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Preface

My primary objective in this book is to provide a simple introduction to the
subject of mechanical properties of engineered materials for undergraduate
and graduate students. I have been encouraged in this task by my students
and many practicing engineers with a strong interest in the mechanical
properties of materials and I hope that this book will satisfy their needs. I
have endeavored to cover only the topics that I consider central to the
development of a basic understanding of the mechanical properties of mate-
rials. It is not intended to be a comprehensive review of all the different
aspects of mechanical properties; such a task would be beyond the capabil-
ities of any single author. Instead, this book emphasizes the fundamental
concepts that must be mastered by any undergraduate or graduate engineer
before he or she can effectively tackle basic industrial tasks that require an
understanding of mechanical properties. This book is intended to bridge the
gap between rigorous theory and engineering practice.

The book covers essential principles required to understand and inter-
pret the mechanical properties of different types of materials (i.e., metals,
ceramics, intermetallics, polymers, and their composites). Basic concepts are
discussed generically, except in cases where they apply only to specific types/
classes of materials. Following a brief introduction to materials science and
basic strength of materials, the fundamentals of elasticity and plasticity are
presented, prior to a discussion of strengthening mechanisms (including
composite strengthening concepts). A simple introduction to the subject
of fracture mechanics is then presented along with fracture and toughening
mechanisms and a description of the effects of fatigue and the environment.
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The book concludes with an overview of time-dependent viscoelastic/visco-
plastic behavior, creep, and creep crack growth phenomena. Wherever pos-
sible, the text is illustrated with worked examples and case studies that show
how to apply basic principles to the solution of engineering problems.

This book has been written primarily as a text for a senior under-
graduate course or first-level graduate course on mechanical properties of
materials. However, I hope that it will also be useful to practicing engineers,
researchers, and others who want to develop a working understanding of the
basic concepts that govern the mechanical properties of materials. To ensure
a wide audience, I have assumed only a basic knowledge of algebra and
calculus in the presentation of mathematical derivations. The reader is also
assumed to have a sophomore-level understanding of physics and chemistry.
Prior knowledge of basic materials science and strength of materials con-
cepts is not assumed, however. The better-prepared reader may, therefore,
skim through some of the elementary sections in which these concepts are
introduced.

Finally, I would like to acknowledge a number of people that have
supported me over the years. I am grateful to my parents, Alfred and
Anthonia, for the numerous sacrifices that they made to provide me with
a good education. I am indebted to my teachers, especially John Knott,
Anthony Smith, David Fenner, and Stan Earles, for stimulating my early
interest in materials and mechanics. [ am also thankful to my colleagues in
the field of mechanical behavior who have shared their thoughts and ideas
with me over the years. In particular, I am grateful to Frank McClintock for
his critical review of the first five chapters, and his suggestions for the book
outline.

I also thank my colleagues in the mechanical behavior community for
helping me to develop my basic understanding of the subject over the past
15 years. I am particularly grateful to Anthony Evans, John Hutchinson,
Paul Paris, Robert Ritchie, Richard Hertzberg, Gerry Smith, Ali Argon,
Keith Miller, Rod Smith, David Parks, Lallit Anand, Shankar Sastry,
Alan Needleman, Charlie Whitsett, Richard Lederich, T. S. Srivatsan,
Pranesh Aswath, Zhigang Suo, David Srolovitz, Barrie Royce, Noriko
Katsube, Bob Wei, Campbell Laird, Bob Hayes, Rajiv Mishra, and many
others who have shared their understanding with me in numerous discus-
sions over the years.

I am indebted to my past and present staff scientists and postdoctoral
research associates (Chris Mercer, Seyed Allameh, Fan Ye, Pranav
Shrotriya, and Youlin Li) and personal assistants (Betty Adam, Alissa
Horstman, Jason Schymanski, Hedi Allameh, and Yingfang Ni) for their
assistance with the preparation of the text and figures. Betty Adam deserves
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special mention since she helped put the book together. I simply cannot
imagine how this project could have been completed without her help.

I am grateful to my students and colleagues at Princeton University,
MIT, and The Ohio State University who have provided me with a stimu-
lating working environment over the past few years. In particular, I thank
Lex Smits, my current department chair, and all my colleagues. My inter-
actions with colleagues and students have certainly been vital to the devel-
opment of my current understanding of the mechanical behavior of
materials.

Partial financial support for the preparation of this book was provided
by the National Science Foundation (DMR 0075135 and DMR 9458018). I
would like to thank the Program Managers, Dr. Bruce McDonald and Dr.
K. L. Murty, for providing the financial support and encouragement that
made this book possible. Appreciation is also extended to Prof. Tom Eager
and Prof. Nam Suh of MIT for inviting me to spend a sabbatical year as
Visiting Martin Luther King Professor in the departments of Materials
Science and Engineering and Mechanical Engineering at MIT. The sabba-
tical year (1997—-1998) at MIT provided me with a stimulating environment
for the development of the first few chapters of this book.

I also thank Dawn Wechsler, Janet Sachs, Elizabeth Curione, and Rita
Lazzazzaro of Marcel Dekker, Inc., for their patience and understanding.
This project would certainly not have been completed (by me) without their
vision, patience, and encouragement.

Finally, I thank my wife, Morenike, for giving me the freedom and the
time to write this book. This was time that I should have spent with her and
our young family. However, as always, she was supportive of my work, and
I know that this book could have never been completed without her fore-
bearance and support.

Wolé Soboyejo
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1

Overview of Crystal/Defect Structure
and Mechanical Properties and
Behavior

1.1 INTRODUCTION

The mechanical behavior of materials describes the response of materials to
mechanical loads or deformation. The response can be understood in terms
of the basic effects of mechanical loads on defects or atomic motion. A
simple understanding of atomic and defect structure is, therefore, an essen-
tial prerequisite to the development of a fundamental understanding of the
mechanical behavior of materials. A brief introduction to the structure of
materials will be presented in this chapter. The treatment is intended to serve
as an introduction to those with a limited prior background in the principles
of materials science. The better prepared reader may, therefore, choose to
skim this chapter.

1.2 ATOMIC STRUCTURE

In ancient Greece, Democritus postulated that atoms are the building blocks
from which all materials are made. This was generally accepted by philoso-
phers and scientists (without proof) for centuries. However, although the
small size of the atoms was such that they could not be viewed directly with
the available instruments, Avogadro in the 16th century was able to deter-
mine that one mole of an element consists of 6.02 x 10> atoms. The peri-
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odic table of elements was also developed in the 19th century before the
imaging of crystal structure was made possible after the development of x-
ray techniques later that century. For the first time, scientists were able to
view the effects of atoms that had been postulated by the ancients.

A clear picture of atomic structure soon emerged as a number of
dedicated scientists studied the atomic structure of different types of materi-
als. First, it became apparent that, in many materials, the atoms can be
grouped into unit cells or building blocks that are somewhat akin to the
pieces in a Lego set. These building blocks are often called crystals.
However, there are many materials in which no clear grouping of atoms
into unit cells or crystals can be identified. Atoms in such amorphous mate-
rials are apparently randomly distributed, and it is difficult to discern clear
groups of atoms in such materials. Nevertheless, in amorphous and crystal-
line materials, mechanical behavior can only be understood if we appreciate
the fact that the atoms within a solid are held together by forces that are
often referred to as chemical bonds. These will be described in the next
section.

1.3 CHEMICAL BONDS

Two distinct types of chemical bonds are known to exist. Strong bonds are
often described as primary bonds, and weaker bonds are generally described
as secondary bonds. However, both types of bonds are important, and they
often occur together in solids. It is particularly important to note that the
weaker secondary bonds may control the mechanical behavior of some
materials, even when much stronger primary bonds are present. A good
example is the case of graphite (carbon) which consists of strong primary
bonds and weaker secondary bonds (Fig. 1.1). The relatively low strength of
graphite can be attributed to the low shear stress required to induce the
sliding of strongly (primary) bonded carbon layers over each other. Such
sliding is easy because the bonds between the sliding (primary bonded)
carbon planes are weak secondary bonds.

1.3.1 Primary Bonds

Primary bonds may be ionic, covalent, or metallic in character. Since these
are relatively strong bonds, primary bonds generally give rise to stiff solids.
The different types of primary bonds are described in detail below.

1.3.1.1 lonic Bonding

Ionic bonds occur as a result of strong electrostatic Coulomb attractive
forces between positively and negatively charged ions. The ions may be
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Ficure 1.1 Schematic of the layered structure of graphite. (Adapted from
Kingery et al., 1976. Reprinted with permission from John Wiley and Sons.)

formed by the donation of electrons by a cation to an anion (Fig. 1.2). Note
that both ions achieve more stable electronic structures (complete outer
shells) by the donation or acceptance of electrons. The resulting attractive
force between the ions is given by:

G

F——q = 1.1

Sadium atom Chlorine atom

Na* +5.14 eV

-4.02 eV Cl

Attractive
force

2
__9
dne,r?

R

Ficure 1.2 Schematic of an ionic bond—in this case between a sodium atom
and a chlorine atom to form sodium chloride. (Adapted from Ashby and
Jones, 1994. Reprinted with permission from Pergamon Press.)
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where a is a proportionality constant, which is equal to 1/(4meg), &y is the
permitivity of the vacuum (8.5 x 1072 F/m), O, and Q, are the respective
charges of ions 1 and 2, and r is the ionic separation, as shown in Fig. 1.2.
Typical ionic bond strengths are between 40 and 200 kcal/mol. Also, due to
their relatively high bond strengths, ionically bonded materials have high
melting points since a greater level of thermal agitation is needed to shear
the ions from the ionically bonded structures. The ionic bonds are also
nonsaturating and nondirectional. Such bonds are relatively difficult to
break during slip processes that after control plastic behavior (irreversible
deformation). Ionically bonded solids are, therefore, relatively brittle since
they can only undergo limited plasticity. Examples of ionically bonded
solids include sodium chloride and other alkali halides, metal oxides, and
hydrated carbonates.

1.3.1.2 Covalent Bonds

Another type of primary bond is the covalent bond. Covalent bonds are
often found between atoms with nearly complete outer shells. The atoms
typically achieve a more stable electronic structure (lower energy state) by
sharing electrons in outer shells to form structures with completely filled
outer shells [(Fig. 1.3(a)]. The resulting bond strengths are between 30 and
300 kcal/mol. A wider range of bond strengths is, therefore, associated with
covalent bonding which may result in molecular, linear or three-dimensional
structures.

One-dimensional linear covalent bonds are formed by the sharing of
two outer electrons (one from each atom). These result in the formation of
molecular structures such as Cl,, which is shown schematically in Figs 1.3b
and 1.3c. Long, linear, covalently bonded chains, may form between quad-
rivalent carbon atoms, as in polyethylene [Figs 1.4(a)]. Branches may also
form by the attachment of other chains to the linear chain structures, as
shown in Fig. 1.4(b). Furthermore, three-dimensional covalent bonded

{a) (b} {e)

o] Il o I cl—— !

Ficure 1.3 The covalent bond in a molecule of chlorine (Cl,) gas: (a) planetary
model; (b) electron dot schematic; (c) “bond-line’” schematic. (Adapted from
Shackleford, 1996. Reprinted with permission from Prentice-Hall.)
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{a}

{c)

]

{d)

Ficure 1.4 Typical covalently bonded structures: (a) three-dimensional

structure of diamond; (b) chain structure of polyethylene; (c) three-
dimensional structure of diamond; (d) buckeyball structure of Cgo. (Adapted

from Shackleford, 1996. Reprinted with permission from Prentice-Hall.)

structures may form, as in the case of diamond [Fig. 1.4(c)] and the recently
discovered buckeyball structure [Fig. 1.4(d)].

Due to electron sharing, covalent bonds are directional in character.
Elasticity in polymers is associated with the stretching and rotation of
bonds. The chain structures may also uncurl during loading, which generally
gives rise to elastic deformation. In the case of elastomers and rubber-like
materials, the nonlinear elastic strains may be in excess of 100%. The elastic

moduli also increase with increasing temperature due to changes in entropy

that occur on bond stretching.
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Plasticity in covalently bonded materials is associated with the sliding
of chains consisting of covalently bonded atoms (such as those in polymers)
or covalently bonded layers (such as those in graphite) over each other [Figs
1.1 and 1.4(a)]. Plastic deformation of three-dimensional covalently bonded
structures [Figs 1.4(c) and 1.4(d)] is also difficult because of the inherent
resistance of such structures to deformation. Furthermore, chain sliding is
restricted in branched structures [Fig. 1.4(b)] since the branches tend to
restrict chain motion.

1.3.1.3 Metallic Bonds

Metallic bonds are the third type of primary bond. The theory behind
metallic bonding is often described as the Driide—Lorenz theory. Metallic
bonds can be understood as the overall effect of multiple electrostatic attrac-
tions between positively charged metallic ions and a ‘“‘sea” or ‘“gas” of
delocalized electrons (electron cloud) that surround the positively charged
ions (Fig. 1.5). This is illustrated schematically in Fig. 1.5. Note that the
outer electrons in a metal are delocalized, i.e., they are free to move within
the metallic lattice. Such electron movement can be accelerated by the appli-
cation of an electric field or a temperature field. The electrostatic forces
between the positively charged ions and the sea of electrons are very strong.
These strong electrostatic forces give rise to the high strengths of metallically
bonded materials.

Metallic bonds are nonsaturating and nondirectional in character.
Hence, line defects within metallically bonded lattices can move at relatively
low stresses (below those required to cause atomic separation) by slip pro-
cesses at relatively low stress levels. The mechanisms of slip will be discussed
later. These give rise to the ductility of metals, which is an important prop-
erty for machining and fabrication processes.

)

_ @ (+) Metalions
O | - e
®

. ©
'©
O

®
® e
®

® |

©

HNOR

Ficure 1.6 Schematic of metallic bonding. (Adapted from Ashby and Jones,
1994. Reprinted with permission from Pergamon Press.)
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1.3.2 Secondary Bonds

Unlike primary bonds, secondary bonds (temporary dipoles and Van der
Waals’ forces) are relatively weak bonds that are found in several materials.
Secondary bonds occur due to so-called dipole attractions that may be
temporary or permanent in nature.

1.3.2.1 Temporary Dipoles

As the electrons between two initially uncharged bonded atoms orbit their
nuclei, it is unlikely that the shared electrons will be exactly equidistant from
the two nuclei at any given moment. Hence, small electrostatic attractions
may develop between the atoms with slightly higher electron densities and
the atoms with slightly lower eclectron densities [Fig. 1.6(a)]. The slight
perturbations in the electrostatic charges on the atoms are often referred
to as temporary dipole attractions or Van der Waals’ forces [Fig. 1.6(a)].
However, spherical charge symmetry must be maintained over a period of
time, although asymmetric charge distributions may occur at particular
moments in time. It is also clear that a certain statistical number of these
attractions must occur over a given period.

Temporary dipole attractions result in typical bond strengths of
~ 0.24 kcal/mol. They are, therefore, much weaker than primary bonds.

O(

Random dipcle Indused dipole
an first atom on second atom

(@ [[)]

@}

molecule

Oxygen atom } H,0

Hydrogen atom

Ficure 1.6 Schematics of secondary bonds: (a) temporary dipoles/Van der
Waals’ forces; (b) hydrogen bonds in between water molecules. (Adapted
from Ashby and Jones, 1994. Reprinted with permission from Pergamon
Press.)
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Nevertheless, they may be important in determining the actual physical
states of materials. Van der Waals’ forces are found between covalently
bonded nitrogen (N,) molecules. They were first proposed by Van der
Waals to explain the deviations of real gases from the ideal gas law. They
are also partly responsible for the condensation and solidification of mole-
cular materials.

1.3.2.2 Hydrogen Bonds

Hydrogen bonds are induced as a result of permanent dipole forces. Due to
the high electronegativity (power to attract electrons) of the oxygen atom,
the shared electrons in the water (H,O) molecule are more strongly attracted
to the oxygen atom than to the hydrogen atoms. The hydrogen atom there-
fore becomes slightly positively charged (positive dipole), while the oxygen
atom acquires a slight negative charge (negative dipole). Permanent dipole
attractions, therefore, develop between the oxygen and hydrogen atoms,
giving rise to bridging bonds, as shown in Fig. 1.6(b). Such hydrogen
bonds are relatively weak (0.04-0.40 kcal/mol). Nevertheless, they are
required to keep water in the liquid state at room-temperature. They also
provide the additional binding that is needed to keep several polymers in the
crystalline state at room temperature.

1.4 STRUCTURE OF SOLIDS

The bonded atoms in a solid typically remain in their lowest energy config-
urations. In several solids, however, no short- or long-range order is
observed. Such materials are often described as amorphous solids.
Amorphous materials may be metals, ceramics, or polymers. Many are
metastable, i.e., they might evolve into more ordered structures on sub-
sequent thermal exposure. However, the rate of structural evolution may
be very slow due to slow kinetics.

1.4.1 Polymers

The building blocks of polymers are called mers [Figs 1.7(a) and 1.7(b)].
These are organic molecules, each with hydrogen atoms and other elements
clustered around one or two carbon atoms. Polymers are covalently bonded
chain structures that consist of hundreds of mers that are linked together via
addition or condensation chemical reactions (usually at high temperatures
and pressures). Most polymeric structures are based on mers with covalently
bonded carbon—carbon (C—C) bonds. Single (C-C), double (C=C), and
triple (C=C) bonds are found in polymeric structures. Typical chains con-
tain between 100 and 1000 mers per chain. Also, most of the basic properties
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Ficure 1.7 Examples of polymeric structures: (a) polymerization to form
poly(vinyl chloride) (C,H3Cl),; (b) cross-linked structure of polyisoprene; (c)
bond angle of 109.5° (d) bond stretching and rotation within kinked and
coiled structure. (Adapted from Shackleford, 1996. Reprinted with permission
from Prentice-Hall).

of polymers improve with increasing average number of mers per chain.
Polymer chains may also be cross-linked by sulfur atoms (Fig. 1.7(b)].
Such cross-linking by sulfur atoms occurs by a process known as vulcaniza-
tion, which is carried out at high temperatures and pressures. Commercial
rubber (isoprene) is made from such a process.

The spatial configurations of the polymer chains are strongly influ-
enced by the tetrahedral structure of the carbon atom [Fig. 1.7(c)]. In the
case of single C—C bonds, an angle of 109.5° is subtended between the
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carbon atom and each of the four bonds in the tetrahedral structure. The
resulting chain structures will, therefore, tend to have kinked and coiled
structures, as shown in Figs 1.7(d). The bonds in tetrahedral structure
may also rotate, as shown in Fig. 1.7(d).

Most polymeric structures are amorphous, i.e., there is no apparent
long-or short-range order to the spatial arrangement of the polymer chains.
However, evidence of short- and long-range order has been observed in
some polymers. Such crystallinity in polymers is due primarily to the
formation of chain folds, as shown in Fig. 1.8. Chain folds are observed
typically in linear polymers (thermoplastics) since such linear structures are
amenable to folding of chains. More rigid three-dimensional thermoset
structures are very difficult to fold into crystallites. Hence, polymer crystal-
linity is typically not observed in thermoset structures. Also, polymer chains
with large side groups are difficult to bend into folded crystalline chains.

In general, the deformation of polymers is elastic (fully reversible)
when it is associated with unkinking, uncoiling or rotation of bonds
[Fig. 1.7(d)]. However, polymer chains may slide over each other when
the applied stress or temperature are sufficiently large. Such sliding may
be restricted by large side groups [Fig. 1.4(b)] or cross-links [Fig. 1.7(b)].
Permanent, plastic, or viscous deformation of polymers is, thus, associated
with chain sliding, especially in linear (thermoplastic) polymers. As discussed

Amorphous

branching

Crystalline
region

Ficure 1.8 Schematic of amorphous and crystalline regions within long-
chain polymeric structure. (Adapted from Ashby and Jones, 1994.
Reprinted with permission from Pergamon Press.)
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earlier, chain sliding is relatively difficult in three-dimensional (thermoset)
polymers. Hence, thermosets are relatively rigid and brittle compared to
thermoplastics.

Long-chain polymeric materials exhibit a transition from rigid glass-
like behavior to a viscous flow behavior above a temperature that is gen-
erally referred to as the glass transition temperature, T,. This transition
temperature is usually associated with change in coefficient of thermal
expansion which may be determined from a plot of specific volume versus
temperature (Fig. 1.9). It is also important to note that the three-dimen-
sional structures of thermosets (rigid network polymers) generally disinte-
grate at elevated temperatures. For this reason, thermosets cannot be reused
after temperature excursions above the critical temperature levels required
for structural disintegration. However, linear polymers (thermoplastics) do
not disintegrate so readily at elevated temperatures, although they may
soften considerably above T,. They can thus be re-used after several ele-
vated-temperature exposures.

1.4.2 Metals and Ceramics

Metals are usually solid elements in the first three groups of the periodic
table. They contain de-localized outer electrons that are free to “swim
about” when an electric field is applied, as discussed in Sect. 1.3.1.3 on
metallic bonding. Ceramics are compounds formed between metals and
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Ficure 1.9 Schematic illustration of ductile-to-brittle transition in plot of
specific volume versus temperature (Adapted from Shackleford, 1996.
Reprinted with permission from Prentice-Hall.)
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nonmetals. Ceramics may have ionic, covalent, or mixed ionic and covalent
bonds. The relatively high compressive strengths of most ceramics may also
be attributed largely to strong ionic and/or covalent bonds. Unfortunately,
however, most ceramics are brittle due to their inability to accommodate
strains in the presence of crack tips (especially under tensile loading where
cracks tend to open up).

Metals and ceramics usually have long-range, ordered, crystalline
structures. However, amorphous structures may also form under certain
processing conditions. In the case of crystalline metallic and ceramic mate-
rials, the atoms within each crystal all have the same orientation. A crystal-
line lattice, consisting of regular repeated units (somewhat akin to Lego
building blocks in a child’s play kit) in a regular lattice, is observed. Each
repeated unit is usually referred to as a unit cell, and the unit cell is generally
chosen to highlight the symmetry of the crystal.

An example of a two-dimensional unit cell is shown in Fig. 1.10(a).
This illustrates the two-dimensional layered structure of graphite which is
one of the allotropes of carbon. Note that each carbon atom in the graphite
structure is surrounded by three near neighbors. However, the orientations
of the near neighbors to atoms A and B are different. Atoms similar to A are
found at N and Q, and atoms similar to B are found at M and P. In any
case, we may arbitrarily choose a unit cell, e.g., OXAY, that can be moved
to various positions until we fill the space with identical units. If the repeti-
tion of the unit is understood to occur automatically, only one unit must be
described to describe fully the crystal.

The unit chosen must also be a parallelogram in two dimensions, or a
parallelepiped in three dimensions. It is referred to as a mesh or a net in two
dimensions, or a unit cell in three dimensions. Since atoms at the corner of
the mesh or unit cell may be shared by adjacent nets/unit cells, the total
number of atoms in a unit cell may depend on the sum of the fractions of
atoms that are present with an arbitrarily selected unit cell. For example, the
mesh shown in Fig. 1.10(a) contains (4 x 1/4) 1 atom. The three-dimensional
parallelepiped also contains (8 x 1/8) 1 atom per unit cell [Fig. 1.10(b)].

It is also important to note here that the origin of the unit cell is at the
corner of the unit cell [Fig. 1.10(c)]. The sides of the unit parallelepiped also
correspond to the cartesian x, y, z axes, and the angles «, B, y are the axial
angles. The arrangement of atoms may therefore be described by a three-
dimensional grid of straight lines that divide the space into parallelepipeds
that are equal in size. The intersection of lines is called a space lattice, and
the crystal is constructed by stacking up the unit cells in a manner somewhat
analogous the stacking of Lego pieces [Fig. 1.10(c)].

The most common crystalline lattices in metallic materials are the
body-centered cubic, face-centered cubic, hexagonal closed-packed and
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Ficure 1.10 Schematics of possible unit cells. (a) Two-dimensional structure
of graphite. (From Kelly and Groves, 1970.) (b) Parrellepiped/unit cell showing
axes and angles. (c) A space lattice. (Adapted from Hull and Bacon, 1984.

Reprinted with permission from Pergamon Press.)

the simple cubic structures. These are shown schematically in Fig. 1.11. The
hexagonal and cubic structures can be constructed by the stacking of
individual crystals, as shown in [Figs 1.12 (a and b)]. Note that the hexago-
nal closed packed (h.c.p.) have an ABABAB stacking sequence, while the
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Ficure 1.11 Schematics of 14 Bravais lattices. (Adapted from Shackleford,
1996. Reprinted with permission from Prentice-Hall.)

(a) ()

Q: 9

O c

Ficure 1.12 Schematic of stacking sequence in closed packed lattices:
(a) hexagonal closed packed structure; (b) face-centered cubic structure.
(Adapted from Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.)
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(f.c.c.) structure has an ABCABC stacking sequence. Also, both f.c.c. and
h.c.p. structures are closed packed structures with several closed-packed
planes on which plastic flow can occur.

Crystalline ceramic materials generally have more complex structures
with lower symmetry. In general, however, 14 Bravais lattices are possible in
crystalline materials, as shown in Fig. 1.11. Note the increasing complexity
and the reduction in symmetry of the Bravais lattices that do not have cubic
or hexagonal crystal structures. Crystalline cermics have less symmetric
structures. The loss of symmetry is partly responsible for the relatively
brittle behavior that is typically observed in ceramic systems. This will be
discussed later. Further discussion on Bravais lattices can be found in any
standard text on crystallography.

1.4.3 Intermetallics

Intermetallics are compounds formed between different metals. The bonds
are often mixed metallic and covalent bonds. However, most intermetallics
are often metallic-like in character. Intermetallics are, therefore, generally
strong, but brittle as a result of their mixed bonding character. They also
have predominantly noncubic (nonsymmetric) structures. Nevertheless,
(relatively) light weight, high-temperature intermetallics such as gamma-
based titanium aluminides (TiAl) and niobium aluminides (Nb3Al) are of
commercial interest, especially in the aerospace industry where they are
being considered as possible replacements for heavier nickel-, iron-, or
cobalt-base superalloys, themselves often containing intermetallics (Fig.
1.13). Some recent improvements in the balance of properties of these mate-
rials suggests that they may be used in the next generation of aircraft tur-
bines.

1.4.4 Semiconductors

These are typically group IV elements (or their compounds) that have four
outer electrons. The outer electrons can be excited into the conduction
bands by application of electric fields. Electrical conductivity in semicon-
ductors occurs either by electron or hole movement [Figs 1.14(a) and
1.14(b)]. In recent years, semiconductor packages have been applied in sev-
eral electronic devices consisting of layered configurations of semiconduc-
tors deposited on metallic substrates within polymeric or ceramic
encapsulants (Fig. 1.15). Such layered structures behave very much like
structural materials. The mechanical properties of semiconductor devices
has thus emerged as one of the fastest growing areas in the field of mechan-
ical behavior.
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Ficure 1.13 Microstructures of some metallic and intermetallic materials:
(a) grains of single phase « niobium metal; (b) duplex o + 8 microstructure
of Ti-6Al-4V alloy; (c) eutectoid o+ y microstructure of gamma-based
titanium aluminide intermetallic (Ti-48Al-2Cr); (d) intermetallic §' (NizNb)
precipitates in a y-nickel solid solution matrix within IN718 superalloy.
(Courtesy of Dr Christopher Mercer.)

1.45 Composites

Composites are mixtures of two or more phases [Figs 1.15(a)—(d)]. Usually,
the continuous phase is described as the matrix phase, while the discontin-
uous phase is described as the reinforcement phase. Composites constitute
the great majority of materials that are encountered in nature. However,
they may also be synthetic mixtures. In any case, they will tend to have
mechanical properties that are intermediate between those of the matrix and
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Ficure 1.14 Schematic illustration of semiconduction via: (a) electron move-
ment; (b) hole movement. (Adapted from Shackleford, 1996. Reprinted with

permission from Prentice-Hall.)

reinforcement phases. Mixture rules are sometimes used to predict the
mechanical properties of composites. The fracture behavior but not the
stiffness of most composites are also strongly affected by the interfacial
properties between the matrix and reinforcement phases. The interfaces,
along with the matrix, must be engineered carefully to obtain the desired

balance of mechanical properties.
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Ficure 1.15 Schematic of typical semiconductor package. (Courtesy of Dr

Rheiner Dauskardt.)
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An almost infinite spectrum of composite materials should be readily
apparent to the reader. However, with the exception of natural com-
posites, only a limited range of composite materials have been produced
for commercial purposes. These include: composites reinforced with brittle
or ductile particles, whiskers, fibers, and layers [Figs 1.16(a)—(d)].
Composites reinforced with co-continuous, interpenetrating networks of
reinforcement matrix and reinforcement materials have also been
produced, along with woven fiber composites from which most textiles
are made. Most recently, there has also been considerable interest in the
development of functionally (continuously) graded layered composites in
which the interfacial layers are graded to control composite residual stress
levels and thermal characteristics.

In addition to the relatively exotic structural composites described
above, more conventional materials have also been fabricated from compo-
sites. These include construction materials such as concrete, which is a
mixture of sand, gravel, and cement. Reinforced concrete is another example
of a composite material that consists of steel rods buried in concrete struc-
tures. Such composites may also be prestressed or post-tensioned to increase
the inherent resistance to fracture. Concrete composites reinforced with steel
or carbon fibers have also been developed in recent years. Since these fibers
have very high strengths, concrete composites with extremely high strengths
have been developed for a range of civil and structural engineering applica-
tions. Concrete composites have been used recently in various bridge deck
designs and in other structural engineering applications. Polymer matrix
composites (polymer matrices reinforced with stiff fibers) have also been
considered for possible use in bridge applications due to their attractive
combinations of mechanical properties. However, there are some concerns
about their ability to withstand impact loading.

Wood is an example of a commonly used composite material. It is
composed of tube-like cells that are aligned vertically or horizontally along
the height of a tree. The tubular cells reinforce the wood in a similar manner
to fibers in a synthetic composite. The fibers serve as reinforcements within
the matrix, which consists of lignin and hemicellulose (both polymeric
materials). Other natural composite materials include natural fibers such
as silk, cotton and wool. These are all polymeric composites with very
complex layered structures.

Layered composite structures also exist in all of the electronic
packages that are used in modern electronic devices. Since the reliability
of these packages is often determined by the thermal and mechanical prop-
erties of the individual layers and their interfaces, a good understanding of
composite concepts is required for the design of such packages. Electronic
packages typically consist of silica (semiconductor) layers deposited on
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metallic substrates within polymeric composites (usually silica filled
epoxies). The other materials that have been used in electronic packaging
include: alumina, aluminum, silicon nitride, and a wide range of other
materials. The layered materials have been selected due to their combina-
tions of heat conductivity (required for Joule/I’R heat dissipation) and
electrical properties.

1.5 STRUCTURAL LENGTH SCALES:
NANOSTRUCTURE, MICROSTRUCTURE, AND
MACROSTRUCTURE

It should be clear from the above discussion that the structure of solids can
be considered at different length scales (from atomic to microscopic and
macroscopic scales). Physicists often work at the atomic level, while most
materials scientists work on the microscopic level. Unfortunately, however,
most engineers tend to have only a macroscopic level of understanding of
structure [Figs 16(a)—(d)]. They are often unaware of the atomic and micro-
structural constituents that can affect the mechanical behavior of materials
and of the role mechanics plays even on the atomic scale. Failure to recog-
nize the potential importance of these issues can lead to bad design. In the
worst cases, failure to understand the effects of microscale constituents on
the mechanical properties of materials has led to plane crashes, bridge fail-
ures, and shipwrecks. An understanding of mechanical behavior on different
length scales is, therefore, essential to the safe design of structures.

The major challenge in this area is how to link existing theoretical
models on different length scales, i.e., it is generally difficult to link atomistic
models to microscopic models, or microscopic models to macroscopic mod-
els. At crack tips, all length scales may enter into the problem. The engineer
must appreciate the relevant aspects of mechanical behavior at the different
length scales. Furthermore, the size scale of the structure can affect the
mechanical behavior of the materials, and the length scales may range
from nanometers (close to atomic dimensions) to millimeters (easily viewed
with the naked eye).

Unfortunately, however, there are no unifying concepts that bridge the
gap between the different length scales. Quantitative models must, therefore,
be developed at the appropriate length scales. This book presents the basic
concepts required for a fundamental understanding of mechanical behavior
at the different scales. However, since the mechanical behavior of materials
is strongly affected by structure and defects, a brief review of defect struc-
tures and microstructures is provided in Chap. 2 along with the indicial
notation required for the description of atomic structure.
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Ficure 1.16 Examples of composite microstructures. (a) Al,Oz particulate-
reinforced Al composite. (Courtesy of Prof. T. S. Srivatsan.) (b) TiB whisker-
reinforced Ti-6Al-4V composite. (c) SiC fiber-reinforced Ti-15V-3Cr-3AI-3Sn
composite. (d) Layered MoSi,/Nb composite.

1.6 SUMMARY

A brief introduction to the structure of materials has been presented in this
chapter. Following a review of the structure of crystalline and amorphous
materials, the different classes of materials (metals, polymers, ceramics,
intermetallics, and semiconductors and composites) were introduced. The
chapter then concluded with an introduction to structural length scales
related to nanostructure, microstructure, and macrostructure.
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2

Defect Structure and Mechanical
Properties

2.1 INTRODUCTION

Since the mechanical behavior of solids is often controlled by defects, a brief
review of the different types of defects is presented in this chapter along with
the indicial notation that is often used in the characterization of atomic
planes and dimensions. The possible defect length scales are also discussed
before presenting a brief introduction to diffusion-controlled phase trans-
formations. Finally, an overview of the mechanical behavior of materials is
presented in an effort to prepare the reader for more detailed discussion in
subsequent chapters. The material described in this chapter is intended for
those with limited prior background in the principles of materials science.
The better prepared reader may, therefore, choose to skim this chapter and
move on to Chap. 3 in which the fundamentals of stress and strain are
presented.

2.2 INDICIAL NOTATION FOR ATOMIC PLANES AND
DIRECTIONS

Abbreviated notation for the description of atomic planes and directions are
presented in this section. The so called Miller indicial notation is presented
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first for cubic lattices. This is followed by a brief introduction to Miller—
Bravais notation, which is generally used to describe atomic planes and
directions in hexagonal closed packed structures.

2.2.1 Miiller Indicial Notation

Miller indicial notation is often used to describe the planes and directions in
a cubic lattice. The Miller indices of a plane can be obtained simply from the
reciprocal values of the intercepts of the plane with the x, y, and z axes. This
is illustrated schematically in Figs 2.1 and 2.2. The reciprocals of the inter-
cepts are then multiplied by appropriate scaling factors to ensure that all the
resulting numbers are integer values corresponding to the least common
factors. The least common factors are used to represent the Miller indices
of a plane. Any negative numbers are represented by bars over them. A
single plane is denoted by (x y z) and a family of planes is usually repre-
sented as {x y z}.

Similarly, atomic directions may be specified using Miller indices.
These are vectors with integer values that represent the particular atomic
direction [u v w], as illustrated in Fig. 2.3(a). The square brackets are gen-
erally used to denote single directions, while angular brackets are used to
represent families of directions. An example of the (111) family of directions
is given in Fig. 2.3(b).

The Miller indices of planes and directions in cubic crystals may be
used to determine the unit vectors of the direction and the plane normal,
respectively. Unit vectors are given simply by the direction cosines [/ m 1] to
be

n = li + mj+ nk 2.1

Imarcept at eo

Miller indices (hkf:
111
172" 1" o0

— (210}

Intercepl at % a

Ficure 2.1 Determination of Miller indices for crystal planes. (Adapted from
Shackleford, 1996. Reprinted with permission from Prentice-Hall.)
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Ficure 2.2 Examples of crystal planes. (Adapted from Shackleford, 1996.
Reprinted with permission from Prentice-Hall.)

In the case of a direction, d;, described by unit vector [x; y; z;], the
direction cosines are given by

A X1i+y1i+21|2
d)=———
VXE+vi+ 2z

In the case of a plane with a plane normal with a unit vector, ,, that
has components (#; v; w;), the unit vector, 7;, is given by

(2.2)

f'l _ U1i+V1j+W1k

1 (2.3)
Jui+vi+w
{a) {b)
[112] .
[y
1] [111] [111]
[11%) {11 &3
Pl [ ‘|‘m ﬁ'
1
22 / a, |1
J T,
_V ‘ 117

A
(] [111] LK

[1111 <111

Ficure 2.3 Determination of crystal directions: (a) single [111] directions; (b)

family of (111) directions. (Adapted from Shackleford, 1996. Reprinted with
permission from Prentice-Hall.)
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The angle, ¢, between two directions d; = [x; y; z;] and dy = [x5 y5 25]
is given by

X1 X0 + Y1 Vo) + 2125k

COoS ¢ = Ei1 . az =
JE+V+20E +v3+2)

(2.4)

Similarly, the angle A between two planes with plane normals given by
n; = (u; v; wy) and n, = (4, v, W,), is given by

Us U + Vi Vo] + Wy W,k
coS A — 1l + Vavo) + whiwg (2.5)

The direction of the line of intersection of two planes n; and n, is
given by the vector cross product, n; = n; x n,, which is given by

1 i j k
Cos A = u vi ow (2.6)
\/(u$ +Vi+wHUE+vE+wd)lu, v, w

2.2.2 Miiller-Bravais Indicial Notation

In the case of hexagonal closed packed lattices, Miller—Bravais indicial nota-
tion is used to describe the directions and the plane normals. This type of
notation is illustrated schematically in Fig. 2.4. Once again, the direction
is described by a vector with the smallest possible integer components.
However, three (a; a, a;) axes are used to specify the directions in the
horizontal (a; a, as) plane shown in Fig. 2.4(a).

The fourth co-ordinate in Miller—Bravais notation corresponds to the
vertical direction, which is often denoted by the letter ¢. Miller—Bravais
indicial notation for direction is thus given by n = [a; a, a3 ¢]. Similarly,
Miller—Bravais indicial notation for a plane is given by the reciprocals of the
intercepts on the a, a,, a; and ¢ axes. As before, the intercepts are multi-
plied by appropriate scaling factors to obtain the smallest possible integer
values of the Miller—Bravais indices.

The Miller—Bravais notation for planes is similar to the Miller indicial
notation described earlier. However, four indices (a; a, a3 ¢) are needed to
describe a plane in Miller—Bravais indicial notation, as shown in Fig. 2.4(b).
Note that a;, a,, az, ¢ correspond to the reciprocals of the intercepts on the
a,, ay, az, and ¢ axes. The indices are also scaled appropriately to represent
the planes with the smallest integer indices. However, only two of the three
basal plane co-ordinates are independent. The indices a;, a,, and a3 must,
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Ficure 2.4 Miller-Bravais indicial notation for hexagonal closed packed
structures: (a) example showing determination of direction indices; (b) exam-
ple showing determination of plane indices. (Adapted from Shackleford,
1996. Reprinted with permission from Prentice-Hall.)

therefore, be selected such that a; + a; = —a;, for sequential values of i, j,
and k between 1 and 3.

To assist the reader in identifying the Miller—Bravais indicial notation
for directions, two examples of Miller—Bravais direction indices are pre-
sented in Fig. 2.4. These show two simple methods for the determination
of Miller—Bravais indices of diagonal axes. Fig. 2.5(a) shows diagonal axes
of Type I which correspond to directions along any of the axes on the basal
plane, i.e., a;, a, or a;. Note that the Miller—Bravais indices are not [1000]
since these violate the requirement that ¢; + a; = —a,. The diagonal axes of
Type 1, therefore, help us to identify the correct Miller—Bravais indices for
the a, direction as [2110]. Note that the unit vector along the a; direction is
1/3[2110]. Similarly, we may show that the unit vectors along the a, and a3
directions are given by 1/3[1210] and 1/3[1120]. The diagonal axis of Type I,
therefore, enables us to find the Miller—Bravais indices for any of the direc-
tions along the axes on the basal plane.

The other common type of diagonal axis is shown in Fig. 2.5(b). This
corresponds to a direction that is intermediate between g; and —a,. In the
example shown in Fig. 2.5(b), the vector s is given simply by the sum of the
unit vectors along the a; and —a; directions. The Miller—Bravais indices for
this direction are, therefore, given by 1/2[1010]. It is important to note here
that the ¢ component in the Miller—Bravais notation should always be
included even when it is equal to zero. The vectors corresponding to differ-
ent directions may also be treated using standard vector algebra.
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Ficure 2.5 Schematic illustration of diagonal axes of (a) Type |, and (b) Type
Il. (Adapted from Read-Hill and Abbaschian, 1992. Reprinted with permission
from PWS Kent.)

2.3 DEFECTS

All solids contain defects. Furthermore, structural evolution and plastic
deformation of solids are often controlled by the movement of defects. It
is, therefore, important for the student of mechanical behavior to be
familiar with the different types of defects that can occur in solids.
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Ficure 2.6 Examples of point defects: (a)] vacancy and interstitial elements;
(b) substitutional element and interstitial impurity element; (c) pairs of ions
and vacancies. [(a) and (c) are adapted from Shackleford, 1996—reprinted
with permission from Prentice-Hall; (b) is adapted from Hull and Bacon,
1984. Reprinted with permission from Pergamon Press.]

Defects are imperfections in the structure. They may be one-dimensional
point defects (Fig. 2.6), line defects (Fig. 2.7), two-dimensional plane
defects (Fig. 2.8), or three-dimensional volume defects such as inclusions
or porosity, Fig. 1.16(d). The different types of defects are described briefly
in this section.

2.3.1 One-Dimensional Point Defects

One-dimensional point defects [Fig. 2.6) may include vacancies [Fig. 2.6(a)],
interstitials [Figs 2.6(a) and 2.6(b)], solid solution elements [Fig. 2.6(b)], and
pairs or clusters of the foregoing, Fig. 2.6(c). Pairs of ions (Frenkel defects)
or vacancies (Schottky defects) are often required to maintain charge neu-
trality, Fig. 2.6(c). Point defects can diffuse through a lattice, especially at
temperatures above approximately 0.3-0.5 of the absolute melting tempera-
ture. If the movement of point defects produces a net state change, it causes
thermally activated stress-induced deformation, such as creep. The diffusion
of point defects such as vacancies may also lead to the growth of grains in a
polycrystalline material.

2.3.2 Line Defects

Line defects consist primarily of dislocations, typically at the edges of
patches where part of a crystallographic plane has slipped by one lattice
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Ficure 2.7 Examples of line defects: (a) edge dislocations; (b) screw disloca-
tions; (c) mixed dislocations. (Adapted from Hull and Bacon, 1980. Reprinted
with permission from Pergamon Press.)

spacing (Fig. 2.7). The two pure types of dislocations are edge and screw,
Figs 2.7(a) and 2.7(b). Edge dislocations have slip (Burgers) vectors perpen-
dicular to the dislocation line [Fig. 2.7a)], while screw dislocations have
translation vectors parallel to the dislocation line, Fig. 2.7(b). In general,
however, most dislocations are mixed dislocations that consist of both edge
and screw dislocation components, Fig. 2.7(c). Note that the line segments
along the curved dislocation in Fig. 2.7(c) have both edge and screw com-
ponents. However, the deflection segments are either pure edge or pure
screw at either end of the curved dislocation, Fig. 2.7(c).
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Ficure 2.8 Examples of surface defects: (a) low-angle tilt boundary; (b) high-
angle tilt boundary; (c) S =5 boundary; (d) twin boundary; (e) intrinsic stack-
ing fault; (f) extrinsic stacking fault. (Adapted from Shackleford, 1996.
Reprinted with permission from Prentice-Hall.)

2.3.3 Surface Defects

Surface defects are two-dimensional planar defects (Fig. 2.8). They may be
grain boundaries, stacking faults, or twin boundaries. These are surface
boundaries across which the perfect stacking of atoms within a crystalline
lattice changes. High- or low-angle tilt or twist boundaries may involve
changes in the crystallographic orientations of adjacent grains, Figs 2.8(a)
and 2.8(b). The orientation change across the boundary may be described
using the concept of coincident site lattices. For example, a ¥ =15 or
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»~! = 1/5 boundary is one in which 1 in 5 of the grain boundary atoms
match, as shown in Fig. 2.8(c).

Twin boundaries may form within crystals. Such boundaries lie across
deformation twin planes, as shown in Fig. 2.8(d). Note that the atoms on
either side of the twin planes are mirror images. Stacking faults may also be
formed when the perfect stacking in the crystalline stacking sequence is
disturbed, Figs 2.8(e) and 2.8(f). These may be thought of as the absence
of a plane of atoms (intrinsic stacking faults) or the insertion of rows of
atoms that disturb the arrangement of atoms (extrinsic stacking faults).
Intrinsic and extrinsic stacking faults are illustrated schematically in Figs
2.8(e) and 2.8(f), respectively. Note how the perfect ABCABC stacking of
atoms is disturbed by the insertion or absence of rows of atoms.

2.3.4 Volume Defects

Volume defects are imperfections such as voids, bubble/gas entrapments,
porosity, inclusions, precipitates, and cracks. They may be introduced into a
solid during processing or fabrication processes. An example of volume
defects is presented in Fig. 2.9. This shows MnS inclusions in an A707
steel. Another example of a volume defect is presented in Fig. 1.16(d).
This shows evidence of ~1-2 vol % of porosity in a molybdenum disilicide
composite. Such pores may concentrate stress during mechanical loading.
Volume defects can grow or coalesce due to applied stresses or temperature
fields. The growth of three-dimensional defects may lead ultimately to cat-
astrophic failure in engineering components and structures.

Ficure 2.9 MnS inclusions in an A707 steel. (Courtesy of Jikou Zhou.)
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2.4 THERMAL VIBRATIONS AND
MICROSTRUCTURAL EVOLUTION

As discussed earlier, atoms in a crystalline solid are arranged into units that
are commonly referred to as grains. The grain size may be affected by the
control of processing and heat treatment conditions. Grains may vary in size
from nanoscale (~10-100 nm) to microscale (~1-100 wm), or macroscale
(~1-10 mm). Some examples of microstructures are presented in Figs
1.13(a—d). Note that the microstructure may consist of single phases [Fig.
1.13(a)] or multiple phases [Figs 1.13(b—d)]. Microstructures may also
change due to diffusion processes that occur at temperatures above the
so-called recrystallization temperature, i.e., above approximately 0.3-0.5
of the melting temperature in degrees Kelvin.

Since the evolution of microstructure is often controlled by diffusion
processes, a brief introduction to elementary aspects of diffusion theory is
presented in this section. This will be followed by a simple description of
phase nucleation and grain growth. The kinetics of phase nucleation and
growth and growth in selected systems of engineering significance will be
illustrated using transformation diagrams. Phase diagrams that show the
equilibrium proportions of constituent phases will also be introduced
along with some common transformation reactions.

2.4.1 Statistical Mechanics Background

At temperatures above absolute zero (0 K), the atoms in a lattice vibrate
about the equilibrium positions at the so-called Debye frequency, v, of
~ 10" s7!. Since the energy required for the lattice vibrations is supplied
thermally, the amplitudes of the vibration increase with increasing tempera-
ture. For each individual atom, the probability that the vibration energy is
greater than ¢ is given by statistical mechanics to be

P = e 9K 2.7)

where k is the Boltzmann constant (1.38 x 107> J-atom 'K ') and T is the
absolute temperature in degrees Kelvin. The vibrating lattice atoms can only
be excited into particular quantum states, and the energy, ¢, is given simply
by Planck’s law (¢ = hv). Also, at any given time, the vibrational energy
varies statistically from atom to atom, and the atoms continuously exchange
energy as they collide with each other due to atomic vibrations.
Nevertheless, the average energy of the vibrating atoms in a solid is given
by statistical mechanics to be 3kT at any given time. This may be sufficient
to promote the diffusion of atoms within a lattice.
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2.4.2 Diffusion

Diffusion is the thermally- or stress-activated movement of atoms or vacan-
cies from regions of high concentration to regions of low concentration
(Shewmon, 1989). It may occur in solids, liquids, or gases. However, we
will restrict our attention to considerations of diffusion in solids in the
current text. Consider the interdiffusion of two atomic species A and B
shown schematically in Fig. 2.10; the probability that n, atoms of A will
have energy greater than or equal to the activation barrier, ¢, is given by
nAe_q//‘T. Similarly, the probability that ng atoms of B will have energy
greater than or equal to the activation barrier is given by nge™?*T. Since
the atoms may move in any of six possible directions, the actual frequency in
any given direction is v/6. The net number of diffusing atoms, n, that move
from A to B is thus given by

v _
m=gom—nweW” (2.8)

If the diffusion flux, J, is defined as the net number of diffusing atoms, ng,
per unit area, i.e., J =ny/(111,), and the concentration gradient, dC/dx,

Energy

S/pererer

Ficure 2.10 Schematic illustration of diffusion: activation energy required to
cross a barrier. (Adapted from Ashby and Jones, 1994. Reprinted with per-
mission from Pergamon Press).
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which is given simply by —(Cx — Cg)/ro, the diffusion flux, J, may then be
expressed as

J = Dyexp( 9 (%) 2.9)

If we scale the quantity ¢ by the Avogadro number, then the energy term
becomes Q = Npg and R = kN4. Equation (2.9) may thus be expressed as

J=-D exp(}—?) (g) (2.10)

If we now substitute D = —D, exp(l_g—g) into Eq. (2.10), we obtain the

usual expression for J, i.e., J is given by

dC

J=-D dx (2.11)

The above expression is Fick’s first law of diffusion. It was first pro-
posed by Adolf Hicks in 1855. It is important to note here that the diffusion
coefficient for self-diffusion, D, can have a strong effect on the creep proper-
ties, i.e., the time-dependent flow of materials at temperatures greater than
~0.3-0.5 of the melting temperature in degrees Kelvin. Also, the activation
energy, 0O, in Eq. (2.10) is indicative of the actual mechanism of diffusion,
which may involve the movement of interstitial atoms [Fig. 2.11(a)] and
vacancies [Fig. 2.11(b)].

