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Preface

Improved manufacturing productivity, over the last 50 years, has occurred in the area of
machining through developments in the machining process, in machine tool technology
and in manufacturing management. The subject of this book is the machining process
itself, but placed in the wider context of manufacturing productivity. It is mainly concerned
with how mechanical and materials engineering science can be applied to understand the
process better and to support future improvements.

There have been other books in the English language that share these aims, from a vari-
ety of viewpoints. Metal Cutting Principles by M. C. Shaw (1984, Oxford: Clarendon
Press) is closest in spirit to the mechanical engineering focus of the present work, but there
have been many developments since that was first published. Metal Cutting by E. M. Trent
(3rd edn, 1991, Oxford: Butterworth-Heinemann) is another major work, but written more
from the point of view of a materials engineer than the current book’s perspective.
Fundamentals of Machining and Machine Tools by G. Boothroyd and W. A. Knight (2nd
edn, 1989, New York: Marcel Dekker) covers mechanical and production engineering
perspectives at a similar level to this book. There is a book in Japanese, Modern Machining
Theory by E. Usui (1990, Tokyo: Kyoritu-shuppan), that overlaps some parts of this
volume. However, if this book, Metal Machining, can bear comparison with any of these,
the present authors will be satisfied.

There are also more general introductory texts, such as Manufacturing Technology and
Engineering by S. Kalpakjian (3rd edn, 1995, New York: Addison-Wesley) and
Introduction to Manufacturing Processes by J. A. Schey (2nd edn, 1987, New York:
McGraw-Hill) and narrower more specialist ones such as Mechanics of Machining by P.
L. B. Oxley (1989, Chichester: Ellis Horwood) which this text might be regarded as
complementing.

It is intended that this book will be of interest and helpful to all mechanical, manufac-
turing and materials engineers whose responsibilities include metal machining matters. It
is, however, written specifically for masters course students. Masters courses are a major
feature of both the American and Japanese University systems, preparing the more able
twenty year olds in those countries for the transition from foundation undergraduate
courses to useful professional careers. In the UK, masters courses have not in the past been
popular, but changes from an elite to a mass higher education system are resulting in an
increasingly important role for taught advanced level and continuing professional devel-
opment courses.
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It is supposed that masters course readers will have encountered basic mechanical and
materials principles before, but will not have had much experience of their application. A
feature of the book is that many of these principles are revised and placed in the machin-
ing context, to relate the material to earlier understanding. Appendices are heavily used to
meet this objective without interrupting the flow of material too much.

It is a belief of the authors that texts should be informative in practical as well as theo-
retical detail. We hope that a reader who wants to know how much power will be needed
to turn a common engineering alloy, or what cutting speed might be used, or what mater-
ial properties might be appropriate for carrying out some reader-specific simulation, will
have a reasonable chance either of finding the information in these pages or of finding a
helpful reference for further searching.

The book is essentially organized in two parts. Chapters 1 to 5 cover basic material.
Chapters 6 to 9 are more advanced. Chapter 1 is an introduction that places the process in
its broader context of machine tool technology and manufacturing systems management.
Chapter 2 covers the basic mechanical engineering of machining: mechanics, heat conduc-
tion and tribology (friction, lubrication and wear). Chapters 3 and 4 focus on materials’
performance in machining, Chapter 5 describes experimental methods used in machining
studies.

The core of the second part is numerical modelling of the machining process. Chapter
6 deals with mechanics developments up to the introduction of, and Chapters 7 and 8 with
the development and application of, finite element methods in machining analysis. Chapter
9 is concerned with embedding process understanding into process control and optimiza-
tion tools.

No book is written without external influences. We thank the following for their advice
and help throughout our careers: in the UK, Professors D. Tabor, K. L. Johnson, P. B.
Mellor and G . W. Rowe (the last two, sadly, deceased); in Japan, Professors E. Usui, T.
Shirakashi and N. Narutaki; and Professor S. Ramalingam in the USA. More closely
connected with this book, we also especially acknowledge many discussions with, and
much experimental information given by, Professor T. Kitagawa of Kitami Institute of
Technology, who might almost have been a co-author.

We also thank the companies Yasda Precision Tools KK, Okuma Corporation and Toyo
Advanced Technologies for allowing the use of original photographs in Chapter 1, British
Aerospace Airbus for providing the cover photograph, Mr G. Dean (Leeds University) for
drafting many of the original line drawings and Mr K. Sekiya (Hiroshima University) for
creating some of the figures in Chapter 4. One of us (it is obvious which one) thanks the
British Council and Monbusho for enabling him to spend a 3 month period in Japan during
the Summer of 1999: this, with the purchase of a laptop PC with money awarded by the
Jacob Wallenberg Foundation (Royal Swedish Academy of Engineering Science), resulted
in the final manuscript being less late than it otherwise would have been.

We must thank the publisher for allowing several deadlines to pass and our wives —
Wendy, Yoko, Hiromi and Fukiko — and families for accepting the many working week-
ends that were needed to complete this book.

Thomas Childs, Katsuhiro Maekawa, Toshiyuki Obikawa, and Yasuo Yamane
England and Japan
September, 1999



Introduction

Machining (turning, milling, drilling) is the most widespread metal shaping process in
mechanical manufacturing industry. Worldwide investment in metal-machining machine
tools holds steady or continues to increase year by year, the only exception being in the
worst of recessions. The wealth of nations can be judged by this investment. Figure 1.1
shows the annual expenditure on machine tools by each of the most successful countries —
Germany, Japan and the USA. For each, it was between £1bn and £2bn (bn = 10%) in the
late 1970s. It fell abruptly in the world recession (the oil crisis) of 1981-82 and has now
recovered to between £2bn and £3bn (all expressed in 1985 prices: £1 was then equivalent
to 300¥ or $1.3). Figure 1.1 also shows similar trends (a growth over the last 20 years from
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Fig. 1.1 International demand for machine tools, 1978-88, £bn at 1985 prices (from European community statistics
1988) and projected at that time to 1995
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50% to 100% in annual expenditure) for the developed European Community countries.
Only in the UK has there been a decline in investment. Over this period, investment in
metal machining has remained at about three times the annual investment in metal form-
ing machinery.

Investment has continued despite perceived threats to machining volume, such as the
displacement of metal by plastics products in the consumer goods sector, and material
wastefulness in the production of swarf (or chips) that has encouraged near-net (casting
and forging) process substitution in the metal products sector. One reason is that metal
machining is capable of high precision: part tolerances of 50 um and surface finishes of 1
um are readily achievable (Figure 1.2(a)). Another reason is that it is very versatile:
complicated free-form shapes with many features, over a large size range, can be made
more cheaply, quickly and simply (at least in small numbers) by controlling the path of a
standard cutting tool rather than by investing considerable time and cost in making a dedi-
cated moulding, forming or die casting tool (besides, machining is needed to make the dies
for moulding, forging and die casting processes).

One measure of a part’s complexity is the product of the number of its independent
dimensions and the precision to which they must be made (Ashby, 1992). Figure 1.2(b)
gives limits to the component size (weight units — a cube of steel of side 3 m weighs
approximately 2 x 10° kg) and complexity of machining and its competitive processes.
Complexity is defined by

C = nlog, (IAl) (1.1)

where n is the number of the dimensions of the part and Al// is the average fractional preci-
sion with which they are specified.

A third reason for the success of metal machining is that the need from competition to
increase productivity, to hold market share and to find new markets, has led to large
changes in machining practice. The changes have been of three types: advances in machine
tools (machine technology), in the organization of machining (manufacturing systems) and
in the cutting edges themselves (materials technology). Each new improvement in one area
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Fig. 1.2 (a) Typical accuracy and finish and (b) complexity and size achievable by machining, forming and casting
processes, after Ashby (1992)
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Fig. 1.3 Idle and active times in batch manufacturing, from surveys circa 1970

throws pressure on to another. It is worthwhile briefly to review the evolution of these
changes, from the introduction of numerical controlled machine tools in the late 1950s
to the present day, in order to place in its wider context the special content of this
book (the consideration of the chip forming process itself), which is at the heart of
machining.

1.1 Machine tool technology

In the early 1970s a number of surveys were carried out on the productivity of machine
shops in the UK, Europe and the USA (Figure 1.3). As far as the machine tools were
concerned it was found that they were actually productive, removing metal, for only 10 to
20% of the time: different surveys, however, gave different values. For 40 to 60% of the
time the machine tools were in use but not productively: i.e. they were being set up for
manufacture, or being loaded and unloaded, or during manufacture tools were being
moved and positioned for cutting but they were not removing metal. For 20 to 50% of the
time they were totally unused — idle.

As far as work in progress was concerned, batches of components typically spent from
70 to 95% of their time inactive on the shop floor. So overwhelming was the clutter of
partly finished work that a component requiring several different operations for its comple-
tion, on different machine tools, might find these carried out at the rate of only one a week.
From 10 to 20% of their time components were being positioned for machining and for
only from 1 to 5% of the time was metal actually being removed.

From the late 1960s to the early 1970s both forms of waste — the active, non-productive
and the idle times — began significantly to be attacked, the former mainly by developing
machine tool technology and the latter by new forms of manufacturing organization.
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1.1.1 Machine tool technology - mainly turning machines

From 1970 onwards, machine tools of new design started to be introduced in significant
numbers into manufacturing industry, with the effect of greatly reducing the times for tool
positioning and movement between cuts. These new, computer numerical control (CNC),
designs stemmed directly from the development of numerically controlled (NC) machine
tools in the 1950s. In traditional, mechanically controlled machine tools, for example the
lathe in Figure 1.4, the coordination needed between the main rotary cutting motion of the
workpiece and the feed motions of the tool is obtained by driving all motions from a single
motor. The feed motions are obtained from the main motion via a gear box and a slender
feed rod (or lead screw for thread cutting). With the exception of machines known as copy-
ing machines (which derive their feed motion by following a copy of a shape to be made)
only simple feed motions are obtainable: on a lathe, for example, these are in the axial and
radial directions — to machine a radius on a lathe requires the use of a form tool. In addi-
tion, the large amount of backlash in the mechanical chain requires time and a skilled oper-
ator to set the tool at the right starting point for a particular cut.

In a CNC machine tool, all the motions are mechanically separate, each driven by its
own motor (Figure 1.4) and each coordinated electronically (by computer) with the others.
Not only are much more complicated feed motions possible, for example a combined
radial and axial feed to create a radius or to take the shortest path between two points at
different axial and radial positions, but the requirement of coordination has led to the
development of much more precise, backlash-free ball-screw feed drives. This precise
numerical control of feed motions, with the ability also to drive the tools quickly between
cuts, together with other reductions in set-up times (to be considered in Section 1.2), has
approximately halved machine tool non-productive cycle time, relative to its pre-1970
levels.

This halving of time is indicated in Figure 1.5(a) (Figure 1.5(b) is considered in Section
1.1.2). A further halving of non-productive cycle time has been possible from about 1980
onwards, with the spread throughout all manufacturing industry of new types of machine
tools that have become called furning centres (related to lathes) and machining centres
(developed from milling machines). These new tools, first developed in the 1960s for mass
production industry, individually can carry out operations that previously would have
required several machine tools. For example, it is possible on a traditional lathe to present
a variety of tools to the workpiece by mounting the tools on a turret. In a new turning
centre, some of the tools may be power driven and the main power drive, usually used to
rotate the workpiece in turning operations, may be used as a feed drive to enable milling
and drilling as well as turning to be carried out on the one machine.

Figure 1.6 is an example of a keyway being milled in a flanged hollow shaft. Pitch
circle holes previously drilled in the flange can also be seen. This part would have required
three traditional machines for its manufacture: a lathe, a milling and a drilling machine,
with three loadings and unloadings and three set-ups. It is the possibility of reducing load-
ings and set-ups that has led to the further halving of cycle times — although this figure is
an average. Individual time savings increase with part complexity and the number of set-
ups that can be eliminated. Centres are also much more expensive than more simple tradi-
tional machine tools and need to be heavily used to be cost effective. The implications of
this for the development of metal cutting practice — a trend towards higher speed machin-
ing — will be developed in Section 1.4.
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Fig. 1.4 A mechanically controlled lathe and (below) partly-built and complete views of a numerically controlled
machine with individual feed drive motors
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Fig. 1.5 Reductions from the levels shown in Figure 1.3 of (a) machine tool non-productive time and (b) work in
progress idle time, due to better technology and organization

Fig. 1.6 A flanged shaft turned, drilled and milled in one set-up on a turning centre

The increased versatility of machine tools (based on turning operations as an example)
has been briefly considered: the freedom given by CNC to create more complicated feed
motions, both by path and speed control; and the evolution of multi-function machine tools
(centres). The cost penalty has just been mentioned. As part of the continuing scene setting
for the conditions in which metal cutting is carried out, which will be combined with
systems and materials technology considerations in Section 1.4, some broad machine tool
mechanical design and cost considerations will now be introduced — still in the context of
turning.

Figure 1.7 sketches a turning operation, in which, in one revolution of the bar, the tool
moves an axial distance f (the feed distance) to reduce the bar radius by an amount d (the
depth of cut). The figure also shows the cutting force F acting on the tool, the diameter D
at which the cutting is taking place and both the angular speed € at which the bar rotates
and the consequent linear speed V (in later chapters this will be called U, ) at the diam-
eter D. Material is removed, in the form of chips, at the rate fdV. (More detail of cutting
terminology is given in Chapter 2).
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Tool

Fig. 1.7 The turning process - not to scale

The torque T and power P that the main drive motor must generate to support this turn-
ing operation is, by elementary mechanics

T=F,_(DI2) = (F.fd)(D/2) (1.2a)
P=F\V=(F.fd)VorF, (fdV) (1.2b)

A new quantity F' : has been introduced. It is the cutting force per unit area of removed
material. Called the specific cutting force, it depends to a first approximation mainly on
the material being cut. Equation (1.2a) indicates that, for a constant area of cut fd, a turn-
ing machine should be fitted with a motor with a torque capacity proportional to the largest
diameter being cut. It is shown later that for any combination of work and tool there is a
preferred linear cutting speed V. Equation (1.2b) suggests that for a constant area of cut
the required motor power should be independent of diameter cut. Observing what motors,
with their torque and power capacities, are fitted to production machine tools can give
insight into what duties the machine tools are expected to perform; and what forces the
cutting tools are expected to withstand. This is considered next.

Machine tool manufacturers’ catalogues show that turning machines are fitted with
motors the torques and powers of which increase, respectively, with the square of and
linearly with, the maximum work diameter. A typical catalogue specifies, among other
things, the main motor power, the maximum rev/min at which the work rotates and the
maximum diameter of work for which the machine is designed. Figure 1.8(a) plots the
torque at maximum rev/min, obtained from P = Q7, against maximum design diameter,
both on a log scale, for a range of mechanically controlled and CNC centre lathes and
chucking turning centres (as illustrated in Figures 1.4 and 1.6 respectively). Apart from
two sets of data marked ‘t’, which are for lathes described as for training and which might
be expected to be underdesigned relative to machines for production use, both the mechan-
ical and CNC classes of machine show the same squared power law dependence of torque
on maximum work diameter.

It seems that machines are designed to support larger areas of cut, fd, the larger the work
diameter D. Not only are larger diameter workpieces stiffer and able to support larger
forces (and hence areas of cut), but usually they require more material to be removed from
them. A larger area of cut enables the time for machining to be kept within bounds. A
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Fig. 1.8 Torque capacity at maximum speed and power of typical production mechanical (¢) and basic CNC (o), lathes
and turning centres (+) for steel machining, from manufacturers’ catalogues

design specification that the maximum depth of cut d should increase in proportion to the
maximum work diameter D would, from equation (1.2a), give the observed squared power
law.

Design cutting forces may be deduced from the torque/diameter relationship shown in
Figure 1.8(a). For example the lowest torque of 10 N m in Figure 1.8(a) would be caused
by a cutting force of 140 N at the diameter of 145 mm, while the upper limit around 50
N m would be caused by 270 N at 365 mm. Of course, a workpiece will not be machined
only at its maximum diameter. The highest rotational speeds are, in fact, used at the small-
est machined diameters (to maintain a high linear speed). If features were machined at one
tenth maximum diameter, the 10 N m and 50 N m torques would be generated by cutting
forces of 1.4 kN and 2.7 kN. The turning machines represented in Figure 1.8 are, in fact,
designed to generate cutting forces up to 2 or 3 kN. These are the forces to which the
cutting tools are exposed.

Figure 1.8(b) shows designed power is proportional to maximum work diameter,
consistent with equation (1.2b) if d is proportional to D. Further, the CNC machines have
motors up to twice as powerful as mechanically controlled machines for a given work
diameter. The top rotational speeds of CNC machines tend to be twice those of mechani-
cally controlled ones, for example 4000 to 5000 rev/min as opposed to 2000 to 2500
rev/min for maximum work diameters around 250 mm. It is tempting to speculate that this
is part of a trend to higher productivity through higher cutting speeds (Section 1.4). This
may be partly true, but there is also another reason — it is due to the different characteris-
tics of the motors used in mechanically and CNC controlled machines. The main drive of
a mechanically controlled lathe runs at constant speed, and different work rotational
speeds are obtained through a gear box. Apart from gear box losses, the motor can deliver
a constant power to the work, independent of work speed. A CNC main drive motor is a
variable speed motor with, as illustrated in Figure 1.9, a power capacity that drops off at
low rotation speeds, i.e. when turning at maximum bar diameter. To compensate for this,
a motor with a higher power at high rotational speeds must be employed.
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machines

The cutting speeds V at which the machine tools are expected to operate can be deduced
from the available power and the expected cutting forces at high rotation speeds, i.e. at
small cutting diameters. Continuing the example above, of a cutting force range of 1.4 kN
to 2.7 kN; associating these with powers from 5 kW to 20 kW (Figure 1.8(b)), gives
cutting speeds from 215 m/min to 450 m/min. It will be seen later (Section 1.3 and Chapter
3) that speeds in the range 100 to 1000 m/min are indeed practical for turning steels with
cutting tools made from cemented carbides (tungsten and titanium carbides bonded by
cobalt), which are the workhorse tools of today.

The dissipation of up to 5 to 20 kW through cutting tools results in them becoming
very hot: 1000°C is not unusual (this is justified later). For the tools to carry kN forces
(or rather the associated stresses, approaching 1 GPa) at such temperatures requires high
temperature strength. It is this that ultimately limits the productivity of cutting tools.
Obsolete machine tools — from the 1960s and earlier — were provided with lower power
motors (line A—A in Figure 1.8(b)) because they were designed for use with less produc-
tive tools made from high speed steels, with a lower high-temperature strength than
cemented carbides. Some modern machine tools, designed for use with ceramic tooling
and higher cutting speeds, are being fitted with higher power motors (line B-B in Figure
1.8(b)).

These ‘facts of life’ of the turning process — forces up to 2 or 3 kN and cutting speeds
up to 1000 m/min — are set by the material properties of the work and tool materials as well
as the mechanics of the process. Later chapters will be devoted to the details of why these
‘facts of life’ are so. They, and the functional versatility considered earlier, determine the
price of turning machine tools. Machines must have a sufficient bulk and mass to be stiff
and stable when cutting the high speed rotating mass of the workpiece. Figure 1.10(a)
shows, for the same machine tools as in Figure 1.8, how their masses increase in propor-
tion to motor power (the maximum workpiece lengths are in the range 500 mm to 1 m;
machine mass increases with workpiece length as well as diameter capacity). Mass turns
out to be one practical measure of value in a machine tool, the other being versatility.
Figure 1.10(b) shows the list price of machine tools (without tax) as a function of mass
(the data were gathered in 1990).
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Fig. 1.10 Mass/power and price/mass relationships for turning machines

Here and later in the Chapter, prices and costs have been collected in the UK, during the
early 1990s. A decision has been made to leave the information in units of UK£, unad-
Jjusted for inflation. An approximate conversion to values in the USA may be made at UK£1
= US$1; and to values in Japan at UK£1 = ¥200. These are not general exchange rates
but equivalent purchasing rates.

Mechanically controlled centre lathes vary in price from around £3000 to £30 000 as
their mass increases from 500 kg to 5000 kg. Changing to CNC controlled main and feed
drives (the 1970s development of Figure 1.5(a)) displaces the price/mass relation upwards
by about £15 000, while the further development of increased functionality of turning
centres displaces the relation upwards by at least a further £15 000 to £20 000. There is a
wide range of turning centre prices per unit mass, reflecting the wide range of complexity
that can be built in to such a machine in a manner tailored to suit the needs of the parts
being machined on it. The more specialized the turning centre, the more productive it can
be: the degree of investment that is worthwhile will depend on whether a manufacturer can
keep it occupied. The most specialized tend to be used with robotic loading and unloading
systems (see Section 1.2). The prices in Figure 1.10(b) do not include such external mater-
ials handling devices.

1.1.2 Milling and drilling machines

Up to this point, the description of machine tool development has been in terms of the turn-
ing process. Before moving to consider the role of manufacturing organization in influ-
encing the machining process, it is interesting to consider the parallel development of
milling machine tools and machining centres. As with turning machines, there have been
two stages of development: a post-1970 stage, which saw the substitution of mechanically
controlled machines by their CNC equivalents; and a post-1980 stage, which has, in addi-
tion, seen the development of more versatile machining centres. Figure 1.11 compares the
annual UK investment in mechanical and CNC turning and milling machines around the
1980 watershed. Pre-1980, the purchase of mechanically controlled machines was holding
steady, with roughly twice the investment in turning as in milling machines. At the same
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Fig. 1.11 Annual UK investment in mechanically and CNC controlled turning (e,0) and milling (+,x) machines, from
UK government statistics

time, investment in CNC machines was growing, equally spread between turning and
milling. Post-1980, investment in mechanically controlled machines collapsed and that in
CNC turning machines held steady, while CNC milling machine investment increased to
the stage where it was twice that of turning machines. This increase was mainly due to the
influence of machining centres.

At first sight it is surprising that pre-1980 investment in substituting mechanically
controlled for CNC-controlled milling machines equalled that for lathes, because there is
less to be gained from reducing non-productive cycle times. The obvious difference
between turning and milling processes is that, in turning, the main power is used to rotate
an essentially cylindrical workpiece, with feed motions applied to the tool; whereas in
milling the main power rotates a cutting tool, with the prismatic workpiece undergoing
feed motions. Milling cutting tools have many cutting edges, and are more complicated
than turning tools (Figure 1.12) and each edge cuts only intermittently. The cost of the
tools makes it prudent to remove metal more slowly, and vibrations set up by the inter-
mittent tool contacts reinforce this. The longer cutting times make the non-productive time
less significant.

However, investment in milling machines in the pre-1980 period was not only in order
to take advantage of the reduced non-productive time due to numerical control. A revolu-
tion was taking place, not only in machine control but also in machine structure. When
mechanical feed drives were replaced by individual ball-screw feed drives, it was found
that the accuracy of the cut was no longer limited by the accuracy of the drive but by elas-
tic deflection of the milling machine frame. The introduction of CNC control led directly
to a mechanical redesign of milling machines in order to produce machines of higher stiff-
ness and hence accuracy. Figure 1.13 compares the new type of design with the earlier one.
In addition, the freedom to vary x—y feed motions simultaneously to create curved feed
paths opened up the possibilities for free-form shape generation by milling that existed
before only with difficulty.

After 1980, machining centres attacked the long set-up and tool change times associ-
ated with milling. The number of set-ups was reduced by developing machines with more
degrees of freedom in their motions than before. In addition to x,y table motions and z spin-
dle motions, machines were built in which the spindle could be tilted. Automatic tool
change magazines were developed. Automatically interchangeable work tables were also
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Fig. 1.12 Examples of turning and milling solid, brazed and insert tools

devised so that setting up of one part could be carried out while another part was being
machined. In an extreme form, it was possible to pre-prepare parts on a carousel worktable,
such that, with magazine tool changing, a milling machining centre could be loaded with
enough work and tools to keep it running overnight without attention from an operator. These
changes, much greater than the changes in the development of turning centres from lathes,
explain the greater investment in milling than turning in the post-1980 period as shown in
Figure 1.11. Figure 1.14 shows an example of a new design of machine with a tiltable spin-
dle and interchangeable worktables. Figure 1.15 shows a detail of a tool change magazine.
As far as process mechanics is concerned, equations (1.2) for torque and power can be
applied to milling if D is interpreted as the diameter of the cutting tool and fdV remains
the volume removal rate. However, torque and power are not limited by workpiece stiff-
ness. It is the stiffness or strength of the cutter spindle that is important. The polar second
moment of area J of a shaft is proportional to D to the fourth power, and surface stress in
a shaft varies as TD/J. The torque T to create a given surface stress thus increases as D3.
The torque to create a given angular twist of the spindle also increases as D3, if spindle
length increases in proportion to D. A torque increases as D3 if cutting force increases as
D?. For a given cutting speed, from equation (1.2b), the machine power to provide that
force would also increase as D?. Manufacturers’ catalogues show that milling machine
tools do have different power-to-capacity relations than turning machine tools, which can
be explained on the basis that spindle failure or deflection limits their use, as just outlined.
They also have different mass to power characteristics. However, the price of milling
machines per unit mass is similar to turning machines. All this is developed in Figure 1.16.
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Fig. 1.13 A traditional - column and knee - design and (right and below) partly-built and complete views of a modern
(bed) design of milling machine

In Figures 1.16(a) and (b) the capacity of a milling machine is measured by its cross-
traverse capacity. This defines maximum workpiece size in a similar manner to defining
the capacity of a turning centre by maximum work diameter (Figure 1.8). Figures 1.16(a)
and (b) show that torque and power increase as cross-traverse cubed and squared respec-
tively. An assumption that machines are designed to accommodate larger diameter cutters
in proportion to workpiece size yields the D3 and D? relations derived in the previous
paragraph.
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Fig. 1.14 A 5-axis milling machine with interchangeable work tables

If Figure 1.16(b) is compared with Figure 1.8(b) it is seen that for given workpiece size
(cross-traverse or work diameter) a milling machine is likely to have from one fifth to one
half the power capacity of a turning machine, depending on size. This means that milling
machines are designed for lower material removal rates than are turning machines, for a
given size of work. Figure 1.16(c), when compared with Figure 1.10(a), shows that milling
machines are up to twice as massive per unit power as turning machines, reflecting the
greater need for rigidity of the (more prone to vibration) milling process. Figure 1.16(d),
admittedly based on a rather small amount of data, shows little difference in price between
milling and turning machines when compared on a mass basis. Combining all these rela-
tionships, the price of a milling machine is about 2/3 that of a turning machine for a 200
mm size workpiece but rises to 1.5 times the price for 1000 mm size workpieces. The
consequences for economic machining of these different capital costs, as well as the differ-
ent removal rate capacities that stem from the different machine powers, are returned to in
Section 1.4.

The D? and D? torque and power relationships found for milling machines are also
observed, approximately, for drilling machines. In this case, size capacity can be directly
related to the maximum drill diameter for which the machine is designed. Motor torques
and powers, from catalogues, typically vary from 1 N m to 35 N m and from 0.2 kW to 4
kW as the maximum drill diameter that a drilling machine can accept rises from 15 mm to
50 mm. The ranges of torques and powers just quoted are respectively 20% and 10% of the
ranges typically provided for milling machines (Figure 1.16). In drilling deep holes, there
is a real danger of breaking the tools by applying too much torque, so machine capacity is
purposely reduced. Drilling machines also have much less mass per unit power than
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Fig. 1.15 A milling machine tooling magazine

milling machines: there is less tendency for vibration and the axial thrust causes less
distortion than the side thrusts that occur on a milling cutter. The prices of drilling
machines are negligible compared with milling or turning. On the other hand, the low
power availability implies a much lower material removal rate capacity. It is perhaps a
saving grace of the drilling process that not much material is removed by it. This too is
taken up in Section 1.4.

1.2 Manufacturing systems

The attack on non-productive cycle times described in the previous section has resulted in
machine tools capable of higher productivity, but they are also more expensive. If they had
been available in the late 1960s, they would have been totally uneconomic as the manu-
facturing organization was not in place to keep them occupied. The flow of work in
progress was not effectively controlled, so that batches of components could remain in a
factory totally idle for up to 95% of the time, and even the poorly productive machines that
were then common were idle for up to 50% of the time (Figure 1.3). Manufacturing tech-
nology has, in fact, evolved hand in hand with manufacturing system organization, some-
times one pushing and the other pulling, sometimes vice versa.
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In the late 1960s there were two standard forms of organizing the machine tools in a
machine shop. At one extreme, suitable for the dedicated production of one item in long
runs — for example as might occur in converting sheet metal, steel bar, casting metal, paint
and plastics parts into a car (Figure 1.17) — machine tools were laid out in flow lines or
transfer lines. One machine tool followed another in the order in which operations were
performed on the product. Such dedication allowed productivity to be gained at the price
of flexibility. It was very costly to create the line and to change it to accommodate any
change in manufacturing requirements.

At the other extreme, and by far the more common, no attempt was made to anticipate
the order in which operations might be performed. Machine tools were laid out by type of
process: all lathes in one area, all milling machines in another, all drills in another, and so
on. In this so-called jobbing shop, or process oriented layout, different components were
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Fig. 1.17 Transfer line layout of an automotive manufacturing plant (after Hitomi, 1979), with a detail of a transmis-
sion case machining line

manufactured by carrying them from area to area as dictated by the ordering of their oper-
ations. It resulted in tortuous paths and huge amounts of materials handling — a part could
travel several kilometres during its manufacture (Figure 1.18). It is to these circumstances
that the survey results in Figure 1.3 apply.

It is now understood that there are intermediate layouts for manufacturing systems,
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appropriate for different mixes of part variety and quantity (Figure 1.19). If a manufac-
turer’s spectrum of parts is of the order of thousands made in small batches, less than 10
to 20 or even one at a time, then planning improved materials handling strategies is prob-
ably not worthwhile. The large amounts of materials handling associated with job shop or
process oriented manufacture cannot be avoided. Investment in highly productive machine
tools is hard to justify. Such a manufacturer, for example a general engineering workshop
tendering for sub-contract prototype work from larger companies, may still have some
mechanically controlled machines, although the higher quality and accuracy attainable
from CNC control will have forced investment in basic CNC machines. (As a matter of
fact, the large jobbing shop is becoming obsolete. Its low productivity cannot support a
large overhead, and smaller, perhaps family based, companies are emerging, offering
specialist skills over a narrow manufacturing front.)
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If part variety reduces, perhaps to the order of hundreds, and batch size increases, again
to the order of hundreds, it begins to pay to organize groups or cells of machine tools to
reduce materials handling (Figure 1.20). The classification of parts to reduce, in effect,
their variety from the manufacturing point of view is one aspect of the discipline of Group
Technology. Almost certainly the machine tools in a cell will be CNC, and perhaps the
programming of the machines will be from a central cell processor (direct numerical
control or DNC). A low level of investment in turning or machining centre type tools may
be justified, but it is unlikely that automatic materials handling outside the machine tools
(robotics or automated guided vehicles — AGVs) will be justifiable. Cell-oriented manu-
facture is typically found in companies that own products that are components of larger
assemblies, for example gear box, brakes or coupling manufacturers.

As part variety reduces further and batch size increases, say to tens and thousands
respectively, the organization known as a flexible manufacturing system becomes justifi-
able. Heavy use can be justified of turning and/or machining centres and automatic
handling between machine tools. Flexible manufacturing systems are typically found in
companies manufacturing high value-added products, who are further up the supply chain
than the component manufacturers for whom cell-oriented manufacture is the answer.
Examples are manufacturers of ranges of robots, or the manufacturers of ranges of
machine tools themselves (Figure 1.21). (Figure 1.19 also identifies a flexible transfer line
layout — this could describe, for example, an automotive transfer line modified to cope with
several variants of cars.)

The work in progress idle time (Figure 1.3) that has been the driver for the development
of manufacturing systems practice has been reduced typically by half in circumstances
suitable for cell-oriented manufacture and by a further half again in flexible manufactur-
ing systems (Figure 1.5(b)), which is in balance with the increased capacity to remove
metal of the machine tools themselves (Figure 1.5(a)).

1.3 Materials technology

The third element to be considered in parallel with machine technology and manufactur-
ing organization, for its contribution to the evolution of machining practice, is the proper-
ties of the cutting edges themselves. There are three issues to be introduced: the material
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properties of these cutting edges that limit the material removal rates that can be achieved
by them; how they are held in the machine tool, which determines how quickly they may
be changed when they are worn out; and their price.

1.3.1 Cutting tool material properties

The main treatment of materials for cutting tools is presented in Chapter 3. As a summary,
typical high temperature hardnesses of the main classes of cutting tool materials (high
speed steels, cemented carbides and cermets, and alumina and silicon nitride ceramics;
diamond and cubic boron nitride materials are introduced in Chapter 3) are shown in
Figure 1.22. The temperatures that have been measured on tool rake faces during turning
various work materials at a feed of 0.25 mm are shown in Figure 1.23. If the work mater-
ial removal rate that can be achieved by a cutting tool is limited by the requirement that its
hardness must be maintained above some critical level (to prevent it collapsing under the
stresses caused by contact with the work), it is clear that carbide tools will be more produc-
tive than high speed steel tools; and ceramic tools may, in some circumstances, be more
productive than carbides (for ceramics, toughness, not hardness, can limit their use). Also,
copper alloys will be able to be machined more rapidly than ferrous alloys and than tita-
nium alloys.

Tools do not last forever at cutting speeds less than those speeds that cause them to
collapse. This is because they wear out, either by steady growth of wear flats or by the
accumulation of cracks leading to fracture. Failure caused by fracture disrupts the machin-
ing process so suddenly that conditions are chosen to avoid this. Steady growth of wear
eventually results in cutting edges having to be replaced in what could be described as
preventative maintenance. It is an experimental observation that the relation between the
lifetime T of a tool (the time that it can be used actively to machine metal) and the cutting
speed V can be expressed as a power law: VI" = C. It is common to plot experimental
life/speed observations on a log-log basis, to create the so-called Taylor life curve. Figure
1.24 is a representative example of turning an engineering low alloy steel at a feed of
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Fig. 1.23 Maximum tool face temperatures generated during turning some titanium, ferrous and copper alloys at a
feed of 0.25 mm (after Trent, 1991)

0.25 mm with high speed steel, a cemented carbide and an alumina ceramic tool (the data
for the ceramic tool show a fracture (chipping) range). Over the straight line regions (on a
log-log basis), and with 7 in minutes and V in m/min

for high speed steel V1015 =30 (1.3a)
for cemented carbide V1925 = 150 (1.3b)
for alumina ceramic V1945 = 500 (1.3¢)

These representative values will be used in the economic considerations of machining in
Section 1.4. A more detailed consideration of life laws is presented in Chapter 4. The
constants n and C in the life laws typically vary with feed as well as cutting speed; they also
depend on the end of life criterion, reducing as the amount of wear that is regarded as allow-
able reduces. At the level of this introductory chapter treatment, it is not straightforward to
discuss how the constants in equations (1.3) may differ between turning, milling and
drilling practice. It will be assumed that they are not influenced by the machining process.
Any important consequences of this assumption will be pointed out where relevant.
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1.3.2 Cutting tool costs

Apart from tool lifetime, the replacement cost of a worn tool (consumable cost) and the
time to replace a worn-out tool are important in machining economics. Machining
economics will be considered in Section 1.4. Some different forms of cutting tool have
already been illustrated in Figure 1.12. High speed steel (HSS) tools were traditionally
ground from solid blocks. Some cemented carbide tools are also ground from solid, but the
cost of cemented carbide often makes inserts brazed to tool steel a cheaper alternative.
Most recently, disposable, indexable, insert tooling has been introduced, replacing the cost
and time of brazing by the cheaper and quicker mechanical fixing of a cutting edge in a
holder. Disposable inserts are the only form in which ceramic tools are used, are the domi-
nant form for cemented carbides and are also becoming more common for high speed steel
tools. Typical costs associated with different sizes of these tools, in forms used for turning,
milling and drilling, are listed in Table 1.1.

There are three sorts of information in Table 1.1. The second column gives purchase
prices. It is the third column, of more importance to the economics of machining, that gives
the tool consumable costs. A tool may be reconditioned several times before it is thrown
away. The consumable cost C, is the initial price of the tool, plus all the reconditioning
costs, divided by the number of times it is reconditioned. It is less than the purchase price
(if it were more, reconditioning would be pointless). For example, if a solid or brazed tool
can be reground ten times during its life, the consumable cost is one tenth the purchase
price plus the cost of regrinding. If an indexable turning insert has four cutting edges (for
example, if it is a square insert), the consumable cost is one quarter the purchase price plus
the cost of resetting the insert in its holder (assumed to be done with the holder removed
from the machine tool). If a milling tool is of the insert type, say with ten inserts in a
holder, its consumable cost will be ten times that of a single insert.

In Table 1.1, a range of assumptions have been made in estimating the consumable
costs: that the turning inserts have four usable edges and take 2 min at £12.00/hour to
place in a holder; that the HSS milling cutters can be reground five times and cost £5 to
£10 per regrind; that the solid carbide milling cutters can also be reground five times but
the brazed carbides only three times, and that grinding cost varies from £10 to £20 with



Materials technology 23

Table 1.1 Typical purchase price, consumable cost and change time for a range of cutting tools (prices from UK
catalogues, circa 1990, excluding discounts and taxes)

Tool type and size,

Typical purchase

Tool consumable

dimensions in mm. price, £. cost C‘, £. Tool change time Iy s min.
Turning
solid HSS, 6 x 8 x 100 =6 0.50 Time depends on machine
Brazed carbide 2.00 tool: for example 5 min.
carbide insert, plain for solid tooling on
12x12x4 2.50-5.00 1.00-1.60 mechanical or simple CNC
25x25x7 7.50-10.50 2.30-3.00 lathe; 2 min for insert tooling
carbide insert, coated on simple CNC lathe; 1 min
12x12x4 3.00-6.00 1.10-1.90 for insert tooling on turning
25x25x7 9.00-11.20 2.65-3.20 centre
ceramic insert, plain
12x12x4 4.50-9.00 1.50-2.70
25x25x7 13.50-17.00 3.80-4.65
cubic boron nitride 50-60 -
polycrystalline diamond 60-70 -
Milling
solid HSS 6 9-14 7-8 Machine dependent, for
25 30-60 13-20 example 10 min for
@100 100-250 30-60 mechanical machine; 5 min
solid carbide 6 18-33 14-17 for simple CNC mill; 2 min
12 40-80 23-31 for machining centre
25 200-400 60-100
brazed carbide 12 =50 =27
225 =75 = 40
50 =150 =170

carbide inserts, & > 50
plain, per insert

as turning price as turning, per insert

Drilling -
solid HSS a3 =1-3 = 1.00

6 =15-5 =1.25

12 =3-8 = 1.50
solid carbide 3 = = 3.00

26 =15 =~3.75

12 = 60 =4.50

cutter diameter; and that drilling is similar to milling with respect to regrind conditions.
There is clearly great scope for these costs to vary. The interested reader could, by the meth-
ods of Section 1.4, test how strongly these assumptions influence the costs of machining.

To extend the range of Table 1.1, some data are also given for the price and consumable
costs of coated carbide, cubic boron nitride (CBN) and polycrystalline diamond (PCD)
inserts. Coated carbides (carbides with thin coatings, usually of titanium nitride, titanium
carbide or alumina) are widely used to increase tool wear resistance particularly in finish-
ing operations; CBN and PCD tools have special roles for machining hardened steels
(CBN) and high speed machining of aluminium alloys (PCD), but will not be considered
further in this chapter.

Finally, Table 1.1 also lists typical times to replace and set tool holders in the machine
tool. This tool change time is associated with non-productive time (Figure 1.3) for most
machine tools but, for machining centres fitted with tool magazines, tool replacement in
the magazine can be carried out while the machine is removing metal. For such centres,
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non-productive tool change time, associated with exchanging the tool between the maga-
zine and the main drive spindle, can be as low as 3 s to 10 s. Care must be taken to inter-
pret appropriately the replacement times in Table 1.1.

1.4 Economic optimization of machining

The influences of machine tool technology, manufacturing systems management and
materials technology on the cost of machining can now be considered. The purpose is not
to develop detailed recommendations for best practice but to show how these three factors
have interacted to create a flow of improvement from the 1970s to the present day, and to
look forward to the future. In order to discuss absolute costs and times as well as trends,
the machining from tube stock of the flanged shaft shown in Figure 1.6 will be taken as an
example. Dimensions are given in Figure 1.25. The part is created by turning the external
diameter, milling the keyway, and drilling four holes. The turning operation will be consid-
ered first.

1.4.1 Turning process manufacturing times

The total time, £, to machine a part by turning has three contributions: the time ¢,
taken to load and unload the part to and from a machine tool; the time Lyctive in the machine
tool; and a contribution to the time taken to change the turning tool when its edge is worn
out. #, .. i longer than the actual machining time 7, , because the tool spends some time
moving and being positioned between cuts. 7, ; . may be written 7, /f .. where f
is the fraction of the time spent in removing metal. If machining N parts results in the tool

edge being worn out, the tool change time z , allocated to machining one part is ¢ /N. Thus

100

a0

70

Fig. 1.25 An example machined component (dimensions in mm)
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Tiotal = floaa + +— (1.4)

mach

It is easy to show that as the cutting speed of a process is increased, 7., passes through
a minimum value. This is because, although the machining time decreases as speed
increases, tools wear out faster and N also decreases. Suppose the volume of material to

be removed by turning is written V, |, then

Vvol

ey = —— (1.5)
ach de

The machining time for N parts is N times this. If the time for N parts is equated to the tool
life time T in equation (1.3) (generalized to VT™ = C), N may be written in terms of n and
C f, d, Vol and V, as

fdcl/n
N= TS (1.6)
VvolV B

Substituting equations (1.5) and (1.6) into equation (1.4):

1—
1 Vvol Vvolv (t=min

Jmach  JAV facin

Equation (1.7) has been applied to the part in Figure 1.25, as an example, to show how
the time to reduce the diameter of the tube stock from 100 mm to 50 mm, over the length
of 50 mm, depends on both what tool material (the influence of » and C) and how
advanced a machine technology is being used (the influence of £, | and z.). In this exam-
ple, V,,is 2.95 x 10° mm?. It is supposed that turning is carried out at a feed and depth of
cut of 0.25 mm and 4 mm respectively, and that 7, is 1 min (an appropriate value for a
component of this size, according to Boothroyd and Knight, 1989). Times have been esti-
mated for high speed steel, cemented carbide and an alumina ceramic tool material, in
solid, brazed or insert form, used in mechanical or simple CNC lathes or in machining
centres. n and C values have been taken from equation (1.3). The f,_, , and ¢, values are
listed in Table 1.2. The variation of f,_ , with machine tool development has been based
on active non-productive time changes shown in Figure 1.5(a). 7, values for solid or brazed
and insert cutting tools have been taken from Table 1.1. Results are shown in Figure 1.26.

Figure 1.26 shows the major influence of tool material on minimum manufacturing

ttotal = tload +

(1.7)

tct

Table 1.2 Values of f, ,, and

.- min, depending on manufacturing technology

Tool form Machine tool development
Mechanical Simple CNC Turning centre
Solid or brazed Jinach = 04551, =5 Jinach = 06551, =5

Insert Jrnach = 0-655 1, =2 Jrnach = 0855 1, =1
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Fig. 1.26 The influence on manufacturing time of cutting speed, tool material (high speed steel/carbide/ceramic) and
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turning the part in Figure 1.25

time: from around 30 min to 40 min for high speed steel, to 5 min to 8 min for cemented
carbide, to around 3 min for alumina ceramic. The time saving comes from the higher
cutting speeds allowed by each improvement of tool material, from 20 m/min for high speed
steel, to around 100 m/min for carbide, to around 300 m/min for the ceramic tooling.

For each tool material, the more advanced the manufacturing technology, the shorter
the time. Changing from mechanical to CNC control reduces minimum time for the high
speed steel tool case from 40 min to 30 min. Changing from brazed to insert carbide
with a simple CNC machine tool reduces minimum time from 8 min to 6.5 min, while
using insert tooling in a machining centre reduces the time to 5 min. Only for the
ceramic tooling are the times relatively insensitive to technology: this is because, in
this example, machining times are so small that the assumed work load/unload time is
starting to dominate.

It is always necessary to check whether the machine tool on which it is planned to make
a part is powerful enough to achieve the desired cutting speed at the planned feed and
depth of cut. Table 1.3 gives typical specific cutting forces for machining a range of mater-
ials. For the present engineering steel example, an appropriate value might be 2.5 GPa.
Then, from equation 1.2(b), for fd = 1 mm?, a power of 1 kW is needed at a cutting speed
of 25 m/min (for HSS), 5 kW is needed at 120 m/min (for cemented carbide) and 15 kW

Table 1.3 Typical specific cutting force for a range of engineering materials

Material F., GPa Material F., GPa
Aluminium alloys 0.5-1.0 Carbon steels 2.0-3.0
Copper alloys 1.0-2.0 Alloy steels 2.0-5.0

Cast irons 1.5-3.0
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is needed around 400 m/min (for ceramic tooling). These values are in line with supplied
machine tool powers for the 100 mm diameter workpiece (Figure 1.8).

1.4.2 Turning process costs

Even if machining time is reduced by advanced manufacturing technology, the cost may
not be reduced: advanced technology is expensive. The cost of manufacture Cp is made up
of two parts: the time cost of using the machine tool and the cost C, of consuming cutting
edges. The time cost itself comprises two parts: the charge rate M, to recover the purchase
cost of the machine tool and the labour charge rate M, for operating it. To continue the
turning example of the previous section:

1—
Vvolv( n)/n

— o (1.8)

Cp = (Mt + Mw)ltotal +

The machine charge rate

M, is the rate that must be charged to recover the total capital cost C,, of investing in the
machine tool, over some number of years Y. There are many ways of estimating it (Dieter,
1991). One simple way, leading to equation (1.9), recognizes that, in addition to the initial
purchase price C;, there is an annual cost of lost opportunity from not lending C; to some-
one else, or of paying the interest on C; if it has been borrowed. This may be expressed as
a fraction f; of the purchase price. f; typically rises as the inflation rate of an economy
increases. There is also an annual maintenance cost and the cost of power, lighting, heat-
ing, etc associated with using the machine, that may also be expressed as a fraction, f, , of
the purchase price. Thus

C,=C,(1+[f+f,1Y) (1.9)

Earnings to set against the cost come from manufacturing parts. If the machine is active
for a fraction f, of n 8-hour shifts a day (n, = 1, 2 or 3), 250 days a year, the cost rate M,
for earnings to equal costs is, in cost per min

t

G 1
—— | =+ 1.10
120 OOOfOnS[ v (fl+fm)] (40

Values of f and ng are likely to vary with the manufacturing organization (Figure 1.19).
It is supposed that process and cell oriented manufacture will usually operate two shifts a
day, whereas a flexible manufacturing system (FMS) may operate three shifts a day, and
that f varies in a way to be expected from Figure 1.5(b). Table 1.4 estimates, from equa-
tion (1.10), a range of machine cost rates, assuming ¥ =5, f; = 0.15 and f | = 0.2. Initial
costs C; come from Figure 1.9, for the machine powers indicated and which have been
shown to be appropriate in the previous section. In the case of the machining centres, a
capacity to mill and drill has been assumed, anticipating the need for that later. Some
elements of the table have no entry. It would be stupid to consider a mechanically
controlled lathe as part of an FMS, or a turning centre in a process oriented environment.
Some elements have been filled out to enable the cost of unfavourable circumstances to be
estimated: for example, a turning centre operated at a cell-oriented efficiency level.
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Table 1.4 Cost rates, M, £/min, for turning machines for a range of circumstances

Machine type C, £ Manufacturing system
Process-oriented Cell-oriented FMS
fo=05 [ =0.75; [y =0.385;
n =2 ng=2 n=2 n=3
Mechanical 1 kW 6000 0.028
Simple CNC 1 kW 20000 0.092 0.060
5 kW 28000 0.13 0.086
15 kW 50000 0.23 0.15
Turning centre 5 kW 60000 0.18 0.16 0.11
15 kW 120000 0.37 0.33 0.22

The labour charge rate

M, is more than the machine operator’s wage rate or salary. It includes social costs such
as insurance and pension costs as a fraction f, of wages. Furthermore, a company must pay
all its staff, not only its machine operators. M, should be inflated by the ratio, r,, of the
total wages bill to that of the wages of all the machine operator (productive) staff. If a
worker’s annual wage is C,, and an 8-hour day is worked, 220 days a year, the labour cost
per minute 18

a

=t A+, (1.11)
110 000

w

Table 1.5 gives some values for C, = £15 000/year, typical of a developed economy
country, and f, = 0.25. r, varies with the level of automation in a company. Historically,
for a labour intensive manufacturing company, it may be as low as 1.2, but for highly auto-
mated manufacturers, such as those who operate transfer and FMS manufacturing systems,
it has risen to 2.0.

Example machining costs

Equation (1.8) is now applied to estimating the machining costs associated with the times
of Figure 1.26, under a range of manufacturing organization assumptions that lead to
different cost rates, as just discussed. These are summarized in Table 1.6. Machine tools
have been selected of sufficient power for the type of tool material they use. M, values have
been extracted from Table 1.4, depending on the machine cost and the types of manufac-
turing organization of the examples. M, values come from Table 1.5. Tool consumable
costs are taken from Table 1.1. Two-shift operation has been assumed unless otherwise
indicated. Results are shown in Figure 1.27.

Table 1.5 Range of labour rates, £/min, in high wage manufacturing industry

Manufacturing organization

Labour intensive Intermediate Highly automated

0.20 0.27 0.34
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Table 1.6 Assumptions used to create Figures 1.26 and 1.27. * indicates three shifts

Time influencing variables

Machine tool/ Manufacturing M, M,, CI,
Cutting tool power, kW organization [£/min] [£/min] [£]
a solid HSS mechanical/l process oriented 0.028 0.20 0.50
b solid HSS basic CNC/1 cell-oriented 0.060 0.27 0.50
c brazed carbide basic CNC/5 cell-oriented 0.086 0.27 2.00
d insert carbide basic CNC/5 cell-oriented 0.086 0.27 1.50
e insert carbide centre CNC/5 FMS 0.165 0.34 1.50
e* insert carbide centre CNC/5 FMS* 0.110 0.34 1.50
f insert ceramic basic CNC/15 cell-oriented 0.15 0.27 2.50
g* insert ceramic centre CNC/15 FMS* 0.22 0.34 2.50
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Fig. 1.27 Costs associated with the examples of Figure 1.26 , a-g as in Table 1.6

Figure 1.27 shows that, as with time, minimum costs reduce as tool type changes from
high speed steel to carbide to ceramic. However, the cost is only halved in changing from
high speed steel to ceramic tooling, although the time is reduced about 10-fold. This is
because of the increasing costs of the machine tools required to work at the increasing
speeds appropriate to the changed tool materials.

The costs associated with the cemented carbide insert tooling, curves d, e and e* are
particularly illuminating. In this case, it is marginally more expensive to produce parts on
a turning centre working at FMS efficiency than on a simple (basic) CNC machine work-
ing at a cell-oriented level of efficiency, at least if the FMS organization is used only two
shifts per day (comparing curves d and e). To justify the FMS investment requires three
shift per day (curve e*).

To the right-hand side of Figure 1.27 has been added a scale of machining cost per kg
of metal removed, for the carbide and ceramic tools. The low alloy steel of this example
probably costs around £0.8/kg to purchase. Machining costs are large compared with
materials costs. When it is planned to remove a large proportion of material by machining,
paying more for the material in exchange for better machinability (less tool wear) can often
be justified.
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Up to this point, only a single machining operation — turning — has been considered. In
most cases, including the example of Figure 1.25 on which the present discussion is based,
multiple operations are carried out. It is only then, as will now be considered, that the orga-
nizational gains of cell-oriented and FMS organization bring real benefit.

1.4.3 Milling and drilling times and costs

Equations (1.7) and (1.8) for machining time and cost of a turning operation can be applied
to milling if two modifications are made. A milling cutter differs from a turning tool in that
it has more than one cutting edge, and each removes metal only intermittently. More than
one cutting edge results in each doing less work relative to a turning tool in removing a
given volume of metal. The intermittent contact results in a longer time to remove a given
volume for the same tool loading as in turning. Suppose that a milling cutter has n_ cutting
edges but each is in contact with the work for only a fraction ¢ of the time (for example o
= 0.5 for the 180° contact involved in end milling the keyway in the example of Figure
1.25). The tool change time term of equation (1.7) will change inversely as n_, other things
being equal. The metal removal time will change inversely as (an,):

1-n)/
1 Vvol + Vvolv( min

Snach  on fadv ncde””

t

total — tload + (1'12)

tCt

Cost will be influenced indirectly through the changed total time and also by the same
modification to the tool consumable cost term as to the tool change time term:

1-n)/
Vvolv( i

vt (1.13)
ncfdcl/n

Cp = (Mt + Mw)ttotal + Ct

For a given specific cutting force, the size of the average cutting force is proportional
to the group [an_fd]. Suppose the machining times and costs in milling are compared with
those in turning on the basis of the same average cutting force for each — that is to say, for
the same material removal rate — first of all, for machining the keyway in the example of
Figure 1.25; and then suppose the major turning operations considered in Figures 1.26 and
1.27 were to be replaced by milling.

In each case, suppose the milling operation is carried out by a four-fluted solid carbide
end mill (n, = 4) of 6 mm diameter, at a level of organization typical of cell-oriented manu-
facture: the appropriate turning time and cost comparison is then shown by results
‘brazed/CNC’ in Figure 1.26 and ‘c’ in Figure 1.27.

For the keyway example, & = 0.5 and thus for [en_fd] to be unchanged, f must be
reduced from 0.25 mm to 0.125 mm (assuming d remains equal to 4 mm). Then the tool
life coefficient C (the cutting speed for 1 min tool life) is likely to be increased from its
value of 150 m/min for f= 0.25 mm. Suppose it increases to 180 m/min. Suppose that for
the turning replacement operation, the end mill contacts the work over one quarter of its
circumference, so o = 0.25. Then f remains equal to 0.25 mm for the average cutting force
to remain as in the turning case, and C is unchanged. Table 1.7 lists the values of the vari-
ous coefficients that determine times and costs for the two cases. Their values come from
the previous figures and tables — Figure 1.16 (milling machine costs), Table 1.1 (cutting
tool data) and equations (1.10) and (1.11) for cost rates.
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Table 1.7 Assumptions for milling time and cost calculation examples

Replacement Replacement turning
Keyway operation, turning operation (i), operation (ii),
Quantity [om fd] = 1 mm? [on fd] = 1 mm? [an fd] = 0.5 mm?
Vo [mm?] 960 295000 295000
hach 0.65 0.65 0.65
n fd [mm?] 2 4 2
C [m/min] 180 150 180
n 0.25 0.25 0.25
t., [min] 5 5 5
foaq [min] 2 2 2
M, [£/min] 0.092 0.092 0.092
M, [£/min] 0.27 0.27 0.27
C, 1£] 15 15 15
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Fig. 1.28 Times and costs to remove metal by milling, for the conditions i and ii of Table 1.7 compared with remov-
ing the same metal by turning (- - -)

If milling were carried out at the same average force level as turning, peak forces would
exceed turning forces. For this reason, it is usual to reduce the average force level in
milling. Table 1.7 also lists (in its last column) coefficients assumed in the calculation of
times and costs for the turning replacement operation with average force reduced to half
the value in turning.

Application of equations (1.12) and (1.13) simply shows that for such a small volume
of material removal as is represented by the keyway, time and cost is dominated by the
work loading and unloading time. Of the total time of 2.03 min, calculated near minimum
time conditions, only 0.03 min is machining time. At a cost of £0.36/min, this translates to
only £0.011. Although it is a small absolute amount, it is the equivalent of £1.53/kg of
material removed. This is similar to the cost per weight rate for carbide tools in turning
(Figure 1.27).

In the case of the replacement turning operation, Figure 1.28 compares the two sets of
data that result from the two average force assumptions with the results for turning with
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a brazed carbide tool. When milling at the same average force level as in turning (curves
‘1), the minimum production time is less than in turning, but the mimimum cost is
greater. This is because fewer tool changes are needed (minimum time), but these fewer
changes cost more: the milling tool consumable cost is much greater than that of a turn-
ing tool. However, if the average milling force is reduced to keep the peak force in
bounds, both the minimum time and minimum cost are significantly increased (curves
‘ii”). The intermittent nature of milling commonly makes it inherently less productive and
more costly than turning.

The drilling process is intermediate between turning and milling, in so far as it involves
more than one cutting edge, but each edge is continuously removing metal. Equations
(1.12) and (1.13) can be used with & = 1. For the example concerned, the time and cost of
removing material by drilling is negligible. It is the loading and unloading time and cost
that dominates. It is for manufacturing parts such as the flanged shaft of Figure 1.25 that
turning centres come into their own. There is no additional set-up time for the drilling
operation (nor for the keyway milling operation).

1.5 A forward look

The previous four sections have attempted briefly to capture some of the main strands of
technology, management, materials and economic factors that are driving forward metal
machining practice and setting challenges for further developments. Any reader who has
prior knowledge of the subject will recognize that many liberties have been taken. In the
area of machining practice, no distinction has been made between rough and finish cutting.
Only passing acknowledgement has been made to the fact that tool life varies with more
than cutting speed. All discussion has been in terms of engineering steel workpieces, while
other classes of materials such as nickel-based, titanium-based and abrasive silicon-
aluminium alloys, have different machining characteristics. These and more will be
considered in later chapters of this book.

Nevertheless, some clear conclusions can be drawn that guide development of
machining practice. The selection of optimum cutting conditions, whether they be for
minimum production time, or minimum cost, or indeed for combinations of these two,
is always a balance between savings from reducing the active cutting time and losses
from wearing out tools more quickly as the active time reduces. However, the active
cutting time is not the only time involved in machining. The amounts of the savings and
losses, and hence the conditions in which they are balanced, do not depend only on the
cutting tools but on the machine tool technology and manufacturing system organization
as well.

As far as the turning of engineering structural steels is concerned, there seems at the
moment to be a good balance between materials and manufacturing technology, manu-
facturing organization and market needs, although steel companies are particularly
concerned to develop the metallurgy of their materials to make them easier to machine
without compromising their required end-use properties. The main activities in turning
development are consequently directed to increasing productivity (cutting speed) for
difficult to machine materials: nickel alloys, austenitic stainless steels and titanium
alloys used in aerospace applications, which cause high tool temperatures at relatively
low cutting speeds (Figure 1.23); and to hardened steels where machining is trying to
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Fig. 1.29 Sales of insert cutting tips in Japan, 1980 to 1996

compete with grinding processes. Attention is also being paid to environmental issues:
how to machine without coolants, which are expensive to dispose of to water treatment
plant.

Developments in milling have a different emphasis from turning. As has been seen, the
intermittent nature of the milling process makes it inherently more expensive than turn-
ing. A strategy to reduce the force variations in milling, without increasing the average
force, is to increase the number of cutting edges in contact while reducing the feed per
edge. Thus, the milling process is often carried out at much smaller feeds per edge — say
0.05 to 0.2 mm - than is the turning process. This results in a greater overall cutting
distance in removing a unit volume of metal and hence a greater amount of wear, other
things being equal. At the same time, the intermittent nature of cutting edge contact in
milling increases the rate of mechanical and thermal fatigue damage relative to turning.
The two needs of cutting tools for milling, higher fatigue resistance and higher wear resis-
tance than for similar removal rates in turning, are to some extent incompatible. At the
same time, a productivity push exists to achieve as high removal rates in milling as in
turning. All this leads to greater activity in milling development at the present time than
in turning development.

Perhaps the biggest single and continuing development of the last 20 years has been
the application of Surface Engineering to cutting tools. In the early 1980s it was confi-
dently expected that the market share for newly developed ceramic indexable insert
cutting tools (for example the alumina tools considered in Section 1.4) would grow
steadily, held back only by the rate of investment in the new, more powerful and stiffer
machine tools needed for their potential to be realized. Instead, it is a growth in ceramic
(titanium nitride, titanium carbide and alumina) coated cutting tools that has occurred.
Figure 1.29 shows this. It is always risky being too specific about what will happen in the
future.
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Chip formation fundamentals

Chapter 1 focused on the manufacturing organization and machine tools that surround the
machining process. This chapter introduces the mechanical, thermal and tribological (fric-
tion, lubrication and wear) analyses on which understanding the process is based.

2.1 Historical introduction

Over 100 years ago, Tresca (1878) published a visio-plasticity picture of a metal cutting
process (Figure 2.1(a)). He gave an opinion that for the construction of the best form of
tools and for determining the most suitable depth of cut (we would now say undeformed
chip thickness), the minute examination of the cuttings is of the greatest importance. He
was aware that fine cuts caused more plastic deformation than heavier cuts and said this
was a driving force for the development of more powerful, stiffer machine tools, able to
make heavier cuts. At the same meeting, it was recorded that there now appeared to be a
mechanical analysis that might soon be used — like chemical analysis — systematically to
assess the quality of formed metals (in the context of machining, this was premature!).
Three years later, Lord Rayleigh presented to the Royal Society of London a paper by
Mallock (Mallock, 1881-82). It recorded the appearance of etched sections of ferrous and
non-ferrous chips observed through a microscope at about five times magnification (Figure
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Fig. 2.1 Early chip observations by (a) Tresca (1878) and (b) Mallock (1881-82)
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2.1(b)). Mallock was clear that chip formation occurred by shearing the metal. He argued
that friction between the chip and tool was of great importance in determining the defor-
mation in the chip. He commented that lubricants acted by reducing the friction between
the chip and the tool and wrote that the difficulty is to see how the lubricant gets there. He
also wrote down equations for the amount of work done in internal shear and by friction
between the chip and tool. Surprisingly, he seemed unaware of Tresca’s work on plasticity
and thought that a metal’s shear resistance was directly proportional to the normal stress
acting on the shear plane. As a result, his equations gave wrong answers. This led him to
discount an idea of his that chips might form at a thickness that minimized the work of
friction. With hindsight, he was very close to Merchant’s law of chip formation, which in
fact had to wait another 60 years for its formulation (Section 2.2.4).

Tresca’s and Mallock’s papers introduce two of the main elements of metal cutting
theory, namely plasticity and the importance of the friction interaction between chip and
tool. Tresca was also very clear about the third element, the theory of plastic heating, but
his interest in this respect was taken by reheating in hot forging, rather than by machining.
In his 1878 paper, he describes tests that show up to 94% conversion of work to heat in a
forging, and explicitly links his discussion to the work of Joule.

In machining, the importance of heating for tool life was being tackled practically by
metallurgists. A series of developments from the late 1860s to the early 1900s saw the
introduction of new steel alloy tools, with improved high temperature hardness, that
allowed higher and higher cutting speeds with correspondingly greater productivities. A
classic paper (Taylor, 1907) describes the early work, from 1881 onwards, on productivity
optimization through improved tool materials (high speed steels) and their best use.

Thus, the foundations of machining theory and practice were laid between around 1870
and 1905. At this stage, with the minor exception of Mallock’s work, the emphasis was on
observing rather than predicting behaviour. This remained the case for the next 30 years,
with huge collections of machinability (force and tool life) data (for example, Boston,
1926; Herbert, 1928), and of course the introduction of even more heat resistant cemented
carbide tools. By the late 1920s, there was so much data that the need for unifying theo-
ries was beginning to be felt. Herbert quotes Boston (1926) as writing: ‘If possible, a
theory of metal cutting which underlies all types of cutting should be developed. . .. All
this is a tremendous problem and should be undertaken in a big way.’

The first predictive stage of metal cutting studies started about the late 1930s—mid-
1940s. The overriding needs of the Second World War may have influenced the timing, and
probably the publication, of developments but also created opportunities by focusing the
attention of able people onto practical metal plasticity issues. This first phase, up to around
1960/65, was, in one sense, a backwards step. The complexity of even the most straight-
forward chip formation — for example the fact that most chips are curled (Figure 2.1) — was
ignored in an attempt to understand why chips take up their observed thicknesses. This is
the key issue: once the chip flow is known, forces, stresses and temperatures may all be
reasonably easily calculated. The most simple plastic flow leading to the formation of
straight chips was assumed, namely shear on a flat shear plane (as described in more detail
later in this chapter). The consequent predictions of chip thickness, the calculations of chip
heating and contemporary developments in tribology relevant to understanding the
chip/tool interaction are the main subjects of this chapter.

This first stage was not successful in predicting chip thickness, only in describing its
consequences. It became clear that the flow assumptions were too simple; so were the
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chip/tool friction law assumptions; and furthermore, that heating in metal cutting (and the
high strain rates involved) caused in-process changes to a metal’s plastic shear resistance
that could not be ignored. From the mid-1960s to around 1980 the main focus of mechan-
ics research was exploring the possibilities and consequences of more realistic assump-
tions. This second phase of predictive development is the subject of Chapter 6. By the
1980s it was clear that numerical methods were needed to analyse chip formation properly.
The development of finite element methods for metal cutting are the subject of Chapter 7
and detailed researches are introduced in Chapter 8.

The rest of this chapter is organized into three main sections: on the foundations of
mechanics, heating and tribology relevant to metal machining. Appendices 1 to 3 contain
more general background material in these areas, relevant to this and subsequent chapters.
Anyone with previous knowledge may find it is not necessary to refer to these Appendies,
at least as far as this chapter is concerned.

2.2 Chip formation mechanics

The purpose of this section is to bring together observations on the form of chips and the
forces and stresses needed to create them. The role of mechanics in this context is more to
aid the description than to be predictive. First, Section 2.2.1 describes how chip formation
in all machining processes (turning, milling, drilling and so on) can be described in a
common way, so that subsequent sections may be understood to relate to any process.
Section 2.2.2 then reports on the types of chips that have been observed with simple shapes
of tools; and how the thicknesses of chips have been seen to vary with tool rake angle, the
friction between the chip and the tool and with the work hardening behaviour of the
machined material. Section 2.2.3 describes how the forces on a tool during cutting may be
related to the observed chip shape, the friction between the chip and the tool and the plas-
tic flow stress of the work material. It also introduces observations on the length of contact
between a chip and tool and on chip radius of curvature; and discusses how contact length
observations may be used to infer how the normal contact stresses between chip and tool
vary over the contact area. Sections 2.2.2 and 2.2.3 only describe what has been observed
about chip shapes. Section 2.2.4 introduces early attempts, associated with the names of
Merchant (1945) and Lee and Shaffer (1951), to predict how thick a chip will be, while
Section 2.2.5 brings together the earlier sections to summarize commonly observed values
of chip characteristics such as the specific work of formation and contact stresses with
tools. Most of the information in this section was available before 1970, even if its presen-
tation has gained from nearly 30 years of reflection.

2.2.1 The geometry and terminology of chip formation

Figure 2.2 shows four examples of a chip being machined from the flat top surface of a
parallel-sided metal plate (the work) by a cutting tool, to reduce the height of the plate. It
has been imagined that the tool is stationary and the plate moves towards it, so that the
cutting speed (which is the relative speed between the work and the tool) is described by
U, o In each example, U, is the same but the tool is oriented differently relative to the
plate, and a different geometrical aspect of chip formation is introduced. This figure illus-

trates these aspects in the most simple way that can be imagined. Its relationship to the
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{al

Fig. 2.2 (a and b) Orthogonal, (c) non-orthogonal and (d) semi-orthogonal chip formation.

turning milling and drilling processes is developed after first describing what those aspects
are.

Orthogonal and non-orthogonal chip formation

In Figure 2.2(a) the cutting edge AD of the plane tool rake face ABCD is perpendicular to
the direction of U, . It is also perpendicular to the side face of the plate. As the tool and
work move past one another, a volume of rectangular section EFGH is removed from the
plate. The chip that is formed flows with some velocity Uchip, which is perpendicular to
the cutting edge. All relative motions are in the plane normal to the cutting edge. In this
condition, cutting is said to be orthogonal. It is the most simple circumstance. Apart from
at the side faces of the chip, where some bulging may occur, the process geometry is fully
described by two-dimensional sections, as in Figure 2.1(b).

It may be imagined that after reducing the height of the plate by the amount HG, the
tool may be taken back to its starting position, may be fed downwards by an amount equal
to HG, and the process may be repeated. For this reason the size of HG is called the feed,
£, of the process. The dimension HE of the removed material is known as the depth of cut,
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d. Figure 2.2(a) also defines the tool rake angle o as the angle between the rake face and
the normal to both the cutting edge and U, . (& is, by convention, positive as shown.)

When, as in Figure 2.2(a), the cutting edge is perpendicular to the side of the plate, its
length of engagement with the plate is least. If it is wished to spread the cutting action over
a longer edge length (this reduces the severity of the operation, from the point of view of
the tool), the edge may be rotated about the direction of the cutting velocity. This is shown
in Figure 2.2(b). AD from Figure 2.2(a) is rotated to A’D’. As long as the edge stays
perpendicular to U, ., the chip will continue to flow perpendicular to the cutting edge and
the cutting process remains orthogonal. However, the cross-sectional shape of the removed
work material is changed from the rectangle EFGH to the parallelogram E'F'G’H’. If the
amount of rotation is described by the angle x, between E'F’ and E’'H’, the length of cutting
edge engagement increases to d” = d/sink, and the thickness of the removed layer, f”,
known as the uncut chip thickness, reduces to fsink,. «, is called the major cutting edge
angle, although it and other terms to be introduced have different names in different
machining processes — as will be considered later. The uncut chip thickness is more
directly important to chip formation than is the feed because, with the cutting speed, it
strongly influences the temperature rise in machining (as will be seen in Section 2.3).

In Figure 2.2(b), rotation of the cutting edge causes the chip flow direction to be
inclined to the side of the plate. Another way of achieving this is to rotate the cutting edge
in the plane ADHE (Figure 2.2(a)) so that it is no longer perpendicular to U, . In Figure
2.2(c) it is shown rotated to A*D*. The section of removed material EFGH stays rectan-
gular but U, chip becomes inclined to the cutting edge.

Neither U, nor U chip 4r€ perpendicular to the cutting edge. Chip formation is then
said to be non-orthogonal. The angle of rotation from AD to A*D¥* is called the cutting
edge inclination angle, 4. The mechanics of non-orthogonal chip formation are more
complicated than those of orthogonal chip formation, because the direction of chip flow is
not fixed by A,

Finally, Figure 2.2(d) shows a situation in which the cutting edge AD is lined up as in
Figure 2.2(a), but it does not extend the full width of the plate. In practice, as shown, the
cutting edge of the tool near point D is rounded to a radius R — the tool nose radius.
Because the cutting edge is no longer straight, it is not possible for the chip (moving as a
rigid body) to have its velocity U chip perpendicular to every part of the cutting edge. Even
if every part of the cutting edge remains perpendicular to U, ,, the geometry is not
orthogonal. This situation is called semi-orthogonal. If R << d, the semi-orthogonal case
is approximately orthogonal.

Turning

The turning process has already been introduced in Chapter 1 (Figure 1.7). In that case,
orthogonal chip formation with a 90° major cutting edge angle was sketched. Figure 2.3
shows a non-orthogonal turning operation, with a major cutting edge angle not equal to
90°. The feed and depth of cut dimensions are also marked. In this case, the cutting speed
U, on €quals zDCQ m/min (if the units of D and € are m and rev/min).

In turning, the major cutting edge angle is also known by some as the approach angle,
and the inclination angle as the back rake. The rake angle of Figure 2.2(a) can be called
the side rake. Table 2.1 summarizes these and other alternatives. (See, however, Chapter
6.4 for more comprehensive and accurate definitions of tool angles.)

The uncut chip thickness in turning, f, is fSink,. It is possible to reach this obvious
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Fig. 2.3 Turning, milling and drilling processes
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Table 2.1 Some commonly encountered near-alternative chip formation terms (see Chapter 6.4 for a more
detailed consideration of three-dimensional tool geometry)

Equivalent name in

General name and symbol Turning Milling Drilling
Rake angle, o Side rake angle Radial rake angle Rake angle
Inclination angle, A Back rake angle Axial rake angel Helix angle
Major cutting edge angle, K, Approach angle Entering angle Point angle
Feed Feed per rev. Feed per edge Feed per rev.
Depth of cut Depth of cut Axial depth of cut Hole radius

conclusion in a rather more general way which, although it has no merit for turning,
becomes useful for working out the uncut chip thickness in a milling process. Equation
(2.1a) is a statement of that more general way. It is a statement that the volume removed
from the work is the volume swept out by the cutting edge. In turning, the volume removed
per unit time is fdU,, , . The distance that the cutting edge sweeps through the work in unit
time is simply U, . The truth of equation (2.1a) is obvious.

Volume removed per unit time sin k.,
f= (2.1a)
Distance swept out by cutting edge per unit time d

Milling

There are many variants of the milling process, described in detail by Shaw (1984) and
Boothroyd and Knight (1989). Figure 2.3 shows face milling (and could also represent the
end milling process). A slab is reduced in thickness by an amount d, over a width dj, by
movement at a linear rate Uy, normal to the axis of a rotating cutter. d, is called the axial
depth of cut and dj, is the radial width of cut. The cutter has N cutting edges (in this exam-
ple, N; = 4) on a diameter D and rotates at a rate Q. Each cutting edge is shown with a
major cutting edge angle x, and inclination angle 4, although in milling these angles are
also known as the entering angle and the axial rake angle (Table 2.1). For some cutters,
with long, helical, cutting edges, the axial rake angle is further called the helix angle. The
cutting speed, as in turning, is 7DS.

In Figure 2.3, the cutter is shown rotating clockwise and travelling through the work so
that a cutting edge A enters the work at a and leaves at e. A chip is then formed from the
work with an uncut chip thickness increasing from the start to the end of the edge’s travel.
If the cutter were to rotate anticlockwise (and its cutting edges remounted to face the other
way), a cutting edge would enter the work at e and leave at a, and the uncut chip thickness
would decrease with the edge’s travel.

In either case, the average uncut chip thickness can be found from (2.1a). The work
volume removal rate is d ,d U4 The distance swept out by one cutting edge in one revo-
lution of the cutter is the arc length ae, or (D/2)6, where 6. can be determined from D
and dy. The distance swept out by N; edges per unit time is then N(D/2)8,.. d in equa-
tion (2.1a) is d . Substituting all these into equation (2.1a) gives

2dR Ufeed

——————— sink, (2.1b)
NQDE

’ —
f av.,milling —
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The relation between the uncut chip thickness’s average and maximum values depends
on the detailed path of the cutting edge through the work. In the case shown in Figure 2.3
in which the uncut chip thickness near a is zero, the maximum value at e is twice that of
equation (2.1b), but there are other circumstances (in which neither at entry nor exit is the
cutting edge path nearly tangential to the cut surface) in which the maximum and average
values can be almost equal.

Table 2.1 contains the term ‘feed per edge’. This is the distance moved by the work for
every cutting edge engagement. It is Uy, ,/(N£2). The ratio of the uncut chip thickness to
this differs from the value sink, that is the ratio in turning.

Drilling

Finally, Figure 2.3 also shows a drilling process in which a hole (diameter D) is cut from
an initially blank plate. The simpler case (from the point of view of chip formation) of
enlarging the diameter of a pre-existing hole is not considered. The figure shows a two-
flute (two cutting edges) drill with a major cutting edge angle «, (in drilling called the
point angle). The inclination angle in drilling is usually zero. The depth of cut is the radius
of the hole being drilled. The axial feed of a drill is usually described, as in turning, as feed
per revolution.

Drilling has an intermediate position between milling and turning in the sense that,
although a drill has more than one cutting edge (usually two), each edge is engaged contin-
uously in the work. The special feature of drilling is that the cutting speed varies along the
cutting edge, from almost zero near the centre of the drill to the circumferential speed of
the drill at its outer radius. The uncut chip thickness can be obtained from equation (2.1a).
The volume removed per revolution of the drill is (zD%4)f. The distance per revolution
swept out by N, cutting edges, at the average radius (D/4) of the drill, is (zD/2)N;.
Substituting these, and d = D/2, into equation (2.1a) gives

f ’drilling = N sin K, 2.10)
f

This, as in the case of turning, could have been obtained directly.

On feed, uncut chip thickness and other matters

The discussion around Figure 2.2 introduced some basic terminology, but it is clear from
the descriptions of particular processes that there are many words to describe the same
function, and sometimes the same word has a different detailed meaning depending on the
process to which reference is being made. Feed is a good example of the latter. In turning
and drilling, it means the distance moved by a cutting edge in one revolution of the work;
in milling it means the distance moved by the work in the time taken for each cutting edge
to move to the position previously occupied by its neighbour. However, in every case, it
describes a relative displacement between the cutting tool and work, set by the machine
tool controller.

Feed and depth of cut always refer to displacements from the point of view of machine
tool movements. Uncut chip thickness and cutting edge engagement length are terms
closely related to feed and depth of cut, but are used from the point of view of the chip
formation process. It is a pity that the terms uncut chip thickness and cutting edge engage-
ment length are so long compared with feed and depth of cut.
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In the case of turning with a 90° major cutting edge or approach angle, there is no differ-
ence between feed and uncut chip thickness nor between depth of cut and cutting edge
engagement length. Further, the cutting speed is the same as the work speed U, . In the
remainder of this book, chips will be described as being formed at a cutting speed U, 4.
at a feed f and depth of cut d — meaning at an uncut chip thickness f and a cutting edge
engagement length d. This is correct only for turning, as just described. The reader,
however, should be able to convert that convenient terminology to the description of other
processes, by the relations that have been developed here.

2.2.2 Chip geometries and influencing factors

Figure 2.1 shows views of chips observed more than 100 years ago. Figure 2.4 shows more
modern images, photographs taken from polished and etched quick-stop sections (in the
manner described in Chapter 5). It shows the wide range of chip flows that are free to be
formed, depending on the material and cutting conditions. All these chips have been
created in turning tests with sharp, plane rake face cutting tools. Steady or continuous chip
formation is seen in Figure 2.4(a) (as has been assumed in Figure 2.2). This example is for
70/30 brass, well known as an easy to machine material. Some materials, however, can
form a more segmented, or saw tooth, chip (e.g. stainless steel — Figure 2.4(b)). Others do
not have sufficient ductility to form continuous chips; discontinuous chips are formed
instead. Figures 2.4(c) (for a brass made brittle by adding lead) and 2.4(d) (for a mild steel
cut at very low cutting speed) are, respectively, examples of discontinuous chips showing
a little and a lot of pre-failure plastic distortion. In other cases still (mild steel at an inter-
mediate cutting speed — Figure 2.4(e)) work material cyclically builds up around, and
breaks away from, the cutting edge: the chip flows over the modified tool defined by the
shape of the built-up edge. The built-up edge has to withstand the loads and temperatures
generated by the chip formation. As cutting speed, and hence the temperature, increases,
the built-up edge cannot survive (or does not form in the first place): Figure 2.4(f) (mild
steel at higher speed) shows the thin layer of build-up that can exist to create a chip geom-
etry that does not look so different from that of Figure 2.4(a).

This chapter will be concerned with only the most simple type of chip formation —
continuous chip formation (Figures 2.4(a) and (f)) by a sharp, plane rake face tool. Further,
only the orthogonal situation (Section 2.2.1) will be considered. The role of mechanics is
to show how the force and velocity boundary conditions at the chip — tool interface and the
work material mechanical properties determine the flow of the chip and the forces required
for cutting. For continuous chip formation, determining the flow means at least determin-
ing the thickness of the chip, its contact length with the tool and its curvature: none of these
are fixed by the tool shape alone. In fact, determining the chip shape is the grand challenge
for mechanics. Once the shape is known, determining the cutting forces is relatively
simple; and determining the stresses and temperatures in the work and tool, which influ-
ence tool life and the quality of the machined surface, is only a little more difficult.

The main factors that affect the chip flow are the rake angle of the tool, the friction
between the chip and the tool and the work hardening of the work material as it forms the
chip. Some experimental observations that establish typical magnitudes of the quantities
involved will now be presented, but first some essential notation and common simplifica-
tions to the flow (to be removed in Chapter 6) will be introduced. Figure 2.5(a) is a sketch
of Figure 2.4(a). It shows the chip of thickness ¢ being formed from an undeformed layer



44 Chip formation fundamentals

(a) (b)

(d)

Fig. 2.4 Chip sections from turning at a feed of about 0.15 mm — cutting speeds as indicated (m/min): (a) 70/30 brass
(50), (b) austenitic stainless steel (30), (c) leaded brass (120): (d) mild steel (5), (e) mild steel (25), (f) mild steel (55)
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(a/2-0.7
(e}
Fig. 2.5 Chip flow (a) sketched from Figure 2.4(a); (b) simplified and (c) its velocity diagram

Uwclrk " ¢

of thickness f (the feed) by a tool of rake angle . The contact length with the tool, OB, is
[ and the chip radius is . Regions of plastic flow are identified by the hatched markings.
The main deformation zone, known as the primary shear zone, exists around the line OA.
Further strain increments are frequently detectable next to the rake face, in the secondary
shear zone. A simplified flow (Figure 2.5(b)) replaces the primary zone by a straight
surface, the shear plane OA and neglects the additional deformations in the secondary zone
(although the region might still be at the plastic limit). Figure 2.5(b) shows OA inclined at
an angle ¢ to the cutting speed direction. ¢ is called the shear plane angle. As the length of
the shear plane OA can be obtained either from (f/sin ¢) or from (#/cos(¢ — @),

t cos(¢p — o
— = L) (2.2)
f sin ¢
Figure 2.5 also identifies the velocity change, Uprimary’ that occurs on the primary shear

plane, which converts U, to U . It further shows the resultant force R responsible
for the flow, inclined at the friction angle A to the rake face normal (tan A = the friction
coefficient u) and thus at (¢ + 1 — @) to OA. It also introduces other quantities referred
to later.

The magnitude of Uprimary’

from the velocity diagram for the simplified flow (Figure 2.5(c)):

and of the resulting U chip’ relative to U, can be found

work’

Uprimary _ Uchip _ Uwork (2.3)
cos o sin ¢ cos(¢p — @)

The shear strain that occurs as the chip is formed is the ratio of the primary shear velocity
to the component of the work velocity normal to the shear plane. The equivalent strain is
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1/3 times this (Appendix 1). Combining this with equations (2.3) and (2.2), the equiva-
lent strain is:

U

primary

V3U, 4 8in ¢ “(3singcos(d—a) V3 cos2(e—a) 7

cos o cos o t
(2.4a)

_ 7
SE?:
V3

Thus, the severity of deformation is determined by a, (¢ — @) and the chip thickness ratio
(¢/f). The ratio cos a/cos?(¢ — @), as will be seen, is almost always in the range 0.9 to 1.3.
So

= (0.5 to 0.75)(1/f) (2.4b)

Mallock’s (1881-82) observation that chip thickness is strongly influenced by lubrica-
tion has already been mentioned. Figure 2.6 dramatically illustrates this. It is a quick-stop
view of iron cut by a 30° rake angle tool at a very low cutting speed (much less than 1
m/min). In an air atmosphere the chip formed is thick and straight. Adding a lubricating
fluid causes the chip to become thinner and curled. In this case, adding the lubricant
caused the friction coefficient between the chip and tool to change from 0.57 to 0.25
(Childs, 1972).

The lubricating fluid used in this study was carbon tetrachloride, CCl,, found by early

(a) (b)

Fig. 2.6 Machining iron at low speed: (a) dry (in air) and (b) with carbon tetrachloride applied to the rake face
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Fig. 2.7 (a) Collected data on the machining of copper, dry (¢) and lubricated (o); and (b) lubricant effects for a range
of conditions at cutting speeds around 1 m/min

researchers to be one of the most effective friction reducing fluids. However, it is toxic and
not to be recommended for use today. In addition, CCl, only acts to reduce friction at low
cutting speeds. Figure 2.7 brings together results from several sources on the cutting of
copper. It shows, in Figure 2.7(a), friction coefficients measured in air and CCl, atmos-
pheres at cutting speeds from 1 to 100 m/min, at feeds between 0.1 and 0.25 mm and with
cutting tools of rake angle 6° to 40°. At the higher speeds the friction-reducing effect of the
CCl, has been lost. Mallock was right to be puzzled by how the lubricant reaches the inter-
face between the chip and tool. How lubricants act in metal cutting is considered further
in Section 2.4.2.

The range of friction coefficients in Figure 2.7(a) for any one speed and lubricant partly
comes from the range of rake angles to which the data apply. Higher friction coefficients
are associated with lower rake angles. Figure 2.7(a) also shows how both lubricating fluid
and rake angle affect the chip thickness ratio. Both low friction and high rake angles lead
to low chip thickness ratios. General experience, for a range of materials and rake angles,
is summarized in Figure 2.7(b). In the context of metal cutting, low friction coefficients
and chip equivalent strains (from equation 2.4(b)) are 0.25 to 0.5 and 1 to 3 respectively;
whereas high friction coefficients and strains are from 0.5 to 1 (and in a few cases higher
still) and up to 5.

High work hardening rates are also found experimentally to lead to higher chip thick-
ness ratios — although it is difficult to support this statement in a few lines in an introduc-
tory section such as this. The reason is that it is difficult to vary work hardening behaviour
without varying the friction coefficient. One model material, with a friction coefficient
more constant than most, is o-brass (70%Cu/30%Zn). Figure 2.8(a) shows the work hard-
ening characteristics of this metal. The chips from work material pre-strained, for exam-
ple to point C, may expect to be work hardened to their maximum hardness by machining.
The friction coefficients and chip thickness ratios obtained when forming chips from vari-
ously pre-strained samples, with a 15° rake angle high speed steel tool, at feeds around 0.2
mm and cutting speeds from 1 to 50 m/min are shown in Figure 2.8(b) (Childs et al.,
1972). Anticipating a later section, the measure of work hardening used as the independent



48  Chip formation fundamentals

750+ — Umex 07
g w——  — - iA
) - - -— . ; /
.-'.D #0353 D B
’
500 | .:' 03F
= — A
% [— :‘C _ - -_ '_{LTO)C
o ’B
250 b= al i,a,
4 1 /
"A f 2l -®
D.--"'C B
'U ' 1 —l 1 1 1 1 1
1 _ 2 3 0 0.4 0.8
1 {”max_‘](})
{a) () Uma

Fig. 2.8 (a) The work hardening of 70/30 brass and (b) friction coefficients and chip thickness ratios measured for
samples pre-strained by amounts A to D as marked

variable in Figure 2.8(b) is the ratio of the increase in equivalent stress to the maximum
equivalent stress caused by machining. For materials D, C and B, thicker chips occur the
greater is the work hardening, despite a constant friction coefficient. Material A shows a
thicker chip still, but its friction coefficient is marginally increased too. Comparing Figures
2.8(b) and 2.7(b), changes in work hardening and friction coefficient have similar influ-
ences on chip thickness ratio.

