
Fatigue Damage 



Mechanical Vibration and Shock Analysis 
second edition – volume 4 

Fatigue Damage

Christian Lalanne 



First published in France in 1999 by Hermes Science Publications © Hermes Science Publications, 1999 
First published in English in 2002 by Hermes Penton Ltd © English language edition Hermes Penton Ltd, 2002 
Second edition published in Great Britain and the United States in 2009 by ISTE Ltd and John Wiley  
& Sons, Inc. 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, 
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. 
Enquiries concerning reproduction outside these terms should be sent to the publishers at the 
undermentioned address: 

ISTE Ltd  John Wiley & Sons, Inc.  
27-37 St George’s Road  111 River Street 
London SW19 4EU Hoboken, NJ 07030 
UK USA

www.iste.co.uk  www.wiley.com 

© ISTE Ltd, 2009 

The rights of Christian Lalanne to be identified as the author of this work have been asserted by him in 
accordance with the Copyright, Designs and Patents Act 1988. 

Library of Congress Cataloging-in-Publication Data 

Lalanne, Christian. 
  [Vibrations et chocs mécaniques. English] 
  Mechanical vibration and shock analysis / Christian Lalanne. -- 2nd ed. 
       v. cm. 
  Includes bibliographical references and index. 
  Contents: v. 1. Sinusoidal vibration -- v. 2. Mechanical shock -- v. 3. Random vibration -- v. 4. Fatigue 
damage -- v. 5. Specification development. 
  ISBN 978-1-84821-122-3 (v. 1) -- ISBN 978-1-84821-123-0 (v. 2)  1.  Vibration. 2.  Shock (Mechanics).   
I. Title.  
  TA355.L2313 2002 
  624.1'76--dc22 

                                                            2009013736 

British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library  
ISBN: 978-1-84821-121-6 (Set of 5 Volumes) 
ISBN: 978-1-84821-125-4 (Volume 4) 

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. 

http://www.wiley.com


Table of Contents 

Foreword to Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii 

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix 

Chapter 1. Concepts of Material Fatigue. . . . . . . . . . . . . . . . . . . . . .  1 

1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
1.2. Types of dynamic loads (or stresses) . . . . . . . . . . . . . . . . . . . . .  2 

1.2.1. Cyclic stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
1.2.2. Alternating stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.2.3. Repeated stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 
1.2.4. Combined steady and cyclic stress. . . . . . . . . . . . . . . . . . . .  5 
1.2.5. Skewed alternating stress . . . . . . . . . . . . . . . . . . . . . . . . .  6 
1.2.6. Random and transitory stresses. . . . . . . . . . . . . . . . . . . . . .  6 

1.3. Damage arising from fatigue. . . . . . . . . . . . . . . . . . . . . . . . . .  7 
1.4. Characterization of endurance of materials . . . . . . . . . . . . . . . . .  10 

1.4.1. S-N curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
1.4.2. Statistical aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
1.4.3. Distribution laws of endurance . . . . . . . . . . . . . . . . . . . . . .  14 
1.4.4. Distribution laws of fatigue strength. . . . . . . . . . . . . . . . . . .  16 
1.4.5. Relation between fatigue limit and static properties of materials . .  18 
1.4.6. Analytical representations of S-N curve . . . . . . . . . . . . . . . .  21 

1.5. Factors of influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
1.5.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
1.5.2. Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
1.5.3. Overloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 
1.5.4. Frequency of stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 
1.5.5. Types of stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 



vi     Fatigue Damage 

1.5.6. Non-zero mean stress . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
1.6. Other representations of S-N curves . . . . . . . . . . . . . . . . . . . . .  37 

1.6.1. Haigh diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
1.6.2. Statistical representation of Haigh diagram . . . . . . . . . . . . . .  44 

1.7. Prediction of fatigue life of complex structures. . . . . . . . . . . . . . .  44 
1.8. Fatigue in composite materials . . . . . . . . . . . . . . . . . . . . . . . .  45 

Chapter 2. Accumulation of Fatigue Damage . . . . . . . . . . . . . . . . . . .  47 

2.1. Evolution of fatigue damage . . . . . . . . . . . . . . . . . . . . . . . . . .  47 
2.2. Classification of various laws of accumulation . . . . . . . . . . . . . . .  48 
2.3. Miner’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

2.3.1. Miner’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
2.3.2. Scatter of damage to failure as evaluated by Miner . . . . . . . . . .  53 
2.3.3. Validity of Miner’s law of accumulation of damage in case of random 
stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

2.4. Modified Miner’s theory . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 
2.4.1. Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 
2.4.2. Accumulation of damage using modified Miner’s rule . . . . . . . .  60 

2.5. Henry’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
2.6. Modified Henry’s method . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 
2.7. Corten and Dolan’s method . . . . . . . . . . . . . . . . . . . . . . . . . .  65 
2.8. Other theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

Chapter 3. Counting Methods for Analyzing Random Time History . . . .  71

3.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 
3.2. Peak count method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 

3.2.1. Presentation of method. . . . . . . . . . . . . . . . . . . . . . . . . . .  75 
3.2.2. Derived methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 
3.2.3. Range-restricted peak count method. . . . . . . . . . . . . . . . . . .  79 
3.2.4. Level-restricted peak count method . . . . . . . . . . . . . . . . . . .  79 

3.3. Peak between mean-crossing count method. . . . . . . . . . . . . . . . .  81 
3.3.1. Presentation of method. . . . . . . . . . . . . . . . . . . . . . . . . . .  81 
3.3.2. Elimination of small variations . . . . . . . . . . . . . . . . . . . . . .  83 

3.4. Range count method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
3.4.1. Presentation of method. . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
3.4.2. Elimination of small variations . . . . . . . . . . . . . . . . . . . . . .  86 

3.5. Range-mean count method. . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
3.5.1. Presentation of method. . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
3.5.2. Elimination of small variations . . . . . . . . . . . . . . . . . . . . . .  90 

3.6. Range-pair count method. . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 
3.7. Hayes’ counting method . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 



Table of Contents     vii 

3.8. Ordered overall range counting method . . . . . . . . . . . . . . . . . . .  97 
3.9. Level-crossing count method . . . . . . . . . . . . . . . . . . . . . . . . .  100 
3.10. Peak valley peak counting method . . . . . . . . . . . . . . . . . . . . .  104 
3.11. Fatigue-meter counting method . . . . . . . . . . . . . . . . . . . . . . .  109 
3.12. Rainflow counting method . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

3.12.1. Principle of method . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
3.12.2. Subroutine for rainflow counting . . . . . . . . . . . . . . . . . . . .  117 

3.13. NRL (National Luchtvaart Laboratorium) counting method . . . . . .  120 
3.14. Evaluation of time spent at a given level . . . . . . . . . . . . . . . . . .  123 
3.15. Influence of levels of load below fatigue limit on fatigue life . . . . .  124 
3.16. Test acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 
3.17. Presentation of fatigue curves determined by  
random vibration tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

Chapter 4. Fatigue Damage by One-degree-of-freedom Mechanical  
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 

4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 
4.2. Calculation of fatigue damage due to signal versus time . . . . . . . . .  130 
4.3. Calculation of fatigue damage due to acceleration spectral density . . .  132 

4.3.1. General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 
4.3.2. Approximate expression of the probability density of peaks . . . .  137 
4.3.3. Particular case of a wide-band response, e.g. at the limit r = 0 . . .  138 
4.3.4. Particular case of narrow band response . . . . . . . . . . . . . . . .  140 
4.3.5. Rms response to narrow band noise G0 of width f when  
G0 f = constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 

4.4. Equivalent narrow band noise . . . . . . . . . . . . . . . . . . . . . . . . .  153 
4.4.1. Use of relation established for narrow band response . . . . . . . .  153 
4.4.2. Alternative: use of mean number of maxima per second. . . . . . .  155 
4.4.3. Approximation to real maxima distribution using a modified  
Rayleigh distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 

4.5. Calculation of fatigue damage from the probability  
density of domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 

4.5.1. Differences between the probability of peaks and of ranges. . . . .  161 
4.5.2. Wirsching’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . .  166 
4.5.3. Chaudhury and Dover’s approach . . . . . . . . . . . . . . . . . . . .  169 
4.5.4. Dirlik’s probability density . . . . . . . . . . . . . . . . . . . . . . . .  172 
4.5.5. Expression of the fatigue damage from the Dirlik probability  
density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178 

4.6. Comparison of S-N curves established under sinusoidal and  
random loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 
4.7. Comparison of theory and experiment . . . . . . . . . . . . . . . . . . . .  183 



viii     Fatigue Damage 

4.8. Influence of shape of power spectral density and value of irregularity  
factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 
4.9. Effects of peak truncation . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 
4.10. Truncation of stress peaks . . . . . . . . . . . . . . . . . . . . . . . . . .  190 

4.10.1. Particular case of a narrow band noise. . . . . . . . . . . . . . . . .  191 
4.10.2. Layout of the S-N curve for a truncated distribution . . . . . . . .  199 

Chapter 5. Standard Deviation of Fatigue Damage . . . . . . . . . . . . . . .  205 

5.1. Calculation of standard deviation of damage: Bendat’s method . . . . .  205 
5.2. Calculation of standard deviation of damage: method  
of Crandall et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 
5.3. Comparison of Mark and Bendat’s results. . . . . . . . . . . . . . . . . .  214 
5.4. Statistical S-N curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220 

5.4.1. Definition of statistical curves . . . . . . . . . . . . . . . . . . . . . .  220 
5.4.2. Bendat’s formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 
5.4.3. Mark’s formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 

Chapter 6. Fatigue Damage using other Calculation Assumptions. . . . . .  229

6.1. S-N curve represented by two segments of a straight line on logarithmic 
scales (taking into account fatigue limit) . . . . . . . . . . . . . . . . . . . . .  229 
6.2. S-N curve defined by two segments of straight line on log-lin scales. .  232 
6.3. Hypothesis of non-linear accumulation of damage. . . . . . . . . . . . .  235 

6.3.1. Corten-Dolan’s accumulation law . . . . . . . . . . . . . . . . . . . .  235 
6.3.2. Morrow’s accumulation model . . . . . . . . . . . . . . . . . . . . . .  236 

6.4. Random vibration with non-zero mean: use of modified Goodman  
diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 
6.5. Non-Gaussian distribution of instantaneous values of signal. . . . . . .  241 

6.5.1. Influence of distribution law of instantaneous values. . . . . . . . .  241 
6.5.2. Influence of peak distribution. . . . . . . . . . . . . . . . . . . . . . .  242 
6.5.3. Calculation of damage using Weibull distribution . . . . . . . . . .  243 
6.5.4. Comparison of Rayleigh assumption/peak counting . . . . . . . . .  246 

6.6. Non-linear mechanical system. . . . . . . . . . . . . . . . . . . . . . . . .  247 

Chapter 7. Low Fatigue Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249 

7.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249 
7.2. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 

7.2.1. Baushinger effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
7.2.2. Cyclic strain hardening . . . . . . . . . . . . . . . . . . . . . . . . . .  251 
7.2.3. Properties of cyclic stress-strain curves . . . . . . . . . . . . . . . . .  251 
7.2.4. Stress-strain curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251 
7.2.5. Hysteresis and fracture by fatigue . . . . . . . . . . . . . . . . . . . .  254 



Table of Contents     ix 

7.2.6. Significant factors influencing hysteresis and fracture by fatigue .  255 
7.2.7. Cyclic stress-stress curve (or cyclic consolidation curve) . . . . . .  255 

7.3. Behavior of materials experiencing strains in the  
oligocyclic domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256 

7.3.1. Types of behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  256 
7.3.2. Cyclic strain hardening . . . . . . . . . . . . . . . . . . . . . . . . . .  257 
7.3.3. Cyclic strain softening . . . . . . . . . . . . . . . . . . . . . . . . . . .  258 
7.3.4. Cyclically stable metals . . . . . . . . . . . . . . . . . . . . . . . . . .  260 
7.3.5. Mixed behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260 

7.4. Influence of the level application sequence . . . . . . . . . . . . . . . . .  261 
7.5. Development of the cyclic stress-strain curve. . . . . . . . . . . . . . . .  262 
7.6. Total strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263 
7.7. Fatigue strength curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264 

7.7.1. Basquin curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265 
7.8. Relation between plastic strain and number of cycles to fracture . . . .  265 

7.8.1. Orowan relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265 
7.8.2. Manson relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265 
7.8.3. Coffin relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266 
7.8.4. Shanley relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 
7.8.5. Gerberich relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 
7.8.6. Sachs, Gerberich, Weiss and Latorre relation . . . . . . . . . . . . .  276 
7.8.7. Martin relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276 
7.8.8. Tavernelli and Coffin relation . . . . . . . . . . . . . . . . . . . . . .  277 
7.8.9. Manson relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278 
7.8.10. Ohji et al. relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279 
7.8.11. Bui-Quoc et al. relation . . . . . . . . . . . . . . . . . . . . . . . . .  279 

7.9. Influence of the frequency and temperature in the plastic field . . . . .  279 
7.9.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279 
7.9.2. Influence of frequency . . . . . . . . . . . . . . . . . . . . . . . . . . .  280 
7.9.3. Influence of temperature and frequency. . . . . . . . . . . . . . . . .  280 
7.9.4. Effect of frequency on plastic strain range . . . . . . . . . . . . . . .  282 
7.9.5. Equation of generalized fatigue . . . . . . . . . . . . . . . . . . . . .  283 

7.10. Laws of damage accumulation. . . . . . . . . . . . . . . . . . . . . . . .  284 
7.10.1. Miner rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284 
7.10.2. Yao and Munse relation . . . . . . . . . . . . . . . . . . . . . . . . .  285 
7.10.3. Use of the Manson–Coffin relation. . . . . . . . . . . . . . . . . . .  287 

7.11. Influence of an average strain or stress . . . . . . . . . . . . . . . . . . .  287 
7.11.1. Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289 

7.12. Low cycle fatigue of composite material. . . . . . . . . . . . . . . . . .  290 

Chapter 8. Fracture Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . .  293 

8.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293 



x     Fatigue Damage 

8.1.1. Definition: stress gradient . . . . . . . . . . . . . . . . . . . . . . . . .  296 
8.2. Fracture mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296 

8.2.1. Major phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  296 
8.2.2. Initiation of cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297 
8.2.3. Slow propagation of cracks . . . . . . . . . . . . . . . . . . . . . . . .  299 

8.3. Critical size: strength to fracture . . . . . . . . . . . . . . . . . . . . . . .  299 
8.4. Modes of stress application . . . . . . . . . . . . . . . . . . . . . . . . . .  301 
8.5. Stress intensity factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302 

8.5.1. Stress in crack root . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  302 
8.5.2. Mode I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304 
8.5.3. Mode II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307 
8.5.4. Mode III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307 
8.5.5. Field of equation use . . . . . . . . . . . . . . . . . . . . . . . . . . . .  308 
8.5.6. Plastic zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310 
8.5.7. Other form of stress expressions . . . . . . . . . . . . . . . . . . . . .  312 
8.5.8. General form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313 
8.5.9. Widening of crack opening . . . . . . . . . . . . . . . . . . . . . . . .  314 

8.6. Fracture toughness: critical K value . . . . . . . . . . . . . . . . . . . . .  315 
8.6.1. Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317 

8.7. Calculation of the stress intensity factor . . . . . . . . . . . . . . . . . . .  319 
8.8. Stress ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322 
8.9. Expansion of cracks: Griffith criterion . . . . . . . . . . . . . . . . . . . .  323 
8.10. Factors affecting the initiation of cracks . . . . . . . . . . . . . . . . . .  326 
8.11. Factors affecting the propagation of cracks . . . . . . . . . . . . . . . .  326 

8.11.1. Mechanical factors . . . . . . . . . . . . . . . . . . . . . . . . . . . .  326 
8.11.2. Geometric factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328 
8.11.3. Metallurgical factors . . . . . . . . . . . . . . . . . . . . . . . . . . .  329 
8.11.4. Factors linked to the environment . . . . . . . . . . . . . . . . . . .  329 

8.12. Speed of propagation of cracks . . . . . . . . . . . . . . . . . . . . . . .  330 
8.13. Effect of a non-zero mean stress. . . . . . . . . . . . . . . . . . . . . . .  335 
8.14. Laws of crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . .  336 

8.14.1. Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336 
8.14.2. Modified Head law . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337 
8.14.3. Frost and Dugsdale . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337 
8.14.4. McEvily and Illg . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338 
8.14.5. Paris and Erdogan . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339 

8.15. Stress intensity factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352 
8.16. Dispersion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353 
8.17. Sample tests: extrapolation to a structure . . . . . . . . . . . . . . . . .  354 
8.18. Determination of the propagation threshold Ks . . . . . . . . . . . . . .  354 
8.19. Propagation of cracks in the domain of low cycle fatigue . . . . . . . .  356 
8.20. Integral J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  357 



Table of Contents     xi 

8.21. Overload effect: fatigue crack retardation . . . . . . . . . . . . . . . . .  359 
8.22. Fatigue crack closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  361 
8.23. Rules of similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363 
8.24. Calculation of a useful lifetime . . . . . . . . . . . . . . . . . . . . . . .  363 
8.25. Propagation of cracks under random load . . . . . . . . . . . . . . . . .  366 

8.25.1. Rms approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366 
8.25.2. Narrow band random loads . . . . . . . . . . . . . . . . . . . . . . .  372 
8.25.3. Calculation from a load collective . . . . . . . . . . . . . . . . . . .  377 

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  383 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  397 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433 

Summary of Other Volumes in the Series . . . . . . . . . . . . . . . . . . . . . 437 



Foreword to Series 

In the course of their lifetime, simple items in everyday use such as mobile 
telephones, wristwatches, electronic components in cars or more specific items such 
as satellite equipment or flight systems in aircraft, can be subjected to various 
conditions of temperature and humidity, and more particularly to mechanical shock 
and vibrations, which form the subject of this work. They must therefore be 
designed in such a way that they can withstand the effects of the environmental 
conditions they are exposed to without being damaged. Their design must be 
verified using a prototype or by calculations and/or significant laboratory testing. 

Sizing and testing are performed on the basis of specifications taken from 
national or international standards. The initial standards, drawn up in the 1940s, 
were often extremely stringent, blanket specifications, consisting of a sinusoidal 
vibration, the frequency of which was set to the resonance of the equipment. They 
were essentially designed to demonstrate a certain standard resistance of the 
equipment, with the implicit hypothesis that if the equipment survived the particular 
environment, it would withstand, undamaged, the vibrations to which it would be 
subjected in service. Sometimes with a delay due to a certain conservatism, the 
evolution of these standards followed that of the testing facilities: the possibility of 
producing swept sine tests, the production of narrow-band random vibrations swept 
over a wide range and finally the generation of wide-band random vibrations. At the 
end of the 1970s, it was felt that there was a basic need to reduce the weight and cost 
of on-board equipment and to produce specifications closer to the real conditions of 
use. This evolution was taken into account between 1980 and 1985 concerning 
American standards (MIL-STD 810), French standards (GAM EG 13) and 
international standards (NATO), which all recommended the tailoring of tests.
Current preference is to talk of the tailoring of the product to its environment in 
order to assert more clearly that the environment must be taken into account from 
the very start of the project, rather than to check the behavior of the material a
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posteriori. These concepts, originating with the military, are currently being 
increasingly echoed in the civil field. 

Tailoring is based on an analysis of the life profile of the equipment, on the 
measurement of the environmental conditions associated with each condition of use 
and on the synthesis of all the data into a simple specification, which should be of 
the same severity as the actual environment. 

This approach presupposes a correct understanding of the mechanical systems 
subjected to dynamic loads and knowledge of the most frequent failure modes. 

Generally speaking, a good assessment of the stresses in a system subjected to 
vibration is possible only on the basis of a finite element model and relatively 
complex calculations. Such calculations can only be undertaken at a relatively 
advanced stage of the project once the structure has been sufficiently defined for 
such a model to be established. 

Considerable work on the environment must be performed independently of the 
equipment concerned either at the very beginning of the project, at a time where 
there are no drawings available, or at the qualification stage, in order to define the 
test conditions. 

In the absence of a precise and validated model of the structure, the simplest 
possible mechanical system is frequently used consisting of mass, stiffness and 
damping (a linear system with one degree of freedom), especially for: 

– the comparison of the severity of several shocks (shock response spectrum) or 
of several vibrations (extreme response and fatigue damage spectra); 

– the drafting of specifications: determining a vibration which produces the same 
effects on the model as the real environment, with the underlying hypothesis that the 
equivalent value will remain valid on the real, more complex structure; 

– the calculations for pre-sizing at the start of the project; 

– the establishment of rules for analysis of the vibrations (choice of the number 
of calculation points of a power spectral density) or for the definition of the tests 
(choice of the sweep rate of a swept sine test). 

This explains the importance given to this simple model in this work of five 
volumes on Vibration and Mechanical Shock:

Volume 1 of this series is devoted to sinusoidal vibration. After several 
reminders about the main vibratory environments which can affect materials during 
their working life and also about the methods used to take them into account, 
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following several fundamental mechanical concepts, the responses (relative and 
absolute) of a mechanical one-degree-of-freedom system to an arbitrary excitation 
are considered, and its transfer function in various forms are defined. By placing the 
properties of sinusoidal vibrations in the contexts of the real environment and 
laboratory tests, the transitory and steady state response of a single-degree-of-
freedom system with viscous and then with non-linear damping is evolved. The 
various sinusoidal modes of sweeping with their properties are described, and then, 
starting from the response of a one-degree-of-freedom system, the consequences of 
an unsuitable choice of the sweep rate are shown and a rule for the choice of this rate 
deduced from it. 

Volume 2 deals with mechanical shock. This volume presents the shock response 
spectrum (SRS) with its different definitions, its properties and the precautions to be 
taken in calculating it. The shock shapes most widely used with the usual test 
facilities are presented with their characteristics, with indications how to establish 
test specifications of the same severity as the real, measured environment. A 
demonstration is then given on how these specifications can be produced with 
classic laboratory equipment: shock machines, electrodynamic exciters driven by a 
time signal or by a response spectrum, indicating the limits, advantages and 
disadvantages of each solution. 

Volume 3 examines the analysis of random vibration which encompasses the 
vast majority of the vibrations encountered in the real environment. This volume 
describes the properties of the process, enabling simplification of the analysis, 
before presenting the analysis of the signal in the frequency domain. The definition 
of the power spectral density is reviewed, as well as the precautions to be taken in 
calculating it, together with the processes used to improve results (windowing, 
overlapping). A complementary third approach consists of analyzing the statistical 
properties of the time signal. In particular, this study makes it possible to determine 
the distribution law of the maxima of a random Gaussian signal and to simplify the 
calculations of fatigue damage by avoiding direct counting of the peaks (Volumes 4 
and 5). The relationships that provide the response of a degree of freedom linear
system to a random vibration are established. 

Volume 4 is devoted to the calculation of damage fatigue. It presents the 
hypotheses adopted to describe the behavior of a material subjected to fatigue, the 
laws of damage accumulation and the methods for counting the peaks of the 
response (used to establish a histogram when it is impossible to use the probability 
density of the peaks obtained with a Gaussian signal). The expressions of mean 
damage and of its standard deviation are established. A few cases are then examined 
using other hypotheses (mean not equal to zero, taking account of the fatigue limit, 
non-linear accumulation law, etc.). The main laws governing low cycle fatigue and 
fracture mechanics are also presented. 
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Volume 5 is dedicated to presenting the method of specification development
according to the principle of tailoring. The extreme response and fatigue damage 
spectra are defined for each type of stress (sinusoidal vibrations, swept sine, shocks, 
random vibrations, etc.). The process for establishing a specification from the 
lifecycle profile of the equipment is then detailed taking into account the uncertainty 
factor (uncertainties related to the dispersion of the real environment and of the 
mechanical strength) and the test factor (function of the number of tests performed 
to demonstrate the resistance of the equipment). 

First and foremost, this work is intended for engineers and technicians working 
in design teams responsible for sizing equipment, for project teams given the task of 
writing the various sizing and testing specifications (validation, qualification, 
certification, etc.) and for laboratories in charge of defining the tests and their 
performance following the choice of the most suitable simulation means. 



Introduction 

Fatigue damage to a system with one degree of freedom is one of the two criteria 
adopted for comparing the severity of different vibratory environments, the second 
being the maximum response of the system.  

This criterion is also used to create a specification reproducing the same effects 
on the equipment as all the vibrations to which it will be subjected in its useful 
lifetime. This book is not intended as a treatise on material fatigue. Instead, it is 
meant to provide the elements necessary for understanding the behavior of 
components or materials going through fatigue and to describe the methods that can 
be used specifically for calculating damage caused by random vibration. 

This requires the following items: 

– Knowledge of the fatigue behavior of the materials, characterized by the S-N 
curve (stress versus number of cycles), yields the number of cycles to failure of a 
specimen depending on the amplitude of the stress applied. The main laws used to 
represent the curve are quoted in Chapter 1, emphasizing the random nature of 
fatigue phenomena. This is followed by some measured values of the variation 
coefficients of the numbers of cycles to failure. 

– The law of accumulation of the damage caused by all the stress cycles must be 
selected. The most common laws with their limitations are described in Chapter 2. 

– The histogram of the peaks of the response stress, assumed here to be 
proportional to the relative displacement, is determined. When the signal is Gaussian 
stationary, as was seen in Volume 3, the probability density of its peaks can easily 
be obtained from only the power spectral density (PSD) of the signal. When this is 
not the case, the response of the given one-degree-of-freedom system must be 
calculated digitally and the peaks then counted directly. Numerous methods, ranging 
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from the simplest (counting of the peaks) to the most complex (rainflow) have been 
proposed and are presented, with their disadvantages, in Chapter 3. 

All these data are used to estimate the damage – characterized statistically if the 
probability density of the peaks is available and deterministically otherwise 
(Chapter 4) – and its standard deviation (Chapter 5). 

A few elements for damage estimation from other hypotheses are provided in 
Chapter 6. These concern the shape of the S-N curve, the existence of an endurance 
limit, the non-linear accumulation of damage, the law of distribution of peaks and 
the existence of a non-zero mean value. 

The Wöhler curve describes three fields based on the level of stress: with 
unlimited endurance in which the useful lifetime is very long, or even infinite; 
limited endurance (considered in the first chapters of this book); and for when stress 
is close to yield stress (low cycle fatigue). Chapter 7 shows how the S-N curve can 
be characterized in this context by a strain  – number of cycles to failure relation, 
and how calculation of fatigue damage can then be calculated. 

All these approaches are “black box”, with no analysis of physical phenomena 
leading to failure. Experience shows that a crack will eventually appear in a part 
submitted to alternating stresses. This crack grows until the part fails. Several 
studies were carried out to understand and model propagation mechanisms in order 
to evaluate the remaining useful lifetime of cracked parts and to introduce an 
inspection and maintenance strategy, particularly in the aeronautics field. Chapter 8 
discusses the major laws proposed to describe these phenomena and to evaluate a 
useful lifetime from these criteria. 

The elements necessary for calculating the Gamma function and the different 
integrals involved in the relations established in this book are provided in the 
Appendix. 



List of Symbols 

The list below gives the most frequent definition of the main symbols used in 
this book. Some of the symbols can have locally another meaning which will be 
defined in the text to avoid any confusion. 

a One half of crack length 
b Exponent in Basquin’s 

relation (N Cb ) or  
 exponent 
c Viscous damping constant 
C Constant  in Basquin’s 

relation (N Cb )
d Damage associated with 

one half-cycle or  
 Exponent in Corten-Dolan  

law or   
 Plastic work exponent 
dof Degree of freedom 
D Damage by fatigue or  
 Damping capacity 

(D J n )
Dt  Fatigue damage calculated 

using  truncated signal 
erf Error function 
E Young’s modulus 
E  Expectation of... 
f Frequency 

f0 Natural frequency 
G Shear modulus 
G  Power spectral density for 

0 f
h Interval (f f0 )
h t  Impulse response 
H  Transfer function 
i 1
J Damping constant 
k Stiffness 
K Constant of proportionality 

between stress and 
deformation 

KI Stress intensity factor 
(Mode I) 

KIC Critical stress intensity 
factor (also mode I fracture 
toughness) 

m Mass or  
 mean or  
 exponent (Paris law) 
Mn Moment of order n 
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n Number of cycles 
undergone by test-bar or a 
material or 

 order of moment 
 Exponent of D J n  or 
 Number of constant levels 

of a PSD 
n’ Cyclic work hardening 

exponent
n0  Mean number of zero-

crossings per second 
n0  Mean number of zero-

crossings with positive 
slope per second (expected 
frequency) 

np  Mean number of maxima 
per second 

N Number of cycles to 
failure

 Number of dB per octave 
Np  Number of peaks over 

duration T 
p  Probability density 
PSD Power spectral density 

q 1 2r
q u  Probability density of 

maxima 
Q Q factor (factor of quality) 
r Irregularity factor 

(= p0 nn )
rp Distance from the crack tip 
rms Root mean square (value) 
R Stress ratio min max

eR  Yield stress 

mR  Ultimate tensile strength 
Rz  Correlation function 
s Standard deviation 
sD  Standard deviation of 

damage 

t Time 
T Duration of vibration 
u Ratio of peak a to rms 

value rmsz  of z t

rmsu  Rms value of u t  
u t  Generalized response 
v Variation coefficient 
VN  Variation coefficient of 

number of cycles to failure 
by fatigue 

rmsx  Rms value of x t
x t  Absolute displacement of 

the base of a one-degree-
of-freedom system 

x t  Absolute velocity of the 
base of a one-degree-of-
freedom system 

x t  Absolute acceleration of 
the base of a one-degree-
of-freedom system 

zp  Amplitude of peak of z t

rmsz  Rms value of z t  
z t  Relative response 

displacement of mass of 
one-degree-of-freedom 
system with respect to its 
base

2 1 2

2 1 2 2

 Index of damage to failure 
f  Frequency interval 

between half-power points 
or  

 Width of narrow band 
noise

K Stress intensity factor 
range 

KS Threshold stress intensity 
range 

 Strain range 
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 Stress range 
Time of correlation 
Strain

el Elastic strain 
f Fracture ductility 

f'  Necessary true strain to 
obtain a fracture with one 
cycle

p Plastic strain 
 Incomplete gamma 

function 
 Gamma function  

 Exponent in Weibull’s law 
t  Signal of simple form 

Poisson’s ratio

 3.14159265...   
 Stress 
a  Alternating stress 
D  Fatigue limit stress 
f Necessary true stress to 

obtain a fracture with a 
cycle

rms  Rms value of stress 

m  Mean stress 
t  Truncation level of stress 
0 Natural pulsation (2 0f )
 Pulsation of excitation 

(2 f )
 Damping factor 



Chapter 1 

Concepts of Material Fatigue 

1.1. Introduction 

Fatigue phenomena, with formation and growth of cracks in machine elements 
subjected to repeated loads below ultimate strength, was discovered during the 19th 
century with the arrival of machines and freight vehicles functioning under dynamic 
loads larger than those encountered before [NEL 78]. 

According to H.F. Moore and J.B. Kommers [MOO 27], the first work published 
on failure by fatigue was by W. Albert. A German mining engineer, in 1829 he 
carried out repeated loading tests on welded chains of mine winches. S.P. Poncelet 
was perhaps the first to use the term fatigue in 1839 [TIM 53]. 

The most important problems of failure by fatigue were found about 1850 during 
the development of the European railroad (axes of car wheels). A first explanation 
was that metal crystallizes under the action of the repeated loads, until failure. The 
source of this idea is the coarsely crystalline appearance of many surfaces of parts 
broken by fatigue. This theory was disparaged by W.J. Rankine [RAN 43] in 1843. 
The first tests were carried out by Wöhler between 1852 and 1869 [WÖH 60]. 

The dimensioning of a structure to fatigue is more difficult than with static loads 
[LAV 69] because ruptures by fatigue depend on localized stresses. Since the fatigue 
stresses are in general too low to produce a local plastic deformation and the 
redistribution associated with the stresses, it is necessary to carry out a detailed 
analysis which takes into account both the total model of the stresses and the strong 
localized stresses due to the concentrations. 

Fatigue Damage: Second Edition - Volume 4 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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On the other hand, analysis of static stresses only requires the definition of the 
total stress field, the high localized stresses being redistributed by local deformation. 
Three fundamental steps are necessary: 

– definition of the loads; 

– detailed analysis of the stresses; and 

– consideration of the statistical variability of the loads and the properties of 
materials. 

Fatigue damage depends strongly on the oscillatory components of the load, its 
static component and the order of application of the loads. 

Fatigue can be approached in several ways and, in particular, by: 

– the study of the Wöhler’s curves (stress versus number of cycles, or S-N, 
curves); 

– study of cyclic work hardening (low cycle fatigue); and 

– study of the crack propagation rate (fracture mechanics). 

The first of these approaches is the most used. We will present some aspects of 
them in this chapter. 

1.2. Types of dynamic loads (or stresses) 

The load applied to equipment can vary in different ways: 

– periodic or cyclic;

– random; or 

– quickly between two stationary states (transitory). 

It can also be zero average, any average, constant or not. 

1.2.1. Cyclic stress  

In the simplest case, the load applied varies in a sinusoidal manner between 
max  and min  around the rest position (zero mean). 

Consider a stress (t)  varying periodically in time; (t)  values over a period 
(the smallest part of the function periodically repeating) are called “cycle of stress”. 
The most common cycle is the sinusoidal cycle. 
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Figure 1.1. Non-zero mean sinusoidal cycle of stress 

We refer to the largest algebraic value of the stress during a cycle as maximum 
stress max  and the smallest algebraic value (the traction stress being positive) as 
the minimum stress min .

The mean stress m  is the permanent (or static) stress on which the cyclic stress 
is superimposed. 

a  is the amplitude of the oscillatory stress a max m .

We define the cycle coefficient or stress variation rate (or “stress ratio”) as: 

min

max
R [1.1]

We also define another parameter A: 

a

m
A [1.2] 

which relates the alternating stress amplitude to the mean stress. A and R are linked 
by equation [1.3]: 

1-A
R=

1+A
 or 

1- R
A=

1+R
[1.3] 
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We refer to the difference 

d max min a2 [1.4] 

as the range of stress. a  is called the purely alternating stress when it varies 
between equal positive and negative values. 

1.2.2. Alternating stress 

An alternating stress evolves between a positive maximum and a negative 
minimum where absolute values are different. 

Figure 1.2. Alternating stress

In the case of a zero mean stress ( m = 0), we have R = –1 and the cycle is said 
to be symmetric or alternating symmetric [BRA 81] [CAZ 69] [RAB 80] [RIC 65b]. 

The cyclic load can also be superimposed on a constant static load m . If a  is 
the cyclic load amplitude: 

max m a

min m a

When min or max is zero, the cycle is said to be pulsating [FEO 69].  

Two cycles are similar if they have the same R coefficient. 
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Figure 1.3. Repeated stress

When R is ordinary, we can consider that such a cycle is the superimposition of: 

 a constant stress m

 a symmetric cyclic stress of amplitude a. We have: 

max min
m 2

[1.5] 

max min
a 2

[1.6] 

It is considered that the endurance of a component does not depend on the law of 
variation in the interval ( max, min). We also ignore the influence of the frequency 
of the cycle [RIC 65b]. 

1.2.3. Repeated stress 

When the stress varies between 0 and max > 0, between 0 and min < 0, i.e. 
when R = 0, we say that the load is repeated ( m = a).

1.2.4. Combined steady and cyclic stress 

The stress is said to be combined steady and cyclic when 0 < R < 1 ( m > a), i.e. 
when max  and min  are similar. 
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1.2.5. Skewed alternating stress 

In this case, –1 < R < 0 (with 0 < m < a).

Figure 1.4. Skewed alternating stress

Figure 1.5. Combined steady and cyclic stress (0 < R < 1) 

These cyclic loads can be encountered e.g. in rotating machines. 

1.2.6. Random and transitory stresses

In many cases, we cannot consider vibrations as sinusoidal. For example, 
vibrations from an aircraft’s floor or on missile devices are random vibrations with 
randomly variable amplitude in time. Energy is distributed in a wide frequency 
interval, instead of being centered on a given frequency (Volume 1, Chapter 1 and 
Volume 3).  

Other phenomena such as shocks measured on an aircraft’s landing gear, the 
starting or stopping of rotating machines, missile and launcher staging, etc. are all 
transitory, either centered on a given frequency or not. 
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All these loads lead to effects of fatigue that are much harder to evaluate 
experimentally, especially in a projected manner. In the following sections, we will 
show how we can estimate them. 

1.3. Damage arising from fatigue 

We define the modification of the characteristics of a material, primarily due to 
the formation of cracks and resulting from the repeated application of stress cycles, 
as fatigue damage. This change can lead to a failure. 

We will not consider here the mechanisms of nucleation and growth of the 
cracks. We will simply state that fatigue starts with a plastic deformation, initially 
highly localized around certain macroscopic defects (inclusions, cracks of 
manufacture, etc.), under total stresses which can be lower than the yield stress of 
the material. The effect is extremely weak and negligible for only one cycle. If the 
stress is repeated, each cycle creates a new localized plasticity. After a number of 
variable cycles, depending on the level of the applied stress, ultra-microscopic 
cracks can be formed in the newly plastic area. The plastic deformation then extends 
from the ends of the cracks which increase until becoming visible with the naked 
eye, and lead to failure of the part. Fatigue damage is a cumulative phenomenon.  

If the stress-strain cycle is plotted, the hysteresis loop obtained is an open curve 
whose form evolves depending on the number of applied cycles [FEO 69]. Each 
cycle of stress produces certain damage and the succession of the cycles results in a 
cumulative effect.  

The damage is accompanied by modifications of the mechanical properties and, 
in particular, of a reduction of the static ultimate tensile strength Rm and of the 
fatigue limit strength. 

This is generally local to the place of a geometrical discontinuity or a 
metallurgical defect. The fatigue damage is also related to metallurgical and 
mechanical phenomena, with appearance and cracks growth depending on the 
microstructural evolution and mechanical parameters (possibly with the effects of 
the environment). 

The damage can be characterized by: 

evolution of a crack and energy absorption of plastic deformation in the 
plastic zone which exists at the ends of the crack; 

loss of strength in static tension; 
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reduction of the fatigue limit stress up to a critical value corresponding to the 
failure; and 

variation of the plastic deformation which increases with the number of 
cycles up to a critical value. 

Figure 1.6. Unclosed hysteresis loop

We can suppose that fatigue is [COS 69]: 

the result of a dynamic variation of the conditions of load in a material; 

a statistical phenomenon; 

a cumulative phenomenon; and 

a function of material and of amplitude of the alternating stresses imposed on 
material. 

There are several approaches to the problem of fatigue: 

establishing empirical relations taking experimental results into account; 

expressing in an equation the physical phenomena in the material, including 
microscopic cracks starting from intrusion defects and propagation of these 
microscopic cracks until macro-cracks and failure are obtained. 

Cazaud et al. [CAZ 69] quote several theories concerning fatigue, the principal 
theories being: 
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mechanical theories; 

theory of the secondary effects (consideration of the homogenity of the 
material, regularity of the distribution of the effort); 

theory of hysteresis of pseudo-elastic deformations (discussion based on 
Hooke’s law); 

- theory of molecular slip, 

- theory of work hardening, 

- theory of crack propagation, and 

- theory of internal damping; 

 physical theories, which consider the formation and propagation of the cracks 
using models of dislocation starting from extrusions and intrusions; 

 static theories, in which the stochastic character of the results is explained by 
the heterogenity of materials, the distribution of the stress levels, cyclic character of 
loading, etc.; 

 theories of damage; and 

 low cycle plastic fatigue, in the case of failures caused  by approximately  
N < 104 cycles. 

The estimate of the lifetime of a test bar is carried out from: 

 a curve characteristic of the material (which gives the number of cycles to 
failure according to the amplitude of stress), in general sinusoidal with zero mean 
(S-N curve); and 

  a law of accumulation of damages. 

The various elaborated theories are distinguished by the selected analytical 
expression to represent the curve of damage and the by the manner of cumulating 
the damages. 

To avoid failures of parts by fatigue dimensioned in statics and subjected to 
variable loads, we were initially tempted to adopt arbitrary safety factors. If badly 
selected, i.e. insufficient or too large, these could lead to excessive dimensions and 
masses. 

An ideal design would require use of materials in the elastic range. 
Unfortunately, the plastic deformations always exist at points of strong stress 



10     Fatigue Damage 

concentration. The nominal deformations and stresses are elastic and linearly related 
to the applied loads. This is not the case for stresses and local deformations which 
exist in metal at critical points, and which control resistance to fatigue of the whole 
structure.

It therefore proved necessary to carry out tests on test bars for better estimating 
of the resistance to fatigue under dynamic load, beginning with the simplest, i.e. the 
sinusoidal load. We will see in the following chapters how the effects of random 
vibrations most frequently met in practice can be evaluated. 

1.4. Characterization of endurance of materials 

1.4.1. S-N curve 

The endurance of materials is studied in the laboratory by subjecting until 
rupture test bars cut in the material to be studied to stresses (or strains) of amplitude 

, generally sinusoidal with zero mean. 

Following the work of Wöhler [WÖH 60] [WÖH 70] carried out on axes of 
trucks subjected to rotary bending stresses, we note that for each test bar, the number 
N of cycles to failure (endurance of the part or fatigue life) depends on . The curve 
obtained in plotting  against N is termed the S-N curve (stress versus number of 
cycles) or Wöhler’s curve or endurance curve. The endurance is therefore the ability 
of a machine part to resist fatigue.  

Taking into account the huge variations of N with , it is usual to plot log N 
(decimal logarithm in general) on abscissae. Logarithmic scales on abscissae and on 
ordinates are also sometimes used. 

This curve is generally composed of three zones [FAC 72] [RAB 80] 
(Figure 1.7): 

zone AB: corresponding to low cycle fatigue, which corresponds to the 
largest stresses higher than the yield stress of material, where N varies from one-
quarter of cycle with approximately 104 to 105 cycles (for mild steels). In this zone, 
we observe significant plastic deformation followed by failure of the test bar. The 
plastic deformation p  can be related here to the number of cycles to the failure by a 
simple relationship of the form: 

N Ck
p [1.7] 
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where the exponent k is close to 0.5 for common metals (steels, light alloys) 
[COF 62]. 

Figure 1.7. Main zones of the S-N curve

zone BC: often approximates a straight line on log-linear scales (or sometimes 
on log-log scales), in which the fracture certainly appears under a stress lower than 
previously, without appearance of measurable plastic deformation. There are many 
relationships proposed between  and N to represent the phenomenon in this domain 
where N increases and when  decreases. This zone, known as the zone of limited 
endurance, lies between approximately 104 cycles and 106 to 107 cycles. 

zone CD: where D is a point which, for ferrous metals, is ad infinitum. The S-
N curve generally presents a significant variation of slope around 106 to 107 cycles, 
followed in a way more or less clear, marked by a zone (CD) where the curve tends 
towards a limit parallel with the N axis. On this side of this limit, the value of  is 
denoted D ; there is never failure by fatigue whatever the number of cycles applied. 

D is referred to as the fatigue limit and represents the stress with zero mean of 
greater amplitude for which we do not observe failure by fatigue after an infinite 
number of cycles. This stress limit does not exist or can be badly defined for certain 
materials [NEL 78] (e.g. high-strength steels, non-ferrous metals). 

For sufficiently resistant metals, where it is not possible to evaluate the number 
of cycles which the test bar would support without damage [CAZ 69] (too large a 
test duration) and to take account of the scatter of the results, the concept of 
conventional fatigue limit or endurance limit is introduced. It is about the greatest 
amplitude of stress  for which 50% of failures after N cycles of stress is observed. 
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It is denoted m 0, D N . N can vary between 106 and 108 cycles [BRA 80a, b]. 

For steels, N 107  and D D107 . The notation D  is used in this case. 

NOTE:

Brittle materials do not have a well-defined fatigue limit [BRA 81] [FID 75]. 

For extra-hardened tempered steels (certainly titanium, copper or aluminum 
alloys), or when there is corrosion, this limit remains theoretical and without 
interest since the fatigue life is never infinite. 

When the mean stress m  is different from zero, it is important to associate m
with the amplitude of the alternating stress. The fatigue limit can be written a  or 

aD  in this case. 

Figure 1.8. Sinusoidal stress with (a) zero and (b) non-zero mean

Definition 

The endurance ratio is the ratio of the fatigue limit D  (normally at 107 cycles) 
to the ultimate tensile strength Rm of material: 

m

D
R

)N(
=R [1.8] 

NOTE: The S-N curve is sometimes plotted on reduced scales on axes ( mR , N), 
 in order to be able to proceed more easily to comparisons between different 
materials. 
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Figure 1.9. S-N curve on reduced axes 

1.4.2. Statistical aspect 

The S-N curve of a material is plotted by successively subjecting ten (or more) 
test bars to sinusoidal stresses of various amplitudes. The results show that there is 
considerable scatter in the results, in particular for the long fatigue lives. For a given 
stress level, the relationship between the maximum and the minimal value of the 
number of cycles to failure can exceed 10 [LAV 69] [NEL 78]. 

The dispersion of the results is related on the heterogenity of materials, the 
surface defects, the machining tolerances and, in particular, to metallurgical factors. 
Among these factors, inclusions are most important. Scatter is in fact due to the 
action of fatigue in a metal, which is generally strongly localized. Contrary to the 
case of static loads, only a small volume of material is concerned. The rate of fatigue 
depends on the size, orientation and chemical composition of some material grains 
which are located in a critical zone [BRA 80b] [LEV 55] [WIR 76]. 

In practice, it is therefore not realistic to characterize the resistance to fatigue of 
a material by a S-N curve plotted from only one fatigue test at each stress level. It is 
more correct to describe this behavior by a curve in a statistical manner, the 
abscissae providing the endurance Np  for a survival of p percent of the test bars 
[BAS 75] [COS 69]. 

The median endurance curve (or equiprobability curve) denoted N50 (i.e. 
survival of 50% of the test bars), or sometimes the median curves with 1  to 
3 standard deviations or other isoprobability curves, are generally given [ING 27]. 

Without other indication, the S-N curve is the median curve. 
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Figure 1.10. Isoprobability S-N curves

NOTE: The scatter of fatigue life of non-ferrous metals (aluminum, copper, etc.) is 
less than that of steels, probably because these metals have fewer inclusions and 
inhomogenities.

1.4.3. Distribution laws of endurance 

For high stress levels, endurance N follows a log-normal law [DOL 59] 
[IMP 65]. In other words, in scales where the abscissa carry log N, the distribution 
of log N follows, in this stress domain, a roughly normal law (nearer to the normal 
law when  is higher) with a scatter which decreases when  increases. M. Matolcsy 
[MAT 69] considers that the standard deviation s can be related to the fatigue life at 
50% by an expression of the form 

s N A N50 [1.9] 

where A and  are constant functions of material.

Example 1.1. 

Aluminum alloys 1.125 
Steels 1.114–1.155 
Copper wires 1.160 
Rubber 1.125 

Table 1.1. Examples of values of the exponent 

G.M. Sinclair and T.J. Dolan [SIN 53] observed that the statistical law 
describing the fatigue evolution is roughly log-normal and that the standard 
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deviation of the variable (log N) varies with the amplitude of the applied stress 
according to an exponential law. 

Figure 1.11. Log-normal distribution of the fatigue life 

In the endurance zone, close to D , F. Bastenaire [BAS 75] showed that the 
inverse 1/N of endurance follows a modified normal law (with truncated tail). 

Other statistical models were proposed e.g. following [YAO 72] [YAO 74]: 

the normal law [AST 63]; 

extreme value distribution; 

Weibull’s law [FRE 53]; and 

the gamma law [EUG 65].  

From a compilation of various experimental results, P.H. Wirshing [WIR 81] 
checked that, for welded tubular parts, the log-normal law is that which adapts best. 
It is this law which is most often used [WIR 81]. It has the following advantages:  

well-defined statistical properties;  

easy to use; and  

adapts to large variations in coefficient. 

Tables 1.2 and 1.3 give values of the variation coefficient of the number of 
cycles to failure for some materials noted in the literature [LAL 87]. 

Value 0.2 of the standard deviation (on log N) is often used for the calculation of 
the fatigue lives (for notched or other parts) [FOR 61] [LIG 80] [LUN 64] 
[MEH 53].
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Authors Materials Conditions NV (%) 

Whittaker 
and

Besuner 

[WHIT 69] 

Steels Rm 1650  MPa (240 ksi) 
Steels Rm 1650 MPa (240 ksi) 

Aluminum alloy 
Alloy titanium 

36
48
27
36

(Log-normal) 

Endo and 
Morrow 

[END 67] 
[WIR 82] 

Steel 4340 

7075-T6 

2024-T4 

Titanium 811 

Low cycle 
fatigue

(N < 103)

14.7 

17.6 

19.7 

65.8 

Swanson 
[SWA 68] 

Steel SAE 1006 

Maraging steel 200 grade 

Maraging steel Nickel 18% 

Fatigue under 
narrow band 
random noise 

25.1 

38.6 

69.0 

Gurney
[GUR 68] 

Welded structures Mean 52 

Table 1.2. Examples of values of the variation coefficient of the number  
of cycles to failure

1.4.4. Distribution laws of fatigue strength 

Another way of resolving the problem consists of studying the fatigue strength 
of the material [SCH 74], i.e. the stress which the material can resist during N 
cycles. This strength also has a statistical character; strength to p percent of survival 
and a median strength are also defined here. 

The response curve represents the probability of failure during a test with 
duration limited to N cycles, depending on the stress  [CAZ 69] [ING 27]. 

The experiment shows that the fatigue strength follows a roughly normal law 
whatever the value of N and is fairly independent of N [BAR 77]. This constancy is 
masked on the S-N diagrams by the choice of the log-linear or log-log scales, scatter 
appearing to increase with N. Some values of the variation coefficient of this law for 
various materials, extracted from the literature, can be found in [LAL 87].
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Authors Materials Conditions NV  (%) 

Blake and 
Baird [BLA 69] 

Aerospace components Random loads 3 to 30 

Epremian and 
Mehl [EPR 52] 

Steels 
Log-normal law 

s mlog log 2.04 to 
8.81
Log-

normal law 
Ang and 

Munse [Ang 75] Welding 52
Whittaker  

[WHIT 72] 
Steel UTS  1650 MPa 
Steel UTS > 1650 MPa 

 36 
48

Aluminum alloys 
Titanium alloys 

22
36

Wirsching
[WIR 83b] 

Welding (tubes)  70 to 150 

Wirsching and Wu 
[WIR 83c] RQC - 100 Q 

Plastic strain 
Elastic strain 

15 to 30 
55

Waspaloy B 
Super alloys 

Containing Nickel 

Plastic strain 
Elastic strain 

42
55

Wirsching
[WIR 83a] 

VN , often about 30% to 40%, can reach 75% and 
even exceed 100%. 

Low cycle fatigue field: 20% to 40% for the 
majority of metal alloys. 

For N large, VN can exceed 100%. 

Yokobori
[YOK 65] 

Steel 
Rotational bending or traction compression 

28 to 130 

Dolan and Brown 
[DOL 52] 

Aluminum alloy 7075.T6 
Rotational bending 

44 to 80 

Sinclair and 
Dolan [SIN 53] 

Aluminum alloy 75.S-T 
Rotational bending 

10 to 100 

Levy 
[LEV 55] 

Mild steel 
Rotational bending 

43 to 75 

Konishi and Shinozuka 
[KON 56] 

Notched plates - Steel SS41 
Alternate traction 

18 to 43 

Matolcsy  
[MAT 69] 

Synthesis of various test results 20 to 90 

Tanaka and Akita 
[TAN 72] 

Silver/nickel wires 
Alternating bending 

16 to 21 

Table 1.3. Examples of values of the variation coefficient of the number  
of cycles to failure
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Figure 1.12. Gaussian distribution of fatigue strength

Authors Materials Parameter NV  (%)  

Ligeron  
[LIG 80] 

Steels 
Various alloys Fatigue limit stress 4.4 to 9.4 

Yokobori
[YOK 65] Mild steel Fatigue limit stress 2.5 to 11.3 

Mehle
[MEH 53] Steel SAE 4340 20 to 95 

Epremian  
[WIR 83a] 

Large variety of  
metallic materials 

Endurance stress (failure 
for given N ) 

5 to 15 

Table 1.4. Examples of values of the variation coefficient of  
the endurance strength  for a given N

For all the metals, J.E. Shigley [SHI 72] proposes a variation coefficient D
(ratio of the standard deviation to the mean) equal to 0.08 [LIG 80], a value which 
can be reduced to 0.06 for steels [RAN 49]. 

1.4.5. Relation between fatigue limit and static properties of materials 

Some authors tried to establish empirical formulae relating the fatigue limit D
and its standard deviation to the mechanical characteristics of the material (Poisson 
coefficient, Young’s modulus, etc.). For example, the relations listed in Table 1.5 
were proposed for steels [CAZ 69] [LIE 80]. 

After completing a large number of fatigue tests (rotational bending, on test bars 
without notches). A. Brand and R. Sutterlin [BRA 80a] noted that the best 
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correlation between D  and a mechanical strength parameter is that obtained with 
the ultimate strength Rm (tension): 

m
4

m%50D R102.157.0R  for 800 1300Rm  N/mm2

m
4

mD R104.156.0R  for Rm 800 N/mm2 or Rm 1300  N/mm2

All these relations only represent correctly the results of the experiments which 
made it possible to establish them, and therefore are not general. A. Brand and 
R. Sutterlin [BRA 80a] tried however to determine a more general relation, 
independent of the size of the test bars and stress, of the form: 

DM a blog

where a and b are related to R m . D M  is the real fatigue limit related to the 
nominal fatigue limit Dnom by 

D M t D nomK

where Kt  = stress concentration factor.  is the stress gradient, defined as the value 
of the slope of the tangent of the stress field at the notch root divided by the 
maximum value of the stress at the same point, i.e.  

lim
x

d

dx0

1
.

The variation coefficient is defined: 

v
s

D

D

6 %

where v is independent of Rm. A. Brand and R. Sutterlin [BRA 80a] recommend a 
value of 10%. 
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Houdremont and 
Mailander 

5RR25.0 meD
Re= yield stress 
Rm= ultimate stress 

Lequis, Buchholtz 
and Schultz 

100%ARR175.0 meD
A% = lengthening, in 

percent. 

Fry, Kessner and 
Öttel

D m eR R
 proportional to Rm

and  inversely 
proportional 

Heywood D
mR

2

eD R43.0150

Brand 121R32.0 mD

Lieurade and 
Buthod [LIE 82] 

77R37.0 mD

16R38.0 mD

A2R41.0 mD

SR39.0 mD

(to 15% near) 

S = striction, expressed 
in % 

Jüger SRR2.0 meD

Rogers meD R25.0R4.0

Mailander mD R%2049.0

eD R%3065.0

Stribeck meD RR%20285.0

In all the above relations, D , Rm and Re are expressed in N mm/ 2 .

Feodossiev 

[FEO 69] 

Steel, bending: 4.0D  to mR5.0

Very resistant steels: mD R
6
1

4000  (in kg cm/ 2 )

Non-ferrous metals: 25.0D  to mR5.0

Table 1.5. Examples of relations between the fatigue limit and the  
static properties of materials
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1.4.6. Analytical representations of S-N curve

Various expressions have been proposed to describe the S-N curve representative 
of the fatigue strength of a material, often in the limited endurance domain (the 
definition of this curve has evolved over the years from a deterministic curve to a 
curve of statistical character). 

