1.DoDragDrop(TextBox1.Text, DragDropEffects.Copy Or DragDropEffects.Move)

End Sub

 536 CHAPTER 11 Advanced Topics in Windows Forms

// C#

private void textBox1_MouseDown(object sender, MouseEventArgs e)

{

 textBox1.DoDragDrop(textBox1.Text, DragDropEffects.Copy | DragDropEffects.Move);

}

 Note that you can use the Or operator (Visual Basic) or the | operator (C#) to combine

members of the DragDropEffects enumeration to indicate multiple effects.

 Handling the DragEnter Event

 The DragEnter event should be handled for every target control. This event occurs when a

drag-and-drop operation is in progress and the mouse pointer enters the control. This event

passes a DragEventArgs object to the method that handles it, and you can use the DragEvent-

Args object to query the DataObject associated with the drag-and-drop operation. If the data

is appropriate for the target control, you can set the Effect property to an appropriate value

for the control. The following example demonstrates how to examine the data format of the

DataObject and set the Effect property:

 ' VB

Private Sub TextBox2_DragEnter(ByVal sender As System.Object, _

 ByVal e As System. Windows.Forms.DragEventArgs) _

 Handles TextBox2.DragEnter

 If e.Data.GetDataPresent(DataFormats.Text) = True Then

 e.Effect = DragDropEffects.Copy

 End If

End Sub

// C#

private void textBox2_DragEnter (object sender, DragEventArgs e)

{

 if (e.Data.GetDataPresent(DataFormats.Text))

 {

 e.Effect = DragDropEffects.Copy;

 }

}

 Handling the DragDrop Event

 When the mouse button is released over a target control during a drag-and-drop operation,

the DragDrop event is raised. In the method that handles the DragDrop event, you can use

the GetData method of the DataObject to retrieve the copied data from the DataObject and

take whatever action is appropriate for the control. The following example demonstrates how

to drop a String into a TextBox:

 ' VB

Private Sub TextBox2_DragDrop(ByVal sender As System.Object, ByVal e As _

 Lesson 1: Implementing Drag-and-Drop Functionality CHAPTER 11 537

 System. Windows.Forms.DragEventArgs) Handles TextBox2.DragDrop

 TextBox2.Text = e.Data.GetData(DataFormats.Text)

End Sub

// C#

private void textBox2_DragDrop(object sender, DragEventArgs e)

{

 textBox2.Text = (string)e.Data.GetData(DataFormats.Text);

}

 Implementing Drag-and-Drop Between Applications

 The system intrinsically supports drag-and-drop operations between .NET Framework appli-

cations. You don’t need to take any additional steps to enable drag-and-drop operations that

take place between applications. The only conditions that must be satisfi ed to enable a drag-

and-drop operation between applications are:

 The target control must allow one of the drag effects specifi ed in the DoDragDrop

method call.

 The target control must accept data in the format that was set in the DoDragDrop

method call.

 Implementing Drag-and-Drop in a TreeView Control

 A common scenario for the TreeView control is to allow the user to rearrange the structure

of the tree at run time. This can be implemented with drag-and-drop. Drag-and-drop in a

TreeView control is slightly different from that in regular controls. When a drag operation is

initiated on a TreeView node, the TreeView control raises the ItemDrag event, which passes an

instance of ItemDragEventArgs to the method that handles the event. The ItemDragEventArgs

object contains a reference to the TreeNode that is being dragged, and this reference can be

copied to the DataObject in the DoDragDrop method. The following procedure describes

how to implement drag-and-drop functionality in a TreeView control.

 TO IMPLEMENT DRAG-AND-DROP FUNCTIONALITY IN A TREEVIEW CONTROL

 1. Set the AllowDrop property of the TreeView to True. This enables the DragEnter and

DragDrop events to be raised from the TreeView control.

 2. In the ItemDrag event handler of the TreeView, call the DoDragDrop method of the

TreeView, specifying the Item property of the ItemDragEventArgs object as the Data

parameter, as shown in the following example:

 ' VB

Private Sub TreeView1_ItemDrag(ByVal sender As System.Object, _

 ByVal e As System. Windows.Forms.ItemDragEventArgs) _

 Handles TreeView1.ItemDrag

 TreeView1.DoDragDrop(e.Item, DragDropEffects.Move)

End Sub

 538 CHAPTER 11 Advanced Topics in Windows Forms

// C#

private void TreeView1_ItemDrag(object sender,

 System. Windows.Forms.ItemDragEventArgs e)

{

 treeView1.DoDragDrop(e.Item, DragDropEffects.Move);

}

 3. In the DragEnter event of the TreeView event handler, set the Effect property of the

DragDropEventArgs to an appropriate value, as shown in the following example:

 ' VB

Private Sub TreeView1_DragEnter(ByVal sender As System.Object, _

 ByVal e As System. Windows.Forms.DragEventArgs) _

 Handles TreeView1.DragEnter

 e.Effect = DragDropEffects.Move

End Sub

// C#

private void treeView1_DragEnter(object sender,

 System. Windows.Forms.DragEventArgs e As)

{

 e.Effect = DragDropEffects.Move;

}

 4. In the DragDrop event handler, examine the data contained in the DataObject of

DragDropEventArgs to determine if a TreeNode is present. If a TreeNode is present, exe-

cute code to move the TreeNode to the appropriate spot. The following code example

demonstrates how to move a dropped node into the child node structure of the node

under the mouse pointer:

 ' VB

Private Sub TreeView1_DragDrop(ByVal sender As System.Object, _

 ByVal e As System. Windows.Forms.DragEventArgs) _

 Handles TreeView1.DragDrop

 Dim aNode As TreeNode

 ' Checks to see if a TreeNode is present

 If e.Data.GetDataPresent(_

 "System. Windows.Forms.TreeNode", False) Then

 Dim apoint As Point

 Dim TargetNode As TreeNode

 ' Gets the point under the mouse pointer

 apoint = CType(sender, TreeView).PointToClient(_

 New Point(e.X, e.Y))

 ' Gets the node at the specified point

 TargetNode = CType(sender, TreeView).GetNodeAt(apoint)

 Lesson 1: Implementing Drag-and-Drop Functionality CHAPTER 11 539

 aNode = CType(e.Data.GetData(_

 "System. Windows.Forms.TreeNode"), _

 TreeNode)

 ' Adds the dragged node as a child to the target node

 TargetNode.Nodes.Add(aNode.Clone)

 TargetNode.Expand()

 ' Removes original node

 aNode.Remove()

 End If

End Sub

// C#

private void treeView1_DragDrop(object sender, System. Windows.Forms.DragEventArgs

e)

{

 TreeNode aNode;

 // Checks to see if a TreeNode is present

 if (e.Data.GetDataPresent(

 "System. Windows.Forms.TreeNode", false))

 {

 Point apoint;

 TreeNode TargetNode;

 // Gets the point under the mouse pointer

 apoint = ((TreeView)sender).PointToClient(

 new Point(e.X, e.Y));

 // Gets the node at the specified point

 TargetNode = ((TreeView)sender).GetNodeAt(apoint);

 aNode = (TreeNode)e.Data.GetData(

 "System. Windows.Forms.TreeNode");

 // Adds the dragged node as a child to the target node

 TargetNode.Nodes.Add((TreeNode)aNode.Clone());

 TargetNode.Expand();

 // Removes original node

 aNode.Remove();

 }

}

 LAB Implement Drag-and-Drop

 In this lab, you will implement drag-and-drop functionality between two text boxes on a

form. You will implement functionality to drag the text from the fi rst text box and copy it into

the second text box when dropped. A completed solution to this lab can be found in the fi les

installed from the companion CD.

 540 CHAPTER 11 Advanced Topics in Windows Forms

 EXERCISE 1 Implementing Drag-and-Drop

 1. In Visual Studio, create a new Windows Forms application.

 2. From the Toolbox, drag two Textbox controls onto the new application.

 3. Select Textbox2 and, in the Properties window, set the AllowDrop property to True.

 4. In the Properties window, click the Events button to display events instead of proper-

ties. Select Textbox1 and double-click the space next to the MouseDown event in the

Properties window to create the default event handler for the Textbox1.MouseDown

event.

 5. Add the following code to the Textbox1_MouseDown event handler:

 ' VB

TextBox1.DoDragDrop(TextBox1.Text, _

 DragDropEffects.Move Or DragDropEffects.Copy)

// C#

textBox1.DoDragDrop(textBox1.Text,

 DragDropEffects.Move | DragDropEffects.Copy);

 6. In the Designer, select TextBox2 and double-click the space next to the DragEnter

event in the Properties window to create the default event handler for the TextBox2.

DragEnter event.

 7. Add the following code to the Textbox2_DragEnter event handler:

 ' VB

If e.Data.GetDataPresent(DataFormats.Text) = True Then

 e.Effect = DragDropEffects.Copy

End If

// C#

if (e.Data.GetDataPresent(DataFormats.Text))

{

 e.Effect = DragDropEffects.Copy;

}

 8. In the Designer, select TextBox2 and double-click the space next to the DragDrop

event in the Properties window to create the default event handler for the TextBox2.

DragDrop event.

 9. Add the following code to the Textbox2_DragDrop event handler:

 ' VB

TextBox2.Text = e.Data.GetData(DataFormats.Text)

// C#

textBox2.Text = (string)e.Data.GetData(DataFormats.Text);

 Lesson 1: Implementing Drag-and-Drop Functionality CHAPTER 11 541

 10. Press F5 to build and run the application. Type some text into the fi rst text box. Using

the mouse, drag from anywhere in the fi rst text box to the second text box. The text

from the fi rst text box is copied to the second text box.

 Lesson Summary
 The drag-and-drop operation is initiated by calling the DoDragDrop method on the

source control. This is usually done in the MouseDown event handler for the source

control. The DoDragDrop method takes two parameters: an Object parameter that

contains the data to be dragged and dropped and a DragDropEffects enumeration

parameter that represents the effect or effects that are allowed for this operation.

 The DragEnter event on the target control is used to set the allowed effects for the

target control. You can examine the data in the e.Data object that is present in the

event parameters and determine if the data is appropriate for the control. If the data is

not appropriate for the control, you can cancel the DragDrop operation by setting the

e.Effect property to None.

 The drag-and-drop operation is completed in the DragDrop event on the target con-

trol. You must write code to complete the appropriate operation in this event.

 Data can be dragged and dropped between controls in different applications. No

additional steps need to be taken to enable drag-and-drop operations that take place

between applications.

 Drag-and-drop operations in TreeView controls are begun by calling the DoDragDrop

method in the TreeView.ItemDrag event handler. The rest of the drag-and-drop pro-

cess is generally the same as drag-and-drop operations for other controls.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson. If

you are unable to answer a question, review the lesson materials and try the question again.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following events must be handled to execute a drag-and-drop operation?

 A. MouseDown

 B. MouseUp

 C. DragLeave

 D. DragDrop

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 542 CHAPTER 11 Advanced Topics in Windows Forms

 2. Which of the following is necessary to implement a drag-and-drop operation between

two applications? (Choose all that apply.)

 A. You must call the DoDragDrop method.

 B. The target control must allow one of the drag effects specifi ed in the DoDragDrop

method call.

 C. The target control must accept data in the format that was set in the DoDragDrop

method call.

 D. The target control must have the AllowDrop property set to True.

 3. In which event should you initiate the drag-and-drop operation in a TreeView control?

 A. TreeView.MouseDown

 B. TreeView.ItemDrag

 C. TreeView.DragEnter

 D. TreeView.DragDrop

 Lesson 2: Implementing Globalization and Localization for a Windows Forms Application CHAPTER 11 543

Lesson 2: Implementing Globalization and
Localization for a Windows Forms Application

Applications that display data in formats appropriate to a particular culture and that display

locale-appropriate strings in the user interface (UI) are considered globally-ready applica-

tions. You can create globally-ready applications with Visual Studio by taking advantage of

the built-in support for globalization and localization. In this lesson, you will learn how to

implement localization and globalization in a Windows Forms application.

After this lesson, you will be able to:

 Implement globalization and localization within a Windows Form.

Estimated lesson time: 30 minutes

Globalization and Localization
Globalization and localization are different processes of internationalization. Globalization

refers to formatting existing data in formats appropriate for the current culture setting. Local-

ization, on the other hand, refers to retrieving appropriate data based on the culture. The

following examples illustrate the difference between globalization and localization:

 Globalization In some countries, currency is formatted using a period (.) as a thou-

sand separator and a comma (,) as a decimal separator, while other countries use the

opposite convention. A globalized application formats currency data with the appro-

priate thousand separator and decimal separator based on the current culture settings.

 Localization The title of a form is displayed in a given language based on the locale

in which it is deployed. A localized application retrieves the appropriate string and

displays it based on the current culture settings.

Culture

Culture refers to cultural information about the country or region in which the application

is deployed. In the .NET Framework, cultures are represented by a culture code that indi-

cates the current language. For example, the following culture codes represent the following

languages:

 en Specifi es the English language

 eu Specifi es the Basque language

 tr Specifi es the Turkish language

Culture codes can specify only the language, like the ones shown here, or they can specify

both the language and the region. Culture codes that specify only the language are called

neutral culture codes, whereas culture codes that specify both the language and the region

After this lesson, you will be able to:

Implement globalization and localization within a Windows Form.

Estimated lesson time: 30 minutes

 544 CHAPTER 11 Advanced Topics in Windows Forms

are called specifi c culture codes. Examples of specifi c culture codes are shown in the follow-

ing list:

 en-CA Specifi es the English language and Canada as the region

 af-ZA Specifi es the Afrikaans language and South Africa as the region

 kn-IN Specifi es the Kannada language and India as the region

 You can fi nd a complete list of culture codes in the CultureInfo class reference topic (http://

msdn. Microsoft.com/en-us/library/system.globalization.cultureinfo.aspx) in the .NET Frame-

work reference documentation.

 Most culture codes follow the format just described, but some culture codes are excep-

tions. The following culture codes are examples that specify the character sets in addition to

other information:

 uz-UZ-Cyrl Specifi es the Uzbek language, the Uzbekistan region, and the Cyrillic

alphabet

 uz-UZ-Latn Specifi es the Uzbek language, the Uzbekistan region, and the Latin

alphabet

 zh-CHT Specifi es the traditional Chinese language, no region

 zh-CHS Specifi es the simplifi ed Chinese language, no region

 Changing the Current Culture

 Your application automatically reads the culture settings of the system and implements them.

Thus, in most circumstances you do not have to manually change the culture settings. You

can, however, change the current culture of your application in code by setting the current

culture to a new instance of the CultureInfo class. The CultureInfo class contains information

about a particular culture and how it interacts with the application and system. For example,

the CultureInfo class contains information about the type of calendar, date formatting, cur-

rency formatting, and so on for a specifi c culture. You set the current culture of an application

programmatically by setting the CurrentThread.CurrentCulture property to a new instance of

the CultureInfo class. The CultureInfo constructor requires a string that represents the appro-

priate culture code as a parameter. The following code example demonstrates how to set the

current culture to French Canadian:

 ' VB

System.Threading.Thread.CurrentThread.CurrentCulture = New _

 System.Globalization.CultureInfo("fr-CA")

// C#

System.Threading.Thread.CurrentThread.CurrentCulture = new

 System.Globalization.CultureInfo("fr-CA");

 Lesson 2: Implementing Globalization and Localization for a Windows Forms Application CHAPTER 11 545

 Implementing Globalization

 The CurrentThread.CurrentCulture property controls the culture that is used to format data.

When CurrentCulture is set to a new instance of CultureInfo, any data formatted by the

application is updated to the new format. Data that is not formatted by the application is not

affected by a change in the current culture. Consider the following examples:

 ' VB

Label1.Text = "$500.00"

Label2.Text = Format(500, "Currency")

// C#

label1.Text = "$500.00";

label2.Text = (500).ToString("C");

 When the culture is set to en-US, which represents the English language and the United

States as the region (which is the default culture setting for computers in the United States),

both labels display the same string—that is, “$500.00”. When the current culture is set to fr-FR,

which represents the French language and France as the region, the text in the two labels dif-

fers. The text in Label1 always reads “$500.00” because it is not formatted by the application.

The text in Label2, however, reads “500,00 ”. Note that the currency symbol is changed to

the appropriate symbol for the locale—in this case the Euros symbol—and the decimal sepa-

rator is changed to the separator that is appropriate for the locale (in this case, the comma).

 Implementing Localization

 You can implement localization—that is, provide a user interface (UI) that is specifi c to the

current locale—by using the built-in localization features of Visual Studio. Visual Studio allows

you to create alternative versions of forms that are culture-specifi c and automatically man-

ages retrieval of resources appropriate for the culture.

 Changing the Current User Interface Culture

 The UI culture is represented by an instance of CultureInfo and is distinct from the Culture-

Info.CurrentCulture property. The CurrentCulture setting determines the formatting that will

be applied to system-formatted data, whereas the CurrentUICulture setting determines the

resources that will be loaded into localized forms at run time. You can set the UI culture by

setting the CurrentThread.CurrentUICulture property, as shown in the following example:

 ' VB

' Sets the current UI culture to Thailand

System.Threading.Thread.CurrentThread.CurrentUICulture = New _

 System.Globalization.CultureInfo("th-TH")

 546 CHAPTER 11 Advanced Topics in Windows Forms

// C#

// Sets the current UI culture to Thailand

System.Threading.Thread.CurrentThread.CurrentUICulture = new

 System.Globalization.CultureInfo("th-TH");

 When the current UI culture is set, the application loads resources specifi c to that culture

if they are available. If culture-specifi c resources are unavailable, the UI displays resources for

the default culture.

 Note that the UI culture must be set before a form that displays any localized resources

is loaded. If you want to set the UI culture programmatically, you must set it before the form

has been created—either in the form’s constructor or in the application’s Main method.

 Creating Localized Forms

 Every form exposes a Localizable property that determines if the form is localized. Setting this

property to True enables localization for the form.

 When the Localizable property of a form is set to True, Visual Studio .NET automatically

handles the creation of appropriate resource fi les and manages their retrieval according to

the CurrentUICulture setting.

 At design time you can create localized copies of a form by using the Language property.

The Language property is available only at design time, and it assists in the creation of local-

ized forms. When the Language property is set to (Default), you can edit any of the form’s UI

properties or controls to provide a representation for the default UI culture. To create a local-

ized version of the form, you can set the Language property to any value other than (Default).

Visual Studio will create a resource fi le for the new language and store any values you set for

the UI in that fi le.

 TO CREATE LOCALIZED FORMS

 1. Set the Localizable property of your form to True.

 2. Design the UI of your form and translate any UI elements into the localized languages.

 3. Add UI elements for the default culture. This is the culture that will be used if no other

culture is specifi ed.

 4. Set the Language property of your form to the culture for which you want to create a

localized form.

 5. Add the localized UI content to your form.

 6. Repeat steps 4 and 5 for each localized language.

 7. Build your application.

 When CurrentUICulture is set to a localized culture, your application loads the appropriate

version of the form by reading the corresponding resource fi les. If no resource fi les exist for a

specifi ed culture, the default culture UI is displayed.

 Lesson 2: Implementing Globalization and Localization for a Windows Forms Application CHAPTER 11 547

 Implementing Right-to-Left Display

 Some languages are read from right to left instead of from left to right as in most Latin

alphabet languages. Forms provide a RightToLeft property that enables implementation of a

right-to-left UI.

 The RightToLeft property has three settings: Yes, No, and Inherit, with Inherit being the

default value. When this property is set to Inherit, the value of the parent control determines

the RightToLeft property.

 Setting a control’s RightToLeft property to True does several things, depending on the type

of control. Text alignment is reversed. Thus, any text that is normally left-aligned in the con-

trol becomes right-aligned. Form captions are displayed on the right side of the form. Vertical

scroll bars are displayed on the left side of scrollable controls, and horizontal scroll bars are

initialized with the slider on the right side. CheckBox controls have their CheckAlign property

reversed, tabs on TabControls are reversed, and the alignment of items in list-based controls,

such as list boxes and combo boxes, are reversed.

 The content inside a control with the RightToLeft property set to Yes is unchanged. For

example, consider TextBox with standard left-to-right formatting, as shown in Figure 11-1.

 FIGURE 11-1 TextBox with standard left-to-right formatting

 In Figure 11-2, the same TextBox is displayed with right-to-left formatting.

 FIGURE 11-2 TextBox with right-to-left formatting

 Note that only the alignment of the text has changed, not the order of the characters—the

string is still read from left to right. Thus, if you create localized resources for cultures that

read from right to left, you must format the strings manually.

 Setting a form’s RightToLeft property to Yes causes it and any controls that have a Right-

ToLeft value of Inherit to become right-aligned.

 Creating a Mirrored Form

 Forms made for cultures that read from left to right are commonly laid out to follow the

writing direction. You might want to create a mirror image of your form for cultures that read

from right to left. You can create a mirrored form by using the RightToLeftLayout property

of the form. When the RightToLeftLayout property for a form is set to True, the layout of the

form appears mirrored when the RightToLeft property of the form is set to True.

 548 CHAPTER 11 Advanced Topics in Windows Forms

Quick Check

 1. What is the difference between globalization and localization?

 2. What is the difference between the CurrentCulture and the CurrentUICulture?

Quick Check Answers

 1. Globalization refers to formatting data in formats appropriate for the current

culture setting. Localization refers to retrieving and displaying appropriately

localized data based on the culture.

 2. The CurrentCulture determines how data is formatted as appropriate for the

current culture setting. The CurrentUICulture determines what set of resource

strings should be loaded for display in the UI.

LAB Create Localized Forms

In this lab, you will create localized forms. You will create a form for the default culture that

demonstrates date/time display and currency display, as well as strings for the default culture.

Then you will create a localized version of this form that includes German strings. Finally, you

will create a form that allows you to choose the locale for which you would like to display

your localized form and sets the culture appropriately. A completed solution to this lab can be

found in the fi les installed from the companion CD.

EXERCISE 1 Creating Localized Forms

 1. In Visual Studio, create a new Windows Forms application.

 2. Add a new Windows Form named Form2 to your project.

 3. In the Designer, click the tab for Form2. From the Toolbox, add four Label controls. Set

the Text properties as follows:

 LABEL TEXT PROPERTY VALUE

 Label1 Currency Format

 Label2 (nothing)

 Label3 Current Date and Time

 Label4 (nothing)

 4. Double-click Form2 to open the Form2_Load event handler. Add the following code to

the Form2_Load event handler:

' VB

Label2.Text = Format(500, "Currency")

Label4.Text = Now.ToShortDateString

Quick Check

1. What is the difference between globalization and localization?

2. What is the difference between the CurrentCulture and the CurrentUICulture?

Quick Check Answers

1. Globalization refers to formatting data in formats appropriate for the current

culture setting. Localization refers to retrieving and displaying appropriately

localized data based on the culture.

2. The CurrentCulture determines how data is formatted as appropriate for the

current culture setting. The CurrentUICulture determines what set of resource

strings should be loaded for display in the UI.

Q

 Lesson 2: Implementing Globalization and Localization for a Windows Forms Application CHAPTER 11 549

// C#

label2.Text = (500).ToString("C");

label4.Text = System.DateTime.Now.ToShortDateString();

 5. In the Designer, set the Form2.Localizable property to True and set the Language prop-

erty to German (Germany).

 6. Set the Text properties of Label1 and Label3 as follows:

 LABEL TEXT PROPERTY VALUE

 Label1 Währung-Format

 Label3 Aktuelle Uhrzeit

 7. In the Designer, click the tab for Form1.

 8. From the Toolbox, add three Button controls to the form and set their Text properties

as shown here:

 BUTTON BUTTON TEXT PROPERTY VALUE

 Button1 United States

 Button2 United Kingdom

 Button3 Germany

 9. In the Designer, double-click the Button1 control to open the Button1_Click default

event handler and add the following code:

 ' VB

System.Threading.Thread.CurrentThread.CurrentCulture = New _

 System.Globalization.CultureInfo("en-US")

System.Threading.Thread.CurrentThread.CurrentUICulture = New _

 System.Globalization.CultureInfo("en-US")

Dim aform As New Form2()

aform.Show()

// C#

System.Threading.Thread.CurrentThread.CurrentCulture = new

 System.Globalization.CultureInfo("en-US");

System.Threading.Thread.CurrentThread.CurrentUICulture = new

 System.Globalization.CultureInfo("en-US");

Form2 aform = new Form2();

aform.Show();

 550 CHAPTER 11 Advanced Topics in Windows Forms

 10. In the Designer, double-click the Button2 control to open the Button2_Click default

event handler and add the following code:

 ' VB

System.Threading.Thread.CurrentThread.CurrentCulture = New _

 System.Globalization.CultureInfo("en-GB")

System.Threading.Thread.CurrentThread.CurrentUICulture = New _

 System.Globalization.CultureInfo("en-GB")

Dim aform As New Form2()

aform.Show()

// C#

System.Threading.Thread.CurrentThread.CurrentCulture = new

 System.Globalization.CultureInfo("en-GB");

System.Threading.Thread.CurrentThread.CurrentUICulture = new

 System.Globalization.CultureInfo("en-GB");

Form2 aform = new Form2();

aform.Show();

 11. In the Designer, double-click the Button3 control to open the Button3_Click default

event handler and add the following code:

 ' VB

System.Threading.Thread.CurrentThread.CurrentCulture = New _

 System.Globalization.CultureInfo("de-DE")

System.Threading.Thread.CurrentThread.CurrentUICulture = New _

 System.Globalization.CultureInfo("de-DE")

Dim aform As New Form2()

aform.Show()

// C#

System.Threading.Thread.CurrentThread.CurrentCulture = new

 System.Globalization.CultureInfo("de-DE");

System.Threading.Thread.CurrentThread.CurrentUICulture = new

 System.Globalization.CultureInfo("de-DE");

Form2 aform = new Form2();

aform.Show();

 12. Press F5 to build and run your application. Click each button to see a localized form.

Note that the appropriate format for currency and the date is displayed in the localized

form and that the new strings are loaded for the German form.

 Lesson 2: Implementing Globalization and Localization for a Windows Forms Application CHAPTER 11 551

Lesson Summary
 Culture refers to cultural information about the country or region in which the appli-

cation is deployed, and is represented by a culture code. Globalization refers to the

process of formatting application data in formats appropriate for the locale. Localiza-

tion refers to the process of loading and displaying localized strings in the UI.

 The CurrentCulture setting for the thread determines the culture that is used to format

application data. The CurrentUICulture setting for the thread determines the culture

that is used to load localized resources.

 You can create localized forms by setting the Localizable property of a form to True

and then setting the Language property to a language other than (Default). A new

copy of the form is created for this culture, and localized resources can be added to

this form.

 You can implement right-to-left display in a control by setting the RightToLeft property

to True. You can reverse the control layout of an entire form by setting the RightToLeft-

Layout and RightToLeft properties of a form to True.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following lines of code should be used to format data appropriately for

Germany?

 A. ' VB

System.Threading.Thread.CurrentThread.CurrentUICulture = New _

 System.Globalization.CultureInfo("de-DE")

// C#

System.Threading.Thread.CurrentThread.CurrentUICulture = New

 System.Globalization.CultureInfo("de-DE");

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 552 CHAPTER 11 Advanced Topics in Windows Forms

 B. ' VB

Me.CurrentUICulture = New System.Globalization.CultureInfo("de-DE")

// C#

this.CurrentUICulture = New System.Globalization.CultureInfo("de-DE");

 C. ' VB

System.Threading.Thread.CurrentThread.CurrentCulture = New _

 System.Globalization.CultureInfo("de-DE")

// C#

System.Threading.Thread.CurrentThread.CurrentCulture = New

 System.Globalization.CultureInfo("de-DE");

 D. ' VB

Me.CurrentCulture = New System.Globalization.CultureInfo("de-DE")

// C#

this.CurrentCulture = New System.Globalization.CultureInfo("de-DE");

 2. Given a form that contains a Label named Label1 and a Button named Button1, all with

default settings, which of the following must you do to display the entire form and all

controls in a right-to-left layout with right-to-left text display? (Choose all that apply

and choose the fewest options necessary to accomplish the task.)

 A. Set the Label1.RightToLeft property to True.

 B. Set the Button1.RightToLeft property to True.

 C. Set the Form1.RightToLeft property to True.

 D. Set the Form1.RightToLeftLayout property to True.

 Lesson 3: Implementing MDI Forms CHAPTER 11 553

Lesson 3: Implementing MDI Forms

Multiple document interface (MDI) applications are applications that organize child forms

under a single parent form. Unlike single document interface applications, in which you can

work on only one document at a time, MDI applications allow you to open, organize, and

work with several documents at the same time. In this lesson, you will learn how to create and

implement MDI applications.

After this lesson, you will be able to:

 Create MDI parent forms.

 Create MDI child forms.

 Identify the active MDI child.

 Send data to the active MDI child.

 Arrange MDI child forms.

 Create a window list menu for an MDI application.

Estimated lesson time: 30 minutes

MDI Applications
MDI applications follow a parent form/child form model. An MDI application generally has

a single parent form that contains and organizes multiple child forms (although it is possible

for an application to have multiple parent forms). Microsoft Offi ce Excel is an example of an

MDI application—you can open multiple documents and work with them separately within

the parent form. The parent form organizes and arranges all of the child documents that are

currently open.

Creating an MDI Parent Form

The parent form is the main form of any MDI application. This form contains all child forms

that the user interacts with and handles the layout and organization of the child forms as well.

It is a simple task to create an MDI parent form in Visual Studio.

TO CREATE AN MDI PARENT FORM

 1. Create a new Windows Forms application.

 2. In the Properties window for the startup form, set the IsMDIContainer property to True.

This designates the form as an MDI parent form.

After this lesson, you will be able to:

Create MDI parent forms.

Create MDI child forms.

Identify the active MDI child.

Send data to the active MDI child.

Arrange MDI child forms.

Create a window list menu for an MDI application.

Estimated lesson time: 30 minutes

 554 CHAPTER 11 Advanced Topics in Windows Forms

 Creating MDI Child Forms

 MDI child forms are at the center of user interaction in MDI applications. They present the

data to the user and generally contain individual documents. Child forms are contained

within, and managed by, a parent form. You can create an MDI child form by setting the Mdi-

Parent property of the form.

 TO CREATE AN MDI CHILD FORM

 1. Create an MDI parent form, as described earlier.

 2. In Visual Studio, add a second form to the project and add controls to implement the

UI. This is the child form.

 3. In a method in the parent form, such as a menu item Click event handler, create a new

instance of the child form and set its MdiParent property as shown in the following

example:

 ' VB

' This example takes place in a method in the parent form, and

' assumes a Form called ChildForm

Dim aChildForm As New ChildForm

' Sets the MdiParent property to the parent form

aChildForm.MdiParent = Me

aChildForm.Show

// C#

//This example takes place in a method in the parent form, and

// assumes a Form called ChildForm

ChildForm aChildForm = new ChildForm();

// Sets the MdiParent property to the parent form

aChildForm.MdiParent = this;

aChildForm.Show();

 Identifying the Active Child Form

 At times you will want to identify the active child form in an MDI application. For example,

a common feature of MDI applications is a central menu on the parent form that contains

commands that act upon the child form that has the focus. You can use the ActiveMDIChild

property of the parent form to obtain a reference to the form that was last accessed. The fol-

lowing code example demonstrates how to obtain a reference to the active child form:

 ' VB

' This example demonstrates how to obtain a reference to the active child

' form from a method inside the parent form

Dim aForm As Form

aForm = Me.ActiveMDIChild

 Lesson 3: Implementing MDI Forms CHAPTER 11 555

// C#

// This example demonstrates how to obtain a reference to the active child

// form from a method inside the parent form

Form aForm;

aForm = this.ActiveMDIChild;

 Sending Data to the Active Child Form from the Clipboard

 Once you have identifi ed the active MDI form, you can use the properties of the form to send

data from the Clipboard to an active control on the form. You might use this functionality to

implement a Paste menu item to paste data from the Clipboard into a control. The following

code example demonstrates how to determine if the active control is a text box and paste

text from the Clipboard into the text box:

 ' VB

Dim activeForm As Form = Me.ActiveMDIChild

' Checks to see if an active form exists

If Not activeForm Is Nothing Then

 If activeForm.ActiveControl.GetType Is GetType(TextBox) Then

 Dim aTextBox As TextBox = CType(activeForm.ActiveControl, TextBox)

 ' Creates a new instance of the DataObject interface.

 Dim data As IDataObject = Clipboard.GetDataObject()

 ' Checks to see of the data in the data object is text. If it is,

 ' the text of the active Textbox is set to the text in the clipboard.

 If data.GetDataPresent(DataFormats.Text) Then

 aTextBox.Text = data.GetData(DataFormats.Text).ToString()

 End If

 End If

End If

// C#

Form activeForm = this.ActiveMDIChild;

// Checks to see if an active form exists

if (activeForm != null)

{

 if (activeForm.ActiveControl.GetType() is TextBox)

 {

 TextBox aTextBox = (TextBox)activeForm.ActiveControl;

 // Creates a new instance of the DataObject interface.

 IDataObject data = Clipboard.GetDataObject();

 // Checks to see of the data in the data object is text. If it is,

 // the text of the active Textbox is set to the text in the clipboard.

 if (data.GetDataPresent(DataFormats.Text))

 {

 556 CHAPTER 11 Advanced Topics in Windows Forms

 aTextBox.Text = data.GetData(DataFormats.Text).ToString();

 }

 }

 }

 Arranging MDI Child Forms

 You will commonly want to organize the forms in an MDI application so that they are

ordered. The MDI parent form can arrange the child forms that it contains by calling the Lay-

outMdi method. The LayoutMdi method takes a parameter that is a member of the MdiLayout

enumeration. This method causes the forms contained by the parent form to be arranged

in the manner specifi ed by the parameter. The members of the MdiLayout enumeration are

described in Table 11-4.

 TABLE 11-4 MdiLayout Enumeration Members

 MEMBER DESCRIPTION

 ArrangeIcons All MDI child icons are arranged within the client region of the

MDI parent form.

 Cascade All MDI child Windows are cascaded within the client region of

the MDI parent form.

 TileHorizontal All MDI child Windows are tiled horizontally within the client

region of the MDI parent form.

 TileVertical All MDI child Windows are tiled vertically within the client region

of the MDI parent form.

 The following example demonstrates the LayoutMdi method:

 ' VB

' Causes the contained forms to cascade in the parent form

Me.LayoutMdi(System. Windows.Forms.MdiLayout.Cascade)

// C#

// Causes the contained forms to cascade in the parent form

this.LayoutMdi(System. Windows.Forms.MdiLayout.Cascade);

 Creating a Window List Menu for an MDI Application

 MDI applications will frequently include a menu list of all the Windows currently in an appli-

cation. Users can select the appropriate window from the list and that window is activated

in the MDI parent form. Visual Studio makes implementing a window list menu for an MDI

application a simple task.

 Lesson 3: Implementing MDI Forms CHAPTER 11 557

TO CREATE A WINDOW LIST MENU FOR AN MDI APPLICATION

 1. From the Toolbox, drag a MenuStrip component onto the MDI parent form.

 2. Create a top-level menu item for the window list menu. For example, you might create

a menu item named WindowToolStripMenuItem.

 3. In the Designer, select the MenuStrip component. In the Properties window, set the

MdiWindowListItem property to the menu item you created for the window list.

The menu is automatically populated with entries for the child forms, and the appro-

priate child form is activated when chosen from the menu.

Quick Check

 1. What is an MDI application?

 2. How do you create an MDI parent form?

Quick Check Answers

 1. An MDI application is an application where multiple documents or forms are

hosted inside a single parent form.

 2. You can create an MDI parent form by setting a form’s IsMdiContainer property

to True.

LAB Create a Simple MDI Application

In this lab, you will create a simple MDI application with a parent form that loads and orga-

nizes child forms. Then you will create a window list menu and another menu that allows the

user to arrange the child forms inside the parent forms. A completed solution to this lab can

be found in the fi les installed from the companion CD.

 EXERCISE 1 Creating an MDI Application

 1. In Visual Studio, create a new Windows Forms application.

 2. In the Designer, select the form. In the Properties window, set the IsMdiContainer

property to True.

 3. From the Toolbox, drag a MenuStrip control onto the form.

 4. Add three top-level menu items that read File, Windows, and Arrange.

 5. Under the File menu, add a menu item that reads Add Child Form.

 6. Under the Arrange menu, add three menu items that read Cascade, Horizontal, and

Vertical.

 7. Select MenuStrip1. In the Properties window, set the MdiWindowListItem property to

 WindowsToolStripMenuItem.

Quick Check

1. What is an MDI application?

2. How do you create an MDI parent form?

Quick Check Answers

1. An MDI application is an application where multiple documents or forms are

hosted inside a single parent form.

2. You can create an MDI parent form by setting a form’s IsMdiContainer propertyr

to True.

Q

 558 CHAPTER 11 Advanced Topics in Windows Forms

 8. Add a second form to the project.

 9. In Form1, double-click the Add Child Form menu item to open the default event han-

dler for its Click event.

 10. In the Code Editor, outside of any method, add the following line of code:

 ' VB

Dim Forms As Integer

// C#

int forms;

 11. In the AddChildFormToolStripMenuItem_Click event handler, add the following code:

 ' VB

forms += 1

Dim aform As New Form2

aform.MdiParent = Me

aform.Text = "Form copy " & Forms.ToString

aform.Show()

// C#

forms++;

Form2 aform = new Form2();

aform.MdiParent = this;

aform.Text = "Form copy " + forms.ToString();

aform.Show();

 12. Double-click the Cascade menu item to open the default Click event handler for this

item. Add the following code:

 ' VB

Me.LayoutMdi(MdiLayout.Cascade)

// C#

this.LayoutMdi(MdiLayout.Cascade);

 13. Double-click the Horizontal menu item to open the default Click event handler for this

item. Add the following code:

 ' VB

Me.LayoutMdi(MdiLayout.TileHorizontal)

// C#

this.LayoutMdi(MdiLayout.TileHorizontal);

 Lesson 3: Implementing MDI Forms CHAPTER 11 559

 14. Double-click the Vertical menu item to open the default Click event handler for this

item. Add the following code:

' VB

Me.LayoutMdi(MdiLayout.TileVertical)

// C#

this.LayoutMdi(MdiLayout.TileVertical);

 15. Press F5 to build and run the application.

Add new child forms by selecting the Add Child Form menu item. After you have

added several, arrange them by choosing an option from the Arrange menu. Note that

as new Windows are added, they are automatically added to the Windows menu and

can be brought to the front by selecting the appropriate menu item.

Lesson Summary
 MDI applications follow a parent/child form model. A parent form contains and

organizes multiple child forms. You can create a parent form by setting the

Form.IsMdiContainer property to True. You create MDI child forms by assigning the

MdiParent property to an appropriate MDI parent form.

 The MDI parent form exposes methods and properties that enable the organization of

its contained child forms. A reference to the active child form can be retrieved by using

the ActiveMDIChild property of the parent form. Child forms can be arranged in the

parent form by using the LayoutMdi method of the parent form.

 You can create a menu list of the current MDI child forms by setting the MdiWindow-

ListItem property of a MenuStrip control to a top-level ToolStripMenuItem. At run time

the menu will automatically be populated with the active child forms.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 560 CHAPTER 11 Advanced Topics in Windows Forms

 1. Which of the following is necessary to create an MDI child form and host it in a parent

form? (Choose all that apply.)

 A. Set the IsMdiContainer property of the parent form to True.

 B. Set the ActiveMdiForm property of the parent form to the child form.

 C. Set the MdiParent property of the child form to the parent form.

 D. Set the MdiWindowListItem property of the MenuStrip control on the parent form

to an appropriate ToolStripMenuItem.

 2. Which of the following lines of code can you use to obtain a reference to the active

MDI child form?

 A. ' VB

Me.ActivateMdiChild(activeForm)

// C#

this.ActivateMdiChild(activeForm);

 B. ' VB

Me.AddOwnedForm(activeForm)

// C#

this.AddOwnedForm(activeForm);

 C. ' VB

activeForm.IsMdiChild

// C#

activeForm.IsMdiChild;

 D. ' VB

Me.ActiveMdiChild

// C#

this.ActiveMdiChild;

 Chapter Review CHAPTER 11 561

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 You initiate a drag-and-drop operation by calling the DoDragDrop method on the

source control. The DoDragDrop method takes two parameters: an Object parameter

that contains the data to be dragged and a DragDropEffects enumeration parameter

that represents the effect or effects that are allowed for this operation. The DragEnter

event on the target control is used to set the allowed effects for the target control. The

drag-and-drop operation is completed in the DragDrop event on the target control.

You must write code to complete the appropriate operation in this event.

 Globalization refers to the process of formatting application data in formats appropri-

ate for the locale. Localization refers to the process of loading and displaying localized

strings in the UI. The CurrentCulture setting for the thread determines the culture

that is used to format application data. The CurrentUICulture setting for the thread

determines the culture that is used to load localized resources. You can create local-

ized forms by setting the Localizable property of a form to True and then setting the

Language property to a language other than (Default). You can implement right-to-left

display in a control by setting the RightToLeft property to True. You can reverse the

control layout of an entire form by setting the RightToLeftLayout and RightToLeft prop-

erties of a form to True.

 MDI applications follow a parent form/child form model. A parent form contains

and organizes multiple child forms. You can create a parent form by setting the

Form.IsMdiContainer property to True. You create MDI child forms by assigning the

MdiParent property to an appropriate MDI parent form. You can retrieve a reference

to the active child form by using the ActiveMdiChild property of the parent form. You

can arrange child forms in the parent form by using the LayoutMdi method of the

parent form. You can create a menu list of the current MDI child forms by setting the

MdiWindowListItem property of a MenuStrip control to a top-level ToolStripMenuItem.