Diffusion may also occur along fast diffusion paths such as dislocation
pipes along dislocation cores [Fig. 2.12(a)] or grain boundaries [Fig. 2.12(b)].
This is facilitated in materials with small grain sizes, d,, i.e., a large number
of grain boundaries per unit volume. However, diffusion in most crystalline
materials occurs typically by vacancy movement since the activation ener-
gies required for vacancy diffusion (~1eV) are generally lower than the
activation energies required for interstitial diffusion (~2—4¢eV). The activa-
tion energies for self-diffusion will be shown later to be consistent with
activation energies from creep experiments.

2.4.3 Phase Nucleation and Growth

The random motion of atoms and vacancies in solids, liquids, and gases are
associated with atomic collisions that may give rise to the formation of small
embryos or clusters of atoms, as shown in Figs 2.13(a) and 2.13(b). Since the
initial free-energy change associated with the initial formation and growth
of such clusters is positive (Read-Hill and Abbaschian, 1992), the initial
clusters of atoms are metastable. The clusters may, therefore, disintegrate
due to the effects of atomic vibrations and atomic collisions. However, a
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Ficure 2.11 Schematic illustration of diffusion mechanisms: (a) movement of
interstitial atoms; (b) vacancy/solute diffusion. (Adapted from Shewmon,
1989. Reproduced with permission from the Minerals, Metals, and Materials

Society.)
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Ficure 2.12 Fast diffusion mechanisms: (a) dislocation pipe diffusion along
dislocation core; (b) grain boundary diffusion. (Adapted from Ashby and
Jones, 1980. Reprinted with permission from Pergamon Press.)
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Ficure 2.13 Schematic illustration of nucleation and growth: (a, b) formation
of embryos; (c,d) nuclei growth beyond critical cluster size; (e) impingement
of growing grains; (f) polycrystalline structure. (Adapted from Altenpohl,
1998.)

| Eww

statistical number of clusters or embryos may grow to a critical size, beyond
which further growth results in a lowering of the free energy. Such clusters
may be considered stable, although random atomic jumps may result in
local transitions in cluster size to dimensions below the critical cluster
dimension.

Beyond the critical cluster size, the clusters of atoms may be consid-
ered as nuclei from which new grains can grow primarily as a result of
atomic diffusion processes, Figs 2.13(c) and 2.13(d). The nuclei grow until
the emerging grains begin to impinge on each other, Fig. 2.13(¢e). The growth
results ultimately in the formation of a polycrystalline structure, Fig. 2.13(f).

Subsequent grain growth occurs by interdiffusion of atoms and vacan-
cies across grain boundaries. However, grain growth is mitigated by inter-
stitial and solute “atmospheres’ that tend to exert a drag on moving grain
boundaries. Grain growth is also associated with the disappearance of smal-
ler grains and the enhanced growth of larger grains. Due to the combined
effects of these factors, a limiting grain size is soon reached. The rate at
which this limiting grain size is reached depends on the annealing duration
and the amount of prior cold work introduced during deformation proces-
sing via forging, rolling, swaging, and/or extrusion.
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The simple picture of nucleation and growth presented above is gen-
erally observed in most crystalline metallic materials. However, the rate of
nucleation is generally enhanced by the presence of pre-existing nuclei such
as impurities on the mold walls, grain boundaries, or other defects. Such
defects make it much easier to nucleate new grains heterogeneously, in
contrast to the difficult homogeneous nucleation schemes described earlier.
In any case, the nuclei may grow by diffusion across grain boundaries to
form single-phase or multi-phase microstructures, such as those shown in
Fig. 1.13.

A simple model of grain growth may be developed by using an analogy
of growing soap bubbles. We assume that the growth of the soap bubbles
(analogous to grains) is driven primarily by the surface energy of the bubble/
grain boundaries. We also assume that the rate of grain growth is inversely
proportional to the curvature of the grain boundaries, and that the curva-
ture itself is inversely proportional to the grain diameter. We may then
write:

d(D)/dt = k/d (2.12)

where D is the average grain size, ¢ is time elapsed, and k is a proportionality
constant. Separating the variables and integrating Eq. (2.12) gives the
following expression:

D>=kt+c (2.13)

where ¢ is a constant of integration. For an initial grain size of D, at time
¢ =0, we may deduce that ¢ = D3. Hence, substituting the value of ¢ into
Eq. (2.13) gives

D?> — DZ = kt (2.14)

Equation (2.14) has been shown to fit experimental data obtained for
the growth of soap bubbles under surface tension forces. Equation (2.14)
has also been shown to fit the growth behavior of metallic materials when
grain growth is controlled by surface energy and the diffusion of atoms
across the grain boundaries. In such cases, the constant k& in Eq. (2.14)
exhibits an exponential dependence which is given by

k = ko exp(—Q/RT) (2.15)

where k( is an empirical constant, Q is the activation energy for the grain
growth process, T is the absolute temperature, and R is the universal gas
constant. By substituting Eq. (2.15) into Eq. (2.14), the grain growth law
may be expressed as

D? — D§ = tky exp(—Q/RT) (2.16)
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FiGure 2.14 Grain growth isotherms for a-brass (10% Zn-90% Cu). Note that
D? varies directly with time. (Adapted from Feltham and Copley, 1958.)

If we assume that Dy =0, then the grain growth law [Eq. (2.14)]
becomes

d = (kt)"? (2.17)

Equations (2.16) and (2.17) are consistent with data for grain growth in
alpha brass (10% Zn-90% Cu) presented in Fig. 2.14. However, the expo-
nent in the grain growth law is often somewhat different from the value of
1/2 in Eq. (2.17). It is, therefore, common to report the grain growth law in
the following form:

d=K()" (2.18)

where 7 is a number that is generally less than the value of 1/2 predicted for
diffusion across grain boundaries, and k" is an empirical constant.

2.4.4 Introduction to Phase Diagrams

Let us start by considering a simple two-component system, ¢.g., a system
consisting of Cu and Ni atoms. Since Cu and Ni have similar atomic radii,
crystal structures, valence, and electronegativities, they are completely mis-
cible across the complete composition range. The equilibrium structures in
the Cu and Ni system can be represented on a phase diagram, Fig. 2.15(a). A
phase diagram may be considered as a map that shows the phases (a phase is
a physically distinct, homogeneous aspect of a system) that exist in equili-
brium as a function of temperature and composition, Fig. 2.15(a).
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Ficure 2.15 Cu/Ni phase diagram: (a)] complete phase diagram; (b) illustra-
tion of the Lever rule in partial phase diagram. (Adapted from Read-Hill and
Abbaschian, 1992. Reprinted with permission from PWS Kent.)

In the case of the Cu—Ni phase diagram shown in Fig. 2.15(a), the
mixtures exist either as solid phases (below the solidus line) or liquid phases
(above the liquidus line). A mixed two-phase (solid + liquid) region also
exists between the solidus and liquidus in Fig. 2.15(a). Since Ni and Cu are
completely soluble across the complete composition regime, the phase dia-
gram in Fig. 2.15(a) is often referred to as a binary isomorphous phase
diagram.

The compositions at the extreme left and extreme right of the phase
diagram [Fig. 2.15(a)] correspond to 100% Ni and 100% Cu, respectively.
However, intermediate compositions consist of both Cu and Ni atoms. The
phase diagram may be read simply by identifying the phases present at the
specified co-ordinates. For example, point x on Fig. 2.15(a) represents a
solid phase that contains 80% Ni and 20% Cu at 500°C. It should be
clear that the mixtures to the left of the diagram have more Ni than Cu.
Vice versa, the mixtures to the right of the phase diagram have more Cu
than Ni.

Now, consider the composition of the point y in the two-phase (solid
+ liquid) regime. This point has a composition that is in between those at
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points m and n. The compositions of m and n may be read directly from the
abscissa in Fig. 2.15(a). The points m and n correspond to mixtures contain-
ing 62 and 78% copper, respectively. The liquid + solid mixture at y
actually contains 70% Cu and 30% Ni, as shown in Fig. 2.15(a).

Now refer to the enlarged region of the solid—liquid region shown in
Fig. 2.15(b). The composition at point z in Fig. 2.15(b) may be determined
using the so-called Lever rule. The Lever rule states that the fraction of
mixture m at point z is given simply by (b/a)] x 1, Fig. 2.15(b). Similarly,
the fraction of mixture n at point z is given by (a/b) x 1, Fig. 2.15(b). Note
also that the fraction of mixture n is equal to one minus the fraction of
mixture m. Conversely, the fraction of mixture m is equal to one minus the
fraction of mixture n. Hence, as we move across the isothermal (tie) line
from m to n, the composition changes from 100% solid to 100% liquid in
Fig. 2.15(b). We may, therefore, use the Lever rule to find the fractions of
solid and liquid at point m. The reader should be able show that the fraction
of solid phase at z is b/1. Similarly, the fraction of liquid phase is a/1 at point
z, Fig. 2.15(b).

Intermediate phases may also form due to supersaturation with one of
the alloying elements. This may result in the formation of two-phase mix-
tures in more complex phase diagrams. Fig. 2.16 shows the Al-Cu phase
diagram. Note that the o-Al phase becomes quickly supersaturated with Cu.

Liquid
¢y 660
g 600
= B n
& o
5 o + liquid -
=% o & + liquid
5
F 500 ¢ Eutectic isotherm 6 phase —={
{Cu Alo}
400 o +8
300 . . . . .
o] 10 20 30 40 50
Al Weight percent copper

Figure 2.16 Left-hand section of the aluminum-copper phase diagram.
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A significant fraction of the phase diagram, therefore, consists of a two-
phase regime in which the @ phase and 6 phase (CuAl,) are in equilibrium.
The Al-Cu system also exhibits a minimum melting point at which liquid
aluminum undergoes a reaction to form an « phase and a 6 phase. Such
reactions involving the formation of two solid phases from a single liquid
phase are known as eutectic reactions. Eutectic reactions are generally asso-
ciated with zero freezing range and lowest melting points. They therefore
form the basis for the design of low melting point solder and braze alloys.

The left-hand section of the Fe—C phase diagram is shown in Fig. 2.17
(Chipman, 1972). This is a very important phase diagram since it provides
the basis for the design of steels and cast irons that are generally the materi-
als of choice in structural applications. Steels are Fe—C mixtures that con-
tain less than 1.4 wt % carbon, whereas cast irons typically contain between
1.8 and 4 wt % carbon. Note also that we may further subdivide steels into
low-carbon steels (< 0.3 wt % C), medium-carbon steels (0.3-0.8 wt % C)
and high-carbon (0.8-1.4 wt % C) steels.

The five phases observed on the left-hand side of the Fe—C diagram are
a-Fe (also called ferrite), y-Fe (also called austenite), §-Fe, Fe;C (also called
cementite), and a liquid solution of C in Fe (Brooks, 1996). The «-Fe has a
body-centered cubic (b.c.c.) structure. It contains randomly distributed car-
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Ficure 2.17 Left-hand section of the iron-carbon phase diagram.
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bon atoms in solution in b.c.c. iron. The maximum solubility of C (in a-Fe¢)
of only 0.035 wt % occurs at 723°C. Pure «-Fe iron is also stable below
914°C. However, above this temperature, y-Fe is the stable phase. This is a
random solid solution of carbon in face-centered cubic (f.c.c) iron. The
maximum solid solubility of C in y-Fe of 1.7 wt % occurs at 1130°C.
Body-centered cubic § ferrite is stable between 1391° and 1536°C. It contains
a random interstitial solid solution of C in b.c.c. iron.

A number of important transformations are illustrated on the Fe-C
diagram (Fig. 2.17). Note the occurrence of a eutectic reaction (Liquid 1 =
Solid 2 + Solid 3) at a carbon content of 4.3 wt %. A similar reaction also
occurs at a carbon content 0.8 wt %. This “eutectic-like” reaction involves
the formation of two new solids from another solid phase (Solid 1 = Solid 2
+ Solid 3). Such a reaction is referred to as a eutectoid reaction. Eutectoid
reactions generally result in the formation of lamellar microstructures. In
the case of eutectoid steels, a lamellar structure called pearlite is formed as a
result of the eutectoid reaction, Figs 2.18(a) and 2.18(b). It is formed by the

{a}
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Pearlte Pearlile Pearlite
nucleates lul

¥ graing

Eutectoid transformation at 723 C Carbon
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Paarlite

Q 1
Fe Weight percent copper —=

Ficure 2.18 Eutectoid reaction in steels: (a)] phase transformations that occur
during the cooling of a eutectoid steel; (b) pearlitic microstructure showing
alternating layers of ferrite and cementite. (Adapted from Van Vlack, 1980.
Reprinted with permission from Addison Wesley.)
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decomposition of austenite (y-Fe) into ferrite («-Fe) and cementite (Fe;C).
The resulting structure consists of alternating platelets of ferrite and cemen-
tite with proportions and spacing given by the Lever rule.

Hypoecutectoid structures are formed for compositions to the left of
the eutectoid compositions ( <0.8 wt % C), as shown in Fig. 2.19(a). These
consist of proeutectoid ferrite (formed before the eutectoid transformation
at 723°C) and pearlite (formed as a result of the eutectoid reaction at
723°C). Similarly, hypereutectoid structures are produced for compositions
to the right of the eutectoid (> 0.8 wt % C), as shown in Fig. 2.19(b). These
consist of proeutectoid carbide (formed before the eutectoid transformation
at 723°C) and pearlite (formed as a result of the eutectoid reaction at
723°C).

2.45 Introduction to Transformation Diagrams

As discussed earlier, phase diagrams show the phases that are present under
equilibrium conditions. However, they do not show the phase changes that
occur during microstructural evolution towards equilibrium. Since the for-
mation of new phases is strongly influenced by temperature and time, it is
helpful to represent the formation of such phases on plots of temperature
versus time. Such diagrams are referred to as transformation diagrams since
they show the phase transformations that can occur as a function of tem-
perature and time.

2.45.1 Time-Temperature-Transformation Diagrams

Phase transformations that occur under isothermal conditions (constant
temperature conditions) are represented on temperature—time-transforma-
tion (TTT) diagrams or C-curves (Fig. 2.20). Such diagrams are produced
by the cooling of preheated material to a given temperature, and subsequent
isothermal exposure at that temperature for a specified duration, before
quenching (fast cooling) the material to room temperature. The phases
formed during the isothermal exposure are then identified during subsequent
microstructural analysis. A TTT diagram for pure iron is shown in Fig.
2.20(a). This was produced by fast cooling from the austenitic field (stable
f.c.c. iron) to different temperatures in the « field. Note that metastable
austenite (f.c.c. iron) is retained initially, Fig. 2.20(a). However, austenite
is metastable in the « field. Stable body b.c.c. iron therefore forms by a
process of nucleation and growth during the isothermal exposure.

The number 1 shown at the “nose” of the first TTT curve [Fig. 2.20(a)]
corresponds to the start of the transformation (1% transformation).
Similarly, the curves labeled 25, 50, 75, and 99 correspond, respectively,
to different stages of the transformation, i.e., the transformations are 25,
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Ficure 2.19 Phase transformations that occur during the cooling of (a)
hypoeutectoid steel and (b) hypereutectoid steel. (Adapted from Van Vlack,
1980. Reprinted with permission from Addison Wesley.)
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Ficure 2.20 Time-temperature-transformation (TTT) curves for (a) pure iron and (b) eutectoid steel. (Adapted from
Ashby and Jones, 1994. Reprinted with permission from Pergamon Press.)
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50, 75, and 99% complete along these curves. These C-curves, therefore,
span the entire range between the start and the finish of the transformations
in the semischematic shown in Fig. 2.20(a). They are, therefore, useful in the
study of the kinetics (paths) of the phase transformations.

Another example of a TTT diagrams is presented in Fig. 2.20(b). This
shows a TTT diagram for a eutectoid steel with the designation 1080 steel,
i.e., a 10XX series plain carbon steel that contains 0.80 wt % C. As before
[Fig. 2.20(a)], metastable austenite is retained initially after the initial
quench from the austenitic field [Fig. 2.20(b)]. The metastable austenite
then transforms by nucleation and growth to form o-ferrite and carbide
(FesC) after isothermal exposure in the « + Fe;C field, Fig. 2.20(b).

It is important to note that the morphology of the o + Fe;C phases in
eutectoid steel (Fe—0.08C) depends on whether the isothermal exposure is
carried out above or below the nose of the TTT curve, Fig. 2.20(b). For
annealing above the nose of the curve, pearlite is formed. The pearlite has a
coarse morphology (coarse pearlite) after exposure at much higher tempera-
tures above the nose, and a fine morphology (fine pearlite) after exposure at
lower temperatures above the nose of the TTT curve. Bainite is formed after
annealing below the nose of the TTT curve. Upper bainite is formed at
higher temperatures below the nose, and lower bainite is formed at lower
temperatures below the nose, Fig. 2.20(b).

It is also interesting to study the bottom section of TTT diagram for
the eutectoid 1080 steel, Fig. 2.20(b). This shows that a phase called mar-
tensite is formed after fast cooling (quenching) from the austenitic field. This
plate-like phase starts to form at the so-called Mg (martensite start) tem-
perature. Martensite formation is completed by fast cooling to temperatures
below the Mg (martensite finish) temperature, Fig. 2.20(b). However, unlike
the other phases discussed so far, martensite does not form by a process of
nucleation and growth since there is insufficient time for long-range diffu-
sion to occur during fast cooling from the austenitic field.

Instead, martensite forms by a diffusionless or shear transformation
that involves only the local shuffling of atoms. Martensite formation is
illustrated in Fig. 2.21. First, local shuffling of atoms results in two adjacent
f.c.c. cells coming together. This results in the face-centered atom in the f.c.c.
unit cell becoming the body-centered atom in the distorted body-centered
cubic cell. A body-centered tetragonal unit cell is formed at the center of the
two adjacent f.c.c. cells, as shown in Fig. 2.21(a). Furthermore, there is no
one-to-one matching (coherence) between the corner atoms in the new cell
and the old cells. However, coherency may be obtained by rotating the b.c.c.
lattice.

Martensite growth occurs at high speeds (close to the speed of sound),
and the parent phase is replaced by the product phase as the martensite
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Ficure 2.21 Formation of martensite: (a) local shuffling brings two f.c.c. lat-
tices together (note that the Bain strain is needed to restore undistorted cubic
cell; (b) coherent thin martensite plate. (Adapted from Ashby and Jones,
1994. Reprinted with permission from Pergamon Press.)

advances. Since the interface advances rapidly, no composition change is
associated with martensitic phase transformations. Furthermore, no diffu-
sion is required for martensitic phase transformations to occur. It is also
important to note that martensitic phase transformations have been shown
to occur in ceramic materials and other metallic materials such as titanium.
Also, martensites are always coherent with the parent lattice. They grow as
thin lenses on preferred planes along directions that cause the least distor-
tion of the lattice. The crystallographic directions for martensites in pure
iron are shown in Fig. 2.21(b).

Steel martensites contain a significant amount of interstitial carbon
atoms that are locked up in the distorted b.c.c. structure after quenching
from the austenitic field. Such interstitial carbon atoms promote significant
strengthening by restricting the movement of dislocations. However, they
also contribute to the brittle behavior of steel martensites, i.e., martensitic
steels are strong but brittle. Furthermore, since martensite is metastable,
subsequent heating (tempering) in the « + Fe;C phase field will result in
the transformation of martensite into a more stable structure consisting of
a-ferrite and carbide (Fig. 2.22).

Finally in this section, it is important to note that the tempering of
martensitic steels is often used to produce so-called tempered martensitic
steels. Some martensite may also be retained in such structures, depending
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Ficure 2.22 Schematic illustration of quenching and tempering process on a
CCT curve. (Adapted from Van Vlack, 1980. Reprinted with permission from
Addison Wesley.)

on the degree of tempering, i.e., the heating duration and temperature.
Tempered martensitic steels are usually moderately strong and reasonably
ductile. However, they are not as strong as untempered steel martensites.
Nevertheless, their attractive combinations of moderate strength and frac-
ture toughness make them the materials of choice in numerous engineering
applications of steels.

2.45.2 Continuous Cooling-Transformation Diagrams

The TTT diagrams are useful for studying the evolution of phases under
isothermal conditions. However, in engineering practice, materials are often
heat treated and cooled to room temperature at different rates. For example,
a hot piece of steel may be removed from a furnace, and air cooled or water
quenched to produce a desired microstructure. The transformations pro-
duced after such controlled cooling are generally not predicted by TTT
diagrams.

The microstructures produced at controlled cooling rates are generally
represented on continuous cooling—transformation (CCT) diagrams. A CCT
diagram for a eutectoid steel is shown in Fig. 2.23. For comparison, iso-
thermal transformation curves and times for the same eutectoid steel are
also shown in dashed lines in Fig. 2.23. Note that the CCT curves are shifted
downwards and to the right, since part of the time was spent at elevated
temperature where the nucleation initiated more slowly (in comparison with
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Ficure 2.23 Continuous cooling-transformation (CCT) curve for a eutectoid
steel. (Adapted from Van Vlack, 1980. Reprinted with permission from
Addison Wesley.)

that in the isothermally exposed material). However, as expected, the aus-
tenite decomposes into pearlite by a process of nucleation and growth.

Figure 2.23 also shows that martensite is formed after fast cooling at
rates that just miss the nose of the transformation curve, i.c., rates that are
faster than the slope of the dashed line labeled CRy; in the figure. The
formation of martensite in this regime occurs by the diffusionless transfor-
mation that was described in the previous section. As before, martensite
start (M) and martensite finish (M), temperatures may also be represented
on the CCT diagram. Furthermore, martensite is not produced for cooling
rates below the dashed line labeled as CRp in Fig. 2.23. Cooling rates below
this critical level result only in the formation of pearlite.

In plain carbon eutectoid steels (Fe—0.08C), the critical cooling rates
corresponding to CRy; and CRyp are 140°C/s and 35°C/s, respectively (Fig.
2.23). However, the critical cooling rates are generally lower in more com-
plex alloyed steels. Such steels are alloyed to engineer certain combinations
of microstructure/mechanical properties, and resistance to environmental
attack. The alloying elements in alloyed steels may include Ni, Cr, Mn, W,
and Mo. These elements may stabilize either the ferrite () or austenite (y)
phases. Nickel is an austenite stabilizer, i.e., it increases the temperature
range across which the austenite is stable. Chromium is generally added
to promote improved corrosion resistance, and Mn is added to increase
fracture toughness, e.g., in the well-known Hadfield steels. Molybdenum
and W are often added to hot-work tool steels to improve their strength.
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Further details on steels can be found in specialized texts on steels or phy-
sical metallurgy (Honeycombe and Bhadesia, 1995).

2.5 OVERVIEW OF MECHANICAL BEHAVIOR

The mechanical behavior of materials depends on their response to loads,
temperature, and the environment. In several practical problems, the com-
bined effects of these controlling parameters must be assessed. However, the
individual effects of loads (elastic and plastic deformation) must be studied
in detail before attempting to develop an understanding of the combined
effects of load and temperature, or the effects of load and environment.

The material response may also depend on the nature of the loading.
When the applied deformation increases continuously with time (as in a
tensile test), then reversible (elastic) deformation may occur at small loads
prior to the onset of irreversible/plastic deformation at higher loads. Under
reversed loading, the material may also undergo a phenomenon known as
“fatigue.” This occurs even at stresses below those required for bulk plastic
deformation. Fatigue may lead to catastrophic fracture if its effects are not
foreseen in the design of most engineering structures and components.

Engineers must be aware of a wide range of possible material
responses to load, temperature, and environment (Ashby and Jones, 1994,
McClintock and Argon, 1993). These will be discussed briefly in this section
prior to more in-depth presentations in the subsequent chapters.

2.5.1 Tensile and Compressive Properties

The tensile and compressive properties of a material describe its response to
axial loads along the orthogonal (x, y, z) axes. Loads that stretch the
boundaries of a solid are usually described as tensile loads, while those
that compress the system boundaries are described as compressive loads.
For relatively small displacements, the induced deformation is fully recov-
ered upon removal of the applied loads, and the deformation is called
“elastic” deformation. Elastic deformation may be linear or nonlinear,
depending on the atomic structure (applied loads are directly proportional
to the displacements of the system boundaries in the case of linear elastic
deformation).

Also, elastic deformation may be time dependent when time is
required for the atoms within a solid to flow to the prescribed displacements.
Such time-dependent, fully reversible, elastic deformation is generally
described as viscoelastic deformation if the system boundaries flow back
to their original positions after some period of time subsequent to the
removal of the applied loads. Viscoelastic deformation may occur in poly-
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mers, metals, and ceramics. Viscoelastic behavior is associated with under-
lying molecular flow processes. A fundamental understanding of molecular
flow processes is, therefore, helpful to the understanding of viscoelastic
behavior.

When the imposed loads per unit area are sufficiently high, the distor-
tions of the systems’ boundaries may not be fully recovered upon removal of
the imposed loads. This occurs when the atoms cannot flow back to their
original positions upon removal of the applied loads. This results in perma-
nent or plastic deformation, since the shape of the material is changed
permanently as a result of the applied loads. Plastic deformation may
occur under tensile or compressive loading conditions, and it is generally
associated with zero volume change. Furthermore, plastic deformation is
nearly time independent at temperatures below the recrystallization tem-
perature.

2.5.2 Shear Properties

When a twisting moment is applied to a solid, relative movement is induced
across a surface due to the imposed loads. The shear properties of a material
describe its response to the imposed shear loads. Both positive and negative
(counterclockwise or clockwise) shear may be imposed on a solid, and the
resulting shear (angular) displacements are fully reversible for small levels of
angular displacement. Instantaneous elastic or viscoelastic shear processes
may also occur, as discussed in the previous section on axial properties.
Furthermore, yielding may occur under shear loading at stresses that are
lower in magnitude than those required for plastic flow under axial loading.
In general, however, the conditions required for plastic flow are strongly
dependent on the combinations of shear and axial loads that are applied.
These will be discussed in detail in subsequent chapters.

2.5.3 Strength

With the exception of metallic materials, most materials derive their
strengths from their primary and secondary bond strengths. In general,
however, the measured strength levels are less than the theoretical strengths
due to chemical bonding. This is due to the effects of defects which generally
give rise to premature failure before the theoretical strength levels are
reached. The effects of stress concentrators are particularly severe in brittle
materials such as ceramics and brittle intermetallics. Strength levels in such
brittle materials are often associated with statistical distributions of defects.

The situation is somewhat different in the case of metallic materials. In
addition to the inherent strength of metallic bonds, most metallic materials
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derive their strengths from the interactions of dislocations with defects such
as solid solution alloying elements, interstitial elements, other dislocations,
grain boundaries, and submicroscopic precipitates. These defects (including
the dislocations themselves) strengthen the metallic lattice by impeding the
movement of dislocations. Most metals are, therefore, modified by alloying
(adding controlled amounts of other elements) and processing to improve
their resistance to dislocation motion. However, excessive restriction of
dislocation motion may result in brittle behavior. Brittle behavior may
also occur due to the effects of cracks or notches which may form during
manufacturing.

2.5.4 Hardness

The hardness of a material is a measure of its resistance to penetration by an
indenter. Hardness is also a measure of strength and often has the units of
stress. The indenter is often fabricated from a hard material such as diamond
or hardened steel. The tips of the indenters may be conical, pyramidal, or
spherical in shape. The indenter tips may also be relatively small (nano- or
micro-indenters) or very large (macroindenters). Since indentation tests are
relatively easy to perform (macroindentations require only limited specimen
preparation), they are often used to obtain quick estimates of strength.

Micro- and nano-indenters have also been developed. These enable us
to obtain estimates of moduli and relative estimates of the strengths of
individual phases within a multiphase alloy. However, due to the nature
of the constrained deformation around any indenter tip, great care is needed
to relate hardness data to strength.

Nevertheless, some empirical and approximate theoretical “‘rules-of
thumb” have been developed to estimate the yield strength from the hard-
ness. One “‘rule-of-thumb” states that the yield strength (or tensile strength
in materials that strain harden) is approximately equal to one-third of the
measured hardness level.

Since hardness tests are relatively easy to perform (compared to
tensile tests), estimates of the yield strengths (or ultimate strength) are
often obtained from hardness measurements. However, the users of such
rules must always remember the approximate nature of such relationships
between hardness and strength, i.e., they only provide estimates of strength
within 20%, adequate for many practical purposes. Furthermore, the mea-
sured hardnesses may vary with indenter size when the indents are less
than 1 um. The size dependence of such small indents has been attributed
to plasticity length-scale effects which may give rise to strain gradient
effects.
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2.5.5 Fracture

If the applied monotonic loads (loads that increase continuously with time)
are sufficiently large, fracture will occur due to the separation of atomic
bonds or due to the growth of holes from defects by plastic deformation.
Fracture by pure bond rupture occurs only in the case of brittle cleavage
failure in which atomic separation occurs (without plasticity) along low
index planes. Slight deviations from planarity lead to fracture surfaces
that have “‘river lines” that are akin to what one might expect to see on a
geographical map, Fig. 2.24(a).

Ficure 2.24 Typical fracture modes: (a)] brittle cleavage fracture mode in
Ti-48Al; (b) ductile dimpled fracture mode in an IN 718 nickel-based super-
alloy. (Courtesy of Dr. Chris Mercer).
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In most cases, however, fracture is preceded by plastic deformation
(even in the case of so-called cleavage fracture), crack nucleation, and crack
growth phenomena. Final fracture occurs when cracks grow to a critical
size. Since brittle fracture is controlled mainly by the separation of bonds,
fracture processes are typically controlled by maximum axial (hydrostatic)
stresses.

In contrast, microductile fracture processes are often preceded and
accompanied by plastic flow that is controlled mainly by shear stresses
which tend to promote the movement of line defects such as dislocations
(Fig. 2.7). At the same time, the hole growth is promoted by triaxial tensile
stresses. The conditions for the onset of ductile fracture are also strongly
dependent on the nucleation and linkage of holes in ductile metals. This
often results in a ductile dimpled fracture mode in metallic materials, Fig.
2.24(b). Fracture mechanisms will be discussed in greater detail in sub-
sequent chapters.

25.6 Creep

As discussed earlier, at temperatures above the recrystallization temperature
(~0.3-0.5 of the absolute melting temperature) thermally and stress acti-
vated flow processes may contribute strongly to deformation. These flow
processes occur due to the movement of point defects (vacancies) or line
defects (dislocations) under static loading. Creep deformation may also be
associated with microvoid formation or microvoid coalescence, especially
during the final stages of deformation prior to fracture.

Creep deformation occurs in both crystalline and noncrystalline mate-
rials, and the time to failure may range from minutes/hours (in materials
deformed at high stresses and temperature) to geological time scales (mil-
lions of years) in materials within the earth’s crust. A study of the micro-
mechanisms of creep and creep fracture is often a guide to the development
of phenomenological relations between applied stress and temperature.

Before fracture, the tolerance of precision-made components in high-
temperature gas turbines may be lost due to creep deformation. For this
reason, creep-resistant high-temperature materials such as nickel- and
cobalt-base alloys are used in turbines. The microstructures of the creep-
resistant alloys are tailored to improve their inherent resistance to creep
deformation. Nevertheless, creep remains one of the major life-limiting fac-
tors in the design of turbines because, in the interest of high efficiency,
engineers will increase the operating temperature until creep and turbine
blade replacement is a problem.

There is, therefore, a strong interest in the development of alternative
high-temperature materials such as intermetallic titanium aluminide alloys,
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Fig. 1.13(c). These alloys have the potential to replace existing aerospace
materials for intermediate temperature applications, due to their attractive
combinations of light weight and elevated-temperature strength retention at
temperatures up to 800°C. However, they are relatively brittle below
~ 650-700°C.

2.5.7 Fatigue

Fatigue is the response of materials to reversing, or cyclic loads. Fatigue
occurs as a result of the formation and growth of cracks at stress levels that
may be half the tensile strength or less. The initiation of such macrocracks is
associated either with reversing slip on crystallographic planes or with crack
growth from pre-existing defects such as notches, gas bubble entrapments,
precipitates, or inclusions. The cycle-by-cycle accumulation of localized
plasticity often, but not always, leads to microcrack nucleation. In most
cases, the most intense damage occurs at the surface, and fatigue crack
initiation is usually attributed to surface roughening due to surface plasticity
phenomena. Fatigue crack initiation is also associated with environmentally
induced chemical reactions or chemisorption processes that limit the extent
of reversibility of plastic flow during load reversal.

Upon the initiation of fatigue cracks, the remaining life of a structure
is controlled by the number of reversals that are required to grow dominant
cracks to failure. Such cracks may grow at stresses that are much lower than
the bulk yield stress. Fatigue failure may, therefore, occur at stress levels
that are much lower than those required for failure under different loading
conditions. Hence, it is essential to assess both the initiation and propaga-
tion components of fatigue life in the design of engineering structures and
components for service under reversed loading conditions.

2.5.8 Environmental Effects

In some environments, chemical species can initiate or accelerate the crack
initiation and growth processes. This results in stress-assisted processes that
are commonly referred to as stress corrosion cracking or corrosion fatigue.
Stress corrosion cracking may occur at stresses that are much lower than
those required for fracture in less aggressive environments. It may occur as a
result of hydrogen embrittlement (attacking or redirecting bonds by the
diffusion of hydrogen atoms into the regions of high stress concentration
ahead of a crack tip) or anodic dissolution processes. In both cases, the
useful life and limit loads that can be applied to a structure can be drasti-
cally reduced. Stress corrosion cracking may also occur in conjunction with
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fatigue or creep loading. Furthermore, the irradiation damage induced by
particles in nuclear reactors must be assessed for safe use of such reactors.

25.9 Creep Crack Growth

As discussed in the section on creep deformation, microvoid nucleation may
lead to cracking or accelerated creep that terminates creep life. In structures
containing pre-existing cracks, creep crack growth may occur by vacancy
coalescence ahead of a dominant crack. This occurs primarily as a result of
creep processes immediately ahead of the crack tip. Creep crack growth is,
therefore, a potential failure mechanism in elevated-temperature structures
and components. This is particularly true when the structures or compo-
nents operate at temperatures above the recrystallization temperature
(~0.3-0.5 of the absolute melting temperature). Hence, creep crack growth
may occur by void growth and linkage in gas turbines, nuclear reactors, and
components of chemical plants that undergo significant exposures to ele-
vated temperature at intermediate or high stresses.

2.6 SUMMARY

A brief introduction to the Miller and Miller—Bravais indicial notation was
presented at the start of this chapter. A statistical mechanics framework was
then described before introducing the basic concepts of diffusion-controlled
and diffusionless phase transformations. Finally, an overview of the
mechanical behavior of materials was presented. Mechanical behavior was
introduced as the simple response of materials to mechanical loads. Material
response to applied loads was also shown to be dependent on temperature
and/or environment. Further details on the mechanical behavior of materi-
als will be presented in subsequent chapters along with the mechanics con-
cepts that are needed to acquire a quantitative understanding.
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3

Basic Definitions of Stress and Strain

3.1 INTRODUCTION

The mechanical properties of materials describe their characteristic
responses to applied loads and displacements. However, most texts relate
the mechanical properties of materials to stresses and strains. It is, therefore,
important for the reader to become familiar with the basic definitions of
stress and strain before proceeding on to the remaining chapters of this
book. However, the well-prepared reader may choose to skip/skim this
chapter, and then move on to Chap. 4 in which the fundamentals of elas-
ticity are introduced.

The basic definitions of stress and strain are presented in this chapter
along with experimental methods for the measurement and application of
strain and stress. The chapter starts with the relationships between applied
loads/displacements and geometry that give rise to the basic definitions of
strain and stress. Simple experimental methods for the measurement of
strain and stress are then presented before describing the test machines
that are often used for the application of strain and stress in the laboratory.

3.2 BASIC DEFINITIONS OF STRESS

The forces applied to the surface of a body may be resolved into compo-
nents that are perpendicular or parallel to the surface, Figs 3.1(a)-3.1(c). In
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Ficure 3.1 Different types of stress: (a)]l uniaxial tension; (b) uniaxial com-
pression; (c) twisting moment. (After Ashby and Jones, 1996. Courtesy of
Butterworth Heinemann.)
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cases where uniform forces are applied in a direction that is perpendicular to
the surface, i.e., along the direction normal to the surface, Figs 3.1(a) and
3.1(b), we can define a uniaxial stress, o, in terms of the normal axial load,
P, divided by the cross-sectional area, 4. This gives

_ Applied load (normal to surface) _ P, 3.1
o cross-sectional area TA ’

It is also apparent from the above expression that stress has SI units of
newtons per square meter (N/m?) or pascals (Pa)]. Some older texts and
most engineering reports in the U.S.A. may also use the old English units
of pounds per square inch (psi) to represent stress. In any case, uniaxial
stress may be positive or negative, depending on the direction of applied
load Figs 3.1(a) and 3.1(b). When the applied load is such that it tends to
stretch the atoms within a solid element, the sign convention dictates that
the stress is positive or tensile, Fig. 3.1(a)]. Conversely, when the applied
load is such that it tends to compress the atoms within a solid element, the
uniaxial stress is negative or compressive, Fig. 3.1(b). Hence, the uniaxial
stress may be positive (tensile) or negative (compressive), depending on the
direction of the applied load with respect to the solid element that is being
deformed.

Similarly, the effects of twisting [Fig. 3.1(c)] on a given area can be
characterized by shear stress, which is often denoted by the Greek letter, T,
and is given by:

Applied load (parallel to surface) P,
_ _ =3 3.2)
cross-sectional area A

Shear stress also has units of newtons per square meter square (N/m>
or pounds per square inch (psi). It is induced by torque or twisting moments
that result in applied loads that are parallel to a deformed area of solid, Fig.
3.1(c). The above definitions of tensile and shear stress apply only to cases
where the cross-sectional areas are uniform.

More rigorous definitions are needed to describe the stress and strain
when the cross-sectional areas are not uniform. Under such circumstances, it
is usual to define uniaxial and shear stresses with respect to infinitesimally
small elements, as shown in Fig 3.1. The uniaxial stresses can then be defined
as the limits of the following expressions, as the sizes, dA4, of the elements
tend towards zero:

P
'JxTo(dA) 33
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and

. Ps
t= dl/I\To (d_A) @4

where P, and P, are the respective normal and shear loads, and d4 is the
area of the infinitesimally small element. The above terms are illustrated
schematically in Figs 3.1(a) and 3.1(c), with F being equivalent to P.

Unlike force, stress is not a vector quantity that can be described
simply by its magnitude and direction. Instead, the general definition of
stress requires the specification of a direction normal to an area element,
and a direction parallel to the applied force. Stress is, therefore, a second
rank tensor quantity, which generally requires the specification of two direc-
tion normals. An introduction to tensor notation will be provided in Chap. 4.
However, for now, the reader may think of the stress tensor as a matrix that
contains all the possible components of stress on an element. This concept
will become clearer as we proceed in this chapter.

The state of stress on a small element may be represented by ortho-
gonal stress components within a Cartesian co-ordinate framework (Fig.
3.2). Note that there are nine stress components on the orthogonal faces of

(a)

Ficure 3.2 (a) States of Stress on an Element, (b) positive shear stress and (c)
Negative shear stress. Courtesy of Dr. Seyed M. Allameh.

Copyright © 2003 Marcel Dekker, Inc.



the cube shown in Fig. 3.2. Hence, a 3 x 3 matrix may be used to describe
all the possible uniaxial and shear stresses that can act on an element. The
reader should note that a special sign convention is used to determine the
suffixes in Fig. 3.2. The first suffix, i, in the o;; or 7; terms corresponds to
the direction of normal to the plane, while the second suffix, j, corresponds
to the direction of the force. Furthermore, when both directions are posi-
tive or negative, the stress term is positive. Similarly, when the direction of
the load is opposite to the direction of the plane normal, the stress term is
negative.

We may now describe the complete stress tensor for a generalized
three-dimensional stress state as

Oxx Txy Txz
[ol=| tyx Oy Tyz (3.5)
Toxx Tzy Oz

Note that the above matrix, Eq. (3.5), contains only six independent terms
since t; = 7; for moment equilibrium. The generalized state of stress at a
point can, therefore, be described by three uniaxial stress terms (oy,, 0y,
0..) and three shear stress terms (ty,, 7,., 7.,). The uniaxial and shear
stresses may also be defined for any three orthogonal axes in the
Cartesian co-ordinate system. Similarly, cylindrical (r, 0, L) and spherical
(r, 6, L) co-ordinates may be used to describe the generalized state of stress
on an element.

In the case of a cylindrical co-ordinate system, the stress tensor is given
by

O Tro TrL
ol =1| wr 0w 7oL (3.6)
L TLr Te OLL

Similarly, for a spherical co-ordinate system, the stress tensor is given by

O Trg Trg
[ol=| tr 0w Top (3.7)
LTor Teo O |

It should be apparent from the above discussion that the generalized
three-dimensional states of stress on an element may be described by any of
the above co-ordinate systems. In general, however, the choice of co-ordi-
nate system depends on the geometry of the solid that is being analyzed.
Hence, the analysis of a cylindrical solid will often utilize a cylindrical co-
ordinate system, while the analysis of a spherical solid will generally be done
within a spherical co-ordinate framework.
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In all the above co-ordinate systems, six independent stress compo-
nents are required to fully describe the state of stress on an element. Luckily,
most problems in engineering involve simple uniaxial or shear states [Fig.
3.1). Hence, many of the components of the above stress tensors are often
equal to zero. This simplifies the computational effort that is needed for the
calculation of stresses and strains in many practical problems. Nevertheless,
the reader should retain a picture of the generalized state of stress on an
element, as we develop the basic concepts of mechanical properties in the
subsequent chapters of this book. We will now turn our attention to the
basic definitions of strain.

3.3 BASIC DEFINITIONS OF STRAIN

Applied loads or displacements result in changes in the dimensions or shape
of a solid. For the simple case of a uniaxial displacement of a solid with a
uniform cross-sectional area [Fig. 3.3(a)], the axial strain, ¢, is can be defined
simply as the ratio of the change in length, u, to the original length, 1. This is
given by [Fig. 3.3(a)]:

e =ull (3.8)

Note that uniaxial strain is a dimensionless quantity since it represents
the ratio of two length terms. Furthermore, strain as described by Eq. (3.8),
is often referred to as the engineering strain. It assumes that a uniform
displacement occurs across the gauge length [Fig. 3.3(a)]. However, it
does not account for the incremental nature of displacement during the
deformation process. Nevertheless, the engineering strain is generally satis-
factory for most engineering purposes.

Similarly, for small displacements, a shear strain, y, can be defined as
the angular displacement induced by an applied shear stress. The shear
strain, y, is given by

y=w/l=tan6 (3.9)

where y, w, [ and 6 are shown schematically in Fig. 3.3(b). The angle y has
units of radians. However, the shear strain is generally presented as a dimen-
sionless quantity.

It is important to note here that the above equations for the engineer-
ing strain assume that the stresses are uniform across the area elements or
uniform cross-sections that are being deformed. The engineering shear and
axial strains must be distinguished from the so-called ‘“‘true strains” which
will be described in Chap. 5.

Similar to stress, the engineering strain may have three uniaxial (e,
&y €2-) and shear (yy,, ¥, ¥-) components, Fig. 3.4(a). The three-dimen-
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Ficure 3.3 Definitions of strain: (a)l uniaxial strain; (b) shear strain. (After
Ashby and Jones, 1996. Courtesy of Butterworth-Heinemann.)

sional strain components may also be perceived in terms of the simple
definitions or axial and shear strains presented earlier (Fig. 3.3). However,
the same shape change may also be resolved as an axial or shear strain,
depending on the choice of co-ordinate system. Also, note that the displace-
ment vectors along the (x, y, z) axes are usually described by displacement
co-ordinates (u, v, w). The uniaxial strain, ¢,.., due to displacement gradient
in the x direction is given by

|:u+ (a—u>dx} —u
- 0x _du (3.10)

= dx ox
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Similarly, the shear strain due to relative displacement gradient in the y-
direction is given by Fig. 3.4 to be:

[v—l— <a—v>dx} —v
— ox _ 3.11)

By = dx ox

It should be clear from the above equations that nine strain components can
be defined for a generalized state of deformation at a point. These can be
presented in the following strain matrix:

(a)

Y gy 5
du oy Y
L = 3y)
i
(v+g38y) u
4 _? a g-ESx
g | I
Unstraines ! v %Sx)

+
|
PI—_S’t —‘I-—{ud-g:"'Sx)—- i
i

X
(b)
Xy
oy
— - dn
e q
|
ixy | |
| | a‘!lg
|
L 1 ] S B . 7
|
1

Ficure 3.4 Definitions of strain and rotation: (a) components of strain; (b)
rotation about the x-y plane. (After Hearn, 1985—courtesy of Elsevier
Science.)
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ou ou aJu

Exx Exy Ext ox ady 0z
ov dv ov
[el= | eyx &y &y | = > oy Wz (3.12)
€x  Ezy Ez ow Jodw ow
oax oy oz

Note that some texts may use the transposed version of the displace-
ment gradient matrix given above. If this is done, the transposed versions
should be maintained to obtain the results of the strain matrix that will be
presented subsequently. Also, the above form of the displacement gradient
strain matrix is often avoided in problems where strain can be induced as a
result of rotation without a stress. This is because we are often concerned
with strains induced as a result of applied stresses. Hence, for several pro-
blems involving stress-induced deformation, we subtract out the rotation
terms to obtain relative displacements that describe the local changes in
the shape of the body, Fig. 3.4(Db).

The rotation strains may be obtained by considering the possible rota-
tions about any of the three orthogonal axes in a Cartesian co-ordinate
system. For simplicity, let us start by considering the special case of defor-
mation by rotation about the z axis, i.e., deformation in the x—y plane. This
is illustrated schematically in Fig. 3.4(b). The average rotation in the x—y
plane is given by

1/ov odu

Similarly, we may obtain expressions for w,. and w., by cyclic permu-
tations of the x, y and z position terms and subscripts, and the correspond-
ing (u, v, w) displacement terms. This yields:

1/0w odv
o =3 (50~ 5) 3.14)
and
1/0u ow
=515, " 5y A
Wax 2<82 ax) (3.15)

The components of the rotation matrix can thus be expressed in the
following matrix form:
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B 1/0u odv 1/0u ow\ ]
0 (27 (27
0 2\oy odx/ 2\d9z ox
Wxy Wxz
el o 0 o || 1 _2u o (v _ow
D= OVZ —| 2\ax 9y 28z " oy
Pox Dazy 1/0w U\ 1/dw v 0
| 2\ox 0z) 2\dy oz _
(3.16)

Subtracting Eq. (3.16) from Eq. (3.12) yields the following matrix for the
shape changes:

B ou 1/0u ov 1/0u  ow\T
N ax 2<8y+8x) 2(3z+ax)
[8,"]— Eyx € &y | = 1(8_‘/_'_%) B_V 1(8_V+3_W)
4 gy gyy Sy 2\ox  ay dy 2\az oy
S () ey
L2\ 0x 0z 2\0dy 0z 0z i
(3.17)

Note that the sign convention is similar to that described earlier for
stress. The first suffix in the g; term corresponds to the direction of the
normal to the plane, while the second suffix corresponds to the direction
of the displacement induced by the applied strain. Similarly, three shear
strains are the strain components with the mixed suffixes, i.e., €,,, ¢,., and
&... It is also important to recognize the patterns in subscripts (x, y, z) and
the displacements (u, v, w) in Eqgs (3.16) and (3.17). This makes it easier to
remember the expressions for the possible components of strain on a three-
dimensional element. Note also that the factor of 1/2 in Eq. (3.17) is often
not included in several engineering problems where only a few strain com-
ponents are applied. The tensorial strains (g; terms) are then replaced by
corresponding tangential shear strain terms, y; which are given by

Yii = 2¢j; (3.18)
The strain matrix for stress-induced displacements is thus given by
o M v ouw
0 7 7 dy o0x 0z Ox
v Jdu v ow
il = | Yyx 0 Yyz | = Ix w 0 P W
Vox Yoy O ow_ou ow avo o
oax o0z dy oz
(3.19)
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The above shear strain components are often important in problems
involving plastic flow. Similarly, the volumetric strains are important in
brittle fracture problems where atomic separation can occur by bond rup-
ture due to the effects of axial strains. For small strains, the volumetric
strain (Fig. 3.5) is given by the sum of the axial strains:

. AV
(Y

The above definitions of strain apply to cases where the displacements
are relatively small. More accurate strain formulations, e.g., large-strain
Lagrangian formulations, may be needed when the strains are larger. The
reader is referred to standard texts on plasticity and experimental mechanics
for further details on these formulations.