Figure 1.13. Representation of the S-N curve in semi-logarithmic scales

The S-N curve is generally plotted in semi-logarithmic scales of log N and , in 
which it presents a roughly linear part (around an inflection point), a curve 
characteristic of the material (BC) and an asymptote to the straight line D .

Among the many more or less complicated representations (none of which are 
really general), the following relations can be found [BAS 75] [ DEN 71] [LIE 80]. 

1.4.6.1. Wöhler relation [WÖH 70] 

log N [1.10] 

This relation does not describe the totality of the curve since  does not tend 
towards a limit D  when N  [HAI 78]. It represents only the part BC. It can 
also be written in the form: 

N e ba [1.11] 

1.4.6.2. Basquin relation

The relation suggested by Basquin in 1910 [BAS 10] is of the form 

ln ln N [1.12] 
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i.e.

N Cb [1.13] 

where  

1

b
and ln C

The parameter b is sometimes referred to as the index of the fatigue curve
[BOL 84]. 

Figure 1.14. Significance of the parameter b of Basquin’s relation

In these scales, the curve can be entirely linearized (upwards) by considering the 
amplitudes of the true stresses (and neither nominal). Expression [1.13] can also be 
written: 

= RF N [1.14] 

or

N b
RF
b [1.15] 

where RF  is the fatigue strength coefficient. This expression is generally valid for 

high values of N ( 104). If there is a non-zero 0  mean stress, constant C must be 
replaced by: 



Concepts of Material Fatigue     23

C 1 - 0
m

Rm

where C is the constant used when 0 0 and Rm is the ultimate strength of the 
material [WIR 83a]. 

In the expression N Cb , the stress tends towards zero when N tends towards 
the infinite. This relation is therefore representative of the S-N curve only for part 
BC. In addition, it represents a straight line in logarithmic scales and not in semi-
logarithmic scales (log-linear). A certain number of authors presented the results of 
the fatigue tests in these scales (log-log) and showed that part BC is close to a 
straight line [MUR 52]. F.R. Shanley [SHA 52] considers in particular that it is 
preferable to choose these scales. H.P. Lieurade [LIE 80] notes that the 
representation of Basquin is less appropriate than that of the relation of Wöhler in 
the intermediate zone, and that the Basquin method is not better around the fatigue 
limit. It is very much used, however. 

To take account of the stochastic nature of this curve, P.H. Wirsching [WIR 79] 
proposed treating constant C like a log-normal random variable of mean C and 
standard deviation C and provides the following values, in the domain of the great 
numbers of cycles: 

– median: 1.55 1012 (ksi)(1),

– variation coefficient: 1.36 

(statistical study of S-N curves relating to connections between tubes). 

Some numerical values of the parameter b in Basquin’s relationship

Metals. The range of variation of b is 3–25. The most common values are 
between 3 and 10 [LEN 68]. M. Gertel [GER 61] [GER 62] and C.E. Crede 
and E.J. Lunney [CRE 56b] consider a value of 9 to be representative of most 
materials. It is probably a consideration of this order that led to the choice of 9 by 
standards such as MIL-STD-810, AIR, etc. This choice is satisfactory for most light 
alloys and copper but may be unsuitable for other materials. For instance, for steel, 
the value of b varies between 10 and 14 depending on the alloy. D.S. Steinberg 
[STE 73] mentions the case of 6144-T4 aluminum alloy for which 14b
( 7814 1026.2N ).

1. 1 ksi = 6.8947 MPa
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b is approximately 9 for ductile materials and approximately 20 for brittle 
materials, whatever the ultimate strength of the material [LAM 80]. 

Material Type of fatigue test min

max
b

2024-T3 aluminum Axial load –1 5.6 
2024-T4 aluminum Rotating beam –1 6.4 
7075-T6 aluminum Axial loading  –1 5.5 
6061-T6 aluminum Rotating beam –1 7.0 
ZK-60 magnesium  4.8 
BK31XA-T6 magnesium Axial load 0.25 8.5 
 Rotating beam –1 5.8 
QE 22-T6 magnesium Wöhler –1 3.1 
4130 steel   

Standardized Axial load –1 4.5 
Hardened Axial load –1 4.1 

6Al-4V Ti Axial load –1 4.9 
Beryllium   

Hot pressed Axial load 0 10.8 
Block  0.2 8.7 

–1 12.6 
Cross Rol Sheat Axial load 0.2 9.4 
Invar Axial load 4.6 
Anneal copper  11.2 
1S1 fiberglass  6.7 

Table 1.6. Examples of values of the parameter b [DEI 72]

The lowest values indicate that the fatigue strength drops faster when the number 
of cycles is increased, which is generally the case for the most severe geometric 
shapes. The lower the stress concentration, the higher the value of parameter b. 
Table 1.6 gives the value of b for a few materials according to the type of load 
applied: tension-compression, torsion, etc. and the value of the mean stress, i.e. the 
ratio min max .
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A few other values are given by R.G. Lambert [LAM 80] with no indication of 
the test conditions. 

Material b 

Copper wire 

Aluminum alloy 6061-T6 

7075-T6 

Soft solder (63-37 Tin - Lead) 

4340 (BHN 243) 

4340 (BHN 350) 

AZ31B Magnesium alloy 

9.28 

8.92 

9.65 

9.85 

10.5 

13.2 

22.4 

Table 1.7. Examples of values of the parameter b [LAM 80]

Figure 1.15. Examples of values of the parameter b [CAR 74]

It should be noted that the b parameter of an assembly can differ appreciably 
from that of the material of which it is composed. The b parameter defined in 
experiments for a steel ball bearing is, for example, close to 4. That of steel or 
aluminum welded parts has a b value between 3 and 6 [BRI 80] [EUR 93] [HAA 98] 
[LAS 05] [MAN 04] [SHE 05] [TVE 03]. 

It is therefore necessary to be very cautious when choosing the value of this 
parameter, especially when reducing the test times for constant fatigue damage 
testing. 
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Case of electronic components

The failures observed in electronic components follow the conventional fatigue 
failure model [HAS 64]. The equations established for structures are therefore 
applicable [BLA 78]. During initial tests on components such as capacitors, vacuum 
tubes, resistors, etc. and on equipment, it was observed that the failures (lead 
breakage) generally occurred near the frame resonance frequencies, generally below 
500 Hz [JAC 56]. The analysis of tests conducted on components by D.L. Wrisley 
and W.S. Knowles [WRI] tends to confirm the existence of a fatigue limit. 

Electronic components could be expected a priori to be characterized by a 
parameter b of around 8 or 9 for fatigue strength, at least in the case of discrete 
components with copper or light alloy leads. That is the value chosen by some 
authors [CZE 78]. 

Few data have been published on the fatigue strength of electronic components. 
C.A. Golueke [GOL 58] provides S-N curves plotted from the results of fatigue 
testing conducted at resonance on resistors, for setups such that the resonance 
frequency is between 120 Hz and 690 Hz. Its results show that the S-N curves 
obtained for each resonance are roughly parallel. On xlogNlog  scales 
(acceleration), parameter b is very close to 2. Components with the highest 
resonance frequency have the longest life expectancy, which demonstrates the 
interest of decreasing the component lead length to a minimum. 

Figure 1.16. Examples of S-N curves of electronic components [GOL 58]

This work also reports that the most fragile parts regarding fatigue strength are 
the soldered joints and interconnections followed by capacitors, vacuum tubes, 
relays to a much lesser extent, transformers and switches. 

M. Gertel [GER 61] [GER 62] writes the Basquin relation N Cb  in the form 
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N
C

C
b

D
b

D
b 1 [1.16] 

where D  is the fatigue limit. If the excitation is sinusoidal [GER 61] and if the 
structure, comparable to a one-degree-of-freedom system, is subjected to tension-
compression, the movement of mass m is such that 

m y S [1.17] 

where  is stress in the part with cross-section S. If the structure is excited at 
resonance, we have: 

y Q x [1.18] 

and

x
S

m Q
[1.19] 

Knowing that the specific damping energy D is related to the stress by 

e

en
R8.0if8n
R8.0if4.2n

JD [1.20] 

and that the Q factor can be considered as the product: 

Q K Km v [1.21] 

where 

K
E D

m

2

is the dimensionless factor of the material,  E is Young’s modulus, and where Kv is 
the dimensionless volumetric stress factor, we obtain 

x
S

m K K

S

m K

E D

v m v
2

x
S E

m K
J

v

n
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x
S E J

m Kv

n 1 [1.22] 

If
1n

e
v

e R
Km

JES
x

1n

ee Rx
x

and

N
R

C
b

e
b 1,

we obtain 

1
1n

b

e
C

x
x

N , [1.23] 

yielding the value of the parameter b of resistors in N–  axes (instead of N, x):

b 2 (n 1) [1.24] 

which, for 4.2n , is equal to 2  1.4 = 2.8. These low values of b are confirmed 
by other authors [CRE 56b] [CRE 57] [LUN 58]. Some relate to different 
component technologies [DEW 86]. Among the published values are, for instance, 
that of C.E. Crede [GER 61] [GER 62]: 

Resistors: b = 2.4 to 5.8 

Vacuum tubes: b = 0.6, 

those of E.J. Lunney and C.E. Crede [CRE 56b]:  

Capacitors: b = 3.6 (leads) 

Vacuum tubes: b = 2.83 to 2.13, 

or, for weldings, b = 5.7 [GOP 89]. 
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1.4.6.3. Some other laws 

Other laws include that of C.E. Stromeyer [STR 14]: 

log - = - log ND [1.25] 

or

D

bC

N

1

[1.26] 

or

- N = CD
b

[1.27] 

Here,  tends towards D  when N tends towards infinity. 

A. Palmgren [PAL 24] stated that 

= D
C

N A

b1

[1.28] 

or

( - ) N + A) = CD
b ( [1.29] 

a relation which is better adjusted using experimental curves than Stromeyer’s 
relation. 

According to W. Weibull [WEI 49], 

- C

N + A
D

Rm D

b1

[1.30] 

where Rm is the ultimate strength of studied material. This relation does not 
improve the preceding relation. It can be also written: 
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=
F

(N + A)
D 1 b [1.31] 

where F is a constant and A is the number of cycles (different from 1/4) 
corresponding to the ultimate stress [WEI 52]. It was used in other forms, such as: 

- D
C

N

n1

[1.32] 

with n = 1 [PRO 48], n = 2 [FER 55] and 

D

mR
b N-a [1.33] 

where a and b are constants [FUL 63]. 

According to Corson [MIL 82], 

( - A
C

N
D

- D) [1.34] 

Bastenaire [BAS 75] stated that: 

N B e CD
A D [1.35] 

1.5. Factors of influence 

1.5.1. General 

A great number of parameters affect fatigue strength and hence the S-N curve. 
The fatigue limit of a test bar can therefore be expressed in the form [SHI 72]: 

DvrfsscD KKKKKK [1.36] 

where D  is the fatigue limit of a smooth test bar and where the other factors make 
it possible to take into account the following effects: 

scK scale effect 
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Ks surface effect 
K temperature effect 

fK form effect (notches, holes, etc.) 

rK reliability effect 

vK various effects (loading rate, type of load, corrosion, residual stresses, 
stress frequency, etc.) 

These factors can be classified as follows [MIL 82]: 

 factors depending on the conditions of load (type of loads: 
tension/compression, alternating bending, rotational bending, alternating torsion, 
etc.);

 geometrical factors (scale effect, shape, etc.); 

 factors depending on the conditions of surface; 

 factors of a metallurgical nature; and 

 factors of environment (temperature, corrosion etc). 

We examine some of these parameters in the following sections. 

1.5.2. Scale

For the sake of simplicity and minimizing cost, the tests of characterization of 
strength to fatigue are carried out on small test bars. The tacit and fundamental 
assumption is that the damage processes apply both to the test bars and the complete 
structure. The use of the constants determined with test bars for the calculation of 
larger parts assumes that the scale factor has little influence. 

A scale effect can appear when the diameter of the test bar is increased, 
involving an increase in the concerned volume of metal and in the surface of the 
part, and thus an increase in the probability of cracking. This scale effect has as 
origins: 

 mechanics: existence of a stress gradient in the surface layers of the part, 
variable according to dimensions, weaker for the large parts (case of the non-
uniform loads, such as torsion or alternating bending); 

 statistics: larger probability of existence of defects being able to start 
microscopic cracks in the large parts; and 

 technological: surface quality and material heterogenity. 
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It is noted in practice that the fatigue limit is smaller when the test bar is larger. 
With equal nominal stress, the greater the dimensions of a part, the greater its fatigue 
strength decreases [BRA 80b] [BRA 81] [EPR 52]. 

B.N. Leis [LEI 78] and B.N. Leis and D. Broek [LEI 81] demonstrated that, 
under conditions to ensure that similarity is respected strictly at the critical points 
(notch root, crack edges, etc.), precise structure fatigue life predictions can be made 
from laboratory test results. Satisfying conditions of similarity is sometimes difficult 
to achieve, however, since there is a lack of understanding of the factors controlling 
the process of damage rate. 

1.5.3. Overloads 

We will see that the order of application of loads of various amplitudes is an 
important parameter. It is observed in practice that: 

1. For a smooth test bar, the effect of an overload leads to a reduction in the 
fatigue life. J. Kommers [KOM 45] showed that a material which was submitted to 
significant over-stress, then to under-stress, can break even if the final stress is lower 
than the initial fatigue limit. This is because the over-stress produces a reduction in 
the initial fatigue limit. By contrast, an initial under-stress increases the fatigue limit 
[GOU 24]. 

J.R. Fuller [FUL 63] noted that the S-N curve of a material which has undergone 
an overload turns in the clockwise direction with respect to the initial S-N curve, 
around a point located on the curve with ordinate of amplitude 1 of the overload.  

The fatigue limit is reduced. If n2  cycles are carried out on the level 2  after n1
cycles at level 1 , the new S-N curve takes the position 3 (Figure 1.17). 

Rotation is quantitatively related to the value of the ratio 1 1n N  on the over-
stress level 1. J.R. Fuller defines a factor of distribution which can be written for 
two load levels: 

1 10
1

1
10 10

q

N

N N q

N

N N

q
A

A a

A

A a

log log [1.37] 
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Figure 1.17. Rotation of the S-N curve of a material which has undergone  
an overload [FUL 63]

Rotation is quantitatively related to the value of the ratio 1 1n N  on the over-
stress level 1. J.R. Fuller defines a factor of distribution which can be written for 
two load levels: 

1 10
1

1
10 10

q

N

N N q

N

N N

q
A

A a

A

A a

log log [1.37] 

where q is a constant generally equal to 3 (notch sensitivity of material to fatigue to 
the high loads), NA  is the number of cycles on the highest level A  and Na  is the 
number of cycles on the lower level a .

If 1, all the stress cycles are carried out at the higher stress level (Na 0 ).
This factor  enables the distribution of the peaks between the two limits A  and 

a  to be characterized and is used to correct the fatigue life of the test bars 
calculated under this type of load. It can be used for a narrow band random loading. 

2. For a notched test bar, on which most of the fatigue life is devoted to the 
propagation of the cracks by fatigue, this same effect led to an increase in the fatigue 
life [MAT 71]. Conversely, an initial under-load accelerates cracking. This 
acceleration is all the more significant since the ensuing loads are larger. In the case 
of random vibrations, they are statistically not very frequent and of short duration so 
that the under-load effect can be neglected [WEI 78]. 
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1.5.4. Frequency of stresses 

The frequency, within reasonable limits of variation, is not important [DOL 57]. 
It is generally considered that this parameter has little influence as long as the heat 
created in the part can be dissipated and a heating does not occur which would affect 
the mechanical characteristics. (Stresses are considered here to be directly applied to 
the part with a given frequency. It is different when the stresses are due to the total 
response of a structure involving several modes [GRE 81]). 

An assessment of the influence of the frequency shows [HON 83]: 

 the results published are not always coherent, particularly because of corrosion 
effects;

 for certain materials, the frequency can be a significant factor when it varies 
greatly, acting differently depending on materials and load amplitude; and 

 its effect is much more significant at high frequencies. 

For the majority of steels and alloys, it is negligible for f 117 Hz. In the low 
number of cycle fatigue domain, there is a linear relation between the fatigue life 
and the frequency on logarithmic scales [ECK 51]. Generally observed are: 

 an increase in the fatigue limit when the frequency increases; and 

 a maximum value of fatigue limit at a certain frequency. 

For specific treatment of materials, unusual effects can be noted [BOO 70] 
[BRA 80b] [BRA 81] [ECK 51] [FOR 62] [FUL 63] [GUR 48] [HAR 61] [JEN 25] 
[KEN 82] [LOM 56] [MAS 66a] [MAT 69] [WAD 56] [WEB 66] [WHI 61]. 
I. Palfalvi [PAL 65] demonstrated theoretically the existence of a limiting 
frequency, beyond which the thermal release creates additional stresses and changes 
of state. 

The effect of frequency seems more marked with the large numbers of cycles 
and decreases when the stress tends towards the fatigue limit [HAR 61]. It becomes 
paramount in the presence of a hostile environment (for example, corrosive medium, 
temperature) [LIE 91]. 

1.5.5. Types of stresses 

The plots of the S-N curves are generally obtained by subjecting test bars to 
sinusoidal loads (tension and compression, torsion, etc.) with zero mean. It is also 
possible to plot these curves for random stress or even by applying repeated shocks. 
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1.5.6. Non-zero mean stress 

Unless otherwise specified, it will be assumed in what follows that the S-N curve 
is defined by the median curve. The presence of a non-zero mean stress modifies the 
fatigue life of the test bar, in particular when this mean stress is relatively large 
compared to the alternating stress. A tensile mean stress decreases the fatigue life; a 
compressive stress increases it. 

Since the amplitudes of the alternating stresses are relatively small in the fatigue 
tests with a great number of cycles, the effects of the mean stress are more important 
than in the tests with a low number of cycles [SHI 83]. 

If the stresses are large enough to produce significant repeated plastic strains, as 
in the case of fatigue with a small number of cycles, the mean strain is quickly 
released and its effect can be weak [TOP 69] [YAN 72]. 

Figure 1.18. Sinusoidal stress with non-zero mean

When the mean stress m  is different from zero, the sinusoidal stress is 
generally characterized by two parameters from: a , max , min  and 
R min max .

Although this representation is seldom used, it is possible to use the traditional 
representation of the S-N curves with the logarithm of the number of cycles to 
failure on the abscissa axis and on the ordinate stress max , the curves being plotted 
for different values of m  or R [FID 75] [SCH 74]. 
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Figure 1.19. Representation of the S-N curves 
with non-zero mean versus R

Figure 1.20. Representation of the S-N 
curves with non-zero mean versus the  

mean stress

Other authors plot S-N curves with a  versus N for various values of m , and 
propose empirical relations between constants C and b of Basquin’s relation 
(N Cb ) and m  [SEW 72]: 

Figure 1.21. Example of S-N curves 
 with non-zero mean
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Example 1.2. 

Aluminum alloy: 

3
m

2
mm10 25697.018776.137677.245982.9Clog

3
m

2
mm 00657.004786.0213676.096687.3b

( m  in units of 10 ksi)(2)

It is generally agreed to use material below its yield stress ( emax R ) only, 
which limits the influence of m  on the lifespan. The application of static stress 
leads to a reduction in a  (for a material, a stress mode and a given fatigue life). It is 
therefore interesting to know how a  varies with m . Several relations or diagrams 
were proposed to this end. 

For tests with given m , we can correspond each value of the fatigue limit D  to 
each value of m . All of these values D  are represented on diagrams known as 
“endurance diagrams” which, as for the S-N curves, can be drawn for given 
probabilities [ATL 86]. 

1.6. Other representations of S-N curves

1.6.1. Haigh diagram 

The Haigh diagram is constructed by plotting the stress amplitude a  against the 
mean stress at which the fatigue test was carried out, for a given number N of cycles 
to failure [BRA 80b] [BRA 81] [LIE 82]. Tensions are considered as positive and 
compressions as negative.  

Let m  be the mean stress, a  the alternating stress superimposed on m , a
the purely alternating stress (zero mean) which, applied alone, would lead to the 
same lifetime and D  the fatigue limit. 

Point A represents the fatigue limit D  in purely alternating stress and point B 
corresponds to the ultimate stress during a static test ( a 0). The straight lines 
starting from the origin (radii) represent couples a  and m . They can be 

2. 1 ksi = 6.8947 MPa. 
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parameterized according to the values of the ratio a mR . The coordinates of a 
point on the line of slope equal to 1 are ( m , m ) (repeated stress [SHI 72]). 

Figure 1.22. Haigh diagram

The locus of the fatigue limits observed during tests for various values of the 
couple ( m a, ) is an arc of curve crossing A and B. The domain delimited by arc 
AB and the two axes represents the couples ( m a, ) for which the fatigue life of 
the test bars is higher than the fatigue life corresponding to D .

As long as max m a  remains lower than the yield stress Re, the curve 
representing the variations of a  with m  is roughly a straight line. For max Re,
we have, at the limit, 

max Re m a

a e mR .

This line crosses the axis O m  at a point P on abscissa Re and O a  at a point Q 
on ordinate Re. Let C be the point of O a  having as ordinate max  ( Re). The arc 
CB is the locus of the points ( m a, ) leading to the same fatigue life. This arc of 
curve crosses the straight line PQ at T. Only the arc (appreciably linear) crossing by 
T on the left of PQ is representative of the variations of a  varying with m  for 

max Re. On the right, the arc is no longer linear [SCH 74]. 
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Curve AB has been represented by several analytical approximations, starting 
from the value of D  (for m 0), and from a  and m , used to build this diagram 
a priori in an approximate way [BRA 80a] [GER 74] [GOO 30] [OSG 82]: 

Modified Goodman line:  

a D
m

mR
1 ; [1.38] 

Söderberg line: 

a D
m

eR
1 ; [1.39] 

and

Gerber parabola: 

a D
m

mR
1

2

. [1.40] 

Figure 1.23. Haigh, Gerber, Goodman and Söderberg representations

The Haigh diagram is plotted for a given endurance N0, in general fixed at 
107 cycles, but it can also be established for any number of cycles. In this case, curve 
CTB can similarly be represented depending on the case by: 
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Modified Goodman Söderberg Gerber 

m

m
aa R

1  [1.41] a a
m

eR
1 [1.42]

a a
m

mR
1

2

 [1.43] 

These models make it possible to calculate the equivalent stress range eq ,
taking into account the non-zero mean stress using the relation [SHI 83]: 

eq
a

1
[1.44] 

where  is the total stress range, m ma 1 R (modified Goodman), m  is 
mean stress and Rm is ultimate tensile strength. 

Relationships [1.41]–[1.43] can be written in the form

Modified Goodman Söderberg Gerber 

a

a

m

mR
1 [1.45] 1

Re

m

a

a  [1.46] a

a

m

mR

2

1 [1.47] 

Depending on materials, one of the representations is best suited. The modified 
Goodman line leads to conservative results (and therefore also for over-sizing) 
[HAU 69] [OSG 82], except close to the points m 0 and Rm 0. It is good for 
brittle materials and conservative for ductile materials. 

The Gerber representation was proposed to correct this conservatism; it adapts 
better to the experimental data for a m . The case m a  can correspond to 
plastic deformations. The model is worse for m 0  (compression). It is 
satisfactory for ductile materials. 

The Söderberg model eliminates this latter problem, but it is more conservative 
than that of J. Goodman. E.B. Haugen and J. A. Hritz [HAU 69] observe that: 

– the modifications made by Langer (which exclude the area where the sum 
a m  is higher than Re) and by Sines are not significant; 

– it is desirable to replace the static yield stress by the dynamic yield stress in 
this diagram; and 
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– the curves are not deterministic. It is preferable to use a Gerber parabola in 
statistical matter, of the form: 

1
R

2

m

m

D

a [1.48] 

where D  and Rm are mean values, like  

1
S3RS3

2

Rm

m

D

a

D

[1.49] 

where 
D

S  and SR  are the standard deviations of D  and Rm, respectively 

[BAH 78]. 

Figure 1.24. Haigh diagram. Langer and Sines modifications

NOTE: The Haigh diagram can be built from the S-N curves plotted for several 
values of the mean stress m  (Figures 1.25 and 1.26) 

A static test makes it possible to evaluate mR . A test with zero mean stress yields 

a . For given N, the curves mi  have an ordinate equal to D iN .
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Figure 1.25. S-N curves with non-zero mean stress, 
for construction of the Haigh diagram

Figure 1.26. Construction of the 
Haigh diagram

Other relations 

Von Settings-Hencky ellipse or Marin ellipse [MAR 56] is defined: 

1
R

2

m

m
2

a

a [1.50] 

a

a

m

m

ml

R
1 [1.51] 

where a  is allowable stress when m 0, a  is allowable stress (for the same 
fatigue life N) for given m 0 and ml is a constant. 

The case of ml 1 (Goodman) is conservative. The experiment shows that 
ml 2 . A value of 1.5 is considered correct for the majority of steels [DES 75]. 

J. Bahuaud [MAR 56] states that: 

1
R

1
1

R
1

t

m
2

t

m

D

a [1.52] 

where  

tensiont

ncompressiot

R

R

and tR  is the true ultimate tensile and compressive strength. 
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If strength tR  is unknown, it can be approximated using 

umt Z1R92.0R [1.53] 

where Zu  is striction coefficient and Rm is conventional ultimate strength. 

According to Dietmann, 

a

D

m

mR

2

1 [1.54] 

All these relations can be gathered in the more general form 

a

a

r
m

m

r

k k R1 2

1 2

1 [1.55] 

where k1, k2 , r1 and r2  are constant functions of the chosen law. 

r1 r2 k1 k2

Söderberg 1 1 1 e mR R

Modified Goodman  1 1 1 1
Gerber 1 2 1 1
Von Mises-Hencky 2 2 1 1
Marin 1 ml 1 1 
Dietmann 2 1 1 1 
Kececioglu  b(*) 2 1 1 

(*) b = factor function of the nature of material (close to 1) 

Table 1.8. Values of the constants of the general law (Haigh diagram)

NOTE: In rotational bending, the following relation can be used in the absence of 
other data [BRA 80b]: 

Dtension compression
D rotativebending 0.9

[1.56] 
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1.6.2. Statistical representation of Haigh diagram 

We saw that in practice, the phenomena of fatigue are represented statistically. 
The Haigh diagram can take such a form. 

For example, if the Gerber relation is chosen, parabolic curves are plotted on the 
axes a , m  to describe the variations of a given stress a  corresponding to a given 
number of cycles to failure with given probability. 

Figure 1.27. Statistical representation of the Haigh diagram

It has been shown that the distribution of the alternating stresses obtained while 
crossing the arcs of parabola by a straight line emanating from the origin O (slope 

a m ) is roughly Gaussian [ANG 75]. 

1.7. Prediction of fatigue life of complex structures 

A very difficult problem in the calculation of the fatigue life of a structure is the 
multiplicity of the sites of initiation of cracks and the mechanisms which determine 
the life resulting from fatigue of the structure. It could be observed that these sites 
and mechanisms depend on the environment of service, the amplitude and the nature 
of the loads. 

B.N. Leis [LEI 78] classes fatigue analysis methods into two principal 
categories:

 indirect approach, in which we try to predict the fatigue life (estimate and 
accumulation of damage) on the basis of deformation and stress acting far from the 
potential areas of initiation of the cracks by fatigue, depending on the external 
displacements and forces (black box approach); and 
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 the direct approach, in which we try to predict the fatigue life on the basis of 
stress and deformations acting on the potential sites of initiation. These stresses and 
deformations are local. 

The first approach cannot take into account the local inelastic action at the site of 
initiation of fatigue, whereas the direct approaches can introduce this non-linearity. 

The direct approach allows correct predictions of initiation of cracks in a 
structure provided that the multiplicity of the sites of initiation and mechanisms 
which control the life in fatigue are correctly taken into account. 

1.8. Fatigue in composite materials 

An essential difference between metals and composites lies in their respective 
fatigue behavior. Metals usually break by initiation and propagation of crack in a 
manner which can be predicted by the fracture mechanics. The composites present 
several modes of degradation such as the delamination, failure of fibers, disturbance 
of the matrix, presence of vacuums, failure of the matrix and failure of the 
composite. A structure can present one or several of these modes and it is difficult to 
say a priori which will prevail and produce the failure [SAL 71]. 

Another difference with metals relates to behavior due to low frequency fatigue. 
It is often admitted that metals follow, for a low number of cycles, Coffin-Manson’s
law relating the number of cycles to failure N to the strain range. This is of the form: 

p N C [1.57] 

where 5.0 . The composites are more sensitive to the strain range and more 
resistant to fatigue when undergoing large numbers of cycles than with a low 
number of cycles. A structure can break due to the part of the load spectrum relating 
to small stresses if it is metallic, whereas the same structure in composite would 
break because of high loads. 

The fatigue strength of composite materials is affected by various parameters 
which can be classified as follows [COP 80]: 

– factors specific to the material: low thermal conductivity, leading to an 
important increase in the temperature if the frequency is too high, defects related on 
the heterogenous structure of material and its implementation (bubbles, etc.), natural 
aging related to its conditions of storage, etc.; 

– factors related to the geometry of the test bars: 
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- shape, holes, notches (stress concentration factors), as with metals; 

- irregularities of surface being able to modify the thickness of the test bars in 
a significant way (important in the case of non-uniform stresses (torsion, bending, 
etc.);

– stress and environment conditions: 

- mode of application of the stresses (torsion, etc.), 

- frequency, 

- mean stress, 

- hygrothermic environment, and 

- corrosion (surface deterioration of polymer comparable with corrosion). 

For example, R. Cope and A. Balme [COP 80] show that a resin polyester-
fiberglass composite or laminate obeys a fatigue degradation model because of: 

– degradation of the interface fiber-resin; 

– degradation by cracking and loss of the resin polyester; and 

– progressive damage of the reinforcement. 

They use an index of reference for damage evolution depending on the number n 
of cycles of the ratio 0G G  (where G is rigidity modulus in torsion after n cycles and 
G0  is the same modulus at the test commencement) and observe a threshold nS .
Beyond this threshold, the material starts to adapt in an irreversible way and undergo 
damage. 

The effect of temperature results in a decrease of the threshold nS  for weak 
deformations and an increase in the number of cycles for failure (for t 60 C).

The presence of mean stress amplifies the fatigue damage in an important way. 

It is often considered that Miner’s rule strongly over-estimates the fatigue life of 
the structures in composites [GER 82].



Chapter 2 

Accumulation of Fatigue Damage 

2.1. Evolution of fatigue damage 

From a fundamental point of view, the concept of fatigue damage is not well 
defined because of a lack of comprehension of the physical phenomena related to the 
material. 

The constituent material of any part subjected to alternating stresses undergoes a 
deterioration of its properties. Depending on the stress level and the number of 
cycles carried out, this deterioration is partial or can continue until failure. 

Figure 2.1. Accumulation of fatigue damage until failure

In order to follow the evolution of deterioration, we define the concept of 
damage undergone by the test bar, which can rise from zero to 100% at the instant 
of failure. 

Fatigue Damage: Second Edition - Volume 4 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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To follow the progress of damage over time, a first solution could consist, for 
example, of studying the evolution of specific physical properties of the test bar 
[LL0 63]. 

Strength in (static) tension decreases gradually as the number of stress cycles 
increases. Measurement of the evolution of these parameters encounters two 
difficulties: (1) its variation is very weak for most of the life of the test bar and (2) 
the test to be carried out for this measurement is destructive. 

During the fatigue test, cracks appear which are propagated until failure of the 
test bar. Unfortunately, cracks become detectable and measurable only towards the 
end of the fatigue life of the test bar. 

Additionally, the studies conducted to determine evolution of fatigue as a 
function of the characteristics of elasticity, plasticity, viscoelasticity and buckling 
showed that these parameters do not evolve during the application of alternating 
stress cycles [LEM 70]. 

Regarding this impossibility, it was conceived that laws of damage accumulation 
by fatigue could be based on other criteria. Many laws of this type were established, 
generally from experimental results. 

2.2. Classification of various laws of accumulation 

Some laws of accumulation of damage are independent of the stress level .
Others are dependent on it: the D n  curve varies with values of  [BUI 80] 
[LLO 63] [PRO 48]. For others, the D n  curve varies not only with , but also 
with the preceding series of alternating stresses applied to the material (damage with 
interaction).  

In general, all these laws of damage accumulation relate to alternating loads  
with zero average applied to ordinary temperature. There are, however,  
publications treating these two particular problems (strong temperature or non-zero 
mean stress). 
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Figure 2.2. Various processes of stress accumulation

2.3. Miner’s method 

2.3.1. Miner’s rule 

One of the oldest, simplest and most-used rules is Miner’s rule [MIN 45] (or 
Palmgren-Miner, because this rule was initially proposed by Palmgren [PAL 24] in 
1924 then by Langer in 1937 [LAN 37]). It is based on the following assumptions: 

 the damage accumulated by material during each cycle is a function only of the 
stress level ; for n cycles, we define damage (or fraction of fatigue life) at the level 
of sinusoidal stress :

d
n

N
= [2.1] 

where N is the number of cycles to the failure at level . If W is the stored energy at 
failure after N cycles at the stress level  and w that absorbed after the application of 
n cycles at this same level, we have: 

w

W

n

N
[2.2] 

 the appearance of a crack, if it is observed, is regarded as a fracture [MIN 45]; 
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 at this level of stress , failure intervenes (in a deterministic way) when 
n N , i.e. when d 1 (endurance). We will see that N could also correspond to the 
number of cycles with a failure rate of 50% (number of cycles for which half of the 
test bars tested are broken). This number N is given by the S-N curves previously 
defined (which are, in general, plotted starting from tests under sinusoidal stresses 
with constant amplitude). The stresses lower than the fatigue limit stress are not 
taken into account (N is infinite, therefore d is zero); 

 the damages d are added linearly. If k sinusoidal stresses i  of equal or 
different amplitudes are applied successively in ni  cycles, the total damage 
undergone by the test bar is written: 

D =
i=1

k
d

n

N
i

i

i

i

[2.3] 

It is assumed that the damage accumulates without an influence of one level on 
the other. In this case, the failure occurs for 

D
n

Ni

i

i

1 [2.4] 

NOTE: The assumption of linearity is not necessary to obtain 

i

ii

n
1

N

for the failure. It is sufficient to suppose that the rate of damage is a function of 
n N , independent of the amplitude of the cyclic stress [BLA 46]. 

Miner’s rule therefore consists of calculating the sum of the fractions of fatigue 
life of the specimen consumed with each cycle and each stress level, where the 
damage corresponds to a cycle of stress  being equal to 1/N. It is therefore a linear 
law independent of the stress level and without interaction.

We will see that Miner’s rule can also be used for a random excitation or even 
for shocks. In this case it is necessary to establish a histogram of the peaks of stress 
or a table indicating, for the period of validity of the stress, the number of peaks 
having a given amplitude (or included in a range of amplitudes). For a given 
amplitude i , the partial damage relating to a peak (half-cycle) is: 
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d
N

i
i

1

2
[2.5] 

yielding total damage for ni  peaks of amplitude i :

D
N

n
i

i
i

=
1

2
[2.6] 

Example 2.1.

Let us consider a test in which each test bar is subjected successively to the 
following three tests: 

 – a sinusoidal stress of amplitude 15 daN/mm2, frequency 10 Hz, duration 
1 hour, 

 – a sinusoidal stress of amplitude 20 daN/mm2, frequency 20 Hz, duration 
45 min, 

 – a sinusoidal stress of amplitude 12 daN/mm2, frequency 15 Hz, duration 1 hour 
30 min. 

The S-N curve of the material considered is plotted in Figure 2.3. 

Figure 2.3. Example of S-N curve 

For 1 15  daN/mm2, the number of cycles to failure is equal to 6
1N 3 10 .

For 2 20 daN/mm2, 5
2N 6 10  and for 3 12  daN/mm2, N3

710 .
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The numbers of cycles carried out at each level are equal to 

4
1 1 1

(Hz) (s)
n f T 10 3600 3.6 10 ,

4
2n 20 2700 5.4 10 ,

and

4
3n 15 5400 8.1 10

respectively, yielding 

4 4 4
i

6 5 7
ii

n 3.6 10 5.4 10 8.1 10D =
N 3 10 6 10 10

D 0.1101.

Continue the test until failure under the conditions of the third test. One duration 
of complementary test Tc is defined such that: 

T
n

f
c

c

3

where nc is given by 

n

N
Dc

3

1

7 6
c 3n 1 D . N 1 0.1101 10 8.899 10  cycles, 

yielding 

7

5

c

8.914 10T 5.933 10 s 164 hr 48 min
15

Application 

If we consider that the S-N curve can be described analytically by Basquin’s 
relationship N Cb , we can write: 
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D
n

N

n

C
i

ii

i
i
b

i

= =

or

D =

n

C

i i
b

i [2.7] 

yielding, for example, the expression of an equivalent alternating stress e which 
would produce the same fatigue damage if it were applied during Ne  cycles, i.e. 

e

i i
b

i

e

n

N

b1

[2.8] 

In this relation, the only characteristic parameter of the S-N curve is the 
exponent b. 

Miner’s rule for the estimate of the fatigue lifespan under stresses with variable 
amplitudes is easy to implement. Although much criticized, it is very frequently 
used in design calculations. Since fatigue is a complex process involving many 
factors, this rule, a simplified description of fatigue, does not provide very precise 
estimates. It seems, however, that it leads to results acceptable for the evaluation of 
the initiation of the cracks under random stresses [WIR 83b]. 

2.3.2. Scatter of damage to failure as evaluated by Miner 

Many tests were carried out to confirm this law by experiment. They showed that 
actually, we observe a significant scatter in the value of D at the instant of failure 
[CUR 71] [GER 61]. In addition, M.A. Miner specifies that the value 1 is only an 
average. 

The study of the scatter of the sum n Ni i  to failure was the object of 
multiple works; see P.G. Forrest [FOR 74]. 

All these works showed that the order of application of the sinusoidal stresses 
influences the fatigue life of the test bars. In addition, it has been demonstrated that 
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the rate of cracking does not only depend on the amplitude of the loading at a given 
time, but also on the amplitudes during preceding cycles [BEN 46] [DOL 49] 
[KOM 45]. 

For decreasing levels ( 2 1), there is generally failure for D 1 (acceleration 
of cracking by overload effect), whereas failure occurs with D 1 when the levels 
are increasingly applied ( 1 2 ) (weaker cracking rate due to the under-load). 
This latter phenomenon, of much less significance than the former, is generally 
neglected [NEL 78] [WEI 78]. 

This difference in behavior can be explained by considering that when first 
applied, cycles of large amplitude create damage in the form of intergranular 
microscopic cracks that the following cycles at low level will continue to propagate. 

Alternatively, at low levels, the first cycles cannot create microscopic cracks 
[NEU 91]. In certain cases however, and in particular for notched samples, one 
observes the opposite effect [HAR 60] [NAU 59]. 

D.N. Nelson [NEL 78] considers that the variations between real fatigue life and 
fatigue life estimated using Miner’s law are related to the order of application of the 
loads and are, for the smooth parts, lower than or equal to 50%. 

Calculations are often made using this law by assuming that any stress lower 
than the fatigue limit stress D  of material has no effect on the material, whatever 
the number N of cycles applied. However, the tests showed that this stress limit can 
be lowered when the test bar underwent cycles of fatigue at a higher level than D ,
which is not taken into account by Miner’s rule [HAI 78]. 

The damage FD  obtained with failure can in practice, depending on the material 
and the stress type, vary over a wide range. We find in the literature values of about 
0.1–10 [HAR 63] [HEA 56] [TAN 70], 0.03–2.31 and even 0.18–23 [DOL 49]. The 
observed range is narrower, however, e.g. 0.5–2 [CZE 78] [FID 75]. 

These values are only examples among many others [BUC 77] [BUC 78] 
[COR 59] [DOL 49] [FOR 61] [GAS 65] [GER 61] [JAC 68] [JAC 69] [KLI 81] 
[LAV 69] [MIN 45] [STE 73] [STR 73] [WIR 76] [WIR 77]. Compilations of work 
by various authors showed that: 

– Depending on the materials and test sequences, FD  does not generally deviate 
strongly from 1 and is most frequently larger than 0.3 when all the stress levels are 
greater than the fatigue limit stress [BUC 78]. The variation in the non-conservative 
direction is larger when the amplitude of the stresses close or lower than the fatigue 



Accumulation of Fatigue Damage     55 

limit stress is larger than that of the stresses higher than this limit. In addition, it is 
noted that FD  is practically independent of the size of the specimens. 

– With a cumulative damage less than 0.3, the probability of non-failure is equal 
to 95% (560 test results, without reference to the various types of loads and for a 
constant average stress, on various parts and materials) [BRA 80b] [JAC 68]. 

In practice, it would be more correct to set at failure: 

D
n

N
Ci

ii

= = [2.9] 

where C is a constant whose value is a function of the order of application of the 
stress levels. This approach assumes, however, that the damage on the same stress 
level is deterministic. However, the experiment shows that the test results carried out 
under the same conditions are scattered. 

P.H. Wirsching [WIR 79] [WIR 83b] proposes a statistical formulation of the 
form: 

D
n

N
i

ii

= [2.10] 

where  is the index of damage to failure.  is a random variable of median value 
near 1 with a scatter characterized by the coefficient of variation V  and has a 
distribution regarded as log-normal. 

The purpose of this formulation is to quantify uncertainties associated with the 
use of a simple model to describe a complicated physical phenomenon. The author 
proposes separating the factors: 

1 1 12 2
0
2+ = + +V V VN [2.11] 

where VN  is the variation coefficient for cycles with constant amplitude until failure 
and V0 is the variation coefficient related to the other effects (sequence, etc.). 

Failure occurs for D  with a probability given by: 

P P Df [2.12] 
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Values recorded in the literature by P.H. Wirsching [WIR 79] are listed in  
Table 2.1. 

Mean of  Median of 
Variation coefficient 

V

Aluminum 
( n 389  specimens) 1.33 1.11 0.65 

Steel ( n 90 ) 1.62 1.29 0.76 
Steel (n 87 ) 1.47 1.34 0.45 

Composite (n 479) 1.39 1.15 0.68 
Composite 1.22 0.98 0.73 

Table 2.1. Examples of statistical parameters characterizing the law of damage to failure 

P.H. Wirsching [WIR 79] recommends, with a log-normal distribution, a median 
value equal to 1 and a variation coefficient equal to 0.70. He also quotes other 
results deviating from these values: 

7075 alloy: 98.0V

2024 T4 aluminum alloy: 161.0V .

For sinusoidal loads or random sequences, W.T. Kirkby [KIR 72] deduced from 
a compilation of test results on aluminum alloys that: 

42.2

98.0V

standard deviation = 2.38. 

Other authors [BIR 68] [SAU 69] [SHI 80] [TAN 75] proposed ascribing a 
statistical character to Miner’s rule by considering in particular that: 

– the number Ni  of cycles to failure is a random variable with average Ni  at the 
stress level i ;

– the expected value of the failure is given by: 

1
N
n

E
k

1i i

i [2.13] 
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– the probability density of the damage to failure 

D
n

N
i

ii

= [2.14] 

follows a log-normal distribution [SHI 80] [WIR 76] [WIR 77] with mean D and 
standard deviation equal to 1. 

NOTE: The above was defined for the case of stresses with zero average. If this is not 
the case, the method continues to apply by using the S-N curve plotted for the value 
of the mean stress considered. 

2.3.3. Validity of Miner’s law of accumulation of damage in case of random stress 

A.K. Head and F.H. Hooke [HEA 56] were the first to publish data from tests 
where the amplitude of the stress varies in a completely random way. 

Miner’s rule was sometimes regarded as inadequate and dangerous to apply for 
loads of random amplitude [OSG 69]. This opinion, however, is not commonly held 
and the majority of authors consider that this rule is even better for these loads. 
Since the order of application of the stresses is random, its influence is much weaker 
than in sinusoidal mode. 

The results are often regarded as resolutely optimistic. Much work carried out on 
aluminum alloy test bars show that the Miner assumption led to predictions of 
fatigue lives longer than those observed in experiments, with variations in the ratio 
from 1 to 1.3 or 1 to 20 according to individual cases [CLE 65] [EXP 59] [FRA 61] 
[FUL 63] [HEA 56] [HIL 70] [JAC 68] [PLU 66] [SMI 63] [SWA 63]. There is 
therefore failure noted for 

n

N
i

i

1.

On the contrary, other studies show that Miner’s rule is pessimistic [EXP 59] 
[KIR 65a] [LOW 62]. In fact, this seems to be the case for loads with average tensile 
stress associated with an axial loading [MAR 66] or when there are frictional 
phenomena [KIR 65a]. 

The precision of the estimates is considered to be acceptable in the majority of 
cases [BOO 69] [BOO 70] [BOO 76] [KOW 59] [NEL 77] [TRO 58], however. 
Although Miner’s rule leads to coarse results, varying considerably, many authors 
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consider that there is no rule more applicable than Miner’s. The regularity of the 
results obtained with the other methods is not significantly better despite their 
increased complexity [EST 62] [FRO 75] [ING 27] [NEL 78] [WIR 77]. Miner’s 
hypothesis remains a good first approximation confirmed by experiment. The  
error depends on the rule itself, but also on the precision of the S-N curve used 
[SCH 72a]. 

All other rules developed to make it more precise, to be discussed later, brought 
an additional complexity while not always using well-known constants; they only 
lead to better results in certain specific cases. 

Miner’s rule is very much used for mechanical structures and even for the 
calculation of strength to fatigue of electronic equipments. For these materials, 
D.S. Steinberg [STE 73] suggests calculating fatigue life using: 

7.0
N
n

i i

i

instead of 1 (and not 0.3 as sometimes proposed, a value which can lead to an 

increase in superfluous mass). W. Schutz [SCH 74] proposed 0.6=
N
n

i

i  and, at 

high temperatures, when the yield stress is definitely lower, 0.3=
N
n

i

i  (result of 

statistical studies [OSG 69]). 

Miner’s rule can also be used to make comparisons of the severity of several 
vibrations (the criterion being the fatigue damage). This use, which does not require 

that 
i

i

N
n

 is equal to unity at failure, gives good results [KIR 72] [SCH 72b] 

[SCH 74]. 

NOTE: Alternatives very similar to Miner’s rule were evaluated [BUC 78]: 

– the form 
min

n
1

N
, where minN  is a value corresponding to a certain 

probability of survival (95% for example), is not always conservative; and 
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– the sum 
mean

n
N

 ( meanN = mean number of cycles to failure at a given 

stress level) does not give either a precise estimate of the fatigue life (sequence 
effect, non-linear accumulation law, etc.). 

2.4. Modified Miner’s theory 

2.4.1. Principle 

To try to correct the variations observed between the calculated fatigue lives 
starting from Miner’s theory and the results of the tests, in particular during the 
application of sinusoidal stresses at several levels i , it was planned to replace the 
linear accumulation law by a non-linear law of the form: 

D
n

N
i

i

x

i

[2.15] 

where x is a constant assumed to be higher than 1. 

Figure 2.4. Damage versus the number of cycles, as function of stress amplitude

Figure 2.4 shows the variations of the damage D versus the number of cycles 
carried out at two stress levels 1 and 2 . For given , we assume that the test bar 
breaks when D 1.

The number of cycles to failure is greater since  is smaller. If the damage is 
linearly cumulative (Miner’s hypothesis), the curve D n  is a straight line. With the 
modified law, the curve D nx  is, at level , of the form: 
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D a nx [2.16] 

where a is a constant such that D 1 when n N :

a
Nx

1
[2.17] 

For x 1, D nx  is below the straight line of the linear case (dotted curve). 

2.4.2. Accumulation of damage using modified Miner’s rule 

Two methods can be considered [BAH 78] [GRE 81]: 

– method of equivalent cycles; and 

– method of equivalent stresses, 

according to whether the damage is expressed as a function of the number of cycles 
brought back to only one level of stress or the damage di  is calculated 
independently at each stress level i  before determining the total damage 

i
idD .

The reasoning is based on the damage curves (damage D undergone by the test 
bar according to the number of cycles n) for a given stress level . As an example, 
we will consider two levels below 1 and 2 .

2.4.2.1. Method of equivalent cycles 

We carry out: 

– n1 cycles at level 1, failure occurring on this level for n N1 cycles; and 

– n2  cycles at level 2  (failure for N2 cycles). 

The damage d2  created by these n2  cycles at level 2  could be generated by n1

cycles at level 1, n1  being such that 

d
n

N

n

N

x x

2
2

2

1

1

[2.18] 
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Figure 2.5. Determination of equivalent number of cycles

i.e., for any value of x, for 

n n
N

N
1 2

1

2

[2.19] 

If it is assumed that the block composed of these n1 and n2  cycles of stress of 
amplitudes, equal to 1 and 2 , respectively, is repeated p times until failure, we 
will have then carried out n R1  cycles at level 1 and n R2  cycles at level 2  (i.e. 

n R1  equivalent cycles), yielding 

n n NR R1 1 1 [2.20] 

n n
N

N
NR R1 2

1

2
1,

N
n

N

n

N
NR R

1
1

1

2

2
1 ,

n

N

n

N
R R1

1

2

2

1 [2.21] 

If we set 
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1
1

1 2

n

n n
R

R R

and 2
2

1 2

n

n n
R

R R

,

this relationship can also be written 

n n
N NR R1 2

1

1

2

2

1

i.e.

N
N N

R
1

1

2

2

1 [2.22] 

while setting 

N n n p n nR R R1 2 1 2  [2.23] 

The method can be extended to the study of a loading comprising an arbitrary 
number of levels. Calculation is easier if we use an analytical form of the damage 
curves.

2.4.2.2. Method of equivalent stresses 

Instead of considering a number of cycles equivalent to the single level 1, we 
calculate the partial damage created by each sequence [BAH 78, GRE 81]. With the 
same notation, we have (to failure): 

D d d
n

N

n

N
R

x
R

x

1 2
1

1

2

2

1 [2.24] 

yielding 

1
NN

N
x

2

2
x

1

1x
R

and
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N

N N

R x x

x

1

1

1

2

2

[2.25] 

Miner’s theory is a particular case of this method, with linear damage curves. On 
this assumption, the two approaches (equivalent cycles and equivalent stresses) lead 
to the same results. 

The modified Miner’s rule therefore yields a fatigue life longer than the rule of 
origin, consequently nearer to the experiment when 1 2  (first stress level lower 
than the second). The improvement is however only partial, since it does not yield 
anything when 1 2 . The modified Miner’s rule is also independent of the level 
of stress and without interaction.

2.5. Henry’s method 

D.L. Henry [HEN 55] supposes that: 

– the S-N curve of a steel specimen can be described by a relation of a 
hyperbolic type of the form 

N CD [2.26] 

where C is a constant and D  is the fatigue limit stress of material; and 

– the two parameters C and D  are modified as the fatigue damage accumulates. 
The endurance to fatigue decreases and C varies proportionately to D .

It is the author’s opinion that relation [2.26] is correct as long as remains lower 
than 1.5 D . One of the interests of this representation is related to the introduction 
of a fatigue limit. With these assumptions, D.L. Henry shows that the damage D 
stored by a test bar, defined here like the relative variation of the fatigue limit 

D D D

D

[2.27] 

is written 
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D

n

N
n

N
D

D
1

1
[2.28] 

i.e., if we set D

D

= stress ratio and 
n

N
,

D
1

1
1

[2.29] 

It is noted that for D 0 we have D 1 and that, when D , 0 and 
D 0 .

Figure 2.6. Accumulation of damage according to Henry’s hypothesis

The curve D  plotted for several values of  shows that when  increases (i.e. 
for the strong values of the stress), the law tends to a linear relationship. 

For a given  ratio, the damage is larger since  is higher. 

This theory therefore supposes that fatigue damage is a function of applied stress 
level and of the order of application of the stresses (the law is dependent on the level 
of the stresses and with interaction). 
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2.6. Modified Henry’s method 

The Henry’s relation was modified by addition of a term Dc [EST 62] [INV 60]: 

D

D

n

N
n

N
c D

D
1 1

[2.30] 

where Dc is critical fatigue damage (damage at which the part breaks completely), 
in order to take into account the application of a load which exceeds the residual 
resistance of the item to the test. Calculations of fatigue life are carried out 
according to same process as that used for method EFD (equivalent fatigue damage 
[POP 62]) [EST 62]. The increments n/N are added along the curve of damage; the 
failure occurs when cD D 1. This method requires the knowledge of an additional 
parameter, Dc.

Henry’s rule and this modified rule have a limited use, the materials generally 
having a badly defined fatigue limit stress (aluminum and light alloys in particular). 

2.7. Corten and Dolan’s method 

These authors propose a non-linear theory of cumulative damage, based on the 
number m of nuclei likely to be damaged and on the velocity r of propagation of the 
cracks [COR 56] [COR 59] [DOL 49] [DOL 57] [HIL 70] [LIU 59] [LIU 60]. The 
accumulated damage on the stress level i is written: 

D m r ni i i i
ai [2.31] 

where ai  is an experimentally determined constant and m and r are constants for a 
given stress level. 

Damage to failure occurs for D 1. It is expressed as a function of the number 
of cycles according to 

D
n

N
i

i

i

ai

[2.32] 
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It is about a law depending on the stress level, with interaction. The effects of 
interaction are included in the concept of propagation of cracks. In a test, the cycle 
of maximum load is decisive for the initial damage since it determines the number of 
points where cracks will be formed. Once this number is established, we assume that 
the propagation is carried out according to a cumulative process without interaction. 

Let i be the percentage of cycles carried out at level ai , d a constant, 1 the 
maximum amplitude of the sinusoidal stress for a fatigue life N1 and Ng the total 
number of cycles of the test program. We have 

i g iN n [2.33] 

yielding 

i g
ai

ai

d

N N
1

1 [2.34] 

N
N

g

i
ai

a

d

i

1

1

[2.35] 

or

1
N
n

d

i 1a

ia

1

i ,

n

N

N

N
i

i

i ai

a

d

i 1 1

1 [2.36] 

This relationship, comparable with that of A.M. Freudenthal and R.A. Heller 
[FRE 58], can be reduced to that of Miner by using a modified fatigue curve which, 
on log , log N  scales, intersects the y-axis at 1 and has a negative slope equal to 
1/d. The equation of this curve is then 

N Ad' [2.37] 
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where N'  is the fatigue life given by this modified curve. From equation [2.33], i
can be substituted into equation [2.35] by taking account of equation [2.37], to 
calculate 1 and i :

N Ni i
d d

1 1 [2.38] 

where N1 1.

N
N

n

N

N
n

N N

g
i

g

i
d

i

i

g ii

1

1

1
1

n

N
Ni

ii
1

yielding 

n

N
i

ii

1.

B.M. Hillberry [HIL 70] shows that the Corten–Dolan theory, like that of 
Palmgren–Miner, over-estimates the fatigue lives under random stress (by a factor 
varying from 1.5 to 5 for Miner and approximately 2.5 for Corten–Dolan). 

This result is compatible with those of other authors. It can be explained by 
noting that for random loads, according to these two theories, damage accumulates 
under a certain weighted average stress and that this same stress produces the 
failure. With such a load, however, the failure can occur earlier under one of the 
largest peaks present in a statistical way. This view of Nelson [NEL 77] is 
confirmed by the test results carried out by I.F. Gerks [GER 66].  