 562 CHAPTER 11 Advanced Topics in Windows Forms

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the back of the book.

 Drag-and-drop

 Globalization

 Localization

 MDI child

 MDI parent

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about advanced topics in

 Windows Forms. You can fi nd answers to these questions in the “Answers” section at the end

of this book.

 Case Scenario 1: Still More Document Control

 You have been asked to design a UI for the document control system for help authors at the

Fabrikam, Inc., software company. The help authors use a table of contents for their help

topics that can be represented as a hierarchical set of nodes, with each node representing a

topic. The users at Fabrikam would like to be able to view multiple documents at one time in

this application and, after viewing them, have the option of manually rearranging the table of

contents. They would like the UI to be easy to use and mouse-driven.

 QUESTIONS

 1. What kind of UI layout would allow users to view and organize more than one docu-

ment at the same time?

 2. How can you enable users to rearrange the table of contents in a mouse-driven

application?

Case Scenario 2: Fabrikam Goes International

 Fabrikam, Inc., is rocking the equities world with the introduction of its stock market tracker.

This application will track the stock markets in both the United States and Europe but will be

deployed all around the world. You are in charge of the globalization and localization of this

application.

 KEY REQUIREMENTS

 Data for the European markets must be formatted for European currency and dates.

Data for the U.S. markets must be formatted for U.S. currency and dates.

 Take a Practice Test CHAPTER 11 563

 Data for European and U.S. markets must be visible simultaneously.

 The UI must be in a language appropriate for wherever it is deployed.

QUESTIONS

 1. How can you enable users to view market data simultaneously in the appropriate

formats?

 2. How will you ensure that an appropriate UI is displayed for the deployed locale?

Suggested Practices

To help you successfully master the exam objectives presented in this chapter, complete the

following tasks:

 Practice 1 Create an application that allows users to rearrange the nodes in a

TreeView control but gives them the option of placing moved nodes before, after, or as

a child of the target node.

 Practice 2 Extend the solution in the Lesson 2 lab, “Create Localized Forms,” to

include a language that reads right to left. Create a localized version of the form with

appropriate strings and the layout reversed.

 Practice 3 Use MDI technology to create a Web browser that allows the user to open

multiple Web pages at one time, organize them, and easily switch between one and

another.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 12 565

 C H A P T E R 1 2

 Enhancing Usability

 Usability is a key component of designing useful Windows Forms applications. An appli-

cation that takes the user into account and provides usability features will be adopted

more quickly by the target audience and will improve productivity in the long run. This

chapter discusses implementing accessibility, using user assistance controls, and persisting

application settings.

 Exam objectives in this chapter:

 Implement accessibility features.

 Implement accessibility features within a Windows Forms application.

 Create, confi gure, and customize user assistance controls and components.

 Confi gure the PropertyGrid component.

 Confi gure the ProgressBar control to indicate progress graphically.

 Display status information by using the StatusStrip control.

 Confi gure the ToolTip component.

 Confi gure the ErrorProvider component.

 Confi gure the HelpProvider component.

 Play system sounds and audio fi les by using the SoundPlayer.

 Confi gure the Timer component to raise an event at regular intervals.

 Enable scrolling by using the HScrollBar and VScrollBar controls.

 Persist Windows Forms application settings between sessions.

 Lessons in this chapter:

 Implementing Accessibility 567

 Using User Assistance Controls and Components 573

 566 CHAPTER 12 Enhancing Usability

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft .NET Framework .

 REAL WORLD

Matt Stoecker

 Usable applications are used applications. In my opinion, the key to a successful

application is user adoption. If using your application is diffi cult or a chore for

your target audience, productivity will suffer. But if your target audience is excited

about using your application and your program takes the needs of your target

audience into account, then adoption will increase, training time will decrease, and

greater productivity will be had by all.

REAL WORLD

Matt Stoecker

Usable applications are used applications. In my opinion, the key to a successful

application is user adoption. If using your application is diffi cult or a chore for

your target audience, productivity will suffer. But if your target audience is excited

about using your application and your program takes the needs of your target

audience into account, then adoption will increase, training time will decrease, and

greater productivity will be had by all.

 Lesson 1: Implementing Accessibility CHAPTER 12 567

Lesson 1: Implementing Accessibility

Today’s workforce is a diverse group of people with different talents, skills, and abilities. Many

users of today’s applications have diffi culty using the standard user interface (UI) provided

by most Windows Forms applications. You can increase the user base of your applications

through accessible design: designing your applications to be accessible.

After this lesson, you will be able to:

 Implement accessibility features in a Windows Forms application.

Estimated lesson time: 45 minutes

Creating Accessible Applications
The workforce contains a signifi cant number of people with accessibility requirements, requir-

ing applications that meet the broad demands of today’s business environment.

 Microsoft Windows Vista provides a variety of tools that can seamlessly provide accessibil-

ity to Windows Forms applications and create a more accessible user experience. An example

of an accessibility aid is Sound Sentry, which causes the operating system to emit a visible

cue whenever a sound is played. In addition, you can design accessibility principles into your

application.

Designing for Accessibility

Accessible applications begin in the design phase. When you plan for accessibility in appli-

cation design, you can integrate the principles of accessibility into the UI. Some of these

principles are:

 Flexibility

 Choice of input and output methods

 Consistency

 Compatibility with accessibility aids

An accessible program requires fl exibility. Users must be able to customize the UI to suit

their specifi c needs—for example, the ability to increase font sizes. A user should also have a

choice of input methods, such as keyboard and mouse devices. That is, the application should

provide keyboard access for all important features and mouse access for all main features. A

choice of output methods also renders an application more accessible, and the user should

have the ability to choose among visual cues, sounds, text, and graphics. An accessible appli-

cation should interact within its own operation and with other applications in a consistent

manner, and it should be compatible with existing accessibility aids.

After this lesson, you will be able to:

Implement accessibility features in a Windows Forms application.

Estimated lesson time: 45 minutes

 568 CHAPTER 12 Enhancing Usability

 Support Standard System Settings

 For your application to be accessible, it must support standard system settings for size, color,

font, and input. Adopting this measure will ensure that all of a user’s applications have a

consistent UI that conforms to the system settings. Users with accessibility needs can thus

confi gure all of their applications by confi guring their system settings.

 You can implement standard system settings in your application by using the classes that

represent the UI options used by the system. Table 12-1 lists the classes that expose the sys-

tem settings. These classes are found in the System.Drawing namespace.

 TABLE 12-1 Classes That Expose System Settings

 CLASS DESCRIPTION

 SystemBrushes Exposes Brush objects that can be used to paint in the system colors

 SystemColors Exposes the system colors

 SystemFonts Exposes the fonts used by the system

 SystemIcons Exposes the icons used by the system

 SystemPens Exposes Pen objects that can be used to draw in the system colors

 These classes monitor changes to the system settings and adjust correspondingly. For

example, if you build an application that uses the SystemFonts class to determine all of the

fonts, the fonts in the application will automatically be reset when the system settings are

changed.

 Ensure Compatibility with the High-Contrast Option

 The high-contrast option (which users can set themselves in the Control Panel) sets the

 Windows color scheme to provide the highest possible level of contrast in the UI. This option

is useful for users requiring a high degree of legibility.

 By using only system colors and fonts, you can ensure that your application is compatible

with the high-contrast settings. You should also avoid the use of background images because

these tend to reduce contrast in an application.

 Provide Documented Keyboard Access to All Features

 Your application should provide keyboard access for all features and comprehensive docu-

mentation that describes this access. Shortcut keys for controls and menu items, as well as

setting the Tab order for controls on the UI, allow you to implement keyboard navigation

in your UI. Documentation of these features is likewise important. A user must have some

means of discovering keyboard access to features, whether that is through UI cues or actual

documentation.

 Lesson 1: Implementing Accessibility CHAPTER 12 569

 Provide Notifi cation of the Keyboard Focus Location

 The location of the keyboard focus is used by accessibility aids such as Magnifi er and Nar-

rator. Thus, it is important that the application and the user have a clear understanding of

where the keyboard focus is at all times. For most purposes the .NET Framework provides

this functionality, but when designing your program fl ow, you should incorporate code to set

the focus to the fi rst control on a form when the form is initially displayed and the Tab order

should follow the logical program fl ow.

 Convey No Information by Sound Alone

 Although sound is an important cue for many users, an application should never rely on

conveying information by using sound alone. When using sound to convey information, you

should combine that with a visual notifi cation, such as fl ashing the form or displaying a mes-

sage box.

 Accessibility Properties of Windows Forms Controls

 In addition to properties that affect the visual interface of a control, Windows Forms controls

have fi ve properties related to accessibility that determine how the control interacts with

accessibility aids. These properties are summarized in Table 12-2.

 TABLE 12-2 Accessibility Properties of Windows Controls

 PROPERTY DESCRIPTION

 AccessibleDescription Contains the description that is reported to accessibility

aids.

 AccessibleName Contains the name that is reported to accessibility aids.

 AccessibleRole Contains the role that is reported to accessibility aids. This

value is a member of the AccessibleRole enumeration, and a

variety of accessibility aids use it to determine what kind of

UI element an object is.

 AccessibilityObject Contains an instance of AccessibleObject, which provides

information about the control to usability aids. This prop-

erty is read-only and set by the designer.

 AccessibleDefaultAction-

Description

Contains a description of the default action of a control.

This property cannot be set at design time and must be set

in code.

 These properties provide information to accessibility aids about the role of the control in

the application. Accessibility aids can then present this information to the user or make deci-

sions about how to display the control.

 570 CHAPTER 12 Enhancing Usability

Quick Check

 1. What is the purpose of setting accessibility properties on Windows Forms

controls?

 2. What are the best practices when designing for accessibility?

Quick Check Answers

 1. The accessibility properties provide information about the controls in your appli-

cation to accessibility aids.

 2. When designing for accessibility, you should support standard system settings,

ensure compatibility with high-contrast mode, provide documented keyboard

access for all features, provide notifi cation for keyboard focus location, and con-

vey no information by sound alone.

LAB Create an Accessible User Interface

In this lab, you will create an accessible UI. You will set the Accessibility properties for the con-

trols in your UI, and you will add code to your application to support high-contrast mode.

EXERCISE 1 Setting Accessibility Properties

 1. In Visual Studio, create a new Windows Forms application.

 2. Add the following controls and set the properties as shown here:

CONTROL PROPERTY VALUE

Label1 Text Sign up for our mailing list!

Font.Size 14

BackColor Color.Blue

ForeColor Color.Yellow

Label2 Text Name

TextBox1 TabIndex 1

Label3 Text Email Address

TextBox2 TabIndex 2

Button1 Text Submit

TabIndex 3

Button2 Text Cancel

TabIndex 4

Quick Check

1. What is the purpose of setting accessibility properties on Windows Forms

controls?

2. What are the best practices when designing for accessibility?

Quick Check Answers

1. The accessibility properties provide information about the controls in your appli-

cation to accessibility aids.

2. When designing for accessibility, you should support standard system settings,

ensure compatibility with high-contrast mode, provide documented keyboard

access for all features, provide notifi cation for keyboard focus location, and con-

vey no information by sound alone.

Q

 Lesson 1: Implementing Accessibility CHAPTER 12 571

 3. Set the accessibility properties for the form and controls as shown here:

 OBJECT PROPERTY SETTING

 Form1 AccessibleName Mailing list form

 AccessibleDescription Mailing list form

 Label1 AccessibleName Title label

 AccessibleDescription Sign up for our mailing list!

 Label2 AccessibleName Name label

 AccessibleDescription Name label

 TextBox1 AccessibleName Name text box

 AccessibleDescription Enter your name here

 Label3 AccessibleName E-mail label

 AccessibleDescription E-mail label

 TextBox2 AccessibleName E-mail text box

 AccessibleDescription Enter your e-mail address here

 Button1 AccessibleName Submit button

 AccessibleDescription Press this button to submit the form

 Button2 AccessibleName Cancel button

 AccessibleDescription Press this button to cancel the form

 4. In the Designer, double-click the form to open the Form1_Load event handler. Add the

following code to support high-contrast mode:

 ' VB

If SystemInformation.HighContrast

 Label1.BackColor = SystemColors.Control

 Label1.ForeColor = SystemColors.ControlText

End If

// C#

if (SystemInformation.HighContrast)

{

 label1.BackColor = SystemColors.Control;

 label1.ForeColor = SystemColors.ControlText;

}

 5. Press F5 to run your application. Edit your computer’s display properties and view the

application. Note that the custom colors do not affect high-contrast mode. Also, note

that the AccessibleName and AccessibleDescription properties you defi ned are not vis-

ible. However, they would be useful to users making use of accessibility aids.

 572 CHAPTER 12 Enhancing Usability

Lesson Summary
 Applications should be designed to support the principles of accessibility, including

fl exibility, a choice of input and output methods, consistency, and compatibility with

accessibility aids.

 Applications should support the standard system settings. Using the system classes to

access standard fonts and colors enables your application to work with accessibility

aids that use system settings or the high-contrast setting.

 Accessible applications should be designed to have a variety of inputs, including docu-

mented keyboard access to all important features.

 No information should be conveyed by sound alone.

 Each control exposes several accessibility properties that are used by accessibility aids

to gather and display information. You can set accessibility properties at design time in

the Properties window.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following are principles of accessible design? (Choose all that apply.)

A. Flexibility

B. Consistency

C. Simplicity

D. Compatibility with accessibility aids

 2. Which of the following is not a best practice for implementing accessibility?

A. Provide audio for all important information.

B. Support standard system settings.

C. Ensure compatibility with high-contrast mode.

D. Provide keyboard access to all important functionality.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 573

Lesson 2: Using User Assistance Controls and
Components

The .NET Framework contains many controls and components that you can use to enhance

the usability and usefulness of your application. Controls such as the StatusStrip and Pro-

gressBar allow you to convey information to the user in a variety of ways; the HelpProvider,

ErrorProvider, and ToolTip components allow you to offer user assistance; and other compo-

nents enable you to add a greater depth of functionality to your applications. In this lesson,

you will learn how to enhance your application with user assistance controls and components.

After this lesson, you will be able to:

 Confi gure the PropertyGrid component.

 Confi gure the ProgressBar control to indicate progress graphically.

 Display status information using the StatusStrip control.

 Confi gure the ToolTip component.

 Confi gure the ErrorProvider component.

 Confi gure the HelpProvider component.

 Play system sounds and audio fi les by using the SoundPlayer.

 Confi gure the Timer component to raise an event at regular intervals.

 Enable scrolling by using the HScrollBar and VScrollBar controls.

 Estimated lesson time: 45 minutes

 User Assistance Controls and Components
 The .NET Framework provides controls and components that provide a wide range of func-

tionality when designing your UI. In this lesson, you will learn about a variety of different

controls and components that serve to enhance the user experience.

 The PropertyGrid Control

 The PropertyGrid control is essentially a user-confi gurable version of the Properties window

in Visual Studio. The PropertyGrid control allows the user to set the properties of controls or

components in a graphical interface at run time. Figure 12-1 shows the PropertyGrid control

in a form.

 The PropertyGrid control that is shown in Figure 12-1 is confi gured to access the properties

of Button1. At run time the user can change properties for Button1 by changing the appro-

priate value in the PropertyGrid. Changes to properties in the PropertyGrid are immediately

passed on to the affected control.

After this lesson, you will be able to:

Confi gure the PropertyGrid component.d

Confi gure the ProgressBar control to indicate progress graphically.r

Display status information using the StatusStrip control.

Confi gure the ToolTip component.

Confi gure the ErrorProvider component.

Confi gure the HelpProvider component.r

Play system sounds and audio fi les by using the SoundPlayer.rr

Confi gure the Timer component to raise an event at regular intervals.r

Enable scrolling by using the HScrollBar andr VScrollBar controls.r

Estimated lesson time: 45 minutes

 574 CHAPTER 12 Enhancing Usability

FIGURE 12-1 The PropertyGrid control in a form

 The most important property for confi guring the PropertyGrid control is the Selected-

Object property. This property represents the control or class instance whose properties

are exposed in the PropertyGrid. At run time you can set the SelectedObject property to any

object and allow the user to view its properties and set any read-write properties in the UI.

The following code example demonstrates how to set the SelectedObject property:

 ' VB

PropertyGrid1.SelectedObject = Button1

// C#

propertyGrid1.SelectedObject = button1;

 The PropertySort property determines how the properties displayed in the PropertyGrid

are sorted and can be set to a member of the PropertySort enumeration. Table 12-3 displays

the members of the PropertySort enumeration.

 TABLE 12-3 PropertySort Enumeration Values

 VALUE DESCRIPTION

 Alphabetical Properties are displayed in alphabetical order.

 Categorized Properties are sorted into categories.

 CategorizedAlphabetical Properties are sorted into categories and then alphabetized.

 NoSort Properties are displayed in the order in which they are

returned from the TypeDescriptor.

 You can set the PropertySort property to a member of the PropertySort enumeration at

run time, as shown in the following example:

 ' VB

PropertyGrid1.PropertySort = PropertySort.NoSort

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 575

// C#

propertyGrid1.PropertySort = PropertySort.NoSort;

 The ProgressBar Control

 The ProgressBar control allows you to visually indicate progress for a time-consuming

operation. For example, you might use a ProgressBar control to indicate the progress of a

computationally intensive operation, such as copying fi les or printing documents. The Pro-

gessBar appears as a bar that is gradually fi lled in from left to right as a cue to indicate the

progress of a task. Important properties of the ProgressBar control are shown in Table 12-4.

 TABLE 12-4 Important Properties of the ProgressBar Control

 PROPERTY DESCRIPTION

 Maximum The maximum value of the ProgressBar control. This property

represents the value that the Value property returns when the

ProgressBar is completely full.

 Minimum The minimum value of the ProgressBar control. This property

represents the value that the Value property returns when the

ProgressBar is completely empty.

 Step The amount that is added to the Value property when the

PerformStep method is called.

 Value The current value of the ProgressBar. The Value property will be a

value between the Minimum and Maximum properties.

 You can confi gure the ProgressBar by setting the Minimum and Maximum properties to

represent the range of values that you want the ProgressBar to represent. When the Value

property is the same value as the Minimum property, the ProgressBar control appears com-

pletely empty. Likewise, when the Value property is the same value as the Maximum property,

the ProgressBar control appears completely fi lled. When the value is between the Minimum

and the Maximum properties, the ProgressBar appears partially fi lled, proportional to the

value of the Value property.

 You can increment the ProgressBar by using either the PerformStep method or the Incre-

ment method. The PerformStep method causes the Value property to be advanced by the

value of the Step property. Thus, if the Value property is currently 100 and the Step property

is set to 10, calling the PerformStep method advances the Value property to 110, and the UI

changes correspondingly. You can also use the Increment method to advance the value by a

specifi ed amount, as shown in the following example:

 ' VB

' Adds 5 to the Value

ProgressBar1.Increment(5)

' Adds 10 to the Value

ProgressBar1.Increment(10)

 576 CHAPTER 12 Enhancing Usability

// C#

// Adds 5 to the Value

progressBar1.Increment(5);

// Adds 10 to the Value

progressBar1.Increment(10);

 The following example demonstrates how to use the ProgressBar control to indicate prog-

ress to the user on a time-consuming task:

 ' VB

' Assumes a ProgressBar control named ProgressBar1 and a time-consuming

' method called CopyFiles.

ProgressBar1.Minimum = 0

ProgressBar1.Maximum = 100

ProgressBar1.Step = 1

For i As Integer = 1 to 100

 CopyFiles(i)

 ProgressBar1.PerformStep

Next

// C#

// Assumes a ProgressBar control named ProgressBar1 and a time-consuming

// method called CopyFiles.

progressBar1.Minimum = 0;

progressBar1.Maximum = 100;

progressBar1.Step = 1;

for (int i = 0; i < 101; i++)

{

 CopyFiles(i);

 progressBar1.PerformStep();

}

 Displaying Information with the StatusStrip Control

 The StatusStrip control allows you to display status information about the application. It’s a

subclass of the ToolStrip control and can host ToolStripItems. ToolStrip controls were covered

in detail in Chapter 4, “Tool Strips, Menus, and Events.” This section will focus on using the

StatusStrip control to display information to the user.

 The StatusStrip control is generally docked at the bottom edge of the form, although, like

all ToolStrip controls, it can be docked at any edge or it can even be undocked. You can add

ToolStripItems to the Status strip either in the Designer or in code, as described in Chapter 4.

 The two ToolStripItems that are commonly used to display information to the user in the

StatusStrip control are the ToolStripStatusLabel control and the ToolStripProgressBar control.

The ToolStripStatusLabel is a ToolStripItem control that emulates a Label control but resides

in the StatusStrip control. The most important property of the ToolStripStatusLabel is the Text

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 577

property, which represents the text that is displayed in the ToolStripStatusLabel control. You

can set the text property, as shown in the following example:

 ' VB

ToolStripStatusLabel1.Text = "Meltdown Imminent"

// C#

toolStripStatusLabel1.Text = "Meltdown Imminent";

 The ToolStripProgressBar is a ToolStripItem control that emulates a ProgressBar con-

trol. ToolStripProgressBar exposes Minimum, Maximum, Step, and Value properties like the

ProgressBar control does, and these properties function in the same way as described in the

previous section. Likewise, the ToolStripProgressBar exposes Increment and PerformStep meth-

ods that advance the value in the same way as they do for the ProgressBar control.

 The ToolTip Component

 The ToolTip component allows you to set tooltips for controls. Tooltips appear in pop-up

 Windows when the mouse hovers over the control, and they can provide short pieces of

information about the control to the user. Important properties of the ToolTip component are

described in Table 12-5.

 TABLE 12-5 Important Properties of the ToolTip Component

 PROPERTY DESCRIPTION

 Active Indicates whether the ToolTip component is active

 AutomaticDelay Gets or sets the delay for the ToolTip component

 AutoPopDelay Gets or sets the period of time the tooltip remains visible if the

pointer is stationary on a control with specifi ed ToolTip text

 IsBalloon Gets or sets a value indicating whether the tooltip should use a

balloon window

 ReshowDelay Gets or sets the length of time that must transpire before subse-

quent ToolTip Windows appear as the pointer moves from one

control to another

 ShowAlways Gets or sets a value indicating whether a ToolTip window is dis-

played, even when its parent control is not active

 ToolTipIcon Gets or sets a value that defi nes the type of icon to be displayed

alongside the tooltip text

 ToolTipTitle Gets or sets a title for the ToolTip window

 UseAnimation Gets or sets a value determining whether an animation effect

should be used when displaying the tooltip

 UseFading Gets or sets a value determining whether a fade effect should be

used when displaying the tooltip

 578 CHAPTER 12 Enhancing Usability

 The ToolTip component also exposes two key methods: GetToolTip and SetToolTip. These

methods are used to retrieve and set the tooltip text for a specifi ed control.

 When the ToolTip component is correctly confi gured, tooltips for controls in the form are

shown automatically when the mouse hovers over the control. This requires the following:

 The ToolTip.Active property must be set to True.

 There must be a ToolTip set for that control.

 The control must be active, or the ToolTip.ShowAlways property must be set to True.

 SETTING TOOLTIPS FOR CONTROLS

You can set tooltips for controls at either design time or run time. At design time, the ToolTip

component creates a design-time property for each control in the form. For example, if you

add a ToolTip component named ToolTip1 to your form, each control gains a design-time

property called ToolTip on ToolTip1. This property can be set only at design time and repre-

sents the tooltip text for that control.

 TO SET A TOOLTIP IN THE DESIGNER

 1. In the Designer, select the property for which you want to set a tooltip.

 2. In the Properties window, set the location of the property named Tooltip on X, where X

represents the name of the ToolTip component.

 3. Set this property to your desired tooltip text.

 You can also use the SetToolTip method to set the tooltip text in code.

 TO SET A TOOLTIP IN CODE

 Use the SetToolTip method to set a tooltip for the desired control, as shown in the following

example:

 ' VB

ToolTip1.SetToolTip(Button1, _

 "This button activates the self-destruct sequence")

// C#

toolTip1.SetToolTip(button1,

 "This button activates the self-destruct sequence");

 CHANGING THE DELAY TIMES FOR THE TOOLTIP COMPONENT

The ToolTip component exposes several properties that affect the timing of tooltip display.

The properties that control the timing of the tooltip display are:

 AutoPopDelay This property determines the amount of time, in milliseconds, that a

tooltip is shown.

 InitialDelay This property determines the amount of time, in milliseconds, that the

mouse pointer must hover over a control before the tooltip is shown.

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 579

 ReshowDelay This property determines the amount of time, in milliseconds, that

it takes for subsequent tooltips to appear as the mouse moves from one tooltip-

 associated control to another.

 You can set these controls either in the Properties window at design time or in code, as

shown in the following example:

 ' VB

ToolTip1.AutoPopDelay = 2000

ToolTip1.InitialDelay = 300

ToolTip1.ReshowDelay = 600

// C#

toolTip1.AutoPopDelay = 2000;

toolTip1.InitialDelay = 300;

toolTip1.ReshowDelay = 600;

 You can also control all of these values by setting a single property, AutomaticDelay. When

you set the AutomaticDelay property, it then sets the AutoPopDelay, InitialDelay, and Reshow-

Delay properties. The properties are set as follows: if the AutomaticDelay property is set to N

milliseconds, the InitialDelay property is also set to N milliseconds. The AutoPopDelay prop-

erty is set to 10*N milliseconds, and the ReshowDelay property is set to N/5 milliseconds. You

can set the AutomaticDelay property as shown in the following example:

 ' VB

ToolTip1.AutomaticDelay = 500

// C#

toolTip1.AutomaticDelay = 500;

 Confi guring the ErrorProvider Component

 The ErrorProvider component allows you to give the user feedback when an error condition

results for a control in the form. The ErrorProvider is usually used in conjunction with fi eld

validation to indicate an invalid entry. It displays an error icon next to the control that has the

error condition and displays a tooltip when the mouse pointer hovers over the control.

 The key method of the ErrorProvider component is the SetError method. You can use the

SetError method to set an error on a control in the form. The following example demonstrates

how to set an error with the SetError method:

 ' VB

' This example demonstrates how to set an error on a control named Textbox1

ErrorProvider1.SetError(TextBox1, "Value must be numeric")

// C#

// This example demonstrates how to set an error on a control named Textbox1

errorProvider1.SetError(TextBox1, "Value must be numeric");

 580 CHAPTER 12 Enhancing Usability

 Once an error is set on the control, the icon represented by the Icon property fl ashes next

to the control for which the error is set, and the text set in the method is displayed when the

mouse hovers over the control. When the error condition is corrected, you can clear the error

by calling the SetError method and setting the text to an empty string, as follows:

 ' VB

ErrorProvider1.SetError(TextBox1, "")

// C#

errorProvider1.SetError(TextBox1, "");

 This causes the error icon to cease fl ashing.

 The following procedure describes how to create a validation handler that uses the Error-

Provider component.

 TO VALIDATE USER INPUT WITH THE ERRORPROVIDER COMPONENT

 1. Add controls, including at least one that can receive text input, to your form. Note that

for validation to function, you must have more than one control on the form.

 2. Ensure that the CausesValidation property of each control on the form is set to True.

 3. Add an ErrorProvider component to the form.

 4. Select the text entry control and add code to its Validating event handler. Examine

the contents of the text entry control and determine if they are valid. If the contents

are not valid, call the ErrorProvider.SetError method to set the error on the control.

The Validating event will fi re as the user navigates away from the text entry control.

The following example demonstrates how to validate if the text in a TextBox control is

numeric:

 ' VB

Private Sub TextBox1_Validating(ByVal Sender As Object, _

 ByVal e As System.ComponentModel.CancelEventArgs) _

 Handles TextBox1.Validating

 ' Check to see if the TextBox contains a numeric value

 If Not IsNumeric(TextBox1.Text) Then

 ErrorProvider1.SetError(TextBox1, "This value must be numeric")

 Else

 ' Set the error to an empty string to clear the error

 ErrorProvider1.SetError(TextBox1, "")

 End If

End Sub

// C#

protected void textBox1_Validating (object sender, System.ComponentModel.

CancelEventArgs e)

{

 try

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 581

 {

 // Check to see if the TextBox contains a numeric value by trying

 // to parse the string

 double x = double.Parse(textBox1.Text);

 errorProvider1.SetError(textBox1, "");

 }

 catch (System.FormatException ex)

 {

 // If the text box does not contain a numeric value,

 // set the error on the TextBox

 errorProvider1.SetError(textBox1, "The value must be numeric");

 }

}

 You can use the ErrorProvider to display errors in a dataset or any other data source. By

binding the ErrorProvider component to the data source, you can display an error icon next

to any control that is bound to the same data source. The following procedure demonstrates

how to set an error in a dataset.

 TO VIEW ERRORS IN A DATASET WITH THE ERRORPROVIDER COMPONENT

 1. Bind the ErrorProvider component to a table in the dataset, as shown here:

 ' VB

' Assumes existence of DataSet1 with a Customers table

ErrorProvider1.DataSource = DataSet1

ErrorProvider1.DataMember = "Customers"

// C#

// Assumes existence of DataSet1 with a Customers table

errorProvider1.DataSource = DataSet1;

errorProvider1.DataMember = "Customers";

 2. Set the ContainerControl property of the ErrorProvider component:

 ' VB

ErrorProvider1.ContainerControl = Me

// C#

errorProvider1.ContainerControl = this;

 3. Use the SetColumnError method to set the error on a column that contains the error

and advance the binding context to the row that contains the error, as shown here:

 ' VB

DataTable1.Rows(5).SetColumnError("Name", "The data is incorrect")

Me.BindingContext(DataTable1).Position = 5

 582 CHAPTER 12 Enhancing Usability

// C#

DataTable1.Rows[5].SetColumnError("Name", "The data is incorrect");

this.BindingContext[DataTable1].Position = 5;

 Confi guring the HelpProvider Component

 An important part of any application is clear and accurate documentation. The HelpProvider

component allows you to make help available for your application. The HelpProvider compo-

nent enables you to associate HTML Help1.x fi les with your application (.chm or .htm fi les) and

display the appropriate help topic when the F1 button is pressed.

 THE HELPNAMESPACE PROPERTY

The key property of the HelpProvider component is the HelpNamespace property. This prop-

erty allows you to specify a .chm or .htm fi le that contains the help for the application. The

HelpNamespace property is generally set at design time in the Properties window, but it can

also be set in code at run time, as shown below:

 ' VB

HelpProvider1.HelpNamespace = "C:\myHelpFiles\appHelp.chm"

// C#

helpProvider1.HelpNamespace = "C:\\myHelpFiles\\appHelp.chm";

 METHODS OF THE HELPPROVIDER COMPONENT

The HelpProvider component manages access to help in the HelpNamespace location by set-

ting properties for each control in the form. Table 12-6 describes the important methods of

the HelpProvider component.

 TABLE 12-6 Important Methods of the HelpProvider Component

 METHOD DESCRIPTION

 SetHelpKeyword Sets the keyword for a control, such as an index keyword or

a topic keyword. This keyword is passed to the help fi le when

help is shown. The HelpNavigator setting determines how the

keyword is used.

 SetHelpNavigator Sets the HelpNavigator for a control. This property determines

how the help fi le is displayed.

 SetHelpString Sets the help string for a control. If the HelpNamespace property

is not set to a fi le, the help string is displayed in a pop-up box

over the control when the F1 button is pressed.

SetShowHelp Sets whether help is shown for a particular control.

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 583

 SETTING THE HELPNAVIGATOR

The SetHelpNavigator method allows you to determine how help is displayed for a particular

control. The SetHelpNavigator method requires two parameters: a control that the HelpNavi-

gator will be set for and a member of the HelpNavigator enumeration. The following example

demonstrates how to set the HelpNavigator for a Button control named Button1:

 ' VB

HelpProvider1.SetHelpNavigator(Button1, HelpNavigator.Find)

// C#

helpProvider1.SetHelpNavigator(Button1, HelpNavigator.Find);

 Table 12-7 describes the members of the HelpNavigator enumeration.

 TABLE 12-7 Members of the HelpNavigator Enumeration

 MEMBER DESCRIPTION

 AssociateIndex The help fi le opens to the index entry for the fi rst letter of the specifi ed

keyword.

 Find The help fi le opens to the search page.

 Index The help fi le opens to the index.

 KeywordIndex The help fi le opens to the topic with the specifi ed keyword if one exists;

otherwise, the index entry closest to the specifi ed keyword is displayed.

 TableOfContents The help fi le opens to the table of contents.

 Topic The help fi le opens to a specifi ed topic if the topic exists.

 TopicId The help fi le opens to a topic indicated by a numeric topic identifi er.

 CONFIGURING HELP FOR A CONTROL

The following example demonstrates how to use the HelpProvider component to confi gure

help for a control named Button1:

 ' VB

' This example assumes that a help file has been compiled for your

' application and the path to that file has been set in the HelpNamespace property.

' Sets help for Button1 to be shown.

HelpProvider1.SetShowHelp(Button1, True)

' Sets the help keyword for the control

HelpProvider1.SetHelpKeyword(Button1, "Button1")

' Sets the HelpNavigator for the control

HelpProvider1.SetHelpNavigator(Button1, HelpNavigator.KeywordIndex)

 584 CHAPTER 12 Enhancing Usability

// C#

// This example assumes that a help file has been compiled for your

// application and the path to that file has been set in the HelpNamespace property.

// Sets help for Button1 to be shown.

helpProvider1.SetShowHelp(button1, true);

// Sets the help keyword for the control

helpProvider1.SetHelpKeyword(button1, "button1");

// Sets the HelpNavigator for the control

helpProvider1.SetHelpNavigator(button1, HelpNavigator.KeywordIndex);

 Playing Sound Files and System Sounds

 You can use sound fi les and system sounds to communicate information or alerts to your

users. The SoundPlayer class in the System.Media namespace encapsulates all of the function-

ality required to play sound fi les.

 TO PLAY A SOUND FILE WITH THE SOUNDPLAYER CLASS

 1. Create an instance of the SoundPlayer class that specifi es the sound fi le to be played, as

shown here:

 ' VB

Dim aPlayer As New System.Media.SoundPlayer("C:\mySoundFiles\Boom.wav")

// C#

System.Media.SoundPlayer aPlayer = new

 System.Media.SoundPlayer(@"C:\mySoundFiles\Boom.wav");

 2. Play the sound by calling the Play method, as shown here:

 ' VB

aPlayer.Play

// C#

aPlayer.Play();

 You can play system sounds by accessing the System.Media.SystemSounds class. This class

contains members that represent each of the system sounds, and they can be played by call-

ing the Play method.

 TO PLAY A SYSTEM SOUND

 Call the Play method of the appropriate system sound, as shown here:

 ' VB

System.Media.SystemSounds.Beep.Play()

// C#

System.Media.SystemSounds.Beep.Play();

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 585

 Using the Timer Component to Raise an Event at Regular Intervals

 The Timer component allows you to raise the Timer.Tick event at regular intervals. By writing

code to handle this event, you can schedule your application to call methods or take other

actions at predefi ned intervals. For example, you might want to display the current time in a

Label control and update it every minute.

 The key property of the Timer component is the Interval property. The Interval property

specifi es the number of milliseconds between intervals of the Tick event. For example, if the

Interval property is set to 2000, the Tick event is raised every two seconds. The Interval prop-

erty can be set in the Properties window or in code, as shown in the following example:

 ' VB

Timer1.Interval = 2000

// C#

timer1.Interval = 2000;

 Another important property of the Timer component is the Enabled property. If the

Enabled property is set to False, the Timer.Tick event is not raised. When the Enabled prop-

erty is set to True, the Timer.Tick event is raised at a frequency determined by the Interval

property.

 The Timer.Start and Timer.Stop methods allow you to start and stop the Timer, respectively.

These methods are simply shorthand ways of setting the Enabled property. Calling the Timer.

Start method sets the Timer.Enabled property to True and commences regular fi ring of the

Tick event. Calling the Timer.Stop method sets the Timer.Enabled property to False and ceases

fi ring of the Tick event.

 The following example demonstrates a handler for the Timer.Tick event. This sample code

updates the text in Label1 with the current time every time the Tick event is raised.

 ' VB

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As _

 System.EventArgs) Handles Timer1.Tick

 Label1.Text = Now.ToLongTimeString

End Sub

// C#

private void timer1_Tick(object sender, EventArgs e)

{

 label1.Text = DateTime.Now.ToLongTimeString;

}

 Using the HScrollBar and VScrollBar Controls

 The HScrollBar and VScrollBar controls are controls that are designed to provide easy naviga-

tion through a long list of items or values by scrolling within an application or control. The

HScrollBar control represents a horizontal scroll bar and the VScrollBar control represents

 586 CHAPTER 12 Enhancing Usability

a vertical scroll bar, but otherwise the two controls function identically. The ScrollBar con-

trols consist of two scrollbar buttons at either end of the control, a slider, and a slider track

in which the slider can move. The user can position the slider and thereby change the Value

property.

 The ScrollBar controls are distinct from the scrollbars that appear in forms or scrollable

controls—those scroll bars are integral parts of the control or form that they function with.

The ScrollBar controls are designed for independent operation or operation with controls that

do not normally have scrollbars, such as the PictureBox control. The important properties of

the ScrollBar controls are shown in Table 12-8.

 TABLE 12-8 Important Properties of the Scrollbar Controls

 PROPERTY DESCRIPTION

 LargeChange The amount the Value property changes when the user presses the

PageUp or PageDown keys or clicks in the ScrollBar track.

 Maximum The maximum value for the scrollbar. In HScrollBar, the Value property

is equal to the Maximum property when the scrollbar slider is all the

way to the right in the scroll track. In VScrollBar, the Value property is

equal to the Maximum property when the scrollbar slider is all the way

at the bottom of the scroll track.

 Minimum The minimum value for the scrollbar. In HScrollBar, the Value property is

equal to the Minimum property when the scrollbar slider is all the way

to the left in the scroll track. In VScrollBar, the Value property is equal to

the Minimum property when the scrollbar slider is all the way at the top

of the scroll track.

 SmallChange The amount the Value property changes when the user presses one of

the arrow keys or clicks a scrollbar button.

 Value The current value of the Scrollbar control. This property refl ects the cur-

rent location of the scrollbar slider.

 Persisting Application Settings Between Sessions

 The .NET Framework allows you to persist property values between user sessions in the appli-

cation settings and access and change those settings at run time. You might, for example,

create settings that determine the color scheme of your application or settings that “remem-

ber” user names or data connection strings.

 Persisting settings is a two-step process. First, you create a setting and give it a unique

name and a value. The value can be any object and should be appropriate for the property

that you want to persist. Second, the property that you want to persist is bound to the set-

ting. You can access, change, and save the settings at run time if you need to.

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 587

 CREATING SETTINGS AT DESIGN TIME

Visual Studio provides UI tools that allow you to create settings quickly and easily. You can

use the Settings editor (shown in Figure 12-2) to create and edit new settings.

 FIGURE 12-2 The Settings editor for creating and editing new settings

 The Settings editor has four properties that you must set when you create a new setting.

The Name must be unique in the application. The Type property represents the type of set-

ting, which should be appropriate for the property you want to bind it to. The Scope property

must be set to either Application or User. Settings that are scoped for the application are

read-only at run time and the user cannot change them. Settings that are scoped for the user

are read-write at run time and the user can change and save them. Finally, you must provide a

value for the setting. This value must be of the type indicated by the Type property.

 TO CREATE A SETTING AT DESIGN TIME

 1. In Solution Explorer, right-click the project and choose Properties.

 2. In the main window, click the Settings tab.

 3. Set the Name, Type, Scope, and Value properties for the new setting.

 4. If your application has not yet been saved, choose Save All from the File menu to save

your application.

 Once you have created a setting, you can bind it to a property in the Properties window.

 TO BIND A SETTING TO A PROPERTY AT DESIGN TIME

 1. In the Properties window for a control, expand (ApplicationSettings), and then click the

button next to (PropertyBinding) to open the Application Settings window.

 2. Locate the property that you want to bind to a setting. Select the appropriate setting

from the drop-down box to the right of the property name. If no appropriate setting

exists, you can create a new setting by clicking the (New…) link in the bottom of the

drop-down box.

 588 CHAPTER 12 Enhancing Usability

ACCESSING SETTINGS AT RUN TIME

You can read the values of your settings at run time and change and save the values of user-

scoped settings. In Visual Basic, settings are exposed through the MySettings object and

changes made to any user-scoped settings values are automatically saved. In C#, you can

access settings through the Properties.Settings.Default object but any changes made must be

saved manually. At design time, individual settings appear in IntelliSense as properties of the

Settings object and can be treated in code as such. The following example demonstrates how

to change the value of a user-scoped string setting named TitleSetting:

' VB

My.Settings.TitleSetting = "This is the new title"

// C#

Properties.Settings.Default.TitleSetting = "This is the new Title";

Properties.Settings.Default.Save();

Quick Check

 1. What is the purpose of the Timer component?

 2. What is the purpose of the ErrorProvider component?

Quick Check Answers

 1. The Timer component is used to execute code at regular intervals.

 2. The error provider is used to provide a visual cue to users when a validation error

occurs.

LAB Practice with User Assistance Controls

In this lab, you will create a small application that uses a timer to display and update the cur-

rent time in a label and you will use the functionality and many of the controls that have been

discussed in this lesson. Although the result of the lesson is somewhat contrived, it will allow

you to practice with the different aspects of this lesson.