Thus, rake angle, friction and work hardening are established as all influencing the chip
formation. To make further progress in describing the mechanical conditions of machin-
ing, the constraints of force and moment equilibrium must be introduced.

2.2.3 Force and moment equilibrium

Cutting and thrust forces

The resultant force R has already been introduced in Figure 2.5(b). Its inclination to the
primary shear plane is, from geometry, (¢ + A — @). From the previous section, the shear
stress k on the shear plane is expected to be that of the fully work hardened material.
Resolving R onto the shear plane, dividing it by the area of the plane and equating the
result to k leads to

kfd
R= (2.52)
sin ¢ cos(p+ A - )

where d is the width of the shear plane (depth of cut) out of the plane of Figure 2.5. The
cutting and thrust force components, /', and F|, also defined in Figure 2.5, are

kfd cos(A - @) kfd sin(A - o)
. ; F,=— (2.5b)
sin ¢ cos(¢p + A — @) sin ¢ cos(¢p + A — @)
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Fig. 2.9 Equivalent stress-strain data for (a) a mild steel, (b) an aluminium alloy; and (c) an c-brass obtained from
compression testing (—) and values from metal cutting tests (hatched), after Kobayashi and Thomsen (1959)

Alternatively, k may be directly related to F and F:
kfd = (F cos ¢ — F, sin ¢)sin ¢ (2.5¢)

Many experimental studies of continuous chip formation have confirmed these relations.
Indeed, departures are a clear indication of a breakdown in the assumptions, for example
of the presence of a built-up edge changing the tool geometry. One particularly thorough
study was carried out by Kobayashi and Thomsen (1959), measuring forces and chip thick-
nesses in the machining of ferrous and non-ferrous metals, and using equation (2.5¢) to
estimate k. Figure 2.9 shows their results converted to equivalent stress (& = ky3),
compared with data obtained from compression testing.

Chip/tool contact lengths

The contact length between the chip and tool, as well as the chip thickness, is of interest
in metal cutting. Chip moment equilibrium may be applied to relate the contact length to
the chip thickness. Figure 2.5(b) shows the resultant force R passing through the centres
of pressure C_ and C, on the primary shear plane and rake face respectively. Zorev (1966)
introduced the length ratios m = OCp/OA and n = OC/OB: from the moment equilibrium
about O, contact length [ and chip thickness ¢ are related by

m
I =—tlu +tan(¢ - )] (2.6)
n

Zorev gives experimental results obtained from turning a large range of carbon steels (0.12
to 0.83%C) and low alloy engineering steels, at feeds from 0.15 to 0.5 mm and cutting
speeds from 15 to 300 m/min, that agree well with equation (2.6) if (m/n) is taken to be in
the range 3.5 to 4.5. However, the contact length is a difficult quantity to measure, and
even to define. Zorev himself commented that the 45% of the contact length furthest from
the cutting edge may carry only 15% of the rake face load. Other researchers have obtained
lower values for (m/n). Figure 2.10(a) shows Zorev’s mean value data as the solid line,
with observations by the present authors obtained from restricted contact and split tool
tests. (m/n) values as low as 1.25 have been observed, and values of 2 are common. To put
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Fig. 2.10 Chip/tool contact length and chip radius observations. (a) Measured dependence of chip/tool contact length
on chip thickness; and (b) wide variations of dimensionless chip radius (172) with (m/n)

these values in perspective, a uniform pressure along the shear plane and a triangular pres-
sure distribution along the rake face (with a peak at the cutting edge) would give (m/n) =
1.5. The range of (m/n) found in practice suggests that different materials machine with
different pressure distributions along the shear plane or rake face, or both.

Chip/tool contact pressures

The question of what contact pressure distributions exist between the chip and tool and on
the primary shear plane will be covered in later chapters in some detail. However, the
elementary mechanics considerations here may be developed to give some insight into
possible contact pressure distributions. The procedure is first to consider the primary shear
plane pressure distribution and the associated likely range of the parameter m. m and m/n
together then enable the size range of n to be deduced. Different values of n are associated
with different tool contact pressure distributions.

First of all, suppose that the contact pressure is not uniform along the primary shear
plane OA (Figure 2.5(a)), but falls from a maximum value at A to a lower value at O.
Oxley (1989) pointed out that this will be the case for a work hardening material.
Figure 2.11(a) is developed from his work. It shows the shear plane OA imagined as a
parallel-sided zone of width w and length s (s = f/sin ¢). Work hardening results in the
shear stress k. at the exit to the zone being more than that k at the entry. A force
balance on the hatched region establishes that p must reduce towards O, from some
maximum value pg at the free surface. When the shear zone is parallel sided, the reduc-
tion is uniform with distance from A. At O the reduction has become (s/w)Ak, where Ak
is (k,x — k,)- The average pressure is half the sum of the pressures at A and O. The
ratio of the average pressure to the shear stress on the shear plane is equal to the tangent
of the angle between the resultant force R and the shear plane. This is tan(¢ + A — @). It
follows that

tan(p + 1 - @) = sz - (2.7)

max max
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Further, by taking moments about the cutting edge O, m can be expressed in terms of p,
(s/w) and (Ak/k_. ), as shown in equation (2.8a). Then (s/w) can be eliminated with the
help of equation (2.7), as shown in (2.8b)

1 1 (AKIK )(sIw)
m=—|1+— (2.8a)
2 6 pJk,.. — 120kl )(s/w)
11 plk
m=—+— — > M (2.8b)

3 6 tan(p+1-0)

Data exist to test equation (2.7) and hence to deduce values of m. It is commonly
observed that (¢ + 1 — @) varies from material to material (a range of data will be given in
Section 2.2.4). It reduces the more the material work hardens. Figure 2.11(b) shows, as
solid circles, data obtained from the same set of tests that led to Figure 2.8, while the open
circles are for steels, aluminium alloys and brass (from the work of Kobayashi and
Thomsen, 1959). The data support equation (2.7), with p /k . = 1.4 = 0.2. From equation
(2.8b), with pS/kmax = 1.4 and with tan(¢ + A — ) varying from 0.6 to 1.4, values of m from
0.5 to 0.72 are obtained.

The gradient of —1 in Figure 2.11(b) implies s/w = 2. This is less than expected, given
quick-stop views of how narrow is the shear zone. For example, the hatched primary shear
region of Figure 2.5(a) has s/w = 4. However, other studies (considered in Chapter 6) have
suggested values for s/w as small as 2.6. It all depends how carefully one defines where
are the edges of the zone. For now it is enough to point out that the shear plane model
approximation clearly loses some essential detail of force analysis in machining, even
though it has a use in obtaining a range of values of m.

The range of m from 0.5 to 0.72 is not wide compared with the variation of (m/n) from
1.25 to 3.8 (equation (2.6) and Figure 2.10(a)). It seems that n is a more variable quantity
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Fig. 2.11 (a) The primary shear region modelled as a parallel-sided zone of thickness w, showing pressure variations
due to work hardening; and (b) observed reductions of tan(¢ + A - o) with increasing work hardening



52 Chip formation fundamentals

\ ak
o

e 1
0] 1.0 0 1.0 I_ Q 1.0

ag t K o fK
iap (B (c}

Fig. 2.12 A range of possible rake face contact pressure distributions o /k, for cr=0°, ¢ =10°and A =35°and n=
(a) 172, (b) 1/3 and (c) 1/6

than m. The common (m/n) value of 2 (from Figure 2.10(a)) is consistent with n = 0.3. This
would be expected of a triangular distribution of contact pressure between the chip and
tool. However, extreme n values are derived from 0.55 to 0.15. The former describes an
almost uniform contact pressure on the rake face, while the latter corresponds almost to a
fourth power law variation. These pressure distributions lead to different peak pressures at
the cutting edge. Figure 2.12 shows, for the arbitrary example of & = 0°, ¢ = 10° and A =
35°, three chips identical but for their contact length and pressure distribution with the tool.
The pressures have been calculated, relative to k, from the tool forces and chip/tool contact
length, by combining equations (2.2), (2.5) and (2.6). Figure 12(c) is associated with a
peak contact stress with the cutting edge 50% larger than that for Figure 12(a). What
contact stress distribution actually occurs is clearly relevant to tool failure and is consid-
ered further in subsequent sections and chapters.

Chip radii

Chip curvature has been ignored in simplifying the description of chip flow in Figure 2.5.
However, comments may still be made on what is observed. First of all, lubricated chip
flows are almost invariably highly curled. A good example is seen in Figure 2.6. Free-
machining steels (containing MnS or MnS and Pb) also give tightly curled chips in their
free-machining speed range (even in the absence of built-up edge formation). Beyond this,
there seems to be no generalization that can be made, or relationship derived between chip
curvature and other machining parameters.

One reason is that chip curvature is very sensitive to external interference, for example
from interaction of the chip with the tool holder or from collision with the workpiece. Even
if care is taken to avoid such real (and common) considerations, there are no simple laws
governing chip curvature. For example, it could be imagined that chips with long contacts
with the tool relative to their thickness might have larger radii than chips with shorter
contact lengths. Figure 2.10(b) collects data on dimensionless chip radius (the radius rela-
tive to the chip thickness) and (m/n). It includes results from machining brass and iron
(already referenced in Figures 2.6 and 2.8) and low carbon non-free and free cutting steels
which have already featured in Figure 2.10(a). There is certainly no single valued relation
between (r/t) and (m/n) although widely spaced boundaries can be drawn around the data.
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No better relationship has ever been found, for machining with plane-faced tools. The
reason for this is easy to understand. Qualitatively, a curled chip may be regarded as
shorter (more compressed) at its inner radius than at its outer radius. Only rarely are chips
so tightly curled that (#/f) < 5; even then the variation in compression from the chip centre-
line to its inner and outer radii is only + 0.1, i.e. #/(2r). Average chip equivalent strains
(equation 2.4(b)) are typically greater than 1. Thus, the modifications to flow associated
with curvature are secondary relative to the magnitude of the flow itself. The sort of factors
that could affect chip radius are variations of friction along the chip/tool contact length and
the roundness of the cutting edge, and also the work hardening behaviour and variations
of work hardening behaviour through the thickness of the chip (most chips are formed
from surfaces which themselves have previously been strained by machining).

2.2.4 Shear plane angle prediction

The previous section gives data that show that chip thickness, and hence shear plane angle,
depends on tool rake angle, friction and work hardening; and it records how forces and tool
stresses can be estimated if shear plane angle, rake angle and friction angle are known. In
this section, early attempts, by Merchant (1945) and Lee and Shaffer (1951), to predict the
shear plane angle are introduced. Both attempted to relate shear plane angle to rake angle
and friction angle, and ignored any effects of work hardening.

Merchant suggested that chip thickness may take up a value to minimize the energy of
cutting. For a given cutting velocity, this is the same as minimizing the cutting force (equa-
tion (2.5(b)) with respect to ¢. The well-known equation results:

o=nl4-A-a)2 (2.9)

Lee and Shaffer proposed a simple slip line field to describe the flow (see Appendix 1
and Chapter 6 for slip line field theory). For force equilibrium of the free chip, it requires
that the pressure on the primary shear plane is constant along the length of the shear plane
and equal to k. If (p/k) = 1 and Ak = 0 are substituted in equation (2.7), Lee and Shaffer’s
result is obtained:

p=mld—(h-0) or (p-a)=mld—1 (2.10)

Neither equation (2.9) nor (2.10) is supported by experiment. Although they correctly
show a reducing ¢ with increasing A and reducing @, each predicts a universal relation
between ¢, A and ¢ and this is not found in practice. However, they stimulated much exper-
imental work from which later improvements grew.

It is common practice to test the results of experiments against the predictions of equa-
tions (2.9) and (2.10) by plotting the results as a graph of ¢ against (A — @). It is an obvi-
ous choice for testing equation (2.9); and equation (2.9) was the first of these to be derived.
As far as equation (2.10) is concerned, an equally valid choice would be to plot (¢ — @)
against A. Different views of chip formation are formed, depending on which choice is
taken. The first choice may be regarded as the machine-centred view: (1 — ) is the angle
between the resultant force on the tool and the direction of relative motion between the
work and tool. The second choice gives a process-centred view: (¢ — &) is the complement
of the angle between the shear plane and the tool rake face. Figures 2.13 and 2.14 present
selected experimental results according to both views.

The data in Figure 2.13 (from Shaw, 1984) were obtained by machining a free-cutting
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steel at a low cutting speed (0.025 m/min), with high speed steel tools with rake angles
from 0° to 45°. A range of cutting fluids were applied to create friction coefficients from
0.13 to 1.33. When the results are plotted as commonly practised (Figure 2.13(a)), data for
each rake angle lie on a straight line, with a gradient close to 0.75, half way between the
expectations of equations (2.9) and (2.10). When the process-centred view is taken (Figure
2.13(b)), an almost single relation is observed between the friction coefficient and (¢ — @).

Figure 2.14 collects data at higher, more practical, cutting speeds for turning a range of
ferrous, aluminium and copper alloys (Eggleston et al., 1959; Kobayashi and Thomsen,
1959). Both parts of the figure show each material to have its own characteristic behaviour.
Both show that annealed steel machines with a lower shear plane angle than the same steel
cold-rolled. Figure 2.14(b) marginally groups the data in a smaller area than does Figure
2.14(a). Certainly part b emphasizes the range of friction angles, common to all the mater-
ials, from 25° to 40° (friction coefficient from 0.47 to 0.84). As this book is machining-
process centred, the view of part b is preferred.

Figure 2.15 gathers more data on this basis. Figure 2.15(a) shows that free-cutting steels
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generally have lower friction coefficients (from 0.36 to 0.70) than non-free-cutting steels
(from 0.47 to 1.00) when turned with high speed steel or cemented carbide tools (Childs,
1980a). Figure 2.15(b) extends the data to the machining of difficult materials such as
austenitic stainless and high manganese steels, nickel-chromium and titanium alloys, by
carbide and ceramic tools. Friction angles remain in the same range as for other materials
but larger differences between shear plane and rake angle are found. Care must be taken
in interpreting this last observation. Not only are lower rake angles used for the difficult to
machine materials (from +10° to —5° for the data in the figure), biasing the data to larger
(¢ — o), but these materials also give serrated chips. The data in Figure 2.15(b) are aver-
aged over the cycle of non-steady chip formation.

2.2.5 Specific energies and material stress levels in machining

In the preceding sections, basic force and moment equilibrium considerations have been
used, with experimental observations, to establish the mechanical conditions of continu-
ous chip formation. With the exception of the Merchant and Lee and Shaffer laws, predic-
tion of chip shape has not been attempted. Predictive mechanics is left to Chapters 6 and
after. In this section, by way of a summary, some final generalizations are made, concern-
ing the energy used to form chips, and the level of contact stresses on the tool face.

The work done per unit machined volume, the specific work, in metal cutting is F/(fd).
The dimensionless specific work, may be defined as F /(kfd). Equation (2.11) takes equa-
tion (2.5b) and manipulates it to

F, cos(A - a) 1

kfd B sin ¢ cos(¢p + A - @) - tan ¢

+tan(¢p + 4 - ) (2.11)

From Figures 2.13 to 2.15, the range of observed (¢ + A — @) is 25° to 55° (except for the
nickel-chromium and titanium alloys); and the range of A1 is 20° to 45°. With these
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numbers, the non-dimensional specific work may be calculated for a range of rake angles.
Figure 2.16(a) gives, for rake angles from 0° to 30°, bounds to the specific work for tan(¢
+ A1 — @) from 0.5 to 1.5 and for A = 20° to 45°. It summarizes the conflicts in designing a
machining process for production. For a high rake angle tool (& = 30°), specific work is
relatively low and insensitive to changes in ¢ and A. In such conditions an easily controlled
and high quality process could be expected; but only high speed steel tools are tough
enough to survive such a slender edge geometry (at least in sharp-edged, plane rake face
form). At the other extreme (o = 0°), cutting edges can withstand machining stresses, but
the specific work is high and extremely sensitive to small variations in friction or shear
plane angle. In practice, chamfered and grooved rake faces are developed to overcome
these conflicts, but that is for a later chapter.
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Fig. 2.16 Ranges of (a) dimensionless specific cutting force, (b) maximum normal contact stress and (c) maximum fric-
tion stress, for observed ranges of ¢, A4, o (°) and m/n

Of the total specific work, some is expended on primary shear deformation and some
on rake face friction work. The specific primary shear work, Up, is the product of shear
force kfd/sing and velocity discontinuity on the plane (equation (2.3)). After ‘non-dimen-
sionalizing’ with respect to kfd,

U cosa
P — (2.12)
kfd sin ¢ cos(¢ — o)

which is the same as the shear strain y of equation (2.4a). The percentage of the primary
work to the total can be found from the ratio of equation (2.12) to (2.11). For the same
ranges of numbers as used in Figure 2.16(a), the percentage ranges from more than 80%
when tan(¢ + A — @) = 0.5, through more than 60% when tan(¢ + 1 — ) = 1.0, to as little
as 50% when tan(¢ + A — @) = 1.5. The distribution of work between the primary shear
region and the rake face is important to considerations of temperature increases in machin-
ing. Temperature increases are the subject of Section 2.3.

Finally, equations (2.5) can be used to determine the normal and friction forces on the
tool face, and can be combined with equations (2.6) and (2.2) for the contact length
between the chip and tool, in terms of the feed, to create expressions for the average
normal and friction contact stresses on the tool:
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° : = (213
k k m sin2(¢p+ A - )

( o ) n 2c0s21 ‘ T ) n 2cos Asin A

m sin2@+A-a)

In Section 2.2.3, the influence of m/n on contact stress distribution was considered, lead-
ing to Figure 2.12. The same considerations can be applied to deriving the peak contact
stresses associated with the average stresses of equations (2.13). Figures 2.16(b) and (c)
show ranges of peak normal and friction stress for the same data as given in Figure 2.16(a),
for the practically observed range of m/n from 1.3 to 3.5. Peak normal stress ranges from
one to three times k. Peak friction stress is calculated to be often greater than k. This, of
course, is not physically realistic. The loads in machining are so high, and the lubrication
so poor, that the classical law of friction — that friction stress is proportional to normal
stress — breaks down near the cutting edge. Section 2.4 gives alternative friction modelling,
first widely disseminated by Shaw (1984).

It has already been mentioned that the focus of this introductory mechanics section is
descriptive and not predictive. However, the earliest predictive models for shear plane
angle have been introduced — equations (2.9) and (2.10). In most cases, they give upper
and lower bounds to the experimental observations. It may be asked what is the need for
better prediction? The answer has two parts. First, as shown in Figure 2.16(a), the specific
forces in machining (and hence related characteristics such as temperature rise and
machined surface quality) are very sensitive to small variations in shear plane angle, for
commonly used values of rake angle. Secondly, the cutting edge is a sacrificial part in the
machining process, with an economic life often between 5 and 20 minutes (see Chapter 1).
Small variations in mechanical characteristics can lead to large variations in economic life.
It is the economic pressure to use cutting edges at their limit that drives the study of
machining to ever greater accuracy and detail.

2.3 Thermal modelling

If all the primary shear work of equation (2.12) were converted to heat and all were
convected into the chip, it would cause a mean temperature rise AT in the chip

k cosa ky
AT, = = (2.14)
pC  sin ¢ cos(¢ - o) pC

where pC is the heat capacity of the chip material. Table 2.2 gives some typical values of
k/(pC). Given the magnitudes of shear strains, greater than 2, that can occur in machining
(Section 2.2), it is clear that significant temperature rises may occur in the chip. This is
without considering the additional heating due to friction between the chip and tool. It is
important to understand how much of the heat generated is convected into the chip and
what are the additional temperature rises caused by friction with the tool.

The purpose of this section is to identify by simple analysis and observations the main
parameters that influence temperature rise and their approximate effects. The outcome will
be an understanding of what must be included in more complicated numerical models (the
subject of a later chapter) if they are also to be more accurate. Thus, the simple view of
chip formation, that the primary and secondary shear zones are planar, OA and OB of
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Table 2.2 Mechanical and physical property data for machining heating calculations

Work Carbon/low Copper Aluminium Ni-Cr Titanium
material alloy steels alloys alloys alloys alloys

k [MPa] 400-800 300-500 120-400 500-800 500-700
pC [MJ/m?] =35 =3.5 =25 =4.0 =22
kipC 110-220 85-140 50-160 120-200 220-320
AT, [°C]? 230470 180-300 110-340 250430 470-680
Ko WM K] 25-45 100400 100-300 15-20 6-15
Koo [W/mK] 20-50 80-120 100-500 80-120 50-120
K* 0.5-2 0.2-1 0.3-5 4-8 3-20

4 AT, for y=2.5 and = 0.85; b tool grades appropriate for work materials.

]|
+

(c) 0

Fig. 2.17 (a) Work, chip and tool divided into (b) work and (c) chip and tool regions, for the purposes of temperature
calculations

Figure 2.17(a), will be retained. Convective heat transfer that controls the escape of heat
from OA to the workpiece (Figure 2.17(b)) is the focus of Section 2.3.1. How friction heat
is divided between the chip and tool over OB (Figure 2.17(c)) and what temperature rise
is caused by friction is the subject of Section 2.3.2. The heat transfer theory necessary for
all this is given in Appendix 2.

2.3.1 Heating due to primary shear

The fraction of heat generated in primary shear, S, that flows into the work material is the
main quantity calculated in this section. When it is known, the fraction (1 — f) that is
carried into the chip can also be estimated. The temperature rise in the chip depends on it.
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Figure 2.17(b) shows a control volume AA’ fixed in the workpiece. The movement of the
workpiece carries it both towards and past the shear plane with velocities 4, and u,, as
shown. 4, = U, sing and u, = U, cosg. When the control volume first reaches the
shear plane (as shown in the figure), it starts to be heated. By the time the control volume
reaches the cutting edge (at O), some temperature profile along z is established, also as
shown in the figure. The rate of escape of heat to the work (per unit depth of cut), by
convection, is then the integral over z of the product of the temperature rise, heat capacity

of the work and the velocity 4 :

oo

Qconvected to work — J. le(T - TO)pC dz (2.15a)
0

The temperature profile (7'— 7, is given in Appendix 2.3.1: once a steady state tempera-
ture is reached along Oz

T u ) u.g,K
Q = [qeira=—

convected to work —

(2.15b)

0 u, uz

where ¢, is the shear plane work rate per unit area and « is the thermal diffusivity of the
work material. The total shear plane heating rate per unit depth of cut is the product of g,
and the shear plane length, g,(f/sing). The fraction j of heat that convects into the work is
the ratio of equation (2.15b) to this. After considering that equation (2.15b) is a maximum
estimate of heat into the work (the steady temperature distribution might not have been

reached), and also after substituting for values of i, and uz in terms of U, ok

J (2.16)
U, onf tan ¢

According to equation (2.16), the escape of heat to the work is controlled by the ther-
mal number [U,, , ftang/x]. This has the form of the Peclet number, familiar in heat trans-
fer theory (Appendix A2.3.2). The larger it is, the less heat escapes and the more is
convected into the chip. A more detailed, but still approximate, analysis has been made by
Weiner (1955). Equation (2.16) agrees well with his work, provided the primary shear
Peclet number is greater than 5. For lower values, equation (2.16), considered as an equal-
ity, rapidly becomes poor.

Figure 2.18(a) compares Weiner’s and equation (2.16)’s predictions with experimental
and numerical modelling results collected by Tay and reported by Oxley (1989). Weiner’s
result is in fair agreement with observation. 3 varies only weakly with [U, ., f tang/x]: a
change of two orders of magnitude, from 0.1 to 10, is required of the latter to change
from 0.9 to 0.1. There is evidence that as [U,, f tang/k] increases above 10, B becomes
limited between 0.1 and 0.2. This results from the finite width of the real shear plane. The
implication from Figure 2.18(a) is that numerical models of primary shear heating need
only include the finite thickness of the shear zone if [U,,, f tang/x] > 10, and then only if
(1 — p), the fraction of heat convected into the work, needs to be known to better than 10%.

Figure 2.18(b) takes the mean observed results in Figure 2.18(a) and, for ¢ = 25°,
converts them to relations between U, ok and fthat result in $=0.15 and 0.3, for k =3, 12
and 50 mm?/s. These values of  are representative of heat resistant alloys (stainless steels,
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nickel and titanium alloys), carbon and low alloy steels, and copper and aluminium alloys
respectively. The speed and feed combinations that result coincide with the speed/feed
ranges that are used in turning and milling for economic production (Chapter 1). In turn-
ing and milling practice, B = 0.15 is a reasonable approximation (actual variations with
cutting conditions are considered in more detail in Chapter 3). A fraction of primary shear
heat (1 - f8), or 0.85, then typically flows into the chip. The AT, of Table 2.2 give primary
zone temperature rises when ¢ = 25° and 8 = 0.85. For carbon and low alloy steels, copper
and Ni-Cr alloys, these rises are less than half the melting temperature (in K): plastic flow
stays within the bounds of cold working. However, for aluminium and titanium alloys,
temperatures can rise to more than half the melting temperature: microstructural changes
can be caused by the heating. Given that the primary shear acts on the workpiece, these
simple considerations point to the possibility of workpiece thermal damage when machin-
ing aluminium and titanium alloys, even with sharp tools.

The suggested primary shear temperature rise in Table 2.2 of up to 680°C for titanium
alloys is severe even from the point of view of the edge of the cutting tool. The further
heating of the chip and tool due to friction is considered next.

2.3.2 Heating due to friction

The size of the friction stress 7 between the chip and the tool has been discussed in Section
2.2.5. Tt gives rise to a friction heating rate per unit area of the chip/tool contact of g, =
tU ;.- Of this, some fraction ¢* will flow into the chip and the remaining fraction (1 — a*)
will flow into the tool. The first question in considering the heating of the chip is what is
the value of o*?

The answer comes from recognizing that the contact area is common to the chip and the
tool. Its temperature should be the same whether calculated from the point of view of the
flow of heat in the tool or from the flow of heat in the chip. Exact calculations lead to the
conclusion that a* varies from point to point in the contact. Indeed so does g;. To cope with
such detail is beyond the purpose of this section. Here, an approximate analysis is devel-
oped to identify the physically important properties that control the average value of o*
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and to calculate the average temperature rise in the contact. It is supposed that g; and o*
are constant over the contact, and that o* takes a value such that the average contact
temperature is the same whether calculated from heat flow in the tool or the chip. Figure
2.17(c) shows the situation of g; and o* constant over the contact length / between the chip
and tool. The contact has a depth d (depth of cut) normal to the plane of the figure.

As far as the tool is concerned, there is heat flow into it over the rectangle fixed on its
surface, of length / and width d. Appendix A2.2.5 considers the mean temperature rise over
a rectangular heat source fixed on the surface of a semi-infinite solid. To the extent that the
nose of the cutting tool in the machining case can be regarded as a quadrant of a semi-infi-
nite solid, equation (A2.14) of Appendix 2 can be applied to give

(I-er U,. 1
Sf—‘“’cmp (2.17)
K

tool

(T-Ty)

av.tool contact —

where T, is the ambient temperature, K is thermal conductivity and s; is a shape factor
depending on the contact area aspect ratio (d/l): for example, its value increases from 0.94
to 1.82 as d/l increases from 1 to 5.

As far as the chip is concerned, it moves past the heat source at the speed U chip* Its
temperature rise is governed by the theory of a moving heat source. This is summarized in
Appendix A2.3. When the Peclet number U Chipl/(4K) is greater than 1, heat conducts a
small distance into the chip compared with the chip thickness, in the time that an element
of the chip passes the heat source. In this condition, equation (A2.17b) of Appendix 2 gives
the average temperature rise due to friction heating. Remembering that the chip has
already been heated above ambient by the primary shear,

ky ot Ui D[ Konc '
p worl
(T- TO)av.chip contact — (I-5) +0.75 (2.18)
work Kwork Uchip

Equating (2.17) to (2.18) leads, after minor rearrangement, to an expression for o*:

. U, K 'h K . (p0)
ot av chip [ 0.75 work ) +5; work ] =5, av work Uchipl el —ﬁ)
(k}/) K work Uchipl Ktool (kj/) Ktool
(2.19)

work DY functions of ¢, 4, & and (m/n), as described

7,, is related to k, [ to fand U chip 10 U
previously, by combining equations (2.2), (2.3), (2.6) and (2.13). ¥ is also a function of ¢

and a. After elimination of 7,  and U, chip in favour of k, fand U, ., equation (2.19) leads
to
- l 1 +0.75 Ko n cos A cos(¢ — a)tang |2 Kyork )]/2]
s Kyog \m sin(g+1-a) U, oS tang
(2.20a)
. 1-p Kooy | cosacos(gp+1-a)
SLU onf tan o/, 1 Ko sin A cos¢
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The manipulation has introduced the thermal number [U,, f tang/x,, . 1. B depends on
this too (Figure 2.18(a)). If typical ranges of ¢, A, & and (m/n), from Figures 2.10, 2.14 and

2.15 are substituted into equation (2.20a), the approximate relationship is found

I, [1 , 0452015 | Ky Kork ‘/z]
S Kok U, f tan ¢
(2.20b)
- (13520.5) (1-p) Koo
S [UgyorcSf tan ¢/, oI Koo

Figure 2.19(a) shows predicted values of o* when observed B values from Figure
2.18(a) and the mean value coefficients 0.45 and 1.35 are used in equation (2.20b). A
strong dependence on [U,, , f tang/x,, .1 and the conductivity ratio K* = K, /K. is
seen, and a smaller but significant influence of the shape factor s;. Predictions are only
shown for [U, ., f tang/xc, . ] > 0.5: at lower values the assumption behind equation
(2.18), that U chipl/(4K) is greater than 1, is invalid; and anyway friction heating becomes
small and is not of interest. As a matter of fact, the assumption starts to fail for [U,

work
ftang/x, 41 <35. Figure 2.19(a) contains a small correction to allow for this, according to

low spegflrmoving heat source theory (see Appendix A2.3.2).

Figure 2.19(a) reinforces the critical importance of the relative conductivities of the tool
and work. When the tool is a poorer conductor than the work (K* < 1), the main propor-
tion of the friction heat flows into the chip. As K* increases above 1, this is not always so.
Indeed, a strong possibility develops that o* < 0. When this occurs, not only does all the
friction heat flow into the tool, but so too does some of the heat generated in primary shear.
The physical result is that the chip cools down as it flows over the rake face and the hottest
part of the tool is the cutting edge. When o* > 0, the chip heats up as it passes over the

tool: the hottest part of the tool is away from the cutting edge.
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From physical property data in Chapter 3, tool conductivities range from 20 to 50
W/m K, for P grade cemented carbides, high speed steels, cermets, alumina and silicon
nitride based tools; to 80 to 120 W/m K for K grade carbides; up to = 100 to 500 W/m K
for polycrystalline diamond tools. Table 2.2 gives typical ranges of K* for different groups
of work materials, assumed to be cut with recommended tool grades (for example P grade
carbides for carbon and low alloy steels, K grade carbides for non-ferrous materials, the
possibility of polycrystalline diamond for aluminium alloys). The heat resistant Ni-Cr and
Ti alloys (and austenitic stainless steels would be included in this group) are distinguished
from the carbon/low alloy steels, copper and aluminium alloys by their larger K* values.
Particularly for the Ti alloys, there is a high possibility that o* may be less than zero.

The analytical modelling that leads to Figure 2.19(a) is only approximate (because it
deals only in average rake face quantities). Its value though is more than its quantitative
results. It gives guidance on what is important to be included in more detailed numerical
models. For example, in conditions in which o* = 0, small changes of operating conditions
may have a large effect on the observed tool failure mode, from edge collapse when o* <
0 to cratering type failures as * > 0 and the hottest part of the tool moves from the cutting
edge. Figure 2.19(a) shows that the speed and feed at which o* = 0 for a particular work
and tool combination will vary with the shape factor s;. To study such conditions numeri-
cally would certainly require three-dimensional modelling.

Once o* is determined, the temperature rise associated with it can be found. The second
term on the right-hand side of equation (2.18) is the friction heating contribution to the
average temperature of the chip/tool contact. After applying the same transformation and
substitution of typical values of ¢, A, & and (m/n) that led to equation (2.20b)

k
(T = Ty friction = ——— @* (0.7 £ 0.2) [U,,
(pC)work

Figure 2.19(b) shows the predicted dependence of non-dimensional temperature rise on
[UyonS tang/xc,, o 1, after substituting values of o* from Figure 2.19(a) in equation (2.21).
In this section, an approximate approach has been taken to estimating the temperature
rise in the primary shear zone and the average temperature rise on the rake face of the tool.
One final step may be taken, to aid a comparison with observations and to summarize the
limitations and value of the approach. The moving heat source theory in Appendix 2
concludes that for a uniform strength fast moving heat source and o* constant over the
contact, the maximum temperature rise due to friction is 1.5 times the average rise. The
absolute maximum contact temperature between the chip and tool can thus be found from
the sum of the primary shear heating (with § from Figure 2.18) and 1.5 times the temper-
ature rise from equation (2.21) or from Figure 2.19(b). Equation (2.22) summarizes this.

(p C)work
k

ftan ¢/

wor

J12 2.21)

ork

(T- To)max chip contact — (I-Pr+d=+ 0‘3)0!*[Uworkf tan ¢/Kwork] 12

(2.22)

Examples of how temperature rises vary with cutting speed have been calculated from
this, for a range of work material types. They are shown as the solid lines in Figure
2.20(a). Mean values of k/(pC), K and « for the different groups of work materials have
been used, and have been taken from Table 2.2. Typical values of y = 2.5 and ¢ = 25° have
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Fig. 2.20 (a) Predicted (—) and observed (hatched) dependence of maximum rake face temperature on cutting speed;
(b) predicted influence of tool conductivity change

been arbitrarily chosen. A feed of 0.25 mm and K|, = 30 W/m K (typical of a high speed
steel tool and needed to assign a value to K*) have been chosen so that a comparison can
be made with the experimental results summarized by Trent (1991), which are shown as
the hatched regions in the figure. These are the same results that were introduced in
Chapter 1 (Figure 1.23). They are maximum temperatures deduced from observations of
microstructural changes in tool steels, used to turn different titanium, ferrous and copper
alloys at a feed of 0.25 mm.

The calculated results for the copper alloys fall in the middle of the experimentally
observed range, but those for the titanium and ferrous alloys are close to the maximum
observed temperatures. The overestimate for the titanium alloys arises mainly from the use
of the mean value coefficient of 1.0 in the second term on the right of equation (2.22),
rather than its lower limit of 0.7. For the ferrous alloys, the experimental measurements
were probably for materials with k., less than the mean value of 600 MPa assumed in
the calculations. The overlap between theory, with all its simplifying, two-dimensional,
steady state and other approximations, and experiments is enough to support the following
conclusions. Temperature rise in metal machining depends most sensitively on the ratio of
primary shear flow stress to heat capacity k/(oC), on the shear strain y and on [U,,
ftang/x, . 1. The latter not only occurs explicitly in equation (2.22) but also controls the
values of o* and 3. Of next importance are the ratio of tool to work conductivity, K*, and
the shape factor s;. These also affect a*, but are more important in some conditions than
others. The tool rake angle and chip/tool friction coefficient mainly have an indirect influ-
ence on temperature, through their effect on y and ¢, although they are also the cause of
the range of + 0.3 around the mean value coefficient of 1.0 in the friction heating term of
equation (2.22); and only practical values of rake angle have been considered in estimat-
ing that coefficient.

Equation (2.22), with Figures 2.18 and 2.19, is valuable for the understanding it gives
of heat transfer in metal machining. It suggests ways that temperatures may be reduced, in
conditions in which direct testing is difficult. For example, Figure 2.20(b) shows the
predicted decrease in maximum rake face temperature for machining a titanium alloy on



Friction, lubrication and wear 65

changing from a cutting tool with K = 30 W/mK (K* = 2.5), to one with K = 120 W/m K
(K* = 10) — K-type carbides are preferred to P-type for machining titanium alloys; and
finally to one with K = 500 W/m K (K* = 50) — polycrystalline diamond (PCD) tools are
successfully used to machine titanium alloys; and for machining an aluminium alloy on
increasing K, from 30 to 750 W/m K — another typical value for PCD tools (depending
on grade). The reduced temperature with high thermal conductivity tools is one reason for
choosing them — but the conductivity must be high relative to that of the work. Of course,
an increase in tool conductivity, although it will reduce the rake face temperature, may,
as a result of the changed balance of the ratio of heat flow into the tool to its conductiv-
ity, lead to higher flank face temperatures. If this were a problem, it might be overcome
by the development of composite tools with a graded composition and thermal conduc-
tivity, from rake to flank region. Thus, equation (2.22) is qualitatively good enough to
drive choices and development of tooling. It is not, however, quantitatively sufficient for
the prediction of tool life. At the high temperatures shown in Figure 2.20, tool mechani-
cal wear and failure properties, and also work plastic flow resistance, can be so sensitive
to temperature that the uncertainties in the predictions of equation (2.22) are too large.
These uncertainties come from the initial assumption of a uniform heat source over the
chip/tool contact and the + 30% uncertainty in the coefficient of its friction heating term.
Furthermore, K can vary significantly with temperature over the temperature ranges that
occur in machining: consequently, what values should be used in equation (2.22)? As was
concluded in Section 2.2, the use of tools in a sacrificial mode drives the need for better,
numerical modelling.

2.4 Friction, lubrication and wear

Up to this point, it has been assumed that the friction stress on the rake face is proportional
to the normal stress. In other words the friction stress is related to the normal stress by a
friction coefficient i or friction angle A (tan A = w). That has led to deductions from
measurements (Figure 2.16) of peak normal stresses on the rake face of between one and
three times &, and of peak friction stresses of up to almost twice k. The last is not believ-
able, because a metal is not able to transmit a shear stress greater than its own shear flow
stress. In this section, a closer look will be taken at the friction conditions and laws at the
rake face. A closer look will also be taken at how the rake face may be lubricated. One of
the first questions raised (Section 2.1) was how might a lubricant penetrate between the
chip and the tool; and experimental results (Figure 2.7) suggest the answer is: only with
difficulty. Finally, the subject of tool wear will be raised in the context of what is known
about wear from general tribological (friction, lubrication and wear) studies.

2.4.1 Friction in metal cutting

One way to study the contact and friction stresses on the rake face is by direct measure-
ment. However, this is difficult because the stresses are large and the contact area is small.
Apart from some early experiments in which lead was cut with photoelastic polymeric
tools (for example Chandrasekeran and Kapoor, 1965), the main experimental method has
used a split cutting tool (Figure 2.21). Two segments of a tool are separately mounted, at
least one part on a force measuring platform, with a small gap between them of width g.
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Fig. 2.21 (a) Schematic split tool, and (b) force measurements from it

This gap must be small enough that the chip flowing over the rake face does not extrude
into the gap and large enough that the two parts of the tool do not touch as a result of any
deflections caused by the forces. In Figure 2.21(a), the gap is shown a distance / from the
cutting edge. When the length [ is changed, for example as a result of grinding away the
clearance face of the tool, the forces measured on the parts 1 and 2 of the tool also change.
Figure 2.21(b) shows the increase with [ of forces per unit width of cutting edge (depth of
cut) on the front portion (Part 1) of the tool. The contact stresses on the rake face can be
obtained from the rate of change of force with /:

dN drF,

o =—5>; r=—21 (2.23)
i i

Use of the technique is limited to cutting work materials that do not break the split tool: to
date, the upper limit of materials’ Vickers hardness for success is about 3 GPa. There is a
minimum value of /, below which the front tool becomes too fragile. In Figure 2.21(b) that
value is about 0.2 mm, but measurements down to 0.1 mm have been claimed.

Split tool data are shown in Figure 2.22, for conditions listed in Table 2.3. In the figure,
the contact stresses have been normalized by the shear stress k acting on the primary shear
plane, calculated from equation (2.6c). The distance / from the cutting edge has been
normalized by the chip thickness ¢. In most cases, the normal stress rises to a peak at the
cutting edge, as suggested in Figures 2.11(b) and (c). However, in two cases (for
aluminium and copper), the rise in normal stress towards the cutting edge is capped by a
plateau. Peak normal stresses range from 0.7k to 2.5k.

Friction stress also rises towards the cutting edge, but is always capped at a value < k.
When friction stress is replotted against normal stress, or rather 7/k versus o,/k, as in the
bottom panels of the figure, the two are seen to be proportional at low normal stress levels
(in the region of contact farthest from the cutting edge) but at high normal stresses (near
the cutting edge) the friction stress becomes independent of normal stress. (In the bottom
right panel of Figure 2.22, the comments Elastic/Transition/Plastic, with the labels pp/k =
0 or 1, are discussed later.)

The low stress region constant of proportionality u (7 = uo,) and the plateau stress ratio
value m (7 = mk) are listed in Table 2.3. These are also defined in the inset to Figure 2.23.
These data are just examples. They demonstrate that on the rake face the friction stress is
not everywhere proportional to the normal stress. At high normal stresses, the friction
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Table 2.3 Materials, conditions and sources of the data in Figure 2.22

Work/tool U,ork f k

materials o° [m/min] [mm] [MPa] n m Data derived from

AI/HSS 20 50 0.2 130 14 0.95 Kato et al. (1972)

Cu/HSS 20 50 0.2 335 0.9 0.75 Kato et al. (1972)
Brass/carbide 30 48 0.3 450 0.9 0.95 Shirakashi and Usui (1973)
C steel/carbide 10 46 0.3 600 1.3 0.8 Shirakashi and Usui (1973)
Low alloy steel/ 0 100 0.2 600 1.3 0.8 Childs and Maekawa (1990)
Carbide

stress approaches the shear flow stress of the work material; at low normal stress, the fric-
tion coefficient, from 0.9 to 1.4, is of a size that indicates very poor, if any, lubrication.
Recently, the split tool technique has been added to by measuring the temperature
distribution over the rake face (see Chapter 5). Figure 2.23 contains data obtained by the
authors on the dependence of m and u on contact temperature. The data are for a 0.45%C
plain carbon steel (¢), 0.45%C and 0.09%C resulphurized free machining carbon steels (0)
and a 0.08%C resulphurized and leaded free machining carbon steel (x), machined at
cutting speeds from 50 to 250 m/min and feeds of 0.1 and 0.2 mm, by zero rake angle
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Fig. 2.23 mand u variations with temperature for a plain carbon (e); a resulphurized (0); and a resulphurized and
leaded (x) steel (authors’ data)

tools, P grade carbides (see Chapter 3) unless otherwise stated. Adding sulphur to steel in
small amounts results in the formation of manganese sulphide inclusions. These and lead
can act as solid lubricants between the chip and tool.

Figure 2.23(a) shows two trends for the variations of m with temperature. First, there is a
general trend aa’ for m to reduce with increasing temperature, from around 0.9 at 400°C to
as low as 0.5 at 1000°C. However, m is also reduced at low temperatures by the presence of
the free machining additives. Figure 2.23(b), for the variation of x# with temperature, also
shows two trends. The plain carbon steel shows a friction coefficient independent of temper-
ature. In this case it is a very high value (compared with the data in Table 2.3) between 2 and
3. In one case, marked P, the tool was changed first to a K-grade carbide (K) and then to a
TiN cermet (TiN): this changed u as shown. The free machining steels show a friction coef-
ficient increasing rapidly with temperature, from around 0.7 at 300°C towards 2 at 800°C.

In order to simulate the machining process, it would be desirable to be able to model
both the form of the variation of 7 with Oy in terms of the coefficients m and u; and also
to understand what determines the values of m and u.

The most simple friction model is to neglect altogether the low stress variation of 7 with
o,, to write

T=mk (2.24a)

This is the approach taken in slip line field modelling (Chapter 6). A next best approxi-
mation is

T=U0o, if uo, <mk

T=mk if uo, = mk (2.24b)

Shaw (1984, Ch.10) — who was one of the earliest researchers to study machining friction
conditions — and also Shirakashi and Usui (1973), empirically blended the low stress into
the high stress behaviour by an exponential function. In the present notation
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Ho,
1=mk(1—exp[— p ] ’ (2.24¢)

m

By noting that e = (1 — x) when x is small and positive, and tends to zero as x becomes
large, it may be verified that equation (2.24c) approaches (2.24b) at extreme values of o, /k.
The rate of change of 7 with o, at intermediate levels of o, /k may be varied by the further
empirical modification of equation (2.24d), where n* is an exponent that in practice is
found to vary between 1 and about 3:
n* 1/n*
] ’ (2.244d)

1=mk(1—exp[—

All of the forms (equations (2.24b) to (2.24(d)) have been used in finite element model-
ling of machining.

uo,

mk

The form of the friction law

Why does the friction law have the form that it does? Figure 2.24(a) shows a chip sliding
over a segment of the tool face of area A . The interface is imagined to be rough, so that
contact with the chip may not occur over the whole area A but only over the high spots,
or asperities. The contact then has a smaller real area, ATt is this real area of contact that
transmits the contact forces. Suppose that it has a shear strength s. Then the friction force
across it is

F=As (2.25a)
The nominal friction stress 7 is F/A;:
Al'
T= s (2.25b)
A

1.0

Itk
(a) e

Fig. 2.24 (a) The sliding contact of a chip on a tool; (b) schematic dependence of A /A, on o, /k
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and its size relative to k, 7/k, is

Ari
A k

n

(2.25¢)

| =

It is easy to imagine that the degree of contact A /A increases with the nominal contact
stress severity o, /k. Figure 2.24(b) shows a schematic variation. A /A  is proportional to
o,/k (= co,/k) at low values of A /A (say A /A, <0.5). It becomes constant, equal to 1.0,
at high values of o, /k. When these variations are substituted in equation (2.25c),

T O-l’l S . T
—=c if <05 (2.26a)
k k k A,
T S A,
—=— if =1.0 (2.26b)
kK k A

n

This is the form of equation (2.24b). u is identified as c(s/k) and m as (s/k).

Degree of contact laws for metal machining

Theoretically deduced ranges of actual variation of A /A with o, /k are shown in Figure
2.25. They depend on how the chip asperity displacements, caused by the real contact
stresses, are accommodated by the chip. At the lightest loadings, when both an asperity and
the chip below it remain elastic (range EE), displacements are taken up by elastic compres-
sion. If the asperity becomes plastic but the chip below it remains elastic (range PE), plas-
tically displaced material flows to the free surface round the contact. If the chip below the
contact also becomes plastic (range PP), the asperity may sink into the chip. In equation

1.0

078

0.25

Fig. 2.25 Ranges of possible degrees of contact: PP = plastic asperity on plastic chip; PE = plastic asperity on elastic
chip; EE = elastic asperity on elastic chip
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(2.26), the resulting values of ¢ range from 0.2 to greater than 1.0; values of o, /k at which
A /A, reaches 1.0 range from almost zero up to almost 10.

Thus, which regime occurs at the rake face and what are its laws strongly affects the
friction laws in metal machining. Appendix 3 contains a review of contact mechanics rele-
vant to these regimes, and the following sections summarize it. However, it must be
acknowledged that understanding of this does not yet exist in sufficient detail to be able
quantitatively to predict friction laws from first principles. The following sections may be
omitted at a first reading.

Plastic asperities on a plastic chip — and the size of m

When asperities sink into the chip, how they do so depends not on the local conditions at
the contact, but on the bulk plastic flow field. The lower is the hydrostatic stress in the bulk
flow field, the more easily the asperity sinks. In Figure 2.25, the region PP has been drawn
for likely hydrostatic stress values in the secondary shear zone of metal machining. A /A
will certainly be unity when o, /k >1, if the contact is in a plastically stressed region of the
chip.

Whether the contact is in a plastically stressed part of the chip can be judged from the
local values of 7/k, o, /k and the relative size of the plastic field hydrostatic stress level p/k.
In Figure 2.22 (bottom right panel) the elastic—plastic borderline (from Appendix 3) is
superimposed on the contact stress distribution for two values of pg/k. Almost the whole
of the plateau friction stress region is in the plastic (secondary shear) region, with o, /k >
1. The plateau region is consistent with A /A = 1.

The values of m, Table 2.3, may then be interpreted as the ratio of the shear flow
strength at the chip tool interface to the primary shear flow stress of the chip material. The
example results of Figure 2.23(a) suggest two causes for m being less than 1. First, if there
is no solid lubricant phase in the work material, m can approach 1 at low temperatures, but
reduces as temperature increases. The proposition that m is controlled by the shear flow
stress of the chip material in the high temperature conditions in which it finds itself on the
rake face is now well accepted. In equations (2.24) it is common to put m = 1 and to rede-
fine k as the local, rather than the primary shear plane, shear stress. The problem is to
determine how the local shear flow stress varies with temperature at the high strains and
strain rates experienced in the secondary shear zone. This advanced topic is returned to in
Chapters 6 and 7.

Secondly, it is clear from Figure 2.23(a) that it is possible, at least in the case of steel
with manganese sulphide and lead, to lubricate the interface. Then m is a measure of shear
stress of the solid lubricant relative to the chip, or of the fraction of the interface covered
by the lubricant. Although there is good qualitative understanding, there is not at the
moment a model that can predict how — changes with changes in the distribution of
manganese sulphide and lead: experimentally determined values must be used in machin-
ing simulations.

Asperities on an elastic foundation — and the size of p

The bottom right panel of Figure 2.22 also indicates that, at low contact stresses, certainly in
this case when o, /k < 0.7, the chip beneath the asperities is elastic. Whether the asperites are
elastically or plastically stressed then depends on the roughness of the tool face and on the
level of s/k that exists. Appendix 3 introduces the concept of the plasticity index (E*/k)Aq,
where k is the local shear stress of the asperity, E* is an average Young’s modulus for the
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asperity and tool material: 1/E* = l/Easperity + 1/E,, and A_ is the root mean square slope
of the surface roughness of the tool face. When s/k is less than 0.5, an asperity is totally
elastic if the plasticity index is less than 5 and totally plastic if it is greater than 50. As s/k
increases to 1, these critical values of the plasticity index reduce. In the large s/k condi-

tions of metal machining, an asperity is expected to be fully plastic if

A, 2 10 Hoca 2.27)
E*

Typical roughnesses of insert cutting tool rake faces are shown in Figure 2.26 (the much
larger vertical than horizontal magnification of these profiles should be pointed out). Trace
(a) is typical of CVD (chemical vapour deposition — see Chapter 3) coated inserts and (b)
of ground inserts. Sometimes inserts are better finished, trace (c). Table 2.4 lists the ranges
of measured tool face roughnesses for inserts of these three types found in the authors’
workshops. It also records values of 10k, /E* calculated from data in Table 2.3, taking
kioca1 = Mk, E for high speed steel tools to be 210 GPa and for cemented carbides to be 550
GPa. In all cases, for the coated and the ground tools, the relative sizes of A and
10k,,.,/E* cause the asperities to be plastically stressed (although the brass/carbide case
is marginal).

Consequently, in the majority of machining applications, the asperities in the lightly
loaded region, where the chip is leaving the rake face contact, are plastically stressed.
Then, the relations between A /A and o /k are as expected from the regions marked PE;

ipym

100 pm

—'WW

{c)
Fig. 2.26 Roughness profiles from (a) CVD coated, (b) ground and (c) superfinished insert tools
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Table 2.4 Tool surface roughness and contact stress severity data

1Oklocal/E*’ °
Roughness data Al/ Cu/ Brass/ Steel/
Tool finish R, [um] Aq, °© HSS HSS Carbide Carbide
CVD coated 0.2-0.5 3-7 1.2 1.9 2.8 1.8
Ground 0.1-0.25 2-4 1.2 1.9 2.8 1.8
Super-finished 0.03 0.4 1.2 1.9 2.8 1.8

and PE, in Figure 2.25. PE, represents theoretical analyses (Appendix 3) when the rough-
ness is imagined to be on the tool surface and PE, when it is imagined to be on the chip.
However, for large values of s/k ;. both regions have almost the same upper boundary,
with ¢ (equation (2.26)) approximately equal to 1. One would then expect

U = (2.28)

k

local

In those circumstances, when u is measured to be < 1, this seems to be a reasonable
relation. For example, in Figure 2.23, for the free machining steels when the rake face
temperature is below 600°C, u is roughly the same as the ratio of m for the steel to that for
the plain carbon steel at the same temperature. However, equation (2.28) cannot explain
observations of u > 1, of the sort recorded in Figure 2.23(b) for the non-free machining
steel or for the free machining steels above 600°C.

Friction coefficients greater than 1.0

The plastic contact mechanics modelling reviewed in Appendix 3, which leads to ¢ < 1, for
the most part assumes that the asperity does not work harden and that the load on the asper-
ity is constant through its make and break life cycle. In the final section of Appendix 3
there is a brief speculation about departures from these assumptions that could lead to
larger values of ¢ and to 4 > 1. All proposals require the shear strength of the junction to
be maintained while the normal stress is unloaded. It is certain that, for this to occur, the
strongest levels of adhesion must exist between the asperities and the tool. The freshly
formed, unoxidized, nature of the chip surface, created by the parting of the chip from the
work typically less than 10-3s before it reaches the end of the contact length, and the high
temperatures reached at high cutting speeds, are just the conditions that could promote
strong adhesion (or friction welding). However, there is, at the moment, no quantitative
theory to relate friction coefficients greater than 1 to the underlying asperity plastic prop-
erties and state of the interface.

The proper modelling of friction is crucial to the successful simulation of the machin-
ing process. This section, with Appendix 3, is important in setting current knowledge in a
contact mechanics framework, but there is still work to be done before friction in metal
machining is fully understood.

2.4.2 Lubrication in metal cutting

The previous section has emphasized the high friction conditions that exist between a chip
and tool, in the absence of solid lubricants. The conditions that lead to high friction are
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Fig. 2.27 (a) Defining the penetration distance /. of the lubricant into the rear of the contact region and (b) derived
feed/speed regions of complete and negligible penetration, for oxygen

high cutting speeds — for steels, speeds greater than around 100 m/min when the feed rate
is 0.1 to 0.2 mm. However, earlier in this chapter (Figure 2.7) liquid lubrication was
demonstrated at low cutting speeds; and one of the earliest questions asked of metal cutting
(Section 2.1) was how can lubricant penetrate the rake face contact?

The question can now be asked in the context of the contact mechanics of the previ-
ous section. Figure 2.27 shows, somewhat schematically, the contact between the chip
and tool. The hatched region represents the real area of contact, covering 100% of the
contact near the cutting edge, where the normal stress is high, and reducing to zero
towards the end of the contact. It is now generally agreed that neither gaseous nor liquid
lubricants can penetrate the 100% real contact region, but they can infiltrate along the
non-contact channels at the rear of the contact. These channels may typically be from half
to one chip thickness long, depending on the normal contact stress distribution (Figure
2.22). Their height depends on the surface roughness of the cutting tool, but is typically
0.5 to 1 um (Figure 2.26). If the lubricant reacts with the chip to reduce friction in the
region of the channels, the resistance to chip flow is reduced, the primary shear plane
angle increases, the chip becomes thinner and unpeels from the tool. Thus, a lubricant
does not have to penetrate the whole contact: by attacking at the edge, it can reduce the
whole. So the question becomes: what is the distance /_ (Figure 2.27) that a gas or liquid
can penetrate along the channels? The following answer, for the penetration of gaseous
oxygen and liquid carbon tetrachloride along channels of height 4, is based on work by
Williams (1977).

It is imagined that the maximum penetration results from a balance of two opposing
transport mechanisms: the motion of the chip carrying the gas or liquid out of the contact
and the pressures driving them in. For a gas, absorption on to the back of the freshly
formed chip is the mechanism of removal from the contact. The absorption creates a gas
pressure gradient along the channel which drives the gas in. Williams identified two
mechanisms of inward flow, based on the kinetic theory of gases: viscous (Poiseuille)
flow at high gas vapour pressure and Knudsen flow at low pressures, when the mean free
path of the gas is greater than the channel height 4. He showed that lp (mm) is inversely
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proportional to the chip velocity U Chip(m/min) with the constant of proportionality
depending on the gas molecular diameter, obtained from its molecular weight M and its
density in the liquid state Pliquid (kg/m?3), on its vapour pressure p, (Pa), its viscosity n (Pa
s) absolute temperature 6 and on the height 2 (um). For a channel much wider than its
height

3 p2 M |23
1,Uqp = the larger of 3.3 x 10710 — - (Poiseuille) (2.29a)
n Op \ Piquid
or
1/6
0.71h2 V( — (Knudsen) (2.29b)
TP liquid

For oxygen, at its normal partial pressure in air of =2 x 10* Pa, and M = 32, Pliquid = 1145
kg/m3, n=20x% 100 Pas, 61 =293 and for 2 = 0.5 um,
LUepip = 3.4 (2.30a)

This is about half the value given by Williams, because of different assumptions about the
cross-sectional shape of the channels; and it does depend strongly on the assumed value of
h.

Because of volume conservation, the product of U chip and chip thickness t is the same
as of U, and feed f. Equation (2.30a) can therefore be modified to

b
t

At feeds and speeds for which [ /¢ is calculated to be > 1, total penetration of oxygen into
the channels is expected. When lp/t < 0.1, penetration may be considered negligible.
Figure 2.27 marks these regions as possibly lubricated, and not lubricated, respectively.
It is important because it shows a size effect for the effectiveness of lubrication. Williams
(1977) also considered the penetration of liquids into the contact, driven by capillary
forces and retarded by shear flow between the chip and the tool. For carbon tetrachloride
liquid (which also has a significant vapour phase contribution to its penetration) he
concluded the limiting feeds and speeds for lubrication were about the same as for
oxygen.

Although it is certain that there can be no lubrication in the ‘no lubrication’ region of
Figure 2.27, it is not certain that there will be lubrication in the ‘possible lubrication’
region. Whatever penetrates the channels must also have time to react and form a low fric-
tion layer. The time to react has also been studied by Williams (Wakabayashi et al., 1995).
It seems that this, rather than the ability to penetrate the channels, can be the controlling
step for effective lubrication.

It is not the purpose of this section to expand on the effectiveness of different lubricat-
ing fluids for low speed applications. This has been covered elsewhere, for example Shaw
(1984). Rather, it is to gain an understanding of the inability of liquids or gases to influ-
ence the contact at high cutting speeds. The reason why cutting fluids are used at high
speeds is to cool the work material and to flush away swarf.

Uy = 3.4 (2.30b)
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2.4.3 Wear in metal cutting

Finally, the sliding of the chip over the rake face, and of the work past the flank, causes
the tool to wear away. Tool wear will be considered in detail in Chapter 4. Here, the
purpose is briefly to review knowledge of wear from other studies, to create a standard to
which tool wear can be related.

One of the most simple types of wear test is a pin on disc test (Figure 2.28). A cylin-
drical pin of cross-section A is pressed with a load W against a rotating disc which has
some sliding speed U against the pin. The rate of loss of height, £, of the pin is measured
against time. Usually there is an initial, running-in, time of high wear rate, before a
constant, lower, rate is established. A common observation is that, in the steady state, the
wear volume rate, Adh/dt in this example, is proportional to W and the sliding speed.
Archard’s wear law (Archard and Hirst, 1956) may be written

dh w
d—:k — U=k _oU (2.31a)
t

SWr sSwr-n
A

where the constant of proportionality k. is called the specific wear rate and has units of
inverse pressure. (In the wear literature k. is written k, but k has already been used in this
book for a metal’s shear flow stress.)

The proportionality of wear rate to load and speed is perhaps obvious. However,
Archard considered the mechanics of contact to establish likely values for k. He consid-
ered two types of contact, abrasive and adhesive (Figure 2.29) — the terminology is
expanded on in Appendix 3. In the abrasive case, the disc surface consists of hard, sharp
conical asperities (as might be found on abrasive papers or a grinding wheel). They dig
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Fig. 2.28 A pin on disc wear test and a typical variation of pin height with time
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Fig. 2.29 Schematic views of abrasive and adhesive wear mechanisms

into the softer pin to create a number of individual real contacts, each of width 2r. As a
result of sliding, a scratch is formed of depth r tan, where § is the slope of the cones. If
it is supposed that all the scratch volume becomes wear debris, the volume wear per unit
time is Ur% tan B. At the time Archard was writing, the analogy was made between the
indentation of the cone into the flat and a hardness test, to relate the contact width to the
load W on the cone. Noting that, during sliding, the load W is supported on the semicircle
of area ﬂr%/Z, r% was equated to (2/z)(W/H), where H is approximately the Vickers or
Brinell hardness of the softer surface. By substituting this into the expression for the
scratch volume and summing over the large number of scratches that contribute to the wear
process, it is easy to convert equation (2.31a) to the form of (2.31b), where a dimension-
less wear coefficient K has been introduced instead of the specific wear rate k__ ., with a
magnitude as written for this abrasive example.

A similarly simple model for adhesive wear (also Figure 2.29) assumes that a hemi-
spherical wear particle of radius r, is torn from the surface every time an asperity slides a
distance 2r,, and that the real contact pressure is also H. It leads to the adhesive wear esti-
mate of K also being included in equation (2.31b)

swr’

dh K 2tanf )
—=—o0U; K= for abrasive wear
d H /4

(2.31b)

= — for adhesive wear

If these equations were being derived today, there would be discussion as to whether
the real contact pressure was H (equivalent to 5k) or only to k (Section 2.4.1 and Appendix
3). However, such discussion is pointless. It is found that the K values so deduced are
orders of magnitude different from those measured in experiments. Actual wear mecha-
nisms are not nearly as severe as imagined in these examples. Different asperity failure
mechanisms are observed, depending on the surface roughness, through the plasticity
index already introduced in Section 2.4.1 and on the level of adhesion expressed as s/k or
m. Figure 2.30 is a wear mechanism map showing what failure mode occurs in what condi-
tions. It also shows what ranges of K are typical of those modes (developed from Childs,
1980b, 1988).
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Fig. 2.30 A wear mechanism map

The initial wear region is the running-in regime of Figure 2.28. Surface smoothing occurs
until the contacting asperities deform mainly elastically. If the surface adhesion is small
(mild wear region), material is first oxidized before it is removed — values of K from 10~ to
10710 are measured (all the data are for experiments in air, nominally at room temperature).
At higher adhesions subsurface fatigue (delamination) is found, with K around 10~
Sometimes, running-in does not occur and surfaces do tear themselves apart (severe adhesive
wear), but even then K is found to be only 1072 to 1073, compared with the value of 1/3
predicted above. Finally, if abrasive conditions do exist, K is found between 10~! and 1074,
depending on whether the abrasive is fixed on one surface (2-body) or is loose (3-body).

What is the relevance of this to metal machining? In Chapter 1, it was described how the
economics of machining lead to the use of, for example, cemented carbide tools at cutting
speeds and feeds such that the tools last only 5 to 10 minutes before wearing out.
Definitions of wear-out differ from application to application, but common ones are that the
flank wear length is less than 300 um, or that the depth of any crater on the rake face is less
than 60 um. Figure 2.31(a) shows a worn tool, with crater depth £ and flank depth wear h;.
h; is related to the length of the wear land by tan y, where y is the flank clearance angle.
Figures 2.31(b) and (c) are examples of wear measured for a low alloy steel at a feed of 0.12
mm and a cutting speed of 225 m/min, which is near the economic speed. For the flank,
dh/dt = 2 ym/min,; for the crater example dh /df = 7 um/min. Supposing the contact stress
level is characterized by o, /k = 1, and noting that H = 5k, values of K, from equation
2.31(b), are 4 x 1078 on the flank, up to 3 X 1077 on the rake (the speed of the chip was
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Fig. 2.31 (a) Flank and crater tool wear regions, with typical (b) flank and (c) crater wear observations

half that of the work). Considering that s/k is large in machining, these values are smaller
than expected from the general wear testing experience summarized in Figure 2.29. (There
is another point: the proportionality between dh/dt and o, /k in equation (2.31) is only
established for conditions in which A /A < 0.5. Values larger than this occur over much
of the tool contacts in machining. However, the uncertainty that this places in the deduced
values of K is not likely to alter the orders of magnitude deduced for its values.)

There is one point to be made: the K values in Figure 2.30 are appropriate for the wear
of the chip and work by the tool, rather than of the tool by the chip or work! In Figure 2.30,
the plasticity index is, in effect, the ratio of the work material’s real contact stress to its
shear flow stress. To use the map to determine wear mechanisms in the tool, it seems
appropriate to redefine the index as the ratio of the contact stress in the work to the tool
material’s shear flow stress. For typical tool materials (HV = 10 GPa to 15 GPa) and work
materials (say HV = 2.5 GPa), this would effectively reduce the plasticity index value for
the tool about fivefold relative to the work. For typical work plasticity index values of
about 20 (Table 2.4), this would place the tool value at about 4, in the elastic range of
Figure 2.30. The mechanisms available for tool wear are likely to be fatigue and chemical
reaction (oxidation) with the atmosphere.

This conclusion is based on a continuum view of contact mechanics. In practice, work
materials contain hard abrasive phases and tool materials contain relatively soft binding
phases, so abrasion occurs on a microstructural scale. The transfer of work material to the
tool, by severe adhesive wear, can also increase the tool stresses. At the temperature of
cutting, chemical reactions can occur between the tool and work material as well as with
the atmosphere. The story of abrasive, mechanical fatigue, adhesive and reaction wear of
cutting tools is developed in Chapter 4.

2.5 Summary

The sections of this chapter have established the severe mechanical and thermal conditions
typical of machining. A certain amount of factual information has been gathered and
deductions made from it, but for the most part this has been at the level of observation.
Predictive mechanics is taken up in the second half of this book, from Chapters 6 onwards.



80 Chip formation fundamentals

First however, materials aspects of, and experimental techniques for, machining studies are
introduced in Chapters 3 to 5.
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Work and tool materials

In Chapter 2, the emphasis is on the mechanical, thermal and friction conditions of chip
formation. The different work and tool materials of interest are introduced only as exam-
ples. In this chapter, the materials become the main interest. Table 3.1 summarizes some
of the main applications of machining, by industrial sector and work material group, while
Table 3.2 gives an overview of the classes of tool materials that are used. In Section 3.1
data will be presented of typical specific forces, tool stresses and temperatures generated
when machining the various work groups listed in Table 3.1. In Section 3.2 the properties
of the tools that resist those stresses and temperatures will be described.

A metal’s machinability is its ease of achieving a required production of machined
components relative to the cost. It has many aspects, such as energy (or power) consumption,
chip form, surface integrity and finish, and tool life. Low energy consumption, short (broken)
chips, smooth finish and long tool life are usually aspects of good machinability. Some of
these aspects are directly related to the continuum mechanical and thermal conditions of the

Table 3.1 Some machining activities by work material alloy and industrial sector

Alloy General Process Information
system engineering Auto-motive Aerospace engineering technology
Carbon and Structures Power train, Power train, Structures Printer
alloy steels fasteners, steering, control and spindles and
power train, suspension, landing mechanisms
hydraulics hydraulics gear
fasteners
Stainless For corrosion - Turbine For corrosion -
steels resistance blades resistance
Aluminium Structures Engine block Airframe For corrosion Scanning
and pistons spars, skins resistance mirrors, disc
substrates
Copper - - - For corrosion -
resistance
Nickel - - Turbine Heat -
blades and exchangers,
discs and corrosion
resistance
Titanium - - Compressor/ Corrosion -

airframe resistance
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Table 3.2 Recommended tool and work material combinations

Soft non- Carbon/ Hardened Nickel

ferrous low alloy tool and Cast -based Titanium

(Al, Cu) steels die steels iron alloys alloys
High speed steel Oo/® o/® X ®/x ®/x ®/x
Carbide (inc. coated) o] /0 ® /0 v 0
Cermet ®/x v X ® X X
Ceramic X \/O (0] \ \/O X
cBN ®/x X J /0 0 0
PCD \ X X X X \

\ good; O all right in some conditions; ® possible but not advisable; x to be avoided.

Table 3.3 Mechanical, thermal and materials factors affecting machinability

Main tools for study Process variables Machinability attribute
Cutting speed and feed Chip form
Tool shape Tool forces
Applied mechanics Work mechanical and thermal properties Power consumption
and thermal analysis Tool thermal properties Tool stresses and temperatures
Tool failure properties Tool failure
Chip/tool friction laws Surface integrity and finish
Materials engineering Work/tool wear interactions Tool wear and life

machining process. In principle, they may be predicted by mechanical and thermal analy-
sis (but at the current time some are beyond prediction). Other aspects, principally tool life,
depend not only on the continuum surface stresses and temperatures that are generated but
also on microstructural, mechanical and chemical interactions between the chip and the
tool. Table 3.3 summarizes these relations and the principal disciplines by which they may
be studied (perhaps chip/tool friction laws should come under both the applied mechanics
and materials engineering headings?). This chapter is mainly concerned with the work
material’s mechanical and thermal properties, and tool thermal and failure properties,
which affect machinability. Tool wear and life are so important that a separate chapter,
Chapter 4, is devoted to these subjects.

3.1 Work material characteristics in machining

According to the analysis in Chapter 2, cutting and thrust forces per unit feed and depth of
cut, and tool stresses, are expected to increase in proportion to the shear stress on the
primary shear plane, other things being equal. This was sometimes written k and some-
times k..

Forces also increase the smaller is the shear plane angle and hence the larger is the
strain in the chip. The shear plane angle, however, reduces the larger is the strain harden-
ing in the primary shear region, measured by Ak/k . (equation (2.7)). Thus, k. and
Aklk, . are likely to be indicators of a material’s machinability, at least as far as tool forces
and stresses and power consumption are concerned. Figure 3.1 gathers information on the
typical values of these quantities for six different groups of work materials that are impor-
tant in machining practice. The data for steels exclude quench hardened materials as, until
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Fig. 3.1 Shear stress levels and work hardening severities of initially unstrained, commonly machined, aluminium,
copper, iron (b.c.c. and f.c.c.), nickel and titanium alloys

recently, these were not machinable. The data come from compression testing at room
temperature and at low strain rates of initially unworked metal. The detail is presented in
Appendix 4.1. Although machining generates high strain rates and temperatures, these data
are useful as a first attempt to relate the severity of machining to work material plastic flow
behaviour. A more detailed approach, taking into account variations of material flow stress
with strain rate and temperature, is introduced in Chapter 6.

Work heating is also considered in Chapter 2. Temperature rises in the primary shear
zone and along the tool rake face both depend on fU,,,tang/x .. Figure 3.2(a) summa-
rizes the conclusions from equation (2.14) and Figures 2.17(a) and 2.18(b). In the primary
shear zone the dimensionless temperature rise AT(pC)/k depends on fU ,tand/x,, ., and
the shear strain y. Next to the rake face, the additional temperature rise depends on
SU otand/xc, . and the ratio of tool to work thermal conductivity, K*. Figure 3.2(b)
summarizes the typical thermal properties of the same groups of work materials whose
mechanical properties are given in Figure 3.1. The values recorded are from room temper-
ature to 800°C. Appendix 4.2 gives more details.

Figures 3.1 and 3.2 suggest that the six groups of alloys may be reduced to three as far
as the mechanical and thermal severity of machining them is concerned. Copper and
aluminium alloys, although showing high work hardening rates, have relatively low shear
stresses and high thermal diffusivities. They are likely to create low tool stresses and low
temperature rises in machining. At the other extreme, austenitic steels, nickel and titanium
alloys have medium to high shear stresses and work hardening rates and low thermal diffu-
sivities. They are likely to generate large tool stresses and temperatures. The body centred
cubic carbon and alloy steels form an intermediate group.

The behaviours of these three different groups of alloys are considered in Sections 3.1.3
to 3.1.5 of this chapter, after sections in which the machining of unalloyed metals is
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Fig. 3.2 Thermal aspects of machining: (a) a summary of heating theory and (b) thermal property ranges of Al, Cu,
Fe, Ni and Ti alloys

described. It will be seen that these groups do indeed give rise to three different levels of
tool stress and temperature severity. This is demonstrated by presenting representative
experimentally measured specific cutting forces (forces per unit feed and depth of cut) and
shear plane angles for these groups as a function of cutting speed. Then, primary shear zone
shear stress k, average normal contact stress on the rake face (o,),, and average rake face
contact temperature (7, .),, are estimated from the cutting data. A picture is built up of the
stress and temperature conditions that a tool must survive in machining these materials.

The primary shear plane shear stress is estimated from
. (F,cos ¢ — F sin ¢)sin ¢
= I

The average normal contact stress on the tool rake face is estimated from the measured
normal component of force on the rake face, the depth of cut and the chip/tool contact
length [ :

3.1)

F_cos a—Fpsina
(0, = (3.2)
ld

l . is taken, from the mean value data of Figure 2.9(a), to be

cos(¢ — )
l. = 175 ————[u + tan(¢ - )] 3.3)
sin ¢

Finally, temperatures are estimated after the manner summarized in Figure 3.2.
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The machining data come mainly from results in the authors’ possession. The exception
are data on the machining of the aluminium alloy Al2024 (Section 3.1.2), which are from
results by Kobayashi and Thomsen (1959). The data on machining elemental metals come
from the same experiments on those metals considered by Trent in his book (Trent, 1991).

3.1.1 Machining elemental metals

Although the elemental metals copper, aluminium, iron, nickel and titanium have little
commercial importance as far as machining is concerned (with the exception of aluminium
used for mirrors and disk substrates in information technology applications), it is interest-
ing to describe how they form chips: what specific forces and shear plane angles are
observed as a function of cutting speed. The behaviour of alloys of these materials can then
be contrasted with these results. Figure 3.3 shows results from machining at a feed of 0.15
mm with high speed steel (for copper and aluminium) and cemented carbide (for iron,
nickel and titanium) tools of 6° rake angle.

At the lowest cutting speeds (around 30 m/min), except for titanium, the metals
machine with very large specific forces, up to 8 GPa for iron and nickel and around 4 GPa
for copper and aluminium. These forces are some ten times larger than the expected shear
flow stresses of these metals (Figure 3.1) and arise from the very low shear plane angles,
between 5° and 8°, that occur. These shear plane angles give shear strains in the primary
shear zone of from 7 to 12. As cutting speed increases to 200 m/min, the shear plane angles
increase and the specific forces are roughly halved. Further increases in speed cause much
less variation in chip flow and forces. The titanium material is an exception. Over the
whole speed range, although decreases of specific force and increases of shear plane angle
with cutting speed do occur, its shear plane angle is larger and its specific forces are
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Fig. 3.3 Cutting speed dependence of specific forces and shear plane angles for some commercially pure metals (f=
0.15mm, = 6°)



86 Work and tool materials

+ Ti
600 [X0g Nia T ! 800
(% _ o , g
.~ 5
1 e L Fe by = 0.75K x
. 400 x x n = Aok x 0 e
ﬂr_u fo1s) L . % x N *
-
2 1a° o \ O 1
< (-1 o - .a“l_’
200 £ 2001 ey
S
L N
1 1 I 1 1 H 1 1 1
U 100 200 300 ¢ 200 400 600
Cutting speed (m/min} k(MPa)
Fig. 3.4 Process stresses, derived from the observations of Figure 3.3
o

800 - Rake Rake /

ook Rake ‘ﬁ;‘? *~ \ /U
400} ?-. A i _

Primary o \D

AT (=3}

200 Primar )
x ¥ Primary
o Al and Cu Fe and Ni Ti
i 1 ] 1 1 1 L | 1 ]
L] 100 200 300 a 100 200 300 0 100 200

Cutting speed (m/min}

Fig. 3.5 Temperatures estimated from the observations of Figure 3.3

smaller than for the other, more ductile, metals. A reduction in forces and an increase in
shear angle with increasing speed, up to a limit beyond which further changes do not
occur, is a common observation that will also be seen in many of the following sections.

Although the forces fall with increasing speed, the process stresses remain almost
constant. Figure 3.4 shows aluminium to have the smallest primary shear stress, k,
followed by copper, iron, nickel and titanium.

The estimated average normal stresses (o), lie between 0.5k and 1.0k. This would
place the maximum normal contact stresses (which are between two and three times the
average stress) in the range k to 3k. This is in line with the estimates in Chapter 2, Figure
2.15.

The different thermal diffusivities of the five metals result in different temperature vari-
ations with cutting speed (Figure 3.5). For copper and aluminium, with k taken to be 110
and 90 mm?/s respectively (Appendix 4.2), SU otand/xc, ., hardly rises to 1, even at the
cutting speed of 300 m/min. Figure 3.2 suggests that then the primary shear temperature
rise dominates the secondary (rake) heating. The actual increase in temperature shown in
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Figure 3.5 results from the combined effect of increasing fraction of heat flowing into the
chip and reducing shear strain as cutting speed rises.

Iron and nickel, with x taken to be 15 and 20 mm?/s respectively, machine with
SU otand/ic, . in the range 1 to 10 in the conditions considered. In Figure 3.5, the
primary shear and average rake face temperatures are distinctly separated. Over much of
the speed range, the temperature actually falls with increasing cutting speed. This unusual
behaviour results from the reduction of strain in the chip as speed increases.

Finally, titanium, with x taken to be 7.5 mm?/s, machines with fUWOrktanq)/Kwork from 7
to 70. The rake face heating is dominant and a temperature in excess of 800°C is estimated
at the cutting speed of 150 m/min.

3.1.2 Effects of pre-strain and rake angle in machining copper

In the previous section, the machining of annealed metals by a 6° rake angle tool was
considered. Both pre-strain and an increased rake angle result in reduced specific cutting
forces and reduced cutting temperatures, but have little effect on the stressses on the tool.
These generalizations may be illustrated by the cutting of copper, a metal sufficiently soft
(as also is aluminium) to allow machining by tools of rake angle up to around 40°. Figure
3.6 shows examples of specific forces and shear plane angles measured in turning annealed
and heavily cold-worked copper at feeds in the range 0.15 to 0.2 mm, with high speed steel
tools of rake angle from 6° to 35°. Specific forces vary over a sixfold range at the lowest
cutting speed, with shear plane angles from 8° to 32°.

The left panel of Figure 3.7 shows that the estimated tool contact stresses change little
with rake angle, although they are clearly larger for the annealed than the pre-strained
material. The right-hand panel shows that the temperature rises are halved on changing
from a 6° to 35° rake angle tool. These observations, that tool stresses are determined by
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Fig. 3.7 Average rake face contact stresses and temperatures, from the results of Figure 3.6

the material being cut and do not vary much with the cutting conditions, while tempera-
tures depend strongly on both the material being cut and the cutting conditions, is a contin-
uing theme that will be developed for metal alloys in the following sections.

3.1.3 Machining copper and aluminium alloys

It is often found that alloys of metals machine with larger shear plane angles and hence
lower specific forces than the elemental metals themselves. Sometimes a strong reason is
a lower value of the strain hardening parameter Ak/k_, ., at other times the chip/tool fric-
tion (as indicated by the friction coefficient) is less; and at others again it is not at all obvi-
ous why this should be so. But even when the specific forces are lower, the tool contact
stress can be higher. In this section, examples of machining two copper and one aluminium
alloy are taken to illustrate this.

Figure 3.8 records the behaviours of a CuNi and a CuZn alloy. The CuNi alloy, with
80%Ni, might better be considered as a Ni alloy. However, it machines at a higher shear
plane angle at a given cutting speed than either copper or nickel, despite its strain-harden-
ing characteristic being similar to or more severe than either of these (Appendix 4.1). The
CuZn alloy (an o-brass) is a well-known very easy material to machine. Its shear plane
angle is twice as large as that of Cu, despite having a similar strain-hardening characteris-
tic (Appendix 4.1 again) and an apparently higher friction interaction with the tool (as
judged by the relative sizes of its specific thrust and cutting forces). (Figure 3.8 describes
the machining of an annealed brass. After cold-working, even higher shear plane angles,
and lower specific forces are obtained.) These two examples are ones where the reason for
the easier machining of the alloys compared with the elemental metals is not obvious from
their room temperature, low strain rate mechanical behaviours.

Figure 3.9 shows machining data for an aluminium alloy. In this case the variation of
behaviour with rake angle is shown. At a rake angle and speed comparable to that shown
in Figure 3.3, the shear plane angle is five times as large and the specific cutting force is
half as large for the alloy as for pure Al. In this case both the strain-hardening and friction
factors are less for the alloy than for pure Al.

For both the copper and aluminium alloy examples, the primary shear plane shear stress
and the average rake contact stresses are similar to, or slightly larger than, those for the
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Fig. 3.8 Observed and calculated machining parameters for two copper alloys (f=0.15 mm, o = 6°)
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elemental metals. Figure 3.8 shows only the values of k, but (c,),, may be calculated to be
= 0.6k. Figure 3.9 shows both k and (o,),,. It also shows that, in this case, the estimated
rake face temperature does not change as the rake angle is reduced. This is different from
the observations recorded in Figure 3.7: perhaps the maximum temperature is limited by
melting of the aluminium alloy?
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Table 3.4 Approximate ranges of k and (0,),, estimated from machining tests

Alloy system

Stress (MPa) Al Cu Fe(bcc) Fe(fcc) Ni Ti
k 200400 300-550 350-750 500-800 550-850 550-700
(0,4 120-370 150-400 200-550 400-700 300-800 600-700

The choice in Figure 3.9 of showing how machining parameters vary with rake angle
has been made to introduce the observation that, in this case, at a rake angle of around 35°
the thrust force passes through zero. Consequently, such a high rake angle is appropriate
for machining thin walled structures, for which thrust forces might cause distortions in the
finished part.

However, the main point of this section, to be carried forward to Section 3.2 on tool
materials, is that the range of values estimated for k follows the range expected from
Figure 3.1 and the estimated values of (o,),, range from 0.5 to 1.0k. This is summarized
in Table 3.4 which also contains data for the other alloy systems to be considered next.

3.1.4 Machining austenitic steels and temperature resistant nickel and
titanium alloys
The austenitic steels, NiCr, and Ti alloys are at the opposite extreme of severity to the

aluminium and copper alloys. Although their specific forces are in the same range and their
shear plane angles are higher, the tool stresses and temperatures (for a given speed and
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Fig. 3.10 Specific force and shear plane angle variations for some austenitic steels, nickel-chromium and titanium
alloys (f=0.1t0 0.2 mm, o= 0° to 6°)
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Fig. 3.11 Process stresses and temperatures derived from (and symbols as) Figure 3.10

feed) that they generate are significantly higher. Figure 3.10 presents observations for two
austenitic steels, a NiCr and a Ti alloy. One of the austenitic steels (the 18Cr8Ni material)
is a common stainless steel. The 18Mn5Cr material, which also contains 0.47C, is an
extremly difficult to machine creep and abrasion resistant material. The NiCr alloy is a
commercial Inconel alloy, X750. In all cases the feed was 0.2 mm except for the Ti alloy,
for which it was 0.1 mm. The rake angle was 6° except for the NiCr alloy, for which it was
0°. Specific cutting forces are in the range 2 to 4 GPa. Thrust forces are mainly between 1
and 2 GPa. Shear plane angles are mainly greater than 25°. In most cases, the chip forma-
tion is not steady but serrated. The values shown in Figure 3.10 are average values. Figure
3.11 shows stresses and temperatures estimated from these. The larger stresses and temper-
atures are clear.

3.1.5 Machining carbon and low alloy steels

Carbon and alloy steels span the range of machinability between aluminium and copper
alloys on the one hand and austentic steels and temperature resistant alloys on the other.
There are two aspects to this. The wide range of materials’ yield stresses that can be
achieved by alloying iron with carbon and small amounts of other metals, results in their
spanning the range as far as tool stressing is concerned. Their intermediate thermal
conductivities and diffusivities result in their spanning the range with respect to tempera-
ture rise per unit feed and also cutting speed.
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Fig. 3.13 Process stresses and temperatures derived from Figure 3.12

Figure 3.12 shows typical specific force and shear plane angle variations with cutting
speed measured in turning steel bars that have received no particular heat treatment other
than the hot rolling process used to manufacture them. At cutting speeds around 100
m/min the specific forces of 2 to 3 GPa are smaller than those for pure iron (Figure 3.3),
but as speed increases, the differences between the steels and pure iron reduce. In the same
way as for many other alloy systems, the shear plane angles of the ferrous alloys are larger
than for the machining of pure iron.

In the hot rolled condition, steels (other than the austenitic steels considered in the
previous section) have a structure of ferrite and pearlite (or, at high carbon levels, pearlite
and cementite). For equal coarsenesses of pearlite, the steels’ hardness increases with
carbon content. The left panel of Figure 3.13 shows how the estimated k and (o), values
from the data of Figure 3.12 increase with carbon content. Additional results have been
included, for the machining of a 0.13C and a 0.4C steel. An increase of both k and (o,),,
with %C is clear. The right panel of the figure likewise shows that the increasing carbon
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content gives rise to increasing temperatures for a given cutting speed. This comes from
the increasing shear stress levels.

This completes this brief survey of the stresses and temperatures generated by different
alloy groups in machining. Tool stresses are mainly controlled by the metal being
machined and vary little with cutting conditions (although the tool rake face area over
which they act changes with speed and, obviously, also with feed). Temperatures, on the
other hand, depend not only on the material being machined (both through stress levels and
thermal properties) but also on the speeds and feeds used.

3.1.6 Machining with built-up edge formation

In the previous section, data were presented mainly for cutting speeds greater than 100
m/min. This is because, at slightly lower cutting speeds, at the feeds considered, those
steels machine with a built-up edge (BUE). In Chapter 2, photographs were shown of BUE
formation. Figure 3.14 shows, for a 0.15C steel, what changes in specific force and shear
plane angle are typically associated with this. In this example, the largest BUE occurred at
a cutting speed close to 25 m/min. There, the specific forces passed through a minimum
and the shear plane angle through a maximum. Qualitatively, this may be explained by the
BUE increasing the effective rake angle of the cutting tool.

Built-up edge formation occurs at some low speed or other for almost all metal alloys.
It offers a way of relieving the large strains (small shear plane angles) that can occur at
low speeds, but at the expense of worsening the cut surface finish. For those alloys that
do show BUE formation, the cutting speed at which the BUE is largest reduces as the
feed increases. Figure 3.15 gathers data for three ferrous alloys and one Ni-Cr creep
resistant alloy (Nimonic 80). One definition of high speed machining is machining at
speeds above those of built-up-edge formation. These are the conditions mostly focused
on in this book.
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3.1.7 Free-cutting alloys

It is possible to make minor changes to the composition of alloys that result in major
improvements in their machinability. The data considered up to this point have not been
for such alloys. The effects of such composition changes will now be introduced, by
considering first of all the machining of free-cutting low carbon steels.