2.8. Other theories 

Taking into account their significant number, we will limit ourselves within the 
framework of this book to simply quoting theories and providing their respective 
references. This list does not claim to be exhaustive, in terms of both methods and 
references. 
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NOTE: Among all the models suggested, of which we will quote only a small number, 
little have found practical application. Miner’s rule, with its imperfections, 
remains the simplest, most general and the most used by far [BLA 78], and is  
often sufficiently accurate. The other rules generally use several constants whose 
value is difficult to find and which complicate the analysis in a way not justified by 
the result. See [DEN 62] [FUL 6] [RIC 65b] for comparisons of these various 
methods. 

Theory  Date References 
Miner modified by Haibach 1970  [HAI 70] [STR 73] 
Marco and Starkey 1954  [MAR 54] 
Shanley 1952/1953 [MAS 66b] [SHA 52] 
Langer 1937 [LAN 37] 
Kommers 1945 [KOM 45] 
Richart and Newmark 1948 [COR 59] [[RIC 48] 
Machlin 1949 [MAC 49] 
Lunberg 1955 [LUN 55] 
Head and Hooke 1956 [HEA 56] 
Levy 1957 [LEV 57] 

Freudenthal and Heller 1956–1960 [FRE 55] [FRE 56] 
[FRE 58] [FRE 60] 

[FRE 61] 
Smith 1958–1964 [SMI 58] [SMI 64b] 
Grover 1959 [GRO 59] [GRO 60] 
Eshleman, Van Dyke and Belcher 1959 [ESH 59] 
Parzen 1959 [PAR 59] 

Gatts 1961–1962 [GAT 61] [GAT 62a] 
[GAT 62b] 

Valluri 1961–1964 [VAL 61a] [VAL 61b] 
[VAL 63] [VAL 64] 

Poppleton 1962 [POP 62] 
Method of equivalent fatigue 
damage (EFD Method) 1962 [EST 62] 

Serensen 1964 [SER 64] 



Accumulation of Fatigue Damage     69 

Lardner 1966 [LAR 66] 

Birnbaum and Saunders 1968–1969 [BIR 68] [BIR 69a] 
[BIR 69b] 

Esin 1968 [ESI 68] 
Filipino, Topper and Leipholz 1976 [PHI 76] 
Kozin and Sweet 1964–1968 [ESI 68] [KOZ 68] 
Marsh 1965 [MAR 65] 
Heller and Heller 1965 [HEL 65] 
Manson, Freche and Ensign 1967 [MAN 67] 
Sorensen 1968 [SOR 68] 
Caboche 1974 [CHA 74] 
Dubuc, Bui-Quoc, Bazergui and 
Biron 1971–1982 [BUI 71] [BUI 82] 

[DUB 71]  
Hashin and Rotom 1977 [HAS 77] 
Tanaka and Akita 1975–1980 [TAN 75] [TAN 80] 

Bogdanoff 1978–1981 
[BOG 78a] [BOG 78b] 
[BOG 78c] [BOG 80] 

[BOG 81] 
Wirsching 1979 [WIR 79] [WIR 83b] 

Table 2.2. Some theories of fatigue damage accumulation



Chapter 3 

Counting Methods for Analyzing
Random Time History 

3.1. General 

Counting methods were initially developed for the study of fatigue damage 
generated in aeronautical structures. The signal measured, in general a random stress 

(t) , is not always made up of a single peak between two zero crossings. On the 
contrary, several peaks often appear which makes it difficult to determine the 
number of cycles undergone by the structure. 

Figure 3.1. Random stress

The counting of peaks makes it possible to create a histogram of the peaks of the 
signal (number of events counted on the abscissa whose amplitude is shown on the 
ordinate) which can then be transformed into a stress spectrum (cumulative 
frequency distribution) giving the number of events (on abscissae) for lower than a 
given stress value (on ordinates), i.e. the number of peaks lower than a given 
threshold level versus the value of this threshold. The stress spectrum is therefore a 
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representation of the statistical distribution of the characteristic amplitudes of the 
signal as a function of time [SCH 72a]; it is used in two applications: 

– to carry out estimated fatigue life calculations on the parts subjected to stresses 
measured; and 

– to transform a complex random stress into a simpler test specification, 
comprising for example several blocks of sinusoidal vibrations of constant 
amplitude. Several test strategies are possible, such as the realization of sinusoidal 
cycles with constant amplitude in random sequence or the application of individual 
cycles in randomized sequence. The tests are carried out on material test bars with a 
control in force. 

The importance of this analysis of the signal in these studies and its difficulty is 
easily understood, which explains the significant number of methods suggested. 

The analyzed signal is a stress varying with time. Within the framework of this 
work, these same methods can be used to establish a peak histogram of the relative 
response displacement z t  of the mass of a system with one degree-of-freedom 
subjected to a vibration and to calculate the fatigue damage which results from it 
(the stress being assumed proportional to this relative displacement). 

All the methods assume that the result of counting always includes an 
assumption of damage, which postulates that the same fatigue life is obtained with 
the original signal and the signal reconstituted from counting or, at least, that 
starting from the two signals. There exists a constant ratio of the fatigue lives for all 
the possible material combinations, stress concentrations, stress ratio, treatment of 
surfaces, etc.

Beyond this, it is certain that the evaluation of a result of counting is also related 
to the procedure of a specific test or to a theoretical method of fatigue life prediction 
(modification in the order of application of the stress levels can, for example, change 
the fatigue life) [BUX 73]. 

The evaluation of the fatigue damage is therefore carried out in three steps: 

– counting of the cycles; 

– choice of a relation cycle – generated damage; and 

– summation of the damage generated by each cycle. 

Various methods of counting were proposed, leading to different results and 
therefore (for some) to errors in the calculation of the fatigue lives: 
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1. peak count; 
2. range-restricted peak count; 
3. level-restricted peak count; 
4. mean-crossing peak count; 
5. range count; 
6. range-mean count; 
7. range-pair count; 
8. ordered overall range method; 
9. racetrack method; 

10. level crossing count; 
11. modified level crossing count; 
12. peak valley pair (PVP) counting; 
13. fatigue-meter count; 
14. rainflow count; 
15. NRL (National Luchtvaart Laboratorium) counting; 
16. time spent at a given count level. 

Schematically, these counting methods can be classified into two principal 
categories [WAT 76]: 

 methods in which a counting of a signal characteristic not necessarily 
connected in a simple way to damage accumulation is carried out (peaks, level 
crossings, etc.); and 

 methods using the stress or deformation ranges (range counting, range-mean 
counting, range-pair counting and rainflow). These latter methods are generally 
preferred, since they are using parameters which are more directly connected to the 
fatigue damage. 

We will see that two methods (range-mean counting and rainflow counting) have 
the additional advantage of taking into account the mean stress level (or 
deformation) for each range. 

In all these methods, it is necessary to be able to eliminate the small variations. 
This correction, initially intended to remove the background noise of the measuring 
equipment, also aims to transform long duration signals into signals easier to use 
[CON 78]. This simplification results in the definition of a threshold value below 
which the peaks or ranges are not counted. 
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As an example, let us consider the signal sample t  in Figure 3.2. The signal 
has peaks A, B, , F from which ranges can be defined: AB, BC, CD, , EF, with 
amplitudes equal to r1, r2 , r3, r4 , r5 respectively and with means m1, , m5.

Figure 3.2. Elimination of small variation ranges

The small variations such as CD can be neglected by imposing a threshold for 
counting. In this case, the ranges BC, CD and DE are replaced by the single range 
BE (r'2 ).

Taking into account the expression for the fatigue damage, in which the peak 
amplitude is raised to the power b, if the linear part of the S-N curve is represented 
by the Basquin’s relation: 

bN = Constant

then it is seen easily that the total damage is much smaller when it is calculated by 
taking account of the small variations than when they are removed. Total damage is 
equal to  
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independent of the mean stress. This is true only because the small variations are 
possibly below the fatigue limit and can therefore be neglected [DOW 72] 
[WAT 76]. 

A reduction of the counting threshold, which results in considering more ranges 
of small amplitude, can therefore lead to a weaker expected damage and vice versa.
This phenomenon is not systematic and can be negligible depending on the shape of 
the signal (for example, when the small cycles are dominating). P. Watson and 
B.J. Dabell [WAT 76] observe that, to guard against this problem, a solution can 
consist of successively calculating the damage with several thresholds to retain only 
the greatest value. The effect of omission of small variations has been studied by 
several authors [CON 78] [KID 77] [POT 73]. It often appears that the cycles of 
loads below the fatigue limit can generally be ignored if the load peak levels of the 
remainder of the curve versus time ( (t)  or (t) ) are not too large. 

A study by A. Conle and H.T. Topper [CON 78] showed that, even with the 
rainflow method, the damage neglected by using a signal without small variations is 
much larger than predicted. When the signal has very high levels (load or 
deformation), it is necessary to be very careful during the elimination of the smallest 
variations. J.M. Potter [POT 73] observed in experiments that the suppression of the 
levels which, according to a conventional analysis of fatigue damage, do not lead to 
any damage, leads (in experiments) to an increase in the fatigue life. 

We will describe in the following sections the methods quoted. 

3.2. Peak count method 

3.2.1. Presentation of method 

This method is undoubtedly the simplest and oldest. The values considered as 
significant here are the maxima and the minima, which are observed over the 
duration T of the signal [BUX 66] [DEJ 70] [NEL 78] [RAV 70] [SCH 63] 
[SCH 72a] [STR 73]. 

A peak located above the mean is regarded as positive; below, it is negative. The 
ordinate axis can be divided in order to define classes and build a histogram. 

We can choose to count only the peaks above a certain threshold value (in 
absolute value) or to decide that small stress variations lower than a given value are 
negligible; these small variations are defined as for the variation between a 
maximum and a minimum (or the reverse). In Figure 3.3, for example, the peaks 
marked by the symbol are not counted [HAA 62]. 



76     Fatigue Damage 

Figure 3.3. Stress time history peaks

The results can be expressed either in the form of the maximum (or minimum) 
number: 

– having a given amplitude; 

– located above a given threshold, this threshold being variable to cover all the 
range of the amplitudes; or 

– by curves giving the peak occurrence frequency versus their amplitude. 

The curves giving the maxima and the minima are generally symmetric (but not 
necessarily). It is the case for a normal process [RAV 70]. 

Figure 3.4. Occurrence frequency of maxima and minima

With this method, any information on the sequence of load, on the order of 
appearance of the peaks is completely lost [VAN 71]. 
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After counting, it is not possible to know if a counted peak is associated with a 
small or with a great load variation. The interpretation of the load spectrum formed 
using this method can therefore be disturbed by small load variations. 

When counting is finished, a signal is reconstituted from this peak histogram by 
associating a positive peak with a negative peak of the same amplitude to constitute 
a complete cycle [HAA 62]. Consequently, it can be seen that the real total length of 
the excursion of the signal is generally less than that obtained by reconstituting the 
signal from the histogram. 

Peaks such as A and B in Figure 3.5, for example, are treated both as starting 
from zero and returning to zero. 

Figure 3.5. Peaks counted as complete half-cycles

The reconstituted signal is therefore more severe than the real signal [WEB 66]. 
This method of counting is often named total peak count as opposed to the net peak 
count method, in which the peaks are defined as the algebraic sum of the extrema, 
the valleys (minima) being counted negatively. The lengths of excursions tend to be 
equal in this case. 

Another way of counting the extrema can consist of retaining only the positive 
maxima and the negative minima. An alternative to this process is frequently used 
for the study of the vibrations measured during fighter aircraft operations [LEY 63]. 
The sorting of the extrema can be carried out from the results of the above method. 

The peak count method is also sometimes referred to as the simple peak count 
method [GOO 73] as opposed to the peak count method in which the extrema 
between two passages by the mean value are taken (described in section 3.3). Each 
peak is noted. It is the least restrictive of all the methods. It can be used as means of 
characterization of the signal by comparing the extrema distribution with a given 
distribution (Rayleigh’s law, for example). 
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3.2.2. Derived methods 

The present maxima in each class of amplitude are counted (Figure 3.6). The 
reconstituted signal does not account for the peak order or for the frequency.  
The small strain variations are amplified. To reduce their influence, a  
secondary condition can be introduced, intended to neglect the extrema which are 
associated with a load variation lower than a given value (hatched zone / / / / in 
Figure 3.6). 

Another possibility is to count the minimal values in addition to the maximal 
values, but this leads to a very great number of combinations to reconstitute the 
signal and is therefore not a suitable method [WEB 66]. 

It is also sometimes decided to count only the maxima above a specified level (or 
minima below some level). This modification does not improve the validity of the 
results.

Signal synthesized from 

restricted 
counting 

Figure 3.6. Omission of small variations below a given threshold

O. Buxbaum [BUX 66] suggests neglecting all the signal variations lower than 
5% of the maximum value, which do not have any influence on the fatigue life. 
F.E. Kiddle and J. Darts [KID 77] observed that, on a specimen with bolted 
connection, the progressive omission of the peaks of small amplitude above the 
fatigue limit does not have an appreciable effect on the mean endurance. This effect 
is independent of the maximum load present in the spectrum. The endurance of this 
same specimen is, on the other hand, sensitive to the greatest loads. 
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3.2.3. Range-restricted peak count method 

The objective here is to count only the most significant peaks associated with the 
greatest load variations [MOR 67] [WEL 65]. Counts are limited to the peaks 
beyond mean thresholds (for example, if it is an acceleration, the minima which are 
below 0 g and the maxima above 2 g) and which are at the same time preceded and 
followed by a minimal variation of the amplitude (1 g, for example), or which 
exceed a given percentage of the incremental peak value (for example, 50%) (the 
largest of the two results is chosen). 

Here the incremental peak value is defined as the difference between the peak 
value and the mean load level [GOO 73] [MOR 67] [WEL 65]. 

Figure 3.7. Counting of ranges higher than a given value

In Figure 3.7, for example, the ranges R1 and R2  are higher than the threshold 
R0 1 g or 50% of L . The intermediate fluctuations are neglected with this 
method, as well as some fluctuations which are not really of any importance. 
However, counting relating to largest maxima and the smallest minima assume more 
importance. 

3.2.4. Level-restricted peak count method 

After having defined classes, the procedure is as follows: 

 a maximum (primary peak) is accepted only if the signal falls below a larger 
value than a specified threshold [VAN 71] [WEL 65] (all crossings prior to this 
primary level being forgotten); and 
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 the value attributed to the peak is that of the threshold crossed just before the 
peak.

Figure 3.8. Elimination of peaks not followed by sufficient amplitude variation

Figure 3.9. Counting of all threshold crossings (fatigue-meter method)

For example, peak A (Figure 3.8) is counted because the signal crosses 
threshold 2' after having crossed the larger threshold level 2 before passing through 
the maximum value at A. This method uses the same type of threshold specification 
as the fatigue-meter method. Only the peaks which are preceded and followed by the 
necessary threshold are considered [GOO 73]. However, in contrast to the fatigue-
meter method, all the other passages across the threshold below 2 are not 
considered. As an example, for the same signal, the fatigue-meter method would 
lead to the result in Figure 3.9. 
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3.3. Peak between mean-crossing count method 

This method may be called mean-crossing peak count method or maximum peaks 
between zero crossing or peak-count method [GOO 73] [SEW 72] (the latter being 
ambiguous with the above method). 

3.3.1. Presentation of method 

Figure 3.10. Counting of largest peaks between two passages through mean value

Only the largest maximum or minimum between two passages through an 
average value is counted, which is equivalent to completely neglecting the stress 
variations between two passages through zero, even if they are important [SCH 72a] 
[WEB 66]. The signal is therefore reduced to only one peak between two passages 
through zero. With an identical signal, the number of peaks counted is therefore 
smaller than for the first method [BUX 66] [HAA 62] [STR 73] [VAN 71] and the 
total duration of the reconstituted signal from this histogram of peaks is shorter than 
that of the initial real signal. 

Figure 3.11. Suppression of all small variations not crossing the mean
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The values of this count can be deduced from the results of the first method (with 
elimination of approximately 25% of the initially counted peaks) [LEY 63] 
[RAV 70]. This method is similar to that sometimes used to count the turbulence 
loads observed by transport aircraft [DEJ 70]. 

This type of counting can lead to incorrect results. If the signals in Figure 3.12 
are considered, for example, the same count is obtained in both cases whereas signal 
(b) is certainly more severe than signal (a). 

Figure 3.12. Example of two different signals leading to the same counting result

All the secondary variations of the load between two zeros and the maximum 
level are neglected by assumption. Some of these secondary load variations can, 
however, be very significant with respect to their contribution to the total fatigue 
damage [SEW 72]. 

NOTE: A specific measuring instrument – the VGH-Recorder (NACA) – has been 
developed to carry out these counts [WAL 58] [WEB 66]. 

This is equivalent to counting the number of up-crossings through the mean 
value of the signal which allows, for narrow band signals, calculation of the mean 
frequency of the signal (the narrow band signals have the same number of zero 
threshold crossings and of peaks). It is therefore recommended to use this method 
only in this case. 

If the distribution of the instantaneous values of the signal is, in addition, 
Gaussian, this measurement of the mean frequency provides access to the peak 
distribution or to the curve of level crossings. It is indeed shown that in this case, the 
number of crossings of a level a with a positive slope is given by (Volume 3, 
equation [5.57]):  
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2
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0 eNN

where 

N n T0 0 ,

T is signal duration and 0n  is mean frequency. 

3.3.2. Elimination of small variations 

Figure 3.13. Elimination of small variations around the mean

Two mean threshold levels of reference are fixed: one positive and the other 
negative. We retain the largest maximum between two arbitrary successive crossings 
of the higher threshold and the smallest minimum between two crossings of the 
lower threshold (Figure 3.13) [DON 67]. With this modification, the peaks 
associated with small variations around the static value are neglected. In addition, 
smaller maxima are neglected and smaller minima will be neglected. 
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3.4. Range count method 

This method is also referred to as amplitudes regardless of mean.

3.4.1. Presentation of method 

The range is defined as the difference between two extreme values of the stress 
(or the deformation) with a sign according to direction of the transition (minimum 

 maximum: +, maximum  minimum: –) [BUX 66] [DEJ 70] [GRE 81] 
[NEL 78] [RAV 70] [SCH 63] [SCH 72a] [STR 73] [VAN 71] [WEB 66]. 

Figure 3.14. Range counting

1 8 5.32

5.53 4 7

5 6 5.106

As opposed to the above methods, here we obtain information about the real 
variations of the stress on the sequence (but not on the maximum amplitude) 
[LEY 63] [WEB 66]. All the ranges counted are considered as symmetric with 
respect to the zero axis [HAA 62]. The damage is then calculated from these ranges 
by considering them as half-cycles of sinusoidal stress using a S-N curve or its 
representation (for example, Basquin), and with a accumulation rule (for example, 
Miner) by considering (or not) the effect of the mean stress of each half-cycle 
(Goodman, Gerber, Söderberg criteria) [STA 57]. 
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Several methods were proposed to take into account the effect of non-zero mean 
stress. For example, curves stress/number of cycles to the rupture are given, where 
the y axis represents (instead of  or ) the quantity  

/ 2

1 m mR/

[SMI 42] or  

/ 2

1 m fR/

[MOR 64], where  is stress range, m  is mean stress, Rm is ultimate tensile 
strength and Rf  is true ultimate tensile strength (load to the fracture divided by the 
minimal cross-section after fracture). 

The calculation of damage by this process is relatively easy when the signal is 
periodic, since the counting of the ranges is carried out over one period. If the signal 
is random, calculations are more difficult and it can be worthwhile to consider the 
statistical properties of the signal. For a Gaussian signal, for example, it can be 
shown that the mean value m  of the ranges  is equal to: 

p

0
rms2

rms

2
rmsm n

n
2

2
[3.3] 

where rms  is the rms value of the stress , rms  is rms value of the first derivative 
of , and 

r2= rmsm [3.4] 

where r is irregularity factor, 0n  is the number of zero crossings (centered signal) 
per unit time and pn  is the number of extrema per unit time. 
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3.4.2. Elimination of small variations 

The method does not make it possible to take into account the stress variations 
lower than a given threshold and not considered important for the fatigue process. 
J.B. De Jonge [DEJ 70] noted that this method has a serious disadvantage. 

Given the signal depicted in Figure 3.15, three ranges can be counted: 

1 2 1 ;

2 3 2;
and

3 4 3.

Figure 3.15. Elimination of small variations

If as a consequence of an unspecified filtering, the small variations such as 2 –
3 are removed, counting will give only 4 1 instead of the first three already 

quoted ranges. The result of counting depends greatly on the amplitude of the small 
load variation considered. In addition, there is always the possibility of not being 
able to pair the positive and negative ranges if both are counted. 

The range counting method detects variations which actually occur, but neglects 
the variations of the mean load. By centering all the ranges on the zero value, it 
tends without reason to support the number of the smallest loads in the spectrum 
[RAV 70] [SCH 63]. A characterization of the endurance to fatigue requires 
knowledge of the range and its mean value (or the maximum and minimum values) 
[WEB 66]. 
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Figure 3.16. Example of range counting

NOTE: In the case of a Gaussian process, the plotting of the load spectrum can be 
carried out from an approximation of the distribution law of the ranges (increasing 
or decreasing direction), rather than by counting. The exact determination of this 
distribution in a continuous random process is very difficult [RIC 65a]. However, 
there are techniques which enable an approximate relation to be obtained, such as: 

– H.P. Schjelderup and A.E. Galef [SCH 61a], which treats the particular case 
of Gaussian processes for which the PSD is composed of narrow peaks of very 
remote frequencies; 

  J. Kowaleski [KOW 59], which gives a distribution law for a Gaussian 
process without demonstration (however, this law was considered to be incorrect by 
Rice et al. [RIC 65a]); and 

– J.R. Rice and F.P. Beer [RIC 64] [RIC 65a], which proposes a relation calling 
upon the autocorrelation function of the signal and its first four derivatives. 

3.5. Range-mean count method 

This method is also referred to as range-mean pair count method or means and 
amplitudes. 

3.5.1. Presentation of method 

This method was proposed in 1939 by A. Teichmann [TEI 41]. Here, a gap in the 
range counting method (the absence of measurement of the mean value of the 
signal) is eliminated. The ranges are counted as with the above method and the mean 
value of the range is noted complementary to  [BUX 66] [FAT 77] [NEL 78] 
[RAV 70] [SCH 63] [VAN 71]. 
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i i mi

AB 1 8 1 
BC 2 –3.5 3.25 
CD 3 5.5 4.25 
OF 4 –7 3.25 
EF 5 6 3 
FG 6 –10.5 0.75 

Table 3.1. Example of statement of ranges and means 

Figure 3.17. Counting of ranges and means

Figure 3.18. Example of range and mean counting 
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Some authors prefer to consider 2/1 . These values make it possible to create 
a histogram with two dimensions (each mean corresponds to a list of ranges) 
[STR 73]. Since the information collected is highly fertile, it can be used to derive 
the results of some of the other methods [WEB 66]: the range counting method is a 
particular case of the range-mean count method. In the same way, the results of this 
counting can be transformed to determine those of the peaks counting method or the 
level-crossing count method. 

The mean is defined as the algebraic half-sum of two successive extrema:  

m
max min

2
[3.5] 

The amplitude is the algebraic half-difference between these extrema. 

Figure 3.19. Example of presentation of results of a count

The results can be presented in the shape of curves giving, for a given mean 
mi , the occurrence frequency versus the range amplitude (or the half-amplitude). 

The distributions thus obtained have the same form whatever the mean mi .

This method is generally regarded as most significant in fatigue [LEY 63]. It 
takes into account the assumption that the fatigue behavior is mainly a function of 
the amplitude of the stresses around the mean value [GRE 81] [RAV 70]. 

The reason for the non-utilization of this method is two-fold [HAA 62]: 

 the instrumentation necessary is complicated. Equipment was, however, 
developed for this use (strain analyzer ) [VER 56] [WEB 66]; and 

 reproduction of the loads counted is not easy. 
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3.5.2. Elimination of small variations 

As with the above method, the suppression of small variations of  is not simple 
since it results in modifying the preceding and following ranges. It is the weak point 
of these methods, sensitive to the smallest range neglected [WEB 66]. Elimination is 
carried out by removing all the variations of less than a given value. On the curve 
where these small variations occur, the mean and the interval between the peaks are 
calculated immediately before and after these small fluctuations. 

Figure 3.20. Elimination of small variations

Figure 3.21. Frequency of event after elimination of small variations

In general, this treatment results in particular of the removal the small variations 
close to the mean, which have little effect on fatigue. 

From these results, it is possible to carry out a calculation of fatigue damage as 
follows [STA 57]. Let us consider, as an example, the signal in Figure 3.22(a). This 
signal can be smoothed to eliminate the small irregularities (Figure 3.22(b)).  

The signal is then broken up into 4 ranges AB, BC, CD and DE which are used 
to define cycles ABB', BCC', etc. (Figure 3.22(c)). 



Counting Methods for Analyzing Random Time History     91 

The damage due to the signal (a) will be half of that due to the complete cycles 
of (c). The cycles are centered with respect to the zero mean value, by modifying the 
amplitudes obeying a rule such as Gerber or modified Goodman (Figure 3.22(d)). 

Figure 3.22.(a) to (d) Decomposition in ranges

By translation according to the time axis, a continuous signal is reconstituted 
(Figure 3.23) producing a damage double of (a), which can then be evaluated using, 
for example, Miner’s rule. 

Figure 3.23. Process of cycle reconstitution
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3.6. Range-pair count method 

This is also referred to as range-pair cycles counting or range-pair excedance 
count method.

This method, which has several variants [BUR 56] [BUX 66] [FUC 80] 
[GRO 60] [JAC 72] [RAV 70] [SCH 63] [SCH 72a] [VAN 71], consists of counting 
a stress (or strain) range as a cycle if it can be paired with a subsequent stress (or 
strain) range of equal amplitude in the opposite direction. 

Figure 3.24. Counting of range-pairs

The ranges are therefore counted per pair. A range is defined here as a load 
variation starting from an extremum. A counting is carried out if the positive range 
exceeds a certain value r and if it is followed by a negative range exceeding the 
same value r [STR 73] [TEI 55] [VAN 71]. The intermediate variations ( re ) are 
neglected. 
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Figure 3.25. Process of counting of ranges by pairs

The procedure of counting is repeated for other values of r. 

Figure 3.26. Example of counting of ranges by pairs

The result of counting can be expressed in the form of the number of range pairs 
exceeding a given value r. This method counts mainly the greatest fluctuations. The 
small fluctuations are regarded as superimposed on the largest. If the pairs of ranges 
are counted for r r2, the intermediate positive or negative ranges for which 
r r2 do not affect the result of counting. They can therefore be eliminated. 
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This method takes into account the sequence of load and is insensitive to the 
amplitude of the smallest load ranges considered (counting thresholds). The small 
ranges can therefore be counted or neglected at will, without any effect on the large 
ranges [DEJ 70] [WEB 66]. The method combines the greatest load increments with 
the smallest following decrements, which is important from the damage point of 
view.

Any information is stored in the mean value of the counted cycles. The ranges 
are paired without respect to their occurrence time. Each counted element is 
insensitive to the ranges other than those of its own previously chosen level. All the 
load excursions are not fully counted. 

Figure 3.27. Combination of stress increments

This method can be used in the plastic range by associating the pairs of plastic 
deformation ranges with the pairs of stress ranges [KIK 71]. 

The measuring instrument used in this method is the strain range counter 
[TEI 55] [WEB 66]. 
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Figure 3.28. Association of deformation and stress ranges

NOTES:

1.  N.E. Dowling [DOW 72] proposes carrying out counting according to the 
procedure described below, based on Figure 3.29. 

Figure 3.29. Counting according to N.E. Dowling [DOW 72]

Starting from a minimum (1), the signal increases to the largest peak (6), which 
is for the moment the only one selected. The descent from 6 to 1' of the same 
amplitude is associated with this rise from 1 to 6.  When we start from peak 2, the 
signal decreases according to 2 to 3 and we associate 3 to 2' with this variation. 
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The result is close to that of the rainflow counting method (section 3.12).

2.  O. Buxbaum [BUX 66] (or T.J. Ravishankar [RAV 70]) defines classes of 
range ri , r1 being the smallest amplitude chosen for the counting and the lower 
values being neglected. 

Figure 3.30. Counting according to O. Buxbaum [BUX 66]

Starting from minimum 1, we will have a range each time the signal crosses a 
limit of class with positive slope. The range is closed when a negative variation of 
the same amplitude is crossed. For example, we open range AA' in A, BB' in B, CC' 
in C and we close these same ranges in A', B' and C'. 

These cuttings per pair of ranges are however artificial and, if the stresses are in 
the plastic range, can lead to an inaccurate description of the stress-strain cycles, 
i.e. to an error in the calculated damage [WAT 76]. 

3.7. Hayes’ counting method 

This is a similar method to that of the rainflow, but easier to visualize [FUC 77] 
[FUC 80] [NEL 78]. We start here by counting the cycles of smaller amplitude, then 
they are removed from the curve to count the cycles of greater amplitude. Let us 
consider, as an example, the signal in Figure 3.31(a). 

Hayes first identifies small ranges such as BC and DE, which are interruptions 
of a larger range (AF). There is interruption: 

– for a peak-valley pair such as BC when the following peak D is higher than the 
peak B; 

– for a valley-peak pair, such as GH, when the next valley I is of smaller 
amplitude than the valley G. 
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Figure 3.31. Hayes counting procedure

The hatched surface corresponds to the cycles relating to the ranges selected. In 
Figure 3.31, 20 alternations (20 peaks) are counted. Among these peaks, 14 are 
retained to form 7 pairs materialized by the hatchings, then eliminated from the 
curve (Figure 3.31(b)). There remain 6 alternations (6 extrema) with 3 peaks and 
3 valleys. The two hatched cycles I–L and R–U are counted, then are removed to 
obtain the curve in Figure 3.31(c) in which there only remains the peak F and the 
valley M. The result of this counting can be expressed in the shape of a table of 
occurrence of the ranges possibly with their mean value. 

3.8. Ordered overall range counting method 

This is also referred to as the racetrack counting method.
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To illustrate the method, let us consider the signal in Figure 3.32(a) which will 
be treated to obtain that in Figure 3.32(c). The elimination of the smallest ranges is 
carried out as indicated in Figure 3.32(b) [FUC 80] [NEL 77]. 

Figure 3.32. Racetrack counting method

The method consists of defining a track of width S, limited by barriers which 
have the same profile as the signal. We retain as extremum only those for which a
racing driver would have to change direction from top to bottom as in f and n, or 
from bottom to top as in m and o. The width S of the track determines the number of 
alternations which will be counted. 
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This method was originally named ordered overall range method [FUC 77] 
[NEL 78]. Its aim is to condense a long and complex signal into a signal that is 
simpler to use. 

The procedure used is based on the assumption that the most significant part of 
the signal is the maximum range, i.e. the interval between the largest peak and the 
lowest valley. 

The distance between the second lowest valley and the second largest peak is  
the next most important element, provided that this second range crosses the  
first (between the largest peak and the smallest valley) or that it is outside the 
interval of time defined by the extreme values of the first range. By continuing the 
process in this manner, we can either exhaust the counting of all alternations or stop 
counting at a selected threshold and regard all the smaller peaks and valleys as 
negligible. 

The results can be presented in two ways: 

– in the form of a histogram, of a spectrum or a list giving the range amplitudes 
and their occurrence frequency. If counting is carried out until exhaustion of the 
peaks and valleys, this method leads to the same result as a rainflow type counting 
and to a result very close to the range-pair count method. The racetrack method 
makes it possible to stop counting before exhaustion of the extrema and to take into 
account only a fraction of the ranges. In many cases, that led to the same result as an 
exhaustive counting of alternations; 

– in the form of a synthesized curve in which the essential peaks and valleys are 
the subject of a list with their origin sequence. If the procedure is continued until 
exhaustion of all the extrema, we then reproduce the initial curve in all its details. If 
counting is limited, small variations of the curve are omitted but we retain 
alternations which produce the greatest ranges. 

The condensed curve contains more information than the spectrum. It includes 
the sequence of events, which can be important if the deformation produces residual 
stresses which remain active during the following alternating. This method initially 
chooses the greatest ranges and preserves them in a correct temporal sequence. It is 
useful to condense curves by preserving only a few events (e.g. 10%) which produce 
most of the damage, usually more than 90% [FUC 77]. These condensed curves 
make it possible to reduce the duration of calculations and the tests and to focus the 
attention on a reduced number of the most significant events. 
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3.9. Level-crossing count method 

This is also referred to as the simple level-crossing method.

Figure 3.33. Counting of level crossings

Here, we count the number of times that the signal crosses a given level 0 with 
a positive slope, depending on 0 [BUX 66] [GOO 73] [NEL 78] [RAV 70] 
[SCH 63] [SEW 72] [VAN 71]. 

Figure 3.34. Example of level-crossing counting

The instrument developed for this measurement is the contact extensometer 
(Svenson) [SVE 52] [WEB 66]. We can expect that the mean level (zero in general) 
is the most-often crossed, since the number of crossings of threshold falls when the 
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threshold increases. Counts can be carried out with positive slope or negative slope 
above and below the mean (the results being the same) [GOO 73]. 

If the signal has a symmetric distribution, it is enough to choose a direction and 
to count only above the mean [STR 73]. The passages below a certain threshold can 
be eliminated. If they are very few, the small load variations can be neglected 
without appreciable effect on the number of up-crossings. Very different models of 
load can lead to the same counting result [GOO 73]. The inadequacy of the method 
is shown in Figure 3.35 [VAN 71]. 

Figure 3.35. Different signals having the same number of level crossings

Although very different, the two signals above lead to the same number of 
crossings of each level. The small load variations, which are of less importance in 
the fatigue process, increase counting. To compensate (at a certain point) for this 
source of error, level crossings associated with load variations lower than a given 
threshold can be neglected [GOO 73] (see the fatigue-meter method). This is 
equivalent to defining classes of amplitude i , i  of width  such that any 
oscillation included inside a class is not counted, by suitable choice of 
[BUX 66]. 

Not all of the small oscillations disappear. We continue to take into account 
those which cross the limit between two classes. 

Neglecting small alternations can, however, have an influence on the results 
[WEB 66]. 

The level-crossing counting method can be used to compare the signal 
distribution with that of a Gaussian signal [BUX 66] [GRE 81]. 
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Figure 3.36. Elimination of small alternations

This counting is sometimes used to calculate the number of peaks between two 
levels, by difference of the up-crossings of these two levels. 

Figure 3.37. Example of error in the calculation of the number of peaks  
from a level-crossing counting

This step can lead to errors [SCH 63] [SCH 72a] [SVE 52] [VAN 71]. 

H.A. Leybold and E.C. Naumann [LEY 63] show that in a given interval of 
amplitude, the calculation of the number of peaks carried out from the up-crossings 
of levels can be false because of a certain compensation of maxima and minima. 

An example is given using the signal of Figure 3.37; no peak is detected by 
difference of crossings of thresholds 2 and 1 although there actually is one. As a 
consequence, we note that the number of peaks calculated in the interval close to the 
mean is very weak. 

This method of calculation of the number of the peaks can, however, be used 
provided that the signal is: stationary; Gaussian; with narrow band; and that the 
threshold is sufficiently large compared to the rms value. 
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Figure 3.38. Frequency of event of peaks deduced from counting of crossings of threshold

It is also sometimes used to plot the curve of occurrence frequency versus peak 
amplitude [LEY 63]. 

Modified level-crossing method 

Figure 3.39. Level-crossing counting method modified to eliminate small variations 

This method, sometimes used in the car industry, consists of: 

– choosing load levels (stress, deformation, etc.);  

– between several consecutive zero-crossings, recording only one counting each 
time that a level is exceeded (a level can be exceeded several times between two 
passages by zero, but only the first level up-crossing is counted). 
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Figure 3.40. Example of very different signals leading to the same result using  
the modified level-crossing counting method

This method also has its limits. It will produce, for example, the same counts for 
signals (a) and (b) in Figure 3.40. In this case, (a) is probably much more damaging 
than (b). This method is not appropriate for detecting the important differences 
between such loads. 

3.10. Peak valley peak counting method 

This is also referred to as the PVP method.

The direct reproduction of the signal (stress or deformation) is not very practical 
as it is too long to expect reliable statistics [HOL 73]. 

Figure 3.41. Definitions

During fatigue tests of materials on test bars, methods related to the use of a 
stress spectrum generally result in carrying out blocks of sinusoids not very 
representative of reality (fluctuations of amplitudes and of half-cycle durations). The 
histograms do not give information on the sequence or on the mean-range 
interactions, which have an effect on the fatigue life. 
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The PVP method takes account of these elements and makes it possible to reduce 
the test duration in a notable manner. The steps of the method are as follows: 

– analyze the signal measured and plot: 

- a histogram of the range mean (row), 

- a histogram of the ranges; 

Figure 3.42. Histogram of the ranges Figure 3.43. Histogram of the means

Figure 3.44. Histogram of the ranges after  
suppression of events below fatigue limit

– modify this last histogram by eliminating levels lower than the fatigue limit 
and consider this as without effect; 

– reconstitute a signal from the remaining blocks. The method which would 
result in considering blocks of sinusoids by respecting the levels and numbers of 
cycles is not used as it is not considered to be representative here. 
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Instead, the PVP method uses a matrix such as depicted in Figure 3.45 including, 
according to each axis, classes located by their medium level with the values of the 
peaks on the vertical axis and those of the valleys on the horizontal axis. 

Figure 3.45. Constitution of the peak and valley matrix

Each event is placed in the appropriate cell. This matrix therefore makes it 
possible to describe the signal using the two parameter ranges: mean value, since 
diagonal “1” is at a constant mean, and diagonal “2” is at constant range.  

Figure 3.46. Example of matrix

By using the properties of materials under fatigue, the authors propose a method 
of elimination of the levels lower than the fatigue limit, leading to a very important 
reduction of time (90% in the given example). The procedure involves the following 
steps:
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– note the fatigue limit of materials used and its ultimate strength ( D
mR

2
);

– plot the Goodman diagram (with the range on ordinates and the mean on 
abscissae) in order to determine the boxes of the matrix which are below D . This 
results in eliminating at the same time values in the histogram of ranges and of 
averages; 

– generate a random signal. We generally start from a valley and choose a 
valley-peak range in the matrix: 25 and 75 for example (Figure 3.50). We miss the 
number of occurrences indicated in the box by 1. 

Figure 3.48. Goodman diagram

It is then necessary to search a range starting from a peak of amplitude 75; this 
choice can be carried out in one of hatched boxes in Figure 3.49. 

In the example treated, the possible valleys following 75 are 75, 25 and 
25 (five ranges on the whole), the probabilities being 1 5/ , 2 5/  and 2 5/ . We 

therefore choose the following range taking into account these last values. Let us 
suppose that the selected transition is ( 75, 25). The following transition will go 
towards a peak and will have to be selected in the third column (Figure 3.52). There 
are two possibilities – 125 and 75 – with the same probability. 
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Figure 3.49. Example of matrix

Figure 3.50. Choice of first range Figure 3.51. Constitution of a signal

Figure 3.52. Choice of second range Figure 3.53. Addition of range to  
 the signal

If 125 is chosen, the next valley will have to be taken in the hatched line and we 
proceed in this way until the table is empty. Towards the end of the signal, it may 
occur that direct connections are impossible as some boxes are already empty. In 
this case, we will connect the arcs continuously. 
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Frequencies

We saw that the life in fatigue is, to a certain extent, independent of the 
frequency. This parameter is therefore not taken into account. Rather, the authors 
use the velocity limitations of the actuators to determine the duration of each event. 

Figure 3.54. Connections of un-joined arcs

3.11. Fatigue-meter counting method 

This is also referred to as the level crossings eliminating small fluctuations or
restricted level-crossing count method or variable reset method. 

The fatigue-meter was developed for fatigue studies, especially in aeronautics to 
measure and record vertical accelerations in the center of gravity of aircraft in flight 
[LAM 73] [MEA 54] [RID 77]. Use of this equipment, such as the VGH recorder  or
fatigue-meter (RAE) [TAY 53], is limited apart from this particular application 
[HAA 62]. This material uses a level-crossings counting method with elimination of 
the small load variations. 

Figure 3.55. Fatigue-meter counting
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A count of a level up-crossing above the mean stress is retained only if the stress 
is crossed before at least one interval  previously chosen with a positive slope 
[GOO 73] [NEL 78] [RAV 70] [SEW 72] [SCH 63] [SCH 72a] [STR 73] [TAY 50]. 

This increment  corresponds to a stress interval below the fatigue limit stress 
and is therefore negligible from the point of view of fatigue [LEY 63]. It is 
equivalent to saying that a rearmament threshold is used when: 

– for the levels higher than the mean, counting is started at the time of the 
passage of a given level; 

– a new passage on this same level gives place to a counting only if the signal 
has descended rather low and crossed at a lower level fixed in advance with a 
negative slope before ascending [NEL 78] [RAV 70]. 

Figure 3.56. Counting with elimination of small variations

Counting is similar for the levels lower than the mean. This method therefore 
introduces a new parameter, the release threshold, which can vary according to the 
level (all the larger since the level is higher) [GRE 81]. It has the advantage of 
recording the majority of the secondary load variations of some importance 
[SEW 72]. It results in neglect of certain small variations. There is loss of 
information on the sequences, however the small variations do not influence 
counting. The number of peaks calculated in each class by subtracting the number of 
up-crossings of a level i from the number of up-crossings of the following threshold 
i 1 is not exact, as with the preceding level-crossing count method. 
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With this method, very different signals can still lead to the same result 
[VAN 71]. 

Example 3.1. 

Figure 3.57. Example of signals leading to the same number of crossings

This problem here is also related to small variations in stress. 

Example of threshold levels [GOO 73] 

Acceleration levels in g 
Primary 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 
Secondary 0.00 0.05 0.05 0.10 0.10 0.15 0.15 0.20 0.20 0.25 0.25 

Table 3.2. Examples of primary and secondary threshold values

It is seen that the higher the primary level, the higher the secondary level (and 
thus the threshold). 

3.12. Rainflow counting method 

This is also referred to as the Pagoda roof method.

3.12.1. Principle of method 

This method [DOW 72] [DOW 87] [FAT 93] [FUC 80] [KRE 83] [LIN 87] 
[NEL 78] [RYC 87] [SHE 82] [SOC 83] [WIR 77] was initially proposed by 
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M. Matsuiski and T. Endo [END 74] [MAT 68] to count the cycles or the half-cycles 
of strain-time signals. Counting is carried out on the basis of the stress-strain behavior 
of the material considered [STR 73]. The extracted cycles conform with those of the 
tests of constant amplitude from which the predictions of fatigue life are generally 
carried out. 

Figure 3.58. Stress-strain cycles

This is illustrated in Figure 3.58. In this example, the response t  can be 
divided into two half-cycles ad and de and into a complete cycle bcb’, which can be 
considered as an interruption of a larger half-cycle. 

To describe this method and explain the origin of its name, let us imagine that 
the time axis is vertical and that the signal t  represents a series of roofs on which 
water falls. The rules of the flow are described in the following. 

Figure 3.59. The drop is released from the largest peak 



Counting Methods for Analyzing Random Time History     113 

The origin of the signal is placed on the axis at the abscissa of the largest peak of 
the signal (this condition is not necessary for certain algorithms derived from this 
method) [FUC 80]. Water drops are sequentially released at each extrema. By 
convention, the tops of the roofs are on the right of the axis and the bottoms of the 
roofs are on the left. 

Figure 3.60. Flow rule of the drop from a peak

If the fall starts from a peak: 

(a) the drop will stop if it meets an opposing peak larger than that of departure; 

(b) it will stop if it meets the path traversed by another drop, previously 
determined; and 

(c) the drop will fall onto another roof and continue to slip according to rules (a) 
and (b). 

NOTE: A new path cannot start before its predecessor has finished. 

If the fall begins from a valley [END 74] [NEL 78]: 

(d) the fall will stop if the drop meets a valley deeper than that of departure; 

(e) the fall will stop if it crosses the path of a drop coming from a preceding 
valley; and 

(f) the drop can fall onto another roof and continue according to rules (d) and (e). 

The horizontal length of each rainflow defines a range which can be regarded as 
equivalent to a half-cycle of a constant amplitude load. 
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Figure 3.61. Drop departure from a valley

Figure 3.62. Flow rule of the drop from a valley

Example 3.2. 

Let us consider the signal in Figure 3.63, the time axis being plotted vertically. 

On this figure, pairs of ranges can be identified which, taken together, are 
equivalent to whole cycles: 

a) (1 – 8) + (8 – 11):               largest cycle of the sequence 
 b) (2 – 5) + (5 – C) 

c) (6 – 7) + (7 – B)  cycles of intermediate size

 d) (3 – 4) + (4 – A) 
(9 – 10) + (10 – D)  the smallest cycles

The damage can be calculated from these cycles. Intermediate ranges (2–5) and 
(5–C) are simply interruptions of a larger range (1–8). Small ranges (3–4) and (4–
A) are, in their turn, the interruptions of the intermediate range (2–5), etc. 
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Figure 3.63. Example of signal for a rainflow counting

This method lends itself with difficulty to an analytical formulation [KRE 83]. 
Several algorithms were developed to carry out counting (see section 3.12.2) 
[DOW 82] [DOW 87] [FAT 93] [RIC 74] [SOC 77]. It is currently well 
established that this method gives the best estimates of fatigue life in the case of 
cycles of strain under load of variable amplitude [DOW 72] [TUC 77]. 

Example 3.3. 

Figure 3.64(a) shows a signal and the part of this signal retained in a first 
passage. The left ranges are those of Figure 3.64(b). 

The procedure is still applied to the remaining peaks and there only remains the 
peak of Figure 3.64(c). The result of this counting gives the half-cycles (25; –14), 
(14; 5), (16; –12) and (7; 2). 

The rainflow counting yields the same result as the range-pair count method, 
except for the small additional half-cycle (7; 2) counted here. 
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Figure 3.64. Application example of the rainflow counting process

Figure 3.65. Rainflow method combined with strain analysis [MAR 65]

The rainflow method is interesting when it is combined with a strain analysis 
[FUC 80]. Let us consider, for example, the case in Figure 3.65. The damage can be 
calculated for each cycle as soon as it is identified in the counting procedure. 
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Each part of strain time history )t(  is counted only once. The damage created 
by a great variation of the strain is not affected by an interruption which produces a 
small cycle. 

For each cycle of stress, we follow a closed hysteresis loop returning at the initial 
point of the beginning of cycle, the preceding curve continuing as if this cycle had 
not existed. There is simply addition of the damage. The signal )t(  can therefore 
be broken up into half-cycles with known terminals from which we can calculate the 
mean value. These data make it possible to calculate the damage undergone with an 
accumulation law [WAT 76]. 

NOTES:

1. There are methods very similar to this (the “maximum–minimum procedure”, 
the ‘pattern classification procedure’) [END 74] which give the same results. 

2. The rainflow method is very similar to the range-pair counting method. If we 
consider again Figure 3.29, the difference between these two methods can be 
explained by considering the half-cycle 1–6. In the case of the range-pair counting, 
the half-cycle which is complementary for it is 6–1' and the part 1'–7 is lost. With 
the present method, when the range which could constitute the second half-cycle has 
a range larger than 6–1' (which is the case here, with 6–7), counting 1–6 is 
suspended (on standby of another later complementary half-cycle) and a new 
counting 6–7 is opened. 

In addition, the residual half-cycles are preserved here (those which could not be 
paired), whereas the range-pair counting method is unaware of them. 

3.12.2. Subroutine for rainflow counting 

The routine below makes it possible to determine the ranges of a signal to use for 
the calculation of the fatigue damage according to this method. The signal must be 
first modified in order to start and finish by the largest peak. The total number of 
peaks and valleys must be even and an array of the peaks and valleys (Extrema( ))
must be composed of the signal prepared in this way. 

The boundaries of the ranges from the peaks are provided in arrays Peak Max( ) 
and Peak_Min( ) and those of the ranges resulting from the valleys in Valley_Max ( ) 
and Valley_Min( ). These values make it possible to calculate the two types of 
ranges Range_Peak( ) and Range_Valley( ) , as well as their mean value 

2
)Peak_Max(i)Peak_Min(i

 and 
2

(i)Valley_Max(i)Valley_Min
.
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' Procedure RAINFLOW of peaks counting (GFA-BASIC) 
' According to D.V. NELSON [NEL 78] 
' The procedure uses as input/output data: 
' Extremum(Nbr_Extrema%+2)= array giving the list of Nbr_Extrema% extrema
' successive and starting from the largest peak
' At output, we obtain:
' Peak_Max(Nbr_Peaks%) and Peak_Min(Nbr_Peaks%)= limits of the ranges of the 
peaks
' Valley_Max(Nbr_Peaks%) and Valley_Min(Nbr_Peaks%)= limits of the valley 
ranges
' These values make it possible to calculate the ranges and their mean value. 
' Range_Peak(Nbr_Peaks%)= array giving the listed ranges relating to the peaks
' Range_Valley(Nbr_Peaks)= array of the ranges relating to the valleys
'
PROCEDURE rainflow (Nbr_Extrema%,VAR Extremum()) 
LOCAL i%,n%,Q%,Output&,m%,j%,k% 
' Separation of peaks and valleys
Nbr_Peaks% = (Nbr_Extrema% + 1) / 2 
FOR i% = 1 TO Nbr_Peaks% 
 Peak(i%) = Extremum(i% * 2 - 1) 
NEXT i% 
FOR i% = 2 TO Nbr_Peaks% 
 Valley(i%) = Extremum(i% * 2 - 2) 
NEXT i%  
' Research of deepest valley
Valley_Min = Valley(2) 
FOR i% = 2 TO Nbr_Peaks% 
 IF Valley(i%) < Valley_Min 
 Valley_Min = Valley(i%) 
 ENDIF 
NEXT i% 
Valley(Nbr_Peaks% + 1) = 1.01 * Valley_Min 
' Treatment of valleys
FOR i% = 2 TO Nbr_Peaks% // Initialization of the tables with Peak(1)
 L(i%) = Peak(1) 
 LL(i%) = Peak(1) 
NEXT i% 
FOR i% = 2 TO Nbr_Peaks% 
 n% = 0 
 Q% = i% 
 Output& = 0 
 DO // Calculation of the Ranges relating to the Valleys
 IF LL(i% + n%) < Peak(i% + n%) 
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 Range_Valley(i%) = ABS(LL(i% + n%) - Valley(i%)) // Array of the Valleys 
Ranges
 Valley_Max(i%) = LL(i% + n%) // Array of the Maximum of the Ranges of the 
Valleys
 Valley_Min(i%) = Valley(i%) // Array of the Minimum of the Ranges of the Valleys
 Output& = 1 
 ELSE 
 IF Valley(i% + n% + 1) < Valley(i%) 
 Range_Valley(i%) = ABS(Peak(Q%) - Valley(i%)) 
 Valley_Max(i%) = Peak(Q%) 
 Valley_Min(i%) = Valley(i%) 
 Output& = 1 
 ELSE 
 IF Peak(i% + n% + 1) < Peak(Q%) 
 L(i% + n% + 1) = Peak(Q%) 
 n% = n% + 1 
 ELSE 
 L(i% + n% + 1) = Peak(Q%) 
 Q% = i% + n% + 1 
 n% = n% + 1 
 ENDIF 
 ENDIF 
 ENDIF 
 LOOP UNTIL Output& = 1 
 m% = i% + 1 
 IF m% < = Q% 
 FOR j% = m% TO Q% 
 LL(j%) = L(j%) 
 NEXT j% 
 ENDIF 
NEXT i% 
' Treatment of peaks
FOR i% = 2 TO Nbr_Peaks% + 1 // Initialization of the arrays with Valley_Min
 L(i%) = Valley_Min 
 LL(i%) = Valley_Min 
NEXT i% 
FOR i% = 1 TO Nbr_Peaks% 
 n% = 0 
 k% = i% + 1 
 Q% = k% 
 Output& = 0 
 DO 
 IF LL(k% + n%) > Valley(k% + n%) 
 Range_Peak(i%) = ABS(Peak(i%) - LL(k% + n%)) // Array of the Ranges of the 
Peaks
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 Peak_Max(i%) = Peak(i%) // Array of the Maximum of the Ranges of the Peaks
 Peak_Min(i%) = LL(k% + n%) // Array of the Minimum of the Ranges of the Peaks
 Output& = 1 
 ELSE 
 IF Peak(k% + n%) > Peak(i%) 
 Range_Peak(i%) = ABS(Peak(i%) - Valley(Q%)) 
 Peak_Max(i%) = Peak(i%) 
 Peak_Min(i%) = Valley(Q%) 
 Output& = 1 
 ELSE 
 IF Valley(k% + n% + 1) > Valley(Q%) 
 L(k% + n% + 1) = Valley(Q%) 
 n% = n% + 1 
 ELSE 
 L(k% + n% + 1) = Valley(Q%) 
 Q% = k% + n% + 1 
 n% = n% + 1 
 ENDIF 
 ENDIF 
 ENDIF 
 LOOP UNTIL Output& = 1 
 m% = k% + 1 
 IF m% < = Q% 
 FOR j% = m% TO Q% 
 LL(j%) = L(j%) 
 NEXT j% 
 ENDIF 
NEXT i% 
RETURN

3.13. NRL (National Luchtvaart Laboratorium) counting method 

This method is also known as the range-pair-range count method. 

This section concerns an extension of the range-pair counting method, taking 
into account information on the mean value and therefore making it possible to 
characterize the extreme levels correctly [SCH 72a]. 

The procedure of counting is applied in two steps. In the first, all the 
intermediate cycles of load are detected and counted by noting the associated mean 
values. Each cycle of intermediate load counted is then eliminated from the signal 
varying with time [VAN 71]. The procedure is repeated until the signal does not 
present any more cycles of intermediate load. The signal obtained at the end of this 
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first step is of oscillatory type with a narrow band with cycles of variable amplitude, 
each extremum preceded and followed by a zero-crossing. In the second step, the 
residual load is analyzed according to the range-mean count method. 

Example 3.4.

Let us consider the sample of signal in Figure 3.66(a). 

Figure 3.66. Principle of the NRL c ounting method (step no. 1)

Step no. 1 

Four successive peaks i to i 3 are considered. If xi 1 and xi 2  are within the 

interval xi , xi 3 , two half-cycles of amplitude x xi i1 2
2

 and mean x xi i1 2
2

are counted.

The values 1ix  and 2ix  are then removed from signal (b). The procedure is 
repeated for the peaks xi 2 , xi 1, xi  and xi 3 , and leads, after counting and 
removal of the range xi 1, xi , to the signal (c) [DEJ 70]. 
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The repetition of this procedure on the whole signal leads to a new signal of the 
form of that of Figure 3.67 at the end of step no. 1. 

Figure 3.67. Signal obtained at end of step no. 1

Step no. 2 

Counting according to the range-mean method consists of noting the pairs 

x x1 2
2

 and x x1 2
2

x x2 3
2

 and x x2 3
2

.

These countings are added to those of step no. 1. 

The total result can be described as the number of cycles (range , mean m)
for each combination of  and m. This representation is not very convenient 
because of its 2D character. As fatigue is primarily due to the amplitude of the load 
(range) and, with the second order, to the mean, we calculate a mean value m
for each value of amplitude  and preserve the standard deviation of the mean as 
information on the variations of the value m, i.e. 