EXERCISE 1 Creating a Simple Digital Clock

 1. In Visual Studio, create a new Windows Forms application.

 2. From the Toolbox, drag a Label control and a Timer component onto the form.

 3. Select the Timer component. In the Properties window, set the Interval property to

1000 and the Enabled property to True.

 4. In the Designer, double-click the Timer component to open the default event handler

for the Timer1.Tick event. Add the following code to this method:

 ' VB

Label1.Text = Now.ToLongTimeString

Quick Check

1. What is the purpose of the Timer component?r

2. What is the purpose of the ErrorProvider component?r

Quick Check Answers

1. The Timer component is used to execute code at regular intervals.r

2. The error provider is used to provide a visual cue to users when a validation error

occurs.

Q

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 589

// C#

label1.Text = System.DateTime.Now.ToLongTimeString();

 5. Press F5 to compile and run your application. Note that the current time is updated in

the Label control every second.

 EXERCISE 2 Using the PropertyGrid

 1. From the Toolbox, drag a PropertyGrid control onto the form that you created in the

last exercise.

 2. In the Properties window, set the Dock property of the PropertyGrid control to Right.

 3. In the Properties window, set the SelectedObject property of the PropertyGrid control

to Timer1.

 4. Press F5 to compile and run the application. You can now set the properties of the

Timer at run time through the PropertyGrid control.

 EXERCISE 3 Providing Tooltips for Your Application

 1. From the Toolbox, drag a ToolTip component onto the form you created in Exercise 1,

“Creating a Simple Digital Clock.”

 2. Select Label1. In the Properties window, set the Tooltip On ToolTip1 property to This

control shows the current time.

 3. Press F5 to compile and run your application. Note that your label now has a tooltip

associated with it.

 EXERCISE 4 Using Settings

 1. In Solution Explorer, for the application you started in Exercise 1, right-click the project

and choose Properties.

 2. In the Properties pane, click the Settings tab.

 3. In the Settings window, create a setting with the following properties:

 PROPERTY VALUE

 Name IntervalSetting

 Type Integer

 Scope User

 Value 1000

 4. In the Designer, select Timer1. In the Properties window, expand (Application Settings),

and then click the button next to (PropertyBinding) to open the Application Settings

window.

 5. In the Application Settings window, bind the Interval property to the IntervalSetting

setting.

 590 CHAPTER 12 Enhancing Usability

 6. In the Designer, select the form. In the Properties window, click the Events toolbar but-

ton to list the events for the form. Double-click the cell next to the FormClosing event

to open the default event handler for the Form1.FormClosing event. Add the following

code to this event handler:

 ' VB

My.Settings.IntervalSetting = Timer1.Interval

// C#

Properties.Settings.Default.IntervalSetting = timer1.Interval;

Properties.Settings.Default.Save();

 7. From the File menu, choose Save All.

 8. Press F5 to compile and run your application. Any changes that you make to the inter-

val property will be persisted between sessions.

 Lesson Summary
 The PropertyGrid control allows you to set properties for controls in your application

through a grid-style UI. The SelectedObject property indicates the object for which the

properties can be set.

 The ProgressBar control allows you to inform the user about progress for time-

consuming processes like fi le downloads. The Minimum and Maximum properties

represent the minimum and maximum values for the ProgressBar, and the Value con-

trol represents the current value.

 The StatusStrip control is a ToolStrip control that is designed to display information

about the status of the application. ToolStripStatusLabel and ToolStripProgressBar are

ToolStripItem controls that are designed to work with the StatusStrip.

 The ToolTip component allows you to display tooltips for the controls on your form.

 The ErrorProvider component allows you to display errors in user input in your applica-

tion. You can validate user input by adding code to the Validating event handler. If the

user input is not valid, use the SetError method of the error provider to set the error.

 The HelpProvider component enables you to integrate HTML Help 1.x fi les (.chm and

.htm) with your application. The HelpNamespace property represents the location of

the help fi le that is associated with the HelpProvider component. You can call Set-

ShowHelp to set F1 help for a control and SetHelpKeyword to set the keyword that will

be passed to the help fi le.

 The SoundPlayer component allows you to play sound fi les. You can use the System-

Sounds class to play system sounds at run time.

 The Timer component allows you to execute actions at regular intervals. You can

handle the Timer.Tick event to defi ne code that is executed at regular intervals. The

Interval property determines how frequently the Timer.Tick event is raised.

 Lesson 2: Using User Assistance Controls and Components CHAPTER 12 591

 The HScrollBar and VScrollBar controls are designed to provide a UI that allows rapid

access to a large range of values or a long list of options. The Minimum and Maximum

properties represent the minimum and maximum values for the control; the Value

property represents the current value and is tied to the current position of the slider.

 Application settings allow you to persist settings between application sessions.

Application-scoped settings are read-only at run time and user-scoped settings are

read-write at run time. You can access settings by means of the My.Settings object in

Visual Basic or the Properties.Settings.Default object in C#.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following code examples will advance the value of a progress bar named

ProgressBar1 by 10? (Choose all that apply.)

 A. ' VB

ProgressBar1.Step = 10

ProgressBar1.PerformStep

// C#

progressBar1.Step = 10;

progressBar1.PerformStep();

 B. ' VB

ProgressBar1.Step = 10

// C#

progressBar1.Step = 10;

 C. ' VB

ProgressBar1.Increment(10)

// C#

progressBar1.Increment(10);

 D. ' VB

ProgressBar1.Step = 10

ProgressBar1.Increment

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 592 CHAPTER 12 Enhancing Usability

// C#

progressBar1.Step = 10;

progressBar1.Increment();

 2. Given a TextBox control, an ErrorProvider component, and a validation routine in the

Validating event handler for that text box, which of the following is required to com-

plete the validation routine and display an error icon when the user input is not valid?

(Choose all that apply.)

 A. Set the CausesValidation property for other controls on the form to True.

 B. Call the ErrorProvider.SetError method and set the error to an informative string

when user input is not valid.

 C. Call the ErrorProvider.SetError method and set the error to an empty value when

user input is valid.

 D. Call the ErrorProvider.Validate method to validate the text box input.

 3. Given a TextBox control named TextBox1 and a HelpProvider control named HelpPro-

vider1 with the HelpNamespace property set to an appropriate help fi le, which of the

following code samples will cause the search page for help to be displayed when the

F1 key is pressed and TextBox1 has the focus?

 A. ' VB

HelpProvider1.SetShowHelp(TextBox1, True)

// C#

helpProvider1.SetShowHelp(textBox1, true);

 B. ' VB

HelpProvider1.SetShowHelp(TextBox1, True)

HelpProvider1.SetHelpNavigator(TextBox1, HelpNavigator.Find)

// C#

helpProvider1.SetShowHelp(textBox1, true);

helpProvider1.SetHelpNavigator(textBox1, HelpNavigator.Find);

 C. ' VB

HelpProvider1.SetShowHelp(TextBox1, True)

HelpProvider1.SetHelpNavigator(TextBox1, HelpNavigator.Topic)

// C#

helpProvider1.SetShowHelp(textBox1, true);

helpProvider1.SetHelpNavigator(textBox1, HelpNavigator.Topic);

 D. ' VB

HelpProvider1.SetShowHelp(TextBox1, True)

HelpProvider1.SetHelpString(TextBox1, "Search")

// C#

helpProvider1.SetShowHelp(textBox1, true);

helpProvider1.SetHelpString(textBox1, "Search");

 Chapter Review CHAPTER 12 593

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 Applications should be designed to support the principles of accessibility. Applica-

tions should support the standard system settings, they should be designed to have a

variety of inputs, and they should not convey information solely by sound. Each control

exposes several accessibility properties that accessibility aids use to gather and display

information.

 The PropertyGrid control allows users to set properties for controls in your application

through a grid-style UI. The ProgressBar control allows you to inform the user about

progress for time-consuming processes. The StatusStrip control is a ToolStrip control

that is designed to display information about the status of the application.

 The ToolTip, ErrorProvider, and HelpProvider components provide additional design-

time properties for controls on the form. The ToolTip component allows you to display

tooltips for the controls on your form. The ErrorProvider component allows you to

display errors in user input in your application. The HelpProvider component enables

you to integrate HTML Help 1.x fi les with your application.

 The SoundPlayer component allows you to play sound fi les. The Timer component

allows you to execute actions at regular intervals. The HScrollBar and VScrollBar con-

trols are designed to provide a UI that allows rapid access to a large range of values or

a long list of options.

 Application settings allow you to persist settings between application sessions. You can

access settings by means of the My.Settings object in Visual Basic or the Properties.Set-

tings.Default object in C#.

 Key Terms
 accessible design

 application scope

 setting
 user scope

 594 CHAPTER 12 Enhancing Usability

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about enhancing usability.

You can fi nd answers to these questions in the “Answers” section at the end of this book.

 Case Scenario 1: Putting the Final Touches on the Document

Management System

 Your company has created a document management application for Fabrikam, Inc., and you

are in charge of putting the fi nal touches on it. This application allows the user to browse

documents from a very long list of documents stored on a central server, download and view

those documents, and make any necessary changes. Most of the functionality is complete.

You have been asked to make the UI friendlier. The following are your key requirements.

 The application should provide a way to navigate the list of documents quickly and

easily in the UI.

 The application should provide feedback for the download status and give the user a

cue when the download is complete.

 Help should be readily available to the user, and input values should be validated and

provide immediate feedback if they are not valid.

 QUESTION

 What strategies can you use to implement the key requirements?

 Case Scenario 2: Making the Document Management Application

Accessible

 The document management application is almost complete. You are now in charge of making

the application accessible for all users. You have the following specifi c requirements:

 Application must support high-contrast mode.

 Application must be accessible to users who are hard of hearing.

 Application must be accessible to users who are unable to use a mouse.

 Application must work well with all standard usability aids.

 QUESTION

 What strategies can you use to implement these requirements in this application?

 Suggested Practices

 Practice 1 Create an application that allows you to browse sound fi les on your com-

puter and play them with the SoundPlayer component.

 Practice 2 Extend the application created in the lab entitled “Practice with User

Assistance Controls,” in Lesson 2, “Using User Assistance Controls and Components, ”

to include F1 help and validation for property values.

 Take a Practice Test CHAPTER 12 595

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see “How to Use the Practice Tests”

in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see “How to Use the Practice Tests”

in this book’s Introduction.

 CHAPTER 13 597

 C H A P T E R 1 3

 Asynchronous Programming
Techniques

 You will often have to create applications that perform time-consuming operations, such

as fi le downloads or complex calculations. These operations can cause the user inter-

face (UI) to lock up and become unresponsive, leading to an unpleasant user experience. By

 using asynchronous programming techniques, you can enable time-consuming operations

to be run asynchronously, thus keeping the UI responsive while the operations are run.

 Exam objectives in this chapter:

 Run a background process by using the BackgroundWorker component.

 Announce the completion of a background process by using the BackgroundWorker

component.

 Cancel a background process by using the BackgroundWorker component.

 Report the progress of a background process by using the BackgroundWorker

component.

 Request the status of a background process by using the BackgroundWorker

component.

 Implement advanced asynchronous techniques.

 Create an asynchronous method.

 Create a new process thread.

 Lessons in this chapter:

 Managing a Background Process with the BackgroundWorker

Component 599

 Implementing Asynchronous Methods 611

 598 CHAPTER 13 Asynchronous Programming Techniques

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book.

 Microsoft Visual Studio installed on your computer.

 An understanding of Visual Basic or C# syntax and familiarity with the .NET Framework.

REAL WORLD

Matt Stoecker

 Even with ever-increasing processor speeds, time-consuming tasks are still a cen-

tral part of many of the applications I write. Before Visual Studio 2005, creating

asynchronous operations was diffi cult and prolonged. With the introduction of the

BackgroundWorker component, creating simple asynchronous operations is easily

accessible to programmers of all levels. For more advanced operations, delegates

and threads provide the level of functionality needed.

REAL WORLD

Matt Stoecker

Even with ever-increasing processor speeds, time-consuming tasks are still a cen-

tral part of many of the applications I write. Before Visual Studio 2005, creating

asynchronous operations was diffi cult and prolonged. With the introduction of the

BackgroundWorker component, creating simple asynchronous operations is easilyr

accessible to programmers of all levels. For more advanced operations, delegates

and threads provide the level of functionality needed.

 Lesson 1: Managing a Background Process with the BackgroundWorker Component CHAPTER 13 599

Lesson 1: Managing a Background Process with the
BackgroundWorker Component

You are frequently required to perform tasks that consume fairly large amounts of time, such

as fi le downloads. The BackgroundWorker component provides an easy way to run time-

consuming processes in the background, thereby leaving the UI responsive and available for

user input.

After this lesson, you will be able to:

 Run a background process by using the BackgroundWorker component.

 Announce the completion of a background process by using the Background-

Worker component.

 Cancel a background process by using the BackgroundWorker component.

 Report the progress of a background process by using the BackgroundWorker

component.

 Request the status of a background process by using the BackgroundWorker

component.

Estimated lesson time: 45 minutes

The BackgroundWorker component is designed to allow you to execute time-consuming

operations on a separate, dedicated thread. This allows you to run operations that take a lot

of time, such as fi le downloads and database transactions, asynchronously and allow the UI to

remain responsive.

The key method of the BackgroundWorker component is the RunWorkerAsync method.

When this method is called, the BackgroundWorker component raises the DoWork event. The

code in the DoWork event handler is executed on a separate, dedicated thread, allowing the

UI to remain responsive. Important members of the BackgroundWorker component are shown

in Table 13-1.

 TABLE 13-1 Important Members of the BackgroundWorker Component

 MEMBER DESCRIPTION

 CancellationPending Property. Indicates whether the application has requested

cancellation of a background operation.

 IsBusy Property. Indicates whether the BackgroundWorker is cur-

rently running an asynchronous operation.

 WorkerReportsProgress Property. Indicates whether the BackgroundWorker compo-

nent can report progress updates.

After this lesson, you will be able to:

Run a background process by using the BackgroundWorker component.r

Announce the completion of a background process by using the Background-

Worker component.r

Cancel a background process by using the BackgroundWorker component.r

Report the progress of a background process by using the BackgroundWorker

component.

Request the status of a background process by using the BackgroundWorker

component.

Estimated lesson time: 45 minutes

 600 CHAPTER 13 Asynchronous Programming Techniques

 MEMBER DESCRIPTION

 WorkerSupportsCancellation Property. Indicates whether the BackgroundWorker compo-

nent supports asynchronous cancellation.

 CancelAsync Method. Requests cancellation of a pending background

operation.

 ReportProgress Method. Raises the ProgressChanged event.

 RunWorkerAsync Method. Starts the execution of a background operation by

raising the DoWork event.

 DoWork Event. Occurs when the RunWorkerAsync method is called.

Code in the DoWork event handler is run on a separate and

dedicated thread.

 ProgressChanged Event. Occurs when ReportProgress is called.

 RunWorkerCompleted Event. Occurs when the background operation has been

completed or cancelled or has raised an exception.

 Running a Background Process
 The RunWorkerAsync method of the BackgroundWorker component starts the execution of

the background process by raising the DoWork event. The code in the DoWork event handler

is executed on a separate thread. The following procedure explains how to create a back-

ground process.

 TO CREATE A BACKGROUND PROCESS WITH THE BACKGROUNDWORKER

COMPONENT

 1. From the Toolbox, drag a BackgroundWorker component onto the form.

 2. In the component tray, double-click the BackgroundWorker component to create the

default event handler for the DoWork event. Add the code that you want to run on the

separate thread. An example is shown below.

 ' VB

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) _

 Handles BackgroundWorker1.DoWork

 ' Insert time-consuming operation here

End Sub

// C#

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

{

 // Insert time-consuming operation here

}

 Lesson 1: Managing a Background Process with the BackgroundWorker Component CHAPTER 13 601

 3. Elsewhere in your code, start the time-consuming operation on a separate thread by

calling the RunWorkerAsync method, as shown:

 ' VB

BackgroundWorker1.RunWorkerAsync()

// C#

backgroundWorker1.RunWorkerAsync();

 Providing Parameters to the Background Process

 Sometimes you will want to run a background process that requires a parameter. For example,

you might want to provide the address of a fi le for download. You can provide a parameter

in the RunWorkerAsync method. This parameter will be available as the Argument property of

the instance of DoWorkEventArgs in the DoWork event handler.

 TO PROVIDE A PARAMETER TO A BACKGROUND PROCESS

 1. Include the parameter in the RunWorkerAsync call, as shown below:

 ' VB

BackgroundWorker1.RunWorkerAsync("C:\myfile.txt")

// C#

backgroundWorker1.RunWorkerAsync("C:\\myfile.txt");

 2. Retrieve the parameter from the DoWorkEventArgs.Argument property and cast it

appropriately to use it in the background process. An example is shown below:

 ' VB

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) _

 Handles BackgroundWorker1.DoWork

 Dim myPath As String

 myPath = CType(e.Argument, String)

 ' Use the argument in the process

 RunTimeConsumingProcess()

End Sub

// C#

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

{

 string myPath;

 myPath = (string)e.Argument;

 // Use the argument in the process

 RunTimeConsumingProcess();

}

 602 CHAPTER 13 Asynchronous Programming Techniques

 Announcing the Completion of a Background Process

 When the background process terminates, whether because the process is completed or

the process is cancelled, the RunWorkerCompleted event is raised. You can alert the user to

the completion of a background process by handling the RunWorkerCompleted event. An

example is shown below:

 ' VB

Private Sub BackgroundWorker1_RunWorkerCompleted(_

 ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _

 Handles BackgroundWorker1.RunWorkerCompleted

 MsgBox("Background process completed!")

End Sub

// C#

private void backgroundWorker1_RunWorkerCompleted(object sender,

 RunWorkerCompletedEventArgs e)

{

 System. Windows.Forms.MessageBox.Show("Background process completed");

}

 You can ascertain if the background process was cancelled by reading the e.Cancelled

property, as shown below:

 ' VB

Private Sub BackgroundWorker1_RunWorkerCompleted(_

 ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _

 Handles BackgroundWorker1.RunWorkerCompleted

 If e.Cancelled Then

 MsgBox("Process was cancelled!")

 Else

 MsgBox("Process completed")

 End If

End Sub

// C#

private void backgroundWorker1_RunWorkerCompleted(object sender,

 RunWorkerCompletedEventArgs e)

{

 if (e.Cancelled)

 {

 System. Windows.Forms.MessageBox.Show ("Process was cancelled!");

 }

 else

 {

 Lesson 1: Managing a Background Process with the BackgroundWorker Component CHAPTER 13 603

 System. Windows.Forms.MessageBox.Show("Process completed");

 }

}

 RETURNING A VALUE FROM A BACKGROUND PROCESS

You might want to return a value from a background process. For example, if your process

is a complex calculation, you would want to return the end result. You can return a value by

setting the Result property of the DoWorkEventArgs in the DoWorkEventHandler. This value

will then be available in the RunWorkerCompleted event handler as the Result property of the

RunWorkerCompletedEventArgs parameter, as shown in the following example:

 ' VB

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) _

 Handles BackgroundWorker1.DoWork

 ' Assigns the return value of a method named ComplexCalculation to

 ' e.Result

 e.Result = ComplexCalculation()

End Sub

Private Sub BackgroundWorker1_RunWorkerCompleted(_

 ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _

 Handles BackgroundWorker1.RunWorkerCompleted

 MsgBox("The result is " & e.Result.ToString)

End Sub

// C#

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

{

 // Assigns the return value of a method named ComplexCalculation to

 // e.Result

 e.Result = ComplexCalculation();

}

private void backgroundWorker1_RunWorkerCompleted(object sender,

 RunWorkerCompletedEventArgs e)

{

 System. Windows.Forms.MessageBox.Show("The result is " +

 e.Result.ToString());

}

 Cancelling a Background Process

 You might want to implement the ability to cancel a background process. Background-

Worker supports the ability to cancel a background process, but you must implement

most of the cancellation code yourself. The WorkerSupportsCancellation property of the

Background Worker component indicates whether the component supports cancellation.

You can call the CancelAsync method to attempt to cancel the operation; doing so sets the

 604 CHAPTER 13 Asynchronous Programming Techniques

 CancellationPending property of the BackgroundWorker component to True. By polling the

CancellationPending property of the BackgroundWorker component, you can determine

whether or not to cancel the operation.

 TO IMPLEMENT CANCELLATION FOR A BACKGROUND PROCESS

 1. In the Properties window, set the WorkerSupportsCancellation property to True to

enable the BackgroundWorker component to support cancellation.

 2. Create a method that is called to cancel the background operation. The following

example demonstrates how to cancel a background operation in a Button.Click event

handler:

 ' VB

Private Sub btnCancel_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnCancel.Click

 BackgroundWorker1.CancelAsync()

End Sub

// C#

private void btnCancel_Click(object sender, EventArgs e)

{

 backgroundWorker1.CancelAsync();

}

 3. In the BackgroundWorker.DoWork event handler, poll the BackgroundWorker.Cancel-

lationPending property and implement code to cancel the operation if it is True. You

should also set the e.Cancel property to True, as shown in the following example:

 ' VB

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) _

 Handles BackgroundWorker1.DoWork

 For i As Integer = 1 to 1000000

 TimeConsumingMethod()

 If BackgroundWorker1.CancellationPending Then

 e.Cancel = True

 Exit Sub

 End If

 Next

End Sub

// C#

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

{

 for (int i = 0; i < 1000000; i++)

 {

 TimeConsumingMethod();

 if (backgroundWorker1.CancellationPending)

 Lesson 1: Managing a Background Process with the BackgroundWorker Component CHAPTER 13 605

 {

 e.Cancel = true;

 return;

 }

 }

}

 Reporting Progress of a Background Process with BackgroundWorker

 For particularly time-consuming operations, you might want to report progress back to the

primary thread. You can report progress of the background process by calling the Report-

Progress method. This method raises the BackgroundWorker.ProgressChanged event and

allows you to pass a parameter that indicates the percentage of progress that has been

completed to the methods that handle that event. The following example demonstrates how

to call the ReportProgress method from within the BackgroundWorker.DoWork event handler

and then to update a ProgressBar control in the BackgroundWorker.ProgressChanged event

handler:

 ' VB

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) _

 Handles BackgroundWorker1.DoWork

 For i As Integer = 1 to 10

 RunTimeConsumingProcess()

 ' Calls the Report Progress method, indicating the percentage

 ' complete

 BackgroundWorker1.ReportProgress(i*10)

 Next

End Sub

Private Sub BackgroundWorker1_ProgressChanged(_

 ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.ProgressChangedEventArgs) _

 Handles BackgroundWorker1.ProgressChanged

 ProgressBar1.Value = e.ProgressPercentage

End Sub

// C#

private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

{

 for (int i = 1;i < 11; i++)

 {

 RunTimeConsumingProcess();

 // Calls the Report Progress method, indicating the percentage

 // complete

 backgroundWorker1.ReportProgress(i*10);

 }

 606 CHAPTER 13 Asynchronous Programming Techniques

}

private void backgroundWorker1_ProgressChanged(object sender,

 ProgressChangedEventArgs e)

{

 progressBar1.Value = e.ProgressPercentage;

}

Note that in order to report progress with the BackgroundWorker component you must set

the WorkerReportsProgress property to True.

Requesting the Status of a Background Process

You can determine if a BackgroundWorker component is executing a background process

by reading the IsBusy property. The IsBusy property returns a Boolean value. If True, the

BackgroundWorker component is currently running a background process. If False, the Back-

groundWorker component is idle. An example follows:

' VB

If Not BackgroundWorker1.IsBusy

 BackgroundWorker1.RunWorkerAsync()

End If

// C#

if (!(backgroundWorker1.IsBusy))

{

 backgroundWorker1.RunWorkerAsync();

}

Quick Check

 1. What is the purpose of the BackgroundWorker component?

 2. Briefl y describe how to implement cancellation for a background process with

BackgroundWorker.

Quick Check Answers

 1. The BackgroundWorker component allows you to run operations on a separate

thread while allowing the UI to remain responsive without complicated imple-

mentation or coding patterns.

 2. First, you set the WorkerSupportsCancellation property of the BackgroundWorker

component to True. Then you create a method that calls the BackgroundWorker.

CancelAsync method that is called to cancel the operation. Finally, in the back-

ground process, you poll the BackgroundWorker.CancellationPending property

and set e.Cancel to True if CancellationPending is True and take appropriate

action to halt the process.

Quick Check

1. What is the purpose of the BackgroundWorker component?r

2. Briefl y describe how to implement cancellation for a background process with

BackgroundWorker.rr

Quick Check Answers

1. The BackgroundWorker component allows you to run operations on a separater

thread while allowing the UI to remain responsive without complicated imple-

mentation or coding patterns.

2. First, you set the WorkerSupportsCancellation property of the BackgroundWorker

component to True. Then you create a method that calls the BackgroundWorker.rr

CancelAsync method that is called to cancel the operation. Finally, in the back-c

ground process, you poll the BackgroundWorker.CancellationPending property

and set e.Cancel tol True if CancellationPending is True and take appropriate

action to halt the process.

Q

 Lesson 1: Managing a Background Process with the BackgroundWorker Component CHAPTER 13 607

 LAB Practice with BackgroundWorker

 In this lab you will practice using the BackgroundWorker component. You will add a Back-

groundWorker component to your application and write a time-consuming method to be

executed on a separate thread. You will report progress from the thread and implement

functionality to cancel the background process.

 EXERCISE 1 Practice with BackgroundWorker

 1. Open the partial solution for this exercise in the samples installed from the companion

CD. Note that you will use the same partial solution for the next lab, so you should save

a copy of the partial solution before proceeding.

 2. From the Toolbox, drag a BackgroundWorker to the form. The BackgroundWorker

appears in the component tray.

 3. In the Properties window, set the WorkerSupportsCancellation and WorkerReports-

Progress properties to True.

 4. Double-click the BackgroundWorker to open the default event handler for the Back-

groundWorker.DoWork event. Add the following code to this event handler:

 ' VB

Dim i As Integer

i = CInt(e.Argument)

For j As Integer = 1 To i

 If BackgroundWorker1.CancellationPending = True Then

 e.Cancel = True

 Exit For

 End If

 System.Threading.Thread.Sleep(1000)

 BackgroundWorker1.ReportProgress(CInt(j * 100 / i))

Next

// C#

int i;

i = int.Parse(e.Argument.ToString());

for (int j = 1; j <= i; j++)

{

 if (backgroundWorker1.CancellationPending)

 {

 e.Cancel = true;

 return;

 }

 System.Threading.Thread.Sleep(1000);

 backgroundWorker1.ReportProgress((int)(j *100 / i));

}

 608 CHAPTER 13 Asynchronous Programming Techniques

 5. In the Designer, select BackgroundWorker1 and click the Events toolbar button in the

Properties window. Double-click ProgressChanged to open the Code window to the

default event handler for the ProgressChanged event. Add the following code:

 ' VB

ProgressBar1.Value = e.ProgressPercentage

// C#

progressBar1.Value = e.ProgressPercentage;

 6. In the Designer, select BackgroundWorker1 and click the toolbar Events button in the

Properties window. Double-click RunWorkerCompleted to open the Code window to

the default event handler for the RunWorkerCompleted event. Add the following code:

 ' VB

If Not e.Cancelled Then

 MsgBox("Run Completed!")

Else

 MsgBox("Run Cancelled")

End If

// C#

if (!(e.Cancelled))

{

 System. Windows.Forms.MessageBox.Show("Run Completed!");

}

else

{

 System. Windows.Forms.MessageBox.Show("Run Cancelled");

}

 7. In the Designer, double-click the GO! button to open the default event handler for its

Click event. Add the following code:

 ' VB

If Not TextBox1.Text = "" Then

 Dim i As Integer = CInt(TextBox1.Text)

 BackgroundWorker1.RunWorkerAsync(i)

End If

// C#

if (!(textBox1.Text == ""))

{

 int i = int.Parse(textBox1.Text);

 backgroundWorker1.RunWorkerAsync(i);

}

 Lesson 1: Managing a Background Process with the BackgroundWorker Component CHAPTER 13 609

 8. In the Designer, double-click the Cancel button to open the default event handler for

its Click event. Add the following code:

' VB

BackgroundWorker1.CancelAsync()

// C#

backgroundWorker1.CancelAsync();

 9. Press F5 to build and run your application, then test all functionality. Note that you

cannot press the GO! button while the BackgroundWorker is working or an excep-

tion will be raised. For additional practice, modify the exercise to prevent this from

 happening.

Lesson Summary
 The BackgroundWorker component allows you to execute operations on a separate

thread of execution. You call the RunWorkerAsync method of the BackgroundWorker

component to begin the background process. The event handler for the DoWork

method contains the code that will execute on a separate thread.

 The BackgroundWorker.RunWorkerCompleted event is fi red when the background pro-

cess is completed.

 You can enable cancellation of a background process by setting the BackgroundWorker.

WorkerSupportsCancellation property to True. You then signal the BackgroundWorker

to cancel the process by calling the CancelAsync method, which sets the Cancel-

lationPending method to True. You must poll the CancellationPending property and

implement cancellation code if the CancellationPending property registers as True.

 You can report progress from the background operation. You fi rst must set the Work-

erReportsProgress property to True. You can then call the ReportProgress method from

within the background process to report progress. This raises the ProgressChanged

event, which you can handle to take appropriate action.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 610 CHAPTER 13 Asynchronous Programming Techniques

 1. Which of the following are required to start a background process with the Back-

groundWorker component? (Choose all that apply.)

 A. Call the RunWorkerAsync method.

 B. Handle the DoWork event.

 C. Handle the ProgressChanged event.

 D. Set the WorkerSupportsCancellation property to True.

 2. Which of the following are required to cancel a background process with the Back-

groundWorker component? (Choose all that apply.)

 A. Set the WorkerSupportsCancellation property to True.

 B. Implement code to actually stop the process.

 C. Call the CancelAsync method.

 D. Set the CancellationPending property to True.

 3. Which of the following are required to report the progress of a background process

with the BackgroundWorker component? (Choose all that apply.)

 A. Call the ReportProgress method.

 B. Handle the ProgressChanged event.

 C. Poll the IsBusy property.

 D. Set the WorkerReportsProgress property to True.

 Lesson 2: Implementing Asynchronous Methods CHAPTER 13 611

Lesson 2: Implementing Asynchronous Methods

Although the BackgroundWorker component provides an excellent way to run simple tasks on

a background thread, at times you might desire fi ner control over background processes. In

this lesson you will learn to run methods asynchronously using delegates and to create new

process threads.

After this lesson, you will be able to:

 Implement advanced asynchronous techniques.

 Create an asynchronous method.

 Create a new process thread.

Estimated lesson time: 45 minutes

Using Delegates
Special classes called delegates allow you to call methods in a variety of ways. A delegate is

essentially a type-safe function pointer. It allows you to pass a reference to an entry point

for a method and invoke that method in a variety of ways without making an explicit func-

tion call. You use the Delegate keyword (delegate in C#) to declare a delegate, and you must

specify the same method signature as the method that you want to call with the delegate.

The following example demonstrates a sample method and the declaration of a delegate that

can be used to call that method:

 ' VB

Public Function TestMethod(ByVal I As Integer) As String

 ' Insert method implementation here

End Function

Public Delegate Function myDelegate(ByVal I As Integer) As String

// C#

public string TestMethod(int I)

{

 // Insert method implementation here

}

public delegate string myDelegate(int i);

 Once a delegate has been declared, you can create an instance of it that specifi es a

method that has the same signature. In C# you can specify the method by simply naming

the method. In Visual Basic you must use the AddressOf operator to specify the method. The

following example demonstrates how to create an instance of the delegate that specifi es the

method shown in the previous example.

After this lesson, you will be able to:

Implement advanced asynchronous techniques.

Create an asynchronous method.

Create a new process thread.

Estimated lesson time: 45 minutes

 612 CHAPTER 13 Asynchronous Programming Techniques

 ' VB

Dim del As New myDelegate(AddressOf TestMethod)

// C#

myDelegate del = new myDelegate(TestMethod);

 Once an instance of a delegate has been created, you can invoke the method that refers to

the delegate by simply calling the delegate with the appropriate parameters or by using the

delegate’s Invoke method. Both are shown in the following example:

 ' VB

del(342)

del.Invoke(342)

// C#

del(342);

del.Invoke(342);

 Using Delegates Asynchronously

 Delegates can be used to call any method asynchronously. In addition to the Invoke method,

every delegate exposes two methods that are used to call methods asynchronously. These

methods are BeginInvoke and EndInvoke. Calling the BeginInvoke method on a delegate starts

the method that it refers to on a separate thread. Calling EndInvoke retrieves the results of

that method and ends the separate thread.

 The BeginInvoke method begins the asynchronous call to the method represented by the

delegate. It requires the same parameters as the method the delegate represents, as well

as two additional parameters: an AsyncCallback delegate that references the method to be

called when the asynchronous method is completed and a user-defi ned object that contains

information about the asynchronous call. BeginInvoke returns an instance of IAsyncResult,

which is used to monitor the asynchronous call.

 The EndInvoke method retrieves the results of the asynchronous call and can be called

any time after BeginInvoke has been called. The EndInvoke method signature requires as a

parameter the instance of IAsyncResult returned by BeginInvoke and returns the value that

is returned by the method represented by the delegate. The method signature also contains

any Out or ByRef parameters of the method it refers to in its signature.

 You can use BeginInvoke and EndInvoke in several ways to implement asynchronous meth-

ods. Among them are the following:

 Calling BeginInvoke, doing work, and then calling EndInvoke on the same thread.

 Calling BeginInvoke, polling IAsyncResult until the asynchronous operation is com-

pleted, and then calling EndInvoke.

 Calling BeginInvoke, specifying a callback method to be executed when the asynchro-

nous operation has completed, and calling EndInvoke on a separate thread.

 Lesson 2: Implementing Asynchronous Methods CHAPTER 13 613

 Waiting for an Asynchronous Call to Return with EndInvoke

 The simplest way to implement an asynchronous method call is to call BeginInvoke, do some

work, and then call EndInvoke on the same thread that BeginInvoke was called on. Although

this approach is simplest, a potential disadvantage is that the EndInvoke call blocks execution

of the thread until the asynchronous operation is completed if it has not completed yet. Thus

your main thread might still be nonresponsive if the asynchronous operation is particularly

time-consuming. The DelegateCallback and AsyncState parameters are not required for this

operation and so Nothing (null in C#) can be supplied for these parameters. The following

example demonstrates how to implement an asynchronous call in this way, using the Test-

Method and myDelegate that were defi ned in the examples above:

 ' VB

Dim del As New myDelegate(AddressOf TestMethod)

Dim result As IAsyncResult

result = del.BeginInvoke(342, Nothing, Nothing)

' Do some work while the asynchronous operation runs

Dim ResultString As String

ResultString = del.EndInvoke(result)

// C#

myDelegate del = new myDelegate(TestMethod);

IAsyncResult result;

result = del.BeginInvoke(342, null, null);

// Do some work while the asynchronous operation runs

string ResultString;

ResultString = del.EndInvoke(result);

 Polling IAsyncResult Until Completion

 Another way of executing an asynchronous operation is to call BeginInvoke and then poll the

IsCompleted property of IAsyncResult to determine if the operation has fi nished. When the

operation has fi nished, you can then call EndInvoke. An advantage of this approach is that you

do not need to call EndInvoke until the operation is complete. Thus, you do not lose any time

by blocking your main thread. The following example demonstrates how to poll the IsCom-

pleted property:

 ' VB

Dim del As New myDelegate(AddressOf TestMethod)

Dim result As IAsyncResult

 result = del.BeginInvoke(342, Nothing, Nothing)

While Not result.IsCompleted

 ' Do some work

End While

Dim ResultString As String

ResultString = del.EndInvoke(result)

 614 CHAPTER 13 Asynchronous Programming Techniques

// C#

myDelegate del = new myDelegate(TestMethod);

 IAsyncResult result;

result = del.BeginInvoke(342, null, null);

while (!(result.IsCompleted))

{

 // Do some work while the asynchronous operation runs

}

string ResultString;

ResultString = del.EndInvoke(result);

 Executing a Callback Method When the Asynchronous Operation

Returns

 If you do not need to process the results of the asynchronous operation on the same thread

that started the operation, you can specify a callback method to be executed when the

operation is completed. This allows the operation to complete without interrupting the thread

that initiated it. To execute a callback method, you must provide an instance of AsyncCallback

that specifi es the callback method. You can also supply a reference to the delegate itself so

that EndInvoke can be called in the callback method to complete the operation. The following

example demonstrates how to specify and run a callback method:

 ' VB

Private Sub CallAsync()

 Dim del As New myDelegate(AddressOf TestMethod)

 Dim result As IAsyncResult

 Dim callback As New AsyncCallback(AddressOf CallbackMethod)

 result = del.BeginInvoke(342, callback, del)

End Sub

Private Sub CallbackMethod(ByVal result As IAsyncResult)

 Dim del As myDelegate

 Dim ResultString As String

 del = CType(result.AsyncState, myDelegate)

 ResultString = del.EndInvoke(result)

End Sub

// C#

private void CallAsync()

{

 myDelegate del = new myDelegate(TestMethod);

 IAsyncResult result;

 AsyncCallback callback = new AsyncCallback(CallbackMethod);

 result = del.BeginInvoke(342, callback, del);

 }

 Lesson 2: Implementing Asynchronous Methods CHAPTER 13 615

private void CallbackMethod(IAsyncResult result)

{

 myDelegate del;

 string ResultString;

 del = (myDelegate)result.AsyncState;

 ResultString = del.EndInvoke(result);

}

Creating Process Threads
For applications that require more precise control over multiple threads, you can create new

threads with the Thread object. The Thread object represents a separate thread of execution

that runs concurrently with other threads. You can create as many Thread objects as you like,

but the more threads there are, the greater the impact on performance and the greater the

possibility of adverse threading conditions, such as deadlocks.

 MORE INFO THREADING

 Multithreading and the use of the Thread object is an extremely complex and detailed

subject. The information in this section should not be considered comprehensive. For more

information, see Managed Threading at http://msdn. Microsoft.com/en-us/library/3e8s7xdd

.aspx.

 Creating and Starting a New Thread

 The Thread object requires a delegate to the method that will serve as the starting point for

the thread. This method must be a Sub (void in C#) method and must have either no param-

eters or take a single Object parameter. In the latter case, the Object parameter is used to pass

any required parameters to the method that starts the thread. Once a thread is created, you

can start it by calling the Thread.Start method. The following example demonstrates how to

create and start a new thread:

' VB

Dim aThread As New System.Threading.Thread(Addressof aMethod)

aThread.Start()

// C#

System.Threading.Thread aThread = new

 System.Threading.Thread(aMethod);

aThread.Start();

For threads that accept a parameter, the procedure is similar, except that the starting

method can take a single Object as a parameter and that object must be specifi ed as the

parameter in the Thread.Start method. An example is shown below:

MORE INFO THREADING

Multithreading and the use of the Thread object is an extremely complex and detailed d

subject. The information in this section should not be considered comprehensive. For more

information, see Managed Threading at http://msdn. Microsoft.com/en-us/library/3e8s7xdd

.aspx.xx

 616 CHAPTER 13 Asynchronous Programming Techniques

 ' VB

Dim aThread As New System.Threading.Thread(Addressof aMethod)

aThread.Start(anObject)

// C#

System.Threading.Thread aThread = new

 System.Threading.Thread(aMethod);

aThread.Start(anObject);

 Destroying Threads

 You can destroy a Thread object by calling the Thread.Abort method. This method causes the

thread on which it is called to cease its current operation and to raise a ThreadAbortException.

If there is a Catch block that is capable of handling the exception, it will execute along with

any Finally blocks. The thread is then destroyed and cannot be restarted.

 ' VB

aThread.Abort()

// C#

aThread.Abort();

 Synchronizing Threads

 Two of the most common diffi culties involved in multithread programming are deadlocks

and race conditions. A deadlock occurs when one thread has exclusive access to a particular

variable and then attempts to gain exclusive access to a second variable at the same time that

a second thread has exclusive access to the second variable and attempts to gain exclusive

access to the variable that is locked by the fi rst thread. The result is that both threads wait

indefi nitely for the other to release the variables and they cease operating.

 A race condition occurs when two threads attempt to access the same variable at the same

time. For example, consider two threads that access the same collection. The fi rst thread

might add an object to the collection. The second thread might then remove an object from

the collection based on the index of the object. The fi rst thread then might attempt to access

the object in the collection to fi nd that it had been removed. Race conditions can lead to

unpredictable effects that can destabilize your application.