Finally in this section, it is important to note that stress-free thermal
strains may also be induced as a result of the thermal expansion or thermal
contraction that can occur, respectively, on heating or cooling to or from a
reference temperature. Under such conditions, the thermal strains are given
by

= Exx T &yy + &4 (3.20)

AS,':Ot,'AT:Ot,'(T— To) (321)

where Ag; is the thermal strain along an axis i, 7 is the actual temperature of
the solid, and T is a reference stress-free temperature. Thermal strains are
particularly important in problems involving surface contact between two
materials with different thermal expansion coefficients. When the thermal
expansion coefficient mismatch between the two materials in contact is
large, large strains/stresses can be induced at the interfaces between the
two faces. The mismatch thermal strains can also result in internal residual
strains/stresses that are retained in the material on cooling from elevated

Dilatation {(volume strain)

| R |

: I.o""\v A ﬁ

; i v

p—=1 | V- v : -—p

' )

' \

I ]

I |

te

Ficure 3.6 Schematic illustration of volumetric strain. (After Ashby and
Jones, 1996. Courtesy of Butterworth-Heinemann.)
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temperature. Under such conditions, the residual stresses, o;, can be
estimated from expressions of the form:

o; ~ EAaAT = Eiaq — ap)(T — Tp) (3.22)

where E; is the Young’s modulus in the i direction, « is the thermal expan-
sion coefficient along the direction i, subscripts 1 and 2 denote the two
materials in contact, 7 is the actual/current temperature, and 7| is the
reference stress-free temperature below which residual stresses can build
up. Above this temperature, residual stresses are relaxed by flow processes.
Interfacial residual stress considerations are particularly important in
the design of composite materials. This is because of the large differences
that are typically observed between the thermal expansion coefficients of
different materials. Composites must, therefore, be engineered to minimize
the thermal residual strains/stresses. Failure to do so may result in cracking
if the residual stress levels are sufficiently large. Interfacial residual stress
levels may be controlled in composites by the careful selection of composite
constituents that have similar thermal expansion coefficients. However, this
is often impossible in the real world. It is, therefore, more common for
scientists and engineers to control the interfacial properties of composites
by the careful engineering of interfacial dimensions and interfacial phases to
minimize the levels of interfacial residual stress in different directions.

3.4 MOHR'’S CIRCLE OF STRESS AND STRAIN

Let us now consider the simple case of a two-dimensional stress state on an
element in a bar of uniform rectangular cross sectional area subjected to
uniaxial tension, [Fig. 3.6]. If we now take a slice across the element at an
angle, 6, the normal and shear forces on the inclined plane can be resolved
using standard force balance and basic trigonometry. The dependence of the
stress components on the plane angle, 6, was first recognized by Oligo Mohr.
He showed that the stresses, oy, 0y, Ty, along the inclined plane are
given by the following expressions:

y

- JZT W (2227 cos 26 (3.23a)
oy = 2% er %y 4 (”XX - "W) cos 26 (3.23b)
Ty = —(W) sin 26 (3.23¢)

where 6, 0., 0y, Ty, Oyy, 0y, and T, are stresses shown in Fig. 3.6. The

above equations can be represented graphically in the so-called Mohr’s
circle (Fig. 3.7) which has radius, R, and center, C, given by
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Ficure 3.6 Schematic of stresses on a plane inclined across an element.
Courtesy of Dr. Seyed M. Allameh

_ (O =9\,
R= \/ (72 ) +12, (3.24)
and

C=2x T (3.25)

Note the sign convention that is used to describe the plane angle, 260,
and the tensile and shear stress components in Fig. 3.7. It is important to
remember this sign convention when solving problems involving the use of
Mohr’s circle. Failure to do so may result in the wrong signs or magnitudes
of stresses. The actual construction of the Mohr’s circle is a relatively simple
process once the magnitudes of the radius, R, and center position, C, have
been computed using Eqgs (3.24) and (3.295), respectively. Note that the locus
of the circle describes all the possible states of stress on the element at the
point, P, for various values of 6 between 0° and 180°. It is also important to
note that several combinations of the stress components (0, ), Ty,) may
result in yielding, as the plane angle, 6, is varied. These combinations will be
discussed in Chap. 5.

When a generalized state of triaxial stress occurs, three Mohr’s circles
[Fig. 3.8(a)] may be drawn to describe all the possible states of stress. These
circles can be constructed easily once the principal stresses, oy, 05, and o3,
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Ficure 3.7 Mohr’s circle of stress—note the sign convention. (After Courtney,
1990. Courtesy of McGraw-Hill.)

are known. The principal stresses o, 0,, and o3 are usually arranged in
increasing algebraic order, with o, > 0, > 03.

Similarly, principal strains may be determined from graphical plots of
shear strain versus axial strain. However, the tensorial strain components,
Yxy/2, must be plotted on the ordinates of such plots, Fig. 3.8(b). Otherwise,
the procedures for the determination of principal strains are the same as
those described above for principal stresses.

3.5 COMPUTATION OF PRINCIPAL STRESSES AND
PRINCIPAL STRAINS

Although principal stresses and strains may be determined using Mohr’s
circle, it is more common to compute them using some standard polyno-
mial expressions. It is important to remember that the same form of
equations may be used to calculate principal stresses and strains.
However, the shear strains must be represented as y,.,/2 when the poly-
nomial equations are used in the determination of principal strains.
Nevertheless, to avoid repetition, the current discussion will focus on the
equations for the computation of principal stresses, with the implicit
understanding that the same form of equations can be used for the calcu-
lation of principal strains. Principal stresses may be determined by solving
polynomial equations of the form:

o — hof — hoi— =0 (3.26)
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Ficure 3.8 Mohr’s circle representation of generalized three-dimensional
states of (a)] stress and (b) strain. (After Hearn, 1985. Courtesy of Elsevier
Science.)
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where o; represents the total stress on an element, and 1;, I, and I3
correspond to the first, second, and third invariants of the stress tensor.
These stress invariants do not vary with the choice of orthogonal axes (x,
v, z). Also, the values of the stress invariants (/;, I, and I3) can be com-
puted from the second rank stress tensor, o, presented earlier. This is
given by
Oxx Txy Txz
o= | Tyx Oy Ty (3.27)
Tzx Tzy Oz
The first invariant of the stress tensor, [, is given by the sum of the

leading diagonal terms in the stress tensor. Hence, I; can be determined
from:

h =o0x+oy +0, (3.28)

Similarly, I, the second invariant of the stress tensor can be obtained
from the algebraic sum of the cofactors of the three terms in any of the three
rows or columns of the stress tensor. This gives the same value of 15, which
may also be computed from

2 2 2
L= —OxxOyy — OyyOz; — Oz;0xx T Tyy + Tyz + Tox (3.29)

Note the rotational symmetry in the above equation, i.e., xy is fol-
lowed by yz, which is followed by zx. It should be easy to remember the
equation for I, once you recognize the pattern.

When the above equation for 5 is expanded and simplified, it can be
shown that /5 is given simply by

2 2 2
Iy = OxxOyy0z; + 2Txy'[yz":zx — OxxTyz — OyyTzx — OzzTxy (3.30)

It is important to note here that the above coefficients 7;, I, and I3 can

be obtained by solving the following eigenvalue problem:
ojX =0X (3.31)
where o;; is the stress tensor, x is the eigenvector of o;; and o is the

corresponding eigenvalue, i.e. the principal stress. Rearranging Equation
3.31 now gives

(0j—ol)x=0 (3.32)

where I is the identity matrix and the other terms have their usual
meaning. The non-trivial solution to Equation 3.32 is given by Equation

det(o;; — o) =0 (3.33a)
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Oxx — 0O rxy Txz
Tyx Oy —0 Tyz =0 (3.33b)
Tox Tzy Ozz — O

Writing out the terms of the determinant given by Equation 3.33b
gives the characteristic equation, which corresponds to the polynomial
expression presented in Equation 3.26.

Once again, it is important to note the rotational symmetry of the x, y,
z subscripts in the above equation. The equation for /5 is relatively easy to
remember once the rotational symmetry in the (x, y, z) terms is recognized.

Once the values of I}, I,, and I are known, the three principal stresses
can be determined by solving Eq. (3.26) to find the values of o; for which
o1 = 0. The three solutions are the three principal stresses. They can then be
ranked algebraically to determine the solutions that correspond to oy, o3,
and o3, respectively. Once these stresses are determined, it is relatively easy
to construct the Mohr’s circle for a three-dimensional state of stress, as
shown in Fig. 3.8(a). It is important to note that all the possible states of
stress on an element are represented by the shaded area in this figure. The
three principal shear stress values can also be deduced from Fig. 3.8(a).
Finally, in this section, it is important to note that the Mohr’s circle for
pure hydrostatic state of stress (o = o, = 0,,, = 0,) reduces to a point. The
reader should verify that this is indeed the case before proceeding on to the
next section.

3.6 HYDROSTATIC AND DEVIATORIC STRESS
COMPONENTS

The components of stress at a point, o; may be separated into hydrostatic,
oy, and deviatoric, oy, stress components, i.e., o; = oy, + 04. The hydrostatic
stress represents the average of the uniaxial stresses along three orthogonal
axes. It is very important in brittle fracture processes where failure may
occur without shear. This is because the axial stresses are most likely to
cause separation of bonds, in the absence of shear stress components that
may induce plastic flow. In any case, the hydrostatic stress can be calculated
from the first invariant of the stress tensor. This gives
_h_Out oyt o (3.34)
3 3

Hence, the hydrostatic stress is equal to the average of the leading
diagonal terms in the stress tensor, Eqs (3.5) and (3.34). A state of pure
hydrostatic stress is experienced by a fish, at rest in water. This is illustrated

Oh
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in Fig. 3.9. Note that the hydrostatic stress occurs as a result of the average
water pressure exerted on the fish. This pressure is the same for any given

4
ij>

choice of orthogonal stress axes. The hydrostatic stress tensor, oj;, is given

by
o 0 O
[0j1=]0 o 0 (3.35)
0 0 o

where o = o, = 0, = 0... It is important to realize that there are no shear
stress components in the hydrostatic stress tensor. However, since most
stress states consist of both axial and shear stress components, the general-
ized three-dimensional state of stress will, therefore, consist of both hydro-
static and deviatoric stress components.

The deviatoric stresses are particularly important because they tend to
cause plasticity to occur in ductile solids. Deviatoric stress components, a,’-,-,
may be represented by the difference between the complete stress tensor, a;-/»,
and the hydrostatic stress tensor, oj;. Hence, oj; = 0;; — 07;. The deviatoric

stress tensor, o,fj, is therefore given by

/
200
Oxx Txy Txz 3 |
0j=0j—0j=|Tz Oy Tz |—|0 §1 0 (3.362)
Tzx  Tzy Oz 0 0 [1
3

or

Hydrostatic prassure, p = =
A

Ficure 3.9 Hydrostatic stress on fish at rest in water (After Ashby and Jones,
1996. Courtesy of Butterworth-Heinemann.)
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Oxx — 3 Txy Txz
/
/ 1
Oij = Tyx 9y T3 Tyz (3.36b)
/1
Tzx Tzy Ozz — §

The maximum values of the deviatoric stresses (principal deviatoric
stresses) may also be computed using a polynomial expression similar to the
cubic equation presented earlier (Eq. (3.26) for the determination of the
principal stresses. Hence, the three principal deviatoric stresses may be
computed from:

U;-js - J1 (O’;'j)z—Jz(U;'j) - J3 =0 (337)

where J;, J,, and J; are the first, second, and third invariants of the devia-
toric stress tensor. As before, J; may be determined from the sum of the
leading diagonal terms, J, from the sum of the cofactors, and J; from the
determinant of the o} tensor. Upon substitution of the appropriate para-
meters, it is easy to show that J; = 0.

It is particularly important to discuss the parameter J, since it is often
encountered in several problems in plasticity. In fact, the conventional the-
ory of plasticity is often to referred to as the J, deformation theory, and
plasticity is often observed to occur when J, reaches a critical value. As
discussed, J, can be computed from the sum of the cofactors of any of the
rows or columns in the deviatoric stress tensor. If the stress components in
the first row of the deviatoric stress tensor are used for this purpose, it can
be shown that J, is given by

o — - Tyx Tyz h
J2 — yy 3 yz _ ,1 + Tyx ny — § (338)

I T O,; — =
sz Oy 1 zx zz 3 Tox fzy

Expanding out the determinants in the above equations, and substitut-
ing appropriate expressions for /;, I,, and /5 into the resulting equation, it
can be shown that J, is given by

J2 = %[(O—xx - Uyy)z + (Uyy - 022)2 + (Uzz - Uxx)z + 6(7:)2<y + T)Z/z + Tgx)]
(3.39a)

or

Jp = (01 — 03)° + (03 — 03)* + (03 — 7)’] (3.39b)
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A number of empirical plastic flow rules are based on J, deformation
theory. In particular, the Von Mises yield criterion suggests that yielding
occurs under uniaxial or multiaxial loading conditions when the maximum
distortional energy reaches a critical value of J,. These will be discussed in
Chap. 5 along with the fundamentals of plasticity theory.

Finally, in this section, it is important to remember that equations with
the same form as the above equations (for stress) may be used to calculate
the corresponding hydrostatic and deviatoric strain components. However,
as before, the shear strain components must be represented by tensorial
strain components, y;;/2, in such equations.

3.7 STRAIN MEASUREMENT

It is generally difficult to measure stress directly. However, it is relatively
easy to measure strain with electric resistance strain gauges connected to
appropriate bridge circuits. It is also possible to obtain measurements of
strain from extensometers, grid displacement techniques, Moiré interfero-
metry, and a wide range of other techniques that are beyond the scope of
this book. The interested reader is referred to standard texts on experimental
strain measurement. However, since most experimental strain measurements
are obtained from strain gauges, a basic description of strain gauge mea-
surement techniques is presented in this section. Photoelasticity is also
described as one example of a stress measurement technique.

3.7.1 Strain Gauge Measurements

The strain gauge is essentially a length of wire of foil that is attached to a
nonconducting substrate. The gauge is bonded to the surface that is being
strained. The resistance of the wire, R, is given by

R=L (3.40)

where R is the resistivity, / is the length of the wire, and A is the cross-
sectional area. Hence, the resistance of the wire will change when the length
of wire changes due to applied strain or stress. The changes in gauge resis-
tance may be expressed as

AR Al

— =k— 3.41
where AR is the change in resistance, A/ is the change in length, and k is the
gauge factor (usually specified by the strain gauge manufacturer).

Copyright © 2003 Marcel Dekker, Inc.



Alternatively, since Al// is equivalent to strain, ¢, strain may be estimated
from the following expression:

_(AR/R)
Tk

Since the strain levels in most engineering components are relatively
low, sensitive Wheatstone bridge circuits are needed to determine the resis-
tance levels (Fig. 3.10). The conditions required for a galvanometer reading
of zero (a balanced bridge circuit) are given by

R1 X R3 = Rz X R4 (343)

A number of bridge configurations may be used to measure strain. A
half-bridge wiring consists of one active gauge (the gauge that is being
strained) and one dummy gauge (attached to an unstrained material that
is similar to the unstrained material). The dummy gauge cancels out the
effects of temperature changes that may occur during the strain measure-
ments. Such temperature compensation may significantly improve the accu-
racy of strain measurement in half-bridge circuits. The other two resistances
(R; and R,) in the half-bridge circuit are standard resistors. It is important
to note here that quarter-bridge and full-bridge circuits may also be used in
practice. A quarter-bridge circuit contains only one active resistance with no
dummy gauge for temperature compensation, while four (full) bridge con-
figurations contain four active gauges. Furthermore, the Wheatstone bridge

(3.42)

Ficure 3.10 Wheatstone bridge circuit. (After Hearn, 1985. Courtesy of
Elsevier Science.)

Copyright © 2003 Marcel Dekker, Inc.



may be powered by a direct current or alternating current source. The latter
eliminates unwanted noise signals. It also provides a more stable output
signal.

3.7.2. Introduction to Photoelasticity

As discussed earlier, it is generally difficult to measure stress. However, the
stresses in some transparent materials may be measured using photoelastic
techniques. These rely on illumination with plane-polarized light obtained
by passing light rays through vertical slots that produce polarized light
beams with rays that oscillate only along one vertical plane (Fig. 3.11).
When the model is stressed in a direction parallel to the polarizing axis, a
fringe pattern is formed against a light (bright field) background.
Conversely, when the stress axes are perpendicular to the polarizing axis,
a “dark field” or black image is obtained.

In some materials, the application of stress may cause an incident
plane-polarized ray to split into two coincident rays with directions that
coincide with the directions of the principal axes. Since this phenomenon
is only observed during the temporary application of stress, it is known as
“temporary birefringence.” Furthermore, the speeds of the rays are propor-
tional to the magnitudes of the stresses along the principal directions.
Hence, the emerging rays are out of phase. They, therefore, produce inter-
ference fringe patterns when they are recombined. If they are recombined at
an analyzer (shown in Fig. 3.11), then the amount of interference in the

Palarising
axis Load

.;§1;Z . Polariser

Bz
Polarising dxis

Retardation

Rays vibrating olong the
planes of the principal
stresses o, ond o,

Components of the rays
passing through the
¢ onalyser vibrating along
its polarising axis

Ficure 3.11 |Interaction of polarized light with loaded specimen prior to
recombination after passing through analyzer. (After Hearn, 1985. Courtesy
of Elsevier Science.)
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emerging rays is directly proportional to the difference between the principal
stress levels o, and o,,. Therefore, the amount of interference is related to the
maximum shear, which is given by

1
Tmax = E(ap —0q) (3.44)

The fringe patterns therefore provide a visual indication of the varia-
tions in the maximum shear stress. However, in the case of stresses along a
free unloaded boundary, one of the principal stresses is zero. The fringe
patterns therefore correspond to half of the other principal stress.
Quantitative information on local principal/maximum shear stress levels
may be obtained from the following expression:

_nf

Op = 0g = (3.45)

where o, and o, are the principal stress levels, f* is the material fringe
coefficient, n is the fringe number or fringe order at a point, and 7 is the
thickness of the model. The value of f may be determined from a stress
calibration experiment in which known values of stress on an element are
plotted against the fringe number (at that point) corresponding to various

loads.

3.8 MECHANICAL TESTING

Displacements and loads are usually applied to laboratory specimens using
closed-loop electromechanical (Fig. 3.12) and servohydraulic (Fig. 3.13)
testing machines. Electromechanical testing machines are generally used
for simple tests in which loads or displacements are increased at relatively
slow rates, while servohydraulic testing machines are used for a wider vari-
ety of “slow” or ““fast” tests. Both types of testing machines are usually
controlled by feedback loops that enable loads or displacements to be
applied to test specimens with reasonably high levels of precision. The
loads are measured with load cells, which are essentially calibrated springs
connected to load transducers. The latter generate electrical signals that are
proportional to the applied loads.

Displacements are typically measured with extensometers (Figs 3.12
and 3.13) that are attached to the test specimen. Transducers attached to the
extensometer generate voltage changes that are proportional to the relative
displacements between the extensometer attachments. Alternatively, the
composite displacement of the load train (a combination of the test speci-
men and all the loading fixtures) may be determined from the so-called
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Ficure 3.12 Schematic of screw-driven electromechanical testing machine.
(After Courtney, 1990. Courtesy of McGraw-Hill.)

stroke reading on a electromechanical or servohydraulic testing machine.
However, it is important to remember that the composite stroke reading
includes the displacements of all the elements along the load train (Figs 3.12
and 3.13). Such stroke readings may, therefore, not provide a good measure
of the displacements within the gauge section of the test specimen.
Electromechanical and servohydraulic test machines may also be con-
trolled under strain control using signals from load cells, extensometers,
strain gauges, or other strain transducers. However, it is important to
note that strain gauges and extensometers have a resolution limit that is
generally between 10~ and 10™*. Higher resolution strain gauges and laser-
based techniques can be used to measure strain when better resolution is
required. These can measure strains as low as ~107> and 107°.
Furthermore, in many cases, it is informative to obtain plots of load
versus displacement, or stress versus strain. The resolution of such plots
often depends on the speed with which data can be collected by the electrical
circuits in the data-acquisition units (mostly computers although chart
recorders are still found in some laboratories) that are often attached to
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Ficure 3.13 Servohydraulic testing machine. (Courtesy of the MTS Systems
Corporation, Eden Prarie, MN.)

mechanical testing systems. Some of the important details in the stress—
strain plots may, therefore, be difficult to identify or interpret when the
rate of data acquisition is slow. However, very fast data collection may
also lead to problems with inadequate disk space for the storage of the
acquired load—displacement data.

In any case, electromechanical and servohydraulic testing machines
are generally suitable for the testing of all classes of materials.
Electromechanical testing machines are particularly suitable for tests in
which the loads are increased continuously (monotonic loading) or
decreased continuously with time. Also, stiff electromechanical testing
machines are suitable for the testing of brittle materials such as ceramics
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and intermetallics under monotonic loading, while servohydraulic testing
machines are well suited to testing under monotonic or cyclic loading.
Finally, it is important to note that the machines may be programmed to
apply complex load/displacement spectra that mimick the conditions in
engineering structures and components.

3.9 SUMMARY

An introduction to the fundamental concepts of stress and strain is pre-
sented in this chapter. Following some basic definitions, the geometrical
relationships between the stress components (or strain components) on an
element were described using Mohr’s circle.

Polynomial expressions were then presented for the computation of
principal stresses and principal strains for any generalized state of stress or
strain on an element. Finally, hydrostatic and deviatoric stresses/strains
were introduced before describing some simple experimental techniques
for the measurement and application of strain and stress.
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4

Introduction to Elastic Behavior

4.1 INTRODUCTION

Elastic deformation, by definition, does not result in any permanent defor-
mation upon removal of the applied loads. It is induced primarily by the
stretching or bending of bonds in crystalline and noncrystalline solids.
However, in the case of polymeric materials, elastic deformation may also
involve the rotation of bonds in addition to the stretching and unwinding of
polymer chains.

Elastic deformation may be linear or nonlinear in nature (Fig. 4.1). It
may also be time dependent or time independent. When it is time indepen-
dent, the strains are fully (instantaneously) recovered on removal of the
applied loads, Fig. 4.1(a). However, in materials, e.g., polymeric materials,
some time may be needed for the viscous flow of atoms or chain stretching/
rotation to occur to return the atoms to their initial configurations. The
elastic behavior of such materials is, therefore, time independent, i.e., vis-
coelastic. Also, the elastic strains in polymers can be very large (typically
5-1000%) compared to relatively low elastic strain limits (0.1-1.0%) in
metallic and nonmetallic materials (Figs 4.1).

This chapter presents an introduction to basic concepts in elasticity.
Following a brief description of the atomic displacements that are respon-
sible for elastic deformation, the anisotropic elasticity of crystalline materi-
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Ficure 4.1 Schematic illustration of (a) linear elastic time-independent elastic
deformation of 1020 steel at room temperature and (b) nonlinear elastic
deformation of rubber at room temperature. (Adapted from McClintock and
Argon, 1966. Courtesy of Addison-Wesley.)

als is described before presenting an overview of continuum elasticity the-
ory. The final sections of the chapter contain advanced topics that may be
omitted in an introductory course on mechanical properties. These include
sections on tensors and generalized elasticity theory using shorthand tensor
nomenclature.

4.2 REASONS FOR ELASTIC BEHAVIOR

Consider two atoms (A and B) that are chemically bonded together. Note
that these bonds may be strong primary bonds (ionic, covalent, or metallic)
or weaker secondary bonds (Van der Waals’ forces or hydrogen bonds).
During the earliest stages of deformation, the response of materials to
applied loads is often controlled by the stretching of bonds (Fig. 4.2).

e Y
Ld 1——-—
F— CP—WMW\-@J .
I ro ‘ l
| !

r

Ficure 4.2 Stretching of chemical bonds between A and B. (Adapted From
Ashby and Jones, 1996. Reprinted with permission from Butterworth
Heinemann.)

Copyright © 2003 Marcel Dekker, Inc.



This occurs before the onset of plasticity (irreversible/permanent damage).
Under such conditions, the potential energy, U, of the bonded system
depends on the attractive and repulsive components, U, and Uy, respec-
tively. These are given by

—-A
r
and
B
Ur = wn (4.2)

where r is the separation between the atoms, 4 and B are material constants,
and m and n are constants that depend on the type of chemical bonds.
Combining Eqgs (4.1) and (4.2), the total potential energy, U, is thus given by

-A B
U:UA+UR:I’_m+F (4.3)

The relationship between U and r is shown schematically in Fig. 4.3 along
with the corresponding plots for Uy versus r, and U, versus r. Note that the
repulsive term, Ug, is a short-range energy, while the attractive term, U,, is
a long-range energy. The force, F, between the two atoms is given by the
first derivative of U. This gives

dU  Am Bn

T dr pm+1 T n

(4.4)

Similarly, Young’s modulus is proportional to the second derivative of U
with respect to r. That is
d’U dF Am(m+1) Bn(n+1)
A T dr s e T (4.5)
The relationship between F and r is shown schematically in Fig.
4.3(b). Note that the point where F = 0 corresponds to the equilibrium
separation, ry, between the two atoms where the potential energy is a mini-
mum, Fig. 4.3(a). Also, the relationship between F and r is almost linear in
the regime where r ~ ry. Small displacements (by forces) of the atoms, there-
fore, result in a linear relationship between force and displacement, i.e,
apparently linear elastic behavior. Note that large forces may also result
in nonlinear elastic behavior since the force—separation curves are not linear
for large deformations, Fig. 4.3(b). Elastic moduli for several engineering
materials are listed in Table 4.1.
It should be readily apparent from the above discussion that Young’s
modulus is a measure of resistance to deformation. Also, since Young’s
modulus varies with the type of chemical bonding, it does not change

Copyright © 2003 Marcel Dekker, Inc.



(a)

Repulsion curve

u =gt
u L 1 Separata ions, eg. Na*, Ct
A
| [V}
ofb—— A A
\\ I Atoms, e.g. Na, C|
Netcuree =7  Electrostatic atiraction

U= —qudrrear

|
1
|
| Inter-ion distance for

+ most stabte bond, r

1

1

I Bond stable l Bond unstabla r

(b)

!
[
I | du is a maximum (at point of
i

F Frras dr inflsction in Uir curve}
(-%)
dr |
Altraction * du
0 ' | o O
} N
) du
Repuision a

p
Dissociation radius -
Ficure 4.3 Formation of a chemical bond: relationship between U and r;

(b) relationship between F and r. (Adapted from Ashby and Jones, 1996).
Reprinted with permission from Butterworth Heinemann.)

much (~ £5%) with processing/heat treatment variations or minor alloying
additions that can have little effect on chemical bonding. In contrast, minor
alloying, processing, and heat treatment can have very significant effects (as
much as +£2000%) on strength. Young’s modulus is, therefore, a material
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property that is generally independent of microstructure. However, since it
depends strongly on the equilibrium atomic separation, which increases as a
result of more vigorous atomic vibrations at elevated temperature, Young’s
modulus will generally decrease with increasing temperature.

Finally in this section, it is important to note that the slope of the
force—distance curve in the linear regime close to ry is a measure of the
resistance of a solid to small elastic deformation. However, the modulus
of a solid may also depend strongly on the direction of loading, especially
in crystals that are highly anisotropic. The modulus may also vary with
direction, as discussed in the next section.

4.3 INTRODUCTION TO LINEAR ELASTICITY

The simple relationship between stress and strain was first proposed by
Robert Hooke in 1678. For this reason, the basic relationship between stress
and strain in the elastic regime is often referred to as Hooke’s law. This law
states simply that the strain, &, in an elastic body is directly proportional to
the applied stress, o.

For axial loading [Figs 3.1(a) and 3.1(b)], the proportionality constant
is commonly referred to as Young’s modulus, £. The modulus for shear
loading [Fig. 3.1(c)] is defined as the shear modulus, while the modulus
for triaxial/pressure loading is (Figs. 3.5 and 3.9) generally referred to as
the bulk modulus, K. The respective elasticity equations for isotropic tensile,
shear, and bulk deformation are given by

o=Es (4.6a)

7= Gy (4.6b)
and

p=—KA—VV=—KA (4.6¢)

where o is the applied axial stress, ¢ is the applied axial strain, t is the
applied shear stress, y is the applied shear strain, p is the applied volumetric
pressure/triaxial stress, and A is the volumetric strain (Equation 3.20).

It is also important to recall that axial extension is typically associated
with lateral contraction, while axial compression often results in lateral
extension. The extent of lateral contraction (or extension) may be repre-
sented by Poisson’s ratio, v, which is defined as (Fig. 4.4):

B Lateral strain ¢,
~ Longitudinal strain = &,

4.7)
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TaBLE 4.1 Elastic Moduli For Different Materials

Material E(GN m?) Material E (GN m?)
Diamond 1000 Palladium 124
Tungsten carbide (WC) 450-650 Brasses and bronzes 103-124
Osmium 551 Niobium and alloys 80-110
Cobalt/tungsten carbide Silicon 107
cermets 400-530 Zirconium and alloys 96
Borides of Ti, Zr, Hf 450-500 Silica glass, SiO,
Silicon carbide, SiC 430-445 (quartz) 94
Boron 441 Zinc and alloys 43-96
Tungsten and alloys 380-411 Gold 82
Alumina (Al,03) 385-392 Calcite (marble,
Beryllia (BeO) 375-385 limestone) 70-82
Titanium carbide (TiC) 370-380 Aluminium 69
Titanium carbide (TaC) 360-375 Aluminium and alloys 69-79
Molybdenum and alloys 320-365 Silver 76
Niobium carbide (NbC) 320-340 Soda glass 69
Silicon nitride (SizN,) 280-310 Alkali halides (NaCl,
Beryllium and alloys 290-318 LiF, etc.) 15-68
Chromium 285-290 Granite (Westerly
Magnesia (MgO) 240-275 granite) 62
Cobalt and alloys 200-248 Tin and alloys 41-53
Zirconia (ZrO,) 160-241 Concrete, cement 30-50
Nickel 214 Fiberglass (glass-fiber/
Nickel alloys 130-234 epoxy) 35-45
CFRP 70-200 Magnesium and alloys 41-45
Iron 196 GFRP 7-45
Iron-based super-alloys 193-214 Calcite (marble,
Ferritic steels, low-alloy limestone) 31
steels 196-207 Graphite 27
Stainless austenitic Shale (oil shale) 18
steels 190-200 Common woods, Il to
Mild steel 200 grain 9-16
Cast irons 170-190 Lead and alloys 16-18
Tantalum and alloys 150-186 Alkyds 14-17
Platinum 172 Ice (H,0) 9.1
Uranium 172 Melamines 6-7
Boron/epoxy composites  80-160 Polyimides 3-5
Copper 124 Polyesters 1.8-3.5
Copper alloys 120-150 Acrylics 1.6-3.4
Mullite 145 Nylon 2-4
Vanadium 130 PMMA 3.4
Titanium 116 Polystyrene 3-3.4
Titanium alloys 80-130 Epoxies 2.6-3
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TaBLE 4.1 Continued

Material E(GNm™?) Material E (GN m~2)

Polycarbonate 2.6 Foamed

Common woods, L to polyurethane 0.01-0.06
grain 0.6-1.0 Polyethylene (low

Polypropylene 0.9 density) 0.2

PVC 0.2-0.8 Rubbers 0.01-0.1

Polyethylene Foamed polymers 0.001-0.01
(high density) 0.7

After Ashby and Jones, 1996. Reprinted with permission from Butterworth
Heinemann.

Furthermore, the resistance of a crystal to deformation is strongly
dependent on its orientation. It is, therefore, important to develop a more
complete description of elastic behavior that includes possible crystal aniso-
tropy effects. This can be achieved by rewriting Eqs (4.6a) and (4.6b) with
their respective stress and strain components as the independent variables:

u
Nominal tensile strain, e, = —
{

1
|
1
|
|
|-
I =
|
|
|
i

¥
Nominal lateral strain, e, = — n

1-.-!\)“:

lateral strain

Poisson’s ratio, y=- ] )
tensile strain

|
4
T
4
'!3

n
3
|

Ficure 4.4 Schematic illustration of lateral contraction. (Adapted from Ashby
and Jones, 1996—reprinted with permission from Butterworth Heinemann.)
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where the terms in the C;; matrix represent the elastic stiffness. Similarly, the

three-dimensional strains can be expressed as
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where the terms in the Sj; matrix are the so-called compliance coefficients.
At first glance, both the C;; and Sj; matrices contain 36 terms. However, due
to the existence of a unique strain energy, only 21 of the terms are indepen-
dent in each of matrices in Eqs (4.8) and (4.9). The number of independent
terms in the C; and S;; matrices also decreases with increasing crystal sym-
metry. The least symmetric triclinic crystals have 21 independent elastic
constants; orthorhombic crystals have nine independent elastic constants,
and tetragonal crystals have six. Hexagonal crystals have five independent
elastic constants and cubic crystals have three. Hence, for cubic crystals, Eqs
(4.8a) and (4.8b) reduce to Eqgs (4.9a) and (4.9b):
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The moduli in the different directions can be estimated from the stiffness
coefficients. For cubic crystals, Young’s modulus along a crystallographic
[ikl] direction is given by

1

— =511 —-2|(511—S12) —
Ero 1 |:( 11 12)

%}(/%/gﬂg B+ B1D) (4.10)
where /1, b, and /5 are the direction cosines of the angle between the vector
corresponding to the direction, and the x, y, z axes, respectively.

The room-temperature values of C;; and S;; for selected materials are
listed in Table 4.2. The direction cosines for the most widely used principal
directions in the cubic lattice are also given in Table 4.3. Note that the
uniaxial elastic moduli of cubic crystals depend solely on their compli-
ance/stiffness coefficients, and the magnitudes of the direction cosines.
Also, the modulus in the [100] direction 1/E;; = S;; —2/3[(S;; — S12) —
Si4/2]. Hence, depending on the relative magnitudes of (S;; —S;) and
S442, the modulus may be greatest in the [111] or [100] directions. The
average modulus of a polycrystalline material in a given direction depends
on the relative proportions of grains in the different orientations.

The modulus of a polycrystalline cubic material may be estimated
from a simple mixture rule of the form: E =Y, V,E; where V; is the
volume fraction of crystals with a particular crystallographic orientation,
E; is the modulus in that particular orientation, and » is the number of
possible crystallographic orientations.

Finally in this section, it is important to note that the degree of aniso-
tropy of a cubic crystal (anisotropy ratio) is given by:

2(811 - S12)
S44

Anisotropy ratios are presented along with elastic constants for several
cubic materials in Table 4.4. Note that with the exception of tungsten, all of
the materials listed are anisotropic, i.e., their moduli depend strongly on
direction. The assumption of isotropic elasticity in several mechanics and
materials problems may therefore lead to errors. However, in many
problems in linear elasticity, the assumption of isotropic elastic behavior
is made to simplify the analysis of stress and strain.

Anisotropy ratio = (4.11)

4.4 THEORY OF ELASTICITY
4.4.1 Introduction

The rest of the chapter may be omitted in an undergraduate class on the
mechanical behavior of materials. However, this section is recommended
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TaBLE 4.2 Summary of Elastic Stiffness and Compliance Coefficients

(10" Pa) (107" Pa")
Material C1 C2 Cas S S12 Sus
Cubic
Aluminum 10.82 6.13 2.85 1.57 -0.57 3.51
Copper 16.84 12.14 7.54 1.50 -0.63 1.33
Gold 18.60 15.70 4,20 2.33 -1.07 2.38
Iron 23.70 14.10 11.60 0.80 -0.28 0.86
Lithium 11.2 4.56 6.32 1.16 -0.34 1.58
fluoride
Magnesium 29.3 9.2 15.5 0.401 -0.096 0.648
oxide
Molybdenum® 46.0 17.6 11.0 0.28 -0.08 0.91
Nickel 24.65 14.73 12.47 0.73 -0.27 0.80
Sodium 4.87 1.26 1.27 2.29 —0.47 7.85
chloride®
Spinel 27.9 15.3 14.3 0.585 —0.208 0.654
(MgAl,0,)
Titanium 51.3 10.6 17.8 0.21 —0.036 0.561
carbide®
Tungsten 50.1 19.8 15.14 0.26 -0.07 0.66
Zinc sulfide  10.79 7.22 412 2.0 —-0.802 2.43
Cn C12 C13 C3  Cas  Sn S12 S13  S33  Su
Hexagonal
Cadmium 1210 4.81 4.42 5.13 1.85 1.23 -0.15 —-0.93 3.55 5.40
Cobalt 30.70 16.50 10.30 35.81 7.53 0.47 -0.23 -0.07 0.32 1.32
Magnesium 597 2.62 217 6.17 1.64 2.20 -0.79 —-0.50 1.97 6.10
Titanium 16.0 9.0 6.6 18.1 4.65 0.97 -0.47 -0.18 0.69 2.15
Zinc 16.10 3.42 5.01 6.10 3.83 0.84 0.05 —-0.73 2.84 2.61

After Hertzberg, 1996—reprinted with permission from John Wiley.
@Sources: Huntington (1958) and Hellwege (1969).

bNOte that E100 > E111.
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TaBLE 4.3 Summary of Direction
Cosines For Cubic Lattices

Direction I I I

(100) 1 0 0
(110) 1/vV2  1/V2 0
(111) 1/vV3 1/V3 1/V3

After Hertzberg, 1996. Reprinted with
permission from John Wiley.

for graduate students, or those who simply want to develop a deeper
understanding of elasticity and plasticity concepts. Following a review of
equilibrium equations and possible states of stress, compatibility condi-
tions are described prior to a simple presentation of Airy stress functions.
Short-hand tensor notation is also explained in a simple presentation that
will enable the reader to interpret abbreviated versions of equations that
are often used in the literature. A generalized form of Hooke’s law is then
presented along with a basic definition of the strain energy density func-
tion at the end of the chapter.

TaBLE 4.4 Summary Anisotropy Ratios at Room Temperature

Relative

degree of

anisotropy

2(s11 — S12) Ein
Metal { Sus } Eq1q (108 psi)  Eqgo (108 psi) [EWJ
Aluminum 1.219 11.0 9.2 1.19
Copper 3.203 27.7 9.7 2.87
Gold 2.857 16.9 6.2 2.72
Iron 2.512 39.6 18.1 2.18
Magnesium oxide 1.5634 50.8 36.2 1.404
Spinel (MgAl,O,) 2.425 52.9 24.8 2.133
Titanium carbide 0.877 62.2 69.1 0.901
Tungsten 1.000 55.8 55.8 1.00

After Hertzberg, 1996. Reprinted with permission from John Wiley.
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442 Equilibrium Equations

The relationships between stress and strain may be obtained by determining
the conditions for equilibrium of an element. If we consider a magnified
cubic element, as shown in Fig. 4.5, it is easy to imagine all the forces that
must be applied to the cube to keep it suspended in space. These forces may
consist of applied normal and shear stresses as described in Chap. 3 (Fig.
3.1). They also consist of body forces that have x, y, and z components.
Body forces may be due to gravitational or centrifugal forces which act
throughout the volume. They have the units of force per unit volume.
Considering stress gradients across the cube and force equilibrium in the
(x, y, z) directions, it is relatively easy to show that

Wy  Txy  OTyy ¥ x
F — o= 4.12a
ax "oy oz ThxTPyp (4.12a)
0ty  doy,, 0Ty, 82y
Oy F—,0Y 4.12b
x oy oz TP (4.12b)
2
Iox | Oy 0072 po_ 0 (4.12c)

ax  dy oz z o2

|

/'
,/dJ< Ty gt v )
i 1
|
T (sz"a%rzx%) [
by — |- — v
dz J f 9
T axrzzgj
e e e
X E
~ X (Tu‘a—z‘l'ugé{)

dy——OJ

Ficure 4.5 State of stress on an element in the Cartesian co-ordinate system.
Only components affecting equilibrium are labeled. (Adapted from Hearn,
1985. Reprinted with permission from Pergamon Press.)
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where F, F,, and F. are the body forces per unit volume, p is the density, x,
y, and z are the Cartesian co-ordinates, and the acceleration terms in
Newton’s second law are given by the second derivatives on the right-
hand side of Eqs 4.12(a)—(c). In the case of stationary bodies, the accelera-
tion terms on the right-hand side of these equations are all equal to zero.
Also, the body forces are usually small when compared to the applied forces.
Hence, we have the usual forms of the equilibrium equations that are
generally encountered in mechanics and materials problems. These are

Wyy 0Ty, 0Ty,
= 4.1
ox ay a0z 0 (4.132)
ot do at
yx yy vZ_ 0 4.13b
ax oy 0z ( )
Trax | oy | 802 _ g (4.13¢)

ox ay 9z

The equilibrium equations for cylindrical and spherical co-ordinate
systems may also be derived from appropriate free-body diagrams (Fig.
4.6). These alternative co-ordinate systems are often selected when the geo-
metrical shapes that are being analyzed have cylindrical or spherical sym-
metry. Under such conditions, considerable simplification may be achieved
in the analysis by using cylindrical or spherical co-ordinate systems. Force
components in the free-body diagrams can also be obtained by applying

a8 g
T

' ) {‘7:: a—z-c'”dz}
\\ G \‘\ (g +io'ldz)

K

Ficure 4.6 State of stress over an element in the cylindrical co-ordinate
system.
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Newton’s second law to the special case of a stationary body. In the case of
cylindrical co-ordinates, if we neglect body forces, the equations of equili-
brium are given by

ao—l’r 1 31’,-9 B‘L',z O — Ogp

= 4.14
ar r o0 0z r 0 ( 3)
3'[,-9 1 8(799 31’29 21',-9
_ = 414
ar r 00 0z r 0 ( b)
a":rz 1 a"'72(9 do. 2z Tar
- = 4.14
ar r 90 0z + r 0 ( ©)

Similarly, the equations of equilibrium for problems with spherical
symmetry may be derived by summing the force components in the r, 6,
and ¢ directions. Hence, the equilibrium equations are given by

do 1 ot 10t 20, — Ogg — 04y + T, COL
r ro 4 ré + rr 606 (o2} re ¢ +

- F.=0
ar  rsing 99 r op r
3 14 19 3 (4.14d)
Tro 1900  19%g0 | STgo F, — 4.14
ar r 9 r8¢+ r00t¢+ =0 (4.14e)
8Tr9 1 8f¢9 1 3o’¢¢ U¢¢ — Ogy 3tl‘¢ _
or TT o e + - coto + - +F,=0 (4.14f)

The above equations (three each for any three-dimensional coordinate
system) are insufficient to solve for the six independent stress components.
The remaining three components of stress can only be found from a simulta-
neous solution with the stress—strain relationships in most elasticity problems.

4.4.3 States of Stress
4.4.3.1 Plane Stress and Plane Strain Conditions

The above discussion has focused largely on the general three-dimensional
state of stress on an element [Figs 4.5 and 4.6). However, in many problems
in mechanics and materials, it is possible to achieve considerable simplifica-
tion in the analysis of stress and strain by assuming biaxial stress (plane
stress) or biaxial strain (plane strain) conditions. Such problems are often
referred to as plane problems (Fig. 4.7).

In plane elastic problems, neither the stresses nor strains vary in the z
direction. Furthermore, the loads on the sides and the body forces must be
distributed uniformly across the thickness. Also, plane stress conditions
often apply to problems in which the thickness is small, while plane strain
conditions usually apply to problems in which the thickness is large with
respect to the other dimensions.
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Ficure 4.7 Schematic of a plane element.

In plane stress problems, all the z components of stress are assumed to
be zero, i.e., 0., 7., and 1, are all equal to zero. Note also that the effective
value of 0., may be reduced to zero by imposing an equal stress of opposite
sign in the z direction. The equilibrium equations thus reduce to the follow-
ing expressions:

0oy  OTxy _
ax By +F,=0 (4.15a)
0Ty Boyy
F, = 4.1
X By +F, =0 (4.15b)

The relationships between strain and stress are now given by

_Oxx VOyy
oo = — 2% (4.16a)
oy =L — 2 (4.16b)
T
Vay = % (4.16c¢)

Under plane strain conditions, all of the strains in the z direction are zero.
Hence, ¢.. = &,. = ¢,, = 0. Also, for all plane problems, t,. = 7,. = 0. The
equilibrium equations are thus given by
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Ix 5 +F,=0 (4.17a)
0Ty, 0doyy
—+ 2+ F, = 4.17
X + By + Fy ( b)
004,

F, = 4.17
o7 +F=0 ( c)

The relationships between strain and stress are now given by

1 _ 2
o = o’ ) [GXX - v U) (,yy} (4.18a)
1— 2
£y = % [gw _ ﬁoxx} (4.18b)
Vxy = % (4180)

Note that the plane strain equations can be obtained from the plane stress
equations simply by replacing v with v/(1 —v) and E with E/(1 —%).
Furthermore, the above equations may be rearranged to obtain stress com-
ponents in terms of strain. For plane stress conditions, this gives

GXX = (1 _ v2) [SXX + ngy] (4196)
W= )[eyy + Vexx] (4.19b)
Ty = Gyyy (4.19¢)

Similarly, for plane strain conditions, we may rearrange Eqs 4.19(a—)
to obtain the following expressions for stress components in terms of strain:

_ E(1—v) 1%
P = 01— 2v) [EXX + mgw} (4.20a)
_ E(1—v) v
T A+ v —2v) [Sw T msxx] (4.20b)
By = Gy (4.20¢)

4.4.3.2 Generalized Three-Dimensional State of Stress

Thermal stresses may also be included in the equilibrium equations simply
by treating them as body forces. For a generalized three-dimensional state of
stress, the equations of equilibrium are given by
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AT = 4.21
ax  dy oz T+ 0 (4.21a)
dtyx doy, 0Ty,

AT = 4.21
Ix By + P +a, 0 ( b)

AT = 4.21
ax 9y oz to 0 (4.21c)

Equations 4.21(a—c) are not applicable to plasticity problems.
Also, similar expressions may be written for the equilibrium conditions
in spherical and cylindrical co-ordinates under elastic conditions.
However, in general, the above equations cannot be solved without
satisfying the so-called compatibility conditions. These are discussed in
the next section.

4.4.3.3 Compatibility Conditions and Stress Functions

To ensure that the solutions to the above equations are consistent with
single valued displacements, the compatibility conditions must be satisfied.
These are derived in most mechanics texts on elasticity. The compatibility
conditions are given by three equations of the form:

2 2
828,',' 0 8]'1' _ 0 )/,j

WF o oxF X0

(4.22)

where subscripts i and j can have values between 1 and 3 corresponding to
subscripts x, y, and z, respectively. Also, three other compatibility equations
of the following form can be obtained from linear elasticity theory, which
gives

2
=+ P ) (8.23)

ax;oxe  ox; \ Ox;  0X;  OXy

Three equations of the above form can be obtained by the cyclic
permutation of i, j, and k in the above equation. As the reader can probably
imagine, the above equations are difficult to solve using standard methods.
It is, therefore, common to employ trial and error procedures in attempts to
obtain solutions to elasticity problems.

One class of trial functions, known as Airy functions, are named after
Sir George Airy, the British engineer who was the first person to introduce
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them in the 19th century. The Airy stress function, yx, defines the following
relationships for o, 0,,, and t,:

2
O = g—y’é (4.24a)
82)(
ny = W (424b)
—&x
Gy = (4.24c)

The compatibility condition can also be expressed in terms of the Airy stress

function. This gives
28 9*
T S S (4.25)
ox*  dxcdyc oy

For stress fields with polar symmetry, the Airy stress functions are

given by
19y 1%
o= ror T2 (4.262)
82)(
_ 4.26b
Ogg ar2 ( )
d (10x
_ z 4.2
70 = "y (r 39) (4.26¢)

The compatibility conditions are satisfied when the Airy stress function
satisfies Laplace’s equation and the biharmonic equation. Hence,

vie=0 (4.27)
and

Vie=0 (4.28)
where the V2 operator is given by

¥ 19 1
Ve —S4-——+—— 4.29
a2 " Tor T 2o (429)
The compatibility condition is, therefore, satisfied when Laplace’s equation
and the biharmonic function are satisfied, i.e., when Eqs (4.27) and (4.28)
are satisfied.
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45 INTRODUCTION TO TENSOR NOTATION

So far, the description of linear elasticity concepts has used simple matrix
notation that any reader with a basic knowledge of linear algebra can follow
without too much difficulty. However, it is common in technical publications
to formalize the use of matrix notation in a manner that is not self-evident to
the untrained reader. The formal notation that is often used is generally
referred to as tensor notation. The latter is commonly used because it facil-
itates the simplified/abbreviated presentation of groups of numbers.

Tensors are essentially groups of numbers that represent a physical
quantity such as the state of stress on an element. The order, n, of a tensor
determines the number of components of a tensor. The number of compo-
nents of a tensor is given by 3". Hence, the simplest tensors are scalar
quantities, which are a special class of tensors of order zero, i.e., n =0
and the number of components is 3" = 3” = 1. Temperature is one example
of a zeroth-order tensor. Vectors are tensor quantities of the first order.
They, therefore, have three components given by 3" = 3! = 3. The three
components are often referred to three independent axes, e.g., x, y, z or 1,
2, 3. Similarly, second rank tensors may be defined as tensors with n = 2.
They have 3" = 3> = 9 components.

Tensors can be used to represent stress, strain, and physical properties
such as electrical/thermal conductivity and diffusivity. Tensors may also be
used to represent the anisotropy of stiffness and compliance. Stress and
strain are examples of second rank tensors since they require specifications
of the directions of the plane normal and applied force. Stress and strain are
also examples of symmetric tensors since o; = 0; and ¢; = ¢, i.e., their
components are symmetric about their diagonals.