2
m

2
mms [3.6] 

This description makes it possible to represent the result in a mono-dimensional 
form. For each amplitude of range , we obtain [DEJ 70]: 

– the number of cycles; 
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– the mean value of these cycles m ; and 

– the standard deviation of the mean ms .

It is considered that this method gives more significant information from the 
fatigue point of view than the other methods described (except for the rainflow, to 
which it is close [VAN 71]). It has the same advantages as the range-pair counting 
method without having its previously discussed disadvantages [SCH 72a]. 

3.14. Evaluation of time spent at a given level 

The range of variation of the signal is broken up into sections of small width 
i . Given one of these sections included between the levels i  and i 1, we count 

the times t j  during which the signal remains inside this section. The sum of these 
t j  is a fraction of total time T of the signal studied. 

Figure 3.68. Time of staying at a given level

This fraction is all the larger since the section is broader. To eliminate this 
disadvantage, we weight it by the width i .

The results so obtained make it possible to calculate the probability density: 

T

t
1

limp j
j

i0i

[3.7] 

Very often, this density can be approximated by that of a Gaussian law. 
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This method, which is based on the time spent in a section , is very dependent 
on the first derivative of the signal. The result will be very different according to 
whether the signal varies quickly or slowly. It poorly represents the frequency of 
appearance of the levels, and is therefore seldom used [BUX 66]. 

3.15. Influence of levels of load below fatigue limit on fatigue life 

From a synthesis of much work carried out on alloys 2024-T3 and 7075-T6, 
T.J. Ravishankar [RAV 70] showed that the low levels, lower than the fatigue limit, 
produce damage while contributing to the propagation of the fissure if started. Their 
omission therefore increases the lifetime. 

3.16. Test acceleration  

We can be led by this objective to increase the amplitudes of the sequence. It is 
advisable to be careful and only increase those cycles of average size; an increase in 
the amplitude of the strongest levels can modify the fatigue life of the test bar 
[SCH 74]. 

Let us consider a signal whose instantaneous values are distributed according to 
a Gaussian law and peaks according to Rayleigh’s law: 

1. The spectrum is maintained linearly by increasing the probability uniformly. 

Figure 3.69. Reduction of the duration of a test by increasing all the stresses



Counting Methods for Analyzing Random Time History     125 

The highest load levels occur more frequently while the smallest loads are less 
affected. This case is similar to the in situ situation where the segments of the worst 
road are traversed with a frequency higher than the normal [BUS 72]. 

W. Schütz [SCH 72b] considers that if a test must be accelerated, that should not 
be carried out by increasing the stresses, but rather by neglecting the stresses of low 
amplitude. 

In order that a test is representative, it is necessary to simulate the real stresses as 
accurately as possible with respect to the sequences and the amplitudes. 

The reduction of the duration of a test by increasing the frequency (central 
frequency of the narrow band noise) does not have a beneficial effect since there is 
an accompanying increase in the fatigue life of the material [KEN 82]. 

2. Another method can consist of neglecting the low levels [SCH 74] (loads 
lower than a certain percentage of the static ultimate load, e.g. 2%). 

Tedford et al. [TED 73] note that the levels of stress lower than 1.75 times the 
rms stress do not have any significant effect on the fatigue damage. Their 
elimination makes it possible to reduce the duration of test considerably (note that 
M.N. Kenefeck [KEN 82] gives 2.5 times the rms value as a limit). It is, on the other 
hand, important to have a good knowledge of the highest levels of the environment 
since they produce the damage. 

Figure 3.70. Reduction of test duration by elimination of the lowest stresses
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The method consists of distorting the low part of the load spectrum by 
considering that the low levels do not contribute to fatigue. This is equivalent to 
considering that the vehicle does not run on the best parts of the road. 

NOTE: A combination of the two methods (rotation of the spectrum and suppression 
of the low levels) is possible and is analogous to bumping along roads where 
potholes and paving stones are present [BUS 72]. 

Figure 3.71. Reduction of duration of a test by suppression of the lowest stresses  
and by an increase in other stresses

Although we can think a priori that such a suppression has little consequence, 
this step must however be applied with prudence [NAU 64]. 

A synthesis of various publications shows indeed that the low levels, lower than 
the fatigue limit, contribute to the damage. Their omission increases the fatigue life. 
They take part in the propagation of the fissure (dominating phenomenon under 
random loading) when this is started [JAC 66] [RAV 70]. 

3.17. Presentation of fatigue curves determined by random vibration tests 

The S-N curves plotted for sinusoidal loads give the number N of cycles to 
rupture (on the abscissae) against amplitude of the stress  (on the ordinates). If the 
load is a random vibration, the load amplitude is no longer constant and the most 
significant parameter (for constant PSD shape) is the rms value [BOO 70] [BOO 76] 
[KEN 82] [PER 74] for a given value of the mean stress. 
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The number of cycles is generally badly defined (except for the narrow band 
noises for which there is one peak between two through-zero passages). Two 
possibilities exist and are used: 

– the number of passages through zero with positive slope [BOO 66, ] [BOO 70] 
[BOO 76] [KEN 82] [RAV 70], when this parameter is representative of the number 
of cycles (r close to 1); and 

– the number of peaks above the mean value (if the signal has symmetric 
positive and negative distributions) [BOO 66] [HIL 70] [PER 74] [RAV 70]. This 
number of peaks can be evaluated either from the counting methods, or from a 
statistical calculation using its PSD if the signal is Gaussian. 

In the case of a sinusoidal signal, these two definitions are equivalent. 

We note in these tests that, contrary to the case of a sinusoidal load, a fatigue 
limit is not observed for steels. This result is explained easily since, for a given rms 
value, there is in the signal peaks of amplitude equal to several times this rms value. 
According to the characteristics of the test control system, the peak factor (ratio of 
the largest peak to the rms value) can be about 4–4.5. 

The comparison of the results obtained under sinusoidal and random loads can 
therefore be carried out only by modifying the representation of the curves plotted in 
sinusoidal mode on the stress axis. Several representations exist, including 
[PER 74]: 

– instead of a  (amplitude of the sinusoidal alternating stress), we use 

2
m

2
a

rms 2
[3.8] 

( m= mean stress); 

– we use a
2

 [RUD 75] in sine and rms  calculated on the centered signal, the 

two values for m being given (the most usual method). 



Chapter 4 

Fatigue Damage by
One-degree-of-freedom Mechanical System 

4.1. Introduction 

In this chapter we propose considering the damage by fatigue created by a 
random vibration on a one-degree-of-freedom (one-dof) linear system, of natural 
frequency f0 and quality factor Q, and provide all the relations necessary to the 
layout of the fatigue damage spectra (Volume 5). This calculation can be carried out 
directly from a sample of the vibratory signal defined in the time domain or in a 
statistical manner (mean and standard deviation of the damage) from an acceleration 
spectral density of the vibration. 

Unless otherwise specified, we will make the following assumptions: 

– the S-N curve is represented by Basquin’s relation (of the form N Cb );

– a linear accumulation law of the fatigue damage (Miner’s rule); 

– a vibration of zero mean; and 

– a Gaussian distribution of the instantaneous values of the vibratory signal. 

We will however examine at the end of this volume (Chapter 6) some different 
assumptions: 

– an S-N curve having an ultimate endurance stress; 

– a linear S-N curve in logarithmic-linear scales; 

Fatigue Damage: Second Edition - Volume 4 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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– a truncated signal;  

– a damage accumulation law of Corten-Dolan; 

– non-zero mean stress; and 

– other probability distribution laws governing instantaneous values of 
excitation. 

4.2. Calculation of fatigue damage due to signal versus time 

Let us consider a random vibration with zero mean applied to a one-degree-of-
freedom linear mechanical system of natural frequency f0 and damping ratio . If 
the excitation is defined by acceleration x t  in the time domain, in analog or 
numerical form, it is possible to calculate, over duration T corresponding to the 
duration of the signal, the response of the one-degree-of-freedom mechanical 
system, characterized by the relative displacement z t  between the mass and its 
support. 

If the damping ratio  is sufficiently small, the response appears as an oscillation 
around the zero average value, generally passing through positive and  
negative peaks successively with a randomly varying amplitude. The frequency of  
the response is very close to the natural frequency f0 of the system (narrow band 
noise). 

In this simple case, the response can be broken up into half-cycles which are 
classified and counted according to their amplitude (histogram). If the response has 
a more complex form, the histogram of the peaks must be established using a peak 
counting method such as the rainflow method [LAL 92] (Chapter 3). 

Since the system is linear, the stress created in the elastic element is proportional 
to the relative displacement zp  corresponding to each extremum of z t  (z 0 at 
these points): 

K zp .

If the S-N curve of the material can be treated using Basquin’s analytical 
expression [LAL 92], 

N Cb [4.1] 



Fatigue Damage by One-dof Mechanical System     131 

where N is the number of cycles to failure of a test bar under sinusoidal stress of 
amplitude  and b and C are constants characteristic of the material (Chapter 1 
provides some values of the b parameter). We therefore have: 

N K z Cp
b( ) [4.2] 

Figure 4.1. Representation of the S-N curve

The damage undergone by the system during the application of a half-cycle of 
stress i  is: 

C2N2
1 b

i

i
i [4.3] 

and, for in  half-cycles on the stress level i ,

d
n

N

n

C

K

C
n zi

i

i

i i
b b

i p
b

i2 2 2
[4.4] 

In this relation, Ni  is the number of cycles to failure at level i , in  is the 
number of half-cycles counted at this level i  (which explains the factor 2). If we 
defined m classes of levels zpi

, the generated total damage can be written 

(according to the Miner’s linear rule of accumulation): 

D d
n

C
i

i

m
i i

b

i1 2
[4.5] 
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D
K

C
n z

b

i p
b

i
i

m

2 1

[4.6] 

NOTE: J.W. Miles [MIL 54] shows that, in the case of a structure subjected to 
random vibrations, Miner’s hypothesis can be regarded as correct for the estimate 
of fatigue life. A non-linear hypothesis of damage accumulation leads to an 
unimportant variation of the fatigue life when the amplitudes of the stresses are 
distributed continuously over a broad range. 

4.3. Calculation of fatigue damage due to acceleration spectral density 

4.3.1. General case 

Let us consider a record x t  of a random vibration (acceleration) representative 
of a stationary ergodic process with mean zero, duration T and PSD G f( ). Let us set 

q zp  as the peak probability density of the stress response of the system to this 

vibration. The mean number of maxima (positive or negative) is equal to: 

TnN pp [4.7] 

and the mean number of peaks (maxima + minima) is equal to 2 Np . The number of 
peaks dn  of the stress response whose amplitude is included, in absolute value, 
between p  and p pd  is, over duration T: 

dn n T q dp p p2 ( ) [4.8] 

The amplitude of the stress is assumed to be proportional to relative strain 
level z: 

p pK z [4.9] 

The damage by fatigue dD  generated by these dn  peaks is, according to Miner’s 
rule [CRA 63]: 

dD
dn

N2 ( )
[4.10] 
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d
)(N
)(q

TndD p [4.11] 

The mean damage D (or expected damage, also denoted E(D) in the following 
pages) is the sum of the partial damages for all the positive values of  [BRO 68a] 
[HIL 70] [LIN 72] (we are not interested in negative maxima or the positive 
minima): 

D n T
q

N
dp

( )

( )0
[4.12] 

NOTES:

1. The mean damage per peak is equal to 

p

D
d

2 n T
[4.13] 

2. The expected fatigue life T is obtained by setting D 1 , yielding: 

p 0

1
T

q( )
n d

N( )

[4.14] 

If the S-N curve of the material can be approached using Basquin’s relation 
N Cb ,  it can be written [PER 74]: 

D
n T

C
q dp b ( )

0
[4.15] 

If the relation between the stress and the strain is linear ( K zp), it becomes 

D
K

C
n T z q z dz

b

p p
b

p p( )
0

[4.16] 

If we set  

rms

p

rms

p

z

z
u [4.17] 
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where rmsz  is the rms value of z t  and rms  that of t . Since 

Q z q z dz Q u q u du
uz

( ) ( ) ( ) ( ) [4.18] 

and

rmsz
)u(q

)z(q [4.19] 

we have  

0
bb

rmsp

b
du)u(quzTn

C
K

D [4.20] 

or

0
bb

rms
p du)u(qu
C

Tn
D [4.21] 

The calculation of the mean damage D uses the rms value of the relative 
displacement rmsz  (or the rms stress) and an integral. We saw in Chapter 1 how 

rmsz  can be evaluated starting from a PSD defined by straight line segments. 

Let us suppose that the distribution of the instantaneous values of the input signal 
x t  (applied to the base of the one-dof system) is Gaussian. The response of the 

system is then itself Gaussian and the probability density p zp  of the maxima zp  of 

the response can be expressed analytically in the form of the sum of a Gaussian 
distribution and Rayleigh’s distribution (Volume 3, Chapter 6) [LAL 92]: 

q u
r

e u r e e d

u

r
u

u r

r

( ) ( )

( )

1

2
1

12
2 1 2

2 1

2

2

2

2

2

  [4.22] 

where r is the irregularity factor = p0 nn , ratio of the expected frequency to the 

mean number of maxima per second. This expression can be also written in the form 
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  [4.23] 

where 

de
2

)x(erf
x
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 [4.24] 

From equations [4.15] and [4.24], 

0
r12

rms

2

rms

p 2
rms

2

2

e
2
r1Tn

D

N
d

r12

r
erf1e
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2
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[4.25] 

Knowing that K z and that N
C

b , we have 

0
zr12

z
2
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b 2
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p
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 [4.26] 
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NOTES:

1. Depending on the value of r, the response has peaks which follow a Gaussian 
or Rayleigh distribution or intermediary. In the case of the Rayleigh distribution, 
corresponding to a low damping, the response is of narrow band type and resembles 
a sinusoid of randomly modulated amplitude. Each positive peak is followed by a 
negative peak, itself followed by a positive peak and so on. 

All the authors agree that, for a given rms stress level and a given expected 
frequency, the most severe loading case (one-dof system) is that for which the peaks 
of the response have a Rayleigh distribution [BRO 70a] [SCH 61b]. 

Figure 4.2. Variations of damage versus
irregularity factor of response

Figure 4.2 shows the variations of the integral of relation [4.21] versus 
parameter r, for b 10 .

It is checked that for a constant number pn T  of peaks, the damage increases 

with r, i.e. when the peak distribution tends towards Rayleigh’s law.  

2. The calculation of D requires the evaluation of integrals of the form 

2b a y
0

y e dy .

There are approximate expressions available facilitating this calculation 
[SYL 81] (see Appendix A3.6). 
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4.3.2. Approximate expression of the probability density of peaks 

L. Pierrat [PIE 04] considers the expression of the peaks probability density 
[4.24] and identifies the error function to the quadratic exponential form: 

n 2
n,i

i 1

1erf (x) 1 exp A x
n

[4.27] 

yielding an expression of damage of the form: 

b 2bp
rms n

n T q b 1 bD 2 LP r, b 1
C 2 22

  [4.28] 

in which nLP r, n  is a corrective function calculated to respect the asymptotic 
solutions corresponding to, on the one hand, wideband processes (r = 0) and narrow 
band processes (r = 1) and, on the other hand, the identity of the mean values of the 
approximate and exact error function. 

To zero order, this function is a constant independent of r and b. The corrective 
functions to order one and two can be written  

n

n n,i
i 1

1LP 1 C
2 n

[4.29] 

where the coefficients n,iC  and n,iA  are related by 

1 b / 22
n,i

n,i
A r

C 1
q

[4.30] 

and coefficients n,iA  are equal to 

1,1

2,1 2

2,2 2

A 1.571
2

2A 1.059
4 2 16

2A 3.104
4 2 16

[4.31] 
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and the error can be estimated by the ratio 

b 2
2

LP

b
0

1 r
1 b bLP r, b 1

2 2D 2p
D u q(u) du

  [4.32] 

The error made with this approximation was evaluated for b ranging between 3 
and 25, the largest error corresponding to 25 (Figures 4.3 and 4.4). To zero order, 
the coefficient of the Gamma function,  

0
1LP 1 0.718

2
,

is close to that of G.K. Chaudhury and W.D. Dover [CHA 85] (0.75) (see section 
4.5.3, equation [4.92]). This leads to a significant error, about 28% for r = 1. The 
approximation of order one allows the error to be limited to 5% and of order two to 
2% (for 3 b 25 ).

4.3.3. Particular case of a wide-band response, e.g. at the limit r 0

In this case [CHA 85] we have that 

D
n T

C
q dp b ( )

0

with

2
rms

2

2

rms
e

2
1

)(q [4.33] 

Let us set  

2
rms

2

2
;

then the above equation becomes  
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Figure 4.3. Error according to r parameter  
for an approximation of order 0, 1 and 2 (b = 25)

Figure 4.4. Error according to r parameter  
for an approximation of order 2 (b = 3, 6, 10, 14, 20 and 25)
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1b
b

rms
p de)2(

C2
Tn
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The integral  

b

e d

1

2
0

is the gamma function (Appendix A1): 

x e dx 1
0

[4.34] 

where x
b 1

2
; yielding 

2
1b

)2(
C2

Tn
D b

rms
p [4.35] 

4.3.4. Particular case of narrow band response 

4.3.4.1. Expression for expected damage 

From the expression for the damage [4.25], we can write: 

2

2 2
rms

2 b
p 2 (1 r )

0rms rms

n T 1 r
D e d

2 C

2

2
rms

b 1
2

20 rms

r
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2
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b 1 2
2

20 rmsrms

r r
erf e d

C 2(1 r)2

It can be shown that, if x is large, 
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2xe
x

1
1)x(erf [4.36] 

The development in series of the error function can be limited to two terms 
without too much error only if 9.0x , the approximation then being greater than 
90% of the true value. From this, we obtain the condition 

9.0
)r1(2

r
2rms

.

In addition, it has been shown [PUL 67] that 90% of the damage is produced by 
the reduced stresses rms  when higher than 1.85 when the signal presents a 
Rayleigh peak distribution, yielding 

9.0
)r1(2

r
85.1

2

3213.0r2

i.e.

567.0r [4.37] 

NOTE: If 2r 0.16 , the series limited to two terms gives approximately half the 
real value.

If this condition is observed, then after replacement of the error function by its 
approximate value and after simplification D can be written: 

2

2
rms

b 1
2

p 20
rms

rD n T e d
C

.

Let us set 2
rms

2

2
. We have 2

rms

d
d , yielding [HAL 78]: 

b b 2
p rms 0

rD n T ( 2 ) e d
C

[4.38] 
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The integral of this relation has the form of the gamma function with x
b

1
2

,

yielding [MIL 53]: 

2
b

12r
C

Tn
D

b
rms

p [4.39] 

Knowing that n r np0  (relation [6.45], Volume 3), it becomes [BRO 68a] 
[CRA 63] [LIN 67]: 

2
b

12
C

Tn
D

b
rms

0 [4.40] 

Since K z,

2
b

1)z2(Tn
C

K
D b

rms0

b
[4.41] 

If the excitation has a PSD made up of straight line segments, the damage D can 
be written (equation [8.79], Volume 3): 

D
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b
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b

b j j
i

n b
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4 2
1
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+ /
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If the straight line segments are horizontal, we have, starting from equation 
[4.41] and from equation [8.86] (Volume 3): 

2/bn

1i
i01+i0i2b3

0
4

b+
0

b
)h(I-hIG

42
b

+1
f2

2Tn
C

K
D   [4.43] 

NOTES:

1. Relationships [8.57], [8.58] and [8.59] of Volume 3 are used to calculate 

rmsz , rmsz  and rmsz  and then 0n  and r if the PSD is composed of broken straight 
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lines. Relationships [8.61], [8.63] and [8.64] (Volume 3) are used if the PSD of 
excitation is constant in the frequency interval considered. 

2. Calculation of the true value of the damage D is made difficult by ignorance 
of the coefficients K and C. They are therefore set equal to 1 in practice when 
calculating D, which is therefore obtained to a near arbitrary multiplicative 
coefficient. This choice is in general without consequence since this damage is 
evaluated in order to compare the severity of several stresses on the same structure, 
therefore for given K and C. 

3. Basquin’s relation can be also written: 

b bN A [4.44] 

The mean fatigue damage then becomes, on the assumptions selected: 

b b+
0 rms

K b
D= n T 2 z  1+

A 2
[4.45] 

a relation in which 0n T  is the number N of alternate loadings to failure. The mean 
time to reach failure is such that D 1 , yielding: 

b b
rms

K b
N 2 z 1 1

A 2
+ =

or

b
b b

rms
A 1

N K z = = A'
b2 1
2

[4.46] 

Equation [4.46] is Basquin’s relation for random fatigue of a weakly damped 
system with one degree-of-freedom. On logarithmic scales, the S-N curve for 
random fatigue is a line with the slope 1 / b , the same as for alternating fatigue, 
and A' can be interpreted as the ultimate stress ( N 1 ). 

Particular case where the input noise is white noise 

The rms displacement response to a vibration ( )t  of constant power spectral 
density varying with the pulsation  between zero and infinite is (Chapter 8, 
Volume 3): 
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0
GQ

2
uz 0rmsrms [4.47] 

If the PSD is defined with respect to frequency f, 

fGQ
4

z
0

0
rms [4.48] 

In the latter case, if the input is an acceleration, since t
x t

0
2 ,

3
0

x
rms 4

fGQ
z 0 [4.49] 

Finally, we can consider that the response is narrow band (r = 1): 
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[4.50] 

Fatigue life 

The failure by fatigue takes place, according to Miner’s assumption, when 
1D , yielding the expression for the fatigue life: 

T
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K n z q z dz
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p p
b

p p

1

0

[4.51] 

If the response can be regarded as a narrow band noise, 

2
b

1z2n

1
K
C

T
b

rms0
b [4.52] 

and, if the input is a white noise, 
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4.3.4.2. Notes 

1. On the Rayleigh hypothesis, the damage can also be calculated from 

expression [4.3] 
b
i

i 2 C
 relating to a half-cycle using 

T TN N
b

i i
i 1 i 1

1
D s

2C
[4.54] 

where TN  is the total number of half-cycles. If TN  is large, the expected value 
bE( )  of b  is equal to 

TN
b b

i
T i 1

1
E( )

N
[4.55] 

yielding [WIR 83b]: 

pb bT n TN
D E( ) E( )

2 C C
[4.56] 

2. Relationship [4.41] is exact when r = 1, the stresses then being distributed 
according to Rayleigh’s law. We will see that for r close to unity, we obtain a very 
satisfactory approximation of damage with this expression. 

3. When r = 1, i.e. for a narrow band stress response, relation [4.41] can be 
demonstrated more directly from the probability density of the Rayleigh distribution 
[BEN 64] [BRO 68a]: 

2

2
rms2

2
rms

q( ) e [4.57] 
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The narrow band response of a mechanical system to one degree-of-freedom is 
carried out at a mean frequency close to the natural frequency of the system
( 0 0n f ).

There is only one peak associated with each crossing of the mean value with 
positive slope [BER 77]. The mean damage per maximum (or half-cycle, since 

0

p

n
r 1)

n
 is [POW 58]: 
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2
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2 0rms

1
E( d ) e d
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[4.58] 

and, for 0n T  cycles, 
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2
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[4.59] 

where
b

C
N( ) , yielding: 

2

2
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2 0rms

n T
E( D ) e d

C
[4.60] 

which leads, after transformation, to relation [4.41]. 

4. If N  is the number of cycles to failure at the rms stress level rms
[POW 58], the expected damage [4.59]  

2

2
rms20

2 0rms

n T
E D e d

N

can be also written, while setting 
rms

u ,
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2u
0 2

0

n T N
E D u e du

N * N
[4.61] 

Let us set 

2u
2

0

1 N
u e du

N
[4.62] 

The damage to failure is, assuming 

0n T
E D 1

N
,

yielding another expression of time-to-failure 

e

0 0

N N
T

n n
[4.63] 

where eN N  is the number of cycles to failure corresponding to the stress 

rms . This formulation makes it possible to build the S-N curves for random 
stresses starting from traditional S-N curves. 

5. The quantity 
q( )

( )
N( )

 can be regarded as a (scaled) probability 

density indicating how the fatigue damage is distributed as a function of stress: 

2

2
rms2b 1

2
rms

C
( ) e [4.64] 

Figure 4.5 shows the variations of ( )  for b 10 , 8 and 6, C 1  and 

rms 1 .
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Figure 4.5. Density of probability of the damage 

This law has the following characteristics: 

mode: rms 1 b [4.65] 

mean: rms

b 1
1

2
2

b
1

2

[4.66] 

variance:

2

2
rms

b 2 b 1
1 1

2 2
2

b b
1 1

2 2

[4.67] 

The mode, the mean and the standard deviation are linear functions of rms  and 
functions of the b parameter [LAM 76]. 

Figure 4.6 gives the variations of these three quantities according to b for 
rms 1 . It can be seen that the standard deviation varies very little with b and is 

approximately equal to 0.7. 
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Figure 4.6. Mode, mean and standard deviation of the damage

These expressions can be written in an a-dimensional form by dividing them by 
the constant of standardization: 

b
b2
rms2 b

1
C 2

.

6. The expression of E D  for r = 1 is also sometimes written in the form 
[LIN 67] [SHE 83]: 

b1 b b
22 x2 2 2

0 b 00 1 1

M 2
E( D ) T M x e dx

M N
[4.68] 

where 0M  and 2M  are the moments of order 0 and 2 of the excitation, respectively 

and 1  and 1N  are the co-ordinates at a particular point of the curve bN C .

7. The method of calculation of D leading to expression [4.40] 

b0
rms

n T b
D 2 1

C 2
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is sometimes named Crandall’s method [TAN 70]. Other methods were proposed 
later, such as those of M. Shinozuka [SHI 66] and D. Karnopp and T.D. Scharton 
[KAR 66]. 

8. It is noted that the damage D varies with T and b
rms . A small variation of 

rms , i.e. of the amplitude of the excitation, is therefore much more sensitive than a 
variation of the duration T. In addition, since the stress level depends on power b, 
the damage is primarily created by the highest levels (in practice about four times 
the rms value [POW 58]). 

4.3.4.3. Calculation of gamma function  

If b is an even positive integer number, it is shown that 

1
2 2

b b
! [4.69] 

If b is odd integer, b 2 1,

1
2

1

2

13 2 1

2

b . ( )
[4.70] 

and

1

2
.

If b is arbitrary, we have: 

1
2 2 2 2 2

1
2

1
b b b b b b

and

1
2 2 2

1
2

2
2 2

b b b b b
n

b
n... [4.71] 

where b / 2 n  lies between 1 and 2. Tables give b / 2 n  for b / 2 n [1, 2] 
[ABR 70]. 
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b 1 b 2 b 1 b 2 b 1 b 2 b 1 b 2

1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
8.25

0.8966
0.9191
0.9534
1.0000
1.0595
1.1330
1.2223
1.3293
1.4569
1.6084
1.7877
2.0000
2.2514
2.5493
2.9029
3.3234
3.8245
4.4230
5.1397
6.0000
7.0355
8.2851
9.7971

11.6317
13.8636
16.5862
19.9162
24.0000
29.0214

8.50
8.75
9.00
9.25
9.50
9.75

10.00
10.25
10.50
10.75
11.00
11.25
11.50
11.75
12.00
12.25
12.50
12.75
13.00
13.25
13.50
13.75
14.00
14.25
14.50
14.75
15.00
15.25
15.50

35.2116
42.8625
52.3428
64.1193
78.7845
97.0916

120.0000
148.7344
184.8610
230.3860
287.8853
360.6710
453.0107
570.4130
720.0000
910.9983

1155.3813
1468.7106
1871.2545
2389.4457
3057.8220
3921.5895
5040.0000

64.90103

8.38 103

1.08 104

1.40 104

1.82 104

2.37 104

15.75
16.00
16.25
16.50
16.75
17.00
17.25
17.50
17.75
18.00
18.25
18.50
18.75
19.00
19.25
19.50
19.75
20.00
20.25
20.50
20.75
21.00
21.25
21.50
21.75
22.00
22.25
22.50
22.75

3.09  104

4.03 104

5.27  104

6.91  104

9.07  104

1.19  105

1.57  105

2.07  105

2.74  105

3.63  105

4.81  105

6.39  105

8.50  105

1.13  106

1.51  106

2.02  106

2.71  106

3.63  106

4.87  106

6.55  106

8.82  106

1.19  107

1.61  107

2.17  107

2.94  107

3.99  107

5.42  107

7.37  107

1.00  108

23.00
23.25
23.50
23.75
24.00
24.25
24.50
24.75
25.00
25.25
25.50
25.75
26.00
26.25
26.50
26.75
27.00
27.25
27.50
27.75
28.00
28.25
28.50
28.75
29.00
29.25
29.50
29.75
30.00

1.37  108

1.87  108

2.55  108

3.50  108

4.79  108

6.57  108

9.03  108

1.24  109

1.71  109

2.36  109

3.26  109

4.50  109

6.23  109

8.63  109

1.20  1010

1.66  1010

2.31  1010

3.21  1010

4.48  1010

6.24  1010

8.72  1010

1.22  1011

1.70  1011

2.39  1011

3.35  1011

4.70  1011

6.60  1011

9.29  1011

1.31  1012

Table 4.1. Values of the function 1 b 2

Example 4.1.

44.544.544.6

44.144.1.44.2.44.3.44.4.44.544.6

with 8858.044.1 , yielding 6.25844.6 .

The gamma function can also be approximated from a series development 
(see Appendix A1). In Table 4.1, values of 1 b / 2  as a function of b varying 
between 1.25 and 30 are listed. 
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4.3.5. Rms response to narrow band noise 0G  of width f when 
0G f constant 

Let us consider a noise of constant power spectral density G0  and of width f
centered around a frequency fm  limited by the frequencies f1 and f2 such that 

f f
f

m1
2

 and f f
f

m2
2

, i.e. with the reduced co-ordinates h
f

f0

,

h h
h

m1
2

 and h h
h

m2
2

. Relationships [8.61] and [A6.20] of Volume 3 

allow the rms response rmsz  to be calculated. If h  is small, we obtain 

]1h)2(h[f2

fG
z 2

m
24

m
3
0

4
02

rms [4.72] 

where 2 1 2 , or 

1h)2(h

fG
z 2

m
24

m

02
rms

4
0 ,

It is noted that 2
rmsz  varies with the product G h0 . When fm  is small with 

respect to f0 and, for the usual values of damping, it is seen that the quantity 

rms
2
0 z  is close to the rms value rmsx  of the excitation. We saw that for a narrow 

band noise, 

2
b

1z2Tn
C

K
D

b
rms0

b
.

In addition, all things being equal, the damage D is a function of the product 
G h

b
0

2
. If this product is constant, 2

rmsz  is constant like D. If hm 1,

2
02

rms
4
0 4

fG
z .

If Q 1, 2 3 and 

1hh
fG

z 2
m

4
m

02
rms

4
0 .
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Finally, if hm 1 and Q 1,

fGz 0
2
rms

4
0 .

4.4. Equivalent narrow band noise 

The estimate of the fatigue damage requires the calculation of a histogram of the 
peaks of the response. In the previous sections, the probability density of the peaks 
of the response was estimated from the statistical properties of the signal. We can 
also use one of the many direct peak counting methods, the most current being the 
rainflow method. 

Another approach is that of the equivalent narrow band noise. It is based on the 
simplified relation established on the assumption of a Rayleigh peak distribution 
(r 1) with several alternatives: 

– use of relation [4.41] obtained for a Rayleigh peak distribution (r being 
supposed equal to 1), whatever the real distribution; 

– the same assumption and replacing the expected frequency n0  by the mean 

number of peaks per unit time np ; or 

– transformation of the real law of peak probability density into a Rayleigh 
distribution. 

4.4.1. Use of relation established for narrow band response 

Even when the distribution of the peaks does not exactly follow a Rayleigh 
distribution, current practice to simplify the calculation is to assume that r is equal to 
1. The response z t  is therefore assumed to be a narrow band noise [CHA 85], 
which allows relation [4.41] to be applied: 

2
b

1z2Tn
C

K
D

b
rms0

b

by considering that it is still correct whatever the true value of r. 

It is therefore supposed that a narrow band stress which has at the same time the 
same rms value and the same number of zero crossings (n0 ) as the real broad band 
stress provides an acceptable estimate of the damage. The interest of this 
assumption, if it is verified, lies in the facility of using analytical relation [4.41], 
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which makes it possible to avoid rainflow type counting and heavier numerical 
calculations of integration. 

Error due to the Rayleigh distribution approximation 

Relation [4.41] is a good approximation of the damage for 1r567.0  (section 
4.3.4.1). We propose considering, depending on the parameter r, up to what point 
and with which error we can use for all the cases (r arbitrary) of the Rayleigh law to 
calculate the fatigue damage. Let us calculate the ratio p of the damage E D
obtained with a Rayleigh peak probability density q u  and the damage D deduced 
from the most general law q u :

b b b
0 rms

b
b b

p rms 0

K bn T 2 z 1
C 2p
K n T z u q(u) du
C

[4.73] 

p
r

b

u q u du

b

b

2 1
2

0
( )

[4.74] 

Figure 4.7. Ratio of the damage calculated using Rayleigh’s law and the  
complete formulation

Figure 4.7 shows that p tends towards 1 when r tends towards 1, more quickly 
for large values of b. The error arising, assuming the Rayleigh law, remains lower 
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than 4% for b [3, 30] and 6.0r  (Figure 4.8), thus confirming Bernstein’s 
calculation [BER 77]. 

Figure 4.8. Error due to use of the 
Rayleigh law

Figure 4.9. Range in which the 
approximation using the Rayleigh law 

is acceptable

The damage D calculated using the Rayleigh law is always lower than the 
damage obtained with the more general formulation (whatever the value of b and r). 

NOTE: L.P. Pook [POO 78] states that for problems of fatigue, a process can be 

considered as a narrow band process if q 0.14  where 2q 1 r , i.e. for 
r 0.99 , a condition which seems very severe from the above curves. 

4.4.2. Alternative: use of mean number of maxima per second 

The comparison between the complete formulation and Rayleigh formulation 
was made above beginning with expression of the damage [4.41]: 

2
b

1z2Tn
C

K
D b

rms
b

0

b

in which the expected frequency n0  equals, for r = 1, the mean number of maxima 

np  per unit times. J.T. Broch [BRO 68b] [SCH 61b] showed by experiment that, 

although n0  and rms  (or rmsz ) are the same, two tests carried out with different 
values of r lead to different fatigue lives. This tendency is confirmed by other 
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authors [BER 77] [FUL 62]. If r is different from 1, replacing n0  by np  in the 
relation [4.41] is justified since the damage is related to the number of peaks. The 
comparison of the expression obtained: 

2
b

1z2Tn
C

K
D b

rms
b

p

b
[4.75] 

with that resulting from a complete formulation, carried out under the same 
conditions as previously, leads to the curves of Figure 4.10. 

The damage calculated in a simplified way is therefore larger than that obtained 
with the complete formulation. This result is logical since the selected assumption 
results in regarding each peak as a well-formed half-cycle, which is obviously not 
the case for r 1.

Approximation of the narrow band type has the principal disadvantage of over-
estimating the probability of occurrence of the largest peaks and therefore leads to a 
conservative evaluation of the damage [BER 77] [CHA 85] [EST 62]; when the 
distribution of the peaks is close to a Gaussian law (r small), its use is debatable. 

Figure 4.10. Ratio of damage calculated with a mean number of peaks 
 and the Rayleigh law hypothesis with the complete formulation

In many practical cases, however, the results obtained are sufficiently accurate 
[PHI 65] [RUD 75] [SCH 61a]. 
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4.4.3. Approximation to real maxima distribution using a modified Rayleigh 
distribution

The response of a linear one-degree-of-freedom system to a Gaussian random 
vibration is itself Gaussian, with a probability density of maxima [4.23]: 

2
2

u
r12

u
2

r12

ru
erf1e

2
ru

e
2

r1
uq

2

2

2

.

The parameter r of a narrow band response (or of a stress directly in a structure) 
is close to 1 and q u  tends towards a Rayleigh distribution which, we saw, led to 
much simpler calculations. 

In the general case, q u  versus u is represented by a curve which has an arc for 
u 0  and, depending on r, an arc relatively close to a Rayleigh curve for u 0 . To 
approach Rayleigh’s law, it would first be necessary to remove the negative part and 
to multiply q u  by a standardization factor so that the new probability density 

uq  has an area under the curve equal to unity. We established that, if Q u0  is 
the probability such that u u0 ,

Q u q u du
u0

0

( )

i.e.

2
2

u

2
0

0
r12

ru
erf1er

r12

u
erf1

2
1

uQ

2
0

  [4.76] 

For u0 0, Q u( )0 , equal to 

Q
r

0
1

2
[4.77] 

corresponds to an area under the curve q u  for u 0 , yielding 

P Q
r

0 1 0
1

2
[4.78] 
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Figure 4.11. Probability density of the maxima

which is represented by the area on the left of the vertical axis (Figure 4.12). 

Figure 4.12. Suppression of negative part  
of probability density of maxima

Since r
n

np

0 ,

Q
n n

n

p

p

0
2

0 [4.79] 

and
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P
n n

n

p

p

0
2

0 [4.80] 

In order that the new density q u  is standardized, it is necessary [HIL 70] 
[KAC 76] that: 

q u
r

q u
2

1
[4.81] 

Figure 4.13 depicts q u  for 6.0r , 0.75, 0.8, 0.9 and 1, plotted in its 
definition interval (0, ). Calculation of the fatigue damage requires that the number 
of maxima dn  lying between the stress levels  and d  is: 

dn n T q d n T q u dup p( ) ( ) [4.82] 

where np  is the mean number of positive maxima per second. When the response is 

of narrow band, r = 1 and n np 0 . We prefer in this case to use n0  whose 

calculation assumes knowledge of only of rmsz  and rmsz  (that of np  requires 
evaluation of the parameters rmsz  and rmsz ). To preserve this facility, we can write 

dn n T
r

q u du n T
r

r
q u du n T q u dup

1

2

1

2
0 0( )

 [4.83] 

Figure 4.14 shows, for the same values of r as above, the variations of 

q u
q u

r

( )
. After these two corrections, we see that the maxima lower than 

rmsz  are more numerous than those expected from Rayleigh’s law. Taking into 
account a Rayleigh distribution could therefore seem slightly conservative, if it were 
not known that the low level maxima have a quasi-negligible contribution to the 
total damage. 

When rmsz2z , all the distribution laws are almost confused with Rayleigh’s 
law for 1r6.0 , an interval which includes almost all the values found in 
practice in structures with one or several degrees of freedom [KAC 76]. 
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NOTE: B.M. Hillberry [HIL 70] proposes another approach based on relation 
[4.21]: 

p b b
rms 0

n T
D u q( u ) du

C

where 
rms

u . When r is arbitrary between 0 and 1, the curve q u  presents 

values for u 0  (Figure 4.15).

Figure 4.15. Suppression of negative maxima

To standardize the new peak probability density obtained after suppression of 
negative maxima, B.M. Hillberry writes the damage D in the form: 

Figure 4.13. Truncated and standardized 
probability density of maxima

Figure 4.14. Truncated, standardized and 
modified probability density of maxima for 

using expected frequency
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b b
p 0 rms 0

0

n T u q( u ) du
D

C q( u ) du
[4.84] 

4.5. Calculation of fatigue damage from the probability density of domains 

4.5.1. Differences between the probability of peaks and of ranges 

When the fatigue damage is calculated from a signal according to time, we saw 
in the previous chapter that the most advanced methods of counting are those in 
which a histogram of the peak-valley and valley-peak ranges (ordinary ranges) is 
established. The method considered as most satisfactory is that of rainflow, which 
allows the definition of closed stress-strain cycles. The result of counting is a 
histogram of the ranges (rainflow ranges) from which the average of ranges and the 
amplitude of peaks (half-ranges) are determined. 

For a Gaussian signal, the damage can be calculated starting from the PSD of the 
signal. In this case, analytical relations make it possible to obtain an expression of 
the peaks probability density of the response of a one-dof system [4.23]. 

To bring the two methods of calculation closer, it would be necessary to have an 
analytical expression of the probability density of ranges, an expression which was 
not established theoretically. 

T. Dirlik [DIR 85] showed that the probability density of ordinary half-ranges 
differs from that of maxima [4.23]. When the factor of irregularity r is close to unity, 
this histogram is very close to a Rayleigh law. When r decreases, it remains close to 
the Rayleigh probability density except for the larger values. 

The rainflow probability density of half-ranges has the same shape as that of the 
ordinary half-ranges, with the following differences: 

– close to the origin, the rainflow density of half-ranges is larger than that of the 
ordinary half-ranges; 

– for the values close to its peak, the rainflow density of half-ranges is smaller 
than that of the ordinary half-ranges; and 

– for the large values, the rainflow density of half-ranges can become larger and 
tend less quickly towards zero, even for the small values of r. 
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Example 4.2. 

Let us consider a Gaussian acceleration signal generated from the power 
spectral density of Figure 4.16. The Gaussian nature of this signal can be checked by 
comparing the histogram of its instantaneous values with a Gaussian probability 
density (Figure 4.17). 

Figure 4.16. PSD of the analyzed signal Figure 4.17. Reduced histogram of the 
instantaneous values of the signal

Figure 4.18 makes it possible to compare: 

 the histogram of ordinary half-ranges calculated starting from the signal; 

 the theoretical Rayleigh probability density [4.57] defined for the rms value of 
the studied signal; and 

 the complete probability density of peaks [4.23]. 

Figure 4.18. Reduced histogram of the ordinary half-ranges, complete probability  
of peaks and Rayleigh probability density

Amplitude/Efficient value 
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The difference between the histogram and the two densities for the small 
amplitudes can be observed. 

The complete probability density of peaks is however closer to the histogram, 
except for low levels which have little influence on the fatigue damage (in this 
example, where the r parameter is equal to 0.775). 

The histogram of ranges defined from a rainflow counting also has significant 
differences from the Rayleigh density (Figure 4.19) and is closer to the complete 
probability density. 

Figure 4.19. Reduced histogram of the  
rainflow half-ranges, complete probability of peaks and  

Rayleigh probability density

Example 4.3. 

This example considers a signal which is characterized by a small r parameter, 
equal to 0.328. 

For this value of r, the histogram of ordinary half-ranges (Figure 4.21) and  
the histogram of the rainflow half-ranges (Figure 4.22) are very different from  
the probability density of peaks (complete formulation) and from the Rayleigh 
density. 
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Figure 4.20. Power spectral density of the signal  
analyzed in example no. 2

Figure 4.21. Reduced histogram of ordinary  
half-ranges, complete probability density of peaks q(u)  

and Rayleigh probability density 
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Figure 4.22. Reduced histogram of rainflow  
half-ranges, complete probability density of peaks q(u)  

and Rayleigh probability density 

Several approximations of the density of half-ranges were proposed to better 
represent the rainflow half-ranges histogram, and therefore correct the conservatism 
of the Rayleigh peaks probability density, which leads to values of fatigue damage 
larger than the rainflow counting. Certain values are adapted for the wideband 
processes; others for the narrow band processes. The signals are assumed Gaussian. 
The Rayleigh density is generally used as a base because of its simplicity. 

Among these formulations, we find: 

– that of P.H. Wirsching, which is relation [4.41] modified by a factor ;

– that of G.K. Chaudhury and W.D. Dover, which is also based on the relation 
[4.41] with a correction by a term function of b and r; and 

– an empirical expression suggested by Dirlik using the first moments of the 
power spectral density of stress. 

Some empirical expressions of the probability density of rainflow half-ranges 
were published, such as those of T. Dirlik [DIR 85], W.W. Zhao and M.J. Baker 
[ZHA 92], G. Petrucci [PET 99] [PET 00] [PET 04] and D. Benasciutti and R. Tovo 
[BEN 05]. These methods are based on statistical models utilizing combinations of 
distributions such as Rayleigh, Weibull, exponential and with coefficient functions 
of the first moments of the power spectral density of the stress. Comparisons carried 
out by Bouyssy et al. [BOU 93] and D. Benasciutti [BEN 04] showed that the 
expression of T. Dirlik leads to the best results for the estimate of lifetimes. 
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4.5.2. Wirsching’s approach 

After a study intended to compare several counting methods, P.H. Wirsching 
[WIR 80a] [WIR 80b] [WIR 80c] [WIR 83b] defined the parameter 

X
fatigue damage calculated from the " x " method

fatigue damage calculated from the "equivalent narrow band " method

and plotted curves of X  against r (or 2r1q ) for various values of b, using 
several methods: 

R : rainflow type counting; 

P : counting of the peaks of the response; 

Z : counting of zero crossings; and 

N: simplified relation (r = 1). 

The curves obtained are depicted in Figure 4.23. They are plotted for b 3, but 
their shape aspect is the same whatever the value of b (the variation between the 
curves increases, but their relative position remains the same). 

Figure 4.23. Ratios of damage obtained with  
various peak counting methods

Whatever the value of b and whatever the method, X 1 when r 1.



Fatigue Damage by One-dof Mechanical System     167 

By comparison with the rainflow method, considered in general to be the most 
precise, P.H. Wirsching shows that the method of peak counting and the equivalent 
narrow band method are conservative. The zero-crossing counting method gives 
non-conservative results. 

From four particular forms of power spectral densities, an empirical relation 
from this study is deduced. By starting from the simplified narrow band relation, 
calculation of the damage which would be obtained with rainflow counting can be 
made. If NBD  is the narrow band damage and D is that given by rainflow counting, 

R NBD D [4.85] 

The empirical relation between R, b and r is 

B(b)
R (b, r) A(b) 1 A(b) 1 [4.86] 

where 

323.2b587.1)b(B
b033.0926.0)b(A

[4.87] 

If r = 1, R 1 and if r 0, R A b . Figures 4.24 and 4.25 show the 
variations of R with r and b. It is noted that for a given b, R varies little with r if 

9.0r .

Figure 4.24. Factor of correction of damage 
calculated on a narrow band assumption 

(versus r)

r = 0 to 1.0 

Figure 4.25. Factor of correction of damage 
calculated on a narrow band assumption 

(versus b)



168     Fatigue Damage 

The study was carried out for loads resulting from the action of waves on 
offshore structures, for which 50.0q  ( 866.0r ) and b 3 (welded joints). In 
this range, R varies little and only b is influential. For small b, the narrow band 
model provides a reasonably conservative estimate of the lifetime. 

The accuracy of this approximation can also be evaluated by considering the 
ratio 

uqrelationgeneralthefromdamage
Wirschingtoaccordingdamage

p

i.e.

b b
R rms 0

b
b b

p rms 0

K b2 z n T 1
C 2p

K n T z u q(u) du
C

b
R

b
0

b2 r 1
2p

u q(u) du
[4.88] 

If r 0, the damage calculated from the most general expression of q u  is 
equal to 

b bp
rms

K n T b 1D 2 z
22 C

and

p
A b r

b

b

1
2

1

2

2 0.

Figure 4.26 shows the variations of 1 – p with r, for b 3, 6, 10 and 15. 
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Figure 4.26. Error related to the use of the Wirsching relation

4.5.3. Chaudhury and Dover’s approach 

This approach [CHA 85] proposes a method derived from the general expression 
of the peak probability [4.24]: 

2 2

2 2 2
rms rms2 q 2

2
rms rmsrms

q r r
q e 1 erf e

2 q 22

where q r1 2 .

By replacing  with 
r
q

2x rms , we obtain 

2x q x
2r r

rms rms

q x qq x e 1 erf x e
2 2

  [4.89] 

The error function xerf  (which varies between 0 and 1 according to x) can be 
approximated to 1/2: 
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2x q x
2r r

rms rms

q x q 3q x e e
22 2

[4.90] 

yielding mean damage: 

D
n T

C
q dp b ( )

0
[4.91] 

and

1
2
b

r75.0
2

1b
2
q

2
C

Tn
D

2bb
rms

p   [4.92] 

If r 0 (q 1), D tends towards 

bp
rms

n T 1 b 1D 2
C 22

(relation already obtained in [4.35]) and if r 1 (q 0), D tends towards 

b0
rms

n T bD 2 0.75 1
C 2

[4.93] 

( 0p nn ). This relation gives a value lower by 25% than that of a theoretical 

narrow band process. The difference comes from the choice of the value of the error 
function. Calculations seem to follow the experimental results in the case treated by 
the authors (stresses in tubular offshore structures) with peak counting using the 
rainflow method. To take account of the results of these countings, they correct and 
readjust relation [4.40] established using Rayleigh’s hypothesis, i.e. 

b0
rms

n T bD 2 1
C 2

or

D
n T

C
Sp b [4.94] 
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where 

b
1

rms 2
b

12
S

 and n np 0 . [4.95] 

If the peak distribution is Rayleigh in the form 

b
1

rms 2
1b

2
1

2
S

[4.96] 

and, if this distribution is Gaussian, 

5.0b
5.0r

2.442.0
2

1b
2

1
2

S b
1

rms
[4.97] 

in the general case, for 1r5.0 .

The relationship between the damage calculated by G.K. Chaudhury and 
W.D. Dover and that estimated using Rayleigh’s hypothesis makes it possible to 
compare these two approaches (Figure 4.27). 

Figure 4.27. Comparison of damage calculated using the Chaudhury  
and Rayleigh assumptions
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b1/ b

CH
bR

1 b 1 r 0.52 0.42 4.2
2 b 0.52D

bD 2 1
2

  [4.98] 

Figure 4.28. Comparison of damage calculated on the Chaudhury 
 assumption and with complete formulation

The value of this method can also be evaluated by taking as a reference the 
damage calculated using the general formulation of q u  (Figure 4.28):  

b1/ b

CH

b
0

1 b 1 r 0.52 0.42 4.2
2 b 0.52D

p
D u q(u) du

  [4.99] 

4.5.4. Dirlik’s probability density 

T. Dirlik [DIR 85] established empirical expressions of the probability density of 
the ordinary half-ranges and those counted with the rainflow method using a digital 
simulation. The method involved: 

– giving itself a priori an expression of the density, utilizing the spectral 
moments of order 0, 1, 2 and 4 of the power spectral density of the stress; and 
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– then determining the coefficients by minimization of the differences between 
this density and the histograms determined by considering signals generated starting 
from 70 spectral PSD of various shapes. 

To facilitate the comparisons, the PSD had the same rms value and led to the 
same mean number of peaks per second (Volume 3, relation [6.31]). 

It should be noted that in this study, the PSD considered are those of (Gaussian) 
stress signals, and therefore represent directly the mechanical responses of systems 
and not the PSD applied to a one-dof system. To be consistent with the previous 
sections, we will assume below that the treated signal is the relative response 
displacement of a one-dof system (proportional to the stress by hypothesis). 

Let z(t) be the response of a one-dof system (f0, ) to a Gaussian signal, zrms the 
rms value of z(t),  a range defined starting from a counting and u the reduced 
variable corresponding to a half-cycle, such as 

rms
u

2 z
[4.100] 

4.5.4.1. Probability density of ordinary half-ranges 

T. Dirlik proposes the following expression for the probability of ordinary half-
ranges: 

2

2
uu

2 B1 AR 2 2
C up (u) e C e
A B

[4.101] 

where 1 2C C 1. The coefficients are calculated by minimizing the error between 
the histograms established for several types of signals and the empirical expression, 
i.e.

min
1 2

C x
C

r
min

2 2
C x

C 1
r

2

min
r (1 r )x

2

min2 (C x )
A 0.02

r
minC x

B r
r

1 2 1 1
2

0 4 0 2p rms

M M M r M
C

M M M M2 n z
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where 02

0 4 p

nM
r

M M n
, 0n  and pn  are the irregularity factor, the mean 

number of zero-crossings per second with a positive slope and the mean number of 
maxima per second, respectively (Volume 3, equations [6.6], [5.73] and [6.13]). 

Mn is the moment of order n of the PSD of the response Gz(f) (Volume 3, 
equation [5.74]): 

n n n
n z z0 0

M G ( ) d (2 ) f G (f ) df .

Example 4.4.

 Figures 4.29 to 4.32 allow the Dirlik density and the histogram of ordinary half-
ranges to be compared for each of the two previous examples. 

Figure 4.29. Reduced histogram of ordinary ranges 
and Dirlik probability density (example 4.2)
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Figure 4.30. Reduced histogram of ordinary ranges 
and Dirlik probability density (example 4.3) 

In the case of the response of a one-dof system, the moments M0, M1, M2 and M4
can be calculated using the integrals In (Appendix A6, Volume 3). 

If f1 and f2 are the frequency limits of an interval where the PSD xG (f )  of the 
excitation x(t)  is defined by a straight line segment of arbitrary slope (linear axes): 

2 2

1 1

f f 2
1 z xz xf f

M 2 f G (f ) df 2 f H (f ) G (f ) df   [4.102] 

the transfer function of the linear one-dof system xzH (f )  is equal to 

xz 2 2 2 2
0

1H (f )
(1 h ) (2 h)

where 
0

fh
f

.

Since, by assumption, the PSD is represented by straight line segments in linear 
axes, it can be written xG a f b , yielding 

2 2

1 1

2f f
1 4 2 2 2 4 2 2 2f f0 0

2 a f 2 b fM df df
(1 h ) (2 h) (1 h ) (2 h)

 [4.103] 
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2 2

1 1

2f f3 2
1 0 04 2 2 2 4 2 2 2f f0 0

2 h 2 hM a f dh b f dh
(1 h ) (2 h) (1 h ) (2 h)

 [4.104] 

Knowing that 2

1

f
1 2 2 2f

4 hI dh
(1 h ) (2 h)

 (Volume 3, Appendix A6) 

and that 2

1

2f
2 2 2 2f

4 hI dh
(1 h ) (2 h)

, we obtain 

1
1 23

00

b I
M a I

f4 (2 ) f
[4.105] 

4.5.4.2. Probability density of rainflow half-ranges 

The probability density of Dirlik is expressed 

2 2

2
uu u

2 B1 A 2R 2 32
D up (u) e D e D u e
A B

[4.106] 

where 1 2 3D D D 1; the other coefficients are calculated as above. 

The coefficients thus obtained are the following: 

2

1 2

2 C r
D

1 r

2
1

2
1 1

r C D
B

1 r D D

2
1 1

2
1 r D D

D
1 B

3 2

1

r D D B
A 1.25

D
1 2

0 4

M M
C

M M

Example 4.5.

 Figures 4.31 and 4.32 demonstrate the good fit between the rainflow half-ranges 
histogram and the Dirlik expression for the two examples of section 4.5.1 
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Figure 4.31. Reduced histogram of rainflow half-ranges 
and Dirlik probability density (example 4.2)

Figure 4.32. Reduced histogram of rainflow half-ranges 
and Dirlik probability density (example 4.3)

4.5.4.3. Distribution function of rainflow half-ranges 

The distribution function is obtained by integrating equation [4.106], since 

v
R R0

P (u) p (u) du

2 2

2
uu u

2 BA 2R 1 2 3P (u) D 1 e D 1 e D 1 e   [4.107] 
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This expression can be used to calculate the  extreme response spectrum (ERS) 
(Volume 5). 

The function RP (u)  is normalized since it tends towards 1 when u tends towards 
infinity. It is equal to zero when u = 0. 

NOTE: Spectra centered around one or two frequencies (observed for example on 
windmills) lead, with the Dirlik density, to lifetimes larger than those calculated 
starting from wideband spectra (having the same spectral moments) [HEN 03]. 
After a study based on a great number of spectra, a correction function was 
proposed to reduce the error. This correction does not hold, however, due to the 
harmonics of the discrete components which can have an influence on the damage 
according to the relations of phase [BIS 95] [BUR 01] [MOR 90].