 The best way to avoid race conditions and deadlocks is by careful programming and judi-

cious use of thread synchronization. You can use the SyncLock keyword in Visual Basic and

the lock keyword in C# to obtain an exclusive lock on an object. This allows the thread that

has the lock on the object to perform operations on that object without allowing any other

threads to access it. Note that if any other threads attempt to access a locked object, those

threads will pause until the lock is released. The following example demonstrates how to

obtain a lock on an object:

 Lesson 2: Implementing Asynchronous Methods CHAPTER 13 617

 ' VB

SyncLock anObject

 ' Perform some operation

End SyncLock

// C#

lock (anObject)

{

 // Perform some operation

}

 Some objects, such as collections, implement a synchronization object that should be used

to synchronize access to the greater object. The following example demonstrates how to

obtain a lock on the SyncRoot object of an ArrayList object:

 ' VB

Dim anArrayList As New System.Collections.ArrayList

SyncLock anArrayList.SyncRoot

 ' Perform some operation on the ArrayList

End SyncLock

// C#

System.Collections.Arraylist anArrayList = new System.Collections.ArrayList();

lock (anArrayList.SyncRoot)

{

 // Perform some operation on the ArrayList

}

 It is generally good practice when creating classes that will be accessed by multiple threads

to include a synchronization object that is used for synchronized access by threads. This

allows the system to lock only the synchronization object, thus conserving resources by not

having to lock every single object contained in the class. A synchronization object is simply

an instance of Object and does not need to have any functionality except to be available for

locking. The following example demonstrates a class that exposes a synchronization object:

 ' VB

Public Class aClass

 Public SynchronizationObject As New Object()

 ' Insert additional functionality here

End Class

// C#

public class aClass

{

 public object SynchronizationObject = new Object();

 // Insert additional functionality here

}

 618 CHAPTER 13 Asynchronous Programming Techniques

 Special Considerations When Working with Controls

 Because controls are always owned by the UI thread, it is generally unsafe to make calls to

controls from a different thread. You can use the Control.InvokeRequired property to deter-

mine if it is safe to make a call to a control from another thread. If InvokeRequired returns

False, it is safe to make the call to the control. If InvokeRequired returns True, however, you

should use the Control.Invoke method on the owning form to supply a delegate to a method

to access the control. Using Control.Invoke allows the control to be accessed in a thread-safe

manner. The following example demonstrates setting the Text property of a TextBox control

named Text1:

 ' VB

Public Delegate Sub SetTextDelegate(ByVal t As String)

Public Sub SetText(ByVal t As String)

 If TextBox1.InvokeRequired = True Then

 Dim del As New SetTextDelegate(AddressOf SetText)

 Me.Invoke(del, New Object() {t})

 Else

 TextBox1.Text = t

 End If

End Sub

// C#

public delegate void SetTextDelegate(string t);

public void SetText(string t)

{

 if (textBox1.InvokeRequired)

 {

 SetTextDelegate del = new SetTextDelegate(SetText);

 this.Invoke(del, new object[]{t});

 }

 else

 {

 textBox1.Text = t;

 }

}

 In the preceding example the method tests InvokeRequired to determine if it is dangerous

to access the control directly. In general, this will return True if the control is being accessed

from a separate thread. If InvokeRequired does return True, the method creates a new instance

of a delegate that refers to itself and calls Control.Invoke to set the Text property in a thread-

safe manner.

 Lesson 2: Implementing Asynchronous Methods CHAPTER 13 619

Quick Check

 1. What is a delegate? How is a delegate used?

 2. What is thread synchronization and why is it important?

 Quick Check Answers

 1. A delegate is a type-safe function pointer. It contains a reference to the entry

point of a method and can be used to invoke that method. A delegate can be

used to invoke a method synchronously on the same thread or asynchronously

on a separate thread.

 2. When you are working with multiple threads of execution, problems can occur if

multiple threads attempt to access the same resources. Thread synchronization is

the process of ensuring that threads do not attempt to access the same resource

at the same time. One way to synchronize threads is to obtain exclusive locks on

the objects you want to access, thereby prohibiting other threads from affecting

them at the same time.

 LAB Practice with Delegates and Threads

 In this lab, you will create an application similar to the application you created in Lesson 1,

“Managing a Background Process with the BackgroundWorker Component.” Your application

will execute a time-consuming process on a separate thread that can be cancelled, reports

progress, and notifi es the user when fi nished. First, you will use delegates and asynchronous

invocation to implement this functionality. After that is complete, you will modify your appli-

cation to use a Thread object.

 EXERCISE 1 Practice with Delegates

 1. Open the partial solution for lab 2, which is identical to the lab 1 partial solution.

 2. In the Designer, right-click the form and choose View Code. Add the following method

to the application:

 ' VB

Private Sub TimeConsumingMethod(ByVal seconds As Integer)

 For j As Integer = 1 To seconds

 System.Threading.Thread.Sleep(1000)

 Next

End Sub

// C#

private void TimeConsumingMethod(int seconds)

{

 for (int j = 1; j <= seconds; j++)

 {

 System.Threading.Thread.Sleep(1000);

Quick Check

1. What is a delegate? How is a delegate used?

2. What is thread synchronization and why is it important?

Quick Check Answers

1. A delegate is a type-safe function pointer. It contains a reference to the entry

point of a method and can be used to invoke that method. A delegate can be

used to invoke a method synchronously on the same thread or asynchronously

on a separate thread.

2. When you are working with multiple threads of execution, problems can occur if

multiple threads attempt to access the same resources. Thread synchronization is

the process of ensuring that threads do not attempt to access the same resource

at the same time. One way to synchronize threads is to obtain exclusive locks on

the objects you want to access, thereby prohibiting other threads from affecting

them at the same time.

Q

 620 CHAPTER 13 Asynchronous Programming Techniques

 }

}

 3. Add a delegate to the application that is appropriate for TimeConsumingMethod, as

shown below:

 ' VB

Private Delegate Sub TimeConsumingMethodDelegate(ByVal j As Integer)

 // C#

 private delegate void TimeConsumingMethodDelegate(int seconds);

 4. Add a method to report progress that sets the value of the ProgressBar control in a

thread-safe manner and add a delegate to that method, as shown below:

 ' VB

Public Delegate Sub SetProgressDelegate(ByVal val As Integer)

Public Sub SetProgress(ByVal val As Integer)

 If ProgressBar1.InvokeRequired = True Then

 Dim del As New SetProgressDelegate(AddressOf SetProgress)

 Me.Invoke(del, New Object() {val})

 Else

 ProgressBar1.Value = val

 End If

End Sub

// C#

public delegate void SetProgressDelegate(int val);

public void SetProgress(int val)

{

 if (progressBar1.InvokeRequired)

 {

 SetProgressDelegate del = new SetProgressDelegate(SetProgress);

 this.Invoke(del, new object[]{val});

 }

 else

 {

 progressBar1.Value = val;

 }

}

 5. Add the following line of code to the For loop of TimeConsumingMethod to report the

progress of the method:

 ' VB

SetProgress(CInt((j * 100) / seconds))

// C#

SetProgress((int)(j * 100) / seconds);

 Lesson 2: Implementing Asynchronous Methods CHAPTER 13 621

 6. Add a Boolean variable named Cancel to the application, as shown below:

 ' VB

Private Cancel As Boolean

// C#

bool Cancel;

 7. Add the following lines of code to the For loop of TimeConsumingMethod:

 ' VB

If Cancel Then Exit For

// C#

if (Cancel)

 break;

 8. Add the following code after the For loop of TimeConsumingMethod:

 ' VB

If Cancel Then

 MsgBox("Cancelled")

 Cancel = False

Else

 MsgBox("Completed")

End If

// C#

if (Cancel)

{

 System. Windows.Forms.MessageBox.Show("Cancelled");

 Cancel = false;

}

else

{

 System. Windows.Forms.MessageBox.Show("Complete");

}

 9. In the Designer, double-click the GO! button to open the default event handler for the

button’s Click method and add the following code:

 ' VB

Dim del As New TimeConsumingMethodDelegate(AddressOf TimeConsumingMethod)

del.BeginInvoke(CInt(TextBox1.Text), Nothing, Nothing)

// C#

TimeConsumingMethodDelegate del = new

 TimeConsumingMethodDelegate(TimeConsumingMethod);

del.BeginInvoke(int.Parse(textBox1.Text), null, null);

 622 CHAPTER 13 Asynchronous Programming Techniques

 10. In the Designer, double-click the Cancel button to open the default event handler for

the button’s Click method and add the following code:

 ' VB

Cancel = True

// C#

Cancel = true;

 11. Press F5 to compile and test your application.

 EXERCISE 2 Using Threads

 In this exercise you will modify the application created in the fi rst exercise to use a Thread

object instead of a delegate.

 1. Open your completed application from Exercise 1 or the completed version in the

samples installed from the companion CD.

 2. In the Code window, change the signature of TimeConsumingMethod as follows:

 ' VB

Private Sub TimeConsumingMethod(ByVal time As Object)

// C#

private void TimeConsumingMethod(object Time)

 3. Add the following lines of code to the fi rst lines of TimeConsumingMethod:

 ' VB

Dim seconds As Integer

seconds = CInt(Time)

// C#

int seconds;

seconds = (int)Time;

 4. In the Designer, double-click the GO! button and replace the code there with the fol-

lowing code:

 ' VB

Dim aThread As New Threading.Thread(AddressOf TimeConsumingMethod)

aThread.Start(CInt(TextBox1.Text))

// C#

System.Threading.Thread aThread = new

 System.Threading.Thread(TimeConsumingMethod);

aThread.Start(int.Parse(textBox1.Text));

 5. Press F5 to compile and test your application.

 Lesson 2: Implementing Asynchronous Methods CHAPTER 13 623

Lesson Summary
 Delegates are type-safe function pointers that allow you to call methods with the same

signature. You can call methods synchronously by using the delegate’s Invoke method

or asynchronously by using BeginInvoke and EndInvoke.

 When BeginInvoke is called, an operation specifi ed by the delegate is started on a

separate thread. You can retrieve the result of the operation by calling EndInvoke,

which will block the calling thread until the background process is completed. You can

also specify a callback method to complete the operation on the background thread if

the main thread does not need the result.

 Thread objects represent separate threads of operation and provide for a high degree

of control of background processes. You can create a new thread by specifying a

method that serves as an entry point for the thread.

 You can use the SyncLock (Visual Basic) and lock (C#) keywords to restrict access to a

resource to a single thread of execution.

 You must not make calls to controls from background threads. Use the Control.Invok-

eRequired property to determine if it is safe to make a direct call to a control. If it is not

safe to make a direct call to the control, use the Control.Invoke method to make a safe

call to the control.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following method calls is required to execute a method asynchronously

from a delegate?

 A. Delegate.Invoke

 B. Delegate.BeginInvoke

 C. Delegate.EndInvoke

 D. Delegate.DynamicInvoke

 2. Which of the following are required to create and complete a background process

using a Thread object? (Choose all that apply.)

 A. Create a new Thread object.

 B. Call the Thread.Start method to start the thread.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 624 CHAPTER 13 Asynchronous Programming Techniques

 C. Provide a parameter to the Thread.Start method.

 D. Call the Thread.Abort method to complete the process.

 3. Which of the following can you use to make safe calls to controls from background

threads? (Choose all that apply.)

 A. Nothing. Calls to controls are inherently safe.

 B. The Control.InvokeRequired property.

 C. The Control.Invoke method.

 D. The Control.IsAccessible property.

 Chapter Review CHAPTER 13 625

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 You can maintain the responsiveness of your UI when performing time-consuming

processes by running those processes in the background. There are several ways to

create a background process. Those covered in this chapter were using the Back-

groundWorker component, using delegates, and using the Thread class.

 The BackgroundWorker component allows you to specify a process to run in the back-

ground by handling the DoWork event. The BackgroundWorker process encapsulates

functionality to run the background process and provide parameters to it, to indicate

the completion of a background process, to cancel a background process, to report the

progress of a background process, and to indicate whether the process is running.

 Delegates are type-safe function pointers that allow you to call methods with the same

signature. When BeginInvoke is called, an operation specifi ed by the delegate is started

on a separate thread. You can retrieve the result of the operation by calling EndInvoke,

which will block the calling thread until the background process is completed.

 Thread objects represent separate threads of operation and provide for a high degree

of control of background processes. You can create a new thread by specifying a

method that serves as an entry point for the thread.

 You must not make calls to controls from background threads. Use the Control.Invoke

method to make a safe call to the control.

 Key Terms
 delegate

 thread

 626 CHAPTER 13 Asynchronous Programming Techniques

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about asynchronous pro-

gramming techniques. You can fi nd answers to these questions in the “Answers” section at the

end of this book.

 Case Scenario 1: The Publishing Application

 Now that the great document management application for Fabrikam, Inc., is complete, you

have been asked to help design an application for distribution to their clients. This application

should enable clients to download large, book-length documents from an online library while

allowing clients to continue to browse the library and select other documents for download.

Once download of a single document is complete, download of the next document should

begin if more are selected. When download of a document is complete, the UI should be

updated to refl ect that.

 QUESTIONS

 1. What strategies can you use to coordinate document download with the UI

 interaction?

 2. How can the UI be constantly updated without fear of deadlocks or other problems?

Case Scenario 2: Creating a Simple Game

 You fi nally have a day off from your job, so you decide to spend some time writing a nice,

relaxing solitaire program. You have the actual gameplay pretty well done and you are

now just adding the bells and whistles. You would like to implement functionality that plays

sounds in the background based on user interactions. These sounds are in a specialized for-

mat, and you must use a proprietary player that does not intrinsically support asynchronous

play. You have a list of fi ve sound fi les that you can play, and you would like to save time and

make the coding easy on yourself.

 QUESTION

 What is a strategy for implementing the required functionality with a minimum of

complexity in your program?

 Suggested Practices

 To help you successfully master the exam objectives presented in this chapter, complete the

following tasks.

 Practice 1 Create an application that computes the value of pi on a separate thread and

continually updates the UI with the value in a thread-safe manner.

 Practice 2 Create an application that uses delegates to run a process in the background that

tests if a given number is a prime number and returns a Boolean value.

 Take a Practice Test CHAPTER 13 627

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 14 629

 C H A P T E R 1 4

 Creating Windows Forms
Controls

 Controls are components that have a visible user interface (UI) presence and are capable

of interacting with the user at run time. The Microsoft .NET Framework provides a

number of controls that encapsulate a wide variety of functionality. Examples of controls are

the Button control, the TextBox control, and the DateTimePicker control. In addition to the

preexisting controls, you can develop your own controls to provide specialized functional-

ity for your applications. There are three kinds of user-created controls: composite controls,

which are created by combining other Windows Forms controls; custom controls, which are

created from scratch and provide their own code for drawing; and extended controls, which

add functionality to a preexisting Windows Forms control. In this chapter, you will learn to

create all three types of controls.

 Exam objectives in this chapter:

 Create a composite Windows Forms control.

 Create properties, methods, and events for Windows Forms controls.

 Expose properties of constituent controls.

 Create and use custom dialog boxes in Windows Forms applications.

 Customize a control to paint and render.

 Confi gure a control to be invisible at run time.

 Confi gure a control to have a transparent background.

 Provide a Toolbox bitmap for a control.

 Create a custom Windows Forms control by inheriting from the Control class.

 Create an extended control by inheriting from an existing Windows Forms control.

 Lessons in this chapter:

 Creating Composite Controls 631

 Creating Custom Controls 641

 Creating Extended Controls and Dialog Boxes 650

 630 CHAPTER 14 Creating Windows Forms Controls

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book .

 Microsoft Visual Studio installed on your computer .

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the .NET

Framework .

 Completed Chapter 3, “Advanced Windows Forms Controls,” or have a good under-

standing of Windows Forms controls and the Visual Studio IDE .

 REAL WORLD

Matt Stoecker

 A lthough the controls provided in Visual Studio cover a wide range of function-

ality, I fi nd that by developing my own controls when necessary, I can create

UIs that conform to my requirements rather than trying to bend my requirements

to fi t the available functionality. With custom controls, I can create exactly what I

need for my UI design.

REAL WORLD

Matt Stoecker

A lthough the controls provided in Visual Studio cover a wide range of function-

ality, I fi nd that by developing my own controls when necessary, I can create

UIs that conform to my requirements rather than trying to bend my requirements

to fi t the available functionality. With custom controls, I can create exactly what I

need for my UI design.

 Lesson 1: Creating Composite Controls CHAPTER 14 631

Lesson 1: Creating Composite Controls

Composite controls are the simplest form of user-created controls. The composite control

designer includes a graphical interface similar to a form that allows you to add preexisting

controls and components, which are then bound together in a single functional unit. In this

lesson, you will learn how to create a composite control, as well as some general methods for

control development.

After this lesson, you will be able to:

 Develop a user (composite) Windows Forms control.

 Create properties, methods, and events for Windows Forms controls.

 Expose properties of constituent controls.

 Confi gure a control to be invisible at run time.

 Confi gure a control to have a transparent background.

 Provide a Toolbox bitmap for a control.

 Estimated lesson time: 45 minutes

 Introduction to Composite Controls
 Composite controls (also known as user controls) are just as they sound: controls that are

made up of other controls. Composite controls inherit from the UserControl class. The User-

Control class provides a base level of functionality that you can build on by adding other

controls, as well as additional properties, methods, and events. The UserControl class has its

own designer that allows you to use the Visual Studio Integrated Design Environment (IDE)

to drag additional controls from the Toolbox to the design surface and confi gure them. The

UserControl designer is shown in Figure 14-1.

FIGURE 14-1 The UserControl designer

After this lesson, you will be able to:

Develop a user (composite) Windows Forms control.

Create properties, methods, and events for Windows Forms controls.

Expose properties of constituent controls.

Confi gure a control to be invisible at run time.

Confi gure a control to have a transparent background.

Provide a Toolbox bitmap for a control.

Estimated lesson time: 45 minutes

 632 CHAPTER 14 Creating Windows Forms Controls

TO ADD A COMPOSITE CONTROL TO A SOLUTION AT DESIGN TIME

 1. From the Project menu, choose Add User Control. The Add New Item dialog box

opens.

 2. Name your control and click Add. The new control is added to the project and opened

for editing in the designer.

You can create a composite control in code by inheriting from the UserControl class, as

shown here:

' VB

Public Class myControl

 Inherits UserControl

 ' Add implementation here

End Class

// C#

public class myControl : UserControl

{

 // Add implementation here

}

The subordinate controls that make up the composite control are called constituent con-

trols. You can add constituent controls to your composite control in the same way that you

would add a control to a form—by dragging it onto the design surface from the Toolbox. You

can confi gure these constituent controls in the same way that you would confi gure them in

a form—you can set properties, alter the visual appearance, and create methods that handle

control events. When the composite control is built, the functionality that you have coded will

be built into the composite control.

Adding Methods, Properties, and Events to Controls

In addition to adding constituent controls, you can also add additional functionality to your

control in the form of methods, properties, and events.

NOTE CLASSES, CONTROLS, AND COMPOSITE CONTROLS

The information in this section can be applied to classes and controls of all types, not just

to composite controls.

ADDING METHODS TO A CONTROL

You can add a method to a control in the same way that you would add a method to a form

or to any other class. Within the bounds of the class declaration in the Code window, add the

method declaration and the method body. For a method that does not return a value, create

a Sub (Visual Basic) or a void (C#) method, as shown here:

NOTE CLASSES, CONTROLS, AND COMPOSITE CONTROLS

The information in this section can be applied to classes and controls of all types, not just

to composite controls.

 Lesson 1: Creating Composite Controls CHAPTER 14 633

 ' VB

Public Sub DisplayString(ByVal aString As String)

 Msgbox(aString)

End Sub

// C#

public void DisplayString(string aString)

{

 MessageBox.Show(aString);

}

 For methods that return a value, create a Function (Visual Basic) or specify a return type

(C#), as shown in this example:

 ' VB

Public Function DisplayString(ByVal aString As String, ByVal bString As String) As

String

 Return aString & bString

End Function

// C#

public string DisplayString(string aString, string bString)

{

 return aString + bString;

}

 ADDING PROPERTIES TO A CONTROL

Adding a property is similar to adding a method. You create a property defi nition and then

implement the functionality required to return and set the value represented by the property.

Usually, the underlying value for the property is stored in a private member variable. In Visual

Basic, you use the Property keyword to create a property. In C#, you simply implement the

getter and setter for the property. The following example demonstrates how to implement a

property, including a member variable to contain the value:

 ' VB

Private mUnitsOnHand

Public Property UnitsOnHand() As Integer

 Get

 Return mUnitsOnHand

 End Get

 Set(ByVal value As Integer)

 mUnitsOnHand = value

 End Set

End Property

 634 CHAPTER 14 Creating Windows Forms Controls

// C#

private int mUnitsOnHand;

public int UnitsOnHand

{

 get { return mUnitsOnHand; }

 set { mUnitsOnHand = value; }

}

 You can create a read-only property by using the ReadOnly keyword in Visual Basic or by

simply omitting the setter in C#. An example is shown here:

 ' VB

Private mUnitsOnHand

Public ReadOnly Property UnitsOnHand() As Integer

 Get

 Return mUnitsOnHand

 End Get

End Property

// C#

private int mUnitsOnHand;

public int UnitsOnHand

{

 get { return mUnitsOnHand; }

}

 If you are creating a read-only property, you must set the member variable that represents

the property’s value in code.

 ADDING EVENTS TO A CONTROL

You can add to a control events that can be raised to notify the rest of the application that

something interesting has happened. Once an event has been added to a class or control, it

can be raised in code to send a notifi cation to the rest of the application.

 In Visual Basic, you can create an event by using the Event keyword and specifying the

name and signature of the event, as shown here:

 ' VB

Public Event Bang(ByVal decibels As Integer)

 On the other hand, C# requires an explicit delegate to be present to specify the signature

before the event keyword can be used to create a new event. The following example demon-

strates how to create an event in C#:

 // C#

public delegate void Sound(int decibels);

public event Sound Bang;

 Note that you specify the delegate itself, not an instance of the delegate.

 Lesson 1: Creating Composite Controls CHAPTER 14 635

 You can raise an event in code by using the RaiseEvent keyword in Visual Basic or by simply

calling the event like you would a method in C#. An example is shown here:

 ' VB

RaiseEvent Bang(100)

// C#

this.Bang(100);

 Exposing the Properties of Constituent Controls

 When constituent controls are added to a composite control, they are given an access level

of Friend by default in Visual Basic and private by default in C#. In both cases the constituent

controls will be inaccessible to classes in other assemblies. If you want to allow other assem-

blies to confi gure parts of the constituent controls, you must expose the properties of the

constituent controls by wrapping them in a property declaration and then writing code in the

property of the composite control to get and set the value of the property of the constituent

control. For example, suppose you wanted to expose the BackColor property of a constitu-

ent button. You might create a property in the composite control called ButtonBackColor, in

which you return the BackColor property of the constituent button in the getter and set the

constituent BackColor property of the button in the setter. An example of how you might

implement this is shown here:

 ' VB

Public Property ButtonBackColor() As System.Drawing.Color

 Get

 Return Button1.BackColor

 End Get

 Set(ByVal value As System.Drawing.Color)

 Button1.BackColor = value

 End Set

End Property

// C#

public System.Drawing.Color ButtonBackColor

{

 get { return Button1.BackColor; }

 set { Button1.BackColor = value; }

}

 Confi guring a Control to Be Invisible at Run Time

 At times you might want your control to be invisible at run time. You can create an invisible

control by setting the Visible property to False. Controls that are invisible cannot interact with

the user through the UI, but they can still interact with the application and other controls. The

following example demonstrates how to set the Visible property to False:

 636 CHAPTER 14 Creating Windows Forms Controls

 ' VB

myUserControl.Visible = False

// C#

myUserControl.Visible = false;

 Note that you can set the Visible property only at run time. To ensure that a control is

invisible at startup, set the Visible property to False in the control’s Load event handler.

 Confi guring a Control to Have a Transparent Background

 When confi guring your control to have a transparent background, you have two types of

transparencies to consider. A control can be transparent so that the visible appearance of the

form underneath the control is seen through the background of the control. A control can

also appear as a transparent window through the form, displaying whatever is on the desktop

beneath the form.

 To create a control with a transparent background color, all you need to do is set the Back-

Color property to Color.Transparent. Whatever is displayed on the form beneath the control

will show through the background of the control. You can set the BackColor to Transparent in

the Properties window at design time, or you can set the BackColor in code, as shown here:

 ' VB

Me.BackColor = Color.Transparent

// C#

this.BackColor = Color.Transparent;

 Creating a transparent control that acts as a window through the form is a little more com-

plex. Each form has a property called TransparencyKey, which represents a color that appears

as transparent when represented on the form. By setting the BackColor property of the

control to the same color as the form’s TransparencyKey property, you can create a window

of transparency through the form. You can set the form’s TransparencyKey property and the

control’s BackColor property in the Designer at design time or in code, as shown here:

 ' VB

Form1.TransparencyKey = Color.Red

myUserControl.BackColor = Color.Red

// C#

Form1.TransparencyKey = Color.Red;

myUserControl.BackColor = Color.Red;

 Providing a Toolbox Bitmap for Your Control

 After you have built a control, it automatically appears in the Toolbox if you are using it in

the same solution that contains the control, or, if it was created in a different project, you can

add it to the Toolbox. When you add the control to the Toolbox, it appears in the Toolbox as

 Lesson 1: Creating Composite Controls CHAPTER 14 637

the name of the control next to an icon. If no icon is specifi ed, a generic icon is supplied. You

can specify the icon that is displayed next to the name of your control by using the Toolbox-

BitmapAttribute. You can attach instances of the ToolboxBitmapAttribute class to your control

declaration and use it to specify a 16 by 16 pixel bitmap that will be used to represent your

control in the Toolbox.

 You can specify the Toolbox bitmap in three ways. The most straightforward way is to sim-

ply specify the path to the bitmap that you want to use. Here is an example of how to do this:

 ' VB

<ToolboxBitmap("C:\myToolboxBitmap.bmp")> Class myControl

 Inherits UserControl

 ' Implementation omitted

End Class

// C#

[ToolboxBitmap(@"C:\myToolboxBitmap.bmp")]

class myControl : UserControl

{}

 You can also use the ToolboxBitmap from an existing type. For example, you could specify

the same ToolboxBitmap that is used by the Button control with the following code:

 ' VB

<ToolBoxBitmap(GetType(System. Windows.Forms.Button))> Class myControl

 Inherits UserControl

 ' Implementation omitted

End Class

// C#

[ToolBoxBitmap(GetType(System. Windows.Forms.Button))]

class myControl : UserControl

{}

 Finally, you can specify an assembly by specifying a type defi ned in that assembly and then

load an icon resource that is specifi ed by a string name, as shown here:

 ' VB

<ToolBoxBitmap(GetType(myControl), "myControl.bmp")> Class myControl

 Inherits UserControl

 ' Implementation omitted

End Class

// C#

[ToolBoxBitmap(GetType(myControl), "myControl.bmp")]

class myControl : UserControl

{}

 638 CHAPTER 14 Creating Windows Forms Controls

Quick Check

 1. Briefl y defi ne a composite control.

 2. How can you expose properties of constituent controls to developers?

Quick Check Answers

 1. A composite control, also called a user control, is a control that is made up of

preexisting controls (called constituent controls) bound together in a single

interface. Composite controls can incorporate custom functionality to enable the

constituent controls to work together.

 2. You expose properties of constituent controls to developers by wrapping them

in user control properties.

LAB Create a Composite Control

In this lab, you will create a simple composite control that acts as a digital clock. You will add

a Label control to your composite control that displays the correct time and a Timer compo-

nent that updates the Label every second. Finally, you will expose the Enabled property of the

Timer control through your composite control to allow users to enable and disable the clock.

EXERCISE 1 Create a Digital Clock

 1. Create a new Windows Forms application in Visual Studio.

 2. From the Project menu, choose Add User Control and click Add in the Add New Item

dialog box. A new user control is added to your project and opens in the Designer.

 3. From the Toolbox, drag a Label control onto the user control. Resize the user control so

that it is approximately the size of the Label control.

 4. From the Toolbox, drag a Timer component onto the user control.

 5. In the Properties window, set the Interval property for the Timer component to 1000

and the Enabled property to True.

 6. Double-click the Timer component to open the Code window to the default event

handler for the Timer.Tick event and add the following line of code:

 ' VB

Label1.Text = Now.ToLongTimeString

// C#

label1.Text = DateTime.Now.ToLongTimeString();

 7. In the Code window, add the following Property declaration:

 ' VB

Public Property TimeEnabled() As Boolean

Quick Check

1. Briefl y defi ne a composite control.

2. How can you expose properties of constituent controls to developers?

Quick Check Answers

1. A composite control, also called a user control, is a control that is made up of

preexisting controls (called constituent controls) bound together in a single

interface. Composite controls can incorporate custom functionality to enable the

constituent controls to work together.

2. You expose properties of constituent controls to developers by wrapping them

in user control properties.

Q

 Lesson 1: Creating Composite Controls CHAPTER 14 639

 Get

 Return Timer1.Enabled

 End Get

 Set(ByVal value As Boolean)

 Timer1.Enabled = value

 End Set

End Property

// C#

public bool TimeEnabled

{

 get { return timer1.Enabled; }

 set { timer1.Enabled = value; }

}

 8. From the File menu, choose Save All to save your solution.

 9. From the Build menu, build your solution.

 10. In Solution Explorer, open Form1. From the Toolbox in the Designer, drag a UserCon-

trol1 onto the form. An instance of your user control is added to the form and begins

keeping time every second. Note that you can pause it by setting the TimeEnabled

property to False in the Properties window.

 11. Press F5 to build and run your application. Note that the user control functions the

same way at run time as it does in the Designer.

 Lesson Summary
 Composite controls, also called user controls, consist of preexisting Windows Forms

controls and components bound together by common functionality in a common

UI. Controls that are contained in a composite control are called constituent controls.

You can add methods, properties, and events to a composite control to create custom

functionality.

 Properties of constituent controls are not generally accessible to developers. You can

expose properties of constituent controls by wrapping them in new properties of the

composite control.

 You can confi gure a control to be invisible at run time by setting the Visible property to

False. You can create a control with a transparent background by setting the Back-

Color property to Color.Transparent. You can create a window through the control and

its owning form by setting the control’s BackColor property to the same color as the

form’s TransparencyKey property.

 You can provide a Toolbox bitmap for a control by confi guring the ToolboxBitmap

attribute.

 640 CHAPTER 14 Creating Windows Forms Controls

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following are characteristics of a composite control? (Choose all that

apply.)

A. Composite controls are made up of preexisting Windows Forms controls.

B. Composite controls can have custom functionality in the form of new methods,

properties, or events.

C. Composite controls must provide their own rendering code.

D. Composite controls automatically expose the properties of their constituent con-

trols as their own properties.

 2. Which of the following are required to provide a Toolbox bitmap for a control?

(Choose all that apply.)

A. You must provide a 16 by 16 pixel bitmap to act as the Toolbox bitmap.

B. You must provide a bitmap to act as the Toolbox bitmap, but size is unimportant

because the .NET Framework will automatically resize it.

C. You must set the Image property of the control to the appropriate bitmap for the

Toolbox bitmap.

D. You must confi gure the ToolboxBitmap attribute to specify a path, a type, or a type

and a resource name.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 2: Creating Custom Controls CHAPTER 14 641

Lesson 2: Creating Custom Controls

 Custom controls provide the highest level of confi gurability and customization of any of the

controls but are also the most time-consuming to develop. There is no default UI for cus-

tom controls, and they must provide all of their own code required to render their graphical

appearance. In addition, Designer support for custom controls is limited, allowing you to add

components from the Toolbox but not allowing any graphical design. Because of these issues,

custom controls can be the most diffi cult type of controls to develop. But they are also the

best choice when you want to create a control with a particularly complex visual appearance.

In this lesson, you will learn to develop a custom control.

After this lesson, you will be able to:

 Develop a custom control.

 Customize a control to paint and render.

 Estimated lesson time: 30 minutes

 Overview of Custom Controls
 When you are developing controls, custom controls provide the highest level of confi gurabil-

ity. You can design a custom control to have the exact visual appearance that you desire, and

you can encode whatever functionality is required to interact with the user.

The custom control Designer is signifi cantly less detailed than the user control Designer.

Custom controls have no default appearance, so the Designer is merely an empty gray win-

dow. You can drag components such as Timers or BackgroundWorkers from the Toolbox onto

the Designer and incorporate their functionality into your control. Technically, you can also

drag controls onto the Designer and incorporate them as well, but they will not be displayed

as part of the custom control. If you want to incorporate preexisting controls into your con-

trol, create a user control as described in Lesson 1, “Creating Composite Controls.”

Custom controls inherit from the Control class. The Control class provides a good deal of

the functionality required for a control. It provides the base functionality required for the

control to interact with the rest of the application. For example, it enables the control to

detect the presence of the mouse, and it exposes common events such as Click. The Control

class also includes properties that are useful for defi ning the UI, such as ForeColor, BackColor,

Visible, Location, and so on. The Control class does not provide any specifi c control functional-

ity, however.

 The key development task in creating a custom control is implementation of the visible UI.

You can create the UI by implementing the OnPaint method, which is called whenever the

control is rendered to the screen, and it should include the code required to paint the control.

Before implementation of the OnPaint method can be discussed, it is necessary to provide an

introduction to the graphics and drawing classes of the .NET Framework.

After this lesson, you will be able to:

Develop a custom control.

Customize a control to paint and render.

Estimated lesson time: 30 minutes

 642 CHAPTER 14 Creating Windows Forms Controls

 Introduction to the System.Drawing Namespaces

 The System.Drawing namespaces expose a great deal of graphics functionality. Although an

exhaustive exploration of these namespaces is not possible within the context of this book,

you will learn the basics of the functionality required to implement a UI for a custom control.

The general functions of the classes contained in the System.Drawing namespaces are sum-

marized in Table 14-1.

 TABLE 14-1 The System.Drawing Namespaces

 NAMESPACE CONTAINS

 System.Drawing Most of the classes involved in rendering graphic content

to the screen

 System.Drawing.Design Classes that provide additional functionality for design-

time graphics operations

 System.Drawing.Drawing2D Classes that are designed to render two-dimensional

effects and advanced shapes

 System.Drawing.Imaging Classes that facilitate manipulation and rendering of

images

 System.Drawing.Printing Classes involved in printing content

 System.Drawing.Text Classes that facilitate manipulation of fonts

 Most of the classes you will use to render graphics for a control are provided in the System.

Drawing and System.Drawing.Drawing2D namespaces.

 THE GRAPHICS CLASS

The Graphics class is the principal class involved in rendering graphics. An instance of the

Graphics class represents the drawing surface of a visual element such as a form or control.

The Graphics class encapsulates the interface between the .NET Framework and the graphics

rendering system and is used to render all graphics that represent the visual element.

 Because a Graphics object must be associated with a visual element, you cannot create a

Graphics object directly. Instead, you must obtain a reference to a Graphics object from the

visual element that owns it. Classes that inherit from Control (including Form and any custom

controls you might create) expose a CreateGraphics method that returns a reference to the

Graphics object associated with the control. The following code demonstrates how to access

the Graphics object of a control named myControl:

 ' VB

Dim myGraphics As System.Drawing.Graphics

myGraphics = myControl.CreateGraphics()

 Lesson 2: Creating Custom Controls CHAPTER 14 643

// C#

System.Drawing.Graphics myGraphics;

myGraphics = myControl.CreateGraphics();

 The Graphics class exposes several methods that are used for rendering graphics to the

drawing surface that it represents. These methods are divided into methods that are used to

draw line structures and methods that are used to draw fi lled shapes. Some of these methods

are summarized in Table 14-2 and Table 14-3.

 TABLE 14-2 Methods for Rendering Line Structures

 METHOD DESCRIPTION

 DrawArc Draws an arc representing a portion of an ellipse

 DrawClosedCurve Draws a closed curve through a series of points

 DrawCurve Draws an open curve through a series of points

 DrawEllipse Draws an ellipse defi ned by a bounding rectangle

 DrawLine Draws a line connecting two points

 DrawLines Draws a series of lines connecting an array of points

 DrawPath Draws a GraphicsPath object, which usually represents a complex

shape

 DrawPie Draws a pie shape representing a slice of an ellipse

 DrawPolygon Draws a polygon created from a series of points

 DrawRectangle Draws a rectangle

 DrawRectangles Draws a series of rectangles

 TABLE 14-3 Methods for Rendering Filled Shapes

 METHOD DESCRIPTION

 FillClosedCurve Renders a fi lled closed curve specifi ed by an array of points

 FillEllipse Renders a fi lled ellipse

 FillPath Renders a fi lled GraphicsPath that usually represents a complex shape

 FillPie Renders a fi lled pie shape that represents a slice of an ellipse

 FillPolygon Renders a fi lled polygon specifi ed by an array of points

 FillRectangle Renders a fi lled rectangle

 FillRectangles Renders a series of fi lled rectangles

 FillRegion Renders a fi lled Region object that usually corresponds to a complex

shape

 644 CHAPTER 14 Creating Windows Forms Controls

 Each of these methods takes a different set of parameters that specify coordinate points

and locations of the shapes to be drawn. Each method requires an object to perform the ren-

dering. For line structures, this is a Pen object; for fi lled shapes, this is a Brush object.

 CREATING PEN OBJECTS

A Pen is an object that is required to draw line shapes. Like a physical pen, a Pen object allows

you to draw a line of a specifi ed width. You can create a new instance of a pen from a speci-

fi ed color, as shown here:

 ' VB

Dim myPen As New Pen(Color.Tomato)

// C#

Pen myPen = new Pen(Color.Tomato);

 By default, pens created in this manner are one pixel wide. You can also specify a width.

The following example demonstrates how to create a Pen with a width of three pixels:

 ' VB

Dim myPen As New Pen(Color.Tomato, 3)

// C#

Pen myPen = new Pen(Color.Tomato, 3);

 CREATING BRUSHES

Like real-life paintbrushes, Brush objects render fi lled shapes and text. A Brush object is

required for any of the Graphics methods that render fi lled shapes. Although several types of

Brush classes can be used to render complex visual effects, the one you will use most fre-

quently is the SolidBrush, which is used to render fi lled shapes of a solid color. The following

example demonstrates how to create a SolidBrush from a specifi ed color:

 ' VB

Dim myBrush As New SolidBrush(Color.Lime)

// C#

SolidBrush myBrush = new SolidBrush(Color.Lime);

 SYSTEM BRUSHES AND PENS

You can create pens and brushes that represent the colors used by the system to render the

UI by accessing the SystemPen and SystemBrush enumerations. These can be useful when

you want to match the look and feel of the system settings or when you are designing for

accessibility to ensure that high-contrast mode will be enabled. The following code example

demonstrates how to obtain a reference to a SystemPen and SystemBrush:

 Lesson 2: Creating Custom Controls CHAPTER 14 645

 ' VB

Dim myPen As New Pen = SystemPens.Control

Dim myBrush As New Brush = SystemBrushes.Control

// C#

Pen myPen = SystemPens.Control;

Brush myBrush = SystemBrushes.Control;

 RENDERING SIMPLE SHAPES

You can use the methods provided by the Graphics object to render a variety of simple

shapes, as summarized in Table 14-2 and Table 14-3.

 All of the methods that render line shapes require a Pen object. Likewise, all of the meth-

ods that render fi lled shapes require a Brush object. In addition, you must supply whatever

other parameters the method requires, such as coordinates or other objects. When coordi-

nates are specifi ed, they are in the coordinate system of the drawing surface represented by

the Graphics object. For example, if the Graphics object you are using represents a control,

then the coordinate (0,0) represents the upper left-hand corner of the control. Note that

these coordinates are independent of the location of the control as represented by the

Location property because the Location property defi nes the location of the upper left-hand

corner of the control in the coordinate system of its container. The following example demon-

strates how to render a fi lled ellipse using the Graphics object of the form:

 ' VB

Dim myBrush As New SolidBrush(Color.PapayaWhip)

Dim g As Graphics = Me.CreateGraphics()

Dim myRectangle As New Rectangle(0,0,10,30)

g.FillEllipse(myBrush, myRectangle)

g.Dispose()

myBrush.Dispose()

// C#

SolidBrush myBrush = new SolidBrush(Color.PapayaWhip);

Graphics g = this.CreateGraphics();

Rectangle myRectangle = new Rectangle(0,0,10,30);

g.FillEllipse(myBrush, myRectangle);

g.Dispose();

myBrush.Dispose();

 Note that you should always call Dispose on your Pen, Brush, and Graphics objects because

they consume system resources and performance will be degraded if they are not disposed of

promptly.

 646 CHAPTER 14 Creating Windows Forms Controls

 RENDERING TEXT

The Graphics object exposes a method called DrawString, which can be used to render text.

You must specify a font for the text, as well as a location for the upper left-hand corner of the

text and a Brush object. The following example demonstrates how to render text on a form

using the DrawString method:

 ' VB

Dim g As Graphics = Me.CreateGraphics()

Dim myString As String = "Hello World!"

Dim myFont As New Font("Times New Roman", 36, FontStyle.Regular)

' The final two parameters are the X and Y coordinates of the upper left hand

' corner of the rendered string.

g.DrawString(myString, myFont, SystemBrushes.Highlight, 20, 20)

g.Dispose()

// C#

Graphics g = this.CreateGraphics();

string myString = "Hello World!";

Font myFont = new Font("Times New Roman", 36, FontStyle.Regular);

// The final two parameters are the X and Y coordinates of the upper left hand

// corner of the rendered string.

g.DrawString(myString, myFont, SystemBrushes.Highlight, 20, 20);

g.Dispose();

 Rendering Custom Controls by Overriding the OnPaint Method

 You can render the visual interface for a custom control by overriding the OnPaint method.

The OnPaint method internally handles the Paint method and contains all of the code

required to render the visual appearance of the control.

 The OnPaint method has a single parameter, an instance of PaintEventArgs. This instance

of PaintEventArgs contains two important members. The ClipRectangle parameter contains

the rectangle in which painting will take place. The Graphics parameter contains an instance

of the Graphics class that represents the drawing surface of the control being rendered.