Most carbon steels contain manganese, controlled at a level of around 1%, and sulphur
as an impurity, up to a level of around 0.05%. One of the non-metallic inclusions that exists
is manganese sulphide, MnS. If the sulphur is increased to 0.2% to 0.3% and the
manganese is also increased (typical values are 1-1.5%), the amount of MnS is increased
and becomes important. It can, in some conditions, form a layer over the chip/tool contact
that can reduce chip/tool friction and hence ease chip formation. Lead (Pb) can also be
added, commonly at a level of around 0.25%. It can further lubricate the contact. The
magnitude of the friction change has already been introduced, in Section 2.4 (Figure 2.22).
The action (of MnS forming a layer in the contact area) is specific to high speed steels and
cutting tools containing Ti, that is to say cemented carbides (or cermets) containing TiC or
mixed TiC/TaC; and to tools coated by TiN or TiC. The lubrication is only effective over
a certain contact temperature range and hence depends on the cutting speed and feed.
Figure 3.16 shows a typical effect of this lubricating action. The specific forces and shear
plane angles observed in turning a MnS and a Pb-MnS free-cutting low carbon (0.08 to
0.09C) steel are compared with those for a similar non-free-cutting steel. At cutting speeds
between 20 m/min and 75 m/min (at the feeds considered) the shear plane angles of the
free-cutting materials are double and the specific forces around half of those for the non-
free cutting steel (the built-up-edge is much smaller and more stable too). As cutting speed
increases up to 200 m/min for the MnS steel and to 300 m/min for the Pb-MnS steel, these
differences between the free- and non-free-cutting steels become insignificant. Although
there is clear benefit in reduced forces from the free-cutting steels, there is no reduction in
the tool normal contact stresses. For all the steels in Figure 3.16, k values are estimated
between 400 MPa and 450 MPa (in line with Figure 3.13). (o,),, values around 300 MPa
are estimated for the non-free-cutting steel (also in line with Figure 3.13), but values from
350 MPa to 400 MPa are estimated for the free-cutting steels.
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Fig. 3.16 Representative specific force and shear plane angle variations for low carbon free-machining steels turned
by a steel cutting grade of carbide tool (f=0.1to 0.15 mm, o = 6°)

These free-cutting steels have a great commercial importance. They enable small diam-
eter, intricate, parts such as spacers, screwed profiles and small electric motor spindles to
be machined with a good surface finish and with less energy consumption than the equiv-
alent non-free-cutting steel, in the speed range where the non-free-cutting steel would
suffer from the poor finish associated with built-up edge formation. The free-cutting steels
are, however, less tough than their non-free-cutting equivalents and are not used in appli-
cations in which the transmission of tensile stresses is critical. Semi-free-cutting grades of
steel have been developed to compromise between machinability and strength require-
ments. These have been developed by control of the wide variety of non-metallic inclu-
sions that can be created during the deoxidation of steel melts, as considered next.

Free oxygen in steel is removed from the melt most simply by adding small amounts of
aluminium, silicon or calcium, to form alumina, silica or calcium oxides. Alumina is hard
and abrasive and is certainly detrimental to tool life in machining. The addition of silicon
and calcium can result in softer inclusions. It has been found that if, in addition, small
amounts of sulphur (relative to the 0.2% to 0.3% used in free-cutting steels) are added,
complex layers containing calcium, manganese and sulphur can build up on the rake face
of tools. Again, the tools have to contain titanium. These layers have relatively small
effects in altering specific forces and shear plane angles, but can significantly influence
tool life. Typical quantities of calcium are 0.002% and of sulphur 0.03 to 0.1% (with sili-
con from 0.2 to 0.3%). The topics of tool wear and life are developed more fully in Chapter
4. Here, Figure 3.17 shows differences in the machining of a low alloy steel (nominally
0.4C1Cr0.2Mo), produced without and with small additions of Ca and S as just described.
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Fig. 3.17 Machining characterisitcs of a low alloy (#) and a semi-free-cutting low alloy (o) steel (f= 0.25 mm, o= 6°)

The tool was an uncoated steel cutting grade (P-type) carbide. Although differences can be
seen between the specific forces and shear plane angles for these materials, the estimated
rake contact normal stresses and temperatures are estimated to be hardly different for the
two. Yet the tool wear rates, particularly the crater wear rates, are hugely different.

In Figure 3.17, there is at least some visible change in specific forces and shear plane
angle brought about by controlling the deoxidation process. In other cases, for example by
adding a small amount of calcium but no extra sulphur, changes in tool life can be
produced with no change at all in chip form and forces. A study with this conclusion, for
machining a 0.45% carbon steel, has been published by Sata et al. (1968). The reader is
reminded of the comment at the start of this chapter, that stresses and temperatures define
the continuum conditions to which the cutting tool is subjected, but life (other than imme-
diate failure) depends, in addition, on the work material’s microstructure and chemical
interactions with the tool.

This section has considered only free-cutting and semi-free-cutting steels. Free-cutting
versions of other alloys are also manufactured. The best known are leaded copper and
aluminium alloys, but the purpose of the lead is different from that considered so far. Up
to 1% or 2% lead causes embrittlement of chips and hence aids chip control and dispos-
ability as well as reducing specific forces.

3.1.8 Summary

Section 3.1 mentioned the variety of specific forces and shear plane angles that are
commonly observed in machining aluminium, copper, ferrous, nickel and titanium alloys.
It has sought to establish that the average contact stresses that a tool must withstand
depend mainly on the material being machined, through the level of that material’s shear
flow stress and hardly at all on the cutting speed and feed nor on the tool rake angle. Table
3.4 lists the range of these stresses. Peak contact stresses may be two to three times as large
as the average values recorded in the table. In contrast, the temperatures that a tool must
withstand do depend on cutting speed and feed and rake angle, and on the work material’s
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thermal properties: diffusivity, conductivity and heat capacity. By both thermal and stress
severity criteria, the easiest metals to machine are alumimium alloys and copper alloys.
The most difficult to machine are austenitic steels, nickel heat resistant alloys and titanium
alloys. Ferritic and pearlitic steels lie between these extremes, with stresses and tempera-
tures increasing with carbon content and hardness.

Beyond that, this section has been mainly descriptive, particularly with respect to
reporting what shear plane angles have been measured for the different alloys. This
remains the main task of predictive mechanics.

The next section, on tool material properties, complements this one, in describing the
properties of tool materials that influence and enable the tools to withstand the machining-
generated stresses and temperatures.

3.2 Tool materials

The main classes of tool materials have already been listed in Table 3.2 as carbides and
cermets, high speed steels, ceramics based on alumina and silicon nitride, and the super-
hard materials polycrystalline diamond and cubic boron nitride (single crystal diamonds
are also used for the finishing of IT mirror and disc substrate products). Details of the vari-
ous materials within these groups are given in Appendix 6. It is recommended that the
descriptive parts of Appendix 6 be read briefly, before continuing. The largest amount of
space is given to dividing the carbides and cermets into sub-groups depending on whether
the carbides are mainly tungsten carbide (WC) or a mixture of mainly WC with titanium
and tantalum carbides (TiC/TaC) and on whether they are cemented together mainly with
cobalt (Co) or a mixture of Co and nickel (Ni). In the following sections, the main purpose
is to compare the properties of these different groups, and to understand why which groups
are used in what circumstances.

3.2.1 Tool mechanical property minimum requirements

The sizes of the shear stresses k or k_  have been considered in Section 3.1. From now
on, kor k, will be written k., to distinguish work from tool properties. Section 3.1 has
established that the majority of work materials are machined with a shear stress k.
measured on the primary shear plane between 200 MPa and 800 MPa and that the average
normal contact stress on the tool face ranges between 0.5 and 1 k. In fact, only hard-
ened steels, not considered in the previous sections, but which are increasingly machined
by the superhard polycrystalline cubic boron nitride (PcBN), are likely to yield values of
ko greater than 800 MPa. In Chapter 2 it was suggested that peak normal contact
stresses (at the cutting edge) may be two to three times as large as the average stress; that
is to say, in the range 1 to 3 k. This is supported by split-tool contact stress measure-
ments (Figure 2.21). Split-tool measurements have also given tool rake face friction
stresses 7 from 0.5 to 1 k., depending on rake face temperature (Figure 2.22). These
loadings are summarized in Figure 3.18(a).

Figure 3.18(b) also shows some other possible loadings. When a tool enters a cut, a
finite displacement is required before the chip is fully developed. Initially the contact can
look more like an indentation. Then, the peak normal stress may be as large as 5k, (this
is approximately the Vickers Hardness, or HV, value). Because the sliding of the chip over
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the rake is not established, 7 may be close to zero and the direction of the resultant force
R on the tool will be closer to the rake face normal than later on. At the end of a cut (at
exit), the way in which the chip is pushed off the work to form a burr may result in the
direction of R differing even more from its steady state direction. The questions are: what
tool hardness is required to stop it yielding under the action of the contact stresses; what
fracture resistance is required to stop it breaking?

The answers to both questions depend on how large is the tool included (or wedge)
angle S (defined in Figure 3.18). It is qualitatively obvious that the smaller is £, the larger
will be the maximum shear stress in the tool generated by the contact stresses, so the
harder it must be to avoid yielding. Similarly, the smaller is 3, the larger will be the maxi-
mum tensile stress on the rake face caused by bending of the tool edge region, so the
tougher must be the tool to avoid fracture. An approximate analysis outlined in Appendix
5 shows that the entry condition (Figure 3.18) is more severe on the tool than the steady
state. (The exit condition may be more severe still but has not been considered because it
is more difficult to define the stress conditions.) Figure 3.19 summarizes its conclusions,
in terms of required tool Vickers Hardness and Tensile Rupture Strength (TRS). TRS is a
measure of fracture resistance usually determined experimentally by the maximum tensile
stress that a bar of material can support without breaking in bending. Whether or not it is
the best measure (fracture toughness K- may be fundamentally more sound) is open to
discussion. It is, however, a practical measure: as will be seen in Section 3.2.2, there is
more information available for TRS than there is for K| values of tool materials.

The left-hand panel of Figure 3.19 shows the relationship between minimum HV, § and
kyyop- FOr example (as shown for the double line), a material defined by &, , = 600 MPa,
machined by a tool for which = 90°, requires a tool of HV = 7.5 GPa for tool yielding to
be avoided. Similarly, the right-hand panel shows, for the same example, that the tool’s
TRS must be greater than between 1 and 2 GPa to avoid fracture.

Resistance to yielding and fracture depends on S but a tool’s geometry is more usually
defined by its rake angle o. The rake angle values along the top of the figure assume that
the clearance angle y = 5° (Figure 3.18(a)). It then can be seen that for &, , in the range
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Fig. 3.19 Minimum tool HV and TRS values needed to machine metals, defined by their £, values, with tools of
wedge angle p°

200 to 1000 MPa and o between = 20°, minimum tool hardnesses from 5 to 20 GPa and
TRS values from 0.5 to 5 GPa are required. These are the ranges that practical tool mater-
ials do have.

3.2.2 Room temperature tool hardness and fracture resistance

Figure 3.20 gathers room temperature tool hardness and TRS data from a variety of
sources, some published (Trent, 1991; Brookes, 1992) but also from manufacturers’ infor-
mation. It presents a snap-shot in time. For the well established high speed steels (HSS)
and cemented carbides and cermets, there is high confidence that major property improve-
ments will not occur in the future. That may not be the case for the other materials, partic-
ularly the PcBN group. The figure includes (towards its top left corner) the line HV =
3TRS. The tensile yield stress of a material is expected to be = HV/3, so above that line, a
tool would be expected to show some ductile flow before fracture. Below that line is the
region of predominantly elastic fracture. The figure also records (in a column to the right)
the ranges of K| values that have been recorded, as an alternative to the TRS values. It can
be seen that there is not an exact one-to-one relation between K- and TRS.

Only the HSS materials are so ductile that they are predominantly above the ‘yield
before fracture’ border. The sub-micrometre (ultra fine grained) carbide materials almost
reach that state at room temperature (and certainly do so at higher temperatures). Among
the ceramic materials, those based on silicon nitride reach higher toughnesses than those
based on alumina, with the exception of aluminas reinforced with silicon carbide (SiC)
whiskers. Among the aluminas, aluminas combined with TiC (called black ceramics or
black aluminas because of their colour) or reinforced with SiC whiskers, are harder than
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Fig. 3.20 Room temperature TRS and HV ranges of commercial uncoated cutting tool materials

the white aluminas (aluminas without TiC or SiC). At the present time, polycrystalline
diamond (PCD) and PcBN have been developed to similar toughnesses as the aluminas
and silicon nitride based materials, but are substantially harder.

3.2.3 Room temperature tool thermal and elastic properties

In Chapter 2, tool thermal conductivity was emphazied as influencing the steady state
temperature rise in machining. In transient conditions, heat capacity is also important
because, with conductivity, it determines thermal diffusivity x and the rate of penetration
of heat into the tool. Other thermal properties are important too, principally the thermal
expansion coefficient ¢,. With the tool’s elastic Young’s modulus E, a, affects thermal
stresses in the tool. The thermal expansion relative to that of coatings on the tool is also
important. That is one of the factors that influence how well the coatings adhere to the tool
(considered in Section 3.2.7).

Thermal shock resistance also affects a tool’s performance. This composite property
has several definitions. One is the ratio of TRS to Ec,. It has units of °C, and it is the
temperature change on cooling that would generate a tensile thermal stress equal to the
TRS, if the thermal strain were not allowed to relax. Another definition is the product of
(TRS/Ee,) and the thermal conductivity K. A large thermal conductivity reduces the
temperature gradients in a tool during cooling. It is also argued that K- should replace
TRS and x should replace K in these definitions. However, that does not change the rank-
ings of tool groups with respect to thermal shock resisitance.

Table 3.5 summarizes the ranges of thermal and elastic properties of tool materials that
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Table 3.5 Thermal and elastic properties of tool materials at room temperature

Tool type K pC o, E TRS/(Ea,)
[W/m K] [MJ/m3] [107°K1] [GPa] [°C]

Diamond 600-2000 2.0 3.1 960-990 -

PCD 100-550 2.0%* 3.8-4.2 620-840 140-540
PcBN ~100%* 1.9-2.1 4.7-4.9 680-710 150-340
K-carbide 75-120 3.0-3.4 4.5-6.0 550-650 390-925
P-carbide 25-55 4.0-4.1 5.8-6.8 490-560 390-840
Cermet 11-35 2.4-2.7 6.7-7.8 390-420 480-740
ALO, 10-35 3.2-3.6 7.9-8.0 380-390 145-330
ALO,/TiC 10-22 3.8-4.0 7.6-8.0 370-395 180-330
ALO,/SiC(wh.) 10-35 =3.4% 7.0-7.5 345-425 300-500
Si,N,/Sialon 15-30 2.1-2.3 3.2-3.6 280-320 650-1500
HSS 19-24 3.6-3.8 12-13 220-240 940-1740

*: information from limited data; **: assumed as for diamond.
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Fig. 3.21 Tool materials' characterization by thermal conductivity and shock resistance

have been reported at room temperature (with the exception of a, values that tend to be
measured as mean values, for example from room temperature to some typical high
temperature). Variations with temperature are considered in Section 3.2.4.

The thermal shock parameter in Table 3.5 is TRS/(Ea,). TRS X K/(Ec,) can be deduced
from Figure 3.21 which shows how the different tool groups are distinguished by thermal
conductivity and shock resistance. The thermal shock resistance ranking is broadly the
same as the TRS ranking in Figure 3.20, except that the Si;N,-based ceramics show a clear
advantage over the other ceramic materials, and indeed over the carbides and cermets. This
is due to the relatively low thermal expansion and Young’s modulus of the Si;N,-based
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ceramics. However, this advantage is not so clear if thermal shock resistance is considered
to be (TRS)K/(Eer,). The low thermal conductivity of the silicon nitride based ceramics
increases the temperature gradients that they are subjected to in practice. As alumina-
SiC(whisker) ceramics have developed, the silicon nitride ceramics have found themselves
competitively squeezed between these with respect to mechanical shock (TRS) resistance
and the carbides with respect to thermal shock.

3.2.4 Tool property changes with temperature

Changes of tool behaviour with temperature are of three main types. First, all materials
have some maximum temperature above which, for some reason, their composition or
microstructure becomes unstable. If that temperature is exceeded by too much, the tool
behaviour may be described as failing; but if it is exceeded only a little, rapid wear may be
what is observed. Secondly, below the temperatures at which this degradation occurs, a
tool’s mechanical properties, such as hardness and resistance to fracture, may vary with
temperature. Generally, a tool’s reduction of hardness with temperature is of major impor-
tance to its use. Finally, and of less importance, thermal and elastic properties change,
usually only slightly, with temperature.

Thermal stability

There are three main ways in which high temperatures cause a tool to degrade. One is by
reaction with the atmosphere, usually oxidation. Secondly, a tool’s microstructure will
start to change above some critical temperature. Thirdly, tools may interact strongly with
particular work materials. Table 3.6 summarizes some of the critical temperatures for the
first two circumstances. Oxidation is not often critical for failure. In turning, the hottest
tool regions are generally shielded from oxygen by the chip contact (although there is
some exposure around the edges). There is more opportunity for oxidation in interrupted
cutting conditions such as milling. These considerations are of more importance to wear
(Chapter 4) than to failure. Structural change is more critical to failure. High speed steels
soften rapidly as their structures over-temper, at temperatures from 550°C upwards,
depending on their composition. The microstructure of the binder phase of WC-Co
changes with time at temperatures over 900°C: a brittle phase, a mixed W—Co carbide
known as the n-phase, forms as a result of WC dissolving in the cobalt binder (Santhanam
et al., 1990). Its formation is very slow at 900°C: it does not become severe until 950°C.

Table 3.6 Tool material oxidation and structural change temperature ranges

Temperature range (°C) for:

Tool material Oxidation Structural change (and nature of change)
High speed steel - > 600 (over-tempering)

WC-Co carbide > 500 > 900-950 (solution of WC in Co)
Mixed carbides/cermets > 700 -

Ceramics - > 1350-1500* (intergranular liquids)
PcBN - > 1100-1350 (change to hexagonal form)
PCD > 900 > 700 (change to graphite)

*: very composition dependent — these temperatures indicate what is achievable.
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Table 3.7 Tool/work chemical or adhesive interaction severities

Tool materials Interactions with

Ni—Cr heat Carbon steels Ti alloys
resistant alloys

WC-Co carbide weak strong moderate
WC-TiC-TaC-Co carbide weak moderate very strong
Ti(C,N)-Ni-Co cermet moderate weak very strong
Al,O; ceramic weak none* very strong
Al,O,/TiC ceramic weak none very strong
Al,04/SiC(wh.) ceramic weak/moderate moderate very strong
Si;N,, based ceramics weak/moderate strong very strong
PcBN none weak moderate
PCD moderate moderate moderate

*: but Al,O5 can react with non-metallic silicate inclusions in steel.

This phase is easier to avoid with WC-TiC-TaC-Co carbides. Ceramic cutting tools
undergo a sudden loss of strength if the temperature rises to a level at which grain bound-
ary phases, often associated with sintering agents, become liquid; for example, around
1350°C for Si3N4 and above 1500°C for A1203. Finally, hard, cubic, boron nitride reverts
to its soft hexagonal form, and diamond reverts to graphite at temperatures above 1100°
and 700°C respectively. All these temperatures should be regarded as approximate only, to
indicate a ranking of thermal resistance.

High temperature interactions between tool and work materials are considered in Table
3.7. It should be possible to give critical temperatures for the onset of severe chemical
reactions, based on knowledge of the phase diagrams for the materials involved. But tool
performance depends on adhesion to the chip as well. Table 3.7 is based on common expe-
rience of the conditions of high speed machining, at a qualitative level. On the whole, a
particular tool would not be used to machine a metal with which it had a strong or very
strong interaction. Thus, there is a clear link between Table 3.7 and Table 3.2. Neither
alumina nor silicon nitride ceramics are recommended for titanium alloys because of the
very strong adherence of Al,0O; to and solubility of Si in Ti; but they are recommended for
Ni-Cr heat resistant alloys because they are relatively inert in contact with these. Table 3.7
distinguishes between the suitability of WC-Co and other carbides and cermets for the
machining of steels: WC-Co is not used at high cutting speeds because of rapid crater
wear. In Table 3.2 all carbides (and coated carbides) are considered together, with the
result that they are described as both good and all right for cutting steels.

However, there are differences between the tables. In part, these differences stem from
the fact that a tool is chosen not only for its inertness with a work material but also because
of its resistance to mechanical failure. However, just considering inertness, there is one (at
first sight) surprising difference between the two. PCD is described as interacting moder-
ately with all the alloys in Table 3.7 but is recommended for machining only Ti alloys in
Table 3.2. In fact, it reacts strongly with Ti, but only over a certain temperature. Below that
temperature there is a low adherence between the two. As already indicated in Chapter 2
(Figure 2.20) the high thermal conductivity of PCD tools helps the machining temperature
to be kept low.

These considerations of the limiting conditions of tool use now give way to a descrip-
tion of tool properties in less thermally severe situations.
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Mechanical property changes

Below the limiting temperatures of the previous paragraph, all tool materials become
softer as their temperature increases. The left-hand panel of Figure 3.22 gives represen-
tative data, mainly from manufacturers’ sources, of the reduction of Vickers Hardness
with temperature. The right-hand panel replots this and further results as hardness at
temperature relative to hardness at room temperature. As a first approximation, the rela-
tive hardnesses of all tool materials vary with temperature in the same way, up to 500°C.
At higher temperatures, the reduction in relative hardness with temperature falls into
ranges depending on the tool material type. The hardness of high speed steels falls most
rapidly. The carbides and cermets form the next group. The alumina ceramics, PcBN and
PCD all soften relatively at the same rate. The silicon nitride base ceramics are the most
temperature resistant group: without this quality, they would hardly find use as cutting
tools at all.

On the other hand, tensile rupture stress varies only slightly with temperature, up to the
tool’s limiting usefulness temperature. Figure 3.23 gathers representative data for a range
of commercial tool materials. TRS at elevated temperatures is generally within = 25% of
its room temperature value.

Thermo-elastic property changes

For completeness of information, this paragraph considers how the thermal conductivity,
heat capacity, Young’s modulus and thermal expansion coefficient of tool materials change
with temperature. Such changes, in practice, have only a minor influence on a tool’s
performance.
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Fig. 3.22 Tool hardness changes with temperature: (a) representative values and (b) expressed relative to hardness at
room temperature
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Fig. 3.23 Representative values of TRS relative to TRS at 20°C for HSS(e), carbide/cermet (x), Al,O5(0) and SisN,(+)
based tool materials

Figure 3.24(a) presents representative values of thermal conductivity. The changes that
occur with temperature are less than the differences between one tool group and another.
In principle, changes with temperature influence the partition of heat between the chip and
tool (Chapter 2.3), but in fact these changes are only rarely large enough to have a signif-
icant effect. Conductivity also can influence the thermal stresses in a tool. If, however, in
Figure 3.21, high temperature instead of room temperature conductivity values are used to
rank a tool’s thermo-elastic behaviour, the relative positions of the different tool groups in
the figure are changed only slightly.

Figure 3.24(b) presents data on how heat capacity, Young’s modulus and expansion
coefficient vary with temperature, relative to their room temperature values. The heat
capacity of all materials rises, and so the diffusivity falls, with temperature. The only effect
of this would be — in interrupted cutting conditions such as milling — marginally to increase
the time to establish a steady temperature field in the tool. As far as changes of Young’s
modulus and the expansion coefficient are concerned, the former falls and the latter rises
with temperature. The product of the two remains almost unchanged. As TRS does not
change much with temperature, neither does TRS/(Ea,).

3.2.5 Tool property changes with cyclic loading

In a milling operation in which, for example, the cutter is rotating at 1000 rev/min, each
cutting edge receives 2 x 10* impacts in a 20 min cutting period. Cutting edges may expe-
rience fluctuating forces even in turning if the chip formation process is unsteady. For
example, when turning cast iron, a discontinuous chip is formed almost every time the tool
moves the feed distance. The number of cyclic loadings in a time ¢ is then U, #/f. For
U, o = 200 m/min, £ =20 min and f'= 0.1 mm, the number of cycles is 4 x 107. Force fluc-
tuations in built-up-edge conditions occur at similar or slightly lower frequencies.
Consequently, there is an interest in knowing how a tool material may survive in fatigue
conditions, up to around 10* to 10® loading cycles.

There is not much published information on the tensile fatigue of cutting tool materi-
als. Figure 3.25 presents some sample cyclic loading — life data for a range of tool mater-
ials, mainly from manufacturers’ information, obtained from four-point bending
conditions. Tensile stresses of around 0.5TRS will produce failure in the order of 10 to
108 loading cycles.
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3.2.6 Interim summary

The previous section suggests that, to avoid failure by fatigue, in a typical tool life time, a
tool and the tool geometry should be selected to maintain the maximum tensile stress,
caused by the cutting forces, at less than half the tool’s TRS. In turning and milling oper-
ations, productivity demands that the chosen feeds and speeds are as large as temperature
rises in the tool allow. Figure 3.22 (right-hand panel) suggests that the Vickers Hardness
of a tool material at its operating temperature may be in the region of 0.4 to 0.6 of its room
temperature value. A broad generalization is that a tool material and its geometry should
be selected so that its loading brings it only half way to its room temperature plastic yield-
ing. In this section, the tool material property data of Section 3.2 will be integrated with
the work material property data of Section 3.1 to lead to predictions of how large the
wedge angle of a tool should be to prevent failure by plastic yielding or fracture, depend-
ing on the tool material and the work material. When immediate tool failure by plastic
yielding or fracture is avoided, tool life is determined by the gradual development of
damage, which is the subject of Chapter 4.

Figure 3.19 provides a basis for analysing whether a work material, characterized by a
particular shear flow stress k,, on the primary shear plane, will cause a tool of wedge
angle S to yield or fracture. If the HV and TRS ranges of particular groups of tool materi-
als are superimposed on to this figure, it is converted to one that can be used to assess how
particular tools, characterized by their material properties and wedge angle, will perform.

From the initial considerations in this section, the working ranges of HV and TRS for a
particular tool material have been considered to be half their room temperature values.
These values have been taken from Figure 3.20 and superimposed on to Figure 3.19, to
create Figure 3.26.

As an example of the use of Figure 3.26, consider the machining of a work material for
which k. = 600 MPa. Following the double-dashed line in the figure, if the material
were machined by a cemented carbide of mid-range HV and TRS, 8 would need to be
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Fig. 3.26 A way to estimate minimum tool wedge angles /3 to avoid failure of a given tool material (specified by HV
and TRS), acted on by stresses characterized by &, developed from Figure 3.19
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Fig. 3.27 Minimum values of 3 to prevent tool plastic or brittle failure, derived from Figure 3.26

chosen to be at least 90° to avoid plastic yielding and to be at least 95° to avoid fracture.
In this case, the performance of the tool is limited by fracture. (The TRS range of HSS
tools has been omitted from Figure 3.26, as it is found that fracture never limits the
performance of these tools.)

If the minimum values of B to avoid failure are estimated from Figure 3.26 for all
groups of tool materials, for all realistic values of k,,, (from 200 MPa to 1200 MPa — the
latter limit being appropriate for hardened steels), a picture can be created of how tool
wedge angles should be chosen for different materials’ combinations. The results of such
an exercise are shown in Figure 3.27. It shows how minimum £ values increase with kwork,
for high speed steel, cemented carbide and ceramic, PcBN and PCD tools. The ranges of
kyor @ppropriate to Al, Cu, Fe, Ti and Ni/Cr alloys have been taken from Section 3.1. The
next few paragraphs discuss its results in more detail.

The S limits for HSS tools are found always to be determined by plastic failure. The
figure suggests that for the lowest &, aluminium alloy and the hardest high speed steel,
B can be as small as 60°. However, for the hardest copper alloys, 3 should increase to 110°.
At the opposite extreme, the S limits for ceramic, PcBN and PCD tools are always deter-
mined by fracture. For the lowest k., aluminium alloy, the range of 3 is from 85° to 95°.
For k.4 = 800 MPa, the range is from around 110" to 130°. The response of cemented
carbide tools is between these extremes. The behaviour of the softest, toughest, carbides
(line B,C, in the figure), is limited by plastic failure. The hardest, most brittle, carbides,
on the other hand, are almost entirely limited by fracture. Line A;B;C; represents such a
carbide. The portion A;B; represents a fracture limit. Only for &, , > 1050 MPa (the
portion B;C;), is the tool limited by its hardness. The line A,B,C, represents the behav-
iour of a mid-range carbide, for kwork < 620 MPa limited by brittleness, for kwOrk > 620
MPa limited by hardness.
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The conclusions from Figure 3.27 of how large the wedge angle of a tool should be are
broadly born out in practice. High speed steel tools with rake angles as large as 30° may
be used to machine aluminium alloys. Ceramic tools frequently have negative rakes or
negative chamfers (see Section 3.2.8) of —15° to —30°. Cemented carbides become limited
by their hardness once work material shear flow stress increases above 800 MPa. For
larger flow stresses, ceramic tools become more attractive because of their greater hard-
ness. However, general experience suggests that, quantitatively, the f limits of Figure 3.27
are too large, by perhaps 5° to 10°. Nevertheless, the figure usefully guides the choice of
tool materials and their shape to avoid mechanical failure.

Finally, it must be written that all the considerations of this section have been in terms
of plane rake faced tools. In practice, cutting edges are strengthened against failure by edge
preparations that include radiusing and chamfering. The minimum wedge angles of this
section should more properly be interpreted as local to the cutting edge. The topic of tool
cutting edge geometry is more fully considered in Section 3.2.8.

3.2.7 Tool coatings

The microstructure that gives a tool its required bulk hardness and toughness may not be
the best to give the rake and clearance surfaces the best wear resistance. Cemented carbide
tools illustrate this very well. The toughest and hardest can be made from WC-Co (K-
grade) materials — and WC-Co has the highest thermal conductivity and is the cheapest
material too; but WC-Co suffers from severe crater wear when cutting steels at high speed.
Originally, this led to steels being machined by WC-TiC-TaC-Co (P-grade) materials, but
these are inherently less tough, so higher cobalt contents are needed — leading to less hard
grades. Fortunately, tool geometry is also available to be modified — so a satisfactory solu-
tion can be found to the machining of steels with cemented carbides. Nowadays, the solu-
tion is to use coated tools — their bulk optimized to resist failure and their surfaces coated
to resist wear. The field of endeavour that seeks to optimize bulk and surface properties by
coating is known as Surface Engineering. Various estimates indicate that, currently, from
around 70% of cemented carbides sold for turning and 25% for milling, to up to 80% of
all cemented carbides, are coated. Whatever the real figure, it is a clear majority of
cemented carbides. In this section, the nature and choice of coatings are briefly considered,
as well as the variety of manufacturing processes that lead to different qualities and appli-
cations. The main focus will be coated carbides, but high speed steel tools are also
frequently coated (Hoyle, 1988), and there are possibilities of coating ceramic tool mater-
ials (Komanduri and Samanta, 1989; Santhanam and Quinto, 1994). These will also be
mentioned.

Coating materials and properties

Coatings should be harder than the cemented carbides themselves, in order to give benefit
in resisting abrasive wear, must be more inert to resist chemical wear, and must adhere well
to the substrate. The three most common materials that satisfy these criteria (others will be
mentioned later) are TiN, TiC and A1203. It is commonly said that TiC is the hardest and
therefore best in resisting abrasive wear, that A1203 is the most inert, and TiN is a good all
purpose material. In fact, the choice of coating depends on its use, as indicated in Table
3.8. The flank wear information comes from (Santhanam er al., 1990) and that for crater
wear from an industry source. Information on WC-Co is included for comparison. The
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Table 3.8 The ranking of coating materials for flank and crater wear resistance

Flank wear resistance” Crater wear resistance in turning
at a cutting speed (m/min) of
Rank Carbon Stainless Ti
(1 = best) 150 275 steels steels alloys
1 TiC AlLO; Al, O, TiN (WC-Co)
2 TiN TiC TiN TiC TiC
3 Al, O, TiN TiC Al,O4 TiN
4 (WC-Co) (WC-Co) (WC-Co) (WC-Co) Al Oy

* turning 0.45%C steel at a feed of 0.4 mm/rev.
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Fig. 3.28 The temperature dependence of hardness and standard free energy of formation of some coating materi-
als, from Santhanam and Quinto (1994)

hardest material is in fact the best for flank wear resisitance at the lower cutting speed and
the most inert (against steel) is the best for crater wear resistance. However, coating mater-
ial properties change with temperature; and factors other than abrasion resistance and
inertness are important too.

Figure 3.28 shows how the hardness and free energies of formation of coating materi-
als vary with temperature (and Table 3.9 gives other property data). TiC is only hardest at
room temperature. Above 600°C, Al,Oj; is the hardest. As cutting speed increases, so does
the flank temperature. Additionally, the cutting process is likely to become steadier, with
smaller force fluctuations. This also favours the use of Al,O; which is more brittle than
the other coatings (it is not easy to put a number to this — so there is no data on fracture
behaviour in Table 3.9). These two factors account for the changes in flank wear resistance
rankings with cutting speed of the coating materials.

The free energy of formation of a compound is the internal energy change associated
with its creation from its elements, for example for the creation of A1203 from aluminium
and atomic oxygen. The more negative it is, the more stable is the compound. Figure 3.28
confirms that Al,O; is more stable than TiN by this measure, and TiN is, in turn, more
stable than TiC or WC. However, the ranking for crater wear resistance only follows this
order (Table 3.8) for turning carbon steels. For stainless steels, AL,O; is reduced to the
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Table 3.9 Thermal and elastic properties of cemented carbides and their coatings

Thermal conductivity [W/m K]

o, Young’s
Material [10°K 1] modulus [GPa] 100°C 1000°C
TiC 7.4-7.7 =450 24-33 3841
TiN 94 =~ 250 19-21 25-26
Al O, 8.4-9.0 = 400 20-28 6-7.5
WC-Co* 4.5-6.0 550-650 75-120 50-75
WC-TiC-TaC-Co* 5.8-6.8 490-560 25-55 20-50
Co =12 =~ 180 70 -

* from Table 3.5.

third rank. This again illustrates the importance of mechanical effects as well as chemical
effects in wear. The relatively brittle Al,O; cannot stand up to the strong force fluctuations
caused by serrated chip formation when machining stainless steels. The complete reversal
of rank order relative to steels when turning Ti alloys just indicates the care that must be
taken when applying thermodynamic principles to wear processes. Although Figure 3.28
gives free energies of the formation of coating materials from their elements, it says noth-
ing about the free energies of other compounds that may be formed by reactions with tita-
nium.

The practical conclusion is that all three coatings are useful. By the time other factors
are considered, which stem from different manufacturing processes and the possibility of
creating coatings in which all three materials exist in consecutive layers, it is easy to under-
stand that surface engineering creates a large opportunity to optimize a tool for a particu-
lar operation. It becomes a marketing judgement whether to offer a tool specialized for a
narrow use or one generalized for a broad application range.

CVD coatings

The earliest tool coatings were made by chemical vapour deposition (CVD). In the CVD
process, inserts to be coated are placed in a hydrogen reducing atmosphere furnace — with
the hydrogen typically at about 10% of atmospheric pressure. Gases containing the coat-
ing elements are added to the atmosphere and circulated through the furnace and over the
inserts. The coatings are formed on the surfaces of the inserts, by chemical reactions
between the gases, depending on the temperature of the surfaces. Typical temperatures for
the formation of TiC, TiN and Al,O; on the surfaces of cemented carbides are around
1000°C. Some of the furnace atmospheres and the reactions that lead to the coatings are:

TiCl,(gas) + CH(gas) + H,(gas) = TiC(solid) + 4HCl(gas) + H,(gas)
2TiCl4(gas) + N,(gas) + 4H,(gas) = 2TiN(solid) + 8HCl(gas)
2AIClI;(gas) + 3CO,(gas) + 3H,(gas) = Al,05(solid) + 6HCl(gas) + 3CO(gas)

Coating rates are around 1 um/hr (for good performance coatings) and changing the reac-
tive gases throughout the process can lead to the build-up of coatings with different
compositions throughout their depth.

The first coating to be commercialized (in the early 1970s) was TiC on WC-Co. TiC is
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a natural component of cemented carbides and it was found that its adhesion to the
substrate was stronger than that of the other coating materials. Its thermal expansion coef-
ficient (Table 3.9), although greater than that of the cemented carbide substrate, is closest
to it. As the substrate cools down, tensile thermal strains are set up in the coating, but they
are less than those that would be set up in the other coating materials. Even today, with
multi-layer coatings common, TiC is frequently chosen for the layer closest to the
substrate, because of its good adhesion and thermal expansion coefficient match. When
other coating materials are built-up on it, the order tends to be that of increasing thermal
expansion coefficient, to minimize thermal strains. Thus, common multi-layer coatings
are:

TiC + Al,O4
TiC + AL,O; + TiN
TiC + Ti(C,N) + TiN

where Ti(C,N) is a further coating type formed by a gradual change from CH, to N, in the
reacting gases.

The thicker the coating, the longer its life may be expected to be. If the coating is too
thick, however, it will lose the toughening reinforcement that it gains from its substrate.
The tensile thermal strain resulting from its thermal mismatch with the substrate will
further contribute to its failure. Even if cracks in a coating, caused by thermal strains, do
not cause the coating to break away from the substrate, the cracks are sources of stress
concentration that lead to a lowering of the substrate’s resistance to fracture. For these
reasons, practical CVD films are typically more than 4 ym but less than 12 um thick.

The nature of their chemical formation results in their surfaces being quite rough. The
roughness profile of a coated tool in Figure 2.24 is for a CVD coating. Its R, is 0.5 um.
Further, the coating builds-up rather irregularly on a sharp cutting edge — it is common
practice to hone the cutting edges of CVD coated tools, to the region of 40 um to 70 ym.
Such radii, particularly when increased by the thickness of the CVD coating are large
compared with feeds of around 0.1 mm typical of finishing operations. Thus, the original
CVD coatings were better suited to general and roughing turning operations than to finish-
ing operations. Additionally, their inherent tensile residual stresses made them less able to
stand intermittent cutting conditions as occurred in milling. CVD coatings were used in
turning more than in milling.

Tool substrate compositions

These limitations have, to some extent, been reduced by the development of substrate
compositions especially to support the coatings — it might be called Subsurface
Engineering. Returning to a consideration of the adhesion of TiC to substrate material,
although it adheres very well to WC-Co, it is possible, if close control of the process is not
maintained, to damage the substrate microstructure during manufacture. An alternative to
the reaction of TiCl, with CH, to form TiC is

TiCl,(gas) + C(from substrate) + 2H,(gas) = TiC(solid) + 4HCI(gas)

If this occurs, the loss of carbon from the substrate can result in the brittle n-phase (Section
3.2.4) forming. Some manufacturers have avoided this problem by developing coated tools
on P-type substrates (the carbon content in these is less critical, and it is easier to avoid the
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n-phase). In any case, using a P-type substrate would give added life to a tool used to cut
steels once the coating wore off or if it failed. To compensate for loss of toughness on
changing from K- to P-type, such substrates were typically manufactured with a greater
%Co for a given grade of duty than if they were uncoated. Thus began the development of
special substrate compositions for coated tools. By the early 1980s, substrates were being
manufactured with surface layers containing from 1.5 to 3 times the amount of cobalt to
that in the bulk, and from 10 um to 30 um thick, on near WC-Co bulk compositions.
Toughness is maintained near the surface without reducing the hardness of the bulk.
Considering the high thermal expansion coefficient of cobalt (Table 3.9), the surface layer
of the substrate is better thermally matched to the coating materials and thermal strains are
reduced. CVD-coated tools began to find uses in interrupted turning and light milling oper-
ations.

Considering the thicknesses of both the coatings and modified substrate surface layers,
the composition (and hence thermal and mechanical properties) of CVD-coated tools can
vary over depths of up to around 40 ym. This is not insignificant relative to the size of the
stressed and heated regions during cutting. Detailed understanding of the interactions
between the graded surface compositions and the mechanical and thermal fields generated
in machining, leading to still further improvements in tool design, continues to develop.

PVD coatings

An alternative process for manufacturing coatings is Physical Vapour Deposition (PVD).
It is similar to CVD in its productivity (in its basic form, deposition rates are also around
1 um/hr) but requires substrates to be heated only to a few 100°C, say 500°C, so coatings
can be deposited without the need to guard against unfavourable changes to the substrate.
In contrast to CVD, in which the metallic elements of the coating are obtained from gases
at around 10% atmospheric pressure, in PVD the metallic elements are obtained from
solids in a high vacuum chamber environment. There are many variants of the process but
all involve establishing a large electric potential difference (of the order of kV) between
the substrate and a solid source of elements to be deposited on the substrate; and creating
a glow discharge plasma between the two, typically with argon gas at low pressure.
Material is evaporated from the source (by some form of heating or bombardment), is
ionized in the plasma and is accelerated towards and adheres to the substrate. The source
may have the composition of the material of the coating, or more commonly it may be a
metal — for example titanium. In the latter case, for example in forming a TiN coating,
nitrogen gas is also admitted to the plasma. The Ti ions combine with the nitrogen, to
condense as TiN on the substrate.

The microstructure and properties of the coating are controlled by the substrate temper-
ature and the deposition rate. It has been found that coatings can be grown with residual
compressive stresses in them, but thicknesses are limited to about 5 um. Coatings made by
PVD are much smoother than by CVD and can be deposited on to sharp edges. Experience
has shown that they are more suitable for milling operations (because of their compressive
stresses) and finishing operations (because of the possibility of using sharp edged tools
(down to 10 um to 20 um edge radius). The range of coating types is not as wide as with
CVD. TiN was the first coating type successfully to be developed by PVD. This was
followed by TiC and Ti(C,N); and (Ti,Al)N has also been developed. There is great diffi-
culty in generating Al,O, coatings with a strong, coherent microstructure. Cermets as well
as cemented carbides are being coated by PVD.
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Fig. 3.29 The relation between thermal conductivity and density for coated cemented carbide and cermet substrate
materials

Coating developments and summary

Coating technologies continue to develop. For example, there are intermediate processes
between CVD and PVD in which coatings are formed with the chemical variability of
CVD but in which the substrate needs to be heated only to, say, 800°C. Today there is a
wide variety of choice in the purchase of coated tools and production engineers rely heav-
ily on the advice of tool manufacturers and their own practical trials. Tool manufacturers
are rather secretive about their manufacturing processes; and even about what the substrate
material is beneath a coating. When an engineer buys a coated tool he or she rarely knows
what is beneath the coating. Short of cutting up a tool and examining it, the next best way
of satisfying curiosity as to what is a tool’s substrate, is to weigh it. There is a strong rela-
tion between density and carbide composition — and between that and tool thermal conduc-
tivity — as shown in Figure 3.29.

This section has concentrated on TiC, TiN and Ale3 coatings on cemented carbides.
At the time of writing, there is much activity in trying to develop PCD-coated tools. There
are also many instances in which high speed steel tools are coated with PVD TiN, TiCN
or TiAIN. Chromium nitride, boron nitride and boron carbide coatings are also under
investigation. TiN and TiC coatings have also been found to be useful on silicon nitride
ceramic tools. However, as far as this chapter is concerned, the main lesson is that Surface
Engineering has enabled the substrates of cutting tools to be designed for hardness and
toughness, separately from considerations of wear resistance. As far as CVD-coated tools
are concerned, the depth over which material composition and properties change is signif-
icant relative to the distances over which stresses and temperatures penetrate the tool. For
PVD-coated tools, the variations of composition and properties are much more superficial.

3.2.8 Tool insert geometries

At the start of Section 3.2, the stresses in a tool were considered, assuming the tool to have
a plane rake face. This later led to a conclusion of the minimum wedge angle that a tool
should have to avoid failure by yielding or fracture (Figure 3.27). In practice, many tools
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do not have plane rake faces. This is particularly true of indexable inserts, manufactured
by sintering and first mentioned in Chapter 1.

There are three main reasons for modifying cutting edge geometry: to strengthen the
edge, to reduce cutting forces and to control chip flow. The basic ways of achieving these
are illustrated, in two dimensions, in Figure 3.30.

Edge strengthening involves changing the edge shape over distances of the same order
as the feed length. Figure 3.30(a) shows an edge region chamfered at an angle o, over a
length T and honed to an edge radius R. Recommendations in the early 1990s for edge
preparation of ceramic cutting tools were typically chamfers for a length T between 0.5f
and 0.75f for turning operations and 1.2f to 1.5f for milling; with a, from 15° to 30°
depending on the severity of the machining operation; and edge radii ranging from 0.013
mm to 0.076 mm for finishing operations, up to 0.13 mm in more severe conditions
(Adams et al., 1991). Today, with improved grinding procedures (and perhaps better
ceramic tool toughness too), chamfer lengths for general machining are reduced to 0.1 to
0.4f for turning and 0.5f for milling; and edge radii in general machining are 0.02 to 0.03
mm, with no radiusing — only chamfering — for finishing operations.

Changes to reduce cutting forces involve altering the rake face over lengths of several
times the feed (Figure 3.30(b)). The rake face beyond a land / of length between 1f and 2f
is cut-away to a depth d typically also between 1f and 2f, established over a length L from
3fto 6f. The land restriction causes a reduced chip thickness.

A disadvantage of cutting away the rake as just described is that, generally, the chips
become straighter, and in a continuous process (such as turning) this can lead to long
unbroken chips that are difficult to dispose of. In order to control the flow, the cut-away
region is usually ended in a back wall (Figure 3.30(c)), so that the cut-away forms some
groove shape. When a chip hits the back wall, it is deflected and has a good chance of

Fig. 3.30 Modifications to a square cutting edge for (a) edge strengthening, (b) cutting force reduction and (c) chip
control
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Fig. 3.31 Three-dimensional opportunities for edge strengthening and chip control, not to scale: rake profile varying
(@) smoothly along a cutting edge and (b) in a ‘rib and pocket’ manner

breaking when its tip hits either the tool holder or the work. There is a wide variety of prac-
tical groove shapes. They can be curved or triangular, symmetrical or unsymmetrical. The
height d* of the back wall can be greater or less than the groove depth d. In some cases,
the back wall is formed without a groove at all. Inserts can be designed for use over a wide
range of feeds by creating the groove features as a series of terraces, so that the smallest
feeds involve chip contact only with the terrace nearest the cutting edge and larger feeds
result in contact over several terraces. Of course, the larger feed features of Figures 3.30(b)
and (c) can be combined with the sub-feed strengthening features of Figure 3.30(a).

Figure 3.30 takes a two-dimensional view of a cutting edge. Real inserts are three
dimensional — and this gives further opportunity for ingenuity in tool design. Sections as
in Figure 3.30 can be varied along the cutting edge. This possibility is shown in Figure
3.31(a). The rake face groove at the corner of an insert can be shaped differently from that
along the edge, either to ensure that the corner is strong enough or to help guide the chip
away from the corner region, or both.

A different type of modification is shown in Figure 3.31(b). A curling chip is more
likely to break, when it hits an obstruction, the larger is its second moment of area, I. Chips
formed over plane or smoothly varying rake faces are approximately rectangular in section
— and have a relatively small /-value. If they can be corrugated, their / value is raised. The
rib and pocket form of the rake face in Figure 3.31(b) can cause such corrugation, if it is
designed correctly. As an alternative to the rib and pocket style, the whole cutting edge
may be made wavy, or bumps instead of pockets can be formed on the rake. Every manu-
facturer has a different way in which to achieve the same effect. Interested readers should
look at manufacturers’ catalogues or refer to a recent handbook (Anon, 1994).

Improved tools, combining new shapes with better surface engineering, continue to be
developed. Finite element modelling, introduced in Chapter 6, is starting to contribute to
these better designs. However, amongst its required inputs is material property information
of the sort collected in this chapter.
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Tool damage

Chapter 3 considered cutting tool minimum property requirements (both mechanical and
thermal) to avoid immediate failure. By failure is meant damage so large that the tool has
no useful ability to remove work material. Attention is turned, in this chapter, to the mech-
anisms and characteristics of lesser damages that accumulate with use, and which eventu-
ally cause a tool to be replaced. In reality, there is a continuous spectrum of damage
severities, such that there is no sharp boundary between what is to be considered here and
what might in practice be described as immediate failure. There is some overlap between
this chapter and the previous one.

Chapters 2 and 3 have demonstrated that cutting tools must withstand much higher fric-
tion and normal stresses — and usually higher temperatures too — than normal machine tool
bearing surfaces. There is, in most cases, no question of avoiding tool damage, but only of
asking how rapidly it occurs. The damages of a cutting tool are influenced by the stress
and temperature at the tool surface, which in turn depend on the cutting mode — for exam-
ple turning, milling or drilling; and the cutting conditions of tool and work material,
cutting speed, feed rate, depth of cut and the presence or not of cutting fluid and its type.
In Chapter 2, it was described in general that wear is very sensitive to small changes in
sliding conditions. In machining, the tool damage mode and the rate of damage are simi-
larly very sensitive to changes in the cutting operation and the cutting conditions. While
tool damage cannot be avoided, it can often be reduced if its mode and what controls it is
understood. Section 4.1 describes the main modes of tool damage.

The economics of machining were introduced in Chapter 1. To minimize machining
cost, it is necessary not only to find the most suitable tool and work materials for an oper-
ation, but also to have a prediction of tool life. At the end of a tool’s life, the tool must be
replaced or reground, to maintain workpiece accuracy, surface roughness or integrity.
Section 4.2 considers tool life criteria and life prediction.

4.1 Tool damage and its classification

4.1.1 Types of tool damage

Tool damage can be classified into two groups, wear and fracture, by means of its scale
and how it progresses. Wear (as discussed in Chapter 2) is loss of material on an asperity
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Fig. 4.1 Typical wear pattern of a carbide tool

or micro-contact, or smaller scale, down to molecular or atomic removal mechanisms. It
usually progresses continuously. Fracture, on the other hand, is damage at a larger scale
than wear; and it occurs suddenly. As written above, there is a continuous spectrum of
damage scales from micro-wear to gross fracture.

Figure 4.1 shows a typical damage pattern — in this case wear — of a carbide tool, cutting
steel at a relatively high speed. Crater wear on the rake face, flank wear on the flank faces
and notch wear at the depth of cut (DOC) extremities are the typical wear modes. Wear
measures, such as VB, KT are returned to in Section 4.2.

Damage changes, however, with change of materials, cutting mode and cutting condi-
tions, as shown in Figure 4.2. Figure 4.2(a) shows crater and flank wear, with negligible
notch wear, after turning a medium carbon steel with a carbide tool at high cutting speed.
If the process is changed to milling, a large crater wear with a number of cracks becomes
the distinctive feature of damage (Figure 4.2(b)). When turning Ni-based super alloys
with ceramic tools (Figure 4.2(c)) notch wear at the DOC line is the dominant damage
mode while crater and flank wear are almost negligible. Figure 4.2(d) shows the result
of turning a carbon steel with a silicon nitride ceramic tool (not to be recommended!).
Large crater and flank wear develop in a very short time. In the case of turning S-phase
Ti-alloys with a K-grade carbide tool, large amounts of work material are observed
adhered to the tool, and part of the cutting edge is damaged by fracture or chipping
(Figure 4.2(e)).
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(c) Turning Inconel 718 (d) Turning a 0.45% carbon steel

(e) Turning a Ti alloy

Fig. 4.2 Typical tool damage observations - both wear and fracture: (a) Tool: cemented carbide P10, v= 150 m min',
d=1.0mm, f=0.19 mmrev-!, =5 min; (b) tool: cemented carbide P10, v= 400 m min™", d= 1.0 mm, f=0.19
mm tooth™", t= 5 min; (c) tool: AL,Oy/TiC ceramic tool, v=100 m min™", d= 0.5 mm, f=0.19 mm rev"', t= 0.5 min;
(d) tool: SisN, ceramic tool, v=300 m min™!, d=1.0mm, f=0.19 mm rev-!, t = 1 min; (e) tool: cemented carbide
P10, v=150mmin™!, d=0.5mm, f=0.1 mm rev-!, t= 2 min.
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4.1.2 Causes of tool damage

Chapter 2.4 outlined the general conditions leading to abrasive, adhesive and chemical wear
mechanisms. In the context of cutting tool damage, the importance and occurrence of these
mechanisms can be classified by cutting temperature, as shown in Figure 4.3. Three causes
of damage are qualitatively identified in the figure: mechanical, thermal and adhesive.
Mechanical damage, which includes abrasion, chipping, early fracture and fatigue, is basi-
cally independent of temperature. Thermal damage, with plastic deformation, thermal diffu-
sion and chemical reaction as its typical forms, increases drastically with increasing
temperature. (It should be noted that thermal diffusion and chemical reaction are not the
direct cause of damage. Rather, they cause the tool surface to be weakened so that abrasion,
mechanical shock or adhesion can then more easily cause material removal.) Damage based
on adhesion is observed to have a local maximum in a certain temperature range.

Mechanical damage
Whether mechanical damage is classified as wear or fracture depends on its scale. Figure
4.4 illustrates the different modes, from a scale of less than 0.1 um to around 100 um
(much greater than 100 um becomes failure).

Abrasive wear (illustrated schematically in Figure 2.29) is typically caused by sliding
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hard particles against the cutting tool. The hard particles come from either the work mater-
ial’s microstructure, or are broken away from the cutting edge. Abrasive wear reduces the
harder is the tool relative to the particles and generally depends on the distance cut (see
Section 4.2.2).

Attrition wear occurs on a scale larger than abrasion. Particles or grains of the tool
material are mechanically weakened by micro-fracture as a result of sliding interaction
with the work, before being removed by wear.

Next in size comes chipping (sometimes called micro-chipping at its small-scale limit).
This is caused by mechanical shock loading on a scale that leads to large fluctuations in
cutting force, as opposed to the inherent local stress fluctuations that cause attrition.

Finally, fracture is larger than chipping, and is classified into three types: early stage,
unpredictable and final stage. The early stage occurs immediately after beginning a cut if
the tool shape or cutting condition is improper; or if there is some kind of defect in the
cutting tool or in its edge preparation. Unpredictable fracture can occur at any time if the
stress on the cutting edge changes suddenly, for example caused by chattering or an irreg-
ularity in the workpiece hardness. Final stage fracture can be observed frequently at the
end of a tool’s life in milling: then fatigue due to mechanical or thermal stresses on the
cutting edge is the main cause of damage.

Thermal damage - plastic deformation

The plastic deformation type of thermal damage referred to in Figure 4.3 is observed when
a cutting tool at high cutting temperature cannot withstand the compressive stress on its
cutting edge. It therefore occurs with tools having a high temperature sensitivity of their
hardness as their weakest characteristic. Examples are high speed steel tools in general;
and high cobalt content cemented carbide tools, or cermet tools, used in severe conditions,
particularly at a high feed rate. Deformation of the edge leads to generation of an improper
shape and rapid material removal.

Thermal damage - diffusion
Wear as a result of thermal diffusion occurs at high cutting temperatures if cutting tool and
work material elements diffuse mutually into each other’s structure. This is well known
with cemented carbide tools and has been studied over many years, by Dawihl (1941),
Trent (1952), Trigger and Chao (1956), Takeyama and Murata (1963), Gregory (1965),
Cook (1973), Uehara (1976), Narutaki and Yamane (1976), Usui et al. (1978) and others.
The rates of processes controlled by diffusion are exponentially proportional to the
inverse of the absolute temperature 6. In the case of wear, different researchers have
proposed different pre-exponential factors: Cook (1973) suggested depth wear 4 should
increase with time ¢ (equation 4.1(a)); earlier, Takeyama and Murata (1963) also suggested
this and the further possibility of sliding distance s being a more fundamental variable
(equation 4.1(b)); later Usui et al. (1978), following the ideas of contact mechanics and
wear considered in Chapter 2.4, proposed wear should also increase with normal contact
stress o, (equation 4.1(c)). In all these cases, a plot of In(wear rate) against 1/6 gives a
straight line, the slope of which is —C,.

dh C,
— =Ciexp |-——— (4.1a)
dt 0
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Figure 4.5 shows experimental results for both the crater and flank depth wear rates of
a 0.25%C and a 0.46%C steel turned by a P20 grade carbide tool, plotted after the manner
of equation (4.1c). Two linear regions are seen: in this case the boundary is at 1/8 = 8.5 X
104 K-! (or 6 = 1175 K). The slope of the higher temperature data (8 > 1175 K) is typi-
cal of diffusion processes between steels and cemented carbides (Cook, 1973). The smaller
slope at lower temperatures is typical of a temperature dependent mechanical wear
process, for example abrasion.

Diffusion can be directly demonstrated at high temperatures in static conditions. Figure
4.6 shows a typical result of a static diffusion test in which a P-grade cemented carbide tool
was loaded against a 0.15% carbon steel for 30 min at 1200°C. A metallographic section
through the interface between the carbide tool and the steel, etched in 4% Nital (nitric acid
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Fig. 4.5 Crater and flank depth wear rates for carbon steels turned by a P20 carbide, from Kitagawa et al. (1988)
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and alcohol) shows that the pearlite in the steel has increased from its original level. This
means that carbon from the cemented carbide has diffused into the steel. Furthermore, elec-
tron probe micro-analysis (EPMA) shows that Co and W from the tool material also diffuse
into the steel; and iron from the steel diffuses into the tool material. Many researchers agree
that mutual diffusion is the cause of carbide tool diffusion wear, but there is not agreement
in detail as to the mechanism that then results in material removal.

Naerheim and Trent (1977) have proposed that the wear rates of both WC-Co (K-grade)
and WC-(Ti,Ta,W)C-Co (P-grade) cemented carbides are controlled by the rate of diffusion
of tungsten (and Ti and Ta) and carbon atoms together into the work material, as indicated
in Figure 4.7. This view is based on transmission electron microscope (TEM) observations
on crater wear that show no structural changes in the tool’s carbide grains within a distance
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Fig. 4.7 Model of diffusion wear, after Naerheim and Trent (1977)

of 0.01 um of the tool—chip interface. The slower wear of P-grade than K-grade materials
is explained by slower diffusion in the former than the latter case. Naerheim and Trent state
that, in their cutting tests, pulled-out carbide grains were not observed adhering to the
underside of chips. This was not Uehara’s (1976) experience. He collected chips after turn-
ing a 0.47% C steel with a K-grade or a P-grade tool, dissolved the chips in acid to extract
adhered carbides and finally passed the solution through a 0.1 um filter, to classify the
carbide sizes. With K-grade tools, he only observed carbides less than 0.1 um in size, in
accord with Trent. However, with P-grade tools he observed carbides greater than 0.1 ym in
size. This suggests a different wear mechanism for K- and P-type materials.

Other examples of diffusion wear are the severe wear of diamond cutting tools, silicon
nitride ceramic tools and SiC whisker reinforced alumina ceramic tools when machining
steel. Carbon, silicon and nitrogen all diffuse easily in iron at elevated temperatures; and
silicon nitride and silicon carbide dissolve readily in hot iron.

Thermal diffusion wear of carbide tools can be decreased if a layer acting as a barrier
to diffusion is deposited on the tool. There are two types of layer in practice: one is as
provided by coated tools; the other is a protective oxide layer deposited on the wear
surfaces during cutting special deoxidized steels (for example Ca-deoxidized steels),
commonly known as a ‘belag’ layer.

Thermal damage — chemical reaction

Chemical reaction wear occurs when chemical compounds are formed by reaction of the
tool with the work material (or with other materials, such as oxygen in air or sulphur and
chlorine in a cutting fluid) and when the compounds are then carried away by the chip
(from the rake face) or work (from the flank faces).

Oxidation wear is best known. The cutting tool and/or work material are oxidized; and
the tool surface, either directly weakened by oxidation or by reaction with oxidized work
material, is then carried away by the chip. An example of oxidation wear occurs on the
rake face of cemented carbide tools in high speed milling of steel. In milling, crater wear
increases drastically with an increase of cutting speed, more so than in turning. Figure 4.8
shows the increase of both flank and crater wear with cutting edge engagement time for
two different cutting speeds when turning and milling a 0.45% plain carbon steel under the
same feed and depth of cut conditions. The increase of wear rate with cutting speed is
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Fig. 4.9 Influence of oxygen on crater wear when milling a 0.45% carbon steel with a P10 carbide tool at 239 m/min
(Yamane and Narutaki, 1983)

much less on the flank face than on the rake face, and the difference between milling and
turning is much less on the flank too, probably because of the lower temperature on the
flank. On the rake face, crater wear is almost the same in turning and milling at the rela-
tively low cutting speed of 150 m/min, but at 236 m/min crater wear in milling becomes
much more rapid than in turning. The wear mechanism is the oxidation of chips adhered
to the rake face during the out-of-cut time in milling, to form FeO, followed by reaction of
the FeO with the cemented carbide tool to weaken it.

Direct evidence of the influence of oxygen on carbide tool wear in milling comes from
machining in a controlled atmosphere environment (Figure 4.9). In the same high speed
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cutting conditions as in Figure 4.8, crater wear rate is reduced from its milling towards its
turning level by reducing the amount of oxygen in the atmosphere.

Oxidation wear is also found with alumina ceramic tools in high speed milling of steels.
The same oxidation of steel adhering to the tools’ rake face occurs as with cemented
carbide tools. FeO reacts with alumina at high temperatures to form weak, easily removed,
mixed oxides.

Thermal damage - electro-motive force (EMF) wear

A further thermal wear mechanism, not listed in Figure 4.3, is considered to occur by
several researchers. When cutting with electrically conducting tools, such as high speed
steels and cemented carbides, the tool and work materials generally have different chemi-
cal compositions. A thermal EMF, based on the difference between the cutting tempera-
ture and room temperature is generated (the Seebeck effect). An electric current then flows
around the closed circuit of work, tool and machine tool. Reports about its effect on wear
do not always agree with one another and further investigation is required to establish if it
is important.

Adhesion

The third damage mechanism in Figure 4.3 is adhesive wear. It occurs when work or chip
material pressure welds (adheres) to the tool — which generally requires high temperature
— and has high strength in that condition. Stainless steels, Ni-based super alloys and Ti
alloys show this behaviour well. If the adhesive shear strength between the tool and welded
chip or work is larger than a failure strength away from the interface, adhesive transfer
between work, chip and tool will occur. Transfer will be from the chip or work to the tool
if the weakest point is in the chip or work — this can lead to one type of built-up edge
formation. Transfer from the tool to the work or chip occurs if the weakest point is in the
tool. Adhesive wear is the repeated adhesion of material to the tool, followed by failure
within the tool. At low cutting temperatures, it is reduced because of a low adhesion
tendency. At high cutting temperatures it is reduced because thermal softening changes
failure from within the tool back to the interface or to within the work or chip. Thus, it
peaks at some intermediate temperature. Its peak magnitude increases as the tool’s resis-
tance to shear failure reduces.

Examples of adhesive wear are shown in Figures 4.10 and 4.11, after turning a Ni-based
super alloy, Inconel 718, with an alumina/TiC ceramic tool. Figure 4.10 shows scanning
electron microscopy (SEM) views of the DOC notch wear region after dissolving adhered
chip material in nitric acid. The damaged surface of region A looks fractured rather than
worn. Figure 4.11 shows the characteristic peaking of the notch wear at some temperature,
in this case near to 1000°C.

4.1.3 Tool damage and cutting conditions

Figure 4.3 is qualitative. The temperatures at which thermal and adhesion damages occur
vary with the tool material, as well as with what work the tool is machining. Figure 4.12
shows some detail of this — there is some overlap with Chapter 3 (Tables 3.6 and 3.7).

Diamond, the hardest cutting tool material, starts to carbonize in air over 600°C. It
diffuses into iron or steel at higher temperatures, causing diffusion wear problems with
these work materials.
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Fig. 4.10 SEM views of DOC region of an Al,O/TiC tool after turning Inconel 718

Cubic boron nitride (cBN), a material that does not exist naturally but is synthesized
under ultrahigh pressure and temperature, is stable against diffusion for practically all
metals. Its weakness is its failure under shear, so adhesive wear occurs when cutting mater-
ials with a tendency to adhere to it.

Among ceramic tools, alumina, silicon nitride and whisker reinforced ceramics,
alumina tools are the most stable. Silicon nitride reacts readily with iron or steel at high
temperature, leading to diffusion wear. Diffusion wear also leads to tool weakening of
whisker reinforced ceramics, if the whisker component reacts with the work material — SiC
whiskers reacting with steel is an example of this. In general, all ceramic tools, because of
their low toughness, are susceptible to adhesive wear when machining materials that
adhere to them.

For cemented carbide tools, thermal diffusion wear increases remarkably at tempera-
tures over 1000°C, while the main thermal damage of HSS tools is plastic deformation,
caused by hardness reduction over the tempering temperature range.

cBN, ceramic and cemented carbide tools also tend to react at high temperature with
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Fig. 4.1 Al,04/TiC DOC notch wear variation with temperature, turning Inconel 718 for 30 s at various speeds at a
feed of 0.19 mm and a depth of cut of 0.5 mm, after Narutaki and Yamane (1993)
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Fig. 4.12 Tool damage and cutting temperature

unstable oxides, such as FeO, or sulphides, such as MnS. If such oxides or sulphides are
present at the tool/chip or work interface, thermal wear based on reactions with them must
be considered.

In the case of coated tools, wear of the tool depends on the coated material, until it is
worn away. TiC, TiN, (TiAD)N and Al,O; are the most popular as they have high thermal
stability and low reactivity with steels, compared with WC. Therefore, coated tools can
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withstand thermal wear at higher cutting temperature. After the layer is worn away, the
tool’s wear rate, in general, returns to that of the substrate.

4.2 Tool life

As tool damage, by wear or fracture, increases, the surface roughness and accuracy of the
machined surface deteriorates. Eventually the tool must be changed. Some criteria must be
developed to decide when to do this. In factories there is a tendency to adopt flexible crite-
ria according to the needs of a particular operation, while in laboratories inflexible criteria
are adopted to evaluate tool and work material machining capabilities.

4.2.1 Tool life criteria

In factories, where the concern is acceptable accuracy or surface roughness, the most suit-
able way to judge tool life is by measuring the size or roughness of machined parts. Life
is determined when the measured levels exceed a limit. In this approach, it is the parts that
must always be measured; however, this is not always easy or cost-effective. An alterna-
tive is to monitor the wear of the tool and to judge the state of the part from a tool wear
criterion. Unfortunately, there is not always a unique relation between tool wear and work
material surface roughness or accuracy; and measuring tool wear increases non-productive
time. Since chip shape sometimes changes with tool wear, change of chip shape is occa-
sionally used as a criterion; but commonly in mass production industries, as a consequence
of difficulties of measurement and interpretation, the simple approach is taken to specify
the number of machined parts expected from a tool. The number is determined from a
primary test, but it must be set with some safety factor — so this leads to machining costs
being greater than they could be.

In laboratories, tool wear is almost always used as a life criterion because it is easy to
determine quantitatively. The amount of flank wear is often used as the criterion because
it is flank wear that influences work material surface roughness and accuracy. When abra-
sion is the main cause of flank wear, the wear pattern is relatively uniform and easy to
measure. A standard measure of tool life is the time to develop a flank wear land (VB, see
Figure 4.1) length of 300 um, although this is more related to a life limited by failure than
by surface finish or accuracy. However, when chipping generated by adhesion or thermal
cracking is the main cause of flank wear, the wear pattern is usually irregular, the more so
the more difficult-to-cut is the material. The mean flank wear width does not then deter-
mine life. It is recommended that the wear width at both the mid-point of the depth of cut
and at its maximum position are checked. The maximum and where it occurs give useful
information of the wear mechanism and hence how the wear might be reduced.

Unlike flank wear, crater wear does not influence surface roughness and accuracy. It
can, in thermal damage conditions and for some work materials, result in tool failure. It is
therefore also a useful measure of wear, able to distinguish between the machinability of
different tool and work combinations. A crater depth (KT) from 0.05 mm to 0.1 mm is
generally used as an end of life criterion.

Complete failure of a cutting edge is hardly ever used as a tool life test criterion for
turning and milling operations because it causes cutting to stop and can seriously damage
the work material and even sometimes the tool holder or machine tool. However, it is used
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in drilling, particularly with HSS drills, because drill breakage is a common practical fail-
ure mode and it is usually possible to recover from it.

4.2.2 Tool life equations

The ability to predict tool life is obviously important for tool management. However, the
previous sections’ considerations of what is tool life, together with life dependence on the
tool (material, geometry, surface integrity and internal defects), the work (hardness,
strength, chemical composition, etc), the cutting conditions (speed, feed, depth of cut,
cutting fluids), the cutting mode (turning, milling, drilling and others) and the machine
tool (for example stiffness, state of maintenance), make a universal life criterion an impos-
sibility.

It is, however, possible to develop tool life equations if the cutting mode and machine
tool are limited and the tool wear is simple and dominated by a single mechanism. At the
end of the 19th century, F. W. Taylor machined 30 000 tons of work material to collect tool
life data to establish the first tool management system. These data, although promoting
machining technology (as introduced in Chapter 1), are almost useless today because tool
and work materials have changed. However, his tool life equation (Taylor’s equation, also
introduced in Chapter 1) remains well known and is still widely used.

Taylor’s equation - influence of cutting speed on tool life

Over limited ranges of cutting speed V, tool life T is often observed to vary linearly with
V on a log-log scale, as shown in Figure 4.13. An example has already been given in
Chapter 1 (Figure 1.24). Taylor’s tool life equation for such a limited speed range has also
been given (Equation (1.3)), but is repeated here for convenience:

VI" = C 42)

C is the cutting speed that gives a lifetime of one (in whatever units are being used). n is
an exponent that shows the sensitivity of life to change of speed. In practice, it usually

\

Cutting speed (log V)

Tool life (logT)

Fig. 4.13 Relation between tool life and cutting speed over a wide speed range
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takes a value in the range 0.2 to 1.0 although, in Figure 4.13, the dashed line covers a range
of speeds for which n is negative.

If a wear mechanism is independent of temperature, it is expected that, after some running-
in period, wear increases in proportion to cut distance (Archard’s wear law — Chapter 2.4). A
tool subject to that wear mechanism would have a life determined by cut distance, indepen-
dent of cutting speed (unless the amount of running-in varied with speed). It would thus have
a lifetime inversely proportional to cutting speed. n would equal 1.0. Simple mechanical wear
modes are characterized by n values close to 1. When thermal damage occurs, because
temperature increases with cutting speed and thermal damage increases with temperature, n
values reduce, the more so the more temperature sensitive is the wear.

The break points shown in Figure 4.13 indicate changes of wear mechanism, such as
the increase of thermal wear at higher cutting speeds, or increasing chipping or fracture at
lower speeds. It is always necessary to exercise care when relying for tool management on
tool life curves based on small amounts of data (and, for economic reasons, they are often
in practice based on small amounts of data). It is sensible to support measurements of the
amount of wear by observations of wear patterns and mechanisms as well.

Figure 4.14 shows some examples of tool life observations. Figure 4.14(a), for turning
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a ductile cast iron, shows ceramic tools having a larger n-value than a carbide tool — for
the white alumina, n = 1.2. This very high value indicates a mechanical wear mechanism
reducing in intensity with increasing cutting speed. Figure 4.14(b), for turning two differ-
ent Ti-alloys with a carbide tool, is an example of where a break point falls within the prac-
tical cutting speed range. Figure 4.14(c), for face milling a grey cast iron, shows a
condition in which tool life decreases with reducing cutting speed.

Taylor’s equation — influence of feed and depth of cut
Tool life is influenced by feed and depth of cut, as well as by cutting speed. Additional life
equations are

ST =Cy; dr'y = Cy 4.3)
and these may be combined with equation (4.2) (replacing n there by n,) to give
Vllnfllnzdl/”zT = “4.4)

When tool life is limited by thermal damage mechanisms, n; < n, < n;: i.e. cutting
speed has a larger influence on life than does feed than does depth of cut, reflecting the
influences of these variables on cutting temperature. If, however, tool life is determined by
chipping and fracture failures, 1, and n, can become smaller.

4.2.3 Tool life fluctuations

It is almost impossible to keep cutting conditions exactly constant in practical machining.
Even if it were possible, it would be found that tool life and failure are phenomena based
on probability. Fluctuations cannot be avoided in these. However, the range of fluctuations
is influenced by the damage mechanism. It is easy to imagine larger fluctuations when
chipping, or fracture rather than abrasion is the main mechanism.

Figure 4.15 shows the cumulative probability of flank wear development after 1 min of
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Fig. 4.15 Distributions of flank wear after turning free-cutting steel B1112 and difficult-to-cut sintered steel and
Inconel 718
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turning a resulphurized free machining steel and a sintered steel with a P10 carbide tool
(plotted on a Weibull chart). Abrasion was the main cause of tool wear with the free
machining steel, while edge chipping was the mechanism with the sintered steel. The
different slopes of the Weibull plots are clear. The figure also shows the distribution for
turning Inconel 718 with an Al,O,/TiC ceramic tool. As well as the greater amount of
wear, the similarity of slope between this and the sintered steel observations is striking.

Figure 4.16 is an example of tool wear and wear distribution influenced by the machine
tool. It gives the results of face milling a quenched die steel with an Al,O,/TiC ceramic
tool, in the same conditions apart from the machine tool used. Tool wear was by edge chip-
ping or fracture. Machine B obviously provides better resistance against this type of
damage. This is due to a better stiffness, maybe a better dynamic stiffness.

4.3 Summary

This chapter complements Chapter 3 on tool bulk properties, by focusing on the mecha-
nisms of cutting edge damage and their characteristic developments with time. Cutting
edges experience much higher normal and shear stresses than almost any other type of
bearing surface and, at high cutting speeds, high temperatures are also generated. It is not
surprising that tool lives are measured in minutes rather than in hours, and certainly not in
days.

Abrasion occurs with all tools if the work material has hard enough phases, and self-
abrasion follows from other mechanical causes of damage. Mechanical damages, of
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increasing size — from attrition, to chipping, to fracture — increase the more brittle is the
tool material and they are relatively insensitive to temperature changes. Thermal damages
follow diffusion and chemical reactions. They are very sensitive to temperature and are
particularly variable from one tool and work combination to another. Adhesive wear
depends on both mechanical and thermal factors, and passes through a maximum rate as
temperature increases.

For all these reasons of complexity and further influences of mode of cutting, and of the
machine tools themselves, on tool life, it has not been attempted to provide comprehensive
guidance on tool damage rates. Rather, the goal has been to emphasize what phenomena
can occur, and what their effects look like, so mechanisms limiting life in different circum-
stances may be recognized and sensible directions for improved performance may then be
investigated.
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Experimental methods

Previous chapters have presented optical and electron microscope pictures of chip sections
and worn tools, and the results of cutting force and temperature measurements. In addition
to cutting force measurements, acoustic emission is also used to study the health of a
cutting process. This chapter explains a number of these experimental methods.

5.1 Microscopic examination methods

5.1.1 The quick-stop technique

Direct observations as well as theoretical analyses are needed to clarify chip formation
mechanisms. Ideally, such observations would be during cutting, to follow dynamic
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Fig. 5.1 The principle of a quick-stop device for use in turning
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Fig. 5.2 The principle of a quick-stop device for use in milling

variations of chip flow. Although video cameras have been used to gain an external
overview of dynamic chip motions, and it is possible to look through transparent tools (for
example made from diamond or sapphire) directly at the chip contact, it is difficult, in
general, to resolve much because of the small scale of the deforming region and usually
the high cutting velocities. Experimentalists are prepared to lose dynamic information to
gain microscopic detail, by freezing the motion, for later study. The quick-stop technique
is a popular method for achieving this. The machining process is stopped quickly, by
moving the tool and work material apart at a speed greater — preferably much greater —
than the cutting speed. The chip is left attached to the work (sometimes with a fragment of
the cutting edge attached as well). The photographs in Figure 2.4 are polished and etched
sections of quick-stopped chips.

Figure 5.1 is a schematic view of a quick-stop device for use with a stationary tool and
a moving workpiece, such as in turning, while Figure 5.2 shows a device that could be used
for a stationary work and moving tool, as in milling. In Figure 5.1, the tool is supported at
a pivot point and by a shear pin. A mass M is made to strike the tool holder with a speed
V- If the impact force is much greater than needed to break the shear pin, the mass will
then cause the tool holder to swing quickly away from the chip. The tool holder’s velocity
V; does not instantaneously reach the cutting velocity V that is necessary for cutting to
stop, because of its inertia. However, to minimize the retraction time, M and V), should be
made large and the inertia of the holder should be made small.

In practice, V) is frequently made large by firing the mass M from a gun (although for
low cutting speed turning tests, hitting the tool holder with a hammer can be sufficient).
A device that uses a humane killer gun (normally used for stunning animals prior to
slaughter) with its captive bolt as the mass M was reported to achieve a tool displacement
of 2.5 mm in 1.2 X 10* s (Williams et al., 1970). If this is assumed to have occurred at
approximately constant acceleration, and it is supposed that, for a successful quick-stop,
V must reach V'in a cut distance less than f710, then this device can be used successfully,
provided
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V[m/min] < 354\ f[mm] (5.1)

For a feed of 0.13 mm, the largest allowable cutting speed is 128 m/min, while for f =
0.5 mm, the largest speed is 250 m/min. These speeds are larger than those represented in
Figure 2.4, but are not large compared with what can be of interest in modern high speed
machining. The acceleration required of the tool increases as the square of the cutting veloc-
ity, so successful quick-stops become rapidly more difficult as the cutting speed increases.

A similar discussion could be developed in terms of the device of Figure 5.2. However,
in milling, it is more difficult to guide the work material away from the cutting edges, and
the work and its holder have higher inertia than the tool and its holder in turning. The
quick-stop must be synchronized with the intermittent cutting action. There must be a very
special reason to pursue a quick-stop in milling, to make the difficulties worthwhile.

Quick-stops can show different results, depending on the adhesion between the chip and
the tool (Figure 5.3). If there is low adhesion, a clean separation between the two will
occur, as shown in Figure 5.3(a). Coated tools usually show this behaviour. If there is high
adhesion relative to the strength of the chip or tool, any of the results of Figure 5.3(b) to
(d) can occur. If it is particularly desired to preserve the chip/tool interface, a result like
Figure 5.3(d) can be engineered by artificially weakening the tool with a notch or crack on

its rake face.
Chi
Work b

Tool o)

)

ich
Fig. 5.3 Modes of quick-stop separation
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Fig. 5.4 The back surface of chips formed from 0.15% C steel by P20 carbide tools: (a) with built-up edge, v=40 m
min~", d'=2.0 mm, = 0.08 mm rev-"; (b) without built-up edge, v= 100 m min™", d = 2.0 mm, f=0.12 mm rev".

5.1.2 Other chip form and wear observations

Careful observation of tools and chips after machining can often reveal useful information,
without the need for quick-stops. For example, the built-up edge (BUE) formed in machin-
ing is usually unstable. It is carried away on the back surface of chips, so observation of
the chips (Figure 5.4) can give information as to whether BUE is formed or not. It is obvi-
ous that information about wear is obtained by looking at the cutting tools at any time after
cutting.

Chapter 4 has shown examples of SEM and EPMA used to study wear and contact
conditions in great detail. The magnifications of these techniques are not always necessary.
In many cases, a low magnification optical microscope, X 10 or x 20, is enough. Such a
microscope on an X—Y measurement stage is commonly used in laboratories or machine
shops to record wear images and their sizes. Wet photography and printing paper used to
be used for archiving information for many years. Now, a high quality CCD camera and a
personal computer with a large memory can do the job.

5.2 Forces in machining

5.2.1 Resultant forces

Forces in machining can be measured in two main ways: directly or indirectly. Direct
measurements involve mounting a tool (in turning) or the tool or workpiece (in milling) on
a dynamometer, which responds to the forces by creating electrical signals in proportion
to them. These measurements are used when the forces need to be known accurately both
in magnitude and direction, for example if thrust, feed and the main cutting forces in turn-
ing are required (Figure 5.5), or the torque and thrust force in drilling are needed.
Indirect measurements involve deductions from the machine tool behaviour. For exam-
ple, the power used by the main spindle motor increases with the main cutting force or
torque; and that used by the feed motions can be related to the feed force. Particularly with



140  Experimental methods

F, Feed force

"

Fo.Thrust force -

\

F::Main cutting force

Fig. 5.5 Forces acting on cutting tool in turning

NC machines, which are fitted with high sensitivity and response main and feed drive
motors, indirect methods can be used to determine the active forces. Indirect methods are
less accurate than direct methods, but can be sufficient for monitoring purposes. The main
consideration here will be direct methods.

Tool dynamometers — general points
A tool dynamometer should have high sensitivity, high rigidity, high frequency response,
high linearity and low drift. Sensitivity is expressed as electrical output per unit force
input. Useful dynamometers must be able to discriminate at least 1% of full scale output.
Rigidity depends strongly on the dynamometer’s construction. The force sensing trans-
ducer is usually the least rigid element of a dynamometer’s structure: different types of
element are considered in the following subsections.

Frequency response depends on a dynamometer’s natural frequency and damping char-
acteristics. In line with elementary dynamics, these may be described in terms of the
response of a viscously damped elastic system subjected to a harmonic forcing system:

m¥ + cx + kx = P sin ot 5.2)

Figure 5.6 shows how the amplitude ratio (the response relative to the response in static
conditions) of such a system varies with frequency ratio (the frequency relative to the
system’s undamped natural frequency of Vk/m) and damping factor clc,, where c is the
critical damping coefficient. The figure shows that for a linear response between amplitude
and force (and hence a linear response between a dynamometer’s output and force), a
damping factor slightly less than 1, around 0.7, is desirable and then a dynamometer could
be used at frequency ratios up to 0.2 to 0.3.
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Fig. 5.6 The frequency response of a damped forced vibration system

Linearity and drift are usually more influenced by the electrical elements (including
signal amplification) than by the mechanical elements of a dynamometer. Systems with
linearity better than 0.5% of full scale output are required. Drift, which describes the stabil-
ity of output (both from the dynamometer transducer and amplification system) over time,
can be a problem with cutting force dynamometers because of the sensitivity of electrical
elements to temperature changes and the tendency of machining to heat its surroundings.

Strain gauge dynamometers
A common type of dynamometer uses strain gauges to sense elastic strains caused by cutting
forces. Figure 5.7 shows a basic elastic beam type dynamometer with gauges bonded to its
surface. It also shows an example of a wire-type gauge and a Wheatstone bridge and ampli-
fier system usually used to measure strain changes in the gauges. The main cutting force F
will cause the beam to bend, so that the gauge on the top surface will be placed in tension, that
on the bottom surface will be placed in compression, and those gauges on the side surfaces (at
the neutral axis) will experience no strain. Likewise, a feed force will strain the side-face
gauges but not those at the top or bottom. The arrangement shown in Figure 5.7 is not sensi-
tive to force along the axis of the beam as this causes equal strain changes in all gauges.

The fractional resistance change of a strain gauge (AR/R) is related to its fractional
length change or direct strain (AL/L) by its gauge factor K_:

K, = (AR/R)/(AL/L) (5.3)

For wire strain gauges, K, is typically from 1.75 to 3.5. Strains down to 107° may be
detected with a bridge circuit. The upper limit of strain is around 2 x 103, determined by
the elastic limit of the beam.

A disadvantage of the simple cantilever dynamometer is that the gauges’ strains depend
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Fig. 5.7 A strain gauged cantilever dynamometer with its bridge circuit

basically on the moment applied to the section at which they are positioned. They there-
fore depend on the gauges’ distance from where the load is applied, as well as on the size
of the load. Better designs, less sensitive to where the load is applied, are the octagonal
ring and parallel beam designs shown in Figure 5.8. Supporting the load on well-separated
thin sections results in the sum of the strains in the gauges being unchanged when the point
of application of the load is changed, even though the strains are redistributed between the
sections. It is possible to connect the strain gauges in a bridge circuit so that the output is
not sensitive to where the force is applied.

The choice of parallel beams or octagonal rings is a matter of manufacturing choice.
For both, it is important, as a matter of convenience, to minimize cross-sensitivity between
the different orthogonal components of electrical output and mechanical input. For the
parallel beam design, this is achieved by manufacturing the two sets of beams perpendic-
ular to each other. For the octagonal ring design, it is important to choose a particular shape
of octagon. When a circular ring (Figure 5.9) is loaded radially there is zero strain at the
positions B and B’, = 39.9° from the point of application of the radial load; likewise when
the ring is loaded tangentially, there is zero strain at A and A’, + 90° from the load. Gauges
placed at A and A’ will respond only to radial loads; and at B and B’ only to tangential
loads. The strains will depend on the loads and the ring dimensions (radius R, thickness ¢
and width b) and Young’s modulus E as



Forces in machining 143

Gauge B'

[

l_'J Work, Gauges
1

B

Fig. 5.8 Octagonal ring and parallel beam dynamometer designs: (a) Octagonal ring type tool dynanometer; (b) paral-
lel beam type tool dynanometer

1.09F,
E , ==
AN Ebt?
2.18F G
° C
E ==+
B.B Ebs?

The manufacture of the ring outer surface as an octagon rather than a cylinder is just a
practical matter.

The need to generate detectable strain imposes a maximum allowable stiffness on a
dynamometer. This, in turn, with the mass of the dynamometer depending on its size or on
the mass supported on it, imposes a maximum natural frequency. Simple beam
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Fig. 5.9 The loading of a ring by radial and tangential forces

dynamometers, suitable for measuring forces in turning from 10 N to 10 kN, can be
designed with natural frequencies of a few kHz. The ring and the strut types of dynamome-
ter tend to have lower values, of several hundred Hz (Shaw, 1984, Chapter 7). These
frequencies can be increased tenfold if semiconductor strain gauges (K, from 100 to 200)
are used instead of wire gauges. However, semiconductor gauges have much larger drift
problems than wire gauges. They are used only in very special cases (an example will be
given in Section 5.2.2). An alternative is to use piezoelectric force sensors.

Piezoelectric dynamometers
For certain materials, such as single crystals of quartz, Rochelle salt and barium titanate,
a separation of charge takes place when they are subjected to mechanical force. This is the
piezoelectric effect. Figure 5.10 shows the principle of how it is used to create a three-axis
force dynamometer. Each force component is detected by a separate crystal oriented rela-
tive to the force in its piezoelectric sensitive direction. Quartz is usually chosen as the
piezoelectric material because of its good dynamic (low loss) mechanical properties. Its
piezoelectric constant is only = 2 x 10!2 coulombs per Newton. A charge amplifier is
therefore necessary to create a useful output. Because the electrical impedance of quartz is
high, the amplifier must itself have high input impedance: 10° MQ is not unusual.