4.5.5. Expression of the fatigue damage from the Dirlik probability density 

It was shown that the damage can be written in the form [4.20], i.e. 

b
b b

p rms 0

KD n T z u q(u) du
C

With the peak probability density [4.23], we have for r = 1: 

b b / 2
0

bu q(u) du 2 1
2

[4.108] 

With the Dirlik density, this expression becomes: 

b
b b

p rms R0

KD n T z u p (u) du
C

[4.109] 

The integral is equal to 

b b b / 2 b
R 1 2 30

bu p (u) du D A 1 b 2 D B D 1
2

,

 [4.110] 

yielding 
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b
b b b / 2 b

p rms 1 2 3
K bD n T z D A 1 b 2 D B D 1
C 2

.

 [4.111] 

If the excitation has a PSD composed of straight line segments in linear axes, the 
damage D can be written (Volume 3, equation [8.79]): 

b b / 2 bb/2+ n 1 2 3b p
j jb 2 b / 23 i 10

bD A 1 b 2 D B D 1n TK 2D a G
C 24 2 f

.

 [4.112] 

NOTE: The use of the Dirlik probability density allows the ranges histogram 
established by a rainflow counting to be better represented. It makes it possible in 
certain cases (often when the r parameter is low, but this is not a general rule) to 
calculate the fatigue damage with a better precision than the traditional density of 
peaks for certain shapes of the PSD of the signal. 

This result particularly relates to the case of a strain or a stress directly used for 
the calculation of the fatigue damage. When the treated signal is an acceleration 
applied to a one-dof system, no significant difference between the damage 
calculated with the Dirlik expression and the complete probability density of the 
peaks is generally noted. 

4.6. Comparison of S-N curves established under sinusoidal and random loads 

The analytical expression selected to describe the S-N curve in its linear part 
(logarithmic scales) is that of Basquin (N Cb ) which can be written, if the 
stress is characterized by its rms value instead of its amplitude: 

1b
b
rms C

2

C
N [4.113] 

The above results make it possible to write, in the case of a test bar excited by a 
narrow band stress [4.41]: 

2
b

12
C

Tn
D

b
rms

0 .
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There is failure by fatigue, on average, when D 1. Then [ROO 64]: 

A

2
b

12

C
N

b
b
rms [4.114] 

where N n T0  (mean number of cycles to failure), yielding: 

A
C

b
C

bb
2 1

2
1

2

1 [4.115] 

The S-N curve thus evaluated for a random loading is therefore a line having the 
same slope as that obtained under sinusoidal stress, with a smaller ordinate at the 
origin. (The ordinate at the origin is defined here as the ordinate of the point N 1,
i.e. the theoretical ultimate stress of the material [ROO 64]. It is known that the 
approximation of the S-N curve by a line in this zone of low numbers of cycles is 
not correct.) 

All the parameters appearing in the right-hand side of relation [4.114] are known 
from the results of the fatigue tests in sinusoidal mode: this relation allows the 
extrapolation of the S-N curves obtained with sine loads to the case of random loads. 

NOTE: If it is assumed that the peak distribution of the response follows a Gaussian 
distribution (instead of a Rayleigh distribution), i.e. that r 0 , we obtain in the 
same way: 

b
p rms b

2 C
n T

b 1
2

2

[4.116] 

We set here pN n T .



Fatigue Damage by One-dof Mechanical System     181 

Example 4.6. 

7075-T6 aluminum alloy 

65.9b

871056.5C (SI unit) 

Figure 4.33. Comparison of S-N curves

Figure 4.33 depicts the curves N  plotted under the following conditions: 

N Cb  (  = maximum stress in sinusoidal mode) 

b
b
rms

2

C
N

                                                                                  [4.117] 

random, Rayleigh distribution [4.114] 

random, Gaussian distribution [4.116] 

The variation between the initial S-N curve (in sinusoidal mode) and the curve 
relating to random (Rayleigh) assumption is a function of the value of  
the parameter b. 
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Figure 4.34. Variation between the S-N curve in sinusoidal mode  
and random [ROO 64]

Figure 4.34 shows the variations of the ratio S
sinemax

randomrms  versus 

parameter b: 

b
1

2
b

12

1
S                                                                         [4.118] 

NOTE: The fatigue calculations carried out for a peak distribution close to a 
Gaussian law are in general non-conservative (r is small, therefore many cycles of 
low amplitude (under-cycles) are superimposed on the cycles between two zero 
crossings). R.G. Lambert [LAM 93] proposes modifying relation [4.115] to take 
account of this phenomenon and to correct it simply, as follows: 

b

C
A

b
1.2 2 1

2

[4.119] 

More general case

We saw that the expected damage by fatigue is given by equation [4.21]: 



Fatigue Damage by One-dof Mechanical System     183 

p b b b b0
rms rms0 0

n T n T
D u q u du u q u du

C r C

where q u  is the probability density function of maxima, represented by 
equation [4.22] if the distribution of the instantaneous values of the random 
excitation is Gaussian. If we set N n T0 , we obtain for D 1 a relation between 

rms  and N of the form: 

b
rms

b

0

C rN
u q(u) du

[4.120] 

If we preserve N n Tp  [LAM 76], we obtain: 

b
rms

b

0

CN
u q(u) du

[4.121] 

Figures 4.35 and 4.36 show the curves rms (N)  plotted for 25.0r , 0.50, 0.75 

and 1, with reference to the curve established in sine mode (b 10 , C 1080),
when n T0  or n Tp  is carried on the abscissa axis. 

It is noted that these curves are (randomly) very tight and therefore not very 
sensitive to the variations of r. According to the choice of the definition of N and 
according to the value of r, a calculation carried out using Rayleigh’s assumption 
can be slightly optimistic (N n T0 ) or pessimistic ( N n Tp ). 

4.7. Comparison of theory and experiment 

We find in the bibliography test results carried out in various configurations, e.g. 
under stationary random stresses with or without zero average, used for the layout of 
S-N curves and for fatigue life calculations [GAS 65] [KIR 65a]. The conclusions 
are not always homogenous and sometimes vary according to the author. Generally, 
it seems that the parameter considered as most representative of fatigue under 
random stress is the rms value of the stress (confirmation of the theory) [CLE 66] 
[CLE 77] [KIR 65a]. 
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Figure 4.35. S-N curve into random plotted 
as a function of the number of zero-

crossings with positive slope, for various 
values of the irregularity factor

Figure 4.36. S-N curve into random plotted as 
a function of the peak number, for various 

values of the irregularity factor

S-N curves

The Miner/Rayleigh method for the determination of S-N curves was checked 
experimentally, and demonstrated a reasonable scatter of fatigue damage [MCC 64] 
[ESH 64]. 

The rms stress versus the number of cycles to failure curves are straight lines on 
logarithmic scales (note that we find the two definitions of N, i.e. n T0  and n Tp ,
perhaps allowing some differences in the results to be explained). 

The majority of authors agree to locate the S-N curve for random loads on the 
left of the curve obtained for sine [BRO 70b] [CLE 66] [CLE 77] [ELD 61] [HEA 
56] [LAM 76] [MAR 68] [MCCL 64] [PER 74] [ROO 64] [SMI 63]; the fatigue 
lives are shorter for random than for sine for equal rms stress values. This result is 
logical since the damage by fatigue is primarily produced by large peaks which can 
exceed the rms value for random by a factor of five. 

The difference observed is sometimes larger at low levels [PER 74] [SMI 63]. 
R.G. Lambert [LAM 76] provides some experimental results listed in Table 4.2, 
which we reproduce as an indication. 

The values of the ultimate stress ratio S AR /R  (stresses for N = 1 in the Basquin 
relation) obtained for a sinusoidal stress and a random stress, respectively, are close 
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to 2 for ductile materials and 3 for relatively brittle materials (the materials are more 
brittle when their b parameter is larger). 

Figure 4.37. Comparison between the S-N curves determined  
for sinusoidal and random stress

However, some authors obtain a longer fatigue life for high random stress levels 
and a shorter fatigue life for low levels [KIR 65b] [FRA 59] [LOW 62]. 

J.R. Fuller [FUL 61], S.R. Swanson [SWA 63] and H.C. Schelderup and 
A.E. Galef [SCH 61a] have noted that the S-N curves plotted on logarithmic scales 
with sine stresses and narrow band random stresses (distribution of the peaks close to 
Rayleigh’s law) are roughly straight lines of different slopes, the curve in random 
mode being deduced from that in sine mode by a clockwise rotation centered on the 
axis N 1 (Figure 4.38). To take account of this remark, L. Fiderer [FID 75] proposes 
representing the S-N curve by a relation derived from Basquin’s (N Cb b1 1. ,

where 1
b  is a fictitious stress level and, since 1 Rm , stress to rupture for 1 cycle 

i.e. in statics) of the form: 

N b b
1

where the constant  takes account of observed rotation. The relative position of the 
theoretical S-N curves thus obtained and of the experimental curves is not so clearly 
established. 
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Figure 4.38. Transformation of the S-N curve in sine mode to the S-N curve  
 into random mode

Sinusoidal stress Random stress 

Material b Ultimate 
stress RS

(Pa)

Constant
C

(SI unit) 

Ultimate 
stress RA

(Pa)

Constant
A

(Pa)

Ratio
R

R
S

A
Aluminum

alloy 
6061-T6

8.92 7.56  108
(1)

1.57  1079 3.43  108 1.36  1076 2.20

Copper
Wire 9.28 5.65  108 1.66  1081 2.54  108 9.93  1077 2.22

Aluminum
alloy 

7075-T6
9.65 12.38  108 5.56  1087 5.51  108 2.25  1084 2.25

G10 Epoxy 
Fiberglass 12.08 5.58  108 4.56  10105 2.28  108 9.20  10100 2.45

Wrought Steel
SAE 4130 
BHN267 17.54 12.13  108 2.14  10159 4.27  108 2.39  10151 2.84

Magnesium
alloy 

AZ31B
22.37 2.99  108 3.99  10189 9.38  107 2.18  10178 3.19

Table 4.2. Examples of constants in Basquin’s relation for sinusoidal and  
random stresses [LAM 76]

1.
8.9287.56 10        
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Work carried out by C. Perruchet and P. Vimont [PER 74] shows an important 
diversity in conclusions: 

– the tests confirm the estimated lifetimes relatively well: 

- whatever the stress level [ELD 61] [KOW 61]  [MAR 68], 

- only at low stress levels, real fatigue lives being longer than those estimated 
for high levels [ELD 61] [FRA 59] [KIR 65b] [LOW 62], and 

- only at high levels, real fatigue lives being shorter than the expectation for 
low levels [CLE 66] [CLE 77]; 

– the experimental fatigue lives are smaller by a factor of 2 to 10 [BOO 69] 
[BRO 70b] [CLE 66] [FUL 62] [HEA 56] [MAR 68] [PER 74] [SMI 63] whatever 
the stress level; and 

– the experimental fatigue lives are longer by a factor of 2 to 3 approximately 
(between 104 and 107 cycles) whatever the stress level [ELD 61] [ROO 64]. 

Generally, it is considered that the estimates of fatigue life carried out using 
Miner’s rule are rather good for random vibrations, the shape of the estimated S-N 
curve being correct [BRO 70b] [MAR 68]. This rule, relatively simple to use, 
provides adequate evaluations when an approximate result is required [BOO 69]. 

NOTE: McClymonds and J.K. Ganoug [MCC 64] made a comparison of the SN 
curves established for random, sine and swept sine (for Miner’s and Rayleigh’s 
assumptions). Swept sine produces significant damage only during the time for 
which the excitation frequency crosses the frequency interval between the half-
power points at each system resonance. 

Random loading creates damage by fatigue for each resonance over all the test 
duration. While referring the S-N curves to the load corresponding to the resonance 
peak for swept sine and to the rms load for random, they observe, at a given stress 
level, a longer fatigue life for swept sine than for sine and longer for sine than 
random. 

This tendency is confirmed by calculation. Figure 4.39 shows the S-N curves 
plotted using the following relations: 

sine [4.113]: 

b
rms b

C
N

2
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random [4.114]: 

b
rms b

C
N

b
2 1

2

Figure 4.39. Comparison of the S-N curves established experimentally under sine 
and random stresses

For the swept sine, the relation is established using the approximation suggested 
by M. Gertel [GER 61] for the calculation of fatigue damage undergone by a  
one-dof system excited by a linear swept sine. It is shown [LAL 82] (Volume 5, 
Chapter 3): 

b
max

b
N

D
5 C

[4.122] 

where N  is the number of cycles performed between the half-power points 
(function of the sweep rate): 

b b b b b
b 0.996 0.959 0.895 0.82 0.744 [4.123] 

yielding, for D 1 ,

b
rms b

b

5 C
N

2
[4.124] 
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4.8. Influence of shape of power spectral density and value of irregularity factor 

The shape of the PSD and the bandwidth are generally regarded as not very 
influential parameters [BRO 68b] [HIL 70] [LIN 72]. Studies carried out to evaluate 
the importance of the factor r lead however to more moderate conclusions: 

– The parameter r has little influence for 96.0r63.0  (it was seen that the 
narrow band approximation is acceptable in this range) [CLE 66] [CLE 77] 
[FUL 62]. 

– The parameter r has little influence, except when it is very weak, about 0.3. We 
then observe an increase in the fatigue lives for notched samples [GAS 72] 
[GAS 77]. 

– The parameter r has a notable influence (except if the probability density 
functions of the peaks are comparable) [BRO 68b] [LIN 72] [NAU 65]. 

– The fatigue life is larger when r is smaller, both from the point of view of crack 
initiation and their propagation [GAS 76]. For S.L. Bussa [BUS 67], this effect is 
particularly sensitive for r 0.8 ;

– S.R. Swanson [SWA 69] and J. Kowalewski [KOW 63] arrive at qualitatively 
similar results regarding the influence of the parameter r, without a law-binding r 
and the fatigue life being able to be truly established. 

4.9. Effects of peak truncation 

Since the fatigue damage is narrowly dependent on the number and the 
amplitude of the peaks of stress undergone by the part, it is interesting to speculate 
about the effect of a truncation of the peaks. This truncation can have several 
origins. 

In theory, calculations take into account a law of peak distribution q u  without 
limitation, thus being able statistically to include very large peaks. In practice, it is 
rare to observe peaks higher than 6 standard deviations (rms value) in the real 
environment. During simulation tests in laboratory, the control system often cut the 
peaks higher than 4.5 times the rms value. 

Before anticipating the analysis, it is wise to specify the nature of the truncated 
control signal. This signal can be:  

1. an acceleration, a force or any other quantity imposed on a structure, the stress 
at a point being the result of this excitation only; or 
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2. a stress or a deformation directly measured on the part or the result of force 
applied directly to the part (case of tests on test bars). 

Depending on the case, the results are different. We will consider in the 
following section only the latter case. The influence of a truncation of the 
acceleration signal will be examined in Chapter 4 of Volume 5.  

4.10. Truncation of stress peaks 

Let us suppose that the S-N curve can be represented by the analytical Basquin 
expression N Cb  and that we use Miner’s rule. 

Under these assumptions, we saw that the fatigue damage can be written, without 
truncation: 

D
n T

C
q dp b ( )

0
.

If the peaks are truncated at stress level t , the damage becomes: 

D
n T

C
q dp bt ( )

0
[4.125] 

Figure 4.40. Truncation level of peaks on the S-N curve
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4.10.1. Particular case of a narrow band noise 

If the peak distribution of t  can be represented by Rayleigh’s law (r 1),
expression [4.125] of the damage can be written [POO 78] 

2

2t
rms2b 10

2 0
rms

n T
D e d

C
[4.126] 

If we take into account a fatigue limit D , this damage becomes:  

2

2t
rms

D

2b 10
2
rms

n T
D e d

C
.

Figure 4.41. Truncated peak

Since the peaks are truncated at value t , the amplitudes higher than this value 

are fixed at t  for calculation of the damage when N Cb  [POO 78]. This 
damage 

dD n T
q

N
d0

( )

( )

therefore becomes 

dD
n T

C
q dt

b0 ( ) ,

yielding 
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2

2
rms

t
t

2b0
t2

rms

n T
D e d

C
[4.127] 

NOTE: This result can be arrived at by considering that truncation to t is
equivalent to the addition of a Dirac delta function at t  which restores the 

truncated area under the curve q  to the value 1. This area is equal to 
[LAM 76]: 

2

2
rms

t t

2
t 2

rms
a q( ) d e d

2
t
2
rms2

ta e [4.128] 

Figure 4.42. Addition of a Dirac delta function to the probability density of peaks to 
compensate for the area removed by truncation

The truncated probability density then becomes  

2

2
rms2

t t2
rms

q( ) e a [4.129] 

where t0 , and damage by fatigue relating to larger peaks than t  is: 
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2
t
2
rms

t

t

2b0 t 0
t t

Value of the function for

n T a n T
d e

C N( ) C
.

The total damage in the presence of a fatigue limit stress is therefore: 

2 2

2 2t D
rms rms2 2b 1 b 10 0

t 2 20 0
rms rms

n T n T
D e d e d

C C

2

2
rms

t

2b0
t

n T
e d

C
. [4.130] 

Knowing that the term 

2

2t
rms

b 1
2

20
rms

e d

can be written in the form 

2
t
2
rms

b b2 B 1 B 1
rms rms0 0

2 e d 2 e d

b
rms2 B,

where B,  is the incomplete gamma function, it becomes, with B
b

1
2

 and 

2
rms

2
t

2
:

2b0 t
t rms 2

rms

n T b
D 2 1 ,

C 2 2
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2
t
2
rms

2
2bD 0

t2
rms

b n T
1 , e

2 C2
[4.131] 

and

2
rms

2
D

2
b

rms

b
t

2
rms

2
D

2
rms

2
t

t

2
,

2
b

1
2
b

1

e
22

,
2
b

1
2

,
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D
D

2
rms

2
t

 [4.132] 

The function is tabulated and can be calculated from approximate relations. If 

t  [BUS 67] [SWA 69], 1
2

1
2

b b
,  and 

2b0 D
t rms 2

rms

n T b b
D 2 1 1 ,

C 2 2 2
  [4.133] 

NOTES:

1. Expression [4.131] can also be written [WHI 69]: 

2 2
b0 t D

t rms
rms rms

n T b
D 2 1 P ,b 2 P ,b 2

C 2

2
t
2
rms2b0

t
n T

e
C

[4.134] 

(the function P is tabulated). 

2. If we set D 0  (no fatigue limit) in relationship [4.133], we find the 
Crandall expression [4.40]. 

The effect of truncation is to reduce the damage in the ratio 
D

D
t , which is 

related to b. 
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Figures 4.43 and 4.44 show the variations of this ratio for D 0 and 3
rms

D

versus 
rms

t , parameterized by b (variable between 2 and 10 per step of 1). 

For D 0, we note that if b 7, truncation for 4
rms

t  has a negligible 

effect. However, if b 7,  at least 50% of the total damage by fatigue is produced 
by the peaks of the response exceeding rms3 , in spite of their infrequent 
occurrence [SMA 65]. Although the damage created by the peaks between rms2
and rms3  is important [POO 78], it appears clearly that a truncation of the 
response signal to rms3  modifies the resulting damage a lot. 

In certain cases (observed for “missile” environments), the responses greater 
than rms3  can occur much more frequently than for a Gaussian noise; peaks higher 
than rms5  are very probable. 

The damage produced is then more significant than that envisaged with a 
Gaussian assumption. To avoid this problem, a method could consist of adjusting the 
total amplitude of the random noise created during the test laboratory so that the 
response peaks produced are similar to those in the real environment. 

Figure 4.43. Effect of truncation on the 
damage in the absence of fatigue limit

Figure 4.44. Effect of truncation on the 
damage for a fatigue limit equal to 3 times 

the rms value
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For 7b and 0D , truncation has little effect if 4
rms

t  and if 1
rms

D

and 2 [WHI 69]. 

For b 10 and 4
rms

D  (Figure 4.45), the reduction of the damage is weak as 

long as 1
rms

D

rms

t . The level g  at which the greatest damage takes place is 

obtained while searching g  such that
dD

d
 is a maximum, i.e. for 

d D

d

2

2 0, yielding 

b
1

2

rms

g

2

rms

g

rms

g

rms

t

1b

1
[4.135] 

Figure 4.45. Effect of truncation on the 
damage as a function of fatigue limit

Figure 4.46. Stress leading to greatest 
damage

If t ,

1b
rms

g [4.136] 
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If
rms

g

rms

t , we have 

2
1

rms

g 1
2
b

[4.137] 

For
rms

t  small (Figure 4.46), there is a field for each value of b in which the 

level 
rms

g  is equal to 
rms

t . These curves are valid only if D g (there is no 

damage if D t ) [WHI 69]. 

Figure 4.47. Stress leading to greatest damage in  
the absence of truncation

These results show that the effect of truncation generally cannot be neglected a
priori. It is therefore important to specify, by test, the value of t . The truncation of 
the peaks larger than rms5.2  has a notable influence, leading to longer fatigue 
lives. 

The truncation of the peaks above rms3.5  has little influence on the 
experimental results [BOO 69]. 
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The predictions of fatigue lives carried out using Miner’s hypothesis and a 
truncated signal are good with a truncation between rms4  and rms5.5 , worse 
with rms5.3  and very poor with rms5.2  [BOO 69]. 

Relation [4.136] established in the absence of truncation shows, in addition, that 
the maximum damage is brought about by the peaks located between 2 and 4.5 times 
the rms value, this maximum being a function of the parameter b (Figure 4.47). 

NOTE: A.J. Curtis [CUR 82] presents the calculation in a slightly different way. 
Given a Rayleigh distribution truncated for t  and a fatigue limit D , it states 
the damage by fatigue D is of the form: 

t rms

D rms

bi

i rms rmsi

n 1
D n d

N C

t rms

D rms

t rms

b

rms rms0

0 rms rms

q d
n T

D
C

q d

yielding 
2

t

D
2
t

u
u b 1 2
ub0

u
2

u e du
n T

D s
C

1 e

where
rms

u  and D
D

rms
u , or 

2
t

b
b 2 22

0 rms t D
u
2

n T 2 b u b u
D 1, 1,

C 2 2 2 2
1 e

[4.138] 

where
2

t

u2 u b 1t 2
0

b u
1, u e du

2 2
[4.139] 
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Table 4.3. Values of the incomplete gamma function [CUR 82]
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A.J. Curtis [CUR 82] shows that the fatigue life is more modified when b is 

larger (for small Du  and t

rms
3 ). Table 4.3 gives, for ut  ranging between 

1.10 and 4.00, the values of: 

– the function 
2
tb u

1,
2 2

 for b equal to 3.0, –6.5, –9.0 and 25.0; and 

– the expression 
2
tu 21 e .

2

t

u2 u b 1t 2
0

b u
1, u e du

2 2
[4.139] 

4.10.2. Layout of the S-N curve for a truncated distribution 

If D 0, t  is arbitrary and N n Tt 0 , we have: 

2
t
2
rms

2b 2bt
t rms t2

rms

b
N 2 1 , e C

2 2
  [4.140] 

The ratio of fatigue life with and without truncation is therefore [LAM 76]: 

2
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2
t

22
b

2
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2
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2
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2
t

t

e
22

,
2
b

1

2
b

1

N
N

[4.141] 
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This ratio depends only on 
rms

t  and on the parameter b. To compensate for the 

truncation and to produce the same damage, it would be necessary to multiply the 
rms value of the stress by the factor 

N

N
t b

1

[4.142] 

and the amplitude of the PSD by 2

1
2

1
2

2

1

b

b
eb

b

,
[4.143] 

where  

2
rms

2
t

2
.

Table 4.4 gives the values of  for different values of b and 
rms

t .

Figures 4.48 and 4.49 show the variations of  with b and 
rms

t . It is noted that 

 increases with b and decreases when t  increases. 
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t

rms
b

3 3.5 4 4.5 5 

3 1.01 1.0022 1.000377 1.000048 1.00000142 
4 1.0159 1.0039348 1.000756 1.00011146 1.0000126 
5 1.02336 1.000643 1.001375 1.000224 1.0000279 
6 1.032285 1.00976 1.00231 1.000417 1.0000569 
7 1.04248 1.01398 1.00364 1.000724 1.000108 
8 1.05377 1.0191 1.00543 1.001185 1.000194 
9 1.066 1.0250 1.00772 1.0018425 1.000331 

10 1.0789 1.03178 1.01055 1.002738 1.000536 
11 1.0924 1.0392 1.01393 1.00391 1.000833 
12 1.10644 1.04732 1.01784 1.00539 1.001245 

Table 4.4. Values of the compensation factor of truncation 

NOTE: We could also consider the ratio of the damage of the truncated signal tD  to 
the damage of complete signal D. This ratio is equal to 

t
b

t

D N 1
D N

[4.144] 

It is important to recall here that the truncation considered in this section relates 
to the stress and not to the acceleration signal applied to the base of the reference 
one-dof system. Some examples show that in this latter case, truncation has little 
effect when it is greater than 3 times the rms value of the signal (Volume 5). 
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Figure 4.48. Compensation factor  versus 
the parameter b

Figure 4.49. Compensation factor  versus 
the truncation threshold

Figure 4.50. Ratio of damage of truncated 
and untruncated signals versus the  

truncation threshold

Figure 4.51. Ratio of the damage of the 
truncated and untruncated signals versus the 

parameter b



Chapter 5 

Standard Deviation of Fatigue Damage

In previous chapters it was seen how fatigue damage undergone by a one-degree-
of-freedom system can be calculated starting from the characteristics of random 
stress, Miner’s rule and parameters of the S-N curve. When the peak distribution of 
the response can be represented analytically, we can obtain damage expectation 
E D . To this mean damage can be applied a standard deviation sD  (or variance 

sD
2 ) characterizing scatter related to the random aspect of the excitation. Several 

methods have been proposed to approximately calculate sD  assuming a Rayleigh 
peak distribution. 

5.1. Calculation of standard deviation of damage: Bendat’s method 

Assume that the signal is stationary and ergodic and assume the form of the 
autocovariance function of the damage created by each half-cycle of the response is 
equal to s ed

k2 2 , where s E d E dd
2 2 2  and d is the damage associated 

with the half-cycle k. J.S.Bendat [BEN 64] then showed that the variance of the 
damage undergone by a single-dof linear system can be written  

s s N N k eD d p p
k

k

N p
2 2 2

1

1

[5.1] 

where 

N n T Np p p2 2 [5.2] 

Fatigue Damage: Second Edition - Volume 4 
Christian Lalanne 
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and
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with
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i.e.

0
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p

b2b2
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2b
2
D N

DE
duuquz

C2
K

s

22

1N2
p

2
p

p
1e

eNe1N
2N

p

[5.6] 

where 
rms

p

z

z
u .

The variation coefficient v is given by: 
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2
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[5.8] 

Example 5.1. 

Figure 5.1. Variation coefficient of damage 
versus number of cycles [BEN 64]

Figure 5.2. Variation coefficient of damage 
versus natural frequency [BEN 64]

Figure 5.3. Variation coefficient of damage 
versus damping [BEN 64]

Figure 5.4. Variation coefficient of damage 
versus parameter b [BEN 64]
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Figures 5.1–5.4 show the variations of v with b, f0, n T0  and  in the case of a 
one-dof system of natural frequency 100 Hz subjected to a random noise of 
constant PSD equal to 65.1  (m/s2)2/Hz between 1 Hz and 2000 Hz, with duration 
T 3600 s, under the following conditions: b 10 , C 1080, 10K 6.3 10  (SI 
units).

Since the peak distribution is assumed to follow a Rayleigh distribution, 

0 0

b2
rmsp

z2
z

1b2
p2

rms
pp

b2
p b12zdzez

z
1

dzzqz
2
rms

2
p

 [5.9] 

b b
rms

p

E D K b
2 z 1

N 2 C 2
,

yielding 

2b 2b2 2
d rms2

K b
s z 2 1 b 1

24C
[5.10] 

s s N FD d p
2 2 2 [5.11] 

and

v
N F

N

b
b

b
p

p

2
2

2
2 1 1

2

1
2

[5.12] 

Lastly, if 2 n Tp  is large, we have 

F
n Tp [5.13] 

yielding 
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[5.14] 

and

v
n T
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2

1 1
2

1
2

[5.15] 

As an example, Table 5.1 lists some values of v calculated as a function of b and 
the product 2 n Tp  (n np 0  since r = 1). 

b

02 n T 2 4 6 8 10 12 14

10 3.162 10-1 7.071 10-1 1.378 100 2.627 100 5.010 100 9.601 100 18.523 100

25 2.000 10-1 4.472 10-1 8.718 10-1 1.661 100 3.169 100 6.076 100 11.715 100

50 1.414 10-1 3.162 10-1 6.164 10-1 1.175 100 2.241 100 4.297 100 8.284 100

75 1.155 10-1 2.582 10-1 5.033 10-1 9.592 10-1 1.829 100 3.508 100 6.764 100

100 1.000 10-1 2.236 10-1 4.359 10-1 8.307 10-1 1.584 100 3.038 100 5.858 100

250 6.325 10-2 1.414 10-1 2.757 10-1 5.254 10-1 1.002 100 1.922 100 3.705 100

500 4.472 10-2 1.000 10-1 1.950 10-1 3.715 10-1 7.085 10-1 1.359 100 2.620 100

750 3.652 10-2 8.165 10-2 1.592 10-1 3.033 10-1 5.785 10-1 1.109  100 2.139 100

1 000 3.162 10-2 7 071 10-2 1.378 10-1 2.627 10-1 5.010 10-1 9.607 10-1 1.852 100

2 500 2.000 10-2 4.472 10-2 8.718 10-2 1.661 10-1 3.167 10-1 6.075 10-1 1.172 100

5 000 1.414 10-2 3.162 10-2 6.164 10-2 1.175 10-1 2.241 10-1 4.297 10-1 8.284 10-1

7 500 1.155 10-2 2.582 10-2 5.033 10-2 9.592 10-2 1.830 10-1 3.508 10-1 6.764 10-1

10 000 1.000 10-2 2.236 10-2 4.359 10-2 8.307 10-2 1.584 10-1 3.038 10-1 5.858 10-1

25 000 6.325 10-3 1.414 10-2 2.757 10-2 5.254 10-2 1.002 10-1 1.922 10-1 3.705 10-1

50 000 4.472 10-3 1.000 10-2 1.949 10-2 3.715 10-2 7.085 10-2 1.359 10-1 2.620 10-1

100 000 3.162 10-3 7.071 10-3 1.378 10-2 2.627 10-2 5.010 10-2 9.607 10-2 1.852 10-1

500 000 1.414 10-3 3.162 10-3 6.164 10-3 1.175 10-2 2.241 10-2 4.297 10-2 8.284 10-2

1 000 000 1.000 10-3 2.236 10-3 4.359 10-3 8.307 10-3 1.584 10-2 3.038 10-2 5.858 10-2

Table 5.1. Values of the variation coefficient of the damage [BEN 64]
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5.2. Calculation of standard deviation of damage: method of Crandall et al.

Crandall et al. calculate the variance of the damage in the following two ways 
[CRA 62] [MAR 61] [YAO 72]: 

(a) by assuming the amplitude of the stress cycles and the number of cycles in [0, 
T] is random; and 

(b) by starting from an approximation considering only the random aspect of the 
stress amplitude. 

These two approaches converge in extreme cases when the bandwidth tends 
towards zero. The problem in both cases is related to strong correlation in the 
incremental damage of successive cycles. It is necessary to carry out approximations 
which are valid only when T is large compared to the decrease in time of correlation. 

NOTE: There is a modified method of calculation of the variance [SHI 66] which 
assumes a normally distributed load (mathematically simpler than another 
distribution law). 

We make the following assumptions: 

– the excitation is of white noise type and the peaks of the response are 
distributed according to Rayleigh’s law; 

– the excited system is linear, with only one dof, with a damping ratio very much 
lower than unity (in practice, less than or equal to 0.05); and 

– the mean number of cycles of the response for the length of time T is very 
large compared to 1/2 .

The approximate analytical expressions of the variance established in cases (a) 
and (b) converge towards the same expression when damping  tends towards zero 
(the mean damage E D  is the same for the two assumptions, in that n f0 0 ).

By assuming the amplitude of the half-cycles and their number to be random, the 
variance can be written: 

Tn
bf

Tn
bf

bf
2
b

1z2
Tn

C
K

s
0

3

0

2
1

2b2
rms

0
2

b2
2
D   [5.16] 

where 
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1 1 n 1
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 [5.18] 
and

f b
b
b3

2

1

16

1

1
2

[5.19] 

Figure 5.5. Variations of functions f b1 , f b2  and f b3

Figure 5.5 shows the variations of f b1 , f b2  and f b3  versus b. Table 5.2 
lists some numerical values of these three functions for b varying between 3 and 20. 
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b 1f (b) 2f (b) 3f (b) b 1f (b) 2f (b) 3f (b)

3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 
10.5 
11.0 
11.5 

0.370 
0.522 
0.716 
0.964 
1.280 
1.684 
2.202 
2.868 
3.730 
4.846 
6.300 
8.198 

10.686 
13.956 
18.268 
23.971 
31.533 
41.586 

0.029 
0.040 
0.054 
0.070 
0.090 
0.115 
0.144 
0.179 
0.223 
0.275 
0.340 
0.420 
0.518 
0.641 
0.794 
0.987 
1.230 
1.537 

0.212 
0.281 
0.375 
0.503 
0.679 
0.920 
1.250 
1.704 
2.328 
3.188 
4.375 
6.013 
8.278 

11.411 
15.750 
21.763 
30.102 
41.676 

12.0 
12.5 
13.0 
13.5 
14.0 
14.5 
15.0 
15.5 
16.0 
16.5 
17.0 
17.5 
18.0 
18.5 
19.0 
19.5 
20.0 

54.980
72.866
96.799

128.886
171.982
229.961
308.087
413.520
556.003
748.811

1,010.046
1,364.413
1,845.653
2,499.884
3,390.189
4,602.919
6,256.346

1.928 
2.427 
3.067 
3.890 
4.951 
6.326 
8.110 

10.433 
13.466 
17.435 
22.641 
29.485 
38.502 
50.405 
66.146 
87.000 

114.676 

57.750 
80.087 

111.146 
154.356 
214.500 
298.256 
414.946 
577.590 
804.375 

1,120.719 
1,562.149 
2,178.339 
3,038.750 
4,240.558 
5,919.723 
8,266.515 

11,547.250 

Table 5.2. Values of functions 1f b , 2f b  and 3f b

We determine the variation coefficient [CRA 63] to be: 

v
s

E D n T
f b

f b

n T

f b

n T
D 1

0
1

2

0

3

0

1
2

[5.20] 

It should be noted that, while E D  varies linearly with duration T of the 
vibration, the standard deviation sD  varies with T .

Example 5.2. 

Figures 5.6 and 5.7 show the variations of v with , b or f0 in the particular 
case where the input is a white noise G 1 (m/s2)2/Hz between 1 Hz and 
2,000 Hz, applied during 3,600 s. 
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Figure 5.6. Variation coefficient of damage 
versus parameter b [MAR 61] 

Figure 5.7. Variation coefficient of damage 
versus natural frequency [MAR 61] 

Figure 5.8. Variation coefficient of damage 
versus damping [MAR 61] 

Figure 5.9. Variation coefficient of damage 
versus number of cycles [MAR 61] 

These curves, plotted from expression [5.20], show that v: 

– is an increasing function of b; 

– decreases when f0 increases; and 

– decreases when  increases. 

Figure 5.9 shows that v decreases when time T (and therefore the number of 
cycles N n T0 ) increases. 
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In many practical cases, it can be considered that n T0  is large compared to 
unity. The last two terms of the bracket are then negligible and we have 

bf
2
b

1z2
Tn

C
K

s 1
2b2

rms
0

b2
2
D [5.21] 

The variation coefficient (or relative dispersion) is then written: 

v
s

E D

f b

n T
D 1

0

[5.22] 

This ratio is then larger [CRA 63] since: 

–  is smaller; 

– n f0 0  is smaller (i.e. since n
f

Q

f
0

0

2 2
, half of the interval between 

the half-power points is smaller); and 

– T is smaller. 

It can be seen that E D  is related to T and that sD  varies with T .

5.3. Comparison of Mark and Bendat’s results 

We studied the variations of the ratio 
)Mark(

)Bendat(
v

v
with f0, b,  and n T0  in the 

case of the example already treated. This ratio is written, for a narrow band 
response: 

1

2
1 1

2

1

0

2
1

2

0
1

2

0

3

0

1
2

n T
b

b

n T
f b

f b

n T

f b

n T

,



Standard Deviation of Fatigue Damage     215

1

1
2

1 1
2

2

1
2

0

3

0

b

b
b

f b
f b

n T

f b

n T

[5.23] 

We note the following: 

– Figures 5.11 and 5.12 demonstrate that  does not in practice vary with ; it is 
higher since b is bigger; 

– Figures 5.10 and 5.13 demonstrate that  tends towards a constant value when 
f0 increases from 10 Hz to 2,000 Hz (the increase is faster if  is larger). This 

limiting value is obtained by neglecting the terms of the denominator in n0

(n f0 0 ) yielding: 

1

1
2

1 1
2

2

2

1
b

b
b

f b
[5.24] 

Figure 5.10. Ratio of variation coefficients 
calculated by J.S. Bendat [BEN 64] and 

W.D. Mark [MAR 61] versus natural 
frequency

Figure 5.11. Ratio of variation coefficients 
calculated by J.S. Bendat [BEN 64] and 

W.D. Mark [MAR 61] versus damping ratio
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In the same way,  tends towards constant  when n T0  tends towards infinity 
(Figure 5.13). 

Figure 5.12. Ratio of variation coefficients 
calculated by J.S. Bendat [BEN 64] and 

W.D. Mark [MAR 61] versus parameter b

Figure 5.13. Ratio of variation coefficients 
calculated by J.S. Bendat [BEN 64] and 
W.D. Mark [MAR 61] versus number of 

cycles, for b = 10

– Figure 5.14 indicates that the ratio  varies very little with n T0 . It is larger 
since b is larger. 

Example 5.3. 

For b 10 :

26833488.182
1203628800

120
1 2

,

47876.1 .
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Figure 5.14. Ratio of variation coefficients calculated by  
J.S. Bendat [BEN 64] and W.D. Mark [MAR 61]  

versus number of cycles for  = 0.05

NOTE: J.P. Tang [TAN 78] shows that a limit of the failure probability is given by: 

2 2
D D

2 1 E D 1 E D
P D 1 1 exp

s 2 s
[5.25] 

where D is the damage, E D is the mean damage and Ds  is the standard 
deviation of the damage. 

Example 5.4.

Let us consider a steel structure working in tension compression, which can be 
comparable with a one-dof linear system, natural frequency f0 100  Hz and 
relative damping 05.0 .

Let us assume that the stress  is related to the peak relative displacement zP  by

K zP with 10103.6K  Pa/m and that steel has a S-N curve characterized by 

a parameter b equal to 10, with a constant C 1080 (SI units).  
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Finally, let us assume that this structure is subjected to a random acceleration 
applied to its base defined by a constant acceleration spectral density of amplitude 

65.1Gx  (m/s2)2/Hz between 1 Hz and 2,000 Hz. 

We aim to calculate: 

– the fatigue damage D after 50 hours of vibrations; and 

– the standard deviation of the damage sD .

For a system of natural frequency 100 Hz, the excitation can at first 
approximation (since regarded as a white noise) yield:  

4
rms 1029.1z  m 664.0r

0809.0zrms  m/s 47.150np

48.76zrms  m/s2 87.99n0

147.51yrms  m/s2 2
0 rms2 f z .

Using the approximate relations mentioned above: 

D: relation [4.26]: 0.86270 
 Rayleigh: 0.86196 

sD : relation [5.6]: 0.00577 
 Bendat relation: 0.00575 

Mark relation: 0.003886 

 v: sD Mark / E D  Rayleigh: 0.004508 
sD  Bendat / E D  Rayleigh: 0.0066666 
 Relation [5.6]/ D relation [4.26]: 0.006693 

P D 1 : < 2.48  10–7 for sD  Bendat 

                 < 8.83  10–11 for Mark 

                 < 2.93  10–7 for sD  Bendat [5.6] and [4.26] 
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The mean damage calculated using Rayleigh’s assumption is therefore slightly 
lower than the value obtained with relation [4.26]. The approximate Bendat 
expression gives a value of sD  very close to that deduced from relation [5.6]. The 
Mark relation definitely leads to a lower result. This variation is not due to 
neglecting the assumptions selected to establish these expressions ( 664.0r
instead of 1); since a difference is still observed if the coefficient r is very near to 
unity. 

Mean fatigue life: 

9.57
D
hours50

T  hours. 

Mean numbers of cycles to failure (under random vibrations): 

7
0 1008.236009.5787.99Tn  cycles. 

Rms values: 

43.5765.1)12000(xrms  m/s2,

2
1

2

2

22
2
0

rms
rms

100
80

10
1

100
80

1

x
z ,

4
rms 1094.3z  m, and 

4
rmsm 1058.5z2z  m. 

Number of cycles to failure under a sinusoidal stress having the same rms 
value and a frequency equal to 80 Hz: 

N K zm
b( ) 1080,
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10410

80

1058.5103.6

10
N , and 

N 34 694  cycles. 

Now let us calculate the number of cycles to failure under sinusoidal stress, 
which creates the same rms response as the random vibration. 

The random vibration generates at 100 Hz a rms response of (for Q 10):

4
rms 1029.1z m

To obtain this response with a sinewave excitation of frequency 80 Hz (for 
example), an amplitude would be needed equal to 

Q
2z

2xx rms
2
0

rmsm ,

61.4
10

21029.1802
x

42

m  m/s2,

4
rmsm 1082.12zz  m, 

yielding 

9
10410

80
1055.2

1082.1103.6

10
N  cycles. 

5.4. Statistical S-N curves 

5.4.1. Definition of statistical curves 

We showed that, for Gaussian random excitation and a narrow band response 
(r = 1), the damage can be expressed in form [4.41]: 

2
b

1z2Tn
C

K
DE

b
rms0

b
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and the standard deviation sD  by the approximate relations: 

Bendat [5.15]: s
E D

n T

b
b

bD
( )

2

1 1
2

1
2

0

2

2

1
2

,

and

Mark [5.20]: s
E D

n T
f b

f b

n T

f b

n T
D

( )
( )

( ) ( )

0
1

2

0

3

0

1
2

.

In the following, we will consider the curves defined by the fatigue damage 
E D sD( )  and E D sD( )  where the constant  is a function of the selected 
degree of confidence, for a given distribution law of the damage (the most 
frequently used law being the log-normal distribution). 

For a given stress level, these values of the damage allow the calculation of the 
number of cycles n T0  for which failure can take place. These curves consider only 
the random aspect of the stress and do not take into account the scatter of the fatigue 
strength of material; more important and studied elsewhere (Chapter 1). 

5.4.2. Bendat’s formulation 

The equation of the first curve, defined by 

D E D sD( ) [5.26] 

for D = 1 (failure) can be also written 

E D v( ) 1 1 [5.27] 

i.e.
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E D
n T

b
b

b
( ) 1

2

1 1
2

1
2

1
0

2

2
[5.28] 

Let us set N n T0 ,

2
b

1)z2(
C

K
A b

rms

b
[5.29] 

and

B
b

b

b

1 1
2

1
2

2

2
[5.30] 

This becomes 

N
F F F

A

2 2

2

( )
[5.31] 

with 

F
A B 2

2
[5.32] 

The second equation (E D v( ) 1 1) leads to the same result. 
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Example 5.5.

Let us consider a random noise of constant PSD between 1 Hz and 2,000 Hz 
with an amplitude G such that 9G1  and then 2 30G  (to explore two 
ranges of stresses). 

Let us suppose that: 

b 10 ,

05.0 ,

f0 100  Hz, 

10103.6K  Pa/m and 

C 1080 (SI units). 

Figure 5.15. Mean 3 standard deviations 
S-N curves for high values of N

Figure 5.16. Mean 3 standard deviations 
S-N curves for low values of N

Figures 5.15 and 5.16 show the s N  curves obtained from these data for 
E D 1, E D sD( ) 3 1 and E D sD( ) 3 1.

It is seen that, when the rms stress rms  is large, the curves corresponding to 
E D sD( ) 3  tend towards a limit which can be calculated as follows. 

When G is large, A becomes large and 
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N E D
B

D( )
2

2

whereas N E D sD( ) 0. For 3, 05.0  and b 10 , we have 
B 251 and the limit is equal to 7,191 cycles. This limit increases very quickly 
with b and decreases when  increases (Figure 5.17). 

We must however point out one of the assumptions in calculating sD  which 

supposes that Tn2 0  is large. 

For N 1000, we have 2 314N . It is at least necessary that 

2 100
4n T , i.e. that N 3 104 , since this eliminates this limit, which does 

not have any physical reality. 

Figures 5.15 and 5.16 show that dispersion is stronger for the high levels of 
excitation (contrary to dispersion related to the fatigue strength of material). 

Figure 5.17. Limit of number of cycles to failure for  = 3

5.4.3. Mark’s formulation 

As previously, let us write that, to failure: 

E D s E D vD( ) ( ) ( )1 1

yielding 
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1
Tn

)b(f

Tn

)b(f
)b(f

Tn
1

2
b

1z2Tn
C

K 2
1

0

3

0

2
1

0

b
rms0

b
.

Let us also set  

N n T0

and

2
b

1)z2(
C

K
A b

rms

b
.

We then have: 

N

A
f b

A
f b

A f b
f b

A

2 2 4 1

2

2

1

2

1

2 2 2
2

3( ) ( )
( )

( )

 [5.33] 

provided that the discriminant is positive or zero or that: 

2
1
2

3
2

1 24 4 0A f b A f b a f b A f b( ) ( ) ( ) ( ) [5.34] 

It can be shown that this expression is always positive. The condition 
E D sD( ) 1 leads to the same expression of N. 

Example 5.6.

With the numerical conditions of the previous example, we obtain for 1 9G
the curves in Figure 5.18, which show the same tendency of the scatter to increase 
with rms . Comparison of Figures 5.18 and 5.19 allows the influence of damping 
to be evaluated. 
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Figure 5.18. Mean 3 standard deviations 
S-N curves for b = 10 and  = 0.05 [MAR 61]

Figure 5.19. Mean 3 standard deviations 
S-N curves for b = 10 and  = 0.01 [MAR 

61]

With the same calculation criteria but with 01.0  (instead of 0.05), to obtain 
the same curve E D  it is necessary that 8.1G2.0 , i.e. a weaker excitation. 
Scatter on the other hand tends to increase. 

Figure 5.20. Mean 3 standard deviations S-N curves,  
for b = 8 and  = 0.05 [MAR 61]

Lastly, the same study carried out with b 8 instead of 10 shows that, to obtain 
the same damage, the amplitude G of the PSD of the excitation must be greater 
(Figure 5.20, for 05.0 ).

NOTE: As previously, all these curves should not be plotted (with this formulation) 
for too large a value of G, i.e. for a low numbers of cycles. 



Standard Deviation of Fatigue Damage     227

Figure 5.21. S-N curves for low numbers of cycles [MAR 61] 

By considering the first example ( b 10 , 0.05 ), we note that if G is too 
large (between 2 and 10), the number of cycles corresponding to DE( D ) 3 s 1
also tends towards a (not physical) limit equal to (Figure 5.21): 

DN E( D ) 3 s 0.65 ,

DN E( D ) 3 s 3288  cycles. 

This limit can be found by calculation from relation [5.33] (for 3 ): 

2
1 1 2

32
1 9 f ( b ) 1 9 f ( b ) 1 9 f ( b )

N f ( b )
A 2 A 2 A

  [5.35] 

When G becomes large, and therefore also A, we have 

2
1 1 2

3
9 f ( b ) 9 f ( b ) 9 f ( b )

N f ( b )
2 2

. [5.36] 

The upper limit increases with b; it is weaker when damping is larger. The lower 
limit decreases with b. Curves in Figure 5.21 are plotted out of the range of 

approximations used for the calculation of Ds . It was seen that 
1

N
2

 is 

needed, i.e. in our example N 10 .
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Figure 5.22. Limit of number of cycles 
relating to mean damage minus  

3 standard deviations

Figure 5.23. Limit of number of cycles 
relating to mean damage plus  

3 standard deviations

In Figures 5.22 and 5.23, we note that N must be somewhat larger than 
104 cycles for the upper limit. 



Chapter 6 

Fatigue Damage using other
Calculation Assumptions

6.1. S-N curve represented by two segments of a straight line on logarithmic 
scales (taking into account fatigue limit) 

It is assumed that the S-N curve is defined by: 

– N Cb  for D ; or 

– D  for D .

Figure 6.1. S-N curve with fatigue limit (logarithmic scales)

Fatigue Damage: Second Edition - Volume 4 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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The damage is equal to 

D
dn

N

n T

N
q dp ( )

00
,

D
n T

C
q dp b

D

( ) [6.1] 

the probability density q  described by equation [4.24] for a Gaussian excitation. 
If we can consider that the peak distribution of the response follows a Rayleigh 
distribution, we have: 

2
rms

2

2
2
rms

e)(q [6.2] 

and
2

2
rms

D

b 1
20

2
rms

n TD e d
C

[6.3] 

Let us set 

2
rms

2

2
,

2
rms

d
d

We have 

D

b
b0 2

rms
n TD 2 e d

C
[6.4] 

with 

2
rms

2
D

D 2
.

The integral 
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a x e dxa
, 1

0
[6.5] 

is the incomplete gamma function (with x
b

1
2

):

Db b 2 b 20
rms

0 0

n TD ( 2) e d e d
C

,

2
b

1,
2
b

12
C

Tn
D D

b
rms

0

and

2
b

1

2
b

1,
1

2
b

1
C

2Tn
D

Db
rms0 [6.6] 

While setting K zp,

2
b

1

2
b

1,
1

2
b

12zTn
C

K
D

Db
rms0

b
[6.7] 

It is noted that if D  tends towards zero, expression [6.7] tends towards relation 
[4.41]. 

J.W. Miles [MIL 54] estimates that it is possible to neglect the fatigue limit when 
the stresses are distributed over a broad range. 

Figure 6.2 shows the variations of the ratio 

2
b

1

2
b

1,
1

limitwhitoutdamage
limitfatiguewithdamage D
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plotted versus the ratio D  for various values of b. It is noted that the damage decreases 
when the endurance limit increases; the rate of decrease is faster when b is smaller. 

Figure 6.2. Ratio of the damage calculated with and without  
taking into account fatigue limit

6.2. S-N curve defined by two segments of straight line on log-lin scales 

The S-N curves published in the literature are often plotted in logarithmic-linear 
scales and then are comparable with two segments of straight line. The horizontal 
part corresponds to the fatigue limit. 

Figure 6.3. S-N curve with fatigue limit in semi-logarithmic scales 

With this representation, this curve can be described analytically by [MUS 60]: 

elsewhere
forBeN

D

D
A

[6.8] 
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where A and B are constants characteristic of the material. The damage is then equal 
to 

D
dn

N
n

T

N
q dp

D0
( ) [6.9] 

D
n T

B
q e dp A

D

( ) [6.10] 

where q  is the probability density function of stress peaks, given by 
equation [4.24]. While comparing this distribution with Rayleigh’s law, this 
becomes: 

2
rms

2

2
2
rms

e)(q ,

D

2
rms

2

de
B

Tn
D 2

A

2
rms

0 [6.11] 

Let us set 2
rms

2
2

2
. This implies that 

rms2
d

d , yielding 

D
n T

B
e d

a

D

2 0
2

with 
rms

D
D 2

 and rms2Aa .

However, 

e d e d e d I I
a a a

D

D
2 2 2

00 1 2

I e d e e d
a

a a

1 0
4 2

0

2

2 2
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Let us set u
a

2

I e u
a

e du

a
u

1
4

0

2

2

2

I e u e du
a

e e du e
e a

e

a
u

a
u

a u a

1
4

0
4

0
4

0

4

2

2

2

2

2
2

2

2 2 2 2

I
e aa

1

42

2
1

2
.

In addition, 

I e d e d
a

a a
D D

2 0
4 2

0

2

2 2

I e e d

a a
D

2
4 2

0

2 2

I e u
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e du
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.
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This yields 

2
a

erf
2
a

erf1
2

a
ee1e

B
Tn

D D4
a

2
a

4
a

0

22

D

2

.

 [6.12] 
If D 0,

D
n T

B
e

a
a

0 4

2

1
2

,

2
A1e

B
Tn

D rms2
A

0

2
rms

2

[6.13] 

6.3. Hypothesis of non-linear accumulation of damage 

6.3.1. Corten-Dolan’s accumulation law 

Miner’s rule is most frequently utilized for the calculation of fatigue damage. 
Some attempts have been made to use other assumptions [SYL 81], such as Corten–
Dolan’s [COR 56] [COR 59], which assume that the damage is added in a non-linear 
way according to  

N
N

g

i
i

d

i

j
1

11

[6.14] 

where i and d are constants. 

Knowing that the S-N curve can be represented by 

N Ad [6.15] 

we have, for random stress, 

p d d
rms

0

n T
D u q(u) du

A
[6.16] 
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where 
rms

u . H. Corten and T. Dolan showed that d is a constant when 1

varies. It is therefore the constant A which is related to 1.

For untruncated random loadings or if the largest peaks do not exceed the yield 
stress of material, the value of 1 depends on the rms stress level. Let us set 1 1,

1 being the stress threshold exceeded by the largest peak in an interval containing 
m peaks. When m is large, 1 is approximately equal to the largest peak. 

The modified fatigue curve intersects the traditional curve in 1, so that the 

expressions N
C
b( )  and N Ad  can be identified for 1; yielding 

A C
d b

1 [6.17] 

Substituting this value in equation [6.16], we have: 

d bp b d
1 rms

0

n T
D u u q(u) du

C
[6.18] 

where 
rms

1
1u . Since u1 and the integral are constants for a given rms level, this 

expression differs from that obtained with Miner’s rule only by one constant. 

If the stress is truncated, or if the peaks of stress exceed the yield stress (a form 
of truncation), 1 is fixed for the various levels of rms stress and the expression 
[6.16] is applicable with A constant such that 

A Cd b
1 [6.19] 

When there is truncation, the random fatigue curve is parallel to the modified 
curve. If there is no truncation, it is parallel to that established in sinusoidal mode. 

6.3.2. Morrow’s accumulation model 

R.G. Lambert [LAM 88] uses the accumulation damage model developed by 
J.D. Morrow [MOR 83] in the form: 
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D
n

N

d

max

[6.20] 

where  is the amplitude of the stress, max  is the value of the greatest stress, n  is 
the number of cycles of stress at level , N  is the number of cycles to failure at 
level  and d is the plastic work exponent. 

We saw from equation [4.11] that, in the linear case, the elementary damage dD
can be written 

dD
dn

N

n T

N
q dp ( )

where N
C
b . Using the non-linear accumulation law [6.20], we have: 

dD
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N

d
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,

dD
n T

C
q dp b

d

( )
max

where rms  is the rms stress. Let us denote 
rms

maxF  as the crest factor, then: 

rms

max rms max rmsF

d)(q
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Tn
dD d
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d
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p

p b d
d d 0rms

n T
D q( ) d

C F
[6.21] 
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Let us set 
rms

u  as previously. Then, 

du)u(qu
FC
Tn

D
0

dbb
rmsd

p [6.22] 

(alternatively, the integral can be calculated between the limits 0 and max .) If 
K z,

du)u(quz
FC

TnK
D

0
dbb

rmsd
p

b
[6.23] 

The parameter d varies between 25.0  and 20.0 . Integration can be carried 
out in practice between 0 and 8. The damage calculated under these conditions is 
higher than that obtained under a linear assumption of approximately 10% to 15%. 
Suppose that q u  is the probability density of a Rayleigh distribution. 