 When a control is drawn or refreshed, only the part of the control that needs to be

refreshed is drawn. If the entire control needs to be refreshed, the ClipRectangle will represent

the size of the entire control. If only part of the control needs to be refreshed, however, the

ClipRectangle object will represent only the region that needs to be redrawn. For the most

part, you as the developer will never need to use the ClipRectangle property—it is used auto-

matically by the Graphics object.

 The Graphics object represents the drawing surface of the control. By using the methods

described in the previous section, you can render the visual appearance of the control. All of

the methods that render graphics require coordinates for the location of the graphics. The

upper left-hand corner of the control is (0,0), and the control is bounded by the Control.Width

and Control.Height properties. The following example demonstrates how to override the

OnPaint method and render a fi lled-in blue rectangle that fi lls the entire control:

 Lesson 2: Creating Custom Controls CHAPTER 14 647

' VB

Protected Overrides Sub OnPaint(ByVal pe As System. Windows.Forms.PaintEventArgs)

 MyBase.OnPaint(pe)

 Dim g As Graphics = pe.Graphics

 g.FillRectangle(Brushes.Blue, 0, 0, Me.Width, Me.Height)

End Sub

// C#

protected override void OnPaint(PaintEventArgs pe)

{

 base.OnPaint(pe);

 Graphics g = pe.Graphics;

 g.FillRectangle(Brushes.Blue, 0, 0, this.Width, this.Height);

}

Note the call to MyBase.OnPaint (in Visual Basic) or base.OnPaint (in C#). When you are

overriding a method in an inherited class, you should generally call the method in the base

class to call any base implementation.

TO CREATE A CUSTOM CONTROL

 1. Add a new class to your project that inherits from the Control class.

 2. Override the OnPaint method to provide custom rendering code.

 3. Implement other functionality for the control.

 Quick Check

 1. How is a custom control different from a composite control?

 2. Briefl y describe how the Graphics and ClipRectangle properties of PaintEventArgs

are used in the OnPaint method.

Quick Check Answers

 1. A composite control provides a designer and a default visual interface and

is composed of other Windows Forms controls bound together by common

functionality and in a common interface. A custom control has no default visual

interface and has a limited designer by default. Custom controls must provide

their own rendering code and generally do not incorporate other Windows

Forms controls.

 2. You must override the OnPaint method to create the rendering code for a

custom control. The Graphics property of PaintEventArgs represents the draw-

ing surface of the custom control and exposes all of the methods required to

render graphics to the UI. The ClipRectangle is the rectangle that will be drawn

or redrawn when the control is rendered. It is used by the Graphics object but

generally does not need to be used by the developer.

Quick Check

1. How is a custom control different from a composite control?

2. Briefl y describe how the Graphics and ClipRectangle properties of PaintEventArgs

are used in the OnPaint method.t

Quick Check Answers

1. A composite control provides a designer and a default visual interface and

is composed of other Windows Forms controls bound together by common

functionality and in a common interface. A custom control has no default visual

interface and has a limited designer by default. Custom controls must provide

their own rendering code and generally do not incorporate other Windows

Forms controls.

2. You must override the OnPaint method to create the rendering code for a t

custom control. The Graphics property of PaintEventArgs represents the draw-

ing surface of the custom control and exposes all of the methods required to

render graphics to the UI. The ClipRectangle is the rectangle that will be drawn

or redrawn when the control is rendered. It is used by the Graphics object but

generally does not need to be used by the developer.

Q

 648 CHAPTER 14 Creating Windows Forms Controls

 LAB Create a Custom Control

 In this lab, you will create another digital clock. Like the control you created in the lab from

Lesson 1, “Creating Composite Controls,” it will incorporate a Timer component to update the

UI on a regular basis. Unlike in the previous lab, however, you will create your own rendering

for this control instead of using a Label control.

 EXERCISE 1 Create Another Digital Clock

 1. Create a new Windows Forms application in Visual Studio.

 2. From the Project menu, choose Add New Item. Select the Custom Control template in

the Add New Item dialog box and click Add. A new custom control is added to your

project and opens in the Designer.

 3. In the Designer for CustomControl1, drag a Timer component from the Toolbox onto

the custom control.

 4. In the Properties window, set the Interval property for the Timer component to 1000

and the Enabled property to True.

 5. Double-click the Timer component to open the Code window to the default event

handler for the Timer.Tick event. Add the following line of code:

 ' VB

Me.Refresh()

// C#

this.Refresh();

 6. In the Code window, add the following code to the OnPaint method, beneath the call

to the base class’s OnPaint method:

 ' VB

e.Graphics.DrawString(Now.ToLongTimeString, Me.Font, _

 New SolidBrush(Me.ForeColor), 0, 0)

// C#

pe.Graphics.DrawString(DateTime.Now.ToLongTimeString(), this.Font,

 new SolidBrush(this.ForeColor), 0, 0);

 7. From the File menu, choose Save All to save your solution.

 8. From the Build menu, build your solution.

 9. In Solution Explorer, open Form1. From the Toolbox in the Designer, drag a Custom-

Control1 onto the form. An instance of your custom control is added to the form and

begins keeping time every second.

 10. Press F5 to build and run your application. Note that the user control functions the

same way at run time as it does in the Designer.

 Lesson 2: Creating Custom Controls CHAPTER 14 649

Lesson Summary
 In addition to exposing custom methods, events, and properties, custom controls

provide their own rendering code. You must override the OnPaint method to provide

custom rendering code.

 The Graphics class represents a drawing surface and exposes a variety of methods that

can be used to render graphical images. Methods that render line drawings require a

Pen object, whereas methods that render fi lled shapes require a Brush object.

 When rendering a custom control, you use coordinates to reference points in the

control. The coordinate (0,0) represents the upper left-hand corner of the control, and

the coordinate represented by the (Width, Height) of the control represents the lower

right-hand corner of the control.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following are true of the Graphics class? (Choose all that apply.)

A. The Graphics class encapsulates Pens and Brushes that can be used to render

graphics.

 B. The Graphics class represents a drawing surface, such as one exposed by a form or

control.

 C. The Graphics class provides a variety of methods that can be used to render line

shapes and fi lled shapes.

 D. You can obtain a reference to an instance of the Graphics class by calling Control.

CreateGraphics or from an instance of PaintEventArgs in the OnPaint method.

 2. Which of the following are characteristics of custom controls? (Choose all that apply.)

A. Custom controls must provide their own rendering code.

B. Custom controls can incorporate other Windows Forms components.

C. Custom controls provide a default visual interface around which the rendering

code is built.

D. Custom controls inherit from the UserControl class.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 650 CHAPTER 14 Creating Windows Forms Controls

Lesson 3: Creating Extended Controls and Dialog
Boxes

In addition to creating composite controls from other Windows Forms controls and custom

controls that provide their own visual interface, you can create controls that extend other

controls. You can add properties and methods to preexisting controls and, in some cases,

even provide a different visual representation for a standard control (for example, a round

Button control). In this lesson, you will learn to create extended controls and dialog boxes.

You can also add user controls created using Windows Presentation Foundation (WPF) to

your Windows Forms projects by using the ElementHost control. In this lesson you will learn

to add a WPF user control to your Windows Forms project and use triggers to respond to

user input.

After this lesson, you will be able to:

 Create and use custom dialog boxes in Windows Forms applications.

 Develop an extended control (inherited from an existing Windows Forms

control).

Estimated lesson time: 30 minutes

Custom Dialog Boxes
Dialog boxes are commonly used to gather information from the application user. Visual

Studio provides prebuilt dialog boxes that enable the user to select a fi le, font, or color. You

can create custom dialog boxes to collect specialized information from the user. For example,

you might create a dialog box that collects user information and relays it to the main form of

the application.

A dialog box generally includes an OK button, a Cancel button, and whatever controls

are required to gather information from the user. The general behavior of an OK button is

to accept the information provided by the user and then to close the form, returning a result

of DialogResult.OK. The general behavior of the Cancel button is to reject the user input and

close the form, returning a result of DialogResult.Cancel.

Visual Studio .NET provides a template for dialog boxes. You can add a new dialog box

to your application by selecting the Project Menu, then Add New Item, and then the Dialog

Box template. Figure 14-2 shows an example of the Dialog Box template that is added to your

application.

You can set the DialogResult property for the OK and Cancel buttons in the Properties

window. In general, you should set the DialogResult for the OK button to DialogResult.OK and

the DialogResult for the Cancel button to DialogResult.Cancel.

After this lesson, you will be able to:

Create and use custom dialog boxes in Windows Forms applications.

Develop an extended control (inherited from an existing Windows Forms

control).

Estimated lesson time: 30 minutes

 Lesson 3: Creating Extended Controls and Dialog Boxes CHAPTER 14 651

 FIGURE 14-2 The Dialog Box template

 Modal and Modeless Dialog Boxes

 A modal dialog box is a dialog box that pauses program execution until the dialog box is

closed. Conversely, a modeless dialog box allows application execution to continue.

 Displaying a Dialog Box

 You can display a dialog box modelessly by using the Form.Show method, as shown here:

 ' VB

Dim aDialog As New DialogForm()

aDialog.Show()

// C#

DialogForm aDialog = new DialogForm();

aDialog.Show();

 When shown modelessly, a dialog box does not return a dialog result and does not halt

program execution, but you can still retrieve information from the form by examining prop-

erty values of the form.

 You can show a dialog box modally by calling the Form.ShowDialog method, as shown

here:

 ' VB

Dim aDialog As New DialogForm()

aDialog.ShowDialog()

// C#

DialogForm aDialog = new DialogForm();

aDialog.ShowDialog();

 652 CHAPTER 14 Creating Windows Forms Controls

 The ShowDialog method returns the DialogResult value of the button that was clicked to

close the form. If the Button.DialogResult property is not set, it returns DialogResult.None. The

following example demonstrates how to retrieve the DialogResult of a dialog box:

 ' VB

Dim aDialog As New DialogForm()

Dim aResult As DialogResult

aResult = aDialog.ShowDialog()

If aResult = DialogResult.OK Then

 ' Do something with the dialog box information

End If

// C#

DialogForm aDialog = new DialogForm();

DialogResult aResult;

aResult = aDialog.ShowDialog();

if (aResult == DialogResult.OK)

{

 // Do something with the dialog box information

}

 Setting the ParentForm Property of the Dialog Box

 You can also set the ParentForm property of the dialog box with the ShowDialog method

by specifying the parent form as a parameter, as shown in the following example:

 ' VB

Dim aDialog As New DialogForm()

Dim aResult As DialogResult

aResult = aDialog.ShowDialog(Me)

// C#

DialogForm aDialog = new DialogForm();

DialogResult aResult;

aResult = aDialog.ShowDialog(this);

 Retrieving Information from the Parent Form

 Once the parent form has been set, you can retrieve information from it by casting the

ParentForm property to the appropriate type and then reading its properties, as shown in the

following example. This example assumes an instance of a dialog box called DialogForm and

that the ParentForm property has been set to an instance of a form called Form1.

 ' VB

Dim aForm As Form1

aForm = CType(DialogForm.ParentForm, Form1)

' You can now read the information of the parent form

 Lesson 3: Creating Extended Controls and Dialog Boxes CHAPTER 14 653

// C#

Form1 aForm;

aForm = (Form1)DialogForm.ParentForm;

// You can now read the information of the parent form

 Once a dialog box has been closed, it is no longer visible to the user but its instance

remains in memory. You can then retrieve the user input from the dialog box.

 Retrieving Dialog Box Information by Using Properties

 In general, user input from the dialog box should be exposed through properties of the

dialog box. For example, a dialog box that allows the user to input a fi rst name should expose

that information through a FirstName property. The following example demonstrates how

to create a property for a dialog box that takes the user input from a text box called txtFirst-

Name and exposes it as a read-only property called FirstName.

 ' VB

Public ReadOnly Property FirstName() As String

 Get

 Return txtFirstName.Text

 End Get

End Property

// C#

public string FirstName

{

 get

 {

 return txtFirstName.Text;

 }

}

 You can then read the property in the dialog box to retrieve the fi rst name, as shown here:

 ' VB

Dim name As String

name = DialogBox.FirstName

// C#

string name;

name = DialogBox.FirstName;

 Creating Extended Controls
 Extended controls are user-created controls that extend a preexisting .NET Framework control.

By extending existing controls, you can retain all of the functionality of the control but add

properties, methods and, in some cases, alter the rendered appearance of the control.

 654 CHAPTER 14 Creating Windows Forms Controls

 Extending a Control

 You can create an extended control by creating a class that inherits the control in question.

The following example demonstrates how to create a control that inherits the Button class:

 ' VB

Public Class ExtendedButton

 Inherits System. Windows.Forms.Button

End Class

// C#

public class ExtendedButton : System. Windows.Forms.Button

{}

 The ExtendedButton class created in the previous example has the same appearance,

behavior, and properties as the Button class, but you can now extend this functionality by

adding custom properties or methods. For example, the following demonstrates adding a

property called ButtonValue that returns an integer:

 ' VB

Public Class ExtendedButton

 Inherits System. Windows.Forms.Button

 Private mValue As Integer

 Public Property ButtonValue() As Integer

 Get

 Return mValue

 End Get

 Set(ByVal Value As Integer)

 mValue = Value

 End Set

 End Property

End Class

// C#

public class ExtendedButton : System. Windows.Forms.Button

{

 int mValue;

 public int ButtonValue

 {

 get

 {

 return mValue;

 }

 set

 {

 mValue = value;

 Lesson 3: Creating Extended Controls and Dialog Boxes CHAPTER 14 655

 }

 }

}

 Overriding Methods

 In addition to adding new methods and properties to your control, you can also provide a

new implementation for existing methods by overriding them. Overriding allows you to sub-

stitute your own implementation for the base implementation of a method or to add to the

functionality that is already there. The following demonstrates how to override the OnClick

method in a class that inherits from Button. The new implementation increments a variable

called Clicks and then calls the base implementation of OnClick.

 ' VB

Protected Overrides Sub OnClick(ByVal e As System.EventArgs)

 Clicks += 1

 MyBase.OnClick(e)

End Sub

// C#

protected override void OnClick(System.EventArgs e)

{

 Clicks++;

 base.OnClick(e);

}

 Altering the Appearance of an Inherited Control

 You can change the visual appearance of some controls by overriding the OnPaint method.

This allows you to either add to or replace the rendering logic of the control. To add to the

default rendering of the control, you should call the MyBase.OnPaint (Visual Basic) or base.

OnPaint (C#) method to call the base class’s rendering code in addition to your own. To pro-

vide a completely custom appearance for the control, you can omit the call to the base class’s

OnPaint method. The following example demonstrates how to create a simple elliptical but-

ton. Note, however, that it changes only the shape of the control and does not address subtler

rendering tasks, such as outlining.

 ' VB

Protected Overrides Sub OnPaint(ByVal pevent As System. Windows.Forms.PaintEventArgs)

 Dim x As New System.Drawing.Drawing2D.GraphicsPath

 x.AddEllipse(0, 0, Me.Width, Me.Height)

 Me.Region = New Region(x)

 MyBase.OnPaint(pevent)

End Sub

 656 CHAPTER 14 Creating Windows Forms Controls

// C#

protected override void OnPaint(System. Windows.Forms.PaintEventArgs pevent)

{

 System.Drawing.Drawing2D.GraphicsPath x = new System.Drawing.Drawing2D.

GraphicsPath();

 x.AddEllipse(0, 0, this.Width, this.Height);

 this.Region = new Region(x);

 base.OnPaint(pevent);

}

 Adding a WPF User Control to Your Windows Form Project
 Windows Presentation Foundation (WPF) is a relatively new technology for the creation of

applications for Microsoft Windows. Although it is superfi cially similar to Windows Forms,

WPF has a dramatically different programming model. The presentation layer is defi ned using

XML-based Application Markup Language (XAML), and the code behind the presentation

layer can be defi ned in Visual Basic, C#, or any other .NET-enabled language.

 Although the creation of WPF controls is beyond the scope of this book, you can add pre-

existing WPF user controls to your Windows Forms project by using the ElementHost control.

As the name implies, the ElementHost control hosts a WPF element.

 The most important property of ElementHost is the Child property. The Child property

indicates the type of WPF control to be hosted by ElementHost control. If the WPF control

to be hosted is in a project that is a member of the solution, you can set the Child property

in the Property Grid. Otherwise, the Child property must be set to an instance of the WPF

control in code, as shown here:

 ' VB

 Dim aWPFcontrol As New WPFProject.UserControl1

ElementHost1.Child = aWPFcontrol

// C#

 WPFProject.UserControl1 aWPFcontrol = new WPFProject.UserControl1;

ElementHost1.Child = aWPFcontrol;

 Using Triggers to Respond to User Input

 WPF allows you to use triggers to respond to user input. Triggers are specialized classes that

use the WPF dependency property architecture to listen for changes in properties and effect

changes in other properties in response.

 Triggers have three important properties: The Property property, the Value property, and

the Setters collection.

 The Property property determines the dependency property to be listened to. A depen-

dency property is a special type of property found in WPF controls that has built-in change

 Lesson 3: Creating Extended Controls and Dialog Boxes CHAPTER 14 657

notifi cation. You set the Property property of a trigger to a static member of the control that

represents the dependency property. This member usually has the word Property appended

to it. An example is shown here:

 ' VB

atrigger.Property = UserControl11.IsMouseOverProperty

// C#

atrigger.Property = UserControl11.IsMouseOverProperty;

 The Value property represents the expected value of the property represented by the

Property property. When the value of the property represented by the Property property is

equal to the value represented by the Value property, the trigger activates the Setter objects

in the Setters collection. Setter objects also have a Property property and a Value property.

When a Setter object is activated, it applies the value stored in the Value property to the

property represented by the Property property.

 To apply a trigger to a WPF control, you must add it to the Triggers collection of the con-

trol’s Style object.

 TO APPLY A TRIGGER TO A WPF CONTROL

 1. Create a new Trigger object in code, as seen here.

 ' VB

Dim atrigger As New System. Windows.Trigger()

// C#

System. Windows.Trigger atrigger = new System. Windows.Trigger();

 2. Set the Property property and Value property of the new trigger as seen here:

 ' VB

atrigger.Property = myWPFControl.IsMouseOverProperty

atrigger.Value = True

// C#

atrigger.Property = myWPFControl.IsMouseOverProperty;

atrigger.Value = true;

 3. Create one or more Setter objects and add them to the Trigger object’s Setters collec-

tion, as shown here:

 ' VB

Dim asetter As New System. Windows.Setter

asetter.Property = UserControl11.BackgroundProperty

asetter.Value = System. Windows.Media.Brushes.Red

atrigger.Setters.Add(asetter)

 658 CHAPTER 14 Creating Windows Forms Controls

// C#

System. Windows.Setter asetter = new System. Windows.Setter();

asetter.Property = UserControl11.BackgroundProperty;

asetter.Value = System. Windows.Media.Brushes.Red;

atrigger.Setters.Add(asetter);

 4. If the WPF control in question already has a Style object associated with it, obtain a

reference to that Style object and add the Trigger object to the Style object’s Triggers

collection, as shown here:

' VB

myWPFControl.Style.Triggers.Add(atrigger)

// C#

myWPFControl.Style.Triggers.Add(atrigger);

 5. If the WPF control in question does not have a Style object associated with it, create

a new Style object, add the Trigger object to the Style object’s Triggers collection, and

then set the control’s Style property to the new Style object, as shown here:

 ' VB

Dim astyle As New System. Windows.Style()

astyle.Triggers.Add(atrigger)

myWPFControl.Style = astyle

// C#

System. Windows.Style astyle = new System. Windows.Style();

astyle.Triggers.Add(atrigger);

myWPFControl.Style = astyle;

 Quick Check

 1. How can you retrieve the dialog result of a dialog box?

 2. Briefl y describe how to create an extended control.

 Quick Check Answers

 1. You can retrieve the dialog result of a dialog box by creating a variable of type

DialogResult and assigning to it the value returned by the ShowDialog method of

the dialog box.

 2. You can create an extended control by creating a class that inherits a preexisting

control. After you have created the extended control, you can add properties

and methods, as well as override methods in the base class.

Quick Check

1. How can you retrieve the dialog result of a dialog box?

2. Briefl y describe how to create an extended control.

Quick Check Answers

1. You can retrieve the dialog result of a dialog box by creating a variable of type

DialogResult and assigning to it the value returned by thet ShowDialog method of

the dialog box.

2. You can create an extended control by creating a class that inherits a preexisting

control. After you have created the extended control, you can add properties

and methods, as well as override methods in the base class.

Q

 Lesson 3: Creating Extended Controls and Dialog Boxes CHAPTER 14 659

 LAB Create an Extended Control

 In this lab, you will create a new control by extending the Button control. You will create a

new button with a property that counts the number of clicks the button receives and displays

that number in the lower right-hand corner of the button.

 EXERCISE 1 Create an Extended Button Control

 1. Create a new Windows Forms application in Visual Studio.

 2. From the Project menu, choose Add Class. Name the class ClickButton and click Add.

 3. Modify the class declaration to make ClickButton inherit from the Button class, as

shown here:

 ' VB

Public Class ClickButton

 Inherits System. Windows.Forms.Button

End Class

// C#

public class ClickButton : System. Windows.Forms.Button

{}

 4. Add the following member variable and property to the code window to create the

Clicks property:

 ' VB

Private mClicks As Integer

Public ReadOnly Property Clicks() As Integer

 Get

 Return mClicks

 End Get

End Property

// C#

int mClicks;

public int Clicks

{

 get { return mClicks; }

}

 5. Override the OnClick method to increment the private variable mClicks every time the

button is clicked, as shown here:

 ' VB

Protected Overrides Sub OnClick(ByVal e As System.EventArgs)

 mClicks += 1

 660 CHAPTER 14 Creating Windows Forms Controls

 MyBase.OnClick(e)

 Me.Refresh()

End Sub

// C#

protected override void OnClick(EventArgs e)

{

 mClicks++;

 base.OnClick(e);

 this.Refresh();

}

 6. Override the OnPaint method to render the number of clicks in the bottom right-hand

corner of the control, as shown here:

 ' VB

Protected Overrides Sub OnPaint(ByVal pevent As System. Windows.Forms.

PaintEventArgs)

 MyBase.OnPaint(pevent)

 Dim g As Graphics = pevent.Graphics

 Dim stringsize As SizeF

 stringsize = g.MeasureString(Clicks.ToString, Me.Font, Me.Width)

 g.DrawString(Clicks.ToString, Me.Font, SystemBrushes.ControlText, _

 Me.Width - stringsize.Width - 3, Me.Height - stringsize.Height - 3)

End Sub

// C#

protected override void OnPaint(System. Windows.Forms.PaintEventArgs pevent)

{

 base.OnPaint(pevent);

 System.Drawing.Graphics g = pevent.Graphics;

 System.Drawing.SizeF stringsize;

 stringsize = g.MeasureString(Clicks.ToString(), this.Font, this.Width);

 g.DrawString(Clicks.ToString(), this.Font,

 System.Drawing.SystemBrushes.ControlText, this.Width -

 stringsize.Width - 3, this.Height - stringsize.Height - 3);

}

 7. From the File menu, choose Save All to save your solution.

 8. From the Build menu, build your solution.

 9. In Solution Explorer, open Form1.

 10. From the Toolbox in the Designer, drag an instance of ClickButton onto the form and

resize it to make it slightly larger.

 Lesson 3: Creating Extended Controls and Dialog Boxes CHAPTER 14 661

 11. Press F5 to compile and run your application.

 12. In the form, click the ClickButton. Note that the number of clicks is displayed in the

lower right-hand corner.

 Lesson Summary
 Dialog boxes are special forms that are designed to collect information from the user.

Dialog boxes can be displayed either modally or modelessly. Modal dialog boxes halt

program execution until the dialog box is closed, whereas modeless dialog boxes allow

program execution to continue while they are displayed.

 You can use the ShowDialog method to set the parent form of a dialog box. You can

then retrieve information from the parent form by casting a reference to the parent

form to the appropriate type.

 You can create an extended control by creating a class that inherits a preexisting con-

trol. Extended controls encapsulate all of the functionality of the inherited control. In

addition, you can create new properties, methods, and events for an inherited control

or override existing methods to replace preexisting functionality.

 You can alter the appearance of an extended control by overriding the OnPaint

method. You should call the base class’s OnPaint method to provide rendering for the

base class or omit the call to the base class’s OnPaint method to provide completely

different rendering for the control.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following code samples correctly demonstrates how to retrieve the dialog

result for a dialog box?

 A. ' VB

Dim aResult As DialogResult

aResult = DialogForm.Show()

// C#

DialogResult aResult;

aResult = DialogForm.Show();

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 662 CHAPTER 14 Creating Windows Forms Controls

 B. ' VB

Dim aResult As DialogResult

aResult = DialogForm.ShowDialog()

// C#

DialogResult aResult;

aResult = DialogForm.ShowDialog();

 C. ' VB

Dim aResult As DialogResult

aResult = DialogForm.Show(Me)

// C#

DialogResult aResult;

aResult = DialogForm.Show(this);

 D. ' VB

Dim aResult As DialogResult

aResult = DialogForm.ShowDialog(DialogResult.OK)

// C#

DialogResult aResult;

aResult = DialogForm.ShowDialog(DialogResult.OK);

 2. Which of the following are required to create an extended control?

 A. You must override the OnPaint method to provide custom rendering.

 B. You must provide a Toolbox bitmap for the new control.

 C. You must inherit from a preexisting control.

 D. You must expose any necessary properties of the inherited control by wrapping

them in new properties.

 Chapter Review CHAPTER 14 663

 Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 Composite controls, also called user controls, consist of preexisting Windows Forms

controls and components bound together by common functionality in a common UI.

Controls that are contained in a composite control are called constituent controls. You

can expose properties of constituent controls by wrapping them in new properties of

the composite control. You can provide a Toolbox bitmap for a control by confi guring

the ToolboxBitmap attribute.

 The Graphics class represents a drawing surface and exposes a variety of methods

that can be used to render graphical images. Custom controls must provide their own

rendering code. You must override the OnPaint method to provide custom rendering

code. When rendering a custom control, you use coordinates to reference points in the

control.

 Dialog boxes are special forms that are designed to collect information from the user.

Dialog boxes can be displayed either modally, which halts program execution, or

modelessly, which allows execution to continue. You can use the ShowDialog method

to display a dialog box modally and set the parent form of a dialog box. You can create

properties in the dialog box to expose the information collected from the user.

 You can create an extended control by creating a class that inherits a preexisting con-

trol. Extended controls encapsulate all of the functionality of the inherited control. In

addition, you can create new properties, methods, and events for an inherited control

or override existing methods to replace preexisting functionality. You can alter the

appearance of an extended control by overriding the OnPaint method.

 Key Terms
 composite control

 custom control

 extended control

 664 CHAPTER 14 Creating Windows Forms Controls

 modal

 modeless

 user control

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about how to use controls

to design UIs. You can fi nd answers to these questions in the “Answers” section at the end of

this book.

 Case Scenario 1: Collecting and Displaying User Data

 You’ve been given the job of designing the UI of a simple application that accepts input from

the user, stores it in a database, and then displays that user input. The key requirements for

this project, however, are consistency and code reuse. The look and feel of the user input por-

tion of the application must be the same as the look and feel of the display portion, but the

display must be read-only. In addition, several other applications of this sort are planned, and

a consistent look and feel is required for all of them with a minimum of developer hours.

 QUESTIONS

 Answer the following questions for your manager:

 1. What strategies can you use to build the UI with an eye toward consistency and code

reuse?

 2. How can you create a read-only display and a read-write input while maintaining the

goal of code reuse?

 Case Scenario 2: Trey Research Stock Price

 The people at Trey Research are preoccupied with their stock price. So preoccupied, in fact,

that they check their stock price online with such frequency that it is starting to affect job

performance. As a solution, management would like to create a way to display the stock price

graphically and in real time on all the internal Windows Forms applications that they use. You

are provided with access to a Web service that provides streaming updates of the stock price.

 TECHNICAL REQUIREMENTS

 Stock price must be displayed both as an actual number and as a chart that is updated

throughout the day.

 Stock price must be updated in real time every 15 seconds.

 It must be easy to integrate this functionality with a variety of Windows Forms

applications.

 QUESTIONS

 How can this functionality be implemented?

 Take a Practice Test CHAPTER 14 665

Suggested Practices

 Create a dialog box that collects user information, such as fi rst name, last name,

address, postal code, and phone number, and exposes that information as properties.

Then create a dialog box that collects the same information but exposes the informa-

tion as a single instance of a class that encapsulates all of that information.

 Extend the composite control created in the lab in Lesson 1, "Creating Composite Con-

trols," to create an alarm clock that has a property that represents the time an alarm

is sounded, allows the user to snooze or reset the alarm, and actually sounds an alarm

when that time occurs.

 Create a Shape control that draws a simple shape on the screen and allows the user

to choose between rectangle, ellipse, triangle, and other simple geometric forms. The

control should be fully confi gurable with regard to color and size.

 Extend the Button control to create a round or elliptical button. Implement rendering

code to render shading and the appropriate behavior when clicked, using the shading

and behavior of the rectangular Button control as a guide.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

 CHAPTER 15 667

 C H A P T E R 1 5

 Deployment

 Once you have developed your application, it must reach its intended audience.

 Microsoft Visual Studio provides several methods for deploying your application. Click-

Once technology allows you to quickly and easily deploy your application and provide for

automatic updates. For more detailed deployments, Windows Installer technology provides

a highly confi gurable deployment environment. In this chapter, you will learn how to deploy

your applications using ClickOnce and Windows Installer technology.

 Exam objectives in this chapter:

 Confi gure the installation of a Windows Forms application by using ClickOnce

 technology.

 Install a Windows Forms application on the client computer by using ClickOnce

deployment.

 Install a Windows Forms application from a server by using ClickOnce

 deployment.

 Confi gure the required permissions of an application by using ClickOnce

 deployment.

 Create a Windows Forms setup application.

 Create a Windows Forms application setup project.

 Set deployment project properties.

 Confi gure a setup project to add icons during setup.

 Confi gure conditional installation based on operating system versions.

 Confi gure a setup project to deploy the .NET Framework.

 Add functionality to a Windows Forms setup application.

 Add a custom action to a setup project.

 Add error-handling code to a setup project for custom actions.

 Lessons in this chapter:

 Deploying Applications with ClickOnce 669

 Creating Setup Projects for Deployment 676

 668 CHAPTER 15 Deployment

Before You Begin

To complete the lessons in this chapter, you must have:

 A computer that meets or exceeds the minimum hardware requirements listed in the

Introduction at the beginning of the book

 Visual Studio installed on your computer

 An understanding of Microsoft Visual Basic or C# syntax and familiarity with the

 Microsoft.NET Framework

 REAL WORLD

Matt Stoecker

 Deployment can pose some diffi cult challenges to the developer. I fi nd that it is

especially diffi cult to deploy applications that require frequent updates. Click-

Once addresses this problem and allows me to deploy applications that are updated

regularly. And for complex deployments I still like to use Windows Installer technol-

ogy, which provides the greatest degree of control and customization.

REAL WORLD

Matt Stoecker

Deployment can pose some diffi cult challenges to the developer. I fi nd that it is

especially diffi cult to deploy applications that require frequent updates. Click-

Once addresses this problem and allows me to deploy applications that are updated

regularly. And for complex deployments I still like to use Windows Installer technol-

ogy, which provides the greatest degree of control and customization.

 Lesson 1: Deploying Applications with ClickOnce CHAPTER 15 669

Lesson 1: Deploying Applications with ClickOnce

ClickOnce is a new deployment technology that Microsoft developed to address several

problems with deployment, namely, diffi culty in providing regular updates, the inability of

nonadministrative users to install applications, and the dependence of multiple programs on

shared components. ClickOnce deals with all of these problems and allows you to create a

deployment strategy that is easily updateable, isolated from other applications, and install-

able by nonadministrative users.

After this lesson, you will be able to:

 Install a Windows Forms application on the client computer by using ClickOnce.

 Install a Windows Forms application from a server by using ClickOnce.

 Confi gure the required permissions of an application by using ClickOnce.

Estimated lesson time: 30 minutes

Overview of ClickOnce
ClickOnce is a new deployment technology that allows you to create self-updating applica-

tions that can be installed from a variety of sources and require minimal user interaction.

Any Windows Forms application can be published as a ClickOnce application. You can use

ClickOnce to create applications that are deployed from a Web site, a fi le share, or a CD-ROM.

You can confi gure ClickOnce applications to be run only while the user is online or while the

user is offl ine as well.

You can confi gure ClickOnce applications to be self-updating. When they are confi gured

for updates, ClickOnce applications automatically check for updates at the location from

which they were installed and automatically download updates if they exist.

ClickOnce applications are isolated from the rest of the system. Because they are com-

pletely self-contained, they share no components with the rest of the applications installed

on the computer and run no risk of breaking other applications’ installations. ClickOnce ap-

plications, by default, run in the Internet or intranet security zones when run from a remote

location or under full trust if installed on the local computer. If required, the application can

request additional permissions, giving the installer the opportunity to grant or deny those

permissions.

Publishing a ClickOnce Application

You can confi gure the properties for a ClickOnce application by right-clicking the solution

in Solution Explorer, choosing Properties, and then clicking the Publish tab. This displays the

Publish properties tab, shown in Figure 15-1.

After this lesson, you will be able to:

Install a Windows Forms application on the client computer by using ClickOnce.

Install a Windows Forms application from a server by using ClickOnce.

Confi gure the required permissions of an application by using ClickOnce.

Estimated lesson time: 30 minutes

 670 CHAPTER 15 Deployment

 FIGURE 15-1 The Publish properties tab of the Project Properties window

 You can confi gure the properties for your deployment strategy on this tab. Once you have

confi gured your properties, you can publish your application by clicking the Publish Now

 button.

 SPECIFYING THE PUBLISHING LOCATION

You can specify the publishing location in the Publishing Folder Location combo box. This

should be a fi le path, a network share, a Hypertext Transfer Protocol (HTTP) address, or a File

Transfer Protocol (FTP) address. This is generally the address to which users will go to install

the application. You can optionally specify an installation URL for users to install the applica-

tion from. This is needed only if the ClickOnce application is staged on a different server from

the installation location.

 CONFIGURING THE INSTALL MODE

You can confi gure a ClickOnce application to be available only when the user is online or

when the user is online or offl ine. By selecting The Application Is Available Online Only in the

Install Mode And Settings group of the Publish properties tab, you require the application to

be run directly from the location specifi ed in the Publishing Folder Location combo box. You

can also select The Application Is Available Offl ine As Well to make the application available

offl ine. In this case the application is copied to the local computer and added to the Start

menu and the Add/Remove Programs box in the Control Panel.

 CONFIGURING AUTOMATIC UPDATES

You can confi gure ClickOnce applications to automatically check for updates. By clicking the

Updates button on the Publish properties tab, you can open the Application Updates dialog

box, shown in Figure 15-2.

 Lesson 1: Deploying Applications with ClickOnce CHAPTER 15 671

 FIGURE 15-2 The Application Updates dialog box

 To enable the application to check for updates, select the check box labeled The Applica-

tion Should Check For Updates. Doing so enables the other options in the dialog box. You

can specify when the application checks for updates by selecting either After The Applica-

tion Starts or Before The Application Starts. If you select Before The Application Starts, the

application will check for new updates every time the application is started. This ensures that

the user is always running the most recent version, but it also takes more time at startup. If

you select After The Application Starts, you can specify that the application check for updates

every time it is run, or at a designated time interval, by choosing the appropriate option un-

der Specify How Frequently The Application Should Check For Updates. You can also specify

a minimum required version for the application, and you can specify a different location for

updates if your updates will be hosted in a location other than the install location.

 Confi guring Required Permissions for a ClickOnce Application

 By default, ClickOnce applications that are run from the Internet run in the Internet security

zone and ClickOnce applications that are run from a fi le share run in the intranet security

zone. For some applications you might require additional permissions for the application to

run. You can confi gure ClickOnce permissions in the Security tab of the Project Properties

window. The Security properties tab is shown in Figure 15-3.

 You can either manually select permissions to be granted to the application, or you can

calculate the permissions required by the application and confi gure the application to request

those permissions.

 672 CHAPTER 15 Deployment

 FIGURE 15-3 The Security properties tab of the Project Properties window

 TO CALCULATE PERMISSIONS FOR A CLICKONCE APPLICATION

 1. On the Security properties tab, select the check box labeled Enable ClickOnce Security

Settings.

 2. Choose the option button labeled This Is A Partial Trust Application.

 3. Click the button labeled Calculate Permissions.

 4. The permissions required by your application are added to the permissions that will be

requested by your application upon installation.

 TO MANUALLY CONFIGURE PERMISSIONS FOR A CLICKONCE APPLICATION

 1. On the Security properties tab of the Project Properties window, select the check box

labeled Enable ClickOnce Security Settings.

 2. Choose the option button labeled This Is A Partial Trust Application.

 3. In the Permissions Required By The Application table, fi nd the permission of interest.

 4. In the Setting column, choose Include to include the permission as required or choose

Exclude to not require the permission.

 Note that any permissions not included in the zone permission set under which the appli-

cation is installed must be approved by the user before installation is completed.

 Installing a ClickOnce Application on a Client Computer

 Installing a ClickOnce application is almost as simple as the name implies.

 TO INSTALL A CLICKONCE APPLICATION FROM A WEB SITE

 1. Navigate to the Publish.htm Web page for the ClickOnce application.

 2. Click Install and follow the steps (if any) in the Install wizard.

 Lesson 1: Deploying Applications with ClickOnce CHAPTER 15 673

TO INSTALL A CLICKONCE APPLICATION FROM A FILE SHARE

 1. Navigate to the fi le share for the ClickOnce application.

 2. Double-click Setup and follow the steps (if any) in the Install wizard.

Quick Check

 1. To what locations can you publish a ClickOnce application?

 2. How can you determine the required permissions for a ClickOnce application?

Quick Check Answers

 1. You can publish a ClickOnce application to a fi le path, a network share, an HTTP

address, or an FTP address.

 2. You can determine the required permissions for a ClickOnce application by going

to the Security properties tab, enabling ClickOnce security settings, setting the

application to partial trust, and clicking the Calculate Permissions button. The

permissions required by the application are calculated automatically.

LAB Publish an Application to a Network Share with ClickOnce

In this lab, you will publish an application to a network share using ClickOnce. You will create

a shared folder on your computer, confi gure fi le path installation and the appropriate down-

load location, and then publish the application and install it using ClickOnce.

NOTE EXERCISE PREREQUISITES

To complete this lesson, your computer must be on a network, or you must have run net-

work setup.

EXERCISE 1 Publishing an Application to a Network Share

 1. In the root directory, create a directory named C:\ClickOnce and share it.

 2. From the samples installed from the companion CD, open the partial solution for

this exercise. Note that you will use an identical partial solution for both Lesson 1,

“Deploying Applications with ClickOnce,” and Lesson 2, “Creating Setup Projects for

 Deployment.”

 3. In Solution Explorer, right-click the project, and then click Properties. Click the Publish

tab.

 4. In the Publish Location group, set the Publishing Location to C:\ClickOnce.

 5. Also in the Publish Location group, set the Installation Folder URL to \\[computer-

name]\ClickOnce, where [computername] is the name of your computer.

Quick Check

1. To what locations can you publish a ClickOnce application?

2. How can you determine the required permissions for a ClickOnce application?

Quick Check Answers

1. You can publish a ClickOnce application to a fi le path, a network share, an HTTP

address, or an FTP address.

2. You can determine the required permissions for a ClickOnce application by going

to the Security properties tab, enabling ClickOnce security settings, setting the

application to partial trust, and clicking the Calculate Permissions button. The

permissions required by the application are calculated automatically.

Q

NOTE EXERCISE PREREQUISITES

To complete this lesson, your computer must be on a network, or you must have run net-

work setup.

 674 CHAPTER 15 Deployment

 6. Click Publish Now to publish your application to the network share. ClickOnce verifi es

application requirements and publishes the application. The Publish.htm fi le opens.

You might see a security warning; if so, click Allow.

 7. Open the C:\ClickOnce folder, and then double-click Setup. You might see a security

warning. If you do, click Run, and then click Install. The application is installed and

opens on your computer. Notice that a new group named Lab 1 is added to your Start

menu.

 8. From the Windows Start menu, open the Control Panel and select Programs and

Features. Click the icon for your application and select Change/Remove. Follow the on-

screen instructions to remove the Lab 1 application from your computer.

Lesson Summary
 ClickOnce is a powerful new deployment technology that enables developers to

quickly and reliably publish applications to Web sites, fi le shares, or FTP sites.

 ClickOnce applications can be confi gured to automatically fi nd and install updates. You

can confi gure an application to look for updates every time it is run or at a predeter-

mined interval.

 By default, ClickOnce applications are run under the Internet security zone if down-

loaded from the Web or under the intranet security zone if downloaded from a fi le

share. If additional permissions are required, they can be set by the developer, either

manually or by calculating the required permission set, and the additional permissions

can then be approved or denied by the installer.

 Installing a ClickOnce application is as simple as clicking the Setup fi le or the Install

button on a Web page and following the instructions.

Lesson Review
The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which of the following are required to install an application that has been published to

a server for distribution by using ClickOnce technology?

A. You must manually confi gure permissions.

B. You must click the setup project.

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 Lesson 1: Deploying Applications with ClickOnce CHAPTER 15 675

 C. You must specify how frequently to check for updates.

 D. You must confi gure the install mode.

 2. What is the default security mode under which a ClickOnce application run from an

Internet Web page will run?