Figure 5.11 shows the piezoelectric equivalent of the dynamometers of Figure 5.8. The
stiffness is basically that of the crystals themselves. Commercial machining dynamome-
ters are available with natural frequencies from 2 kHz to 5 kHz, depending on size.

5.2.2 Rake face stress distributions

In addition to overall force measurements, the stresses acting on cutting tools are impor-
tant, as has been indicated in earlier chapters. Too large stresses cause tool failure, and fric-
tion stresses strongly influence chip formation. The possibility of using photoelastic
studies as well as split-tool methods to determine tool stresses has already been introduced
in Chapter 2 (Section 2.4). The main method for measuring the chip/tool contact stresses
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is the split-tool method (Figure 2.21), although even this is limited — by tool failure — to
studying not-too-hard work materials cut by not-too-brittle tools.

Figure 5.12 shows a practical arrangement of a strain-gauged split-tool dynamometer.
The part B of the tool (tool 1 in Figure 2.21) has its contact length varied by grinding away
its rake face. It is necessary to measure the forces on both parts B and A, to check that the



146  Experimental methods

Teo! halder A

!

Tool dynamometer for tool B

t T Strain gauges

“\
4

L
e
B

Tool B
Toal A
L5 pm
ﬁ /_J Tool B
L _..

T

NB FB
Section C-C

Fig. 5.12 A split-tool dynamometer arrangement

sum of the forces is no different from machining with an unsplit tool. It is found that if
extrusion into the gap between the two tool elements (g, in Figure 2.21) is to be prevented,
with the surfaces of tools A and B (1 and 2 in Figure 2.21) at the same level, the gap should
be less than 5 um wide (although other designs have used values up to 20 um and a down-
ward step from ‘tool 1’ to ‘tool 2’). The greatest dynamometer stiffness is required. This
is an instance when semiconductor strain gauges are used. Piezoelectric designs also exist.

Split-tool dynamometry is one of the most difficult machining experiments to attempt
and should not be entered into lightly. The limitation of the method — tool failure, which
prevents measurements in many practical conditions that could be used to verify finite
element predicted contact stresses and also to measure friction stresses directly — leaves a
major gap in machining experimental methods.
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5.3 Temperatures in machining

There are two goals of temperature measurement in machining. The more ambitious is
quantitatively to measure the temperature distribution throughout the cutting region.
However, it is very difficult, because of the high temperature, commonly over 700°C even
for cutting a plain carbon steel at cutting speeds of 100 m/min, and the small volume over
which the temperature is high. The less ambitious goal is to measure the average temper-
ature at the chip/tool contact. Thermocouple methods can be used for both (the next
section concentrates on these); but thermal radiation detection methods can also be used
(Section 5.3.2 summarizes these). (It is possible in special cases to deduce temperature
fields from the microstructural changes they cause in tools — see Trent, 1991 — but this will
not be covered here.)

5.3.1 Thermocouple methods

Figure 5.13 shows an elementary thermocouple circuit. Two materials A and B are
connected at two junctions at different temperatures 7| and T,. The electro-motive force
(EMF) generated in the circuit depends on A and B and the difference in the temperatures
T, and T,. A third material, C, inserted at one of the junctions in such a way that there is
no temperature difference across it, does not alter the EMF (this is the law of intermediate
metals).

In common thermocouple instrument applications, A and B are standard materials, with
a well characterized EMF dependence on temperature difference. One junction, usually the
colder one, is held at a known temperature and the other is placed in a region where the

Temperature: T A Temperatura: T,

B

Basic cirguit

A

B
Law of imtermadiate metals

Fig. 5.13 An elementary thermocouple circuit (above) with an intermediate metal variant (below)
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temperature is to be deduced from measurement of the EMF generated. Standard material
combinations are copper-constantan (60%Cu—40%Ni), chromel (10%Cr—-90%Ni)—alumel
(2%A1-90%Ni-Si-Mn) and platinum-rhodium. In metal machining applications, it is
possible to embed such a standard thermocouple combination in a tool but it is difficult to
make it small enough not to disturb the temperature distribution to be measured. One alter-
native is to embed a single standard material, such as a wire, in the tool, to make a junc-
tion with the tool material or with the chip material at the tool/chip interface. By moving
the junction from place to place, a view of the temperature distribution can be built up.
Another alternative is to use the tool and work materials as A and B, with their junction at
the chip/tool interface. By this means, the average contact temperature can be deduced.
This application is considered first, with its difficulties stemming from the presence of
intermediate metals across which there may be some temperature drop.

Tool-work thermocouple measurements

Figure 5.14 shows a tool-work thermocouple circuit for the turning process. The hot junc-
tion is the chip/tool interface. To make a complete circuit, also including an EMF recorder,
requires wires to be connected between the recorder and the tool and the recorder and the
work. In the latter case, because the work is rotating, the wire must pass through some slip-
ring device. If the junctions A, B and C, between the work and slip ring, the slip ring and
recorder wire and the tool and the recorder wire, are all at the same (cold junction) temper-
ature, the circuit from A to C is all intermediate and has no effect on the EMF. But this is
often not the case.

Cold junction A Hot junction
¢ /
Slip ring
Work plece
ﬁ-.—-—..--_-—_—-— - e— e E——— o S— . —
Junetion barfwire ¥ 100l
Cold junction C
Celd junction B
Tool holder

Recorder
{mv}

Fig. 5.14 A tool-work thermocouple circuit
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Dry slip rings, with their rubbing interface, frequently create an EMF. The solution is
to use a liquid mercury contact. If an indexable insert is used as the cutting edge, the
distance from the hot junction to the cold junction C may be only 10 mm. In this case, to
eliminate error due to C heating up, either the measurement time must be kept very short,
or the insert must be extended in some way — for example by making the connection at C
from the same material as the insert (but this is often not practical) — or the heating must
be compensated. Figure 5.15 shows a cold junction compensation circuit and its princi-
ple. The single wire connection at C is replaced by a standard thermocouple pair of wires
which are terminated across a potentiometer in a region where the temperature is not
affected by the cutting. The connection to the EMF recorder is then taken from the poten-
tiometer slider. The thermocouple wire materials are chosen so that the tool material has
an intermediate EMF potential between them, relative to some third material, for exam-
ple platinum. The slider is set at the point of interior division of the potentiometer, at the
same ratio a/b as the tool material potential is intermediate between the two thermocou-
ple materials. Copper and constantan are found suitable to span the potentials of most tool
materials.

Tool-work thermocouple calibration

The EMF measured in cutting must be converted to temperature. Generally, the EMF—
temperature relation for tool-work thermocouples is non-linear. It can even vary between
nominally the same tool and work materials. It is essential to calibrate the tool-work ther-
mocouple using the same materials as in the cutting test. Figure 5.16 shows one calibra-
tion arrangement and Figure 5.17 shows its associated measurement circuit. In this
arrangement, the tool-work thermocouple EMF is not measured directly. Instead, the EMF
between the tool and a chromel wire is measured at the same time as that of a
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chromel-alumel thermocouple at the same temperature. Thus, the tool-chromel EMF
versus temperature characteristic is calibrated against the chromel—-alumel standard. This
is repeated for the work—chromel combination. The tool-work EMF versus temperature
relation is the difference between the tool-chromel and work—chromel relations.

Figure 5.16 shows an overview of the tool or work in contact with the chromel-alumel
thermocouple (detail in Figure 5.17). The contact is made at one focus of an infrared heat-
ing furnace with reflecting walls, shaped as an ellipsoid of revolution, with a 1 kW halo-
gen lamp at the other focus. The chromel-alumel thermocouple is fixed to the furnace
body and the tool or work is pressed on to it by a spring. It is necessary to prepare the tool
and work materials as rods in this method, but it is possible to heat the hot junction to
1000°C in about 10 s: the lengths of the rods, to avoid the need for cold junction compen-
sation circuitry, need only be sufficient to be beyond the heat diffusion distance over this
time. Example results, for a P10 carbide tool and a 0.45% plain carbon steel work, are
given in Figure 5.18. Even at 1000°C the EMF is only 10 mV, so a high sensitivity recorder
is needed.

Inserted thermocouple measurements
Figure 5.19 shows two further possibilities of tool temperature measurement. In Figure
5.19(a), a small diameter hole has been bored in the tool and a fine standard thermocouple
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Chromel- alumel thermocouple

Fig. 5.16 A tool-work thermocouple calibration set-up
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Fig. 5.18 Calibration test results for P10 carbide and a 0.45% plain carbon steel

has been inserted in it. It has the advantage that a precise measurement of temperature at
the bottom of the hole can be made, relying on the standard thermocouple, but a disad-
vantage that the hole may disturb the temperature gradients in the tool. If it is desired to
measure the temperature distribution in the tool, while only boring one hole, the rake and
clearance faces of the tool may be progressively ground away, to vary the position of the
hole relative to the cutting edge.

A finer hole may be bored if only one wire is to be inserted in it. Figure 5.19(b) shows
a single wire, for example chromel, or in this case platinum, making contact with the work
at the chip—tool interface. In this way, the temperature at a specified point can be measured,
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Fig.5.19 (a) Inserted thermocouple or (b) thermocouple wire

but it is necessary to calibrate the thermocouple, as was done with the tool-work thermo-
couple.

5.3.2 Radiation methods

Inserted thermocouple methods require special modifications to the cutting tools. The
tool-work thermocouple method only determines average contact temperatures; and
cannot be used if the tool is an insulator. Thermal imaging methods, measuring the
radiation from a surface, have a number of attractions, if surface temperatures are of
interest.
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The laws of electromagnetic energy radiation from a black body are well known. The
power radiated per unit area per unit wavelength W, depends on the absolute temperature
T and wavelength 1 according to Planck’s law:

21thc? 1
W, = PE

(5.5)

ch
e)J(T -1

where h (Planck’s constant) = 6.626 x 1073 J s, ¢ (speed of light) = 2.998 x 108 m s~! and
k (Boltmann’s constant) = 1.380 x 10723 J KL,

Equation (5.5) can be differentiated to find at what wavelength 4, the peak power is
radiated (or absorbed), or integrated to find the total power W. Wien’s displacement law
and the Stefan—Boltzmann law result:

AT = 2897.8 um K

WIW m—2] = 5.67 x 10874 (5:6)

Figure 5.20 shows the characteristic radiation in accordance with these laws.
Temperatures measured in industry are usually 2000 K or less. Most energy is radiated in
the infrared range (0.75 um to 50 um). Therefore, infrared measurement techniques are
needed. Much care, however, must be taken, as real materials like cutting tools and work
materials are not black bodies. The radiation from these materials is some fraction & of the
black body value. o varies with surface roughness, state of oxidation and other factors.
Calibration under the same conditions as cutting is necessary.

One of the earliest measurements of radiation from a cutting process was by Schwerd
(1933). Since then, methods have followed the development of new infrared sensors. Point
measurements, using collimated beams illuminating a PbS cell sensor, have been used to
measure temperatures on the primary shear plane (Reichenbach, 1958), on the tool flank
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Fig. 5.20 Radiation from a black body
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(Chao et al., 1961) and on the chip surface (Friedman and Lenz, 1970). With the develop-
ment of infrared sensitive photographic film, temperature fields on the side face of a chip
and tool have been recorded (Boothroyd, 1961) and television-type infrared sensitive video
equipment has been used by Harris et al. (1980).

Infrared sensors have continued to develop, based on both heat sensing and semicon-
ductor quantum absorption principles. The sensitivity of the second of these is greater than
the first, and its time constant is quite small too — in the range of us to ms. Figure 5.21
shows a recent example of the use of the second type. Two sensors, an InSb type sensitive
in the 1 ym to 5 um wavelength range and a HgCdTe type, sensitive from 6 um to 13 um,
were used: more sensitive temperature measurements may be made by comparing the
signals from two different detectors.

Most investigations of temperature in metal cutting have been carried out to under-
stand the process better. In principle, temperature measurement might be used for condi-
tion monitoring, for example to warn if tool flank wear is leading to too hot cutting
conditions. However, particularly for radiant energy measurements and in production
conditions, calibration issues and the difficulty of ensuring the radiant energy path from
the cutting zone to the detector is not interrupted, make temperature measurement for
such a purpose not reliable enough. Monitoring the acoustic emissions from cutting is
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Amplifisr

InSh cell HgCdTe cell Digital memeory

Moise cut filker
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Fig. 5.21 Experimental set-up for measuring the temperature of a chip’s back surface at the cutting point, using a
diamond tool and infrared light, after Ueda et al. (1998)
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another way, albeit an indirect method, to study the state of the process, and this is consid-
ered next.

5.4 Acoustic emission

The dynamic deformation of materials — for example the growth of cracks, the deforma-
tion of inclusions, rapid plastic shear, even grain boundary and dislocation movements —
is accompanied by the emission of elastic stress waves. This is acoustic emission (AE).
Emissions occur over a wide frequency range but typically from 100 kHz to 1 MHz.
Although the waves are of very small amplitude, they can be detected by sensors made
from strongly piezoelectric materials, such as BaTiO; or PZT (Pb(Zr Ti;_)O;; x = 0.5 to
0.6).

Figure 5.22 shows the structure of a sensor. An acoustic wave transmitted into the
sensor causes a direct stress E(AL/L) where E is the sensor’s Young’s modulus, L is it
length and AL is its change in length. The stress creates an electric field

T = g4,E(ALIL) (5.7a)

where g5, is the sensor material’s piezoelectric stress coefficient. The voltage across the
sensor, TL, is then

V= g EAL (5.7b)

Typical values of g;; and E for PZT are 24.4 X 1073 V m/N and 58.5 GPa. It is possible,
with amplification, to detect voltages as small as 0.01 mV. These values substituted into
equation (5.7b) lead to the possibility of detecting length changes AL as small as 7 x 10-13
m: for a sensor with L = 10 mm, that is equivalent to a minimum strain of 7 X 10713, AE
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Fig. 5.22 Structure of an AE sensor
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Fig. 5.23 An example of an AE signal and signal processing

strain sensing is much more sensitive than using wire strain gauges, for which the mini-
mum detectable strain is around 1076

The electrical signal from an AE sensor is processed in two stages. It is first passed
through a low noise pre-amplifier and a band-pass filter (=100 kHz to 1 MHz). The result-
ing signal typically has a complicated form, based on events, such as in Figure 5.23. In the
second stage of processing, the main features of the signal are extracted, such as the
number of events, the frequency of pulses with a voltage exceeding some threshold value
VL, the maximum voltage VT, or the signal energy.

The use of acoustic emission for condition monitoring has a number of advantages. A
small number of sensors, strategically placed, can survey the whole of a mechanical
system. The source of an emission can be located from the different times the emission
takes to reach different sensors. Its high sensitivity has already been mentioned. It is also
easy to record; and acoustic emission measuring instruments are lightweight and small.
However, it also has some disadvantages. The sensors must be attached directly to the
system being monitored: this leads to long term reliability problems. In noisy conditions it
can become impossible to isolate events. Acoustic emission is easily influenced by the
state of the material being monitored, its heat treatment, pre-strain and temperature. In
addition, because it is not obvious what is the relationship between the characteristics of
acoustic emission events and the state of the system being monitored, there is even more
need to calibrate or train the measuring system than there is with thermal radiation
measurements.

In machining, the main sources of AE signals are the primary shear zone, the chip—tool
and tool-work contact areas, the breaking and collision of chips, and the chipping and
fracture of the tool. AE signals of large power are generally observed in the range 100 kHz
to 300 kHz. Investigations of their basic properties and uses in detecting tool wear and
chipping have been the subject of numerous investigations, for example Iwata and
Moriwaki (1977), Kakino (1984) and Diei and Dornfeld (1987). The potential of using AE
is seen in Figure 5.24. It shows a relation between flank wear VB and the amplitude level
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Fig. 5.24 Relation between flank wear VB and amplitude of AE signal, after Miwa et al. (1981)

of an AE signal in turning a 0.45% plain carbon steel (Miwa, 1981). The larger the flank
wear, the larger the AE signal, while the rate of change of signal with wear changes with
the cutting conditions, such as cutting speed.
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6.1 Introduction

Chapter 2 presented initial mechanical, thermal and tribological considerations of the
machining process. It reported on experimental studies that demonstrate that there is no
unique relation between shear plane angle, friction angle and rake angle; on evidence that
part of this may be the influence of workhardening in the primary shear zone; on high
temperature generation at high cutting speeds; and on the high stress conditions on the rake
face that make a friction angle an inadequate descriptor of friction conditions there.
Chapters 3 to 5 concentrated on describing the properties of work and tool materials, the
nature of tool wear and failure and on experimental methods of following the machining
process. This sets the background against which advances in mechanics may be described,
leading to the ability to predict machining behaviours from the mechanical and physical
properties of the work and tool.

This chapter is arranged in three sections in addition to this introduction: an account of
slip-line field modelling, which gives much insight into continuous chip formation but
which is ultimately frustrating as it offers no way to remove the non-uniqueness referred
to above; an account of the introduction of work flow stress variation effects into model-
ling that removes the non-uniqueness, even though only in an approximate manner in the
first instance; and an extension of modelling from orthogonal chip formation to more
general three-dimensional (non-orthogonal) conditions. It is a bridging chapter, between
the classical material of Chapter 2 and modern numerical (finite element) modelling in
Chapter 7.

6.2 Slip-line field modelling

Chapter 2 presented two early theories of the dependence of the shear plane angle on the
friction and rake angles. According to Merchant (1945) (equation (2.9)) chip formation
occurs at a minimum energy for a given friction condition. According to Lee and Shaffer
(1951) (equation (2.10)) the shear plane angle is related to the friction angle by plastic flow
rules in the secondary shear zone. Lee and Shaffer’s contribution was the first of the slip-
line field models of chip formation.
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6.2.1 Slip-line field theory

Slip-line field theory applies to plane strain (two-dimensional) plastic flows. A material’s
mechanical properties are simplified to rigid, perfectly plastic. That is to say, its elastic
moduli are assumed to be infinite (rigid) and its plastic flow occurs when the applied maxi-
mum shear stress reaches some critical value, k, which does not vary with conditions of
the flow such as strain, strain-rate or temperature. For such an idealized material, in a plane
strain plastic state, slip-line field theory develops rules for how stress and velocity can vary
from place to place. These are considered in detail in Appendix 1. A brief and partial
summary is given here, sufficient to enable the application of the theory to machining to
be understood.

First of all: what are a slip-line and a slip-line field; and how are they useful? The analy-
sis of stress in a plane strain loaded material concludes that at any point there are two orthog-
onal directions in which the shear stresses are maximum. Further, the direct stresses are equal
(and equal to the hydrostatic pressure) in those directions. However, those directions can vary
from point to point. If the material is loaded plastically, the state of stress is completely
described by the constant value k of maximum shear stress, and how its direction and the
hydrostatic pressure vary from point to point. A line, generally curved, which is tangential
all along its length to directions of maximum shear stress is known as a slip-line. A slip-line
field is the complete set of orthogonal curvilinear slip-lines existing in a plastic region. Slip-
line field theory provides rules for constructing the slip-line field in particular cases (such as
machining) and for calculating how hydrostatic pressure varies within the field.

One of the rules is that if one part of a material is plastically loaded and another is not,
the boundary between the parts is a slip-line. Thus, in machining, the boundaries between
the primary shear zone and the work and chip and between the secondary shear zone and
the chip are slip-lines. Figure 6.1 sketches slip-lines OA, A’D and DB that might be such
boundaries. It also shows two slip-lines inside the plastic region, intersecting at the point
2 and labelled & and f3, and an element of the slip-line field mesh labelled EFGH (with the
shear stress k and hydrostatic pressure p acting on it); and it draws attention to two regions
labelled 1 and 3, at the free surface and on the rake face of the tool. The theory is devel-
oped in the context of this figure.

As a matter of fact, Figure 6.1 breaks some of the rules. Some correct detail has been
sacrificed to simplify the drawing — as will be explained. Correct machining slip-line fields
are introduced in Section 6.2.2.

The variation of hydrostatic pressure with position along a slip-line is determined by
force equilibrium requirements. If the directions of the slip-lines at a point are defined by
the anticlockwise rotation ¢ of one of the lines from some fixed direction (as shown for
example at the centre of the region EFGH); and if the two families of lines that make up
the field are labelled o and S (also as shown) so that, if & and j are regarded as a right-
handed coordinate system, the largest principal stress lies in the first quadrant (this is
explained more in Appendix 1), then

p + 2k¢ = constant, along an ¢o-line } ©6.1)

p — 2k¢ = constant, along a B-line

Force equilibrium also determines the slip-line directions at free surfaces and friction
surfaces (1 and 3 in the figure) — and at a free surface it also controls the size of the hydro-
static pressure. By definition, a free surface has no force acting on it. From this, slip-lines
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Fig. 6.1 A wrong guess of a chip plastic flow zone shape, to illustrate some rules of slip-line field theory

intersect a free surface at 45° and the hydrostatic pressure is either +k or —k (depending
respectively on whether the free surface normal lies in the first or second quadrant of the
coordinate system). At a friction surface, where the friction stress is defined as mk (as
introduced in Chapter 2), the slip lines must intersect the surface at an angle ¢ (defined at
3 in the figure) given by

cos2f =m (6.2)

As an example of the rules so far, equation (6.1) can be used to calculate the hydrosta-
tic pressure p, at 3 if the hydrostatic pressure p, is known (p; = +k in this case) and if the
directions of the slip-lines ¢,, ¢, and ¢, at points 1, 2 and 3 are known (point 2 is the inter-
section of the ¢ and S lines connecting points 1 and 3). Then, the normal contact stress, Oy
at 3 can be calculated from the force equilibrium of region 3:

k= 2k[(9) — ¢,) — (¢, — 93)]
P3 +ksii1 2{2 2 } 6.3)

Ps

On

Rules are needed for how ¢ varies along a slip-line. It can be shown that the rotations
of adjacent slip-lines depend on one another. For an element such as EFGH

¢F_¢G= ¢E_¢H }

P~ 96 = %~ 9%
From this, the shapes of EF and GF are determined by HG and HE. By extension, in this

example, the complete shape of the primary shear zone can be determined if the shape of
the boundary AO and the surface region AA” is known.

or (6.4)
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One way in which Figure 6.1 is in error is that it violates the second of equations (6.4).
The curvatures of the o-lines change sign as the fB-line from region 1 to region 2 is
traversed. Another way relates to the velocities in the field that are not yet considered. A
discontinuous change in tangential velocity is allowed on crossing a slip-line, but if that
happens the discontinuity must be the same all along the slip-line. In Figure 6.1, a discon-
tinuity must occur across OA at O, because the slip-line there separates chip flow up the
tool rake face from work flow under the clearance face. However, no discontinuity of slope
is shown at A on the free surface, as would occur if there were a velocity discontinuity
there.

6.2.2 Machining slip-line fields and their characteristics

A major conclusion of slip-line field modelling is that specification of the rake angle o
and friction factor m does not uniquely determine the shape of a chip. More than one field
can be constructed, each with a different chip thickness and contact length with the tool.
The possibilities are fully described in Appendix 1. Figure 6.2 sketches three of them, for
o =5 and m = 0.9, typical for machining a carbon steel with a cemented carbide tool.
The estimated variations along the rake face of o, /k and of the rake face sliding velocity

as a fraction of the chip velocity, Urake/ U chip» re added to the figures, and so is the final

(c)
Fig. 6.2 Possibilities of chip formation, z=5° m=0.9
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shape bb” of an originally straight line aa’, which has passed through the chip formation
zone.

Figure 6.2(a) is the Lee and Shaffer field. The slip-lines OA and DB are straight.
Consequently, the hydrostatic stress is constant in the field: its value is not determined by
a free surface condition at A (the plastic zone at A has no thickness) but from the condi-
tion that the chip is free — there is no resultant force across ADB. The straightness of the
slip-lines results in a constant normal stress along the chip/tool contact, and a sliding
velocity U, . everywhere equal to the chip velocity. The line bb” is also straight, its orien-
tation determined by the difference between the chip and work velocities.

Figure 6.2(b) shows a field introduced by Kudo (1965). The shear plane AD of Lee and
Shaffer’s field is replaced by a straight-sided fan shaped region ADE, centred on A. The
result is that it describes thinner chips with shorter contact lengths. The rake face normal
contact stress is calculated to increase and the rake face sliding velocity to reduce close to
the cutting edge. The chip is formed straight, but its reduced velocity near the cutting edge
causes the line bb” to become curved. Such curved markings are frequently observed in
real chips (Figure 2.4).

Figure 6. 2(c) shows a field introduced by Dewhurst (1978). Its boundaries OA and DB
are curved; and a fan shaped region ODE is centred on O. The result is the formation of a
curled chip, with some radius R, thicker and with a longer contact length than the Lee and
Shaffer field. The hydrostatic pressure and the velocity vary continuously from place to
place. The normal contact stress and the rake face sliding velocity vary over the entire
chip/tool contact length; and bb’ is grossly curved.

The normal contact stress variations reproduce the range of observations made experi-
mentally (Figure 2.22), except of course they do not show the elastically stressed tail of
the experimental data.

The Kudo and Dewhurst fields that are illustrated are, in each case, just one of a family
of possibilities, each with a different fan angle DAE (the Kudo field) or different rotation
from A to D (the Dewhurst field). All that is required is that the hydrostatic pressure at A,
calculated for each field from the free chip boundary condition, is able to be contained by
the surrounding work or chip (which is supposed to be rigid). For each possibility that
satisfies this, the average friction and normal rake face contact stress can be calculated, to
obtain the effective friction angle at the contact. The chip thickness to feed ratio can also
be determined to obtain the effective shear plane angle. Equation (2.5b) can then be used
to determine the dimensionless specific cutting and thrust forces. Figure 6.3 plots results
from such an exercise, for two values of rake angle. The observed non-uniqueness found
experimentally, shown here and also in Figure 2.15, fits well within the bounds of slip-line
field theory.

Unfortunately, slip-line field theory cannot explain why any one expermental condi-
tion leads to a particular data point in Figure 6.3. It does conclude though, that the
increased shear plane angle at constant friction angle is associated with a reduced
chip/tool contact length. Factors that lead to a reduced contact length, perhaps such as
increased friction heating with increased cutting speed, leading to reduced rake face shear
stresses, are beyond the simplifying assumptions of the theory of constant shear flow
stress.

Figure 6.3(b) supports the view that if cutting could be carried out with 30° rake angle
tools, the spread of allowable specific forces would be very small and it would not matter
much that slip-line field theory cannot explain where in the range a particular result will
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Fig. 6.3 Slip-line field allowed ranges of (a) (¢-cx) and (b) specific forces and A, for tools of rake angle 0° and 30°:
experimental data for carbon steels (Childs, 1980)

lie. Unfortunately, to avoid tool breakage, rake angles closer to 0° are more common. The
ranges of allowable specific forces at a particular friction angle are then large.

6.2.3 Further considerations

In addition to directly estimating machining parameters, slip-line field theory may be used
to stimulate thought about the machining process and its modelling.

In Chapter 2, around Figure 2.11, it was discussed how work-hardening might change
the mean level of hydrostatic stress on the shear plane, and hence the angle (¢ + 1 — @)
between the resultant force and the shear plane. The mean level of hydrostatic stress can
now be seen to be variable even in the absence of work-hardening, depending on the choice
of slip-line field. Figure 6.4 shows the range of values of (¢ + A — @), as a function of ¢,
allowed by the Kudo and Dewhurst fields. Values are found from 0.5 to 2.0. These compare
with 1.2 to 1.4 deduced experimentally for fully work-hardened materials in Figure
2.11(b). It is arguable that some of the further variation of (¢ + A — @) observed in Figure
2.11(b), attributed to work-hardening induced pressure variation along the primary shear
plane, could be due to a free surface hydrostatic pressure changed for other reasons. The
line tan(¢ + A — @) = [1 + 2(n/4 — ¢)] added to Figure 6.4 relates to this and is returned to
in Section 6.3.

In Figure 6.3, rake face friction is described by the friction angle A, even though the fric-
tion factor m is believed to be a physically more realistic way to describe the conditions.
This is a practical consideration: 1 is easier to measure. It is interesting therefore to look
in a little more detail at the relation between m and A. Figure 6.5 shows, as the hatched
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Fig. 6.5 Effects of elastic contact on relations between A and m. Experimental data for carbon steels, (after Childs,
1980)

region, the slip-line field predicted relationship between A and m for @ = 0° (in fact the rela-
tionship is almost independent of ). There is almost a one-to-one relationship between the
two. It also shows experimental observations for carbon steels — the m values were deduced
by dividing the measured rake face friction force per unit depth of cut by the total chip/tool
contact length — and experiment and theory do not agree. The reason is that the measured
contact lengths include an elastic part, less loaded than the plastic part. The deduced m
values are averages over a plastic and an elastic regime. This was considered in a paper by
Childs (1980). In that paper, an empirical modification to slip-line field theory was made,
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considering elastic contact forces as external forces on an otherwise free chip. The line n
=5 in Figure 6.5 was deduced for an elastic contact length five times the plastic length.
The elastic contact should not be ignored in machining analyses.

Slip-line field modelling may also be applied to machining with restricted contact tools
(Usui et al., 1964), with chip breaker geometry tools (Dewhurst, 1979), with negative rake
tools (Petryk, 1987), as well as with flank-worn tools (Shi and Ramalingham, 1991), to
give an insight into how machining may be changed by non-planar rake face and cutting
edge modified tools. Figures 6.6 and 6.7 give examples.

Figure 6.6 is concerned with modifications to chip flow caused by non-planar rake-
faced tools. As the chip/tool contact length is reduced below its natural value by cutting
away the rake face (Figure 6.6(a)), the sliding velocity on the remaining rake face is
reduced, with the creation of a stagnant zone, and the chip streams into the space created
by cutting away the tool. If a chip breaker obstruction, of slope &, is added some distance
Iy from the cutting edge of a plane tool (Figure 6.6(b)), its effect on chip curvature and
cutting forces can be estimated. The combination of these effects can give some guidance
on the geometrical design of practical chip-breaker geometry tools.

The slip-line fields of Figure 6.7 show how, with increasingly negative rake angle, a
stagnant zone may develop, eventually (Figure 6.7(c)) allowing a split in the flow, with
material in the region of the cutting edge passing under the tool rather than up the rake
face. The fields in this figure, at first sight, are for tools of an impractically large negative
rake angle. However, real tools have a finite edge radius, can be worn or can be manufac-
tured with a negative rake chamfer. The possibility of stagnation that these fields signal,
needs to be accomodated by numerical modelling procedures.

6.2.4 Summary

In summary, the slip-line field method gives a powerful insight into the variety of possible
chip flows. A lack of uniqueness between machining parameters and the friction stress

Chip
breaker

(b)

Fig. 6.6 Slip-line field models of cutting with (a) zero rake restricted contact and (b) chip breaker geometry tools, after
Usui et al. (1964) and Dewhurst (1979)
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Fig. 6.7 Chip flows with tools, from (a) to (c) of increasingly negative rake (after Petryk, 1987)

between the chip and tool is explained by the freedom of the chip, at any given friction
stress level, to take up a range of contact lengths with the tool. Chip equilibrium is main-
tained for different contact lengths by allowing the level of hydrostatic stress in the field
to vary. The velocity fields indicate where there are regions of intense shear, which should
be taken into account later in numerical modelling. They also illustrate how velocities
might vary in the secondary shear zone, a topic that will be returned to later. They also
show a range of variations of normal contact stress on the rake face that is observed in
practice. However, a frustrating weakness of the slip-line field approach is that it offers no
way, within the limitations of the rigid perfectly plastic work material model, of removing
the non-uniqueness: what does control the chip/tool contact length in a given situation?
Additionally, it can offer no way of taking into account variable flow stress properties of
real materials, demonstrated experimentally to have an influence. An alternative model-
ling, concentrating on material property variation effects, is introduced in the next section.

6.3 Introducing variable flow stress behaviour

Slip-line field modelling investigates the variety of chip formation allowed by equilibrium
and flow conditions while grossly simplifying a metal’s yield behaviour. A complementary
approach is to concentrate on the effects of yield stress varying with strain (strain hardening)
and in many cases with strain rate and temperature too, while simplifying the modelling of
equilibrium and flow. Pioneering work in this area is associated with the name of Oxley. The
remainder of this section relies heavily on his work, which is summarized in Mechanics of
Machining (Oxley, 1989). Developments may be considered in four phases: firstly experi-
mental and numerical studies of actual chip flows, by the method of visioplasticity; secondly,
simplifications allowing analytical relations to be developed between stress variations in the
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primary shear zone and material flow properties, dependent on strain, strain rate and temper-
ature; thirdly, a consideration of stress conditions in the secondary shear zone; and finally, a
synthesis of these, allowing the prediction of chip flow from work material properties.

6.3.1 Observations of chip flows

Visioplasticity is the study of experimentally observed plastic flow patterns. In its most
complete form, strain rates throughout the flow are deduced from variations of velocity with
position, and strains are calculated by integrating strain rates with respect to time along the
streamlines of the flow. The temperatures associated with the plastic work are calculated
from heat conduction theory. Then, from independent knowledge of the variation of flow
stress with the strain, strain rate and temperature, it can be attempted to deduce what the
stress variations are throughout the flow and what resultant forces are needed to create the
flow. Alternatively, measured values of the forces can be used to deduce how the flow stress
varied. Frequently, however, the accuracy of flow measurement is not good enough to
support this entire scheme. Nonetheless, useful insights come from only partial success.

In the case of plane strain flows, the first step is usually to determine the maximum
shear strain rate trajectories of the flow, and from these to construct the slip-line field.
Departures of the field’s shape from the rules established for perfectly plastic solids
(Section 6.2) are commonly observed. Figure 6.8(a) shows an early example of a chip
primary shear zone investigated in this way (Palmer and Oxley, 1959). In addition to flow
calculations in deriving this field, Palmer and Oxley also applied the force equilibrium
constraint, that the slip-lines should intersect the free surface AA” at 45°. The field is for a
mild steel machined at the low cutting speed of 12 mm/min and a feed of 0.17 mm. At the
low strain rates and temperatures generated in this case, departures from perfect plasticity
are expected to be due only to strain hardening. The strain hardening behaviour of the
material was measured in a simple compression test.

Two conclusions arise from Figure 6.8 (and from other examples that could have been
chosen). First, and most obviously, the entry and exit slip lines OA and OA” are of oppos-
ing curvature. The field violates equation (6.4). This is a direct effect of work-hardening.

Secondly, and less obviously, there is a problem with the constraint placed on the field
that the slip-lines should meet the free surface at 45°. By revisiting the derivation of equa-
tions (6.1) (Appendix 1, Section 1.2.2), and removing the constraint of no strain harden-
ing, it is easy to show that

op ¢ ok
—+2k - =0 along an ¢ — line
s, ds,  Os,
(6.5)
op ¢ ok
— -2k - =0 along a - line

where s, and s, are distances along an « and a § slipline respectively. In Figure 6.8(a), as
in Figure 6.1, AC is a B line and CA” an « line. After estimating the variations of %, E)k/as1
and 0k/ds, in the region of AA’C, Palmer and Oxley concluded, from the application of
equation (6.5), that the hydrostatic pressure at A” could not equal the shear yield stress of
the work hardened material at A’, as it should according to the further constraint imposed
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Fig. 6.8 Experimentally derived slip-line fields for slow speed machining of mild steels, after (a) Palmer and Oxley
(1959), and (b) Roth and Oxley (1972)

by the free surface boundary condition there. Palmer and Oxley resolved the contradiction
by suggesting that plastic flow was not steady at the free surface. The smoothed free
surface in Figure 6.8(a) is, in reality, corrugated and therefore the slip-lines should not be
constrained to intesect the smoothed profile at 45°.

The result of a later study (Roth and Oxley, 1972), still at low cutting speed to exclude the
effects of strain rate and temperature on flow stress — now also including an estimate of the
secondary shear zone shape — is shown in Figure 6.8(b). At A, the entry boundary OA is still
made to intersect the free surface at 45°: there, continuity of flow ensures that the free surface
slope is known (velocity discontinuities cannot exist in a hardening material — discontinuities
that would occur in a non-hardening material are broadened into narrow zones). However, a
free surface constraint has not been placed on the exit boundary direction at A’; and no
attempt has been made to detail the field within the near-surface region AA’C.

Roth and Oxley applied equations (6.5) to the calculation of hydrostatic stress along all
the field boundaries, assuming that at A its value was that of the shear yield stress there.
These are shown in the figure. Along the entry boundary OA, hydrostatic stress variations
are dominated by the effect of work hardening. Integration of the hydrostatic and shear
stresses with respect to distance along OA gives the force acting across it. Inclusion of
work hardening gives a value of 1.77 kN (in line with experiment), while omitting it gives
3.19 kN, in a grossly different direction.
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Over the exit boundaries BD and DA’, where strain hardening has reduced the rate of
change of shear flow stress across the slip lines, the variations approach those expected of
a non-hardening material. They depend on the direction changes along the lines. The exit
region OBDA’ is visually similar in this example to the non-hardening slip-line field
proposed by Dewhurst (Figure 6.2(c)). The whole field is this, with the primary shear plane
replaced by a work hardening zone of finite width.

In a parallel series of experiments, Stevenson and Oxley (1969-70, 1970-71) extended
the direct observations of chip flows to higher cutting speeds, but with a changed focus, to
assess how large might be the strain rate and temperature variations in the primary shear
zone. Figure 6.9(a) is a sketch of the streamlines that they observed when machining a
0.13%C free-machining steel at a cutting speed of 105 m/min and a feed of 0.26 mm.
Figure 6.10 shows, for a range of cutting speeds, the derived variations of maximum shear
strain rate along a central streamline, such as aa” in Figure 6.9(a). The peak of maximum
shear strain rate is observed to occur close to the line OA” that would be described as the
shear plane in a shear plane model of the machining process. The peak maximum shear
strain rate was measured to vary in proportion to the notional primary shear plane veloc-
ity (from equation (2.3)) and inversely as the length s of the shear plane (assumed to be

flsing):

U . U cos o sin ¢
. primary work
Yoar=C =C (6.6)
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Fig. 6.9 (a) Stream-lines of the flow of a 0.13%C free-cutting steel and (b) a simplification for later analysis (Section
6.3.2)
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Fig. 6.10 Shear strain rate variations along a central stream-line, and peak shear strain rate changes with cutting
speed and feed, as described in the text

In this case, the best-fit constant of proportionality C is 5.9. In many practical machining
operations, peak shear strain rates are of the order of 10%s.

It is interesting to consider the value of C = 5.9 in the light of the length-to-width ratio
of the primary shear zone, equal to 2, derived in Chapter 2 from Figure 2.10 and equation
(2.7). The average shear strain rate may be roughly half the peak rate. It is also the total
shear strain divided by the time for material to pass through the primary zone. This time is
the width of the zone divided by the work velocity normal to the plane, namely U, sing.
An easy manipulation equates the length-to-width ratio to C/2, or about 3 in this case. A
consistent view emerges of a primary shear region in which the strain rates do in fact peak
along a plane OA” but which in its totality may not be as narrow compared with its length
as is commonly believed.

Temperature rises in the primary zone have already been considered in Chapter 2.
Stevenson and Oxley used the same approach described there to obtain the total tempera-
ture rise from the measured cutting forces resolved on to the shear plane. In the notation
of this book, combining equations (2.4a), (2.5¢) and (2.14), and remembering that only a
fraction (1 — B) of generated heat flows into the chip

(I-B) Focos¢—Fpsing cos o
AT, = 67)
pC fd cos(¢ — @)

However, as will be seen in the next section, there is a particular interest in the tempera-
ture rise in the plane OA” where the strain rate is largest. Stevenson and Oxley took the
temperature along OA” to be

Topr= Ty + 1AT, (6.8)

where 7 can range from 0 to 1. Usually, they took it to equal 1, but this is not consistent
with OA” being upstream of the exit boundary of the primary zone. They commented that
lower values (0.7 to 0.95) might be better (Oxley, 1989).
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6.3.2 Approximate analysis in the primary shear zone

Although a complete analysis of hydrostatic stress variations in the primary shear zone, as
in Figure 6.8(b), might be useful in considering the possible fracture of chips during their
formation, it might not be necessary if the objective is only to predict the force transmis-
sion (the magnitude and direction) across the shear zone. If, for example, along the plane
surface OA” in Figure 6.9(a), variations of hydrostatic stress are dominated by flow stress
variations rather than by rotations in the slip-line field, an approximate analysis of stress
along OA”, neglecting rotations, might be sufficient. This is the approach developed by
Oxley.

Figure 6.9(b) combines aspects of Figures 6.8(b) and 6.9(a), showing the boundaries of
a typical flow field but emphasizing a narrow rectangular region around the plane OA”.
The hydrostatic stress at A” is supposed to have some value p,. Then, by analogy with the
derivation of equation (2.7) (Chapter 2), and after assuming pressure variations along OA”
(of length s) are dominated by dk/ds,, the direction of the resultant force R across OA” is
given by

Py 1 s ok
tan(p + A — ) = -— (6.92)
0A” 2 koar 05

The size of R (with d, the depth of cut) is found from
Rcos(p+ A —0a) = sdkgy- (6.9b)

Oxley showed how to relate the second term on the right-hand side of equation (6.9a) to
the work-hardening behaviour of the material, expressed as

G= O " (6.10)

and to the shear strain-rate on OA”, from equation (6.6), in order to replace equation (6.9a)
by

Py

tan(gp + A — @) = —Cn 6.11)

OA”

The term Cn may be thought of as a correction to the value p/k,~ that tan(¢ + 1 — @)
would have in the absence of any strain hardening effects. The non-uniqueness of the non-
hardening circumstance has already been considered in section 6.2. There, Figure 6.4 gives
a range for the variation of tan(¢ + 4 — @) with ¢, for the example of a zero rake angle tool.
In his work, Oxley constrained the range of allowable non-hardening relations, to propose
that

P ba
> =1+2(——¢) (6.12)
kOA” 4

This can be seen in Figure 6.4 to be close to the upper boundary of the allowable range.
Then, finally,

tan(p + A —a) =1+ 2(n/4 — ¢) — Cn (6.13)
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Fig. 6.11 Variations of oy (0) and n(e) for a low carbon steel, derived from machining tests, compared with compres-
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To the extent that constraining the variations of p/kg,~ is valid, equations (6.9b) and
(6.13) may be used to investigate the strain, strain-rate and temperature dependence of
flow in the primary shear zone. Stevenson and Oxley (1969-70, 1970-71) carried out turn-
ing tests on a 0.13%C steel at cutting speeds up to around 300 m/min, measuring tool
forces and shear plane angles. They calculated n from equation (6.13), assuming C = 5.9.
They calculated k, » from equation (6.9b), and multiplied it by 3 to obtain the equivalent
flow stress on OA”; they calculated the equivalent strain on OA”, assuming it to be half the
total strain; and finally derived o, (equation (6.10)). They also calculated the strain rate
and temperature on OA”. Figure 6.11 shows the variations with strain rate and temperature
they derived for o, and n. Strain rate and temperature are combined into a single function,
known as the velocity modified temperature, Ty;qp, (K):

T,

vop = T{1 - vIog(€7&))} (6.14)

There are materials science reasons (Chapter 7) why strain rate and temperature might be
combined in this way. v is a material property constant that was taken to be 0.09, and 50 is
a reference strain rate that was taken to be 1.

The figure also shows data derived from compression tests on a similar carbon steel and
further data (o;,,) determined from the analysis of secondary shear flow, which will be
discussed in Section 6.3.3. The data for machining and compression tests are not in quan-
titative agreement, but there is a qualitative similarity in their variations with velocity
modified temperature that supports the view that at least some part of the variation of
machining forces and shear plane angles with cutting speed is due to the variation of flow
stress with strain, strain rate and temperature.

There are clearly a number of assumptions in the procedures just described: that all the
variation in (¢ + A — &) is due to variation in n; that the parallel-sided shear zone model is
adequate (strain rates in practice will vary from the cutting edge to the free surface, as the
actual shear zone width varies); and that C really is a constant of the machining process.
In later work, Oxley investigated the sensitivity of his modelling to variations of C. A
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change to C causes a change to the hydrostatic stress gradient along the primary shear
plane and hence to the normal contact stress on the tool at the cutting edge, o, . Adding
the constraint that o, , derived from the primary shear plane modelling should be the same
as that from secondary shear modelling (Section 6.3.3), he concluded — for the same steel
for which he had initially given the value C = 5.9, but over a wider range of feed, speed
and rake angle cutting conditions — that C might vary between 3.3 and 7.1. The interested
reader is referred to Oxley (1989).

6.3.3 Flow in the secondary shear zone

With the partial exception of slow speed cutting tests like those of Roth and Oxley
(Figure 6.8), visioplasticity studies have never been accurate enough to give informa-
tion on strain rate and strain distributions in the secondary shear zone on a par with the
level of detail revealed in the primary shear zone. Certainly at high cutting speeds, grids
or other internal markers necessary for following the flow are completely destroyed.
Nor is there any way, equivalent to applying equation (6.13) in the primary zone, of
deducing the strain hardening exponent n for flow in the secondary shear zone. So, even
if a flow stress could be deduced for material there, the extraction of a o, value (equa-
tion (6.10)) and the estimation of a Ty, value for it might be thought to be impracti-
cal. Yet Figure 6.11 contains, in the variation of o; , with Tyiops such plastic flow stress
information. The insights and assumptions that enabled this data to be presented are
worth considering.

Oxley explicitly suggested that in the secondary shear zone strain-hardening would be
negligible above a strain of 1.0. This allowed him, from equation (6.10) with £ = 1, to iden-
tify o, with &. It is a major issue in materials’ modelling for machining — and is returned
to in Chapter 7.4 — to determine how in fact flow stress does vary with strain at the high
strains generated in secondary shear. Oxley then suggested that & is the same as oy, or
\ 37,,, where 7, is the average friction stress over the chip/tool contact area (obtained by
dividing the friction force by the measured contact area). This is reasonable, from consid-
erations of the friction conditions in machining (Chapter 2), provided there is a negligible
elastic contact region. Oxley argued that this was the case, on the basis of his (Roth and
Oxley, 1972) low speed observations, but the observations of Figure 6.5 do not support
that.

To determine a Ty, value, he estimated representative temperatures and strain rates in
the secondary shear zone. For the strain rate £ he supposed the secondary shear zone to
have an average width ot,, and that the chip velocity varied from zero at the rake face to
its bulk value UChip across this width. Then

Vint _ UChlp

V3 \/—5t2

(6.15)

He took the representative temperature to be the average at the rake face, calculated in
a manner similar to equation (2.18), but allowing for the variation of work thermal prop-
erties with temperature and for the fact that heat generated in secondary shear is not
entirely planar but is distributed through the secondary shear zone (Hastings et al., 1980).
In the notation of this book, equation (2.18) is modified by a factor ¢
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ky t U, 1| '
(T = T)secondary shear = (1 = ) ————+0.75¢ = chip work ) (6.16)
work Kwork Uchipl
with
U.. ', Ugip | U..  \'s
c:lif6t2( chip )<o.3; c= 100-06—0-2&‘K . if&tz( 1303

work’ work

The calculated (o, Ty;op) data in Figure 6.11 result from these assumptions. That they
follow the variations expected from independent mechanical testing gives some support to
these insights. There is one assumption to which it is particularly interesting to return: that
is, that the sliding velocity at the chip/tool interface is zero. This strongly influences both
the calculated strain rate and the need for the correction, c, to the temperature calculation.
The slip-line field modelling does not support such a severe reduction of chip movement.
Figure 6.2, for example, shows sliding velocities reduced to zero only in some circum-
stances and then only near to the cutting edge. Resolving the conflict between these vari-
able flow stress and slip-line field views of rake face sliding velocities leads to insight into
conditions at the rake face during high speed (temperature affected) machining.

In his work, Oxley identified two zones of secondary shear, a broader one and a
narrower one within it, closest to the rake face. This narrower zone has also been identi-
fied by Trent who describes it as the flow-zone and, when it occurs, as a zone in which
seizure occurs between the chip and tool (Trent, 1991). Figure 6.12(a) shows Oxley’s
measurements of the narrower zone’s thickness, for a range of cutting speeds and feeds,
for the example of a 0.2%C steel turned with a —5° rake angle tool (other results, for a
0.38%C steel and a +5° rake tool, could also have been shown). The flow-zone is thinner
the larger the cutting speed and the lower the feed. In Figure 6.12(b), the observations are
replotted against t(Kwork/(Uworkf))‘/z. This is the same as (x4 /U )2, which occurs in
equation (6.16), if it is assumed that the contact length [ is equal to the chip thickness .
The experimental results lie within a linear band of mean slope 0.2. The flow-zone lies
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Fig. 6.12 Variation of flow-zone thickness with (a) cutting speed, at feeds (mm) of 0.5 (¢), 0.25 (+) and 0.125 (0); and
(b) replotted to compare with theory (see text)
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within, and is proportional to the thickness of, the chip layer heated by sliding over the
tool.

Oxley pointed out that the temperature of the flow zone would reduce the thicker it was,
through the factor ¢ (equation (6.16)); and that its strain rate would increase the thinner it
was (equation (6.15)). These influences of thickness on strain rate and temperature would
result in there being a thickness for which the velocity modified temperature would be a
maximum, and the shear flow stress a minimum (provided Ty;5, Was above about 620 K
for the example in Figure 6.11). He proposed that the thickness would take the value that
would maximize Ty;qp. This gives the band of values labelled “Theory” in Figure 6.12(b).
The predicted band lies about 50% above the observed one, sufficiently close to give valid-
ity to the proposal.

In Chapter 2 (Figure 2.22(a)), direct measurements of the variation of friction factor m
with rake face temperature were presented, for turning a 0.45%C steel. Flow-zone thick-
ness was not measured in those tests. However, if the experimental relationship shown in
Figure 6.12(b) is assumed to hold, the data of Figure 2.22(a) can be converted to a depen-
dence of \3mk (or Oy On Tyop- Figure 6.13 shows the result and compares it with the
value of g for a 0.45%C steel used by Oxley. The agreement between the two sets of data
is better than in Figure 6.11, but not perfect. It could be made perfect by supposing the
strain rate to be only one tenth of the assumed value (as could be the case if the chip veloc-
ity was not reduced to zero at the rake face). Or maybe it should not be perfect: it has been
argued that the tests from which o, values are derived are not close enough to machining
conditions and that equation (6.10) has not the proper form to model flow behaviour over
large ranges of extrapolation (Chapter 7.4). These are points of detail still to be resolved.
However, it is close enough to reinforce the proposition that the plateau friction stress in
machining is the shear flow stress of the chip material at the strain, strain rate and temper-
ature that prevails in the flow-zone; and that that is governed by the localization of shear
caused by minimization of the flow stress in the flow-zone. This wording is preferred,
rather than maximization of Ty, as possibly applying more generally to materials what-
ever is their exact functional dependence of flow stress on strain, strain rate and tempera-
ture.

Dealing with average values of strain rate and temperature at the rake face avoids the
question of how these vary along the rake face. It is still an open question as to why there
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is a plateau value of friction stress, considering the large variation of strain, strain rate and
temperature from one end of the flow-zone to the other. However, one thing is certain for
the development of numerical (such as finite element) methods that may answer that ques-
tion: the finite element mesh must be sufficiently fine next to the rake face to be able to
resolve details of the flow zone. Figure 6.12(b) gives, at least for carbon steels, guidance
of how fine that is: less than one fifth of (Kworkl/ U Chip)I/Z, or down to a few micrometres at
high cutting speeds and low feeds.

6.3.4 Summary
Oxley developed his primary and secondary shear modelling into an iterative scheme for
predicting cutting forces and shear plane angles from variations of work material flow
stress with strain, strain rate and temperature. It is fully described by Hastings et al. (1980)
and in Oxley (1989).

His work has shown that, in the primary shear zone, flow stress variations can signifi-
cantly alter resultant forces in both magnitude and direction (Figure 6.8). Additionally, in
the secondary shear zone, it suggests that, at least for high speed machining of metals with-
out free-machining additives, the plateau friction stress is closely linked to the way in
which shear localization occurs in a narrow flow-zone next to the rake face.

To develop those observations in to a predictive scheme, he found it necessary to restrict
the possibilities of free surface hydrostatic stress variation that slip-line field theory has shown
to be possible (Figure 6.4). He then observed that the non-uniqueness of slip-line field model-
ling was removed. Oxley’s scheme involves two restrictive assumptions: that the hydrostatic
stress at the free surface of the primary shear zone is given by equation (6.17) and that the
normal contact stress is uniform over the chip/tool contact area (the latter also implies a negli-
gible elastic part of the contact length). The first ignores the variety allowed by slip-line field
modelling (Figure 6.5(b)). Many experiments (and slip-line field modelling) show exceptions
to the second assumption. However, the main importance of his work, not affected by this
detail, is the removal of the non-uniqueness predicted by slip-line modelling. Only one of the
range of allowed results of a slip-line model (for example Figure 6.3) will create the rake face
temperatures and strain rates that result in the assumed rake face shear stress.

The challenge for machining mechanics is to combine these materials-led ideas with the
insights given by slip-line field modelling, in order to remove the restrictive assumptions
relating to hydrostatic stress variations. The complexity of the geometrical and materials
interactions is such that fundamental (as opposed to empirical) studies of the machining
process require numerical, finite element, tools.

6.4 Non-orthogonal (three-dimensional) machining

Sections 6.2 and 6.3 have considered mechanics and materials issues in modelling the
machining process, in orthogonal (two-dimensional or plane strain) conditions. This is
sufficient for understanding the basic processes and physical phenomena that are involved.
However, most practical machining is non-orthogonal (or three-dimensional): a compre-
hensive extension to this condition is necessary for the full benefits of modelling to be real-
ized. Many published accounts of three-dimensional effects have considered special cases,
using elementary geometry as their tools (Shaw et al., 1952; Zorev, 1966; Usui et al., 1978;
Usui and Hirota, 1978; Arsecularatne et al., 1995). This section introduces the further
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complexity of three-dimensional geometry in a more general manner than before, based on
linear algebra.

Three-dimensional aspects of machining were briefly mentioned in Chapter 2 (Section
2.2.1 and Figure 2.2). Some basic terms like cutting edge approach angle, inclination angle
and tool nose radius were introduced. The difference between feed and depth of cut (set by
machine tool movements) and uncut chip thickness and cutting edge engagement length
(related parameters, from the point of view of chip formation) was also explained. In this
book, the term feed is generally used for both feed and uncut chip thickness, and depth of
cut is used for both depth of cut and cutting edge engagement length. This section is the
main part in which feed and depth of cut are used, properly, only to describe the parame-
ters set by the machine tool.

6.4.1 An overview

The main feature (introduced in Section 2.2.1) of non-orthogonal machining is that the
chip’s direction of flow over the rake face is not normal to the cutting edge, but at some
angle 7, to the normal, measured in the plane of the rake face. A second feature (not consid-
ered in Section 2.2.1) is that usually the uncut chip thickness varies along the cutting edge;
and then the chip cross-section is not rectangular. This occurs whenever the nose radius of
the cutting tool is engaged in cutting. Figure 6.14(a) shows both these features, as well as
defining the chip flow direction 7 as positive when rotated clockwise from the normal to
the cutting edge. It also shows the cutting, feed and depth of cut force components, F, F;
and F, of the work on the tool. If it is assumed that all parts of the chip are travelling with
the same velocity, Uchip, (i.e. that there is no straining or twisting in the chip) then all mater-
ial planes containing U, and the cutting velocity U, are parallel to each other. The
figure shows two such planes (hatched). The area of the planes decreases from D to A,
where A and D lie at the extremities of the cutting edge engaged with the work.

Figure 6.14(b) shows any one of the hatched planes, simplified to a shear plane model
of the machining process. The particular value of the uncut chip thickness is 7, and the
accompanying chip thickness is #,.. The subscript e stands for effective and emphasizes
that the plane of the figure is the U, ~U, chip plane. The rake angle in this plane, a, differs
from that in the plane normal to the cutting edge. However, the condition that 7, is the
same for every plane determines that so is a,; and the condition that U, chip is the same on
every plane requires that the effective shear plane angle ¢, is also the same on every plane.
Equations (2.2) to (2.4) for orthogonal machining, in Chapter 2, can be extended to the
circumstance of Figure 6.14(b) to give, after slight manipulation,

cos a,
tan ¢, = ———— (6.17a)
(ty /1)) — sin a
sin ¢
Upip = ————— Uponi (6.17b)
cos(¢, — a,)
cos a,
primary — . Uwork (6.17¢)

cos(¢, — a,)
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Fig. 6.14 (a) A three-dimensional cutting model showing (hatched) planes containing the cutting and chip velocity
and (b) a shear plane model on one of those planes

y = cot ¢, + tan(¢, — @) (6.17d)

Furthermore, resolution of the three force components F,, F; and F, in the direction of
primary shear, and division by the primary shear surface area, gives the primary shear
stress, as in orthogonal machining. However, the direction of primary shear depends not
only on ¢, but also on n_ and the tool geometry. When, in addition, |, varies along the
cutting edge, the primary shear surface is curved: consequently, its area can be difficult to
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calculate. The description of machining, after the manner of Chapter 2, is inherently more
complicated in the three-dimensional case.

The main independent variables, for a given tool geometry are 77, and ¢,. There are two
basic ways to determine them, either from experiment (the descriptive manner of Chapter
2) or by prediction, both described in principle as follows.

Experimental analysis of three-dimensional machining

If the three force components F o Fp and F 4 are measured, and resolved into components
in the plane of, and normal to, the rake face of the tool, 1, can be obtained from the condi-
tion that the chip flow direction is opposed to the direction of the resultant (friction) force
in the plane of the rake face. a, can then be determined from 7, and the tool geometry.
Equation (6.17a) can then be used to determine ¢, from the measurement of chip thickness.
When the chip thickness varies along the cutting edge, a modification of the equation must
be used

cos a,
tan ¢, = —— (6.18)
AfC/Auc — 8in a,

where Ag, and A, are, respectively, the cross-sectional areas of the formed and uncut chip;
and A;, must be measured (for example by weighing a length of chip and dividing by the
length and the chip material’s density). Once n_ and ¢, are known, they may be used, with
the tool geometry and the set feed and depth of cut, to estimate the primary shear plane
area A ; the shear force F on the shear plane may be calculated from the measured force
components; and the shear stress 7 obtained from F/A . Other quantities may then be
derived; for example, the work per unit volume on materlal flowing through the primary
shear plane, for estimating the primary shear temperature rise, is 7, 7.

Prediction in three-dimensional machining

The earliest attempts at prediction in three-dimensional machining concentrated on 7.
Stabler (1951) suggested that i, should equal the cutting edge inclination angle A, (defined
in Figure 2.2 and more rigorously in Section 6.4.2); this is a first approximation. As seen
later, it is not well supported by experiment. A better idea, based on geometry and due to
Colwell (1954), is that, in a view normal to U, the chip will flow at right angles to the
line AD joining the extremities of the cutting edge engagement (Figure 6.14(a)).

The best agreement with experiment, short of complete three-dimensional analyses ab
initio (which hardly exist yet), is obtained by regarding the three-dimensional circum-
stance as a perturbation of orthogonal machining at the same feed, depth of cut and cutting
speed (for example Usui et al., 1978; Usui and Hirota, 1978). In such an approach, the
effective rake angle (a,) is recognized to change with n_. It is supposed that the friction
angle A, [N and 7, (and, in Usui’s case, the rake face friction force per uncut chip area
projected on to the rake face, F; /A ;) are the same functions of ¢, in three-dimensional
machining as they are of ¢ in orthogonal machining. These functions are determined either
by orthogonal machining experiments or simulations. Finally, n_ is obtained as the value
that minimizes the energy of chip formation under the constraints of the just described
dependencies of A, P> T and Ffric/Auf on a,. This approach, in which both n. and ¢, are
obtained — although empirical in its minimum energy assumption — is a practical way to
extend orthogonal modelling to three-dimensions.
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A range of cases

As the relative sizes of the feed, depth of cut and tool nose radius change, the shape of the
uncut chip cross-section changes. Figure 6.15 shows four examples for the turning process,
with which many engineers and certainly all tool engineers are familiar, but which could
represent any process, as discussed in Chapter 2. The hatched areas are the uncut chip
areas projected onto a plane normal to the cutting velocity. The directions and size of the
feed and depth of cut are marked. Points such as 1 and 2 lie on the major cutting edge; and
3 and 4 on the tool nose radius or the minor cutting edge. Figure 6.15(a) is a case in which
both the feed and depth of cut are large compared with the tool’s nose radius; in Figure
6.15(b), the feed is becoming small compared with the nose radius, but the depth of cut
remains large; in Figure 6.15(c), the depth of cut is reducing; and in Figure 6.15(d),
machining is confined entirely to the nose radius region. The different cross-section shapes
in these cases lead to different detail in estimating the shear plane and other areas. The
further detail in the figures is concerned with this and is returned to later.

Different combinations of tool cutting edge approach and inclination angles, and rake
face rake angles, lead to further variety in considering special cases. Formulae for use in
three-dimensional analyses, for handling this wide range of variety, both in tool angular
values and linear dimensions of the uncut chip, are derived in Sections 6.4.2 to 6.4.7,
before their applications are considered in Section 6.4.8.
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Fig. 6.15 Uncut chip cross-sections in single point turning: (a) case 1, (b) case 2, (c) case 3 and (d) case 4
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Fig. 6.15 continued
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Tz

(d)
Fig. 6.15 continued

6.4.2 Tool geometry

Figure 6.16 shows plans and elevations, and defines tool angles, of a plane rake face
turning tool oriented in a lathe. The treatment here is in terms of that, but (as has just
been written) the results may be applied to any other machining process. O*A is paral-
lel to the depth of cut direction and O*B to the feed direction of the machine tool (the
cutting velocity direction O*C is normal to both O*A and O*B). The cutting tool has
major (or side) and minor (or end) cutting edges which, in projection onto the O*AB
plane, are inclined at the approach angles y and x’, to O*A and O*B, as shown (y here
is /2 minus the major cutting edge angle «, introduced in Chapter 2). In addition, the
tool has a nose radius r,, also measured in the O*AB plane. The slope of the rake face
is determined by the angles, a; (side rake), that the intersection of the rake face with the
plane through O* normal to O*A makes with O*B and, ¢ (back rake), that the inter-
section of the rake face with the plane through O* normal to O*B makes with O*A.
Clearance angles y; and Yp and the sign conventions for the angles, + or — as indicated,
are also defined.

The figure also shows other views, defining other commonly described tool angles with
their sign conventions. The major cutting edge inclination angle 4, (already introduced but
included here for completeness) is the direction between the major cutting edge and the
normal to the cutting velocity in the plane containing the major cutting edge and the
cutting velocity. The normal rake angle ¢, is the angle, in the plane normal to the cutting
edge, between the intersection with that plane of the rake face and the normal to the plane
containing the cutting edge and the cutting velocity. Finally, the orthogonal rake angle o
is similarly defined to «,, but in the plane normal to the projection of the major cutting
edge in the plane O*AB.
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Fig. 6.16 Single point cutting tool geometry

6.4.3 Coordinate systems

The analysis of three-dimensional machining is aided by the introduction of six Cartesian
coordinate systems, all with the same origin O (O is not the same as O*) at the intersec-
tion of the major and minor cutting edges. These systems may be written (x, y, z), (x’, Y/,
N X, Y, 2, X,Y,Z), & n { and (&, 1, {) and are defined in Figures 6.17.
Transformations between the first four aid the analysis of cutting geometry and all of them
are useful for force analysis.

The (x, y, z) system (Figure 6.17(a))

This system is aligned to major directions in the machine tool, with x directed opposite to
the depth of cut, y opposite to the feed and z in the direction of the cutting velocity (the
workpiece is supposed to move towards the stationary tool, with cutting velocity U, in
the —z direction).

The (X', y’, Z’) system (Figure 6.17(a))

This is obtained by a clockwise rotation of (x, y, z) about z, by the amount . It serves to
link cutting tool and machine tool centred points of view. The coordinate transformation
from (x’, y’, Z’) to (x, y, z) may be written as

X = le' (6.19a)

where x and x” are position vectors in the (x, y, z) and (x’, y’, ) systems and
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Fig. 6.17 (a) (x, y, 2, (X", ', 2°), (X", V', Z))and (&, i*, &) and (b) (x’, v/, Z), (X, Y, Z) and (€, m, &) coordinate

systems
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cosy siny O
L =] -siny cosy O (6.19b)
0 0 1

In terms of the inverse or transposed matrices Ll‘1 or LT respectively, the inverse trans-
form is

X' =Lilx= Ll (6.19¢)

The (X, Y, Z) system (Figure 6.17(b))

In this cutting tool centred system, X lies along the major cutting edge, Y is in the plane of,
and Z is normal to, the rake face. The transformation from (X, Y, Z) to (x’, y’, Z’) is accom-
plished in two stages, first by rotating (X, ¥, Z) about the X-axis by the amount ¢, then
about the y” axis by the amount A

x' =L,X (6.20a)
where
[cos A sin l 0 0 9
L,=L,L,, = 0 cosq, sina,
| —sin A cos /”t -sina, cosa,
} (6.20b)
[cos A, —sinAg sina sin A cos a
= 0 cos a, sin o,
|—sin A, —cos A, sina, cos A  cosa, y

The (X', Y’, Z') system (Figure 6.17(a))

This system is the first to be introduced here from the point of view of chip formation. Z’
is parallel to z and 7/, still in the cutting direction, but X” is normal to, and Y’ is in, the plane
containing the cutting and chip velocities. In terms of the chip flow direction projected in
the x’—y” plane, defined by 7', (different from but related to ) the transformation from (X’,
Y,Z)to (X, y,7)1is

x = L)X (6.21a)
where
cos 17, sin 17, 0
L, =| —sin7 cos 17,, 0 (6.21b)
0 0 1

The (&, n, ¢) system (Figure 6.17(b))

This system is also concerned with chip flow. It is obtained by clockwise rotation of the
(X, Y, Z) frame about Z by the amount of the chip flow direction 7. The n direction is then
parallel to the chip flow direction, in the plane of the rake face. Transformation from (&, 7,

Oto (X, Y, 2)is

X = L)X (6.22a)

4
where
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cos 7, sin 7, 0
L, =] -sinn, Cos 7, 0 (6.22b)
0 0 1

The (&, v, ') system (Figure 6.17(a))

Finally, clockwise rotation of the (X’, Y’, Z’) frame about X’ by the amount of the effective
shear angle ¢, gives a system in which & remains normal to the plane containing the
cutting and chip velocities and ¢’ lies in the shear plane. To transform from (&, 7', {’) to
XY, 7)),

X = L5X§’ (6.23a)
where
1 0 0
Ly=|0 cos ¢, sin ¢, (6.23b)
0 -sing,  cos ¢,

6.4.4 Relations between tool and chip flow angles

In the three-dimensional cutting model described in Section 6.4.1, the chip flow direction
n. and the effective shear angle ¢, are the basic independent variables for a given tool
geometry and cutting conditions. Key dependent parameters used in their determination
are the effective rake angle o, and the chip flow direction 7, in the x~y" plane. In this
section the dependence of o, and 1/, on 7, and tool geometry, characterized by the normal
rake ¢ and the cutting edge inclination angle A, is first derived. Conversions between o
and other measures of tool rake are then developed.

Dependence of a, and 1/’ on 1, a, and

The unit vector in the chip flow direction may be expressed in two different ways in the x’
coordinate system to obtain the required relationships. In a notation a(b), which expresses
a vector a in the b coordinate system, the unit vector in the chip flow direction e, may be
expressed in the X and X’ systems as

sin n,,
e, X) = {cos nc}
0

0
e, X = {cos o, }
—sin a,

and these may be transformed to en(x’) respectively as

(6.24)

cos A, sin 17, —sin A, sin & cos 7,
e, x) = Lzen X) = { cos @, cos 1, } (6.25a)
—sin A sin 7, —cos A sin &, cos 7,
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sin 77, cos a,
e, x) = L3en X = { cos 177, cos a, } (6.25b)
—sin o

€
Equating the components of equations 6.25(a) and (b) leads to the required results:
sin @, = sin A, sin7n, + cos A, sin @ cos 7, (6.26a)
tan 77, = (cos A sin 77, —sin A sin e cos 1 )/(cos e, cos 1) (6.26b)
Relations between tool rake and cutting edge angles
Transformation of the unit vector normal to the rake face, originally expressed in the X

coordinate system, into its x and x” forms, leads to the required relations (using x = L, L,X
for the first case):

0 cos ¥ sin A, cos @, + sin ¥ sin
e, (x)=L,L,e,(X)=L,L, {O} = { —sin y sin 1, cos @, + cos  sin an} (6.27a)
1 cos A, cos a

0 sin A COs a
ey &) = L,e,X) = L, {0} = { sin o, } (6.27b)

1 cos /ls cos a,

Because tan o and tan o; are, respectively, the ratios of the x to z and y to z components
of e,(x) and tan ¢, is the ratio of the y" to z” components of eZ(X’), from equations 6.27(a)
and (b):

tan o, = cos y tan A+ sin y tan o /cos A (6.28a)
tan o, = —sin y tan A, + cos y tan @, /cos A (6.28b)
tan ¢ = tan o /cos A (6.28¢)

while further inversion and substitution results in

tan A, = cos y tan a, —sin y tan o; (6.28d)

tan o /cos A, = sin y tan a + COs y tan o, (6.28e)

P

6.4.5 Force relationships

The resultant cutting force F is most commonly reported by its cutting force F, feed force
F; and thrust force F; components in the (x, y, z) coordinate system, as shown in Figure
6.14 (and also earlier in Figure 5.7). However, the components in the (&, 7, {) and (&, 77/,
) frames are more fundamental to chip formation. In the former, the rake face friction
force Fy. is F, o the rake face normal force F is —F, and, because friction force is paral-
lel to the direction of motion, F' £ 0; in the latter, the shear force F, on the primary shear
surface is —F ...

The coordinate transformation
F(x) = L1L2L4F(X§) (6.29)

with F1(x) = {F,, F;, —F .} and FT(Xg) = (0, Fy,,.. —Fy), may be used to derive (after substi-

tution of equation (6.26b) to eliminate 7, in favour of 1)
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Fy Fo

Fb=1, { fric } (6.30a)

F Py

C
where
(cos ytan 17’ + sin y)cos ¢, cos 17, —cos y sin A  cos a, —sin y sin o,
Ly = | (cos y—sin y tan i’ )cos a, cos i, —cos y sin o, + sin y sin A  cos a,
sin cos 4, cos

(6.30b)

The inverse transformation of equation (6.29) with F. = 0 enables the chip flow direc-
tion and then the rake face friction and normal forces to be obtained from F J Y O and
the tool rake and cutting edge angles:

(F4c08 y — Fy sin y)cos A, + F, sin A

tan i, =
¢ (Fy sin y = F; cos y)cos o + {(Fp sin y — F; cos y)sin A, + F cos A }sin o

(6.31a)

F

Ff' . d
ne L= 1, F 6.31b
{ FN } 6{ Ff} ( )

Transformation of the cutting force components between the (x, y, z) and (&, 7', {)
frames is achieved by

Fy. Fy Fy
{Fn’} = LTSLT3LT1{ F; } = LT7{ F; } (6.32a)
Fe -F, —F,
where
cos(n, + y) —sin(n7, + y) 0
LT7 = | cos ¢, sin(n,+ y) cos ¢, cos(n, + ) —sin ¢, (6.32b)
sin @, sin(n, + ) sin ¢, cos(17, + ) cos ¢,

Then, since F, = —F % and the shear stress 7, on the shear plane is this divided by the shear
surface area Ay,

Fy =—{Fysin(, + y) + Fycos(n’, + y)}sin ¢_ + F_ cos ¢, (6.33a)
Ty, = F /Ay, (6.33b)

6.4.6 Shear surface area relations

In terms of [ ¢, the length of the shear surface along the shear direction on a cutting veloc-
ity—chip velocity plane, and of e, and eg, the unit vectors along the shear direction and
cutting edge respectively, the area A of the curved shear surface is obtained by integra-
tion along the cutting edge S:

Ay = [e,xegll1,ds (6.34a)
S
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where Il Il is the norm of the vector. However, the cutting edge shape, through w, ', and 7, ,
is defined on the x—y or x’—y” plane: amongst these, x” is parallel to the major cutting edge
direction. It is therefore convenient to carry out the integration in the (x’, ¥, ) coordinate
system, along the projected infinitesimal cutting edge length dS” in the x’—y” plane:

ds
Ay = [ Ne,xeglll,—ds’ (6.34b)
g ds

Evaluating A: | o and e (X’)

Expressions for [ 5 and e ¢(x’) are simplified by the assumption that the effective shear plane
angle ¢, is a constant, the same on every cutting velocity—chip velocity plane, for given
cutting conditions. In terms of the effective uncut chip thickness 7, (Figure 6.14(b)),

t
o= !¢ (6.35)

) sin ¢,

e, in the x” coordinate system is obtained from the fact that, in the X’ coordinate system,
it has components (0, singbe, cosd,). Thus

0 sin 77, sin ¢
e¢(x') = L3e¢(X’) =L, { sin ¢, } = { cos 177, sin ¢e} (6.36)

cos ¢, Ccos ¢,

Evaluating A : e,(x’) (dS/dS’)

The unit vector along the x'~y” plane projection of the cutting edge, in general makes some
angle 6 with x” and may be written e,(x’), with (', y’, z’) components (cosf, —sin#, 0).
Along the major cutting edge, € = 0; along the minor cutting edge, 6 = /2 + (x’, — y); and
round the nose radius region 6 varies from one to the other. Because e,dS" is the projection
on the x’-y” plane of edS,

ds cos 6
eg(x) F = ey(x) + ce_(x) = {—sin 9} (6.37)
c

where e is the unit vector in the z* direction and c is a constant that may be found from
the condition that, because e lies in the X-Y plane, the Z component of eg is zero. In the
(X, Y, Z) coordinate system

ds
ds’

ds T

cos A cos 6 —c sin A
—sin A, sin @, cos 6 —cos @, sin §—c cos 4, sin (6.38)
sin A, cos a, cos 6 —sin ¢, sin 6 + ¢ cos A, cos o

Hence

tan o, sin 6 — sin A, cos 6
c = (6.39)
cos A
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Evaluating A : the result
Substitution of equations (6.35), (6.36) and (6.37) with (6.39) into equation (6.34b) and
performing the vector multiplication leads to

b= A, ds’ (6.402)
b sin R
with
A2 = cosX(1y.— 6) + {c sin 6, — cos 6, sin(1, — ) }> (6.40D)

Along the major cutting edge (6 = 0), A, takes a constant value that may be written Amaj or
along the minor cutting edge (6 = 7/2 + ¢, where ¢ = &', — y) it takes another constant
value that may be written A ;.
Example calculations of A,

The functional dependence of A, and #,, on §” commonly changes along S’. The evaluation
of A is then accomplished by dividing the range of §” into as many intervals as there are
different variations. If there are N such,

hm2

t, .
el 4y (6.41)
sin @,

sh_Zj

i=l lim,,

A number of special cases have been introduced in Figure 6.15. In Figure 6.15(a), for
example, there are four intervals indicated by A, A, A , A, In Table 6.1, the values of
11m1 i hmzl ,Aal s He and the appropriate form of dS are hsted for this example (case
1) as well as for the other three cases, 2 to 4, of Flgures 6.15(b) to (d) respectively (N =4
for cases 2 and 3, and N = 2 for case 4). In the table, the subscripts 1, 2, 3, etc indicate the
positions 1, 2, 3, etc in Figure 6.15 at which the quantities are calculated, or else the
subscripted quantities are defined in the figure. Further details of the values of the quanti-
ties are listed in Table 6.2; and how they are obtained follows next.

The values of x’;, x’, and y’; in Table 6.2 are obtained from Figure 6.15(a), 6, from
Figure 6.15(b) and 6, from Figure 6.15(d), by inspection. More explanation is needed of
the values of 6, 8, and 6; and of Ileg34- IN Figure 6.15(c), 6, is defined as the direction
between the major cutting edge and the tangent to the cutting edge at point 2. Point 2 lies
on the same chip flow line that passes through point 8; and the direction of all flow lines
is given in the x’—y” plane by 7’ . Thus, 6, in Table 6.2 is found from

Xp— X (d-r +r_sin y)/cos y— fsin y + r_sin 6
anp=—0 2 - n ° L (642
Vo= Vs r,cos 0, —r +fcosy

0, and 6, are obtained by a similar argument. They are obtained from the conditions
that points 3 and 5 in Figure 6.15(d) and Figure 6.15(c) respectively lie on the same chip
flow line.

110934 the effective uncut chip thickness between points 3 and 4 in Figure 6.15(b), is
found from the condition that point 7 lies on the circle of radius r, centred on C, and point
7 is displaced from point 6 by 1, in the chip flow direction. Thus
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Table 6.1 Particular values of coefficients and variables in equation (6.41)

Case i ds/; lim, lim, Ay Ne
, , , feos y
1 1 dx X Ao major cos nrc
cos dlcosy — x
2 v <, dicosy A feos ¥ L
J cos ', |\ dicosy—x',
‘cos w—r_ +r, cos 6
3 r,do 0 w2+ A, feos vty
cos 17,
dy’ feos y—y’
4 —_— g cos A —_—
cos @ Y3 ! v minor cos nlc
, , , feos y
2 1 dx X Ao major cos nrc
cos dlcosy — x
2 v <, dicosy A feos y vy
J cos ', |\ dlcosy —x',
‘cos w—r_ +r, cos 6
3 r.de 0 0, A, feos Vot
cos 1,
4 r,d0 6; 6, Ag 1e,034
“cos dicosy — x’
3 1 dx’ X, d/cosy major f }V v ~
cos ', J\d/cosy —x',
d—r +r sin(0+
2 .do 0 0, A, Aoty Sin O+ Y)
sin (', + y)
‘cos Yy —r +r cos0
3 r.de 6, 0, A, feosW a1y
cos 1,
4 r,d0 6; 6, Ag e,034
d—r +r sin(0+
4 1 r,do 6, 0, A, nt 7o S0 O+ Y)
sin (17, + ¥)
2 r,d6 0, 0, Ag e,034

’ ’ : ’\2 ’ ’ N2
(X6 = Xeo + legza SIN )™+ (Vg = Yoo + Lieg3a COSN)™ = 7

2 (643)

11,034 18 Obtained as the solution to the quadratic equation (6.43) after substituting

(x4 —Xgp) = fsiny—r, sin® and (yg— yep) = —fcosy —r, cos 0

6.4.7 Uncut chip cross-section areas A and A ;

The uncut chip cross-section area A in the x’-y" plane, also required in the theory of
three-dimensional machining, is

Ay = | 1, costr, — 6) ds”

(6.44)

For the particular cases of Figure 6.15, it can be obtained geometrically, without integra-

tion. For case 1
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Table 6.2 Values of the coefficients x’;, x',, ¥'5, 6, (i = 0 to 4) and ¢, 0034

’ ’ ’

X X Y3
r (1 —sin y) . .
£ —f(sin y+cos ytan 17 ) r, (1 +sin @)
cos ¥ cos ¥

6 6,

- { ry _d } , . { f . , (d—r)cos 0+ r, sin (y+ n'c)}
sin™ -y N +sin” { —sin(y+1n)—-

r, r, r,cos y

6, 6,

PSR [ P , PRTRR ( Py
N, +sin —sin(y+n')—sin(6-1) N, +sin —sin(y+ 1) —sinn,

rn rn
6, 11,034

r,cos(n'.— 6) + fcos(1', + W)

g —y +sin! 2f - { {r, cos(n’,— 6) + feos(', + W)} - f2 - 2r, fcos(y + 9)} B
r

T 1 +sin @

cos ¥ + sin k7 f2sin /. cos
Ap=fd+r2 | —+— - +r.f -
"l 4 2 cos @ cos @ 2 cos @
(6.452)
while for cases 2, 3 and 4
f 1 '
A, = (d=r)f + r¥sin™! +— fl4rk-f? (6.45b)
2r, 4

A,p the projection onto the rake face, along the cutting direction, of the uncut chip
cross-section area is readily shown to be the division of A _ by the z” component of e,(x")
in equation (6.27b):

A

Ay = S (6.46)
cos A, cos a,

6.4.8 Predictions from three-dimensional models

The relations from the previous sections may finally be used in the prediction of chip flow
direction and cutting force components. Colwell’s (1954) approach and the energy
approach initiated by Usui (Usui et al. 1978; Usui and Hirota, 1978; also Usui, 1990), will
particularly be developed and compared with experiments.
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Colwell’s geometrical model

The chip flow direction 7', in the x” — y” plane is assumed to be perpendicular to the
projected chord AD joining the extremities of the cutting edge engagement (Figure 6.14)
in the x” — y” plane. It is readily found by trigonometry, for the four cases shown in Figure
6.15. For Case 1 (Figure 6.15(a))

fcos? ycos @
tan 77, = (6.47a)
_ . V3 _ 2 .
(d—r)cos @+ r, (sin k. + cos y) — fcos” y sin @

while for Cases 2, 3 and 4 (in terms of 8, given in Table 6.2)

. , r (1 —cos 6,)cos v 6.47b)
an 7, = .
¢ d+r, (sin y + sin 6, cos y— 1)

Then, from equation (6.26b),

cos @, tan 17/, + sin A  sin o,
tann. = con A (6.48)
S

This result alone is not sufficient for predicting machining forces: shear plane prediction
is required as well.

Usui’s energy model
As introduced in Section 6.4.1, it is assumed that ¢, 7, 4 and F; /A  are the same func-
tions of ¢, in three-dimensional machining as they are of & in orthogonal machining. From

Chapter 2 (Section 2.2), in orthogonal conditions

F.. T, sin A cos o
fric _ sh (6.49&)
Ay cos(p+A—a) sing
Then, in three-dimensional conditions
T, A .sin A cos .
Frio=— 2 : (6.49b)

cos(gp, + 1 — o) sing,

The friction work rate is Fy,; U, and the primary shear work rate is TshAshUprimary'

After applying equations (6.17b) and (6.17c), the total work rate is

E

C

cos @, A sin 4 cos a, U
.= + T,
utting sh COS(¢e . ae) uf COS(¢e + A— (Ze)COS(¢e . ae) sh™~ work
(6.50)

For given tool angles, equations (6.26a) and (6.26b) are used to obtain ¢, and 7, in terms
of n,; Ay, is then obtained from 7/, tool geometry and feed and depth of cut, from equation
(6.41), using Tables 6.1 and 6.2 as appropriate; A is determined from tool geometry,
feed and depth of cut by equations (6.46) and (6.45). Thus, equation (6.50), with ¢, 7, and
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A as functions of a, is converted to a function of N tool geometry, feed and depth of cut
and can be minimized with respect to 7.

Once the energy is minimized, the cutting force component F, is obtained from that
energy divided by the cutting speed; and Fy;_ is found from equation (6.49b). The normal
force on the rake face, Fy, is then found by manipulation of equation (6.30): from the rela-
tion between F o Fric and Fy

F. —-F. sina
FN _ c fric e ( 6.5 l)
cos A, cos a,

Equation (6.30) can also be used to obtain the feed and depth of cut force components.
(It is not correct to determine Fy directly from F;. and the friction angle, as the friction
angle is defined, for the purposes of the energy minimization, in the cutting velocity—chip
velocity plane; and this does not contain the normal to the rake face.)

Comparison with experiments

The predictions of the various models have been compared by Usui and Hirota (1978), for
machining a medium (0.45%C) carbon steel with a P20 grade carbide tool. The orthogo-
nal cutting data for this were established by experiment as (with angles in rad and 7 in
MPa)

7, =517.4 - 19.8%¢
A =exp(0.848a — 0.416)

¢ =exp(0.581ca — 1.139)
} (6.52)

Figure 6.18 compares the measured and predicted dependencies of chip flow angle on
cutting edge inclination and tool nose radius. The energy method gives closer agreement

40 |
— Pradicted -——— Stabler
|
i=—=— Colwell — === Hashimato
30 p— - .
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-
& % o
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“ | .f
I :
: |
=10
15 1 -5 o] 5 10 15
(a) Cutting edge inclination {°}

Fig. 6.18 The dependence of n.on (a) A, and (b) r,, for machining a carbon steel (after Usui and Hirota, 1978)
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Fig. 6.18 continued

with experiment than Stabler’s or Colwell’s prediction or a third prediction due to
Hashimoto and Kuise (1966). Figure 6.19, for the same conditions, shows that the energy
method also predicts the force components well.

The good results with the energy method come despite its approximations, that ¢, is the
same on every cutting velocity—chip velocity plane and that ¢, 7, 4 and Fg; /A, depend
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Fig. 6.19 Predicted (energy method) and measured cutting force components in the same conditions as Figure 6.18
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Fig. 6.19 continued

only on ¢, for a given tool geometry, cutting speed and feed. In reality, chips do curl and
twist, so ¢, can vary from plane to plane (although, from Chapter 2, the extra deformation
from this is small compared with the main primary shear). In addition, around the tool nose
radius, the uncut chip thickness varies: it could be imagined that ¢, 74, 4 and Fg; /A ¢
should be allowed to vary with 7, as well as with a.. Whether there are conditions in which
this extra refinement is necessary is unknown.

In the example just considered, the orthogonal cutting data were obtained by experi-
ment. The main interest today is that such data can be obtained by simulation, by the finite
element methods that are the subject of the following chapters.
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Finite element methods

In the previous chapter, Sections 6.2 and 6.3 established some of the difficulties and issues
in analysing even steady-state and plane strain chip formation. The finite element method
is a natural tool for handling the non-linearities involved. Section 6.4 suggested how
orthogonal (plane strain) results could be extended to three-dimensional conditions. An
eventual goal, particularly for non-plane rake-faced tools, must be the direct analysis of
three-dimensional machining; and the finite element method would appear to be the best
candidate for this. Chip formation is a difficult process to analyse, even by the finite
element method. This chapter is mainly concerned with introducing the method and
reviewing the learning process — from the 1970s to the present — of how to use it. Its appli-
cations are the subject of Chapter 8.