Figure 6.4. Probability density of damage using non-linear damage  
accumulation law of Corten-Dolan

Figure 6.4 shows the variations of the probability density u eb d u1 22

/  for 
d 0  (linear case) and 207.0d  (non-linear case). It is noted that the damage is 
primarily created by the stress peaks between 2 and 5 times the rms value rms .

When peaks larger than rms5  occur, they are extremely damaging. The peaks 
lower than rms2  are very frequent, but contribute little to the damage. 
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6.4. Random vibration with non-zero mean: use of modified Goodman diagram 

It was assumed until now that the mean stress is zero. When this is not the case, 
H.C. Schjelderup [SCH 59] proposes using the modified diagram of Goodman or 
that of Gerber [LAL 92] (Chapter 1). These diagrams can be represented analytically 
by 

R R Rm m

m

m

n
0 1 [6.24] 

where Rmis the ultimate stress, 0  is the amplitude of the zero mean sinusoidal 
fluctuation,  is the amplitude of the non-zero mean sinusoidal stress fluctuation, 

m  is the mean stress (> 0 if it is about a tension, < 0 if it is a compression) and n is 
a constant (=1 for the Goodman relation and =2 for the Gerber relation). 

This relation can be written 

0

1 m

m

n

R

[6.25] 

If N 0  represents the S-N curve with zero mean stress, the S-N curve with 
mean stress m  is such that 

N N
R

m
m m

n0
1

[6.26] 

This result can be applied to the problem of random vibrations by making the 
following assumptions: 

– the distribution of the peaks of stress is not modified by the variations of the 
mean stress; and 

– Miner’s rule constitutes a satisfactory tool for the calculation of the fatigue life 
for a mean stress. 

In this case, relation [6.24] can be transformed for application to the random 
vibrations according to 
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n

m

m

m

rms0

m

rms

R
1

RR
[6.27] 

where rms  is the rms stress for a non-zero mean and rms0  is the rms stress for a 
zero mean. 

The effects of the non-zero mean stress are taken into account while replacing 

rms  by rms
n

m m1 R
. We can therefore expect similar tendencies in fatigue 

with random vibrations and sinusoidal vibrations. The restrictions imposed by the 
selected assumptions limit this result to the modes of fatigue at long lifetime, low 
stress levels. 

An experimental study by S.L. Bussa [BUS 67], carried out on notched samples 
subjected to random vibrations having various spectral shapes, shows that the effect 
of the mean stress is in accordance with the Goodman relation. This result is 
confirmed by work of R.G. Lambert [LAM 93]. 

NOTE: Another way of taking into account the influence of the mean stress using the 
same principles consists of modifying the constant 1C  in relation [4.115] according 
to [LAM 93]: 

bn
m

1m 1
f

C C 1 [6.28] 

or to directly correct the damage by fatigue as in  

bn
m

m
f

D D 1 [6.29] 

In these relations, m  must be lower than f . If this is not the case, failure 

takes place statically before the application of the alternate stress. f  is the true 

ultimate stress, causing the failure for dynamics cycle. 
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Figure 6.5. Ratio of the damage calculated 
with a non-zero mean stress and with a zero 

mean stress, for n = 1

Figure 6.6. Ratio of the damage calculated 
with a non-zero mean stress and with a zero 

mean stress, for n = 2

6.5. Non-Gaussian distribution of instantaneous values of signal 

The assumption is generally made that the distribution of the instantaneous 
values of the signal of excitation (and thus of the response) follows a Gaussian law 
and, consequently, that the distribution of the peaks of the response of the excited 
system follows a Rayleigh distribution [BEL 59] [MIL 54] [SCH 58]. 

6.5.1. Influence of distribution law of instantaneous values 

A study by R.T. Booth and M.N. Kenefeck [BOO 76], carried out on steel test 
bars, allowed the comparison of the results obtained with three distributions, 
characterized by their crossings curve of the form: 

A

rms

B

0 eNN [6.30] 

where N n T0 0 . For a Gaussian distribution, A 2 and 5.0B  and, for an 
exponential distribution, 1A  and C 2 . The three laws considered are 
characterized as follows: 

– Gaussian distribution truncated to 4 times the rms value ( rms );
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– a distribution close to that observed experimentally from measurements in the 
real environment on a vehicle suspension device ( 384.1A , 955.0B ) with 
truncation to rms5.5 ; and

– a distribution obtained in the real environment measured on dampers 
( 19.1A , 098.1B ), with a truncation at rms5.6 .

The irregularity coefficient is identical in the three cases, about 0.96 (PSD of the 
same shapes) and the S-N curve is plotted with rms  on ordinates: 

CN b
Drms0 [6.31] 

where D  is fatigue limit stress. These authors note the following points: 

– The changes of distribution law have a significant influence on the fatigue 
strength: the distribution of the instantaneous values of the signal is therefore an 
important factor. The assumption of a Gaussian signal can lead to significant errors 
if it is not checked. 

– The results obtained with the Miner rule are always optimistic (there is failure 

under test below
n

N
i

ii

1), but not unreasonable taking into account the scatter 

observed in the fatigue tests. 

– The calculations carried out under the Gaussian assumption differ from the 
experimental results by a factor of about 2 if the distribution is Gaussian. If the 
distribution is not Gaussian, the error can reach a factor equal to 9, when the real 
distribution contains a greater number of stress peaks of greater amplitude.  

6.5.2. Influence of peak distribution 

A study carried out by R.G. Lambert [LAM 82] on the influence of the 
distribution law of the peaks of the response of the system (i.e. of the stress) on 
fatigue damage shows that: 

– In a general way, the damage is primarily produced by the peaks with 
amplitude greater than twice the rms value rms . For a Rayleigh distribution, they 
are the peaks between rms2  and rms4 , while for an exponential law, they are 
the peaks of between rms5  and rms15 .

– Because of the larger presence of peaks of great amplitude, the exponential law 
is more severe than a Rayleigh distribution. 
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6.5.3. Calculation of damage using Weibull distribution 

The fatigue damage can be written, according to the Miner rule [NOL 76] and 
[WIR 77]: 

D
n

N
i

ii

.

Knowing that N Cb  and that K zg  if the stress-strain relationship is not 
linear, this becomes 

D
K

C
n z

b

i
bg

i

[6.32] 

i.e. in the continuous case, 

D
K

C
z dn

b
bg

with

dn n T q z dzp ( ) [6.33] 

and

D
K

C
n T z q z dz

b

p
bg ( )

0
[6.34] 

The integral can be regarded as the (bg)th moment of q z . Let us denote the 
distribution function of z as Q z , then 

q z dz dQ z( ) ( ) [6.35] 

If the distribution of the peaks follows a Weibull distribution, 

Q z
z

( ) exp1 [6.36] 
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for z 0 , where  is a constant characterizing the form of the law ( 1 for an 
exponential distribution and 2 for a Rayleigh distribution). Then we have 

q z dz u u du( ) exp1 [6.37] 

if u
z

, yielding 

0
1gbbg

p

b
duuexpuTn

C
K

)D(E [6.38] 

With bga 1 and b , and knowledge that 

X X dX
aa exp

0

1 1
[6.39] 

this becomes 

gb
1Tn

C
K

D gb
p

b
[6.40] 

NOTE: K.G. Nolte and J.E. Hansford [NOL 76] established this relation to study 
fatigue of immersed structures subjected to waves of height H. It is sufficient to 
replace z by H to treat this particular case. The distribution wave height is generally 

approximated by a Rayleigh distribution for which 2  and sH
2

( sH = wave height, indicative of the state of the sea).  

This yields 

bgb
p s

bg
2

n T HK bg
D 1

C 2
2

[6.41] 

where pn T  is the total number of waves. 
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Figure 6.7. Reduced damage for Weibull 
peak distribution

Figure 6.8. Reduced damage for Weibull 
peak distribution

Figure 6.9. Reduced damage for Weibull peak distribution  
versus parameter b 

Figures 6.7–6.9 show the variations in the quantity 

gb
1z2

Tn
D

K
C bg

rms
p

b

depending on b or g for various values of , in order to highlight the influence of 
non-linearity (for rmsz2  lower, then higher, than 1). 
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6.5.4. Comparison of Rayleigh assumption/peak counting 

H.C. Schjelderup [SCH 61b] proposed using a method close to the range-mean
counting method (Chapter 3) and assumes that: 

– the mean stress follows a normal distribution 

f em
M

m

M
1

1

21

2

2

[6.42] 

– the alternate stress around this mean also follows a normal distribution: 

f ea
A

a a

A
2

1

21

2

2

[6.43] 

where  is the standardized stress , M  is the standard deviation of the 

standardized mean stress, A  is the standard deviation of the standardized 
alternating stress and a  is the mean of the standardized alternating stress. 

Figure 6.10. Alternating stress around the mean

The probability of occurrence of a mean stress m  and an alternating stress a  is 

P f f d dm a m a m a, 1 2 [6.44] 

The number dn  of cycles ( m a, ) among N cycles is equal to 

dn N P m a, [6.45] 
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yielding damage dD created by these dn  cycles: 

dD
N P

N
m a

m a

,

,
[6.46] 

where N m a,  is the number of cycles to failure for ( m a, ). The total number 
of cycles to failure N is that for which D 1, yielding: 

1 1 2

N

f f d d

N
m a m a

m ama ,
[6.47] 

The function N m a,  can be obtained from the modified Goodman diagram: 

N N

R

m a
a

m

m

, 0
1

[6.48] 

where Rm is ultimate strength. 

From this formulation, H.C. Schjelderup presents an example to show that the 
Rayleigh distribution gives more severe results and that this method seems to adapt 
better to the experimental results. 

6.6. Non-linear mechanical system 

It is assumed that Basquin’s distribution applies (N Cb ) and that the non-

linearity is of the form K zg . Then, 

D
n

N
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C
n z

b
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i

and, in the continuous case, 
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b
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Finally, if the peak distribution follows a Rayleigh distribution, 
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1z2Tn
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K
)D(E

bg
rms0

b
. [6.51] 

NOTE: In the D. Karnopp and T.D. Scharton method [KAR 66], the authors 
approach the response of a non-linear hysteretic system slightly damped subjected 
to a random excitation by an artificial linear process [KAR 66] [TAN 70]. They 
calculate, starting from this process, the mean value of the displacement higher than 
a specific limit as an approximation to plastic deformation. Finally, they use the 
Coffin criterion to evaluate the mean fatigue life of the system under loads 
belonging to the low cycle fatigue domain. 



Chapter 7 

Low Cycle Fatigue 

7.1. Overview 

The first studies on low cycle fatigue, called oligocyclic fatigue, were carried out 
by Sachs, Liu, Lyngh and Ripling [LIU 48] [LIU 69]. 

When the (sinusoidal) stress increases, the number of cycles to failure decreases. 
Fatigue fracture slowly transforms into a static fracture. The conditions for which 
static properties become predominant are unclear. Their influence becomes 
significant for approximately 104 to 105 useful lifetime cycles. They are 
predominant for N < 100 cycles [MAT 71]. We therefore consider that the 
oligocyclic field is between 1/4 of a cycle and approximately 105. In this field, the 
Wöhler curve slope decreases when the stress increases and the curve can therefore 
no longer be comparable to a line in general axes. In this case, materials work in the 
plastic field.

For most materials, cyclic stresses required for fracture with N < 100 cycles are 
close to static fracture values. The development of low cycle fracture requires 
significant amplitude of the part’s cyclic plastic strain, large enough so that there is 
great non-linearity between the applied stress and the resulting strain [COF 62]. This 
fact has two consequences: 

 The tests can be carried out with controlled stress or strain, since one 
parameter no longer makes it possible to control the other such as in the elastic field 
( E ). Controlled stress test results are generally presented in the form of 
traditional S-N curves. These tests are not as easy to analyze as controlled strain 
tests, for which we could observe a linear relation between the fracture cycle number 
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and the plastic deformation in logarithmic axes. We prefer to control strain in this 
field.

 In this type of load, load frequency can be much lower than in the traditional 
fatigue case (1 cycle per day or even per week). Because of this, temperature 
variations can be a frequent source of large plastic strains (differential expansions) 
and thus low cycle fatigue fractures [MAN 65] [GOE 60]. Similarly, loads can be 
applied quasi-statically or dynamically in tests. 

We will see that materials can support more dynamic load cycles than static load 
cycles [JU 69]. 

7.2. Definitions 

7.2.1. Baushinger effect 

Consider the material’s stress-strain curve. If we stop stress at point D in the first 
part of the diagram, and relax the stress to zero, the stress and strain return to zero 
such that at each moment, the point ,  remains on the OD arc. If, on the 
contrary, we stop at point B in the second part of the diagram, and decrease , the 
point ,  describes segment BC parallel to OS. 

Figure 7.1. Stress-strain curve: strain hardening phenomenon

If we increase  once again, point ,  describes CB then BR. 

Everything occurs as if the higher elastic limit was increased: this is the 
phenomenon called work hardening. Experience shows that, consequently, the 
higher elastic compression limit decreases: this is the Baushinger effect [BAU 81]. 
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7.2.2. Cyclic strain hardening 

Under the imposed cyclic strains, we can observe a cyclic work hardening of the 
type (depending on the case):  

 isotropic, such that the elastic limit increases in both directions; 

 kinematic, such that the elastic limit in tension or in compression remains 
constant and equal to the raw component; or 

 an intermediate between these two extremes. 

7.2.3. Properties of cyclic stress-strain curves 

We can observe that there is not much difference between the curves obtained 
with programmed block and random vibration testing; both curves are optimistic in 
relation to useful lifetime under real loads. The curve drawn with sinusoidal loads is 
very different from the previous curves. 

The relation between endurance under sine and random loads is homogenous 
with results from J. Kowalewski [KOW 59] , S.A. Clevenson and R. Steiner [CLE 
65], S.R Swanson [SWA 63], and K.J. Marsh and J.A. Mackinnon [MAR 66]. 

7.2.4. Stress-strain curve 

With cyclic loads corresponding to the low cycle fatigue field, the stress-strain 
curve appears as an open hysteresis loop and maximum stresses very slightly vary 
during the first cycles. 

The alternating stress-strain loop of a metal that was initially work hardened 
increasingly opens during fatigue to become a sort of stabilized mode. 

If the load is applied in alternating stress with constant amplitude m02 , the 
amplitude of the stabilized alternating strain m2  is higher than its initial value 

m02 .

If we impose an alternating strain m02 , the stabilized stress m s2  is lower 
than its initial value m02  [BAR 77]. 
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Figure 7.2. Strain and stress ranges

The curve in Figure 7.2 shows: 

 the range  of total imposed strain, cycle amplitude being a 2
; and 

 the total stress range  of amplitude a 2
.

The first tension load provides the arc AB (Figure 7.3). The unloading gives BC, 
where the elastic part is generally parallel to AB [NEL 78]. 

The compression load yields CD. The elastic compression limit is decreased 
(Baushinger effect) [BAU 81]. The unloading from D results in DE. Re-stressing 
corresponds to the EF arc. If we continue a new constant load amplitude cycle, we 
create a closed loop i.e. the hysteresis loop.

If several test bars go through cycles, each with different strain amplitudes (or if 
a single test bar goes through different strain amplitude cycles), we then create a 
series of hysteresis loops. The stress-strain curve is defined as the locus of stable 
hysteresis loop peaks [MOR 64a]. 

During consecutive stress cycles, this loop tends to stabilize and close 
(Figure 7.6) [MAN 65] [PIN 80] [RAB 80]. The tensile stress then decreases until 
the test bar fails (Figure 7.5). 
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Figure 7.3. Hysteresis loop

Figure 7.4. Closed hysteresis loop

Figure 7.5. Evolution of the tensile stress to fracture
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Figure 7.6. Evolution of the hysteresis loop

7.2.5. Hysteresis and fracture by fatigue 

Why associate strain hysteresis and fracture by fatigue? 

The product of the load by strain is proportional to the work done or the energy 
stored in the test item [FEL 59]: 

F l F l dW
S l V V

[7.1] 

where V is the volume of the part. 

We have seen that, regardless of the stress amplitude, even below the elastic 
limit, strain does not return to its initial value after a cycle (even if this strain is very 
small). A thermocouple would show elevation of temperature in the test item. All 
the energy stored in the test item is therefore not conserved. If the stress is small, the 
energy lost is obviously very low.
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A test bar experiencing cycles of stress lower than the elastic limit may break, 
because the sub-microscopic connections are gradually broken. This fracture 
requires energy which corresponds to that linked to hysteresis.

7.2.6. Significant factors influencing hysteresis and fracture by fatigue 

These factors are as follows: 

 amplitude of the stress: effect described by the Wöhler curve. 

The energy dissipated is given by (Volume 1): 

nD J [7.2] 

where n = 3 [BRO 36] [ROW 13], n = 4 [HOP 12] or n = 2 [KIM 26]; 

 distribution of stresses: agreement with different distributions; 

 frequency 

- this has very little, if any, effect on the quantity of energy absorbed by the 
cycle at a rate between 500 and 2,000 cycles/min [KIM 26], 

- FH Vitovec and B.J. Lazan [VIT 53] note a significant effect on plastic 
strain: if the frequency increases, damping energy decreases. The useful lifetime is 
therefore larger at higher frequencies (if the plastic strain is a criterion of fatigue); 

 temperature: for strong stresses, an increase in temperature leads to an increase 
of the energy absorbed per cycle, and consequently, to a greater plastic strain. For 
the small stresses, we can observe an effect similar to the effect of frequency; 

 the form of the test bar; 

 surface conditions, internal imperfections; and 

 composition, size of grains, thermal treatments, etc. 

7.2.7. Cyclic stress-strain curve (or cyclic consolidation curve) 

This is a curve obtained by connecting the peaks of stable hysteresis loops 
obtained for different strain values (applied to identical test bars). 

This curve provides the stabilized stress according to the stabilized strain (to be 
distinguished from the stress strain curve during a cycle). 
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Figure 7.7. Static and cyclic  
stress-strain curve 

Figure 7.8. Cyclic stress  strain-curve 

This cyclic consolidation can be such that the material sometimes greatly 
supports strength to static tension. 

The cyclic stress strain diagram characterizes the stable state of strains of a 
material experiencing cyclic stresses. By comparison with the traditional stress-
strain diagram, it is possible to deduct the material’s behavior.

7.3. Behavior of materials experiencing strains in the oligocyclic domain  

7.3.1. Types of behaviors 

We can distinguish in the useful lifetime of a test bar experiencing oligocyclic 
strains the following phases: 

 accommodation: imposed plastic strain leads to stresses with amplitude 
varying significantly during the first cycles, then seems to stabilize and very slowly 
evolve with the number of cycles. This accommodation represents 10 to 50% of the 
general useful lifetime;

 cracking (initiating): this follows or overlaps the previous phase, in which 
surface micro-cracks appear (the longest phase); and  

 propagation: one of the cracks propagates more rapidly and in a more  
stable way than others, and accelerates at the end of its life to fracture (discussed 
later).

High strain static or alternating loads tend to modify the state of metal strain 
hardening [BAR 77]. 

We can observe several types of behaviors with such loads. Because the stress-
strain curve is modified by consecutive plastic strains based on the process which 
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the material has experienced (hardening and tempering, annealing, hardened, etc.), 
these differences are represented by an adaptation (accommodation) of the 
component. When it exists, this can be:

 with softening (case of a component that is initially work hardened 
experiencing alternating stresses); 

 with hardening (case of an initially soft material); 

 with stable behavior; or 

 with a mixed behavior (hardening, softening) according to the field of strain. 

The existence of this accommodation makes it possible to associate a strain to an 
imposed deformation in this field. 

7.3.2. Cyclic strain hardening  

Consider a test bar of a material submitted to alternating strains (zero mean) of 
imposed amplitude; let us examine the evolution of the stress. 

A first possible behavior may consist of an increase of the stress amplitude over 
time to stabilization [LIG 80]. 

Figure 7.9. Alternating strain and resulting stress 

The stress-strain curve is presented in Figure 7.10. 
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Figure 7.10. Stress-strain cycles with 
hardening

Figure 7.11. Stress-strain curve with 
hardening

The maximum max  stress increases at each cycle carried out at constant 
maximum max  strain. The slope of the curve  increases, there is material 
hardening. This behavior is characteristic of annealing metals (copper).

Smith, Hirschberg and Manson [LIG 80] state that we can observe a hardening 

for materials such as m

e

R
1.4

R
 (where mR  is ultimate tensile strength and eR  is 

the yield stress). 

Morrow provides the strain hardening coefficient n as a characteristic parameter.  
Hardening occurs for n > 0.1 [LIG 80]. 

7.3.3. Cyclic strain softening  

Under the same conditions, some metals display the opposite behavior and 
experience a decrease of their characteristics. 

The cyclic stress-strain curve is above the static stress-strain curve. With the 

above criteria, there is softening when, according to authors,  m

e

R
1.2

R
 or n < 0.1. 

For m

e

R
1.2 1.4

R
, there can be hardening or softening. 

The use of properties established in static for cyclic behavior calculations can 
lead to an error, particularly an unexpected plastic deformation [LIG 80]. 
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Figure 7.12. Evolution of stress in the case of cyclic strain hardening

Figure 7.13. Stress-strain loop in the case of hardening

Figure 7.14. Cyclic stress-strain curve during softening



260     Fatigue Damage 

7.3.4. Cyclically stable metals 

Certain metals behave in a stable manner in strain cycles. 

In general, they stabilize very quickly after a rapid hardening or softening 
evolution under constant amplitude (20% to 40% of life in fatigue) and no longer 
evolve. 

An overload can greatly modify the material’s behavior, however [LIG 80]. 

Figure 7.15. Cyclic and static stress-strain curve  
of a stable material 

7.3.5. Mixed behavior 

Depending on the value of , there is softening or hardening. Cyclic and static 
stress-strain curves cross each other.

Figure 7.16. Cyclic stress-strain curve of a mixed 
behavior material
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7.4. Influence of the level application sequence 

We have shown that the stress -strain  curve drawn in static load could be 
different from that of cyclic load, depending on the material. 

Consider the case of a material softening in cyclic load and submitted to a load 
a1  during a few cycles, then submitted to a few a2 a1  cycles. 

Figure 7.17. Static and cyclic stress-strain curve  
 in the case of softening

Under stress a1 , the material works in the elastic field and follows the static 
curve. If the number of cycles achieved is sufficient, the hysteresis loop (a) 
(Figure 7.18) is stabilized, and its peak corresponds to a point in the cyclic curve 
with some plasticity.

Figure 7.18. Hysteresis loop
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If we apply cycles at level a2 , following a few cycles at level a1 , we obtain 
the same hysteresis loop (b) as if a1  had never been applied. 

If, on the contrary, we start with level a2 , we can immediately observe the 
development of a large hysteresis loop. Curve  is stabilized on the cyclic curve 
and the future application of lower level a1  cycles will produce the loop (c), 
different from (a), with a much larger plastic strain. The useful lifetime in this case 
is much shorter.

7.5. Development of the cyclic stress-strain curve 

Because of the transitory nature of the evolution of the stress-strain curve (or 
strain hardening curve), and as stabilization generally occurs after a small 
percentage of the test bar’s useful lifetime, the curve ,  is developed from tests 
on several test bars with different deformation amplitudes. We consider that 
stabilization is obtained at approximately 50% of the useful lifetime. Each test 
makes it possible to draw a hysteresis loop for a given  amplitude.

Curve ,  is obtained by transposing on a diagram the peak coordinates of 
stabilized hysteresis loops. 

Figure 7.19. Development of the stress-strain curve

Other methods can be used to draw this curve [MOR 64a] from a single test bar 
submitted to several levels of vibration. 
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We show that this curve can be approximated in logarithmic axes by an equation 
line of the form: 

n
pK [7.3] 

where  is the amplitude of the “stable” alternating stress, p  is the amplitude of 

the real plastic strain, K  is the “cyclic strength” coefficient (real stress for real unit 
strain) and n' is cyclic strain hardening coefficient. n' is a constant (straight line 
slope) which varies in practice between 0.10 and 0.20. For most metals, n' is close to 
0.15 regardless of their initial state [MOR 64a].

J.C. Ligeron [LIG 80] gives 0.07 < n' < 0.18. For Jo Dean Morrow and F.R. 
Tuler [ING 27], we have 0.15 < n' < 0.18 for many nickel-based alloys.

Relation [7.3] can also be written in terms of stress and strain ranges: 

n
pK

2 2
[7.4] 

7.6. Total strain  

Total strain t  can be broken down into an elastic strain el  and a plastic strain 

p . In the linear zone of the stress-strain diagram, we have elE . This linear 
zone is often very small.

The cyclic stress-strain curve can therefore be approximated by the relation: 

p pt el

2 2 2 2 E 2
[7.5] 

1 n
t 1

2 2 E 2 K
[7.6] 

We have seen that the stabilization of the cycle to a given level of stress (or 
strain) is not instant. For irregular loads, stabilized behavior is only an idealistic 
concept.
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Figure 7.20. Cyclic stress-strain diagram

For sinusoidal vibration, the hysteresis loop slowly varies with cycles. el  and 

p  therefore vary, with t  remaining constant. These variations are very small 

and often neglected. When t  is small (  1%),  is often generally constant over 
a few thousand cycles and p  varies very little. When t  is small, the loop 

becomes very narrow and p  is difficult to determine with precision. When t  is 

larger (  10%),  significantly increases, but since el  is much smaller than 

p , p  is approximately equal to t  and is therefore about constant [GOE 60].

7.7. Fatigue strength curve 

In the oligocyclic domain, since fatigue mainly depends on strain and the stress 
necessary to a given strain is variable, damage by fatigue is generally studied by 
controlled strain tests, and total strain t  can be broken down into an elastic strain 
and a plastic strain. 

The endurance curve is then described in number of cycles to failure strain axes. 
The fatigue strength curve provides, for a given material, the number of cycles to 
fracture under a given imposed strain [PIN 80].

In calculations, we sometimes transform this plastic strain into a fictional 
“equivalent” elastic stress by multiplying the plastic strain by the Young E material 
modulus. 

This diagram can be drawn by separating the total, elastic and plastic strains 
(Coffin-Manson curves) (see section 7.8.9). 
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Figure 7.21. Coffin-Manson fatigue strength curves

7.7.1. Basquin curve 

The curve of endurance drawn by using the equivalent stress based on the 
number of cycles to fracture generally connects well to traditional curves of 
endurance. As with traditional endurance, the low cycle fatigue strength curve was 
the subject of empirical analytical representations.

7.8. Relation between plastic strain and number of cycles to fracture  

Several representations have been proposed. 

7.8.1. Orowan relation 

E. Orowan [ORO 52] proposed the relation 

N constant [7.7]

where  is total deformation and N is the number of cycles to fracture under cyclic 
load. 

7.8.2. Manson relation 

S.S. Manson [MAN 54], followed by J.H. Gross and R.D. Stout [GRO 55], used 
a modified form of the previous relation: 

mN constant. [7.8] 
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7.8.3. Coffin relation 

7.8.3.1. Coffin law 

According to L.F. Coffin [BAL 57] [COF 54] [COF 69a] [COF 71], 

pN c [7.9] 

where p  is the range of variation of the plastic strain (peak-to-peak amplitude) 

and  and c are constants based on the material.  also depends on temperature. 

In practice,  varies very little and has a value that is close to 0.5 (  can be 
between 0.5 and 0.7). Constant c is directly linked to real strain during fracture.

Future proposed variations of the L.F. Coffin relation often involve the definition 
of constant c. This constant is directly linked to real stain during tensile fracture. The 
ultimate strength is generally considered as strength to fatigue to the lowest number 
of cycles and corresponds to the tensile test. According to the authors, this number 
can be equal to 1/4, 1/2 or 1 cycle [YAO 62].

The low cycle S-N curve starts at the ultimate strength. It is initially concave 
towards the bottom, then the top, the point of inflexion varying with the material, 
geometry, frequency, nature of the stress applied and temperature.

L.F. Coffin considers that, in logarithmic axes, the straight line 1 2
p N c  goes 

through the point of static tensile test corresponding to 1/4 cycle. Constant c could 
be calculated from static data. In the oligocyclic field, endurance depends on 
ductility of the material. L.F. Coffin expresses c as a function of f  (tensile strain 
fracture).

If f  is ductility to fracture (real fracture deformation), the author shows that if 

at fracture 
1

N
4

 cycle, 

1 2

f
1 c
4

[7.10] 

i.e.

fc
2

[7.11] 
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We therefore have 

1 2 fN
2

[7.12] 

or 1 2
fN .

The use ductility to fracture f  measured at 1/4 of a tensile cycle is conservative 
[PRO 48]. 

B. Barthememy [BAR 80] provides the relation 

1 0S
c 2 log

S
[7.13] 

where S0 is the initial cross-section and S is the cross-section at fracture. 

This law is confirmed when imposed plastic strain has amplitude higher than 
1/100. 

The constant c can also be determined from the value of necking  in a tensile 
test [OSG 82]: 

0

0

S S
100

S
[7.14] 

f
0

100 S
log log

100 S
[7.15] 

We therefore have: 

1 100
c log

2 100
[7.16] 

The Coffin relation is also written as 

p
fN

2
[7.17] 

where f  is the fatigue ductility coefficient (real strain required to obtain fracture 
with a cycle). 
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For small numbers of fracture cycles, we can generally replace p  by t ,

since el  is small compared to p .

If we consider that fracture ductility is defined for 
1

N
2

 cycle, we have 

[MAR 61a]: 

fc
2

[7.18] 

In cyclic torsion, we also have [HAL 61]: 

f p fN [7.19] 

where p  is the strain range of plastic shear and  f  is the monotonous shear 

strain at fracture. 

More generally, since el p  we can say: 

f
E N

[7.20] 

From the Basquin law in the form: 

b b
fN C , [7.21] 

where f  is the strength to fracture coefficient (real stress required to obtain 
fracture with a cycle), we have: 

f f
1 bE N N

[7.22] 

There is equality in elastic and plastic strains when N is equal to tN  such that 

f f
1 b

tt NE N

or
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b
b 1f

t
f

E
N [7.23] 

Figure 7.22. Composition of the strain versus number of cycles curve 
 at fracture from Coffin and Basquin laws

For short useful lifetimes, plastic strain predominates and ductility coefficient is 
the important parameter. For large N, elastic strain is the most important and 
strength to fatigue is the vital parameter. 

An ideal material would have high ductility and high strength simultaneously. 
These two properties are generally incompatible and a compromise must be chosen 
based on each specific case.

These relations apply to machined metals. When the part has internal faults 
(casting, welding, etc.), it is better to use relations of fracture mechanics.

Parameters f , f , b and  are linked to parameters n  and K  of the cyclic 
stress-strain curve [7.3] by: 

1
n

b
[7.24] 

and

f
n

f
K [7.25] 
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In fact, knowing that 

b b
fN , [7.26] 

we have 

b
f f

f1 b
fEE N N

[7.27] 

We have seen that n 0.15 . In most cases, we can consider that parameters f
and f  are approximately equal to real ductility and strength to fracture [MOR 64a] 
[TAV 59].

From the surface of a hysteresis loop drawn in axes going through O
(Figure 7.23), whose area W  is equal to 

a2
a p pO0

W 2 2 d [7.28] 

where a  is the amplitude of the alternating stress, Jo Dean Morrow [MOR 64a] 
shows that 

Figure 7.23. Hysteresis loop

a p
1 n

W 2
1 n

[7.29] 



Low Cycle Fatigue     271

where pO  is equal to 
1 n

O
p

a2
.

Knowing that 

1 n
p a

f
f2

, [7.30] 

it was deduced that 

1 nf
na1

nf

1 n4
1 nW . [7.31] 

The energy W  absorbed by a cycle can equal the specific damping energy 
expressed by B.J. Lazan [LAZ 68] in the form: 

n
aD J W [7.32] 

We can observe, by identifying these relations, that exponent n is only a function 
of n'. If n' = 0.15, we obtain n  7.7 to compare with value 8 given by B.J. Lazan for 
most metals under strong cyclic stresses (conversely, n = 8 would give 
n' = 0.14286). 

7.8.3.2. Useful lifetime in fatigue in terms of energy dissipation 

From relations [7.24, 7.26] and [7.31], we can write [MOR 64a]: 

1
b

f f

W
N

b 1
4

b 1

, [7.33] 

b
1 b

f

WN
W

[7.34] 

or

1 b
b

fW W N [7.35] 
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with

f f f
b 1

W 4
b 1

, [7.36] 

where fW  corresponds to energy W required to break with N = 1 cycle. This 
relation links fatigue life N and strain energy W by cycle. 

Knowing that 
1

n
b

, these relations can be written: 

1 n
b n

fW W N [7.37] 

7.8.3.3. Total energy required for fracture by fatigue 

Since the energy dissipated by cycle is about constant during the fatigue test, the 
total plastic strain energy at fracture can be approximated by [MOR 64a]: 

fW W N . [7.38] 

We therefore have 

1 b
1

bf fW W N , [7.39] 

b 1 b
bf fW W N [7.40] 

and

b
b 1 bf

f

W
N

W
. [7.41] 

Total energy at fracture increases with useful lifetime. It can be much greater 
than the energy required to break the test bar in a static tensile test. 
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Example 7.1. 

For a steel test bar, b = 12, n' = 0.15 and N = 105 cycles, hence 

b 1 b 1 1
1 0.361

b b n b

and

0.3615f

f

W
10 64

W
.

fW  is therefore 64 times larger than energy fW  required to break the test bar in 
static.

NOTE:

The relations above are very often written in terms of quantities 
2

and 2 N in 

order to resolve in half-cycle numbers. For example, total alternating strain a  is 
expressed

f f
a 1 b

1
2 E 2 N 2 N

[7.42] 

where f , f , b and  are constants characteristic of material properties under 

cyclic load, measured from imposed strain tests. 

This relation can also be written as [JOH 78] [MOR 64a] [NEL 78] [SMI 69] 
[WIR 83a]: 

f B c
a f2 N 2 N

E
[7.43] 

where B is an exponent of fatigue strength, expressed 

1
B n n c

b
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where c is a  fatigue ductility exponent (= - ) and N is the number of cycles to 
fracture.  

Figure 7.24. Strain versus number of cycles to fracture 

The values of parameters B, c, and f  characteristic of behavior at fatigue are 
tabulated [LAN 72] [TUC 74] for many common materials. 

Constant c can be approximated by [MOR 64a]: 

1
c

1 5n
[7.44] 

where n' is the exponent defined by relation [7.24]. 

According to the above equations, plastic strains are preponderant in the 
calculation of damage for short and average useful lifetimes. In this case, knowing 

that
1

D
2 N

 for a half-cycle, relation [7.43] becomes

c f
a f 2 N

2 N
[7.45] 

D varies with 
1

p

2
 i.e., since parameter  is close to 0.5, with 

2
p

2
.
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For longer useful lifetimes, elastic strains dominate in such a way that D varies 

with
b

el
2

. With b typically of the order 10, D varies with 
10

el
2

. b 

estimation errors can have much greater consequences than errors in estimating c 
[MOR 64a].

NOTE:

Maximum stress relative to a purely alternating load is equal to a :

b

max f f2 N [7.46] 

By multiplying both members of equation [7.43] by max , we have: 

2b2
b cf f

max f f f

2 N
2 2 2 N

E
[7.47] 

i.e.

2b d

max f fA 2 N D 2 N [7.48] 

where A and D are elastic and plastic damage coefficients (ordinates at the basis of 
elastic and plastic curves at one cycle) and  a and d are slopes of elastic and plastic 
damage curves in logarithmic axes. 

In order to evaluate damage relating to a given alternation, range  is determined 
by the value of the last element to calculate whereas the stress is equal to the final 
alternating stress. These values are multiplied together and used to calculate f2 N . The 
inverse of f2 N  yields the damage of this alternation. Damages are then added.

J.G. Sessler and V. Weiss [SES 63] show that the Coffin relation predicts the 
useful lifetime, but cannot be used to evaluate damage progress during testing. 
Damage process is controlled by at least two processes which may be 
interdependent:

 loss of available ductility caused by hardening; and 

 formation and growth of cracks leading to fracture. 
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7.8.4. Shanley relation 

The Shanley relation [SHA 59] is based on the following hypotheses: 

 controlled strain test; 

 the crack is initiated at the beginning of the load; 

 cracking speed depends on the amplitude of the cyclic plastic strain and, to a 
lesser degree, of the shear stress normal to the slide plane  in which the crack 
propagates;

 the fracture corresponds to a critical cracking surface arbitrarily defined; and 

 the variation of the area based on the number of cycles is given by 

2dS C
dN

[7.49] 

where C is a constant. 

7.8.5. Gerberich relation 

W. W. Gerberich [GER 59] takes a mean strain m into consideration: 

2
f m

p
N [7.50] 

where f  is the apparent fracture ductility. 

7.8.6. Sachs, Gerberich, Weiss and Latorre relation 

These authors [MAT 71] proposed a modification of the Gerberich relation by 
replacing p  by t  (total strain range). 

7.8.7. Martin relation 

The proposed relation is based on a low cycle fatigue energy criterion in the 
plastic field: 

1 2
pN C . [7.51] 
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D.D. Martin [MAR 61a] explains the form of the Coffin relation with a theory 
based on the energy dissipated by hysteresis and finds the relation except for one 
difference for the value of the constant (ordinate at the origin of the curve). 

The constant C is evaluated from a static test by comparing the work necessary 
to fatigue fracture with the work required by static fracture. If f  is the real fracture 
strain, we have:

fC
2

. [7.52] 

The Coffin relation: 

1 2 fN
2

[7.53] 

seems more appropriate in the case of high temperature bending tests. Martin’s is 
preferable for ambient temperature axial strain [YAO 62]. 

7.8.8. Tavernelli and Coffin relation 

This is given by: 

t
D1 2

E C
E

22 N
[7.54] 

where D is the fatigue limit, E is the elasticity module, C is a constant, equal to 

f

2
, f  is fracture ductility and  

D
t p 2

E
,

p 1 2
C

N
 (Coffin relation). 

J.F. Tavernelli and L.F. Coffin [TAV 62] show that the phenomena can be 
described with precision with p  instead of t el p .
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7.8.9. Manson relation 

S.S. Manson [MAN 65] expresses the  deformation in terms of el  and 

p  and shows that the variations of these two terms in relation to N can be 

represented by straight lines in logarithmic axes. They therefore have the form: 

1k
el 1N C [7.55] 

and

2k
p 2N C [7.56] 

where C1 is a function of mR
E

, mR  is the ultimate tensile strength, C2 is a function 

of ductility 
1 100

ln
2 100

 and  is the necking. Note that 

0.12 0.6 0.6m
t

R
3.5 N N

E
, [7.57] 

where N is the number of cycles to fracture. 

These results were obtained from a study involving 29 materials. 

Figure 7.25. Strain versus number of cycles to fracture curve [MAN 65]
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We can observe, in general and from Figure 7.25, the following: 

 with the low number of N cycles, the strength defined by t  is very closely 
linked to ductility  of the material (the term p N  is predominant); and 

 with the large number of N, the strength is greatly based on the yield strength 
and tensile strength ( el N  is predominant) [PIN 80]. 

7.8.10. Ohji et al. relation 

In this case, we consider that the damage is cumulative in a linear way for high 
stress fatigue, with a small number of cycles (a few 103 cycles) and zero (or other) 
mean strain [OHJ 66]. 

Damage per cycle is equal to a , where a is a constant based on the material. 

Fracture occurs when the accumulated damage equals 
a

F2
4

, since tensile and 

compression strains have the same effect of damage, F  is a constant based on the 
material. We then have: 

a
Fa

p
2

N
4

[7.58] 

7.8.11. Bui-Quoc et al. relation 

This is a unified theory [DUB 71a] with a similar approach to that used in the 
case of controlled stress damage [BUI 71], assuming that the accumulation of 
damage leads to a material ductility decrease (zero or positive mean strain). 

7.9. Influence of the frequency and temperature in the plastic field 

7.9.1. Overview 

Low cycle fatigue is more sensitive to load frequency than traditional fatigue. 
Because of the high level of stresses and large strains imposed to the part in the low 
cycle field, it would be preferable not to carry out tests with the frequencies used in 
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the traditional fatigue field, which would lead to very high localized warming 
modifying the phenomena.

The tests show that resistance to fatigue decreases when test speed (or 
frequency) decreases in the case of frequencies lower than approximately 16 Hz 
[YAO 62]. A recommended speed for tests is between 0.8 and 1.7 Hz to avoid the 
excessive production of heat, to maintain a reasonable test time and to decrease the 
effect of frequency to a minimum [BEN 58].

Low cycle fatigue was the subject of frequency and temperature sensitivity 
studies.

A. Coles and D. Skinner [COL 65] observed from steel Cr - Mo - V test bars that 
the Coffin relation 1 2

p N C  overestimates useful lifetime at regular 

temperature and at high temperature (up to 565°C). The gap increases with 
temperature (creep influence).

7.9.2. Influence of frequency 

J.F. Eckel [ECK 51] has shown from lead sample tests in bending that there is a 
relation between useful lifetime and frequency, of the form 

log T log b m log f [7.59] 

where T is useful lifetime, f is frequency, b is useful lifetime for f = 1 and m is a  
constant. Alternatively, 

m
b

T
f

. [7.60] 

This relation was established for very low frequencies (of approximately a cycle 
per day). For other metals besides lead, J.F. Eckel suggests that at high temperature 
we may have the same type of relation.

7.9.3. Influence of temperature and frequency 

L.F. Coffin [COF 69] [COF 69b] provided the relation 

p 21C C [7.61] 
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where k k 1
1 fC f T N f , k is an independent parameter describing plastic strain 

(based on temperature and generally lower than one), f is test frequency, T is total 
test time (or time to fracture),  and C2  are constants based on the material,  is 
an increasing function of temperature (but not of frequency) and fN  is useful 
lifetime in number of cycles. 

Figure 7.26. Variation of p

f
 according to C1

For a specific material tested at different temperatures, curves representing 

variations of p

f
 according to C1 (or k 1

fN f ) are straight lines converging at the 

abscissa C1 point between 25 and 100 (if time is expressed in minutes) in 
logarithmic axes. 

Between this C1 value and 1
1

C
4

, lines merge into one, defined for 
1
2

(tensile ductility). 

When 1
1

C
4

 [BAR 65a],  

p

f
1 .
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At low temperature, k = 1, f
1

N
4

 and p f  ( p 1 2
2f

f

1
N C

4
).

At high temperature, we have 

1 k

p 2 fC N f [7.62] 

or [COF 69] 

1

1 k2
f

p

C
N f

where C2 depends on f  and O coordinates. The value of the constant k tends 
toward zero at high temperatures. 

J.F. Barnes and G.P. Tilly [BAR 65a], however, note that relation k 1
1 fC N f

does not always correctly describe the behavior of the material in all frequency and 
temperature conditions. 

7.9.4. Effect of frequency on plastic strain range  

At regular temperature and for low cycle fatigue, applied plastic strain range 
p  and resulting stress range  (peak-to-peak amplitude) are connected by the 

following relation [MOR 64a] 

n
pA [7.63] 

where A is range of stress for p 1  and n is cyclic strain hardening exponent. 

This relation is independent of the frequency. At high temperatures, frequency 
can influence the value of the stress range for a given plastic strain range. L.F. 
Coffin [COF 69b] takes this behavior into consideration by modifying relation 
[7.63] as follows:
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1
n k

pA f [7.64] 

where k1 is a constant at high temperature (0.05 < k1 < 0.15), negative in certain 
cases.

If the material is insensitive to the frequency, k1 = 0. The range of elastic strain 
can be obtained from this relation, by dividing  by the Young E modulus. 

7.9.5. Equation of generalized fatigue 

From the relations in section 7.8.3, we have [COF 69b]: 

pE
[7.65] 

1
n k

p 1 k
2 f

A f
C N f

E
[7.66] 

i.e., by eliminating p  with the help of relation k 1
f p 2N f C ,

1

n
1 kk 2

2 fn k 1n
f

CA f C N f
E N f

[7.67] 

1k n k 1 1 kn n
22 f f

A C N f C N f
E

[7.68] 

We then have a generalized fatigue equation that can apply to high and low 
temperatures simultaneously. At high temperatures, constants A, C2, n, , k and k1
must be determined for each temperature.

We derive the Manson equation at regular temperatures by assuming that the 
frequency has no effect: k = 0 and k1 = 0.

If we let 0.6 , n 0.2 , 0.6
2C  ( f = tensile ductility) and m

0.12
f

R
A 3.5

( mR  = ultimate stress), we have 
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0.12 0.60.6m
ff f

3.5 R
N N

E
[7.69] 

which is the relation given by Manson. 

If k = 1, 0.5 , 2 fC 0.5 , k1 = 0, n = 0 and DA 2 , ( D = fatigue limit 
of the material), we find the relation proposed by Langer: 

D f
1 2
f

2
E 2 N

[7.70] 

7.10. Laws of damage accumulation 

7.10.1. Miner rule 

Several authors attempted to link the energy dissipated by hysteresis to fatigue 
(this is the case with Miner, for example) by suggesting that fracture by fatigue 
occurs when the quantity of energy absorbed by the specimen reaches a critical 
value [LIE 78] [YAO 62]. However, this criterion was often questioned as the 
energy absorbed by the complete system cannot exactly represent the energy 
required for a highly localized fatigue fracture. We could show that all the 
mechanical hysteresis energy does not lead to material damage and that there is 
hysteresis below the limit of fatigue that, when produced by an inelastic deformation 
of the material, does not generate fatigue damage.

The Miner rule is used, however. Each level i  cycle creates damage 
i

1
N

 and 

total damage is written as

ii

1
D

N
. [7.71] 

Fracture occurs (in theory) when D = 1. 

J.G. Sessler and V. Weiss [SES 63] have shown that at fracture, quantity 

i

ii

n
D

N
[7.72] 
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can vary from 0.6 to 1.6 (A302 and 4340 steels) and is sensitive to the sequence of 
strain application when several levels are applied consecutively. 

Considering the Coffin relation, this expression of damage can also be written as 

i

1
p1

i

1
D

C
. [7.73] 

i.e., if 
1
2

,

i

2
p2

i

1
D

C
. [7.74] 

This law can be better verified by experience than with the Miner rule applied in 
the field of elastic fatigue [BAR 80]. 

Several authors use the Miner rule, and note that the sequence of strain 
application also has an influence in this field, since damage D is greater than that for 
LO-HI sequences [COF 62]. 

Ju et al. [JU 69] provide the following rule for shear stress: 

pn
i

ui 1
1.0 [7.75] 

where i  is the range of variation of plastic shear strain for cycle i, u  is shear 
fracture strain for one load cycle and p is an empirical constant, based on the 
material and load speed (frequency). 

For light alloy test bars (6061 - T6), p = 1.26 for dynamic tests and p = 1.06 for 
static tests. Specimens can therefore support more dynamic load cycles than static 
load cycles [COF 62].

7.10.2. Yao and Munse relation 

J.T.P. Yao and W.H. Munse [YAO 62a] established a relation describing the 
accumulation of fatigue by plastic strain for steel for useful lifetimes lower than 
1,000 cycles: 
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1

1 mn
t

ti 1

q
1

q
[7.76] 

where tq  is the variation of the real tensile cyclic plastic strain, 
1tq  is the value 

of tq  for n = 1, m is a constant equal to the slope of t N  in logarithmic axes, 
n is the number of applied cycles and t  is the variation of calculated plastic 
cyclic strain.  

Relation pN C  can be used to calculate damage, by accepting that 

damage is based on plastic strain accumulated in the part. At each cycle, we have 
[LIE 82a]:

1
pdD

dn C
[7.77] 

where 
1
2

 [KIK 71] and C is a constant of the material approximately 

proportional to fracture ductility f .

There is a fracture if D = 1, i.e. if 

1
2 N pi

i 1

1D 1
2 C

[7.78] 

which results from applying the Miner rule to imposed strain amplitude tests 
(cumulative linear law). pi  is the value of the plastic strain range for each half 

cycle. M. Kikukawa and M. Jono [KIK 71] observe that this hypothesis provides a 
good approximation of the useful lifetime measured for smooth specimens for many 
materials under different load conditions.

This method makes it possible to forecast a useful lifetime in imposed strain or 

load, by measuring total strain. By subtracting elastic strain 
E

, we have p

hence damage D.
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This relation does not consider the order of sequence or cycle application. It 
therefore only applies if over- or under-load effects are insignificant.

7.10.3. Use of the Manson–Coffin relation 

From relation [7.23], we can note the damage per cycle in the form [LIE 82a]: 

1
1p
b

t e

dD 1
dN 2 N

[7.79] 

where t2 N  (number of half cycles) is the abscissa of the point of intersection of 
elastic and plastic straight lines in the Manson–Coffin diagram. 

7.11. Influence of an average strain or stress  

If we carry out a test in which strain  varies between two values min  and 

max  such as mean strain, 

min max
mean 2

[7.80] 

must be non-zero, the presence of this mean strain has very little influence on the 
behavior of the specimen: after significant initial stretching during the first cycle, the 
mean stress relaxes and the test continues as if the mean strain was zero.

A decrease of endurance (useful lifetime) can sometimes be observed in some 
sequences where mean  varies without the mean stress ever completely relaxing. 

If the test is carried out with non-zero mean imposed stress, a strain is gradually 
created and tends to stabilize or not according to the amplitude of the imposed 
stress. There is a limit of accommodation beyond which there is no stabilization any 
longer and we very quickly reach fracture [PLE 68].

The simultaneous application of a cyclic strain and a permanent strain increases 
fracture ductility for many types of metals [COF 62]. 

J.G. Sessler and V. Weiss [SES 63] showed that a mean strain and a pre-strain 
are equivalent in low cycle fatigue tests. 
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G. Sachs et al. [MAT 71] could verify that the Coffin expression is correct for 

completely alternating strains for which the ratio min

max
R  is equal to –1. 

For R 1, we have a pre-strain requiring the modification of the Coffin 
relation as follows: 

1
f 0N [7.81] 

or

f 0N [7.82] 

where:  

0 max min
1
2

 pre-deformation; 

max min  range of strain; 

f  = apparent fracture ductility obtained by extrapolation for 
1

N
4

 cycle; and 

 = constant close to 0.5. 

T.H. Topper and B.I. Sandor [TOP 70] conclude after an experimental study 
that: 

 a plastic pre-strain significantly decreases useful lifetime measured in elastic 
strains, but has little effect on useful lifetime in plastic strains; and 

  pre-strain tensile and compression effects can be correctly represented by an 
empirical relation of the form: 

0

2 2 E
[7.83] 

where E is Young’s modulus. T.H. Topper and B.I. Sandor [TOP 70] then combine 
damages according to the Miner rule. 
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We have seen that the mean stress has little influence, because the material 
adapts in the plastic field. The presence of mean stress mean  only occurs on the 
“elastic” part of the relation [DEV 86].

The modified stress-strain relation [7.43] from Manson–Coffin can also take the 
form 

B cf mean
f2 N 2 N

2 E
[7.84] 

This expression provides similar results to Goodman’s (strength to fracture is 
replaced by f ) [DEV 86] [LIE 82a] [NEL 78]. 

7.11.1. Other approaches 

7.11.1.1  Modification of the strength to fracture coefficient

We consider that a mean stress alters the value of the strength to fracture 
coefficient in the stress-strain relation. If tension is involved, it decreases strength to 
fatigue; if compression is involved, it increases it.

In the case of a tensile mean stress, we have  

b
a f mean N [7.85] 

and in the case of a compression mean stress  

b
a f mean N [7.86] 

By substituting these values into relation [7.22], we have 

f mean f
1 bE N N

. [7.87] 
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Figure 7.27. Influence of a non-zero mean stress   

7.11.1.2. Smith relation

Smith et al. [SMI 69] propose the relation 

b
b cf f f

f f f
max

2 N
2 N 2 N

2 E
[7.88] 

According to Morrow [MOR 64a]: 

b cf
a f f f2 N 2 N

E
[7.89] 

and

b
a f f2 N . [7.90] 

7.12. Low cycle fatigue of composite material 

This subject will not be developed here because of the wide range of composite 
materials. We will only mention an experimental study by B.D. Agarwal and J.W. 
Dally [AGA 75] on composite material (SCOTCHPLY - 1000, fiberglass reinforced 
plastic) that has shown that:

 the relation of the form 

kN C [7.91] 
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correctly applies (  being total strain, since there is no plastic strain with this 
material); 

 controlled stress and controlled strain tests lead to the same results, on the 

condition that data be normalized considering 
mR

 and 
f

 ratios where f  is the 

ultimate fracture strain and mR  is the ultimate fracture stress; and 

 we observe a progressive decrease of modulus E  in a linear way 

according to log N. This variation is caused by progressive fractures of strands. 

A synthesis carried out by A.W. Cardrick [CAR 73a] from a few studies also 
shows that the Miner rule can apply to a certain number of composite materials and 
that it offers a dispersion in relation to a D = 1 fracture that is no more significant 
than for metals and alloys. 



Chapter 8 

Fracture Mechanics 

8.1. Overview 

Wöhler curves are often used in fatigue studies in order to define a fatigue limit 
under which there is no fracture by fatigue and therefore for which cracking does not 
become initiated. 

Certain parts may, however, have manufacturing problems from which a crack 
can appear which will propagate until fracture, even if the stress is lower than the 
limit of fatigue [LIE 82]. 

A large number of studies were carried out to attempt to predict the propagation 
of cracks in aeronautical structures experiencing repeated loads. Among the most 
important reasons noted in these studies is the need to: 

 evaluate as accurately as possible the useful lifetime of airplane parts in service 
in which cracks or other damage were detected and defining inspection intervals; 

 manage airplane security considering possible evolutions during use; and 

 satisfy project specifications in relation to damage tolerances imposed by 
civilian and military users. This type of specification may, for example, require that 
all major structures, from a security standpoint, be designed so that the damage that 
may have occurred initially and which may have been ignored during a service 
inspection cannot reach a critical dimension and produce a fracture or the loss of a 
plane during a certain period of time [WOO 73].

Fatigue Damage: Second Edition - Volume 4 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 



294     Fatigue Damage 

The behavior of a part in fatigue can be studied from endurance curves (Wöhler) 
and, with the crack propagation aspect, curves of endurance can be checked to 
ensure they do not distinguish. 

We will see that, after initiation in a smooth specimen, propagation of a crack is 
a short phase in the specimen’s lifespan in relation to its total lifetime: less than 5%, 
according to the level of stress.

Figure 8.1. S-N curve

However, for a pre-cracked part (elements of some structures can only work in 
these conditions because of the stresses imposed), this phase is often predominant 
and can almost constitute the complete useful lifetime of the part; hence its 
importance and the necessity of a complementary study [LIE 82].

Fracture mechanics was developed from the brittle fracture: i.e. the catastrophic 
fracture of a structure composed of a generally ductile material under insignificant 
stress, lower than the yield stress calculated for the complete area and with no 
notable plastic strain.

A brittle fracture is a fracture that occurs suddenly and that is not preceded by a 
large increase in strain [JOH 53]. 

A perfectly brittle material would be a material for which complete fracture 
would occur at the same moment as fracture at the most fragile point (where there is 
a concentration of stresses). 