Tensor notation is particularly useful because it provides a short-hand
notation for describing transformations between different orthogonal sets of
axes. If we now consider the simple case of two sets of orthogonal co-
ordinate axes (x|, X,, x3) and (x}, x5, x3) that describe the same vector,
A, then it is easy to express the vector A in terms of the unit vectors
along the old axes (i, j, k) or the unit vectors across the new axes (7, ',
k). The components of 4 are transformed from one co-ordinate system to
the other simply by multiplying them by the direction cosines between the
old axes and the new axes (Fig. 4.8). Hence, the components of the the
vector A4 in the new vector basis are given by the following expression:

A =l (430)

where A4; are the vector components in the new basis, A4; are the vector
components in the old basis, and ¢, is the direction cosine of the angle
between the ith axis in the new basis and the kth axis in the old basis.
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Ficure 4.9 State of stress on an inclined plane through a given point in a
three-dimensional Cartesian co-ordinate system.

We may now turn our attention to second-order tensors which are
next in order of complexity after scalars and vectors. A second-order
tensor consists of nine components. One example of a tensor quantity is
the stress tensor, which the reader should be familiar with from Chap. 3.
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The nine components of the second-order stress tensor are given by (Figs.
4.8 and 4.9):

[ol=| tyx 0Oy Ty (4.37)
Tzx Tzy Oz

Note that Eq. (4.31) presents the components of the stress tensor in the old
co-ordinate system. However, by definition, the components of a second-
order tensor transform from one co-ordinate system to another via the so-
called transformation rule. This is given by (Figs. 4.8 and 4.9):

3 3
U,‘j = Z Zﬁikﬁj,ok, (432)
k=1 1=1

where the oy, terms represent the stress components referred to the old axes,
£, represents the direction cosines that transform the plane normal compo-
nents to the new set of axes, while £; represent the direction cosines that
transform the force components to the new set of axes.

Similar expressions may also be written for the strain tensor and the
transformation of the strain tensor. These are given by

_ 1 3U,‘ 3U]
and
3 3
=3 tutjen (4.34)
k=11=1

We note here that a more compact form of the above equations can be
obtained by applying what is commonly known as the Einstein notation or
the summation convention. This notation, which was first proposed by
Albert Einstein, states that if a suffix occurs twice in the same term, then
summation is automatically implied over values of i and j between 1 and 3.
Hence, Eqs (4.32) and (4.34) can be expressed as

U,‘]‘ = Z,-kﬁj,ok, (435)
and
8,'1' = K,-kéj,sk, (436)

where the £; and £; terms represent the direction cosines of the angles
between the new and old axes. Note that the subscripts & and / in the
above equations can be replaced by any other letter (apart from i and j)
without changing their functional forms. Hence, these subscripts are com-
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monly referred to as “dummy suffixes” since they can be replaced by any
letter. Similarly, the equilibrium equations [4.12(a—c)] may be expressed in
abbreviated tensor notation, which gives

oijj+ Fi = piii (4.37)

It is also important to note here that the Kronecker delta function may also
be defined as the unit tensor, §;, with a value of 1 when i = j. This is related
to the direction cosines via the following expression:

Liily = Sk (4.38)

So far, we have learned that zeroth, first and second order tensors
transform, respectively, according to the following transformation laws:
¢=¢; Ai = Ly Ay, and o; = €,L;04. Also, in general, a tensor of order n
has 3" components, as discussed at the start of this section.

In general, a tensor of order » may be defined as one that undergoes
transformation from one co-ordinate system to another by the following
transformation rule:

Aiiyin = Lik iy Lisks - - - Li ko, Ay ks Ky (4.39)

where Ay k.. k, are the components of the tensor in the old co-ordinate
system, A4;; , are the components of the tensor of order 7 in the new co-
ordinate system, and ¢, ¢k, Cik,--->¥¢;k, are the direction cosines
between the axes in the new and old co-ordinate systems.

For example, three vectors A, B and C would form a third-order
tensor given by A; ;,i; = €; i, Lik, Cisies Ak ko ky- Similarly, if a second-order ten-
sor, Ay = AjmBi, 18 a linear function of another second-order function,
they are related by a fourth-order tensor via:

Aix = AikimBim (4.40)

Finally, in this section, it is important to note that the permutation
tensor, &;;, may be defined as having values of 1, —1, and 0, depending on
whether the order of 7, j, and k is cyclic (123, 231, 312) or repeated (112, 221,
331), etc. The permutation tensor is not commonly used, although it is
useful in selected problems involving the application of couple stresses.
The permutation tensor may also be used to represent the vector cross-
product, which is given by

axb= 8,-/-kn,-a,-bk (441)

where a and b are vectors, n; is the normal to both vectors @ and b, and ¢ is
the permutation tensor. Furthermore, a small rotation of an element may be
expressed as

ngeji Ui i

. (4.42)

W = wiNg =
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This completes our brief introduction to tensor notation. The inter-
ested reader is referred to a number of excellent texts (listed in the biblio-
graphy) for further details on the subject. In particular, the classical text by
Nye (1953) provides what is generally considered by many to be the clearest
introduction to tensor notation.

4.6 GENERALIZED FORM OF LINEAR ELASTICITY

With the above introduction to tensor notation now complete, we will now
return to Hooke’s law of linear elasticity. This is simply an expression of the
linear spring-like behavior of elastic solids (Fig. 4.2). Using tensor notation,
Hooke’s law may be expressed as

O','/' = ijklgkl (443)

where Cyj, is the fourth-order tensor that represents all the possible elastic
constants. Expressed in terms of the direction cosines, Cyy; is given by

3 3 3
Cij = Z Z Z Z Cijirtiilyilirly (4.44)

The primed terms in Eq. (4.44) refer to the new co-ordinates, while the
nonprimed terms refer to the old axes. It is also important to note that
the order of ij and k/ does not matter. Hence, Cj; = Cyi Cyj = C,,, and
Ci; = Cy. Similarly, the above elastic expressions can be expressed in terms

of the fourth order elastic compliance tensor Sy, :

w

3
Z Z ,/k/O'k/ + O(,/AT (445)
k=1 1=1
where o;; represents the thermal expansion coefficients, and AT is the tem-
perature difference between the actual temperature and a stress-free tem-
perature. The components of the compliance tensor transform in a manner
similar to the elastic stiffness tensor, Cyy,;. For an isotropic material, i.e., a
material with two independent elastic constants, Cyy; is given by

Cijxi = A8k + n(8ixdj + 8i18jx) (4.46)

where w is the shear modulus, A is Lame’s constant, and §;; is the Kronecker
delta for which §; = 0 when i # j and §; = | when i = j. Young’s modulus,
E, and Poisson’s ratio, v, are given by

_ (3A+2u)

4.47
A+ (+47)
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and
A

v= e (4.48)

As discussed earlier in this chapter, E represents the resistance to axial
deformation, and v represents the ratio of the transverse contractions to the
axial elongation under axial loading. Values of E, G, and v for selected
materials are presented in Table 4.5. Note that these elastic properties are
not significantly affected by minor alloying or microstructural changes.

TaBLE 45 Summary of Elastic Properties of Assumed Isotropic Solids

Material at 68°F E (10° psi) G (10° psi) v
Metals

Aluminum 10.2 3.8 0.345
Cadmium 7.2 2.8 0.300
Chromium 40.5 16.7 0.210
Copper 18.8 7.0 0.343
Gold 11.3 3.9 0.44
Iron 30.6 11.8 0.293
Magnesium 6.5 25 0.291
Nickel 28.9 11.0 0.312
Niobium 15.2 5.4 0.397
Silver 12.0 4.4 0.367
Tantalum 26.9 10.0 0.342
Titanium 16.8 6.35 0.321
Tungsten 59.6 23.3 0.280
Vanadium 18.5 6.8 0.365
Other materials

Aluminum oxide (fully dense) ~ 60 — —
Diamond ~ 140 — —
Glass (heavy flint) 11.6 4.6 0.27
Nylon 66 0.17 — —
Polycarbonate 0.35 — —
Polyethylene (high density) 0.058-0.19 — —
Poly(methyl methacrylate) 0.35-0.49 — —
Polypropylene 0.16-0.39 — —
Polystyrene 0.39-0.61 — —
Quartz (fused) 10.6 4.5 0.170
Silicon carbide ~ 68 — —
Tungsten carbide 77.5 31.8 0.22

Adapted from Hertzberg, 1996—reprinted with permission from John Wiley.
aSource: Kaye and Laby (1973).
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TaBLE 4.6 Relationships Between Elastic Properties of Isotropic Solids

G K E v
G, Ee5 T
G,v 23?](%—;:)) 2G(1+v)
6. weG  2ws
v, K % 3K(1—-2v)

Courtesy of L. Anand, MIT.

Also, typical values for Poisson’s ratio, v, are close to 0.3 for a large variety
of materials.

It is important to note here that an isotropic material has only two
independent elastic constants. Hence, if any two of the elastic constants (E,
G, K, and v) are known, then the other two elastic constants may be calcu-
lated from equations of isotropic linear elasticity. The expressions that relate
the elastic constants for isotropic solids are summarized in Table 4.6. In
reviewing the table, it is important to remember that the different moduli
and elastic properties are associated with the chemical bonds between
atoms. They are, therefore, intrinsic properties of a solid that do not vary
significantly with microstructure or minor alloying additions.

The elastic constants may also be derived from energy potentials of the
kind presented earlier in this chapter. However, detailed quantum
mechanics derivations of the potentials are only now becoming available
for selected materials. A summary of stiffness and compliance coefficients
for a range of materials is presented in Table 4.2.

4.7 STRAIN ENERGY DENSITY FUNCTION

Under isothermal elastic conditions, the work done per unit volume in
displacing the surfaces/boundaries of a system, dw=dW/V, can be
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expressed in terms of the incremental work done per unit volume. This
yields:

dw = O’,'de,'j = ijklgkldgij (449)

Equation (4.49) may also be applied to incremental plasticity problems, as
discussed in Chap. 5. In any case, under isothermal incremental elastic
loading conditions, the total work per unit volume is a single valued func-
tion of the form:

1
w=y Cijuigijen = Plejp) (4.50)
where w is the strain energy density, which is given by
¢

Differentiating the strain energy density gives
P¢  doy
88,788/(/ o 88kl

= Ciju (4.52)

It is important to note that Eqs (4.43) and (4.52) suggest that there are
81 independent elastic constants. However, the equalities 0;; = 0; and ¢;; =
g;; reduce the number of independent elastic constants to 36. Also, the
reversibility of elastic deformation leads to the result that the work done
during elastic deformation is a unique function of strain that is independent
of the loading path. Hence,

o e

88,-1-88,(, o 38/(/88,'!'

= Cijir = Cujj (4.53)

From Eq (4.53), it can be deduced that C;; = Cj;, and hence there are only 21
independent elastic constants, as discussed in Sect 4.3. The concept of the
strain energy density will be discussed further in subsequent sections on
plasticity and fracture mechanics.

4.8 SUMMARY

An introduction to elasticity has been presented in this chapter. Following a
brief description of the physical basis for elastic behavior, an introduction to
anisotropic linear elasticity was presented. Equilibrium equations were then
introduced for Cartesian, spherical, and cylindrical co-ordinate systems. An
overview of the mathematical theory of elasticity was then presented before
introducing tensor notation. Finally, the basic equations of elasticity were
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described in tensor form before concluding with a section on the strain
energy density function.
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5

Introduction to Plasticity

5.1 INTRODUCTION

After a high enough stress is reached, the strain no longer disappears on the
release of stress. The remaining permanent strain is called a “plastic™ strain
(Fig. 5.1). Additional incremental plastic strains may also be accumulated
on subsequent loading and unloading, and these can lead ultimately to
failure. In some cases, the dimensional and shape changes associated with
plasticity may lead to loss of tolerance(s) and premature retirement of a
structure or component from service. An understanding of plasticity is,
therefore, important in the design and analysis of engineering structures
and components.

This chapter presents a basic introduction to the mechanisms and
mechanics of plasticity in monolithic materials. Following a simple review
of the physical basis for plasticity in different classes of monolithic materials
(ceramics, metals, intermetallics, and polymers), empirical plastic flow rules
are introduced along with multiaxial yield criteria. Constitutive equations of
plasticity are then presented in the final section of the chapter.
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Ficure 5.1 Schematic illustration of plastic strain after unloading.

5.2 PHYSICAL BASIS FOR PLASTICITY
5.2.1 Plasticity in Ceramics

Most ceramics only undergo only elastic deformation prior to the onset of
catastrophic failure at room temperature. Hence, most reports on the
mechanical properties of ceramics are often limited to elastic properties.
Furthermore, most ceramists report flexural properties obtained under
three- or four-point bending. Typical strength properties of selected ceramic
materials are presented in Table 5.1. Note that ceramics are stronger (almost
15 times stronger) in compression than in tension. Also, the flexural
strengths are intermediate between the compressive and tensile strength
levels. Reasons for these load-dependent properties will be discussed in
subsequent chapters. For now, it is simply sufficient to state that the trends
are due largely to the effects of pre-existing defects such as cracks in the
ceramic structures.

The limited capacity of ceramic materials for plastic deformation is
due largely to the limited mobility of dislocations in ceramic structures. The
latter may be attributed to their large Burgers (slip) vectors and unfavorable
(for plastic deformation) ionically/covalently bonded crystal structures.
Plastic deformation in ceramics is, therefore, limited to very small strains
(typically < 0.1-1%), except at elevated temperatures where thermally acti-
vated dislocation motion and grain boundary sliding are possible. In fact,
the extent of plasticity at elevated temperatures may be very significant in
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TaBLE 5.1 Strength Properties of Selected Ceramic Materials

Compressive Tensile Flexural Modulus of
strength strength  strength elasticity
Material (MPa (ksi)] [MPa (ksi)] [MPa (ksi)] [GPa (10° psi)]
Alumina (85% dense) 1620 (235) 125 (18) 295 (42.5) 220 (32)
Alumina (99.8% dense) 2760 (400) 205 (30) 345 (60) 385 (56)
Alumina silicate 275 (40) 17 (26) 62 (9) 55 (8)
Transformation 1760 (255) 350 (51) 635 (92) 200 (29)
toughened zirconia
Partially stabilized 1860 (270) — 690 (100) 205 (30)
zirconia +9% MgO
Cast SizN, 138 (20) 24 (3.5) 69 (10) 115 (17)
Hot-pressed SizN, 3450 (500) — 860 (125) —

Sources: After Hertzberg, 1996. Reprinted with permission from John Wiley.
@ Guide to Engineering Materials. vol. 1(1). ASM, Metals Park, OH, 1986, pp 16, 64, 65.

ceramics deformed at elevated temperature, and superplasticity (strain levels
up to 1000% plastic strain) has been shown to occur due to creep phenom-
ena in some fine-grained ceramics produced.

However, in most ceramics, the plastic strains to failure are relatively
small (<1%), especially under tensile loading which tends to open up pre-
existing cracks that are generally present after processing. Also, since inci-
pient cracks in ceramics tend to close up under compressive loading, the
strength levels and the total strain to failure in compression are often greater
than those in tension. Furthermore, very limited plasticity (permanent
strains on removal of applied stresses) may occur in some ceramics or cera-
mic matrix composites by microcracking or stress-induced phase transfor-
mations.

Microcracking generally results in a reduction in Young’s modulus, E,
which may be used as a global/scalar measure of damage (Fig. 5.2). If we
assume that the initial “‘undeformed” material has a damage state of zero,
while the final state of damage at the point of catastrophic failure corre-
sponds to a damage state of 1, we may estimate the state of damage using
some simple damage rules. For an initial Young’s modulus of Ey and an
intermediate damage state, the damage variable, D, is given simply by
D =1—E/E,. Damage tensors may also be used to obtain more rigorous
descriptions of damage (Lemaitre, 1991).

Plasticity in ceramics may also occur by stress-induced phase transfor-
mations. This has been observed in partially stabilized zirconia (ZrO,
alloyed with CaO, Y,0Oj; or CeO to stabilize the high-temperature tetragonal
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Ficure 5.2 Schematic showing the change in modulus due to damage during
loading and unloading sequences.

phase down to room temperature). Under monotonic loading, the meta-
stable tetragonal phase can undergo stress-induced phase transformations
from the tetragonal to the monoclinic phase. This stress-induced phase
transformation is associated with a volume increase of ~ 4%, and can
give rise to a form of toughening known as transformation toughening,
which will be discussed in Ch. 13.

Stress-induced phase transformations occur gradually in partially sta-
bilized zirconia, and they give rise to a gradual transition from linearity in
the elastic regime, to the nonlinear second stage of the stress—strain curve
shown in Fig. 5.3. The second stage ends when the stress-induced transfor-
mation spreads completely across the gauge section of the specimen. This is
followed by the final stage in which rapid hardening occurs until failure. It is
important to note that the total strain to failure is limited, even in partially
stabilized zirconia polycrystals. Also, as in conventional plasticity, stress-
induced transformation may be associated with increasing, level, or decreas-
ing stress—strain behavior (Fig 5.4).

5.2.2 Plasticity in Metals

In contrast to ceramics, plastic deformation in metals is typically associated
with relatively large strains before final failure. This is illustrated in Fig. 5.5
using data obtained for an aluminum alloy. In general, the total plastic
strains can vary between 5 and 100% in ductile metals deformed to failure
at room temperature. However, the elastic portion of the stress—strain curve
is generally limited to strains below ~ 0.1 to 1%. Furthermore, metals and
their alloys may exhibit stress—strain characteristics with rising, level, or
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Ficure 5.3 Schematic of the three stages of deformation in material under-
going stress-induced phase transformation. (After Evans et al., 1981.)

decreasing stress, as shown in Fig. 5.4. Materials in which the stress level
remains constant with increasing strain [Fig. 5.4(b)] are known as elastic—
perfectly plastic. Materials in which the stress level decreases with increasing
strain are said to undergo strain softening [Fig. 5.4(c)], while those in which
the stress level increases with increasing strain are described as strain hard-
ening materials, Fig. 5.4(a).

{a) (b)

(©

E—

Ficure 5.4 Types of stress-strain response: (a) strain hardening; (b) elastic-
perfectly plastic deformation; (c) strain softening.
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Ficure 5.5 Stress—strain behavior in an aluminum alloy. (After Courtney,
1990. Reprinted with permission from McGraw-Hill.)

Strain hardening occurs as a result of dislocation interactions in the
fully plastic regime. These may involve interactions with point defects
(vacancies, interstitials, or solutes), line defects (screw, edge, or mixed dis-
locations), surface defects (grain boundaries, twin boundaries, or stacking
faults), and volume defects (porosity, entrapped gases, and inclusions). The
dislocation interactions may give rise to hardening when additional stresses
must be applied to overcome the influence of defects that restrict dislocation
motion. This may result in rising stress—strain curves that are characteristic
of strain hardening behavior, Fig. 5.4(a).

As discussed earlier, the stress—strain curves may also remain level
[Fig. 5.4(b)], or decrease or increase continuously with increasing strain,
Fig. 5.4(c). The reasons for such behavior are generally complex, and not
fully understood at present. However, there is some limited evidence that
suggests that elastic—perfectly plastic behavior is associated with slip planar-
ity, i.e., slip on a particular crystallographic plane, while strain softening
tends to occur in cases where slip localizes on a particular microstructural
feature such as a precipitate. The onset of macroscopic yielding, therefore,
corresponds to the stress needed to shear the microstructural feature. Once
the initial resistance to shear is overcome, the material may offer decreasing
resistance to increasing displacement, giving rise ultimately to strain soft-
ening behavior, Fig. 5.4(c).

Since the moving dislocations interact with solute clouds, serrated
yielding phenomena may be observed in the stress—strain behavior [Fig
5.6). Different types of serrated yielding phenomena have been reported
due to the interactions of dislocations with internal defects such as solutes
and interstitials. The phenomenon is generally referred to as the Portevin—
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Ficure 5.6 Types of serrated yielding phenomena: (a) Type A; (b) Type B; (c)
Type C; (d) Type S. (Types A-C After Brindley and Worthington, 1970; Type S
After Pink, 1994. Reprinted with permission from Scripta Met.)

LeChatelier effect, in honor of the two Frenchmen who first reported it
(Portevin and LeChatelier, 1923). The serrations are caused by the pinning
and unpinning of groups of dislocations from solutes that diffuse towards it
as it moves through a lattice. The mechanisms is particularly effective at
particular parametric ranges of strain-rate and temperature (Cottrell, 1958).

Finally in this section, it is important to discuss the so-called anom-
alous yield phenomena that has been reported in some plain carbon steels
(Fig. 5.7). The stress—strain plots for such materials have been observed to
exhibit double yield points in some annealed conditions, as shown in Fig.
5.7. The upper yield point (UYP) corresponds to the unpinning of disloca-
tions from interstitial carbon clouds. Upon unpinning, the load drops to a
lower yield point (LYP). Luder’s bands (shear bands inclined at ~ 45°
degrees to the loading axis) are then observed to propagate across the
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Ficure 5.7 Anomalous yielding in 1018 plain carbon steel. (After Courtney,
1990. Reprinted with permission from McGraw-Hill.)

gauge sections of the tensile specimens, as the strain is increased further
(Fig. 5.7). Note that the stress remains relatively constant in the so-called
Liider’s strain regime, although serrations may be observed with sufficiently
sensitive instrumentation. The strain at the end of this constant stress regime
is known as the Liiders strain. This corresponds to the point at which the
Liider’s bands have spread completely across the gauge section of the speci-
men. Beyond this point, the stress generally increases with increasing due to
the multiple interactions between dislocations, as discussed earlier for con-
ventional metallic materials (Fig. 5.5).

5.2.3 Plasticity in Intermetallics

As discussed in Chap. 1, intermetallics are compounds between metals and
other metals. Due to their generally ordered structures, and partially cova-
lently or ionically bonded structures, intermetallics generally exhibit only
limited plasticity at room-temperature. Nevertheless, some ductility has
been reported for ordered gamma-based titanium aluminide intermetallics
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with duplex o, + y microstructures. These two phase intermetallics have
room temperature plastic elongations to failure of about 1-2% due to defor-
mation by slip and twinning (Kim and Dimiduk, 1991). Their limited room-
temperature ductility has been attributed to the soaking up of interstitial
oxygen by the a, phase. This results in a reduction in interstitial oxygen
content in the gamma phase, and the increased dislocation mobility of dis-
locations in the latter which gives rise to the improved ductility in two-phase
gamma titanium aluminides (Vasudevan et al., 1989).

Niobium aluminide intermetallics with plastic elongations of 10-30%
have also been developed in recent years (Hou et al., 1994; Ye et. al., 1998).
The ductility in these B2 (ordered body-centered cubic structures) interme-
tallics has been attributed to the partial order in their structures. Similar
improvements in room-temperature (10-50%) ductility have been reported
in NisAl intermetallics that are alloyed with boron (Aoki and Izumi, 1979;
Liu et al., 1983), and Fes;Al intermetallics alloyed with boron (Liu and
Kumar, 1993).

The improvements in the room-temperature ductilities of the nickel
and iron aluminide intermetallics have been attributed to the cleaning up of
the grain boundaries by the boron additions. However, the reasons for the
improved ductility in ordered or partially ordered intermetallics are still not
fully understood, and are under investigation. Similarly, anomalous yield-
point phenomena (increasing yield stress with increasing temperature) and
the transition from brittle behavior at room temperature to ductile behavior
at elevated temperature are still under investigation.

5.2.4 Plasticity in Polymers

Plasticity in polymers is not controlled by dislocations, although disloca-
tions may also exist in polymeric structures. Instead, plastic deformation in
polymers occurs largely by chain sliding, rotation, and unkinking (Figs 1.7
and 1.8). Such chain sliding mechanisms do not occur so readily in three-
dimensional (thermoset) polymers (Fig. 1.8). However, chain sliding may
occur relatively easily in linear (thermoplastic) polymers when the sliding of
polymer chains is not hindered significantly by radical side groups or other
steric hindrances. The plastic deformation of polymers is also associated
with significant changes in entropy, which can alter the local driving force
for deformation.

Elasticity and plasticity [Fig. 5.8(a)] in rubbery polymers may result in
strain levels that are between 100 and 1000% at fracture. Such large strains
are associated with chain sliding, unkinking, and uncoiling mechanisms.
Furthermore, unloading does not result in a sudden load drop. Instead,
unloading follows a time-dependent path, as shown in Fig. 5.8(b).
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Ficure 5.8 Elastic—plastic deformation in rubbery polymers. (a) Rubber rand
deformed at room temperature. (After Argon and McClintock, 1990) (b)
Viscoelasticity in a rubbery polymer. (After Hertzberg, 1996. Reprinted with
permission from John Wiley.)

Elasticity and plasticity in rubbery polymers are, therefore, often time
dependent, since time is often required for the polymer chains to flow to
and from the deformed configurations. Cyclic deformation may result in
hysterisis loops since the strain generally lags the stress (Fig. 5.9), and
anomalous stress—strain behavior may also be associated with chain inter-
actions with distributed side groups which are often referred to as steric
hindrances.

Crystalline polymers (Fig. 1.9) may also exhibit interesting stress—
strain behavior. The minimum in the stress—strain curve is due to cold
drawing and the competition between the breakdown of the initial crys-
talline structure, and the reorganization into a highly oriented chain
structure.

5.3 ELASTIC-PLASTIC BEHAVIOR

A generic plot of stress versus strain is presented in Fig. 5.10. This shows a
transition from a linear “elastic” regime to a nonlinear “‘plastic regime.”
The linear elastic regime persists up to the proportional limit, at which the
deviation from linear elastic behavior occurs. However, the onset of non-
linear stress—strain behavior is generally difficult to determine experimen-
tally. An engineering offset yield strength is, therefore, defined by drawing a
line parallel to the original linear elastic line, but offset by a given strain
(usually an engineering strain level of 0.002 or 0.2%).
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Ficure 5.9 Hysterisis loop in a cyclically deformed polymer.

The arbitrary offset strain level of 0.002 is recommended by the ASTM
E-8 code for tensile testing for the characterization of stresses required for
bulk yielding. However, it is important to remember that the offset strain
level is simply an arbitrary number selected by a group of experts with a
considerable amount of combined experience in the area of tensile testing.

Above the offset yield strength, A4, the stress may continue to increase
with increasing applied strain. The slope of the stress—strain curve in the

a,
oM

€
i 0.002

Ficure 5.10 Schematic of stress-strain behavior in the elastic and plastic
regimes.
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plastic regime depends largely on the underlying dislocation interactions.
The resulting shape changes in the gauge sections of tensile specimens are
illustrated in Fig. 5.11. Stretching in the vertical direction is accompanied by
Poisson contraction in the elastic regime. However, the contraction in the
horizontal direction is countered by hardening during the initial stages of
plastic deformation in which the gauge section deforms in a relatively uni-
form manner, Fig. 5.12(a). The rate of rate of hardening is, therefore,
greater than the rate of horizontal contraction, and the total volume of
deformed material remains constant, Fig. 5.12(a). This inequality persists
until the ultimate tensile strength, M, is reached in Fig. 5.11. At this stress
level, the rate of hardening is equal to the rate contraction of the gauge area,
as shown in Fig. 5.12(b).

Beyond the point M, in the stress—strain plot, geometrical instabilities
(internal microvoids and microcracks within the gauge section) dominate
the plastic response, and the rate of horizontal contraction is greater than
the rate of hardening, Fig. 5.12(c). The deformation is thus concentrated
within regions with the highest crack/microvoid density, and a phenomenon
known as ‘“‘necking” [Figs 5.11 and 5.12(c)] occurs beyond the ultimate

Stress

Shrain

Ficure 5.11 Schematic illustration of gauge deformation in the elastic and
plastic regimes.
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Ficure 5.12 Hardening versus geometrical instability: (a) rate of hardening >
rate of geometrical instability formation; (b) rate of hardening = rate of geo-
metrical instability formation (onset of necking); (c) rate of hardening < rate of
geometrical instability formation (necking down to failure) (After Courtney,
1990. Reprinted with permission from McGraw-Hill.)

tensile stress. This involves the gradual reduction in the cross-sectional areca
in the regime of concentrated deformation. This reduction occurs because of
the rate of horizontal contraction is now greater than the rate of hardening,
Fig. 5.12(c). Necking may continue until the geometrical instabilities coa-
lesce. In any case, catastrophic failure occurs when a critical condition is
reached.

It is important to note here that the onset of necking may be delayed
by the application of hydrostatic stresses to the gauge section of a tensile
specimen. This was first shown by Bridgman (1948) who demonstrated that
the ductility of metals could be increased significantly with increasing hydro-
static stress. This is because the hydrostatic stresses tend to close up pores
and voids that lead ultimately to necking and fracture.

The geometrical instabilities are, therefore, artifacts of the test condi-
tions and specimen geometries that are used in tensile tests (Fig 5.13). Note
that the tensile specimen geometries (usually dog-bone shapes) are typically
designed to minimize stress concentrations in the region of transition from
the grip to the gauge sections. This is done to avoid fracture outside the
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Ficure 5.13 Types of tensile specimen geometries: (a) cylindrical cross--
sections, (b) dog-bone specimen (wedge grips); (c) dog-bone specimen (pin
loaded).

gauge section. Also, the engineering definitions of stress and strain may not
be applicable to situations in which the cross-sectional area changes signifi-
cantly during incremental plastic deformation to failure (Figs 5.11 and 5.12).

True stress and true strain levels must, therefore, be defined, especially
in the plastic regime. The true engineering stress, o, is given by the ratio of
applied load, P, to the actual cross-sectional area, 4. This gives
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Applied load P

ot = True stress = - = _
T Actual cross-sectional area A

(5.1)

In contrast, the engineering stress, og, is given simply by the ratio of applied
load, P, to the original cross-sectional area, A,. This gives

ot = Engineering stress = Applied load _P
BT J ~ Original cross-sectional area A,
(5.2)

Similarly, the engineering strain levels are different from the true strain
levels which are known to increase in an incremental manner. The true
strain, T, is obtained from the incremental theory of plasticity by separating
the total displacement into incremental portions. This gives

D de;

&1 = — (5.3)
i=1 ¢

where d¢; is the increment in specimen length that occurs during the ith
deformation stage, and n is the number of incremental deformation stages.
In the limit, Eq. (5.3) may be expressed in integral form, which gives

Y4
d
er = J%: m(é) (5.4)

)

where ¢ is the actual instantaneous (deformed) length, £, is the initial
(undeformed) length, and In denotes natural logarithms. The true strain
is, therefore, different from the engineering strain, eg, which is given simply
by the ratio of the change in gauge length, §¢ = ¢ — £, to the original
(undeformed) length, £,:
8 -4y

°E T4 Lo

(5.5)

Furthermore, since the deformed volume remains constant during
plastic deformation, the initial volume of the gauge section before plastic
deformation must be equal to the final volume of the gauge section during
plastic deformation. If the initial (undeformed) gauge cross-sectional area is
A, and the deformed cross-sectional area is A4 (during plastic deformation),
then the initial volume (A4y¢,) and the deformed volume (A¢) must be the
same. Hence, the area ratio, 4y/A4, must be equal to the length ratio, £/¢,.
The equations for engineering strain and true strain (Equations (5.4) and
(5.5)] may, therefore, be expressed as
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.y (5.6)

and

e = 1n<;0> - 1n(é€> = 1n(€ + ¢p) (5.7)

Similarly, the true stress, o, may be expressed in terms of the engineering
stress since
P P A A

GT:Z_A_O.Z_UEZZUE%O:UE(1+8E) (58)
It is important to note here that all of the above definitions of true
stress and true strain are valid for stress levels below or equal to the ultimate
tensile strength (the maximum engineering stress) in the plot of engineering
stress versus engineering strain (Fig. 5.11). However, due to the effects of
geometrical instabilities (Fig. 5.12), the expressions involving the gauge
length terms should not be used in the regime beyond the ultimate tensile
strength. This is because the cross-sectional areas decrease by necking in
areas with the greatest concentrations of geometrical instabilities. Area
ratios should, therefore, be used in the determination of true stress and
true strain levels for deformation beyond the ultimate tensile strength.

A characteristic plot of true stress versus true strain is compared with a
typical engineering stress—strain plot in Fig. 5.14. The “true” stress—strain
plot obtained from length ratios is shown in solid lines, while the true stress—
strain plot obtained from area ratios is represented by the dashed lines in
Fig. 5.14. The two plots are coincident until the ultimate tensile stress is
reached. Note also that the true stress—strain plots are shifted to the top and
to the left of the original points on the engineering stress—strain plots (Fig.
5.14). Also, there is no indication of an ultimate tensile strength on the true
stress—strain plot. This is because the ultimate tensile strength is purely a test
artifact that is due to the presence of geometrical instabilities within a test
specimen.

As discussed earlier, the smooth parabolic stress—strain curves
observed in the plasticity regime are generally associated with the bulk/
irreversible movement of dislocations in metals and intermetallics. The plas-
tic stress—strain curves may also be associated with chain sliding and chain
uncoiling/unkinking processes in noncrystalline polymers. In any case, the
slope in the rising portion of the plastic stress—strain plots is a measure of
resistance to plastic deformation (Fig. 5.11). The material is said to undergo
strain hardening in this regime (Fig. 5.11).
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Ficure 5.14 Comparison of true stress—strain behavior with engineering
stress—strain behavior.

It is important to note here, however, that some materials do not
undergo any strain hardening. In cases where constant stress levels are
required to continue the plastic straining, the materials are described as
perfectly plastic materials, Fig. 5.4(b). In contrast, strain softening occurs
when the stress required for deformation decreases with increasing strain,
Fig. 5.4(c). In most materials, however, the portion of the stress strain curve
between the onset of bulk yielding (bulk yield stress) and the onset of
necking (the ultimate tensile stress) tends to exhibit the type of rising
stress—strain behavior shown in Fig. 5.4(a).

5.4 EMPIRICAL STRESS-STRAIN RELATIONSHIPS

It is currently impossible to develop ab initio methods for the prediction of
the stress—strain behavior of materials from detailed descriptions of the
underlying atomic and defect structures. However, some useful empirical
relationships have been developed for the characterization of the true
stress—strain behavior. The most popular empirical mathematical relation-
ship is usually attributed to Hollomon (1945), although it was first proposed
by Biilfinger (1735) about 200 years earlier. The so-called Hollomon equa-
tion is given by

o= K(e)" (5.9)
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where o is the true stress, K is a proportionality constant that represents the
true stress at a true strain of 1.0, and » is the strain hardening/work hard-
ening exponent which is a measure of the resistance to plastic deformation.
In general, the strain hardening, #n, is a number between 0 and 1. Also, 7 is
sensitive to thermomechanical processing and heat treatment, and it is gen-
erally higher in materials tested in the annealed or hot worked conditions.
Strain hardening exponents for selected materials are presented in Table 5.2.
Such data may be obtained readily from log—log plots of true stress versus
true strain. Taking logarithms of Eq. (5.9) gives

logo =logk+ nloge (5.10)

Equation (5.10) is the equation of a straight line, with a slope of n, and
a y axis intercept of log K. Hence, from Eq. (5.10), the material constants K
and n may be obtained from the intercept and slope, respectively, of a plot
of log o versus log ¢. However, it is important to note that the straight-line
relationship suggested by Eq. (5.10) is not always followed by every mate-
rial. Error analysis must, therefore, be performed to determine the applic-
ability of the Hollomon equation. Also, in several materials, the hardening
coefficient, n, is often found empirically to be approximately equal to the
true strain at the ultimate tensile strain. This is referred to as the Considere
criterion, and it may be derived simply by noting that P = 04, and finding
the condition for which dP = 6dA4 + Ado = 0 (see Sect. 5.5). In any case, it
is important to remember that the applicability of the Considere criterion
must be verified by appropriate error analysis.

In general, however, the strain hardening exponent of a metallic mate-
rial increases with increasing strength and decreasing dislocation mobility.
The stress—strain behavior of a material may also be significantly affected by

TABLE 5.2 Strain Hardening Exponents
of Selected Metallic Materials

Strain hardening

Material coefficient, n
Stainless steel 0.45-0.55
Brass 0.35-0.4
Copper 0.3-0.35
Aluminum 0.15-0.25
Iron 0.05-0.15

After Hertzberg, 1996. Reprinted with
permission from John Wiley.
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the strain-rate, ¢ = de/d¢. The effects of strain rate can be modeled using the
following empirical power law equation:

o=K'(&" (56.11)

where o is the true stress, ¢ is the true strain-rate, K’ is a proportionality
constant corresponding to the stress for a strain-rate of 1 s™', and m is the
strain-rate sensitivity factor which can have values between 0 and 1. As for
the strain hardening exponent, the strain-rate sensitivity can be determined
from log-log plots of stress versus &. Materials with strain-rate sensitivity
factors between 0 and 0.1 are not strain-rate sensitive, while materials with
strain-rate sensitivities between 0.5 and 1 are very strain-rate sensitive.

Most materials have strain-rate sensitivity values close to 0.2.
However, very strain-rate sensitive materials such as “silly putty” may
have strain-rate sensitivity values close to 1. Such materials are resistant
to fracture due to necking. They may, therefore, deform extensively by
necking down to a point. This is because the rate of hardening at high
strain-rates tends to prevent the onset of necking. In the most extreme
cases, this leads to superplastic behavior which is associated with extremely
high plastic strain levels between 100 and 1000%. High values of the strain-
rate sensitivity index, m, are, therefore, one indication of the potential for
superplasticity.

Finally in this section, it is of interest to note that the combined effects
of strain-rate sensitivity and strain hardening (on the true stress) can be
assessed using the following equation which is obtained by combining Eqs
(5.9) and (5.11). This gives

o= K'(e)"(e)™ (5.12)

where o is the true stress, and K" is a proportionality constant which is
related to the material constants, K and K’. The variable, &, is the true
plastic strain, # is the strain hardening exponent, ¢ is the strain-rate, and
m is the strain-rate sensitivity. As before, the proportionality constants may
be determined form appropriate log—log plots. Note that either strain, g, or
strain-rate, ¢, may be varied independently or simultaneously in Eq. (5.12).
The applicability of Eq. (5.12) must also be established by comparing pre-
dicted true stresses with actual true stresses obtained for each material, i.e.,
error analysis must be performed to determine the applicability of Eq.
(5.12).

Tensile properties for some common engineering materials are pre-
sented in Table 5.3. Note that the data presented in this latter table are
very dependent on microstructure and composition. The effects of these
variables on yield strength will be discussed in detail in Chap. 7. For now,
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it is simply sufficient to note that tensile strength generally increases with
decreasing grain size.

5.5 CONSIDERE CRITERION

As stated in Sect. 5.4, the Considere criterion may be derived by considering
the conditions that must be satisfied at the ultimate tensile strength (Fig.
5.11). The ultimate tensile strength corresponds to the maximum value of
load, P, in the plot of load versus strain. Since P = 04, the maximum value
of P may be obtained by equating the first derivative, d P, to zero. This gives

dP =Ado+0dA=0 (5.13)
Rearranging Eq. (5.13) and separating variables gives

_dA_do
A o

Since there is no change in volume, V' = A¢, associated with plastic defor-
mation, we may also assume that d7 = 0. Hence,

(5.14)

dV =Ad¢{+¢dA=0 (5.15)
Rearranging Eq. (5.15) and separating variables, we obtain:
dA d¢
_ N
A= de (5.16)

If we now assume that the Hollomon equation can be used to describe the
stress—strain response, i.e., 0 = K¢&", then do, obtained by differentiating Eq.
(5.9), is given by

do = Kne"'de = n(Ke")e 'de = nos"de (5.17)
Also, substituting Eqs (5.14) and (5.16) into Eq. (5.17) yields:

-1
de = 1o¢_de (5.18a)

o
or

n—=¢ (5.18b)

Equation 5.18(b) is often referred to as the Considere criterion. It states
that the strain at the onset of necking is equal to the strain hardening expo-
nent. It is a very useful “‘rule-of-thumb.” It is important to remember that
the Considere criterion is only applicable when Hollomon’s equation can be
used to describe the stress—strain behavior of a material.
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TaBLE 5.3 Tensile Properties of Selected Engineering Materials

Reduction
in area
Yield Tensile Elongation (1.28 cm
strength strength  in 5-cm  diameter)

Material Treatment (MPa) (MPa) gauge (%) (%)
Steel alloys
1015 As-rolled 315 420 39 61
1050 As-rolled 415 725 20 40
1080 As-rolled 585 965 12 17
1340 Q+ T (205°C) 1590 1810 11 35
1340 Q + T(425°C) 1150 1260 14 51
1340 Q + T(650°C) 620 800 22 66
4340 Q+ T (205°C) 1675 1875 10 38
4340 Q + T(425°C) 1365 1470 10 44
4340 Q + T(650°C) 855 965 19 60
301 Annealed plate 275 725 55 —
304 Annealed plate 240 565 60 —
310 Annealed plate 310 655 50 —
316 Annealed plate 250 565 55 —
403 Annealed bar 275 515 35 —
410 Annealed bar 275 515 35 —
431 Annealed bar 655 860 20 —
AFC-77 Variable 560-1605 835-2140 10-26 32-74
PH 15-7Mo Variable 380-1450 895-1515 2-35 —
Titanium alloys
Ti-5Al-2.5Sn Annealed 805 860 16 40
Ti-8Al-I Mo-1V Duplex annealed 950 1000 15 28
Ti-6Al-4V Annealed 925 995 14 30
Ti-13V-11Cr-3Al Solution + age 1205 1275 8 —
Magnesium alloys
AZ31B Annealed 103-125 220 9-12 —
AZ80A Extruded bar 185-195 290-295 4-9 —
ZK60A Artificially aged  215-260 295-315 4-6 —
Aluminum alloys
2219 -T31, -T351 250 360 17 —
2024 -T3 345 485 18 —
2024 -T6, -T651 395 475 10 —
2014 -T6, -T651 415 485 13 —
6061 -T4, -T451 145 240 23 —
7049 -T73 475 530 11 —
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TaBLE 5.3 Continued

Reduction
in area
Yield Tensile Elongation (1.28 cm
strength strength  in 5-cm  diameter)
Material Treatment (MPa) (MPa) gauge (%) (%)
7075 -T6 505 570 11 —
7075 -T73 415 505 11 —
7178 -T6 540 605 11 —
Plastics
ACBS Medium impact — 46 6-14 —
Acetal Homopolymer — 69 25-75 —
Poly(tetra
fluorethylene) — — 14-48 100-450 —
Poly(vinylidene
fluoride) — — 35-48 100-300 —
Nylon 66 — — 59-83 60-300 —
Polycarbonate — — 55-69 130 —
Polyethylene Low density — 7-21 50-800 —
Polystyrene — — 41-54 1.5-2.4 —
Polysulfone — 69 — 50-1000 —

Sources: After Hertzberg, 1996. Reprinted with permission from John Wiley
2Datebook 1974, Metal Progress (mid-June 1974).

5.6 YIELDING UNDER MULTIAXIAL LOADING
5.6.1 Introduction

So far, we have considered only yielding under uniaxial loading conditions.
However, in several engineering problems of practical interest, yielding may
occur under multiaxial loading conditions that include both axial and shear
components (Fig. 3.2). The yielding conditions under multiaxial loading will
clearly depend on the magnitudes and directions of the local axial and shear
components of stress. To avoid unnecessary dependence on the choice of co-
ordinate systems, stress invariants of the stress tensor are often defined for
the local stress states. These stress invariants are independent of the choice
of co-ordinate system, and they can be used to develop yielding criteria that
are independent of co-ordinate system. Multiaxial yielding criteria will be
presented in this section for monolithic materials. The reader should review
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the section on the invariants of the stress tensor in Chap. 3 before proceed-
ing with the rest of this chapter.

5.6.2 Multiaxial Yield Criteria

Unlike uniaxial loading, yielding under multiaxial loading may be induced
by an almost infinite combination of stresses. It is, therefore, very difficult to
develop first principles models for the prediction of the combinations of
stresses that are required for the initiation of bulk plastic flow under multi-
axial loading conditions. Instead of first principles models, empirical flow
rules have been used for the prediction of the combined stresses required to
cause yielding under multiaxial loading conditions. It is important to
remember that these flow rules are empirical in nature. They are, therefore,
approximate solutions. However, extensive work has been done to verify
their general applicability to a wide range of engineering materials.

5.6.2.1 Tresca Yield Criterion

The simplest and most commonly used flow rule was first proposed by
Tresca (1869). It is, therefore, called the Tresca yield criterion. This criterion
states that yielding will occur under multiaxial loading when the shear stress
at a point is a maximum, i.e., when the shear stress is equal to half the
uniaxial yield stress, Fig. 5.15(a). The Tresca yield criterion is given by

0'1—0'3_&_
3 2

where o) and o3 are the maximum and minimum principal stress values, is
the uniaxial yield stress, and 7, is the shear yield stress. Note that the yield
locus for the Tresca yield criterion is a hexagon in two dimensions. It is a
useful exercise to try to construct this locus from Eq. (5.19). The trick is to
note that the signs of the principal stresses change from quadrant to
quadrant.

The Tresca yield criterion is often used in industry because of its
simplicity. However, it neglects the possible contributions from shear com-
ponents. Significant errors may, therefore, be associated with the Tresca
yield criterion, especially in cases where the terms in the deviatoric stress
tensor are significant.

7, (5.19)

5.6.2.2 Von Mises Yield Criterion

The Von Mises yield criterion is used in many cases where improved accu-
racy is required. It was proposed independently by Von Mises (1913),
although an equivalent expression was suggested in earlier work by Huber
(1904). Both Huber and Von Mises equate the yield stress to the distortional
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Ficure 5.15 Loci of yield criteria: (a) two-dimensional Tresca yield criterion;
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and Von Mises yield criteria.
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energy, U. This gives the following empirical condition for plastic flow
under multiaxial loading:

1
Oy = 75 {(Gxx - UYY)Z + (Uyy - GZZ)Z + (02 — Uxx)z
(5.20a)

NI=

+6(c%, + 7 + 74
or
1 1
% =% [(61 — 09)% + (03 — 03)* + (03 — 01)°] (5.20b)

For consistency, we will refer to the above yield criterion as the Von Mises
yield criterion. We note here that the Von Mises yield criterion includes all
the six independent stress components (Fig. 3.2). Also, in the case of two-
dimensional stress states, the Von Mises yield locus is an ellipse, Fig. 5.15(b).
The Von Mises ellipse can be constructed from the hexagonal yield locus of
the Tresca yield locus. However, unlike the Tresca yield criterion discussed
earlier, the Von Mises yield criterion accounts for the effects of the shear
stress components on Yyielding under multiaxial loading conditions.
Furthermore, the three-dimensional yield locus for the Von Mises yield
criterion is a cylinder, as shown in Fig. 5.15(c). Similarly, the three-dimen-
sional yield locus for the Tresca yield criterion is a hexagonal prism, Fig.
5.15(c). Finally, it is important to recognize that yielding in several metallic
materials is generally observed to occur at stress levels that are intermediate
between those predicted by the Tresca and Von Mises yield criteria (Fig.
5.16).

5.7 INTRODUCTION TO J, DEFORMATION THEORY

It is useful at this stage to identify some general relationships between stress
state and yield criteria under multiaxial loading. First, it is important to note
that yielding generally occurs when the combinations of J, [see Eqs (3.38)
and (3.39)] and the yield stress in pure shear, 7,, reach a critical value.
Hence, yielding occurs when

f(J2.7,) =0 (5.21)
where J, is the second invariant of the deviatoric stress tensor. In tensor
notation, J, is given by

1 r!
J2 = EO’,‘]O’,’]’ (522)
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Ficure 5.16 Comparison of experimental and empirical multiaxial yield cri-
teria. (After Courtney, 1990. Reprinted with permission from McGraw-Hill.)

where a,’-j is the deviatoric stress described in Chap. 3. As discussed, J, and t,
are related to both the Tresca and Von Mises yield criteria. The Tresca yield
criterion may thus be expressed as

01 — 03

T =—15 (5.23)

where ojand o3 are the maximum and minimum principal stresses, respec-
tively. The Von Mises yield criterion may also be expressed in terms of J,
and 7, which give

Jy = 2 (5.24)

However, it is important to remember that the value of 7, depends on
the yield criterion used. Appropriate values of 7, for the Tresca and Von
Mises yield criteria are given below:

%(Tresca yield criterion)
Ty = (5.25)
i(Von Mises yield criterion)

V3

where o, is the yield stress under uniaxial loading conditions.
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5.8 FLOW AND EVOLUTIONARY EQUATIONS
(CONSTITUTIVE EQUATIONS OF PLASTICITY)

Finally in this chapter, constitutive equations will be presented for the pre-
diction of plastic flow in monolithic materials. The most commonly used
equations were first proposed by Prandtl and Reuss. The so-called Prandtl-
Reuss equations are constitutive equations that describe the elastic—plastic
response of work hardening and non-work hardening material. For non-
work hardening materials, i.c., elastic—perfectly plastic materials, the incre-
mental plastic strains and stresses are given by

, 30’;1 _ dU;]
1-2
de; = (71:_”)do,-,- (5.27)
0jjo} = 21,2, = constant (5.28)

For work hardening materials, the hydrostatic and deviatoric strain
increments are given by

d8,',' = Mdo’ﬁ (529)
E
, 30;/d6 d(f;/
dejj = 25 H + 2G (5.30)

where & is the effective stress given by 30y05;/2, H is the slope of the uni-
axial/effective stress versus plastic strain, e, plot, £ is Young’s modulus, G
is the shear modulus, v is Poisson’s ratio and dg, is the equivalent plastic
strain defined by 3de§-ds{§/2. Upon unloading, the above equations can be
reduced to an elastic equation given by

dS,‘,’ = wdaﬁ (531)
E
/ dO’,"

The above equations are useful in incremental simulations of plastic
flow processes such as metal forming. Such simulations often involve incre-
mental changes in plastic strains. Further details on the application of incre-
mental plasticity theories may be found in texts on plasticity theory by
Nadai (1950), Hill (1950), and Prager (1951). It is interesting to note that
both Nadai and Prager were students of Prandtl in Gottingen. Other stu-
dents of Prandtl include Von Karman, Professor and Mrs. Fliigge, and Den
Hartog, who all went on to make important contributions in the field of
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mechanics. In recent years, the original ideas of Prandtl have also been
extended by Anand and Kalidindi (1994) to include microscopic details
on crystal plasticity models within a finite element framework.