 A. Full trust

 B. Intranet zone

 C. Internet zone

 D. Custom zone

 676 CHAPTER 15 Deployment

Lesson 2: Creating Setup Projects for Deployment

Although ClickOnce provides simple and easy deployment for a variety of applications, you

might need a more confi gurable environment for complex programs. Setup projects allow you

to create highly confi gurable deployment plans. In this lesson, you will learn how to create a

setup project.

After this lesson, you will able to:

 Create a Windows Forms Application setup project.

 Set Deployment project properties.

 Confi gure Setup to add icons during setup.

 Confi gure conditional installation based on operating system versions.

 Confi gure a setup project to deploy the .NET Framework.

 Add a custom action to a setup project.

 Add error-handling code to a setup project for custom actions.

Estimated lesson time: 45 minutes

Setup Projects
You can add a setup project to a solution to create a Windows Installer application for your

solution. Setup projects are highly confi gurable and allow you to create directories on the

target computer, copy fi les, modify the registry, and execute custom actions during installa-

tion. When compiled, a setup project produces an .msi fi le, which incorporates a setup wizard

for the application. The .msi fi le can be distributed by disk, download, or fi le share. When it is

clicked, the .msi fi le launches the application setup wizard and installs the application.

TO ADD A SETUP PROJECT TO YOUR SOLUTION

 1. From the File menu, choose Add and then New Project to open the Add New Project

dialog box.

 2. In the Project Types pane, expand Other Project Types, and then click Setup And

 Deployment.

 3. In the Templates pane, click Setup Project, and then click OK.

Setup Project Editors

Each setup project includes six editors that allow you to confi gure the contents and the

 behavior of the setup project. These editors are:

 File System Editor Allows you to confi gure the installation of your application to the

fi le system of the target computer.

After this lesson, you will able to:

Create a Windows Forms Application setup project.

Set Deployment project properties.

Confi gure Setup to add icons during setup.

Confi gure conditional installation based on operating system versions.

Confi gure a setup project to deploy the .NET Framework.

Add a custom action to a setup project.

Add error-handling code to a setup project for custom actions.

Estimated lesson time: 45 minutes

 Lesson 2: Creating Setup Projects for Deployment CHAPTER 15 677

 Registry Editor Allows you to write entries to the registry upon installation.

 File Types Editor Allows you to set associations between applications and fi le types.

 User Interface Editor Allows you to edit the user interface seen during installation for

both regular installation and administrative installation.

 Custom Actions Editor Allows you to defi ne custom actions to be performed during

installation.

 Launch Conditions Editor Allows you to set conditions for launching the installation

of your setup project.

 You can open any of these editors by selecting the deployment project in Solution Ex-

plorer and then selecting the appropriate editor from the View menu.

 Adding Files to a Setup Project with the File System Editor

 The File System Editor represents the fi le system on the target computer. You can add output

fi les to various directories, create new directories on the target computer, or create and add

shortcuts to the target computer. Figure 15-4 shows the File System Editor.

 FIGURE 15-4 The File System Editor

 The File System Editor is split into two panes. The left pane represents the directory struc-

ture of the target computer. Each folder in the left pane represents a folder on the target

computer that exists or will be created by the setup application. The right pane displays the

contents of the directory that is selected in the left pane. Initially, the File System Editor con-

sists of three folders: Application Folder, User’s Desktop, and User’s Program Menu. You can

change the folder for a particular fi le by selecting the fi le in the right pane and dragging it to

the appropriate folder.

 You can add folders to the File System Editor by right-clicking the left pane and choosing

Add Special Folder. The shortcut menu pictured in Figure 15-5 appears. Using this menu, you

can add a special folder to the File System Editor or create your own custom folder. If you

choose a custom folder, this folder will be created in the target computer’s fi le system upon

installation.

 678 CHAPTER 15 Deployment

 FIGURE 15-5 The Add Special Folder shortcut menu

 TO ADD OUTPUT FROM A PROJECT TO A DEPLOYMENT PROJECT

 1. Right-click Application Folder in the left-hand pane of the File System Editor, choose

Add, and then choose Project Output. The Add Project Output Group dialog box (pic-

tured in Figure 15-6) opens.

 FIGURE 15-6 The Add Project Output Group dialog box

 Lesson 2: Creating Setup Projects for Deployment CHAPTER 15 679

 2. Choose the project outputs that you want to add to your setup project. All .exe and .dll

fi les created by the project are contained in Primary Output. You can also add other

project fi les to your setup project, such as localized resources, content fi les, or docu-

mentation fi les, or, less frequently, debug symbols, source fi les, or Extensible Markup

Language (XML) serialization assemblies. Once you have selected the output to be

added to the folder, click OK.

 TO CREATE A SHORTCUT AND ADD IT TO THE TARGET COMPUTER

 1. In the right-hand pane of the File System Editor, right-click the fi le for which you want

to create a shortcut and choose Create Shortcut. A shortcut to the fi le is created and

added to the pane.

 2. Drag the shortcut from the right-hand pane to the appropriate folder in the left-hand

pane.

 Confi guring the Setup Project to Add an Icon During Setup

 You can use the File System Editor to associate an icon with your application at installation.

Shortcuts to your application will be displayed with the icon you specify.

 TO ASSOCIATE AN ICON WITH AN APPLICATION AT SETUP

 1. In the File System Editor, right-click a folder, choose Add, and then select File. The Add

Files dialog box opens.

 2. Browse to the .ico fi le you want to associate with a shortcut and click Add to add it to

your setup project.

 3. Create a shortcut to your application as previously described.

 4. In the File System Editor, select the shortcut.

 5. In the Properties window, select the Icon property, and then choose (Browse…) from

the dropdown list. Browse to the icon you want to associate with your application.

 6. Select the icon and click OK.

 Confi guring Conditional Installation Based on the Operating System

Version

 You can use the system property VersionNT to determine the operating system at installation

time. This allows you to create installation conditions that allow the installation to continue or

abort based on the operating system.

 The VersionNT property is an integer that is calculated by the following formula: MajorVer-

sion * 100 + MinorVersion. Thus, Microsoft Windows 2000 would report a VersionNT value of

500 or greater, depending on the minor version.

 680 CHAPTER 15 Deployment

 TO CONFIGURE CONDITIONAL INSTALLATION BASED ON THE OPERATING

SYSTEM VERSION

 1. In the File System Editor, select the fi le that contains the primary output for the

 application.

 2. In the Properties window, select the Condition property and type a condition that

evaluates the operating system based on the formula previously described. For ex-

ample, if you want to restrict installation to Windows 2000 or later, you would type the

condition VersionNT>=500.

 Setting Setup Project Properties

 The setup project properties provide information about your project and set actions relating

to versions of your project. You set setup project properties in the Properties window. Many

setup project properties can provide descriptive information about your application. These

properties include:

 AddRemoveProgramsIcon Specifi es an icon for the Add/Remove Programs dialog

box on the client computer.

 Author Contains information about the author of the program.

 Description Contains a description of the application.

 Keywords Contains keywords to be associated with the application.

 Localization Provides the locale information for the application.

 Manufacturer Contains information about the manufacturer of the application. It is

commonly used to defi ne the default install folder within the Program Files folder.

 ManufacturerURL Contains the URL of the manufacturer’s Web site.

 ProductName Contains the name of the product.

 Subject Contains information about the subject of the application.

 SupportPhone Provides a phone number for support for the application.

 SupportURL Contains a URL for support for the application.

 TargetPlatform Specifi es the target platform of the installer: x86, x64, or Itanium.

 Title Contains the title of the application.

 Other properties of the setup project are used to determine the behavior of the setup

project at installation time. These properties include:

 DetectNewerInstalledVersion Looks for a more recent version of the application on

the target computer and aborts the installation if any are found.

 InstallAllUsers Specifi es whether the package is installed for all users or for only the

installing user.

 PostBuildEvent Specifi es a command line that is executed after the build ends.

 PreBuildEvent Specifi es a command line that is executed before the build begins.

 Lesson 2: Creating Setup Projects for Deployment CHAPTER 15 681

 RemovePreviousVersion Looks for earlier versions of the application and uninstalls

them in favor of the new version if one is found.

 RunPostBuildEvent Specifi es the condition under which the post-build event runs.

The value is either On Successful Build or Always.

 SearchPath Specifi es the path that is used to search for assemblies, fi les, or merge

modules on the development computer.

 Version Holds the information used by the previous two properties to determine

versioning.

 There are two additional properties: ProductCode and UpgradeCode. These are used by the

setup program and should never be altered manually.

 You can change these properties at design time by selecting the project in Solution Explor-

er and altering the appropriate property in the Properties window.

 Confi guring a Deployment Project to Deploy the .NET Framework

 All applications created with Visual Studio 2008 require .NET Framework 3.5 to run. If you are

uncertain of the deployment environment for your applications, you can confi gure your setup

project to install prerequisites like the .NET Framework as part of the installation. The .NET

Framework is confi gured to be installed by default, but the following procedure allows you to

verify that this confi guration is still valid.

 TO CONFIGURE A DEPLOYMENT PROJECT TO DEPLOY THE .NET FRAMEWORK

 1. In Solution Explorer, select the setup project.

 2. From the Project menu, click Properties. The <project> Property Pages dialog box

opens.

 3. In the <project> Properties dialog box, click Prerequisites to open the Prerequisites

dialog box.

 4. If it is not already selected, select the check box labeled Create Setup Program To

Install Prerequisite Components.

 5. In the Choose Which Prerequisites To Install list, select the check box labeled .NET

Framework 3.5.

 6. In the group labeled Specify The Install Location For Prerequisites, select the option

button labeled Download Prerequisites From The Component Vendor’s Web Site.

 7. Click OK, and then close the <project> Property Pages dialog box.

 Custom Actions

 Custom actions are an advanced installation technology. With the Custom Actions Editor, you

can confi gure code to be executed during installation. Custom action code must be contained

in an Installer class. You can use custom actions to execute code upon four Installer events:

Install, Commit, Rollback, or Uninstall. Install actions occur after the fi les have been installed

 682 CHAPTER 15 Deployment

but before the installation has been committed. Commit actions occur when an installation

is committed on the target machine. Rollback actions are executed when an installation fails

and is rolled back, and Uninstall actions are executed when an application is being unin-

stalled. You can use the Custom Actions Editor, shown in Figure 15-7, to associate code with

these Installer events.

 FIGURE 15-7 The Custom Actions Editor

 Any executable code can be executed as a custom action as long as it is contained in an

Installer class. (Although, technically, it is possible to confi gure a custom action in code other

than an Installer class, this text will limit discussion of custom actions to Installer classes.) You

can add a new custom action in the Custom Action Editor by right-clicking the event in which

you want your custom action to run and choosing Add Custom Action from the context

menu. This opens the Select Item In Project dialog box, which allows you to select an item

in your project to set as a custom action. A new custom action representing the item you

selected is added to your setup project.

 In order for the item you select to function as a custom action, it must contain an Installer

class. Installer classes expose methods, such as Install, Rollback, Uninstall, and Commit, that the

setup project uses to execute custom actions. These methods are present in the base Installer

class and must be overridden in the Installer class you create to contain a custom action. For

example, the following code example demonstrates how to override the Install method of an

Installer class:

 ' VB

Public Overrides Sub Install(ByVal stateSaver As System.Collections.IDictionary)

 MyBase.Install(stateSaver)

 ' Insert code for the custom action here

End Sub

// C#

public override void Install(System.Collections.IDictionary stateSaver)

{

 Lesson 2: Creating Setup Projects for Deployment CHAPTER 15 683

 base.Install(stateSaver);

 // Insert code for your custom action here

}

 You can write code for any or all of these methods, but code written in an Installer class

will not be executed unless the project that contains it has been designated as a custom ac-

tion. Note that the Installer class must be added to the project you want to deploy, not to the

setup project.

 TO ADD AN INSTALLER CLASS TO YOUR PROJECT

 1. In Solution Explorer, select the project to which you want to add the Installer class.

Note that this should be the project you want to deploy, not the setup project.

 2. From the Project menu, select Add New Item. Choose Installer Class in the Add New

Item dialog box and click Add.

 When you are in the Custom Actions editor, you can confi gure a custom action by select-

ing the custom action and then setting the properties in the Properties window. Custom

action properties are shown in Table 15-1.

 TABLE 15-1 Properties of Custom Actions

 PROPERTY DESCRIPTION

 (Name) This is the name of the selected custom action.

 Arguments Supplies any required command-line arguments to the application

represented by the custom action. This property is applicable only

when the custom action is implemented as an executable (.exe).

 Condition Provides a Boolean statement that will be evaluated before the

custom action is executed. If the statement is True, the custom action

will execute. If the statement is False, the action will not execute.

You can use the Condition property to evaluate properties chosen in

custom dialog boxes.

 CustomActionData Passes any additional required data to the custom action.

 EntryPoint Specifi es the name of the method to execute for the custom action.

If left blank, the custom action will attempt to execute a method

with the same name as the event with which the custom action is as-

sociated (for example, Install). This property applies only to custom

actions implemented in dynamic-link libraries (DLLs) and is ignored

when the InstallerClass property is set to True.

 InstallerClass A Boolean value that represents whether your custom action is

implemented in an Installer class. This property must be True if the

custom action is implemented in an Installer and False if it is not.

 SourcePath Contains the actual path on the developer’s computer to the fi le that

implements the custom action. This property is read-only.

 684 CHAPTER 15 Deployment

TO CREATE A CUSTOM ACTION

 1. Write, test, and debug the code for the custom action you want to add to your setup

project.

 2. Add an Installer class to the solution you want to deploy.

 3. Add the code written in step 1 to the appropriate overridden method (for example,

Install, Rollback, Commit, or Uninstall) of the Installer class.

 4. In Solution Explorer, select the setup project. From the View menu, choose Editors,

then choose Custom Actions Editor.

 5. Right-click the installation event that you want to associate with your custom action

and choose Add Custom Action. The Select Item In Project dialog box opens.

 6. Browse to the fi le that implements your custom action and select it, and then click OK.

 7. Select the new custom action in the Custom Actions window. In the Properties window,

confi gure the properties of the custom action.

Handling Errors in Custom Actions

Although Windows Installer handles most errors in deployment, you must write error-

 handling code to trap errors in custom actions. Because custom actions are executed code,

errors that occur and are not handled can cause unexpected results on installation. Use Try

/Catch blocks to catch and correct any errors that can be corrected. If an error occurs that

cannot be corrected, such as a missing fi le, throw a new InstallException. Throwing an Install-

Exception causes the installation to be rolled back without leaving any lasting effect on the

system. The following example demonstrates how to test for the existence of a fi le and throw

a new InstallException if the fi le is not found:

' VB

Dim myInfo As New System.IO.FileInfo("aFile.txt")

If Not myInfo.Exists Then

 Throw New System.Configuration.Install.InstallException("File not found")

End If

// C#

System.IO.FileInfo myInfo = new System.IO.FileInfo("aFile.txt");

if(!(myInfo.Exists))

 throw new System.Configuration.Install.InstallException("File not found");

Quick Check

 1. How can you associate an icon with an application?

 2. How can you roll back installation of a setup project in a custom action?

Quick Check

1. How can you associate an icon with an application?

2. How can you roll back installation of a setup project in a custom action?

Q

 Lesson 2: Creating Setup Projects for Deployment CHAPTER 15 685

Quick Check Answers

 1. You can associate an icon with your application by creating a shortcut in the

File System Editor and then setting the shortcut’s Icon property to the icon you

want to associate with your application. The icon is automatically added as the

 shortcut.

 2. By throwing an InstallException. Custom actions that encounter unrecoverable

errors should throw an InstallException to roll back the installation and prevent

harm to the system.

 LAB Create a Setup Project

 In this lab, you will create a setup project for the same application that you installed in Lesson

1, “Deploying Applications with ClickOnce.” You will use the File System Editor to install fi les

to different directories and create a custom action that displays a message box at installation

time.

 EXERCISE 1 Use the File System Editor and Create a Custom Action

 1. From the samples installed from the companion CD, open the partial solution for this

exercise.

 2. From the File menu, choose Add, and then choose New Project. The Add New Project

dialog box opens.

 3. Expand Other Project Types, select Setup And Deployment, and then select the Setup

Project template. Click OK. The Setup Project opens to the File System Editor.

 4. In the File System Editor, right-click Application Folder, choose Add, and then choose

Project Output.

 5. In the Add Project Output Group dialog box, select your project in the Project drop-

down list and select Primary Output in the list of output categories. Click OK.

 6. In the File System Editor, right-click the left-hand pane, choose Add Special Folder, and

then choose Custom Folder to add a custom folder.

 7. In the File System Editor, select Custom Folder #1. In the Properties window, set the

DefaultLocation property to C:\.

 8. In the File System Editor, right-click Custom Folder #1, choose Add, and then choose

File. Browse to the Lab 2 subfolder in the folder that contains your partial solution and

select myFile.txt. Click Open.

 9. In Solution Explorer, select your application project (the Lab 2 project).

 10. From the Project menu, choose Add New Item. In the Add New Item dialog box, select

General, and then choose Installer Class. Then click Add.

 11. In Solution Explorer, right-click the Installer1 fi le and select View Code to open the

Code Editor.

Quick Check Answers

1. You can associate an icon with your application by creating a shortcut in the

File System Editor and then setting the shortcut’s Icon property to the icon you

want to associate with your application. The icon is automatically added as the

 shortcut.

2. By throwing an InstallException. Custom actions that encounter unrecoverable

errors should throw an InstallException to roll back the installation and prevent

harm to the system.

 686 CHAPTER 15 Deployment

 12. In the Code Editor, add the following code to override the Install method of the

 Installer class:

 ' VB

Public Overrides Sub Install(ByVal stateSaver As System.Collections.IDictionary)

 MyBase.Install(stateSaver)

 MsgBox("Install custom action executed")

End Sub

// C#

public override void Install(System.Collections.IDictionary stateSaver)

{

 base.Install(stateSaver);

 System. Windows.Forms.MessageBox.Show("Install custom action executed");

}

 13. In Solution Explorer, right-click the Setup1 project, choose View, and then choose

 Custom Actions.

 14. In the Custom Actions Editor, right-click Install and choose Add Custom Action to open

the Select Item In Project dialog box.

 15. In the Select Item In Project dialog box, double-click Application Folder and select

Primary Output from [application], where [application] is the project that contains your

Installer class. Click OK.

 16. From the Build menu, choose Confi guration Manager. Make certain that both projects

are selected in the Build column and click Close.

 17. From the Build menu, choose Build Solution to build your solution.

 18. Close Visual Studio. In Windows Explorer, navigate to your solution folder.

 19. Open the Setup1\Release folder and double-click Setup1.msi to install your application.

Follow the instructions in the wizard, and respond to any security prompts. Note that a

message box appears when the custom action is executed.

 20. Navigate to the folder in which you installed your application and double-click your

application. It opens and runs.

 Lesson Summary
 Setup projects allow you to create Windows Installer applications that you can use to

install your solutions. Windows Installer projects are highly confi gurable and allow a

great deal of control over the confi guration of the installation process.

 Setup projects provide several editors that allow you to edit aspects of the installation

process. They are the File System Editor, the Registry Editor, the File Types Editor, the

User Interface Editor, the Custom Actions Editor, and the Launch Conditions Editor.

 Lesson 2: Creating Setup Projects for Deployment CHAPTER 15 687

 The File System Editor is used to add output from your projects and other fi les to your

setup project. The File System Editor can create directories on the target system and

can install fi les to those directories. You can also use the File System Editor to install

shortcuts and associate icons with your application and install fi les conditionally, based

on the operating system.

 The setup project has several properties that expose descriptive information about

the application and affect the behavior of the setup project at installation time. You

can change these properties by selecting the setup project and changing them in the

Properties window.

 Custom actions are code that is executed at installation time or uninstallation time. You

can create a custom action by writing custom code in an Installer class, adding the In-

staller class to the project for which you want to create a setup application, and, fi nally,

designating the project that exposes the custom action in the Custom Actions Editor.

 When errors that are unrecoverable occur in a custom action, you should throw an

InstallException to roll back installation without damaging the target system.

 Lesson Review
 The following questions are intended to reinforce key information presented in this lesson.

The questions are also available on the companion CD if you prefer to review them in elec-

tronic form.

 NOTE ANSWERS

 Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 1. Which setup project editor is used to add project outputs to a setup project?

 A. File System Editor

 B. File Types Editor

 C. Custom Actions Editor

 D. User Interface Editor

 2. Which of the following is an appropriate installation condition if you want to restrict

installation to Windows 2000 or later?

 A. VersionNT=500

 B. VersionNT>=500

 C. VersionNT<=500

 D. VersionNT<>500

NOTE ANSWERS

Answers to these questions and explanations of why each answer choice is correct or incor-

rect are located in the “Answers” section at the end of the book.

 688 CHAPTER 15 Deployment

 3. Which of the following are required to execute a custom action upon installation of

your setup project? (Choose all that apply.)

 A. You must add an Installer class to your setup project.

 B. You must add an Installer class to the project you want to deploy as a custom

 action.

 C. You must write your custom action in the Install method of an Installer class.

 D. You must specify the project that contains the custom action in the Custom

 Actions Editor.

 Chapter Review CHAPTER 15 689

Chapter Review

 To further practice and reinforce the skills you learned in this chapter, you can perform the

following tasks:

 Review the chapter summary.

 Review the list of key terms introduced in this chapter.

 Complete the case scenarios. These scenarios set up real-world situations involving the

topics of this chapter and ask you to create a solution.

 Complete the suggested practices.

 Take a practice test.

 Chapter Summary
 ClickOnce is a powerful deployment technology that enables developers to quickly and

reliably publish applications to Web sites, fi le shares, or FTP sites. ClickOnce applica-

tions can be confi gured to automatically fi nd and install updates and run under default

security settings. If additional security permissions are required, additional permissions

can be set by the developer, either manually or by calculating the required permission

set, and the additional permissions can then be approved or denied by the installer.

Installing a ClickOnce application is as simple as clicking the Setup fi le or the Install

button on a Web page and following the instructions.

 Setup projects allow you to create Windows Installer applications that you can use to

install your solutions. Windows Installer projects are highly confi gurable and allow a

great deal of control over the confi guration of the installation process. The File System

Editor is used to add output from your projects and other fi les to your setup project.

The setup project has several properties that expose descriptive information about

the application and affect the behavior of the setup project at installation time. You

can create a custom action by writing custom code in an Installer class and adding

the Installer class to the project for which you want to create a Setup application and,

fi nally, designating the project that exposes the custom action in the Custom Actions

Editor. When errors that are unrecoverable occur in a custom action, you should throw

an InstallException to roll back installation without damaging the target system.

 Key Terms
 Do you know what these key terms mean? You can check your answers by looking up the

terms in the glossary at the end of the book.

 ClickOnce

 custom action

 InstallException

 setup project

 690 CHAPTER 15 Deployment

 Case Scenarios
 In the following case scenarios, you will apply what you’ve learned about deployment. You

can fi nd the answers to these questions in the “Answers” section at the end of this book.

 Case Scenario 1: Distributing the Document Viewer

 Well, here it is! All your work for Fabrikam, Inc., on its document viewer has come to fruition,

and the application is ready to distribute to clients! The clients are very excited because this

application will allow them to browse and read Fabrikam’s massive online library. Unfortu-

nately, the picture is not so rosy. The viewer is full of bugs, and Fabrikam’s clients cannot wait

any longer. You have to release the buggy version, even though you have a team working

around the clock to fi x these bugs.

 KEY REQUIREMENTS

 You must release the buggy version now.

 You must provide updates that incorporate bug fi xes as quickly as possible.

 This application must be installable by the end user who does not have administrative

privileges.

QUESTION

 What is a deployment strategy that will accomplish all of the key requirements?

 Case Scenario 2: Installing the Document Core

 Fabrikam has decided to make its document server and core database available for sale to

some of its high-end clients, allowing them to host the document library on their own system

instead of having to access Fabrikam’s. You have been directed to determine a distribution

strategy. You will need to install the server application, create a new directory structure and

registry keys, and check for prerequisite fi les in the installation phase.

 QUESTION

 What deployment strategy can accomplish all of these goals?

 Suggested Practices

 To help you successfully master the exam objectives presented in this chapter, complete the

following tasks.

 Practice 1 Publish your favorite application to a Web site and a fi le share using Click-

Once. Experiment with expanded permission requirements and update schedules.

 Practice 2 Expand on the lab in Lesson 2, “Creating Setup Projects for Deployment,”

to include an icon for your application and a custom action that tests for a condition

and aborts if the condition is not found.

 Take a Practice Test CHAPTER 15 691

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test

yourself on just the content covered in this chapter, or you can test yourself on all the 70-505

certifi cation exam content. You can set up the test so that it closely simulates the experience

of taking a certifi cation exam, or you can set it up in study mode so that you can look at the

correct answers and explanations after you answer each question.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

MORE INFO PRACTICE TESTS

For details about all the practice test options available, see the “How to Use the Practice

Tests” section in this book’s Introduction.

Glossary

693

A
access key A combination of multiple key presses that

defi nes a keyboard shortcut for a particular control.

accessible design The principle of designing a user

interface (UI) to conform to certain principles that allow

the application to be accessible by people with differing

abilities.

application scope When referring to application set-

tings, settings with application scope are read-only at

run time.

B
BindingSource A Windows Form component that

facilitates data binding controls to a data source.

BLOB A binary large object; a byte array that repre-

sents large items such as graphics, music fi les, execut-

able fi les, or any large item represented in binary form.

C
ClickOnce A new deployment technology that allows

you to quickly publish any application to a Web site or

fi le share. ClickOnce applications typically run under

default security settings and are isolated from the rest

of the system.

composite control A user-authored control that is

made up of other controls and inherits from the User-

Control base class.

connection object A representation of a connection

to a data source.

connection pool A collection of connections avail-

able for reuse that reduce the overhead of continuously

creating and disposing connections.

connection string The information required to con-

nect to a data source, such as database server name,

database name, type of credentials to use, and so on.

container control A control that can contain other

controls, such as a Panel control, a GroupBox control, or

a TabControl control.

control A component that has a visual interface and

that can be hosted in a form or container control. Con-

trols contain properties, methods, and events that act

together to create a common functionality. Examples of

controls include Button, TextBox, and Label.

custom action Code that is executed in the Install,

Commit, Rollback, or Uninstall phases of a Windows

Installer installation. Custom actions are written in

Installer classes and added to the projects that are to be

installed.

custom control A user-authored control that supplies

its own code for rendering the user interface (UI).

D
DataAdapter Represents a set of SQL commands and

a database connection that are used to fi ll the DataSet

and update the data source.

data binding The concept of displaying data in a con-

trol on a form that implements two-way communica-

tion between the control and the data source. Changes

in one are refl ected in the other.

694 Glossary

DataSet An in-memory cache of data that is structured

like a relational database with tables and relationships.

DataTable The object in a DataSet that represents a

single set of returned data.

DataView A customizable view of the data in a DataT-

able that can be sorted, fi ltered, and set to display

records in a specifi c state, such as all deleted records.

delegate A type-safe function pointer that can be used

to call a method synchronously or asynchronously.

Drag-and-drop An operation in which the user grabs

data in one location by pressing the left mouse button,

drags it to a new location, and drops it onto another

control by releasing the left mouse button.

E
encryption The process of altering data into an un-

readable form that must be decrypted to be readable.

event A message from a control that is sent to the rest

of the application and that can be handled by methods

that have the same signature as the event.

event handler The method that is executed when an

event is fi red. An event handler must have the same

signature as its event.

extended control A user-authored control that inher-

its a preexisting control and incorporates the function-

ality of that control.

G
Globalization The process of formatting application

data in a locale-specifi c manner.

Graphics object An object that represents a drawing

surface. When printing, the Graphics object is used to

draw content to the printed page.

I
Integrated Security Also known as Windows Authen-

tication. This method of security uses existing domain

credentials to access a data source.

InstallException An exception that can be thrown

by an Installer class. Throwing an InstallException in a

custom action will result in the installation being rolled

back.

L
list A group of related objects that are available to an

application, usually exposed through a collection. A

control that works with a list will typically have methods

to add, remove, and otherwise manage members of

the list.

list-based control A control that is designed to expose

or display a list of items. Common examples include the

ListBox, ComboBox, and CheckedListBox controls.

Localization The process of displaying a user interface

that is customized in a locale-specifi c manner.

M
mask The format for text entry and display in a

MaskedTextBox.

MDI child A form that is contained in a multiple docu-

ment interface (MDI) parent form.

MDI parent A form that contains, hosts, and orga-

nizes multiple document interface (MDI) child forms.

MenuStrip A ToolStrip control that is specialized to host

ToolStripMenuItem controls.

modal A mode of dialog box display. When a dialog

box is displayed modally, the main thread of application

execution is halted until the dialog box is closed.

modeless A mode of dialog box display. When a dialog

box is displayed modelessly, the main thread of applica-

tion execution continues while the dialog box is open.

P
parameter When creating database queries, a variable

used to provide alternate values to expressions such as

SQL statements and stored procedures.

PrintDocument The primary component in printing.

A PrintDocument component represents a printed

document.

695Glossary

V
value-setting control A control that allows the user

to set a value in the user interface. Common examples

include CheckBox, RadioButton, and TrackBar controls.

X
XmlDocument A class that provides an in-memory

representation of XML data.

XmlNode An in-memory representation of an XML

node, including child nodes if any.

XmlReader An abstract class that provides noncached,

forward-only access to an XML fi le or stream.

XmlWriter An abstract class that provides a forward-

based XML writing model.

PrintPreview An onscreen preview of a printed docu-

ment. You can preview a PrintDocument either in a

PrintPreviewDialog or a PrintPreviewControl.

S
setting A value that properties can be bound to that

is persisted between application sessions. Also called

application setting.

setup project A project that produces a Windows

Installer application. A setup project provides a highly

confi gurable and controllable environment for creating

deployments.

snaplines Visual aids that appear in the Integrated De-

velopment Environment (IDE) to aid control alignment.

T
thread an operation that occurs concurrently with

other operations in an application. Can also refer to an

instance of the Thread class, which is used to create and

manage a thread.

Toolbox A window in the Microsoft Visual Studio IDE

from which a control can be dragged onto the designer.

ToolStrip A control that is used to host ToolStripItems

and that can be easily confi gured by the user at run

time.

ToolStripItem A control that can be hosted in a Tool-

Strip. It can represent a menu item or any of a number

of controls that can be hosted in the ToolStrip.

ToolStripMenuItem A control that represents a menu

item and that is usually hosted in a MenuStrip.

transaction A logical set of commands executed as a

group.

U
user control Another term for composite control.

user scope When referring to application settings, set-

tings with user scope are read-write at run time.

697

Answers

Chapter 1: Lesson Review Answers

Lesson 1
 1. Correct Answer: D

 A. Incorrect: There is no CreateForm method on a Form class. You create a new by

using the New keyword.

 B. Incorrect: You must create a new instance of Form1 with the New keyword before

calling methods on that instance.

 C. Incorrect: myForm is not declared, and you cannot assign an instance variable to a

class, although in Microsoft Visual Basic “Form1” would return the default instance

of Form1.

 D. Correct: myForm is correctly declared and instantiated.

 2. Correct Answer: C

 A. Incorrect: You must supply the new path as a parameter in the Region constructor.

 B. Incorrect: You must set the Region to the new instance of the path.

 C. Correct: This code snippet creates an elliptical GraphicsPath and then creates a

new region from that GraphicsPath and assigns it to the Region property of the

form.

 D. Incorrect: You cannot set the Region property to a GraphicsPath. You must fi rst

create a new Region from the GraphicsPath.

 3. Correct Answer: A

 A. Correct: All properties are set to appropriate values.

 B. Incorrect: The FormBorderStyle property should be set to a member of the Form-

BorderStyle enumeration, not to a string.

 C. Incorrect: The Opacity property should be set to a value between 0 and 1, not to

a string value, and the form’s Size property should be set to a new instance of the

Size structure.

 D. Incorrect: The Opacity property should be set to a value between 0 and 1, not to a

string value.

698 Answers

Lesson 2
 1. Correct Answer: C

 A. Incorrect: The Button class does not expose a SetFlowBreak method.

 B. Incorrect: Flow breaks are set by the FlowLayoutPanel, not by the hosted control.

 C. Correct: Use the SetFlowBreak method to set a fl ow break.

 D. Incorrect: You cannot access contained controls as members of a container

control.

 2. Correct Answer: D

 A. Incorrect: The TableLayoutPanel is best for organizing controls in a tabular style.

Although it might be a good choice for a single set of properties, it is not a good

choice for separating groups.

 B. Incorrect: The FlowLayoutPanel is best for organizing controls that reorient

themselves in response to resizing of the control, but it is not a good choice for

presenting multiple groups of controls.

 C. Incorrect: The GroupBox is best used for presenting radio buttons that provide the

user with exclusive choices between two or more options.

 D. Correct: The TabControl is best used for organizing related controls into individual

related groups.

 3. Correct Answers: A, B, C, and D

 A. Correct: Each of these methods is valid.

 B. Correct: Each of these methods is valid.

 C. Correct: Each of these methods is valid.

 D. Correct: Each of these methods is valid.

 4. Correct Answer: B

 A. Incorrect: You cannot add a type to the controls collection. You must create an

instance of the control fi rst.

 B. Correct: You must fi rst instantiate the control and then add it to the form’s con-

trols collection.

 C. Incorrect: The Add method is a member of the Form.Controls collection, not a

member of Form itself.

 D. Incorrect: The Add method is a member of the Form.Controls collection, not a

member of Form itself.

699Answers

 5. Correct Answer: D

 A. Incorrect: You cannot add panels to the SplitContainer control.

 B. Incorrect: You cannot add panels to the SplitContainer control.

 C. Incorrect: You cannot add panels to the SplitContainer control.

 D. Correct: You cannot add additional panels to the SplitContainer control, although

you can add new panels to the individual SplitterPanel controls.

Chapter 1: Case Scenario Answers

Case Scenario 1: Designing a User Interface
You can use the SplitContainer control to simulate the look and feel of Web page frames by

creating a visible, resizable division in the UI. Each SplitterPanel control in the SplitControl

can then host additional container controls. A FlowLayoutPanel control will reproduce the

fl ow-style layout of a Web page, and controls that appear in tables can be reproduced in

TableLayoutPanel controls.

Case Scenario 2: Designing a Web Browser
You can use the TabContainer control to display multiple pages of information and allow the

user to switch between pages while keeping the information static. You can create a TabCon-

trol control with a TabPage that contains the WebBrowser control. When a new Web page is

required, you can add an additional TabPage to the TabControl, which will allow the user to

navigate to a new Web page without losing the current one.

Chapter 2: Lesson Review Answers

Lesson 1
 1. Correct Answers: A and D

 A. Correct: You can resize controls by grabbing and dragging the edges.

 B. Incorrect: You cannot alter individual controls from the View menu.

 C. Incorrect: Smart tags do not appear on all controls and generally do not allow you

to resize controls when they are present.

 D. Correct: You can directly modify the Size property in the Properties window.

 2. Correct Answers: A, B, and C

700 Answers

 A. Correct: You can set the Location property in the Properties window.

 B. Correct: Grabbing the control and repositioning it with the mouse is the most

natural way to relocate a control.

 C. Correct: The Layout toolbar allows you to adjust the spacing and alignment of

controls on your form.

 D. Incorrect: There is no Location window.

 3. Correct Answer: C

 A. Incorrect: The control will maintain a constant distance from the top edge.

 B. Incorrect: The control will maintain a constant distance from the top and bottom

edges.

 C. Correct: The control is not anchored to any edge and will fl oat when the form is

resized.

 D. Incorrect: The control will maintain a constant distance from the right and left

edges.

 4. Correct Answer: B

 A. Incorrect: This setting will dock the control to the top edge of the control.

 B. Correct: A value of Fill will cause the control to fi ll the form or container control.

 C. Incorrect: The dock property can be set to only a single value. A value of Top, Left,

Bottom, Right is invalid.

 D. Incorrect: The Anchor property does not allow you to fi ll a form or container

control.

Lesson 2
 1. Correct Answers: A and C

 A. Correct: The Click event responds to the left click of the mouse, as well as to some

keyboard events, if the button has the focus.

 B. Incorrect: The LinkClicked event exists in the LinkLabel control but not in the But-

ton control.

 C. Correct: The MouseDown event can respond to any button that a mouse has.

 D. Incorrect: The MouseOver event does not respond to clicks.

 2. Correct Answer: D

 A. Incorrect: The FlatAppearance.MouseOverBackColor property controls the Back-

Color of the button when the mouse pointer is on the button.

 B. Incorrect: The FlatAppearance.MouseDownBackColor property controls the Back-

Color of the button when the mouse clicks the button.

701Answers

 C. Incorrect: The FlatAppearance.BorderSize property controls the width of the bor-

der when FlatStyle is set to Flat.

 D. Correct: The appearance of the text does not change when the FlatStyle property

is set to Flat.

 3. Correct Answers: A, B, and C

 A. Correct: You must set the TabOrder property, the UseMnemonic property, and the

Text property with appropriate values.

 B. Correct: You must set the TabOrder property, the UseMnemonic property, and the

Text property with appropriate values.

 C. Correct: You must set the TabOrder property, the UseMnemonic property, and the

Text property with appropriate values.

 D. Incorrect: The CausesValidation property is not required to create an access key.

 4. Correct Answers: A and C

 A. Correct: The ActiveLinkColor property determines the color of the link when

clicked.

 B. Incorrect: LinkLabel_LinkClicked is the event that is raised when the link is clicked,

but it does not, in and of itself, affect the color of the link.

 C. Correct: The VisitedLinkColor determines the color of the link after the LinkVisited

property is set to True.

 D. Incorrect: The LinkBehavior property affects how the link is underlined, but it does

not affect the color.

Lesson 3
 1. Correct Answer: D

 A. Incorrect: The MultiLine property allows you to enter and display multiple lines,

but it has no effect on the actual length of text entry.

 B. Incorrect: The WordWrap property affects how text is displayed in a multiline text

box, but it has no impact on the maximum length of the string.

 C. Incorrect: The ScrollBars property infl uences whether scroll bars are displayed, but

it does not affect the maximum length of the text.

 D. Correct: The MaxLength property is the only property that affects the maximum

length of the Text property.

702 Answers

 2. Correct Answer: C

 A. Incorrect: The 9 character indicates an optional numeric character in the Masked-

TextBox. All entries for a social security number should be required.

 B. Incorrect: The 9 character indicates an optional numeric character in the Masked-

TextBox. All entries for a social security number should be required. Additionally,

the slash (/) character represents a date separator and is inappropriate in this

context.

 C. Correct: The zero (0) character indicates a required numeric character. Additionally,

the hyphen (-) is a literal character that is traditional for formatting social security

numbers.

 D. Incorrect: The slash (/) character represents a date separator and is inappropriate in

this context. The hyphen (-) character literal is more appropriate.

 3. Correct Answer: B

 A. Incorrect: If the CutCopyMaskFormat property is set to ExcludePromptAndLiterals,

the hyphen (-) literal character will be excluded. If the TextMaskFormat property is

set to IncludeLiterals, the hyphen (-) literal character will not be excluded from the

Text property.

 B. Correct: The CutCopyMaskFormat property should be set to IncludeLiterals to

include the literal characters, and the TextMaskFormat property should be set to

ExcludePromptAndLiterals to exclude all but the user input.

 C. Incorrect: If the CutCopyMaskFormat property is set to ExcludePromptAndLiterals,

the hyphen (-) literal character will be excluded. If the TextMaskFormat property

is set to IncludePrompt, the hyphen (-) literal character will be excluded from the

Text property but any prompt characters that remain in the MaskedTextBox will be

incorporated into the Text property as well.

 D. Incorrect: If the TextMaskFormat property is set to IncludeLiterals, the hyphen (-)

literal character will not be excluded from the Text property.

Chapter 2: Case Scenario Answers

Case Scenario 1: Designing a Simple User Interface
 1. You can use TextBox controls to receive input for the interest rate and time span

parameters and a MaskedTextBox that uses the currency symbol for the current invest-

ment value parameter. You should use labels to clearly identify each input control.

703Answers

 2. You can set the TabOrder property for each control to provide an ordered means of

navigating with the Tab key. In addition, you can use the Label controls to create access

keys for the TextBox and MaskedTextBox controls in your UI.

Case Scenario 2: Designing a User Interface
 1. For the name and address fi elds, TextBox controls are most appropriate. For fi elds that

have a defi ned format, such as postal code and credit card number, use MaskedText-

Box controls. A multiline text box will make general comments easier to enter and

read. You should use labels to clearly name each control.

 2. By setting the PasswordChar property of the MaskedTextBox, you can keep the credit

card information from displaying inappropriately. Although this might make it more

diffi cult to ensure that the correct data was entered, you can overcome the problem by

requiring that this data be entered twice and that both entries match.

Chapter 3: Lesson Review Answers

Lesson 1
 1. Correct Answers: B and C

 A. Incorrect: The IndexOf method returns the index of an object to which you have a

reference, but it does not detect selected objects.

 B. Correct: The SelectedIndex property will return the selected index. Note that if

more than one item is selected, this property might return any of them.

 C. Correct: The SelectedIndices property will return all selected indexes.

 D. Incorrect: The Select method will programmatically select an object in the ListBox,

but it does not detect which index is selected.

 2. Correct Answer: D

 A. Incorrect: The Items.Add method adds a specifi ed item to the Items collection.

 B. Incorrect: The Items.Insert method adds a specifi ed item to the Items collection at

a specifi ed index.