There are, in fact, several finite element methods, not just one. There is a coupling of
thermal and mechanical analysis methods. In the mechanical domain, different approaches
have been tried and are still in use. The differences cover how material stress—strain rela-
tions are described (modelling elasticity as well as plasticity, or neglecting elastic compo-
nents of stress and strain); how flow variations are described (relative to fixed axes, or
convecting with material elements — the Eulerian and Lagrangian views of fluid and solid
mechanics); how the elements are constructed (uniform, or structured according to physi-
cal intuition, or allowed to remesh adaptively in response to the results of the calculations);
and how some factors more specific to metal machining (for example the separation of the
chip from the work) are dealt with. A general background to these (to raise awareness of
issues more than to support use in detail) is given in Section 7.1. Section 7.2 surveys devel-
opments of the finite element approach (applied to chip formation), from the 1970s to the
1990s. Section 7.3 gives some additional background information to prepare for the more
detailed material of Chapter 8. To obtain accurate answers from finite element methods (as
much as for any other tool) it is necessary to supply accurate information to these meth-
ods. Section 7.4 considers the plastic flow behaviour of materials at the high strains, strain
rates and temperatures that occur in machining, a topic introduced in Chapter 6.3.

7.1 Finite element background

Fundamental to all finite element analysis is the replacement of a continuum, in which
problem variables may be determined exactly, by an assembly of finite elements in which
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Fig. 7.1 To illustrate the finite element method for a mechanics problem

the problem variables are only determined at a set number of points: the nodes of the
elements. Between the nodes, the values of the variables, or quantities derived from them,
are determined by interpolation.

A simple example may be given to demonstrate the method: calculating the stresses and
strains in a thin plate (thickness #,) loaded elastically in its plane by three forces F, F, and
F;. The plate is divided into triangular elements — the most simple type possible. Some of
them are shown in Figure 7.1.

The nodes of the problem are the vertices of the elements. Each element, such as that
identified by ‘e’, is defined by the position of its three nodes, (x;,y,) for node i and simi-
larly for j and k. The external loadings cause x and y displacements of the nodes,
(ux’l.,uy’l.) at i and similarly at j and k. The adjacent elements transmit external forces to
the sides of the element, equivalent to forces (F XJ.,FyJ.), (F . j,Fy J) and (F x,k’Fy,k) at the
nodes.

Strain - displacement relations
Displacements within the element are, by linear interpolation

U, =a; +ayx + agy; U, = ay+ asx + agy (7.1)

From the definition of strain as the rate of change of displacement with position, and
choosing the coefficients a; to a4 so that, at the nodes, equation (7.1) gives the nodal
displacements,

e = ou, u O = VU + O = ¥ty + O = it
o 24

(7.2)
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where A is the area of the element; and similarly for the other strains £, and Yy Matrix
algebra allows a compact way of writing these results:

ux,i
U,
Eir P O ey 0 ymy 0
£, =— 0 X, — X, 0 X —X 0 X, — X, x.J (7.3a)
»y 2A k7 i Tk 7o u. .
Vxy X YT N Me em Ve XN it M)‘]’C
X,
Uy g
or, more compactly still
{e}element = [B]element{u}elemem (73b)
where [B] element® known as the B-matrix, has the contents of equation (7.3a).

Elastic stress — strain relations
In plane stress conditions, as exist in this thin plate example, Hooke’s Law is

o 1 v 0 e
{0;;;} - E : [ v 1 0 ]{sﬁf }; or {o} = [D]{e} (7.4)
T =vilo o 1-v] |7,
2

Combining equations (7.3b) and (7.4)

{O-} element — [D ] [B ]element{ u } element (7'5)

Nodal force equations, their global assembly and solution

Finally, the stresses in the element can be related to the external nodal forces, either by

force equilibrium or by applying the principle of virtual work. Standard finite element

texts (see Appendix 1.5) show
{F} = A [B]T

[D][B] (7.6)

element element element element{ u } element

Equations (7.6) for every element are added together to create a global relation between
the forces and displacements of all the nodes:

{F}global = [K]{u}global or, more simply {F} = [K]{u} (7.7

where [K], the global stiffness matrix, is the assembly of thAelemem[B]Telemem[D] [Bl.iement:

For the assembled elements, the resultant external force on every node is zero, except
for where, in this example, the forces F|, F, and F); are applied. The column vector {F} is
a known quantity: equations (7.7) are a set of linear equations for the unknown displace-
ments {u}. After solving these equations, the strains in the elements and then the stresses
can be found from equations (7.3) and (7.4).

These steps of a finite element mechanics calculation are for the circumstances of small
strain elasticity. Plasticity introduces some changes and large deformations require more
care in the detail.

Rigid-plastic or elastic-plastic modelling
In plastic flow conditions, such as occur in machining and forming processes, it is natural
to consider nodal velocities u instead of displacements u as the unknowns. Strain rates in
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an element are derived from rates of change of velocity with position, in the same way that
strains are derived from rates of change of displacement with position. Over some period
of time, the strain rates generate increased strains in an element. In a time d¢ strain incre-
ments are:

{de} = [Bl{u}ds (7.8)

The strain increment components have both elastic and plastic parts. The plastic parts
are in proportion to the total stress components but the elastic parts are in proportion to the
stress increment components (as described in Appendix 1). If elastic parts of a flow are
ignored, plastic flow rules lead to relations between the total stresses and the strain incre-
ments. These lead, in turn, (Appendix 1.5 gives better detail) to finite element equations of
the form

{F} = [K]{u}ds (7.9a)

Ignoring the elastic strains is the rigid-plastic material approximation. Equation (7.9a) is
commonly solved directly for the velocity of a flow, by iteration on an initial guess.

If the elastic strain parts of a plastic flow are not ignored, the flow rules lead to rela-
tions between element stress increment and strain increment components. The finite
element equations become

{dF} = [Kl{a}dt  or  {F} = [K]{i} (7.9b)

In order to predict the state of an element, it is necessary to integrate the solution of equa-
tion (7.9b) along an element’s loading path, from its initially unloaded to its current posi-
tion.

The above descriptions are highly simplified. Appendix 1.5 gives more detail, particu-
larly of the non-linearities of the finite element equations that enter through the rigid—plas-
tic or elastic—plastic [D] matrix within the [K] matrix. The main point to take forward is
that elastic—plastic analysis gives a more complete description of process stresses and
strains but, because it is necessary to follow the development of a flow from its transient
start to whatever is its final state, and because of its high degree of non-linearity, it is
computationally very intensive. Rigid—plastic finite element modelling requires less
computing power because it is not necessary to follow the path of a flow so closely, and
the equations are less non-linear; but it ignores elastic components of strain. Particularly
in machining, when thin regions of plastic distortion (the primary and secondary shear
zones) are sandwiched between elastic work, chip and tool, this is a disadvantage.
Nonetheless, both rigid—plastic and elastic—plastic finite element analysis are commonly
applied to machining problems.

Eulerian or Lagrangian flow representation
There is a choice, in dividing the region of a flow problem into elements, whether to fix
the elements in space and allow the material to flow through them (the Eulerian view), or
to fix the elements to the flowing material, so that they convect with the material (the
Lagrangian view). Figure 7.2 illustrates these options. In the Eulerian case, attention is
drawn to how velocities vary from element to element (for example elements 1 and 2) at
the same time. In the Lagrangian case, attention is focused on how the velocity of a partic-
ular element varies with time. Each view has its advantages and disadvantages.

The advantage of the Eulerian view is that the shapes of the elements do not change
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Fig. 7.2 Eulerian and Lagrangian views of a plastic flow

with time, so the coefficients of the [B] matrix, which depend on element shape (for exam-
ple equation (7.3), for a triangular element), need only be computed once. However, in a
problem such as machining, in which determining the location of the free surface of the
chip is part of the problem to be solved, it is not clear where the elements should be drawn.
It is necessary to develop the free surface boundaries of the element mesh by iteration. A
more general problem is how to describe the convection of material property changes, like
strain hardening, from element to element. (Eulerian analyses are more common in fluid
mechanics than in solid mechanics because fluid properties vary less with deformation
than do those of solids.) In steady flow problems, it is assumed that material properties
convect along the streamlines.

The Lagrangian view has no problem with convection of material properties. The state
of a material is fixed in an element. However, the element changes shape during a flow: the
[B] matrix requires continued updating. This leads to geometrical non-linearities in addition
to material non-linearities in the finite element equations. In extreme cases it may become
necessary to simplify a distorted element shape by remeshing (see the next section). There
is a further complication. An element most likely rotates as well as distorts as it passes
through a flow (as shown in Figure 7.2). After a while, its local x and y directions will differ
from those of other elements. However, a common set of axes is required for the transfor-
mation of individual element equations to a global assembly. Counter-rotating the local
element coordinate system, as well as updating the [B] matrix, is repeatedly required.

Structured or adaptive meshing — and other matters
It is common sense that a finer mesh is needed where problem variables (velocity, temper-
ature) vary strongly with position than where they do not. In metal machining, fine detail is
needed to model the primary and secondary shear zones. This poses no problem for
Eulerian meshes: a choice is made where to refine the mesh and by how much. However,
for computing efficiency with a Lagrangian mesh, there is a need to refine and then coarsen
how the material is divided into elements as it flows into and out of plastic shear zones.
The need to refine Lagrangian meshes is particularly accute near the cutting edge of a
tool, where the work material flow splits into flow under the cutting edge and flow into the
chip. A range of approaches to separation at the cutting edge has been developed, from
introducing an artificial crack in the work, to highly adaptive remeshing, to developing
special elements with singularities in them. These are not needed in Eulerian analyses.



204  Finite element methods

In addition to the choice of finite element method based on computational criteria,
particular softwares for metal machining should be able to model the variation of flow
stress with strain, strain rate and temperature (Section 6.3) and the variation of rake face
friction conditions from high load to low load conditions (Chapter 2, Section 2.4)

Summary

The choice of finite element methods for machining problems involves rigid-plastic or
elastic—plastic material models; Eulerian or updated Lagrangian flow treatments; struc-
tured or adaptive meshes; chip/work separation criteria needed or not needed; and coupling
to thermal calculation models or not. Some of the achievements of these approaches, and
methods of overcoming computational problems, are chronicled in the next section. On
balance, the updated Lagrangian analyses’ advantage of easily tracking material property
changes outweighs the disadvantages of computational complexity. The simplicity of
Eulerian computations is not fully realized in the large free surface movement conditions
of a chip forming process.

7.2 Historical developments

The 1970s

The earliest finite element chip formation studies (Zienkiewicz, 1971; Kakino, 1971)
avoided all the problems of modelling large flows by simulating the loading of a tool against
a pre-formed chip (Figure 7.3). A small strain elastic—plastic analysis demonstrated the
development of plastic yielding along the primary shear plane as a tool was displaced against
the chip. This work has a number of limitations, making it of historical interest only. For
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Fig. 7.3 Shear zone development, loading a pre-formed chip (Zienkiewicz, 1971)
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Fig. 7.4 The iterative convergence method (ICM) - Shirakashi and Usui (1976)

example, it neglects friction between the chip and tool, and strain rate and temperature mater-
ial flow stress variations are not considered either. More fundamentally, it assumes the shape
of the chip in the first place: the main purpose of chip forming analyses is to predict the shape.

The limitations of this initial work were removed by Shirakashi and Usui (1976). While
keeping the computational advantages of supposing the tool to move into a pre-formed
chip, they developed an iterative way of changing the shape of the pre-form until the gener-
ated plastic flow was consistent with the assumed shape. They also included realistic
chip/tool friction conditions (from split-tool experiments), a temperature as well as a
mechanical calculation, and material flow stress variations with strain, strain rate and
temperature, measured from high strain rate Hopkinson bar tests (see Section 7.4). Their
iterative convergence method (ICM) is shown in Figure 7.4.

The first step of the ICM is to assume a steady state chip shape (similar to Figure 7.3,
except for supposing there to be a small crack at the cutting edge to enable the chip to
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separate from the work) and (for plane strain modelling) to create a three-node triangular mesh
following the streamlines of the flow. In the first iteration, the tool is moved against the chip:
the development of nodal velocities is followed with an updated Lagrangian elastic—plastic
analysis. When it is judged that the plastic flow is fully developed, the nodal velocity field is
used to calculate the element strain rates along the streamlines; strains are obtained by inte-
grating the strain rates with respect to time along the streamlines (as if material had reached
its current position by flowing along a streamline). Temperatures are calculated from the inter-
nal and friction work rates and the work and tool materials’ thermal properties (in the first
application of the ICM, temperature was calculated by a finite difference method, but later the
finite element method was used). Material flow stress is then set according to its strain, strain
rate and temperature, the tool and chip are unloaded and the cycle of moving the tool into the
chip repeated. This is continued until converged strain rates and temperatures are achieved. At
that stage, the flow field is used to modify the initially assumed streamlines to be closer to the
calculated flow. The complete cycle is then repeated, and repeated again until the assumed and
calculated flow fields agree. The displacement of the tool needed to establish the flow field is
sufficiently small that the need to reform the crack at the cutting edge does not arise. Within
limits, the crack size does not influence the predicted chip flow.

Figure 7.5 shows chip shape, equivalent plastic strain rate and temperature fields

— Predicted
— - — Measured

Units: °C

(b}

Fig. 7.5 (a) Strain rates and (b) temperatures predicted by the ICM method for dry machining or-brass, cutting speed
48 m/min, rake angle 30", feed 0.3 mm
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calculated by Shirakashi and Usui for machining an o-brass. Chip shape agrees with
experiment, as does the temperature field (which was studied experimentally with infrared
microscopy).

The procedure of loading a tool against an already formed chip greatly reduces comput-
ing capacity requirements and, in the 1970s, made elastic—plastic analysis possible. However,
it does not follow the actual path by which a chip is formed and, as outlined in Section 7.1
and Appendix 1, the development of elastic—plastic flows is path dependent. The justification
of the method is that it gives good agreement with experiment. The ICM has been developed
further, in analyses of cutting fluid action (Usui et al., 1977), built-up-edge formation (Usui
et al., 1981) and more recently in studies of low alloy semi free-machining steels (Childs and
Maekawa, 1990). It is given further consideration in Section 7.3 and Chapter 8.

The 1980s

Rigid—plastic modelling does not require the actual loading path to be followed (also
discussed in Section 7.1 and Appendix 1). Steady state rigid—plastic modelling, within a
Eulerian framework, also adjusting an initially assumed flow field to bring it into agreement
with the computed field, was first applied to machining by Iwata et al. (1984), using soft-
ware developed from metal forming analyses. They included friction and work hardening
and also a consideration of whether the chip would fracture, but not heating (and obviously
not elastic effects). Experiments at low cutting speed (0.15 mm/min in a scanning electron
microscope) supported their predictions. It was not necessary with the Eulerian frame to
introduce a crack at the cutting edge, but it was necessary, to avoid computational difficul-
ties, to give the cutting edge a small radius (about one tenth of the feed).

The mid-1980s, with a growth in available computer power, saw the first non-steady
chip formation analyses, following the development of a chip from first contact of a cutting
edge with a workpiece, as in practical conditions (Figure 7.6(a)). Updated Lagrangian elas-
tic—plastic analysis was used, and the chip/work separation criterion at the cutting edge

Direction of cut

Workpiece

Tool

(a

Fig. 7.6 Non-steady state analysis: (a) initial model and (b) separation of nodes at the cutting edge
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Fig. 7.8 Discontinuous chip formation in B-brass (Obikawa et al. 1997): (1-6) element deformation and (7) equiva-
lent plastic strain distribution, at different cut distances /

became an issue (Figure 7.6(b)): should the connection between elements be broken by a
limiting strain, limiting energy or limiting displacement condition? Figure 7.7 shows the
earliest example (Strenkowski and Carrol, 1985), which used a strain-based separation
criterion. At that time, neither a realistic friction model nor coupling of the elastic—plastic
to thermal analysis (and hence nor a realistic flow stress variation with cutting conditions)
was included.

At the same time as plastic flow finite element methods were being developed for metal
machining, linear fracture mechanics methods were being developed for the machining of
brittle ceramics (Ueda and Sugita, 1983).

The 1990s

The 1990s have seen the development of non-steady analysis, from transient to discontin-

uous chip formation, the first three-dimensional analyses and the introduction of adaptive

meshing techniques particularly to cope with flow around the cutting edge of a tool.
Figure 7.8 shows an updated Lagrangian elastic—plastic simulation of discontinuous

chip formation in S-brass at low cutting speed. To obtain this result a geometrical
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(displacement controlled) parting criterion at the cutting edge was combined with an
empirical crack nucleation and growth criterion, considered further in Section 7.3 and
Chapter 8. Other authors have taken different approaches to crack growth during chip
formation (Ueda et al. 1991).

Figures 7.9 and 7.10 are the earliest examples of elastic—plastic steady and non-steady
three-dimensional analyses. The steady state example is an extension of the ICM to three

Fig. 7.9 Three-dimensional steady state chip formation by the ICM (Maekawa and Maeda, 1993): (a) initial model and
(b) equivalent strain rate distribution
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Fig. 7.10 Three-dimensional non-steady chip formation (Sasahara et al, 1994): (a) element deformations and (b)
equivalent plastic strain distribution

dimensions. The non-steady example employs a geometrical parting criterion at both the
primary and secondary cutting edges. In both these cases, temperature and strain rate
effects are ignored, to reduce the computing requirements. This restriction was soon
removed: three-dimensional elastic—plastic, thermally coupled, ICM simulation soon
became used for cutting tool design, also considered further in Chapter 8 (Maekawa et al.
1994).

In parallel with the extension of elastic—plastic methods to non-steady and three-dimen-
sional conditions, the rigid—plastic method (Iwata et al., 1984) was similarly being devel-
oped (Ueda and Manabe, 1993; Ueda et al., 1996), with a shift from Eulerian to
Lagrangian modelling. Figure 7.11 shows the simulation of spirally curled chip formation
during milling with a non-zero axial rake tool. A simple form of remeshing at the cutting
edge, instead of a geometrical crack, was introduced to accommodate the separation of the
chip from the work.

Adaptive mesh refinement in non-steady flows, whereby during an increment of flow (a
time step) the mesh is fixed to the work material in a Lagrangian manner — but between steps
the mesh connectivity and size is changed according to rules based on local severities of
deformation — offers the advantage over fixed Lagrangian approaches of concentrating the
mesh where it is needed most, in the primary shear zone, at the cutting edge and along the
rake face. Concentration at the cutting edge provides an alternative to introducing a crack for
following the separation of the chip from the work. Both rigid—plastic (Sekhon and Chenot,



Historical developments 211

vt Tool ratation
Y. angle b

; -~
Q He&glef

Helix angle ¢

(b) X

Fig. 7.11 Three-dimensional non-steady chip formation by rigid plastic finite element method (Ueda et al,, 1996): (a)
initial model and (b) spiral chips

1993; Ceretti et al., 1996) and elastic—plastic (Marusich and Ortiz, 1995) adaptive remesh-
ing softwares have been developed and are being applied to chip formation simulation. They
seem more effective than arbitrary Lagrangian—Eulerian (ALE) methods in which the mesh
is neither fixed in space nor in the workpiece (for example Rakotomolala et al., 1993).

Summary

The 1970s to the 1990s has seen the development and testing of finite element techniques
for chip formation processes. Many of the researches have been more concerned with the
development of methods than their immediate application value: the limited availability of
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reliable friction and high strain, strain rate and temperature material flow properties did not
hold back this work. The ICM approach is the exception: from the start it has been
concerned with supporting machining applications. Now that all methods are approaching
maturity, attention is shifting to the provision of appropriate friction and material flow
property data (see Section 7.4).

In the future there are likely to be three main avenues of finite element modelling of
chip formation: (1) the ICM method for steady state processes, because of its extremely
high computing efficiency; (2) Lagrangian adaptive mesh refinement methods for unsteady
processes, both elastic—plastic as the most complete treatment and rigid—plastic for its
fewer computing requirements if elastic effects are not needed; and (3) fixed mesh
Lagrangian methods (with chip separation criteria) to support educational studies of
unsteady processes in a time effective manner. Chapter 8 will concentrate on the first and
the last of these, but a future edition may well include more of the second.

7.3 The Iterative Convergence Method (ICM)

Sections 7.3.1 and 7.3.2 give more details of the ICM method (which was introduced in
the previous section), as background to the examples of its use presented in Chapter 8.
Section 7.3.3 introduces a treatment of unsteady processes (case (3) above).

7.3.1 Principles and implementation

As has already been described, the ICM method is an updated Lagrangian elastic—plastic
finite element analysis for predicting steady state chip flows. Such analyses normally must
follow the development of strain along a material’s load path and are computationally very
intensive. The ICM method replaces the real path by a shorter one: loading the tool onto
an already formed chip. It provides a way, by iteration, of finding the formed chip shape
that is consistent with the material’s flow properties and friction interaction with the tool.
A key point is that its finite elements are structured to follow the stream lines of the steady
state chip flow (as will be seen in Figure 7.13).

The flow chart of the ICM procedure as it was originally introduced, is shown in Figure
7.4. Figure 7.12 shows its developed form. An initial guess of the chip flow or stream lines
(usually of the simple straight shear plane type considered in Chapter 2) is made and the
tool is placed so that its rake face just touches the back surface of the chip. Calculation
proceeds by incrementally displacing the workpiece towards the tool so that a load devel-
ops between the chip and tool. At each increment, it is checked if the plastic flow is fully
developed (saturated): if it is not, a further increment is applied (loop I). Once the flow is
developed, the initial guess is systematically and automatically reformed to bring it into
closer agreement with the calculated flow. The strain rate in each element of the reformed
flow is calculated; and the strain distribution is obtained by integrating strain rate along the
streamlines. The element flow stress associated with the reformed flow is then estimated;
but this requires temperature as well as strain and strain rate to be known. A second loop
(loop II), a thermal finite element analysis, is entered to determine the temperature field.
Finally, it is checked whether the derived material flow stress, temperature and flow fields
have converged: if they have not, the whole iteration is repeated (loop III). The next para-
graphs give some details that are special to the calculations.
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Fig. 7.12 Developed flow-chart of the iterative convergence method

Judgement of saturation of the plastic flow is made either on the basis of the tool load
reaching a maximum value or of conservation of volume — i.e. that the computed flow of
material out of the plastic zone into the chip balances that of the work into the plastic zone.

Reformation of the flow field supposes that the separation between nodes along a
streamline is unchanged by reformation, but that the direction from one node to the next
is altered to bring it more closely tangential to the calculated flow. For each flow line

consisting of a node sequence j—1,j,j+ 1 ..., the updated (x, y) coordinates of node j are
given by

iy j ty o1 iy
R T T Rt TR (7.10)
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where (u, 7 Liv j) are the calculated velocities at node j, (j is the resultant average velocity

of nodes j—1 and j, and Lj is the separation between nodes j—1 and j:
. . . . 1
€= |y oy + iy )P+ Gy g + uw.)z) f (7.11a)
1
L= Gy =32+ 0y -2 2 (7.11b)

The reformation using equations (7.10) and (7.11) is implemented from the beginning to
the end of a flow line so that the coordinates (Xj—l’ yjfl) have already been revised.

The equivalent plastic strain £ in each element is evaluated by the integration of its rate
£ along the reformed flow lines:

zzjédtzfj d¢ (7.12)
v

€

where v, the element velocity, obtained from the average of an element’s nodal velocities.
Relations between flow stress, strain, strain rate and temperature are considered in Section
7.4.

Figure 7.13 shows an ICM mesh for two-dimensional machining with a single point
tool, in which the x- and y-axes are taken respectively parallel and perpendicular to the
cutting direction, in a rectangular Cartesian coordinate system. The tool is assumed to be
stationary and rigid, while the workpiece moves towards it at the specified cutting speed.
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Fig. 7.13 Two-dimensional finite element assemblage with boundary conditions
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The mesh is highly refined in the primary and secondary shear zones, in line with the
considerations of Chapter 6.

The friction boundary at the tool—chip interface is treated as follows. For the nodes
contacting the rake face, the conditions imposed on the finite element equation (equation
7.9(b)) with respect to the nodal force rate F' and the nodal velocity # are:

. dr
F,=

X

—|F., ui.=0 (7.13)
dO'n’ y y

where x” and y” are the local coordinate systems parallel and perpendicular to the rake face
(as shown in Figure 7.13) and (d7/do,) is the local slope of the friction characteristic curve
(for example the inset in Figure 2.23) at the value of o, associated with the nodal force F. ..

In the course of the elastic—plastic analysis, loop I of Figure 7.12, the chip contact length
may increase or decrease. A chip surface node in contact with the rake face is judged to leave
contact if its F, force becomes tensile; and a node out of contact is judged to come into
contact if its reformed y” becomes negative (penetrates the tool). Thus, the ICM method auto-
matically determines the chip-tool contact length as one aspect of determining the chip flow.

The separation of material at the cutting edge is taken into account geometrically. The
streamline at the cutting edge bifurcates both onto the rake face and onto the clearance
surface of the work. In the ICM calculation, the relative displacement between the work
near the cutting edge and the tool is only about 1/20 of the uncut chip thickness. A small
crack imposed on the mesh, of that length, is sufficient to cope with separation without
additional treatments, such as reconstruction of node and element sequences and special
procedures to ensure a force balance at the crack tip. (This is not the case when the actual
loading path of an element has to be followed, as in the analysis of unsteady or discontin-
uous chip flows, to be considered in Section 7.3.3.)

Finally, Figure 7.13 shows the boundary conditions for the temperature analysis (loop
II). The forward and bottom surfaces of the work are fixed at room temperature. No heat
is conducted across the chip and work exit surfaces (adiabatic condition), although there
is of course convection. Heat loss by convection is allowed at those surfaces surrounded
by atmosphere. Heat loss by radiation is negligible in the analysis.

7.3.2 ICM simulation examples

The following is an example of the application of the ICM scheme to the two-dimensional
machining of an 18%Mn-5%Cr high-hardness steel (Maekawa et al., 1988). The cutting
conditions used were a cutting speed of 30 m/min, an uncut chip thickness of 0.3 mm, unit
cutting width, a P20 grade carbide tool with a zero rake angle and dry cutting. Figure 7.14
shows the predicted chip shape and nodal displacement vectors. Material separation at the
tool tip and chip curl are successfully simulated. Figure 7.15 gives the distribution of
equivalent plastic strain rate, showing where severe plastic deformation takes place. The
deformation concentrates at the so-called shear plane, but is widely distributed around that
plane. The secondary plastic zone is also clearly visible along the rake face, although the
deformation is not as severe as in the primary zone.

These features are reflected in the temperature distribution in the chip and workpiece,
as shown in Figure 7.16. A maximum temperature of more than 800°C appears on the rake
face at up to two feed distances from the tool tip.
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—+ 30 mémin

Fig. 7.14 Chip shape and velocity vectors in machining high manganese steel: cutting speed = 30 m/min, undeformed
chip thickness = 0.3 mm, width of cut =1 mm, rake angle = 0°, no coolant

Units : s

Fig. 7.15 Distribution of equivalent plastic strain rate, showing concentration of plastic deformation: cutting condi-
tions as Figure 7.14
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Fig. 7.16 Isotherms near the cutting tip, cutting conditions as Figure 7.14

Experimental verification has also been performed. Figure 7.17 compares the predicted
and measured specific cutting forces under the same conditions (but varying speed). The
observed force—velocity characteristics are well simulated. Similar agreement was
confirmed in other quantities such as chip curl, rake temperature, stresses on the rake face
and tool wear. For tool wear, a diffusive wear law as described in equation (4.1) was
assumed (Maekawa et al., 1988).

The calculation time for the ICM method depends both on the computer hardware and
on the number of finite elements. In the above case, it takes only a few minutes from ICM
execution to graphical presentations, using a recent high-specification PC (Pentium II, 400
MHz CPU) and an assemblage of 390 nodes and 780 triangular elements. However, a pre-
processor to prepare the finite element assemblage and a post-processor to handle a large
amount of data for visualization are required.

Further ICM steady flow examples will be presented in Chapter 8, together with the
finite element analysis of unsteady and discontinuous chip formation. The latter requires
more consideration of the chip separation criterion.

7.3.3 A treatment of unsteady chip flows

As has been written above, the ICM scheme cannot be applied to the analysis of non-
steady metal machining. The iteration around an incremental small strain plastic loading
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Fig. 7.17 Comparison of predicted specific forces with experiment for the same feed and rake angle as Figure 7.14,
but with varying cutting speed

path closely coupled with a steady state temperature calculation (Figure 7.12) must be
replaced by an incremental large strain and deformation analysis, coupled with a non-
steady state temperature calculation (Appendix 2.4.4.), along the actual material loading
path. Movement of the tool relative to the work over distances much greater than the
feed, or uncut chip thickness, requires a way of reforming the nodes at the feed depth,
as they approach the cutting edge, to form the work clearance surface and the chip
surface in contact with the rake face. In addition, if the unsteady flow being treated
involves fracture within the primary shear zone, a fracture criterion and a way of
handling crack propagation are also needed. All these potentially require more comput-
ing power.

The examples of unsteady flow in Chapter 8.2 deal with these complications in the
following ways (Obikawa and Usui, 1996; Obikawa et al., 1997). Computational intensity
is reduced by using meshes less refined than that shown in Figure 7.13, despite a possible
loss of detail in the secondary shear region at high cutting speeds (Figure 6.12). Figure
7.18 shows the four-node quadrilateral finite element meshes used in plane strain condi-
tions, similar to those in Figures 7.6 and 7.7. Hydrostatic pressure variations in large strain
elastic—plastic analyses are dealt with easier using four-node quadrilateral than three-node
triangular elements (Nagtegaal et al., 1974): more detail of large strain plasticity is
summarized in Obikawa and Usui (1996).

Details of node separation at the cutting edge and the propagation of a ductile primary
shear fracture are shown respectively in the lower and upper parts of Figure 7.19.

Node separation
A geometrical criterion is used for node separation. A node i reforms to two nodes i and i’
once its distance from the cutting edge becomes less than 1/20 of the element’s side length
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Fig. 7.19 (a) Separation of nodes within a fracturing chip; and (b) release of nodal forces at the cutting edge
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(about 5 um in the examples to be considered) and once the previously separated node has
come into contact with the rake face. To avoid a sudden change in nodal forces, which can
cause the computation to become unstable, the forces F; and F;, acting on the separated
nodes are not relaxed to zero immediately. Instead their components in the cutting direc-
tion are reduced step-by-step, under the constraint that both nodes move parallel to the
cutting direction, to reach zero as i reaches the rake face (when the friction boundary
condition takes over its movement). As in the ICM method, the small artificial crack at the
cutting edge introduced by this procedure does not significantly alter the machining para-
meters.

Fracture initiation and crack growth

Shear fracture is proposed to occur if the equivalent strain exceeds an amount depending
on the size of the hydrostatic pressure p (positive in compression) relative to the equiva-
lent stress &, and on the absolute temperature T and equivalent strain rate &:

p )
E>gy+a—+f(T, &) (7.14)
c

where f(T, £) causes the critical strain to increase with increasing temperature and reduc-
ing strain rate, as considered further in Chapter 8.

The upper part of Figure 7.19 shows the method of treating crack propagation, for the
case of crack initiation at the cutting edge (a crack may alternatively initiate at the free
surface end of the primary shear zone). If the strain at node I exceeds the limit of equa-
tion (7.14), an actual crack is assumed to propagate in the direction of the maximum
shear stress 7, to a point P. If point P is closer to node J than to K, a nominal crack is
assumed to form along 1J, but if (as shown) P is closer to K, the nominal crack contin-
ues along JK to K. If the fracture limit is still exceeded at P, the actual crack continues
to propagate in the direction of T, there, to Q; and so on to R, until the fracture criterion
is no longer satisfied. The nominal crack growth, for the example shown, follows the
path IJKLMN.

7.4 Material flow stress modelling for finite element analyses

Flow stress, friction and, as considered in the previous section, fracture behaviour of
metals, are all required as inputs to finite element analyses. This final section of this chap-
ter concentrates on the flow stress dependence on strain, strain rate and temperature. The
reason is that most of what is known about friction in metal cutting has already been intro-
duced in Chapter 2; and there is insufficient information about the application of ductile
shear fracture criteria to machining to enable a sensible review to be made. Only on flow
stress behaviour is there more currently to be written.

The topic of flow stress dependence on strain, strain-rate and temperature has been
introduced in Section 6.3. There, flow stress was related to strain by a power law, with the
constant of proportionality and power law exponent both being functions of strain rate and
temperature (equations (6.10) and (6.14)). Comparisons were made between flow stress
data deduced from machining tests and high strain-rate compression tests (Figure 6.11).
Those compression tests were carried out in a high speed hammer press, driven by
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compressed air, on material brought to temperature (up to 1100°C) by pre-heating in a
furnace (Oxley, 1989; from Oyane et al., 1967).

Pre-heating in a furnace allows a material’s microstructure to come into thermal equi-
librium. This differs from the conditions experienced in metal machining. There, metal
is heated and passes through the deforming region in the order of milliseconds. The
microstructures of chips, in the hot secondary shear region, appear heavily cold worked
and not largely recovered or recrystallized. For steels, traces of austenitization and
quenching are hardly ever seen, even though secondary shear temperatures are calcu-
lated to be high enough for that to occur for longer heating times. The ideal mechanical
testing of metals for machining applications involves high heating rates as well as strain
rates.

7.4.1 High heating-rate and strain-rate mechanical testing

Such testing has been developed by Shirakashi et al. (1983). A Hopkinson bar creates
strain rates up to 2000 s™! in a cylindrical sample of metal (6 mm diameter by 10 mm
long). Induction heating and a quench tank heat and cool the sample within a 5 s cycle. A
stopping ring limits the strain per cycle to 0.05: multiple cycling allows the effect of strain
path (varying strain rate and temperature along the path) on flow stress to be studied.
Figure 7.20 shows the principle of the test, with a measured temperature/time result of
heating a 0.15%C steel to 600°C.

Subsidiary tests show that a single sample can be heated for up to 90 s at temperatures
up to 680°C before thermal annealing or age hardening modifies the flow stress generated
by straining. Thus, 20 cycles, each taking 5 s, developing a strain up to 1, can be achieved

Stopping ring

0/

Iogut bar
t\\\\\\\\\\\‘h\‘

High-frequency\bdﬂ \Specimen Impact (Al = 0.05)

Output bar

induction coil Thermocougle
600
Y 40
TG
200 =~ Quenching

Quench tank

{water)

Fig. 7.20 Principle of the rapid heating and quenching high strain rate test (after Shirakashi et al.,, 1983)
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before the time at which temperature degrades the results. Phase transformation prevents
useful testing above 720°C. Even testing at strains up to 1, strain rates up to 2000 and
temperatures up to = 700°C (for steels) does not reach metal cutting secondary shear
conditions, but it is the closest yet achieved.

With this equipment, the flow stresses of a range of carbon and low alloy steels have
been measured. Varying both strain rate and temperature along a strain path has been
observed to influence the stress/strain curve. An empirical equation to represent this has
been developed:

A g\ aT g \" J an| £
= _ e . e I
1000 1000| |/streinpath 1000

When straining takes place at constant strain rate and temperature, it reduces to:

Ql

-mIN N
dé) (7.152)

g M
G=A|——| &V (7.15b)
1000

where A, M and N may all vary with temperature. Measured values are given in Appendix
4.3. Figure 7.21 gives example results for a low alloy steel (the 0.36C-Cr-Mo-Ni material
of Table A4.4).
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Fig. 7.21 Flow stress behaviour of a low alloy steel: dashed line at 20°C and a strain rate of 103 s™"; solid lines at
strain rate of 103 s~ and temperatures as marked

The Hopkinson bar equipment has established different laws for non-ferrous face
centred cubic metals such as aluminium and a-brass. A much greater strain rate path effect
and no temperature path effect has been observed (Usui and Shirakashi, 1982). At temper-
atures, 7°C, up to about 300°C (higher temperature data would be useful but is not reported)
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which, at constant strain rate, simplifies to the form

G=A (7.16a)
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Coefficients in these equations, with data for other alloys too, are also given in Appendix
4.3.

When flow stress data from these Hopkinson bar tests are used in machining simula-
tions in which the predicted temperatures do not rise too far above the ranges to which the
data apply, satisfactory agreement with experiments is usually obtained (as will be seen in
later chapters). However, with the increasing capabilities of tool materials to withstand
high temperatures and the consequent increase of practical cutting speeds, there is a need
to extend the range of validity of flow stress equations.

7.4.2 Other approaches to flow stress modelling

A number of the finite element studies reported in Section 7.2 (Rakotomolala et al., 1993,
Sekhon and Chenot, 1993, Marusich and Ortiz, 1995) have used the empirical flow stress
equations first used in dynamic impact applications, combining power law strain harden-
ing, power law or logarithmic strain-rate effects and linear or power law thermal soften-
ing. Two examples are

&=(A+B&e")(1 + Cln&)(1 - [(T = T, T ety = L))" }
(7.17)

&= oy(1 + (Fley)'(1 + E/EY)"(1 — (T - Tp))

where the coefficients are either constants or change step-wise with strain rate. These
equations have been suggested for computational convenience. As each has four or five
adjustable coefficients, they may be able to be trained to give realistic simulations over
limited ranges of cutting speed and feed, but they are too simple, compared with observa-
tions (for example Figure 7.21) with respect to variations of flow stress with temperature.
They do not allow (without modification) modelling the strain path effects that are signif-
icant, particularly for face centred cubic (f.c.c.) metals (equation 7.16(a)).

Another approach developed for dynamic impact applications, but applied only recently
in machining simulations, is to use flow stress equations based on dislocation mechanics
fundamentals. Zerilli and Armstrong (1987) have suggested that the flow stress variations
of f.c.c. and b.c.c. metals with strain, strain rate and temperature should take the forms
(with temperature T Kelvin):

for f.c.c. metals 6=C, + C250'5 exp[(-C5 + C4ln§)T] } 8
(7.18)

for b.c.c. metals 6= C| + Cs&" + C, exp[(-C; + C41n§)ﬂ

Both these combine strain rate and temperature in the velocity modified temperature form
(Chapter 6, equation (6.14)). The form for b.c.c. metals suggests that the dependence of
flow stress on strain hardening should not depend on temperature. Figure 7.21 shows this
to be the case up to about 600°C but not to be true at higher temperatures. Recently,
Goldthorpe et al. (1994) have suggested a modification for b.c.c. metals that introduces a
temperature dependence of strain hardening, through the reduction of a metal’s elastic
shear modulus, G, with temperature:
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5= (C, + CsE")(G/Gayy) + C, expl(—C5 + C,1nE)T) (7.19)

where, for steels (G/G,y;) = 1.13 = 0.000445T.

A question arises about extrapolation of these, and other power law equations, to strains
much greater than 1. (In Section 6.3, Oxley’s assumption that strain hardening ceased for
strains greater than 1 was mentioned.) Zerilli and Armstrong (1997), in the context of
modelling the behaviour of a titanium alloy, suggest that strain could be replaced by a form
that saturates at a limiting, or recovery, value £

£= (1 - exp[-€le ) (7.20)

Gradually, experience of the formulation of flow stress equations for broader ranges of
strain, strain rates and temperatures is growing (path dependence remains undeveloped). It
can be anticipated that useful fundamentally-based equations for metal machining appli-
cations will be developed over the coming years. Eventually the goal of relating flow
behaviour to a metal’s composition and microstructure will be reached. However today, the
empirical forms outlined in Section 7.3.1 are the best validated that are available.
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Applications of finite
element analysis

In this chapter, a number of special topics are considered as examples of applications to
which finite element methods have already contributed. Built-up edge (BUE) and serrated
chip flows were introduced in Chapter 2 (Figure 2.4) but have hardly been mentioned
since. The unsteady nature of their flows makes their effective analysis by classical meth-
ods impractical. BUE formation is considered in Section 8.1, and discontinuous/unsteady
chip formation, including serrated flows, in Section 8.2. The development of free-machin-
ing steels remains an important application area for manufacturing industry: the correla-
tion of machinability with other materials’ properties through finite element studies is the
topic of Section 8.3. The reality that many cutting tools do not have plane rake faces was
introduced in Chapter 3 (Section 3.2.8) but this too has not been considered since. Section
8.4 introduces finite element analyses of chip control and the effects of cutting edge shape
that have a potential to support rational tool design.

8.1 Simulation of BUE formation

Built-up edges occur at some cutting speed or other in machining most metal alloys
containing more than one phase, as machining conditions change from low speed, at which
no significant heating occurs, to high speed, when the secondary shear zone becomes too
hot to support BUEs (Williams et al. 1970). Figures 2.4(d), (e) and (f) show the progres-
sion from a heavily cracked chip flow, through BUE formation, to steady flow, in the
machining of a 0.15%C steel at a feed of 0.15 mm, as the cutting speed increases from 5
m/min to 55 m/min. Figure 3.14 follows the associated changes in cutting forces and shear
plane angle. Many researchers have investigated the effects of cutting temperature, work
hardening (and work softening) and adhesion between the chip and tool on the formation
and disappearance of the BUE (Pekelharing, 1974). All these factors have some influence,
by and large. It is clear that the BUE is an unstable formation. It repeatedly nucleates,
grows and breaks away in fragments from the tool, with the disadvantages, among others,
that the machined surface is degraded and tool wear (certainly by chipping) is increased.
One point arises concerning the mechanism of nucleation. Is it by a steady secondary
shear flow, leading to a continuous pile up of laminates on the tool rake face (Trent, 1963)?
Or is it by discrete fractures in the secondary shear zone leading to discontinuous separa-
tions of the BUE from the main body of the chip (Shaw et al., 1961)? The next sections
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address these questions with the aid of the ICM finite element method (Usui et al., 1981).
As the ICM method can only follow steady state chip flows (Chapter 7.3), it is more accu-
rate to write that it is used to assess incipient BUE formation: it supports the discrete frac-
ture viewpoint.

8.1.1 The simulation model

Orthogonal dry machining of a 0.18%C plain carbon steel by a P20-grade carbide tool has
been simulated, at cutting speeds from 75 m/min (above BUE formation) down to 30
m/min (within the BUE range), at a feed of 0.3 mm, a rake angle of 10° and a clearance
angle of 6° (to match experimental machining studies that were also carried out). The finite
element assemblage used was that shown in Figure 7.13.

Flow properties of the workpiece were obtained by the Hopkinson-bar method and
formulated according to equation 7.15(a) (also see Appendix 4). Friction at the tool—-chip
interface was also measured (at a cutting speed of 46 m/min) using the split tool method
(Chapter 5): the results were fitted to equation (2.24c¢), taking & to be the local shear flow
stress at the rake face; and with m = 1 and u = 1.6.

8.1.2 Orthogonal machining without BUE

Figure 8.1 shows the predicted chip shape and other quantities at the high cutting speed of
75 m/min. Figure 8.1(a) shows the pattern of distorted grid lines calculated from the nodal

0

(a)

Fig. 8.1 Simulated machining of a 0.18%C steel at a cutting speed of 75 m/min where no BUE appears: (a) distorted
grid pattern and normal stress and friction stresses on the tool rake face, (b) distributions of maximum shear strain ¥,
and strain rate % and (c) distributions of shear flow stress k and temperature 7(°C)
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velocities along the flow lines (following the method of Johnson and Kudo, 1962). The
grey area represents the plastic deformation zone. The predicted normal stress o, and fric-
tion stress 7, along the rake face are in reasonable agreement with the measured ones,
considering the simulation and experiments were not carried out at exactly the same
cutting speeds. (The split-tool measurement was carried out using a planer, the maximum
speed of which was 46 m/min.)

Figure 8.1(b) shows the calculated distributions of maximum shear strain y, and strain
rate y,. Deformation is concentrated, as expected, near the shear plane and along the rake
face. The strain rate reaches 8000 s~ in front of the cutting edge, and its time integration
along the flow lines yields a maximum strain of more than 8 on the rake face.

Figure 8.1(c) shows the distributions of shear flow stress k and temperature 7 within the
chip and tool. The magnitude of the stress rises in the deformation zone because of work
hardening, but it is limited to 700 MPa by thermal softening.

8.1.3 Orthogonal machining with BUE

When the cutting speed is reduced to 30 m/min (and a BUE appears in practice), different
phenomena appear in the chip. Figure 8.2 first shows an intermediate stage of the ICM iter-
ation, before full convergence of the flow has occurred. In the primary shear region shown
in Figure 8.2(a), the directions of the nodal velocities, as indicated by the arrows, are
already in reasonable agreement with the reformed streamlines, but this is not the case in
the secondary shear zone.

In the secondary shear zone, localized areas of relatively high strain rate are developing.
Figure 8.2(b) highlights, by shading, two regions — one attached to the rake face, one sepa-
rated from it — in which the strain rate y, is 400 s greater than the value of 100 s7L, also
shaded, nearer to the cutting edge. This may be contrasted with the strain rate distribution

Fig. 8.2 As for Figure 8.1 but at a cutting speed of 30 m/min; and just before convergence of the computation
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Fig. 8.2 continued

at 75 m/min (Figure 8.1(b)) which shows strain rates steadily decreasing with increasing
distance from the cutting edge.

The distribution of the shear flow stress (Figure 8.2(c)) follows the uneven distribution
of y,: a shear flow stress minimum (shaded region) of k = 450 MPa appears in the region
where 7, = 400 s,

As the simulation continues to convergence (Figure 8.3), the localization of secondary
shear strain rate and shear stress becomes stronger. Although no obvious change in chip
thickness or shear plane angle can be seen, the secondary deformation becomes concen-
trated (Figure 8.3(b)) to form a narrow band, partly separated from the rake face, in which
there is a very high shear strain, y, = 16 (or £ =9.2). A relatively low hydrostatic pressure
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also exists there (the dashed lines in Figure 8.3(b)). In contrast to the intermediate state
(Figure 8.2), the shear flow stress in the band has become increased relative to its
surroundings, by work hardening, as shown in Figure 8.3(c).

These changes are all favourable to the separation of the flow by shear fracture, to

0 0.2mm

|

! vy
Plastic zone i i

Fig. 8.3 Converged results at the cutting speed of 30 m/min: (a) and (c) as in Figures 8.1 and 8.2 but (b) distribution
of ¥, and hydrostatic pressure p
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Fig. 8.3 continued

generate the nucleus of a BUE. If nucleation occurs, debris stuck to the rake face will have
enough hardness to resist loading by the chip body.

Figure 8.4 is a quick-stop observation showing that separation can occur in the chip
close to the cutting edge. The ICM simulation described here, apart from only dealing with
steady states, has no chip separation criterion within it. If a reliable fracture criterion were
available, not only the accumulation of nuclei or the growth of the BUE but also its break-
age might be simulated by an extended finite element method.

8.1.4 The role of blue brittleness

Why does the deformation concentrate at V =30 m/min? The primary cause, for steels, can
be attributed to blue brittleness. The effect of blue brittleness is expressed in the term

M

£

1000

A

in equation (7.15b) (omitting, for simplicity, the path dependence effects in equation
(7.15a)). Figure 8.5 shows the relation between flow stress and temperature measured for
the 0.18%C steel. Between 400°C and 600°C the flow stress increases with temperature
(the blue brittle effect). In Figure 8.3(c) the temperature at the boundary between the stag-
nant secondary zone and the main body of the chip is in the same range. Since carbon
steels become brittle near the peak flow stress temperature, fracture is most likely to occur
in this condition.

At the cutting speed of 75 m/min, no BUE appears (Figure 8.1). Figure 8.5 indicates that
the temperature along the rake face is beyond the blue brittle range. Thermal softening
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Fig. 8.4 Experimental distorted grid pattern from a quick stop test at a cutting speed of 25 m/min, =0.16 mm,
=4 mm, o=10° and without coolant
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Fig. 8.5 Relation between flow stress and temperature of the 0.18%C steel
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above 600°C is so steep that deformation occurs easily. The secondary flow zone grid lines
in Figure 8.1(a), compared with those in Figure 8.3(a), indicate the collapse of the BUE-
range stagnant flow. The almost uniform secondary shear flow stress in Figure 8.1(c) can
be attributed to compensation between work hardening and thermal softening. It indicates
why, despite varying strain, strain rate and temperature along the rake face, split-tool tests
show a plateau friction stress almost independent of distance from the cutting edge
(although this does, of course, depend on the constitutive law chosen for the simulation, as
has been discussed in Chapter 7.4).

In summary, the BUE formation process in steels has successfully been simulated using
the finite element method. Under practical cutting conditions where a BUE appears, the
chip flow property characterized by blue brittleness assists in developing the secondary
shear flow into a stagnant zone. At the boundary between the developed stagnant flow and
the main body of the chip, conditions of high strain concentration, low hydrostatic pres-
sure and material brittleness are favourable for the separation of flow to form the nucleus
of a BUE. The stagnant flow degenerates at higher cutting speeds because thermal soften-
ing prevails over work hardening.

8.2 Simulation of unsteady chip formation

Three examples of unsteady chip formation are described: (1) chip flow, force and resid-
ual stress variations in the low speed (13 mm/min) machining of a S-brass
(60%Cu—40%Zn), in conditions that lead to discontinuous chip formation (Obikawa et al.,
1997); (2) changes in chip formation, and resulting changes in tool fracture probability,
during transient chip flow at the end of a cut, for the low speed machining of a different j-
brass, in conditions which give continuous chip formation (Usui et al,, 1990); and (3)
serrated chip formation in machining a Ti-6Al-4V alloy (Obikawa and Usui, 1996). The
treatment of unsteady flow is as outlined in Chapter 7.3.3.

Low strain rate mechanical testing showed both brass materials had the same work-
hardening behaviour, but that which gave discontinuous chips was less ductile than the
other. The low cutting speed of the application means that the effects of strain rate and
temperature on flow stress can be neglected. However, it is found that the distribution of
strain rate in the primary shear zone influences where a crack initiates — and the depen-
dence of shear fracture on this cannot be neglected. The following expressions for flow
stress & dependence on strain € and of fracture criterion on hydrostatic pressure p and
strain rate £ (relative to cutting speed, to accommodate the distribution effect) are used for
positive shear of both brasses in the finite element analysis:

p £
G (MPa) = 740 + 0.01)°%7;  £>a+04 — —0.01 — (8.1a)
G v

with a = 1.57 for the less, and 10.0 for the more, ductile material, and V the cutting speed
in mm/s. Friction between the chip and the tool is modelled according to equation (2.24c),
with m and y both equal to 1.

The fracture due to negative shear at the end of a cut occurs under mixed modes: tensile
mode I and shear mode II. The latter is the predominant mode, but the former accelerates
crack propagation. Under the conditions that strain rate due to positive shear is less than



Simulation of unsteady chip formation 235

that due to negative shear and that a crack nucleates only in the negative shear region,
another criterion is applied for the negative shear fracture (Obikawa et al., 1990):

p
£>1.1+03— (8.1b)
o

For the Ti-alloy example, strain rate and temperature effects cannot be ignored. The
material’s flow stress is given in Appendix 4; the shear fracture criterion used is

p(MPa)
12 600

T(K)

g2

£
+0.09 exp ~ MAX l0.07510g ( o ) ,ol (8.2)

where MAX] , ] means the greater of the two choices. Rake face friction is modelled in the
same way as for the B-brass, with m = 1 but u = 0.6. (The fracture criterion and that for the
B-brass are empirically developed — further developments may be expected in the coming
years, in parallel with flow stress modelling improvements as described in Chapter 7.)

8.2.1 Discontinuous chip formation with a p-brass

Figure 8.6 shows the chip formation predicted at different cut distances L for the S-brass,
with the material properties of equation (8.1a), machined with a carbide tool of rake angle
15°, at a feed of 0.25 mm. A shear-type discontinuous chip is simulated, with a crack initi-
ating periodically at the tool side of the chip, within the highly deformed workpiece, and
propagating towards the free surface side. Figure 8.7 shows the pattern of changing cutting
forces. Both horizontal and vertical components increase with cut distance, up to the point
where a crack initiates. The crack propagates, accompanied by falling forces. It finally

0.25mm
| I
—+—F—F—
{a) £ =0.40mm
"
o e
L I I 1 T L

{bY L =1.28mm (¢} L=3.83mm

Fig. 8.6 Predicted discontinuous chip in B-brass machining: cutting speed of 13 mm/min, =0.25 mm, ¢=1 mm,
o=15° and no coolant
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Fig. 8.7 Predicted horizontal and vertical cutting forces for the same conditions as Figure 8.6
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Fig. 8.8 Residual stress and strain in machined layer: (a) direct stress o, acting in the cutting direction, (b) equivalent
plastic strain; and () o, in continuous chip formation

penetrates through the chip with a sharp drop in the forces. The force cycle then repeats
itself. These tendencies are in accord with experiments (Obikawa et al., 1997).

Residual stress and strain in the machined layer can also be predicted, as shown in
Figure 8.8. It shows contours of (a) normal stress o, acting in the cutting direction and (b)
equivalent plastic strain £, after a cut distance of 5.09 mm and after the cutting forces on
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the chip have been relaxed. Periodic variations in o, and £ occur synchronously with the
cutting force variations (Figure 8.7). For comparison, Figure 8.8(c) shows the continuous
chip and the steady residual stress distribution o, obtained by removing the possibility of
fracture from the simulation.

8.2.2 Tool exit transient chip flow

Figure 8.9 shows changes in chip flow as a cutting tool approaches work-exit conditions
(as has been schematically represented in Figure 3.18(b)). Machining with the alumina

Tool
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Fig. 8.9 Changes of chip shape and tool edge fracture probability at exit, when machining a B-brass with an alumina
ceramic tool at a cutting speed of 13 mm/min, f=0.25 mm, d=3 mm, o = 20°, clearance angle y = 5°, exit angle
=90°, friction coefficient u = 1.0 and no coolant
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tool is begun only 2.5 mm from its end point: in Figure 8.9(a) (L = 1.09 mm) the chip is
still in its transient initial formation phase; in Figure 8.9(b) (L = 1.79 mm), material flow
into the chip has slowed down as the alternative possibility takes over, of pushing out the
end face of the work, by shear at a negative shear plane angle, to form a burr. Eventually
(Figure 8.9(c)), a crack forms at the clearance surface and propagates along the negative
shear plane towards the end face (Figure 8.9(d)).

The figure also records the changing rake face contact stresses as the end of the cut is
approached. The internal stresses have been determined from these by an elastic finite
element analysis; and used to assess the probability of tool fracture. The contours within
each tool outline are surfaces of constant probability of fracture within a unit volume of
0.01 mm?, derived from the principal stress distribution in the tool and the tool material’s
Weibull statistics of failure (Usui et al., 1979, 1982 — see also Chapter 9.2.4). The overall
fractional probability of fracture, G, is given by

n
G=1-1[A-6) (8.3a)
i=1
with
1 o*—o,|"
T j dv (6*20,)
_ c
Gi oVt o (8.3b)
0 (6% <oy

where n is the number of finite elements, and G, is the probability of fracture within one
element i, Vo is a unit volume, V; is the volume of element i, o* is a scalar stress defined
in Usui’s Weibull statistics model of failure (see Figure 9.8(b)) and o, o, and m are
Weibull parameters. In the case of Figure 8.9, G reaches its maximum value of 0.077 at L
= 1.79 mm, just before the crack is formed beneath the cutting edge. Once the crack prop-
agates, compressive tool stresses are created, on the tool’s clearance face, that reduce the
fracture probability. The workpiece fracture relieves the probability of tool fracture; thus,
the friction coefficient 4 and workpiece brittleness have a strong influence on the tool frac-
ture probability. Reduction of u from 1.0 to 0.6 increases the shear plane angle to delay
negative shear and work crack initiation. This results in an increase in fracture probability,
up to a maximum value of 0.293. On the other hand, if a crack initiates early due to work-
piece brittleness, as in the machining of a cast iron, a low tool fracture probability is
obtained. In cutting experiments, acoustic emission is always detected, when a tool edge
fractures, just before the work negative shear band crack forms (Usui et al., 1990).

In Figure 8.9, the exit angle 6, which is the angle between the cutting direction and the
face through which the tool exits the work, is 90°. Fracture probability is largest for 8 in
the range 70° to 100°. Smaller exit angles give rise to safe exit conditions (from the point
of view of tool fracture) with little burr formation. Larger angles also give safe exit but
large burr formation. Tool exit conditions are of particular interest in milling and drilling.
In face milling, the exit angle depends on the ratio of radial depth of cut to cutter diame-
ter (dg/D, Figure 2.3) and is well-known to affect tool fatigue failures (Pekelharing, 1978).
In drilling through-holes, breakthrough occurs at high exit angles (although the three-
dimensional nature of the breakthrough makes this statement a simplification of what actu-
ally occurs) — and burr formation is a common defect.
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8.2.3 Titanium alloy machining

Figure 8.10 shows the pattern of changing chip shape with cut distance L when an o +
type Ti-6Al-4V alloy is machined with a carbide tool at a cutting speed of 30 m/min, simu-
lated with the material properties described at the start of Section 8.2. A serrated chip
formation is seen. In this case, fractures start at the free surface but never penetrate
completely through the chip.

Figure 8.11 shows temperature distributions within the workpiece and tool at the vari-
ous cut distances corresponding to those in Figure 8.10. Despite a relatively low cutting
speed, the temperature in the chip is high, as has been explained in Chapter 2.3. In that
chapter, only steady state heat generation was considered. An additional effect of non-
steady flow (Figure 8.11(c)) is to bring the maximum temperature rise into the body of the
chip, close to the cutting edge.

Many researchers (for example Recht, 1964; Lemaire and Backofen,1972) have attrib-
uted serrated chip formation in titanium alloy machining to adiabatic shear or thermal soft-
ening in the primary and secondary zones. The results shown in Figures 8.10 and 8.11
contradict this, revealing that the serration arises from the small fracture strain of the alloy,
followed by the propagation of a crack and the localization of deformation. However, if the
fracture criterion is omitted from a simulation, serrated chip formation can still be
observed, but only at higher cutting speeds, for example at 600 m/min (Sandstrom and
Hodowany, 1998). It is clear that fracture and adiabatic heating are different mechanisms
that can both lead to serrated chip formation. In the case of the titanium alloy, serrated
chips occur at cutting speeds too low for adiabatic shear — and then fracture is the cause.
However, at higher speeds, the mechanism and form of serration may change, to become
adiabatic heating controlled.
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Fig. 8.10 Predicted serrated chip shape in titanium alloy machining by a carbide tool, at a cutting speed of 30 m/min,
f=0.25 mm, d=1 mm, o= 20° and no coolant
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Fig. 8.11 Isotherms near the cutting tip, cutting conditions as Figure 8.10

With other alloy systems, for example some ferrous and aluminium alloys, and with other
titanium alloys too, continuous chips may be observed at low cutting speeds, but serrated or
segmented chips are seen at high or very high speeds. In some of these cases, serration is
almost certainly controlled by adiabatic heating and thermal softening, although in the case
of a medium carbon low-alloy steel machining simulation, initial shear fracture has been
observed to aid flow localization and facilitate the onset of adiabatic shear (Marusich and
Ortiz, 1995; Marusich, 1999); and the importance of fracture in concentrating shear is more
strongly argued by some (Vyas and Shaw, 1999). Although the relative importance of frac-
ture and adiabatic shear in individual cases is still a matter for argument, it is certain that an
ideally robust finite element simulation software should have the capacity to deal with ductile
fracture processes even if, in many applications, the fracture capability remains unused.

8.3 Machinability analysis of free cutting steels

The subject of free cutting steels — steels with more sulphur and manganese than normal
(to form manganese sulphide — MnS), and sometimes also with lead additions — was intro-
duced in Chapter 3. Figure 3.16 shows typical force reductions and shear plane angle
increases at low cutting speeds of these steels, relative to a steel without additional MnS
and Pb. These changes have been attributed to embrittling effects of the MnS inclusions in
the primary shear zone (for example Hazra et al., 1974) and a rake face lubricating effect
(for example Yamaguchi and Kato, 1980). The lubrication effect has been considered in
Chapter 2 (Figure 2.23). The deposition of sulphide and other non-metallic inclusions on
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the tool face to reduce wear has also been described (Figure 3.17) and briefly referred to
in Chapter 4 — many researchers have studied this (for example Naylor et al., 1976;
Yamane et al., 1990). Finite element analysis provides a tool for studying the relations
between the cutting conditions (speed, feed, rake angle) and the local stress and tempera-
ture conditions in which the lubricating and wear reducing effects must operate. The next
sections describe a particular comparative investigation into the machining of four steels:
a plain carbon steel, two steels with MnS additions and one steel with MnS and Pb. In this
case, the lubrication effects completely explain observed behaviours, with no evidence of
embrittlement (Maekawa et al., 1991).

8.3.1 Flow and friction properties of resulphurized steels

The compositions of the four steels are listed in Table 8.1. They are identified as P (plain),
X and Y (the steels with MnS added) and L (the steel with MnS and Pb). The steels X and
Y differ in the size of their MnS inclusions: Table 8.1 also gives their inclusion cross-
section areas.

The flow behaviours of the steels in their as-rolled state were found from Hopkinson-
bar compression tests at temperatures 7, strain rates £ and strains £ from 20 to 700°C, 500
to 2000 s~! and O to 1, respectively, as described in Chapter 7.4. Figure 8.12 shows the
orientation and size of the specimens: a bar-like test piece of &6 mm x 10 mm was cut
from the commercial steel bars that were later machined. Figure 8.13 shows example flow
stress—temperature curves, at a strain rate of 1000 s~ and two levels of strain, 0.2 and 1.0.
The symbols indicate measured values while the solid lines are fitted to equation (7.15a).
For the sake of clarity, only the approximated curve for steel P is drawn in the figure. The
flow stress is more or less the same for all four steels, although that for steel X, with larger
MnS inclusions, is slightly lower than that of the others. The values of A, M, N, a and m
(equation (7.15a)) for the steels are listed in Table 8.2.

Table 8.1 Chemical composition of workpiece (Wt%)

C Mn P S Pb MnS size
(um?)
Steel P 0.100 0.400 0.025 0.019 - -
Steel X 0.070 0.970 0.067 0.339 - 145
Steel Y 0.070 0.910 0.087 0.321 - 124
Steel L 0.080 1.300 0.070 0.323 0.025 -
Units: mm
Inclusmn

R -0

Fig. 8.12 Specimen preparation for high speed compression testing
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Table 8.2 Flow characteristics of steels

Coefficients of equation (7.10a)

Steel P A = 900e 000117 1 170e —().00007(T—15())2 +110e —O‘OOOOZ(T—BS())2 + 80e —().()O()I(T—()SO)2
M =0.0323 + 0.000014T
N=0.185¢ -0.0007T +0.055¢ —()4O(JO(J15(T—37O)2

a =0.00024, m = 0.0019
Steel X A = 880e ~0-0011T | 190 ~0.00009(T-150) |50 ~0.00002(T-350)2 | g()e ~0.0001(7-650)2

M =0.0285 + 0.000014T
N = 0.18e ~0-0005T 4 () | ~0.000015(T-430)?

a = 0.00020, m = 0.0052
Steel Y A = 920e ~0-0011T | 190 ~0-00003(7-160)2 ; [ ](e ~0-00004(T-340)2 | () ~0.0001(T-650)>

M =0.0315 + 0.000016T
N = 0.19¢ ~00005T 4 () 085¢ ~0-000015 (7-430)>

a =0.00032, m = 0.0018
Steel L A = 910e 000117 | 19(e ~0-00011(7-135)2 , |50 ~0.00002(T-330)2 | (e ~0-0001(T-650)>

M =0.0325 + 0.000008T
N = 0.18e ~00007T 4 () (55¢ ~0-000015(7-370)>

a =0.00028, m = 0.0016

As for the measurement of friction characteristics at the tool—chip interface, the split-tool
method was employed. Figure 8.14 shows the distributions of normal stress o, and friction
stress 7, when the steels were turned on a lathe without coolant, by a P20-grade cemented
carbide tool at a cutting speed of 100 m/min, a feed of 0.2 mm/rev, a rake angle of 0" and a
depth of cut of 2.8 mm. The abscissa is the distance from the cutting edge in the direction
of chip flow. The normal stress increases exponentially towards the tool edge, whereas the
friction stress has a trapezoidal distribution saturated towards the edge. Steel P shows 7, >
o, near the end of contact. The free cutting steels all show 7, < o, there and a shorter contact
length than steel P. These tendencies are more evident for steel L and steel Y than steel X.
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Fig. 8.14 Normal stress o, and friction stress 7, distributions measured on the tool rake face at a cutting speed of 100

m/min: (a) steels P and L; %b) steels X and Y

Rearrangement of Figure 8.14 leads to Figure 8.15 which shows the relationship
between 7, and o, (measurements were also made at a cutting speed of 200 m/min). The
measured stress distributions can be formulated as equation (2.24d) where the values of m,
4 and n* are listed in Table 8.3. The friction characteristic equation suggests that the lubri-
cation effect of MnS inclusions is evaluated by m and x, and this is more evident when lead

is added to the steel.
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Table 8.3 Coefficients of friction in characteristic equation (2.24d)

V=100 m/min V=200 m/min

m u n* m u n*
Steel P 1.0 2.31 3.89 1.0 2.48 3.22
Steel X 0.99 1.25 3.05 0.96 1.43 2.06
Steel Y 0.97 0.76 5.98 0.99 1.04 3.04
Steel L 0.74 0.38 8.78 0.88 0.72 4.21
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8.3.2 Simulated analysis of free cutting actions

Figures 8.16 and 8.17 show contours of equivalent plastic strain rate and isotherms
together with chip configurations predicted at the cutting speed of 100 m/min, feed of 0.2

Units. 87

(b}

Fig. 8.16 Contours of equivalent plastic strain rate at a cutting speed of 100 m/min, f= 0.2 mm, o = 0° and no
coolant: (a) steel P; (b) steel X; (c) steel Y and (d) steel L
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Fig. 8.16 continued




Machinability analysis of free cutting steels 247
—
N

—_

Unils: °C 500

(&)

{b}

Fig. 8.17 Isotherms for the same cutting conditions as in Figure 8.16: (a) steel P; (b) steel X, (c) steel Y; and (d) steel L
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mm and zero rake angle and without cutting fluid. Each consists of four panels represent-
ing (a) steel P, (b) steel X, (c) steel Y and (d) steel L. Since the steels show similar flow
stresses as shown in Figure 8.13, it is certain that their friction differences differentiate
their cutting mechanisms. As the friction becomes more severe in the order steel L, steel
Y, steel X and steel P, the chip thickens, curls less and increases its contact length. The
plastic deformation within the workpiece ahead of and below the cutting edge (getting
larger in the order L to P, and resulting in a larger accumulated plastic strain in the chip),
and also the larger secondary flow due to the friction, can also be seen. In the end this leads
to a larger temperature rise on the tool rake face, although the maximum temperature
occurs far from the cutting edge.

To investigate consistency between the real machining and the simulation, supplemen-
tary cutting experiments were carried out. Figure 8.18 shows the chip sections obtained
from quick-stop tests on the four steels. The cutting conditions are the same as those used
in the simulation. Changes in chip thickness and its curl are in agreement with those of

Fig. 8.18 Etched cross-sections obtained by quick stop tests in the same conditions as Figures 8.16 and 8.17: (a) steel
P (b) steel X, (c) steel Y: and (d) steel L
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Fig. 8.19 Comparison of predicted and measured cutting force—cutting speed curves at /=0.2 mm, d=2 mm, o=10°
and without coolant, for steels P Y and L

Figure 8.16. A thinner and curlier chip is obtained when machining Steel L. Severe defor-
mation in the secondary shear zone is particularly recognized when cutting Steel P, which
leads to a high temperature rise along the rake face.

Figure 8.19 compares the predicted cutting force with the measured one when machin-
ing three of the steels at a rake angle of 10°. The friction constants shown in Table 8.3 for
the cutting speed of 100 m/min were used in the simulations for cutting speeds from 50
m/min to 150 m/min, and those for 200 m/min at the cutting speed of 200 m/min. The solid
lines denote experiment, whereas the dashed ones represent simulation. The different force
characteristics of the three steels are entirely explained by their different friction behav-
iours. There is agreement with the general observation of Figure 3.16.

From the viewpoint of machinability assessment, the leaded resulphurized steel (steel
L) is most effective in reducing cutting forces and tool temperature. Lower temperature
will provide less tool wear. The second best is the MnS-based free cutting steel with finer
MnS inclusions (steel Y). The primary reason for the better machinability lies in the lubri-
cation effect of the inclusions. When steel L is machined at the cutting speed of 200
m/min, however, the lubrication effect is reduced to a similar level as Steel Y at 100 m/min.
Probably, the lead is melted and partially vaporized with increasing cutting speed or
cutting temperature. The rake temperature is predicted to reach 1000°C at 200 m/min.

In summary, on the basis of the experimental friction and flow stress characteristics, the
finite element analysis has revealed that differences in friction characteristics mainly cause
the chip flow, temperature and cutting force change in the free cutting steels. The MnS-
based steel with smaller inclusions shows better machinability, including a thinner chip,
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narrower deformation zone, lower rake temperature and smaller cutting force. The leaded
resulphurized steel gives the best machinability at cutting speeds lower than 200 m/min,
where lead is the most effective lubricant on the tool rake.

8.4 Cutting edge design

The importance of non-planar rake faces in controlling chip flow and reducing tool forces,
wear and failure was briefly mentioned at the end of Chapter 3.

Chip controllability and disposability depends strongly on tool geometry as well as the
cutting conditions. To design an optimum, high-performance cutting tool it is necessary to
understand how chip flow is modified by machining with a cutting tool with a chip former
in place. Many experimental observations have been carried out from this point of view
(Nakayama, 1962; Jawahir, 1990; Jawahir and van Luttervelt, 1993). Section 8.4.1
describes a two-dimensional (orthogonal) finite element simulation of chip breaking when
machining with grooved rake face tools (Shinozuka et al., 1996a, 1996b; Shinozuka,
1998). Cutting force, temperature and tool wear reduction by rake face design are the
subjects of Section 8.4.2, which describes a three-dimensional simulation of chip forma-
tion (Maekawa et al., 1994).

8.4.1 Tool geometry design for chip controllability

A hybrid simulation is described here, in which a steady-state chip formation is first
analysed by the ICM method and then modified approximately to a non-steady phase in
order to study the development of chip breaking behaviour.

Steady-state (ICM) simulation

Figure 8.20 shows a tool rake face similar to that in Figure 3.30(c), but made more general
by approximating the profile ABCD to a Bézier curve with w, the width of a groove and
hy the height of a chip former. The effects on chip flow of varying w; and hy, while keep-
ing the positions of A, B and C constant, as shown, have been studied for the machining
of a 0.18%C plain carbon steel by a P20 carbide tool, the same materials as in Section 8.1.

0.20 mm

0.20 mm

XN
Fig. 8.20 Rake face geometry with chip former
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Fig. 8.21 Predicted chip shape and distributions of temperature (°C) and stresses with changing w; (h,=0) when
machining 0.18%C steel with carbide P20 at V=100 m/min, undeformed chip thickness £=0.25 mm and without
coolant

Unless otherwise specified, a cutting speed of 100 m/min, a feed (uncut chip thickness) of
0.25 mm, a primary rake angle of 10° and no coolant have been chosen for the simulation
conditions.

Figure 8.21 shows the chip shape and the distributions of temperature and stresses
acting on the rake face with changing wg, when Az = 0 mm. As w is reduced from 2.6
mm to 1.6 mm, chip curl radius, rake face temperature and chip/tool contact length are all
reduced. Inversely, the magnitude of the normal stress o, is increased at the chip/tool
contacts.

In the examples of Figure 8.21 the chips are so short that their ends are free, not curled
round enough to contact the work ahead of the tool. The approximate analysis of what
happens, once contact with the work does occur, is considered next.

Approximate unsteady flow and chip breaking
Figure 8.22 shows the instant at which the chip first touches the work ahead of the tool, at
point C. In principle, the contact forces at C will change the flow in the primary shear
zone; but that is neglected here. It is imagined that the chip continues to flow out of the
region h—-g—c—d, with a velocity prescribed to vary linearly, from V, to V, along the
surface h—g, where V, and Vg are the chip surface velocities obtained from the ICM calcu-
lation; and that in the region h—g—c—d, the flow stress and temperature variations from the
inside to the outside radius of the chip are also as obtained from the primary shear flow in
the ICM analysis. As the chip grows in length, new elements are added at the boundary
h—g. How the slender chip formed in this way deforms and breaks due to the contact forces
at C and at the chip former (point B) is analysed next.

The contact force at B arises from the velocity boundary condition along h—g. The
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Fig. 8.22 Initial finite element model used for chip breakability analysis

angular velocity V,/(R_—t,) at point h, from the ICM analysis, is always greater than that
of Vg/Rc at point g: without a force at B, the chip path would penetrate the tool. The contact
forces at C are assumed to obey Coulomb’s laws of friction. While the chip slips on the
work surface 7, = u o, holds. If the relative velocity between the chip and workpiece
becomes zero, then the chip is regarded as adhering to the surface. The adhered chip does
not slide again until 7, > u o,. The static and dynamic friction coefficients u  and u are
assumed to be 0.3 and 0.2, respectively.

As for a fracture criterion in the chip beyond its formation region, it is assumed that a
crack nucleates and develops from the chip’s rough free surface when the maximum prin-
cipal stress or the maximum shear stress exceeds a critical value o, or 7. A crack that
satisfies o, propagates in the direction of minimum principal stress, whereas one that
satisfies 7_ grows in the direction of maximum shear stress. In this work, o, = 830 MPa
and 7_ = 440 MPa have been found to give good representations of practice.

To follow the crack growth, it is necessary to subdivide the elements around the crack
tip; and this requires reorganization of the node connectivity too. Remeshing around the
point B is also required — and a small time step of < 107 s (for the cutting speed of 100
m/min) is also needed.

Simulation results

Figure 8.23 shows the chip shape simulated with changing w; and iz = 0. As w; increases
from 1.6 mm to 2.0 mm, the radius of the broken chips becomes larger; and at wg = 2.6
mm chip breakage does not occur.
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Fig. 8.23 Predicted chip shape with changing w;; (h,=0)

Increasing hy; aids chip breakage. Figure 8.24 shows the development of chip shape with
time for wg = 2.6 mm but iz = 0.4 mm. Plastic deformation with £> 10 57! takes place at the
hatched regions in the figure and the chip breaks after 25 ms (the time # is measured from the
instant at which the chip first collides with the workpiece surface). The figure also records the
contact forces. Fyy and Fpy, are the horizontal and vertical force components acting at point
B, and Fey and Fy are those at point C. The small size of the forces at C and the almost
constant forces at B throughout the chip breaking cycle support the approximation that contact
of the chip with the work does not much alter the flow in the primary shear region.
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Fig. 8.24 Variation of chip shape and forces at w;=2.6 mm and £;;=0.4 mm

The effect of undeformed chip thickness ¢, is considered in Figure 8.25, which compares
the predicted chip shape with experiment at w = 2.14 mm and Ay = 0. When ¢, is increased
from 0.10 mm to 0.36 mm, the chip shape is changed from continuous to segmented. In partic-
ular, an ear- (or &-) type chip is generated at 7, = 0.25 mm. The simulated chip morphology,
including curl and thickness, is in good agreement with experiment (similar observations have
been reported by Jawahir, 1990). When the rake angle is decreased, the segmentation is accel-
erated and chips with a smaller radius are produced (Shinozuka et al., 1996b).

8.4.2 Three-dimensional cutting edge design

Tools with cut-away rake faces, to restrict the chip contact to be shorter than it would natu-
rally be, have advantages beyond that of chip control considered in the previous section.
Smaller cutting forces, lower cutting temperature, longer tool life, better surface finish and
the prevention of tool breakage can be achieved in practice, provided the restriction is
properly chosen (Chao and Trigger, 1959; Jawahir, 1988). Slip-line field plasticity theory
has been applied to two-dimensional machining with a cut-away tool, to analyse the
changes to chip flow caused by a restricted contact (Figure 6.6 — Usui et al., 1964). Here,
a closer-to-practice three-dimensional ICM finite element analysis is introduced of the
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Fig. 8.25 Comparison of predicted chip shape with experiment (w;=2.14 mm and £;=0)

effect — on steady-state chip formation, tool temperature and wear — of varying a cut-away
in the region of the nose radius of a single point P20-grade turning tool, used to turn an
18%Mn-18%Cr alloy steel, at a cutting speed of 60 m/min, a feed of 0.2 mm, and a depth
of cut of 2 mm, without coolant. The mechanical and thermal properties and friction and
wear behaviour, assumptions (from measurements) are listed in Table 8.4.

Simulation model

The three-dimensional analysis has been developed from the two-dimensional ICM
scheme described in Section 7.3. Figure 8.26 shows the analytical model for machining
with a single point tool at zero cutting edge inclination angle. The x- and y-axes are,
respectively, parallel and perpendicular to the cutting direction, and the z-axis is set along
the major cutting edge. The tool is assumed to be stationary and rigid, while the work-
piece has boundaries moving towards the tool at the specified cutting speed. Apart from



Table 8.4 Mechanical and thermal properties used in simulation
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Flow stress characteristics: = A (£/1000)™ (£/0.3)N GPa
where A = 2.01 exp(-0.001777), M = 0.00468 exp(0.003557),
N = 0.346 exp(-0.0008067) + 0.111 Cxp{—0.0000315(T—375)2}

Friction characteristic: t/k = 1 — exp(-uo,/k)

.. dh C,
Wear characteristic: o =C,0,exp |- T
s

Young’s modulus E =206 GPa, Poisson’s ratio v = 0.3, Friction constant i = 1.6,
Wear constants C; = 14.67 MPa™!, C, =21 930 K

Thermal conductivity K Density, p

Specific heat, C

[W m™! K] [kg m~] U kg K]
Workpiece 12.6 7950 502
(18%Mn-18% Cr steel)
Insert (carbide P20) 66.9 11200 402
Shank (0.55% C steel) 36.0 7750 461

(i1 V1 )

Friction boundary
(L1, Vo1, W}

Fig. 8.26 Three-dimensional machining model and boundary conditions

the obvious differences stemming from converting two-dimensional finite element stiff-

ness equations to three-dimensional ones, the main complication

is allowing the chip to

flow in the z-direction. The formulation of sliding friction behaviour at the tool—chip inter-
face is modified to allow for this: for a node i contacting the rake face, the following condi-

tions are imposed on the finite element stiffness equation:
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dr U . . dr Wi

F. ., = RN Fl.y,, F,. = RN Fiy,, v, =0
do, | (" +w;)” do, | (G +w;)”

(8.4)

where x” and y” are the local coordinate system as shown in the figure, F iy’ is the rate of
normal force on node i, and (i, V', W’;) are the velocities of node i in the (x’, y’, z’) direc-
tions. (d7/do,) is the effective friction coefficient given by the differentiation of the fric-
tion characteristic, equation (2.24c). A further complication in description arises when a
chip flows into a cut-away groove in a primary (plane) rake face of a tool. Although this
has been dealt with in the example of Section 8.4.1, in the simulation in this section it is
assumed that a chip makes contact only with the primary rake face.

Figure 8.27 shows the finite element structure of the model. It is an assembly of linear
tetrahedral elements (7570 elements and 1887 nodes in all). The mesh shown is an ICM
initial-guess for turning with a plane rake faced tool, with cutting occurring over the major
and minor cutting edges and over the tool nose radius. The tool geometry is (ap =0% ap=
0%,y =6°, Y= 6°, K'r =15, w=15", R, =1 mm) where the terms are defined in Figure
6.16. The mesh is automatically generated from a specified shear plane angle and chip
flow direction, the tool geometry, feed and depth of cut.

Cutting with this conventional, plane, tool is analysed as well as cutting with two cut-away
tools derived from it. Views of the two cut-away tools, types I and I, are shown in Figure 8.28.
Both of these tools have a secondary rake of angle 15° superimposed on the primary rake. The
type I tool has a restricted primary land width r that is constant along the major cutting edge
but reduces around the tool’s nose radius, to zero at the minor cutting edge, in the same way
that the uncut chip thickness varies. The type II tool has a restricted land width that is constant

Fig. 8.27 Initial finite element mesh for a tool geometry (0°, 0°, 6°, 6°, 15°, 15°, 1.0mm) and 7=0.2 mm, d=2 mm
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Fig. 8.28 Rake face geometries of types I and Il cut-away tools

around both the major and minor cutting edges. The influences of these design differences,
and also of varying the width r relative to the feed f are studied. The value of r over the major
cutting edge, divided by f; is referred to as the restriction constant K.

Simulation and experimental results
The simulation predicts that type I tools should create lower deformation in the workpiece
and lower tool temperature and wear than the plane faced or type II tools; and that K = 1.2
is a good value for the restriction constant. Experimental measurements, with tools of
different rake face geometries created by electro-discharge machining, of tool forces, rake
face temperatures — using a single-wire thermocouple (Figure 5.19(b), Usui et al., 1978) —
and tool wear, support this.

Figure 8.29 shows the final predicted chip shape and the distribution of equivalent plastic

Uis tis

Fig. 8.29 Equivalent plastic strain rate distribution and chip configuration when machining 18%Mn-18%Cr steel at
a cutting speed of 60 m/min, f=0.2 mm and d = 2 mm with (a) conventional, (b) type I and (c) type Il P20 carbide
tools
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strain rate for the plane-faced tool and type I and II tools with K = 1.2. The type I tool
produces narrower plastic regions in the chip and workpiece, and less plastic deformation
over the finished surface, than the type II and plane tools. As well as the plane and type II
tools causing more deformation in the work surface beneath the major cutting edge, the
type II tool generates a thicker chip at the minor cutting edge, and the chip flow angle is
larger than for the other tools.

Figure 8.30 shows temperature distributions over the rake faces. The dark region repre-
sents the contact area with the chip, and the symbol * indicates the location of the highest
temperature. The maximum temperature of the type I tool is 50 to 100°C lower than the
others. The type II tool produces a higher temperature than the type I tool at the minor
cutting edge and nose radius, where the chip contact area is wider. However, the distance
of the highest temperature from the major cutting edge is almost the same for both.

Figure 8.31 shows the predicted contour lines of constant wear rate. The distribution
and the isotherms in Figure 8.30 are closely correlated because temperature dominates the
wear (Table 8.4 and equation (4.1c)). The wear of the type II tool is severe at the corner
and near the major cutting edge, while the type I tool yields less wear along all its edges.

Comparisons with experiment are shown in Figures 8.32 to 8.34. Figure 8.32 shows
experimental measurements of cutting force variation with restriction constant K for the
type I tools. Experimentally, there is a minimum in all the force components at around K
= 1.2. The predicted forces show a similar tendency: predictions for the conventional and
type 1II tools are also included in the figure.

Figure 8.33 shows the measured and predicted rake face temperatures of the conven-
tional and type I (K = 1.2) tools in the direction of chip flow at the midpoint of the depth
of cut. A temperature difference of about 100°C can be seen in both the predictions and
experiments, although prediction and experiment are not in absolute agreement with each
other.

0.2 mm
— ‘_\‘500““
Units: *C

oo B0

Fig. 8.30 Tool rake face isotherms in the conditions of Figure 8.29: (a) conventional, (b) type I; and (c) type Il tools

Chip contact area

\_\

fal

Fig. 8.31 Contours of constant crater wear rate, conditions of Figure 8.29: (a) conventional; (b) type I; and (c) type Il
tools
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and type | tools

Figure 8.34 compares the differences in wear profiles at a cut distance of 600 m,
obtained both by profilometry and microphotography. The type I tool shows least tool
wear, more than 10% less than with the conventional tool: the similarity in wear distribu-
tion with that predicted in Figure 8.31 is clear.

In summary, a finite element machining simulation has been employed to analyse the
turning of a difficult-to-machine 18%Mn—18%Cr high manganese steel with a sintered
carbide three-dimensional cut-away tool. A cut-away design in which the primary
restricted contact length varies along the cutting edge in proportion to the uncut chip thick-
ness has been found to give a better performance than one with a restricted contact which
is constant along the major and minor cutting edges and around the tool nose radius; and
it is also better than a plane rake faced tool. A restriction constant of around 1.2 has been
found to give the least cutting forces, leading to reductions in cutting temperature and tool
wear.
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Fig. 8.34 Measured crater depth and optical micrographs of worn tools at a cut distance of 600 m: (a) conventional,
(b) and (c) type I and Il tools, K= 1.2

8.5 Summary

A new concept of computational or virtual machining simulation is starting to emerge,
based on the theoretical background surveyed in Chapter 7, to support the increasing
demands of high productivity, quality and accuracy of modern automated machining prac-
tice. There is no doubt that advances in computing capability and graphical visualization
technologies will bring further developments in the field of machining simulation.

At present, finite element simulation is mainly of use to mechanical and materials engi-
neers, as a tool to support process understanding, materials’ machinability development
and tool design. However, the computing time required by this method is too long for it to
be of use in machine shops for online control and optimization, although it can help offline
evaluation and rationalization of practical experience.

Online control requires other sorts of machining models. These and their relationships
with finite element models are the subject of the next and final chapter of this book, which
considers how to use modelling and monitoring in the production engineering context of
process planning and improvement.
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Process selection, improvement
and control

9.1 Introduction

This final chapter deals with the planning and control of machining processes. Planning
and control systems are composed of several modules, such as modules for process model-
ling, optimization and prediction; for selection of tools and cutting conditions; for tool
path generation; for machine tool operation; for monitoring and recognition; for diagnosis
and evaluation; for learning and tuning. Data and knowledge-base modules support a
system’s operation. There is overlap between the functions of some of these modules. In
the interests of efficient construction and operation, some of the modules may be
combined and some may be neglected in any particular system.

The quantitative modelling of machining processes, based on machining theory, with
the prediction or simulation that this enables, greatly assists planning and control. Figure
9.1 shows examples of systems containing a simulation module at their heart. The subject
of Section 9.2 is process models for prediction, simulation and control, but more widely
defined than in previous chapters of this book.

Initial process optimization is the subject of Section 9.3. The tasks and tools of opti-
mization depend on whether there is a single goal or whether there are conflicting goals
(and in that case how clear are their priorities); and whether the process is completely or
only partly modelled (how clear is the understanding). An example that approaches single
goal optimization of a well understood system is optimization of speed, feed and depth of
cut to minimize cost (or maximize productivity) once a cutting tool has been selected and
part accuracy and finish have been specified. This is the subject of Section 9.3.1. Even in
this case, all aspects of the process may not be completely modelled, or some of the coef-
ficients of the model may be only vaguely known. Consequently, the skills of practical
machinists are needed. Section 9.3.2 introduces how the optimization process may be
recast to include such practical experience, by using fuzzy logic.