5.9 SUMMARY

An introduction to plasticity is presented in this chapter. Following a brief
description of the physical basis of plasticity in ceramics, metals, interme-
tallics, and polymers, empirical plastic flow rules were introduced along with
the Considere criterion. A simple review of J, deformation theory was also
presented along with the flow and evolutionary (constitutive) equations of
plasticity (Prandtl-Reuss equations).
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6

Introduction to Dislocation
Mechanics

6.1 INTRODUCTION

Early in the 20th century, a number of scientists tried to predict the theore-
tical strength of a crystalline solid by estimating the shear stress required to
move one plane of atoms over another (Fig. 6.1). They found that the
predicted theoretical strengths were much greater than the measured
strengths of crystalline solids. The large discrepancy (an order of magnitude
or two) between the theoretical and measured shear strengths puzzled many
scientists until Orowan, Polanyi, and Taylor (1934) independently published
their separate classical papers on dislocations (line defects).

The measured strengths were found to be lower than the predicted
theoretical levels because plasticity occurred primarily by the movement
of line defects called dislocations. The stress levels required to induce dis-
location motion were lower than those required to shear complete atomic
planes over each other (Fig. 6.1). Hence, the movement of dislocations
occurred prior to the shear of atomic planes that was postulated by earlier
workers such as Frenkel (1926).

Since 1934, numerous papers have been published on the role of dis-
locations in crystalline plasticity. A number of books (Hirth and Lothe,
1982; Hull and Bacon, 1984; Weertman and Weertman, 1992) have also
been written on the subject. This chapter will, therefore, not attempt to
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Ficure 6.1 Shear of one row of atoms over another in a perfect crystal.

present a comprehensive overview of dislocations. Instead, the fundamental
ideas in dislocation mechanics required for a basic understanding of crystal-
line plasticity will be presented at an introductory level. The interested
reader is referred to papers and more advanced texts that are listed in the
bibliography at the end of the chapter.

6.2 THEORETICAL SHEAR STRENGTH OF A
CRYSTALLINE SOLID

Frenkel (1926) obtained a useful estimate of the theoretical shear strength of
a crystalline solid. He considered the shear stress required to cause shear of
one row of crystals over the other (Fig. 6.1). The shear strain, y, associated
with a small displacement, x, is given by

r=5 (6.1

Hence, for small strains, the shear stress, t, may be obtained from
X
= Gy = GX 6.2)
a
where G is the shear modulus. Similarly, we may also use an approximate

sinusoidal potential function to obtain an expression for the variation in the
applied shear stress, 7, as a function of displacement, x (Fig. 6.2). This gives

T = 0 SIN (27’Tx> (6.3)
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Ficure 6.2 Schematic illustration of shear stress variations. The dashed curve
corresponds to more precise shear stress — displacement function.

where t,,,, is the maximum shear stress in the approximately sinusoidal t
versus x curve shown in Fig. 6.2; x is the displacement, and b is the intera-
tomic spacing (Fig. 6.1). For small displacements, sin(2wx/b) ~ 2mx/b.
Hence, t is given by

= e (25) (6.4)

We may now equate Eqs (6.4) and (6.2) to obtain an expression for 7,y.
Noting that for cubic crystals 5 this gives

Tmax = % (6.5)

Equation 6.5 provides an approximate measure of the theoretical shear
strength of a crystalline solid. More rigorous analysis using more represen-
tative interatomic potentials (Fig. 6.2) gives estimates of the theoretical
shear strength to be ~ G/30. However, most estimates of the theoretical
shear strength are about one or two orders of magnitude greater than the
measured values obtained from actual crystalline solids.

This discrepancy between the measured and theoretical strengths led
Orowan, Polanyi, and Taylor (1934) to recognize the role of line defects
(dislocations) in crystal plasticity. However, these authors were not the first
to propose the idea of dislocations. Dislocation structures were first pro-
posed by Volterra (1907), whose purely mathematical work was unknown to
Orowan, Polanyi, and Taylor in 1934 when they published their original
papers on dislocations.
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Since the early ideas on dislocations, considerable experimental and
analytical work has been done to establish the role of dislocations in crystal
plasticity. Materials with low dislocation/defect content (whiskers and
fibers) have also been produced by special processing techniques. Such
materials have been shown to have strength levels that are closer to theore-
tical strength levels discussed earlier (Kelly, 1986). The concept of disloca-
tions has also been used to guide the development of stronger alloys since
much of what we perceive as strengthening is due largely to the restriction of
dislocation motion by defects in crystalline solids.

6.3 TYPES OF DISLOCATIONS

There are basically two types of dislocations. The first type of dislocation
that was proposed in 1934 is the edge dislocation. The other type of dis-
location is the screw dislocation, which was proposed later by Burgers
(1939). Both types of dislocations will be introduced in this section before
discussing the idea of mixed dislocations, i.e., dislocations with both edge
and screw components.

6.3.1 Edge Dislocations

The structure of an edge dislocation is illustrated schematically in Fig. 6.3.
This shows columns of atoms in a crystalline solid. Note the line of atoms at
which the half-filled column terminates. This line represents a discontinuity
in the otherwise perfect stacking of atoms. It is a line defect that is generally
referred to as an edge dislocation. The character of an edge dislocation may
also be described by drawing a so-called right-handed Burgers circuit
around the dislocation, as shown in Fig. 6.4(a). Note that S in Fig. 6.4
corresponds to the start of the Burgers circuit, while F corresponds to the
finish. The direction of the circuit in this case is also chosen to be right-
handed, although there is no general agreement on the sign convention in
the open literature. In any case, we may now proceed to draw the same
Burgers circuit in a perfect reference crystal, Fig. 6.4(b). Note that the finish
position, F, is different from the start position, .S, due to the absence of the
edge dislocation in the perfect reference crystal.

We may, therefore, define a vector to connect the finish position, F, to
the start position, S, in Fig. 6.4(b). This vector is called the Burgers vector. It
is often denoted by the letter, b, and it corresponds to one atomic spacing
for a single edge dislocation. It is important to remember that we have used
a right-handed finish-to-start definition in the above discussion. However,
this is not always used in the open literature. For consistency, however, we
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Ficure 6.3 Schematic of edge dislocation. (Taken from Hirthe and Lothe,
1982. Reprinted with permission from John Wiley.)

will retain the current sign convention, i.e., the finish-to-start (¥/S) right-
handed rule.

Finally in this section, it is important to note that we may define the
sense vector, s, of an edge dislocation in a direction along the dislocation
line (into the page). The sense of an edge dislocation, s, is therefore perpen-
dicular to the Burgers vector, b. Hence, we may describe an edge dislocation

Ficure 6.4 Finish to start (F/S) right-handed Burgers circuits: (a) around edge
dislocation; (b) in a perfect reference crystal. (Taken from Hirthe and Lothe,
1982. Reprinted with permission from John Wiley.)
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as a line defect with a sense vector, s, that is perpendicular to the Burgers
vector, b, i.e. b.s = 0.

6.3.2 Screw Dislocations

The structure of a screw dislocation may be visualized by considering the
shear displacement of the upper half of a crystal over the lower half, as
shown in Fig. 6.5(a). If the atoms in the upper half of the crystal are denoted
as open circles, while those in the lower half are denoted as filled circles [Fig.
6.5(a)], then the relative displacements between the open and filled circles
may be used to describe the structure of a screw dislocation. The arrange-
ment of the atoms around the dislocation line AB follows a spiral path that
is somewhat similar to the path that one might follow along a spiral stair-
case. This is illustrated clearly in Fig. 6.5(b) for a right-handed screw dis-
location.

As before, we may also define a Burgers vector for a screw dislocation
using a finish-to-start right-handed screw rule. This is shown schematically
in Fig. 6.6. Note that the Burgers vector is now parallel to the sense vector,
s, along the dislocation line. This is in contrast with the edge dislocation for
which the Burgers vector is perpendicular to the sense vector. In any case,
we may now formally describe a right-handed screw dislocation as one with
b.s = b. A left-handed screw dislocation is one with b.s = —b.

6.3.3 Mixed Dislocations

In reality, most dislocations have both edge and screw components. It is,
therefore, necessary to introduce the idea of a mixed dislocation (one with
both edge and screw components). A typical mixed dislocation structure is
shown in Fig. 6.7(a). Note that this dislocation structure is completely screw
in character at A, and completely edge in character at B. The segments of
the dislocation line between A and B have both edge and screw components.
They are, therefore, mixed dislocation segments.

Other examples of mixed dislocation structures are presented in Figs
6.7(b) and 6.7(c). The screw components of the mixed dislocation segments,
bs, may be obtained from the following expression:

b, = (b.s)s (6.6)

Similarly, the edge components, b, of the mixed dislocation segments may
be obtained from

be =s x (b x s) (6.7)
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Ficure 6.5 Structure of a screw dislocation: (a) displacement of upper half of
crystal over lower half; (b) spiral path along the dislocation line. (From Read,

1953. Reprinted with permission from McGraw-Hill.)
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Ficure 6.6 Right-handed Burgers circuits: (a) around screw dislocation; (b) in
perfect reference crystal. (From Hull and Bacon, 1984. Reprinted with permis-
sion from Pergamon Press.)

6.4 MOVEMENT OF DISLOCATIONS

As discussed earlier, crystal plasticity is caused largely by the movement of
dislocations. It is, therefore, important to develop a clear understanding of
how dislocations move through a crystal. However, dislocations also
encounter lattice friction as they move through a lattice. Estimates of the
lattice friction stress were first obtained by Peierls (1940) and Nabarro
(1947). Considering the motion of a dislocation in a lattice with lattice
parameters a and b (Fig. 6.1), they obtained a simple expression for the
lattice friction stress, . The so-called Peierls—Nabarro lattice friction stress
is given by

[ —2ra
T = Gexp_b(1 _U] (6.8a)
or
7 = Gexp _2;; W} (6.8b)

where a is the vertical spacing between slip planes, b is the slip distance or
Burgers vector, G is the shear modulus, w is the dislocation width (Fig 6.8),
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Ficure 6.7 Structure of a mixed dislocation: (a) quarter loop; (b) half loop; (c)
full loop.

and v is Poisson’s ratio. The lattice fraction stress is associated with the
energy or the stress that is needed to move the edge dislocation from posi-
tion A to position D (Fig. 6.9). Note that the dislocation line energy [Fig.
6.10(a)] and the applied shear stress [Fig. 6.10(b)] vary in a sinusoidal man-
ner. Also, the shear stress increases to a peak value corresponding to 1; [Fig.
6.10(b)], the friction stress. The latter may, therefore, be considered as the
lattice resistance that must be overcome to enable dislocation motion to
occur between A and D (Fig. 6.9). It is important to note that t; is generally
much less than the theoretical shear strength of a perfect lattice, which is
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Ficure 6.8 Schematic of (a) wide and (b) narrow dislocations. (From Cottrell,
1957. Reprinted with permission from Institute of Mechanical Engineering.)

given by Eq. (6.5) for a cubic lattice. Slip is, therefore, more likely to occur
by the exchange of bonds, than the complete shear of atomic planes over
each other, as suggested by Fig. 6.1.

The reader should examine Eqs (6.8a) and (6.8b) carefully since the
dependence of the lattice friction stress, 7y, on lattice parameters @ and b has
some important implications. It should be readily apparent that the friction
stress is minimized on planes with large vertical spacings, a, and small
horizontal spacings, b. Dislocation motion is, therefore, most likely to
occur on close-packed planes which generally have the largest values of a
and the smallest values of . Dislocation motion is also most likely to occur
along close-packed directions with small values of . Hence, close-packed
materials are more likely to be ductile, while less close-packed materials such
as ceramics are more likely to be brittle.

We are now prepared to tackle the problem of dislocation motion in
crystalline materials. First, we will consider the movement of edge disloca-
tions on close-packed planes in close-packed directions. Such movement is
generally described as conservative motion since the total number of atoms
on the slip plane is conserved, i.e., constant. However, we will also consider
the nonconservative motion of edge dislocations which is often described as
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Ficure 6.9 Schematic of atomic rearrangements associated with edge dislo-
cation motion: (a) atoms B and C equidistant from atom A along edge dis-
location line at start of deformation; (b) greater attraction of C towards A as
crystal is sheared; (c) subsequent motion of edge dislocation to the right; (d)
formation of step of Burgers vector when dislocation reaches the edge of the
crystal.
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Ficure 6.10 Variation of (a) dislocation line energy and (b) stress with the
position of the dislocation core.

dislocation climb.” Since dislocation climb involves the exchange of atoms
and vacancies outside the slip plane, the total number of atoms in the slip
plane is generally not conserved by dislocation climb mechanisms.
Following the discussion of edge dislocation motion by slip and climb, we
will then discuss the conventional movement of screw dislocations, and the
cross-slip of screw dislocations.

6.4.1 Movement of Edge Dislocations

The movement of edge dislocations is relatively easy to visualize. Let us start
by considering the movement of the positive edge dislocation shown sche-
matically in Fig. 6.9. Prior to the application of shear stress to the crystal,
the atom A at the center of the edge dislocation is equidistant from atoms B
and C, Fig. 6.9(a). It is, therefore, equally attracted to atoms B and C.
However, on the application of a small shear stress, t, to the top and bottom
faces of the crystal, atom A is displaced slightly to the right. The slight
asymmetry develops in a greater attraction between A and C, compared
to that between A and B. If the applied shear stress is increased, the
increased attraction between atoms A and C may be sufficient to cause
the displacement of atom C and surrounding atoms to the left by one atomic
spacing, b, Fig. 6.9(b). The half column of atoms (positive edge dislocation),
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therefore, appears to move to the right by a distance of one lattice spacing, b
[Fig. 6.9(b)].

If we continue to apply a sufficiently high shear stress to the crystal,
dislocation motion will continue [Fig. 6.9(c)] until the edge dislocation
reaches the edge of the crystal, Fig. 6.9(d). This result in slip steps with
step dimensions that are proportional to the total number of dislocations
that have moved across to the edge of the crystal. The slip sites may actually
be large enough to resolve under an optical or scanning electron microscope
when the number of dislocations that reach the boundary is relatively large.
However, in many cases, the slip steps may only be resolved by high mag-
nification scanning electron or transmission electron microscopy techniques.

In addition to the conservative motion of edge dislocations on close-
packed planes along close-packed directions, edge dislocation motion may
also occur by nonconservative dislocation climb mechanisms. These involve
the exchange of atoms and vacancies, shown schematically in Fig. 6.11. The
exchange of atoms and vacancies may be activated by stress and/or tem-
perature and is diffusion controlled. Hence, dislocation climb is most often
observed to occur at elevated temperature.

6.4.2 Movement of Screw Dislocations

The movement of screw dislocations is a little more difficult to visualize. Let
us start by considering the effects of an applied shear stress on the screw
dislocation shown in Fig. 6.12. The shear stress on the upper part of the
crystal displaces the atoms on one half of the crystal over the other, as
shown in Fig. 6.12. However, in this case, the Burgers vector is parallel to
the dislocation line. The direction of screw dislocation motion is perpendi-
cular to the direction of the applied shear stress (Fig. 6.12).

o 0O O O O

o O O O 0O

O O O O
—-—Vacancy
O o 0

o o O 0O 0

o ©C O ©

o O O ¢ O

Ficure 6.11 Climb by the exchange of atoms and vacancies.
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Ficure 6.12 Arrangement of atoms around a screw dislocation—open circles
above and closed circles below plane of diagram. (Taken from Hull and
Bacon, 1984. Reprinted with permission from Pergamon Press.)

Unlike the edge dislocation, the screw dislocation can glide on a large
number of slip planes since the Burgers vector, b, and the sense vector, s, are
parallel. However, in most cases, screw dislocation motion will tend to occur
on close-packed planes in close-packed directions. Screw dislocations also
generally tend to have greater mobility than edge dislocations.

Nevertheless, unlike edge dislocations, screw dislocations cannot avoid
obstacles by nonconservative dislocation climb processes. Instead, screw
dislocations may avoid obstacles by cross-slip on to intersecting slip planes,
as shown in Fig. 6.13. Note that the Burgers vector is unaffected by cross-
slip process. The screw dislocation may also cross-slip back on to a parallel
slip plane, or the original slip plane, after avoiding an obstacle.

6.4.3 Movement of Mixed Dislocations

In reality, most dislocations in crystalline materials are mixed dislocations,
with both edge and screw components. Such dislocations will, therefore,
exhibit aspects of screw and edge dislocation characteristics, depending on
the proportions of screw and edge components. Mixed dislocations are
generally curved, as shown in Fig. 6.7. Also, the curved dislocation loops
may have pure edge, pure screw, and mixed dislocation segments.

It is a useful exercise to identify the above segments of the mixed
dislocation loops shown in Fig. 6.7. It is also important to note that dis-
location loops may be circular or elliptical, depending on the applied stress
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Ficure 6.13 Schematic illustration of the cross-slip of a screw dislocation in a
face-centered cubic structure. Note that since [101] direction is common to
both the (111) and (111) closed packed planes, the screw dislocation can glide
on either of these planes: (a,b) before cross-slip; (c) during cross-slip; (d)
double cross-slip. (Taken from Hull and Bacon, 1984. Reprinted with permis-
sion from Pergamon Press.)

levels. Furthermore, dislocation loops tend to develop semielliptical shapes
in an attempt to minimize their strain energies. This will become apparent
later after the concept of the dislocation line/strain energy is introduced.

Finally, it is important to note that dislocations cannot terminate
inside a crystal. They must, therefore, ecither form loops or terminate at
other dislocations, grain boundaries, or free surfaces. This concept is illu-
strated in Fig. 6.14 using a schematic of the so-called Frank net. Note that
when three dislocations meet at a point (often called a dislocation node), the
algebraic sum of the Burgers vectors, by, b,, and b3 (Fig. 6.14) is zero.
Hence,

3
> bi+by+b;=0 (6.9)
i=1

When the sense vectors of the dislocations are as shown in Fig. 6.14, then
Eq. (6.9) may be expressed as

by = by + by (6.10)
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Ficure 6.14 The Frank net. (Taken from Cottrell, 1957. Reprinted with permis-
sion from Institute of Mechanical Engineering.)

The above expressions are, therefore, analogous to Kirchoff’s equations for
current flow in electrical circuits.

6.5 EXPERIMENTAL OBSERVATIONS OF
DISLOCATIONS

A large number of experimental techniques have been used to confirm the
existence of dislocations. They include:

Etch-pit techniques

Dislocation decoration techniques
X-ray techniques

Transmission electron microscopy
Field ion microscopy

Al e

Other specialized techniques have also been used to reveal the existence of
dislocations. However, these will not be discussed in this section. The inter-
ested reader is referred to the text by Hull and Bacon (1984) that is listed in
the bibliography at the end of the chapter. This section will, therefore,
present only a brief summary of experimental techniques that have been
used to confirm the existence of dislocations.
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The most widely used tool for the characterization of dislocation sub-
structures is the transmission electron microscope (TEM). It was first used
by Hirsch (1956) to study dislocation substructures. Images in the TEM are
produced by the diffraction of electron beams that are transmitted through
thin films (~ 1-2 pum) of the material that are prepared using special speci-
men preparation techniques. Images of dislocations are actually produced as
a result of the strain fields associated with the presence of dislocations. In
most cases, dislocations appear as dark lines such as those shown in Fig.
6.15(a). It is important also to note that the dark lines are actually horizon-
tal projections of dislocation structures that are inclined at an angle with
respect to the image plane, as shown in Fig. 6.15(b).

Dislocations have also been studied extensively using etch-pit techni-
ques. These rely on the high chemical reactivity of a dislocation due to its
strain energy. This gives rise to preferential surface etching in the presence of
certain chemical reagents. Etch-pit techniques have been used notably by
Gilman and Johnston (1957) to study dislocation motion LiF crystals (Fig.
6.16). Note that the etch pit with the flat bottom corresponds to the position
of the dislocation prior to motion to the right. The strain energy associated
with the presence of dislocations has also been used to promote precipita-
tion reactions around dislocations. However, such reactions are generally
limited to the observation of relatively low dislocation densities.

At higher dislocation densities, dislocations are more likely to interact
with other defects such as solutes/interstitials, other dislocations and pre-
cipitates (Fig. 6.17). These interactions are typically studied using the TEM.
Dislocation substructures have also been studied using special x-ray diffrac-
tion and field ion microscopy techniques. However, by far the most com-
monly used technique today for the study of dislocation substructures is the
TEM. The most modern TEMs may be used today to achieve remarkable
images that are close to atomic resolution. Recently developed two-gun
focused ion beam may also be used to extract TEM foils with minimal
damage to the material in the foils. These also offer some unique opportu-
nities to do combined microscopy and chemical analyses during TEM ana-
lyses.

6.6 STRESS FIELDS AROUND DISLOCATIONS

The stress fields around dislocations have been derived from basic elasti-
city theory. These fields are valid for the region outside the dislocation
core (which is a region close to the center of the dislocation where linear
elasticity theory breaks down). The radius of the dislocation core will be
denoted by R in subsequent discussion. Note that R is approximately
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Ficure 6.15 Images of dislocations: (a) thin-film transmission microscopy
micrograph showing parallel rows of dislocations; (b) line diagram demon-
strating that thin-foil image is a line projection of a three-dimensional config-
uration of dislocations. (Taken from Hull and Bacon, 1984. Reprinted with
permission from Pergamon Press.)

equal to 5b, where b is the Burgers vector. Linear elasticity theory may be
used to estimate the stress fields around individual edge and screw disloca-
tions in regions where r > 5b. Detailed derivations of the elastic stress
fields around dislocations are beyond the scope of this book. However,
the interested reader may refer to Hirth and Lothe (1982) for the deriva-
tions. Stress fields around individual stationary edge and screw disloca-
tions are presented in this section.
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Figure 6.16 Etch pits in a lithium fluoride crystal after etching three times to
reveal the motion of dislocations. The dislocation at A has not moved between
each etching treatment since the etch pit still extends to a point. However,
dislocation B has moved from the left to the right. The current position of
dislocation corresponds to the sharp pit labeled B. Subsequent etching pro-
duces flat-bottomed pits at prior positions of dislocation B. (From Gilman and
Johnston, 1957. Reprinted with permission from John Wiley.)

6.6.1 Stress Field Around a Screw Dislocation

The stress field around a single dislocation may be derived by considering
the shear displacements (in the z direction) around a right-handed screw
dislocation (Fig. 6.18). The displacement in the z direction, w, increases
with the angle, 6, as shown in Fig. 6.18. This gives:

w=b0_b tan”(x) (6.11)

T 27 2n X

where b is the Burgers vector. The elastic strains and stresses (away from the
dislocation core, r > 5b) around the dislocation may be calculated using
elasticity theory. Noting that x = rcos6 and y = rsin6, the elastic strains

around the screw dislocation are thus given by

b y b sing
- - Y __Z>" 6.12
Yax = Vxz 2 (X2 i yz) 27 r ( )
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Ficure 6.17 High-resolution transmission electron microscopy image of a
dislocation at the interface between a titanium carbide precipitate in a
niobium alloy (Courtesy of Dr. Seyed Allameh.)

Ficure 6.18 Stress field around a screw dislocation. (From Hull and Bacon,
1984—reprinted with permission from Pergamon Press.)
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and

b X b (cosH
szzyyzzzm=ﬂ< . ) (6.13)

All the other strain terms are zero in the case of a pure screw dislocation.

Hence, €., = ¢,, = &.. = y,,, = 0. The stress field around a screw dislocation

is thus given by

Gb y —Gbsin6
Tx = Ty = _E(Xz T y2) - 27 r (614)
and
Gb X Gbcos6
Ty =Ty = — (6.15)

(X2 +y?) 27 r

Using the appropriate definitions of stress and strain and cylindrical
co-ordinates, we may show that

T,r = T4, C0S0 +1,,8iN6 (6.16a)
and
Ty, = —Tx, SINO + 1, COS0 (6.16b)

Substituting appropriate expressions for 7. and ,. from Egs. (6.14), (6.15),
and (6.16) gives the only non-zero stress term as:

Gb

oo (6.17)

Toz =
As before, the expression for the shear strain yy. = y., = b/(2nr).

It should be readily apparent from the above equations that the stres-
ses and strains around a screw dislocation approach infinity as » — 0. Since
the stress levels in the dislocation core may not exceed the theoretical shear
strength of a solid (G/2r), we may estimate the size of the dislocation core
by introducing a cut-off at the point where t,. ~ G/2x. This gives an esti-
mate of the size of the dislocation core to be on the order of R ~ 5b. Finally,
it is important to note here that the elastic stress fields surrounding a screw
dislocation generally decay as a function of 1/r.

6.6.2 Stress and Strain Fields Around an Edge
Dislocation

The eclastic strain fields around single edge dislocations have also been
determined using linear elasticity theory. For regions outside the dislocation
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core, if we adopt the sign convention shown in Fig. 6.19, the strain compo-

nents are given by

b yBx*+y
27(1 —v) (x2 + y?)?

Exx = —

. __ b y(x* —y%)
W 20— ) (x2 1 y?)?

b x(*—y?)
21(1— 1) (2 + )2

Vxy =

% i

(6.18)

(6.19)

(6.20)
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Ficure 6.19 Stress field around an edge dislocation.

Reprinted with permission from McGraw-Hill.)
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Note that 7., = 7, = 7,, = 7., = 0 for an edge dislocation. The elastic
stress field around a stationary edge dislocation is thus given by

Gb yBx*+y?H

R e s e (6.21)
_ Gb  y(x*—y?)

W T 20(1 —v) (x2 + y?)? (6.22)
_ Gb x(x* = y?)

B T 201 =) (x2 1 y2)? (6.23)

0z = V0xx + 0yy) = Gbv y (6.24)

(1= x2+y?)
The above stress fields may also be expressed in cylindrical co-ordinates.
This gives

Gbsing
Orr = Ogg = —m (6.25)
Gbcoso
Ty = 7271(1 o (6.26)
Gbvsin6
0y = V(0. + 0gg) = —m (6.27)

Also, .. =15, = 0 for an edge dislocation. Once again, the elastic
stress fields exhibit a 1/r dependence. The self-stresses around an edge dis-
location also approach infinity as » — 0. The elastic stress fields are, there-
fore, valid only for regions outside the dislocation core, i.e., r > 5b.

6.7 STRAIN ENERGIES

The stress and strain fields surrounding individual dislocations give rise to
internal strain energies that depend on the dislocation type. The magnitudes
of the internal strain energies are particularly important since dislocations
generally try to reduce their overall line energies by minimizing their lengths.
The elastic strain energy per unit length of a screw dislocation may be
estimated by considering the cylindrical domain around the screw disloca-
tion shown in Fig. 6.20. If we now unroll the cylindrical element of radius, r,
and thickness, dr, it is easy to see that the shear strain, y, must be given by
[Fig. 6.20]:
b

Yoz = 27r (6.28)
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The increment in the strain energy per unit volume, dUj, may be
determined by integrating the relationship between shear stress and shear
strain in the elastic regime. This gives

14

Y

/ G2,

dUs = erzdyez = J Gyy, dyy, = % (6.29)
0 0

hence, dU", the increment in the strain energy in Fig. 6.20(a) is given by the
volume of the element multiplied by dU%. This gives

Gb* ) _ Gb*Idr

872r) = 4w (639

dU. = (2nrldr)(

Since the core energy, U,.., is generally considered to be a small
fraction of the overall energy, U, = Uye + Us, the core energy, Uy,
may be neglected. Hence, neglecting the core energy, we may integrate
Eq. (6.30) between r =ry and r = R to find an expression for the elastic
strain energy per unit length, U,. This is given by

U, Gb* (R
US_I_M|n<r) (6.31)

dr

B!

S |

e

Ficure 6.20 Strain energy around a screw dislocation.
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For single crystals, R is the crystal radius. However, it is much more
difficult to determine R for polycrystals that contain several dislocations.
Nevertheless, the coefficient of Gb* in Eq. (6.31) may be approximated by
unity for order-of-magnitude comparisons. This gives the strain energy per
unit length of screw dislocations as

U, ~ Gb? (6.32)

Similar calculations of the elastic strain energy per unit length of an
edge dislocation may also be carried out. However, the calculations are
more complex since edge dislocations have more complex stress and strain
fields associated with them. Using similar assumptions to those used in the
screw dislocation derivation above, we may show that the strain energy per
unit length of an edge dislocation, U,, is given by

N Gb?

1—v

U. (6.33)
where v is Poisson’s ratio, and the other terms have their usual mean-
ing. Since v is generally close to 0.3 in most elastic solids, comparison of Eqs
(6.32) and (6.33) shows that edge dislocations have higher strain energy per
unit length than screw dislocations. Mixed dislocations (consisting of edge
and screw components) will, therefore, try to minimize the lengths of their
edge components, while maximizing the lengths of their screw components
which have lower energies per unit length. By so doing, they can minimize
their overall line energies. For this reason, a circular dislocation loop would
tend to evolve into an elliptical shape that maximizes the length of the screw
segments. Similarly, an initially straight edge dislocation may become
curved in an effort to minimize the overall line energy per unit length.

6.8 FORCES ON DISLOCATIONS

When a crystal is subjected to external stresses, the resulting motion of
dislocations may be considered to arise from the effects of “virtual” internal
forces that act in directions that are perpendicular to segments on the dis-
location line. Let us start by considering the motion of the right-handed
screw dislocation in the crystal shown in Fig. 6.21. The external force
applied to the surface of the crystal is given by the product of stress, 7.,
multiplied by surface area, L dx, where dx is the distance the dislocation
moves and L is the dislocation length. This causes a Burgers vector displa-
cement, b, of the upper half of the crystal relative to the lower half. Hence,
the external work done, W, by the applied stress is given by

W =t,LAX (6.34)
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If the magnitude of the “virtual” force per unit length is £, then the internal
work done in moving the dislocation of length, L, through a distance Ax is
fLAXx. Hence, equating the internal and external work gives

fLAXx = t,,Ldxb (6.35a)
or
f=1,b (6.35b)

The force per unit length, f, is, therefore, the product of the applied shear
stress and the Burgers vector, b. It is also important to note that this force
acts along the slip plane in a direction that is perpendicular to the disloca-
tion line.

Similarly, we may consider the motion of a positive edge dislocation in
a crystal subjected to an external shear stress (Fig. 6.22). As before, if we
assume that the dislocation extends across the width of the crystal, then the
external force on the surface of the crystal is given by the product of the
surface shear stress, ., and the area, Ldy. The external work, W, is now the
product of this force and the Burgers vector, 5. This gives

Screw dislogation —
AX |

/Slip plane

N b —

Axes
Ficure 6.21 Effect of applied shear stress on the glide of a screw dislocation.

(Taken from Read-Hill and Abbaschian, 1994. Reprinted with permission from
PWS Publishing Co.)
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W = 1, Ldyb (6.36)

Furthermore, the internal “‘virtual” force is given by fL, and the internal
work done by this force is fLAy. Equating the internal and external work
now gives

fLAy =1, LAyb (6.37a)
or
f— Txyb (6.37b)

The fictitious force per unit length / on an edge dislocation is, there-
fore, the product of the applied shear stress, 7,,, and the Burgers vector, b.
As in the case of the screw dislocation, the force acts along the slip plane in a
direction that is perpendicular to the dislocation line.

Furthermore, when a normal stress is applied to a crystal, the resulting
virtual force on an edge dislocation may cause it to move up or down,
depending on the sign of the applied stress (tensile or compressive). This
is shown schematically in Fig. 6.23 for an applied tensile stress. Once again,

Extra plane . |
b

k Y
k Slip plane / \w‘\

I3 Edge Dislocation

X

Axes

Ficure 6.22 Effect of applied shear stress on the glide of an edge dislocation.
(Taken from Read-Hill and Abbaschian, 1994. Reprinted with permission from
PWS Publishing Co.)
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the external force is the product of the stress, 0., and the area, LAz. Hence,
the external work, W, required to move the dislocation down through a
distance of one Burgers vector is given by

W = —o,LAzb (6.38)

The corresponding internal work due to the virtual force arising from the
imposed external stress is now fLAz. Hence, equating the internal and
external work gives

fLAz = —0o, LAzb (6.39a)
or
f=—0onb (6.39b)

The climb force per unit length, f, is, therefore, a product of the applied
tensile stress, o, and the Burgers vector, . Note that a tensile stress will
cause the dislocation to move down, while an applied compressive stress will
cause the dislocation to move up. Furthermore, unlike applied shear stres-
ses, which induce dislocation motion along the slip plane, applied normal

Stip plane

¥

Ficure 6.23 Effect of applied tensile stress on the climb of an edge disloca-
tion. (Taken from Read-Hill and Abbaschian, 1994. Reprinted with permission
from PWS Publishing Co.)
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(tensile or compressive) stresses induce vertical dislocation motion out of the
slip plane. However, in both cases (applied normal or shear stresses), the
motion of the dislocation is always in a direction that is perpendicular to the
dislocation line (Figs 6.21-6.23).

Since most dislocations are mixed dislocations (that contain both
screw and edge components), it is of interest to examine how mixed disloca-
tions move. However, before doing this, it is necessary to recall our defini-
tions of the sense and Burgers vectors. The sense vector, s, defines the unit
vector that is tangential to the dislocation line. It has components, s,, s, and
s.. Similarly, the Burgers vector, b, has components by, b, and b.. If we
denote a general state of stress, F', by components Fy, F, and F., then the
virtual force per unit length of dislocation, f, is given by the vector cross
product of F and s:

i j ok
f=Fxs=|F F, F (6.40)
Sy S, S,

where the components of F(F,, F,, F.) are obtained from

Fx = bexx + byTxy +bz7:xz
F, = byt +b,0,, + b, 1), (6.41)
F,= byt + byfzy + b, 0,

The relationship between the force, Burgers vector, stress, and the sense
vector may now be expressed as

f=(b-o)xs (6.42)

This is the so-called Peach—Kohler equation. It is an extremely useful expres-
sion for calculating the force on a dislocation. Furthermore, since the ficti-
tious forces on the edge and screw dislocation segments are perpendicular,
then the virtual force on a mixed dislocation segment must also be perpen-
dicular to the dislocation segment.

6.9 FORCES BETWEEN DISLOCATIONS

The total energy of two dislocations, 1 and 2, U,,, may be obtained from
the sum of the self-energies of dislocations 1 and 2, U; and U,, and an
interaction term, U;,,, due to the interactions between the stress fields of
dislocations 1 and 2. This gives

Uot = Ur + Uz + Unt (6.43)
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The forces between the two dislocations are obtained from the derivatives of
Ui, With respect to the appropriate axes. The interaction energy is deter-
mined from the work done in displacing the faces of the cut that creates
dislocation 2 in the presence of the stress field due to dislocation 1. This may
be done by cutting in a direction parallel to the x or y axes. The resulting
two alternative expressions for Uy, are

Uit = J(bxtxy + bya)’y + szzy)dX (6.44a)
or
Uint = J(bxaxx + by":yx + b,7,)dy (6.44b)
y

The components of force, F, and F,, on dislocation 2 (Fig. 6.24) are
obtained from the first derivatives of the interaction energy, Uj,, with
respect to the appropriate axes. These are given by

U
Fo=-2t (6.45a)

_ annt
= (6.45D)

For two parallel edge dislocations (Fig. 6.24) with parallel Burgers vectors,
b=b.,b,=b.=0, the forces F, and F, on dislocation 2 (Fig. 6.24) are

given by

Fx =ty b (6.46)
and

F, = —ouxb (6.47)

Note that the expressions for the force between two edge dislocations are
identical to those obtained earlier for forces due to an applied shear stress on
a crystal. Furthermore, the expressions for o, and 7, are the self-stresses
acting at (x, y). Also, o, and t,, are given by the expressions for the self-
stresses in Eqs (6.21) and (6.23). Note that the signs of the forces are
reversed if the sign of either dislocation 1 or 2 is reversed. Also, equal
and opposite forces (from those at 2) act on dislocation 1.

The force F, is particularly important since it determines the horizon-
tal separation between the two dislocations in Fig. 6.24. Plots of F, versus
separation are presented in Fig. 6.25. The solid lines correspond to forces
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Ficure 6.24 Schematic of interaction forces between two edges. (From
Cottrell, 1953.)

between edge dislocations of the same kind, while the dashed line corre-
sponds to edge dislocations of opposite sign. Note that the force is zero at
x = y. Hence, stable dislocation configurations (tilt boundaries) tend to
occur when like edge dislocations lie above each other, Fig. 6.26(a). Also,
edge dislocations of opposite sign tend to glide past each other and form
edge dislocation dipoles, as shown in Fig. 6.26(b).

The component of force, F,, does not promote conservative disloca-
tion glide on the slip plane. Instead, it acts to promote nonconservative
dislocation climb out of the slip plane. This occurs by the exchange of
atoms and vacancies, as shown schematically in Fig. 6.11. Dislocation
climb is, therefore, both thermally and stress assisted since it involves
atom/vacancy exchanges. In any case, when the two edge dislocations are
of opposite sign, dislocation climb occurs in the opposite direction. This
results ultimately in the annihilation of the two edge dislocations.

Let us now consider the force between two screw dislocations, with
dislocation 1 lying on the z axis, and dislocation 2 on a parallel axis. In this
case, the components of force are given by

F,=1,b (6.48)
and

Fo=1,b (6.49)
where 7, and 7, are given by Eqs (6.16a) and (6.16b), respectively.

Substituting Eqs (6.14)—(6.16) into Eqs (6.48) and (6.49), it is easy to
show that the force components F, and F, are given by
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Farge between edge dislocanions Fy

Ficure 6.25 Forces between parallel edge dislocations. The solid curve cor-
responds to dislocations of the same sign. Note that the attractive force that
occurs for x <y causes sub-boundaries to form. (From Cottrell, 1957.
Reprinted with permission from Institute of Mechanical Engineering.)

Gb?
Fr=s— (6.50)
and
F,=0 (6.51)

The forces between two parallel screw dislocations are, therefore, much
simpler than those between two edge dislocations due to the radial symme-
try of the dislocation field around a screw dislocation. As before, the signs of

L . i

4
e
s -

|
: //’ ///
_L\g‘i__ A s
T
{a) (b)

Ficure 6.26 Stable positions for two dislocations: (a) same sign; (b) opposite
sign. (Taken from Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.)
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the forces depend on whether the dislocations are parallel or antiparallel.
Finally in this section, it is important to note that there are no forces
between parallel edge and screw dislocations.

6.10 FORCES BETWEEN DISLOCATIONS AND FREE
SURFACES

Since a compliant free surface offers no stress in opposition to the displace-
ments of an approaching dislocation, the strain energy of a crystal will
decrease as a dislocation approaches a free surface. This tends to pull the
dislocation towards the free surface to form a step of one interatomic dis-
tance. The reduction in the strain energy of the crystal may also be expressed
in terms of a “force” that pulls the dislocation out of a crystal. This has been
shown by Koehler (1941) and Head (1953) to correspond to a force that
would be exerted by an image dislocation of opposite sign on the opposite
side of the surface (Fig. 6.27).

If the surface contains a thin layer, e.g., a surface film, that prevents
the dislocation from being pulled out, some limited surface hardening may
occur due to pile up of dislocations against the surface layer. Image forces
are often used to model the effects of grain boundaries on dislocations in a
crystal. However, it is important to recognize that the boundary conditions
for free surfaces are much simpler, and significantly different from those for
grain boundaries.

For a screw dislocation approaching a surface, the components of
stress are (Fig. 6.28a):

_Gb y _Gb y
27 [(x =)’ +y?] 27 [(x+d) +y?]

(6.52)

Txx =

and
LG x-d Gy
zy — 27 [(X— d)2+ y2] 27 [(X+d)2+ y2]

The force, F,, on the screw dislocation at x = d, y = 0 is thus given by

Gb?
4drd

Note that this force diminishes with increasing distance from the free sur-
face. Similarly, for an edge dislocation near a surface (Fig. 6.28b), we may
superpose the stress fields of the dislocation at x = d on those of the image
dislocation. The oy, terms cancel out, but the 7., terms do not. The resulting
stress field is given by

(6.53)

Fy— )b — (6.54)
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Ficure 6.27 Image dislocation tending to pull a dislocation near a surface out
of a crystal by glide. (Taken from Argon and McClintock, 1966: Addison
Wesley.)

Dix — ) (x = d? = y*|  Dix+d)|(x+ ) - y?
[(x—d?+y?]?  [x+d?+y?]

Tyy =
(6.55)
2Dd[(x —d)(x + d)® — Bx(x + d) + y2 + y4]
[+ a)? + y?)°]

where D = Gb/[2n(1 — v)]. The first term in the above equation corresponds
to the self-field of dislocation 1 in the absence of the second dislocation. The
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Ficure 6.28 Image dislocations at a distance d from the surface: (a) screw
dislocation approaching a surface; (b) edge dislocation approaching a sur-
face. (Taken from Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.
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second term is the interaction term, and the third term is required to keep
7., = 0 at the free surface. The force F, on the dislocation at x = d, y = 0 is
now given by

—Gb?

47(1 — v)d (6.56)

Fx=brt,, =
Once again, the image force decreases with increasing distance from the free
surface. However, edge dislocations that are sufficiently close to the surface
will be attracted to the surface, and some may be removed from the surface
by such image forces.

6.11 SUMMARY

This chapter has presented an introduction to dislocation mechanics.
Following a brief derivation of the theoretical shear strength of a solid,
the discrepancy between the measured and theoretical strengths was attrib-
uted to the presence of dislocations. The different types of dislocations
(screw, edge, and mixed) were then introduced before describing the atomic
rearrangements associated with dislocation motion and lattice friction. The
stress fields around individual dislocations were also presented, along with
expressions for dislocation line energies, forces per unit length on disloca-
tions, and forces between dislocations. The chapter concluded with a brief
description of image forces between dislocations and free surfaces. The dis-
location mechanics topics covered in this chapter should provide the foun-
dation for the development of a basic understanding of the plastic
deformation of metals in Chap. 7.
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7

Dislocations and Plastic Deformation

7.1 INTRODUCTION

Let us begin this chapter by performing the following thought experiment.
Imagine picking up a piece of copper tubing that can be bent easily, at least
the first time you try to bend it. Now think about what really happens when
you bend the piece of copper a few times. You will probably remember from
past experience that it becomes progressively harder to bend the piece of
copper tubing after each bend. However, you have probably never asked
yourself why.

Upon some reflection, you will probably come to the conclusion that
the response of the copper must be associated with internal changes that
occur in the metal during bending. In fact, the strength of the copper, and
the progressive hardening of the copper, are associated with the movement
of dislocations, and their interactions with defects in the crystalline copper
lattice. This is hard to imagine. However, it is the basis for crystalline
plasticity in most metallic materials and their alloys.

This chapter presents an overview of how dislocation motion and
dislocation interactions contribute to plastic deformation in crystalline
materials. We begin with a qualitative description of how individual dis-
locations move, interact, and multiply. The contributions of individual
dislocations to bulk plastic strain are then considered within a simple con-
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tinuum framework. This is followed by an introduction to the crystallogra-
phy of slip in hexagonal and cubic materials. The role that dislocations play
in the deformation of single crystals and polycrystals is then explained.

7.2 DISLOCATION MOTION IN CRYSTALS

As discussed in Chap. 6, dislocations tend to glide on close-packed planes
along close-packed directions. This is due to the relatively low lattice friction
stresses in these directions, Eq. (6.8a) or (6.8b). Furthermore, the motion of
dislocations along a glide plane is commonly referred to as conservative
motion. This is because the total number of atoms across the glide plane
remains constant (conserved) in spite of the atomic interactions associated
with dislocation glide (Fig. 6.9). In contrast to conservative dislocation
motion by glide, nonconservative dislocation motion may also occur by
climb mechanisms (Fig. 6.11). These often involve the exchange of atoms
with vacancies. Since the atom/vacancy exchanges may be assisted by both
stress and temperature, dislocation climb is more likely to occur during
loading at elevated temperature.

So far, our discussion of dislocation motion has focused mostly on
straight dislocations. Furthermore, it is presumed that the dislocations lie in
the positions of lowest energy within the lattice, i.e., energy valleys/troughs
(Fig. 6.10). However, in many cases, kinked dislocations are observed (Fig.
7.1). These have inclined straight or curved line segments that all lie on the
same glide plane (Fig. 7.1). The shape of the kinked dislocation segment is
dependent on the magnitude of the energy difference between the energy
peaks and energy valleys in the crystalline lattice. In cases where the energy
difference is large, dislocations can minimize their overall line energies by
minimizing their line lengths in the higher energy peak regime. This gives
rise to sharp kinks (A in Fig. 7.1) that enable dislocations to minimize their
line lengths in the high-energy regions. It also maximizes the dislocation line
lengths in the low-energy valley regions.

In contrast, when the energy difference (between the peaks and the
valleys) is small, a diffuse kink is formed (C in Fig. 7.1). The diffuse kink has
significant fractions of its length in the low-energy valleys and high-energy
peak regions. In this way, a diffuse kink can also minimize the overall line
energy of the dislocation.

The motion of kinked dislocations is somewhat complex, and will only
be discussed briefly in this section. In general, the higher energy regions
along the kink tend to move faster than those along the low-energy valleys
which have to overcome a larger energy barrier. Once the barriers are over-
come, kink nucleation and propagation mechanisms may be likened to the
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Ficure 7.1 Schematic of kinked dislocation configurations between peaks
and valleys in a crystalline lattice. Note that sharp kink is formed when energy
difference is large, diffuse kink is formed when energy difference is small (B),
and most kinks are between the two extremes. (From Hull and Bacon, 1984.
Reprinted with permission from Pergamon Press.)
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snapping motion of a whip. As in the case of a snapped whip, this may give
rise to faster kink propagation than that of a straight dislocation. The over-
all mobility of a kink will also depend on the energy difference between the
peaks and the valleys, and the orientation of the dislocation with respect to
the lattice.

Before concluding this section, it is important to note here that there is
a difference between a sharp kink [A in Fig. 7.1 and Figs 7.2(a) and 7.2(b)]
and a jog, Figs 7.2(a) and 7.2(b). A kink has all its segments on the same
plane as the glide plane (Fig. 7.1). In contrast, a jog is produced by disloca-
tion motion out of the glide plane as the rest of the dislocation line. Kinks
and jogs may exist in edge and screw dislocations, Figs 7.2(a)-7.2(d).
However, kinked dislocations tend to move in a direction that is perpendi-
cular to the dislocation line, from one valley position to the other.
Furthermore, kinks may also move faster than straight dislocation seg-
ments, while jogged dislocation segments are generally not faster than the
rest of the dislocation line. In fact, they may be less mobile than the rest of
the dislocation line, depending on the directions of their Burgers vectors
relative to those of the unjogged segments.

\ \\\\\\?
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Ficure 7.2 (a), (b) Kinks in edge and screw dislocations; (c), (d) jogs in edge
and screw dislocations. The slip planes are shaded. (From Hull and Bacon,
1984. Reprinted with permission from Pergamon Press.)
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7.3 DISLOCATION VELOCITY

When the shear stress that is applied to a crystal exceeds the lattice friction
stress, dislocations move at a velocity that is dependent on the magnitude of
the applied shear stress. This has been demonstrated for LiF crystals by
Johnston and Gilman (1959). By measuring the displacement of etch pits
in crystals with low dislocation densities, they were able to show that the
dislocation velocity is proportional to the applied shear stress. Their results
are presented in Fig. 7.3 for both screw and edge dislocations.

Note that, at the same stress level, edge dislocations move at faster
speeds (up to 50 times faster) than screw dislocations. Also, the velocities of
dislocations extend over 12 orders of magnitude on the log—log plot shown
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Ficure 7.3 Dependence of dislocation velocity on applied shear stress. (From
Johnston and Gilman, 1959. Reprinted with permission from J. Appl. Phys.)
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in Fig. 7.3. However, for uniform dislocation motion, the limiting velocity
for both screw and edge dislocations corresponds to the velocity of trans-
verse shear waves. Also, damping forces increasingly oppose the motion of
dislocations at velocities above 10° cm/s.