 C. Incorrect: The Items.AddRange method can be used to add an array of objects to

the Items collection.

 D. Correct: The Items.Contains method is used to determine if a collection contains a

specifi ed item, not to add items to a collection.

704 Answers

 3. Correct Answer: C

 A. Incorrect: Setting the View property to LargeIcon displays the ListViewItems with

their associated large icons.

 B. Incorrect: Setting the View property to Details will display the ListViewItems with

its associated SubItems.

 C. Correct: The ListView property cannot be used for displaying hierarchical data. For

items with a tree structure, use the TreeView control.

 D. Incorrect: Setting the View property to SmallIcon displays the ListViewItems with

their associated small icons.

Lesson 2
 1. Correct Answers: B and E

 A. Incorrect: The Checked property is a Boolean value and can be only True or False.

The CheckState property can be set to Checked, however.

 B. Correct: The Checked property is a Boolean value and can be only True or False.

 C. Incorrect: The Checked property is a Boolean value and can be only True or False.

The CheckState property can be set to Indeterminate, however.

 D. Incorrect: The Checked property is a Boolean value and can be only True or False.

The CheckState property can be set to Unchecked, however.

 E. Correct: The Checked property is a Boolean value and can be only True or False.

 F. Incorrect: The Checked property is a Boolean value and can be only True or False.

No property of the CheckBox control can be set to NotChecked.

 2. Correct Answers: A, C, and D

 A. Correct: The MaxSelectionCount property determines the number of days that can

be chosen in the SelectionRange property.

 B. Incorrect: The SelectionRange property is set to a new value when the user chooses

dates, so setting it at design time will not facilitate this scenario.

 C. Correct: The MaxDate property determines the latest date that can be chosen, so

setting it to the last day of the month in question will prevent the user from choos-

ing any date after this day.

 D. Correct: The MinDate property determines the earliest date that can be chosen,

so setting it to the fi rst day of the month in question will prevent the user from

choosing any date before this day.

705Answers

 3. Correct Answers: C and D

 A. Incorrect: The Image property directly sets an image for the control and cannot be

set to an ImageList.

 B. Incorrect: The ImageKey property takes a string and indicates the key for the

image in the associated ImageList component. You cannot set the ImageKey prop-

erty to a value of Image.

 C. Correct: You can set the ImageList property of the control to the ImageList in

question and set the ImageIndex property to the index of the image in the Image-

List.Items collection.

 D. Correct: You can set the ImageList property of the control to the ImageList in

question and set the ImageKey property to the key of the image in the ImageList.

Items collection.

Lesson 3
 1. Correct Answers: A, B, and C

 A. Correct: The Print method prints the current document.

 B. Correct: The ShowPrintDialog method displays the Print dialog box and allows the

user to set options before printing.

 C. Correct: The ShowPrintPreview method displays the Print Preview dialog box and

allows the user to preview the document before printing.

 D. Incorrect: The ShowPropertiesDialog method displays the properties for the cur-

rent document but does not facilitate printing.

 2. Correct Answers: A, B, and C

 A. Correct: The BalloonTipIcon property can be set to Error, Warning, or Info, which

can set the level of warning for the BalloonTip.

 B. Correct: The BalloonTipText property can give the user detailed information about

the problem and suggest a remedy.

 C. Correct: The BalloonTipTitle property can provide a clear indication of the problem

to the user.

 D. Incorrect: The Text property is displayed when the mouse hovers over the NotifyI-

con in the system tray and should not be used for displaying critical information.

 3. Correct Answers: B, C, and D

 A. Incorrect: Although the access key will not function if the control is not enabled,

setting the Enabled property to False does not prevent the creation of an access

key at design time.

706 Answers

 B. Correct: The Text property allows the user to defi ne the key that is to be the access

key.

 C. Correct: The UseMnemonic property indicates that the control should use the key

preceded by the ampersand (&) symbol in the Text property as the access key.

 D. Correct: If the control cannot inherently receive the focus, you cannot create an

access key for it.

Chapter 3: Case Scenario Answers

Case Scenario 1: Incorporating List-Based Controls into the
User Interface
 1. The primary control of this user interface would be the TreeView control, which can

be used to display hierarchical information, such as an organization chart, to the user.

Individual nodes in the organization can be expanded or collapsed, and the user can

easily browse the interface. You can use other controls to display detailed information

about a selected employee.

 2. You can create an ImageList that contains icon photos of each employee and set the

ImageList property of the TreeView to read these images. By setting the ImageKey

or ImageIndex property of each TreeNode, an individual icon will be displayed in the

TreeView. In the details view you can use the PictureBox control to display a full-size

image.

Case Scenario 2: Working with Files and Background
Processes
 1. The NotifyIcon component can be used to inform the user without creating an obtru-

sive user interface. An icon in the system tray will let the user know that the application

is running. A problem can be communicated to the user through the balloon tip. The

BalloonTipIcon property can be set to the appropriate level (Error, Warning, or Info),

and the user can be given additional information through the BalloonTipText.

If launching the user interface is required, you can enable that by associating a Con-

textMenuStrip with the NotifyIcon. The user can right-click the NotifyIcon and choose

a command from the context menu.

707Answers

 2. The WebBrowser component contains all of the functionality necessary to examine,

print, and save fi les. You can design the interface so that the user can view the fi le in

the WebBrowser and then call the WebBrowser.Print or WebBrowser.ShowSaveAsDia-

log methods as necessary to print and save the document.

Chapter 4: Lesson Review Answers

Lesson 1
 1. Correct Answer: B

 A. Incorrect: The ToolStrip class does not have a Merge method. You must use the

ToolStripManager class.

 B. Correct: Use the static ToolStripManager class to merge tool strips.

 C. Incorrect: The ToolStripManager class is static so it cannot be instantiated.

 D. Incorrect: The ToolStrip class does not have a Merge method. You must use the

ToolStripManager class.

 2. Correct Answer: A

 A. Correct: Use the Add method of the Items collection to add a new item at run

time.

 B. Incorrect: The ToolStripManager class is used to manage the tool strips them-

selves, not the items they contain.

 C. Incorrect: The ToolStrip class contains a single collection, Items, for all the tool

strip items. It does not contain a separate collection for each type of tool strip

item.

 D. Incorrect: Use the Items.Add method to add a new item. There is no Items.NewI-

tem method.

Lesson 2
 1. Correct Answer: C

 A. Incorrect: ToolStripMenuItem controls have no UseMnemonic property and create

access keys automatically when a letter is preceded by an ampersand.

 B. Incorrect: ToolStripMenuItem controls have no AccessKeys property and create

access keys automatically when a letter is preceded by an ampersand.

708 Answers

 C. Correct: ToolStripMenuItem controls create access keys automatically when a letter

is preceded by an ampersand.

 D. Incorrect: The ShortcutKeys property creates shortcut keys, which provide direct

access to the command. Access keys are defi ned by preceding a letter in the Text

property with an ampersand.

 2. Correct Answer: D

 A. Incorrect: The ToolStripManager does not contain a Menus collection.

 B. Incorrect: The ToolStripManager.Merge method is used for merging two tool

strips or menus, not for adding a menu to a form.

 C. Incorrect: The ToolStripManager does not contain a Controls collection.

 D. Correct: To add a menu to a form at run time, you add it through the form’s Con-

trols collection.

 3. Correct Answer: A

 A. Correct: All that is required to enable a context menu for a control is to set that

control’s ContextMenuStrip property.

 B. Incorrect: Controls do not have a ShowPopUp property.

 C. Incorrect: ContextMenuStrip controls do not have a ShowPopUp method.

 D. Incorrect: ContextMenuStrip controls do not have a Control property.

Lesson 3
 1. Correct Answers: A, B, C, and D

 A. Correct: The Control property returns a Boolean value that indicates if the Ctrl key

has been pressed.

 B. Correct: The KeyCode property returns a value representing the code of the key

that has been pressed. The Ctrl key will send a code to this property.

 C. Correct: The KeyData property returns data representing all keys and modifi ers

that have been pressed.

 D. Correct: The Modifi ers property returns all of the modifi er keys that have been

pressed.

 2. Correct Answer: C

 A. Incorrect: In Visual Basic, you use the stand-alone keyword AddHandler to add an

event handler at run time. However, AddHandler is not a method. In C#, you use

the += operator, but you must specify the event name, not the name of the event

handler.

709Answers

 B. Incorrect: In Visual Basic, you must use the AddressOf operator to create a del-

egate at run time to assign to an event. In C#, you must use the += operator to

add an event handler.

 C. Correct: In Visual Basic, you use the stand-alone keyword AddHandler to add an

event handler at run time. In C#, you use the += operator.

 D. Incorrect: In Visual Basic, you use the stand-alone keyword AddHandler to add an

event handler at run time, not AddressOf. In C#, you use the += operator, not ++.

Chapter 4: Case Scenario Answers

Case Scenario 1: Designing a Complex User Interface
The answer to both questions lies in the design of the UI. All commands and options should

be exposed in the main menu, with menu options changing as the application conditions

require. Frequently used commands should be segregated into groups and programmed into

toolbars that can be added or removed from the UI at the user’s option. The use of familiar

icons for toolbar commands will break up the monotony of the UI and make it easier to use

and learn. Context menus that duplicate key commands can reinforce application integrity

and make the program easier to use.

Case Scenario 2: More Humongous Requirements
Menu items are no problem, of course. Access keys are automatically created by preced-

ing the desired key in the Text property with the ampersand (&) character. Likewise, you can

create shortcut keys by setting the ShortcutKeys property of each menu item. To autofi ll a

TextBox on a command keystroke, you should handle the TextBox.KeyDown event and deter-

mine if an appropriate combination of a key plus a modifi er key has been pressed. If so, you

can set the Text property for the TextBox in the event handler.

Chapter 5: Lesson Review Answers

Lesson 1
 1. Correct Answer: C

 A. Incorrect: The application confi guration can contain the connection string infor-

mation but not the actual connection object.

710 Answers

 B. Incorrect: The Data Sources window displays the objects in a dataset, not the

actual connection object.

 C. Correct: The dataset code fi le is where the code that defi nes the connection object

is located.

 D. Incorrect: The generated form code does not contain the connection object

 2. Correct Answers: B and C

 A. Incorrect: Use the OracleConnection object to connect to Oracle databases.

 B. Correct: Use the OleDbConnection object to connect to Offi ce Access databases.

 C. Correct: Use the OleDbConnection object when connecting to SQL Server 6.x and

later databases.

 D. Incorrect: Use the SqlConnection object when connecting to SQL Server 2000

databases.

 3. Correct Answer: C

 A. Incorrect: Connections can be created while running the Data Source Confi gura-

tion Wizard, but it is not the wizard that actually creates the connection.

 B. Incorrect: Server Explorer displays connections but is not used to actually create

connections.

 C. Correct: The Add Connection dialog box creates connections whether using Server

Explorer or a data wizard.

 D. Incorrect: The Properties window can display connection information and it can

be an entry point into the Add Connection dialog box, but it is not used to actually

create connections.

Lesson 2
 1. Correct Answers: A and D

 A. Correct: The connection string must have information about the data source to

connect to.

 B. Incorrect: The provider name is not required to connect to SQL Server 2000 and

SQL Server 2005.

 C. Incorrect: A valid fi lepath is not required when connecting to SQL Server 2000 or

SQL Server 2005.

 D. Correct: Appropriate credentials or Integrated Security settings are required to

connect to a SQL Server database.

711Answers

 2. Correct Answers: B, C, and D

 A. Incorrect: The connection is not destroyed, although it may be released and

marked ready for garbage collection.

 B. Correct: The connection is returned to the pool.

 C. Correct: When closing a connection, the StateChange event is fi red and the Con-

nection.CurrentState property is set to Closed.

 D. Correct: When closing a connection, all pending transactions that have not been

explicitly committed are automatically rolled back.

 3. Correct Answer: C

 A. Incorrect: Information regarding the current state of a connection is accessed

through the connection’s CurrentState property.

 B. Incorrect: High-severity SQL Server errors (severity 17 and above) are not available

through the InfoMessage event.

 C. Correct: Low-severity SQL Server errors (severity 10 and below) will cause the Info-

Message event to fi re.

 D. Incorrect: Network errors that are encountered when attempting to open a con-

nection are not exposed through the InfoMessage event.

Lesson 3
 1. Correct Answers: A and B

 A. Correct: The connection string is used to determine which connection pool to use.

 B. Correct: The identity or credential of a user is used to determine which connection

pool to use.

 C. Incorrect: The database being connected to does not determine the connection

pool to use.

 D. Incorrect: The connection object used to connect to the database does not deter-

mine the connection pool to use.

 2. Correct Answers: B and C

 A. Incorrect: The OLE DB Services connection string keyword is not used for SQL

Server 2000 or SQL Server 2005.

 B. Correct: Opening a connection and not explicitly disabling pooling. Connection

pooling is on by default with all the .NET Data Providers, so you can just open a

connection to use connection pooling.

712 Answers

 C. Correct: Setting the connection string keyword Pooling = True in the connection

string. This is how to explicitly turn on connection pooling in SQL Server 2000 and

SQL Server 2005.

 D. Incorrect: The Connection Pooling tab of the ODBC Data Source Administrator

dialog box is used only for ODBC data sources. Although a SQL Server can be

connected through ODBC, it is better to use the .NET Framework Data Provider for

SQL Server when connecting to SQL Server.

 3. Correct Answer: C

 A. Incorrect: Setting the OLE DB Services connection string keyword to 0 turns all

services off (including connection pooling).

 B. Incorrect: Setting the OLE DB Services connection string keyword to -4 turns on all

services except pooling and auto enlistment of transactions.

 C. Correct: Setting the OLE DB Services connection string keyword to -1 turns on all

services, including pooling.

 D. Incorrect: Setting the OLE DB Services connection string keyword to -7 turns on all

services except pooling, autoenlistment, and Client Cursor.

Lesson 4
 1. Correct Answers: C and D

 A. Incorrect: When errors wth a severity level of 1 through 9 are encountered, the

connection will typically remain open.

 B. Incorrect: When errors wth a severity level of 10 through 19 are encountered, the

connection will typically remain open.

 C. Correct: When errors wth a severity level of 20 or greater are encountered, the

connection will typically close.

 D. Correct: When errors wth a severity level of 30 or greater are encountered, the

connection will typically close.

 2. Correct Answers: B and D

 A. Incorrect: The SqlException.Source property contains the name of the provider that

generated the error, not the actual error.

 B. Correct: The SqlException.Message property contains the error message returned

by SQL Server.

 C. Incorrect: The SqlError.Class property contains the severity of the error, but not the

actual error message.

 D. Correct: The SqlError.Message property contains the error message returned by

SQL Server.

713Answers

Lesson 5
 1. Correct Answer: C

 A. Incorrect: VisibleSqlServers is the instance name of the DataGridView in this les-

son’s example and not the object that returns the list of servers.

 B. Incorrect: GetDataSources is the method on the SqlDataSourceEnumerator and not

the object that returns the list of servers.

 C. Correct: The SqlDataSourceEnumerator is the object used to return the list of vis-

ible SQL servers.

 D. Incorrect: The ServerName is a column name in the DataTable returned by the

GetDataSources method call.

 2. Correct Answers: A, B, and C

 A. Correct: The computer’s fi rewall settings can block the visibility of the SQL server

to your application.

 B. Correct: The amount of network traffi c can cause a timeout before your applica-

tion is able to retrieve information about the SQL server.

 C. Correct: The availability of the SQL Browser service can affect the ability of your

application to see any SQL servers.

 D. Incorrect: There is no Visibility property of a SQL server.

 3. Correct Answers: A, C, and D

 A. Correct: The name of the server is available in the ServerName column of the

DataTable returned by the GetDataSources method.

 B. Incorrect: The number of databases is not provided by the SqlServerEnumerator

object.

 C. Correct: The name of the version is available in the Version column of the DataT-

able returned by the GetDataSources method.

 D. Correct: The name of the instance is available in the InstanceName column of the

DataTable returned by the GetDataSources method.

Lesson 6
 1. Correct Answers: B and C

 A. Incorrect: Integrated Security = yes is used for ODBC connections.

 B. Correct: Integrated Security =SSPI can be used for both SQL Server and OLE DB.

714 Answers

 C. Correct: Integrated Security = True is used for SQL Server 2000 and SQL Server

2005 connections.

 D. Incorrect: Trusted_Connection = yes is used for Oracle connections.

 2. Correct Answer: B

 A. Incorrect: Compiled in the application is not where you should store sensitive

information. The application can be decompiled, which can compromise the secu-

rity of the data.

 B. Correct: An encrypted application confi guration fi le is the recommended location

for storing sensitive information.

 C. Incorrect: A resource fi le deployed with the application is not secure and can com-

promise the security of your data.

 D. Incorrect: The registry is not a recommended location for storing sensitive

information.

 3. Correct Answer: C

 A. Incorrect: Encrypting the data in the application confi guration fi le is a way to

secure sensitive information if it must be included in the application, but the rec-

ommended method is to use Integrated Security.

 B. Incorrect: Using a code obfuscator is not the recommended method for securing

sensitive connection string information.

 C. Correct: Using Integrated Security (Windows Authentication) is the recommended

method for securing sensitive connection string information.

 D. Incorrect: Querying the user for his or her credentials at run time is not the recom-

mended method for securing sensitive connection string information.

Chapter 5: Case Scenario Answers

Case Scenario 1: Troubleshooting a SQL Connection
The modifi cations to the application are as follows:

 Locate every line of code that opens connections to the SQL server and surround those

lines of code with a try-catch block.

 Add code to catch the errors using the SqlException and SqlError classes.

 Add code to handle the errors and provide comprehensive error messages so users

understand the cause of the errors and know the course of action they can follow.

715Answers

Case Scenario 2: Securing Sensitive Data
The recommendations to upper management are as follows:

 Remove the sensitive information from the code and modify all connection strings to

use Integrated Security.

 Remove the sensitive information from the code and move it to the application con-

fi guration fi le where it can be encrypted.

Chapter 6: Lesson Review Answers

Lesson 1
 1. Correct Answers: B and D

 A. Incorrect: CommandType = Text, CommandText = stored procedure name are not

valid settings because the CommandType needs to be set to StoredProcedure.

 B. Correct: CommandType = Text, CommandText = SQL syntax to execute the stored

procedure is not the recommended way to execute a stored procedure, but setting

CommandType = Text allows you to execute any valid SQL statement.

 C. Incorrect: CommandType = StoredProcedure, CommandText = SQL syntax to

execute the stored procedure are not valid settings because the CommandText

needs to be the name of the stored procedure.

 D. Correct: CommandType = StoredProcedure, CommandText = stored procedure

name is the recommended way to execute a stored procedure with a Command

object.

 2. Correct Answers: B and D

 A. Incorrect: Calling the EndExecuteNonQuery method before the StatementCom-

pleted event fi res is incorrect because BeginExecuteNonQuery does not return any

data.

 B. Correct: Calling the EndExecuteReader method before the StatementCompleted

event fi res causes the process to wait for the query to return and allows you to

access the data afterwards.

 C. Incorrect: Waiting for the StatementCompleted event to fi re and then iterating

through the DataReader is incorrect because you need to call EndExecuteReader to

return the DataReader.

 D. Correct: Waiting for the StatementCompleted event to fi re, calling the EndEx-

ecuteReader method, and then iterating through the DataReader is the correct

sequence to follow to execute a command asynchronously and access tabular data.

716 Answers

 3. Correct Answer: C

 A. Incorrect: Calling the ExecuteReader method of two Command objects and assign-

ing the results to the same instance of a DataReader is the same as executing two

commands. If you do not iterate through the DataReader after the fi rst command

is executed, the results of the second command will overwrite the contents of the

reader.

 B. Incorrect: Calling the ExecuteReader method of a single Command object twice

will yield only the results of the second call.

 C. Correct: Set the Command.CommandText property to multiple SQL statements

delimited by a semicolon and iterate through the DataReader. Use DataReader.

NextResult to check for any more result sets in the DataReader.

 D. Incorrect: Setting the Command.CommandType property to multiple result sets is

not valid.

Lesson 2
 1. Correct Answers: B and C

 A. Incorrect: When the parameter value is created based on user input, it can defi -

nitely use an Input parameter, but it does not have to.

 B. Correct: Using the parameter to send data from the application to the database

could be the common defi nition of an Input parameter. It is a parameter used to

send data to the database to run a query.

 C. Correct: Setting the command to execute a statement with a WHERE clause is also

a typical use of an Input parameter.

 D. Incorrect: Passing the parameter value to an INSERT statement can also use an

Input parameter but is not the typical defi nition.

 2. Correct Answer: D

 A. Incorrect: Input, Output, and InputOutput are the primary types of parameters you

can use in a .NET Framework Data Provider.

 B. Incorrect: Input, Output, and InputOutput are the primary types of parameters you

can use in a .NET Framework Data Provider.

 C. Incorrect: Input, Output, and InputOutput are the primary types of parameters you

can use in a .NET Framework Data Provider.

 D. Correct: Input, Output, and InputOutput are the primary types of parameters you

can use in a .NET Framework Data Provider.

717Answers

 3. Correct Answer: B

 A. Incorrect: The .NET Framework data type in your application that the parameter

represents is not the correct type for the SqlParameter.SqlDbType property.

 B. Correct: It is the type of column or data in SQL Server that the command expects.

 C. Incorrect: The type of column in a DataTable that it represents is only a valid data

type for the application.

 D. Incorrect: All types defi ned in the SqlDbDataType enumeration correspond to the

SQL Server types, but you must pick the correct one for your parameter.

Lesson 3
 1. Correct Answers: A and C

 A. Correct: BLOB data is typically transferred with a “stream” object, which presents a

more challenging programming task.

 B. Incorrect: Whether or not BLOB data is in a readable format is not why it is com-

plex to work with.

 C. Correct: The fact that BLOB data tends to be large and typically needs to be trans-

ferred in smaller pieces is primarily why working with BLOBs is complex.

 D. Incorrect: BLOB data can be read into a DataReader.

 2. Correct Answer: D

 A. Incorrect: Setting its Connection property to read binary data is not how to confi g-

ure a connection object for blobs.

 B. Incorrect: Calling the ExecuteNonQuery method and reading the results into a

BinaryReader is incorrect.

 C. Incorrect: Calling the ExecuteReader method and casting the DataReader to a

BufferedStream is incorrect.

 D. Correct: By setting the CommandBehavior to SequentialAccess in the Exe-

cuteReader methods constructor, the DataReader is enabled to load streams of

data, which is necessary for handling blobs.

 3. Correct Answer: C

 A. Incorrect: Calling the DataReader.GetData method is inCorrect:

 B. Incorrect: Calling the DataReader.Read method and accessing the bytes through a

column ordinal is incorrect.

718 Answers

 C. Correct: Calling the DataReader.GetBytes method and adding the results to the

byte array is the correct way to reconstruct the binary data from the DataReader

results.

 D. Incorrect: Calling the DataReader.GetSqlByte method and adding the results to the

byte array is not the correct way to reconstruct the BLOB.

Lesson 4
 1. Correct Answers: A and C

 A. Correct: One connection for each database the application needs to connect to is

correct.

 B. Incorrect: Although the SqlBulkCopy object does not require two connections for

each database to connect to, it might coincidentally end up using two connections

to the same database if you are moving data within the same database. In other

words, you might use two connections to the same database in the rare occurrence

of copying data within a single database, but you do not need two connections

for each database when more than one database is involved in the bulk copy

operation.

 C. Correct: Two connections total—one connection for the source database and one

connection for the destination database—is the correct answer, but, as seen in the

Bulk Copy example, the connections might point to the same data source.

 2. Correct Answer: A

 A. Correct: The BULK INSERT statement uses a data fi le created with the .bcp utility as

the source of its data.

 B. Incorrect: The BULK INSERT statement does not get its data from a query exe-

cuted by a Command object.

 C. Incorrect: The BULK INSERT statement does not get its data from a DataReader.

 D. Incorrect: The BULK INSERT statement does not get its data from a database table

in either the same or another database.

 3. Correct Answer: B

 A. Incorrect: This condition is correct only if the fi rst record in a batch fails; otherwise,

it is incorrect.

 B. Correct: It depends on the batch size and how many successful batches were

copied before the transaction failed. Transactions are performed in batches, and

each successful batch is, in turn, successfully copied and is, therefore, not subject

to being rolled back.

719Answers

 C. Incorrect: Because the batches after a failed transaction are not attempted, this

answer is incorrect.

 D. Incorrect: Because transactions are performed in batches and each successful

batch is, in turn, successfully copied and not subject to rollback, this answer is

incorrect.

Lesson 5
 1. Correct Answer: A

 A. Correct: Assigning a transaction variable the return value of the Connection.Begin-

Transaction method is the correct way to create and start a transaction.

 B. Incorrect: There is no constructor to declare a new instance of the Transaction

class.

 C. Incorrect: There is no Command.CreateTransaction method.

 D. Incorrect: The Command.Transaction property is where you set the transaction for

the command to participate in.

 2. Correct Answer: D

 A. Incorrect: A transaction does not validate that multiple commands complete

successfully.

 B. Incorrect: A transaction does not handle exceptions that may occur on the data-

base during command execution.

 C. Incorrect: A transaction can abort the outcome of an executed command and

return data to the state it was in prior to the transaction, but it does so only if the

transaction.Rollback method is called.

 D. Correct: The main purpose of a transaction is to provide an option to abort the

outcome of executed commands and return data to the state it was in prior to the

transaction.

 3. Correct Answer: C

 A. Incorrect: Local transactions are performed on a single database server, but dis-

tributed transactions can be performed across multiple database servers.

 B. Incorrect: Local transactions are performed on a single database server, but dis-

tributed transactions can be performed across multiple database servers.

 C. Correct: Local transactions are performed on a single database server, but distrib-

uted transactions can be performed across multiple database servers.

 D. Incorrect: Local transactions are performed on a single database server, but dis-

tributed transactions can be performed across multiple database servers.

720 Answers

Lesson 6
 1. Correct Answer: D

 A. Incorrect: DataTables and DataSets can be queried using LINQ to SQL.

 B. Incorrect: Any .NET Framework collection that implements IEnumerable(T) can be

queried using LINQ.

 C. Incorrect: Collections that implement interfaces that inherit from IEnumerable(T)

can be queried using LINQ.

 D. Correct: A, B, and C; all answers are correct.

 2. Correct Answer: D

 A. Incorrect: When they are iterated over in a foreach loop. LINQ queries are not

typically run when they are created; they are run when you iterate over the range

variable in a foreach loop.

 B. Incorrect: When calling the ToArray() method on the range variable, a LINQ query

is automatically run.

 C. Incorrect: When calling the ToList() method on the range variable, a LINQ query is

automatically run.

 D. Correct: A, B, and C; all answers are correct.

 3. Correct Answer: C

 A. Incorrect: The SqlConnection object is not used in LINQ to SQL.

 B. Incorrect: The DataConnection object is not used in LINQ to SQL.

 C. Correct: The DataContext object is where connection information is contained

when using LINQ to SQL.

 D. Incorrect: The Table and Column attributes only provide LINQ to SQL with the

mapping between objects and database tables and columns.

Chapter 6: Case Scenario Answers

Case Scenario 1: Troubleshooting a Nonperforming
Application
The possible improvements are as follows:

 Add parameters to the existing queries in an effort to reduce the number of records

returned.

 Create a nightly job that bulk copies batches of records so archiving is more effi cient.

721Answers

Case Scenario 2: Preventing the Inventory System from
Selling Unavailable Products
The modifi cation to the application is as follows:

 Create a distributed transaction that can query the manufacturers’ systems as well as

the local warehouse and does not allow the sale to complete if the inventory is unavail-

able at all locations.

Chapter 7: Lesson Review Answers

Lesson 1
 1. Correct Answers: B and C

 A. Incorrect: A DataSet is not a pointer to a remote or local database.

 B. Correct: A DataSet can be described as a collection of DataTable and DataRelation

objects.

 C. Correct: A DataSet can be described as an in-memory cache of data.

 D. Incorrect: A collection of records from a database can be stored in a DataTable but

it is not the defi nition for a DataSet.

 2. Correct Answer: B

 A. Incorrect: A DataAdapter is not part of a DataSet.

 B. Correct: A DataSet is made up of DataTable, DataColumn, and DataRelation

objects.

 C. Incorrect: A constraint is not part of the DataSet object.

 D. Incorrect: Type is not a main object in a DataSet.

 3. Correct Answer: C

 A. Incorrect: The GetParentRow and GetChildRows methods are not members of the

DataSet.

 B. Incorrect: The GetParentRow and GetChildRows methods are not members of the

DataTable.

 C. Correct: Calling the GetParentRow and GetChildRows methods of a DataRow is the

correct way to programmatically access related records in DataTable objects.

 D. Incorrect: The ParentColumns and ChildColumns are collections of the columns

that participate in the relation.

722 Answers

Lesson 2
 1. Correct Answer: B

 A. Incorrect: Running the Data Source Confi guration Wizard and selecting to create a

Database data source will create DataTable objects based on the database objects

you select in the wizard but is not part of programmatically creating a DataTable.

 B. Correct: Instantiating a new DataTable and adding DataColumn objects to the

DataTable.Columns collection is the correct way to create a DataTable.

 C. Incorrect: Adding a new DataSet object to your project does not automatically

create DataTable objects.

 D. Incorrect: Instantiating a new DataSet object still requires you to add DataTable

objects to its Tables collection.

 2. Correct Answer: B

 A. IncCorrect: The DataSet properties do not set the primary key.

 B. Correct: The DataTable.PrimaryKey property is assigned an array of DataColumn

objects that make up the primary key.

 C. Incorrect: The DataColumn properties do not set the primary key.

 D. Incorrect: The DataRelation properties do not set the primary key.

 3. Correct Answer: C

 A. Incorrect: The DataColumn does not have a ForeignKey property.

 B. Incorrect: The DataTable does not have a ForiegnKey property.

 C. Correct: Instantiating a new ForeignKey class and adding it to the DataTable.Con-

straints collection is the correct way to confi gure a foreign key in a DataTable.

 D. Incorrect: The DataRelation does not defi ne the foreign key.

Lesson 3
 1. Correct Answer: B

 A. Incorrect: DataAdapter objects do not contain DataTable objects.

 B. Correct: DataAdapter objects are made up of Connection and Command objects.

 C. Incorrect: DataAdapter objects do not contain DataTable or DataSet objects.

 D. Incorrect: DataAdapter objects do not contain DataSet objects.

 2. Correct Answers: A and C

 A. Correct: Instantiate a CommandBuilder object and pass it a DataAdapter with a

confi gured SELECT command to generate the INSERT, UPDATE, and DELETE com-

mands for a DataAdapter.

723Answers

 B. Incorrect: Calling the DataAdapter.Update method attempts to save changes

to a database, but the DataAdapter must already have valid update commands

confi gured.

 C. Correct: Assigning valid Command objects to the DataAdapter object’s InsertCom-

mand, UpdateCommand, and DeleteCommand properties is one way to confi gure a

DataAdapter to save changes.

 D. Incorrect: Calling the DataAdapter.Fill method attempts to load the DataAdapter

with data, but the DataAdapter must already have valid update commands

confi gured.

 3. Correct Answer: C

 A. Incorrect: The DataSet does not have a Fill method.

 B. Incorrect: The DataSet does not have a DataSource property.

 C. Correct: Calling the DataAdapter.Fill method and passing the recordset as an argu-

ment is the correct way to fi ll a DataTable with a recordset.

 D. Incorrect: The DataAdapter commands do not provide access to a recordset.

Lesson 4
 1. Correct Answer: B

 A. Incorrect: Creating an instance of a DataRow and calling the DataAdapter object’s

Update method will not add a new row to the table.

 B. Correct: Creating an instance of a DataRow (or typed row) and adding it to the

Rows collection of the DataTable is the correct way to add a row to a table.

 C. Incorrect: Calling the DataTable.NewRow method does not add a row to the table.

 D. Incorrect: Creating an instance of a DataRow (or typed row) does not automati-

cally add the row to the table.

 2. Correct Answer: C

 A. Incorrect: OriginalValue = DataRow(“CustomerID”).DataRowVersion.Original is not

the correct way to access the original value in a column.

 B. Incorrect: OriginalValue = DataColumn(“CustomerID”).Original is not the correct

way to access the original value in a column.

 C. Correct: Passing the desired DataRowVersion as an argument to the Column index

is the correct way to access specifi c row versions.

 D. Incorrect: OriginalValue = DataRow(“CustomerID”) is not the correct way to access

the original value in a column.

724 Answers

 3. Correct Answers: B and D

 A. Incorrect: The ColumnChanged event is raised after the value has already changed,

so it is too late to reject the change.

 B. Correct: The ColumnChanging event is the correct event to add validation to.

 C. Incorrect: The RowChanged event is raised after the value has already changed, so

it is too late to reject the change.

 D. Correct: The RowChanging event can be used to validate column changes as well

Lesson 5
 1. Correct Answer: C

 A. Incorrect: Calling the GetXmlSchema method is inCorrect: The GetXmlSchema

method returns the schema as an XML string from a DataSet.

 B. Incorrect: Calling the ReadXml method is how you load data from an XML docu-

ment into a DataSet, not how you retrieve schema information.

 C. Correct: Calling the ReadXmlSchema method and passing in the path to the .xsd

fi le is the correct way to load schema information from an .xsd fi le to a DataSet.

 D. Incorrect: Setting the DataSet ’s Name property is not how you retrieve schema

information.

 2. Correct Answer: B

 A. Incorrect: Passing the XmlDataDocument to the DataSet.GetXml method is

incorrect.

 B. Correct: Declaring a new instance of an XmlDataDocument and passing in the

name of the DataSet to synchronize with is the correct way to synchronize a Data-

Set with an XmlDataDocument.

 C. Incorrect: Calling the XmlDataDocument.Load method is incorrect.

 D. Incorrect: Calling the XmlDataDocument.Synch method is incorrect.

 3. Correct Answer: C

 A. Incorrect: Synchronizing with an XML document and performing the XPath query

on the raw XML is not correct.

 B. Incorrect: Passing the XPath query as a string to the DataTable.Select method is

not correct.

 C. Correct: Passing the XPath query as a string to the DocumentElement.SelectNodes

method is the correct way to execute an XPath query against a DataSet.

 D. Incorrect: Passing the XPath query as a string to the DataTable.Find method is not

correct.

725Answers

Lesson 6
 1. Correct Answers: C and D

 A. Incorrect: The DataColumn in the DataTable is not the correct way to access indi-

vidual values in a DataView.

 B. Incorrect: The associated DataTable object’s DataRow is not the correct way to

access individual columns in a DataView.

 C. Correct: Through the indexer of a DataRowView object is the correct way to access

an individual column value in a DataView.

 D. Correct: The DataView uses the DataTable as its data source so the columns are the

same.

 2. Correct Answer: B

 A. Incorrect: The Find method does not return an individual DataRow.

 B. Correct: The Find method returns the index of the found row in the DataView.

 C. Incorrect: The Find method does not return an individual DataRowView.

 D. Incorrect: The Find method does not return a collection of DataRows.

 3. Correct Answer: C

 A. Correct: Calling the GetChildRows method of the DataView is not the correct way

to access related records in a DataView.

 B. Incorrect: Calling the CreateChildView method of the DataView is not the correct

way to access related records in a DataView.

 C. Correct: The correct way to access related records using a DataView is to call the

CreateChildView method of the DataRowView.

 D. Incorrect: Calling the GetParentRow method of the DataView is not the correct

way to access related records in a DataView.

Chapter 7: Case Scenario Answers

Case Scenario 1: Upgrading an Old Application
The possible improvements are as follows:

 Start substituting the temporary fi les with either XML documents or, possibly, DataView

objects, depending on the overall restrictions of the existing application architecture.

 Replace the existing object model with strongly typed DataSet objects where

appropriate.

726 Answers

Case Scenario 2: Slow System Performance
The possible improvements are as follows:

 Use DataSet and DataTable objects to divide the inventory list into smaller chunks.

 Use DataView fi ltering to reduce the amount of data the application needs to parse

through during a transaction.

Chapter 8: Lesson Review Answers

Lesson 1
 1. Correct Answers: A, C, and D

 A. Correct: Selecting Add New Data Source from the Data Sources window starts the

Data Source Confi guration Wizard and populates the Data Sources window with

the confi gured data source.

 B. Incorrect: Dragging a DataSet from the Toolbox onto a form will not add items to

the Data Sources window.

 C. Correct: Selecting Add New Data Source from the Data menu starts the Data

Source Confi guration Wizard and populates the Data Sources window with the

confi gured data source.

 D. Correct: Running the Data Source Confi guration Wizard populates the Data

Sources window with the confi gured data source.

 2. Correct Answer: B

 A. Incorrect: Dragging items from Server Explorer onto the Dataset Designer adds

items to the typed dataset. It does not create data-bound controls on a form.

 B. Correct: Dragging items from the Data Sources window onto a form creates data-

bound controls.

 C. Incorrect: Dragging items from the Toolbox onto a form does not create data-

bound controls.

 D. Incorrect: Setting properties in the Properties window does not create data-bound

controls.

 3. Correct Answer: B

 A. Incorrect: Selecting the main node of the related table in the Data Sources win-

dow and dragging it onto a form binds controls to the entire table, not just to the

related records.

727Answers

 B. Correct: Selecting the child node in the Data Sources window and dragging it onto

a form is the correct way to bind controls to related data.

 C. Incorrect: Dragging a Relation object onto the Dataset Designer creates a relation-

ship between tables in your dataset but does not create bound controls.

 D. Incorrect: Binding to the child DataTable in the DataSet binds to the entire table,

not just to the related records.

Lesson 2
 1. Correct Answer: D

 A. Incorrect: That the control displays only a single column of data is incorrect

because controls like a ComboBox might display only a single column of data

but can really be bound to several columns through additional data-binding

properties.

 B. Incorrect: Although a TextBox displaying a string might be a simple-bound control,

it is not the defi nition of simple data binding.

 C. Incorrect: That the control can display only native data types is incorrect.

 D. Correct: That the control has a single property bound to a single column of data

correctly describes simple binding.

 2. Correct Answer: C

 A. Incorrect: The names of the database and the data table are not enough informa-

tion to set up complex data binding.

 B. Incorrect: The names of the database and the dataset are not enough information

to set up complex data binding.

 C. Correct: The object data source, such as a BindingSource or a DataSet, and the list

to display, such as a DataTable, are the bits of information needed to set up com-

plex data binding.

 D. Incorrect: The names of the DataSet and the control are not enough information

to set up complex data binding.

 3. Correct Answers: A and B

 A. Correct: The BindingSource component provides a level of abstraction between

bound controls and a data source, simplifying the process of redirecting your

application to use a different data source; it is the main reason to use a Binding-

Source component.

 B. Correct: The BindingSource component contains the methods necessary for

navigating through a DataTable, which might be a reason to use a BindingSource

component.

728 Answers

 C. Incorrect: The BindingSource component does not contain the methods necessary

for sending updates back and forth between the application and the database. The

TableAdapter or DataAdapter component contains the update commands.

 D. Incorrect: The BindingSource does not provide events through which you can add

validation logic to your code. The DataTable events are a more likely place to add

validation logic to your application.

Lesson 3
 1. Correct Answer: B

 A. Incorrect: Using the column and row index of the selected cell is not the best way

to determine the currently selected cell.

 B. Correct: Using the DataGridView.CurrentCell property is the best way to determine

the currently selected cell.

 C. Incorrect: Using the cursor position’s x and y coordinates is not the best way to

determine the currently selected cell.

 D. Incorrect: Using the currently selected column and row in the bound DataTable to

determine the clicked cell is incorrect.

 2. Correct Answer: C

 A. Incorrect: Adding validation code to the CellPainting event handler is not the pre-

ferred method of validating data in the DataGridView.

 B. Incorrect: Adding validation code to the DataGridView.CellClick event handler is

not the preferred method of validating data in the DataGridView.

 C. Correct: Adding your validation code to the DataGridView.CellValidating event

handler is the correct way to validate value changes in cells in a DataGridView.

 D. Incorrect: Adding code to the DataGridView partial class fi le is not the preferred

method of validating data in the DataGridView.

 3. Correct Answer: B

 A. Incorrect: Confi guring a DataGridViewTextBoxColumn to display True or False is

one way to display a Boolean value, but not the preferred way.

 B. Correct: Confi guring a DataGridViewCheckBoxColumn to display a check box

that is selected or cleared is the preferred way to display Boolean values in the

DataGridView.

 C. Incorrect: Confi guring a DataGridViewButtonColumn class to display a button that

indicates pressed or not pressed is not correct.

 D. Incorrect: Confi guring a custom column to display Yes or No is also one way to

present a Boolean value, but not the preferred method.

729Answers

Chapter 8: Case Scenario Answers

Case Scenario 1: Upgrading an Old Application
The possible improvements are as follows:

 Display all records in a DataGridView on a single form.

 Implement data-bound controls to eliminate the extra component.

Case Scenario 2: Preventing Recompilation of a Large
Application
The application will implement the following:

 BindingSource components

 Moving the connections to be confi gured to the application confi guration fi le

Chapter 9: Lesson Review Answers

Lesson 1
 1. Correct Answer: C

 A. Incorrect: The XmlReader class is an abstract class and has no constructor. Thus the

New (new) keyword cannot be used.

 B. Incorrect: You must specify a source for the XML when creating an XmlReader with

the XmlReader.Create method.

 C. Correct: You use the XmlReader.Create method to obtain an instance of a default

implementation of XmlReader, and you must specify a source for the Xml.