Optimization becomes more complicated if it includes selection of the tool (tool holder
and cutting edge), as well as operation variables. The tool affects process constraints and,
at the tool selection level, constraints and goals can overlap and be in conflict (a surface
finish design requirement may be thought of both as a constraint and a goal, in conflict
with cost reduction). As a result of this complexity, tool selection in machine shops
currently depends more on experience than models. Section 9.3.3 deals with rule-based
tool selection systems, a branch of knowledge-based engineering.
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Fig. 9.1 Model-based systems for design and control of machining processes: (a) CAD assisted milling process simu-

lator and planner (Spence and Altintas, 1994) and (b) machining-scenario assisted intelligent machining system
(Takata, 1993)

Because what tool is selected depends in part on the speeds, feed and depth of cut that
it will experience, tool selection systems commonly include rules on the expected ranges
of these variables. However, combined optimization of these and the tool would be better.
That is the topic of the last part of Section 9.3.

Section 9.4 is concerned with process monitoring. This is directly valuable for detect-
ing process faults (either gradual, such as wear; or sudden, such as tool failure or wrong
cutter path instructions). It may also be used, with recognition, diagnosis and evaluation of
cutting states, to improve or tune an initial process model or set of rules. Finally, Section
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9.5 is allocated to model (simulation) based control, which is one of the major destinations
of machining theory.

9.2 Process models

Models of machining processes are essential for prediction, control and optimization.
Especially important are models for cutting force, cutting temperature, tool wear, tool
breakage and chatter. Physically based models of these are the main concern of previous
chapters of this book. In this chapter, a broader view of modelling is taken, to include
empirical and feature-based models constructed by regression or artificial intelligence
methods. A model should be chosen appropriate for the purpose for which it is to be used;
and modified if necessary. The more detailed (nearer-to-production) the purpose and the
quicker the response required of the system, the more likely it is that an empirical model
will be the appropriate one; but a physical model may guide the form of the empirical
model and its limits of applicability. The different types of models are reviewed here.

Cutting force models are considered first, because of their general importance, both
influencing tool breakage, tool wear and dimensional accuracy, as well as determining
cutting power and torque. Tool paths in turning are more simple than in milling; and this
leads to smaller force variations during a turning than during a milling process. For the
purposes of control, force models applied to turning tend to be simpler than those applied
to milling. However, accuracy control in milling processes, such as end milling, is very
important technologically. Here, two sections are devoted to force models, the first gener-
ally to turning and the second specially to end milling.

9.2.1. Cutting force models (turning)

Cutting forces in turning FT = {F ¢ Fp F.} may be written in terms of a non-linear system
H and operation variables xT = {V, f, d}:

F = H(x) 0.1

The non-linear system H may be a finite element modelling (FEM) simulator Hpp,,, as
described in Chapters 7 and 8, an analytical model H, (for example the three-dimensional
energy model described in Section 6.4), a regression model Hy, or a neural network Hyy
(Tansel, 1992). The coefficients and exponents of a regression model and the weights of a
neural network are most often determined from experimental machining data, by linear
regression or back propagation algorithms, respectively. However, they may alternatively
be determined from calculated FEM or energy approach results. They then become the
means of interpolating a limited amount of simulated data. In addition to the operation
variables, a tool’s geometric parameters, such as rake angles, tool nose radius and
approach angle, may be included in the variables x.

An extended set of variables X can be developed, to include a tool’s shape change due
to wear w, where w is a wear vector, the components of which are the types of wear
considered: XT = {xT, wT'}. The cutting forces may be related to this extended variable set,
similarly to equation (9.1):

F=H(x) (9.2a)
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A regression model example of such a non-linear equation (to be used in Section 9.4), for
machining a chromium molybdenum low alloy steel BS 709M40 (British Standard, 1991)
with a triple-coated carbide tool insert of grade P30 and shape code SPUN 120312
(International Standard, 1991), held in a tool holder of code CSTPR T (International
Standard, 1995), has been established as:

F, =500£04640810 1 2377(VS!93 —0.007In V)

x (VB920 _0.007In V) (VN-9-33 — 0.007In V)
F; = 629£030q0720 1 1199(VS3-38 — 0.023 V027)

X (VB=0-66 _ .23 v027) (yN 003 _ (.23 y0.27)
F, =1862f0%d1 11 4+ 2677(VS %24 — 0.05In V)

x (VB923-0.05In V) (VN 16— 0.05In V)

(9.2b)

where F ¢ Fp and F . are values in N; V, fand d are in m/min, mm/rev and mm, respec-
tively; and the dimensions of flank wear VB (Chapter 4), notch wear VN and nose wear VS
are in mm (Oraby and Hayhurst, 1991).

9.2.2 Cutting force models (end milling)

The end milling process is complex compared with turning, both because of its more
complicated machine tool linear motions and its repeated intermittent engagement and
disengagement of rotating cutting edges. However, as already written, it is very important
from the viewpoint of process control in modern machining technologies. This section
deals extensively with end milling because of this importance and also because some of
the results will be used in Section 9.5, on model-based process control. A general model
is first introduced, followed by particular developments in time varying, peak and average
force models, and the use of force models to develop strategies for the control of cutter
deflection and part accuracy.

A general model

The three basic operation variables, V, f, d, of turning are replaced by four variables V, f,
dy, d, in end milling, where, from Chapter 2.2, the cutting speed V = 7D, the feed f'is
the feed per tooth Ug,.,/(N;Q), and d; and d, are the radial and axial depths of cut. In
terms of a non-linear system H’ and operation variables x! = {V, fi dyg, d,}, the cutting

forces on an end mill may be written similarly to equation (9.1):
F=H'(x) 9.3)

where F is the combined effect of all the active cutting edges.

End milling’s extra complexity relative to turning has led to regression force models
H’; being most developed and contributing most to its process control. FEM models as in
Chapters 7 and 8, H'p,, and analytical approaches H’, (for example Shirakashi e al.,
1998, 1999; Budak et al., 1996), are developing, but are not yet at a level of detail where
they may usefully be applied to process control. Neural networks H’, have not been of
interest.

Time-varying models
Implementations of equation (9.3), able to follow the variations of cutting force with time,
may be constructed by considering the contributions of an end mill’s individual cutting
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edges to the total forces. Figure 9.2(a) — similar to Figure 2.3 but developed for the purposes
of process control and which will be used further in Section 9.5 — shows a clockwise-rotat-
ing end mill with N, flutes (four, in the figure). The end mill is considered to move over and
cut a stationary workpiece, in the same way that the tool path is generated. A global coor-
dinate system (x’, y’, z), fixed in the workpiece, is necessary to define the relative positions
of the end mill and workpiece so that instantaneous values of dy and d, may be determined.
Cutting forces are expressed in a second coordinate system (x, y, z) with axes parallel to (x’,
y’, z) but with the origin fixed in the end mill. The forces are obtained from the summation
of force increments calculated in local coordinate systems (r, f,, zg) with axes in radial,
tangential and axial directions and origins O, on the helical cutting edges.

When the tool path is a straight line (as in Figure 9.2(a)), it is clear which dimension is

# it

(a)

Fig. 9.2 Milling process: (a) coordinates and angles in a slice by slice model and (b) the effective radial depth of cut
with curved cutter paths



270 Process selection, improvement and control

Up-milling dn

Cown-milling

{b)
Fig. 9.2 continued

the radial depth of cut, dy; but when the tool path is curved (Figure 9.2(b)), there is a
difference between the geometrical radial depth d and an effective radial depth d,
(described further in the next section): a fourth coordinate system (X, Y, Z) with the same
origin as (x, y, z) but co-rotating with the instantaneous feed direction, so that the feed
speed Uy, is always in the X direction, deals with this.

The starting point of the force calculation is to calculate the instantaneous values of
uncut chip thickness f” in a r—, plane, along the end mill’s cutting edges. For an end mill
with non-zero helix angle 4, a cutting edge is discretized into M axial slices each with
thickness Az = d,/M (Kline et al., 1982). The plan view in Figure 9.2(a) shows the cutting
process in the mth slice from the end mill tip. An edge numbered i proceeds ones numbered
less than i. An edge enters into and exits from the workpiece at angles Qemry and 60, (Hemry
< 6,,;) measured clockwise from the y-axis, as shown. At a time ¢, the angular position of
the point Oy on the ith edge of slice m is 6(m, i, 1), also measured clockwise from the y-
axis. Choosing the origin of time so that 6(1, 1, 0) =0,

2 2(m — 1)Az
(i-1)- T tan A, 9.4)

Om, i, 1) = Qt +

S
f

For the cutting edge at Oy to be engaged in cutting,

BCmry +2xn < O(m, i, 1) < 6,

+ 27n (9.5a)
where n is any integer. Then the cutting forces acting on the thin slice around O are
AF, —F¥ cos(8(m, i, 1)) — F¥ sin(6(m, i, 1))
AF, (m, i, 1) = { A]g } = { F¥ sin(0(m, i, 1)) — F* cos(8(m, i, 1)) }f’ (m, i, DAz
AF E*
V4 Z
(9.5b)
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where F% F* and F* are the specific cutting forces in the tangential, radial and axial direc-
tions, respectively.
On the other hand, when the cutting edge at Oy, is not engaged in cutting,

Opie + 27(n — 1) < 6(m, i, 1) < 6, entry + 27n (9.5¢)
and
AF (m,i,1)=0 (9.5d)
The total cutting forces are obtained from the sum of the forces on all the slices:
Fx(t) M Ng
F (1) = { F\(0) } = 2 z AF (m, i, 1) (9.6)
F (1) m=1 i=1

A physical force model would seek to express the specific forces in equation (9.5b) as
functions of cutting speed, uncut chip thickness and depth of cut. The purpose of end
milling process control force models is to determine force variations under conditions of
varying dy and d,, commonly at constant cutting speed. The specific cutting forces are
usually written as a regression model good for one speed only, in which the variables are
chosen from dy, d,, f (feed per tooth) and f ’; and the influence of cutting speed is subsumed
in the regression coefficients. Equations (9.7) are three examples of regression equations,
due respectively to Kline ez al. (1982), Kline and De Vor (1983) and Moriwaki et al. (1995):

kyo+ kyydg + kpdy + ko f + kyydgd s + k sdg f

F* _ +kgdyf+kdy + kgd + k,of? 9.7)

F;k/F;k kr0+kr1d +kr2d +k 3f+ kr4d d +kr5de
+k, dAf+kr7d +k d2 +k 9f

Fro ] ka0 (9.7b)

FIFY K (fo) ™
or

e L] Ko ka0 9.7¢)

F*/F* k,o+k, (f) %

where the k; i (i=1,r;j=0to9) are constants and f is the average uncut chip thickness
per cut. These formulations are used for the model (simulation) based process control to
be described in Section 9.5.

Peak and average force models

If only the peak or mean cutting force is to be used for process control, the force equation
(9.6) may be simplified, by working with the (X, Y, Z) coordinate system; and it becomes
practical explicitly to re-introduce the influence of cutting speed. As the tool always feeds
in the X direction, it is the depth of cut, d, in the Y direction, measured from the tool entry
point, which enters into calculations of the uncut chip thickness and which acts as the
effective radial depth of cut. It is this which should be used in force regression models.
Consequently, the peak resultant cutting force Fy peak and its direction measured clock-
wise from the Y axis, Oy peak> MY be simply expressed as



272 Process selection, improvement and control

FR, peak = F;fmmd’gkzdﬁm‘/mm + FRO (9.8a)

eR, peak = el:f e (D - de)mRGdevas + 0R0 (9.8b)

where F; > Frop 91: » Opo and my ; (j =1to 8) are constants. (In a slotting process, when d,
= D, the cutting conditions have the least influence on 6 .. .)
The X and Y force components obtained from equations (9.8a) and (9.8b) are

FXp = R, peak sin eR, peak (98C)
FYp =I'R, peak cos HR, peak (9.8d)

The mean values may be expressed similarly to the peak values.

An example of a regression model in the form of equations (9.8) (to be used in the next
section) can be derived from down-milling data for machining the nickel chromium
molybdenum AISI 4340 steel (ASM, 1990), used by Kline in developing equation (9.7a)
(Kline et al., 1982). With FR’ mean 1N NEWtons and QR’ mean 1D degrees, the feed per tooth,
the effective radial depth of cut and the axial depth of cut in mm, and no information on

the influence of cutting speed,

F

R, mean
(7]

=38/07d12q 1 + 222 (9.8¢)
= 4.86/%15 (D - d )% - 26 (9.8f)

R, mean
Dimensional accuracy and control

The force component Fy, causes relative deflection between the tool and workpiece normal
to the feed direction. In principle, this gives rise to a dimensional error unless it is compen-
sated. Figure 9.3 shows the direction of forces acting on an end mill: the force component

Crown-milling

(2}

Fig. 9.3 Machining error and cutting force direction in up and down-milling
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Concave surface Convex surface

EH )]

Fig. 9.4 The effective radial depth of cut in milling concave and convex surfaces

Fy, with a helical end mill is always positive, irrespective of up- or down-milling, except
for up-milling with a small effective radial depth of cut. Hence, down-milling gives rise to
undercut; and up-milling to overcut unless the radial depth is small — in which case,
anyway, the deflection is small.

An additional factor, of practical importance, must be considered when end milling a
curved surface. Other things being equal, the deflection in milling a concave surface is
greater than in milling a convex one. Figure 9.4 shows two surfaces of constant curvature,
one concave, one convex, both being end milled to a radius Ty by a cutter of radius R (or
diameter D), by removing a radial depth dy. The effective radial depth of cut, d.,, as defined
previously, is greater than dj, for the concave surface and less than dj for the convex one.
According to equations (9.8), for the same values of fand d,, the force (and hence the tool
deflection) will be larger for milling the concave than for milling the convex surface.

The size of this effect is conveniently estimated after introducing a radial depth ratio,
¢, equal to d,/dy. From the geometry of Figure 9.4,

for a concave surface  (r, —dg)* — (r,, —d,)* =R*>— (R—d,)? ©.92)
9a
for a convex survace (ry, + dR)2 —(r, + de)2 =RZ_(R- de)2

Hence

d, 2r,, —dg

for a concave surface ¢, = — = ———
dy 2rw -D

(9.9b)

d, 2r,, +dg

for a convex surface ¢.= — = ———
dy 2rw +D

Since dy < D, ¢, 2 1 for a concave surface, ¢, < 1 for a convex surface and ¢, = 1 for slot-
ting (dy = D) or for a flat surface (r, = ).

It often happens in practical operations that the radius of curvature r, decreases to the
value of the end mill diameter D. Then the ratio ¢, can increase up to a value of around
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two. The consequent force change depends on the appropriate regression equation, such as
equation (9.8e). Another way of explaining this effect is to note that the stock removal rate
(which is the volume removed per unit time) increases as (c,— 1) at a constant feed speed
and axial depth of cut.

The equations (9.9b) can be used, with equations (9.8), to control exactly the dimen-
sional error of surfaces of constant curvature; and to control approximately the error when
curvature changes only slowly along the end mill’s path. Such a case occurs when cutting
a scroll surface. As shown in Figure 9.5, the radius of curvature gradually reduces as a
cutter moves from the outside to the centre. According to equations (9.9b), the decrease
in the radius of curvature increases the effective radial depth of cut on a concave surface
and decreases it on a convex one; and thus changes the cutting force and direction too.
Since dimensional error is caused by the Y force component, a condition of constant error
is

Fy,=¢ (9.10a)

When the radial and axial depth of cut, dy and d, and the cutting speed V are constant,
the feed should be changed to satisfy the following (from equations (9.8)):

(e, f™d ™2 + Fep) cos(c,f™s(D — d,)™e + Og) = ¢, (9.10b)

where ¢ and ¢, are constants. If the change in the direction of the peak resultant force due
to a change in the effective radial depth of cut has only a small influence on the Y force
component (as is often the case in down-milling), the feed should be changed by

f=cy(d) ™M or  f=c,(c) e (9.10¢)

where 3 and c, are constants. On a concave surface the feed must be decreased, but it
should be increased on a convex surface provided an increase in feed does not violate other
constraints, for example imposed by maximum surface roughness requirements.

Fig. 9.5 Milling of scroll surfaces
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Corner cutting

c, values much larger than 2 occur when a surface’s radius of curvature changes suddenly
with position. An extreme and important case occurs in corner cutting. Figure 9.6(a) (an
example from Kline ez al., 1982) shows corner cutting with an end mill of 25.4 mm diam-
eter. The surface has been machined beforehand, leaving a radial stock allowance of 0.762
mm on both sides of the corner and a corner radius of 25.4 mm. The corner radius to be
finished is 12.7 mm. Thus, there is no circular motion of the finish end mill’s path, but just
two linear motions. Figure 9.6(b) shows, for this case, the changes in the effective radial
depth of cut d, and the mean cutting forces Fy and F, with distance /. from the corner. [ is
negative when the tool is moving towards the corner and positive when away from it. The
mean cutting forces are calculated from equations (9.8e) and (9.8f). The effective radial
depth of cut increases rapidly by a factor of more than 20 as the end mill approaches the
corner; ¢, = 25.1 at [, = 0. The force component normal to the machined surface increases
with the effective radial depth of cut to cause a large dimensional error.
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Fig. 9.6 Corner cutting: (a) tool path (Kline et al., 1982); (b) calculated change in cutting forces (average force model
with axial depth of cut dj, = 38.1 mm) and (c) feed control under constant cutting force £, = 4448 N
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Fig. 9.6 continued

Even if the pre-machined corner has the same radius (12.7 mm) as the end mill and the
nominal stock allowance is small, the maximum value of ¢, during corner cutting, which
is then given by

D
= — +
2dy

D Vs
— -1 9.11)
dR

is very large: ¢, =22.4 at [ =0, when D = 25.4 mm and d = 0.762 mm. It follows from
equation (9.11) that a decrease in radial depth of cut does not lead to decreases in cutting
force and dimensional error if corner cutting is included in finish end milling. The dimen-
sional accuracy (error) should be controlled by changing the feed, as in the case of machin-
ing a scroll surface. In order for the mean force component to be constant during the corner
cut in Figure 9.6(a), the feed is recommended (from equations (9.8)) to decrease as shown
in Figure 9.6(c). Kline’s results, from detailed modelling based on equations (9.6) and
(9.7a), are plotted for comparison. The more simple model may be preferred for control,
because of its ease and speed of use.

9.2.3 Cutting temperature models

Cutting temperature is a controlling factor of tool wear at high cutting speeds. Thermal
shock and thermal cracking due to high temperatures and high temperature gradients cause
tool breakage. Thermal stresses and deformation also influence the dimensional accuracy
and surface integrity of machined surfaces. For all these reasons, cutting temperature 6 has
been modelled, in various ways, using the operation variables x and a non-linear system ©:

0=0x) (9.12)

The non-linear system may be an FEM simulator O, as described in Chapters 7 and
8, a finite difference method (FDM) simulator Oy, , (for example Usui et al., 1978, 1984),
an analysis model ©, as described in Section 2.3, a regression model O, or a neural
network Oy An extended temperature model, in terms of extended variables X and a non-
linear system ©@may be developed to include the effects of wear — similar to the extended
cutting force model of equation (9.2a).
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If only the average tool—chip interface temperature is needed, analysis models are often
sufficient, as has been assessed by comparisons with experimental measurements
(Stephenson, 1991). However, tool wear is governed by local temperature and stress: to
obtain the details of a temperature distribution, a numerical simulator is preferable — and
regression or neural net simulators are not useful at all.

Advances in personal computers make computing times shorter. The capabilities of
FEM simulators have already been reported in Chapters 7 and 8. An FDM simulator Gy, ,
using a personal computer with a 200 MHz CPU clock, typically requires only about ten
seconds to calculate the temperature distribution on both the rake face and flank wear land
in quasi-steady state orthogonal cutting; while with a 33 MHz clock, the time is around
two minutes (Obikawa et al., 1995). An FDM simulator can, in a short time, report the
influences of cutting conditions and thermal properties on cutting temperature (Obikawa
and Matsumura, 1994).

9.2.4 Tool wear models

A wear model for estimating tool life and when to replace a tool is essential for economic
assessment of a cutting operation. Taylor’s equation (equation (4.3)) is an indirect form of
tool wear model often used for economic optimization as described in Chapter 1.4 and
again in Section 9.3. However, it is time-consuming to obtain its coefficients because it
requires much wear testing under a wide range of cutting conditions. This may be why
Taylor’s equation has been little written about since the 1980s. Instead, the non-linear
systems W and W directly relating wear and wear rate to the operation variables of cutting
speed, feed and depth of cut

w=W(x) (9.13a)
W =W(x) (9.13b)

have been intensively studied, not only for wear prediction but for control and monitoring
of cutting processes as well.

Although wear mechanisms are well understood qualitatively (Chapter 4), a compre-
hensive and quantitative model of tool wear and wear rate with multi-purpose applicabil-
ity has not yet been presented. However, wear rate equations relating to a single wear
mechanism, based on quantitative and physical models, and used for a single purpose such
as process understanding or to support process development, have been presented since the
1950s (e.g. Trigger and Chao, 1956). In addition to the operation parameters, the variable
X typically includes stress and temperature on the tool rake and/or clearance faces, and
tool-geometric parameters. The thermal wear model of equation (4.1c) (Usui et al., 1978,
1984) has, in particular, been applied successfully to several cutting processes. For exam-
ple, Figure 9.7 is concerned with the prediction, at two different cutting speeds, of flank
wear rate of a carbide P20 tool at the instant when the flank wear land VB is already 0.5
mm (Obikawa et al., 1995). Because the wear land is known experimentally to develop as
a flat surface, the contact stresses and temperatures over it must be related to give a local
wear rate independent of position in the land. In addition, the heat conduction across the
wear land, between the tool and finished surface, depends on how the contact stress influ-
ences the real asperity contact area (as considered in Appendix 3). The temperature distri-
butions in Figure 9.7(a) and the flank contact temperatures and stresses in Figure 9.7(b)
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Fig. 9.7 An example of calculated results by a simulator @)FDM (@) temperature distribution in chip and tool and (b)
temperature and frictional stress on the worn flank (Obikawa et al., 1995)

have been obtained from an FDM simulator, (:)FDM, of the cutting process in which these
conditions were considered simultaneously. The flank wear rate d(VB)/dt was estimated
(from the stresses and temperatures; and for VB = 0.5 mm) to be 0.0065 mm/min at a
cutting speed of 100 m/min and 0.024 mm/min at 200 m/min, and its change as VB
increased could be followed.
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When control and monitoring of wear are the main purposes of modelling, other vari-
ables are added to x, such as tool forces and displacements and acoustic emission signals
— sometimes in the form of their Fourier or wavelet transform spectra (or expansion coef-
ficients in the case of digital wavelet transforms) — as will be considered in more detail in
Section 9.4. In the absence of a quantitative model between worw and x, the non-linear
system is usually represented by a neural network Wy or W Even when a quantita-
tive relation is known, neural networks are often used because of their rapid response. For
example, an empirical model relating cutting forces and wear, such as that of equation
(9.2b), may be transformed inversely by neural network means to

w = Wy (F) (9.13c)

where F T = {xT, FT}. In the conditions to which it applies, equation (9.13c) may be used
with force measurements to monitor wear (Section 9.4.3).

9.2.5 Tool fracture models

Tool breakage is fatal to machining and difficult to plan against in production (other than
extremely conservatively) because of the strong statistically random nature of its occur-
rence. Once a tool is broken, machining must stop for tool changing and possibly the work-
piece may also be damaged and must be changed. Models of fracture during cutting, based
on fundamental principles of linear fracture mechanics, attempting to relate failure directly
to the interaction of process stresses and tool flaws, have met with only marginal success.
It is, in practice, most simply assumed that tool breakage occurs when the cutting force F
exceeds a critical value F_;; . which may decrease with the number of impacts N,
between an edge and workpiece, as expected of fatigue (as considered earlier, in Figure
3.25). A first criterion of tool breakage is then

F = FeigeaV;) (9.14a)

However, there is a significant scatter in the critical force level at any value of N,. It is
well known that the probability statistics of fracture and fatigue of brittle materials, such
as cemented carbides, ceramics or cermets, may be described by the Weibull distribution
function. The Weibull cumulative probability, p;, of tool fracture by a force F, at any value

of N, is
b
]El—exp l—a

where F and F) are forces with a low and high expectation of fracture after N, impacts and
Fy a and b are constants. Alternatively, and as considered further in Section 9.3, p, may
be identified with the membership function i of a fuzzy set (fuzzy logic is introduced in
Appendix 7)

F-F, F-F,

b
] (9.14b)

ple—exp[—

FO Fh_Fl

u(F) = S(F, F,, F,)) (9.14¢)

where the form of S is chosen from equations like (A7.4a) or (A7.4b) to approximate p..

Statistical fracture models in terms of cutting force are useful for the economic plan-
ning of cutting operations, supporting tool selection and change strategies once a tool’s
dependencies of F, and F}, on N; have been established. They are not so useful for tool
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design, where one purpose is to develop tool shape to reduce and resist forces. Then, more
physically-based modelling is needed, to assess how tool shape affects tool stresses; and
then how stresses affect failure. An approximate approach of this type has already been
considered in Chapter 3, supported by Appendix 5, to relate a tool’s required cutting edge
included angle to its material’s transverse rupture stress.

A more detailed approach is to estimate, from surface contact stresses obtained by the
machining FEM simulators of Chapters 7 and 8, the internal tool stress distribution — also
by finite element calculation — and then to assess from a fracture criterion whether the
stresses will cause failure. This is the approach used in Chapter 8.2.2 to study failure prob-
abilities in tool-work exit conditions. The question is: what is an appropriate tri-axial frac-
ture stress criterion? A deterministic criterion introduced by Shaw (1984) is shown in
Figure 9.8(a), whilst a probabilistic criterion developed from work by Paul and Mirandy
(1976) and validated for the fatigue fracture of carbide tools by Usui ez al. (1979) is shown
in Figure 9.8(b). Both show fracture loci in (0,,0;) principal stress space when the third
principal stress o, = 0. Whereas Figure 9.8(a) shows a single locus for fracture, Figure
9.8(b) shows a family of surfaces T to U. o, is a critical stress above which fracture

l."-3

Fig. 9.8 Fracture criteria of cutting tools: (a) Shaw's (1984) deterministic criterion and (b) Usui et al.’s (1979) proba-
bilistic one
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depends only on the maximum principal stress. T represents 90%, R 50% and U 0% prob-
ability of failure of a volume V; of material after N, impacts at temperature ;. The loci
contract with increasing V; and N, and 6; (Shirakashi et al., 1987). The use of these crite-
ria for the design of tool geometry has been demonstrated by Shinozuka et al. (1994) and
Shinozuka (1998). The approach will become appropriate for tool selection once FEM
cutting simulation can be conducted more rapidly than it currently can.

9.2.6 Chatter vibration models

It is possible for periodic force variations in the cutting process to interact with the dynamic
stiffness characteristics of the machine tool (including the tool holder and workpiece) to
create vibrations during processing that are known as chatter. Chatter leads to poor surface
finish, dimensional errors in the machined part and also accelerates tool failure. Although
chatter can occur in all machining processes (because no machine tool is infinitely stiff), it
is a particular problem in operations requiring large length-to-diameter ratio tool holders
(for example in boring deep holes or end milling deep slots and small radius corners in deep
pockets) or when machining thin-walled components. It can then be hard to continue the
operation because of chatter vibration. The purpose of chatter vibration modelling is to
support chatter avoidance strategies. One aspect is to design chatter-resistant machine tool
elements. After that has been done, the purpose is then to advise on what feeds, speeds and
depths of cut to avoid. This section only briefly considers chatter, to introduce some
constraints that chatter imposes on the selection of cutting conditions. More detailed
accounts may be found elsewhere (Shaw, 1984; Tlusty, 1985; Boothroyd and Knight, 1989).

The most commonly studied form of chatter is known as regenerative chatter. It can
occur when compliance of the machine tool structure allows cutting force to displace the
cutting edge normal to the cut surface and when, as is common, the path of a cutting edge
over a workpiece overlaps a previous path. It depends on the fact that cutting force is
proportional to uncut chip thickness (with the constant of proportionality equal to the prod-
uct of cutting edge engagement length (d/cos ) and specific cutting force k). If both the
previous and the current path are wavy, say with amplitude a,, it is possible (depending on
the phase difference between the two paths) for the uncut chip thickness to have a periodic
component of amplitude up to 2a,,. The cutting force will then also have a periodic compo-
nent, up to [2ay(d/cos y)k ], at least when the two paths completely overlap. The compo-
nent normal to the cut surface may be written [2ay(d/cos y)k,] where k is called the
cutting stiffness. This periodic force will in turn cause periodic structural deflection of the
machine tool normal to the cut surface. If the amplitude of the deflection is greater than
a,, the surface waviness will grow — and that is regenerative chatter. If the machine tool
stiffness normal to the cut surface is written k , (but see the next paragraph for a more care-
ful definition), chatter is avoided if

2dk k_cos
4 1 or d<2 7 (9.15a)
cos yk 2k,

The maximum safe depth of cut increases with machine stiffness and reduces the larger is
the cutting stiffness (i.e. it is smaller for cutting steels than aluminium alloys).

Real machine tools contain damping elements. It is their dynamic stiffness, not their
static stiffness, that determines their chatter characteristics. k, above is frequency and
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Fig. 9.9 Unconditional chatter limit

damping dependent. A structure’s dynamic stiffness is often described in terms of its
compliance transfer function G, — how the magnitude of its amplitude-to-force ratio, and
the phase between the amplitude and force, vary with forcing frequency. Figure 9.9 repre-
sents a possible G, in a polar diagram. It also shows the compliance transfer function G_
of the cutting process when there is total overlap (u; = 1) between consecutive cutting
paths (the real part of G is —cos w/(2kd), as considered above, and the minus sign has
been introduced as chatter occurs when positive tool displacements give decreases of uncut
chip thickness). The physical description leading to equation (9.15a) may be recast in the
language of dynamics modelling, to take properly into account the frequency dependence
of both the amplitude and phase of the structural response, via the statement that cutting is
unconditionally stable if G, and G do not intersect (Tlusty, 1985). At the unconditional
stability limit, the two transfer functions touch (as shown in the figure).The maximum
depth of cut d . which is unconditionally stable is then

cos
e —— (9.15b)
2k 4[Re(G)], i
where [Re(G)],;,, is the minimum real part of the transfer function of the structure: it more

exactly defines the inverse of k_, in equation (9.15a).

If the structure is linear with a single degree of freedom, the minimum real part
[Re(Gy)],;, is proportional to the static compliance Cg,. In that case, d . may be written,
with ¢, a constant, as

d =-2¢ (9.15¢)

Equations (9.15b) or (9.15c¢) provide a constraint on the maximum allowable depth of cut
in a machining process. Another type of constraint may occur in the absence of regenerative
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chatter, if periodic variation of the cutting force occurs due to discontinuous, serrated or
shear localized chip formation. This may cause forced chatter vibration. For chips of simi-
lar shape, the chip formation frequency fchip is linearly proportional to the cutting speed
and inversely proportional to the feed:

%
Fonip = € - (9.15d)

where c; is a constant. Chatter vibration can occur when the chip formation frequency is
close to one of the natural frequencies of the structure. Hence, the ratio of cutting speed to
feed that should be avoided in that case is given by

fn,' 14 fni
(1-A<—<
Ce f Cy

(I+4) (9.15¢)

where f; is the ith natural frequency and f ;A is the half width of the unavailable
frequency band.

9.3 Optimization of machining conditions and expert
system applications

Previous chapters and sections have described aspects of machining that are amenable
to theoretical modelling. Some cutting phenomena have been modelled quantitatively,
others described qualitatively. As is well known, however, not all details of machining
technology have yet been captured in machining theories. Heuristic (practical experi-
ence) knowledge and the skills of machinists are still needed to optimize conditions in
production. Although a computer aided manufacturing (CAM) system, by reference to a
database, can automatically provide tool paths, and recommend tools and cutting condi-
tions, sorted according to workpiece materials, cutting operations (turning, milling,
boring, drilling, etc) and cutting types (finishing, light roughing, roughing, heavy rough-
ing), the heuristic knowledge and skills of machinists are indispensable for trouble
shooting and final optimization of cutting conditions, beyond the capabilities of data-
based recommendations.

Almost by definition, the heuristic knowledge and skills of machinists for selecting
tools and cutting conditions are hard to describe explicitly or quantitatively. Moreover,
skilled machinists have not much interest in self-analysis, nor in such descriptions; nor,
typically, in the economics of machining. Machinists’ goals are somehow to find a better
solution that satisfies all the constraints to a particular problem: cutting time, dimensional
accuracy, power, tool life, stability, etc. Satisfactory cutting performance is their subjective
measure of evaluation, especially such aspects as good surface finish, avoidance of chatter
and excellent chip control.

The dependence of optimization on heuristic knowledge implies that the objectives and
rules of machining may not all be explicitly stated. In that sense machining is a typical ill-
defined problem. Reducing the lack of definition by representing machinists’ knowledge
and skills in some form of model description must be a step forward. Fortunately, for the
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last two decades, knowledge-based engineering (e.g. Barr and Feigenbaum, 1981, 1982)
and fuzzy logic (e.g. Zimmermann, 1991) have been developed and applied to machining
problems. Three application areas are considered here, first the optimization of cutting
conditions for given tool and work materials, from an economic point of view; then the
selection of cutting tools; and finally the simultaneous selection of tools and cutting condi-
tions. Rational (theoretical) knowledge economic optimization methods, under the
assumption that they are sufficient, are reviewed and developed in Section 9.3.1 before
their supplementation by subjective, fuzzy, optimization, in Section 9.3.2. Tool selection
methods (by heuristic means) and simultaneous selection of tools and cutting conditions
(with the integration of rational and heuristic knowledge) are the topics of Sections 9.3.3
and 9.3.4.

9.3.1 Model-based optimization of cutting conditions

When everything is known about a process, a criterion by which to judge its optimization
can be objectively defined and constraints on the optimization can be established. A feasi-
ble region from which optimal operating conditions may be selected can be established
and finally an optimal set of conditions can be chosen. These activities are illustrated by
the selection of cutting conditions from an economic point of view, as introduced in
Section 1.4.

Objective function

As described in Section 1.4, minimum cost, maximum productivity or maximum effi-
ciency are typical criteria of economic optimization. In considering the minimum cost
criterion for optimizing a turning operation (the maximum productivity criterion will also
be briefly treated), the same analysis that leads to equation (1.8) for the operation cost per
part Cp, but before constraining it by substituting the form of Taylor’s tool life (equation
(1.3)), gives

tmach + Cctct tmach + Ct tmach
T

Cy= Cotigga *+ Ce (9.16a)

mach

where C = M + M. When cutting a cylindrical workpiece of diameter D and length L,
the cutting time 7_, , is

zDLd,

t -
vid

mach —

(9.16b)

where d, is the radial stock allowance. The substitution of Taylor’s equation (equation
(4.3)) (dependent on f and d as well as V, whereas equation (1.3) only included V depen-
dence) and equation (9.16b) into equation (9.16a), yields the objective function for mini-

mum cost:
nDLd C VUnif Unaglng
C=Ct .+ : C + (Cty +C) —— (9.16¢)
clet t ,
fmach

The objective function to be minimized for maximum productivity is the total time
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tmach

— mach
ttotal - tload + + tct T
mach
9.16d
_, N 71:DLda 1 » Vlln{f”nzdl/m ( )
~ "load ot .
Vfd fmach C

Constraints

For a given combination of tool, workpiece and machine tool, the cutting conditions
become optimal when the operation cost is minimized, subject to constraints g on the oper-
ation variables x given by

g(x)< g, (i=12,....N) (9.17)
where N is the number of constraints. In modern machining systems there may be many

constraints, for example the following.

Chip breakability. This, the first constraint (C1), must be taken into consideration in
modern machining systems, leading to:

€l g(fid)<g, (9.18a)
If depth of cut affects chip breakability independently of the feed, (C1) becomes

(Cl") d;<d<d, (9.18b)

(C1") fi<f<S, (9.18¢)

where d; and d are the lower and upper limits of depth of cut, and f and f, are the lower
and upper limits of feed, respectively. These limits depend on the type of chip breaker
described in Section 3.2.8.

Tool geometry and stock allowance. The depth of cut and feed are limited by tool geom-
etry and the stock allowance as well:

(C2) d<ayl cosy (9.19)
(C3) f<a,r, (9.20)
(C4) d<d, 9.21)

where a, and a, are constants, and [/ is the effective edge length of an insert.

Surface finish. In finishing, the surface finish should be an important constraint: when the
finish is geometrically determined by the tool nose radius (Diniz et al., 1992)

2

(C5) R, = (9.22)

S Ra, max

31.3r,

where R, .. is the required surface finish.

Chatter. Chatter limits (C6) have been given by equation (9.15b), (9.15¢) or (9.15¢e), and
are often critical when the workpiece or tool is not rigid.
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Maximum operation time per part. 1,a Ay be a constraint:

(CT) t. .=t .+ Y + fet <t (9.23a)
total load VEd fmach T max
If tool life 7' is much longer than the time for tool change 7,
(C7) t_ .=t .+ L, L <t (9.23b)
total = *load VFd \f . max

Maximum rotational speed N, .. This limits the cutting speed. Writing spindle speed as N:

(C8) V=27DN <2zDN, (9.24)
Maximum spindle motor power P, . This also provides constraints
(C9 F V<P, (9.25a)

When a regression model of cutting force with a non-linear system Hy, is given, this may
take a form such as

(C9") F.V=kfmdmym+l<p, (9.25b)

where k is the specific cutting force, and m, m, and m, are constants (here the regression
model differs from that in equation (9.2b)).

Force limits. The cutting forces are limited by factors such as, among others, tool break-
age, slip between the chuck and workpiece, and dimensional accuracy due to tool and
workpiece deflection

(C10) Fy=kyfrodm Vi< F; o= min{Fy o Fypa o) (9.26a)
NI o
(C11) R=VF{+F3+F3 <R =min{R . ..., R ...} (9.26b)

where j = 1, 2, 3 represents the three orthogonal directions of force components; F ii.max

and R, are the maximum force component and maximum resultant force permissible
for factor i, respectively, and min{. . .} is the minimum operator. For tool breakage, equa-

tion (9.14a) may be used for a set of deterministic constraints.
Other limits. There may be other constraints, depending on the cutting operation.

Feasible space
The feasible feed, depth of cut and cutting speed space for a particular cutting operation is
the space that satisfies all the constraints. It is inside and on a closed surface:

h(V,f,d)<h, (9.27a)

When the cutting speed or the depth of cut are specified, the feasible domains in the ( f, d)
or (V, f) planes respectively are given inside and on closed lines as shown in Figures
9.10(a) or (b):
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hy(f, d) < hy, (9.27b)
hy(V,f) < hy, (9.27¢)

Each segment of the closed lines represents a limit due to one constraint. Lines numbered

C1 to C10 represent the corresponding constraints described by equations (9.18) to (9.26).
In the case of roughing operations, if n passes are chosen for removing the stock

allowance d,, the depth of cut in each pass is usually taken as d, = d,/n. In this case

Ag=1{d}=1{d,d /2. d/3,...) (9.27d)

is a set of depths of cut available for machining. Then the feasible space and domain shrink
to a finite number of planes and lines, respectively:

h(V.f.d)<h, (d;e Ay (9.27¢)
hy(f,d) <hy, (d;e Ay (9.271)
The lines of equation (9.27f) are schematically shown in Figure 9.10(a).

Optimum conditions
Equation (9.16c), with Cp constant, represents a surface of constant operation cost in (V, f,
d) space. The surface may be superimposed on the surfaces of feasible space, as shown in
Figure 9.11. The form of equation (9.16c) ensures that the operation cost is minimum
where the surface of constant cost just touches the boundary of feasible space i (V, f, d) =
h. or the set of planes A (V, f, d;) = h

Since the constants n, n, and n, of Taylor’s equation (4.3) have the relation, n, <n, <
ny—e.g. n/n, =077 and n,/ny = 0.37 for HSS tools (Stephenson and Agapiou, 1997) —
tool life is most sensitive to cutting speed and second most sensitive to feed, among the
operation variables. Therefore, the point of tangency M, between the surface of constant
cost and the boundary of feasible space will locate at a coordinate of large depth of cut
d opt* large feed f and intermediate cutting speed V. In Figures 9.11(a) and (b), this
point is, as is usual placed at the upper right corner (vertex) My, ( fopt, dopt) and at a point
MgV opt? fopt) on the upper boundary of the respective feasible domams

When the upper boundary of the feasible domain i,(V, f) is represented by a straight
line, f= fopt, the minimization of the operation cost with respect to the cutting speed (with

constant feed fopt and constant depth of cut dopt),
(BCp/aV)f;fopl, d=dop = 0 (9.28a)
yields the optimum cutting speed
n, c.C ’ 1 m
V. = (9.28b)

opt
1- ny (Cc ™t ¢ )fmach f]o/;r)lt 1(53?

It is assumed that the optimum point M ; (V, opt® fopt) is not outside the feasible domain. The
insertion of equation (9.28b) in Taylor S equatlon (4.3) and equation (9.16c) leads to the

optimum tool life, T, opt® and the minimum cost, Copt, respectively:

TO ) 1 - n, . (Cc o T Ct)fmach (9280)
pt
nl C

C
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c

(9.28d)

By replacing fopt and dOpt by fand d, respectively, equation (9.28d) expresses the line of
the minimum cost Ly, in an (f, d) plane:

ns ny(n—1) nn,
DL, ) P ( fon (=1 ) o [ Cut + C,
Copt - Cc Toad C C'n 1

n;(n,—n )
"x 1,

d= f n, (n;—nl)

C

(9.29a)

Since the exponents of Taylor’s equation have relations n,/n, = 0.77 and n,/n, = 0.37 for
HSS tools, and exponents of the force model (equations (9.2b), (9.25b)) have a relation
m,/m, = 0.85 for an alloy steel, the exponent of f in equation (9.29a), which is negative,
may satisfy the relation

1 -n/n, m
= < <1 (9.29b)
1 —n/n, m,

nay(ny —n,)

ny(ny—ny)

Thus, even if the constraint C9’ or C10 in equations (9.25b) or (9.26a) is the boundary
segment of the feasible domain hy(f, d) < hy,, the line of minimum cost L, passes
through the vertex My, as described above.

On the other hand, the substitution C = C_ and d = dopt into equation (9.16c) yields
the line of minimum cost L_4 in the (V, f) plane:

(Copt ~ Cc tload)d

opt (Ct +C)
nDLd,

opt cct

C
dimytitin, _ € —0  (9.29¢)

mach

Advances in tool materials, tool geometrical design and tool making technologies decrease
the cost of consuming cutting edges C,. This results in increases in the optimal cutting
speed. The lines of minimum cost L, and L_, are respectively shown schematically in
Figures 9.11(a) and (b).

If maximum productivity rather than minimum cost is specified as the criterion for opti-
mization, a faster cutting speed is always the result. The optimum depth of cut dopt and the
optimum feed fopt, being fixed at My, in Figure 9.11, are not affected by changing the criter-
ion. Minimization of the operation time ¢, ., in equation (9.16d) with respect to the cutting

total

speed yields the optimum cutting speed Vopt,
n, c’ 1 m

V= . (9.30)

opt Un, gl/n
1- ny I foptz opt3

t/ mach

When C, =0, V(;pt = VOpt
Generally, the minimization of an objective function under the action of constraints may
be solved by non-linear programming methods.
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Critical constraints

A constraint, the limit line of which contains the optimum point My, or M, is called a crit-
ical constraint and the limit line a critical line. Two critical constraints are possible for each
feasible domain in the (f, d) and (V, f) planes, whilst three are possible in (V, f, d) feasi-
ble space. Since different tools have different constraint coefficients, the feasible space
may change when a specified tool is changed. If a critical line moves outward, there is
always a possibility to find better cutting conditions that further decrease the operation cost
Copt. This is why the tool and cutting conditions must be optimized simultaneously. The
simultaneous optimization of tool and cutting conditions is described later, in Section
9.3.4.

9.3.2 Fuzzy logic based optimization of cutting conditions

The best tool cutting conditions may be obtained if all the coefficients in the objective
function and constraints are known a priori. However, the cost data associated with
machining and the constants of Taylor’s equation for a particular combination of tool,
workpiece and machine tool, for example, are not always accurate. Additionally, not all the
constraints due to chip breakability, chatter limit, surface finish, etc are precisely modelled.

Vagueness in the coefficients and constraints may be naturally modelled by fuzzy logic,
as in the case of the Weibull distribution for tool breakage, already considered in equation
(9.14c). Modelling by fuzzy logic brings about a new way to optimize cutting conditions,
and also tool selection (Zimmermann, 1976).

Fuzzy optimization
The constraints of equation (9.17) may be considered to be a crisp or conventional (the termi-
nology is described in Appendix 7) set R, of functions of the operation variables x (V, f, d):

R, ={xlg®<g.) (=1,2...,N) (9.31a)

Then, the feasible space of machining, h(f, d, V) < h_, is given by the intersection H_ of
sets R;:

N
H, = (x|h(x) <h}= R, (9.31b)
i=1

In these (crisp) terms, the feasibility of machining f, | may be defined as

[ ={ (1) zz g 9.31¢)

On the other hand, cutting operation constraints may be represented by a fuzzy set R ;
with membership functions

1 0<g 0<g,

8icr — 8i(X)
u(gx)=Q —— g <gX) =g, (9.32a)

8ic+ ~ 8ic

O gic+<gi(x)
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Fig. 9.12 Fuzzy optimization of cutting conditions; only three constraints 1, 4 and 10 are considered

where g, and g, ., are constants. The maximum tolerance of the fuzziness is g;., — g;._-
If g;._ = g, the fuzzy set R is identical to the crisp set R,. When a constraint has a
probabilistic nature, such as the tool breakage criterion in equatlon (9.14b) it is natu-
rally modelled by a membership function as in equation (9.14c¢). Similar to equation
(9.31b), the feasible space of machining is given by the intersection H_ of the fuzzy set
R;:
N,
7 (00 = A (8, (x) (9.32b)
=

where A is the fuzzy operator representing the minimum operation.

The membership x5 . (x) represents the feasibility of machining as well: f, () = g . (x).
Figure 9.12 shows schematlcally the feasibility space of equation (9.32b). It is seen ‘that
there is an intermediate space with feasibility 0 < f, < 1 between the fully feasible (f, (x)
= 1) and unfeasible (f, (x) = 0) spaces.

Like constraints, the objective function (9.16c) is represented by a fuzzy set R0 with
membership functions:

1 0<C®<C,

Cp L Cp(x)
Uo(gy(x) = - ¢ Cp_ < Cp(x) < CpJr (9.32¢)
p+~ Tp-

0 C,, < C)(%)
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Regarding the objective function in equation (9.32c) as one of the constraints for fuzzy
optimization, optimal conditions are found from the value of the variable x(V, f, d) that
maximizes the membership

N,
u(x) = /_\0 i(g;(x)) (9.32d)

An example of fuzzy optimization of tool and cutting conditions will be presented in
Section 9.3.4.

9.3.3 Knowledge-based expert systems for tool selection

The previous two sections assume that there is a feasible space in which optimization can
be implemented. It is in the interests of cutting tool manufacturers to make sure that that
is so, by designing tool holders and inserts — which give chip control, stability, low wear
at high speeds, and so on — that are not too constraining on process operation. As there are
many constraints on the boundaries of feasible space, and usually it is not initially clear
which are critical, tool selection currently relies more on the skills of machinists than does
the choice of subsequent operation conditions. Tool selection systems mirror this, in rely-
ing strongly on knowledge-based engineering. (In addition, if no tool can be selected, that
is a matter for process research and development rather than for process optimization.)

A number of different reasoning systems have developed in the field of knowledge-
based engineering — names such as production, blackboard, semantic network, frame, object
and predicate calculus are used to describe them (Barr and Feigenbaum, 1981, 1982). Tool
selection systems to be described in this section are if (a condition is met) — then (take an
action) rule-based (or ‘production’) expert systems. They all have three essential elements:
a workpiece description file (or working memory), to hold a description of a required shape
change to be machined; a set of rules relating machining operations and conditions to tool
selection (a rule base or file, or production memory); and a way of selecting, interpreting
and acting upon the rules (an inference engine or interpreter).

They model the human thinking process in that a rule can be added to or deleted from
the rule base, or be modified by experience, without necessarily affecting other rules. This
makes them easy to develop. They differ in complexity, depending on whether the rules are
complete and well-established, each leading to single actions not in conflict with each
other; or whether they are vague and overlap, with possibilities of conflict between them.
In the first case, application of the rules will lead to a single (monotonic) route of reason-
ing, ending up with a right answer. In the second case, methods of compromise are neces-
sary and different experts might reach different answers.

They also, like experts, have a range of points of view. Some (most simple) systems are
workpiece oriented, making a recommendation of ideal tool characteristics, leaving it to
the user to determine if such a tool is available. These systems only need a working
memory, a production memory and an interpreter. Other systems are tool oriented, recom-
mending a specific tool that is available. These require a tool database in addition to work-
piece information, selection rules and an interpreter. An issue then arises about how the
system interrogates the tool database: exhaustively or selectively (intelligently).

Finally, some rules may require modelling and calculation (rational knowledge) for
their interpretation, in addition to or instead of heuristic (qualitative) expertise. Then the
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expert system also needs a process modelling capability and, in that sense, may be
described as a hybrid (rational/heuristic) system.

In the following, three examples are described that span these ranges of functionality
and viewpoint: a monotonic, workpiece oriented system; a non-monotonic (weighted rule),
exhaustive tool search system; and a hybrid, selective tool search system. The last, by
simplifying its rules, makes it practical, simultaneously, to find acceptable (not necessar-
ily optimal) combinations of tools and their operation variables.

A monotonic rule, workpiece oriented system
The basic, three element, architecture of such a system is shown in Figure 9.13, in this case
with feedback that changes the shape information in the working memory, according to the
actions of the selected tools. If—then tool selection rules are stored in the production
memory. When data about a shape change to be machined are presented to the working
memory, the interpreter picks up every rule that is even partly relevant to them. This is the
first step of inference, named matching. Next, according to some strategy, one rule is
selected from the matched rules. This is the second step, deciding which is the most rele-
vant rule. Meta-knowledge, or knowledge about knowledge, is used for determining the
strategy of rule selection. In the third, action step, the process selected by the rule is carried
out. As a result, the shape data are altered. If the alteration has not achieved the complete
change required, the new data are returned to the working memory and the cycle is repeated.
One expert system of this sort selects tools for drilling (SITC, 1987). It not only
generates a sequence of boring operations and tools, but also records its reasoning
processes. In fact, it infers boring operations inversely to their practical sequence. Figure
9.14 shows its recommended steps for how to create a 20 mm diameter hole of good finish
(VV) in a blank plate, from finishing with a reamer to initial centring. The actual order of
shape change is shown at the left-hand side and the inversely inferred boring operations at
the right-hand side. How it reached its recommendations is shown in Figure 9.15. The left
column shows the production (P) rules that it used. The condition (if) and action (then) parts
of each rule are separated by an arrow. Each is quite simple and natural: P rule 1 is that if a
reamed hole exists, of diameter D, it should be made by letting a reamer of diameter D pass
through a hole of diameter D-0.5 (mm); P rule 2 is that if a hole has diameter D between 13
mm and 32 mm, then select a drill of diameter D for enlarging a hole of diameter 0.6D to

Interpreter
Production
Consultation memary
- Waorking memaor
Consultation g ¥ Update

Fig. 9.13 Basic architecture of ‘production system’
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Fig. 9.14 Inference of drilling operations in an expert system (SITC, 1987)

D; P rule 3 is that if D < 13 mm, select a drill to make a through hole of diameter D follow-
ing centre drilling; finally P rule 4 is that if there is a centre hole of 2 mm diameter, make
it in a solid plate, using a centre drill. The right column of the figure shows, for each rule,
the tool selected and, as a result of its action, the start and end features of the machined
plate, i.e. hole shape, hole diameter and surface finish. The tools selected are, in operation
order, a centre drill 2 mm, two drills 11.7 mm@ and 19.5 mm, and a reamer 20 mm.
The system is not concerned about whether such tools are available.

A weighted rule, exhaustive tool search system

In the previous example, only two aspects of a tool were being selected: type (centre drill,
drill or reamer) and diameter. In many cases, tool geometry needs to be selected in much
more detail, and also the tool material or grade. In turning, for example, a range of angles
(approach, rake, inclination, etc), tool nose radius and chip breaker form should be chosen.
What is chosen may be a compromise between conflicting requirements. For example, a
decrease in approach angle in turning leads to a lower radial force but a weakening of the
insert (because of a lower included angle). What is then a best approach angle depends at
least on how those two effects influence a process. Additionally, what is a best approach
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Working memory

Initial values

(P RULE 1 ) -

(SHAPE through-hole D V) | 1: (SHAPE through-hole 20.0 VV) |
—

(MAKE TOOL reamer D) 2: (TOOL reamer 20.0)

(MODIFY SHAPE through-hole D-0.5 V)) 3: (SHAPE through-hole 19.5 V)
(PRULE 2

(SHAPE through-hole 32.0>D>13.0 V)
—> 2: (TOOL reamer 20.0)

(MAKE TOOL drill D) 4: (TOOL drill 19.5)

(MODIFY SHAPE through-hole D+*0.6 V)) 5: (SHAPE through-hole 11.7 V)
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2:
_ 4: (TOOL drill 19.5
(MAKE TOOL drill D) 6: gTOOL drill 11.7))
7:

(MODIFY SHAPE centre hole 2.0)) (SHAPE centre hole 2.0)

-

(P RULE 4
(SHAPE centre hole 2.0) 2: (TOOL reamer 20.0)
-> 4: (TOOL drill 19.5)
(MAKE TOOL centre drill 2.0) 6: (TOOL drill 11.7)
(MODIFY SHAPE blank plate)) 8: (TOOL centre drill 2.0)
9: (SHAPE blank plate)
(P RULE 5
(SHAPE blank plate)
—_
(HALT))

Fig. 9.15 Applied rules and reasoning processes (SITC, 1987)

angle may depend also on what is the rake angle (also for overall force and insert strength
reasons) — and so on for other tool material and geometry features. In the absence of a ratio-
nal model, judgement is needed. One of the simplest methods for introducing judgement is
to weight rules according to their perceived importance. The recommendations of all the
rules that match a given application can then be assembled as a weighted profile of desir-
able features. Finally, a tool that best matches the profile can be selected from a database.

This is the approach taken by COATS, an expert module for COmputer Aided Tool
Selection, within a larger computer aided process planning (CAPP) system (Giusti et al.,
1986). This module recommends tools based on a total evaluation of some particular aspects
of a given cutting situation. Figure 9.16 shows the machining of a slender workpiece, an
example for which COATS has been asked to recommend tool holders and cutting inserts.
In this case, the reduction of radial force is required to decrease workpiece deflection as
much as possible. As a negative approach angle y very effectively achieves this, rules that
deduce a negative approach angle in their action part have high weight. In the following
example, the rule weight is 5:

APPROACH ANGLE (y) RULE No. 13
IF workpiece slenderness is > 12
AND workpiece clamping is between centres
AND operation is finishing
THEN  approach angle is < 0°
RULE WEIGHT: 5.

(Giusti ef al., 1986)
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Fig. 9.16 Finishing of a slender workpiece: depth of cut 0.5 mm (Giusti et a/., 1986)

When several rules part match a situation, for example rules on approach angle in the
situation of Figure 9.16, COATS gives a score s; equal to the weight w, of the matched rule
i to the range of the variable (for example approach angle (y),_ < w < (y),,) which rule i
specifies:

0 v<y),._
Si(l//) =1 W (l//)i, Sys (V/)H. (9.33a)

0 W, <y
It then sums the scores s; in a design range w,, < w <y, . to give a sub-total score S():
Sw) =3, s(w) (9.33b)

1

To continue with the same example, COATS also has rules for the normal relief angle
7,» normal rake angle ¢, cutting edge inclination angle 4, tool included angle €, (¢, = /2
+y—«’,), nose radius r,, grade and type of insert, and feed range, among others. Sub-total
scores S(7,), S(a,), S(A), S(g,) and S(r,) are estimated as well as S(y). All are shown in
Figure 9.17. Their distributions can be understood in terms of force and cutting edge
strength effects.

As a final operation, COATS searches its library of tools and their holders to determine
which have the largest total scores, estimated as the sum of the sub-scores:

N
S = 2 SN (9.33¢)
Jj=1

where j =1 to N are all the tool features such as v, 7,, @, and so on. Table 9.1 lists, in order
of decreasing total score, COATS’s recommendations for finish turning the slender work-
piece in Figure 9.16. The maximum and minimum feeds in the table were determined by
the chip breakability properties of the selected inserts at the given depth of cut. All the
recommended tools have high normal rake. Negative approach angles are not recom-
mended as they reduce cutting edge strength too much.

A hybrid rule, selective tool search system

A system differently structured to COATS, and applied to rough turning operations, has
been described by Chen et al. (1989). Expertise about the usability of tools is introduced
at an early stage to eliminate many unlikely-to-be-chosen tool holder and insert combina-
tions from the eventual detailed search of the tool database. In addition, the eventual search
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Fig. 9.17 Distributions of subtotal scores of tool’s geometric parameters (Giusti et al.,1986)

Table 9.1 Recommended tools by COATS

Min. Max.
Tool holder Insert Insert feed feed 7y, o, 73 €, ry
(ISO code) (ISO code) Grade Score [mm] [mm] [deg] [deg] [deg] [deg] [mm]
SVVBN2525M16  VBMMI160404 53 P10 49 0.10 033 5 12 17 35 04
MVVNN2020M16 VNMGI160404 53 P10 45 020 048 4 11 17 35 04
MVVNN2020M16 VNMGI160408 53 P10 38 040 070 4 11 17 35 0.8

is model-based, with constrained cost minimization as the criterion for selection (in prin-
ciple, as in Section 9.3.1, but with differences in detail). It is not claimed that the system’s
eventual recommendation is optimal, but that it is unlikely that a substantially better
recommendation exists.

The elimination and eventual search strategy is split up into six stages or levels, as listed
in Table 9.2. Levels 1 to 3 and 6 use heuristic knowledge and levels 4 and 5 are model-
based. Starting with level 1, only tool holders that are compatible with the specified oper-
ation are considered further: for example, if an insert’s approach angle is limited by steps
on a turned part, only holders that present a less than critically oriented insert to the work
are considered. At level 2, if there are holders identical but for their insert clamping
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Table 9.2 Search tree levels (Chen et al., 1989)

Level Parameters

1 Tool function

2 Insert clamping method

3 Holder dimension, i.e. shank height and width, and tool length
4 Holder type, i.e. approach angle, insert shape, size and thickness
5 Insert type, i.e. chip breaker type and carbide grade

6 Nose radius and insert tolerance

system, only that holder with the stiffest clamping system is considered further (unless the
clamp interferes with the work, when the next stiffest is chosen). At level 3, only those
holders whose shank height is suitable to the machine tool are considered further. If there
are holders otherwise identical but for their length and shank width, only the shortest and
broadest is considered further, because of its greatest stiffness.

The cost model is entered at level 4. At this stage, all that is known about an insert is
that it must fit one of the holders still being considered. This determines, for each holder,
the insert shape, size and orientation but not the insert grade or chip breaking features.
Chen et al. suggested, reasonably, that a good choice of shape, size and orientation could
be made without knowing the grade and chip breaking detail, by supposing some average-
costing grade and chip breaker geometry to have been chosen already.

Insert shape, size and orientation most strongly affect cost through C, (the tool cost per
edge, equation (9.16a)), after that by being associated with different approach angles and
hence tool life, and finally by influencing the cutting forces and insert strength, and hence
the operational critical constraints and feasible space. The constraints that are affected at
this level are C2, C6, C9, C10 and C11 (Section 9.3.1). In their selection procedure, Chen
et al. first ranked holder and insert combinations in increasing order of C;:

C. G,

C=—— + — (9.34)
0.75n, 400

where C;, C; and n,_ are the insert cost, the holder cost and the number of cutting edges;
and the coefficients 0.75 and 400 are from experience. If two holder/insert combinations
had the same C,, they regarded the one with the larger approach angle as effectively
cheaper because it would have a longer tool life. They argued that a more expensive combi-
nation could only reduce machining cost if it enlarged the feasible machining space.
Starting with the cheapest C, combination, they therefore checked whether any of the
constraints C2 ... C11 (above) were critical for the next cheapest. If they were not, the
selection procedure was moved on to level 5, with the current holder/insert combination,
on the grounds that more expensive combinations were unlikely to reduce cost.

At level 5, the carbide grade and type of insert chip breaker are selected, for the prede-
termined holder/insert size combination. A grade and chip breaker type not likely to lower
the cost relative to a previously considered combination is quickly eliminated from the
search, by establishing whether, with it, the previous cost could be bettered at feasible feeds
and depths of cut. This is achieved by drawing, in the (f,d) plane, for the grade/breaker
combination being considered, its line of constant cost equal to the previously established
lowest cost, C,. (This line is obtained from equation (9.29a), with coefficients valid for the
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Fig. 9.19 Nine tool holders arranged in increasing order of cost (Chen et al., 1989)

considered combination, by replacing Copt by C_.) If this line falls outside the feasible
domain hy(f, d) < hy, or the reduced domain hy(f, d;) < hy,, for the combination, the
combination is ignored as it is not able to reduce the cost and the next combination is
considered. If it falls inside the feasible domain, a lower cost will be achievable by alter-
ing the operation variables: then the new minimum cost (and optimal cutting conditions)
are evaluated and the search continued.

Finally, at level 6, if chatter provides one of the critical constraints, an insert with a
smaller nose radius is selected to reduce the thrust force; otherwise a large nose radius is
selected to increase strength and wear resistance; and an insert of lowest acceptable toler-
ance is always chosen because of low cost.

Figure 9.18 shows an example of rough turning, for which the optimum tool and
machining conditions have been determined by the system. The workpiece was specified
as a 0.4% plain carbon steel, the stock to be machined (da) as 10 mm or 3 mm from the
radius and the maximum permissible operation time to be infinite. Figure 9.19 shows the
nine tool holders considered by the system. All the holders have a stiff, P type
(International Standard, 1995) clamping system and a shank height and width of 25 mm.
They are arranged in increasing order of tool cost C,: it can be seen that the number of
edges n, has a great influence on this.

293 inserts in the library could fit in these holders, with 11 types of chip breaker, 3
grades of carbide and 4 nose radii. By applying the search strategy just described, detailed
cost calculations at level 5 needed to be carried out only for 8 inserts when d, = 10 mm:
the optimal selection was a combination of holder no.7 and a coated insert of grade
P10-P20 and nose radius 0.8 mm. When d, = 3 mm, the grade was unchanged but the tool
holder and nose radius were altered to no. 3 and 1.2 mm; and the chip breaker style
changed too. The search time was only 5% of that required in a parallel study in which
detailed costings were carried out, unintelligently, on all 293 possibilities.
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Summary

These expert systems examples illustrate the diversity of practical considerations that
influence production machining; and the range of viewpoints taken and range of skills
applied by an expert in recommending tools and operating conditions. The range of views
span work-centred to tool-centred (from what does the work need? — to what can the tool
do?): the first and last examples just considered are at the extremes of the span; while
COATS offers a balanced view. The range of skills covers monotonic and non-monotonic
heuristic and rational reasoning. It is a real problem to replace real experts by a single
expert system, both for these reasons of diversity and the huge number of rules that are
involved. A limited expert is not so useful. That is perhaps the reason why expert systems
are not currently more widely used in industry and why human experts are still heavily
relied upon. Nevertheless, expert system development continues to be worthwhile, both
because human experts are scarce and expensive; and because it helps to increase the orga-
nization of knowledge about machining. Any tool that might help to unify expert system
structures must be useful: fuzzy logic, because of its ability to handle vagueness and
rational constraints in the same form (as introduced in Section 9.3.2) is a possible one.

9.3.4 Fuzzy expert systems

A fuzzy expert system for the design of turning operations, with three modules — for tool
selection, cutting condition design and learning — and given the name SAM (Smart
Assistant to Machinists) is shown in Figure 9.20 (Chen et al., 1995). The system’s inputs

Inputs ol Learning
module
=IF irati Fuzlzy membership ® Grade 11| Gra}de
juzzytzaliom ¥ (o giade selection |yl matching
- Cutter
Fuzzy membership p Cutter ]| I
for cutter selection matching
1
1
Fuzzy Fuzlzlg.r
» . nanlinear
> ™ constraints '_*programming >
* Parformance Ferfarmance
Cutting condition -
design module calculation
SAM: Smart Assistant for Machinist

Fig. 9.20 A fuzzy expert system for the design of cutting operations (Chen et al., 1995)
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Table 9.3 Breadth of input data for a fuzzy expert system (Chen et al., 1995)

(1) Work material
(1.1) material code: (ISO code = P, CMC code = 02.1, ANSI standard)
(1.2) material type: {steel alloy, stainless steel, . . .}
(1.3)  hardness: (Rockwell C scale, Rockwell B scale, Brinell scale 180)
(1.4) machinability: 0.98
(2) Machine tool
(2.1) power and maximum power: (25 kW, HP) ]
(2.2) torque and maximum torque: (N m, Ib. ft)
(2.4) maximum cutting speed: (m/min, ft/min, /450 rpm)
(2.6) power efficiency: (95%)
(3) Machining plan
(3.1) machining
(3.1.1) turning: {general turning, contouring, tapering, grooving, . . .}
(3.2) machining type: {heavy roughing, roughing, light roughing, finishing, . . .}
(3.3) material removal rate: {large, medium, small} or (mm?/min, inch®/min)
(3.4) surface finish: {rough, good, fine, extreme fine} or (um, uinch)
(3.5) cutting speed: {fast, medium, slow} or (m/min, inch/min)
(3.6) feed: {fast, medium, slow} or (mm, inch)
(3.7) depth of cut: {large, medium, small} or (2.5 mm, inch)
(3.8) length of cut: (/00 mm, inch)
(3.9) diameter of the workpiece: (25 mm, inch)
(3.10) cost
(3.10.1) machining cost with overhead: (/-2 $/min)
(3.11) time factor
(3.11.1) tool change time: (1.5-2.5 min)
(4) Cutter and cutter holder
(4.1) cost: ($ 12)
(4.2) supplier: {...}
(4.3) cutter geometry: tool nose radius, thickness, . . .
(4.4) tool life: {long, average, short}
(4.5) cutter holder
(4.5.1) geometry: lead angle, rake angle, side rake angle, relief angle, . . .
(4.5.2) size:
(4.6) availability

are listed in Table 9.3. They can be defined by either numerical values or qualitative
terms or not defined at all. (The italicized values in the table define an example for
which the system has recommended a cutting tool, cutting speed and feed, as described
later).

Tool selection is performed in three stages. First, all the system’s inputs are made fuzzy
by assigning fuzzy membership functions to them. A numerical input x = x , is transformed
to a fuzzy membership function

SF(x, ay, a,), x<a,
ux, ay, ay, as, a,) = 1 a,<x<a, (9.35a)
1-SF(x, as, a,) a;<x

as shown in Figure 9.21, where the parameters a,, a,, a; and a, are constants spanning the
value X and, in this example, the function SF is defined by equation (A7.4b).

When a qualitative term is input, such as ‘finishing’ for machining type (under machin-
ing plan in Table 9.3), a fuzzy membership function is assigned after the manner:

U(MT,) = 0.8/MT, + 1.0/MT, + 0.8/MT; + 0.4/MT, + 0.0/M T, (9.35b)
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Fig. 9.22 Fuzzification of a qualitative term, e.g. machining type (Chen et al., 1995)

where M T, is extreme finishing, M T, finishing, M T, light roughing, M T, roughing and
MTs heavy roughing and the membership functions assigned to the five machining types
MT; (i =1 to 5) are shown in Figure 9.22.

In the second stage, the applicability of inserts to the specified inputs is determined,
also in fuzzy logic terms. Inserts are described by a series of fields, such as Y’ in Table 9.4
(i =1 to 8 in this case), and by their grade G. Each field i has k elements yik and a grade
has m elements g, . The applicability of an element y‘, or g, to an input variable x; is
defined by a membership function. For example, field Y° (insert thickness) has elements T,
Ey61 =63mm, T, Ey62 = 9.5 mm, and so on. The applicability of insert thickness 6.3
mm, or element y 61 =T, to the depth of cut d (mm) may then be written after the manner:

SF(d, 0.76, 1.27), d<127
u(T,\d) = { 1 127<d<1.78 (9.36a)
1 - SF(d, 1.78,2.29) 1.78<d

where the coefficients’ values reflect a strength constraint.
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Table 9.4 Eight fields describing an insert (Chen et al., 1995)

Field Descriptions (Elements)

1: shape R: round, S: square, T: triangle, . . .

2: relief angle N: 0° A:3° B: 59...

3: tolerances A: +0.0002, B: +0.0005, ...

4: type A: with hole, B: with hole and one countersink, . . .

5: size 4: 1/2in. I.C., 5: 5/8 in. I.C, . ..

6: thickness number of 1/32nds on inserts less than 1/4 in. I.C., . ..
7: cutter nose radius 1: 1/64 in., 2: 1/32 in., . . ., A: square 45 ° chamfer, . . .
8: special tool only T: negative land, . . .

In SAM’s system, over 100 functions of element applicability to input variables are
defined, based on metal cutting principles and various tool manuals, handbooks and tech-
nical reports. Using these functions, the applicability of an element y ' . 0 a given machin-
ing operation with n inputs is given by

. 1 2 ‘
uop = — Fuerilx) At (9.36b)
j=1
where A is the minimum operator. As an example, the insert thickness is closely related to
workpiece material WM, machining type MT and depth of cut. Thus, the applicability of
elements 7\, = y6k is given (with n = 3) as follows:

u(Ty) = {u(T, | WM) A u(WM) + u(Ty | MT) A u(MT) + u(Ty | d) A u(d)}/3
w(Ty) = {u(Ty |t WM) A u(WM) + u(T | MT) A u(MT) + (T, | d) A pu(d)}/3

(9.36¢)

As a second example, the applicability of nose radius elements C, = y7 x to the machining
operation is defined as follows: in heavy roughing, for which the nose radius is selected
according to the feed and depth of cut (n = 2)

u(C)) = {u(Cy 1) A p(f) +u(Cy 1 d) A u(d)}/2
1(Cy) = {u(Cy 1 ) Au(f) +p(C, | d) A pd)}/2
. (9.36d)

but in finishing, with the nose radius selected according to required surface finish (n = 1)

u(Cy) = u(C, | surface_finish) A u(surface_finish)
u(C,) = u(C, | surface_finish) A u(surface_finish)
. (9.36¢)

After determining the applicability to a planned operation, u(y ik), of each element k in
all the fields i, SAM simplifies (de-fuzzifies) final tool selection by retaining only the high-
est valued ,U(yik) and assigning it to a new membership M(yik):
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Table 9.5 Four candidate inserts for rough turning as in Table 9.3 (Chen et al. 1995)

No. Shape Size Thickness Nose radius Applicability
1 C** 5 4 3 0.7856
2% K 16 04 08 0.7534
3 C** 5 4 3 0.7027
4 C** 5 4 3 0.7027

*: this is coded in ISO standard; **: types of chip are different.

M(y') = maxu(y’,) (9.37a)

If the new membership M(y’,) has its maximum at k = k*, y,, is the best choice. The
applicability M of a chosen tool m, CT,,, with specified tool parameters yinl is then given
by

18 .
M(CT,) = 3 M@y ) (9.37b)
i=1

For a most applicable tool M(CT, ) = 1; for a least applicable tool, M(CT, ) = 0.

The applicability of the tool material grade is established in a similar manner; and in a
final stage, a tool database is searched to select tools that maximize their grade applica-
bility separately from their shape and size. For the rough turning example specified by the
italicized elements in Table 9.3, the system recommended coated tools from its database
of grades P20 and P30, both with an applicability of unity. No insert shape and size was
found with unit applicability. Table 9.5 shows four types of insert recommended with
applicability greater than 0.7. The parameters in this table are defined in Table 9.4, except
for insert no. 2 which is coded according to ISO1832 (International Standard, 1991).

Among the operation variables, the depth of cut is specified in Table 9.3 as 2.5 mm, but
the cutting speed and feed are not specified. They are determined in the cutting condition
design module, by the fuzzy optimization described in Section 9.3.2. An optimum cutting
speed and feed are recommended as 119 m/min and 0.13 mm/rev.

9.4 Monitoring and improvement of cutting states

In modern machining systems, the monitoring of cutting states, including tool condition
monitoring, is regarded as a key technology for achieving reliable and improved machin-
ing processes, free from fatal damage and trouble (Micheletti ef al., 1976; Tlusty and
Andrews, 1983; Tonshoff et al., 1988; Dan and Mathew, 1990; Byrne et al., 1995). Tool
wear, tool breakage and chatter vibration are the tool conditions of major concern, as
already introduced from the point of view of process modelling in Section 9.2. Sources of
signals used for monitoring are the cutting forces, cutting torque, acoustic emission from
the tool, workpiece and the interface between them, tool and workpiece displacements,
cutting temperature, cutting sound, tool face images, etc. Methods for measuring process
signals have been described in Chapter 5.

The monitoring of cutting states may be classified into direct and indirect methods. In
direct monitoring, the width of flank wear, crater depth, chipped edge shape, displacements
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of tool or workpiece, etc, are measured in-process or out-of-process. In-process monitor-
ing that does not require the machining process to be stopped is preferable to out-of-
process monitoring, other things being equal. However, chips being produced and cutting
fluid are obstacles to measurement; the space available for measurement is limited; and
direct measurement sensors may disturb the process. The continuing development of ingen-
ious measurement methods is indispensable for reliable monitoring, for example the in-
process and direct monitoring of worn or chipped end mill edges by laser-based tool image
reconstruction, in the presence of cutting fluid (Ryabov et al., 1996).

Indirect monitoring, which interprets signals related to a particular cutting state, can be
free from the obstacles and space limitations of direct monitoring. Instead of ingenious
measurement methods, process modelling (Section 9.2) plays a significant role. In this
section, indirect monitoring — which is closely related to process models — and its appli-
cation to the improvement of cutting states are described although the treatment is not
comprehensive.

9.4.1 Monitoring procedures

There are three activities in monitoring cutting states, as shown in Figure 9.23: sensing,
processing and recognition. Guidance on what signals to sense is obtained, if possible,
from process models. For example, for monitoring tool wear, equations (9.13a) and (9.13b)
specify non-linear systems W and W relating tool wear or its rate, w or W, to the variable
x. The components of x — the operation variables, tool and workpiece geometry, etc — are
what need to be monitored for the indirect assessment of wear. If a physical model is
incomplete or weak, so that there is uncertainty as to what should be measured, more reli-
able monitoring is achieved by selecting redundant signals. The monitoring of cutting

Recognition of
cutting states

Direct monitoring

Signals cutting force
Signal processing L
Force chatter vibration
Torque Fourier transform tool wear

Cutting system Spindle current Wavelet transform tool chipping

Acoustic emission Statistics tool breakage
Displacement ” mean, variance

Workpiece Acceleration skew, kurtosis Indirect monitoring
Temperature Wave shape characteristics tool wear
Heat flux peak, slope tool chipping
Sound envelope tool breakage
Image chatter vibration

chip control

actual depth of cut

dimensional error

Fig. 9.23 Monitoring of cutting states
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states based on multiple signals with more than one sensor is called sensor fusion or sensor
integration (Dornfeld, 1990; Rangwala and Dornfeld, 1990).

Measured signals are usually processed to clarify their features: Fourier analysis
(Cheng, 1972), wavelet analysis (Daubechies, 1988; Koornwinder, 1993), statistical analy-
sis and filtering (for noise reduction) are typical signal processing methods. After signal
processing, the cutting states can be characterized by two kinds of representation. One is
a quantitative value, obtained from the cutting state process model: for example, the output
of a wear monitoring system may be the width of flank wear. The other is a status, for
example normal or abnormal, classified by pattern recognition using such tools as thresh-
old or linear discriminant functions, artificial neural networks, or fuzzy logic.

For an operator, pattern output with one bit of information is easy to deal with. What
should be done, in response to normal or abnormal, is to continue or stop, respectively.
However, to control a machining process by changing operation variables, the quantitative
output of a numerical value is preferable. The next section deals with methods of recog-
nizing cutting states in ever-increasing detail, and the section after takes up the topic of
model-based quantitative monitoring.

9.4.2 Recognition of cutting states

Pattern recognition by the threshold method

When the value of a particular cutting state increases or decreases monotonously with a
feature of the processed signal, the normal and abnormal statuses can easily be classified
by a threshold set at a particular signal level. The value of the threshold may be determined
either from experimental results or by prediction based on a process model.

Tool life due to wear is often monitored by this classification method, using cutting
force as the only input signal x, either directly or as a ratio of the force components F/F_,
Fi/F_ or F/F;. The latter are more effective because small changes in cutting conditions
(not associated with wear) have less influence on the ratios than on the individual compo-
nents (Konig et al., 1972). Figure 9.24 shows schematically the more direct situation of

g Force threshaold
th

p———
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Time ¢

Fig. 9.24 Detection of tool life with a threshold
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cutting force change due to turning many workpieces. The cutting force increases to a
threshold F;, with cutting time and the number of workpieces machined. A simple produc-
tion strategy may specify the cutting time _, or the number of machined parts n_, before
expecting to change a tool edge. In the first case, if production is completed before tool
life is exhausted, the difference AF between the force threshold F,; and the current value
of the cutting force F,

AF=F, -F (9.38)

may be used as an index of remaining tool life. In the second case, if F; is reached before
n, parts are made, the cutting conditions must be modified.

Tool breakage and chatter vibration are also detected by threshold classification. Tool
breakage monitoring uses cutting force as a signal, as does wear monitoring. Chatter is
detected by a threshold amplitude of vibration (displacement) or by a peak value of power
in the vibration spectrum, appearing near the chatter frequency.

In many practical operations, machined parts have steps, tapers and other irregular
shapes. The cutting conditions, particularly depth of cut and sometimes feed, can change
during machining one part. When the resulting change in cutting force is known by exper-
iment or model-based simulation, thresholds for breakage as well as wear can be set to be
time-dependent. Figure 9.25 shows cutting force estimates in turning the ith workpiece of
a batch. F(?) is the expected force variation and F) is the allowed threshold due to wear.
F ()Y, and F,(1) {h are more widely separated upper and lower thresholds, the measurement
of force outside which indicates tool breakage.

Tool wear is usually gradual over a time scale of machining one workpiece. It is then
good enough for life detection by threshold force monitoring to monitor only the peak force
in the machining cycle. Fjy may be set relative to the force F? expected with a fresh edge:

Fu=(+B)F?  or  F,=FP+F, (9.39a)

where 3, and F; are constants. The introduction of two constants 3, and F allows a choice
to be made about the way in which wear changes the cutting force, either offsetting it or
scaling it.

F 3
Fin
Cutting force
R
-F Time \ >
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_._ )
h h

Fig. 9.25 Detection of tool breakage and wear with time dependent thresholds



Monitoring and improvement of cutting states 309

On the other hand, tool breakage occurs suddenly. The loss of the tool tip, which causes
the cutting force to change widely, makes it of the greatest importance to stop machining
immediately. To achieve this, the upper and lower thresholds may be set respectively:

Fi(t)?h = max{(l + ﬁZ)Fi,est(T)max’ Fi,est(T)max + FO} (9‘39b)
and
Fi(t)gh = min{(l — ﬁZ)Fi,est(T)min’ Fi,est(T)min - FO} (9:39¢)

where Fi’est(r)max and Fi,est(r)min are the maximum and minimum values of estimated
cutting force F; . (7) on the current workpiece during the time width 1 —h <7 <17+ h, and
B, and F|, are constants. The selection of the half time width / allows updated feed-forward
monitoring. By setting & to be a small fraction of the cycle time (but greater than the
sampling time), the monitor, if it is fast enough, may follow force changes within a cycle
and respond to abnormality within the time 4.

These methods may be applied to the monitoring of tool wear and failure in end milling
with varying radial depths of cut, as well as in turning, and also to drilling (where the
expected force cycle is more simple). The key is to select values of the constants j3,, F),

and h appropriate to the purpose.

Pattern recognition with linear discriminant functions

A little better than recognizing a cutting state only as normal and abnormal, for purposes
of control, is to classify it into more statuses, for example four. Linear discriminant func-
tions have been used for this. A linear discriminant function has the form (Rosenblatt,
1961)

Ninput
G,(X) =X wyx, +w, (9.40)
k=1

where i is the status number (1 to 4 in the present case), Ninput is the number of monitored
inputs, X =[x, X5, . . 1T is the input vector, and Wik (k=0to Ninput) are weights, which are
tuned by training patterns. If G(x) > Gj(x) for all j # i, a cutting state is assigned to the
status i.

Monitoring and linear discriminant function analysis have been considered by Sata,
et al. (1973) for assessing the status of a cutting process as one of the four of chatter
generation, built-up edge formation, or either long continuous or properly broken chips.
After investigating the relation between these four statuses and inputs x, they selected
six inputs for the linear classifier: (1) the total power of the cutting force spectrum; (2)
the power of the spectrum in a very low frequency range; (3) the power and (4) the
frequency of the highest peak in the spectrum; (5) the cutting speed; and (6) the uncut
chip cross-section. They applied their recognition scheme to online chip control
(Matsushima and Sata, 1974). The objective was to find a feed at which properly broken
chips would be formed when machining a 0.45%C carbon steel (type S45C) with a P20
carbide tool with a chip breaker. The feed, initially set at 0.12 mm/rev, was increased in
20% steps, sampling the six signals at each step until the cutting state was classified as
the formation of properly broken chips. This occurred when the feed reached 0.207
mm/rev. Figure 9.26 shows how the chip shape changed from long continuous to prop-
erly broken with increasing feed.



310 Process selection, improvement and control

ry
“ n ’u - A b
P ] [of. W
0.2 - -
=
2
£
£
=
g 01F
('
| J I
0 5 10

Number of sampling

Fig. 9.26 Control of chip formation based on pattern recognition (Matsushima and Sata, 1974)
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Fig. 9.27 Neural network classification of cutting states (Moriwaki and Mori, 1993)

Pattern recognition with artificial neural networks

It is now known that linear classification, with linear discriminant functions, has only
limited use in pattern recognition. In particular, linear discriminant functions cannot deal
with simple ‘exclusive or’ relations (an ‘exclusive or’ relation between two input state-
ments A and B has a ‘true’ output if A or B, but not both, are true; and a ‘false’ output if
A and B are both true or both false). Instead, a growth in applications of artificial neural
networks, highly non-linear classifiers, has taken place.

An example of classification of cutting states by artificial neural networks is the moni-
toring of turning an S45C carbon steel with a coated tool (Moriwaki and Mori, 1993).
Figure 9.27 shows the non-linear neural network classifier. The input variables x to the
neural network were the monitored variance of the AE signal, the coefficient of variance
(the ratio of the standard deviation to the average) of the AE signal and also of the feed



Monitoring and improvement of cutting states 311

force, and the average cutting force ratios Fy/F, o F d/F o and F;/F, & The cutting statuses that
were classified, or the outputs of the neural network, were the initial, middle and final
stages of tool wear, the onset of chatter, and the tangling of chips. The initial, middle and
final stages of tool wear were defined by the ranges of flank wear, 0 < VB <0.2,0.2 < VB
< 0.3 and VB = 0.3 mm, respectively.

Figure 9.28 shows the signals from the three tool wear outputs, over a 40 minute cutting
period. The change in tool wear status from the initial to the middle stage at around 23
minutes is clear: the heavy output activity changes from part (a) to part (b) of Figure 9.28.
The change from the middle to the final stage occurs at around 32 minutes, although an
early warning classification into the final stage was made at around 28 minutes.

9.4.3 Model-based quantitative monitoring

If an output of process monitoring is a quantitative value of a current cutting state, and if
a process model exists that gives an expected value of that state, a comparison of the two
may be used to predict future process behaviour and to improve it. Two examples are given
in this section, the first about prediction, the second about improvement, to illustrate the
direction of modern monitoring strategies. They span the topics of monitoring and control,
the latter being developed further in Section 9.5.

The first example concerns the possibility of predicting tool wear rate in conditions of
changing cutting speed and feed, from the values of monitored cutting force signals, when
a model relating wear and forces, such as equation (9.2b), exists. The problem to be over-
come is that the model in this case relates current forces only to current wear dimensions
and operation variables, and has no element of time variation in it. However, change of
wear changes the forces: monitoring the changes of force with time provides a way of
including time in a modified model.
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Fig. 9.28 Recognized tool wear status states (Moriwaki and Mori, 1993)
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A strategy for combining the wear model and force monitoring, to create a wear rate
model, using two separate neural networks, has been described, and tested in a simulation,
by Ghasempoor et al. (1998). In a first stage, equation (9.2b) was cast in neural network
form (network 1), to relate the current levels of flank, notch and nose wear (VB, VN and VS)
and operation variables to current forces. The levels of VB, VN and VS, V, fand d were the
inputs and F, F; and F, were outputs of the net; and equation (9.2b) was used to train it.

Time, measured in increments of Az, was introduced in a second stage, by supposing
that the wear vector w at time kA depended on the wear at time (k—1)Az and V, fand d:

w(k) = W(V, £, d, w(k=1)) 9.41)

A second neural net (network 2) was created, with VB, VN and VS at time interval (k—1),
V, fand d as inputs; and VB, VN and VS at time interval k as outputs.

The two networks were hierarchically related: the outputs of network 2 were input to
network 1 — the final outputs were the three cutting force components. During a cutting
operation, only the second net was trained online, continuously, using the cutting force
error signal from network 1. It was proposed that, after online training under varying
conditions of the operation variables, network 2 (separated from network 1) would have
the ability to predict the development of wear, step by step at time intervals Az, from its
initial level at 7 = 0.

The capabilities of this approach and its robustness were tested by simulation of a turn-
ing process in which it was supposed that the cutting forces were monitored and the cutting
speed and feed were changed continuously with time. The wear expected from the forces
(equation (9.13c)) and estimated from the wear rate formulation (network 2) were
compared. Figure 9.29 shows the close agreement between the expected and estimated
values, after about 10 min of cutting.

In this case, wear values at zero time were input to the second network that were inten-
tionally much higher than expected from the forces. The 10 min is the time that the coef-
ficients of the second net took to adapt themselves, by learning, to the actual state. The
input signals to the second net were also degraded by white noise, as might be expected in
a real monitoring situation. The level of noise is seen in the expected signals. The system
can obviously cope with this.