Dislocation velocities in a wide range of crystals have been shown to
be strongly dependent on the magnitude of the applied shear stress (Fig.
7.4), although the detailed shapes of the dislocation velocity versus stress
curves may vary significantly, as shown in Fig. 7.4. For the straight sections
of the dislocation—velocity curves, it is possible to fit the measured velocity
data to power-law equations of the form:

v=A®D" 7.1

where v is the dislocation velocity, t is the applied shear stress, 4 is a
material constant, and m is a constant that increases with decreasing tem-
perature. An increase in dislocation velocity with decreasing temperature
has also been demonstrated by Stein and Low (1960) in experiments on Fe—
3.25Si crystals (Fig. 7.5). This increase is associated with the reduced damp-
ing forces due to the reduced scattering (phonons) of less frequent lattice
vibrations at lower temperatures.
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Ficure 7.4 Dependence of dislocation velocity on applied shear stress. The
data are for 20°C except for Ge (450°C) and Si (850°C). (From Haasen, 1988.
Reprinted with permission from Cambridge University Press.)
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Ficure 7.5 Dependence of dislocation velocity on temperature and applied
shear stress in Fe—-3.25Si Crystals. (From Stein and Low, 1960. Reprinted with
permission from J. Appl. Phys.)

7.4 DISLOCATION INTERACTIONS

The possible interactions between screw and edge dislocations will be dis-
cussed in this section. Consider the edge dislocations (Burgers vectors per-
pendicular to the dislocation lines) AB and XY with perpendicular Burgers
vectors, by and b,, shown in Fig 7.6. The moving dislocation XY [Fig. 7.6(a)]
glides on a slip plane that is a stationary dislocation AB. During the inter-
section, a jog PP’ corresponding to one lattice spacing is produced as dis-
location XY cuts dislocation AB, Fig. 7.6(b). Since the jog has a Burgers
vector that is perpendicular to PP, it is an edge jog. Also, since the Burgers
vector of PP’ is the same as that of the original dislocation, AB, the jog will
continue to glide along with the rest of the dislocation, if there is a large
enough component of stress to drive it along the slip plane, which is per-
pendicular to that of line segments AP or P’ B, Fig. 7.6(b).

Let us now consider the interactions between two edge dislocations
(XY and AB) with parallel Burgers vectors, Fig. 7.7(a). In this case, disloca-
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Ficure 7.6 Interactions between two edge dislocations with perpendicular
Burgers vectors: (a) before intersection; (b) after intersection. (From Hull
and Bacon, 1984. Reprinted with permission from Pergamon Press.)

tion XY intersects dislocation AB, and produces two screw jogs PP’ and
QQ'. The jogs PP’ and QQ’ are screw in nature because they are parallel to
the Burgers vectors b; and b,, respectively, Figs 7.7(a) and 7.7(b). Since the
jogged screw dislocation segments have greater mobility than the edge dis-
locations to which they belong, they will not impede the overall dislocation
motion. Hence, interactions between edge dislocations do not significantly
affect dislocation mobility.

This is not true for interactions involving screw dislocations. For
example, in the case of a right-handed screw dislocation that intersects a
moving edge dislocation [Fig. 7.8(a)], the dislocation segment PP’ glides

Y

Ficure 7.7 Interactions between two edge dislocations with parallel Burgers
vectors: (a) before intersection; (b) after intersection. (From Hull and Bacon,
1984. Reprinted with permission from Pergamon Press.)
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down one level (from one atomic plane to the other) following a spiral path
(staircase) along the dislocation line XY, as it cuts the screw dislocation XY,
Fig. 7.8(b). This produces a jog PP’ in AB, and a jog QQ’ in XY. Hence, the
segments AP’ and PB lie on different planes, Fig. 7.8(b). Furthermore, since
the Burgers vectors of the dislocation line segments PP’ and QQ’ are per-
pendicular to their line segments, the jogs are edge in character. Therefore,
the only way the jog can move conservatively is along the axis of the screw
dislocation, as shown in Fig. 7.9. This does not impede the motion of the
screw dislocation, provided the jog glides on the plane (PP'RR’).

However, since edge dislocation components can only move conserva-
tively by glide on planes containing their Burgers vectors and line segments,
the movement of the edge dislocation to A'QQ’B (Fig. 7.9) would require
nonconservative climb mechanisms that involve stress- and thermally
assisted processes. This will leave behind a trail of vacancies or interstitials,
depending on the direction of motion, and the sign of the dislocation. This is
illustrated in Fig. 7.10 for a jogged screw dislocation that produces a trail of
vacancies. Note that the dislocation segments between the jogs are bowed
due to the effects of line tension. Bowing of dislocations due to line tension
effects will be discussed in the next section. In closing, however, it is impor-
tant to note here that the interactions between two screw dislocations (Fig.
7.11) can give rise to similar phenomena to those discussed above. It is a
useful exercise to try to work out the effects of such interactions.

Ficure 7.8 Interactions between right-handed screw dislocation and edge
dislocations: (a) before intersection; (b) after intersection. (From Hull and
Bacon, 1984. Reprinted with permission from Pergamon Press.)
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Ficure 7.9 Movement of edge jog on a screw dislocation; conservative
motion of jog only possible on plane PP'RR. Motion of screw dislocation to
A’QQ’'B would require climb of the jog along plane PQQ'P. (From Hull and
Bacon, 1984. Reprinted with permission from Pergamon Press.)
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Ficure 7.10 Schematic illustration of trail of vacancies produced by glide of
screw dislocation. (From Hull and Bacon, 1984—reprinted with permission
from Pergamon Press.)
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Ficure 7.11 Interactions between two screw dislocations: (a) before intersec-
tion; (b) after intersection. (From Hull and Bacon, 1984. Reprinted with per-
mission from Pergamon Press.)
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7.5 DISLOCATION BOWING DUE TO LINE TENSION

It should be clear from the above discussion that interactions between dis-
locations can give rise to pinned dislocation segments, e.g., dislocation line
segments that are pinned by jogs, solutes, interstitials, or precipitates. When
a crystal is subjected to a shear stress, the so-called line tension that develops
in a pinned dislocation segment can give rise to a form of dislocation bowing
that is somewhat analogous to the bowing of a string subjected to line
tension, 7. In the case of a dislocation, the line tension has a magnitude
~ Gb*. The bowing of dislocation is illustrated schematically in Fig 7.12.

Let us now consider the free body diagram of the bowed dislocation
configuration in Fig. 7.12(b). For force equilibrium in the y direction, we
may write:

2Tsin<?) =1tbL (7.2)

where 7 is the applied shear stress, b is the Burgers vector, L is the disloca-
tion line length, and the other parameters are shown in Fig. 7.12. For small
curvatures, sin (§6/2) ~ §6/2, and so Eq. (7.2) reduces to

T80 =~ tbL (71.3)

Recalling that T ~ Gb* and that 80 = L/R from Fig. 7.12, we may simplify
Eq. (7.3) to give

G2 L — b1 (7.4a)
R
or
Gb
(@)
A B
o4 L b

Ficure 7.12 Schematics of (a) pinned dislocation segment and (b) bowed
dislocation configuration due to applied shear stress, . Note that T is the
line tension ~ Gb?.
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The critical shear stress described by Eq. (7.4b) is sufficient to cause the
pinned dislocation to continue to bow in a stable manner until it reaches a
semicircular configuration with r = L/2. This bowing forms the basis of one
of the most potent mechanisms for dislocation multiplication, which is dis-
cussed in the next section.

7.6 DISLOCATION MULTIPLICATION

The discerning reader is probably wondering how plastic deformation can
actually continue in spite of the numerous interactions between dislocations
that are likely to give rise to a reduction in the density of mobile disloca-
tions. This question will be addressed in this section. However, before
answering the question, let us start by considering the simplest case of a
well-annealed crystal. Such crystals can have dislocation densities as low as
10%-10" m/m>. When annealed crystals are deformed, their dislocation
densities are known to increase to ~ 10'°~10'® m/m>. How can this happen
when the interactions between dislocations are reducing the density of
mobile dislocations?

This question was first answered by Frank and Read in a discussion
that was held in a pub in Pittsburgh. Their conversation led to the mechan-
ism of dislocation breeding that is illustrated schematically in Fig. 7.13. The
schematics show one possible mechanism by which dislocations can multiply
when a shear stress is applied to a dislocation that is pinned at both ends.
Under an applied shear stress, the pinned dislocation [Fig. 7.13(a)] bows
into a circular arc with radius of curvature, r = L/2, shown in Fig. 7.13(b).
The bowing of the curved dislocation is caused by the line tension, 7, as
discussed in Sect. 7.5 (Fig. 7.12). This causes the dislocation to bow in a
stable manner until it reaches the circular configuration illustrated schema-
tically in Fig. 7.13(b). From Eq. (7.4b), the critical shear stress required for
this to occur is ~ Gb/L.

Beyond the circular configuration of Fig. 7.13(b), the dislocation bows
around the pinned ends, as shown in Fig. 7.13(c). This continues until the
points labeled X and X’ come into contact, Fig. 7.13(d). Since these disloca-
tion segments are opposite in sign, they annihilate each other. A new loop is,
therefore, produced as the cusped dislocation [Fig. 7.13(e)] snaps back to the
original straight configuration, Fig. 7.13(a).

Note that the shaded areas in Fig. 7.13 correspond to the regions of
the crystal that have been sheared by the above process. They have, there-
fore, been deformed plastically. Furthermore, subsequent bowing of the
pinned dislocation AB may continue, and the newly formed dislocation
loop will continue to sweep through the crystal, thereby causing further
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Ficure 7.13 Breeding of dislocation at a Frank-Read source: (a) initial pinned
dislocation segment; (b) dislocation bows to circular configuration due to
applied shear stress; (c) bowing around pinned segments beyond loop
instability condition; (d) annihilation of opposite dislocation segments X
and X/, (e) loop expands out and cusped dislocation AXB returns to initial
configuration to repeat cycle. (Adapted from Read, 1953. Reprinted with per-
mission from McGraw-Hill.)

plastic deformation. New loops are also formed, as the dislocation AB
repeats the above process under the application of a shear stress. This
leads ultimately to a large increase in dislocation density (Read, 1953).
However, since the dislocation loops produced by the Frank—Read sources
interact with each other, or other lattice defects, back stresses are soon set
up. These back stresses eventually shut down the Frank—Read sources.
Experimental evidence of the operation of Frank—Read sources has been
presented by Dash (1957) for slip in silicon crystals (Fig. 7.14).

A second mechanism that can be used to account for the increase in
dislocation density is illustrated in Fig. 7.15. This involves the initial activa-
tion of a Frank—Read source on a given slip plane. Screw dislocation seg-
ments then cross-slip on to a different slip plane where a new Frank—Read
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Ficure 7.14 Photograph of Frank-Read source in a silicon crystal. (From Dash
1957. Reprinted with permission from John Wiley.)
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Ficure 7.15 Dislocation multiplication by multiple cross-slip mechanism.
(From Low and Guard, 1959. Reprinted with permission from Acta Metall.)
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source is initiated. The above process may continue by subsequent cross-slip
and Frank—Read source creation, giving rise to a large increase in the dis-
location density on different slip planes. The high dislocation density
(1015—1018 m/m3) that generally results from the plastic deformation of
annealed crystals (with initial dislocation densities of ~ 10°~10' m/m?)
may, therefore, be explained by the breeding of dislocations at single
Frank—Read sources (Fig. 7.12), or multiple Frank—Read sources produced
by cross-slip processes (Fig. 7.15).

7.7 CONTRIBUTIONS FROM DISLOCATION DENSITY
TO MACROSCOPIC STRAIN

The macroscopic strain that is developed due to dislocation motion occurs
as a result of the combined effects of several dislocations that glide on
multiple slip planes. For simplicity, let us consider the glide of a single
dislocation, as illustrated schematically in Fig. 7.16. The crystal of height,
h, is displaced by a horizontal distance, b, the Burgers vector, due to the
glide of a single dislocation across distance, L, on the glide plane. Hence,
partial slip across a distance, x, along the glide plane results in a displace-
ment that is a fraction, x/L, of the Burgers vector, b. Therefore, the overall
displacement due to N dislocations shearing different glide planes is given

p Edge dislocation

a .....____.%_.“\.‘.---—__b
© Shp plane
(Al
- Displocement = & - Displacement =& or
K - 7
== _,.1'1’;..:
Edge
/ dislocation
__________________ LU S
e x
(B} {C}

Ficure 7.16 Macroscopic strain from dislocation motion: (A) before slip; (B)
slip steps of one Burgers vector formed after slip; (C) displacement due to
glide through distance Ax. (From Read-Hill and Abbaschian, 1994. Reprinted
with permission from McGraw-Hill.)
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For small displacements, we may assume that the shear strain, y, is
~ A/h. Hence, from Eq. (7.4), we may write:

A Xi b
_2_ Ziy 2 7.6
"ThT 4 (7)% 7.6
If we also note that the dislocation density, p, is given by Nz/(hzL), we may
rewrite Eq. (7.6) as

h
pb X;
y= ; N .7

Assuming that the average displacement of each dislocation is X, Eq.
(7.7) may now be written as

y = pbx (7.8)

The shear strain rate, y, may also be obtained from the time derivative
of Eq. (7.8). This gives

y = i obv (7.9
where 7 is the average velocity of dislocations, which is given by dx/dz. It is
important to note here that p in the above equations may correspond either
to the overall dislocation density, p,, or to the density of mobile disloca-
tions, py,, provided that X and v apply to the appropriate dislocation con-
figurations (mobile or total). Hence, 0, X1 = PiotXtot OF PmVm = PiotVior 1N
Eqgs (7.8) and (7.9).

Finally in this section, it is important to note that Eqs (7.8) and (7.9)
have been obtained for straight dislocations that extend completely across
the crystal width, z. However, the same results may be derived for curved
dislocations with arbitrary configurations across multiple slip planes. This
may be easily realized by recognizing that the sheared area fraction of the
glide plane, dA4/A, corresponds to the fraction of the Burgers vector, b, in
the expression for the displacement due to glide of curved dislocations.
Hence, for glide by curved dislocations, the overall displacement, A, is
now given by
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As before [Eq. (7.6)], the shear strain, y, due to the glide of curved disloca-
tions is also given by A/h. Hence,

AL (AAN b
y:F;< v )F (7.11)

Similarly, the shear strain rate may be obtained from the time derivative of
Eq. (7.11).

7.8 CRYSTAL STRUCTURE AND DISLOCATION
MOTION

In Chap. 6, we learned that the Peierl’s (lattice friction) stress [Eq.
(6.8)] is minimized by small Burgers vectors, b, and large lattice spacings,
a. Hence, dislocation motion in cubic crystals tends to occur on closed
packed (or closest packed) planes in which the magnitudes of the Burgers
vectors, b, are minimized, and the vertical lattice spacings, a, are maximized.
Since the lattice friction stresses are minimized on such planes, dislocation
motion is most likely to occur on closed packed planes along closed packed
directions (Table 7.1).

7.8.1 Slip in Face-Centered Cubic Structures

Close-packed planes in face-centered cubic (f.c.c.) materials are of the {111}
type. An example of a (111) plane is shown in Fig. 7.17(a). All the atoms
touch within the closed packed (111) plane. Also, the possible {111} slip
planes form an octahedron if all the {111} planes in the eight possible
quadrants are considered. Furthermore, the closed packed directions corre-
spond to the (110) directions along the sides of a {111} triangle in the
octahedron. Hence, in the case of f.c.c. materials, slip is most likely to
occur on octahedral {111} planes along (110) directions. Since there are
four slip planes with three slip directions in the f.c.c. structure, this indicates
that there are 12 (four slip lanes x three slip directions) possible {111} (110)
slip systems (Table 7.1).

7.8.2 Slip in Body-Centered Cubic Structures

In the case of body-centered cubic (b.c.c.) structures, there are no close-
packed planes in which all the atoms touch, although the {101} planes are
the closest packed. The close-packed directions in b.c.c. structures are the
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tooon/
Ficure 7.17 Closed packed planes and directions in (a) face-centered cubic
structure, (b) body-centered cubic crystal, and (c) hexagonal closed packed
structure. (From Hertzberg, 1996. Reprinted with permission from John
Wiley.)

(111) directions. Slip in b.c.c. structures is most likely to occur on {101}
planes along (111) directions, Fig. 7.17(b). However, slip may also occur on
{110}, {112}, and {123} planes along (111) directions. When all the possible
slip systems are counted, there are 48 such systems in b.c.c. structures (Table
7.1). This rather large number gives rise to wavy slip in b.c.c. structures.
Nevertheless, the large number of possible slip systems in b.c.c. crystals
(four times more than those in f.c.c. materials) do not necessarily promote
improved ductility since the lattice friction (Peierls—Nabarro) stresses are
generally higher in b.c.c. structures.
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7.8.3 Slip in Hexagonal Closed Packed Structures

The basal (0001) plane is the closed packed plane in hexagonal closed
packed (h.c.p.) structures. Within this plane, slip may occur along closed
packed (1120) directions, Fig. 7.17(c). Depending on the c¢/a ratios, slip may
also occur on nonbasal (1010) and (1011) planes along (1120) directions
(Table 7.1). This is also illustrated schematically in Fig. 7.18. Nonbasal
slip is more likely to occur in h.c.p. metals with ¢/a ratios close to 1.63,
which is the expected value for ideal close packing. Also, pyramidal (1011)
slip may be represented by equivalent combinations of basal (0001) and
prismatic (1010) slip.

7.8.4 Condition for Homogeneous Plastic
Deformation

The ability of a material to undergo plastic deformation (permanent shape
change) depends strongly on the number of independent slip systems that
can operate during deformation. A necessary (but not sufficient) condition
for homogeneous plastic deformation was first proposed by Von Mises
(1928). Noting that six independent components of strain would require
six independent slip components for grain boundary compatibility between
two adjacent crystals (Fig. 7.19), he suggested that since plastic deformation
occurs at constant volume, then AV/V = &, + ¢, +&.. = 0. This reduces
the number of grain boundary compatibility equations by one. Hence, only
five independent slip systems are required for homogeneous plastic defor-

TABLE 7.1 Summary of Slip Systems in Cubic and Hexagonal Crystals

Number of Slip Number
Crystal Slip Slip nonparallel directions of slip
Structure Plane direction planes per plane systems
Face-centered
cubic {111} (110) 4 3 12=(4x3)
Body-centered
cubic {110} (111) 6 2 12=(6x2)
{112} 1) 12 1 12=(12x 1)
{123} (117) 24 1 24 =(24x 1)
Hexagonal
close-packed {0001}  (1120) 1 3 3=(1x3)
{1010}  (1120) 3 1 3=3x1)
{1011}  (1120) 6 1 6=(6x
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Ficure 7.18 Planes in a hexagonal closed packed structure, with a common
[1120] direction. (From Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.)

Ficure 7.19 Strain conditions for slip compatibility at adjacent crystals. (From
Courtney, 1990. Reprinted with permission from McGraw-Hill.)
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mation. This is a necessary (but not sufficient) condition for homogeneous
plastic deformation in polycrystals.

The so-called Von Mises condition for homogeneous plastic deforma-
tion is satisfied readily by f.c.c. and b.c.c. crystals. In the case of f.c.c.
crystals, Taylor (1938) has shown that only five of the 12 possible {111}
(110) slip systems are independent, although there are 384 combinations of
five slip systems that can result in any given strain. Similar results have been
reported by Groves and Kelly (1963) for b.c.c. crystals in which 384 sets of
five {110} (111) slip systems can be used to account for the same strain. A
much larger number of independent slip systems is observed in b.c.c. struc-
tures when possible slips in the {112} (111) and {123} (111) systems are
considered. The large number of possible slip systems in this case have been
identified using computer simulations by Chin and coworkers (1967, 1969).

In contrast to b.c.c. and f.c.c. crystals, it is difficult to show the exis-
tence of five independent slip systems in h.c.p. metals/alloys in which slip
may occur on basal, prismatic, and pyramidal planes, Fig. 7.17(c). However,
only two of the {0001} (1120) slip systems in the basal plane are indepen-
dent. Similarly, only two of the prismatic {1020} (1120) type systems are
independent. Furthermore, all the pyramidal slip systems can be reproduced
by combinations of basal and prismatic slip. There are, therefore, only four
independent slip systems in h.c.p. metals. So, how then can homogeneous
plastic deformation occur in h.c.p. metals such as titanium? Well, the answer
to this question remains an unsolved puzzle in the field of crystal plasticity.

One possible mechanism by which the fifth strain component may be
accommodated involves a mechanism of deformation-induced twinning.
This occurs by the co-ordinated movement of several dislocations (Fig.
7.18). However, further work is still needed to develop a fundamental under-
standing of the role of twinning in titanium and other h.c.p. metals/alloys.

7.8.5 Partial or Extended Dislocations

In f.c.c. crystals, the zig-zag motion of atoms required for slip in the (110)
directions may not be energetically favorable since the movement of dislo-
cations requires somewhat difficult motion of the “white” atoms over the
“shaded” atoms in Fig. 7.20. The ordinary (110) dislocations may, there-
fore, dissociate into partial dislocations with lower overall energies than
those of the original (110) type dislocations.

The partial dislocations may be determined simply by vector addition,
as shown schematically in Fig. 7.21. Note that B,C = b, = 1/6[121].
Similarly, CB, can be shown to be given by CB, = by = 1/6[211]. The ordin-
ary dislocation b; = 1/2[110] may, therefore, be shown by vector addition to
be given by
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Ficure 7.20 Zig-zag motion of atoms required for slip in face-centered cubic
crystals. Note that “white” atoms are in a row above the “shaded” atoms.
(From Read-Hill and Abbaschian, 1991. Reprinted with permission from

McGraw-Hill.)
b1 = b2 + b3 (7128)
or
117101—-11511]4—1172T] (7.12b)
2 6 6 '

The partial dislocations, b, and b3, are generally referred to as Shockley
partials. They are formed because the elastic energies of the ordinary dis-
locations of type b; are greater than the sum of the line energies of the
Shockley partials. Hence,

G(b1)? > G(by)* + G(bs)? (7.13a)
or
G G
2|+ P+ 0] = Z [+ @7 + (=17
G (7.13b)
2 2 2
35| (<27 + (1) + (1]
or
G G
5.3 (7.13c)

The above dislocation reaction is, therefore, likely to proceed since it is
energetically favorable. This separation occurs because the net force on
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Ficure 7.21 Path of whole (ordinary) and partial (Shockley) dislocations.
(From Courtney, 1990. Reprinted with permission from McGraw-Hill.)

the partials is repulsive. As the partials separate, the regular ABC stacking
of the f.c.c. lattice is disturbed. The separation continues until an equili-
brium condition is reached where the net repulsive force is balanced by the
stacking fault energy (Fig. 7.22). The equilibrium separation, d, between the
two partials has been shown by Cottrell (1953) to be

o Gbzbs

2 (7.14)

where G is the shear modulus, y is the stacking fault energy, and b, and b;
correspond to the Burgers vectors of the partial dislocations. Stacking faults
ribbons corresponding to bands of partial dislocations are presented in Fig.
7.22(b). Typical values of the stacking fault energies for various metals are
also summarized in Table 7.2. Note that the stacking fault energies vary
widely for different elements and their alloys. The separations of the partial
dislocations may, therefore, vary significantly, depending on alloy composi-
tion, atomic structure, and electronic structure.

The variations in stacking fault energy have been found to have a
strong effect on slip planarity, or conversely, the waviness of slip in metals
and their alloys that contain partial (extended) dislocations. This is because
the movement extended dislocations is generally confined to the plane of the
stacking fault. The partial dislocations must, therefore, recombine before
cross-slip can occur. For this reason, metals/alloys with higher stacking fault
energies will have narrow stacking faults [Eq. (7.14)], thus making recombi-
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Ficure 7.22 (a) Shockley b, and bz surrounding stacking fault region A; (b)
stacking fault ribbons in a stainless steel. (From Michelak, 1976. Reprinted
with permission from John Wiley.)

nation and cross-slip easier. This reduces the stress required for recombina-
tion.

Conversely, metals and alloys with low stacking fault energies have
wide separations (stacking faults) between the partial dislocations. It is,
therefore, difficult for cross-slip to occur, since the recombination of partial
dislocations is difficult. Furthermore, because the movement of uncombined

TaBLE 7.2 Stacking Fault Energies for
Face Centered Cubic Metals and Alloys

Stacking faulty energy

Metal (mJ/m? = ergs/cm?)
Brass <10
Stainless steel <10
Ag ~ 25
Au ~ 75
Cu ~ 90
Ni ~ 200
Al ~ 250

Source: Hertzberg (1996). Reprinted with
permission from John Wiley.
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TABLE 7.3 Stacking Faults and Strain Hardening Exponents

Stacking faulty energy  Strain-hardening Slip
Metal (mJ/M?) coefficient character
Stainless steel <10 -0.45 Planar
Cu ~ 90 ~0.3 Planar/wavy
Al ~ 250 ~0.15 Wavy

Source: Hertzberg (1996). Reprinted with permission from John Wiley.

partial dislocations is confined to planes containing the stacking faults,
materials with lower stacking fault energies (wide separations of partials)
tend to exhibit higher levels of strain hardening (Table 7.3).

7.8.6 Superdislocations

So far, our discussion has focused on dislocation motion in disordered
structures in which the solute atoms can occupy any position within the
crystal structure. However, in some intermetallic systems (intermetallics
are compounds between metals and metals), ordered crystal structures are
formed in which the atoms must occupy specific sites within the crystal
structure. One example of an ordered f.c.c. structure is the NizAl crystal
shown in Fig. 7.23. The nickel and aluminum atoms occupy specific posi-
tions in the structure, which must be retained after dislocation glide through
{111} planes. However, the movement of a single dislocation on the glide
plane disturbs the ordered arrangement of atoms, giving rise to an energe-
tically unfavorable arrangement of atoms, Fig. 7.24(a).

A favorable arrangement is restored by the passage of a second dis-
location, which restores the lower energy ordered crystal structure, Fig.

Ficure 7.23 Ordered face-centered cubic structure of NizAl. (From Hertzberg,
1996. Reprinted with permission from John Wiley.)

Copyright © 2003 Marcel Dekker, Inc.



—
oo
—
o~
=
—

CCOCeC O NCLOO00000 o 000 C OO

CLOCCLLOQONTeLUC o000 olotaleleloyor- Jou Mo

[e}ooéNoTeloly NeN Rol NohsEol Yele: C 2e] Sece

.ccog;/ooooococ‘szooc- COoCTese Ce o

otereleleay Nolt XeR RaR JoF FelrRele) o -8*’00000 <

ooooﬁoooooooooo%oo CLOTORCE O

COCC0e0 80000000000 BeER A alYe

olole ~ - hud - .

eXodofol YoX NeX JoX RSB Z°X fexaye: COQUeCec eC

OO eT C.O.O.OOIOCCC crodecece

ofeyol Yo¥ Jo¥ Jo XoF BaN TolSYoNe¥e! DOAC SO

cc-ogoc;oooooooogoooa. ooogoooc 4 :

CTs gooooooooo So0C 8850.:52 Cooo

SCLOQUeCe e80T oC CCGL

CCOCCRNC e0eCeZCLGO00 888888°O LELce

8 CCoolaacotag coras J0CG
CCoe0oC oo O& oY T I8

0OO0000Co0CRCCO0000 00888000 ekl

Ficure 7.24 Effects of dislocation motion on atomic arrangements in NisAl:
(a) unfavorable atomic arrangement associated with passage of a single dis-
location; (b) favorable ordered arrangement restored by passage of a second
dislocation. (From Hertzberg, 1996. Reprinted with permission from John
Wiley.)

7.24(b). The two dislocations are referred to as superlattice dislocations or
superdislocations. Like superdislocations, superdislocations maintain an
equilibrium separation that corresponds to the equilibrium separation
between the repulsive force (between two like dislocations) and the anti-
phase boundary (APB). Examples of superdislocation pairs in NisAl are
shown in Fig. 7.25.

Finally in this section, it is of interest to note that the individual
dislocations may in turn dissociate into partial dislocations that are sepa-
rated by stacking faults and APBs, as shown schematically in Fig. 7.26.

7.9 CRITICAL RESOLVED SHEAR STRESS AND SLIP
IN SINGLE CRYSTALS

Let us now consider a general case of slip in a single crystal that is subjected
to axial loading, as shown in Fig. 7.27. Whether or not a dislocation will
move on the slip plane in a given slip direction depends on the magnitude of
the resolved shear stress in the direction of slip. Slip will only occur when the
resolved shear stress (due to the applied load) is sufficient to cause disloca-
tion motion. Noting that the magnitude of the resolved load along the slip
plane is P cos A, and the inclined cross-sectional area is A4,/ cos ¢, we may
then write the following expression for the resolved stress, trss:

Pcosix P

_ P 7.1
TRSS A c0s d) Ay (7.15a)
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Ficure 7.25 Superdislocation pairs in NizAl. (Courtesy of Dr. Mohammed
Khobaib and reprinted from Hertzberg, 1996. Reprinted with permission
from John Wiley.)

where P is the applied axial load, 4 is the cross-sectional area perpendicular
to the applied load, and angles ¢ and A are shown schematically in Fig. 7.27.
The product cos A cos ¢ is known as the Schmid factor, m. It is important
because it represents a geometrical/orientation factor that determines the
extent to which the applied load can induce shear stresses that may even-
tually cause dislocation motion to occur on possible slip lanes. Furthermore,
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Figure 7.26 Schematic of stacking fault and antiphase boundaries bounded
by partial dislocation pairs: A {011} superlattice dislocation in an AB3 super-
lattice. (From Marcinkowski et al., 1961.)
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Ficure 7.27 Slip plane and slip direction in a cylindrical single crystal sub-
jected to axial deformation.

the onset of plasticity by dislocation motion corresponds to the critical shear
stress (for a given slip system) that is just sufficient to induce dislocation
motion. Hence, from Eq. (7.15a), yielding will initiate on the plane with the
highest Schmid factor.

For the different combinations of slip planes and slip directions asso-
ciated with any given slip system, yielding is generally found to occur at the
same value of the critical resolved shear stress. The yield stress, oy, of a
single crystal may, therefore, be found by rearranging Eq. (7.15a) and
noting that oy = Py/4,, where Py is the load at the onset of yielding. This
gives

TCRSS TCRSS
= = 7.15b
% T Cos i cos ) m ( )

where tcgrsg is the critical resolved shear stress, m is the Schmid factor, and
the other variables have their usual meaning. The unaxial yield strength of a
single crystal will, therefore, depend on the slip system that has the highest
Schmid factor, since this will result in the lowest value of o,. Consequently,
the uniaxial yield strength of a single crystal may vary significantly with

Copyright © 2003 Marcel Dekker, Inc.



crystal orientation, even though the critical resolved shear stress does not
generally change with crystal orientation, for yielding in a given slip system.

A schematic of a typical shear stress versus shear strain response of a
single crystal is shown in Fig. 7.28. During the early stages of deformation,
Stage I slip occurs by easy glide in a single slip direction along a single slip
plane. There is limited interaction between dislocations, and the extent of
hardening is limited. However, due to the constraints imposed by the speci-
men grips, the slipped segments of the single crystal experience close to pure
rotation in the middle of the crystals, and pure bending near the grips (Fig.
7.29). The rotation of the slip plane gradually changes the Schmid factor
until slip is induced in other slip systems. The interactions between disloca-
tions gliding on multiple slip systems then results in hardening in Stage II, as
shown schematically in Fig. 7.28. Stage II hardening is associated with a
characteristic slope of ~ G/300 in several metals. Stage II hardening con-
tinues until Stage I1I is reached (Fig. 7.28), where the hardening is relaxed
by cross-slip of screw dislocation segments. A cell structure is also likely to
develop during Stage III in which the dislocation substructures closely
resemble those observed in polycrystalline metals and their alloys.

The stress—strain behavior discussed above may vary significantly with
test temperature and impurities. Furthermore, depending on crystal orienta-
tion and initial dislocation density, Stage I deformation may be absent in
crystals in which two or more slip systems are initiated at the same stress
level (Fig. 7.30). Since the dislocations can interact, rapid Stage II hardening
may be observed in some crystals at the onset of plastic deformation.

1
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Ficure 7.28 Three stages of plastic deformation in a single crystal.
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Ficure 7.29 Schematic illustration of the effects of deformation constraint on

the deformation behavior of a single crystal: (a) before deformation; (b) defor-
mation without grip constraint; (c) deformation with group constraint.

Finally in this section, it is important to note that an alternative
explanation of the above hardening behavior has been presented by
Kuhlmann-Wilsdorf (1962, 1968). She attributes the low levels of Stage I
hardening to heterogeneous slip of a low density of dislocations. In this
theory, Stage II slip corresponds to the onset of significant dislocation—
dislocation interactions, but not necessarily the onset of multiple slip. This
results ultimately in the formation of a dislocation cell structure with a
characteristic mesh length that remains stable from the onset of Stage I1I
deformation.

7.10 SLIP IN POLYCRYSTALS

In Sect. 7.8.4, we showed that the homogeneous plastic deformation of
polycrystals requires dislocation motion to occur on five independent slip
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Ficure 7.30 Different types of stress—strain behavior in copper single crystals
with different initial orientations with respect to the tensile axis. Although the
critical resolved shear stress is the same for all the crystals, only the [123]
exhibits the easy glide Stage | regime. Duplex slip occurs initially in the [112]
oriented crystal, giving rise to greater hardening at the onset of plastic defor-
mation. More pronounced hardening to observed in the [111] oriented crys-
tals in which six slip systems are activated initially. (From Diehl, 1956.)

systems (the Von Mises condition). This occurs relatively easily in f.c.c. and
b.c.c. crystals. However, homogeneous plastic deformation is difficult to
explain in h.c.p. crystals, which require the activation of additional defor-
mation modes such as deformation-induced twinning. The simple picture of
slip in single crystals developed in the previous section will be extended to
the more general case of slip in polycrystals in this section.

Let us start by recalling from Sect. 7.9 that slip in a single crystal
occurs when a critical resolved shear shear stress is reached. Furthermore,
for slip without relative sliding of the boundary between adjacent grains A
and B (Fig. 7.19), the strain components on either side of the boundary must
be equala ie., Exx,A = Exx B Eyp A = &y By €zzA = €zBy Vxp,A = Vxy,Bs
Yy A = Vyz,Bs and ¥, o = ¥z, g. Since the volume does not increase during
plastic deformation, it follows that AV/V = e, + ¢, + ¢.. is equal to zero.
Hence, only five independent slip systems are needed for homogeneous
plastic deformation.
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However, the matching of strain components at the boundaries
between grains imposes significant restrictions on the possible slip systems
that can occur within polycrystals. The total number of possible slip systems
in actual grains within polycrystals may, therefore, be significantly less than
those in single crystals that are favorably oriented for slip. Furthermore,
each grain has its own characteristic Schmid factor, and grains with the
lowest Schmid factor deform last. The average Schmid factor is also more
strongly affected by grains with unfavorable orientations (for plastic defor-
mation).

In any case, the stress—strain behavior of polycrystals may be under-
stood by considering an effective orientation factor, m, that is somewhat
analogous to the Schmid factor, 7, that was introduced in Sect 7.9.
However, the effective orientation factor, 77, is a more complex parameter
than the Schmid factor, m, because it must somehow account for the numer-
ous orientations of crystals that are possible between grains in a polycrystal.
The effective orientation factor must also account for the stronger effects of
less favorably oriented grains. This was first considered by Taylor (1938) for
the deformation of f.c.c. crystals, which were shown to have values of m of
~ 3.1. More recent simulations have also shown that the values of m are
close to 3.0 for b.c.c. crystals. However, due to the large number of possible
slip systems in b.c.c. metals, the simulations are much more complex than
those required for f.c.c. crystals which have fewer slip systems. The b.c.c.
simulations have, therefore, required the use of computers, as discussed by
Chin and coworkers (1967, 1969).

We may now apply this concept of the equivalent orientation factor to
a polycrystal. Using similar concepts to those presented earlier for single
crystals in Sect. 7.8, we may express the effective stress and strain in a
polycrystal by the following relationships:

T=mrt (7.16)
and
— 14
7 7.17
Y (7.17)

where 7 and y are the resolved shear stress and shear strain, respectively,
that would apply to an equivalent single crystal. Hence, differentiating Eqs
(7.16) and (7.17) gives

dr

ST m)2t (7.18)
dy Y
Plots of shear stress versus shear strain will, therefore, be expected to exhibit
stress levels that are a factor of (777)* greater than the equivalent plots for
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Ficure 7.31 Comparison of stress—strain behavior in single crystal and poly-
crystalline niobium. (From Courtney, 1990. Reprinted with permission from
McGraw-Hill.)

single crystals. This is shown to be the case for b.c.c. crystals of niobium
(with 77 ~ 3* = 9) in Fig. 7.31 in which plots of shear stress versus shear
strain are elevated by approximately one order of magnitude. Similar eleva-
tions are also observed in plots of axial flow stress versus axial strain for
polycrystals.

7.11 GEOMETRICALLY NECESSARY AND
STATISTICALLY STORED DISLOCATIONS

The discussion so far has focused largely on the role of initial dislocation
substructures formed during processing, and those produced by dislocation
breeding mechanisms, e.g., Frank—Read sources (Figs 7.13 and 7.14) and
multiple cross-slip (Fig. 7.15) mechanisms. Such dislocations are produced
by “chance” events and are generally termed statistically stored dislocations
(SSDs). The increase in the density of SSDs may be used qualitatively to
account for the contributions of dislocations to plastic strain in the absence
of high-stress gradients, as was done in Sect. 7.7.

However, yet another group of dislocations must be considered in
cases where high-stress gradients are encountered, e.g., near grain bound-
aries or in metallic structures with thicknesses that are comparable to their
grain sizes. This second group of dislocations are referred to as geometrically

Copyright © 2003 Marcel Dekker, Inc.



necessary dislocations (GNDs). They were first proposed by Ashby (1970).
GNDs are accumulated in regions of high-stress gradients, and are needed
to avoid overlap or void formation during plastic deformation in such
regions. They are accumulated in addition to the SSDs discussed earlier.

The need for GNDs may be visualized by considering the plastic bend-
ing of a rod, as shown schematically in Fig. 7.32. The initial configuration of
the rod of length / and width ¢ is shown in Fig. 7.32(a). On the application of
a bending moment, a curved profile with a radius of curvature, r, is pro-
duced. The length of the outer surface is increased from / to / + 8/, and the
length of the inner surface is decreased from / to / — 8/. Hence, the deforma-
tion of the outer surface is tensile, while that in the inner surface is com-
pressive. There is, therefore, a stress gradient from the outer surface to the
inner surface, which corresponds to the gradient of the bending stress field
across the thickness, ¢, in Fig. 7.32(b).

(a) (b)

[ i} - [

Ficure 7.32 Schematics of plastic bending of a rod to highlight the need for
geometrically necessary dislocations: (a) before deformation; (b) curvature
after bending; (c) geometrically necessary dislocations. (From Ashby, 1970.
Reprinted with permission from Phil. Mag.)
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From basic geometry, [ = 10, [ + 8] = ((r + t)/2)0 and [-8] = ((r-1)/2)6.
Hence, 6 = 16/2. Furthermore, the strain on the outer surface is / + 8/, while
the strain in the inner surface is —§///. Since the strain gradient, de/dz, is
linear across the length 7, we may write:

de_28/_2<t9>_9 ¢

a-tr-t\2) ==, (7.19)

To appreciate the next few steps, it is important to re-examine Fig. 7.32(a),
and note that the number of atomic rows on the original surface is equal to
the length, /, divided by the atomic separation, . From Fig. 7.32(b), it
should also be clear that the total number of rows on the outer surface of
the crystal is (/ + 8[)/b. The difference between the total number of planes
on the outer and inner surface can be accommodated by the introduction of
edge dislocations of the same sign, as shown schematically in Fig. 7.32(c).
These dislocations are GNDs. They are needed to maintain compatibility in
the presence of stress gradients, e.g., near grain boundaries.

The total number of GNDs is given simply by 238//h. The density of
GNDs, pg, may also be expressed as the ratio of the number of GNDs
divided by the area (/r). This gives

(d8>
2al 1 \dt
PC=bi " b~ b (7.20)

The total density of dislocations, p., in a polycrystal is, therefore, given by
the sum of the statistically stored dislocation dislocations, pg, and the geo-
metrically necessary dislocation density, pg. This gives

Prot = Ps + PG (7.27)

It is important to remember that the role of GNDs is only important in cases
where stress gradients are present. Hence, in the absence of strain gradients,
Prot ~ Ps. The importance of GNDs has been highlighted in recent years by
the development of strain gradient plasticity theories by Fleck et al. (1994).
These theories include phenomenological models that attempt to predict
length scale effects in crystal plasticity. These length scale effects are asso-
ciated with the role of GNDs.

For example, the torsional stress—strain behavior of fine copper wires
(Fleck et al., 1994) has been shown to exhibit a size scale dependence, with
thinner wires having higher flow stresses than thicker wires (Fig. 7.33).
Indentation tests (Stelmashenko et al., 1993; Ma and Clarke, 1995; Poole
et al., 1996) on different metals have also revealed a dependence of hardness
on indenter size, with smaller indenters (<10-20 pum) resulting in higher
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Ficure 7.33 Effects of length scale on the flow stress of copper wires: (a)
torque versus twist per unit length normalized in a way that material with
no internal length scales would fall on to one another; (b) uniaxial stress
versus strain for the same material shows almost no size effect in tension.
(From Fleck et al., 1994. Reprinted with permission from Acta Metall. Mater.)

(2-3 times) hardness levels than the size-independent values that are typi-
cally observed for larger indenters.

In cases where the density of geometrically necessary dislocations, pg,
is significant, the flow stress, 7, is given by the following modified Taylor
expression:

7, = ¢Gb./ps + pg (7.22)

where ¢ is a number that depends on the crystal type, G is the shear mod-
ulus, and b is the Burgers vector. Furthermore, in the vicinity of strain
gradients of magnitude de/dz, the increment in plastic strain due to
GNDs is ~ pg bL, where L is the distance over which the strain gradients
affect plastic flow. Similarly, the increment of plastic strain associated with
the generation of new SSDs that travel through a distance L is p, bL. An
alternative derivation by Nix and Gao (1998) has shown that the length
scale parameter, L, is given by

2
L= b<£) (7.23)

Oy

where b is the Burgers vector, G is the shear modulus, and oy is the yield
stress. It is important to note here that the magnitude of L is generally on
the order of a few micrometers (~ 0.25—1 um for stretch gradients and 4-5

um for rotational gradients).
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Ficure 7.34 Examples of MEMS structures: (a) accelerometer; (b) magnetic motor. (From Madou, 1997.
Reprinted with permission from CRC Press.)
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Two approaches have been proposed for the estimation of the incre-
ment in plastic strain due to the combined effects of SSNs and GNDs. The
first is by Fleck et al. (1994) who, guided by the Taylor relation, suggest that
the dislocation density, p, increases in proportion to

p o [(eP) + (eaeP sty ] (7.24)

where ¢ is the length scale parameter, &P is the plastic strain, and A is
generally between 1 and 2.

The second approach proposed by Nix and Gao (1998) and Gao et al.
(1998, 1999) assumes that GNDs have no direct effects on the accumulation
of SSDs. Hence, from the Taylor relation, the density of SSDs is propor-
tional to f(¢P)*. Strain gradients are introduced into this theory which gives
the flow stress dependence as

oy o/ f(ep)? + €deP /dt (7.25)

The strain gradient plasticity (SGP) theory incorporates the length scale
parameter, ¢, into the J, deformation theory. As in the conventional J,
theory, the J, SGP theory has both a small strain deformation version
and an incremental version with a yield surface.

The deformation theory version gives the effective strain, E,, as

2
2 _ ’7 2 /(1) /(1) 2 1(2)_1(2) 2 1(3)_1/3)
Es = 365 T e Mg + Cangicnye + LM i (7.26)

where ¢; is the strain tensor, sgj is the deviatoric strain, n;; = uy ; is the
strain gradient, and r;;»jk is the deviatoric strain gradient. The three deviatoric

strain gradients are mutually ortogonal. Hence,
n;jk(l)n/ijk(J) =0 for |/ 7é J (727)

Furthermore, any strain gradient deviator nf»jk can be expressed as a
sum of three mutually orthogonal strain gradient tensors (Smyshlyaev and
Fleck, 1996).

The deformation theory proposes the use of an energy density,
W(E,, ex;), which is determined by fitting monotonic shear or axial
stress—strain data, and assuming elastic compressibility. The stress and
higher order stress terms are obtained from

ow

P=— 7.2
% = e, (7.28a)
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and
ow
Mk

(7.28b)

Tijk =

where the virtual work term, W, is given by Toupin (1962) and Mindlin
(1965) to be:

W = JV[O',']'(S!EU + Tijk(Sﬂ,'jk]dV = JA[tiSUi + r,'n,'(SU,'J] dA (729)

where 7, is the outward normal to the surface, r; = njn.ty is the double
stress acting on the surface, and the surface traction is given by

te = ni(oi — Tipg) + ninTi(Dp np) — Dj(nj Tjj) (7.30)
where D; is the surface gradient, which is given by
Dj = ((S]k — nj nk) Bk (731)

It is important to note here that the second and third invariants of the strain
gradient depend only on the rotation gradient Xj; = 0;;, = e, Ski,p/’ where
the rotation is given by 6; = e, 1y ;/2. The equivalent strain expression of
Eq. (7.26) may thus be expressed as

3 5

2/, 12,
+t3 <2£2 - €K3> XijXji

2, 2 12
B2 = Sefep+ G+ (2£§ + €§> XiiXi
(7.32)

However, in most problems the relative contributions of the x; x;
term is relatively small. Hence, it is common to ignore this term and express
the effective strain term as

2 /! / /7 2
EZ = 3eiei + &an’(Djen’ (D + §£§GXUXU (7.33)

where £gg and £rg are the stretch and rotation gradients, respectively, which
are given by

g%G = z% (7.34a)
and

12
i = 263 + ?zg (7.34b)

Experimental measurements of £gg and ¢rg have been obtained by

Fleck et al. (1994), Begley and Hutchinson (1998), and Stélken and Evans
(1998). For annealed copper wires, Fleck et al. (1994) have shown that
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Lrg ~ 4 um. Stélken and Evans (1998) have also shown, by measuring the
amount of elastic springback in bending experiments, that nickel thin films

have , /E%G +8/ 5£§G ~ 5 um. Since the bending stress field is dominated by
rotational gradients, {gg ~ 5 um. Similarly, Begley and Hutchinson (1998)
have analyzed indentation results from a number of metals, for which the
length scale parameter is associated primarily with stretch gradients. Their
analysis suggests that £gg is between 0.25 and 1.0 for various metals.

The above size effects are important in the modeling of plasticity in the
microscale regime. For example, in the case of microelectromechanical sys-
tems (MEMS), machines are being fabricated on the microscale regime
between ~ 1 and 750 um. Most MEMS structures on a length scale between
~ 1 and 50 wm are being produced from silicon micromachining technology
(Madou, 1997 (Fig. 7.34)). The emerging products include actuators, sen-
sors, gears, microsatellites, and micromirrors. For thicker and larger
devices, electroplated nickel structures are being used in applications such
as microswitches and accelerometers in modern air bags. Aluminum MEMS
structures are also being used in micromirror applications. In all the metal
MEMS applications, it is likely that the phenomenological SGP J, theory
could be useful in the modeling of length scale effects (Hutchinson, 2000).
However, it is possible that higher order strain gradient theories may be
needed to model the effects of constrained deformation due to dislocation
pile-ups at the interfaces between brittle ceramic layers and ductile layers.

7.12 DISLOCATION PILE-UPS AND BAUSCHINGER
EFFECT

It has been shown by numerous workers that the thermally induced nuclea-
tion of dislocations is energetically unfavorable (Argon and McClintock,
1963). However, dislocations may be produced within a grain by Frank—
Read sources or by multiple cross-slip mechanisms. If we now consider the
movement of dislocations from such sources within a grain, it is easy to
envisage a dislocation pile-up that can result as the dislocations glide on a
slip plane towards a barrier such as a grain boundary (Fig. 7.35). Since the
dislocation loops are of the same sign, they will pile up without annihilating
each other. The elastic interactions between the self-fields of the individual
dislocations will result in an equilibrium separation of dislocations that
decreases as the grain boundary is approached (Fig. 7.35).

Now consider the case of n dislocations approaching a boundary. The
leading dislocation experiences a force due to the applied shear stress, .
However, the remaining “‘trailing” (n — 1) dislocations experience a back
stress, 7, due to the effect of the barrier. Hence, if the leading and trailing
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Ficure 7.35 Schematic illustration of dislocation pile-up at grain boundaries.
(From Hull and Bacon, 1984. Reprinted with permission from Pergamon
Press.)

dislocations move forward by a small distance, §x, then the increase in the
interaction energy between the loading dislocation and the barrier is 7, Sx.
Similarly, the work done per unit length of dislocation is z(n §x). Since work
and energy terms must be equal, and 7; = t, then the stress at the pile-up is
given by

T=nt (7.35)

The stress at a pile-up is, therefore, amplified by the total number of dis-
locations involved in the pile-up. This may result ultimately in the nu-
cleation of slip or deformation-induced twinning, or crack nucleation in
adjacent grains. The total number of dislocations, n, has been shown by
Eshelby et al. (1951) to be given by

_Le
A

where 4 = Gb/m for screw dislocations and A4 = Gb/n/(1 —v) for edge
dislocations. Dislocation pile-ups, therefore, produce long range stresses,
which is why they can exert some influence on the nucleation of yielding
or cracking adjacent grains.