Fracture occurs when the load to fracture is exceeded without prior plastic strain. 

A plastic fracture, on the contrary, is a fracture preceded by large strains. A 
perfectly plastic material would have unlimited amplitude to support strains, with 
resistance that is equal to strength to fracture [JOH 53].
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Between these two extremes, we find materials with intermediate characteristics 
with all possible cases. 

Figure 8.2. Stress-strain curve of a brittle material

Figure 8.3. Stress-strain curve of a perfectly plastic material 

Experience shows that brittle fractures always come from cracks developed 
during the part’s lifetime, or from cracks in welds that can have occurred during 
manufacturing [POO 70]. 

Fracture mechanics is mainly used in aeronautics and for studies of pressurized 
tank behavior, for which cracks can lead to leaks (for example, space vehicles). 
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8.1.1. Definition: stress gradient 

Stress gradient  is by definition the tangent slope of the root of notch stress 
field, reported to the maximum value of the stress in the same location [BRA 80a]: 

x 0 max

1 d
lim

dx
 (mm–1) [8.1] 

8.2. Fracture mechanism 

8.2.1. Major phases 

From faults in the material (faults or circumstances favorable to a local 
decohesion of the material because of a high concentration of stresses, 
inhomogenities in a polycrystalline metal, etc.), alternating stresses create micro-
cracks that quickly increase to a few surface micrometers (after a few 106 cycles). 
Progression then becomes slower before accelerating once more at the end of the 
lifetime between part fracture [RAB 80]. The propagation phase from a micro-crack 
to fracture can last 90% longer than the part’s total useful lifetime [HAR 61].

Figure 8.4. Fracture mechanism [SOB 92]

Damage can then be considered as a progressive change in the material’s 
microstructure, all the way to nucleation and propagation of cracks by localized 
action of tension/compression alternating stresses and plastic strains. 

The useful lifetime of a part submitted to cyclic loads leading to fracture by 
fatigue can be schematically broken down into three phases [BAR 80] [HEA 53] 
[MAR 58] [PAR 62] [RAB 80]: 

 initiation of the crack; 
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 slow propagation of the crack. Some authors distinguish between the 
propagation of micro-cracks and cracks (macro-cracks). In general, the phase 
involving macro-cracks is the second phase; and

 sudden propagation leading to fracture (propagation of the crack caused by, for 
example, static load [IRW 58]. 

8.2.2. Initiation of cracks 

In the first fatigue phase, damage is expressed by the formation of isolated 
micro-cracks from an initial defect, ensuring relaxation of high strain 
incompatibility zones [FRE 68]. In general, cracks appear on the surface of parts for 
many reasons: greater surface stresses under certain load conditions (torsion, 
bending, etc.), corrosion, machining faults, fillets, piercing, notches, etc.

During the nucleation step, the process of damage occurs at a level that is greatly 
influenced by the random nature of the micro-structure: the damage model should 
therefore be probabilistic in this phase.

The probability of initiating a crack in a given zone of a part mainly depends on 
the local dynamic stress in this zone. Any geometric, physical or metallurgical 
phenomenon which increases the amplitude of the stress to a point has significant 
influence on the behavior at fatigue.

Resistance to the initiation of cracks for large numbers of N fracture cycles is 
directly linked to the mechanical strength to the material characterized by the 
ultimate stress mR . For small N values, ductility is an important factor.

Different methods for predicting the number of cycles necessary for initiating 
cracks were developed, based on local strain amplitude, on the Neuber coefficient or 
on the stress intensity factor. These methods only involve a limited number of 
parameters, probably much lower than the actual number. Because of this 
uncertainty and the almost general observation of the presence of quasi-macroscopic 
faults in structures within manufacturing, it appears that this number of cycles 
should be considered zero [BAR 80].

Time of crack initiation can also be considered as the number of stress (or strain) 
cycles producing, for example, a 1 mm long crack (a micro-crack is a crack that can 
reach 0.5 to 1 mm) [MUR 83]. 

We most often consider that when a crack reaches a length of 0.1 mm [PAR 63] 
[RAB 80], it regularly propagates in the section. This length (0.1 mm) is 
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conventional and, according to the authors, there are different values in the 
literature: 0.05 mm [HEA 53], 0.5 mm [NOW 63], 50 to 100 m [LIE 82], 10 mm 
[SCH 70]. G. Glinka and R.I. Stephens [BER 83] choose 0.25 mm, by specifying 
that this value is convenient but that the exact value is not the most important for the 
calculation of the total useful lifetime (in a reasonable field).

The initial dimension of cracks, a, is sometimes considered as a random variable 
[HAR 83]. Probability densities are chosen by considering the fact that the crack 
cannot be larger than the initial thickness h of the part. 

Example 8.1. 

The exponential Marshall law [MAR 76] is of the form: 
a

h
ep a

1 e
[8.2]

where  = 6.25 mm. 

The log-normal Becher and Hansen law [BEC 81] [JOH 83] is expressed: 
2

2

aln

21p a e
a H 2 [8.3] 

where 
hln1H 1 erfc

2 2
,

 = 0.82 and  = 1.3 mm. 

For welded structures, the mean value of a equals a 0.15  mm and standard 
deviation a 0.083  mm. 

By considering variable ln a ,  obeys a normal law defined by  
N[–2.031 ; 0.267]. 
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With this angle, the fatigue limit can be defined as the minimum stress leading to 
the initiation of a crack or to a crack that propagates. This definition is arbitrary and 
could be different whether we consider the appearance of a micro-crack or a micro-
structural evolution of the material.

8.2.3. Slow propagation of cracks 

Propagation of the crack is generally slow depending on the material’s ductility 
properties. 

The growth of cracks in the metal depends on their crystalline structure, the 
environment and the distribution of stresses in a zone close to the crack. 

Microscopically, we observe grooves; each groove can be associated with a load 
cycle in the case of variable load amplitude tests [MIL 67]. 

The emergence of a small crack is not always the sign of a future fracture. The 
crack sometimes stops or progresses very slowly. However, since we cannot predict 
for sure if the crack will stop, it would be wise to presume that it will continue to 
fracture and, if the part is vital, it should be replaced.

Linear elastic fracture mechanics is based on the analytical result that elastic 
stresses surrounding the root of the crack have a distribution that is independent 
from the applied load and geometry [PAR 65]. The intensity of the stress field 
around the root of the crack can however be uniquely described according to these 
two parameters.

8.3. Critical size: strength to fracture 

Consider a cracked part experiencing a sinusoidal  stress; the size of the crack 
will increase over time until it reaches a critical value ac at which time the part will 
break. The location of ac values when  changes (Figure 8.5) characterizes strength
to fracture of the material. 

This parameter measures the strength of the material to fractures with load. For a 
given  stress, this curve results in ac and conversely [WEI 78]. 

The potential strength of a material is therefore defined by the size of the 
dominant crack present in the part and by the material’s strength to fracture. 
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Figure 8.5. Stress versus critical size curve

Contrary to the traditional approach of fatigue analysis, the fracture mechanics 
approach focuses on the growth of the fatigue crack step instead of on the initiation 
or the initiation/propagation group step. Here we assume the presence of an initial 
crack. This methodology and corresponding hypotheses are well justified through 
experience [TIF 65].

Fracture mechanics focuses on the propagation of the crack from an initial size ai
to the size to fracture for a critical size ac according to the number of cycles N 
(Figure 8.6). 

Figure 8.6. Size of the crack according to the number of cycles 
(for a sinusoidal constant amplitude stress)
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Cracks spread with the appearance of grooves and ripples described by C. Laird 
[LAI 66], followed by B. Tomkins and W.D. Biggs [TOM 69]. 

Over time, as the crack increases, we can observe a decrease in the part’s 
strength (Figure 8.7). 

Figure 8.7. Evolution of strength according to time [BRO 78]

After a certain amount of time, the part’s strength is such that it can no longer 
support the greatest service load. If this load does not appear, strength continues to 
decrease until fracture occurs during load.

The duration of each step varies. For smooth specimens duration of phase I can 
be between 50 and 95% of the part’s total useful lifetime, for useful lifetimes 
between 103 and 105 cycles [LIE 82], and can reach 99% for longer useful lifetimes.

8.4. Modes of stress application 

Stresses can increase the size of a crack in several modes; they can be applied 
[BRO 78] [MCC 64] [POO 70] [SHE 83a] [TAD 73]: 

 from YY' axis, where they then open the crack (mode I); 

 from XX' axis (movement of crack edges to plane) (mode II); or 

 from ZZ' axes (tear) (mode III), perpendicular to the crack’s plane. 
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Figure 8.8. Axes of the crack Figure 8.9. Mode I 

Figure 8.10. Mode II Figure 8.11. Mode III

Superposition of these three modes is sufficient to describe the more general case 
of crack opening. It is traditional to add roman numbers I, II and III to the different 
symbols used in calculations to indicate the mode. The fracture of isotropic brittle 
materials usually occurs in mode I, which explains the close attention paid to this 
mode [POO 70].

8.5. Stress intensity factor 

8.5.1. Stress in crack root  

The distribution of stresses in the neighborhood of the tip of a crack was studied 
by L.N. Sneddon [SNE 46], followed by G.R. Irwin [IRW 57] [IRW 58a], using a 
calculation method proposed by H.M. Westergaard [EFT 72] [WES 39] and M.I. 
Williams [WIL 57]. 
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Figure 8.12. Plate element in the crack root neighborhood

Consider a cracked plate (Figure 8.12) and suppose that all stresses in the plate 
remain in the elastic field in the first place. 

In the vicinity of any point of the contour of the crack, stresses tend towards 
infinity. 

A dx dy element of the plate located at a distance r from the root of the crack, 
with a  angle in relation to the crack plane, experiences normal stresses x  and 

y  in the X and Y directions and shear stresses xy .

The singular part of the field of stress only depends on three parameters KI, KII
and KIII corresponding to the three modes listed above. 

The distribution of stresses for a given geometric form and given loads can be 
established by the traditional elastic theory, under the condition that the values of 
calculated stresses are purely elastic and that corresponding strains are small. 

In practice, stresses which are too great result in plastic strains which, in turn, 
increase the limit of elasticity by hardening. 
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Despite these limitations, the elastic theory is very useful if it is associated with 
experimental results. 

We show that the field of stresses is given by the following asymptotic 
developments (mode I) [BRO 78] [PAR 61] [PAR 62] [PAR 65] [TAD 73]: 

x
a 3cos 1 sin sin

2 r 2 2 2
[8.4] 

y
a 3cos 1 sin sin

2 r 2 2 2
[8.5] 

and

xy
a 3

sin cos cos
2 r 2 2 2

. [8.6] 

According to the ZZ' axis perpendicular to plane XY, we have: 

z 0  (plane stress) 

or

z x y  (plane strain)  [8.7] 

where  is Poisson’s ratio (approximations are obtained by eliminating the higher-
order terms in r). 

The stresses are always plane to the surface. The plane strain hypothesis can be 
used within a plate. In this case, the stress perpendicular to the plane has an 
amplitude that varies from zero at surface to the corresponding value at the plane 
strain within the plate. The plastic zone is therefore more important at the center 
than at the surface.

8.5.2. Mode I 

Elastic stress fields [POO 70] are defined: 

I
x

K 3cos 1 sin sin
2 2 22 r

, [8.8] 
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I
y

K 3cos 1 sin sin
2 2 22 r

[8.9] 

and

I
xy

K 3
sin cos cos

2 r 2 2 2
. [8.10] 

Plane strain is described by: 

z x y [8.11] 

and

xy yz 0

where, for plane stress, z 0 . Displacements corresponding to X, Y and Z 
directions are represented: 

Figure 8.13. Displacement notation at distance r from the root of the crack

2IK ru cos 1 2 sin
G 2 2 2

, [8.12] 

2IK rv sin 2 2 cos
G 2 2 2

[8.13] 
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and w 0 , where G = E
2 1

 (shear modulus). 

These relations can also be written as 

IK 2 ru K 1 cos sin sin
4 2 2

, [8.14] 

IK 2 rv K 1 sin sin cos
4 2 2

[8.15] 

where 

E
2

1
. [8.16] 

In plane strain, 

K 3 4 , [8.17] 

1 2 1K 1
4 E

[8.18] 

and
22 1K 1

2 E
. [8.19] 

In plane stress, we have 

3
K

1
, [8.20] 

K 1 1
4 E

[8.21] 

and
K 1 2
2 E

. [8.22] 
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8.5.3. Mode II 

II
x

K 3sin 2 cos cos
2 2 22 r

[8.23] 

II
y

K 3
sin cos cos

2 r 2 2 2
[8.24] 

II
xy

K 3cos 1 sin sin
2 2 22 r

[8.25] 

In plane strain,  

z x y [8.26] 

xy yx 0

 (in plane stress, z 0 ).

2IIK ru sin 2 2 cos
G 2 2 2

[8.27] 

2IIK rv cos 1 2 sin
G 2 2 2

[8.28] 

w 0

8.5.4. Mode III 

III
xy

K
sin

2 r 2
[8.29] 

III
yz

K
cos

2 r 2
[8.30] 

x y z xy 0 [8.31] 
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IIIK 2 r
w sin

G 2
[8.32] 

u v 0

8.5.5. Field of equation use 

These equations were established for static or slowly progressing cracks from 
serial developments of fields of stress, by ignoring the highest order terms in r. 
These are good approximations when r is small in relation to the other part 
dimensions in the plane (x, y). They tend to be exact when r tends towards zero.

For 0 , we have: 

y x
a

2 r
. [8.33] 

When r , y 0  (instead of ) and when r 0 , y .

Figure 8.14. Stress versus distance r

The above equations can only be used around the root, albeit with a modification 
to take into consideration the fact that, when r tends towards zero, the stress cannot 
be infinite by remaining in the elastic field. 
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For 0 , the shear stress xy  is zero. Principal stresses 1  and 2  are equal 

to x  and y , respectively. The third principal stress is perpendicular to the plate 

( 3 z ).

Figure 8.15. Mohr’s circle: principal stresses (any )

If  is ordinary, principal stresses at any point can be calculated from the Mohr 
circle:

2
x y x y 2

1, 2 xy2 2
. [8.34] 

By replacing x  and y  with their expression given by relations [8.4] to [8.7], 
we have 

I
1

K
cos 1 sin

2 22 r
, [8.35] 

I
2

K
cos 1 sin

2 22 r
[8.36] 

and

3 0
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or

I
3

2 K
cos

2 r 2
. [8.37] 

8.5.6. Plastic zone 

G.R. Irwin developed a method for evaluating the size of the plastic zone at the 
tip of the crack in a specimen to a single monotonous load [IRW 60]. 

If we remain in the field of elastic stresses, relations [8.4] to [8.7] are 
approximately correct to the limit of the plastic zone, which must make it possible to 
evaluate the position of the elastic and plastic field border. 

Figure 8.16. Plastic zone at the tip of the crack

We have seen that, in the case of elastic stresses, the solution leads to a curve 
y r  which can be infinite when r 0 . Physically, such a behavior is impossible 

since the stress cannot increase indefinitely without transferring into the plastic field.

A small volume of metal at the root of the notch or at the edge of the crack is 
submitted to very high stresses and is therefore the subject of a quick plastic 
evolution during fatigue. At the limits of this field, deformations remain slightly 
elastic and are imposed by the behavior of the rest of the specimen. The small plastic 
zone works in imposed strain mode, leading to a decrease of local alternating 
stresses if the metal is initially work hardened [BAR 77].
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Figure 8.17. Variation of the local alternating stress in imposed strain 

At the root of the crack, a plastic zone of length rp (Figure 8.16) is established 
and can be approximated from the relation 

I
y e

p

K
R

2 r
, [8.38] 

hence

2
I

p 2
e

K
r

2 R
[8.39] 

in plane stress. In practice, the plastic stress zone cannot be greater than rp.

The plane plastic strain zone pr  is smaller than the plane plastic stress zone, 

because the effective yield stress for plane strains is greater than the yield stress 
depending on an axis [BRO 78]. 

Irwin [IRW 60a] shows that the factor making it possible to go from rp to pr  is 

equal to 2 2 1.68 , hence the length of plane plastic strain is 

2
I

p 2
e

K
r

6 R
. [8.40] 
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8.5.7. Other form of stress expressions 

Relations [8.4] to [8.7] stresses can be expressed as: 

2I
r

K
cos 1 sin

2 22 r
, [8.41] 

2IK
cos 1 sin

2 22 r
[8.42] 

and

2I
r

K
sin cos

2 r 2 2
. [8.43] 

In the case of mode II, we show that we have [EFT 72] [PAR 65] [TAD 73]: 

II
r

II

II
r

K 5 3 3
sin sin

2 r 4 2 4 2

K 3 3 3
sin sin

2 r 4 2 4 2

K 1 3 3
cos cos

2 r 4 2 4 2

[8.44] 

z x y [8.45] 

and

xz yz 0 .

For an infinite cracked plate with a shear stress  in the plane at infinite, 

IIK a .

For mode III: 

x y z xy 0 ,



Fracture Mechanics     313

III
xz

K
sin

2 r 2
[8.46] 

and

III
yz

K
cos

2 r 2
. [8.47] 

8.5.8. General form 

Equations [8.4] to [8.7] can be written in the generalized form 

I
i j i j

K
f

2 r
[8.48] 

where 

IK a [8.49] 

for a plate of infinite width. 

For a finite dimension part, we show that we have 

IK a [8.50] 

where  is a function of the part’s geometry and load conditions. 

Index I is a reminder that these expressions were obtained for mode I (tension 
based on axis YY'). 

We note that i j  is proportional to load , which is the result of the elasticity 

hypothesis. 

The notch root stress is at its highest when radius r is equal to radius  of the 
notch and has a value of 

I
max

2 K
. [8.51] 



314     Fatigue Damage 

IK
 is therefore the important parameter in the initiation of cracks. 

We show that there is a limit value of this relation beyond which no crack can 
initiate [BAR 80]. 

KI is called “stress intensity factor” (not to be confused with the stress 

concentration factor defined as the max
t

nom
K  ratio between the maximum root of 

notch real stress max  and nominal stress nom  in the same section) [ERD 83]. 

This factor is important and widely used in fracture mechanics. KI can be 
considered as a measure of the load effect and the effect of the part’s geometry on 
the stress intensity close to the tip of the crack, a measure of the singularity of 
stresses at the root of the crack [POO 70].

When the load varies and geometry changes because of the expansion of the 
crack, the instant KI value reflects the effects of these changes at the root of the 
crack [PAR 61]. 

When the size of the plastic zone at this point is small in relation to the length of 
the crack, factor KI can provide a good indication of the state of root of notch 
stresses.

8.5.9. Widening of crack opening 

For an elliptical crack, this widening e has a value of 

4 a
e

E
[8.52] 

and at the center 

max
4 a

e
E

. [8.53] 

From the definition of K, we can observe that two cracks have the same K of 
a  = constant. 
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Figure 8.18. Elliptical crack

We have seen that the elastic model leads to an infinite elastic stress that is 
unrealistic close to the bottom of the crack. We can actually observe at that place a 
plastic deformation in a zone where the size can be evaluated by calculating distance 
rp (from the root of crack) to which the elastic stress y  exceeds the elasticity limit 

eR . From equations [8.33] and [8.49], we obtain for 0  [MCC 64]: 

2 2
I

p 2 2
e e

K a
r

2 R 2 R
[8.54] 

i.e. rp only depends on KI and eR .

In reality, the plastic zone is larger than is indicated by this relation [BRO 78]. 

Because of this relation, cracks with the same KI will have the same behavior. 
This is true even if we consider the plastic zone around extremities, reinforcing the 
interest of this parameter, which is a measure of stresses and strains. 

8.6. Fracture toughness: critical K value 

Two conditions are necessary and sufficient for the growth of a crack under 
static load: 

 there must be a large enough stress to jeopardize an appropriate fracture 
mechanism; and 

 the strain energy triggered by a crack growth increment must be equal to or 
greater than the energy required to form the new surfaces of the crack [POO 70]. 
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Under an increasing load, a crack starts to grow when stresses and strains at its 
extremities reach a critical value, or when KI reaches a critical value KIc. It 
continues to grow as long as KI is higher than KIc.

KIc can then be considered as a property of the material appropriately 
characterizing its resistance to the brittle fracture. 

There are tables providing this toughness to fracture for different materials 
[HOF 68]. KIc is determined experimentally by resistance to fracture tests, in a 
similar way to tests intended for measuring the ultimate tensile stress [COF 69]. 

In the ideal case of an infinite plate with central crack 2a long submitted to plane 
stresses  acting in a uniform way and perpendicular to the crack [LIA 73], we 
have [8.49]: 

IK a

where 

m a [8.55] 

m  is mean stress and a  is alternating stress. 

The critical value therefore has the value 

Ic cK a . [8.56] 

IcK  is a parameter characteristic of the material. It is a measure of its toughness 
to fracture. Two cracked parts of a single material will have the same behavior if 
they have the same IcK .

In fact, these relations are established for parts of infinite dimensions. In practice 
however, we have [TAD 73]: 

I
aK a f
L

[8.57] 

where L is the width of the plate. 

IcK  is a function of 
a
L

, tending towards the unit when L becomes very large. 
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Function af
L

 can be expressed in the form of a polynomial in 
a
L

.

For a band in tension, C.E. Feddersen [FED 67] provides the following relation 
(developed from that of M. Isida [ISI 55]): 

I
aK a sec

L
[8.58] 

where 
1

sec
cos

.

Figure 8.19. Cracked band in tension 

We have also presumed that the plate has a large enough volume so that 
displacements in this direction are low (plane strain). If that is not the case (plane 
stresses), IcK  depends on the size [BRO 78]. 

Low IcK  materials can only tolerate small cracks. 

8.6.1. Units 

IcK  is expressed in MPa m  or in 3 2MN / m , with the following unit 
conversions: 

3 2 3 21 MN / m 3.23 kg / mm 0.925 ksi in

3 2 3 21 kg / mm 0.31 MN / m 0.287 ksi in

3 2 3 21 ksi in 1.081 MN / m 3.49 kg / mm .
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Example 8.2. 

For aluminum alloy 7075 - T6, 

2
mR 560 MN / m ,

2
eR 500 MN / m

and

IcK 32 MN / m .

Relation [8.56] makes it possible to calculate resistance based on length 2a of the 
crack:

Ic Ic
c

K 2 K
a 2 a

 [8.59] 

Figure 8.20. Resistance versus 2a ( I cK 32 MN / m )

The resistance decreases by half when m
c

R
2

, when 
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2
I c
2
m

4 K
a 0.00416 m

R
,

2 a 8.315 mm .

For a = 0, relation [8.59] leads to infinite c . We must correct this relation for 
small a so that we have c mR .

8.7. Calculation of the stress intensity factor 

The calculation problem of parameter KI is linked to the consideration of 
conditions to limits. Approximate solutions were obtained in a few cases, 
particularly for metallic bands with finite width, cracked at the center or on one of 
the edges loaded in tension (one crack). 

IK a
1 2asec

W

IK a  (
a
W

 small) 

IK 1.12 a  (
a
W

 small) or tK Y a

with
2 3 4a a a aY 1.99 0.41 18.7 38.48 53.85

W W W W

1.99 1.12

IK 1.12 a  (
a
W

 small) or tK Y a

with
2 3a a aY 1.99 0.76 8.48 27.36

W W W

1.99 1.12
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B width 

1 2 3 2 5 2 7 2 9 2

I 3 2

P S a a a a aK 2.9 4.6 21.8 37.6 38.7
B W W W W W W

B width 

1 2 3 2 5 2 7 2 9 2

I 3 2

P a a a a aK 29.6 185.5 655.7 1017 63.9
B W W W W W W

p by unit width 

IK p a

ImaxK 1.12 a

2
ImaxK 1.12 a c

2 2 22 2
2 20

c a 3 a1 sin d
8 8c c

Table 8.1. Some KI values 

Somewhat detailed tables provide KI factors [HOF 68] [PAR 65] [ROO 76] 
[SIH 73] [TAD 73]. Table 8.1 provides some values [BRO 78]. There are a certain 
number of methods and software for their calculation [BRO 78] [CAR 73] 
[EDW 77]: 

 Analytical methods can be used in the case of geometries and simple limit 
conditions [IRW 58] [PAR 61]. In two-dimensional problems, factor KI can be 
obtained analytically by using common stress analysis methods. Solutions are 
available for a large number of shapes and load conditions [POO 70]: 

- Westergaard stress functions, 

- complex stress functions, 
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- stress concentrations, and 

- Green functions. 

If there is an internal crack 2a in length far from specimen edges, factor K can be 
obtained from the knowledge of stresses in the uncracked part in the plane of the 
crack to come, using Green’s function [POO 70]: 

1 2a
I ya

1 a xK x, 0 dx
a xa

. [8.60] 

The distribution of stresses can be obtained in an experimental way, or 
analytically: 

 integral transform [CAR 73]; or 

 using a method based on continuous dislocation models; 

 numerical methods are sometimes not so simple [PAR 61]: 

- finite elements, when geometry and stresses applied are complex, 

- “boundary collocation” method, and 

- conformal mapping method, etc.; 

 experimental methods use a relation between K and a measurable parameter 
(strain, rigidity): 

- compliance (measure of the load applied, the displacement resulting in the 
load application point, length of the simulated crack, strain gauges, etc.), 

- photoelasticity, and 

- growth rate of fatigue cracks, etc.; 

 approximate methods use a combination of intensity factors determined in 
other configurations and are known with error less than 10% [CAR 74a] 

NOTES:

As with other fatigue characteristics, parameter K obeys statistical laws 
[JOH 82]. The variations observed are caused by metallurgical aspects, impurities 
or by the manufacturing process [WOO 71], etc. 

When there is no clarification, the values given are average values (probability 
of fracture equal to 50%) [SCH 74]. The literature provides statistical evaluations 
of K values for certain materials [HEY 70]. H. Leis and W. Schütz [LEI 69] 
[LEI 70] showed that an envelope value of the standard deviation of resistance to 
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fracture KIc of a large number of materials used in aeronautics is equal to 0.05 for 
samples extracted from a single plate. If that is not the case, the dispersion can be 
much greater [WOO 71]. 

Other methods of stress analysis surrounding cracks or notches were proposed 
by some authors for use with a criterion of fracture [BAR 62] [KUH 64] [MET 76]. 

These methods, as those described earlier, are based on an elastic stress 
analysis to recalculate the load distribution around the crack. They all consider a 
specific phenomenon which, when it reaches a critical value, very quickly leads to 
fracture and, in this case, are equivalent to the theory using factor K [PAR 65]. 

Parameter KI varies with the temperature of the material. Different relations 
linking it to temperature were proposed [JOH 83]. 

To simplify the notation, index I will be omitted in the following sections. 

8.8. Stress ratio  

According to the definitions introduced in section 1.2, the ratio of stresses R is 
equal to: 

min mean a

max mean a
R [8.61] 

where min mean a . If R = 0, min 0  and max a2 .

The range of variation of the stress intensity K  is 

max minK K K [8.62] 

and we have 

min

max

K
R

K
. [8.63] 

If R = 0, maxK K .

Case of an infinite plate

K a [8.64] 
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Neglecting index I (for simplification), we have 

max maxK a , [8.65] 

max mean aK a [8.66] 

and, for R = 0, 

max aK K 2 a , [8.67] 

max
K

K
1 R

[8.68] 

and

min max
K

K R K R
1 R

. [8.69] 

8.9. Expansion of cracks: Griffith criterion 

With an infinite plate, one unit wide, cracked 2a long, submitted to a tension 
stress  (Figure 8.21) and set at extremities, we can plot the load-deformation curve 
in the form of Figure 8.22 in the elastic field. 

Under load C1, we obtain line OA with which we can associate an elastic strain 
energy stored in the plate characterized by area OAD1.

Figure 8.21. Cracked plate set at extremities
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When the size of the crack increases by an increment of da, the rigidity of the 
part decreases and the straight line representing the load-deformation relation 
becomes OB. Since the two extremities of the plate are fixed, a part of the load is 
relaxed. 

The elastic energy is now represented by the OBD1 area and the energy variation 
corresponding to da by OAB (released energy). If the load increases (C2), a larger 
quantity of energy is freed if the size of the crack increases with the same (OEF) 
increment. 

Figure 8.22. Evolution of the load-deformation relation 
according to the size of the crack 

A.A. Griffith [GRI 21] [GRI 25] assumed that the cracks develop if energy U 
triggered by the growth of the crack is sufficient to provide all W energy required 
for this growth. 

The condition for growth is therefore: 

dU dW
da da

. [8.70] 

From the results established by C.E. Inglis [ING 13] in the case of an elliptical 
crack, A.A. Griffith obtained: 

2dU 2 a
da E

[8.71] 

by the unit of width of the plate where E is Young’s modulus. 
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The elastic energy release rate (or crack extension force) quantity is defined 
[BRO 78]: 

21 dU a
G

2 da E
. [8.72] 

The energy absorbed by propagation is equal to F
dW

R
da

 (crack resistance).

In order for cracking to happen, by supposing that R is the same for all da 
increments, F2 G R  must occur. 

Since RF is constant, G must then be higher than a critical value ICG  such that 

2
c

IC
a

G
E

. [8.73] 

ICG  can be calculated from a measure of c  required to break a plate 
presenting a crack of length 2a. 

For brittle materials (glass), RF is a surface energy. For ductile materials 
(metals), RF is mainly the plastic energy necessary to deform the material at the edge 
of the crack during each da increment. 

D. Broek notes that this energy criterion, used by A.A. Griffith to model 
propagation, is linked to the criterion based on stresses developed in the previous 
sections (factor K) and that we have, from equations [8.49] and [8.73]: 

2K
G

E
[8.74] 

for plane stresses and, in the case of plane strains, 

2

I 2
KG

1 E
. [8.75] 
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8.10. Factors affecting the initiation of cracks 

These factors include the following: 

 the presence of inclusions,; 

 size of grains; 

 sharp angles; 

 holes; 

 welding faults; 

 surface faults (machining, etc.); and 

 environment (corrosion, etc.). 

8.11. Factors affecting the propagation of cracks 

The propagation of cracks is sensitive to many parameters, among which we can 
mention [WEI 78] mechanical, geometric or metallurgical factors or factors linked 
to the environment. 

8.11.1. Mechanical factors 

These include: 

 the type of load; 

 maximum stress max  (or maxK );

 (or K );

 stresses R ratio (this is an important effect [PAR 62], but not in zone II of 
crack propagation [HAU 80]); propagation speed increases with R; and 

 frequency. 

A study by Schijve et al. [SCH 61c] shows that high frequencies lead to longer 
useful lifetimes, or a lower cracking speed (the speed studied was approximately 
0.3 Hz to 37 Hz for the material alloy ALCLAD 2024). This effect is not very 
pronounced, so simulating a low frequency service load with a higher frequency test 
is possible. 

A.J. McEvily and W. Illg [MCE 58] provide results in which the frequency plays 
a significant role (aluminum allow 2024 - T3) or, on the contrary, in which its 
influence is very low (aluminum allow 7075 - T6). 
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8.11.1.1. Other results 

W. Weibull [WEI 60] observed the same effect as J. Schijve, except that it was 
clearly more pronounced for the material aluminum alloy 2024. 

Other tests by J. Schijve [SCH 71] [SCH 72c] at 10 Hz, 1 Hz and 0.1 Hz on light 
alloys demonstrated that frequency has a small influence on fatigue life and was not 
completely systematic. 

J. Branger [BRA 71] demonstrated a slightly shorter fatigue life at 1.6 Hz than at 
2.9 Hz. However, the opposite result was obtained in another series of tests at 3.5, 
0.7 and 0.09 Hz (longer life at lower frequency) [PAR 62]. 

K.C. Valanis [VAL 81] showed analytically that a decrease in the frequency 
decreases the useful lifetime (fatigue properties decrease with the frequency of the 
hardening increase with deformation speed). 

The form of the wave or cycles also has an effect. 

H.P. Lieurade and P. Rabbe [LIE 72] noticed that this effect is insignificant (for 
sine, rectangle and triangle form cycles). 

The effect of the sequence [FUC 80] (overload), occurs with the same principles: 

 in the initiation of cracks; and 

 in the propagation of cracks. 

We have seen that the fatigue life of smooth specimens is reduced more than 
expected by the linear accumulation law if some large stress cycles are applied 
before lower stress testing. 

This effect is very weak compared to the effect observed in notched specimens. 

With cracked specimens, on the contrary [LIE 82], fatigue life can be 10 to 100 
times greater if the overload is applied at the beginning of the sequence instead of at 
the end. Cracking slowdown is less important when R increases. It is low if the 
overload is lower than 10% of the load. The sequence is important, however, 
especially the direction of the last overload before low stresses. 
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Figure 8.23. Four different overload models: (a) tension, (b) tension 
compression, (c) tension compression, (d) compression 

Figure 8.24. Length of the crack according to the number of cycles 
with and without overload

8.11.2. Geometric factors 

This effect is insignificant as long as the plastic zone created in the neighborhood 
of the extremity of the crack is not very important [LIE 72]: 

2

h 2
e

K
r

2 2 R
[8.76] 

where eR  is the yield stress. 
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The width of the test bar must be such that 

2

e

KB 2.5
2 R

[8.77] 

or we must limit K  based on e
B

K 2 R
2.5

.

If this condition is met, width B has little influence on the propagation of cracks. 

8.11.3. Metallurgical factors 

These include: 

 alloy composition; 

 distribution of alloy elements; 

 impurities; 

 thermal treatments; 

 mechanical treatments; 

 mechanical properties; and 

 texture (orientation of grains). 

8.11.4. Factors linked to the environment 

These include 

 temperature; 

 gas, liquid environments, etc.; 

 environmental gas pressure; 

 pH; 

 viscosity of the environment; 

 humidity; and 

 corrosion. 
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The characteristics of the growth of cracks with corrosion (in steels, for example 
in the case of offshore drilling) are different for a factor of stress intensity lower or 
higher than the static load threshold from which the crack appears ( ISCCK ).

The fatigue is called real corrosion fatigue in the case where ISCCK K  and, 
for ISCCK K , stress corrosion fatigue [AUS 78]. 

Real corrosion fatigue occurs for materials that do not corrode in static 
conditions. 

Stress corrosion fatigue is the result of corrosion with cyclical loads. 

The effect of the corrosion increases when the frequency decreases, with a 
threshold value of 10 Hz, below which the frequency has little effect [LIE 82]. 

Finally, we can observe that: 

 for given K , the propagation speed decreases when Young’s modulus E 
increases; and 

 the limit of elasticity of the material has little influence for certain materials 
(for example, steel and brass). 

8.12. Speed of propagation of cracks 

We have seen that for static loads in mechanics [8.51], we define the linear 
elastic fracture i.e. the stress intensity factor K by equation [8.49]: 

K a

where  is the nominal stress and a is the length of the crack. 

When the size of the plastic zone at the root of the crack is small compared to the 
length of the crack, the stress intensity factor can be a good indication of the state of 
the stresses at the root of the crack, or the rate of propagation of the crack. 

The growth speed of cracks, expressed in the form of a variation of crack length 

by number of cycles, is characterized by the number of stress cycles da
dN

. This is 

generally expressed according to the range of stress intensity:  
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max minK K K . [8.78] 

We have 

max min a
da f K f a f 2 a
dN

[8.79] 

where max , min  are the maximum and minimum stresses in a cycle and a  is 
the amplitude of the alternating stress [PAR 61]. 

In cyclic loads, the size of the cracks can increase to a critical size and therefore 
lead to a decrease of its performance or even to a fracture. Since it may not be 
possible to prevent cracks from happening during service, it is necessary to have a 
method of evaluation of their effect in a given structure. This method will help to 
minimize their action and estimate the behavior of a cracked structure during 
propagation to fracture [ROO 76]. 

In all modes proposed, we assume that 
da
dN

 is a continuous function of the 

external load, part dimensions and properties of the material [ERD 68]. 

K  can be written in the form 

K  constant a  = A a [8.80] 

where the constant A (dimensionless) is a function of geometric dimensions of the 
part and crack and  is the peak-to-peak amplitude of the sinusoidal dynamic 
stress and is half as long as the crack. 

Example 8.3.

The part of width 2b (Figure 8.25) submitted to tension stresses [LAM 78] 
[LAM 80a] can be expressed: 

aA sec
2 b

 [8.81] 

where 
1

sec
cos

.
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Figure 8.25. Cracked part under tension stress 

Experience shows that 
da
dn

 varies according to K  based on a law that is 

represented graphically as in Figure 8.26. This law is not well known. We 
distinguish three fields of cracking [SAN 77]: 

1. The initial fracture does not propagate (or propagates very slowly) below a 
certain threshold sK :

i sK A a K [8.82] 

where ai is the initial half-length of the crack. 

This threshold makes it possible to determine the dimensions of tolerable defects 

that cannot be at the origin of a propagating crack ( 7da
10

dN
 mm/cycle) [LIG 80]. 

The experimental determination of this threshold is not easy [BRO 78]. 
J.P. Harrison [BAR 80] [HAR 70] shows that, for a large number of materials, it is 
included between 2.4  10–5 and 2.9  10–5 E m0.5 (where E is Young’s modulus). 
Different empirical formulae linking sK  to R and to s0K  (value of sK  for 
R = 0) were established [BAR 80]. 

In this zone, the microstructure, mean stress and the environment have a strong 
influence. 
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Figure 8.26. Cracking zones 

2.  For large values of K , we observe a zone in which the crack has an 
unstable behavior for a critical value IcK , with very quick growth to fracture of 
the part. There is also a strong influence of the microstructure and mean stress as 
well as the size of the part. Environmental conditions have very little consequences. 

3.  Between these two limits, there is a zone of stable crack growth which can be 
represented in logarithmic axes by a straight line of equation [LAM 78] [PAR 63] 
[PAR 64] [SHE 83a]:  

mda
C K

dN
 (meters/cycle)  [8.83]

where C and m are constants for material, given load (R) and the environmental 
conditions. 

This representation, referred to as the Paris relation, is the most widely used. It is 
however not the only one and, as a rough guide, we will mention some other 
formulations proposed by different authors without being exhaustive. Some of these 
relations are functions of , others of K  alone or of K  and R (or, the 
equivalent of K  and maxK ). For R < 0 (compression), we have [BRO 78] 

max
da f K
dN

. [8.84] 

The Paris relation only involves the intermediate growth rates of cracks and does 
not include the initial and final phases [AUS 78]. 
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R was defined as the min max  ratio. From relations [8.63] and [8.78], we 
have

min
max min max

max

K
K K K 1 K

K
, [8.85] 

maxK 1 R K . [8.86] 

In this zone, we observe a slight influence of the microstructure, mean stress, the 
environment and size. 

NOTE:

The acoustic transmission (when a material is plastically deformed by external 
or internal stresses) can be used for detecting the presence and propagation of 
fatigue cracks. It is directly linked to the stress intensity factor [DUN 68] by a 
relation in the form 

mN A K [8.87] 

where Ae characterizes the acoustic transmission, K  is the stress intensity factor, A 
is a constant and  is a constant for a given material and thickness.  varies from 4 
to 8 (experimental values); value 4 is given by a simplified theoretical model linking 
acoustic transmission, the volume of the plastic zone at the top of the crack and the 
size of the plastic zone to K. 

Knowing that 

qda ˆC K
dN

[8.88] 

where q 2,6  and that K a , we obtain 

2
q 2 q 2

q q 22
0 0 w

q 2
a a 1 a C n

2
[8.89] 

where w  is work stress and 

m m
m m
p w p wN A K K A a a [8.90] 
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where p  is periodic over-stress (> w ), which gives us 

m
m q 2 q 2

m 2 m m 2 q q 2w 2
p 0 0 w

p

q 2
N A 1 a 1 a C n

2
  [8.91] 

Ae for K lower than wK  were neglected due to the irreversibility of the acoustic 
transmission. 

If m =  = 4 (frequent value), we have 

2 2 4 4 4 2
0 p w 0 wN A a 1 a C n [8.92] 

In practice, the expression of K is more complicated than a  and a 
corrective factor must be calculated according to the geometry of the component 
studied. A good theory was determined by Harris et al. [HAR], known as the 
experience correlation. 

8.13. Effect of a non-zero mean stress 

The effects of the presence of a non-zero mean stress are: 

 to decrease the duration of the step during which there is initiation of the crack 
(the crack appears quicker if the mean stress is large) [FAC 72]; and 

 to increase the speed of crack propagation [PRI 72] and therefore to decrease 
the useful lifetime. 

D. Broek and J. Schijve [BRO 63] note that the speed of propagation is 
proportional to a mean stress power (of approximately 1.5). 

N.E. Dowling [DOW 72] confirms that a mean tension stress shortens the useful 
lifetime, but that a compression stress extends it. 

Based on the mean stress, we can obtain for low K  values different values of 
exponent m of the Paris relation [RIC 72]: 

mda
C K

dN
. [8.93] 
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8.14. Laws of crack propagation 

A general law of crack propagation should consider several factors [PEL 70]: 

 geometry (component dimensions, length of the crack, etc.); 
 loads (amplitude, direction, etc.); 
 properties of the material (elastic resistance, resistance to fracture, Young’s 

modulus, ductility, etc.); 
 time (number of cycles); and 
 the environment. 

Most relations listed in the previous sections only take the latter two factors into 
consideration.

The laws proposed have four major origins [PEL 70]: 

 theoretical laws based on the dimensional analysis; 
 theoretical relations derived from a stress hardening and fatigue damage 

model; 
 theoretical equation linking the growth rate to the displacement of the crack 

root opening; or 
 semi-empirical laws. 

There is no single empirical law to explain all the experimental results. Each law 
has its field of application and must be chosen by the user [WOO 73]. 

In the following, we find some of the laws proposed to represent the speed of 
crack propagation. 

8.14.1. Head [HEA 53a] 

This first theoretical model considers the plastic zone at the root of the crack and 
the elastic behavior over the rest of an infinite plate. It supposes that the material 
hardens in the plastic zone in strain, until it breaks by loss of ductility: 

3 3 2
1

1 2
e p

C ada
dN R r

[8.94] 

where C1 is the function of hardening to strain of the part, the yield stress and the 
ultimate stress, Re is the yield stress of the material, a is the half-length of the crack 
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and rp is the size of the plastic zone close to the extremity of the crack, assumed 
constant during crack propagation. 

8.14.2. Modified Head law 

N.E. Frost [FRO 58] notes that the size of this plastic zone increases in direct 
proportion with the length of the crack. 

G.R. Irwin [IRW 60] showed that 

2
pr a , [8.95] 

yielding  

2
1

e

da C a
dN R

. [8.96] 

8.14.3. Frost and Dugsdale [FRO 58] 

N.F. Frost and D.S. Dugsdale propose a new approach of propagation laws by 
noting that the modified Head law is a function of a. From a dimensional analysis, 
they arrive at the relation 

da
B a

dN
[8.97] 

where B (a constant) is a function of stresses applied. To satisfy their experimental 
results, they conclude that 

3

4
B

C
[8.98] 

hence

3
3

4

da a= Constant a
dN C

[8.99] 

where C4 is a parameter characteristic of the material. This law was generalized in 
the form 
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n

s

da a
dN N

[8.100] 

where sN  is constant for a given material and a mean stress and n is a constant (= 3 
for light alloys and soft steel), yielding 

3da P Q a
dN

[8.101] 

where P and Q are constants,  is the stress variation range and a is the length of 
the crack. 

8.14.4. McEvily and Illg 

Starting from 

n n
da f K ,
dN

[8.102] 

where nK  is the factor of theoretical elastic stress concentration by Neuber, we 
have

1 2
0

n
1

a
K 1 2 [8.103] 

where 1  is the radius of curvature of the root of the crack and n  is the stress in 
cracked section. We therefore have 

n 1
[8.104] 

where 
2 a
w

, w is the size of the specimen and  is the stress in the non-cracked 

section. A.J. McEvily and W. Illg [MCE 58] therefore propose the empirical law: 

10 n n
n n

da 34
log 0.00509 K 5.472

dN K 34
[8.105] 
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8.14.5. Paris and Erdogan  

We have 

mda
C K

dN
, [8.106] 

where K is the domain of variation of the stress intensity factor K and C and m are 
constants for a given material. 

This law, the most widely used in practice, does not highlight Young’s modulus, 
the stress hardening coefficient or the yield stress (non-influential parameters) 
[PAR 62] [PAR 63] [PAR 64]. 

We consider that, for steels, 

2  m  10  [8.107] 

and, for light alloys, 

3  m  5  [8.108] 

H.P. Lieurade [LIE 82] gives 

2  m  7  [8.109] 

whereas W.G. Clark and E.T. Wessel [CLA 70] note that, for steels, 

1.4  m  10  [8.110] 

and

51 12210 C 2.9 10 [8.111] 

if K is in psi inch  and 
da
dN

 in inches/cycle. 

The value m = 4 gives good results in many cases, except with high propagation 
speeds. Other authors estimate that the value 3 applies with few errors to many 
situations [FRO 75]. 

When the size of the plastic zone is small in comparison with the length of the 
crack and the size of the plate, we can show that m = 2 from considerations in the 
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stress and strain experienced by the material facing the root of the crack ( K
small). For large K , m is larger and can reach 5 [PAR 64]. 

Tables provide C values for different materials [HAU 80]. 

J.F. Throop and G.A. Miller [THR 70] attempted to measure the dispersion of 
parameter m of the Paris relation, written in the form 

m
max

da
C K

dN
. [8.112] 

The mean value of the 69 values measured is equal to 3.5 and the standard 
deviation to 0.65. 

Material Range of m m
Low and average resistance 

steel 2.3–5.2 3.5 

High resistance steel 2.2–6.7 3.3 
Titanium 3.3–3.7 3.5 

Alloy 2024-T3 2.7–3.8 3.4 
Stainless steel 305 2.8–4.5 3.3 

70-30 brass 3.6–4.9 4.1 
 Range: 2.2–6.7 Average: 3.5 

Table 8.2. Some values of exponent m 

From a study on the dependence of constant C in relation to mechanical 
properties, J.F. Throop and G.A. Miller concluded that  

e C

B
C

E R K
[8.113] 

for steel 4340, where K 40 ksi inch , B is a constant, eR  is the yield stress and 
E is Young’s modulus. 

Different expressions were proposed to calculate an approximate value of 
constant C of the law of Paris based on static or dynamic mechanical characteristics 
of materials, including [LIG 80]: 
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2 2 2 2 2 2
i m f m f

0.76 constant
C

E R E R
[8.114] 

according to F.A. McClintock [MCC 63] and 

4 26

3 2
C

16 10 1 1 1
C

7 E K n
[8.115] 

according to J.M. Krafft [KRA 65], where mR  is ultimate tensile stress (ksi), eR  is 

yield stress at 0.2 % (ksi), CK  is the stress intensity factor ( ksi inch ), f  is strain 

at fracture, n is stress hardening coefficient, 
max

K
K

 and i  is the inclusive 

interval. 

A.J. Evily and T.L. Johnston [MCE 65] stated that 

2e m
u m

constant
C

R R
R E

2

[8.116] 

where u  is strain at the tensile strength. 

According to B.S. Pearson [PEA 66], 

3.6
constant

C
E

. [8.117] 

We also find 

m 20 n [8.118] 

where n  is the cyclical stress hardening coefficient of the material [LIE 78] 
(defined in relation [7.3]: n

pK ).

Virkler et al. [VIR 78] provide an expression of C according to m established 
after a study of 68 value pairs and, with the help of a line of regression, they obtain 
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0 1log C b b log m , [8.119] 

where 0b 5.7792  and 1b 4.6150 .

A relation between m and C in the same form was also proposed by 
V.M. Radhakrishnan [RAD 80] for aluminum alloys and by T.R. Gurney [GUR 79] 
for steels: 

log C q m r [8.120] 

where q and r are constants of the material, which can incorporate a stress ratio or an 
effect of the temperature. 

For steels, F. Koshiga and M; Kawahara [KOS 74] provide an example for 
q = 1.84 and r = –4.32. Some other values are combined in Table 8.3, where stresses 
in units of kg/mm2 and crack lengths are in mm. 

Material q r Reference 

Average resistance steels 1.25 
1.74 

–4.30 
–4.30 

[KOS 74] 
[KIT 71] 

Carbon steels, alloy steels 1.84 –4.07 [NIS 77] 

Aluminum alloys 
1.25 
1.74 

–4.00 
–4.00 

[KOS 74] 
[KIT 71] 

Very high resistance steels 1.35 –4.03 [LIE 78] 

Table 8.3. Some values of constants q and r [KOS 74]

NOTE:

Several studies show that the distribution of times (or numbers of cycles) 
necessary to reach a given crack length follows a statistical law. 

The Paris law an be considered as a statistical law, as constants C and m were 
in this case random variables [JOH 83]. In fact, experience shows that these two 
parameters are linked and that only one distribution is necessary. 

After an analysis of different published results, T.R. Gurney [GUR 79] 
considered that the best relation between C and m is 
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4

m

1.315 10
C

895.4
. [8.121] 

G.O. Johnston [JOH 83] supposes that the C distribution is the same for given m, 
and consequently he only studied the case where m = 3. He obtained a log-normal 
distribution of paramaters for C: 

29.31

and

0.24

where  and  are the mean and standard deviation of log C, respectively. 

G.O. Johnston notes that, for m = 2, the C distribution can be approximated by 
the normal law N[1.716  10–10; 1.588  10–21], but he notes that the log-normal 
law would be better. 

E.K. Walker [WAL 83] concludes that the law is approximately log-normal 
(standard deviation log 0.20  at a level of confidence 0.90). 

Table 8.4 combines expressions of the speed of crack propagation proposed by 
different authors (note that this list is not exhaustive). 

Author Relation Equ. Comments 

Weibull 
[WEI 54] 

b
n

da
k

dN
[8.122] 

k and b are constants for given 
material, 

n is the nominal stress in the 
section presumed without cracks 

Paris
[PAR 57] 

1 2da
f a

dN
[8.123] 

Walker 
[IRW 60a] 
Erdogan 

[ERD 67] 

m p
max

da
C K K

dN
then da

C K
dN

 where 

m
maxK S 1 R a

[8.124]  

[8.125]  

[8.126] 

Liu 
[LIU 61] m

da
f , a

dN

[8.127] f is a function of the range of stress 
and mean stress  
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Modifiel Liu law 

H.W. Liu [LIU 63] shows, from a propagation model using a plastic elastic idealized 
strain stress diagram and a concept of energy absorption by hysteresis, that 2f C .

Hence,
2da

C a
dN

                                   [8.128] 

P.C. Paris and F. Erdogan [PAR 63] note that Head, Frost, Dugdale, Liu and Paris, 
Gomez and Anderson laws [PAR 61] can be written in the more general form 

n m

0

da a
dN

                   [8.129] 

McEvily 
and Boettner 

[MCE 63] 

2n nda
A a

dN
[8.130] 

A is a constant,  
2a is the length of crack,  

 is stress, 
n is a constant where 1 n 3

Liu 
[LIU 63a] 

2da
A a

dN
,

then
2da W a

A tan
dN W

[8.131] 

[8.132] 

A is a constant (not necessarily 
independent of the stress),  
2a is the length of the crack,  

 is the range of stress,  
W is the width of specimen  

McClintock
[MCC 63] 

4

2 2 2
f e

K1 da 7.5
dN 16 E R

[8.133] 
The model is based on an analysis 
of stress hardening and the 
accumulation of fatigue damage 
with plastic strain around the root 
of the crack (Coffin law). 

eR  is yield stress, 
E is Young’s modulus, 

 is the radius of the plastic zone at 
the root of the crack (in which 
propagation occurs), 

f is ductility, where according to 
the Coffin Law, 

1 m f
pN

2
.

Valluri et al.
[VAL 63] 
[VAL 64] 

2 2
p i p p

1 da W a
tan

C dN W
22

n n p i0
1 da

K K a
C dN

[8.134] 

[8.135] 

C is a constant, 
Kn is a factor of stress 
concentration at the root of the 
crack,

i0  is nominal fatigue limit, 
 is maximum stress, 
’ is  minimum stress , 

W is width of specimen, 
p is maximum plastic stress at root 

of crack, 
’p is minimum plastic stress at root 

of crack, 
i is instant mean value of internal 

stress.
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Broek and 
Schijve

[BRO 63] 

2

2
C R 3 3 2

1 max 2
da

C e 1 10
dN W

or 
3

1 2
da K

C exp C R)
dN 1 R

or 
2
max

da
C K K

dN

[8.136] 

[8.137] 

[8.138] 

This relation was established to 
take into consideration a non-zero 
mean load for aluminum alloys 
CLAD2024-T3 and 7075-T6. 

 is half-length of the specimen, 
W is half-width, 

max is maximum stress in a cycle 
( mean alternating )

min

max
R ,

min mean a ,
C1 and C2 are constants. 

Krafft 
[KRA 65] 4

max3 2
maxIC

da A K
f K

dN KE K n

[8.139] n’ is stress hardening exponent 

Morrow 
[MOR 64a] 

1 5 n
1 5 n

np a

f f
2 N

2
or, with notations previously used, 

1
1 5 n

 and 1 5 n
b

n

[8.140] 

[8.141] 

These link the length of the crack 
to the energy transmitted by cycle 
(hysteresis) and to the useful 
lifetime of a cracked part. 

Smith 
[SMI 63a] 
[SMI 64b] 

C.R. Smith proposes two theories: 

1. Theory of the linear deformation: the root of the notch strain is equal to t no min alK
(after plastic local deformation). With the help of the stress-strain curve, the residual root 
of the notch stress is determined, hence the root of the notch stress 
          

t nominal residual=K +                     [8.142] 

is calculated. We obtain the number of cycles at fracture N from S-N curves (relative to 
smooth test bars) for different R values. These numbers of cycles are used with the Miner 
rule. 

2. This begins with the idea that the maximum root of the notch stress will be 
approximately equal to the yield stress as long as a plastic strain occurs. The residual 
stress involved is directly determined from constant amplitude tests in the specimen tested 
at the maximum load cycle to apply in the variable amplitude test. The useful lifetime 
obtained in this test, the hypothesis concerning the maximum stress max at root of notch 
then indicate, in conjunction wiht the the S-N curve for the smooth specimen, the value of 
R that applies and thus min at root of notch. This is sufficient to determine the local root 
of notch stress variation for the variable amplitude test. Knowledge of Kt is not necessary. 
Again, the Miner rule and fatigue data from the smooth specimen are used. 

In both cases, C.R. Smith assumes that the material behaves elastically at the root of 
notch once the residual stress has been introduced by the plastic strain created by the 
maximum load cycle, and considers that there is no relaxation effect. 
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Boettner
et al.

[BOE 65] 

m
r

da
A a

dN
hence

2 R

i

1 a
N Log

A a

[8.143] 

[8.144] 

Low cycle fatigue, where 
a is the length of the crack and 
A is a constant. 

r is total plastic strain (tension-
compression), 
m ~ 2, regardless of the material, 
ai is initial length of the crack, 
aR is length of crack at fracture. 

McEvily 
[MCE 65] 2e m

m f

ada
A

R RdN E R
2

[8.145] 

Rm is ultimate tensile stress, 
f is ductility, 

E is Young’s modulus, 
Re is yield stress. 

Weertman 
[WEE 65] 2

e

ada
dN 2 G R

[8.146] 
 is constant linked to the energy of 

plastic strain, 
G is shear modulus  

This relation was established from 
a infinitesimal dislocation theory, 
continuously distributed, applied to 
the propagation of cracks. 