This first example demonstrates only that the combined monitoring and modelling
method can assess wear, under pre-set variations of speed and feed. The possibility of
adaptively altering the rates of change of speed and feed to meet some goal (for example
optimization) is an obvious extension, requiring only production planning to be added to
monitoring and modelling (prediction), as in Figure 9.30. The second example is
concerned with this, although there are also differences between it and the first example
with respect to its monitoring (calibrated by measurement, not by modelling) and model-
ling (physical rather than empirical) parts. It is concerned with the situation in which
batches of workpieces are to be machined with a maximimum allowable tool wear per
batch, but there may be differences in machinability between batches that require a differ-
ent speed or feed for each in order that the wear constraint be met. The example is made
specific by considering turning a batch of 30 bars under the initial conditions listed in
Table 9.6, with the constraints that cutting speed and feed may be altered by up to £50%
from their nominal values, that all of a batch must be turned with one edge (corner) of an
insert, without VB exceeding 0.2 mm, and that conditions should be set to minimize the
cutting time (Obikawa et al., 1996).
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Fig. 9.30 Integration of monitoring, prediction and operation planning of cutting processes (Obikawa et al., 1996)

As in the first example, wear was monitored indirectly by force measurements, using
neural nets, but it was found that the axial and radial cutting position of the tool on the work-
piece influenced the nets’ predictions: dynamic force signals were influenced by the work-
pieces’ compliance. One net was used to monitor wear while a second wear rate; both were
trained by direct measurement (rather than, as in the first example, by model predictions).
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Table 9.6 Operation planning conditions and initial turning conditions

Tool life VB = 0.2 mm

Number of workpieces 30

Longitudinal cutting length of workpiece 150 mm

Diameter of workpiece 100 mm

Work material 0.45%C plain carbon steel
Tool material carbide P20

Tool geometry (-5,-6, 5, 6, 15, 15, 0.8)
Cutting speed 150 m/min

Feed rate 0.15 mm/rev

Depth of cut 1.0 mm

Lubrication dry

Because of this, a large amount of redundancy (robustness) was built into the nets, with 34
inputs to each net, as shown in Figure 9.31. Thirty of these were auto-regression (AR)
coefficients of the feed force power spectrum (as much information as could be extracted
from it), two were the total power of the spectrum of feed force and cutting force, and two
were the axial and radial positions of the cutting tool, as already mentioned.

Under the assumptions of the AR model, the power spectrum was defined as

PP (jo) 2

1

P(jo)= (9.42)

p
1+ az*
k=1

where p is its order (and also the number of peaks in the spectrum), P, (jw) is the white
noise power spectrum, a, is the kth AR coefficient and z = €J®. In this case p was chosen
to be 30 by the Akaike Information Criterion (AIC — Akaike, 1974).

The outputs from the two nets, the flank wear (VB), and its rate(VB),, were combined
as follows, with At being the time interval between estimates, to give an even more robust
estimate:
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Fig. 9.31 Neural networks for predicting flank wear (Obikawa et al., 1996)
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Figure 9.32 shows a comparison between estimated and measured flank wear in four
different speed and feed cutting conditions. Training the nets was carried out on one batch
of material and the estimates and measurements on another.

The predominant wear in the conditions of this example could be modelled by equation
(4.1c). The prediction element of Figure 9.30 was the physical model already described in
Section 9.2.4, with an example of its outputs given in Figure 9.7. Precise prediction of
flank wear rate requires accurate values of the constants C; and C, in equation (4.1c¢): they
can vary from batch to batch of the tool and workpiece. Optimization needs them to be
continually tuned and identified. In this example, wear rate was calculated by the FDM
simulator éFDM (Section 9.2.4) beforehand, for many combinations of C, and C,, cutting
speed, feed rate and width of flank wear, to create a look-up table. When the wear rate in
an actual turning operation was estimated by the monitoring system, the values of C; and
C,, which gave agreement with the estimate, were identified quickly by referring to the
table.

After tuning the constants, the cutting speed and feed could be optimized. Figure 9.33
shows, for one batch, the width of flank wear V;_ , at the end of turning all the work-
pieces, predicted for different speeds and feeds. Under the constraint of maximum wear
land length of 0.2 mm and shortest cutting time, a cutting speed of 130 m/min and a feed
of 0.225 mm would be chosen in this case. These conditions could be set, adaptively, after
tuning the constants while turning the first bar of the batch.

9.4.4 The development of monitoring methods

The direction of development of monitoring methods during the 1990s can be understood
from the list of reported studies in Table 9.7. Force continues to be the dominant signal to
be monitored. In the area of signal processing, there is a slow growth in the application of
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wavelet transforms (wt), which translate a signal in the time domain into a representation
localized not only in frequency but in time as well. Neural networks are becoming a stan-
dard method for the recognition of cutting states. For pattern recognition, unsupervised
ART 2 type neural networks (Carpenter and Grossberg, 1987) have been effectively used
(Tansel et al., 1995; Niu et al., 1998).The integration of wavelet transform coefficients as
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Fig. 9.33 Optimized cutting conditions using a tuned wear equation (Obikawa et al., 1996)
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Table 9.7(a) Recent approaches to cutting state monitoring — abbreviations given in Table 9.7(b)

Signal processing

Processes and Sensor features Recognition

monitored states signals and/or models methods References

Turn: w A am Pa, TH Blum and Inasaki (1990)
Tapp: a, s, w E Q cr, cv, me, pe, rm, va Pa, PV Chen et al. (1990)

Turn: w A,CF ar, rm, pd (FFT) Pa, NN Dornfeld (1990)

Turn: w A me, rm, sk, vc Pa, CL Moriwaki and Tobita (1990)
Turn: w A,F cs, fr, sf Pa, NN Rangwala and Dornfeld (1990)
Turn: w F fw Qv, AN Koren et al. (1991)

Turn: w AET aw, fw Qv, NN, ST Chryssolouris et al. (1992)
Turn: t, v, w A,F f, va, vc Pa, NN Moriwaki and Mori (1993)
Drill: w F wt Pa, NN Tansel et al. (1993)

Face: b F af, vf Pa, NN Tarng et al. (1994)

Face: b F wt Pa, TH Kasashima et al. (1994)
Turn: w F df, tp (AR model) Pa, FL Ko and Cho (1994)

Drill: w EQ me, pe, rm, ft, tt Pa, Qv, NN Liu and Anantharaman (1994)
Turn: w A, F cs, fr, ku, me, sd, sf, sk Pa, NN Leem et al. (1995)

EndM: b F wt Pa, NN Tansel et al. (1995)

Turn: w F ar, cp, tp Qv, NN Obikawa et al. (1996)

Turn: w F wt Pa, TH Gong et al. (1997)

Turn: b, ¢, r, w A ku, sk , fb, me, sd, wt Pa, NN Niu et al. (1998)

Turn: w F fw Qv, NN Ghasempoor et al. (1998)
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Table 9.7(b) Abbreviations used in Table 9.7(a)

Processes and monitored states
Drill: drilling

EndM: end milling

Face: face milling

Tapp: tapping

Turn: turning

Sensor signals
A: accoustic emission
C: spindle motor current

a: misalignment
b: tool breakage
c: tool chipping

r: chip breakage
s: hole size error

F: cutting forces
Q: cutting torque

Signal processing features and/or models

af: cutting force moving
average per revolution

am: AE mode (amplitude
with maximum
probability density)

ar: AR coefficients

aw: acoustic emission-wear
model

cp: cutting positions

cr: correlation

cs: cutting speed

cv: covariance

Recognition methods
Pa: pattern recognition

df: dispersion in frequency
ranges

fb: frequency band power

fr: feed rate

ft: force-time area

fw: force-wear model

ku: kurtosis

me: mean

pe: peak

pd: power spectral density

rf: ratio of force components

rm: root mean square

CL: Cluster analysis based

t: chip tangling
v: chatter vibration
w: tool wear

T: temperature

sd: standard deviation

st: power spectrum feature

sk: skew

tp: total power

tt: torque-time area

va: variance

ve: coefficient of variation

vf: variable cutting force
averaged per tooth period

wt: coefficients of wavelet
transform

FFT: fast Fourier transform

NN: neural network

Qv: quantitative value
AN: analytical

on mean square distance
FL: fuzzy logic

PV: probability voting
ST: statistical
TH: threshold

inputs with neural networks as classifiers can be expected to lead to more detailed and reli-
able recognition of cutting states in the future.

9.5 Model-based systems for simulation and control of
machining processes

In this final section, the application of machining theory to complicated machining tasks
is described. As larger and larger applications, taking more time, or more and more
complex components, requiring more operations, are considered, the need for more ration-
al planning and operation becomes greater. A total or global optimization is needed, in
contrast to optimizing the production of a single feature. Optimization in such conditions
needs machining times, machining accuracy, tool life, etc, to be known over a wide range
of cutting conditions. If the machining process is monitored, for example based on cutting
force, the expected change in force with cutter path (in the manner of Figure 9.25) must
also be known over a long machining time. Once the time scale reaches hours, force
measurement and its total storage in a memory become unrealistic. For these reasons,
cutting process simulation based on rational models, namely model-based simulation, is
expected to have a significant role in the design and control of machining processes and to
give solutions to rather complicated processes.
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9.5.1 Advantages of model-based systems

Consider some of the optimization issues associated with the roughing of the aerospace
component shown in Figure 9.34 (Tarng et al., 1995). Figures 9.34(b) and (c) show end
mill tool paths that convert the block (a) to the rough shape (d). First, machining is
conducted smoothly along Y-Z plane tool paths, then along X—Z planes. In the X—Z plane
paths, the end mill must remove steps left by machining along the Y-Z plane paths, as
shown schematically in Figure 9.35: step changes in axial depth of cut are unavoidable.
The major constraints to the roughing operation may be: (1) the peak cutting force, F .,
must be less than a critical value, F critical® which causes the tool to fail and (2) the finish-

ing allowance left on the machined surface must be less than a given amount (depending

(&) X

Initial position

X-Z plane paths

¥-Z plane paths

{c)
(k)

Fig. 9.34 Tool path for machining an aerospace component (Tarng et al., 1995): (a) original workpiece, (b) tool paths
in the Y-Zplanes; (c) tool paths in the X-Z planes; and (d) machined workpiece
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Fig. 9.35 A schematic of a tool path and pre-machined steps in an X-Z plane

on the required finished accuracy): this constraint eventually determines the Y cross feed
for the X—Z plane machining strokes. The objective in selecting the cutting conditions may
be to find the minimum machining time under these constraints.

To simplify the problem of cutting condition optimization, the axial depth of cut in each
Y-Z plane path and the cross feeds in the X and Y directions may be set constant. If the
cutting speed is also held constant, the feed speed (U4, Chapter 2) becomes the single
variable that controls the cutting states. The feed per tooth may change in a specified range
with an upper limit f,_, ; that too is one of the constraints.

There are two methods to find optimal feed changes in the above milling operation. One
is online adaptive control; the other is model-based simulation and control. Adaptive
control (Centner and Idelsohn, 1964; Bedini and Pinotti, 1982) is a method that adjusts
cutting conditions until they approach optimal, based on monitored cutting states.
However, it has some response time, reliability and stability difficulties. Although tool
wear rate, chatter vibration, chip form, surface finish and dimensional accuracy are all
candidate states for control, they are seldom used in adaptive control because of insuffi-
cient reliability. Cutting forces and torque are usually the only states that are selected.

As in the cornering cut described in Section 9.2.2, the cutting force is effectively
controlled by feed. Therefore, to minimize machining time, it might be decided, in an
adaptive control strategy, to maximize the peak cutting force by adjusting the feed from an

initial value f, with a measured force F' peake [0 @ NEW value f,

F peak

Lforce*

(9.442)

f a, force — 7 critical

where F ;.. 1s the largest safe value.

If a model-based system is used to control f, force change with cutting time is simulated
based on one of the force models: generally equation (9.6) is recommended. Then feed is
adjusted to raise the simulated peak force to the critical level. It may be necessary in prac-
tice to allow for feed servo control delays that are inevitable in numerical control.

If no trouble arises in a machining process, adaptive and model-based control should
yield the same results. However, if a sudden increase in the axial depth of cut or the effec-
tive radial depth of cut occurs, as at steps in Figure 9.35 or at corners in Figure 9.6, adap-
tive control may not function well, because of the response time limitation mentioned
above. Under adaptive control, with time minimization as its goal, an end mill is probably
moving at its highest feed rate before it meets a step or a corner. The sudden increase in
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the axial depth of cut or effective radial depth of cut is likely to yield a very large cutting
force, causing tool damage, before the adaptive controller can command the reduction of
feed rate and the feed is actually reduced. Tool damage due to sudden overloading is more
likely to be avoidable if the force change is predicted by model-based simulation. The
cutting conditions may be optimally designed beforehand to decrease the feed to a value
low enough to anticipate the changes at steps and corners.

In short, the principal difference between the two control methods is that model-based
simulation is feed-forward in its characteristics, whilst adaptive control is a feedback
method. Its feed-forward nature is one great advantage of model based simulation.

A second advantage of model-based simulation is that prediction of change in cutting
states can support monitoring and diagnosis of cutting state problems in complicated
machining processes. In the absence of an expected response, a monitoring system cannot
distinguish a normal from an abnormal change. A third advantage is that the machining
time under optimized conditions is always estimated beforehand. This helps the schedul-
ing of machining operations.

From all this, a model-based system is a tool for global optimization. In this sense,
adaptive control is a tool for local optimization.

9.5.2 Optimization and diagnosis by model-based simulation

Model-based simulation has been applied to the end milling example of Figure 9.34 (Tarng
etal., 1995). Figure 9.36(a) shows the simulated resultant cutting force in fixed feed condi-
tions. The detail force model of equation (9.6) and the specific cutting force model of
equation (9.7b) (Kline and DeVor, 1983) were used. The spindle speed selected was 1200
rev/min, the maximum axial depth of cut (the depth of cut in Y-Z plane paths) was 6 mm,
the maximum radial depth of cut was the full immersion of 12 mm, and the feed rate was
fixed at 105 mm/min.

Figure 9.36(b) shows a simulation under variable feed. Compared with Figure 9.36(a),
peak forces are more uniform; and the machining time has been reduced by about a third.
Furthermore, the simulated result was confirmed experimentally, when the operation was
actually carried out with the planned strategy (Figure 9.36(c)).

The strategy was to adjust the feed to

F k
o torce = (—2 — P 43 ) f (9.44b)

critical

where f'is the original constant feed. By this means, the feed rate f,
Fiiica @nd rises linearly to 3f as Fpeak reduces to zero.

Similar pre-machining feed rate adjustment in end milling and face milling has been
applied to the control of the average torque, average cutting force, and maximum dimen-
sional surface error caused by tool deflection, as well as the maximum resultant cutting
force (Spence and Altintas, 1994). It is the Spence and Altintas (1994) model-based system
that is illustrated in Figure 9.1(a).

Figure 9.1(b) shows a machining operation system that can generate a machining
scenario for a given operation (Takata, 1993). The machining scenario describes changes
in cutting situations predicted by geometric and physical simulation. Cutting situations
include both machining operations and cutting states. For end milling, five types of

force :fWhen Fpeak =
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Fig. 9.36 Variation of resultant cutting force (Tarng et al., 1995)

operations are recognized: slotting, down-milling, up-milling, centring and splitting. The
machining scenario is used to control cutting force and machining error by pre-machining
feed adjustment, and to diagnose machining states.

Figure 9.37 (from Takata, 1993) shows an example of the effectiveness of pre-machining
feed adjustment in controlling dimensional errors in end milling. Figure 9.37(a) shows plan
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Fig. 9.37 Effectiveness of pre-machining feed adjustment in controlling dimensional error (Takata, 1993)
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and side views of the stock to be removed by a two-flute square end mill 16 mm in diame-
ter, rotating with a spindle speed of 350 rev/min. When the feed rate was set at 100 mm/min
in a trial cut, the dimensional error varied with large amplitude, as shown in Figure 9.37(b).
Then, using an equation similar to equation (9.44a), the feed was adjusted as follows:

critical

fa error — f (9.44c)
’ E

siml

where f, .o, is the feed adjusted for the limit of dimensional error E ;.. and E, , is the
error simulated under the trial conditions. Figures 9.37(c), (d) and (e) show the adjusted
feed rate, measured error, and simulated and measured cutting forces. The dimensional
error is almost constant over the workpiece as expected. The simulated and measured
cutting forces show good agreement

Figure 9.38 shows the principle of a second use of the machining scenario, to diagnose
faults in an operation. A fault may be excessive tool wear, tool breakage, chatter vibration,
tangling of chips, incorrect workpiece positioning, incorrect tool geometry, workpiece
geometry incorrectly pre-machined, incorrect tool preset, among others. In any case, it will
cause the measured force variation with time to differ from the expected one. If a measured
wave form differs from the expected one by more than a set amount, a fault hypothesis
library is activated. It holds information on how different types of fault may be expected
to change an expected pattern. A fault simulation routine modifies the expected pattern
accordingly. This is compared with the measured pattern and a fault diagnosis is produced
from the best match between measured and simulated alternatives.

Expected QObserved
wave form wave form
Wave form tests
' : Number of peaks
" P
i I maed-limnalance of peak values
PN s Similanty with prediction
Simulated
wave forms

Fault hypotheses
generation

)

Fault simulation

¥

Comparison of
| sTmulated wave form
with observed ane

{ Diagnostic result )

Fig. 9.38 Diagnosis procedure for faulty machining states (Takata, 1993)
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Tool position where the fault was detected

Fig. 9.39 Diagnosis of machining a different workpiece (Takata, 1993)

To demonstrate the system’s abilities, the workpiece shown in Figure 9.39 was prepared
and machined instead of the intended workpiece shown in Figure 9.37(a). The diagnosis
system detected the difference between the two workpieces when the centre of the end mill
had travelled 37 mm from the left end. It diagnosed the force error as arising from too
small an axial depth of cut and that this was due to an error in the workpiece shape. Details
of the comparator algorithm are given in Takata (1993).

9.5.3 Conclusions

A huge number of experiments have been carried out and many theoretical approaches
have been developed to support machining technologies. Nevertheless, it is often felt that
the available experimental and theoretical data are insufficient for determining the machin-
ing conditions for a particular workpiece and operation.

These days, partly because of a decrease in the number of experts and partly because of
the demands of unmanned and highly flexible machining systems, machine tool systems are
expected to have at least a little intelligence to assist decision making. For this purpose,
expert systems for determining initial cutting conditions and cutting state monitoring tech-
nologies are increasingly being implemented. Up to now, monitoring technologies in partic-
ular have been intensively studied for maintaining trouble-free machining. Nowadays, they
are regarded as indispensable in the development of intelligent machining systems.

However, machining systems have not yet been equipped with effective functions for diag-
nosing and settling machining troubles and revising cutting conditions by themselves. To
develop such a system, prediction, control, design and monitoring of cutting processes should
be integrated by sharing the same information on cutting states. A model-based system, with
advanced process models, provides a way of enabling that integration. This integration will
help the further development of autonomous and distributed machining systems with
increased intelligence and flexibility. The theory of machining can contribute greatly to this.
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Appendix 1

Metals’ plasticity, and its finite
element formulation

This appendix supports Chapters 2 and 6 and subsequent chapters. More complete descrip-
tions of plasticity mechanics can be found in any of the excellent texts from the early
works of Hill (1950) and Prager and Hodge (1951), through books such as by Thomsen et
al. (1965) and Johnson and Mellor (1973), to more recent finite element oriented work
(Kobayashi et al. 1989).

Section Al.1 answers the questions, initially in terms of principal stresses and strains
(Figure A1.1) concerning (i) what combinations of principal stresses o, 0,, and o5 will
cause yielding of a metal; (ii) if a metal has yielded, and the stress state is changed to cause
further plastic strain increments de |, de,, and d£3, what are the relations between the strain
increments and the stresses; and (iii) what is the work rate in a plastic field? Extension of
the answers to non-principal stress state descriptions is briefly introduced. In Section A1.1,
elastic components of deformation are ignored. Any anisotropy of flow, such as is impor-
tant for example in sheet metal forming analysis, is also ignored.

To analyse flow in any particular application, the yielding and flow laws (constitutive
laws) are combined with equilibrium and compatibility equations and boundary condi-
tions. If the flow is in plane strain conditions and when a metal’s elastic responses and
work hardening can be ignored, the equilibrium and compatibility equations take a partic-
ularly simple form if they are referred to maximum shear stress directions. The analysis of
flow in this case is known as slip-line field theory and is introduced in Section A1.2.

Apart from the circumstances of slip-line field theory, the simultaneous solution of

Ty di'g

i3 dt‘2

(a) ()

Fig. A1.1 (a) Principal stresses and (b) principal strain increments
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constitutive, equilibrium and compatibility equations is difficult. Finite element approxi-
mations are needed to solve metal machining problems. Further analysis of stress, needed
to support finite element methods, is found in Section A1.3. Section Al.4 extends the
constitutive laws to include elastic deformation, and manipulates both rigid—plastic and
elastic—plastic laws to forms suitable for numerical analysis. Section A1.5 considers finite
element methods in particular.

A1.1 Yielding and flow under triaxial stresses: initial concepts

A1.1.1 Yielding and the description of stress

The principal stresses acting on a metal may be written as the sum of a hydrostatic (or
mean) part o, and a deviation from the mean, or deviatoric part, which will be written as

’

o

oy = (0 + 0y + 03)/3

ol =0, -0, =20/3-(c, + 0;)/3 (AL1)
oy =0, — 0, = 20,/3- (05 + 0))/3 '
oy =0y — 0, = 205/3-(0, + 0,)/3

Hydrostatic stress plays no part in the yielding of cast or wrought metals, if they have
no porosity. (They are incompressible; any hydrostatic volume change is elastic and is
recovered on unloading.) An acceptable yield criterion must be a function only of the
deviatoric stresses. Inspection of equation (A1.1) shows that the sum (o] + o5 + 03) is
always zero: yielding cannot be a function of this. However, the resultant deviatoric stress
oy

’ ’ ’ I\,
o, = (0'12 + 0'22 + 0'32)/ (A1.2)

has been found by experiment to form a suitable yield function. That yielding occurs when
o reaches a critical value is now known as the von Mises yield criterion.

The magnitude of the critical value can be related to the yield stress Y in a simple
tension test. In simple tension, two of the principal stresses, say o, and oj, are zero.
Substituting these and o = Y into equations (A1l.1) for the deviatoric stresses and then
these into equation (A1.2) gives for the yield criterion

ol =YV2/3 (Al.3a)

Alternatively, the critical value may be related to the yield stress k in a simple shear test,
in which for example o = - 0, = k and o, = 0. By substituting these values in equations
(Al.1) and (A1.2),

ol=kV2 (A1.3b)

That the yield stress in tension is V3 times that in shear is just one consequence of the von
Mises yield criterion.

It is customary to introduce a quantity known as the equivalent stress, &, equal to \(3/2)
times the resultant deviatoric stress. The critical value of the equivalent stress for yielding
to occur is then identical to the yield stress in simple tension. The von Mises yield crite-
rion becomes
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Fig. A1.2 Geometrical representations of principal stresses and yielding

Ql

=V3zo =Y } (A1.4)
0=V320 =kV3

The equivalent stress and the yield criterion may be represented in a number of differ-
ent ways. Figure Al1.2(a) is a geometrical view of a state of stress P in principal stress
space, origin O. The vector OP is the resultant stress o,. It has principal components (o,
0,, 03). Alternatively, it has components OO’ and O’P along and perpendicular to the
hydrostatic line 0| = 0, = 03. This line has direction cosines 1/\3 with the principal axes,
so 00’ = O'm\/ 3. OP is o;. By vector addition

0.;2 - °'r2 _ 3°'r2n = (a% + a% + 0%)—3%21 (A1.5)
After substituting for o, from equation (A1.1),
3672 = (o) — 0,7 + (0, — 03> + (05 — 7)) (A1.6)

The yield criterion may be restated in terms of the principal stresses:

1
52 = - (0, — 6,)* + (0, — 03)% + (03 — 0> | = Y% or 3k (A1.7)
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The yield criterion, equation (A1.3) or (A1.7), can be represented (Figure A1.2(b)) by
the cylinder, a; = constant. For a material to yield, its stress state must be raised to lie on
the surface of the cylinder. A simpler diagram (Figure A1.2(c)) is produced by projecting
the stress state on to the deviatoric plane: that is the plane perpendicular to o, through the
point O’. The principal deviatoric stress directions have direction cosines \(2/3) with their
projections in the deviatoric plane. Figure A1.2(c) shows the projected deviatoric stress
components as well as the resultant deviatoric stress. Yield occurs when the resultant devi-
atoric stress lies on the yield locus of radius k2.

A1.1.2. Plastic flow rules and equivalent strain

Suppose that material has been loaded to a plastic state P (Figure Al1.3(a)) and is further
loaded to P* to cause more yielding, so that the yield locus expands by work hardening to
a new radius o*: what further plastic principal strain increments (de,, de,, de;) then
occur?

It is found (Figure A1.3(b)) that the strain increments are in proportion to the deviatoric
stresses. A resultant strain increment de , is defined analogously to o as

de, = (de? + ded + ded)” (A1.8)

de, is parallel to /. It is as if the change of deviatoric stress, do/ in Figure Al1.3(a) has a
component tangential to the yield locus that causes no strain and one normal to the locus
which is responsible for the plastic strain. In fact, the tangential component causes elastic
strain, but this is neglected until Section A1.4.

The proportionalities between de, and ¢, may be written

de, = coy; de, = coj; de; = coy (A1.9)

where the constant ¢ depends on the material’s work hardening rate. By substituting equa-
tions (A1.9) into (A1.8), ¢ = de /o].
To simplify the description of work hardening, an equivalent strain increment d€ is

'
WTa

L

;
doyf

- ——

dE'(
{a) (b {c

Fig. A1.3 (a) A plastic stress increment, P to P*; (b) the resulting strain increment; and (c) the linking work-hardening
relationship
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introduced, proportional to de,, just as & has been introduced proportional to . d€ is
defined as

d&=V2/3 de, (A1.10)

Then, in a simple tension test (in which de, = de; = - 0.5dg,), d€ = de,. A plot of equiv-
alent stress against equivalent strain (Figure A1.3(c)), gives the work hardening of the
material along any loading path. H” is the work hardening rate d6/dé. de, and o in the
expression for ¢ may be replaced by V3/2 dg and 2/36, and dg by do/H’, to give

3d5
c=2%9 (AL11)
2H'G

Equations (A1.9) and (A1.11) are known as the Levy—Mises flow laws.

A1.1.3 Extended yield and flow rules, and the plastic work rate

The yield criterion must be able to be formulated in any set of non-principal axes, with
equation (A1.7) as a special case. Consider the expression

(o, - ay)Z + (o, - o) +(0,-0) + 6(r§y + fgz +72) =6k or2Y?  (Al.12)
When the shear stresses 7 are zero, it is identical to equation (A1.7). When the direct
stresses are zero, the factor 6 cancels out and the equation states that yielding occurs when
the resultant shear stress reaches k. Equation (A1.12) thus is possible as an expression for
the yield criterion generalized to non-principal stress axes. It is established more rigor-
ously in Section (A1.3).

Similarly, the Levy—Mises flow rules may be written more generally as

de, de, de, de, dey, de, 32 35
o, o(, 0'; Ty T, T, 25, 2H'c
(A1.13)

Care must be taken to interpret the shear strains. de, = de,, = 1/2(0u/dy + dv/dx), for exam-
ple, where u and v have the usual meanings as displacement increments in the x and y direc-
tions respectively. This differs from the definition y = (du/dy + dv/dx) by a factor of 2.

Finally, the work increment dU per unit volume in a plastic flow field is
dU=o0,de, + O'yydeyy +o,de + 2(O'xyd£xy + Gyzdf;‘yz +o,de ) lia
= ode + 0, (e + dsyy +de,) (ALIDH

but because the material is incompressible, the last term is zero: the work increment per
unit volume is simply Gde.

A1.2 The special case of perfectly plastic material in plane strain

Section Al.1 is concerned with a plastic material’s constitutive laws. Material within a
plastically flowing region is also subjected to equilibrium and compatibility (volume
conservation) conditions, for example in Cartesian coordinates
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)ﬁx+ XY+ XZ_ }X+ }y+ yZ: Z/Y+ zy+ ZZ:O
o0x dy 0z ox dy 0z o0x dy 9z
ou v ow
+ + =0
ox dy 0oz
(A1.15)

where u, v and w are the x, y and z components of the material’s velocity. The general
three-dimensional situation is complicated. However, in plane strain conditions, and if the
work hardening of the material is negligible, the integration of the equilibrium and
compatibility equations, under the constraint of the constitutive equations, is simplified by
describing the stresses and velocities not in a Cartesian coordinate system but in a curvi-
linear system that is everywhere tangential to the maximum shear stress directions. The net
of curvilinear maximum shear stress lines is known as the slip-line field. Determining the
shape of the net for any application and then the stresses and velocities in the field is
achieved through slip-line field theory. This theory is now outlined.

A1.2.1 Constitutive laws for a non-hardening material in plane strain

When the strain in one direction, say the z-direction, is zero, from the flow rules (equation
(A1.13)) the deviatoric stresses in that direction are also zero. Then o, = 0, = (1/2)(0, +

oy, ). The yield criterion, equation (A1.12), and flow rules, equation (A1.13), become

2 2 _ g2
(0, — O'yy) + 4o-xy = 4k

dgxx _ _dgyy _ dng (A1.16)

12(c,, — O'yy) 1/2(c,, — O'yy)

ny

When the material is non-hardening, the shear yield stress k is independent of strain. If,
in a plastic region, the x, y directions are chosen locally to coincide with the maximum
shear stress directions, o, becomes equal to oy, (and equal to o), so (o, — ay},) = 0.
Equation (A1.16) becomes a statement that (i) the maximum shear stress is constant
throughout the plastic region and (ii) there is no extension along maximum shear stress
directions. The consequences of these statements for stress and velocity variations

throughout a plastic region are developed in the next two subsections.

A1.2.2 Stress relations in a slip-line field

Figure A1.4(a) shows a network of slip-lines in a plastic field. The pressure p (= —o,,) and
the shear stress k is shown at a general point O in the field. The variation of pressure
throughout the field may be found by integrating the equilibrium equations along the slip-
lines. How this is done, and some consequences for the shape of the field, are now
described.

First, the two families of lines, orthogonal to each other, are labelled o and 3. Which is
labelled o and which is B is chosen, by convention, so that, if o and 8 are regarded as a
right-handed coordinate system, the direction of the largest principal stress lies in the first
quadrant. (This means that the shear stresses k are positive as shown in the figure.) The
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(b
Fig. A1.4 (a) A slip-line net and (b) free body equilibrium diagrams around O

direction of an « line at any point is described by its anticlockwise rotation from a datum
direction, for example ¢ from the +X direction.
By stress analysis (Figure A1.4(b)), the stresses p and k at O have (x,y) components (c,,

Oyy» ny)
0, =P — ksin2¢; oy =P+ k sin2¢; Oy = k cos2¢ (A1.17)

Substituting these into the equilibrium equations

T2, 4 oo (A1.18a)
gives, after noting that k is a constant,

op 09 d9
— —— —2kcos2¢ —— —2ksin2¢g ——=0
ox ox dy (A1.18b)

=0

op d¢
— —— + 2k cos 2¢ —— — 2k sin2¢

If the direction of X is chosen so that ¢ = 0, that is so that the « slip-line is tangential to X,
sin 2¢ = 0 and cos 2¢ = 1 and

0
(0 +2ko) =0, —— (p—2kp) =0 (A1.18¢)
ox dy

or

p + 2k¢ = constant along an ¢-line; p — 2k¢ = constant along a S-line.
(A1.18d)

If the geometry of the slip-line field and the pressure at any one point is known, the
pressure at any other point can be calculated. Equation (A1.19) relates, for the example of
Figure A1.4, pressures along the a-lines AB and DC, and along the p-lines AD and BC
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%+%%=@+%%;p@ﬂWva”WD} (A1.19)

Pat 2k¢A =pp— 2k¢D; Pg— 2k¢B =pc+ 2k¢c

Geometry of the field

The inclinations ¢ ,, ¢, ¢ and ¢, are not independent. The pressure p- at C may be calcu-
lated from that at A in two ways from equations (A1.19), either along the path ABC or
ADC. For p. to be single valued

Pp—Oa=0c—0p>  Op—0r=0c— ¢ (A1.20)

Figure A1.5(a) gives some common examples of curvilinear nets that satisfy this condi-
tion: a grid of straight lines in which the pressure is constant, a centred fan and a net
constructed on two circular arcs. Systematic methods for constructing more complicated
fields are described by Johnson et al. (1982).

Force boundary conditions
Figure A1.5(b) shows « and f slip-lines meeting a tool surface on which there is a friction
stress 7;. Equilibrium of forces on the triangle ABC, in the direction of 7, gives

7=k cos 2§ (A1.21)

Thus, the magnitude of the friction stress relative to k determines the angle { at which the
o-line intersects the tool face. Similarly, & and S slip-lines meet a free surface at 45° (z/k
= 0). Because there is no normal stress on a free surface, p = + k there, depending on the
direction of k.

th}

Fig. A1.5 (a) Nets satisfying internal force equilibrium and (b) slip-lines meeting a friction boundary
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A1.2.3 Velocity relations in a slip-line field

Analogous equations to equations (A1.18d) exist for the variation of velocity along the slip
lines. However, the statement that there is no extension along a slip line (Section A1.2.1)
may directly be used to develop velocity relations and further rules for the geometry of a
slip-line field. Figure A1.6(a) repeats the net of Figure Al.4(a). Figure A1.6(b) represents,
in a velocity diagram, possible variations of velocity in the field. Because there is no exten-
sion along a slip-line, every element of the velocity net is perpendicular to its correspond-
ing element in the physical plane of Figure A1.6(a). Thus, equations (A1.20) also apply in
the velocity diagram.

Velocity boundary conditions

Other constraints on slip-line fields may be derived from velocity diagrams (in addition to
the obvious boundary condition that the velocity of work material at an interface with a
tool must be parallel to the tool surface). Figure Al.7(a) shows proposed boundaries AB
and CDE between a plastic region and a rigid region in a metal forming process. Because
this is a book on metal machining, the example is of continuous chip formation, but any
example could have been chosen in which part of the work is plastically deformed and part
is not.

First, the boundary between a plastic and a rigid region must be a slip-line. Secondly,
the boundary between a plastic region and a rotating rigid region (for example CDE in
Figure A1.7(a) must have the same shape in the physical plane as in the velocity diagram.
Both these can be shown by considering the second case.

Suppose that any boundary such as CD is not a slip-line. Then any point such as H
inside the plastic region can be joined to the boundary in two places by two slip-lines, for
example to F and G by HF and HG. Figure A1.7(b) is the velocity diagram. The velocities
vg and v of points F and G are determined from the rigid body rotation of the chip to be
®OF and wOG, where @ is the angular velocity of the chip. The velocity vy relative to vg
is perpendicular to HF and that of v relative to v is perpendicular to HG. By comparing
the positions of vg, v4 and vy relative to v, the origin of the velocity diagram, with the
positions of F, G and H relative to the centre of rotation O in the physical diagram, it is

(b
Fig. A1.6 (a) The physical net of Figure A1.4(a) and (b) a possible associated velocity diagram
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EH {by {ch

Fig. A1.7 (a) A possible machining process with (b) a partial velocity diagram and (c) an illustration of a velocity
discontinuity across a slip-line

seen that the velocity of H is part of the rigid-body rotation: if the boundary CD is not a
slip-line, it cannot accommodate velocity changes that must occur in a plastic field.

If the boundary is a slip-line, a point H can only be joined to the boundary in two places
by three slip-lines: thus, the argument above can no longer be made. For continuity of flow
between a plastic and a rigid region, the boundary between the two must be a slip-line.
Figure A1.7(b) also shows the whole boundary v v, vg . It is visually obvious that only if
it has the same shape relative to the origin of velocity that CDE has relative to O, can it be
consistent with a rigid body rotation.

Velocity discontinuities

The usual procedure in slip-line field analysis is to construct fields that satisfy the geom-
etry and force requirements of a problem and then to check that the velocity requirements
are met. In this last part, one more feature of the theory must be introduced: the possibil-
ity of velocity jumps (discontinuities) occurring. Figure A1.7(c) returns to the considera-
tion of the velocity of a point H in the plastic field. H is connected to the boundary by
slip-lines, both directly to G and indirectly to F through H’. It is possible for there to be a
finite velocity difference between H and G, however short is the length HG, i.e. a discon-
tinuity. If there is a discontinuity, then the rules for constructing the velocity net require
that there be a discontinuity of equal size between H” and F. A velocity discontinuity can
exist across a slip line, but only if it is of constant size along the line. It is not implied that
there is a discontinuity in the condition of the example described here: examples of actual
machining slip-line fields are given in Section A1.2.5.

A1.2.4 Further considerations

Slip-line fields must satisfy more than the force and velocity conditions considered in
Sections A1.2.2 and A1.2.3. First, they must (as must every plastic flow) satisfy a work
criterion, that everywhere the work rate on the flow is positive. This means that the direc-
tion of the shear stresses in the physical diagram must be the same as the direction of the
shear strain rates deduced from the velocity diagram.
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It must also be checked that it is possible that regions in the work material that are
assumed to be rigid can in fact be rigid. For example, in Figure A1.7(a), in the rigid regions
KBA and LCD, the loads change from values on BA and CD determined by the plastic
flow to zero on the free surfaces KB and LC. It must be checked that such load changes
can be accommodated without the yield stress being exceeded in the rigid regions in the
neighbourhood of the vertices B and C. Checking for overstressing is introduced in another
context in Appendix AS. The overstressing limits developed in Appendix 5 (Hill, 1954)
apply here too.

A1.2.5. Machining slip-line fields

Figure A1.8 collects a range of slip-line fields, and their velocity diagrams (due to Lee and
Shaffer, 1951, Kudo, 1965, and Dewhurst, 1978), which describe steady state chip forma-
tion by a flat-faced cutting tool.

The first is Lee and Shaffer’s field. It describes formation of a straight chip. The work
velocity U, . is transformed to the chip velocity UChip by a discontinuous change Uy,
tangential to the slip-line OA. The angle at which OA meets the free surface is not set by a
free surface boundary condition. A is a singularity where the surface direction is not defined.
Instead, the direction of OA is determined by its being perpendicular to BD. The inclination
of BD to the rake face is given by equation (A1.21). Because all the slip-lines are straight,
the hydrostatic pressure is constant along them (equation (A1.19)). The chip region above
ADB is free, i.e. there are no forces acting on it. This determines that p = k and AD = DB.

The second is due to Kudo. It may be thought of as a modification of Lee and Shaffer’s
field in which the primary shear plane OA is replaced by a fan-shaped zone of angular
extent 9, still with a singularity at the free surface A. It still describes a straight chip. The
slip-lines intersecting the rake face do so at a constant angle £ the field therefore contin-
ues to describe a condition of constant friction stress along the rake face. The free-chip
boundary condition still requires p = k on AD and DB and AD = DB. However 6 can take
a range of values, from zero up to a maximum at which the region below AE becomes
overstressed. For the same friction condition, tool rake angle and feed, f, as in the Lee and
Shaffer field, the Kudo field describes chip formation with a larger shear plane angle and
a shorter contact length.

Two further fields suggested by Kudo are the third and fourth examples in Figure A1.8.
These describe rotating chips. The boundaries ADB in the physical plane between the
fields and the chips can be seen to transform into their own shapes in their velocity
diagrams. The third field may be thought of as a distortion of the Lee and Shaffer field and
the fourth as a distortion of Kudo’s first field. The slip-lines in the secondary shear zone
intersect the rake face at angles ¢ which vary from O to B: these fields describe conditions
of friction stress reducing from O to B. Because the slip-lines are curved, the hydrostatic
stress now varies throughout the field. Again the allowable fields are limited by the
requirement that material assumed rigid outside the flow zone around A must be able to be
rigid. However, the possibility arises that it is the chip material downstream of A that
becomes overstressed.

The last example shows another way in which a rotating chip may be formed. A fan
region OED is centred on the cutting edge O and the remainder DA of the primary shear
region is a single plane. With this field, the slip-lines intersect the rake face at a constant
angle, so that it describes constant friction stress conditions. The fan angle y can take a
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Fig. A1.8 Metal machining slip-line fields (left) and their velocity diagrams (right), due to (1) Lee and Shaffer (1951),
(2-4) Kudo (1965) and (5) Dewhurst (1978)
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range of values, limited only by its effect on overstressing material around A. For the same
friction condition, tool rake angle and feed, f, as in the Lee and Shaffer field, this last field
describes chip formation with a lower shear plane angle and a longer contact length.

A1.3 Yielding and flow in a triaxial stress state:
advanced analysis

A1.3.1 Yielding and flow rules referred to non-principal axes - analysis
of stress

The yield criterion is stated in equation (A1.7) in principal stress terms. It is extended to
non-principal stresses in equation (A1.12): this has been justified in the two special cases
when it represents principal stress and maximum shear stress descriptions of stress. It is
now justified more generally, by showing that the function of stress which is the left-hand
side of equation (A1.12) has a magnitude that is independent of the orientation of the
(x,y,2) coordinate system. If it is valid in one case (as it is when the axes are the principal
axes), it is valid for all cases. Tensor analysis is chosen as the tool for proving this, in part
to introduce it for later use.

Tensor notation and the summation convention
Figure A1.9 shows two Cartesian coordinate systems (x,y,z) and (x*,y*,z*) rotated arbitrar-
ily with respect to each other. In the (x,y,z) system the stresses are o with i and j denoting

Fig. A1.9 (xy,2) and (x* y*,z*) co-ordinate systems
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X, y or z as appropriate. In the (x*,y*,z*) system the stresses are o™ e with &,/ denoting x*, y*
or z*. The figure also shows a tetrahedron OABC, the faces of which are normal to the x, y, z
and x* directions. Writing the direction cosines of x* with x, y and z as Qg Ay and s with
similar quantities Ay Ay Ao, and Ao Qs A, for the direction cosines of y* and z* with
x, y and z, first, by geometry, the ratios of the areas OAC, OAB and OBC to ABC are respec-

tively Ay A, and Ay Then, from force equilibrium on the tetrahedron, for example
gx*x* Ay Oy T Ay @ x*)o-)x T4y v#297x
F Qi Oy + Qs s O + Qe @i O (Al.22a)
+ o Zax ZO-ZZ + Ay zax yo-yz + Ay zax xze

In general and more compactly, any of the stresses o%; may be written

3 3
o= Y a0 (A1.22b)
j=1 i=1
Quantities which transform like this are called tensors, and the study of the properties of
the transformation is tensor analysis.
By the summation convention, the summation signs are omitted, but are implied by the
repetition of the suffixes i and j among the coefficients a,; and a; Thus equation (A1.22b)
becomes

0% = @440, (A1.22¢)

Furthermore, the repetition of k and /, between the left and right-hand sides of the equa-
tion, implies that it represents all nine equations for the components of o*. The meaning
of the equation is unchanged by substituting another pair of letter suffixes, say m and n,
for i and j: suffixes such as i and j, repeated on the same side of an equation, are called
dummy suffixes and are said to be interchangeable. Suffixes such as k and [ are called free
suffixes. In the special case when k = [, the summation convention extends to include

b — * * ES
Ok = Oupr + O + 0% (A1.22d)

Properties of the direction cosines
Because the angle between a direction i and another direction k is the same as the angle
between the direction k and the direction i, a;, = a,..

Because the scalar product of two unit vectors is unity if they are parallel and zero if
they are perpendicular to each other, the same is true of the sum of the scalar products of
their components in any other coordinate system. In repeated suffix notation, a; a i’ = 1if
i =jand 0 if { # j. This can be written ‘

ayay = 6, (A1.23)
where 6 i is defined as 1 or O depending respectively on whether or not i = j.

Transformations of stress
Now consider the summation of the direct stresses

o = aua,0; = 8;q, = o} (A1.24)
This demonstrates that the sum of direct stresses 0%, in the (x*,y*,z*) system equals

the sum ¢; in the (x,y,z) system. One of the systems could be the principal stress
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system: thus, the hydrostatic stress o, is a stress invariant (it is known as the first stress
invariant).

Consider now the product of stresses o7, 0%, with the transformations of equation
(A1.22c¢), the interchangeability of dummy suffixes and equation (A1.23):

e - —
o0 = (ua0)(a,a,0,,) = (aa,0)a,a,0,.)
(A1.25)

= (5in0-ij)(6mjo-mn) = O-njo-jn = O-ijo-ji

In principal stress space, 0,0, = 0'3. So o, is also a stress invariant (it is known as the
second stress invariant). From equation (A1.25)

2_ <2 2 2 2 2 2
O;= Oy + 0y, + 0, + 2(0'xy + oy + O'u) (A1.26a)
As o, and o, are stress invariants, so is o,. From Figure A1.2(a) o, 2 = 0'% - 30'r2n. From

this, equation (A1.4) and similar manipulations as in equations (A1.6) to (A1.7), the yield
criterion becomes

262 = ?a(o'r2 - 30'[%) = 3(0’);% + 0'}',2 + 02) + 6(0')2(y +02 + agy) =

y yz
(0, - ny)2 + (o, — 0,)+ (0, -0+ 6(0'%, + ogz + o?y) = 6k% or 2Y?2
(A1.26b)

which is the same as equation (A1.12) of Section Al.1.

Strain transformations
The strain increments also transform as a tensor:

dg;‘; = aikaﬂdgkl (A1.27)

It follows, as for stress, that the resultant strain increment and the equivalent strain incre-
ment are invariants of the strain. The extension of the definition of resultant strain to a
general strain state is

ef=ded, +def, 10l 120, + A+ D) AL

where, as in equation (A1.13), de = dsyx = (1/2)(Qu/dy + dv/dx) and similarly for dsyz and
de i~ Equivalent strain increments are N (2/3) times resultant strain increments.

1.3.2 Further developments

The repeated suffix notation may be used to write the plastic flow rules (equation (A1.13))
more compactly and to express various relations between changes in equivalent stress and the
deviatoric stress components that will be of use in Section A1.4. First, from equation (A1.13),

3 de 3 O'ij
de,; = — o} — or — do (A1.29)
2 Y 5 2 HG

The dependence of d on its components ¢’ is

do =

doy, (A1.30)
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From inspection of equation (A1.26b),

00 3 oy
_— (A1.31)
doy, 2 o

Equation (A1.31) substituted into (A1.30) gives the first equation of, and multiplying it by
o', gives the second equation of

3 o do 3 o0
o= — 2 a0, o, - _MH_5 (A1.32)
2 o doy, 2 G

A1.4 Constitutive equations for numerical modelling

In Sections Al.1 and A1.2, the flow rules are developed for a rigid plastic material, relat-
ing strain increments to deviatoric stresses. Most plasticity calculations, however, are
formulated to obtain stresses from strain increments (or strain rates). The flow rules must
be inverted. This section reviews how this may be done, first for a rigid plastic material,
then for combined elastic and plastic deformation.

A1.4.1. Rigid plastic flow rule inversion

Rearranging the first of equations (A1.29) gives

2 G
%= de,, (A1.33)

In principle, this can be used directly to determine the deviatoric stress field from a given
strain increment field. However, the right-hand side is non-linear in the strain increments
as both ¢ and d& depend on them. Practical rigid plastic finite element methods (Section
AL1.5) seek actual strain increment fields from initial guesses, by iteration. For efficiency
of operation, they use a linearized form of equation (A1.33), to calculate variations of o,
caused by variations in strain increment. They must also find some way to estimate hydro-
static stresses, not involved in yielding. Both these practical matters are introduced in this
section.

Linearization
The sensitivity of o;j to variations in strain increments about a base value (deij)0 may be
expressed, to a first approximation, in a linear way as

daij 2 5, 2 06 AdE)  d(dey)dey),
do’; = d(de,) =— —— d(de;) + —

7 d(dey) 3 dg, 73 9d8)  dAdey) dg,
2 G5, ddg)

3 (d5y)? Adey)

d(de,,)(de ),

(A1.34)
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For a material whose flow stress depends only on £, for example whose flow stress does
not depend on strain rate,

do
=0 (A1.35)
d(dg)
Furthermore, from equation (A1.28) and by analogy with equation (A1.31),
ade) 2 (dgy),
=— (A1.36)

Ade,) 3 (dB),

Substituting equations (A1.35) and (A1.36) into equation (A1.34), and slightly rearrang-
ing, gives

d 2 % d(de;) t % (de.)o(de,,)d(de,) (Al.37a)
O',--=—— ) —— — .. E 37a
i 4 dg, ij 9 (dg, 3 §/ON k70 ki

Hydrostatic stresses

Hydrostatic stress terms do not arise in rigid plasticity theory due to the assumption of
incompressibility. If a small amount of compressibility is introduced, hydrostatic stress
values may be calculated without seriously altering the magnitudes of the deviatoric
stresses. Following Osakada et al. (1982), suppose a material is slightly plastically
compressible, so that equation (A1.9) is added to by

de, = g(co,) (A1.38)

where de, = (dg| + de, + de;) and g is a small positive constant; and introduce modified defi-
nitions of equivalent stress and equivalent strain (where now, because of compressibility, one
must distinguish between total strain increment and deviatoric strain increment components)

3 2 de2
G2 = - @5+ gon);  dEr= 7 [d=ideri+ (A1.38b)

8

then by the same procedure that led to equation (Al.11), ¢ remains equal to (3/2) (d€/o).

Then, noting that o, = 0'::]. + Sijam and delj = degi + SijdevB,

=— |de.+ 6.
3de

i+ 0 (A1.39)

de ) 26

1 1
— — — |de
g 3|7
Equation (A1.39) is identical in form to equation (A1.33) but for a modified strain incre-
ment term. The linearization leading to equation (A1.37a) for deviatoric stress components

may be repeated to produce the equivalent equation for total stress components. In addi-
tion to equation (A1.37a),

211 1 0, d(d&‘v) 2 0
do, = P Y (de,), - (dey)od(dey)
8

g, (de,), 3 (d&,]
(A1.37b)
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Osakada et al. (1982) have found that choosing g in the range 0.01 to 0.0001 gives a
practically usable equation.

A1.4.2 Elastic-plastic flow rules

Introducing elastic deformation creates advantages and disadvantages relative to rigid
plastic modelling. There is no problem with respect to including hydrostatic stress effects
(the material is elastically compressible). However, immediate linearization of the flow
rules, after the manner of equation (A1.33), is no longer possible. First, one must separate
the elastic from the total strain increment, to isolate the plastic strain increment.

Elastic strains
Consider the geometrical representation of the stress state in Figure A1.2. If the point P
lies within the yield cylinder, only elastic strains occur. The relation between strain and
stress is commonly given as (Hooke’s law)

! "

e.=—lo,— V(ny + O'ZZ)]

1
8yy == [O-yy - V(Gzz + Gxx)]

; ?
1
€, = E [0, —W(o,, + O'yy)]

1+v 1+v 1+v

Xy yx E xy; vz y E yz; gzx = gxz = E Oy, J

(A1.40)

where E and v are Young’s modulus and Poisson’s ratio. The strains have deviatoric and
hydrostatic parts " and €  (¢,, = £,/3). More compactly, in tensor notation

1+v 1-2v
gl.jze,’.j+6l.j€m= - ol'.j+5,.jE—0'm (A141)
The inversion of this relation is
E E
Gijzgfj"'Sijo'm:Tg;j"'Sijﬁgm (Al.42a)
or in incremental terms
E E
doy; = dO';j + 5,.j.d0'm =———dgl + 0, —dg | (A1.42b)

1 +v Y Y1 - 2v

Plastic and elastic strains

When the point P lies on the yield cylinder (Figure A1.2), and a stress increment causes
further yielding, the total strain change has an elastic part proportional to it, and a plastic
part normal to the yield locus (Figure A1.3 (a)):



346 Appendix 1

- ’ _ ’ ,
(dgij)total = (dgij)total + (6ijd£m)elastic = (dgij)plastic + (dgij)elastic + (az'jdgm)elastic

3 do , 1 +v , 1 - 2v (A1.43)
=? e oyt E dO'l.j+6ij 7E dam

The complexity in inverting this flow rule is caused by the presence in the right-hand side
of both total stress and stress increment terms.

Elastic-plastic flow rule inversion

The elastic deviatoric strain increment of equation (A1.43) is the difference between the
total deviatoric and the plastic strain increment. It causes a deviatoric stress increment
given by the deviatoric part of equation (A1.42b):

3 do

l(d-’f?j)mtal——z e cffjl (Al1.44)

dG{.:
L Y

This may be substituted into the first of equations (A1.32) to give

3 E oy ., 3 do oyoy
dG =— — (&g o — T —
2 1+v o 2 Ho o

(A1.45a)

After simplifying, by means of the second of equations (A1.32), and rearranging, an
expression for do is found:

3 E e
— ——— oy (dey)
2 1+v kl kl/total
do = (A1.45b)
_ 3 E 1
oll+— —
2 1+v H

Finally, substituting this back into the elastic deviatoric stress equation (A1.44) and adding
the hydrostatic stress term (equation (A1.42b)), the total stress increment becomes (after

dropping the subscript ., ;. so d&’;, is the total deviatoric strain)

9 E 2 ’ ’ 7
E E |y [t
d% = de;j + 61.]. de, - (A1.46)
I+v 1-2v 52(H'+—3 E
2 1+v

Because the sum of deviatoric stress terms 6,{10',’([ is zero, the total deviatoric strain incre-
ment dey, in the last term may be replaced by the total strain increment de,.

A1.4.3 Matrix notation

Tensor notation with the summation convention enables the most compact writing and
analysis of relations between stress and strain. When it comes to applying the results, a
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different representation is more useful. The stress tensor o has nine components but,
because 0 = 0> only six are independent. The same applies to the strain tensor. The six
independent stress components, regarded as a vector, may be obtained from the six inde-

pendent strain components, also regarded as a vector, by matrix multiplication:

r O-XX 1 B N E)CX

O-yy 8}’)’

Oz - D €2 or (o} = [D]{e)
o e

O'yZ Eyz

(A1.47)

Here, [D] is a 6 X 6 matrix. The values of its elements (as well as the detail of whether the
vectors should be stress or stress increment, strain or strain increment) depend on whether
the relation between stress and strain is elastic, elastic—plastic, or rigid—plastic: they can be
found from equations (A1.42), (A1.46) or (A1.37) as appropriate.

Elastic conditions
Equation (A1.47) can be written either in total or increment form:

{6} =[DHe}  or  {do} = [D°]{de} (A1.482)

where, from equation (A1.42)

m 1-v v v |
0 0 0
1-2v 1-2v 1-2v
v 1-v v
0 0 0
[De] = E 1-2v 1-2v 1-2v
1+v v 1% 1-v
0 0 0
1-2v 1-2v 1-2v
0 0 0 1 0
0 0 0 0 1
= 0 0 0 0 0 1ml

(A1.48b)

(yij can be used instead of g; for shear strains; then the diagonal coefficients equal to 1
above are replaced by 1/2.)

Elastic-plastic conditions
Equation (A1.47) must be used in incremental (or rate) form:

{do} = [DP]{de} or {6} = [D*P]{€} (A1.49a)

where, from equation (A1.46), after noting that the shear modulus G = 0.5E/(1 + v)
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’ ’ ’ ’ 7 / ’ ’ ’ ’ 7

B O-xxo,,\"x xx°yy XX~ 2z ZGX/\"GX\ 26]()60-_)7 20—)060-7)6 .
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
OyyOxx wOyy WOz 20,0y 20,0y, 20,0,
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
De_p _ DC 9G2 O-ZZO-XJC z7yy 2722 2GZZG)Cy 262"0-)’7 ZO-ZZGZ«’C
[ 1=1D% - =20y o’ o’ ' o’ ' o/ 20’0’ 200 20 0
G°(H +3G) 1% 0%y x0C 2z 1% xy " yz 0 yz
G, O_/ ’ ’ ’ ’ 20_/ G’ 20_, G/ 201 O_,
¥z xx yz°yy vz zz vz% xy yz°yz vz zx
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’

- 020 xx o yy % zz ZO'MO'X\ zazxo-yz zo-z.xavc -

(A1.49b)

If Vi instead of £; is used for the shear strains the factors 2 are replaced by 1.

Rigid-plastic conditions
The basic relation between stress and strain increment, equation (A1.39), for a base set of
stresses o, and strain increments de leads to

{o,} = [DSPI{de, } (A1.50a)
with
“ 1+a a a 0 0 09
a l+a a 0 0 0
20 a a 1+a 0 0 0 1/1 1
[D5P]=—2 ,wherea=—|— - —
° 3de, 0 0 0 1 0 0 3 ( g 3 )
0 0 0 0 1 0
L 0 0 0 0 0 1 _
(A1.50b)
Linearization about the base o and de  leads to
{do} = [D"P]{d(de)} (A1.51)

where [D"P] can be extracted from equations (A1.37a) and (A1.37b).

A1.5 Finite element formulations

The basic ideas of the finite element method are given in many general texts, for example
Zienkiewicz (1989), as well as in Kobayashi et al. (1989). A continuum throughout which
the solution to some problem is required is divided into an assembly of finite-sized
elements, filling the continuum without leaving any gaps. Each element is identified by the
positions of its nodes. The nodes are the vertices of the elements, and for some elements
additional points too.

Instead of seeking an exact solution to a problem, over the whole continuum, an
approximate solution is sought at the positions of the nodes, with some form of interpola-
tion of the solution between the nodes. First, the governing equations of a problem are
applied to each element alone, to obtain relations between the problem variables at the
element nodes. These element nodal equations are then assembled to describe the whole
continuum. The global assembly of all equations is finally solved numerically.

In mechanics problems, the nodal displacements, changes in displacements, or velocities,
{u},{du} or {u}, are usually the unknowns. They cause element strains, strain increments or
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strain rates {e}, {de} or {£}, which depend on the element geometry. Transformation of
the nodal displacement quantities to the element strain quantities may be carried out by a
matrix multiplication operation: the transformation matrix is known as the [B] matrix.
Once element strain expressions are created, they may further be transformed to stress
quantities by operating with the [D] matrix described in the previous section. Finally, once
element stress expressions are created, external force quantities on the element’s nodes
may be obtained either by direct consideration of force equilibrium or by virtual work
methods. For the special cases of 3-node triangular or 4-node tetrahedral elements (for
which stress and strain quantities are constant throughout an element), the transformation
from stress to force is achieved by multiplication by the product of the element’s volume,
Ve, and the transpose of the [B] matrix; the chain of activities that relates nodal displace-
ment and force quantities may be summarized as

[B] [D] v, [B]T )
{u,du, or u} = {g,de, or ¢} = {0, do, or 6} = {F, dF, or F}

and the resulting finite element assembly of equations to be solved becomes
{F, dF or F} = [K]{u, du or i1} where [K] = Ve[B]T[D] [B] (A1.52)

In general, for any shape of finite element, [K] = jve[B]T[D] [B]dV. [K] is known as the
stiffness matrix and equation (A1.52) as the stiffness equation.

It is not the purpose of this appendix to develop all aspects of the finite element method
applied to metal machining problems, but only to indicate differences that arise from the
differences in the [D] matrix between elastic, elastic—plastic and rigid—plastic formulations.

Elastic conditions

The coefficients of [D¢], equation (A1.48b), are material constants. There is therefore a
linear relation between the nodal forces and displacements, and force and displacement
change. From equation (A1.48a),

{F} =[KHu}  or  {dF}=[Kl{du} or  (F}=[Kl{a} (ALS53)

Elastic-plastic conditions

The coefficients of [D®P], (equation (A1.49b)) include deviatoric stress terms. Integration
of equation (A1.49a) to obtain current total stresses and strains depends on the path by
which the current state has been reached. Thus, after creating, from equation (A1.49a),

{dF} = [K]{du} or {F} = [K]{u} (A1.54)

displacement increments are calculated in steps along the problem’s loading path. After
each increment has been obtained, the accompanying strain and stress increments are calcu-
lated. The stress increments are added to the stresses that existed at the start of the step, to
update [D®P] and hence [K]. The new value is used for the next step. The non-linearity of
the calculation requires each step to be very small. Elastic—plastic calculations for large
strain problems, as in metal machining, are inherently lengthy and time consuming.

Rigid-plastic conditions
Larger steps than in the elastic—plastic case can be taken with the rigid—plastic formu-
lation; and hence the computing effort is less. However, it is not possible to simulate
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some aspects of chip formation, for example the elastic contact region of the chip/tool
contact.

Suppose that over some time interval dz, the velocity of a plastic flow is guessed to be
{4,}, and a better guess is {i + ou}. The stiffness equation for the better guess is

(F} = [K ){d, }dr + [K]{S}dr (A1.55)

where [K | = V,[B]T[DP][B] and [K] = V,[B]T[D™P][B]. [D P] and [D"P] are given by
equations (A1.50b) and (A1.51) (from equations (A1.37a and (b)). Their coefficients are
known in terms of the initial guess.

Equation (A1.55) may be rearranged to

{F} - [K_]{u,}dr = [K]{i}ds (A1.56)

The left-hand side is known in terms of the applied forces and the initial guess of veloci-
ties. Equation (A1.56) may be solved for the unknown velocities {du}. If they are signifi-
cant relative to {s }, they may be added to {4} to create a better initial guess; and the
cycle of calculation is repeated until {6z} becomes negligibly small.

This approach to calculating flows, and hence stresses, in plastic problems, ignoring
elastic deformation, with the modification of the yield criterion and flow rules to include
a small amount of compressibility, to enable hydrostatic stresses to be calculated, follows
Osakada et al. (1982). It has been chosen because of the easy physical interpretation that
can be given to the method of introducing hydrostatic stresses. Other methods, based on
Lagrange multipliers and penalty functions (for example Kobayashi et al., 1989 and
Zienciewicz and Godbole, 1975) give the same results.
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Conduction and convection of
heat in solids

This appendix supports the thermal aspects of Chapters 2, 6 and subsequent chapters. A
more complete description of heat transport in solids is given in Carslaw and Jaeger (1959).
The basic law of heat conduction in an isotropic material is assumed; namely that the rate
q of heat transfer per unit area normal to an isothermal surface is proportional to the temper-
ature gradient in that direction and with K the thermal conductivity and T the temperature:

g=-K (A2.1)

on

A2.1 The differential equation for heat flow in a solid

Figure A2.1(a) shows a control volume dx.dy.dz fixed relative to axes Oxyz. A solid
(density p and specific heat C — heat capacity pC — and with thermal conductivity that
varies with temperature) passes through it with velocity #_. The differential equation relat-
ing temperature in the solid to position and time is first derived for the special case when
a temperature gradient exists only in the z-direction.

Consider the heat flow into and out of the control volume through the two surfaces of
area dxdy, at z = z and z + dz. The heat accumulating in time dz due to conduction, H__ ;.
is (equation (A2.1) with n as z, allowing K and 07/dz to vary with z):

Y , oT « dK aT ‘ oT 92T iNivdvg
=4 -K——+ + z + z ydt
cond 2 ar oz 0z 072
927  dK [ oT \2 (A2.22)
=|K + dxdydzdz
072 dT | oz

The heat accumulating due to convection, H conv? is

Hoopy = {uzpCT_ ithC P

aT oT
T+ T dz| tdxdyds = —i_pC 8— dxdydz?
z

(A2.2b)
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Fig. A2.1 (a) A control volume for temperature analysis and (b) dependence of temperature on position and time for
the example of Section A2.2.1 (x= 10 mm?/s)

Internal heat generation at a rate g* per unit volume causes an accumulation, H,
H, . = q*dxdydzds (A2.2¢)

Equating the sum of the terms (equations (A2.2a) to (A2.2¢)) to the product of tempera-
ture rise and heat capacity of the volume:

oT 22T dK
pC =K +
ot 972 dT

2 oT
— MZpC a— + q* (A23a)
4

oT
0z

The extension to three dimensions is straightforward:

oT 9T 22T 9T dK oT |2 oT \? oT |2
pC = + + + + -
ot ox2  ay? 072 dr ox dy 0z
o, T or ar)
—C [ + + +
PR Ty T T

(A2.3b)

When thermal conductivity does not vary with temperature, equation (A2.3b) reduces
to

’T 9T 0°T
+ +
oxz 9y 972

CaTK
P o

Corar ar
u + 1 + 1 + g*
ox vy TR T

_pC

(A2.4)
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A2.2 Selected problems, with no convection
When i = L'ty =i, =0, and g* = 0 too, equation (A2.4) simplifies further, to
0°T  9°T 9°T
+ +
oxz  oyr 9z

1 dT

(A25)

?az

where the diffusivity x equals K/pC. In this section, some solutions of equation (A2.5) are
presented that give physical insight into conditions relevant to machining.

A2.2.1 The semi-infinite solid z> 0: temperature due to an
instantaneous quantity of heat H per unit area into it over the
plane z= 0, at t= 0; ambient temperature T,

It may be checked by substitution that

H 1 -
e (A2.6)

T-Ty=——-
pC Kt

is a solution of equation (A2.5). It has the property that, at = 0, it is zero for all z > 0 and
is infinite at z = 0. For t > 0, 07/dz = 0 at z = 0 and

[pc-Tppdz=H (A2.7)
0

Equation (A2.6) thus describes the temperature rise caused by releasing a quantity of heat
H per unit area, at z = 0, instantaneously at ¢ = 0; and thereafter preventing flow of heat
across (insulating) the surface z = 0. Figure A2.1(b) shows for different times the dimen-
sionless temperature pC(T — T;))/H for a material with x = 10 mm?/s, typical of metals. The
increasing extent of the heated region with time is clearly seen.

At every time, the temperature distribution has the property that 84.3% of the associ-
ated heat is contained within the region z/V4xt < 1. This result is obtained by integrating
equation (A2.6) from z = 0 to V4xkt. Values of the error function erf p,

efp= 2 [ evau (A2.8)
\ /(]

that results are tabulated in Carslaw and Jaeger (1959). Physically, one can visualize the
temperature front as travelling a distance = V4«kt in time 7. This is used in considering
temperature distributions due to moving heat sources (Section A2.3.2).

A2.2.2 The semi-infinite solid z> 0: temperature due to supply of heat
at a constant rate g per unit area over the plane z=0, for ¢ > 0;
ambient temperature T,

Heat dH = gdt’ is released at z = 0 in the time interval ¢ to ¢ + d¢’. The temperature rise
that this causes at z at a later time ¢ is, from equation (A2.6)
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2
Z

qd?’ 1 - -
d(T-Ty) = e 1) (A2.9)
pC  (mx(t—1"))"

The total temperature is obtained by integrating with respect to ¢ from O to ¢. The temper-
ature at z = 0 will be found to be of interest. When ¢ is independent of time

2
T-T)=~— % Vit (A2.10)
T

The average temperature at z = 0, over the time interval O to ¢, is 2/3rds of this.

A2.2.3 The semi-infinite solid z> 0: temperature due to an _
instantaneous quantity of heat H released into it at the point
x=y=2z=0, at t=0; ambient temperature T,

In this case of three-dimensional heat flow, the equivalent to equation (A2.6) is

X2+y2+7?
H 1 —_
T—TO=— —— ¢ 4t (A2.11)
4pC (nkr)>?

Equation (A2.11) is a building block for determining the temperature caused by heating
over a finite area of an otherwise insulated surface, which is considered next.

A2.2.4 The semi-infinite solid z> 0: uniform heating rate g per unit area
for t> 0, over the rectangle -a< x<a,-b<y<batz=0;
ambient temperature T,

Heat flows into the solid over the surface area shown in Figure (A2.2a). In the time inter-
val t" to ¢ + dt’, the quantity of heat dH that enters through the area dA = dx’dy” at (x’, y’)
is gdAd¢’. From equation (A2.11) the contribution of this to the temperature at any point
(x, y, 2) in the solid at time ¢ is

gdx’dy’dr’ _ GGy e
dT-Ty) = e Ax(11) (A2.12)
4pC(r)>(t — 1732

Integrating over time first, in the limit as ¢ and " approach infinity (the steady state),

+a +b ’
d
dT- Ty =2 [ ] Y ax’ (A2.13)

2nK -a  -b ((x—x')2 + (y_y')Z +22)‘/2

Details of the integration over area are given by Loewen and Shaw (1954). At the surface
z = 0, the maximum temperature (at x = y = 0) and average temperature over the heat
source are respectively
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Fig. A2.2 Some problems relevant to machining: (a) surface heating of a stationary semi-infinite solid; (b) an infinite
solid moving perpendicular to a plane heat source; (c) a semi-infinite solid moving tangentially to the plane of a surface
heat source

(T - TO)max =

b a
sinh™! — + — sinh™! —
a a b

a b
_+_
b a

2qa
(T- TO)av =(T- TO)max - %

b2 Vs b2 a
1+ _—
a2
(A2.14)

A2.3 Selected problems, with convection

Figures A2.2(b) and (c) show two classes of moving heat source problem. In Figure
A2.2(b) heating occurs over the plane z = 0, and the solid moves with velocity
u, through the source. In Figure A2.2(c), heating also occurs over the plane z = 0, but
the solid moves tangentially past the source, in this case with a velocity i, in the x-
direction.
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A2.3.1 The infinite solid with velocity i,: steady heating at rate q per
unit area over the plane z = 0 (Figure A2.2b); ambient
temperature T,

In the steady state, the form of equation (A2.4) (with g* = 0) to be satisfied is

°T T (A2.15)
K—=Uu, ——— .
072 oz

The temperature distribution

q q Mz
(T-Ty = , 220 (T-Ty = e ¥ , z<0 (A2.16)
pCu, pCu,

satisfies this. For z > 0, the temperature gradient is zero: all heat transfer is by convection.
For z = -0, dT/dz = g/K: from equation (A2.1), all the heating rate g is conducted towards
—z. It is eventually swept back by convection towards + z.

A2.3.2 Semi-infinite solid z> 0, velocity: i, steady heating rate g per
unit area over the rectangle -a< x< a, -b< y< b, z= 0 (Figure
A2.2(c)); ambient temperature T,

Two extremes exist, depending on the ratio of the time 2a/it,, for an element of the solid
to pass the heat source of width 2a to the time a%/x for heat to conduct the distance 2a
(Section A2.2.1). This ratio, equal to 2x/(it,a), is the inverse of the more widely known
Peclet number P..

When the ratio is large (P, << 1), the temperature field in the solid is dominated by
conduction and is no different from that in a stationary solid, see Section A2.2.4. Equations
(A2.14) give maximum and average temperatures at the surface within the area of the heat
source. When b/a = 1 and 5, for example,

b qa qa
; =1(T-T,) =112 7 s (T—-T),, =0.94 <
ual(2x) << 1:
b qa qa
; =5:(T-T,) . =210 7 s (T-T,),, =182

(A2.17a)

At the other extreme (P, >> 1), convection dominates the temperature field. Beneath the
heat source, 0T/dz >> dT/0x or dT/dy; heat conduction occurs mainly in the z-direction and
temperatures may be found from Section A2.2.2. At z = 0, the temperature variation from
X =-—atox=+ais given by equation (A2.10), with the heating time ¢ from 0 to 2a/i,.
Maximum and average temperatures are, after rearrangement to introduce the dimension-
less group (ga/K),

qa
K

u xa

qa 2k |2
ial(2x) >>1: (T-Ty),. = 1.13 ' ; (T-Ty,, =075

2x \%
chl

(A2.17b)
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Because these results are derived from a linear heat flow approximation, they depend only
on the dimension a and not on the ratio b/a, in contrast to P, <<1 conditions.

A more detailed analysis (Carslaw and Jaeger, 1959) shows equations (A2.16) and
(A2.17) to be reasonable approximations as long as i a/(2x) < 0.3 or > 3 respectively.
Applying them at i a/(2x) = 1 leads to an error of =20%.

A2.4 Numerical (finite element) methods

Steady state (97/0t = 0) solutions of equation (A2.4), with boundary conditions

T =T, on surfaces S of specified temperature,

K9T/dn=0on thermally insulated surfaces S,

KoT/on = —-h(T-T ,) on surfaces S, with heat transfer (heat transfer coefficient £),
KoT/dn =—q on surfaces S with heat generation ¢ per unit area.

may be found throughout a volume V by a variational method (Hiraoka and Tanaka, 1968).
A temperature distribution satisfying these conditions minimizes the functional
oT oT

o=h {5 B
oo

s o0 oT Vs oT Y oT
—qg*¥—pClu u i
T oox Y 9y © oz
+ [y aras+ [y 22— o1ymas
q h 2

where the temperature gradients 07/dx, dT/dy, 0T/dz, are not varied in the minimization
process. The functional does not take into account possible variations of thermal proper-
ties with temperature, nor radiative heat loss conditions.

Equation (A2.18) is the basis of a finite element temperature calculation method if its
volume and surface integrations, which extend over the whole analytical region, are
regarded as the sum of integrations over finite elements:

2 2

oT
ox

(A2.18)

IT) = 2 14T) (A2.19)

e=1

where 7°(T) means equation (A2.18) applied to an element and m is the total number of
elements. If an element’s internal and surface temperature variations with position can be
written in terms of its nodal temperatures and coordinates, /¢(T) can be evaluated. Its vari-
ation o/¢ with respect to changes in nodal temperatures can also be evaluated and set to
zero, to produce an element thermal stiffness equation of the form

H] (T} = {F}, (A2.20a)

where the elements of the nodal F-vector depend on the heat generation and loss quanti-
ties g*, g and h, and the elements of [H], depend mainly on the conduction and convec-
tion terms of 7¢(T). Assembly of all the element equations to create a global equation
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(HI{T} = {F} (A2.20b)

and its solution, completes the finite element calculation. The procedure is particularly
simple if four-node tetrahedra are chosen for the elements, as then temperature variations
are linear within an element and temperature gradients are constant. Thermal properties
varying with temperature can also be considered, by allowing each tetrahedron to have
different thermal properties. In two-dimensional problems, an equally simple procedure
may be developed for three-node triangular elements (Tay et al., 1974; Childs er al.,
1988).

A2.4.1 Temperature variations within four-node tetrahedra

Figure A2.3 shows a tetrahedron with its four nodes i, j, k, /, ordered according to a right-
hand rule whereby the first three nodes are listed in an anticlockwise manner when viewed
from the fourth one. Node i is at (x5 ¥;» 2;) and so on for the other nodes. Temperature 7°
anywhere in the element is related to the nodal temperatures {T} = {7, T, T, Tl}T by

T¢ =[N, N; N, NJ{T} = [N{T} (A2.21)

where [N] is known as the element’s shape function.

N, = (@, +bx+cy+dz)
6V,
where
YoY% 1 Vi %
4= %% Ve % bi=—|1 » %
XV g Ly g
z4
k 1
e
-
-~
-
V' . e:p"k_f
- S1Ikf
-~ "
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§ e y.2)
&)

<y

X

Fig. A2.3 A tetrahedral finite element
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x, 1 Z Xy 1
== x5 1 z | d=-|x » 1
.xl 1 Zl x[ y[
and
| Loy oy
- 1 x y z
V.= — S R A2.22
i R (A2.22)
I x vy z

This may be checked by showing that, at the nodes, 7° takes the nodal values. Nj, N, and
N, are similarly obtained by cyclic permutation of the subscripts in the order i, j, k, I V is
the volume of the tetrahedron.

In the same way, temperature 7 over the surface ikj may be expressed as a linear func-
tion of the surface’s nodal temperatures:

T = [N;N/NJ{T} = IN'l{T} (A2.23)
where
N/ = (a; +bx' +cly)
ikj
and
a; = x]:yj’ - xjfyk’; bi=y/ - y].’; ¢/ = xjf - x; (A2.24)
|
Agi=— | 1 % n
211 Xy
S

The other coefficients are obtained by cyclic interchange of the subscripts in the order i, k,
J. X', y” are local coordinates defined on the plane ikj. A; kj is the area of the element’s trian-
gular face: it may also be written in global coordinates as

2 )1/2

| 2
Aikj = ?
(A2.25)

2
xk—xi xj—xl.

Ye=Yi Y~
Zk—Z

i T Ye=Yi Y~

A2.4.2 Tetrahedral element thermal stiffness equation

Equation (A2.21), after differentiation with respect to x, y and z, and equation (A2.23) are

substituted into /°(T) of equation A2.19. The variation of /°(7) with respect to T}, T:, T, and T,

is established by differentiation and set equal to zero. [H], and {F} (equation (A2.20a)) are

(H], =

bb; + cic; + dd, bjbl. +¢ic;+ djdl. bb,+cc;+dd;,  bb;+cc; +dd;

K bl.bj +c;+ dl.dj bjbj +cic;+ djdj bkbj +ec+ dkdj blbj +c;+ dldj

36Ve bb, + c;c, + d,d, bjbk +¢i0p + djdk bb, + e +did, b, + cicp +dd,
bbb, + cic;+dd, bjbl +cicp+ djdl bb, + cic; + dd, bb; + c;c; + d,d,
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c 1’4xbi + it C; + lftzdi I/.bej + < + Iftzdj I,.txbk + i cy + I'fzdk I/.txbl + c; + I/.tzdl
+ P b +uc;+ud uxbj +iuc +u dj b, + iyCp + ud, b+ ty,c; + ud,

~

- v i i yj z
24 | b, + f,c; + uzdi uxbj +ic; + uzdj b, + i,y + uzdk b, + hyc; + “zdl

ub. +uc + uzd. b, +ic +ud b, + Ly, + uzdk b, + e+ ”zdl

Pl v 4 xX7J Y <
2110
+hAikj 1 210
12 1 1 2 0
0000 (A2.26)
and
1 1 1
q*Vv qA., . hT A, .
(Flo=——- 9, —3"‘" i ——(; LRI (A2.27)
1 0 0

Global assembly of equations (A2.20a), with coefficients equations (A2.26) and
(A2.27), to form equation (A2.20b), or similarly in two-dimensions, forms the thermal part
of closely coupled steady state thermal—plastic finite element calculations.

A2.4.3 Approximate finite element analysis

Finite element calculations can be applied to the shear-plane cutting model shown in
Figure A2.4. There are no internal volume heat sources, g*, in this approximation, but
internal surface sources g, and g, on the primary shear plane and at the chip/tool inter-
face. If experimental measurements of cutting forces, shear plane angle and chip/tool
contact length have been carried out, g and the average value of g; can be determined as
follows:

q,=1V, (A2.28a)
q: =7V, (A2.28b)
where
Focos¢—Fpsing Fosina + Fcos o
T, = sin ¢; T =
fd l.d
cos o sin ¢
V. Uwork; v Uwork

s =cos(¢ -Q) e= cos(¢p — )

(A2.29)

In general, g, is assumed to be uniform over the primary shear plane, but g; may take on a
range of distributions, for example triangular as shown in Figure A2.4.

A2.4.4 Extension to transient conditions

The functional, equation (A2.18), supports transient temperature calculation if the g* term
is replaced by (¢* — pC9T/dt). Then the finite element equation (A2.20a) becomes
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Fig. A2.4 Thermal boundary conditions for a shear plane model of machining

[c1, { % } + [H(T) = (F,) (A2.30)
with
2 1 1 1
cp =Y 12 1
¢ 20 11 2 1
1 1 1 2

([C] is given here for a four-node tetrahedron).
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Over a time interval At, separating two 1nstants tn and tn 1

rates of change of temperature can be written in two ways

—aT 1-6 —aT 0 —aT A2.31
{ ot }av_( ) ){ ot }n ’ { ot }n+1 ( . a)
{ oT } {Tn+1_Tn}
= (A2.31b)
a |, At

where 0 is a fraction varying between 0 and 1 which allows the weight given to the initial
and final values of the rates of change of temperature to be varied. After multiplying equa-
tions (A2.31) by [C], substituting [C]{dT/0t}terms in equation (A2.31a) for ({ F}-[H]{T})
terms from equation (A2.30), equating equations (A2.31a) and (A2.31b), and rearranging,
an equation is created for temperatures at time ¢, | in terms of temperatures at time ,: in
global assembled form

the average values of nodal

or

(T}, + (F) (A2.32)

‘[—C] + 0[K]
At

[C]
{T}n+1 = A—t_ (1-9)[K]

This is a standard result in finite element texts (for example Huebner and Thornton,
1982). Time stepping calculations are stable for 6 = 0.5. Giving equal weight to the start
and end rates of change of temperature (6 = 0.5) is known as the Crank—Nicolson method
(after its originators) and gives good results in metal cutting transient heating calculations.
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Appendix 3

Contact mechanics and friction

A3.1 Introduction

This appendix summarizes, in the context of metal machining, understanding of the
stresses that occur at the contacts between sliding bodies. These stresses, with materials’
responses to them, are responsible for materials’ friction (and wear).

All engineering components — for example slideways, gears, bearings, and cutting tools
— have rough surfaces, characteristic of how they are made. When such surfaces are loaded
together, they touch first at their high spots. Figure A3.1 is a schematic view of two rough
surfaces placed in contact under a load W, the top one sliding to the right under the action
of a friction force F.

Figure A3.1(a) shows a contact, the material properties and roughness of which are such
that the surfaces have deformed to bring the direction of sliding into the planes of the real
areas of contact A,. Resistance to sliding then comes from the surface shear stresses s.
Friction that arises from shear stresses is called adhesive friction. If the real areas of
contact on average support a normal contact stress p,, the adhesive coefficient of friction
u, is given by

u,=— (A3.1)

Figure A3.1(b) shows surfaces for which the real areas of contact are inclined to the
sliding direction. Each contact is divided into two parts, ahead of (leading) and behind

(o)
Fig. A3.1 Friction caused (a) by shear stresses s and (b) by direct stresses p
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(trailing) the real contact mean normal n. Even in the absence of surface shear stresses, a
resistance to sliding occurs if the normal forces on the leading and trailing portions of the
contacts differ from one another. Friction arising from contact normal stresses is called
deformation friction. If, on average, the normal stress p, on the leading part of a contact of
sub-area A, is inclined at 8, to the direction of the load W, and on the trailing part of the
contact the equivalent variables are Pe A, and Ot, force resolution in the directions of W and
F give the deformation friction coefficient u; as

p,A;sinf, — p A sinf
= 1A 8ind; — pA;sin6; (A3.22)
pA cos8, + pAcost,

Special cases occur. If the contact is symmetrical (p, = p; A; =A; 6, = 6,), equation (A3.2a)
simplifies to x4 = 0: this is the case of perfectly elastic deformation. At the other extreme,
when the indenting surface plastically scratches (abrades) the other, there may be no trail-
ing portion contact: A, = 0. Then, equation (A3.2a) becomes

iy = tan 6, (A3.2b)

This type of deformation friction (abrasion of metals) is of most relevance to this book.
(There is a third situation, of visco-elastic contact, intermediate between perfectly elastic
and totally plastic contact, when x; may be shown to depend on both tan 6, and tan &, the
loss factor for the contact deformation cycle.)

Equation (A3.1) shows that adhesive friction depends mainly on material properties s
and p_ although, as will become clear, p, also depends on surface contact geometry. By
contrast, equation (A3.2b) shows that abrasive deformation friction depends mainly on
surface geometry, insofar as the angle 6, is the same as the slope of the leading part of the
contact, but this could be modified by material properties if, for example, the real pressure
distribution over A, is not uniform.

The main focus of this appendix is to review how the friction coefficient varies with
material properties and contact geometry, in adhesive and deformation friction conditions,
and when both act together.

Two further points can usefully be introduced before proceeding with this review. The
real contact stress p_ in equation (A3.1) is the natural quantity to be part of a friction law,
but in practice it is the nominal stress, the load divided by the apparent, or nominal, contact
area A_, which is set in any given application. In Chapter 2, this stress has been written o,.
The first point is that, from load force equilibrium, the ratio of o, to p, is the same as the
ratio of the real to apparent contact area (A JA,):

= (A3.3a)
Py

The second point is that, in Chapter 2, o, is normalized with respect to some shear flow stress
k of the work or chip material. The dimensionless ratios p /k and s/k can be introduced into
equation (A3.1) and further p /k eliminated in favour of o, /k by means of equation (A3.3a):

(s/k) (s/k)

’Lla — —4
(/) (o,/k)

A

r

An

(A3.3b)
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In the following sections, a view of how sliding friction depends on material properties,
contact geometry and intensity of loading is developed, by concentrating on how p /k and
AJA, vary in adhesive and deformation friction conditions. A more detailed account of
much of the contact mechanics is in the standard text by Johnson (1985). Reference will
be made to this work in the abbreviated form (KLJ Ch.x).

A3.2 The normal contact of a single asperity on an
elastic foundation

As a first step in building up a view of asperity contact, consider the normal loading of a
single asperity against a flat counterface. At the lightest loading, the deformation may be
elastic. At some heavier load, plastic deformation may set in. The purpose of this section
is to establish how transition from an elastic to a plastic state varies with material proper-
ties and asperity shape; and what real contact pressures p, are set up.

A3.2.1 Elastic contact

Figure A3.2 shows asperities idealized as a sphere or cylinder of radius R, or as a blunt
cone or wedge of slope S, pressed on to a flat. The dashed lines show the asperity and flat
penetrating each other to a depth J, as if the other was not there. The solid lines show the
deformation required to eliminate the penetration. How p, varies with the contact width 2a,
or with §; and with R or 3; and with Young’s modulus E | and E, and Poisson’s ratio v, and
v, of the asperity and counterface respectively, is developed here.

The contact of an elastic sphere or cylinder on a flat in the absence of interface shear is
the well-known Hertzian contact problem. A dimensional approach gives insight into the
contact conditions more simply than does a full Hertzian analysis.

In the left-hand part of Figure A3.2, the asperity is shown flattened by a depth 6, and
the flat by a depth 6,, in accommodating the total overlap ¢ and creating a contact width
2a. From the geometry of overlap, supposing 2a to be a fixed fraction of the chordal length
2a, and when a, << R,

ag az
5=6,+6,= o (A3.4)
2R 2R

The surface deformations in the asperity and flat cause sub-surface strains. In the asper-
ity, these are in proportion to the dimensionless ratio 6,/a and in the flat to 6,/a. When the

Fig. A3.2 Models of elastic asperity deformation
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Table A3.1 Elastic contact parameters, from Johnson (1985, Chs 4 and 5)

Asperity peak shape ¢, eqns (A3.8) and (3.9) P Ta) P/ T/

max- max-

Spherical 0.42 2.6 6.2
Cylindrical 0.39 22 5.6
Conical 0.50 1.6 32
Wedge-like 0.50 1.0 2.0

asperity and flat obey Hooke’s law, the mean contact stress p, will increase in proportion
to the product of Young’s modulus and strain in each:

from the asperity’s point of view,  p e E(5,/a)

(A3.5)
from the flat’s point of view, P, o< E,(6,/a)
Combining equations (A3.4) and (A3.5) gives
p, = cE*(alR) (A3.6)

where 1/E* = (1/E+1/E,) and the constant of proportionality ¢ requires the full Hertz
analysis for its derivation. The full analysis in fact shows that the proper definition of E*
involves Poisson’s ratio:

1 1 - v]2 1 - v2

= + 2 (A3.7)

E* E, E,

and ¢ depends on whether the circular profile of radius R represents a spherically or a
cylindrically capped asperity (Table A3.1).