One of the major consequences of these long-range stresses are back
stresses that can affect the yield strengths of crystalline solids deformed
under cyclic tension—compression loading. During forward loading to a
prestress, o, forward dislocation motion results in plastic deformation
and yielding at a yield stress, o,. However, if the loading is reversed, yielding
is observed to occur in compression at a magnitude of stress that is lower
than that in tension. This is illustrated schematically in Fig. 7.36. It was first
observed by Bauschinger (1886) in experiments on wrought iron. It is, there-
fore, known as the Bauschinger effect.

m (7.36)
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Ficure 7.36 Bauschinger effect in a decarbonized tubular steel in torsion.
(Data by Deak, 1961. From McClintock and Argon, 1966. Reprinted with per-
mission from Addison Wesley.)

The difference between the flow strain in the tensile and compressive
loading conditions (Fig. 7.36) is known as the Bauschinger strain. It is
generally a function of the prestress, although it may also be a function of
the prestrain. The compressive stress—strain curve, therefore, never reaches
the image of the tensile stress strain curve shown by the dashed lines in Fig.
7.36. The Bauschinger effect must, therefore, involve some mechanisms of
permanent softening.

The premature yielding that occurs on load reversal can be avoided by
the use of stress relief heat treatments. However, its effects are often ignored,
although they are known to be important in several engineering problems
that involve the fatigue (damage due to cyclic loading in tension and/or
compression) and creep (high-temperature deformation under static loads)
of metals and their alloys. Work by Li et al. (2000) has resulted in the
development of numerical finite element schemes for the modeling of the
role of the Bauschinger effect in sheet metal forming processes. Such models
are critical to the optimization of processing schemes that are used in the
fabrication of smooth automotive car body panels.

7.13 MECHANICAL INSTABILITIES AND
ANOMALOUS/SERRATED YIELDING

So far, our discussion of plastic deformation has ignored the possible effects
of the dislocation interactions with solutes or interstitials that are present in
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all crystalline solids. These interactions can give rise to some interesting
mechanical instabilities that are considered in this section.

7.13.1 Anomalous Yielding Phenomena

Anomalous yielding phenomena have been observed in mild steels and
single crystal iron during tensile deformation. An example of anomalous
yielding in a plain carbon steel is presented in Fig. 7.37. This shows a typical
plot of stress versus strain obtained from a tensile test. Note that the stress
rises initially to an upper yielding point (UYP) before dropping to a lower
yield point (LYP). The initiation of deformation at the UYP is localized to a
region within the gauge section of the tensile specimen. At the UYP, evi-
dence of the localized deformation may be seen in the form of Liiders bands
that are aligned at an angle of ~ 45° to the loading axis. The localized
deformation (Liiders bands) then spreads across the gauge section until
the gauge section is completely filled with Liiders bands at the so-called
Liiders strain. Homogeneous deformation and hardening then continues
(Fig. 7.37) to failure, as would be expected from a typical metallic material.

20

1(]41 . Liiders

2+

s

striin : ;

Stress g, k

i 10.05 S0l .15
=teain

Ficure 7.37 Anomalous yielding in a single crystal of iron containing 0.003%
carbon and deformed continuously to failure at a strain rate of 10° s™' at 195
K. (Data by Paxton and Bear, 1955. Adapted from McClintock and Argon,
1963. Reprinted with permission from Addison Wesley.)
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Two theories have been proposed to explain the anomalous yielding
phenomena. One theory is by Cottrell and Bilby (1949) and the other is by
Hahn (1962). The theory of Cottrell and Bilby (1949) attributes the yield
phenomena to the effects of dislocation interactions with interstitials in
b.c.c. metals. Since these cause large unsymmetrical distortions in the lattice
structure, they interact strongly with edge and screw dislocations. At suffi-
ciently high temperatures, the interstitials diffuse towards the dislocation
cores, and thus impede the motion of dislocations. Higher stresses are,
therefore, needed to break the dislocations free from the solute/interstitial
clouds and move them through the lattice.

The theory of Hahn (1962) attributes the observed instabilities to the
strong stress dependence of the velocity of dislocations. Hence, when the
dislocations break away from the solute atmospheres, they must move at
faster velocities to enable the imposed strain rate to be achieved. The high
velocity requires high stress, which in turn results in rapid dislocation multi-
plication by double cross-slip (Fig. 6.13). Hence, as the dislocation density
increases, both the velocity and the stress decrease. Both theories appear to
be plausible. However, further research is needed to explain the observed
dependence of the UYP and LYP on grain size.

7.13.2 Portevin—-LeChatelier Effect

The interactions between dislocations and impurities (solutes and intersti-
tials) or vacancies can give rise to serrated yielding (strain aging) phenomena
in metallic and nonmetallic materials. The serrations were first observed by
Portevin and LeChatelier (1923) in experiments on Duralumin (an Al-Cu
alloy). For this reason, the occurrence of serrated yielding is often known as
the Portevin—LeChatelier effect. The instabilities are associated with the
interactions of groups of dislocations with solute/interstitial atoms. These
result in jerky dislocation motion, and serrations in the stress—strain curves,
as shown schematically in Fig 5.6.

The serrations are an indication of discontinuous yielding that occurs
due to groups of dislocations breaking free from the pinning of dislocations
which is caused by the (dislocation core stress-assisted) diffusion of inter-
stitials and solutes towards the gliding dislocations (Fig. 7.38). These can
give rise to different types of serrations (Fig. 5.6), depending on the nature
of the dislocation/solute or dislocation/interstitial interactions. The periodi-
city and characteristic shapes of the serrations have been attributed by
Cottrell (1958) to the thermally activated release of dislocations, and their
subsequent pinning by interstitial and solute clouds. Serrated yielding (strain
aging) has been observed in solid solutions of zinc and aluminum. It has also
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Ficure 7.38 Pinning of dislocations by diffusing solutes and interstitials.

been reported to occur in some intermetallics such as gamma-based titanium
aluminides and nickel aluminides.

7.14 SUMMARY

The role of dislocations in the plasticity of crystalline metals and their alloys
has been examined in this chapter. Following a brief description of the
motion of dislocations by glide, climb, and kink nucleation/propagation
mechanisms, the factors that control dislocation velocity were discussed
briefly for edge and screw dislocations. The bowing of dislocations due to
line tension forces was then explored before introducing the concept of
dislocation breeding from Frank—Read sources and multiple cross-slip
sources. The contributions from dislocations to plastic strain were then
elucidated within a simple continuum framework. The crystallography of
slip was introduced for f.c.c., b.c.c., and h.c.p. structures, before describing
dislocation dissociation mechanisms, partial/extended dislocations, stacking
faults, superdislocations, and APBs. The concept of a critical resolved shear
stress was also examined before describing the contributions from slip to
plastic deformation in single crystals and polycrystals. Finally, SSNs and
GNDs were described briefly before concluding with sections on the
Bauschinger effect and mechanical instabilities.
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8

Dislocation Strengthening
Mechanisms

8.1 INTRODUCTION

The dislocation strengthening of metals and their alloys is perhaps one of
the major technological accomplishments of the last 100 years. For example,
the strength of pure metals such as aluminum and nickel have been
improved by factors of 10-50 by the use of defects that restrict dislocation
motion in a crystal subjected to stress. The defects may be point defects
(solutes or interstitials), line defects (dislocations), surface defects (grain
boundaries or twin boundaries), and volume defects (precipitates or disper-
sions). The strain fields that surround such defects can impede the motion of
dislocations, thus making it necessary to apply higher stresses to promote
the movement of dislocations. Since yielding and plastic flow are associated
primarily with the movement of dislocations, the restrictions give rise ulti-
mately to intrinsic strengthening.

The basic mechanisms of intrinsic strengthening are reviewed in this
chapter, and examples of technologically significant materials that have
been strengthened by the use of the strengthening concepts are presented.
The strengthening mechanisms that will be considered include:

1. Solid solution strengthening (dislocation interactions with
solutes or interstitials).
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2. Dislocation strengthening which is also known as work/strain
hardening (dislocation interactions with other dislocations).

3. Boundary strengthening (dislocation interactions with grain
boundaries or stacking faults).

4. Precipitation strengthening (dislocation interactions with preci-
pitates).

5. Dispersion strengthening (dislocation interactions with dispersed
phases).

Note the above sequence of dislocation interactions with: zero-dimensional
point defects (solutes or interstitials); one-dimensional line defects (other
dislocations; two-dimensional defects (grain boundaries or stacking faults),
and three-dimensional defects (precipitates or dispersoids).

8.2 DISLOCATION INTERACTIONS WITH OBSTACLES

Before presenting the specific details of individual dislocation strengthening
mechanisms, it is important to examine the interactions of dislocations with
arrays of obstacles such as solutes/interstitials and particles/precipitates
(Fig. 8.1). When dislocations encounter such arrays as they glide through
a lattice under an applied stress, they are bent through an angle, ¢, before
they can move on beyond the cluster of obstacles (note that 0 < ¢ < 180°).
The angle, ¢, is a measure of the strength of the obstacle, with weak obsta-
cles having values of ¢ close to 180°, and strong obstacles having obstacles
close to 0°.

It is also common to define the strength of a dislocation interaction by
the angle, ¢’ = 180 — ¢ through which the interaction turns the dislocation
(Fig. 8.1). Furthermore, the number of obstacles per unit length (along the
dislocation) depends strongly on ¢. For weak obstacles with ¢ ~ 180°, the

[ obstacle

Crirection of
dislocation
motion

Ficure 8.1 Dislocation interactions with a random array of particles.
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number of obstacles per unit length may be found by calculating the number
of particle intersections with a random straight line. Also, as ¢ decreases, the
dislocations sweep over a larger area, and hence interact with more particles.
Finally, in the limit, the number of intersections is close to the square root of
the number of particles that intersect a random plane.

The critical stress, 1., required for a dislocation to break away from a
cluster of obstacles depends on the particle size, the number of particles per
unit volume, and the nature of the interaction. If the critical breakaway
angle is ¢, then the critical stress at which breakaway occurs is given by

Te = @cos(&> 8.1

Equation (8.1) may be derived by applying force balance to the geometry of
Fig. 8.1. However, for strong obstacles, breakaway may not occur, even for
¢ = 0. Hence, in such cases, the dislocation bows to the semi-circular
Frank—Read configuration and dislocation multiplication occurs, leaving a
small loop (Orowan loop) around the unbroken obstacle. The critical stress
required for this to occur is obtained by substituting r = L/2 and ¢ = 0 into
Eq. (8.1). This gives

_ob
L

Hence, the maximum strength that can be achieved by dislocation
interactions is independent of obstacle strength. This was first shown by
Orowan (1948). The above expressions [Eqs (8.1) and (8.2)] provide simple
order-of-magnitude estimates of the strengthening that can be achieved by
dislocation interactions with strong or weak obstacles. They also provide a
qualitative understanding of the ways in which obstacles of different types
can affect a range of strengthening levels in crystalline materials.

(8.2)

Tc

8.3 SOLID SOLUTION STRENGTHENING

When foreign atoms are dissolved in a crystalline lattice, they may reside in
either interstitial or substitutional sites (Fig. 8.2). Depending on their sizes
relative to those of the parent atoms. Foreign atoms with radii up to 57% of
the parent atoms may reside in interstitial sites, while those that are within
+15% of the host atom radii substitute for solvent atoms, i.e. they form
solid solutions. The rules governing the formation of solid solutions are
called the Hume—Rothery rules. These state that solid solutions are most
likely to form between atoms with similar radii, valence, electronegativity,
and chemical bonding type.
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Ficure 8.2 Interstitial and solute atoms in a crystalline lattice: (a) schematic of
interstitial and solute atoms; (b) effects on dislocation motion. [(a) Adapted
from Hull and Bacon (1984) and (b) adapted from Courtney (1990). Reprinted
with permission from Pergamon Press.]

Since the foreign atoms have different shear moduli and sizes from the
parent atoms, they impose additional strain fields on the lattice of the sur-
rounding matrix. These strain fields have the overall effect of restricting
dislocation motion through the parent lattice, Fig. 8.2(b). Additional
applied stresses must, therefore, be applied to the dislocations to enable
them to overcome the solute stress fields. These additional stresses represent
what is commonly known as solid solution strengthening.

The effectiveness of solid solution strengthening depends on the size
and modulus mismatch between the foreign and parent atoms. The size
mismatch gives rise to misfit (hydrostatic) strains that may be symmetric
or asymmetric (Fleischer, 1961, 1962). The resulting misfit strains, are pro-
portional to the change in the lattice parameter, a, per unit concentration, c.
This gives

1da

)

Similarly, because the solute/interstitial atoms have different moduli
from the parent/host atoms, a modulus mismatch strain, e, may be defined
as

1dG

In general, however, the overall strain, &, due to the combined effect of the
misfit and modulus mismatch, may be estimated from

es = leG — Bepl (8.5)
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where B is a constant close to 3 &5 = g /(1 + (1/2)|eg|), and &, is given by
equation 8.3. The increase in the shear yield strength, At,, due to the solid
solution strengthening may now be estimated from

Ge3/2c1/?

Atg = 200 (8.6)
where G is the shear modulus, ¢ is given by Eq. (8.5), and c is the solute
concentration specified in atomic fractions. Also, Ar, may be converted into
Ao, by multiplying by the appropriate Schmid factor.

Several models have been proposed for the estimation of solid solution
strengthening. The most widely accepted models are those of Fleischer (1961
and 1962). They include the effects of Burgers vector mismatch and size
mismatch. However, in many cases, it is useful to obtain simple order-of-
magnitude estimates of solid solution strengthening, Ao, from expressions
of the form:

Aog = ksc''? (8.7)

where k, is a solid solution strengthening coefficient, and ¢ is the concentra-
tion of solute in atomic fractions. Equation (8.7) has been shown to provide
reasonable fits to experimental data for numerous alloys. Examples of the
¢'/? dependence of yield strength are presented in Fig. 8.3.

In summary, the extent of solid solution strengthening depends on the
nature of the foreign atom (interstitial or solute) and the symmetry of the
stress field that surrounds the foreign atoms. Since symmetrical stress fields

AT (10° psi}

Ficure 8.3 Dependence of solid solution strengthening on ¢'/2. (Data taken
from Fleischer (1963). Reprinted with permission from Acta Metall.)
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interact only with edge dislocations, the amount of strengthening that can be
achieved with solutes with symmetrical stress fields is very limited (between
G/100 and G/10). In contrast, asymmetric stress fields around solutes inter-
act with both edge and screw dislocations, and their interactions give rise to
very significant levels of strengthening (~ 2G — 9G), where G is the shear
modulus. However, dislocation/solute interactions may also be associated
with strain softening, especially at elevated temperature.

8.4 DISLOCATION STRENGTHENING

Strengthening can also occur as a result of dislocation interactions with each
other. These may be associated with the interactions of individual disloca-
tions with each other, or dislocation tangles that impede subsequent dislo-
cation motion (Fig. 8.4). The actual overall levels of strengthening will also
depend on the spreading of the dislocation core, and possible dislocation
reactions that can occur during plastic deformation. Nevertheless, simple
estimates of the dislocation strengthening may be obtained by considering
the effects of the overall dislocation density, p, which is the line length, ¢, of
dislocation per unit volume , ¢°.

The dislocation density, p, therefore scales with £/¢°. Conversely, the
average separation, ¢, between dislocations may be estimated from

T
(=—0 (8.8)
o172

(@) (b)

>

Ficure 8.4 Strain hardening due to interactions between multiple disloca-
tions: (a) interactions between single dislocations; (b) interactions with forest
dislocations.
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The shear strengthening associated with the pinned dislocation seg-
ments is given by

Aty = — (8.9)

where « is a proportionality constant, and all the other variables have their
usual meaning. We may also substitute Eq. (8.8) into Eq. (8.9) to obtain the
following expression for the shear strengthening due to dislocation interac-
tions with each other:

Aty = aGbp'? (8.10)

Once again, we may convert from shear stress increments into axial
stress increments by multiplying by the appropriate Schmid factor, m. This
gives the strength increment, Aoy, as (Taylor, 1934):

Aoy = maGbp"? = kyp''? (8.11)

where kg =ma Gbh and the other variables have their usual meaning.
Equations (8.10) and (8.11) have been shown to apply to a large number
of metallic materials. Typical results are presented in Fig. 8.5. These show
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Ficure 8.5 Dependence of shear yield strength on dislocation density. (From
Jones and Conrad, 1969. Reprinted with permission from TMS-AIME.)
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Ficure 8.6 Dislocation cell structure in a Nb-AI-Ti based alloy. (Courtesy of
Dr. Seyed Allameh.)

that the linear dependence of strengthening on the square root of dislocation
density provides a reasonable fit to the experimental data.

It is important to note here that Eq. (8.11) does not apply to disloca-
tion strengthening when cell structures are formed during the deformation
process (Fig. 8.6). In such cases, the average cell size, s, is the length scale
that controls the overall strengthening level. This gives

Adly = kj(s) "2 (8.12)

where Aoy is the strengthening due to dislocation cell walls, kj is the dis-
location strengthening coefficient for the cell structure, and s is the average
size of the dislocation cells.

8.5 GRAIN BOUNDARY STRENGTHENING

Grain boundaries also impede dislocation motion, and thus contribute to
the strengthening of polycrystalline materials| (Fig. 8.7). [However, the
strengthening provided by grain boundaries depends on grain boundary
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Ficure 8.7 Dislocation interactions with grain boundaries. (From Ashby and
Jones, 1996. Reprinted with permission from Pergamon Press.)

structure and the misorientation between individual grains. This may be
understood by considering the sequence of events involved in the initiation
of plastic flow from a point source (within a grain) in the polycrystalline
aggregate shown schematically in Fig. 8.8.

Due to an applied shear stress, t,,, dislocations are emitted from a
point source (possibly a Frank—Read source) in one of the grains in Fig. 8.8.
These dislocations encounter a lattice friction stress, 7;, as they glide on a
slip plane towards the grain boundaries. The effective shear stress, 7., that
contributes to the glide process is, therefore, given by

Teff = Tapp — Ti (8.13)

However, since the motion of the dislocations is impeded by grain bound-
aries, dislocations will generally tend to pile-up at grain boundaries. The
stress concentration associated with this pile-up has been shown by Eshelby
et al. (1951) to be ~ (d/4r)'/?, where d is the grain size and r is the distance
from the source. The effective shear stress is, therefore, scaled by this stress
concentration factor. This results in a shear stress, 7j,, at the grain bound-
aries, that is given by
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Ficure 8.8 Schematic illustration of dislocation emission from a source.
(From Knott, 1973. Reprinted with permission from Butterworth.)

d 1/2
T2 = (Tapp — 'L',') (E) (814)

If we now consider bulk yielding to correspond to the condition slip for
transmission to adjacent grains when a critical 7y, is reached, then we may
rearrange Eq. (8.14) to obtain the following expression for z,,, at the onset
of bulk yielding:

4r\"?
Tapp = Tj + <E> T12 (815)

The magnitude of the critical shear stress, 7j,, required for slip trans-
mission to adjacent grains may be considered as a constant. Also, the aver-
age distance, r, for the dislocations in the pile-up is approximately constant.
Hence, (4;”)1/ 2 1, is a constant, k/y, and Eq. (8.15) reduces to

1, =1+ k,d"/? (8.16)

Once again, we may convert from shear stress into axial stress by multi-
plying Eq. (8.16) by the appropriate Schmid factor, m. This gives the follow-
ing relationship, which was first proposed by Hall (1951) and Petch (1953):

oy = o+ k,d™ (8.17)

where oy is the yield strength of a single crystal, ky is a microstructure/grain
boundary strengthening parameter, and d is the grain size. The reader
should note that Eq. (8.17) shows that yield strength increases with decreas-
ing grain size. Furthermore, (o, may be affected by solid solution alloying
effects and dislocation substructures.
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Ficure 8.9 Hall-Petch dependence of yield strength. (From Hu and Cline,
1968. Original data presented by Armstrong and Jindal, 1968. Reprinted
with permission from TMS-AIME.)

Evidence of Hall-Petch behavior has been reported in a large number
of crystalline materials. An example is presented in Fig. 8.9. Note that the
microstructural strengthening term, ky, may vary significantly for different
materials. Furthermore, for a single-phase solid solution alloy with a dis-
location density, p, the overall strength may be estimated by applying the
principle of linear superposition. This gives

o, = 0o + ke¢"? + kyp'? + k,d'"? (8.18)

Note that Eq. (8.18) neglects possible interactions between the indivi-
dual strengthening mechanisms. It also ignores possible contributions from
precipitation strengthening mechanisms that are discussed in the next sec-
tion.

8.6 PRECIPITATION STRENGTHENING

Precipitates within a crystalline lattice can promote strengthening by imped-
ing the motion of dislocations. Such strengthening may occur due to the
additional stresses that are needed to enable the dislocations to shear the
precipitates (Fig. 8.10), or avoid the precipitates by looping/extruding in
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Ficure 8.10 Schematic illustration of ledge formation and precipitation
strengthening due to dislocation cutting of precipitates: (a) before cutting;
(b) during cutting; (c) after cutting.

between the spaces that separate the precipitates (Fig. 8.11). The favored
mechanism depends largely on the size, coherence, and distribution of the
precipitates.

The different ways in which dislocations can interact with particles
make the explanation of precipitation strengthening somewhat complicated.
However, we will attempt to simplify the explanation by describing the
mechanisms in different sub-sections. We will begin by considering the
strengthening due to looping of dislocations around precipitates (Fig. 8.1).
This will be followed by brief descriptions of particle shearing that can give
rise to ledge formation (Fig. 8.10) in disordered materials, and complex
association phenomena in ordered materials. The applications of precipita-
tion strengthening to the strengthening of aluminum alloys will then be
discussed after exploring the transitions that can occur between dislocation
looping and particle cutting mechanisms.

8.6.1 Dislocation/Orowan Strengthening

Precipitation strengthening by dislocation looping (Fig. 8.11) occurs when
sub-micrometer precipitates pin two segments of a dislocation. The rest of
the dislocation line is then extruded between the two pinning points due to
the additional applied shear stress At (Fig. 8.11). The strengthening result-
ing from this mechanisms was first modeled by Orowan, and is commonly
known as Orowan strengthening. This gives

_ G _Gb
T L—2r I
where G is the shear modulus, b is the Burger’s vector, L is the center-to-

center separation between the precipitates, r is the particle radius, and L' is
the effective particle separation, L' = L — 2r. Note that the simplest, one-

At (8.19)
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Ficure 8.11 Schematic of Orowan strengthening due to looping of disloca-
tions between precipitates: (a) dislocation approaching particles; (b) disloca-
tion extruding through particles; (c) critical situation when extruded
dislocation reaches semicircular configuration; (d) escape situation. (From
Ashby and Jones, 1996. Reprinted with permission from Pergamon Press.)

dimensional estimate of the particle volume fraction, f, for the above con-
figuration is equal to r/L. The shear strengthening term may also be con-
verted into an axial strengthening term by premultiplying by an effective
Schmid factor.

Equation (8.19) neglects changes in dislocation character along the line
length of the dislocation. The critical stress, 7., for dislocations bowing
through two pinning segments (Fig. 8.11) may be estimated from expres-
sions of the form:

7o = A(O)% |n(L7 + B(e)) (8.20)

Copyright © 2003 Marcel Dekker, Inc.



where 6 is the angle between the dislocation line and the Burgers vector, 4(6)
and B(0) are both functions of 6, L’ is the effective particle separation,
L' = L — 2r, b is the Burgers vector, and r is the particle radius. The function
A(P) has been determined by Weeks et al. (1969) for critical conditions
corresponding to the instability condition in the Frank—Read mechanism.
The special result for this condition is

7. = A(e)% In<L7/> (8.21)

where the function 4(0) = 1 for initial edge dislocation segments or A(f) =
1/(1 — v) for initial screw dislocation segments. Critical stresses have been
calculated for different types of bowing dislocation configurations (Bacon,
1967; Foreman, 1967; Mitchell and Smialek, 1968).

Average effective values of 4 and B have been computed for the dis-
location configurations since the values of 6 vary along the dislocation lines.
For screw dislocations with horizontal side arms, Fig. 8.11(a), B = —1.38,
while 4 =-0.92 for corresponding edge dislocation configurations.
Similarly, for bowing screw and edge dislocations with vertical side arms, B
= 0.83 and 0.32, respectively. As the reader can imagine, different effective
values of 4 and B have been obtained for a wide range of dislocation
configurations. These are discussed in detail in papers by Foreman (1967)
and Brown and Ham (1967).

8.6.2 Strengthening by Dislocation Shearing or
Cutting of Precipitates

In addition to bowing between precipitates, dislocations may shear or cut
through precipitates. This may result in the formation of ledges at the
interfaces between the particle and the matrix, in the regions where disloca-
tion entry or exit occurs (Fig. 8.10). Alternatively, since dislocation cutting
of ordered precipitates by single dislocations will result in the disruption of
the ordered structure, the passage of a second dislocation is often needed to
restore the ordered structure (Fig. 8.12). Such pairs of dislocations are gen-
erally referred to as superdislocations. For energetic reasons, the superdislo-
cations will often dissociate into superpartials that are bounded by stacking
faults (SFs) and (APBs), as shown in Fig. 8.12.

Hence, the shearing of ordered precipitates results in the creation of
new surfaces (APBs), while the shearing of disordered precipitates results in
ledge formation, as shown schematically in Figs 8.10 and 8.12.

Furthermore, since an applied shear stress is needed to overcome the
precipitate resistance to shear by APB or ledge formation, significant
strengthening may be accomplished by dislocation shear/cutting mechan-
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Ficure 8.12 View of an edge dislocation penetrating an ordered precipitate
(the crystal structure of the precipitate is simple cubic and its composition is
AB). In (a) the dislocation has not yet entered the precipitate. In (b) it is
partially through. Slip in the precipitate is accompanied by the formation of
an antiphase domain boundary (A-A and B-B bonds) across the slip plane.
After the dislocation exits the particle, the antiphase domain surface occupies
the whole of the slip plane area of the precipitate and the energy increase is
~ zr? (APBE). The increase in energy is linear with the position of the dis-
location in the particle. Thus, Frm,)(:ﬂr2 (APBE)/2r = nr (APBE)/2. (From
Courtney, 1990. Reprinted with permission from McGraw-Hill.)

isms, especially when the nature of the particle boundaries permit disloca-
tion entry into the particles, as shown schematically in Figs 8.13(a) and
8.13(b) for coherent and semicoherent interfaces (note that coherent inter-
faces have matching precipitate and matrix atoms at the interfaces, while
semicoherent interfaces have only partial matching of atoms). In contrast,
dislocation entry (into the precipitate) is difficult when the interfaces are
incoherent, i.e., there is little or no matching between the matrix and pre-
cipitate atoms at the interfaces, Fig. 8.13(c). Dislocation entry into, or exit
from, particles may also be difficult when the misfit strain, ¢, induced as a
result of lattice mismatch (between the matrix and precipitate atoms) is
significant in semicoherent or coherent interfaces. This is because of the
need to apply additional stresses to overcome the coherency strains/stresses
associated with lattice mismatch.

As discussed earlier, particle shearing of disordered particles results in
the formation of a slip step on entry, and another slip step on exit from the
particle. For a particle volume fraction, f, and similar crystal structures in
the matrix and particle, it can be shown that the shear strengthening pro-
vided by particle shearing of disordered precipitates is given by (Gleiter and
Hornbogen, 1967):

3E(bp — by) (i)

Tps = b d (8.22)
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Ficure 8.13 Schematic of the different types of interfaces: (a) coherent inter-
face; (b) semicoherent interface; (c) incoherent interface. (From Courtney,
1990. Reprinted with permission from McGraw-Hill.)

where G is the average shear modulus, by, is the particle Burgers vector, by, is
the matrix Burgers vector, b is the average Burgers vector, d is the distance
traveled by the dislocation along the particle, and r is the particle radius. In
cases where the misfit strain (due to lattice mismatch between the matrix and
particle) is significant, the overall strengthening is the stress required to
move the dislocations through the stress/strain fields at the particle bound-
aries.
The increase in shear strength is then given by

.4.p.3E8
At = M#/G,ﬂﬂ (8.23)
aT(1+v)

where E is the Young’s modulus, b is the Burgers vector, ¢ is the misfit
strain, T is the line energy of the dislocation, v is Poisson’s ratio, f is the
precipitate volume fraction, and r is the precipitate radius. The mismatch
strain, &, is now given by

e SKaa/a) (8.24)

3K+2/1+v)
where K is the bulk modulus, v is Poisson’s ratio, and the other constants
have their usual meanings.

It is important to note here that Eq. (8.23) may be used generally in
precipitation strengthening due to any type of misfit strain. Hence, for
example, ¢ may represent misfit strains due to thermal expansion mismatch.
In cases where the sheared particles are ordered, e.g., intermetallic com-
pounds between metals and other metals (Fig. 8.12), the shearing of the
particles often results in the creation of SFs and APBs. The shear strength-
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ening term then becomes quite significant, and is given by (Gleiter and
Hornbogen, 1965):

n, 02873 (L>1/2

pe b2 G (8.25)

where y is the anti-phase boundary energy, f is the particle volume fraction,
r is the particle radius, b is the Burgers vector, and G is the shear modulus.
As before, the above strengthening equations can be multiplied by the
appropriate Schmid factor to obtain expressions for axial strengthening.

8.6.3 Dislocation Looping Versus Shear

It is important at this stage to examine forms of the precipitation strength-
ening equations, (8.22), (8.23) and (8.25). Two of the expressions for dis-
location cutting [Eqgs (8.23) and (8.25)] show a strength dependence that
varies as r'/?, while the simplest cutting expression [Eq. (8.22)] shows a
dependence on r. However, the strengthening due to dislocation looping
[Equation (8.19)] exhibits dependence on r~'. Hence, as particle size
increases (for the same volume fraction of particles), the strength depen-
dence due to dislocation looping and dislocation shearing will be of forms
shown schematically in Fig. 8.14.

It should be clear from Fig. 8.14 that the stresses required for particle
shearing are lower than those required for particle looping when the particle
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Ficure 8.14 Schematic of the role of precipitation hardening mechanisms in
the overall aging response. (From Hertzberg, 1996. Reprinted with permission
from John Wiley.)
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sizes are below the critical size, r.. Hence, particle shearing will dominate
when the particle sizes are below r. (usually between 10 and 100 nm).
However, above the critical size, r., the stress increment required for dis-
location cutting (Figs 8.10 and 8.12) is greater than that required for dis-
location looping (Fig. 8.11). Hence, it is easier to loop or extrude around the
precipitates, and the effective strengthening mechanism is dislocation loop-
ing (Orowan strengthening) when the average particle size is above the
critical particle radius r. (Fig. 8.14).

The favored strengthening mechanism should, therefore, change from
particle shearing to dislocation looping, as the precipitate size increases. The
increase in the average particle size may be due to heat treatment, which can
give rise to the diffusion-controlled coarsening of precipitates. Since heat
treatments can be used to control the sizes and distributions of precipitates,
it is common in industry to use aging heat treatments to achieve the desired
amounts of precipitation strengthening.

It is important to note here that the above discussion has been based
largely on idealized microstructures with uniform microstructures (precipi-
tate sizes and spacings). This is clearly not the case in real microstructures,
which generally exhibit statistical variations in precipitate size, distribution,
and shape. A statistical treatment of the possible effects of these variables is,
therefore, needed to develop a more complete understanding of precipita-
tion strengthening. Nevertheless, the idealized presentation (based on aver-
age particle sizes and distribution and simple particle geometries) is an
essential first step in the development of a basic understanding of the physics
of precipitation strengthening.

In any case, when the average particle sizes that result from aging heat
treatment schedules have radii that are less than r, the strengths are less
than the peak strength values corresponding to r = r., and the material is
said to be under-aged. If heat treatment results in precipitates with average
radii, r = r., the material has the highest strength, and is described as peak
aged. Aging heat treatment for even longer durations (or higher tempera-
tures) will promote the formation of precipitates with average radii, r > r;
hence, lower strengths that are associated with overaged conditions. The
relative strengths in the underaged, peak aged, and overaged conditions
may also be estimated easily by performing hardness tests.

8.6.4. Precipitation Strengthening of Aluminum
Alloys

One example of the practical use of precipitation strengthening is in the age
hardening of aluminum alloys. Such alloys are typically solution treated (to
dissolve all second phases) and aged (Fig. 8.15) for different durations to
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precipitate out second phase particles with the desired sizes and coherence.
The initial strengths of such alloys increase with increasing particle size,
until they reach peak levels (peak aged condition) where their hardnesses
are maximum (Fig. 8.16). This typically corresponds to the critical particle
radius, r., described above. Beyond r, strengthening occurs by dislocation
looping, and the strength decreases with increasing particle size, as the
annealing duration is increased (Fig. 8.16). The alloys are said to be over-
aged in these conditions. Similarly, aging durations that result in particle
radii below r, correspond to underaged conditions (Figs 8.15 and 8.16).

One classical example of an age-hardened system is the AI-Cu system
(Fig. 8.15). This was first studied during the first half of the 20th century,
and is perhaps the best understood aluminum alloy system. Following a
solution treatment (to remove any cold work or prior precipitates) and
quenching, the Al-Cu system is supersaturated with Cu in solid solution
(Fig. 8.15). Hence, subsequent aging results in the precipitation of Al-Cu
platelets/precipitates, provided that the aging temperatures and durations
are sufficient to promote the nucleation and growth of these new phases
within reasonable periods of time. The nature of the precipitates that form
also depend on the aging temperatures.

The first set of nano-scale particles that form are known as Guinier—
Preston (G-P) zones. These consist of copper atoms that are arranged into
plate-like structures. The G-P zones (Fig. 8.17) are named after the two
scientists (Guinier and Preston) who first discovered them. The first set of

] (a) (b)
L
- o+l
Soluonize {T = salvus lemp )
- a+ §iCuAl)
¥ a0 1
= U salvut (appromimale) -
d H
s H
/ = CiP 1T sesbyuis E Quench Ape{T < slvus 1emp
wl /- ;
/ o oGPl s0bvus
o
s
!///’
i
|44 I L 1 J
n s " [E] n T
Al Wrighl % Ty

Ficure 8.15 (a) Left-hand section of the Al-Cu phase diagram; (b) aging heat
treatment schedule. (From Courtney, 1990. Reprinted with permission from
Pergamon Press.)
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ening of Al-Cu alloys aged at 130° and 190°C. (From Courtney, 1990.
Reprinted with permission from Pergamon Press.)

G-P zones that form are known as G-P I zones. They are ~ 25 atoms in
diameter and are oriented parallel to {100} planes in the face-centered cubic
aluminum solid solution matrix. The G-P I zones are coherent and they
provide moderate strengthening by dislocation shearing. The second set of
G-P zones are ~ 75 atoms wide and ~ 10 atoms thick. They contain an
almost stoichiometric ratio of Al to Cu, and are known as G-P 1I zones.
Further aging results in the formation of metastable partially coherent
or coherent @ precipitates. The 6 phase corresponds to the equilibrium
CuAl, phase, but it also has a different lattice structure. Furthermore, the
maximum (peak) hardness is associated with the presence of both 6 and G-P
I1 zones (Fig. 8.16). Eventually, only # precipitates are present when the
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Ficure 8.17 Schematic of Guinier-Preston zone.

alloys reach the overaged condition in which hardness, tensile strength, and
ductility are reduced on further aging.

Subsequent aging may result in the formation of coarse incoherent 6
precipitates, if aging is carried out between 170° and 300°C. The resulting
material now contains microscale coarse CuAl, precipitates that are visible
under a light microscope. The material is also softer than in the quenched
state, because of the loss of the solid solution strengthening by Cu atoms,
which have now largely diffused from the aluminum matrix to form the
coarse CuAl, precipitates.

The above trends are summarized in Fig. 8.16. Note that the figure
also indicates that the extent of hardening/strengthening increases with
increasing volume fraction of precipitate/increasing copper content, and
that the highest strengths are achieved at lower aging temperatures for
longer aging temperatures and durations.

8.7 DISPERSION STRENGTHENING

Before concluding this section on strengthening, it is important to discuss a
form of particulate strengthening that is known as dispersion strengthening.
Dispersion strengthening is usually associated with incoherent precipitates
that are larger in size than those encountered during Orowan strengthening
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or dislocation cutting. Since the elastic energies of gliding dislocations can
be lowered by interactions with the boundaries of stiff elastic particles at
high temperatures, the dislocations are attracted and pinned by the bound-
aries. This problem was first analyzed by Dundurs and Gundagarajan
(1969) for time-independent deformation. Subsequent work by Srolovitz
et al. (1983, 1984) extended the models to the analyses of diffusion-assisted
relaxation of interfacial stresses that can occur during high-temperature
creep deformation.

Details of the above elasticity models are beyond the scope of the
current text. The interested reader is, therefore, referred to the relevant
literature, which is cited at the end of this chapter. Nevertheless, it is impor-
tant to note here that dispersion strengthening can be engineered to be as
effective as precipitation strengthening.

One important example of dispersion strengthening is that provided by
oxide particles. Oxide dispersion strengthening has been used recently to
strengthen aluminum alloys and nickel-base superalloys. This has been
achieved largely by the addition of Al,O; flakes and ThO, particles to
aluminum and nickel matrices. The overall strengthening from such rela-
tively large incoherent particles is less than that from precipitation strength-
ened alloys at lower temperatures. However, oxide dispersion strengthened
(ODS) alloys retain their strengths at very high temperatures (approaching
the melting points of nickel- and aluminum-base alloys). This is because the
Al,O5; and ThO, particles are morphologically stable at very high tempera-
tures. It is, therefore, possible to design alloys for very high-temperature
applications where intermetallic precipitates would coarsen. This has led to
turbine blade and turbine vane applications of ODS nickel-base superalloys
at temperatures greater than ~ 950°C.

8.8 OVERALL SUPERPOSITION

The above discussion has considered strengthening mostly within an
athermal framework. However, it is important to realize that phase
changes (coarsening/transformations) may change the overall strengthen-
ing contributions from different mechanisms. Dislocation pile-ups may
also be relaxed by thermally assisted climb mechanisms. Furthermore,
cutting and dislocation looping may occur simultaneously within a given
alloy.

In any case, superposition concepts may be used to obtain order-of-
magnitude estimates of the overall strengthening levels when the fractional
contributions from each of the strengthening mechanisms are known
approximately. In such cases, the contributions of the different strengthen-
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ing mechanisms (to the overall strength of an alloy) may be estimated from
expressions of the form:

Ty = T + ATs + Aty + Atgp + ATy (8.26)
or
oy = 0g + Aog + Aog + Aoy, + Aoy (8.27)

where subscripts 0, s, d, gb, and p denote single crystal, solid solution,
dislocation, grain boundary and particle strengthening components, respec-
tively. It is also important to remember that the above expressions neglect
possible interactions between strengthening mechanisms. They are intended
only to provide insights into the sources of dislocation strengthening in
metals and their alloys, i.e., they are not sufficiently well developed to be
fully predictive tools.

8.9 SUMMARY

An introduction to dislocation strengthening mechanisms has been pre-
sented in this chapter. Strengthening was shown to occur by the use of
defects (point defects, surface defects and volume defects in the restriction
of dislocation motion in engineering alloys. A semiqualitative account of the
different types of strengthening mechanisms include: (1) solid solution
strengthening; (2) dislocation strengthening; (3) grain boundary strengthen-
ing; (4) precipitation strengthening, and (5) dispersion strengthening. The
chapter concluded with a brief description of factors that can contribute to
the overall strengths of engineering alloys. It is particularly important to
note that the expressions presented in this chapter are only intended to serve
as semiquantitative guides for the estimation of order-of-magnitude values
of strengthening due to dislocation/defect interactions.
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9

Introduction to Composites

9.1 INTRODUCTION

Two approaches can be used to engineer improved mechanical properties of
materials. One involves the modification of the internal structure of a given
material system (intrinsic modification) by minor alloying, processing, and/
or heat treatment variations. However, after a number of iterations, an
asymptotic limit will soon be reached by this approach, as the properties
come close to the intrinsic limits for any given system. In contrast, an almost
infinite array of properties may be engineered by the second approach which
involves extrinsic modification by the introduction of additional (external)
phases.

For example, the strength of a system may be improved by reinforce-
ment with a second phase that has higher strength than the intrinsic limit of
the “host” material which is commonly known as the “‘matrix.” The result-
ing system that is produced by the mixture of two or more phases is known as
a composite material.

Note that this rather general definition of a composite applies to both
synthetic (man-made) and natural (existing in nature) composite materials.
Hence, concrete is a synthetic composite that consists of sand, cement and
stone, and wood is a natural composite that consists primarily of hemi-
cellulose fibers in a matrix of lignin. More commonly, however, most of
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us are familiar with polymer matrix composites that are often used in mod-
ern tennis racquets and pole vaults. We also know, from watching athletic
events, that these so-called advanced composite materials promote signifi-
cant improvements in performance.

This chapter introduces the concepts that are required for a basic
understanding of the effects of composite reinforcement on composite
strength and modulus. Following a brief description of the different types
of composite materials, mixture rules are presented for composite systems
reinforced with continuous and discontinuous fibers. This is followed by an
introduction to composite deformation, and a discussion on the effects of
fiber orientation on composite failure modes. The effects of statistical var-
iations in fiber properties on the composite properties are then examined at
the end of the chapter. Further topics in composite deformation will be
presented in Chap. 10.

9.2 TYPES OF COMPOSITE MATERIALS

Synthetic composites are often reinforced with high-strength fibers or whis-
kers (short fibers). Such reinforcements are obtained via special processing
schemes that generally result in low flaw/defect contents. Due to their low
flaw/defect contents, the strength levels of whiskers and fibers are generally
much greater than those of conventional bulk materials in which higher
volume fractions of defects are present. This is shown in Table 9.1 in
which the strengths of monolithic and fiber/whisker materials are compared.
The higher strengths of the whisker/fiber materials allow for the develop-
ment of composite materials with intermediate strength levels, i.e., between
those of the matrix and reinforcement materials. Similarly, intermediate
values of modulus and other mechanical/physical properties can be achieved
by the use of composite materials.

The actual balance of properties of a given composite system depends
on the combinations of materials that are actually used. Since we are gen-
erally restricted to mixtures of metals, polymers, or ceramics, most synthetic
composites consist of mixtures of the different classes of materials that are
shown in Fig. 9.1(a). However, during composite processing, interfacial
reactions can occur between the matrix and reinforcement materials.
These result in the formation of interfacial phases and interfaces (bound-
aries), as shown schematically in Fig. 9.1(b).

One example of a composite that contains easily observed interfacial
phases is presented in Fig. 9.2. This shows a transverse cross-section from
a titanium matrix (Ti—15V-3Cr—3Al-3Sn) composite reinforced with car-
bon-coated SiC (SCS-6) fibers. The interfacial phases in this composite
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TaBLE 9.1 Summary of Basic Mechanical/Physical Properties of
Selected Composite Constituents: Fiber Versus Bulk Properties

Young's

modulus Strength®
(GPa) (MPa)
Alumina: fiber (Saffil RF) 300 2000
monolithic 382 332
Carbon: fiber (IM) 290 3100
monolithic 10 20
Glass, fiber (E) 76 1700
monolithic 76 100
Polyethylene: fiber (S 1000) 172 2964
monolithic (HD) 0.4 26
Silicon carbide: fiber (MF) 406 3920
monolithic 410 500

#Tensile and flexural strengths for fiber and monolithic, respectively.

have been studied using a combination of scanning and transmission
electron microscopy. The multilayered interfacial phases in the Ti—15V—
3Cr—3Al-3Sn/SCS-6 composite (Fig. 9.2) have been identified to contain
predominantly TiC. However, some Ti,C and TisSi; phases have also
been shown to be present in some of the interfacial layers (Shyue et al.,
1995).

The properties of a composite can be tailored by the judicious control
of interfacial properties. For example, this can be achieved in the Ti-15V—
3Cr—3Al-3Sn/SCS-6 composite by the use of carbon coatings on the SiC/
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Ficure 9.1 Schematic illustration of (a) the different types of composites and

(b) interfaces and interfacial phases formed between the matrix and reinfor-
cement materials.
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Ficure 9.2 (a) Transverse cross-section of Ti-15V-3Cr-3Al-3Sn composite
reinforced with 35 vol% carbon-coated SiC (SCS-6) fibers and (b) Interfacial
Phases in Ti-15-3/SCS6 composite.

SCS-6 fibers. The hexagonal graphite layers in the carbon coatings tend to
align with axial stress, thus making easy shear possible in the direction of
interfacial shear stress. Hence, the interfacial shear strengths of silicon car-
bide fiber-reinforced composites can be controlled by the use of carbon
coatings that make interfacial sliding relatively easy. Such interfacial sliding
is critical in the accommodation of strain during mechanical loading or
thermal cycling.

Composite properties are also controlled by the selection of consti-
tuents with the appropriate mix of mechanical and physical properties
(Tables 9.1 and 9.2). Since light weight is often of importance in a large
number of structural applications, especially in transportation vehicles
such as cars, boats, airplanes, etc., specific mechanical properties are
often considered in the selection of composite materials. Specific properties
are given by the ratio of a property (such as Young’s modulus and
strength) to the density. For example, the specific modulus is the ratio
of Young’s modulus to density, while specific strength is the ratio of
absolute strength to density.

It is a useful exercise to compare the absolute and specific properties in
Table 9.2. This shows that ceramics and metals tend to have higher absolute
and specific moduli and strength, while polymers tend to have lower abso-
lute properties and moderate specific properties. In contrast, polymer matrix
composites can be designed with attractive combinations of absolute specific
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TaABLE 9.2 Summary of Basic Mechanical/Physical Properties of Selected Composite Constituents: Constituent

Properties
Specific  Specific
Young’s Toughness, modulus  strength
Density modulus  Strength?® Ductility Kic [(GPa)/ [(MPa)/
(mg/m°) (GPa) (MPa) (%) (MPam'"? (mg/m®)1  (mg/m?)]
Ceramics
Alumina (Al,053) 3.87 382 332 0 4.9 99 86
Magnesia (MgO) 3.60 207 230 0 1.2 58 64
Silicon nitride (SizN,) 166 210 0 4.0
Zirconia (ZrC,) 5.92 170 900 0 8.6 29 152
$3-Sialon 3.25 300 945 0 7.7 92 291
Glass—ceramic Silceram 2.90 121 174 0 2.1 42 60
Metals
Aluminum 2.70 69 77 47 26 29
Aluminum-3%2Zn-0.7%Zr 2.83 72 325 18 25 115
Brass (Cu-30%Zn) 8.50 100 550 70 12 65
Nickel-20%Cr-15%Co 8.18 204 1200 26 25 147
Mild steel 7.86 210 460 35 27 59
Titanium-2.5% Sn 4.56 112 792 20 24 174
Polymers
Epoxy 1.12 4 50 4 1.5 4 36
Melamine formaldehyde 1.50 9 70 6 47
Nylon 6.6 1.14 2 70 60 18 61
Poly(ether ether ketone) 1.30 4 70 3 54
Poly(methyl methacrylate) 1.19 3 50 3 1.5 3 42
Polystyrene 1.05 3 50 2 1.0 3 48
Poly(vinyl chloride) rigid 1.70 3 60 15 4.0 2 35

3Strength values are obtained from the test appropriate for the material, e.g., flexural and tensile for ceramics and metals,
respectively.
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strength and stiffness. These are generally engineered by the judicious selec-
tion of polymer matrices (usually epoxy matrices) and strong and stiff
(usually glass, carbon, or kevlar) fibers in engineering composites, which
are usually polymer composites.

The specific properties of different materials can be easily compared
using materials selection charts such as the plots of E versus p, or o; versus p
in Figs 9.3 and 9.4, respectively. Note that the dashed lines in these figures
correspond to different ““merit” indices. For example, the minimum weight
design of stiff ties, for which the merit index is E/p, could be achieved by
selecting the materials with the highest E/p from Fig. 9.3. These are clearly
the materials that lie on dashed lines at the top left-hand corner of Fig. 9.3.
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Ficure 9.3 Materials selection charts showing attractive combinations of spe-
cific modulus that can be obtained from engineering composites.
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Ficure 9.4 Materials selection charts showing attractive combinations of spe-
cific strength that can be obtained from engineering composites.

Similarly, the materials with the highest specific strengths, or/p, are the
materials at the top left-hand corner of the strength materials selection
chart shown in Fig. 9.4. In both charts (Figs 9.3 and 9.4), polymer matrix
composites such as carbon fiber-reinforced plastics (CFRPs), glass fiber-
reinforced plastics (GFRPs), and kevlar fiber-reinforced plastics (KFRPs)
emerge clearly as the materials of choice. For this reason, polymer matrix
composites are often attractive in the design of strong and stiff lightweight
structures.

A very wide range of synthetic and natural composite materials are
possible. Conventional reinforcement morphologies include: particles (Fig.
9.5), fibers [Fig. 9.6(a)], whiskers [Figs 9.6(b) and 9.6(c)], and layers, Fig.
9.6(d). However, instead of abrupt interfaces which may cause stress con-
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centrations, graded interfaces may be used in the design of coatings and
interfaces in which the properties of the system are varied continuously from
100% A to 100% B, as shown schematically in Fig. 9.7. Such graded transi-
tions in composition may be used to avoid abrupt changes in stress states
that can occur at nongraded interfaces.

Furthermore, composite architectures can be tailored to support loads
in different directions. Unidirectional fiber-reinforced architectures [Fig.
9.6(a)] are, therefore, only suitable for structural applications in which the
loading is applied primarily in one direction. Of course, the composite fiber
may be oriented to support axial loads in such cases. Similarly, bidirectional
composite systems (with two orientations of fibers) can be oriented to sup-
port loads in two directions.