Pearson
[PEA 66] 

3.6
7da K

3.43 10
dN E

[8.147] 
da
dN

 in inches/cycle 

K in 2lb / in in
E in lb/inch2

McClintock
[MCC 66] 

Correlation of the rate of crack propagation with opening (displacement) of the crack. 

Frost and 
Dixon

[FRO 67] 

2

2
da a 4 E

ln 1
dN E

3

2
e

da 32 a
dN E R

[8.148] 

[8.149] 

a is half-length of the crack, 
E is Young’s modulus, 
Re is yield stress  

Forman et 
al.

[FOR 67] 
[FOR 72] 

Hudson
[HUD 69] 

Some relations consider the acceleration of the propagation rate relative to zone III, by 

leaning da
dN

 toward infinity when max CK K , with the help of a multiplying factor 

of mK . That is the case for the relation determined by Forman et al., using value KC of 
K at fracture and R: 

m m

IC IC max

da C K C K
dN 1 R K K 1 R K K

           [8.150] 

or 
m

max

IC max

da C K K
dN K K

                                                            [8.151] 

da
dN

 when CK K .
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Forman et 
al.

[FOR 67] 
[FOR 72] 

Hudson
[HUD 69] 

(cont.) 

The authors notice a good correlation with experimental results for aluminum. This point 
of view is confirmed by other studies [SCH 74], demonstrating that this relation gives the 
best results for many aeronautical materials. 

Constants C and m, determined with a single stress amplitude and a single mean value, 
can be used for other maximum and average stress with low error as long as R = 0. For R 

 0, they must be re-evaluated with the help of tests with R = –1. Even though it is 
defined for constant amplitude tests, this relation can be used for variable stress amplitude 
loads by calculating the propagation cycle by cycle, by ignoring the delay created by high 
stress cycles [SCH 74]. It is possible, however, to consider this delay, for example with 
the simple method from Willenborg et al. [WIL 71]. 

We will see that other authors (S. Pearson, followed by e.g. A.J. McEvily) also tried to 
represent zone III of the propagation curve with the help of a factor close to that of 
Forman. 

Lardner 
[LAR 68] 

2

e

da 1
K

dN 4 G R

[8.152] This is a model based on the 
intensity of the plastic strain 
at the root of the crack. 
G is shear modulus, 

 is Poisson’s ratio, 
Re is yield stress. 

Tomkins 
[TOM 68] 

Low level cycle fatigue: 
22

2 1
p

da k
a

dN 8 2 T

High level cycle fatigue: 
2

3
m2

da 1
a

dN 4 k T

[8.153] 

[8.154] 

k,  are constants 

T 2 S  where S  is mean 
tension stress at fracture in 
the plastic zone. 

k is constant,  
m is mean stress. 

Broch 
[BRO 68a] 

p mda
C a

dN [8.155] 
 is range of strain, 

C is a constant for a given 
material, 
m and p are constants (in 
many cases, p = 2 and m = 1). 

Hahn et al.
[HAH 69] 

2

1
e

da K
C

dN E R
or 

2

2
da K

C
dN E

[8.156] 

[8.157] 

C1, C2 are constants, 
E is Young’s modulus, 
Re is yield stress. 

Walker 
[WOO 73] 

m
max

da
C 1 R K

dN

[8.158] This law is sometimes 
preferred to Forman’s as it is 
closer to experimental results 
for many materials.  
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IRSID
[LIG 80] 

m

4

0

da K
10

RdN K 1
2

[8.159] 
min

max

K
R

K
K0 corresponds to the value of 

K  for  
7da

10 mm/cycle
dN

in the case where R = 0. 

Erdogan and 
Ratwani

[ERD 70] 

Erdogan 
[ERD 83] 

m
S

C

C 1 K Kda
dN K 1 K

[8.160] 

This is a study on cylindrical 
parts with edge crack, in axial 
tension ( , m and C are 
constants). We have 

max min

max min

moy

K +K1+R= =
1-R K -K
2 K

=
K

KS is propagation threshold, 
KC is critical intensity factor 
stress.

Lukas et al.
[KLE 71] 

Lukas and 
Klesnil

[KLE 72] 

For steels, 
m m

S
da

C K K
dN

for small values of K and with zero mean 
load.

If KS is small compared to K, then 
mda

C K
dN

[8.161] 

[8.162] 

m = 2.5 to 3 depending on the 
steel
C = constant 

KS (equal to 2–4 MN m–3/2)
depends on the mean stress 
and is considered as a 
constant for very ductile 
materials. 

Priddle 
[PRI 72] 

m
S

da
C K K

dN
[8.163] KS is a function of R 

Lieurade and 
Rabbe

[LIE 72] 

m
4

0

da K
10

dN K
In the case where R is non-zero, Lieurade 
and Rabbe propose: 

m

4

0

da K
10

RdN K 1
2

[8.164] 

[8.165] 

K0 is the abscissa of the 
point of ordinate 10–4

mm/cycle for R = 0,  
m is the slope of  the straight 
line (in logarithmic axes) at 
this point. 

If R < 0, experience shows 
that we can use the Paris 
relation

m
max

da
C K

dN
;

Crack rate only depends on 
the part of the cycle 
corresponding to tension. 
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Richards
and Lindley 

[RIC 72] 

For steels 
m

4
S

2 2 2
m C max

K Kda
A

dN R K K

or sometimes [MCE 73]: 
m

4

2 2 2
m C max

da K
A

dN R K K

[8.166] 

[8.167] 

KC is the critical stress 
intensity,
Kmax is the maximum stress 
intensity,
Rm is the ultimate tensile 
stress,
A is a constant. 

Pearson
[PEA 72] 

m

1 2
C

da K
C

dN 1 R K K
[8.168] 

This is modification of the 
Forman expression [FOR 67]. 

McEvily 
[MCE 73] 
[HAU 80] 
[SIG 73] 

For low resilience alloys, current 
construction steels: 

2 2
S

y C

da 4 C K
K K 1

KdN E K
1 R

2
S2

C

da C K
K K 1

KdN E K
1 R

These relations are the result of a study 
based on considerations linked to the the 
crack opening displacement. They introduce 
the effects of the mean stress with the term  

max
K

K
1 R

as well as threshold value KS, assuming 
that KS is a function of R given by the 
following empirical relations: 
- for expression [8.169]: 

S0
S

1.2 K
K

1 R
1 0.2

1 R
- for expression [8.170]: 

1 2

S S0
1 R

K K
1 R

[8.169] 

[8.170] 

[8.171] 

[8.172] 

y is the rms elastic limit 
stress,
C, C' are constants, 
KS is the threshold stress 
intensity factor, 
KC is the critical K value, 
C is a constant without 
dimension for a given 
material.  

Hausammann [HAU 80] 
provides some values for 
different steels. 

KS0 is the threshold value 
for R = 0. 

Nicholson
[NIC 73] 

m
S

C max

K Kda
A

dN K K
When max CK K , we get farther from the 
linear law and da/dN rapidly grows to 
fracture. da/dN increases with the mean 
stress (with R) for a given K.

[8.173] 
Empirical relation established 
to describe the cracking curve 
considering the influence of 
the mean stress. 
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m
min

da
C S

dN

dW
S r

dV
S is the strain energy density per unit of 
volume at distance r of the head of the crack 
in the direction defined by both angles  and 

.

[8.174] m and C are constants, 
Smin is the energy density 

amplitude of minimal strain. 
Sih

[SIH 74] 

Figure 8.27. Element of volume at distance r of the head of the crack

max min

2 2 2 2
min 11 I max I min 12 Imax II Imin II 22 IImax IImin

1
S a K K 2 a K K K K a K K

16 G
E

G
2 1

  is the shear stress elasticity modulus, 

 is Poisson’s ratio 

11a K cos 1 cos

12a 2 cos K 1 sin

22a K 1 1 cos 1 cos 3 cos 1
K 3 4  in the plane strain conditions and 

3
K

1
 in the case of plane stresses. 

If the third mode is involved, the term  
2 2

33 IIImax IIImina K K

16 G
must be added to Smin.

The direction of the crack growth and the fracture toughness in the case where modes I 
and II coexist are controlled by the critical value of the strain density factor, presumed to 
be a constant of the material [BAR 80]. 

This method can therefore be used with the three work methods, but does not allow for 
the superposition of modes III constant and I cyclical (the most frequent case is practice).  
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Sullivan
and Crooker 

[SUL 76] 

m
mda 1 b R

A K
dN 1 R

[8.176] 
For steel, 2 R 0.75
b is constant. 

Speer
[TOP 69a] 

m
S

C

K Kda
C

dN 1 R K K
[8.177] 

Austen 
[AUS 77] 
[AUS 78] 

1 2

2
S

e IC

da K K K
KdN 4 R E K

1 R

[8.178] 

For construction steels 

S S0K K 1 R  in units of 

MPa m0.5

KS0 is the value of KS for R = 0 
[KLE 72a]. 

m
0 SC K when K> Kda =

dN 0 otherwise

or m
0 S

da
C K K

dN

[8.179] 

[8.180] 

This takes into consideration an 
equivalent of the fatigue limit, 
defined by a threshold value of the 
stress intensity factor. 

Hobbacher
[HOB 77] 

Hobbacher writes the Paris law of 
propagation in the non-dimensional 
form: 

m

LC if >d =
dN 0 otherwise

or 
nd

C
dN

By integration of  between 1 and C

(infinite), we obtain 

m
2

N
m 2 C

[8.181] 

[8.182] 

[8.183]

i

a
a

 varies by 1 (initial value) at 

c
L

i

a
a

ai is the initial size of the crack 
aC is the size of crack at fracture 

 is the standardized stress 
intensity factor 

m 2 2
0 iC C a

Threshold value: 

S i

since i 1 .

L

Chakrabarti 
[CHA 78] 

Experimental study on alloy Ti-6Al-2Sn-4Zr-2Mo, based on the hypothesis that the 
energy received by the component over time t during which the crack grows by a must 
be higher than or equal to the sum of the energy transmitted in a calorific form, the 
plastification energy at root of the crack and the propagation energy of the crack. 

This method involves numerous factors. 

Davenport 
and Brook 
[DAV 79] 

The Paris relation  
mda

C K
dN

is a straight line in logarithmic axes. In practice, we notice that we obtain a sigmoid 
instead, because of the presence of higher and lower limits: 

da
0

dN
 if SK K  (threshold) 

da
dN

 when CK 1 R K  (condition of instability). 
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Davenport 
and Brook 
[DAV 79] 

(cont.) 

Empirical relations were proposed in order to consider this, in order that we can 
generalize in the form: 

pm m
S

r
C

K Kda
C

dN 1 R K K
 [8.184] 

Often, constants m and r are equal to 1. If SK 0 , we have Forman’s relation 
[FOR 67]. If SK 0 , m = 1, p = r and we obtain Nicholson’s relation [NIC 73]. 

Oh 
[OH 80] 

K.P. Oh defines a distribution model, taking into account random variations of the 
characteristics of the material, to calculate the propagation of cracks under random loads 
and the mean useful lifetime of a component. 

Hausamann 
[HAU 80] 

This was a study on steel specimens, and yielded 

11 mm
1 S

da
C K K

dN
  [8.185] 

Close to the threshold, da
0

dN
 when SK K , constants C1 and m1 are such that, in 

a given point K1, rate da/dN is the same as the law of Paris rate and, at this point, the 
da/dN slope is also that of the Paris curve. 
Close to the critical zone, 

2m

2
C

da 1
C

dN K 1 R K
 [8.186] 

and da
dN

 when max CK K .

At a given point K2, both curves connect with the same slope (making it possible to 
calculate constants C2 and m2).

Socie and 
Kurath 

[SOC 83] 

m

k
da K

C
dN 1 R

[8.187] 
R is stress ratio, 
k is a constant function of the 
material. 

Stochastic models were more 
recently developed to consider the 
random aspect of the propagation 
of cracks and the dispersion 
observed on test results [DIT 86] 
[KOZ 89] [LIN 88] [ORT 88]. 

Table 8.4. Expressions of the speed of propagation of cracks

8.15. Stress intensity factor 

In many cases, crack propagation does not occur with a stress lower than the 
yield stress as with previous hypotheses; rather it occurs in the plastic domain, as 
with low cycle fatigue. 
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A.J. McEvily [MCE 70] defines a strain intensity factor K  in a similar way to 
the stress intensity factor. If R  is the total strain range, then 

RK a [8.188] 

 (similar to K a ) for a plate with a length of 2a and infinite width. 

The justification of the use of K  is similar to that of K . Slope m of the curve 
representative of the straight line (logarithmic axes), expressed 

m
R

da
A a

dN
, [8.189] 

can vary between 2 and > 6 in the elastic domain. In the plastic domain, m is 
approximately equal to 2. 

McEvily showed that the integration of expression 

2
R

da
A a

dN
[8.190] 

leads to a relation in the form of the Manson–Coffin law. 

8.16. Dispersion of results 

It is not possible to determine in a test the parameters necessary for a correct 
description of the dispersion occurring in the crack propagation data. The dispersion 
observed depends in particular on the test method used [POO 76]. 

An average line can be drawn between the points measured to predict an average 
fracture time, but the dispersion cannot be evaluated from results of experimental 
results. 

J. Branger [BRA 64] notes that the dispersion observed in notched test bars is 
substantially smaller than the dispersion viewed with smooth test bars, and that it 
decreases when the number of notches increases. 

The dispersion decreases when the complexity of the specimen increases. This 
result is masked by the manufacturing tolerances of parts. 
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8.17. Sample tests: extrapolation to a structure 

A.M. Freundenthal [FRE 68] considers that fatigue tests in small samples can 
only provide generally qualitative and comparative information on the behavior of 
materials at fatigue. 

The comparative study of the emergence of cracks and their speed of 
propagation requires the use of specimens where the design presents accidents that 
are important enough and dimensions are sufficiently large. 

A.M. Freundenthal highlights the importance of large-scale tests carried out with 
loads reproducing the distribution of real loads. 

Time to fracture during service is also always shorter than for a large-scale test 
(a test generally carried out on a better structure than on average). The linear 
accumulation of damages overestimates the real endurance observed in large-scale 
tests (ratio 2 to 3). 

8.18. Determination of the propagation threshold SK

The propagation threshold can be determined as follows [LIA 73]: 

 We apply stress cycles by maintaining the constant R ratio and by slowly 
decreasing the value of the mean  stress, in order to ensure a crack expansion that is 
not lower than 0.5 mm between each load adjustment. The decrease should be 
exceed 10% of the previous load. The value of KS is the value of K  corresponding 
to a propagation speed of 10–7 mm/cycle (some authors retain 10–8 mm/cycle). 

Figure 8.28. Stress cycles at constant R and decreasing mean 

This method is long and does not consider the material tried. 
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Other conditions were additionally proposed: 

 a minimum expansion of the crack between two load levels should be equal to 
at least 10 times the size of the plane stress plastic zone of the previous load; or 

SK  is affected by the size of the grain, and a minimum increase of the crack 
at each level must also be greater than five times the diameter d of the material’s 
grain in order to avoid a possible influence of the crystallographic direction of grains 
on SK .

ia 0.5  mm 

ia 5 d

2 2
maxi 1 maxi

i 2
e

10 K K
a

R
. [8.191] 

Different methods were used to optimize the test duration [VAN 75]. 

Different relations were proposed to evaluate the threshold stress intensity factor 
for any R from this same factor for R = 0. 

Table 8.5 combines a few expressions 

Davenport and 
Brook 

[DAV 79] 

S S0K K 1 R
[8.192] 

Masounave and 
Baïlon 

[MAS 75] 
S S0K K 1 R [8.193] 

Lukas and Klesnil 
[KLE 72a] 

S S0K K 1 R
with 0.71

[8.194] 

McEvily 
[MCE 77] 

1 2
S S0 S0

1 R
K K K 1 2 R

1 R

[8.195] 

C
S S0

C 0

K 1 R
K K

1 R K R K [8.196] 
Wei and McEvily 

[WEI 71] 
0

S S0
C

R K
K K 1

1 R K
[8.197] 

Table 8.5. Some expressions for the threshold stress intensity factor 
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8.19. Propagation of cracks in the domain of low cycle fatigue 

The low cycle fatigue process is generally dominated by the crack propagation 
phenomenon (over 90% of the useful lifetime) [MUR 83]. 

The theory of crack propagation initially developed in the domain of high cycle 
fatigue was extended by A.K. Head [HEA 56a] to low cycle fatigue [YAO 62]. 

The theory is based on idealized material, and shows that: 

 cracks can initiate during the first phases of the fatigue test; 

 the inverse of the square root of the crack length is a linear function of the 
number of cycles; and 

 the slope of the straight line corresponding to a function of the amplitude of 
applied  stresses. 

McClintock [MCC 56] also established that: 

 cracks always tend to grow close to the center of the remaining section, closer 
to the farthest point of open surfaces; 

 the propagation of cracks depends on increments of absolute strain integrated 
without regard to the number of cycles and to the increments of plastic strain; 

 cracks propagate faster in the largest of two unspecified specimens, 
geometrically similar, in the same nominal strain amplitude; 

 the initial rate of crack propagation is independent from the angle of the notch. 

Cracks appear after a very few cycles and propagate at a generally constant 
speed until approximately half the useful lifetime of the specimen has passed, then 
propagation continues with increasing speed [SCH 57]. 

We show that the law of Manson–Coffin is identical to the law of propagation of 
micro-cracks (to approximately 1 mm). 

The Miner law must be considered on the basis on the micro-crack propagation. 
It applies to the following conditions [MUR 83]: 

 The history of the specimen relative to previously accumulated fatigue in the 
area where the crack will propagate has no effect on fatigue damage (there is no 
overload or underload effect), but it greatly influences the propagation speed of 
subsequent cracks. In order for the Miner law to apply, this prior fatigue should not 
be considered as fatigue damage. 
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 The speed of crack propagation is linearly proportional to the length of the 
crack.

Murakami et al. [MUR 83] derive a linear law of propagation by dimensional 
analysis

da = Constant × a
dN

. [8.198] 

8.20. Integral J 

In the case of large strains producing fractures after a small number of cycles, the 
above expressions are not precise. 

We have implicitly assumed that the plasticity at the top of the crack is so small 
that the mechanics of the linear elastic fracture applies and that the energy released 
is not affected by the plastic strain [BRO 78]. 

A more exact calculation considering plasticity effects was proposed by N.E. 
Dowling and J.A. Begley [DOW 76] based on the concept of J integral. Integral J is 
initially defined [RIC 68] in the case of non-linear elasticity from the load-
deformation curve. For given deformation z0, the potential energy variation dU 
produced by a small increase da of the length of the crack is linked to J by: 

1 dU
J

B da
, [8.199] 

where B is specimen size. 

If the material has linear behavior, we find 

2K
J G

E
[8.200] 

where G is the rate of linear elastic deformation energy transmitted. 

J is linked to K. For elasto-plastic material, U is defined as the energy necessary 
to deform the specimen in an elasto-plastic manner. 

In an approximate way, integral J can be calculated for notched bars in tension 
and bending by: 
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0z
0

2
J P dz

B b
[8.201] 

where P is the load. 

Figure 8.29. Notched bar

N.E. Dowling and J.A. Begley [DOW 76] established the relation for steel A-
533B: 

8 1.587da
2.13 10 J

dN
[8.202] 

which can be written in a more general way in the form [MOW 76]: 

1
da

C J
dN

[8.203] 

at half-length of the crack, where C1 and  are constants for a given material and 
J  is related to the area under the load-deformation curve by relation [8.201]. This 

expression agrees with the Paris expression if we consider the relation between J and 
K2.

D.F. Mowbray [MOW 76] shows that this relation can be expressed in the form 
of the Manson–Coffin equation ( 1

pN C ). We highlight, however, that an 

objection exists in applying the concept of integral J to crack propagation: in a strict 
mathematical sense, this theory is only valid for the theory of plasticity 
deformations, which does not include discharges. 
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From a practical point of view, there is only a limited number of cases for which 
J can be calculated or measured, but any approach taking into account a non-linear 
behavior of the material would face the same problems [LAM 80a]. 

R. Tanaka [TAN 83] uses integral J as growth criterion of a fatigue crack. He 
suggests the generalization of experimental data, available for different materials on 
the growth of cracks, to derive at a unified formulation from an energy criterion. It 
links the threshold J  corresponding to SK  to the surface energy of the material, 
noting that J  should be higher than 4  (  is surface evergy of the material). 

8.21. Overload effect: fatigue crack retardation  

We have seen the importance of the sequence of application of loads and 
increase of useful lifetimes observed during initial overload [SCH 72a]. This 
overload effect increases when the number of large load cycles grows [PAR 65]. In 
the cases studied, R.H. Keays observes an increase of the useful lifetime by 20% 
[KEA 72] and notes that if loads relative to a spectrum are randomly sequenced, the 
theory predicts an important increase of the number of blocks at fracture. 

Different methods were proposed for the consideration of this effect (e.g. 
Willenborg model [FUC 80], Vroman model [VRO 71], etc.) [BEL 76] [ELB 71] 
[WIL 71]. Among these methods, we will cite the Wheeler method [BRO 78] 
[KEA 72] [WHE 72]. 

The Wheeler model, developed to explain and predict the delay caused by 
overloads, consists of introducing into the cracking law the relation of two plastic 
zones [SAN 77]: 

 the real plastic zone existing at the root of the crack; and 

 a fictional plastic zone that would exist if there was no overload (if the load 
remained sinusoidal). 

Figure 8.30. Plastic zones 
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O.E. Wheeler assumes that crack propagation depends on relative sizes of plastic 
zones during consecutive cycles: if the maximum size of the plastic zone during the 
first n cycles envelopes that obtained after n + i cycles, there is a cracking 
retardation [BAR 80]. 

This delay is proportional to the ratio of the plastic zone size relative to the 
present level ( pr ) to the length not yet cracked of the previous plastic zone 

( pi ia a ).

Hence, by using the Paris law, 

mda
C K

dN
[8.204] 

where  is the retardation factor, such that 

p
pi

i pi pi
pi i

i pi pi

r
 si a r a  

a a

1 si a r a

[8.205] 

where p is the coefficient function of the nature of the material. 

The calculation is done with the help of these relations to follow the propagation 
of the crack cycle after cycle. 

In these expressions, 

2
0

p0 2
e

K
r C

R
[8.206] 

and

2
i

pi 2
e

K
r C

R
. [8.207] 

We have seen (in relation [8.40]) that, in more precise terms, 
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2
I

p 2
e

K
r

6 R
. [8.208] 

We should note that negative loads reduce the retardation caused by positive 
loads. 

Limitations [SAN 77]

Limitations include the following: 

 also depends on test conditions; 

 this model does not predict that some overloads prevent the crack from 
propagating later; and 

 only considers load history after overload and ignores history before 
overload (even though the retardation is its function). 

An improvement of this model was proposed by T.D. Gray and J.P. Callagher 
[GRA 76], who considered blocking the crack. 

8.22. Fatigue crack closure  

The phenomenon known as crack closure was described by W. Elber [ELB 71] 
[FUC 80]. He showed experimentally that the tip of a fatigue crack can close before 
the global effort applied to the specimen cancels out, because of residual strains 
created by cracking at the root of the crack [SAN 77]. Damage then occurs only in 
the part of the cycle where the crack is open and not when it is closed 
(compression). 

W. Elber [FUC 80] notes a non-linear behavior in the experimental 
displacement-load curves and explains it by a physical contact or by an interference 
of the material zone plastically deformed right after the propagating fatigue crack. 
He considers that the cyclic growth only occurs when the crack is completely open 
and develops a relation in the form [ELB 71] [WOO 73]: 

m m
rms

a
C K C U K

N
[8.209] 

where 
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max op rms

max min

K K K
U

K K K
, [8.210] 

where 0 U 1  and opK  is the value of  K at the crack opening. 

For aluminum alloy 2024-T3, U 0.5 0.4 R  ( 0.1 R 0.7 ).

This is an empirical model using a concept of effective stress range to 
incorporate the effects of interaction in the estimation of the fatigue useful lifetime 
with variable amplitude cracking [FUC 80]. 

W. Elber assumed that the expansion of the crack only happens when the applied 
stress is larger than the stress necessary for the crack opening. In this way, 
significant stresses in the propagation process are the maximum stress and the 
opening  stress in a cycle. W. Elber finds that the  stress in which the closure occurs 
is slightly different from the opening  stress. This difference is often neglected. He 
attributes the closure to a zone of residual tension deformation left behind the root of 
the crack, which interacts with crack root compression  stresses. 

The stress range contributing to the expansion is called effective stress range
rms  with 

eff max op [8.211] 

where op  is the opening stress experimentally determined. 

He defines a closing factor

op
i

max
C , [8.212] 

hence

rms max i1 C . [8.213] 

With the Paris law for example, 

m
rms

da
A K

dN
[8.214] 
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m

rms
da

A a
dN

[8.215] 

and

m
max i

da
A 1 C a

dN
. [8.216] 

8.23. Rules of similarity 

Useful lifetime calculations are always based on the following rules of similarity 
[SCH 72a]: 

 in stress: similar load conditions in critical points for fatigue, in two different 
specimens composed of a single material, should produce similar results in fatigue; 

 in strain: similar strain curves, e.g. at the root of the crack or in a smooth 
specimen, should produce  stresses according to similar times. Another hypothesis is 
that similar strain curves should also lead to similar useful lifetimes; 

 in propagation of crack: K being identical, relation da
f K

dN
 established for 

a specimen is valid for another type of specimen. 

8.24. Calculation of a useful lifetime 

The useful lifetime of a part is often calculated by considering [SAN 69]: 

 initiation as a short phase in relation to the total lifetime; initiation effects over 
a useful lifetime are insignificant; 

 the behavior in relation to propagation in the micro-crack phase as an 
extrapolation of the behavior in the macro-crack phase; and 

 the final fracture occurs when a critical crack length is reached. 

From these hypotheses, the useful lifetime is evaluated by calculating the 
number of cycles required to grow a crack from a small size to critical length. 

The useful lifecycle is therefore characterized by the number of cycles necessary 
to progress from one crack of initial size ia  (minimum that can be detected) to a 
critical length ca  for which fracture of the component is almost instant [POO 74]. 

The law of crack propagation is in the general form 
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max
da

f K, K
dN

, [8.217] 

from which we derive 

c

i

a
a

max

da
N

f K, K
. [8.218] 

In the cases where the function maxf K, K  has a simple form, we can 
proceed to an analytical integration. Otherwise, we can integrate this expression 
numerically. 

We then replace this integral by a cycle-by-cycle summation such that: 

N
m

c i i i
i 1

a a C K n . [8.219] 

For variable amplitude loads, the retardation in crack growth caused by the 
interaction of loads can be considered with the help of one of the models previously 
discussed. 

For example, the above equation can be written as: 

N
m

c i ri i i
i 1

a a C C K n [8.220] 

where riC  is the retardation factor of the Willenborg model. 

Example 8.4.

If we estimate that the Paris law mda
C K

dN
 ( S CK K K ) is the best 

adapted, for sinusoidal tension excitation such that min 0  we have: 

K 2 a  [8.221] 

for an infinite plate, where  =  stress amplitude. 
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Hence [LAM 83]: 

c c

i i

a a
m m ma a

da 1 da
N

C K C 2 a
,

[8.222] 

c

c

i

i

am
1

2a
m m 2 mam

a

1 da 1 a
N

ma2 C 2 C 1
2

, [8.223] 

for m  2, hence 

mm 11
22c i

m

a a
N

m
2 C 1

2

 [8.224] 

This relation can be in the form mN constante . The critical size can be 
calculated from [8.221]: 

      
2

c
c

K
a

2
 [8.225] 

The linear integration (corresponding to the Miner hypothesis), leading to the 
effects of interaction being neglected, gives a conservative result (shorter useful 
lifetime than reality). In order to account for these effects, we would have to proceed 

to a numerical cycle-by-cycle integration by considering the real curve 
da

K
dN

which, in logarithmic axes, is not linear in the whole field. 

If a load can be broken down into several blocks with Si amplitude stress with ni
cycles, a rule similar to the Miner rule makes it possible to define the rate of 
propagation by block, i.e. 

i
ii

da da
n

dB dN
[8.226] 

and therefore to calculate the useful lifetime in numbers of blocks [SHE 83a]. 
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NOTE:

Useful lifetime calculated from this model is linked to the length of the crack. 

J. Schijve [SCH 70], however, highlights that fatigue damage cannot be 
completely defined by a single parameter such as this length. Other conditions can 
also be important, such as the direction of the crack, hardening, residual stresses, 
etc..

The expansion of a crack during a load cycle will then depend on the prehistory 
of the fatigue load experienced by the part. This has the consequence of different 
results begin obtained from a random load and a programmed load. 

8.25. Propagation of cracks under random load 

The rate of crack propagation under random load is considerably smaller than 
would be predicted from linear summation of propagation increments based on data 
obtained by constant amplitude tests [KIR 77]. 

Crack propagation laws are generally non-linear. It is therefore difficult to 
transform them prior to using them in the case of random vibrations. 

Two types of methods were used to predict the growth of cracks under variable 
amplitude loads [NEL 78]: 

 The rms approach: in this case, we characterize the load spectrum in terms of 
characteristic parameters such as the rms value. Stress spectra are represented in 
these studies by a continuous and unimodal distribution, specifically by a Rayleigh 
distribution (it is a restriction of the method). 

 The cycle-by-cycle approach: in these methods, mainly developed for loads 
measured in aeronautics, we calculate the propagation of the crack cycle-by-cycle 
and generate the sum [BRU 71] [GAL 74] [KAT 73]. 

8.25.1. Rms approach 

In the case where vibrations are stationary and narrow band, a method may 
consist of using the Paris law by replacing the stress intensity factor K by its 
standard deviation. 

P.C. Paris [PAR 64] showed that factor K is linked to stress  by a relation of 
the form 
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K f a [8.227] 

where f(a) is a function of dimension a of the crack. 

Since the  stress is a function of time, we have 

K t t f a . [8.228] 

As length a varies very little from a stress cycle to the next, f(a) is a factor that 
also varies very little. 

It is therefore possible to calculate the power spectral density (PSD) of K(t): 

2
KG G f a [8.229] 

where G  is the stress PSD, which can in turn be expressed in terms of the 

excitation at structure input. KG  is therefore, except for the a factor, variable 

from one moment to the next and identical to G .

In a given material, the rate of crack propagation produced by a random load 
G  is a function of the amplitude of the quasi-stationary power spectrum 

KG  of factor K. 

We can also define the rms value as: 

rms K0
K G d [8.230] 

or, in a discrete form [BAR 80]: 

2n
i

rms
i 1

K
K

n
[8.231] 

where n is the number of cycles. 

We therefore obtain the expression of the modified law of Paris, giving the mean 
value of the cracking rate: 
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m
rms

da
C K

dN
[8.232] 

where C and m are constants for a given material [BAR 73] [SMI 66] [SWA 67]. 

This method cannot be used if t  is wide band, since it supposes that the 

distribution of the peaks of t  obeys a Rayleigh law [BAR 76]. 

The rms value of the variation range of the stress intensity factor then appears as 
an important parameter for characterizing the rate of crack propagation in the case of 
complex loads [BER 83] [WEI 78] in an appropriate way. The PSD form also has its 
importance, but to a lesser degree [SWA 68]. It can be characterized by the 

irregularity factor r or by 2q 1 r .

The method will therefore consist of replacing K by Krms in useful lifetime 
calculations already made in the case of a sinusoidal load. 

We therefore find that the expression for the propagation rate has already been 
proposed, as described in the following section. 

8.25.1.1. McEvily expression [MCE 73] 

We have  

2 2
rms S

e

da A
K K

dN R E
[8.233] 

where the term taking into account the mean  stress, 
C max

K
K K

, is insignificant in 

the case of steel studied by J.M. Barsom [BAR 76]. This relation leads to results 
very close to equation [8.232]. 

8.25.1.2. Roberts and Erdogan [ROB 67] 

H. Nowack and B. Mukherjee [NOW 63] have modified the law of R. Roberts 
and F. Erdogan [ROB 67] 

1 2k k
1 max

da
C K K

dN
[8.234] 
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where 1 1 2C , k and k  are constants depending on 

3 4k k
2 max

da
C K K

dN
, [8.235] 

max mean
K

K K
2

[8.236] 

where meanK  is a  stress intensity factor corresponding to the mean  stress. 

For a Gaussian stationary process, 

K ' a Y [8.237] 

where Y is a correction factor considering of the finite width of the specimen 

rms' 2 r [8.238] 

where r is the factor of irregularity [SWA 68]. 

If 0a  is the length of the transition crack (curve bend 
da

K
dN

), constants 

2 3 4C , k and k  are listed in Table 8.6, where length is in mm and stress is in 
kgf/mm2.

0a 2C 3k 4k

< 6 mm 10–11.46 2.16 1.72 

> 6 mm 10–20.35 6.06 2.45 

Table 8.6. Values of constants C2, k3 and k4 according to a0

S.H. Smith [SMI 64c] observed a good correlation between results obtained with 
constant amplitude loads and random loads when the stress intensity factor was used 
as the basis of comparison of rate of fatigue crack propagation. 

For small K values, random loads lead to greater propagation speeds. For larger 
K values, random loads lead to shorter propagation speeds than those obtained with 
constant amplitude load. 
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For a random load with Rayleigh peak distribution, the speed of crack 
propagation can be estimated with good precision from a linear summation of 
propagation speeds obtained in constant amplitude tests, on the condition that the 
test be done at constant K [SWA 68]. 

Since rates of propagation for the different levels of stress are determined for 
constant K, we can calculate, by presuming the Rayleigh peak distribution, the total 
rate of propagation for a unit length of crack propagation by integrating the curve: 
percentage of time at a given stress level multiplied by the cracking rate at this stress 
level. 

S.R. Swanson [SWA 68] observes that, for a load and constant K, there is a good 
agreement between a prediction from a linear calculation and observations. Other 
authors also agree [CHR 65] [MAY 61]. 

This linear summation does not use the Miner rule or the S-N curve, for which 
this could be inadequate.  

NOTES:

1. Since the frequency has very little influence, we show that (stress) ‘equivalent’ 
power spectra are those that can be deducted from a given spectrum by an arbitrary 
linear modification of the scale of frequencies and/or amplitudes [PAR 62]. 

2. Because of a random stress based on time, with a Gaussian distribution of 
instant values, we can calculate the mean frequency 0n  of the signal, the mean  

frequency of maxima ( pn ), the mean length ph  of ranges (interval between two 

consecutive extrema), from the PSD of t  [POO 79]. If nM  is the order n 
moment, we show (Volume 3, relations [6.13] and [6.108]) that

4
p

2

1 M
n

2 M
[8.239] 

and 

2
p

4

M
h 2

M
. [8.240] 

If kh  is the mean range of the stress intensity factor relative to t , from 
[8.227], we have[PAR 64]: 
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k ph h f a . [8.241] 

These parameters have an influence on the crack propagation rate [PAR 62]. 

3. Size of the plastic zone 

P.C. Paris [PAR 64] extends the Irwin relation [8.39] in the case of the random 
and defines the dimension of the plastic zone by 

2

28
k

p
e

h
r

R
[8.242] 

where kh  is the peak-to-peak stress intensity factor (range). 

Figure 8.31. Stress intensity factor hk range  

We could calculate statistically the mean rate of crack propagation with the help 
of the modified Paris relation [BRO 78]: 

4
k

d 2 a
C h

dN
[8.243] 

k ph h f a [8.244] 

4 4
0k k k kh h q h dh [8.245] 
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4
kh  is the mean of  ranges of K(t) to power 4, K(t) being presumed quasi-

stationary, and q is the probability density of the ranges kh  of K(t). This density can 

be calculated from the PSD of K(t), i.e. the stress t . The calculation is not 
however easy, and requires approximations. 

8.25.2. Narrow band random loads 

L.P. Pook [POO 74] provides a method of analysis that we can consider as an 
extension of the Miner rule for the mechanics of crack propagation. It takes into 
consideration the mean stress and gives correlated results by experience [WEI 74]. 

The analysis is based on fatigue data from constant amplitude tests (welded 
joints structures). 

Because of an “input” load with a Gaussian distribution of instantaneous values, 
we can often assimilate the distribution of peaks of the response stress in a structure 
point to a Rayleigh law where the probability density has the form 

2
peak peak peak

2
rms rms rms

p exp
2

[8.246] 

where peak  is the stress peak and rms  is the rms value of stress. 

The distribution of ranges between adjacent positive and negative peaks is also 
close to a Rayleigh law. This distribution is truncated in practice at approximately 
5–6 rms . Strictly speaking, a truncated distribution has a smaller rms value rms
from that of an identical but not truncated distribution. However, as long as the 
truncation ratio peak rms/   is not too small (lower than 3), the difference is low 

and can be neglected. For ratios 3, 4 and 5, the differences are 1.1, 0.03 and  
4  10–4%, respectively [POO 74]. 

We now assume that each cycle produces the same propagation increment as if it 
was applied like a part of a constant amplitude load sequence. In this approach, we 
ignore the effects of interaction that occur when amplitudes vary. In the case of 
narrow band random loads, a cycle is not much different from the previous cycles, 
reducing the effects of interaction which are relatively unimportant for low 
resistance steel. 
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The damage produced by each cycle in terms of crack propagation is 

proportional to 
m

peak rms/  according to the relation 

mda
C K

dN
[8.247] 

and the relative damage for a sinusoidal load with constant amplitude and similar 
rms value is equal to  

m
peak

rms 2
.

We define a density function by 

m 2
peak peak peak peak

2
rms rms rms rms

r exp
2 2

[8.248] 

where peak m , peak

rms
r  is the relative probability density of crack 

propagation due to a peak peak

rms
 and m  is mean stress. 

Figure 8.32 shows the variations of peak

rms
r  for different m values. We note 

that peaks such as peak

rms

1
2

 produce little damage; the maximum is for 

peak

rms
2 .

The area under the relative damage density curve gives the relative damage RD,
which is the ratio of the value of the crack growth produced by the narrow band 
random load to that produced by a completely tension load with constant amplitude 
and similar rms stress. 
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Figure 8.32. Probability density of crack propagation

Relative damage RD is practically independent from the truncation ratio, as long 
as this relation is higher than 3. 

m 0 2 3 4 5 
RD Rayleigh 1 1.33 2 3.323 

Table 8.7. Relative damage for a few m values 

Unless the mean stress m  is very high, minima for large value of peak

rms
 are 

below zero. The positive part of a load cycle is the only one creating damage, 
because it corresponds to a tension opening the crack (a compression maintains the 
two edges one over the other, without damage). Consequently, the density of relative 
damage is reduced by correcting the expression above by the factor: 

m
m peak

peak2

i.e.

m 2
peak m peak peak peak

2
rms rms rms rms

r exp
2 2 2

[8.249] 
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where peak m .

Figure 8.33 shows the function thus modified drawn for different values of 

m

rms 2
 (

2
2

; 0; 
2

2
; 1; 2 ; 2; ) and m = 3. 

For a constant amplitude sinusoidal load, amplitude a  is equal to 

a rms 2 .

Figure 8.33. Probability density of crack propagation 

for different values of m

rms 2

Factor 2  is then introduced in the diagram of these curves in order to directly 
compare constant amplitude loads and random loads. 

m = 4 

m

rms 2
2

2
0

2
2

1 2 2

RD 0.0148 0.125 0.621 0.984 1.487 1.895 2 

Table 8.8. Relative damage for a few values of m

rms 2
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Even when the mean stress is negative, the largest maxima can be positive and 
produce damage. 

Even though damage RD is insensitive to small variations of m  for large mean 
values, and the fact that the error is low if the closure does not happen at zero load, 
RD greatly depends on m  when m  is close to zero. Serious mistakes can be made 
if the crack does not close at zero load. 

A fatigue crack of a given length does not grow unless the applied stress exceeds 
a threshold value S  that can be calculated, for given SK , from 

K a [8.250] 

where  is a constant, geometric correction factor, of approximately 1. 

The peaks lower than a threshold value of peak S

rms
 therefore do not produce 

damage. The relative damage density curve is truncated and relative damage is 

decreased. When the crack grows, peak S

rms
 decreases according to relation [8.250] 

and relative damage RD increases. This phenomenon must be taken into 
consideration to calculate total useful lifetime. 

When the rms value rms  decreases, peak S

rms
 increases and fatigue limit is 

reached when peak S

rms
 is equal to the truncation ratio. In this way, by simply 

dividing the fatigue limit in constant amplitude by the truncation ratio, we obtain the 
fatigue limit under narrow band random load. 

L.P. Pook then uses relative damage RD to calculate the number of cycles to 
fracture:

c 6

i

m6a picS picT10

a eff eff

K10N P P da
R 2 2 K

[8.251] 
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where ia  is the length of initial crack (Pook uses 4 mm), ca  is the length of critical 
crack (40 mm), 610K  is the value of K  for a crack propagation rate equal to 10–6

m/cycle, K  is the rms value of the stress intensity factor for a random load, 

peak S

rms
 is the threshold value of peak

rms
, peakT

rms
 is the truncation ratio and 

peak

rms
P  is the probability of a peak exceeding peak

rms
.

8.25.3. Calculation from a load collective  

The calculation of the state of cracks after application of a random vibratory 
environment can be done from a load collective, evaluated from one of the counting 
methods presented for traditional fatigue studies. 

The resulting load spectrum must be transformed into a horizontal level spectrum 
on which we can read the number of cycles to associate with each discrete amplitude 
value. 

Example 8.5. 

Cracking calculation

We consider that the law of Paris 

mda
C K

dN
 [8.252] 

applies with K a  and for a minimum crack size detectable of 0.5 mm. 

Case where there is no retardation of cracking caused by overloads

Suppose that C = 2  10–9 and m = 4. The calculation is made by proceeding to a 
linear numeric integration referring to Table 8.9, 
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Level of  

stress
(kg/mm2)

Number of 
cycles per 

level 
(block) 

Size of 
the crack 

(mm) 

K

( 3 2kg / mm )

da
dN

(mm/cycle) 

a

(mm) 

12 1 0.5000 15.04 10–4 10–4

10 10 0.5001 12.53 4.9  10–5 4.9  10–4

8 25 0.50059 10.03 2.02  10–5 5.06  10–4

Table 8.9. Example of calculation of the crack size increase 

 First line: 

3 2K a 12 0.5 15 kg / mm

44 9 4da
C K 2 10 15.04 10 mm / cycle

dN

Hence the growth of the crack size of 

4 4daa x number of cycles 10 x 1 10 mm
dN

.

The size of the crack becomes equal to 0.5 + 0.0001 = 0.5001 mm. 

This value is transferred to the second line. 

 Second line: 

3 2K a 10 0.5001 12.53 kg / mm
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44 9 5da
C K 2 10 12.53 4.910 mm / cycle

dN

For 10 cycles, a = 104.9  10–5 = 4.9  10–4 mm and the size of the crack tends 
to 0.5001 + 0.00049 = 0.50049 mm. 

Since the load spectrum is broken down into blocks, the calculation is made 
consecutively for each block, and the number of blocks must be sufficient to limit 
the effects of overload and correctly distribute the levels. 

Calculations are sometimes carried out by considering that the accumulation is 
broken down into several sequences which, in turn, is made up of blocks as 
previously described. For each block of the first sequence, the initial size is the 
same: 0.5 mm in this example (see Table 8.10). 

The results obtained with these two methods are similar. 

Case where there is retardation of crack

The calculation can be carried out with the Wheeler model, assuming that 
p = 1.4, with 

2

p 2
e

K
r

6 R
 [8.253] 

Assuming that 2
eR 60 kg / mm , the calculation could be carried out with the 

previous data, as indicated in Table 8.11. More complex calculations may be 
necessary if RD is not constant, with other retardation delay models and more 
complicated expressions of K .



380     Fatigue Damage 

NOTES:

1. Calculations carried out with these different formulations are never very precise, 
as in the case of traditional fatigue. We notice that [BRO 78]: 

 results are conservative (more severe than in reality) when we do not consider 
a law of retardation; and 

 calculated useful lifetime to experimental useful lifetime ratios are in lower 
than 2; 

 the results can be adjusted with the help of retardations. The Wheeler law is 
the easiest to use (only one constant). The value of constant p that seems to return 
the best results is 6; this value leads to results calculated at 30% of experimental 
results (0.7–1.3); 

 results thus obtained are more precise than those derived from laws of fatigue 
(by proceeding to a few tests to adjust exponent p according to the shape of the 
excitation spectrum). 

2. The retardation model of Willenborg et al. [WIL 71] does not require the use of 
an arbitrary coefficient compared to that of Wheeler. 

3. Most retardation models proposed [BEL 76] [WHE 72] [WIL 71] return 
satisfying results for the calculation of useful lifetime in random loads, but do not 
seem as good for “ordered” load spectra [BAD 82] [WEI 78] [WHE 72] [WIL 71]. 
For these spectra, some authors proposed an iterative procedure retaining the 
general form of equation [8.222], modified by adding numbers of retardation cycles 
and defined with periods during which cracks do not propagate, determined 
experimentally [WEI 78]. 
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Appendices

A1. Gamma function 

A1.1. Definition 

The gamma function (or factorial function or Euler function-second kind), x ,
is defined by [ANG 61]: 

x e dx 1
0 [A1.1] 

A1.2. Properties 

Whatever the value of x, integral or not, 

( ) ( )1 x x x . [A1.2] 

If x is a positive integer: 

!x)x1( [A1.3] 

1 1
( x) ( x)
2 2 cos x

[A1.4] 

( ) ( )
sin

x x
x

1 [A1.5] 

Fatigue Damage: Second Edition - Volume 4 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 



384     Fatigue Damage 

1

2
2 2

12 1x x x
x

x [A1.6] 

1

2
[A1.7] 

according to [CHE 66], yielding, for x a positive integer: 

x
x

X

1

2

13 2 1

2

. ( )
[A1.8] 

x
x

x1

2

2

13 2 1

( )

. ( )
. [A1.9] 

If x is arbitrarily much higher than 1, we have: 

( ) ( ) ( )1 2 1

1 2

2 1x x e

x
x [A1.10] 

i.e.
1x - -x2(x) 2 x e .

For x an integer, we use relation [A1.3] to calculate ( ) ( )!x x 1  or the 

relation [A1.8] for ( )x
1

2
.

Figure A1.1. Gamma function



Appendices     385 

For arbitrary x, the relation [A1.2] and Table A1.1 allow 1 x  to be 
determined. 

Example A1.1.

)34.3(34.3)34.4(

)34.1(34.134.234.334.4

where 34.1  is given in Table A1.1. 

8922.0)34.01()34.1(

yielding 

34.9)34.4( .

x1

x 0 1 2 3 4 5 6 7 8 9 
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.9514
0.9182
0.8975
0.8873
0.8862
0.8935
0.9086
0.9314
0.9618
1.0000

0.9943
0.9474
0.9156
0.8960
0.8868
0.8866
0.8947
0.9106
0.9341
0.9652
1.0043

0.9888
0.9436
0.9131
0.8946
0.8864
0.8870
0.8959
0.9126
0.9368
0.9688
1.0086

0.9835
0.9399
0.9108
0.8934
0.8860
0.8876
0.8972
0.9147
0.9397
0.9724
1.0131

0.9784
0.9364
0.9085
0.8922
0.8858
0.8882
0.8986
0.9168
0.9426
0.9761
1.0176

0.9735
0.9330
0.9064
0.8912
0.8857
0.8889
0.9001
0.9191
0.9456
0.9799
1.0222

0.9687
0.9298
0.9044
0.8902
0.8856
0.8896
0.9017
0.9214
0.9487
0.9837
1.0269

0.9642
0.9267
0.9025
0.8893
0.8856
0.8905
0.9033
0.9238
0.9518
0.9877
1.0316

0.9597
0.9237
0.9007
0.8887
0.857
0.8914
0.9050
0.9262
0.9551
0.9917
1.0365

0.9555
0.9209
0.8990
0.8879
0.8859
0.8924
0.9068
0.9288
0.9584
0.9958
1.0415

Table A1.1. Values of the gamma function HAS 55
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Example A1.2.

9068.0)69.01(

A1.3. Approximations for arbitrary x 

For arbitrary x (integer or not) 1 LAM 76 ,

( )

( )

x

x
x

1

2 1

4
. [A1.11] 

This relation is rather precise for x 2 (better than 0.5%). For x a positive 
integer, we have, starting from the above relations, 

( )

( )

( )!

( )!( )

x

x

x

xx

1

2
2

2 1

2 12 1 2 [A1.12] 

where !x  can be approximated to the Stirling formula 

x2ex!x xx [A1.13] 

or, better, to: 

)
x12

1
1(x2ex!x xx .

A better approximation can be obtained from the relation of Pierrat:  

x
1x16
1x16

)x(

)
2
1

x(
. [A1.14] 

If 0 1x , 1 x  can be calculated with an error lower than 72 10  using 
the polynomial HAS 55
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8
8

2
21 xaxaxa1x1 [A1.15] 

where 

916525771.0a1 040787567.0a5

058919882.0a2 993944821.0a6

569378970.0a3 278181935.0a7

068579182.0a4 683430358.0a8

A2. Incomplete gamma function 

A2.1. Definition 

The incomplete gamma function is defined by [ABR 70] [LAM 76]: 

( , )x T x e dxT 1
0 . [A2.1] 

This function is tabulated in various published works [ABR 70] [PIE 48]. 
Figures A2.1 and A2.2 show the variations of  with x for given T, then with T for 
given x. 

Figure A2.1. Incomplete gamma function versus x
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Figure A2.2. Incomplete gamma function versus T

We set: 

P x T
x

e d
T x,

( )

1
0

1 . [A2.2] 

It has been shown that x T,  can be written 

x T x P, 1
2

[A2.3] 

where 2 2 T, 2 x and 

P t e dt

t2

2

2
1

2
0

1

2
2

2

2

, [A2.4] 

the chi-square probability distribution. The function P is also tabulated [ABR 70]. 
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A2.2. Relation between complete gamma function and incomplete gamma 
function

We have 

x xT x
T

e d e d e d1
0

1
0

1

yielding 

T,xQ)T,x(x . [A2.5] 

A2.3. Pearson form of incomplete gamma function 

1pu

0
pt dtte

1p
1

)p,u(I [A2.6] 

I u p P p u p( , ) ,1 1

u p,
2

[A2.7] 

1p2

2 2 1u p

Tables or abacuses give I varying with u for various values of p [ABR 70] 
[CRA 63] [FID 75]. 

A3. Various integrals 

A3.1.

I
i

g x

h x h x
dxn

n

n n

1

2
[A3.1] 

where 
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h x a x a x a

g x b x b x b

n
n n

n

n
n n

n

0 1
1

0
2 2

1
2 4

1

where the roots of h xn ( ) are assumed located in the upper half plane for n 1 7, .

Figure A3.1. Real and imaginary axes

The first values of In , extracted from the work of James et al. [JAM 47], are the 
following:

I
b

a a
1

0

0 12
[A3.2] 

I

b
a b

a

a a
2

0
0 1

2

0 12
[A3.3] 

I

a b a b
a a b

a

a a a a a
3

2 0 0 1
0 1 2

3

0 0 3 1 22
[A3.4] 

I

b a a a a a a b a a b
a b

a
a a a a

a a a a a a a a
4

0 1 4 2 3 0 3 1 0 1 2
0 3

4
0 3 1 2

0 0 3
2

1
2

4 1 2 32

[A3.5] 

Application 

From these expressions, S.H. Crandall and W.D. Mark [CRA 63] and 
D.E. Newland [NEW 75] deduce the value of the integral 
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I H dn n
2

[A3.6] 

where 

H
B i B i B i B

A i A i A i A
n

n
n

n
n

0 1
2

2
1

1

0 1
2

2
1

[A3.7] 

for n 1,

H
B

A i A
1

0

0 1
and

I
B

A A
1

0
2

0 1

. [A3.8] 

For n 2,

H
B i B

A i A A
2

0 1

0 1
2

2

I
A B A B

A A A
2

0 1
2

2 0
2

0 1 2

( )
[A3.9] 

etc.

A3.2.

I e b x dx
e

a b
a b x b b x

I e b x dx
e

a b
a b x b b x

a x
a x

a x
a x

1 2 2

2 2 2

cos cos sin

sin sin cos

  [A3.10] 

These two integrals are calculated simultaneously while multiplying I2  by i in 
order to constitute the integral: 
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I I I e b x i b x dxa x
1 2 cos sin

I e dx
a i b

ea i b x a i b x1

I
e b x i b x a i b

a b

a x cos sin ( )
2 2

I
e

a b
a b x b b x i a b x b b x

a x

2 2 cos sin sin cos ,

yielding I1 and I2  by separating the real and imaginary parts. 

A3.3.

x e dx
e

a
x

a
ax

ax 1
[A3.11] 

x
x

dx
nn

n

exp
2

20

1

2

2

2

1

2
[A3.12] 

[CRA 63], yielding 

exp
x

dx
2

20 2 2
[A3.13] 

x
x

dxexp
2

2
2

0 2
[A3.14] 

x
x

dx2
2

2
3

0 2 2
exp [A3.15] 

x
x

dx3
2

2
4

0 2
2exp [A3.16] 
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x
x

dx4
2

2
5

0 2
3

2
exp [A3.17] 

x

0 2

2

2
x

erf
2

du
2

u
exp [A3.18] 

Applications 

e dxx2

[A3.19] 

[PAP 65] 

x
x

dx
nn

n

exp
2

2

1

0 2

2

2

1

2
[A3.20] 

[CRA 63] 

A3.4.

cos2
0

2

2

1

2
1

n d
n

n
[A3.21] 

This result is demonstrated by setting [ANG 61]: 

21tcosarc

yielding 

cos2 n nt

and
11 n 1 22n2 2

0 0

1I cos d t 1 t dt
2

.



394     Fatigue Damage 

We obtain a Euler integral-first kind of the form 

B p q x x dxp q, 1 1
0

1
1

which can be expressed using gamma functions. 

A3.5.

I t e dtn
n

t2

2 [A3.22] 

I n I t en n
n

t

( )1 2
1 2

2

I e

t

1
2

2

J t e dtn
n

t2

2
[A3.23] 

2J0

J1 1

J n Jn n( )1 2 [A3.24] 

If n m2  (n even), 

J
m

m
m m2

2

2
2

( )!

!

If n m2 1 (n odd], 

J m2 1 0
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A3.6.

2

2

2 k a y
10 kk 1 2

2 k 1 a y
k 10

(2k 1)
A y e dy 1.3.5

2 a
k

B y e dy 1.2.3.4
2 a

[A3.25] 

k 1 2 3, , ,

Approximations 

Integral A can be approximated by the expression: 

,4,3,2kfor

a2

k)!1k(
A

2
1

k
. [A3.26] 

With this relation, we obtain values a little higher than the true values. The 
relative error is equal to 6.4% for k 2, to 2.5% for k 5 and to 1.3% for k 10
[DAV 64]. 

It can be reduced while evaluating !1k  using the Stirling formula [A1.13]: 

k
k

e
k

k

k1
2 1

2

1

2
1! ( )

[A3.27] 

This error gives a value of the factorial smaller than the true value. For k 2,
the relative error is equal to 8.7 %. It is equal to 1.2 % for k 5 and to 9.0 %
if k 10. Integral A can then be written, for ( )k 2 ,
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[A3.28] 

The relative error here is equal to 94.1 % for k 2, close to 4.0 % for 
5 10k  and lower than 0.4% if k 10 .
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Figure A3.2. Relative error calculated using the approximate  
expression for integral A
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