Similarly, the pressing together of two spherical or two cylindrical asperities with paral-
lel axes, of radii R; and R,, creates a normal contact stress p,:

p, = cEXa/R*) where 1/R* = 1/R, + 1R, (A3.8)

The elastic contact of a wedge or cone on a flat (right-hand part of Figure A3.2(a))
generates a contact pressure p, (KLJ Ch. 5):

p,=cE* tan (A3.9)

where c is also given in Table A3.1. The quantities (a/R*) and tan B can be regarded as
representative contact strains. Their interpretation as mean contact slopes will be returned
to later. As they increase, so does p..

A3.2.2 Fully plastic contact

Figure A3.3 shows a wedge-shaped asperity loaded plastically against a softer (left) and a
harder (right) counterface, so that it indents or is flattened. The dependence of p, on asper-
ity slope B and shear flow stress k of the softer material is considered here, by means of
slip-line field theory (Appendix 1.2).

In each case, the region ADE is a uniform stress region and the free surface condition
along AE requires that p, = k. Region ABC is also uniformly stressed. Normal force equi-
librium across AC gives
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Pr=Pytk (A3.10)
Slip-line EDBC is an o-line, so
Py =Py + 2ky = k(1 + 2y) (A3.11)

The angle y is chosen to conserve the volume of the flow: material displaced from the
overlap between the flat and the asperity must re-appear in the shoulders of the flow, but
for small values of 3, w = n/2. This, with equations (A3.11) and (A3.10), gives

p, = 2k(1 + 7/2) ~ 5k (A3.12)

Fig. A3.3 Plastic indenting by, and flattening of, wedge-shaped asperities

A3.2.3 The transition from elastic to plastic contact

The elastic and plastic views of the previous sub-sections are brought together by non-
dimensionalizing the contact pressures p, by k. In Figure A3.4(a), the elastic and plastic
model predictions are the dashed lines. The solid line is the actual behaviour. Departure
from elastic behaviour first occurs in the range 1 < p /k < 2.6, at values of (E*/k)(a/R* or
tanf) from 2 to 6.2. The values depend on the asperity shape: they are the last two columns
in Table A3.1.

The fully plastic state is developed for (E*/k)(a/R* or tanf) greater than about 50. p /k
continues to increase at larger deformations than this due to strain hardening.

ff— Equations A3.8/A3.9 1or %" (& ortanp) =
Ar
= Equation A3.12 -
e _/_q__ ™ An 5 25 50
k r \
al 05
/ |“I /
2+ Elastic-plastic —&— Fully
2 R.; plastic
Al i 1 1 "I i L 1
a 20 40 B0 4] 1 2 3
£ i
< (§ortanft) %

{a) i)

Fig. A3.4 (a) Real contact pressure variation with asperity deformation severity; (b) the dependence of degree of
contact on intensity of loading, in the absence of sliding
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A real contact area A, is associated with a surrounding nominal contact area A . Figure
A3.4(a) can be used with equation (A3.3a), to map how A /A increases with o /k. The
result is shown in Figure A3.4(b) for different values of (E*/k)(a/R* or tanf).

A3.3 The normal contact of arrays of asperities on an
elastic foundation

In the previous section, loading a single asperity was considered. When all the contacts
between two surfaces have the same half-width a, Figure A3.4(b) can be used directly to
predict the degree of contact from o, /k. However, on real surfaces, asperities have random
heights and are not loaded equally. The effect of this on the use of Figure A3.4(b) is the
first point considered in this section. In Figure A3.4(b), predictions are only drawn for
AJA_ <0.5: the second point considered in this section is what happens at higher degrees
of contact, when asperity stress fields start to interact.

A3.3.1 Loading of random rough surfaces

Figure A3.5 shows the loading of two rough flat surfaces against a smooth flat counterface.
In case (a) all the asperities on the rough surface are identical, imagined as spherical caps
of radius R, and are shown in contact with the counterface. In case (b), the same asperities
have been shifted in a random manner normal to the surface, so that the peaks have a
random distribution o of heights about their mean height. This situation is the most simple
that can be pictured, to make the point that an increase of load in case (a) causes the load
per contact, the half-width a and the stress severity to increase. However, in case (b), the
number of contacts can also increase, so that the load per contact and the severity of stress
will increase less slowly with load.

The situation of Figure A3.5(b) was considered by Greenwood and Williamson (1966),
supposing the contact stresses to be elastic, and is reproduced in (KLJ Ch. 13). Provided
that the number of asperities in contact is a small fraction of the total available (this means
in practice that A JA < 0.5), the number of contacts grows almost in proportion to the load,
so on average the load per contact is almost independent of load. The average real contact
pressure p, is

.= (03 t0 0.4)E*V o /R (A3.13a)

and is a function only of E* and the rough surface finish. Compared with equations (A3.8)
and (A3.9), V o /R is seen as the measure of mean asperity strain or equivalent slope.

Wiunit area Wiunit area
N ]
-
A
- .
e Hhy 7 {F34¢
P P P P Pa B

(a) {b}

Fig. A3.5 (a) A regular and (b) a random model rough surface loaded on to a flat
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Fig. A3.6 (a) The dependence of A/A, on o, /k for different degrees of roughness on an elastic foundation; (b) rigid
plastic compression of ridge-shaped asperities

Indeed, later analyses of rough surface elastic contact have replaced V o /R by Aq, the
RMS slope of the rough surface. In non-dimensional form:
Py E*
=c A, (A3.13b)
k k

The severity index (E*/k) Aq, more commonly called the plasticity index ¥, may be used
with Figure A3.4(b) to determine the degree of contact of a rough loaded surface.

A3.3.2 Loading at high degrees of contact

As A /A increases above 0.5, even for a randomly rough surface, the availability of new
contacts becomes exhausted. A load increase will no longer cause a proportional increase
in the number of contacts, but will cause increased deformation of existing contacts. A /A
will no longer increase in direct proportion to o, /k. Figure A3.6(a) extends Figure A3.4(b)
to higher values of o, /k and A /A_ : note the rescaling of o, /k to a log base. At one extreme
(¥ = 2), the displacement of material as the surfaces are brought together is taken up by
elastic compression. In this example, full contact is reached at o, /k = 2. At the other
extreme of fully plastic flow (¥ = 50 or more), material displaced from high spots reap-
pears in the valleys between contacts. Figure A3.6(b) represents a model situation of the
plastic crushing of an array of wedge-shaped asperities. The material displaced from the
crests of the array by the counterface is extruded into the ever-diminishing gap between
the contacts. Slip-line field modelling suggests that, by the stage that the degree of contact
has risen to 0.8, the hydrostatic stress beneath the contacts has risen from = 4k (for well
separated contacts) to = 9k: then o, /k = 8 (Childs, 1973).

A3.4 Asperities with traction, on an elastic foundation

Section A3.3 considered real contacts’ ability to support load in the absence of sliding.
When shear stresses due to sliding are added to the stresses due to loading, contacts that
under load alone are elastic may become plastic; contacts that are already plastic will be
overstressed and collapse. These are the sub-topics of this section.
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Fig. A3.7 Asperity state of stress dependence on surface shear and plasticity index

A3.4.1 Contact stress regimes under sliding conditions

The stressing of elastic spheres and cylinders loaded against flats, without and with slid-
ing, is reviewed in detail in (KLJ Chs. 4 and 6). Without sliding, the largest shear stress
Toax Occurs from 0.48a to 0.78a below the centre of the contact. With sliding, if u, < 0.25
to 0.3, 7., is not changed in size by sliding, but the position where it occurs moves
towards the surface. For u, > 0.25 to 0.3, 7, occurs at the surface and its size rises
proportionally to u,. The constant of proportionality depends on whether a sphere or a

cylinder is being loaded:
Toax = (1.27 t0 1.5)u, p,. (A3.14)

These observations may be applied to the contact of random rough surfaces. Figure
A3.7 shows the state of stress (elastic, elastic—plastic or fully plastic) to be expected for
different combinations of plasticity index ¥ and s/k. When s/k = 0, the transition from elas-
tic to elastic—plastic flow occurs for ¥ = 5 to 6; fully plastic flow commences for ¥ = 50
to 60. These values are the same as the transition values of (E*/k)(a/R*) shown in Figure
A3.4(a).

As s/k increases, the elastic boundary is not altered until s/k reaches 0.67 to 0.78. For
larger values, a purely elastic state does not exist. Thus, in Figure A3.7, the elastic region
is capped at these values. (They are derived from equation (A3.14), by noting that u, = s/p,
and that plastic flow occurs once 7., = k.)

How the elastic—plastic/fully plastic boundary is influenced by s/k is not well estab-
lished theoretically. The boundary drawn in Figure A3.7 is a little speculative.

A3.4.2 Junction growth of plastic contacts

A real area of contact A, loaded in the absence of sliding, has 7, . = k within it if it is in

a plastic state. The addition of a sliding force F to the contact, creating an extra shear stress
FIA,, will, if A, does not increase, result in an increased 7, . In fact, A grows to prevent
T ax €Xceeding k. An alternative view of the cause of this junction growth is that, in the
absence of sliding, the material surrounding a plastic contact helps to support the load by
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Fig. A3.8 The dependence of A/A, and p on o,/k and s/k, for hard ridges of slope 3 = 5° sliding against a soft flat

imposing a hydrostatic pressure on the deviatoric stress field. Its size, from slip line field
modelling, p, in equation (A3.11) with 2y = 7, is about 4k. The addition of surface shear
on the contact reduces the surrounding’s ability to support the load; in other words, the
hydrostatic pressure component supporting the load reduces.

How the slip-line fields of Figure A3.3 become modified by sliding have been studied
by Johnson, for the case of a soft asperity on a hard flat (KLJ Ch. 7), and by Oxley (1984)
for hard wedges ploughing over a soft flat. The conclusion of both, stemming from the
connection of the plastic flow field beneath the contact to the free surface where p = £, is
that, for s/k close to 1, sliding causes p, to fall from around 5k to 1k. For a constant load,
this causes a fivefold increase in real contact, at least while asperities are sufficiently far
apart not to interact with one another.

Figure A3.8 shows Oxley’s prediction of how A JA and u depend on o /k, for sliding
hard wedge-shaped asperities, of slope g = 5°, over a soft flat, at different levels of surface
shear s/k (the dependence of A /A, on o, /k in the absence of sliding is shown by the dashed
line). It has been chosen because the situation of hard ridges sliding on a soft flat may more
realistically represent the condition of a rake face of a cutting tool sliding against a chip
than soft asperities sliding on a smooth hard flat. While A /A < 0.5, u is independent of
o /k, but as A JA_ approaches 1, u reduces with increasing o, /k.

Although Figure A3.8 is only one example, it illustrates three general points. (1) The
hydrostatic pressure within a sliding contact is predicted by slip-line field modelling to be
less the larger is s/k, but while it is controlled by the free surface boundary condition, it
never becomes less than k. As a result, 4 never becomes greater than 1. (2) The reduction
in hydrostatic pressure, and hence the junction growth and 4, is very sensitive to s/k when,
as in Figure A3.8, s/k is large (close to 1). (3) Once A /A, = 1, u is no longer independent
of, but becomes inversely proportional to, load.

A3.5 Bulk yielding

When an asperity is supported on an elastic bulk, the only way to accommodate its plastic
distortions is by flow to the free surface. It is this, in the previous section, which ensured
that p_ never became less than k. When the bulk is plastic, asperity plastic distortion can be
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accommodated by flow into the bulk. Asperity hydrostatic stress and p, then depend on the
state of the bulk flow field: it is possible for p, to be less than k. If this happens, the degree
of contact becomes greater than considered previously. How it depends on the nominal
contact stresses o, and 7, and on the hydrostatic stress in the bulk field, will now be devel-
oped, still for conditions of plane strain and a non-hardening plastic material to which slip-
line field theory can be applied.

Figure A3.9(a) is adapted from Sutcliffe (1988). It shows a combined asperity and bulk
slip-line field. The bulk field is described by the hydrostatic pressure py and slip-lines
inclined at ¢, to the counterface. The asperity fields ADBC, A’D’B’C’ around the real
contacts AC, A’C” are connected to the bulk by DEC, D’E’C". It is supposed that p,,
beneath the asperities, has been reduced so much by the influence of pj; that the stresses
on AD, A’D’ are no longer sufficient to cause a plastic state to extend to the free surface:
region ADEFE’C’ has become rigid. For this to be the case, at least for high values of real
surface shear stress s (s/k = 1), the results of the previous section suggest p /k < 1. How
p/k — and hence (with o, /k) A /A — depends on pg and {, . can be determined from the
slip-line field and its limits of validity.

However, it is simpler to consider the overall force balances between the bulk field, the
nominal contact stresses o, and 7, and the real contact stresses p, and 5. Force equilibrium
between Pps k, gbulk and o, and 7 creates the relations:

7 = kcos 28, }

o, =pg+ k sin 2§’bulk

(A3.15a)

By elimination of {, ., a relation is formed between p; and o, and 7:

2\ %
p fo T
SEo o= (A3.15b)
k k k
In Figure A3.9(b) the dashed lines show combinations of (z/k) and (o, /k) consistent with
asperities existing on a bulk plastic flow in which py/k =0 or 0.5. The region marked ‘elas-

tic bulk’ is that for which (#/k) and (o, /k) are associated with an elastic bulk unless pp/k <
0. That marked ‘plastic bulk’ is plastic if pg/k > 0.5.
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Equilibrium between the forces of the nominal and real contact stresses gives

T A )
= (A3.16a)
kA k

Gn Ar p]‘
= _ (A3.16b)
kK Ak

According to equation (A3.16a), A /A = t/k as s/k = 1. From equation (A3.16b), if A JA
< (o,/k), p/k > 1. However, the slip-line field is not valid if p/k > 1: flow will break
through to the free surface and p /k will be limited to 1. Thus, for a plastic asperity on a
plastic foundation, when s/k is close to 1, AJA  will equal (7/k) when (t/k) > (o, /k), and
(o,/k) when (o, /k) > (7/k), up to its maximum possible value of 1. Contours of A /A, =1,
0.9, 0.8, satisfying this, are added to Figure A3.9(b).

Figure A3.9(b) shows, firstly, the levels of dimensionless hydrostatic stress, pp/k,
needed for a combination of (z/k) and (o, /k) to be associated with a bulk plastic flow. If
there is bulk plasticity, it then shows how degrees of contact much larger than when the
bulk remains elastic (Figure A3.8a) can be generated at values of (o, /k) < 1. In these condi-
tions the ratio of friction to normal stress (the friction coefficient) becomes greater than 1.

A3.6 Friction coefficients greater than unity

In metal machining, and elsewhere, friction coefficients > 1 have been measured in condi-
tions in which asperities have been plastic but (z/k) and (o, /k) have been too low for bulk
plastic flow to be a possibility. What could account for this, that has not been considered
in the previous sections?

Work hardening offers two possibilities. First, in the same way as it changes the hydro-
static pressure distribution along the primary shear plane in metal machining (Figures 2.11
and 6.9(b)), it can modify the pressure within a deforming asperity to reduce the mean
value of p_ to a value less than k. However, there is likely only to be a small effect with the
rake face asperities in machining, already work hardened by previous deformations. A
second possibility imagines a little work hardening and high adhesion conditions, leading
to the interface becoming stronger than the body of the asperity. Unstable asperity flow,
with contact area growth larger than expected for non-hardening materials, has been
observed by Bay and Wanheim (1976).

There is a second type of possibility. In the previous sections it has been assumed that
an asperity is loaded by an amount W by contact with a counterface and that W does not
change as sliding starts. For example, in Section 3.4.2 on junction growth of plastic
contacts, it is written that the addition of a sliding force F to a real contact area creates an
extra shear stress F/A, which, if A, does not increase, will cause 7, to increase. This
assumes that the stress W/A_ does not decrease.

If W is constant, the extra force F causes the two sliding surfaces to come closer to one
another: it is this that enables A, to grow. Green (1955) pointed out that, in a steady state
of sliding (between two flat surfaces), the surfaces must be displaced parallel to one
another. In that case any one junction must go through a load cycle. Figure A3.10 is based
on Green’s work. With increasing tangential displacement, asperities make contact, deform
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and break. The load rises, passes through a maximum and falls, but the friction force rises
and stays constant until failure. If, at any one time, there are many contacts in place, each
at a random point in its life cycle, an average friction coefficient will be observed that is
obtained from the areas under the curves of Figure A3.10, up to the point of failure. Green
argued that when conditions were such that junctions failed when the load dropped to zero,
the friction coefficient would be unity. Higher coefficients require junctions to be able to
withstand tensile forces, as shown. The exact value of the friction coefficient will depend
on the exact specification of how the surfaces come together and move apart; and on the
junctions’ tensile failure laws. Quantitative predictions do not exist.

References

Bay, N. and Wanheim, T. (1976) Real area of contact and friction stress at high pressure sliding
contact. Wear 38, 201-2009.

Childs, T. H. C. (1973) The persistence of asperities in indentation experiments. Wear 25, 3—16.

Green, A. P. (1955) Friction between unlubricated metals: a theoretical analysis of the junction
model. Proc. Roy. Soc. Lond. A228, 191-204.

Greenwood, J. A. and Williamson, J. B. P. (1966) Contact of nominally flat surfaces. Proc. Roy. Soc.
Lond. A295, 300-319.

Johnson, K. L. (1985) Contact Mechanics. Cambridge: Cambridge University Press.

Oxley, P. L. B. (1984) A slip line field analysis of the transition from local asperity contact to full
contact in metallic sliding friction. Wear 100, 171-193.

Sutcliffe, M. P. (1988) Surface asperity deformation in metal forming processes. Int. J. Mech. Sci.
30, 847-868.



Appendix 4

Work material: typical
mechanical and thermal
behaviours

This appendix holds data that support Chapters 3 and 7, in the first instance. In Chapter 3,
reference is made to yield and strain hardening behaviours of aluminium, copper, iron,
nickel and titanium alloys, as determined by room-temperature, low strain rate, compres-
sion testing. Information on this is given in Section A4.1. The thermal conductivity, heat
capacity and diffusivity ranges of these alloys, and their variations with temperature — also
used in Chapter 3 to estimate temperature rises during machining — are tabulated in Section
A4.2. In Chapter 7 the idea was developed that it is not the strain hardening behaviour of
the work materials at room temperature and low strain rates that is needed. What is impor-
tant for predicting chip formation in machining is the strain hardening behaviour at the
temperatures and strain rates that actually occur. Data on this are presented in Section
A4.3. This appendix is also a source for applications studies such as are described after
Chapter 7.

A4.1 Work material: room temperature, low strain rate,
strain hardening behaviours

Figures A4.1 to A4.3 contain representative strain hardening data for commercially pure
samples of aluminium, copper, iron, nickel and titanium, and their alloys. The data have
been obtained either from plane strain compression tests or from measuring the depen-
dence of yield stress of sheet samples upon reduction of their thickness through cold
rolling. In every case, the variation of shear stress, k, with shear strain, ¥, is shown. k has
been calculated from o/V 3 and y from £V 3. The following is a brief commentary on the
figures.

Copper and aluminium alloys (Figure A4.1)

The copper and copper alloys (left-hand panel) are all initially in the annealed state. They
show the low initial yield and large amount of strain hardening typical of these face centred
cubic metals. The aluminium and aluminium alloys (right-hand panel) show a similar
behaviour, but generally at a lower level of stress. Some aluminium alloys can be hardened



376 Appendix 4

600p  32CuBBNiiFe 800k

400 -~ 400
= )
I8 [
= =
X =

200 | cu 200

70Cu30Zn
1 [ | 1 I
0 1.0 2.0 0 1.0 2.0

Shear strain

Fig. A4.1 Shear stress-strain behaviours of some copper and aluminium alloys

by ageing, either at room temperature (T4 temper) or above room temperature (T6). The
examples of A12024 (an alloy with 4Cu) and A16061 (an alloy with 0.5Mg0.5Si) show the
extent of hardening by this means. It could be argued that the 32Cu—66Ni alloy shown in
the figure is more properly a nickel alloy: it is included here because Figure A4.3, on
nickel alloys, is concerned more with Ni—Cr heat resistant alloys.

Ferrous alloys (Figure A4.2)

The left-hand panel contains data for carbon and low alloy steels as received from the hot
rolling process. In this state their microstructure is a mixture of ferrite and pearlite (or, for the
high carbon steel, pearlite and cementite). In contrast with the copper and aluminium alloys,
these body centred cubic materials show a large variation in initial yield stress and, relative to
the initial yield, less strain hardening. The right-hand panel shows two austenitic steels, a
stainless steel (18Cr8Ni) and a high manganese steel (18Mn5Cr). These face centred cubic
alloys show high strain hardening, both absolutely and relative to the body centred steels.

Nickel and titanium alloys (Figure A4.3)
All the nickel alloys (left-hand panel) shown in this figure are for high temperature, creep
resistant, use. Commercially they are known as Inconel or Nimonic alloys. They are face
centred cubic, with initial yield stress larger than copper alloys and large amounts of strain
hardening. The titanium alloys (right-hand panel) are hexagonal close packed (h.c.p.) or
mixtures of h.c.p. and body centred cubic. Their initial yield and strain hardening behav-
iours are intermediate between the face centred and body centred cubic materials.
Further elementary reading on metal alloys, their mechanical properties and uses can be
found in Rollason (1973), Cottrell (1975) and Ashby and Jones (1986).

A4.2 Work material: thermal properties

Tables A4.1 to A4.3 contain information on the variation with temperature of the thermal
conductivity, heat capacity and diffusivity of a range of work materials. The main single
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Table A4.1 Thermal conductivity [W/mK] of some work material groups

Alloy system

Temperature [°C]

0 200 400 600 800
Iron and steel
pure iron* 85 64 50 38 31
0.04-0.25C 52-60 48-54 42-45 35-37 29-30
0.25-0.8C 51-52 4648 39-42 33-35 29-30
0.8-1.2C 45-51 42-46 37-39 32-33 27-29
low alloy 25-49 30-45 32-40 30-35 27-30
ferritic stainless 21-24 22-25 23-26 24-27 25-29
austenitic stainless 14-17 15-18 17-21 22-25 26-29
high manganese 14 16 19 21 22
Aluminium
pure, 1000 series 200-240 200-230 200-225 190-220 -
2000 to 7000 series 120-190 160-200 170-210
Al-Si cast alloys 170-190 170-190 - - -
Copper
pure copper* 380400 375-395 350-380 320-360 270-330
60/70Cu—40/30Zn 90-120 90-140 110-150 120-150 -
90/95Cu-10/5Sn 50-80 70-100 90-120 - -
60/90Cu—40/10Ni 20-50 30-70 45-90 60-110 -
Nickel
pure nickel* 88-94 66-73 54-62 59-67 65-74
70Ni-30Cu 22 28 34 40 46
Superalloys** 11-12.5 11-14 13-16 16-20 20-24
Titanium
pure titanium* 22 21 21 21 -
a, o~f3, B alloys 5.5-8 8-12 10-17 12.5-21 15-25
Ti-6A1-4V 6.6-6.8 8.5-9.1 10.5-12.5 13-16 16-19
*: high and commercial purity; **: including cobalt- and ferrous-base superalloys.
Table A4.2 Heat capacity (MJ/m3) of some work material groups
Alloy system Temperature [°C]

200 400 600 800

Iron and steel
pure iron, C, low alloy 3.5-3.8 4.1-4.3 4.7-5.0 5.6-5.9 6.7-7.1
ferritic stainless 3.54.1 3.8-4.3 4.3-5.0 6.0-7.1 5.8-6.2
austenitic stainless 3.54.5 4.2-4.7 4.5-4.8 5.2-5.5 5.6-5.9
high manganese 39 4.6 - - -
Aluminium
pure, 1000 series 24-2.7 2.6-2.8 2.6-2.9 2.6-2.9 -
2000 to 7000 series 2.1-2.8 2.5-3.1 3.2-34 - -
Al-Si cast alloys 2.3 2.6 2.8 - -
Copper
pure copper* 33 3.7 3.9 - -
Zn, Sn, Ni alloys 3.2-34 3.6-3.8 3.8-4.0 - -
Nickel
pure nickel* 4.1 43 4.5 4.9 5.5
70Ni-30Cu 3.8 4.0 4.2 4.6 5.2
Superalloys** 3.3-3.5 3.5-3.6 3.7-3.8 4243 4548
Titanium
pure Ti*, o, o, Balloys  2.3-2.5 2.55-2.75 2.75-3.05 3.0-34 3.3-3.8

*: high and commercial purity; **: including cobalt- and ferrous-base superalloys.



Strain hardening behaviours at high strain rates 379

Table A4.3 Diffusivity (mm?/s) of some work material groups

Alloy system Temperature [°C]

0 200 400 600 800
Iron and steel
pure iron* 23 15 10 6.5 4.5
0.04-0.25C 14-16 11-13 8.6-9.3 6.1-6.4 4243
0.25-0.8C 14-15 11-12 8.1-8.7 5.7-6.1 4243
0.8-1.2C 12-14 10-11 7.6-8.1 5.6-5.7 3.9-4.2
low alloy 7-13 7-11 6.6-8.2 5.2-6.1 3.9-43
ferritic stainless 5.1-6.8 5.1-6.5 4.6-6.0 3.4-45 4.0-5.0
austenitic stainless 3.2-3.7 3.5-4.0 3.84.4 4.0-4.8 44-5.2
high manganese 3.6 3.5 - - -
Aluminium
pure, 1000 series 78—-100 75-90 70-80 73-76 -
2000 to 7000 series 52-75 55-72 50-65 - -
Al-Si cast alloys 75-85 65-75 - - -
Copper
pure copper* 115-120 100-110 90-100 - -
60/70Cu—40/30Zn 25-35 28-35 27-33 25-30 -
90/95Cu-10/5Sn 15-25 20-25 23-30 - -
60/90Cu—40/10Ni 6-15 8-18 12-22 - -
Nickel
pure nickel* 21-23 15-17 12-14 12-14 12-14
70Ni-30Cu 74 7.0 8.1 8.7 8.9
Superalloys** 2.8-3.8 3.1-3.9 3542 3.8-4.7 42-53
Titanium
pure titanium* 9.5 7.6 6.8 - -
o, a-f, B alloys 2.2-5.0 2.7-5.5 3.2-6.0 37-64 3.7-6.6
Ti-6Al-4V 2.2-3.0 2.7-3.5 32-38 3.8-4.2 3.8-4.7

*: high and commercial purity; **: including cobalt- and ferrous-base superalloys.

source of information has been the ASM (1990) Metals Handbook but it has been neces-
sary also to gather information from a range of other data sheets.

A4.3 Work material: strain hardening behaviours at high strain
rates and temperatures

Published data from interrupted high strain and heating rate Hopkinson bar testing (Chapter

7.4) are gathered here. Stress units are MPa and temperatures T are °C. Strain rates are s~

A4.3.1 Non-ferrous face centred cubic metals

For T from 20°C to 300°C, strain rates from 20 s~! to 2000 s~! and strains from O to 1, the

following form of empirical equation for flow stress, including strain path dependence, has
been established (Usui and Shirakashi, 1982)

__B M . m N

o=Ale ™" )(m Jstrainpath m dg (Ad.1a)
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For the special case of straining at constant strain rate, this simplifies to

_ B M+mN
G=A |e T+273)(10% l (Ad.1b)

Coefficients A, B, M, m and N for the following annealed metals are as follows.

Metal A B M m N
Aluminium 107 153 0.057 0.064 0.3
a-brass 720  56.7 0.024 0.06 0.5

A4.3.2 Pearlitic carbon and low alloy steels

In early studies, an equation similar to equation (A4.1a) was used but for a changed expo-
nential temperature term and a term dependent on temperature within the strain path inte-
gral. Later, this was developed to

m N é -mIN N
1000 1000 [ 1000 & (A%2

to give a particularly simple form in constant strain rate and temperature conditions:

- M
- G=A|-L_|&V (A4.2b)
1000

A range of measured coefficients is given in Table A4.4, valid for T from 20°C to 720°C,
strain rates up to 2000 s~ and strains up to 1.

Table A4.4 Flow stress data for annealed or normalized carbon and low alloy steels

Steel Coefficients of equation (A4.2)
0.1C A = 880e ~0-0011T 4 1g7e ~0.00007(T-150)2 | 108e ~0.00002(T-350)% | 78 ~0.0001(7-650)2
[1]* M =0.0323 +0.0000147 N = 0.185¢ 000077 1 0, 055¢ -0.000015(7-370)*

a =0.00024 m =0.0019

045C A =1350e 0001T 4 167¢ *0-00006”*275)22 M =0.036
[2]* N =0.17e 00017 4 (0 09¢ ~0-000015(T=340)" ;5 = 0.00014  m =0.0024

038C A = 1460e ~00013T 4 196 ~0.000015(T-400)> _ 39 ~0.01(7-100)?
—Cr-Mo M =0.047 N = 0.162¢ 00017 1 0,092 ~00003(T-380>

[3]* a = 0.000065 m = 0.0039

033C A = 1400e —00012T 4 177 -0.000030(T-360)% _ 1 ()7 ~0.001(7-100)2

-Mn-B M =0.0375 + 0.000044T N = 0.18e-000127 4 ( 098¢ ~0.0002(T—440)2
[3]* a = 0.000065 m = 0.00039

0.36C A = 1500e —0-0018T 4 3g()e ~0.00001(T-44572 | | () ~0-0002(T-570)>
—Cr-Mo M =0.017 + 0.000068T N = 0.136¢ ~0-0012 4 ( (7¢ ~0.0002(7-465)2
Ni[4]*  a=0.00006 m=0.0025

*[1] Maekawa et al. (1991); [2] Maekawa (1998); [3] Maekawa et al. (1996); [4] Childs et al. (1990)]
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A4.3.3 Other metals

The behaviour of some austenitic steels and titanium alloys has also been studied. An
18%Mn-18%Cr steel’s flow stress behaviour has been fitted to equation (A4.2b), with
(£/0.3) — replacing & —, with coefficients (Maekawa et al. 1994a)

A = 2010000187
M= 0.004760'0036T N = 0.3466_0'0008T +0.1 16_0'000032(T_375)2

A different form has been found appropriate for an austenitic 18%Mn-5%Cr steel, with
negligible strain path dependence (Maekawa et al. 1993):

G = 3.028 000714145400/(273 + T) + 58.4 + a(860 — T)E"]
where, for £<0.5a +0.87,b=0.8;£>0.5a=0.57, b= 0.2

Other forms have been given for a Ti-6Al-4V alloy (Usui ez al. 1984) and a Ti-6Al-6V-2Sn
alloy (Maekawa et al. 1994b). For the Ti-6Al-4V alloy:

& = AE/1000)eT(Z/1000y"{c + [d + j i path ©
with A = 2280e-0-00155T
M =0.028 N=0.5 a = 0.0009 m=-0.015 ¢ =0.239 d=0.12

The data for the Ti-6Al-6V-2Sn alloy were fitted to equation (A4.2a) with
A = 2160e0-0013T } 29—0.00013(T-80)* | 7 §¢-0.00014(T-300)* | 47-0.0001(7-700)>

—aT/N, ( E /1 OOO)_’”/NdE_]N }

M =0.026 + 0.0000T N = 0.18¢~0-00167 1 (0] 5¢-0-00001(7-700)?
a=0.00009 m=0.0055
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Appendix 5

Approximate tool yield and
fracture analyses

This appendix supports Section 3.2. The material of Section AS.1 is also referred to in
Appendix 1.2.4.

A5.1 Tool yielding

The required tool hardnesses to avoid the yielding shown in Figure 3.19 have been
obtained by a method due to Hill (1954).The requirement that the tool does not yield at its
apex, together with force equilibrium in the tool, limits the difference between the rake
face contact stress and the zero stress on the clearance face and hence places a maximum
value on the allowable rake face contact stress.

With the cylindrical polar coordinate system shown in Figure A5.1(a), in which the
origin is at the tool apex and the angular variable 6 varies from O on the rake face to 8 on
the clearance face, and in which the stresses o, o, and 7 are positive as shown, the radial
and circumferential equilibrium equations are

do, dr
r——+(0,—0p +
dr de

=0 (AS.1a)

(a) (b)

Fig. A5.1 Coordinate systems and definitions for the analysis of tool (a) yielding and (b) fracture
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dr doy
+21+——=0 (A5.2a)
dr de

r

At the apex, where r = 0, these become

dr
(0,— 0y + =0 (A5.1b)
de
doy
21+ ——=0 (A5.2b)
de

To avoid yielding of the tool, the shear yield stress of which is k,,
1
—(0g— O'r)2 + 2 < kt2 (A5.3)
4

If 7 is written as a fraction of k,
7=k, sin 2¢ (A54)

where ¢ varies between * /4, it may be shown, after substituting (o, — o) from equation
(AS5.1b) into equation (AS5.3), that equation (AS5.3) leads to a limitation of the rate of
change of ¢ with 0

d¢

de

<1 (AS.5)

Furthermore, an expression for the contact stress o, on the rake face relative to the value
zero on the clearance face is found by integrating equation (A5.2b). After dividing both
sides of equation A5.2b by k

work
o, k
P -2 [Psin2¢de (A5.6)
k 0
work work
The largest value of o, /k,_, is obtained when the integral takes its largest negative value.

Figure (A5.2) shows the variation of ¢ with 6 that gives that largest negative value: at 8 =
B, ¢ =0; and at 8 = 0, ¢ is determined by the friction contact stress on the rake face. In
Chapter 3 (Figure 3.18) extreme examples of friction stress were considered, up to k
during steady chip creation, but zero at the start of a cut:

¢p=9,=0, 7:=0 (A5.72)
1 ( kwork

work

. =k (A5.7b)

— “work

p=¢,=— — sin™!
2 K,

For 0 < 8 < B3, ¢ takes the smallest values allowed by equation (AS.5). Figure A5.2(a) is for
the case 8> /2 - ¢. If B < 7/2 — ¢, Figure AS5.2(b) applies. Integration of equation (A5.6)
for the dependence of ¢ on 8 shown in Figure A5.2(a) or (b) as appropriate gives a maximum

value of o /k, . depending on k/k ., and B. Inversely, for a specified o, for example
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- aMdr

—-
a0 o 0 P +:Ll.f2
q’{) ¢’Q
-4 -7 i4 L
(@ (b
Fig. A5.2 Variations of ¢ with 8 that maximize G, /K
Sk yyom O 2.5k, 4> @ minimum ratio of tool to work shear yield stress to avoid yield can be

derived. Taking the tool’s Vickers Hardness HV to equal 5k, relations between tool hard-
ness, k.. and S to avoid tool yielding can be derived. Thus, the HV/f relations dependent
on k. shown in Figure 3.19 are obtained.

A5.2 Tool fracture

Figure A5.1(b) shows a wedge-shaped tool with a line force R per unit length acting at a
friction angle A at a distance d from the apex of the wedge. This force is equivalent to a
force R acting at the apex, with a moment M = Rd. A classical result of stressing a wedge
(Coker and Filon, 1931) is that on the rake face the tensile stress at a distance r from the
apex is

B B B ( B
cos —sin | A + — sin — cos |A + —
2Rl 2 2 2 2 ]
0,=- -
r B+ sin g [B—sin
2M sin 8
+ (A5.8)

2 BcosB—sinf

The sizes of tool transverse rupture stress (TRS) relative to the k., required to avoid fail-
ure, and which are presented in Figure 3.19, have been obtained by replacing the distrib-
uted tool rake face contact stresses by their equivalent line force and moment at the apex,
substituting these in equation (A5.8) and differentiating with respect to r to obtain the posi-
tion and hence the value of the maximum tensile stress. It is supposed that a tool will frac-
ture when the maximum tensile stress is the TRS. The results presented in Figure 3.19 are
for the case of a tool entering a cut, assuming that 7,= 0 and o, is constant and equal to
Sk.,on OVer the contact length / between the work and tool. It is found for this example that
the maximum tensile stress occurs at r = /. To replace the distributed stress by the equiva-
lent line force and moment is only marginally justifiable: the treatment is only approxi-
mate.
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Appendix 6

Tool material properties

More detail is given here than in Chapter 3 of the materials that make up the main tool
groupings.

A6.1 High speed steels

The high speed steels are alloy steels with about 0.75% to 1.5% carbon (C), 4% to 4.5%
chromium (Cr), between 10% and 20% tungsten (W) and molybdenum (Mo); they can also
have vanadium (V), up to 5%, and cobalt (Co), up to 12%. They are strengthened by heat-
ing to high temperature (around 1150 to 1250°C), just below the solidus; then quenching
in two stages (to avoid thermal cracking) — to the range 500°C to 600°C and then to room
temperature; and then tempering typically between 500°C and 560°C. Tempering causes
hardening by the precipitation of fine carbides. More details may be found in metallurgi-
cal texts such as those by Trent (1991) and Hoyle (1988).

There are two series of materials, the T series which is based on W (with no Mo), and
the M series which substitutes Mo for some of the W. There are no major technical advan-
tages of one series over the other. The choice is one of cost, varying with the availability
of these two elements. The basic grades in each series contain 0.75% to 0.85% C and 4%
to 4.5% Cr, with a small amount of V (<2%) but no Co. The addition of extra V, with extra
C as well, results in the formation of hard vanadium carbides on tempering. These increase
the alloy’s room temperature hardness and abrasion resistance but at the expense slightly
of its toughness. The addition of Co improves hot hardness, also at the expense of tough-
ness. Table A6.1 gives the nominal compositions of a range of grades.

Table A6.1 Sample compositions of some high speed steels

Grade Composition (wt. %, balance Fe)

C Cr w Mo \' Co
Tl 0.75 4 18 - 1 -
M2 0.85 4 6.5 5 -
T6 0.8 4 20.5 - 1.5 12
T15 1.5 4.5 13 -
M42 1.05 4 1.5 9.5 1 8
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Fig. A6.1 Variations of room temperature HV and TRS with (a) tempering and (b) austenitizing temperature, for a
range of high speed steels as indicated

Figure A6.1(a) shows how the room temperature Vickers Hardness (HV) of M2, T15
and M42, and the room temperature tensile rupture stress (TRS) of M2 and M42, typically
vary with tempering temperature after quenching from the recommended austenitizing
temperatures for these alloys. Figure A6.1(b) shows, for M2, how HV and TRS vary with
austenitizing temperature after tempering at 560°C. The data have been derived mainly
from Hoyle (1988), converting from Rockwell to Vickers Hardness, with additional data
from other sources. The data are presented to show the sensitivity of mechanical proper-
ties to composition and heat treatment.

Traditionally, high speed steels have been shaped by hot working. Now, powder metal-
lurgy technology is used to make high speed steel indexable inserts. HV and TRS values
are not much changed but there is evidence that fracture toughness (K| values) can be
higher for powder metallurgy than wrought products. Sheldon and Wronski (1987) give
K¢ at room temperature for sintered T6 as 30 MP m!/? whereas wrought T6 heat treated
in the same way has K, = 15 to 20 MP m'/. This paper also gives the temperature depen-
dence of TRS quoted in Chapter 3 (Figure 3.22).

A6.2 Cemented carbides and cermets

Cemented carbide and cermet cutting tools consist of hard carbide (or carbo-nitride)
grains, bonded or cemented together by up to around 20% by weight of cobalt or nickel,
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with minor additions of other metals (such as molybdenum or chromium) possible. The
hardness of the tools reduces and the toughness increases as the proportion of the metal
binder phase is increased.

Cemented carbides and cermets are manufactured by sintering. The reactions that take
place during sintering are extremely complex and the creation of good cutting tool grades
requires a close attention to detail. A comprehensive monograph has been published
(Schwarzkopf and Keiffer, 1960) and since then research reviews have appeared at regular
intervals (Exner, 1979; Gurland, 1988). However, from a user’s point of view, the elements
of cemented carbide tool development are quite clear.

The earliest cemented carbides, developed in the 1920s, consisted of tungsten carbide
(WC) cemented together by cobalt (Co). It soon became clear that this material was not
suitable for machining steels at high cutting speeds. The WC dissolved in the steel at the
temperatures generated by cutting, leading to rapid cratering of the rake face of the
cutting tool. It was found that the system titanium carbide (TiC)-Co was more chemically
resistant to steel, although cemented carbides based on TiC alone were more brittle than
WC-Co. Toughness could be recovered by adding tantalum carbide (TaC). During the
1930s, cemented carbides based on WC-TiC-TaC-Co started to be developed. Tools based
on WC-Co, suitable for cutting non-ferrous metals (and also cast iron, which does not get
hot enough in machining to trigger rapid dissolution of WC, so tool life remains deter-
mined by flank wear) are now known as K-type carbides and those based on WC-TiC-
TaC-Co, for steel cutting, as P-type. (In practice, the tantalum carbide often includes
niobium; one should then refer to Ta(Nb)C.) During the 1950s, an alternative system for
steel cutting began to be studied, based on TiC cemented mainly by nickel (Ni). These
have developed to titanium carbo-nitrides (Ti(C,N)) bonded by Ni (with minor amounts
of WC and Co), and are known as cermets. Much more detailed data are available on the
composition and properties of the K- and P-type carbides (and M-type as well — see later)
than on the cermets. The remainder of this section will concentrate mainly on the carbide
grades.

The description K-, P- and M-type carbides, although it closely relates to carbide
composition, in fact refers not to composition but to performance. An international
Standard (ISO 513, 1991) classifies cemented carbide cutting tools by type and grade.
Type refers to suitability for steel cutting (P) or non-ferrous materials (K) or to a compro-
mise between the two (M). Grade refers to whether the tool material’s mechanical proper-
ties have been optimized for hardness and hence abrasive wear resistance, or for
toughness. Wear resistance is more important than toughness for low feed, finishing cuts.
Toughness is more important for high feed, roughing or interrupted cuts. Grades run from
01 to 50, as properties change from hard to tough.

Different manufacturers achieve a particular tool performance by minor differences of
the processing route, so that there is not a one-to-one relation between a tool’s type and
grade on the one hand and its composition on the other. This is illustrated in Figure A6.2.
Each row of the figure presents data on composition, hardness and transverse rupture stress
(at room temperature) for one manufacturer’s range of tool materials, according to infor-
mation published by Brookes (1992). The first row is data from a German manufacturer,
the second is from a major international company and the third is from a Japanese
producer. Each data point in the left hand column represents the TiC-TaC and Co weight
% of one tool material (the balance is WC). What type and grade is assigned to the mater-
ial is indicated by the solid and dashed lines. The ranges of compositions giving P-,
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Fig. A6.2 Composition and mechanical property differences of cemented carbide cutting tools classified according to
1SO 513 (1991) by three different manufacturers

M- and K-types are slightly different for each producer. So are the ranges of compositions
giving the different grades.

The right-hand column shows the relation between transverse rupture stress and hard-
ness for all the grades. It can be seen that the relation depends on the carbide grain size.
All three manufacturers produce tool materials of 1 to 2 um grain size. These have the
same relation between transverse rupture stress and hardness, independent of K-, M- and
P-type. However, one set of data, in the first row, is for material of sub-micrometre
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grain size: it shows a greater transverse rupture stress for a given hardness than the
coarser grained material. Such a fine grain size is only achievable with WC-Co (K-type)
materials.

The mechanical and physical properties of commercial cemented carbide cutting tools
broadly depend on the wt. % of Co, the wt. % of TiC-TaC and the grain size of the mater-
ial. Rather than describe the material by type and grade, the remainder of this section will
describe it by these quantities. For convenience, the classification by amount of TiC-TaC
will be by whether the amount of this by weight is in the range 0-3%, 8—15% or 19-35%.
The data presented in Brookes (1992) show that very few cutting tool materials have
amounts of TiC-TaC outside these ranges.

Figure A6.3 shows that the room temperature hardness of a cemented carbide depends
mainly on cobalt content and grain size. Figure A6.4 shows that quantities such as thermal
conductivity, K, heat capacity, pC, thermal expansion coefficient, Qs Young’s modulus, E,
and thermal shock resistance, (TRS.K)/(Ea,), are most influenced by the type of carbide
present. Figures A6.2 to A6.4 are the main source of information for the cemented carbide
data presented in Chapter 3.

Such detailed information on the properties of cermets is not available in the open liter-
ature. Table A6.2 presents data for one manufacturer’s products. TiC and TiN are the major
hard phase, with WC as a minor part. Ni is the major binder metal, with Co as a minor part.
Less complete or differently presented data from other manufacturers, extracted from
Brookes (1992) are gathered in Table A6.3.

The densities of the cermets are almost half those of the cemented carbides (the densi-
ties of which, because of the high specific weight of tungsten, are around 14 000 to 15 000
kg/m? for the WC-Co types and 10 000 to 13 000 kg/m? for the high TiC-TaC-Co types).
The cermets are mainly described as P-types, although some manufacturers also recom-
mend them as K-types, but because of their limited toughness (TRS < 2.5 GPa, compared
with up to 4 GPa for fine grained WC-Co materials), none of them are recommended for
heavy duty use, above 30-grade.

W2t TiC+TaiNh)C

038
315 +
19-350

18

14 =

HV (GPa)

10

Wt % Co

Fig. A6.3 Hardness dependence on % Co and grain size, for cemented carbides
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Table A6.2 One manufacturer’s range of cermet tool materials
Wt. %
Grain
1SO Ti(CN) Ni+  size p HV TRS K E a,
code +WC Co [um] [kg/m?3] [GPa] [GPa] [W/mK] [GPa] [10°9K™]
P/K01-05 95 5 1 6800 18.1 1.3 11 410 6.7
P10-P15 86 14 1 7100 15.5 1.65 12 400 7.2
P/K05-15 89 11 <1 7000 16.5 1.65 14 410 7.6
P10-P25 85 15 <1 7000 15.2 2.0 19 390 7.4
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Table A6.3 Cermet tool materials’ data from a range of other manufacturers

Wt. %
Grain
1SO Other size P HV TRS K
code Ti(C,N) wC carbide Ni Co [um] [kg/m3] [GPa] [GPa] [W/mK]
PO1-10 50 16 20 6 8 <2 6900 16.2 1.2 20
P05-25 49 16 15 8 12 <2 7000 14.2 1.8 20
PO1-15 48 16 20 5 11 —* 7000 15.7 —* 20
P05 Total carbide: 94 Total metal: 6 —* 6100 17.2 1.8 —*
P10 Total carbide: 86 Total metal: 14 —* 7000 15.7 2.3 11
P20 Total carbide: 82 Total metal: 18 —* 7000 14.2 2.5 16
P0O1-20 Total carbide: 87 Total metal: 13 2 6600 16.7 1.5 25
P10-30 Total carbide: 83 Total metal: 17 2 7000 15.2 1.8 27
P10-30 Not given —* 7400 16.0 1.9 29

*: data not provided.

A6.3 Ceramics and superhard materials

Even less systematically detailed information than for cermet tools is available for the
composition and properties of ceramic and superhard materials.

Data for tools based on alumina, extracted from Brookes (1992), are gathered in Table
A6.4. There are three sub-groups of material. The first, called white alumina because of its
colour, is pure alumina together with minor additions (headed ‘other’ in the table) to
promote sintering. These sintering aids can be either magnesium oxide (MgO) or zirconia
(Zr0O,): for tool grade aluminas, ZrO, is predominantly used. The second group is the
black aluminas: alumina to which is added TiC. The third group is SiC whisker reinforced
alumina. The data demonstrate that the black aluminas are harder but no tougher than the
white aluminas. Silicon carbide whisker reinforcement increases toughness without
improving hardness, relative to the black aluminas. All the materials are developed,
according to their ISO classification, for finishing duties.

The data in Table A6.4 were all collected before 1992. Recently, a new handbook has
appeared which uprates the maximum toughness of whisker reinforced aluminas to 1.2
GPa (Japanese Carbide Manufacturers Handbook, 1998). Manufacturers’ data in the
authors’ possession also show maximum hardness of the black aluminas has been
enhanced up to 22 GPa; and other information suggests room temperature thermal conduc-
tivity can be higher than given, up to 35 W/m K. These extended ranges of data have been
included in the construction of Figures 3.20 and 3.21.

Data for silicon nitride based tools, also from Brookes (1992), are collected in Table
A6.5. The fact that there is less information for these than for alumina tools reflects the
more recent development of these materials for cutting. There are two groups: straight sili-
con nitrides and sialons. Silicon nitride, without modifications, requires hot pressing for its
manufacture. It is also susceptible to contamination by silica (SiO,). This may segregate
at grain boundaries to form silicates which soften at around 1000°C. This is fatal to the
performance of cutting tools. One way to prevent these glassy grain boundary phases is by
the addition of yttria (Y,05). Thus, almost all silicon nitride based cutting tools have some
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Table A6.4 Compositions and properties (pre-1992) of alumina based tool materials

Composition, Wt. %

Major Other
ISO p HV TRS K E a,
code Al,0; TiC SiC(wh.) [kg/m®] [GPa] [GPa] [W/mK] [GPa] [106K]
- 97 3 4000 162 055 87 380 -
K10 96.5 35 4020 170 07 - - -
P/KO1-10 96 4 4000 170 07 - - -
- * G 4000 186 08 - - -
P01-15 80 10 0 4150 167 08 - - -
- 71 28 1 4300 177 055 - - -
K05 70 30:Ti(C,N) 0 4250 189 062 - - -
- A A Nk 4300 196 09 - - -
- K K G 4400 186 095 - - -
K15 75 17 8 3900 146 10 - - -
- 75 25 0 3700 196 09 6 390 -
K05-15  +* 3 G 3700 235 098 17 410 6.8

*: material present, but composition not given.

Table A6.5 Compositions and properties (pre-1992) of Si;N, based tool materials

Composition, Wt. %

1SO P HV TRS K E a,
code Si;N,  Y,0; ALO, Other [kg/m’] [GPa] [GPa] [W/mK] [GPa] [10°K]
KO01-10 3 3 3 3250 945! 09 - - -

K20 96 2 2 3160 157 09 - - -
K05-20 \x \x 3250 932! 085 - - -

- 3 3 3 3300 9391 1.1 - - -

- 91 0 1 8 3200 142 08

K20 925 6 3.5 3260 137 1.0 - - -
K05-20 \x x x \x 3300 154 09 17 280 3.0
K01-30 3 3 A 3300 157 08 - - -

- 80 6 4 10 3200 157 065 - 300 -

*: material present, but composition not given; ': HRA.

addition of Y,0;. If Y,0; is added in greater quantities, and also alumina and/or
aluminium nitride, an alloy of Si, Al, O and N (sialon) is formed, also containing yttrium.
The benefit is that this material can be manufactured by pressureless sintering and main-
tains its mechanical properties in use up to about 1300°C. The table shows that the bene-
fits of one group over the other are entirely in the ease of manufacture. There is little to
choose between their room temperature mechanical properties (although the sialon mater-
ials are likely to have a more reliable high temperature strength). As with the alumina
materials, there has been some materials development over the last 10 years. More recent
transverse rupture stress data are more commonly in the range 0.95 to 1.2 GPa (Japanese
Carbide Manufacturers’ Handbook, 1998).

Finally, Table A6.6 summarizes the small amount of available information on PcBN and
PCD tools. These tools are manufactured in a two-stage process. First, synthetic diamond
or cubic boron nitride grits are created at high temperature and pressure. These are then
cemented together by binders. Each class of tool has two types of binder, ceramic-based
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Table A6.6 Compositions and properties of super hard tool materials

1SO PcBN or Binder p HV TRS
code PCD materials [kg/m3] [GPa] [GPa]
P/KO1-10 PcBN ceramic* 3600 38 -

ceramic* - 41 0.8

cermet** 4000 34 -

cermet®* 3900 33 -

- - 49 0.6
KO01-10 PCD SiC - - -

Co 3700 69 -

Co (18%) 3900 38 -

- - 88 1.5

- - 88 2.0

- - 54 0.6-1.2

*ceramic = Al,O; base; **cermet = carbo-nitrides — Co/WC/AIN up to 18%wt.

for ultimate hardness or metal-based for toughness. For PcBN, the ceramic base is Al,O,
and the metal base is sintered carbide or cermet. For PCD, the ceramic is based on SiC and
the metal on Co.
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Appendix 7

Fuzzy logic

This appendix supports Chapter 9 in which fuzzy sets and their operations are introduced
to help the optimization of cutting conditions and tool selection. More complete descrip-
tions are given in many textbooks (e.g. Zimmermann, 1991). Applications of fuzzy logic
to machining may be found in journals and handbooks (e.g. Dreier et al., 1996).

A7.1 Fuzzy sets

Fuzzy sets were first introduced to represent vagueness in everyday life, especially in
natural language. They are not special, but a generalized representation of conventional
sets. Five causes of vagueness are generally recognized: incompleteness, non-determin-
ism, multiple meanings, (statistical) uncertainty and non-statistical uncertainty. Fuzziness
is non-statistical uncertainty and fuzzy logic deals with it.

Before considering what fuzzy sets are, consider what are conventional, or crisp, sets.
As an example, to be used throughout this Appendix, consider the sets of ‘ordinary cutting
speed’ S, ‘high cutting speed’ S; and ‘ultra high cutting speed” S,. Conventionally, or
crisply, they may be defined as

S,={VIV<V,) (A7.12)
S, = (VIV,SV<V,) (A7.1b)
S, = (VIV,<V} (A7.1¢)

where V| and V, are constants. They have the meaning that if V = V| or more, the cutting
speed is high, but if the cutting speed decreases by only a small value AV below V|, i.e. V
=V, — AV, the cutting speed becomes ordinary. These sets can be represented by member-
ship functions that map all the real elements of the set onto the two points {0, 1}, e.g. for
the set of high cutting speed S, ,

1V, SV<Y,

(A7.2)
0 otherwise

IUSh(V) = {

Figure A7.1(a) shows the membership functions of three sets ug (V), pg, (V) and pg (V).
The value of the membership function is called its membership.
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Fig. A7.1 Comparison between (a) crisp and (b) fuzzy sets

However, the sudden transitions between (crispness of) these sets of domains of
cutting speed do not satisfy the language needs of machinists and tool engineers. They
feel that there must be some transitional region, of significant width, between the domains
of ordinary and high (and high and ultra high) cutting speeds. In other words, the
membership should be able to change gradually from O to 1 or 1 to O between the
domains.

A fuzzy set is always defined as a membership function, the membership of which has
a value in the range [0, 1]. Unlike crisp sets, the membership of fuzzy sets can be frac-
tional. Using this characteristic of fuzzy sets, the domains of cutting speed can be repre-
sented by membership functions according to the subjective measure of machinists and
tool engineers:

IUSO(V) =1 _LF(V’ Vl_’ V1+) (A73a)
LF(V,V,,V,,) V<V,

pg (V) = 1 vV, <SV<V, (A7.3b)
1-LF(V,V, . V,) V, <V

IUSU(V) = LF(V’ V2_7 V2+) (A73C)

where V, , V|, V, andV,, are constants and the linear function LF is defined as follows:
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x<a
x—a,
LF(x, a), a,) = a <x<a, (A7.4a)
d—4q
1 a,<x

where x is the variable and a, and a, are constants.

Figure A7.1(b) shows the membership functions of three fuzzy sets ug (V), ug,(V)
and ug, (V) that result from these definitions: they would usually be drawn on one graph.
In a transitional region, for example [V,_, V,,], the membership function ug, (V) gradu-
ally increases from 0 to 1 as the membership function ug (V) gradually decreases from
1toO.

A fuzzy set need not be described by a linear function. Although a triangular func-
tion, obtained by letting V,, =V, in equation (A7.3b), is often used for fuzzy model-
ling, others may be used. A square function, SF, is used in Section 9.3.3, and is defined
as

o 0 x<a
2(x—a1)2 a, +a,
— a, <x<
)2
SF(x. a,, a,) = & (ay —ay) 2 (A7.4b)
2(x — a2)2 a, +a,
1- <x<a,
(a, —al)z 2
- 1 a,<x

When a set of cutting speeds has a finite number of elements, fuzzy sets S_ or S, for
example, are written as follows:

n
Sy = iy /Vy + H IV + gV + o+ IV, = D IV (A7.52)
i=1

n
S, =ty /Vy + oIV + 1y Ve + Ay IV = D IV, (A7.5b)
i=1

where each term y;/V; or u, ;/V, represents the membership g (V) or ug, (V) at speed V.
The operator ‘+’ means the assembly of elements, not the summation of elements.

A7.2 Fuzzy operations

Among all the fuzzy operations, only two operations, the maximum operation and mini-
mum operation, are described here. The maximum and minimum operations are simply
defined as follows: for two memberships u; and u,,

u uy>u
pVu,=4 “t m1oe2 (A7.62)
U,  otherwise



A, = {

S,
otherwise
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(A7.6b)

where V and A are the maximum and minimum operators.
The union and intersection of the membership of two fuzzy sets ug (V) and ug (V) at
any cutting speed V are respectively defined as, and are given by applying the maximum

and minimum operations:

130,50 (V) = g (V)Vuug (V)

1-LF(V,V,_,V,,)

LE(V,V,_,V,,)
= 1

1= LE(V, V, , V,,)

UGy ~A5n(V) = 15 (V) Aug (V)
_ { LE(V, Vl—’ V1+)

1-LE(V,V,_, V,,)

V<(Vi_+V )2
V_+VR<V<V,,

v <viv, (A7.7a)
v, <V
V<(V_+V, )2 (A7.7b)

(V_+V,)2<V

Figure A7.2 shows the union and intersection of fuzzy sets as defined above.

-
Fan

Membership

-

Mernbership

v,

(o)

V1+

Vi,
Cutting speed

o WV

" Cutting speed

Voo Vo W,

Fig. A7.2 Maximum and minimum operations representing (a) the union and (b) the intersection of two fuzzy sets
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Similarly, the union and intersection of the two fuzzy sets S, and §, in equations
(A7.5a) and (A7.5b) are given as follows:

Sy U S, = (o Vi DIV, + g Vi Vs + -« .+ (g, Vi, )V,

" (A7.82)
= Z (o Vin )V
i=1
S, NSy = W Auy MV + o Ay IV, + oo+ (g Aug DIV,
n
=D (g Auy )V, (A7.8b)
i=1
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Abrasive friction, model for 364
Abrasive wear 77, 121
see also Tool wear mechanisms; Wear
mechanisms
Acoustic emission
for condition monitoring 157
as input to neural networks 310-11
measurement methods of 155-7
Active time 3, 24-5
see also Productivity
Adaptive control 319
Adaptive meshing 2034, 210
Adhesive friction, model for 363
see also Asperity contact mechanics
Adhesive wear 77, 121, 127
see also Tool wear mechanisms; Wear mechanisms
Adiabatic shear instability 239
Alumina ceramic tools
Al,O5 white ceramic 3934
Al,O5 + TiC black ceramic 3934
Al,O; + SiC whisker 3934
compositions 393—4
mechanical properties 21, 99-101, 104-5, 394
and oxidation wear in steel machining 127
thermal properties 100-3, 106, 128-9, 394
and tool life 26, 132
see also Tool wear mechanisms; Tool wear
observations; Tool coatings
Aluminium and its alloys
flow stress equations 222-3
friction observations in cutting 67
machining characteristics 47, 54, 85-6, 88-90
mechanical properties 49, 58, 83, 375-6, 380
thermal properties 58, 378-9
see also Work materials
Analysis of stress and strain
equivalent stress and strain 329, 332
by finite element methods 348-50
plastic flow rules 331
plastic work rate 332
representations of yielding 330
by tensor methods 340-3
transformations for, in three dimensions 340-1
Approach angle 183—4
see also Tool angles

Archard’s wear law 76
ART2 type neural networks 316
Artificial neural networks 310-11, 314
Asperities, contact of 69
and their influence on sliding friction laws 69-73
Asperity contact mechanics
elastic on elastic foundation 71-2, 365-6, 368-9
and friction coefficients greater than unity 373—4
and junction growth 370-1
and the plasticity index 367, 370
plastic on elastic foundation 72, 3667, 370-1
plastic on plastic foundation 71, 371-3
and surface roughness 368-9
with traction 369-73
Attrition 121-2
see also Tool wear mechanisms
Auto-regression (AR) coefficients 314
Axial depth of cut 41, 269
see also Milling process, geometry of
Axial rake angle 41

Back rake angle 3941, 1834
see also Tool angles

Ball-screw feed drives 4, 11

Bezier curve 251

Black body radiation 153

Blue brittleness 2324

Boring, tool selection for 294-5

Brass machining characteristics 44, 54, 235-8
see also Copper and its alloys

Built-up edge 434, 934
appearance on back of chips 139
dependence on speed and feed 94
and prediction by modelling 226-34

Burr formation 238

Carbon steel
chip control and breaking simulation 252-6
flow observations in secondary shear zone 174-5
flow stress equations 2224, 380
machining characteristics 21, 44, 47, 91-3
mechanical properties 49, 377,
simulation of BUE formation in 227-34
strain, strain rate and temperature effects on flow
173,176, 380
thermal properties 58, 84, 378-9



402 Index

Carbon steel (contd)
and wear of carbide tools 119-20, 122-5
see also Iron and its alloys
Carbon tetrachloride 46-7, 75
Carousel work table 12, 14
see also Milling machine tools
Cast iron, machining of 132-3
Cell-oriented manufacture 18-19, 29
Cemented carbide and cermet tools
brittle () phase 102, 112
compositions 390, 392-3
K-, M- and P-type carbides 109, 389
mechanical properties 21, 99-101, 104-5, 390-3
and oxidation wear in steel machining 125-7
thermal properties 63, 100-3, 106, 392-3
and tool life 26, 31
wear by thermal diffusion 122-5
see also Tool wear mechanisms; Tool wear
observations
Cermets, see Cemented carbides
Chatter 281-3

and constraint on machining optimization 285, 287
Chemical reactions and wear 103, 121,125-7, 128-9

Chemical vapour deposition (CVD) 111-13
and tool surface roughness 72
see also Tool coatings
Chip breaking, see Chip control
Chip control
constraint on machining optimization 285, 287
influence of rake geometry and feed 251-6

recognition of cutting state by monitoring 309-10

tool geometries for 115, 166
Chip flow direction 178
Stabler theory for 180, 196
Colwell theory for 180, 186
Usui theory for 180, 186
Chip form 44
Chip formation geometry 37-43
Chip formation mechanics 37-57, 162—4, 1721
in non-orthogonal conditions 177-97
see also Finite element methods
Chip fracture criteria 209, 220, 234-5, 252-3
Chipping 122
see also Tool wear mechanisms
Chip radius
control of 166, 252-5
prediction of 52-3, 162
Chip thickness ratio 45
influence of strain hardening on 47-8
in fluid lubricated cutting 47
see also Shear plane angle
Chip/tool contact length 49-50
non-unique relation to friction 162-3
Chip/tool contact pressures 50-2
dependence on work material 85-96
effect of restricted contact on 252
and slip-line field predictions of 162-3
Chip/work separation criteria 203, 207-9, 218-20
CNC machine tools 4-6, 10-15
and drive motor characteristics of 9
Coated tools, see Tool coatings
COATS 296-7
Compliance transfer function 282

Constitutive equation formulations
for elastic materials 345
for elastic—plastic materials 345-6
matrix representations of 346-8
for rigid plastic materials 343—4
Contact mechanics
and rake face friction laws 69-73
and tool internal stresses 97-9, 383-6
see also Asperity contact mechanics
Continuous chips 43—4
Convective heat transfer 58-9
Copper and its alloys
flow stress equations 222-3
friction observations in cutting 67
machining characteristics 21, 47, 85-90
mechanical properties 49, 58, 234-5, 375-6
thermal properties 58, 378-9
see also Work materials
Corner cutting 275-6
Crater wear 79
pattern of 119
see also Thermal diffusion wear; Wear
mechanisms
Crisp sets 291, 396
Critical constraints 291
see also Optimization of machining
Cubic boron nitride (CBN) tools
compositions 395
mechanical properties 99-101, 104, 395
thermal properties 100-3, 128-9
see also Tool wear mechanisms; Tool wear
observations
Cutting edge engagement length 39, 42-3, 178
Cutting edge inclination angle 3941, 180, 1834
see also Tool angles
Cutting edge preparation
chamfering 115
edge radius of PVD coated tools 113
and chip flow round 166-7
honing 112, 115
Cutting force 7, 45, 140
constraint on machining optimization 2867
dependence on work hardening 172
effect of tool path on, in milling 273-6
example of variation with tool wear 268
models for turning 267-8
models for milling 268-72
prediction by slip-line field theory 164
regression model for 268
relation to machining parameters 48
in three-dimensional machining 188-9
Cutting force ratio 271, 307
Cutting speed 6, 38
Cutting stiffness 281
Cutting temperature, models for 2767
see also Temperature in metal cutting
Cutting torque and power 7
constraint on machining optimization 2867
CVD, see Chemical vapour deposition

Deformation friction 364
Degree of contact 70-2, 364
see also Asperity contact mechanics



Delamination wear 78
see also Wear mechanisms
Depth of cut 6, 38-9, 178
Deviatoric stress 329
Diagnosis of cutting states, see Recognition of
cutting states
Diamond tools 101, 127, 129
see also Polycrystalline diamond
Diffusion wear, see Thermal diffusion wear
Direct monitoring of cutting states 305-6
Discontinuous chips 43-4, 235-6
Dimensional accuracy/error
constraint on optimization 286
model-based control of 321-3
sources of, in milling 272-6
Drilling machines 14-15
Drilling process
geometry of 40-2
expert system 294-5
times and costs 32
Dynamic stiffness 140-1, 281-2
Dynamometer
design 141-4
dynamic response 140-1

Economic optimization of machining 24-32, 283-93
see also Optimization of machining
Effective radial depth of cut 270, 271-2
Effective rake angle 178-9
Effective shear plane angle 178-9
Effective uncut chip thickness 178-9
Elastic—plastic flow behaviour 201-2, 348-9
Elastic—plastic flow rules 345-6, 347-8
End cutting edge 183-4
End milling 268-76
Entering angle 41
see also Milling process, geometry of
Equivalent strain in primary shear 46
Equivalent strain rate in primary shear 171-2
Equivalent stress and strain 329, 332, 342
Eulerian reference frame 202-3
Exit angle 238
Experimental methods
acoustic emission 155-7
chip/tool contact stress measurement 65-7, 144
embedded thermocouple temperature measurement
150-2
piezoelectric force measurement 144-5
quick-stop technique 136-9
radiation temperature measurement 1524
split-tool method 65-7, 144
strain gauge force measurement 140—4
tool/work thermocouple temperature measurement
147-50
Expert systems 293-305

Fatigue of tool materials 105-6, 121-2
Fault diagnosis 323—4
FDM (Finite difference method) 276, 278
Feasibility of machining

Feasible domain 2868

Feasible space 2868

and fuzzy optimization 292
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Feed 6, 38, 178
Feed force 140, 178
Feed per edge (or tooth), see Milling process
FEM, see Finite element method
Finite element method, application to
chip control and breaking 251-62
discontinuous chip formation 208-9, 235-6
non-steady continuous chip flow 208, 210, 237
residual stress determination 236-237
Ti-alloy serrated chip formation 239-40
tool-exit chip flow 237-8
see also Iterative convergence method
Finite element methods (principles)
adaptive meshing 2034, 210
chip fracture criteria 209, 220, 252-3
comparison of approaches 210-12
coupled thermal/mechanical analysis 205-6, 213
elastic example 199-201
elastic—plastic models 201-2, 348-9
Eulerian reference frame 202-3
Lagrangian reference frame 202-3
node separation at cutting edge 203, 207-9,
218-20
rigid-plastic models 201-2, 349-50
strain-displacement relations 199-201
stiffness matrix 201, 348-9
temperature calculation 357-62
see also Iterative convergence method
Flank wear 79
fluctuations of 133
models for rate of 277-9
pattern of 119
see also Wear mechanisms
Flexible manufacturing systems (FMS) 19, 29
Flow line production 16-19
FMS, see Flexible manufacturing systems
Force components 48, 140, 178-9, 188-9
Force measurement methods 139-44
Fourier analysis 307, 316-17
Fracture criteria, see Chip fracture criteria; Tool
fracture criteria
Fracture locus 280
Fracture of tool materials, see Tool fracture
Free-machining steel
rake face contact stress observations 243
friction variations with temperature 68, 244
machining characteristics 54, 94-6, 250
mechanical properties of 242
MnS and Pb in 68, 94-6, 250
primary shear flow observations 170
simulation of chip flow 240-50
see also Iron and its alloys
Frequency response of dynamometers 140-1
Friction
angle 45, 54-5
coefficient 67
coefficients greater than unity 73
and contact stress distribution 67
influence on chip formation 46-8, 54-5
factor 67
and flow stress equivalence 71, 176
heating due to 60-5
measurement with split tool 667
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Friction (contd)
model 68-9
work rate 56, 194
see also Asperity contact mechanics
Friction factor 67-70
relation to friction angle (in machining) 165
Fuzzy logic
definitions of sets and memberships in 396-8
and expert system for tool selection 301-5
maximum and minimum operations in 398-400
and optimization of machining 291-3
and tool fracture probability 279
Fuzzy set, see Fuzzy logic

Gauge factor (strain gauges) 141
Geometrical radial depth of cut 269-70
Group technology 19

Hardness of tool materials
data 100, 388, 390-5
dependence on temperature 21, 104
minimum values to avoid failure 97-9, 107-9
Heat capacity
data for tool materials 101
data for work materials 58
and influence on temperatures in machining 58-65
see also Thermal diffusivity
Heat conduction theory 351-62
Heat partition
between chip and work 58-60
between chip and tool 60-5
Helix angle, see Drilling process, geometry of
Hertzian contact 365-6
Heuristic knowledge 283, 293
High manganese steel
high strain rate and temperature flow stress 381
machining characteristics 55, 90-1, 215-17
restricted contact machining of 259-62
see also Iron and its alloys
High speed steel (HSS) tools
compositions 387
mechanical properties 21, 99-101, 104-5, 388
thermal properties 100-3, 106
and tool life 26
see also Tool wear mechanisms; Tool wear
observations
History of machining
coated tools’ market share 33
change to CNC machines 10-11
early process models and developments 35-6
from descriptive to predictive models 367
numerical models and methods 204-12
the oil crisis 1
recent monitoring methods 316-17
Hopkinson pressure bar 221-2
Hot hardness (tool materials) 21, 104
Hydrostatic stress 329

Idle time 3

see also Productivity
Indirect monitoring of cutting states 305-6
Inference engine, see Production expert system

Infrared temperature sensors 153—4
In-process monitoring 305-6
Interpreter, see Production expert system
Tron and its alloys
flow stress equations 2224, 380-1
friction observations in cutting 67-8
machining characteristics 47, 85-6, 90-6
mechanical properties 58, 83
thermal properties 58, 378-9
see also Carbon steel; Free-machining steel; Semi-
free machining steel; Low alloy steel; Stainless
steel; High manganese steel; Work materials
Iterative convergence method; application to
built-up edge formation 226-34
chip control (grooved-rake tool) 251-2
high manganese steel machining 215-17
machining a-brass 2067
three-dimensional chip flow 209, 255-62
Iterative convergence method (principles) 205-7,
212-15

Jobbing shops 16-18, 29
Junction growth 370-1

Knowledge based engineering 293
Knowledge based tool selection by
fuzzy expert system 301-5
hybrid rule expert system 297-300
production expert system 293—4
weighted rule expert system 295-7
Knudsen flow 74-5
KT, see Crater wear, pattern of

Labour charge rate 28

Lagrangian reference frame 202-3

Linear classifier 309-10

Linear discriminant function 309-10

Low alloy steel machining characteristics 91-2, 96
see also Iron and its alloys

Lubrication by fluids at chip/tool interface 46
difficulty of 36, 74-5
friction coefficients associated with 47
modelling of 73-5

Machinability 81-2
Machine charge rate 27-8
Machine tools
investment in 1-2, 11
manufacturing technology 4-15
Machining centres 10-15
and set-up reduction 11-12
Machining process
accuracy 2
compared to other processes 2
mechanics and machine design 6—10
part complexity 2
surface finish 2
Machining scenario 320-1
Magazine tool changing 12, 15
see also Milling machine tools
Major cutting edge 183—4
Major cutting edge angle 39, 183



see also Tool angles
Manufacturing systems 15-20
Maximum productivity 24-6, 31, 290
Measurement methods, see Experimental methods
Mechanics of machining
finite element models of 204-21, 226-64
influence of variable flow stress 16877
in non-orthogonal conditions 177-97
shear plane model: chip radii 52-53
shear plane model: chip/tool contact length 49-50
shear plane model: chip/tool contact pressure
50-2, 56-7
shear plane model: forces 48-9
slip-line field theory 159-68
Membership/membership function, see Fuzzy logic
Merchant’s theory of chip formation 53
Meta-knowledge 294
Micro-chipping 121-2
see also Tool wear mechanisms
Mild wear 78
see also Wear mechanisms
Milling machine tools 10-16
compared to turning machines 14, 16
construction and accuracy 11
mass, torque, power and price 12-16
S-axis design 12, 14
see also Machine tools
Milling process
accuracy and control in 272-6, 318-22
automatic fault diagnosis in 3234
end milling variant of 268-76
feed per edge (or tooth) 41-2
finite element simulation of 210-11
force variations with time in 26871
geometry of 40-1, 269-70
peak forces in 271-2
times and costs 30-2
tool angle definitions 40-1
Minimum cost 27-32, 288-90
Minor cutting edge 183—4
Model-based systems for simulation and control
dimensional error limitation by 322-3
fault diagnosis with 323—4
feed-rate optimization by 320-2
reasons for 318-20
Model-based quantitative monitoring
and integration with process planning 313
and optimization of machining 315-16
tool wear rate prediction by 311-12
and training of neural nets 312, 315
Model-based simulation 266-87
Monitoring and improvement of cutting states 305
Monotonic reasoning 293—4

Neural networks
process models based on 267, 268, 276, 279
for process monitoring and control 310-15
Nickel-chromium alloys
and adhesive tool wear 127-8, 129
machining characteristics 55, 90-91
mechanical properties 58, 376-7
thermal properties 58, 378-9
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and wear of ceramic tools 119-20
see also Work materials
Non-linear classifier 310
Non-metallic inclusion in steels
MnS and Pb 94-5
oxides and silicates 95-6
reactions with tool materials 103
Non-monotonic reasoning 294
Non-orthogonal chip formation 38-9
Non-orthogonal machining 177-97
co-ordinate systems for 184-7
description of chip flow in 178-80
force relations in 188-9
predictions of chip flow and forces 180, 193-7
relations between tool and chip flow angles 187-9
shear surface area relations in 189-92
tool geometry in 183—4
uncut-chip cross-sections in 181-3, 192-3
Normal rake angle 183—4
see also Tool angles
Nose radius, see Tool nose radius
Notch wear 119, 127-9

Objective function 284
Operation variables 267
Optimization of machining 2432
constraints on 285-6, 299
cutting speed for 288-90
feasible space for 286-8
Taylor’s equation applied to 284, 288, 290
tool life for 288
Orthogonal chip formation 38-9
shear plane model of 48-57
see also Mechanics of machining
Orthogonal rake angle 183—4
see also Tool angles
Out-of-process monitoring 306
Overcut (milling) 272-3
Oxidation wear 125-7

Pattern recognition 30711
PcBN, see Cubic boron nitride tools
PCD, see Poly-crystalline diamond tools
PVD, see Physical vapour deposition
Peclet number 356
see also Thermal number
Perfectly plastic metal, see Slip-line fields, theory of
Physical vapour deposition (PVD) 113-14
see also Tool coatings
Piezoelectric force measurement 144-5
Planck’s law 153
Plastic deformation
theory of 328-50
of tools 97-9, 1212
Plastic heating, see Temperature calculation in metal
cutting
Plastic work rate 332
Plasticity index 71-2, 367, 370
see also Asperity contact mechanics
Point angle, see Drilling process, geometry of
Poiseuille flow 74-5
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Poly-crystalline diamond (PCD) tools
compositions, 395
mechanical properties 99-101, 104, 395
thermal properties 100-3
see also Tool wear mechanisms
Power spectrum 314
Primary shear 45
and forces acting on shear plane 48-9, 180
and influence of variable flow stress 1724
shear stress in 48-9, 83—4, 90
surface area in non-orthogonal cutting 189-93
work rate 56, 178, 194
Process models, breadth of 267-83
Process oriented manufacture, see Jobbing shops
Process sensing 306
Production expert system 293—4
Production memory, see Production expert system
Productivity
active and idle times 3
and machine tool technology 4-6
and manufacturing systems 15-19
work in progress 3
see also Optimization of machining

Quick stop method 136-8
Quick stop observations 44, 46, 233, 249

Radial depth of cut 41, 269-270
see also Milling process, geometry of
Radial depth ratio 273, 276
Rake angle 39
see also Tool angles
Rake face friction force 188
see also Force components
Rake face normal force 188
see also Force components
Rational knowledge 293
Real area of contact 69, 3634
see also Asperity contact mechanics
Recognition of cutting states
by linear classification 309-10
by non-linear (neural) nets 31011
by threshold method 307-9
Regenerative chatter 281-2
Residual stress 236-7
Restricted contact tools 166, 251-6
Resultant cutting force 45, 48, 172, 188
Rigid-plastic flow behaviour 201-2
Rigid-plastic flow rule 331, 342-3, 348
including hydrostatic stress 344
and its inversion 343
and its linearization 343—4

SAM 301-5

Saw tooth chips, see Serrated chips

Scheduling of machining operations
based on process modelling 320-2
integration with monitoring 313

Scroll cutting 274

Secondary shear zone 45, 174-5
analytical calculation of temperature in 60—4,

174-5

influence of cutting speed and feed on flow in 175

strain rate in 174
Seebeck effect 127, 147

Semi-free machining steel machining characteristics

95-6
non-metallic inclusions in 95-6
see also Iron and its alloys
Semi-orthogonal chip formation 39
Sensor fusion (or integration) 307
Serrated chips 43-4, 90-1
criteria for formation 239-40
simulation of flow in 239-40
Servo-control delay 319
Set-up reduction 4, 11-12, 32
Shear force 188
see also Force components
Shear plane, see Primary shear
Shear plane angle 45
dependence on work material and cutting
conditions 85-96, 172-4
and influence on machining forces 48-9
Lee’s and Shaffer’s prediction of 53
Merchant’s prediction of 53
slip-line theory prediction of 162—4
Sialon tools, see Silicon nitride based tools
Side cutting edge 183—4
Side rake angle 3941, 1834
see also Tool angles
Silicon nitride based tools
compositions 393—4
mechanical properties 21, 99-101, 104-5, 394
thermal properties 100-3, 106, 394
see also Tool wear mechanisms; Tool wear
observations
Slip-line fields
force boundary conditions for 160-1, 335
geometry of 335
stress variations with position in 160, 334
theory of 333-8
velocity relations in 3367
Slip-line fields for machining 162, 166-7, 338-9
and contact stress predictions 162
and force range predictions 164
and hydrostatic stress variability 165

and prediction of non-unique relationships 164-5

and predictions of shear angle ranges 164
Specific cutting force 7, 26, 55-7
dependence on work material and cutting
conditions 85-96
empirical models for 270-1
Specific wear rate 76
Specific work in cutting 55-7
Split-tool method 65-7, 144
Stagnation zones 166—7

Stainless steel machining characteristics 44, 55, 90-1

and adhesive tool wear 127
see also Iron and its alloys
Steel, see Iron and its alloys
Stephan—Boltzmann law 153
Stiffness matrix formulation for
elastic materials 349
elastic—plastic materials 349



rigid-plastic materials 349-50
Stock allowance 284
constraint on machining optimization 285, 287
Strain gauge force measurement 1414
Strain hardening,
and hydrostatic stresses in primary shear 169
influence on chip formation 47-8, 50-1, 54, 172-4
power law equation for 172
saturation at high strain 224
see also Work materials
Surface engineering 33, 109-14
Surface finish, see Surface roughness
Surface roughness
and built-up edge formation 93
constraint on machining optimization
and contact mechanics 368-9
of machined surfaces 2
and rake face fluid lubrication 74-5
of tool surfaces 72-3

Taylor’s tool life law 21, 25-6, 31, 284-90
Temperature calculation in metal cutting
analytical methods 57-65
finite element methods 212-14, 357-62
influence of secondary shear zone width 175
influence of tool conductivity 64
in primary shear zone 57-60, 86, 171
at the rake face 87-92
in secondary shear zone 604, 86, 174-5
see also Theory of heat conduction in solids
Temperature measurement methods in metal cutting
by embedded thermocouples 150-2
by tool/work thermocouples 147-50
by radiation 1524
Temperature observations in metal cutting
in the cutting tool
dependent on cutting speed 20-21, 64
in primary shear 60
on the rake face 261
Tensile rupture strength of tool materials
dependence on cycles of loading 105-6
dependence on temperature 105
minimum values to avoid failure 97-9, 107-9
typical values 99—-100
Tensor analysis of stress and strain 340-3
Theory of heat conduction in solids
basic equations for 351-2
with convection normal to heat source 356
with convection tangential to heat source 3567
with no convection and one-dimensional flow
instantaneous heating 353
steady heating 353—4
with no convection and three-dimensional flow
instantaneous heating 354
steady heating over a plane 354-5
variational (finite element) approach to
in steady conditions 357-60
in transient conditions 360-2
Thermal conductivity
data for tool coatings 111
data for tool materials 58, 101, 114
data for work materials 58

Index 407

and influence on temperatures in machining 58-65
see also Thermal diffusivity
Thermal diffusion wear 122-5, 260, 277-8
see also Tool wear mechanisms
Thermal expansion coefficient
of tool coatings 111
of tool materials 101
Thermal diffusivity
data for tool materials
data for work materials
and influence on temperature in machining 58-65
Thermal number 59-60, 62, 84, 356
Thermocouple circuits 147-8
and cold junction compensation 149
and law of intermediate metals 147
Three-dimensional machining, see Non-orthogonal
machining
Threshold method 307-9
Thrust force 45, 140, 196-7
see also Feed force
TiC, see Tool coatings
TiN, see Tool coatings
Titanium and its alloys
and adhesive tool wear 127
influence of tool material on cutting temperature
64
machining characteristics 21, 55, 90-91
mechanical properties 58, 376-7, 381
and simulation of machining of 235, 239-40
thermal properties 58, 378-9
and wear of K-carbide tools 119-20
see also Work materials
Tool
change times 22-3
condition monitoring 305
consumables costs 22—3
minimum needs to avoid failure 97-9, 107-9
solid, brazed and insert forms 11-12
prices 22-3
Tool angles
approach angle 183—4
to avoid failure 97-9, 107-9
back rake angle 183—4
cutting edge inclination angle 180, 183—4
normal rake angle 183—4
orthogonal rake angle 183—4
side rake angle 183—4
Tool breakage, see Tool damage
Tool coatings
Al,05109-10
TiC 109-10
Ti(CN) 112
TiN 109-10
and cutting edge condition 112, 113
friction observations with 68
manufacturing methods 111-14
market share 33, 109
properties 110-11
performance 110
and substrate compositions 112-13
Tool damage
by adhesion 127



408 Index

Tool damage (contd)
and cutting conditions 127-30
by mechanical means 121-2, 238, 279-80
recognition by in-process monitoring 308-9
by thermal means 1227
see also Tool fracture; Tool wear mechanisms
Tool deflection 272-6
Tool exit conditions 98
see also Burr formation
Tool fracture 97-9, 121-2
criteria for 122, 238, 279-80
Tool fracture toughness (KIC) 100
Tool insert geometries 114-16
for chip control 115-16, 166, 251-6

and constraint on machining optimization 285, 287

for cutting force reduction 115, 116, 258-62
Tool life
criteria for 130-1
and machine stiffness 134
for maximum productivity 24-7, 30-2
for minimum cost 27-32
monitoring by threshold method 307
monitoring with neural nets 310-11
observations 132
and Taylor’s law 21-2, 25-6, 131-3
Tool loading and internal stresses 97-9
Tool materials
mechanical properties 21, 99-100, 387-95
reactions with work materials 103
thermal properties 58, 100-2, 3924
thermal shock resistance 101
thermal stability 102-3
for use with work material types 82
see also Tool coatings
Tool nose radius 38-9, 178, 1834
Tool selection
constraints on 299
by monotonic reasoning 294-5
by weighted rule system 295-7
by hybrid rule system 297-300
by fuzzy expert system 301-5
Tool wear mechanisms
adhesion 121, 127
abrasion 121
attrition 121-2
chemical reaction 125-7
electro-motive force 127
plastic deformation 122
thermal diffusion 122-5
Tool wear observations 119-10, 132, 261-2
Tool/work thermal conductivity ratio 62, 64-5
Tool/work thermocouple calibration 149-51
Transfer line production 16—19
Transient chip flows 97, 23441
Tribology in metal cutting 65-79

TRS, see Tensile rupture strength
Turning centres 4-6
and set-up reduction 4, 32
Turning machine tools 4-10
mass, torque, power and price 8-10
see also Machine tools
Turning process
force models for 267-8
geometry of 39—40
times and costs 24-30
tool angle definitions 39-40, 183—4

Unconditional stability limit 281-2

Uncut chip cross-section area 180, 181-3, 192-3
Uncut chip thickness 39, 42-3, 178-9

Updated feed-forward control 320

Usui’s energy model 194-7

VB, see Flank wear, pattern of
Velocity modified temperature 173, 176, 2234
Visio-plasticity 35, 168-71
Von Mises yield criterion 329
generalised to three-dimensions 342
in plane strain 333
VN, see Notch wear

Wavelet analysis 307, 316-17
Wear coefficient 77-9
Wear mechanisms
of cutting tools 118-27
in general 76-8
see also Tool wear mechanisms
Wear resistance of hard coatings 110
Weibull statistics 238, 279
Wien’s displacement law 153
Work hardening, see Strain hardening
Work in progress 3
see also Productivity
Work materials
common industrial uses of machined stock 81
machining characteristics 85-97
mechanical properties 58, 83, 375-7
at high strain rate and temperature 173, 221-4,
379-81
and recommended tool materials 82
strain hardening and machining characteristics
47-8, 49
thermal properties 58, 84, 378-9
see also Aluminium; Copper; Iron;
Nickel-chromium; Titanium
Working memory, see Production expert system

Young’s modulus
of tool coatings 111
of tool materials 100-1, 106, 392, 394
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