 D. Incorrect: The XmlReader class is an abstract class and has no constructor. Thus the

New (new) keyword cannot be used.

 2. Correct Answers: A, B, and C

 A Correct: The MoveToAttribute method allows you to specify either an attribute

name or index. The attribute value is then exposed in the XmlReader.Value method.

 B. Correct: The MoveToAttribute method allows you to specify either an attribute

name or index. The attribute value is then exposed in the XmlReader.Value method.

 C. Correct: The MoveToAttribute method allows you to specify either an attribute

name or index. The attribute value is exposed through the ReadInnerXml property.

730 Answers

 D. Incorrect: When positioned on an attribute, the ReadOuterXml property returns

the name of the attribute as well as the value.

 3. Correct Answer: A

 A. Correct: This code sample will generate the correct XML fragment.

 B. Incorrect: You do not need to supply the element name when calling

WriteEndElement.

 C. Incorrect: You should use WriteStartElement and WriteEndElement to create open-

ing and closing tags with content in between.

 D. Inccorrect: For a simple element, you should use WriteElementString instead of

WriteStartElement.

Lesson 2
 1. Correct Answer: A

 A. Correct: This example will create the new node and add it as a child node.

 B. Incorrect: You must create a variable to hold the reference to the newly created

node and then append that node to myNode.

 C. Incorrect: This will make the Test element a child of myDoc, not myNode.

 D. Incorrect: The XmlNode class does not expose a CreateElement method.

 2. Correct Answer: B

 A. Incorrect: The ReplaceChild method requires two XmlNode objects and cannot

accept a string.

 B. Correct: This example will replace the XML of Node1 with the XML contained in

aString.

 C. Incorrect: The Value property refers to the actual value of the node, not to the

child nodes.

 D. Incorrect: The OuterXml property includes the parent nodes as well as the child

nodes.

Chapter 9: Case Scenario Answers

Case Scenario 1: Report Archiving
 1. We can parse the incoming reports by using the XmlReader.Read method to read each

element in turn and process it as appropriate through the compression application.

731Answers

 2. By using the XmlValidatingReader and referencing our schema in each report, we can

validate the contents of the report against the schema. An error is raised if the report

does not conform to the schema.

 3. In the ValidationError event handler, we can save the .xml fi le as is instead of process-

ing it, and add it to a queue of items that must be hand-examined.

Case Scenario 2: The Merger
By designing our application around the XmlDocument class, we can accomplish this quickly

and easily. Each document can be loaded into an instance of the XmlDocument class. We can

retrieve the nodes in question by using XmlDocument.GetElementsByTagName. Since these

elements wrap text we can use the XmlNode.ReplaceChild method to replace the child text

elements with the text we specify.

Chapter 10: Lesson Review Answers

Lesson 1
 1. Correct Answer: C

 A. Incorrect: The PrintPreviewDialog represents a print preview form, but it does not

allow the user to add printers.

 B. Incorrect: The PageSetupDialog represents a page setup form, but it does not

allow the user to add printers.

 C. Correct: The PrintDialog component allows the user to add a new printer at run

time.

 D. Incorrect: The PrintPreviewControl can be used to create customized print preview

components, but it does not allow the user to add printers.

 2. Correct Answers: A and C

 A. Correct: You must set the Document property to the PrintDocument you want to

preview.

 B. Incorrect: The PrintPreviewDialog automatically generates the output for the Print-

Document and displays it. No additional method or event is necessary to generate

the previewed document.

 C. Correct: You must display the form to preview the document.

732 Answers

 D. Incorrect: The PrintPreviewDialog automatically generates the output for the Print-

Document and displays it. No additional method or event is necessary to generate

the previewed document.

 3. Correct Answer: C

 A. Incorrect: You can enable the user to set the page orientation with the PageSetup-

Dialog component.

 B. Incorrect: You can enable the user to set the paper tray with the PageSetupDialog

component.

 C. Correct: The user can add a printer only within the Print dialog box.

 D. Incorrect: You can enable the user to set the page margins with the PageSetupDia-

log component.

Lesson 2
 1. Correct Answer: B

 A. Incorrect: PrintPages is the event that is raised to print pages, but it cannot be

called like a method.

 B. Correct: Set the HasMorePages property to True to raise the PrintPages event

again and print multiple pages.

 C. Incorrect: HasMorePages is a property, not a method.

 D. Incorrect: The Cancel property can be set to True to cancel the current print job,

but setting it to False does not automatically print additional pages.

 2. Correct Answer: A

 A. Correct: To fi nd the total lines on the printed page, you divide the height of the

MarginBounds by the height of the font.

 B. Incorrect: The GetHeight method requires a Graphics object as a parameter.

 C. Incorrect: GetHeight is not a member of the Graphics object.

 D. Incorrect: Using the height of the PageBounds will calculate the total number of

lines in the page, including the excluded areas of the header and footer.

 3. Correct Answer: B

 A. Incorrect: The BeginPrint event occurs at the beginning of a print job.

 B. Correct: The EndPrint event occurs after all pages have been printed and is the

appropriate event to handle to notify the user that a print job is complete.

 C. Incorrect: The PrintPages event is used to send data to the printer.

 D. Incorrect: The QueryPageSettings event occurs before each page is printed to

allow the user to use different page settings for each page.

733Answers

Lesson 3
 1. Correct Answer: B

 A. Incorrect: In the Zoom property, a value of 1 represents 100 percent normal size.

Thus, 250 would correspond to a Zoom of 25000 percent.

 B. Correct: In the Zoom property, a value of 1 represents 100 percent normal size.

Thus, 25 would correspond to a Zoom of 2500 percent.

 C. Incorrect: In the Zoom property, a value of 1 represents 100 percent normal size.

Thus, 2.5 would correspond to a Zoom of 250 percent.

 D. Incorrect: In the Zoom property, a value of 1 represents 100 percent normal size.

Thus, .25 would correspond to a Zoom of 25 percent.

 2. Correct Answer: B

 A. Incorrect: UseAntiAlias is a property, not a method.

 B. Correct: To smooth the appearance, set the UseAntiAlias property to True.

 C. Incorrect: UseAntiAlias is a property, not a method, and it exists on the PrintPre-

viewControl, not on the Document.

 D. Incorrect: UseAntiAlias exists on the PrintPreviewControl, not on the Document.

Chapter 10: Case Scenario Answers

Case Scenario 1: A Better PrintPreview Control
 1. To create a component like the one described, you would start by creating a new form

that contained a PrintPreviewControl that would be used to display the document. By

adding a Timer component, you can change the PrintPreviewControl.StartPage prop-

erty at regular intervals to cycle through the pages.

 2. One way of implementing page skipping would be to subclass the PrintPreviewControl

and add a property that indicated the step to take when skipping pages.

Case Scenario 2: A Simple Report Tool
 1. Since the form is already the size of a piece of paper, the task is simplifi ed. In the

method handling the PrintPages event, you can loop through the controls on the form.

For the label controls, you can use the Graphics.DrawString method to print the string

in the label using the same font and location as the label itself. For image controls you

can likewise print the image using the Graphics. DrawImage method to draw the image

at the location specifi ed by the image control.

734 Answers

 2. You can print a report for each record in the database by iterating through the records

in the PrintPage event handler. After a page has been printed, the method should

check to see if any more records exist. If so, the e.HasMorePages property should be

set to True and the next record printed.

Chapter 11: Lesson Review Answers

Lesson 1
 1. Correct Answer: D

 A. Incorrect: Although most drag-and-drop operations begin in the MouseDown

event on the source control, it is not required that they begin there.

 B. Incorrect: Although it is recommended that the DragEnter event handler be used

to examine the data object and set the Effect property as appropriate, it is not

required.

 C. Incorrect: The DragLeave event is used to execute code when data is dragged out

of a control, but it is not necessary for the drag-and-drop operation.

 D. Correct: The DragDrop event is the only event that must be handled to complete a

drag-and-drop operation.

 2. Correct Answers: A, B, C, and D

 A. Correct: The DoDragDrop method begins the drag-and-drop operation.

 B. Correct: If the target control does not allow one of the specifi ed effects, the

operation will not be completed.

 C. Correct: If the data format is not correct, the operation cannot be completed.

 D. Correct: If AllowDrop is set to False, no drag-and drop-operation can occur.

 3. Correct Answer: B

 A. Incorrect: Although the MouseDown event is used to initiate most drag-and-drop

operations, the ItemDrag event is used to initiate a drag-and-drop operation in a

TreeView control.

 B. Correct: You should initiate a drag-and-drop operation for a TreeView control in

the ItemDrag event handler.

 C. Incorrect: The TreeView.DragEnter event should be used to set the effect allowed

for the drag-and-drop operation, but it will not be raised if a drag-and-drop

operation has not already been started.

735Answers

 D. Incorrect: The TreeView.DragDrop event is used to complete the drag-and-drop

operation.

Lesson 2
 1. Correct Answer: C

 A. Incorrect: The CurrentUICulture determines the localized version of the form that

is loaded, but it does not control data formatting.

 B. Incorrect: Culture is set by the thread, not by the form.

 C. Correct: The CurrentCulture determines the formatting methods used for applica-

tion data.

 D. Incorrect: Culture is set by the thread, not by the form.

 2. Correct Answers: C and D

 A. Incorrect: Because the default value for the RightToLeft property is Inherit, you

only need to set the Form.RightToLeft property to True for the control text to be

displayed right to left.

 B. Incorrect: Because the default value for the RightToLeft property is Inherit, you

only need to set the Form.RightToLeft property to True for the control text to be

displayed right to left.

 C. Correct: Setting the Form.RightToLeft property to True will cause all controls with a

RightToLeft property value of Inherit to display text right to left.

 D. Correct: Setting the Form.RightToLeftLayout property, along with setting the Form.

RightToLeft property, to True will cause the entire form to lay out in a right-to-left

manner.

Lesson 3
 1. Correct Answers: A and C

 A. Correct: You must create a parent form by setting the IsMdiParent property to

True.

 B. Incorrect: The ActiveForm property is used to determine which child form is active,

but it is not required to create a child form.

 C. Correct: You create a child form by setting the MdiParent property to an appropri-

ate parent form.

 D. Incorrect: It is not necessary to create a window list menu to create a child form.

736 Answers

 2. Correct Answer: D

 A. Incorrect: This method is used to activate a child form, not to get a reference to

the active form.

 B. Incorrect: There is no CurrentChild property.

 C. Incorrect: There is no GetActiveMdiChild property.

 D. Correct: The ActiveMdiChild property holds a reference to the currently active MDI

form.

Chapter 11: Case Scenario Answers

Case Scenario 1: Still More Document Control
 1. By using an MDI application, you can enable users to view multiple child documents

while containing and organizing them in a single form.

 2. The parent form can include a TreeView control to display the documents in the table

of contents, and the documents can be loaded as child forms when viewing is required.

You can use drag-and-drop functionality to enable reordering of the table of contents

in the TreeView control at run time.

Case Scenario 2: Fabrikam Goes International
 1. You can create an MDI form that displays two child forms simultaneously: one for the

European market and one for the U.S. market. You can ensure that market data is for-

matted appropriately by setting the CurrentCulture property to an appropriate culture

before creating the form.

 2. You can create localized versions of the UI by researching what locales the applica-

tion will be deployed in and creating localized strings and other resources for the UI.

You can then use these strings to create localized versions of the form. At run time

the application will retrieve the CurrentUICulture from the system and automatically

display the correctly localized UI. If you want, you can also allow the user to manually

switch locales by setting the CurrentUICulture in code.

737Answers

Chapter 12: Lesson Review Answers

Lesson 1
 1. Correct Answers: A, B, and D

 A. Correct: A user interface (UI) should be fl exible in order to accommodate a variety

of accessibility styles.

 B. Correct: Consistency allows your application to interact with the system in a pre-

dictable manner, thus enhancing accessibility.

 C. Incorrect: An accessible interface does not have to be a simple interface. Even

complicated interfaces can be made accessible.

 D. Correct: Accessible interfaces should be compatible with accessibility aids.

 2. Correct Answer: A

 A. Correct: Although sound can be helpful, no information should be conveyed by

sound alone.

 B. Incorrect: Supporting standard system settings is a best practice.

 C. Incorrect: Ensuring compatibility with high-contrast mode is a best practice.

 D. Incorrect: Providing keyboard access to all important functionality is a best

practice.

Lesson 2
 1. Correct Answers: A and C

 A. Correct: The PerformStep method will increment the value whatever value the Step

property is set to.

 B. Incorrect: There is no SetStep method, and Step is a property, not a method.

 C. Correct: The Increment method advances the Value by the value indicated.

 D. Incorrect: The Increment method requires a value for the Value property to be

advanced. It does not use the value of the Step property.

 2. Correct Answers: A, B, and C

 A. Correct: If the next control that is navigated to after the Textbox does not have the

CausesValidation property set to True, the Validating event on the Textbox is not

fi red.

 B. Correct: In order to display the error icon, you must call the SetError method and

set the error to an informative string.

738 Answers

 C. Correct: In order to cancel the error, you must call the SetError method and set the

error string to an empty string.

 D. Incorrect: The ErrorProvider component does not have any inherent validation

capabilities.

 3. Correct Answer: B

 A. Incorrect: The HelpProvider component does not have a ShowHelp method.

 B. Correct: You must call the SetShowHelp method to set ShowHelp to True, and you

must set the HelpNavigator to Find to open the search page.

 C. Incorrect: Although you must call the SetShowHelp method to set ShowHelp to

True, setting the HelpNavigator to Topic opens help to a topic, not the search page.

 D. Incorrect: Setting the HelpString will not have any effect when the HelpNavigator

has been set.

Chapter 12: Case Scenario Answers

Case Scenario 1: Putting the Final Touches on the
Document Management System

 You can use the HScrollBar or VScrollBar controls to build a UI that provides rapid navi-

gation through the long list of fi les. By tying the value of the scroll bar to the location

in the fi le list, you can allow the user to rapidly navigate to the approximate location of

the desired fi le and then use fi ne adjustments to fi nd the exact location.

 You can use the ProgressBar control to provide feedback for the download status.

When a download is complete, you can notify the user by fl ashing the screen and play-

ing a beep from the system sounds.

 You can provide help for the application by creating a compiled help (.chm) fi le and

using the HelpProvider component to connect it to your application. For more immedi-

ate and less in-depth help, you can use the ToolTip component to provide informative

tooltips for the controls on your application. You can use the ErrorProvider component

to provide feedback for invalid user input.

739Answers

Case Scenario 2: Making the Document Management
Application Accessible

 By using only system colors, you can support high-contrast mode. If nonsystem colors

are desired for the regular application interface, the application should detect whether

the system is in high-contrast mode and replace nonstandard colors with system

colors.

 No information should be conveyed by sound alone, so when fi le downloads are com-

plete, for example, you should provide a visual cue as well as an audio cue.

 Access keys should be used to enable keyboard access to all important functionality in

the application, and this keyboard access should be fully documented.

 System settings should be used throughout the application to support interaction with

usability aids. Also, the AccessibleDescription, AccessibleName, and AccessibleRole prop-

erties should be set to appropriate values.

Chapter 13: Lesson Review Answers

Lesson 1
 1. Correct Answers: A and B

 A. Correct: The RunWorkerAsync process fi res the DoWork event, which contains the

code that is executed on a background process.

 B. Correct: The DoWork event handler contains the code that is executed on the

background process.

 C. Incorrect: The ProgessChanged event is fi red when the ReportsProgress method is

called, but it is not required for the background process to be run.

 D. Incorrect: The WorkerSupportsCancellation property indicates whether the

BackgroundWorker supports cancellation of the background process, but it is not

required for the background process to run.

 2. Correct Answers: A, B, and C

 A. Correct: You must set the WorkerSupportsCancellation property to True to allow

the process to be cancelled.

 B. Correct: You must implement your own code to poll the CancellationPending

property and cancel the process.

 C. Correct: The CancelAsync method sets the CancellationPending property to True.

740 Answers

 D. Incorrect: You cannot set the CancellationPending property directly. You must

instead call the CancelAsync method.

 3. Correct Answer: A

 A. Correct: The ReportProgress method raises the ProgressChanged event and allows

you to specify a percentage of progress.

 B. Incorrect: You must handle the ProgressChanged event to implement coed that is

executed when progress is reported.

 C. Incorrect: It is unnecessary to poll the IsBusy property to report progress.

 D. Incorrect: You cannot call the ReportProgress method unless the WorkerRe-

portsProgress property is set to True.

Lesson 2
 1. Correct Answer: B

 A. Incorrect: The Invoke method is used to execute a method call synchronously.

 B. Correct: The BeginInvoke method calls the method on a separate process thread.

 C. Incorrect: Although commonly used to complete an asynchronous method call,

EndInvoke is required to complete the call only if a method result is required.

 D. Incorrect: The DynamicInvoke method is used to call methods synchronously using

late binding.

 2. Correct Answers: A and B

 A. Correct: Thread objects are instances of the Thread class, and each Thread much

be individually created.

 B. Correct: The Thread.Start method starts the new background process.

 C. Incorrect: Although you can provide an Object parameter to the new thread, you

can also start a thread with a method that takes no parameters.

 D. Incorrect: Once execution of a Thread completes, the Thread will stop. Calling

Thread.Abort is required only to stop a thread that is still running.

 3. Correct Answers: B and C

 A. Incorrect: Calls to controls from background threads are inherently unsafe and

must be called through Control.Invoke.

 B. Correct: The InvokeRequired property can be queried from any thread to deter-

mine if it is safe to make a direct call or whether Control.Invoke must be used.

 C. Correct: The Control.Invoke method can be used to make safe calls to controls

from background threads.

741Answers

 D. Incorrect: The Control.IsAccessible property indicates if the control is accessible to

accessibility aids and is not related to calls from background threads.

Chapter 13: Case Scenario Answers

Case Scenario 1: The Publishing Application
The central issue in this application design is the list of documents for download. Both the

UI thread and the background downloading thread must access this list. You should protect

access to this list by using SyncLock or lock blocks where appropriate to allow access to the list

by only one thread at a time. A background thread should be used to download the docu-

ments. When download of a particular document is complete, the UI should be updated

through the thread-safe Control.Invoke method.

Case Scenario 2: Creating a Simple Game
The BackgroundWorker component allows you to implement separate process threads with

relative ease. In the preceding example, you can create a single BackgroundWorker com-

ponent that takes the path to the fi le to play as a parameter and then plays the sound on a

background thread. When it is fi nished, the BackgroundWorker component can be used again

without reinitializing.

Chapter 14: Lesson Review Answers

Lesson 1
 1. Correct Answers: A and B

 A. Correct: Composite controls consist of preexisting Windows Forms controls bound

together by common functionality.

 B. Correct: You can add new properties, methods, and events to a composite control.

 C. Incorrect: Composite controls provide their own rendering code.

 D. Incorrect: Properties of constituent controls are not generally available to the

developer. You can wrap the properties of constituent controls in new properties

to make them available to the developer, but this is not available by default.

742 Answers

 2. Correct Answers: A and D

 A. Correct: A Toolbox bitmap must be a 16 × 16 pixel bitmap.

 B. Incorrect: A Toolbox bitmap must be a 16 × 16 pixel bitmap.

 C. Incorrect: The Image property determines what image is displayed in the control

at run time, not what is displayed next to the control in the Toolbox.

 D. Correct: The ToolboxBitmap attribute allows you to specify either a path, a type, or

a type and a resource name in order to specify the Toolbox bitmap.

Lesson 2
 1. Correct Answers: B, C, and D

 A. Incorrect: The methods exposed by the Graphics class use Pen and Brush objects,

but the Graphics class itself does not encapsulate them.

 B. Correct: The Graphics class is an in-code representation of the drawing surface

associated with a visual element.

 C. Correct: All actual rendering is done by means of the Graphics class, and it exposes

all of the methods necessary to do so.

 D. Correct: The Graphics class has no constructor and thus cannot be directly created,

but you can obtain a reference through PaintEventArgs or by calling the Control.

CreateGraphics method.

 2. Correct Answers: A and B

 A. Correct: Custom controls must provide all of their own rendering code.

 B. Correct: Custom controls can encapsulate other .NET Framework components and,

rarely, even other controls.

 C. Incorrect: There is no default visual interface for custom controls.

 D. Incorrect: Custom controls inherit from the Control class. Composite controls

inherit from the UserControl class.

Lesson 3
 1. Correct Answer: B

 A. Incorrect: The Form.Show method does not return a DialogResult.

 B. Correct: The Form.ShowDialog method returns a DialogResult value.

 C. Incorrect: The Form.Show method does not return a DialogResult, nor does it allow

you to specify the parent form as a parameter.

743Answers

 D. Incorrect: The Form.ShowDialog method does not allow you to specify a dialog

result as a parameter.

 2. Correct Answer: C

 A. Incorrect: Although you must override the OnPaint method to provide a new

appearance for an extended control, you are not required to provide a new

appearance.

 B. Incorrect: If a Toolbox bitmap is not provided, the control will use the same bitmap

as is used by the inherited control.

 C. Correct: All that is required to create an extended control is to inherit a base con-

trol. All other steps are optional.

 D. Incorrect: The extended control will expose all of the same properties and meth-

ods as the control it inherits.

Chapter 14: Case Scenario Answers

Case Scenario 1: Collecting and Displaying User Data
The best way to approach this problem is to create a composite control consisting of TextBox

controls to receive the user input. This control can be hosted in a dialog box to receive user

input and in the general application to display user input. The ReadOnly property of the Text-

Box controls can be wrapped in new properties in the composite control to allow developers

to determine when the control is read-only and when it is read-write. Finally, by creating a

composite control, you will be able to reuse it in subsequent applications, thereby minimizing

developer hours.

Case Scenario 2: Trey Research Stock Price
The best approach here is to create a custom control that accesses the Web service. The cus-

tom control can encapsulate a Timer component that is set to sample the Web service every

15 seconds. Custom rendering code can be provided to render the stock price and the graph.

Because it is a control, it can easily be integrated with any Windows Forms application.

744 Answers

Chapter 15: Lesson Review Answers

Lesson 1
 1. Correct Answer: B

 A. Incorrect: Required permissions will be determined when the application is pub-

lished. You might be asked to approve a permission set, but you do not need to

confi gure permissions.

 B. Correct: To install a ClickOnce application, all you need to do is click the Setup fi le

and follow any instructions.

 C. Incorrect: The developer will determine how frequently the application will check

for updates before the application is published.

 D. Incorrect: The install mode is confi gured before the application is published.

 2. Correct Answer: C

 A. Incorrect: Applications downloaded from the Internet run under the Internet secu-

rity zone by default.

 B. Incorrect: Applications downloaded from the Internet run under the Internet secu-

rity zone by default. Applications downloaded from fi le shares are run under the

Intranet security settings by default.

 C. Correct: Applications downloaded from the Internet run under the Internet secu-

rity zone by default.

 D. Incorrect: Applications downloaded from the Internet run under the Internet secu-

rity zone by default.

Lesson 2
 1. Correct Answer: A

 A. Correct: The File System Editor is used to determine which fi les will be distributed

by a setup project.

 B. Incorrect: The File Types Editor is used to set associations between fi le types and

applications.

 C. Incorrect: The Custom Actions Editor is used to add custom actions to your

application.

 D. Incorrect: The User Interface Editor is used to edit the user interface of the setup

wizard.

745Answers

 2. Correct Answer: B

 A. Incorrect: This specifi es a particular value for the operating system version that

may not exist. You should use >= to specify that the operating system should be

greater than a specifi ed version.

 B. Correct: You should use >= to specify that the operating system should be greater

than a specifi ed version.

 C. Incorrect: This requires the operating system to be less than Windows 2000. You

should use >= to specify that the operating system should be greater than a speci-

fi ed version.

 D. Incorrect: This allows installation for any operating system except a particular

version of Windows 2000. You should use >= to specify that the operating system

should be greater than a specifi ed version.

 3. Correct Answers: B, C, and D

 A. Incorrect: The Installer class should be added to the project you want to deploy,

not to the setup project itself.

 B. Correct: You must add an Installer class to the project you want to deploy as a

custom action.

 C. Correct: You must write your custom action in the Install method of an Installer

class.

 D. Correct: You must specify the project that contains the custom action in the Cus-

tom Actions Editor.

Chapter 15: Case Scenario Answers

Case Scenario 1: Distributing the Document Viewer
Using ClickOnce technology, you can provide the version that is available now through a Web

site that is accessible by your clients. By setting the application to check for updates every

time the application is run, you can ensure that your clients receive the most up-to-date

version every time they run the application. Additionally, with a ClickOnce application your

clients do not have to be administrative users to install the application.

746 Answers

Case Scenario 2: Installing the Document Core
By creating a setup project to install the document core, you can create a setup environment

that accomplishes all of these goals. You can defi ne directory structures in the File System

Editor, and you can create registry keys by means of the Registry Editor. You can check for

prerequisites in a custom action, and, if they are not found, use the custom action to either

install the prerequisites if possible or throw an InstallException to abort installation if it is not

possible to install them.

About the Authors

MATTHEW A. STOECKER started programming in BASIC on a TRS-80 at the age of nine. In 2001,

he joined Microsoft Corp. as a writer and programmer writing about Microsoft Visual Basic .NET. He

has authored numerous technical articles about Visual Basic .NET and Microsoft Visual C# and has

written or contributed to multiple books about these languages. He holds a Ph.D. in microbiology

(which he hopes he will never have to use again) and lives in Bellevue, Washington.

STEVEN J. STEIN , MCP, began working with and programming computers as a hobby in the early

1980s. He spent many years in the automotive electronics industry, but as the personal computer

revolution took hold and the need for automating routine business tasks became a necessity, he

returned to programming and writing macros. Steve has been producing documentation and code

samples at Microsoft since early 2000 and has been a programmer writer on the Visual Studio team

since 2001. He currently resides on an undisclosed hilltop in western Washington, with his extreme

coding partner, Jackson (okay, he’s just a cat but he’s learning to type random variable names!).

Among other things, Steve is an avid skier, hiker, and motorcycle rider. He can often be found at the

remotest part of some ski area or riding his motorcycle on a local, twisty back road.

System Requirements

We recommend that you use a computer that is not your primary workstation to do the

practice exercises in this book because you will make changes to the operating system

and application confi guration.

Hardware Requirements

The following hardware is required to complete the practice exercises:

 Computer with a 1.6 GHz or faster processor

 384 MB of RAM or more (786 MB of RAM or more for Windows Vista)

 2.2 GB of available hard disk space

 DVD-ROM drive

 1024 x 768 or higher resolution display with 256 colors

 Keyboard and Microsoft mouse or compatible pointing device

Software Requirements

The following software is required to complete the practice exercises:

 One of the following operating systems:

•• Windows XP with Service Pack 2

•• Windows XP Professional x64 Edition (WOW)

•• Windows Server 2003 with Service Pack 1

•• Windows Server 2003, x64 Editions (WOW)

•• Windows Server 2003 R2

•• Windows Server 2003 R2, x64 Editions (WOW)

•• Microsoft Windows Vista (all editions except Starter Edition)

 Microsoft Visual Studio 2008. (A 90-day evaluation edition of Visual Studio 2008 Pro-

fessional Edition is included on DVD with this book.)

IMPORTANT The 90-day evaluation edition provided with this training kit is not the full

retail product and is provided only for the purposes of training and evaluation. Microsoft

and Microsoft Technical Support do not support this evaluation edition.

IMPORTANT The 90-day evaluation edition provided with this training kit is not the fullT

retail product and is provided only for the purposes of training and evaluation. Microsoft

and Microsoft Technical Support do not support this evaluation edition.

	Cover
	Copyright Page

	Contents at a Glance
	Contents
	Introduction
	Hardware Requirements
	Software Requirements
	Using the CD and DVD
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Technical Support
	Evaluation Edition Software Support

	Chapter 1: Windows Forms and the User Interface
	Before You Begin
	Lesson 1: Adding and Configuring Windows Forms
	Overview of Windows Forms
	Adding Forms to Your Project
	Properties of Windows Forms
	Modifying the Look and Feel of the Form
	Creating Nonrectangular Windows Forms
	Lesson Summary
	Lesson Review

	Lesson 2: Managing Control Layout with Container Controls
	Overview of Container Controls
	The GroupBox Control
	The Panel Control
	The FlowLayoutPanel Control
	The TableLayoutPanel Control
	The TabControl Control
	The SplitContainer Control
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Add a Windows Form to a Project at Design Time
	Configure a Windows Form to Control Accessibility, Appearance, Behavior, Configuration, Data, Design, Focus, Layout, Style, and Other Functionalities
	Manage Control Layout on a Windows Form

	Take a Practice Test

	Chapter 2: Configuring Controls and Creating the User Interface
	Before You Begin
	Lesson 1: Configuring Controls in Windows Forms
	Overview of Controls
	Configuring Controls at Design Time
	Modifying Control Properties at Design Time
	Best Practices for User Interface Design
	Lesson Summary
	Lesson Review

	Lesson 2: Creating and Configuring Command and Text Display Controls
	The Button Control
	The Label Control
	The LinkLabel Control
	Lesson Summary
	Lesson Review

	Lesson 3: Creating and Configuring Text Edit Controls
	The TextBox Control
	The MaskedTextBox Control
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Add and Configure a Windows Forms Control

	Take a Practice Test

	Chapter 3: Advanced Windows Forms Controls
	Before You Begin
	Lesson 1: Creating and Configuring List-Display Controls
	Overview of List-Based Controls
	ListBox Control
	ComboBox Control
	CheckedListBox Control
	Adding Items to and Removing Items from a List-Based Control
	The ListView Control
	TreeView Control
	NumericUpDown Control
	DomainUpDown Control
	Lesson Summary
	Lesson Review

	Lesson 2: Creating and Configuring Value-Setting, Date-Setting, and Image-Display Controls
	Value-Setting Controls
	The CheckBox Control
	The RadioButton Control
	The TrackBar Control
	Choosing Dates and Times
	DateTimePicker Control
	MonthCalendar Control
	Working with Images
	PictureBox Control
	ImageList Component
	Lesson Summary
	Lesson Review

	Lesson 3: Configuring the WebBrowser Control and the NotifyIcon Component and Creating Access Keys
	The WebBrowser Control
	The NotifyIcon Component
	Creating Access Keys
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 4: Tool Strips, Menus, and Events
	Before You Begin
	Lesson 1: Configuring Tool Strips
	Overview of the ToolStrip Control
	Tool Strip Items
	Displaying Images on Tool Strip Items
	The ToolStripContainer
	Merging Tool Strips
	Lesson Summary
	Lesson Review

	Lesson 2: Creating and Configuring Menus
	Overview of the MenuStrip Control
	Creating Menu Strips and Tool Strip Menu Items
	Adding Enhancements to Menus
	Moving Items Between Menus
	Disabling, Hiding, and Deleting Menu Items
	Merging Menus
	Switching Between MenuStrip Controls Programmatically
	Context Menus and the ContextMenuStrip Control
	Lesson Summary
	Lesson Review

	Lesson 3: Using Events and Event Handlers
	Overview of Events
	Creating Event Handlers in the Designer
	Managing Mouse and Keyboard Events
	Creating Event Handlers at Run Time
	Overriding Methods in the Code Editor
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 5: Configuring Connections and Connecting to Data
	Before You Begin
	Lesson 1: Creating and Configuring Connection Objects
	What Is a Connection Object?
	Creating Connections in Server Explorer
	Creating Connections Using Data Wizards
	Creating Connection Objects Programmatically
	Lesson Summary
	Lesson Review

	Lesson 2: Connecting to Data Using Connection Objects
	Opening and Closing Data Connections
	Connection Events
	Lesson Summary
	Lesson Review

	Lesson 3: Working with Connection Pools
	What Is Connection Pooling?
	Controlling Connection Pooling Options
	Configuring Connections to Use Connection Pooling
	Lesson Summary
	Lesson Review

	Lesson 4: Handling Connection Errors
	Lesson Summary
	Lesson Review

	Lesson 5: Enumerating the Available SQL Servers on a Network
	Lesson Summary
	Lesson Review

	Lesson 6: Securing Sensitive Connection String Data
	Securing Data in Configuration Files
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 6: Working with Data in a Connected Environment
	Before You Begin
	Lesson 1: Creating and Executing Command Objects
	What Are Command Objects?
	Creating and Configuring Command Objects
	Creating SQL Commands (SQL Statements) with the Query Designer
	Lesson Summary
	Lesson Review

	Lesson 2: Working with Parameters in SQL Commands
	What Are Parameters and Why Should I Use Them?
	Types of Parameters
	Creating Parameters
	Adding Parameters to Command Objects
	Lesson Summary
	Lesson Review

	Lesson 3: Saving and Retrieving BLOB Values in a Database
	Working with BLOBs
	Lesson Summary
	Lesson Review

	Lesson 4: Performing Bulk Copy Operations
	Why Perform Bulk Copies?
	Lesson Summary
	Lesson Review

	Lesson 5: Performing Transactions by Using the Transaction Object
	What Is a Transaction?
	How to Create Transactions
	Setting the Isolation Level of a Transaction
	Enlisting in a Distributed Transaction
	Lesson Summary
	Lesson Review

	Lesson 6: Querying Data by Using LINQ
	What Is LINQ?
	LINQ Queries
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 7: Create, Add, Delete, and Edit Data in a Disconnected Environment
	Before You Begin
	Lesson 1: Creating DataSet Objects
	DataSet Objects
	Creating DataSet Objects Programmatically
	Lesson Summary
	Lesson Review

	Lesson 2: Creating DataTable Objects
	How to Create DataTable Objects
	How to Add a DataTable to a DataSet
	How to Create Expression Columns in DataTable Objects
	How to Create Autoincrementing Columns in DataTable Objects
	How to Add Constraints to a DataTable
	Lesson Summary
	Lesson Review

	Lesson 3: Creating DataAdapter Objects
	What Is a DataAdapter?
	How to Create DataAdapter Objects
	DataAdapter Commands
	Generating Typed DataSet Objects from DataAdapter Objects
	Resolving Conflicts Between a DataSet and a Database Using the DataAdapter
	Performing Batch Operations Using DataAdapter Objects
	Lesson Summary
	Lesson Review

	Lesson 4: Working with Data in DataTable Objects
	Adding Data to a DataTable
	Editing Data in a DataTable
	Deleting Data in a DataTable
	Maintaining Changes to DataRow Objects
	Accepting and Rejecting Changes to a DataTable
	DataTable Events
	Row Errors
	Lesson Summary
	Lesson Review

	Lesson 5: Working with XML in DataSet Objects
	Writing a DataSet as XML Data
	Writing DataSet Schema Information as XML Schema
	Loading a DataSet from an XML Stream or Document
	Loading DataSet Schema Information from an XML Stream or Document
	Synchronizing a DataSet with an XmlDataDocument
	Performing an XPath Query on a DataSet
	Lesson Summary
	Lesson Review

	Lesson 6: Creating and Using DataView Objects
	Creating DataView Objects
	Sorting and Filtering Data Using a DataView
	Viewing Data Using a DataView
	Modifying the Data in a DataView
	Searching Data in a DataView
	Navigating Related Data in a DataView
	Working with DataView Events
	Setting the DataTable Object’s Default Table Views Using a DataViewManager
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 8: Implementing Data-Bound Controls
	Before You Begin
	Lesson 1: Creating a Data-Bound Form with the Data Sources Wizard
	What Does the Wizard Create?
	Lesson Summary
	Lesson Review

	Lesson 2: Implementing Data-Bound Controls
	Binding Controls to Data
	Lesson Summary
	Lesson Review

	Lesson 3: Working with the DataGridView
	Displaying a Dataset in the DataGridView Control
	Configuring DataGridView Columns
	Adding Tables and Columns to a DataGridView
	Deleting Columns in the DataGridView
	Determining the Clicked Cell in a DataGridView
	Validating Input in the DataGridView
	Format a DataGridView Using Styles
	Format a DataGridView Control by Using Custom Painting
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 9: Working with XML
	Before You Begin
	Lesson 1: Reading and Writing XML with the XmlReader and XmlWriter Classes
	The XmlReader Class
	Writing XML with the XmlWriter Class
	Lesson Summary
	Lesson Review

	Lesson 2: Managing XML with the XML Document Object Model
	The XmlDocument Class
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 10: Printing in Windows Forms
	Before You Begin
	Lesson 1: Managing the Print Process by Using Print Dialog Boxes
	The PrinterSettings Class
	The PrintDialog Component
	The PageSetupDialog Component
	The PrintPreviewDialog Component
	Lesson Summary
	Lesson Review

	Lesson 2: Constructing Print Documents
	The PrintDocument Component
	Printing Graphics
	Printing Text
	Notifying the User When Printing Is Complete
	Security and Printing
	Lesson Summary
	Lesson Review

	Lesson 3: Creating a Customized PrintPreview Component
	The PrintPreviewControl
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 11: Advanced Topics in Windows Forms
	Before You Begin
	Lesson 1: Implementing Drag-and-Drop Functionality
	Implementing Drag-and-Drop Functionality
	Lesson Summary
	Lesson Review

	Lesson 2: Implementing Globalization and Localization for a Windows Forms Application
	Globalization and Localization
	Lesson Summary
	Lesson Review

	Lesson 3: Implementing MDI Forms
	MDI Applications
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 12: Enhancing Usability
	Before You Begin
	Lesson 1: Implementing Accessibility
	Creating Accessible Applications
	Lesson Summary
	Lesson Review

	Lesson 2: Using User Assistance Controls and Components
	User Assistance Controls and Components
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 13: Asynchronous Programming Techniques
	Before You Begin
	Lesson 1: Managing a Background Process with the BackgroundWorker Component
	Running a Background Process
	Lesson Summary
	Lesson Review

	Lesson 2: Implementing Asynchronous Methods
	Using Delegates
	Creating Process Threads
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 14: Creating Windows Forms Controls
	Before You Begin
	Lesson 1: Creating Composite Controls
	Introduction to Composite Controls
	Lesson Summary
	Lesson Review

	Lesson 2: Creating Custom Controls
	Overview of Custom Controls
	Lesson Summary
	Lesson Review

	Lesson 3: Creating Extended Controls and Dialog Boxes
	Custom Dialog Boxes
	Creating Extended Controls
	Adding a WPF User Control to Your Windows Form Project
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Chapter 15: Deployment
	Before You Begin
	Lesson 1: Deploying Applications with ClickOnce
	Overview of ClickOnce
	Lesson Summary
	Lesson Review

	Lesson 2: Creating Setup Projects for Deployment
	Setup Projects
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios

	Suggested Practices
	Take a Practice Test

	Glossary
	Answers
	Chapter 1: Lesson Review Answers
	Lesson 1
	Lesson 2

	Chapter 1: Case Scenario Answers
	Case Scenario 1: Designing a User Interface
	Case Scenario 2: Designing a Web Browser

	Chapter 2: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 2: Case Scenario Answers
	Case Scenario 1: Designing a Simple User Interface
	Case Scenario 2: Designing a User Interface

	Chapter 3: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 3: Case Scenario Answers
	Case Scenario 1: Incorporating List-Based Controls into the User Interface
	Case Scenario 2: Working with Files and Background Processes

	Chapter 4: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 4: Case Scenario Answers
	Case Scenario 1: Designing a Complex User Interface
	Case Scenario 2: More Humongous Requirements

	Chapter 5: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6

	Chapter 5: Case Scenario Answers
	Case Scenario 1: Troubleshooting a SQL Connection
	Case Scenario 2: Securing Sensitive Data

	Chapter 6: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6

	Chapter 6: Case Scenario Answers
	Case Scenario 1: Troubleshooting a Nonperforming Application
	Case Scenario 2: Preventing the Inventory System from Selling Unavailable Products

	Chapter 7: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6

	Chapter 7: Case Scenario Answers
	Case Scenario 1: Upgrading an Old Application
	Case Scenario 2: Slow System Performance

	Chapter 8: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 8: Case Scenario Answers
	Case Scenario 1: Upgrading an Old Application
	Case Scenario 2: Preventing Recompilation of a Large Application

	Chapter 9: Lesson Review Answers
	Lesson 1
	Lesson 2

	Chapter 9: Case Scenario Answers
	Case Scenario 1: Report Archiving
	Case Scenario 2: The Merger

	Chapter 10: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 10: Case Scenario Answers
	Case Scenario 1: A Better
	Control
	Case Scenario 2: A Simple Report Tool

	Chapter 11: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 11: Case Scenario Answers
	Case Scenario 1: Still More Document Control
	Case Scenario 2: Fabrikam Goes International

	Chapter 12: Lesson Review Answers
	Lesson 1
	Lesson 2

	Chapter 12: Case Scenario Answers
	Case Scenario 1: Putting the Final Touches on the Document Management System
	Case Scenario 2: Making the Document Management Application Accessible

	Chapter 13: Lesson Review Answers
	Lesson 1
	Lesson 2

	Chapter 13: Case Scenario Answers
	Case Scenario 1: The Publishing Application
	Case Scenario 2: Creating a Simple Game

	Chapter 14: Lesson Review Answers
	Lesson 1
	Lesson 2
	Lesson 3

	Chapter 14: Case Scenario Answers
	Case Scenario 1: Collecting and Displaying User Data
	Case Scenario 2: Trey Research Stock Price

	Chapter 15: Lesson Review Answers
	Lesson 1
	Lesson 2

	Chapter 15: Case Scenario Answers
	Case Scenario 1: Distributing the Document Viewer
	Case Scenario 2: Installing the Document Core

	About the Authors
	System Requirements
	Hardware Requirements
	Software Requirements