The fibers may also be discontinuous in nature [Figs 9.6(b) and 9.6(c)],
in which case they are known as whiskers. Whiskers generally have high
strengths due to their low defect densities. They may be aligned [Fig. 9.6(b)],
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Ficure 9.5 Schematic illustration of particulate reinforcement morphologies:
(a) spherical; (b) irregular; (c) faceted.
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Ficure 9.6 Examples of possible composite architectures: (a) unidirectional

fiber reinforcement; (b) aligned whisker reinforcement; (c) randomly oriented
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Ficure 9.7 Schematic illustration of graded reinforcements.
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or randomly oriented, Fig. 9.6(c). The reader may recognize intuitively that
aligned orientations of whiskers or fibers will give rise to increased strength
in the direction of alignment, but overall, to anisotropic properties, i.e.,
properties that vary significantly with changes in direction. However, ran-
dom orientations of whiskers will tend to result in lower average strengths in
any given direction, but also to relatively isotropic properties, i.e., properties
that do not vary as much in any given direction.

In addition to the synthetic composites discussed above, several com-
posite systems have been observed in nature. In fact, most materials in
nature are composite materials. Some examples of natural composites
include wood and bone. As discussed earlier, wood is a natural composite
that consists of a lignin matrix and spiral hemicellulose fibers. Bone, on the
other hand, is a composite that consists of organic fibers, inorganic crystals,
water, and fats. About 35% of bone consist of organic collagen protein
fibers with small rod-like (5 nm x 5 nm x 50 nm) hydroxyapatite crystals.
Long cortical/cancellous bones typically have low fat content and compact
structures that consist of a network of beams and sheets that are known as
trabeculae.

It should be clear from the above discussion that an almost infinite
array of synthetic and artificial composite systems are possible. However,
the optimization of composite performance requires some knowledge of
basic composite mechanics and materials concepts. These will be introduced
in this chapter. More advanced topics such as composite ply theory and
shear lag theory will be presented in Chap. 10.

9.3 RULE-OF-MIXTURE THEORY

The properties of composites may be estimated by the application of simple
rule-of-mixture theories (Voigt, 1889). These rules can be used to estimate
average composite mechanical and physical properties along different direc-
tions. They may also be used to estimate the bounds in mechanical/physical
properties. They are, therefore, extremely useful in assessment of the com-
binations of basic mechanical/physical properties that can be engineered via
composite reinforcement. This section will present constant-strain and con-
stant-stress rules of mixture.

9.3.1 Constant-Strain and Constant-Stress Rules of
Mixtures

An understanding of constant-strain and constant-stress rules of mixtures
may be gained by a careful study of Fig. 9.8. This shows schematics of the
same composite system with loads applied parallel [Fig. 9.8(a)] or perpen-
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dicular [Fig. 9.8(b)] to the reinforcement layers. In the case where the loads
are applied parallel to the reinforcement direction [Fig. 9.8(a)], the strains in
the matrix and reinforcement layers must be equal, to avoid relative sliding
between these layers.

In contrast, the strains in the individual matrix and reinforcement
layers are different when the loads are applied in a direction that is perpen-
dicular to the fiber orientation, Fig. 9.8(b). Since the same load is applied to
the same cross-sectional area in the reinforcement and matrix layers, the
stresses in these layers must be constant and equal for a given load. The
loading configuration shown in Fig. 9.8(b), therefore, corresponds to a
constant stress condition.

Let us now return to the constant strain condition shown schemati-
cally in Fig. 9.8(a). If the initial length of each of the layers, L, and applied
load, P, is partitioned between the load in the reinforcement, P,, and the

al
@ P.=P,+F ®

f A= Al + A

Ficure 9.8 Schematic illustration of loading configurations for (a) constant-
strain rule of mixtures and (b) constant-stress rule of mixtures.
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load in the matrix, P, then simple force balance gives

P.=P,+ P 9.7
However, from our basic definitions of stress, o, we know that
P
o= (9.2)

where P is the load and A4 is the cross-sectional area. Also, for uniaxial
elastic deformation, Hooke’s law gives

o= Ee (9.3)

where E is Young’s modulus and ¢ is the uniaxial strain.

Substituting Eqgs (9.2) and (9.3) into Eq. (9.1), and using subscripts c,
m, and r to denote the composite, matrix, and reinforcement, respectively,
gives

PC = o‘CAc = UmAm + aO'r (948)
and
P. = EcecA; = EnemAm + EcelAr (9.4b)

where A, is the area of composite, 4,, is the area of matrix, and A, is the
area of the reinforcement. Noting that the strains in the composite, matrix,
and reinforcement are equal, i.e., &, = &, = &,, we may simplify Eq. (9.4b)
to obtain:

Am A
= () (2)e 9

However, the ratio (4,,/A4.) corresponds to the area or volume frac-
tion of matrix, V,,, while the area fraction (4,/A4.) corresponds to the areca
or volume fraction of reinforcement, V.. Equation (9.5) may, therefore, be
simplified to give:

E. = Vi Eyn + V.E, (9.6)
Similarly, substituting 7, and V,, into Eq. (9.4a) gives the strength of the
composite, o, as

o, = Voo + Vio, 9.7)

Equations (9.6) and (9.7) are the respective constant-strain rule-of-
mixture expressions for composite modulus and composite strength. They
represent the upper bound values for composite modulus and strength for

the composite system shown schematically in Fig. 9.8. Furthermore, the
constant-strain rule-of-mixture equations indicate that upper-bound com-
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posite properties are averaged according to the volume fraction of the com-
posite constituents.

The fraction of the load supported by each of the constituents also
depends on the ratio of the in moduli to the composite moduli. Hence, for
most reinforcements, which typically have higher moduli than those of
matrix materials (Tables 9.1 and 9.2) most of the load is supported by the
fibers, since:

A_yE
P, "E,

Substituting typical numbers for engineering composites (mostly poly-
mer matrix composites reinforced with ceramic fibers), E./E, ~ 10 and
V, ~0.55, then P,/P. to 0.92. Hence, a very large fraction of the applied
load is supported by the fibers due to their higher moduli.

Let us now consider the constant-stress rule-of-mixtures condition
shown schematically in Fig. 9.8(b). In this case, the stresses are equal in
the composite, matrix and reinforcement, i.e., o, = o, = o,. However, the
composite displacement, A, is now given by the sum of the displacement in
the matrix, A{,,, and the displacement in the reinforcement, A¢,. Hence, the
composite displacement, A¢., may be expressed as

Aly = Al + AL, (9.9

(9.8)

Noting that the engineering strain, ¢, is defined as the ratio of length exten-
sion, Af, to original length, £, we may write:

ecle = bnem + Lrer (9.10)

Since the area or volume fractions now correspond to the length frac-
tions of matrix and reinforcement, we may write

V,, =™ 9.11a)
Le
and
vt (9.11b)
Lo

Dividing both the left- and right-hand sides of Eq. (9.10) by ¢., and
noting that V, = £,,/¢. and V, = £,/¢. [from Egs (9.11a) and (9.11b)] gives

¢ ¢
o = (E—’“>sm L <£—f>e, (9.12a)
Cc Cc

g = Vimem + Vig, (9.12b)

or
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The composite strain is, therefore, averaged between the matrix and reinfor-
cement for the constant stress condition. The composite modulus for the
constant stress condition may be obtained by substituting ¢ = ¢/E into
Eq. (9.12b):

_ %

=E Vi E —I—VrE (9.13)
However, since o, = o, = 0;, Eq. (9.13) reduces to
1T Vi W

or inverting Eq. (9.14a) gives
EnE:

E —— -mr 9.14b
°~V.E + VE, (9.14b)

Equation (9.14b) represents the loci of lower bound composite moduli for
possible reinforcement volume fractions between 0 and 1 (Fig. 9.9). Note that
the constant-strain rule-of-mixtures estimates represent the upper bound
values in Fig. 9.9. Furthermore, the actual composite moduli for most sys-
tems are in between the upper and lower bound values shown schematically
in Fig. 9.9. For example, particulate composites will tend to have composite
moduli that are closer to the lower bound values, as shown in Fig. 9.9.

The expressions for modulus may be generalized for the wide range of
possible composite materials between the constant strain (iso-strain) and
constant stress (iso-stress) conditions (Fig. 9.9). This may be accomplished
by the use of an expression of the form:

(Xc)n = Vm(Xm)n + Vr(Xr)n (9.15)

where X is a property such as modulus, 7 is a number between +1 and —1,
and subscripts ¢, m, and r denote composite, matrix, and reinforcement,
respectively. Equation (9.15) reduces to the constant strain and constant
stress expressions at the limits of n = +1 and n = —1.

Also, the wide range of possible composite properties may be esti-
mated for actual composites for which values of n are between —1 and
+1. Furthermore, the values of n for many composites are close to zero.
However, there are no solutions for n = 0, for which Eq. (9.15) gives the
trivial solution 1 = 1. Iterative methods are, therefore, required to obtain
the solutions for n = 0.

Although the discussion so far has focused largely on iso-stress and
iso-strain conditions, the above rule-of-mixture approach can be applied
generally to the estimation of physical properties such as density, thermal
conductivity, and diffusivity. The rule-of-mixture expressions can, therefore,
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Ficure 9.9 Schematic illustration of upper and lower bound moduli given by
constant-strain and constant-stress mixture rules. Note that particulate-rein-
forced composites have moduli that are closer to lower bound values. (From
Ashby and Jones, 1984. Reprinted with permission from Pergamon Press.)

be used to estimate the effects of reinforcements on many important physi-
cal properties. They may also be used to estimate the bounds in a wide range
of physical properties of composite materials. Such rule-of-mixture calcula-
tions are particularly valuable because they can be used in simple ‘‘back-of-
the-envelope’ estimates to guide materials selection and design.

Finally, in this section, it is important to note that the simple aver-
aging schemes derived above for two-phase composite systems can be
extended to a more general case of any n-component system (where
n > 2). This gives

(X)" =Y Vi(X)" (9.16)
i=1

where X; may correspond to the physical/mechanical properties of matrix,
reinforcement, or interfacial phases (Figs 9.1 and 9.2).

9.4 DEFORMATION BEHAVIOR OF UNIDIRECTIONAL
COMPOSITES

Let us start this section by considering the uniaxial deformation of an
arbitrary unidirectional composite reinforced with stiff elastic fibers.
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During the initial stages of deformation, both the matrix and fibers deform
elastically (Fig. 9.10). Furthermore, since the axial strains in the matrix and
fiber are the same (iso-strain condition), then the stresses for a given strain,
o(¢g), are given simply by Hooke’s law to be

oc(e) = Ece = VinEme + ViEse (9.17a)
om(e) = ViEme (9.17b)
o¢(e) = ViEse (9.17¢)

where o(e) denotes the stress corresponding to a given strain, &, and
subscripts ¢, m, and f correspond, respectively, to the composite, matrix,
and fiber. The composite modulus in the elastic regime may also be
estimated from Eq. (9.17a) by dividing by the uniaxial strain, &. Also,
each of the constituents in the composite will deform elastically until a
critical (yielding or fracture) condition is reached in the matrix, fiber, or
interface.

If we now consider the specific case of a ductile matrix composite
reinforced with strong brittle fibers, matrix yielding is most likely to precede
fiber fracture. In this case, the onset of composite yielding will correspond to
the matrix yield strain, &y, as shown schematically in Fig. 9.11. Also, the
composite yield stress, and the stresses in the matrix and fiber are given,
respectively, by

0c(emy) = Vinom(emy) + Vior(emy) (9.18a)

_Fibers
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&
0
>
o
a
—
&
&

Et Composite
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Ficure 9.10 Stress—strain curves associated with uniaxial deformation of stiff
elastic composite.
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Ficure 9.11 Schematic illustration of stages of deformation in an elastic—
plastic composite.

Gm(gmy) = Vmam(gmy) (9.18b)

01(emy) = Viot(emy) (9.18¢c)

where the subscript “my” corresponds to the matrix yield stress and sub-
scripts ¢, m, and f denote composite, matrix, and fiber, respectively.
Following the onset of matrix yielding, codeformation of the matrix and
fibers continues until the fiber fracture strain, g, is reached. The stresses
corresponding to this strain are again given by constant-strain rule-of-
mixtures to be

0c(&cf) = Vinom(ecr) + Vior(ecr) (9.19a)
om(Ect) = Vinom(ecr) (9.19b)
of(ecf) = Vior(eer) = ViEsecs (9.19¢)

where all the above variables have their usual meaning. It is important to
note that the onset of fiber fracture in many composite systems often coin-
cides with the onset of catastrophic failure in the composite, Fig. 9.12(a).
However, in other composites, matrix deformation may continue after fiber
fracture. Such extended matrix deformation may continue until final failure
occurs by matrix fracture. The resulting stress—strain behavior is shown
schematically in Fig. 9.12(b).

The behavior shown schematically in Figs 9.11 and 9.12 may occur in
either a ductile metal/polymer or matrix composites reinforced with strong/
stiff elastic fibers. However, in the case of brittle matrix composites, such as
a ceramic matrix or thermoset polymer matrix composites reinforced with
strong/stiff fibers, the composite deformation is often restricted to the elastic
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Ficure 9.12 Schematic illustration of possible stress—strain curves in elastic—
plastic composites: (a) composite failure coincides with fiber failure; (b)
matrix deformation continues after fiber fracture. (From Courtney, 1990.
Reprinted with permission from McGraw-Hill.)

regime, i.e., elastic deformation is truncated by composite failure. The above
summary therefore provides a general framework for an appreciation of
composite deformation in the different types of unidirectional composites
that can be obtained by reinforcement with strong, brittle fibers.

9.5 MATRIX VERSUS COMPOSITE FAILURE MODES
IN UNIDIRECTIONAL COMPOSITES

Depending on the volume fraction of matrix and fiber, and the ductilities of
the matrix and fiber materials, different failure modes may occur in unidir-
ectional composite materials. The composite ““strength’ will also depend on
the sequence of matrix and fiber fracture. If fiber fracture occurs before
matrix fracture, then the composite strength, o., is given simply by the
matrix contribution to be

0c = Vinom(eme) (9.20)

where o, (er) 1s the stress in the matrix at the matrix fracture strain, &gy.
Conversely, if matrix fracture somehow occurs before fiber failure, then the
composite strength is given by the remaining fiber bundle strength:

oc = Vior(ecr) (9.21)
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Finally, if matrix and fiber failure occur simultaneously at the same strain,
&., then the composite fracture strength is given simply by constant-strain
rule of mixtures to be

o = Vimom(ec) + Vsor(ec) (9.22)

The above summary provides a simple picture of the application of con-
stant-strain rule of mixtures to the analysis of possible failure modes in
unidirectional composites. However, it neglects the effects of stress concen-
trations (due to reinforcement geometries) and geometric constraints that
are inherent in composite deformation. Nevertheless, such simple under-
standing of composite deformation and failure phenomena is an essential
prerequisite to the development of an intuitive understanding of composite
behavior.

In the case of fiber-reinforced composites, the failure modes are
strongly affected by the volume fraction of fiber. This is illustrated in Fig.
9.13 in which the stress levels corresponding to matrix-dominated failure
(composite failure at the matrix fracture strain) and composite-dominated
failure are plotted. The composite failure stress increases linearly with
increasing fiber volume fraction, since the fiber strength is generally greater
than the matrix strength. However, the stress for matrix-dominated failure
decreases continuously with increasing fiber volume fracture, since the
matrix volume fraction undergoes a corresponding decrease as the fiber
volume fraction increases (V, = 1 — V5).

Fig. 9.13 shows that composite strength is determined by the matrix-
dominated failure locus for small fiber volume fractions. This is because the
stresses required for matrix failure in this regime exceed those required for
composite failure at low fiber volume fractions. The fiber volume fraction
above which the composite failure stress exceeds the matrix-dominated fail-
ure stress is denoted by V,;, in Fig. 9.13. This is obtained by equating the
equation for composite failure Eq. (9.22) to that for matrix-dominated fail-
ure, Eq. (9.20):

Veot(ecr) + (1 = Vo)om(eer) = (1 — Vo)om(ems) (9.23a)
or

Gm(gmf) - Um(gcf)
— 9.23b
© = 1(eat) + Om(Emt) — Om(Eer) (9-23b)

Similarly, we may obtain a condition for the minimum fiber volume
fraction, Vy;,, at which the composite fracture strength, o.(e,r), exceeds the
matrix fracture strength, oy, (gy¢):

om(Emt) = (1 = Vimin)om(ecs) + Vininot(ecr) (9.24a)
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Ficure 9.13 Loci of stress levels corresponding to matrix-dominated and
composite failure modes.

or

Om (Smf) —Om (Scf)
= 9.24b
01(eet) — Om(Eer) (9.24b)

Typical values for V., and V,;, range between 0.02 and 0.10. Hence,
relatively small volume fractions of fiber reinforcement are needed to
improve the strengths of unidirectional fiber-reinforced composites, com-
pared to those of the matrix. Also, composite failure modes are likely to
occur in composites with volume fractions greater than ¥, (Fig. 9.13).

9.6 FAILURE OF OFF-AXIS COMPOSITES

So far, we have focused primarily on the deformation behavior of unidirec-
tional fiber-reinforced composites. However, it is common in several appli-
cations of composite materials to utilize fiber architectures that are inclined
at an angle to the loading axis. Such off-axis composites may give rise to
different deformation and failure modes, depending on the orientation of
the fibers with respect to the loading axis.

To appreciate the possible failure modes, let us start by considering the
loading of the arbitrary off-axis composite shown schematically in Fig. 9.14.
The uniaxial force vector, F, may be resolved into two components: F cos ¢
and F sin ¢. The component F cos ¢ results in loading of the fibers along
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the fiber axis. Since the area normal to the fibers is 4,/ cos ¢, then the force
acting on the plane parallel to the fiber direction is given by

Fcos¢ F 2 2
0y=-———————=-——C0S" ¢p = 0y COS 9.25
? 7 (Ag/cos¢) A ¢ =0 ¢ (9.25)

where o, is the stress along the fiber direction, is the angle of inclination of
the fibers, o, is the applied axial stress (o = F/A4y), and the other variables
have their usual meaning. The resolved component of the applied stress
along the fiber axis is given by Eq. (9.25). This results in the deformation
of planes in the fiber and matrix that are perpendicular to the fiber direction.

Since the fibers are brittle, fiber failure will eventually occur when o, is
equal to the tensile strength of a composite inclined along the 0° orientation,
i.e., at a stress level corresponding to the strength of a unidirectional fiber-
reinforced composite. If we assume that this tensile strength is given by
(T.S.)y, then the tensile strength corresponding to fiber failure in a compo-
site reinforced with fibers inclined at an angle, ¢, is given by Eq. (9.25) to be

_(T.S)

(TS = s

(9.26)

Since cos ¢ is less than 1 for ¢ > 0, (T.S.), will increase with increasing ¢
between 0 and 90°. Hence, the composite strength will increase initially with
increasing ¢, for small values of ¢, as shown in Fig. 9.15.

Ficure 9.14 Arbitrary off-axis composite configuration showing deformed
areas.
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In addition to the axial loading on the fibers, the force component,
F cos ¢, will induce shear stresses on the planes that are parallel to the fiber
directions. The matrix shear force, F cos ¢, will act on cross-sectional areas
of magnitude A,/ sin ¢. Hence, the matrix shear stress, 7, is given by

_ Fcos¢ _i. _ .
%_W_Aosm¢cos¢—aosm¢008¢ (9.27)

In ductile matrix composites, the applied shear stress may cause matrix
yielding to occur when the matrix shear yield strength, z,,y, is reached. For
many materials, 7, is approximately equal to half of the uniaxial matrix
yield strength, oy,,,. More precisely, the shear yield stress is given by the Von
Mises yield criterion to be oy/ V3, where o, is the uniaxial yield stress. In any
case, the applied stress required to cause failure by matrix yielding is given
by

Tmy
_ 2
i sin¢cos ¢ (9.28)

Variations in o for matrix yielding by shear are illustrated in Fig.
9.15. Note that o for matrix shear failure is initially greater than the corre-
sponding values for fiber failure for small values of ¢. However, as ¢
increases, a critical condition is reached at which the stresses required for

Composite Strength,

Fiber Matrix
failure ; shear yielding

iJ

Normal sin 2 P
matrix yielding

Angle, ¢

Ficure 9.15 Dependence of composite strength and failure modes on fiber
orientation.
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fiber failure and matrix yielding are equal. This critical condition (for the
transition from fiber-dominated failure to matrix shear yielding) is given by

% ____Tmy (9.29a)
cos“¢ sin¢gcos¢
or
¢ =tan™’ (m) (9.29b)
00

where ¢ is the angle at which the transition occurs, oy is the strength of the
composite in the zero-degree orientation, i.e., oy = (T.S.)g = Viom(er)+
Vior(gr). Typical values for ¢, (Fig. 9.15) for most composites are below
10°. It is important to note here that fiber fracture dominates for ¢ > ¢,
while matrix shear yielding occurs for ¢ > ¢,;, as shown in Fig. 9.15.

At even higher fiber angles (¢ > ¢,;), a second transition can occur
from matrix shear yielding to matrix failure in a direction normal/perpen-
dicular to the fiber direction. The matrix normal stresses can be found by
dividing the load component, F sin ¢, by the area 4,/ sin ¢ (Fig. 9.14). The
normal matrix stress, o,, is thus given by (Fig. 9.14) to be

_Fsing _ F

On (Ao/ sing) ~ Ag —sin’¢ (9.30)
For ductile matrix composites, matrix failure normal to the fiber direction
occurs when o, is equal to the uniaxial matrix yield strength, oy,,. Hence,
rearranging Eq. (9.30), and substituting o,,,, with o;, gives

Omy
oy = 9.31
® " sinZg ®-31)

where oy is the applied stress required for failure to occur by normal matrix
yielding. This stress becomes lower than that required for matrix shear
yielding at higher values of o (Fig. 9.15). The transition from matrix
shear to normal matrix yielding occurs when o for matrix shear and normal
matrix yielding are equal. From Eqs (9.28) and (9.31), this is given by

Omy Tmy
= .32
sin?¢ singcos¢ (9.323)
or
-1 Tmy
¢ep = cot <—) (9.32b)
O'my

Since 7,y ~ oyy/2, typical values for ¢c2 at the transition from matrix
shear to normal matrix yielding are ~ cot™'(1/2) ~ 63.4°. In summary, the
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composite strength depends strongly on fiber orientation angle, o, as shown
schematically in Fig. 9.15. Also, the strength dependence on ¢ will be deter-
mined by the underlying mechanisms of failure, and the critical conditions
required for the transition from one mechanism to another.

9.7 EFFECTS OF WHISKER/FIBER LENGTH ON
COMPOSITE STRENGTH AND MODULUS

So far, our discussion has focused on the behavior of long fiber-reinforced
composites. However, such composites are often too expensive for practical
applications, in spite of the attractive combinations of strength and stiffness
that can be engineered by the judicious selection of appropriate fiber and
matrix materials. In cases where moderate strength/stiffness and low/mod-
erate cost are of the essence, it may be desirable to use composites that are
reinforced with short fibers, which are also referred to as whiskers.

An example of a titanium boride (TiB) whisker-reinforced titanium
matrix composite is presented in Fig 9.16. This shows aligned TiB whiskers
in a titanium alloy matrix. The whiskers have been aligned by an extrusion
process (Dubey et al., 1997). The resulting composite properties are inter-
mediate between those of the titanium matrix alloy and an equivalent fiber-
reinforced composite. However, the whisker-reinforced composite is much
cheaper than possible fiber-reinforced composite alternatives.

Let us now return to answer the original question of why the whisker-
reinforced composite has lower strength and modulus. We will begin by
extracting a representative volume element or unit cell from the whisker-
reinforced composite structure. This is illustrated in Figs 9.17(a) and (b).
The representative volume element or unit cell is a microstructural config-
uration that captures the volume fraction and spatial geometry of the com-
posite. Once it is obtained, we may proceed to do a force balance analysis to
determine the stresses along the fibers.

Consider the conditions required for horizontal force equilibrium in
the free body diagram shown in Figs 9.17(c) and (d). For force equilibrium,
the axial force in the whisker must be balanced by the shear force in the
matrix or interface, Fig. 9.17(d):

2
%(a +do - o) — t(zd)dx = 0 (9.33)
Simplifying Eq. (9.32) and integrating between appropriate limits give
x X4t
J do = J —dx (9.34)
0 o d
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Ficure 9.16 (a) SEM micrograph of Ti-6Al-4V-0.5B (704°C/1 h/AC) showing
a + B Widmanstatten structure and second-phase TiB whiskers aligned in the
extrusion direction; (b) TEM micrograph of the undeformed Ti-6Al-4V-0.5B
showing « grains in a 8 matrix as well as TiB whiskers. Note that AC corre-
sponds to air cool and the Widmanstatten structure consists of aligned colo-
nies of x platelets with prior B grains. (From Dubey et al., 1997. Reprinted with
permission from Elsevier.)
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Ficure 9.17 Sections of (a) whisker-reinforced composite, (b) half of a repre-
sentative whisker, (c) loading, and (d) free body diagram.
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For regions in the middle of the fiber, T can be assumed to be constant.
However, close to the fiber ends, T may vary significantly in the matrix.
Similarly, the stresses at the ends of the whiskers/fibers are equal to zero.
Hence, neglecting the variations in t near the fiber ends, Eq. (9.34) may be
integrated to obtain the following approximate solution for the stress in the
fiber, oy:

o = (%’)x (9.35)

Equation (9.35) suggests a linear increase in stress with increasing distance,
x, from by the fiber ends. By symmetry, a similar linear increase in oy will be
expected from the other end of the short fiber shown in Fig. 9.17. Hence, for
small fiber/whisker lengths (¢ < £.), the stress distribution along the whisker
will have a triangular profile, as shown in Fig. 9.18. The peak fiber stress for
short fibers/whiskers will, therefore, occur at the center of the whisker/short
fiber.

As the whisker length increases, the peak stress at the center of the
whisker increases, as shown in Fig. 9.18. This continues until the peak stress
reaches the value that would be expected in a long fiber under constant strain
conditions, o¢(er). The fiber length corresponding to this critical condition
corresponds to ¢, in Fig. 9.18. For values of ¢ > £, the linear increase in
stress occurs from both ends of the whisker/short fiber until or(gy) is reached
at x = £./2. A constant fiber stress is then maintained for values of x > ¢./2.
This is illustrated in Fig. 9.18 with the trapezoidal profiles for which £ > £..

It should be clear from Fig. 9.18 that the average fiber stress, 67, depends
on whether the fiber length is less than or greater than ¢.. For fibers with
lengths greater than €., the average fiber stress is given by Fig. 9.18a to be:

o — af(ec)[1 - (%)] + %m(sc)[(%)] (9.36)

Hence, applying the rule of mixtures to the composite with £ > £, gives the
composite strength to be

23

oc(ec) = V5ot + Vimom(ec) = Vfo'f(gc)|:1 - <2£

)} + Vinom(ee)  (9.37)
where o,(¢.) is the stress in the composite at the critical condition at which
long-fiber conditions are reached, and o¢(e,) are the corresponding stresses
in the fiber and matrix, respectively. The expression [£ — (£./2£)] can be
regarded as a fiber efficiency factor, n;. Hence, substituting n; into Eq.
(9.37) gives

oc(ec) = n¢Vsor(ec) + Vimom(ec) (9.38)

Copyright © 2003 Marcel Dekker, Inc.



o)

O

(v}

a
@iy!=1
(9] D]
(iiyI=1
{1 _}
(i) f=t =4

(iV).’:")"

Ficure 9.18 Stress variations along the length of a whisker/short fiber. (From
Matthews and Rawlings, 1994. Reprinted with permission from Chapman and
Hall.)

Similarly, we may consider the case of a subcritical short fiber/whisker-
reinforced composite with £<¢, (Fig. 9.18). In this case, the average fiber
stress for the triangular profile is given by

1

_ 1

As before, the composite stress is given by simple rule of mixtures to be
_ 1 1
0c(8) = Vinom(e) + Vsoi(e) = Vinom(e) + 2 Vfof(s)g_ (9.40)
C
Also, £/(2¢.) may be considered to be a fiber efficiency factor, n;, for
whiskers of length, £<{.. Hence, Eq. (9.40) may now be expressed as
0¢(€) = Vinoc(e) + ns Vsor(e) (9.47)

The strengths of composites with whisker geometries may, therefore, be
expressed in terms of constant-strain rule of mixtures and fiber efficiencies.
Furthermore, expressions for composite moduli may be derived by noting
that o = Ee for the composite, matrix, and fibers:

Ec = VinEm + ns ViEs (9.42)
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Equation (9.42) applies to all lengths of whiskers (£<{¢. and ¢ > ¢£,.)
provided that the appropriate expressions are used in the estimation of ;.
So far, the equations presented in this section have been derived for
aligned whiskers, as shown in Figs 9.17 and 9.18. However, in cases where
the whiskers are randomly oriented [Fig. 9.6(c)], an orientation efficiency
factor, 7y, must be introduced (Matthews and Rawlings, 1994). Detailed
derivations of 7, are beyond the scope of this text. It is simply sufficient
to note here that the whisker orientation factors account for the average
decrease in composite strength (in any given direction) due to the random
orientations of the fibers. When this is taken into account, the modified rule-
of-mixture expressions for composite strength and modulus are given by

0c(€) = Vinom(e) + nons Vsor(e) (9.43)
and
E. = VmEp + nons ViE; (9.44)

Typical values of 7, are 0.375 for random in-plane two-dimensional
arrays and 0.2 for three-dimensional random arrays. Also, 5, is 1 for aligned
longitudinal whiskers, and values of n; are between 0 and 1.

9.8 CONSTITUENT AND COMPOSITE PROPERTIES

The rule-of-mixture expressions presented in the preceding sections can be
used to facilitate our understanding of the effects of the constituents on
composite strength and modulus. In most engineering composites, polymer
or metal matrices are reinforced with strong/brittle fibers. However, our
discussion in this section will be more general in nature. We will examine
the properties of composite constituents, and how the constituent properties
contribute to composite behavior.

9.8.1 Fibers and Matrix Materials

In Chap. 6, we showed that the theoretical strength of a solid is ~ G/2m,
where G is the shear modulus. However, due to the existence of defects, the
actual measured strengths of solids are generally a few orders of magnitude
below the predicted theoretical strengths. In an effort to develop strengths
that are closer to theoretical values, special processing techniques have been
developed for the fabrication of composite fibers and whiskers with low
defect content (small crack sizes).

The importance of defect size is illustrated in Fig. 9.19 in which com-
posite strength is plotted against flaw size. Since the maximum possible
crack size per unit volume increases with increasing fiber size, fiber strengths
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Ficure 9.19 Variation in whisker/fiber strength as a function of flaw size.

will decrease with increasing fiber length. This is because failure is more
likely to initiate from larger flaws, which are more likely to exist in longer
fibers. The mechanical properties of fibers, therefore, exhibit statistical var-
iations. These statistical variations are often well described by Weibull dis-
tributions (Weibull, 1951).

Typical values of the strengths and moduli for selected composite
fibers are compared with those of their monolithic counterparts in Table
9.1. Note that the fiber strengths are approximately one order of magnitude
greater than the strengths of the monolithic materials. Also, depending on
the molecular orientation and structure of organic fibers (such as carbon
and polyethylene fibers), the moduli of the fibers and their monolithic coun-
terparts may be significantly different. This is because the long-chain poly-
mer structures have stiffnesses that depend on how their covalent bonds and
Van der Waals’ forces are oriented with respect to the applied loads. Stiff
polymer fibers can, therefore, be engineered by the careful orientation of
strong covalent bonds along the fiber direction.
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TaBLE 9.3 Typical Mechanical and Physical Properties of Bulk
Monolithic Materials

Young’'s Yield Tensile
modulus stress strength Ductility

(GPa) (MPa)  (MPa) (%)
Al-Cu-Mg (2618A) 74 416 430 25
Al-Cu-Mg + 20%Al,04 90 383 0.8
Al-Zn-Mg ~70 273 11.5
Al-Zn-Mg + 25%Al,03 80 + 266 1.5
Titanium (wrought) 120 200 400 25
Titanium +35%SiC 213 1723 <1
Ti-Al-V (wrought) 115 830 1000 8
Ti-Al-V+35%SiC 190 1434 0.9

9.8.2 Composites

With the understanding of mixture rules developed in the earlier sections, it
should be clear that the incorporation of stiff/strong fibers can be used to
engineer composites with higher overall strengths and moduli than their
monolithic counterparts. The strength and modulus of a composite may,
therefore, be increased by increasing the volume fraction of strong/stiff
fibers.

However, it is generally difficult to process uniform composite archi-
tectures with fiber volume fractions that are greater than 50-60%. This is
because the viscosity of the composite “mix” (during composite processing)
increases with increasing fiber volume fraction. This increase in viscosity
makes it very difficult to achieve homogeneous mixing as the volume frac-
tion of stiff/strong reinforcements is increased beyond about 50-60%.
Furthermore, fibers are more likely to “swim” during processing, and
thus come into contact after the fabrication of composites with reinforce-
ment volume fractions greater than 50-60%. For these reasons, most fiber-
reinforced composite systems are limited to maximum fiber volume fractions
of ~ 50-60%.

9.8.2.1 Polymer Composites

Once the fibers are incorporated into the composite structure, matrix loads
are transmitted to the fibers by shear. Since the fibers are stronger, they will
support greater loads than the matrix can. This means that the load-carrying
ability of most composites is provided by the fibers. This is always the case
for polymer matrix composites in which the matrix strength and moduli are
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generally much less than those of the fibers (Table 9.4). The resulting com-
posite properties are, therefore, dependent on the fiber properties, and the
polymer matrix serves mostly as a ““glue’ that keeps the structure bonded,
and the fibers separated from each other. The bonding between the matrix
and the fiber materials also enables stresses to be transmitted from the
matrix to the fiber via shear.

Since polymers have relatively open structures, they are typically less
dense than ceramics and metallic materials (Fig. 9.4). Furthermore, the
density, p, of a composite may be estimated from simple rule of mixtures:

pe = Vinom + Vios (9.45)

where subscripts ¢, m, and f denote composite, matrix, and fiber, respec-
tively. Composites reinforced with a significant fraction of less dense poly-
mers will, therefore, have densities lower than those of most metal alloys
and ceramic materials (Fig. 9.4).

For several applications of composites in which light weight is desir-
able, in addition to absolute strength of stiffness, it is useful to consider
density normalized strength and modulus values. These are often referred to
as specific strength and specific modulus, respectively. Due to their relatively
low densities, polymer matrix composites have relatively high specific
strengths. They are, therefore, used in the wings of military aircraft such
as the Harrier jet.

The incorporation of stiff fibers into polymer matrices raises the com-
posite moduli to levels that are sufficient to make engineering composites
(mostly polymer matrix composites) very competitive with metallic and
ceramic materials. This is shown clearly in Fig. 9.3. The most commonly
used polymer matrix composites are epoxy matrix composites reinforced
with stiff glass fibers (GFRPs) or carbon fibers (CFRPs).

It is of interest to note the dashed lines corresponding to the per-
formance indicators (E/p, E'?/p, and E'//p) in Fig. 9.3. These provide a
normalized measure of how well a given system will perform under: ten-
sion without exceeding a design load (E/p); compression without buckling
(E'? /p); and bending with minimum deflection (E' /p). Further details
on performance indices may be found in an excellent text by Ashby
(1999).

9.8.2.2 Ceramic Matrix Composites

Due to their strong ionically and/or covalently bonded structures, ceramics
tend to be relatively strong and stiff, compared to metals and polymers.
However, ceramics are brittle, and are susceptible to failure by the propaga-
tion of pre-existing cracks. For this reason, there are relatively few applica-
tions of ceramic matrix composites (compared to those of polymer matrix
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TaABLE 9.4 Typical Mechanical Properties of Polymer Matrix Composites and Polymer Matrix Materials

Specific  Specific
Young’s  Tensile Flexural modulus strength
Density modulus strength Ductility strength [(GPa)/ [(MPa)/
(mg/m (GPa) (MPa) (%) (MPa)  (mg/m®)] (mg/m®)]
Nylon 66 + 40% carbon fiber 1.34 22 246 1.7 413 16 184
Epoxide + 70% glass fibers
unidirectional—longitudinal 190 42 750 1200 22 395
unidirectional—transverse 1.90 12 50 6 26
Epoxy +60% Aramid 1.40 77 1800 55 1286
Poly(ether imide) + 52%Kevlar 54 253
Polyester + glass CSM 1.50 7.7 95 170 5 63
Polyester + 50%glass fiber
undirectional-longitudinal 1.93 38 750 1.8 20 389
unidirectional—transverse 1.93 10 22 0.2 5 11
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composites). Most of the applications of ceramic matrix composites take
advantage of their excellent high-temperature properties. They include
applications in nozzles, brakes, and heat shields such as the tiles of the
space shuttle. Nevertheless, structural applications of ceramic composites
have been difficult due to the problems associated with their inherent
brittleness.

Typical strengths and moduli of selected ceramic matrix composites
are presented in Table 9.5. Their moduli are relatively high due to the
strong/stiff nature of the ionically or covalently bonded structures.
However, the tensile strengths of these composites are moderate, due to
the inherent susceptibility to internal/inherent populations of microcracks
in the ceramic matrices.

9.8.2.3 Metal Matrix Composites

Unlike ceramics, metals are generally very ductile. Nevertheless, there are
only a few applications of metal matrix composites (compared to numerous
applications of polymer matrix composites) in engineering structures and
components. The applications include connecting rods, struts, pistons, and
valves in automobile engines (Saito et al., 1998). One example of a recent
application of a titanium matrix composite is shown in Fig. 9.20. This shows
an automotive valve fabricated from a low-cost in-situ titanium matrix
composite reinforced with TiB whiskers (Fig. 9.16). The valve is currently
being used in Toyota Alzetta motor vehicles in Japan. This selection of in-

TaBLE 9.5 Typical Mechanical Properties of Ceramic Matrix
Composites and Ceramic Materials

Young's Toughness,
modulus  Strength Kic

(GPa) (MPa)  (MPa m'/?)
Alumina (99%purity) 340 300 45
Alumina + 25%SiC whiskers 390 900 8.0
Borosilicate glass (Pyrex) 70 0.7
Pyrex + 40%Al,05 CF? 305 3.7
LASP glass—ceramic 86 160 1.1
LAs + 50%SiC CF 135 640 17.0
Mullite 244 2.8
Mullite + 20%Sic whiskers 452 4.4

2CF = continuous fibers.
PLAS = lithium aluminosilicate.
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situ titanium matrix composite valves was due to the improved performance
and fuel savings that was achieved by the replacement of steel valves (with a
density of ~ 7.8 g/cm®) with the former valves (with a density of ~ 4.5
g/em®). Further details on in-situ titanium matrix composites may be
found in papers by Saito (1994), Soboyejo et al. (1994), and Dubey et
al. (1997).

In general, however, the applications of metal matrix composites have
been limited by their cost and limited durability. Most of the applications
have involved the use of lightweight aluminum matrix composites reinforced
with SiC or Al,O5 particulates or whiskers (Fig. 1.16a). These take advan-
tage of the low density (p ~ 2.7 g/cm3) and low cost (generally less than $1
per pound) of aluminum and its alloys. Since aluminum alloys typically have
relatively low strengths compared to structural alloys such as steels, the
reinforcement of aluminum matrices with SiC or Al,O3 can significantly
improve the strengths and moduli of aluminum matrix composites to levels
where they are very competitive with other structural alloys/composites.

The strengths of aluminum/aluminum alloys and composites are com-
pared with those of other structural metal/alloys and composites in Table

Figure 9.20 In-situ titanium matrix composite valve. (Courtesy of Tadahiko
Furuta of Toyota Corporation, Japan.)
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TaBLE 9.6 Typical Mechanical Properties of Metal Matrix Composites

Young’'s Yield Tensile
modulus stress strength Ductility

(GPa) (MPa) (MPa) (%)
Al-Cu-Mg (2618A) 74 416 430 2.5
Al-Cu-Mg + 20%Al,0; 90 383 0.8
Al-Zn-Mg ~ 70 273 115
Al-Zn-Mg + 25%Al,05 80 + 266 15
Titanium (wrought) 120 200 400 25
Titanium + 35%SiC 213 1723 <1
Ti-Al-V (wrought) 115 830 1000 8
Ti-Al-V + 35%SiC 190 1434 0.9

9.6. Also included in Table 9.6 are data for titanium matrix composites
reinforced with SiC fibers. These have higher strengths and moduli than
those of titanium alloys. However, they may undergo premature failure
due to the initiation of damage from the brittle SiC fibers (Majumdar and
Newaz, 1992; Soboyejo et al., 1997).

9.9 STATISTICAL VARIATIONS IN COMPOSITE
STRENGTH

Due to the susceptibility of fiber strength to variations in crack populations,
composite strengths may exhibit significant statistical variations. The sensi-
tivity to defects (mostly cracks) is particularly strong in the case of brittle
fibers. There is, therefore, a need to account for the variations in fiber/
composite strength within a statistical framework. The statistical distribu-
tions that best describe the variations in strength depend to a large extent on
ductility/brittleness. The variabilities in the strengths of most ductile phases
are often well characterized by Gaussian distributions (Fig. 9.21). For such
materials, f(x), the frequency of failure at a given stress level, x, is given by
[Fig. 9.21(a)]:

1 1(x—x\?
f(xX)=——exp|—z|—— 9.46
()mﬂp[z<u” 640
where X is the mean stress, and u is the standard deviation. The function

f(x) may be integrated to obtain an expression for the probability of failure,
F(x) or P¢(x), at a given stress level, x:
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Ficure 9.21 Normal or Gaussian probability density functions: (a) probability
density function; (b) cumulative density function.

mm:[fmm (9.47)

The function P;(x), represents the cumulative density function, which
is shown schematically in Fig. 9.21(b). The function f(x) corresponds to
the probability density function shown in Fig. 9.21(a). Conversely, the
probability of survival, P (x), may be determined from the following
expression:

Pi(x) =1— Pi(x) = Joo f(x)dx (9.48)

X

In the case of brittle materials, such as strong and stiff fibers, the statistical
variations in strength do not often follow the Gaussian distribution. Instead,
most brittle materials exhibit strength variations that are well characterized
by a distribution function that was first proposed by Weibull (1951). The so-
called Weibull distribution gives P (}'), the probability of survival of a
stressed volume, ¥V, that is subjected to a stress, x, as
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Py(V) = exp{—1<x_x”)m} (9.49a)

where V' is the actual volume, ¥V is a reference volume, x is the applied
stress, X, is the stress corresponding to zero probability of failure, x; is the
mean strength, and m is the Weibull modulus.

A schematic of the Weibull distribution is shown in Fig. 9.22(a); this
shows the probability of survival plotted as a function of stress, x. Note that
the probability of survival is 1 for x = 0, and 0 for x = co. Also, the median
strength corresponds to Py(Vy) = 1/2. Furthermore, for V' =V}, and (x —
xy) = Xo in Eq. (9.49a), P(V,) = 1/e = 0.37. Hence, at a stress of xy + x,,
37% of the fibers will survive.

Equation (9.49a) may also be expressed in terms of the probability of
failure, P¢(V), of a stressed volume, V:

m
P(V)=1—Py(V)=1 —exp{—1<X_X“> } (9.49b)
Yo Xo

The Weibull modulus, m, is a key parameter in Eqgs (9.49a) and (9.49b). It is
a measure of the homogeneity of the strength data. Typical values of m are
less than 10. Larger values of m are generally associated with less variable
strength data, which would be expected from increased homogeneity.

Conversely, smaller values of m would be associated with increased
variability or inhomogeneity. Typical values of m are between 1 and 10 for
ceramics such as SiO,, SiC, Al,O; and SizNy, and ~ 100 for most steels. In
any case, taking natural logarithms twice on both sides of Eq. (9.49a) gives

1
=4nV —inV, — — .
Zn Zn(PS(V)> Zn nVy + mén(x — x,) — ménxg (9.50a)

or

1
£n En(PS(V)> =ménX + Cy (9.50b)

where C, = ¢nV — €nVy — mlnxy, and X = x — x,,. Also, C| is a constant for
fixed values of V, Vy, x,, and xy. The value of m may be determined by
plotting £n én(1/P,(V")) against £nX on Weibull paper. The Weibull mod-
ulus may thus be determined from the negative of the slope of the Weibull
plot. Typical Weibull plots are shown in Fig. 9.22(b).

It is important to note here that the median strength corresponds to
Py(x) = Py(x) = 0.5. Similarly, depending on the defect content, two differ-
ent stresses, x; and x,, may be associated with the same failure or survival
probabilities. Under such circumstances, substitution of x; and x, into Eq.
(9.49a) gives
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Ficure 9.22 Weibull plots: (a) Weibull distribution function; (b) plot of survival probability on Weibull probability axes.
(From Ashby and Jones, 1986. Reprinted with permission from Pergamon Press.
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)"y = (x)"V, (9.517)

Equation (9.51) may be rearranged to obtain estimates of J or x.
Appropriate statistical checks are needed to verify the applicability of any
of the above distributions (Gaussian or Weibull) to the assessment of the
variabilities in the strengths. These checks require the use of methods that
are described in most introductory texts on statistics.

Finally in this section, it is interesting to comment on the behavior of
fiber bundles, and the statistics of fiber-bundle fracture. Let us consider a
fiber bundle that consists of NV fibers that are subjected to an axial stress, o.
Before loading, the fiber bundle strength is oy. If the fibers are assumed to
fail at the weakest link(s), with no load carrying capability in the individual
broken fibers following the breaks, then we may obtain a first estimate of the
fiber-bundle strength by considering the ratio of the remaining unbroken
fibers, N, to the initial number of fibers, Ny. Hence, the fiber-bundle
strength, og, corresponding to N unbroken fibers is given by

N

= R (9.52)

OB
The probability of survival, S, at a stress of o, is given by the ratio of N to
Ny. Therefore, the probability of failure, G(c), may be obtained from

N
Go)=1-S()=1- <—> (9.53)
No
However, recalling from Eq. (9.52) that oy = (N/Ny)ot, Eq. (9.53) may now
be rewritten as

og =[1 - G(0)]os (9.54)

The fiber-bundle strength, o, is important because it characterizes the
remaining strength of the fibers after fiber breaks. Since statistical fiber
breaks are inherent to composite deformation, the estimation of composite
properties is often based on fiber-bundle stress estimates that account for the
effects of fiber breaks. Such estimates will generally result in lower compo-
site strength levels than those predicted for undamaged fiber bundles.
Hence, if the statistical function that describes the probability of failure,
G(0), is known, then the fiber-bundle stress may be obtained from Eq.
(9.54). The maximum fiber-bundle strength may also be obtained by differ-
entiating Eq. (9.54) to obtain dog/doy = 0.

It is important to remember that the probability of failure is given by
the expressions presented earlier for the different statistical distributions.
For example, in the case of Gaussian distributions, the probability of fail-
ure, G(o), is given by Eq. (9.47). For strength variabilities that are well
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described by Weibull distributions, e.g., brittle fibers, G(o) is given by Eq.
(9.49).

In general, however, the variabilities may not be well described by any
of the well-known statistical functions (Gaussian, log normal, or Weibull).
When this occurs, minimally biased entropy functions may be used to char-
acterize the statistical variabilities, as proposed by Soboyejo (1973). More
detailed descriptions of the statistics of fiber fracture may be found in papers
by Sastry and Phoenix (1993, 1994), Curtin (1998) and Torquato (1991).

9.10 SUMMARY

This chapter presents a simple introduction to the deformation of composite
materials. Following a brief review of the different types of composites,
simple rule-of-mixture theories were introduced for the estimation of com-
posite strength and moduli and the possible bounds in composite strength
and moduli. A general framework was also described for the estimation of
the physical properties of composites within a rule-of-mixture framework.
Composite deformation behavior was then discussed before exploring the
possible effects of fiber/whisker length and whisker orientation on compo-
site strength and modulus. The failure modes in composites with off-axis
fibers were examined before presenting an introduction to the statistical
approaches that are used in the modeling of variabilities in individual
fiber strengths and fiber-bundle strengths.
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10

Further Topics in Composites

10.1 INTRODUCTION

The introduction to composite deformation provided in the last chapter is
adequate for the development of an intuitive understanding of composite
deformation. However, the simple expressions presented in the last chapter
cannot be used easily in the analysis of multi-ply composites with plies of
arbitrary orientation. Furthermore, the models are only suitable for compo-
sites that contain simple reinforcement geometries, and the rule-of-mixture
expressions provide only moderately accurate estimates of composite
strength and modulus. More advanced composites concepts are, therefore,
needed to complement the introductory initial framework presented in
Chap. 9.

Following the brief introduction to the structure and deformation of
composite materials in Chap. 9, this chapter presents further topics on
composite deformation and design. The chapter is suitable for those that
want to develop a more complete understanding of composites. It should
probably be skipped in most undergraduate courses, and even in some
graduate courses.

The chapter begins with systematic introduction to ply theory. This
is done by first presenting a framework for the analysis of single composite
plies, before explaining the assembly of global stiff matrices for multiply
composites. Composite design concepts are then discussed briefly along
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with composite failure criteria. The shear lag theory is also described
before briefly discussing the experimental methods that are used for the
measurement of the interfacial strengths of fiber-reinforced composite
materials.

10.2 UNIDIRECTIONAL LAMINATES

Let us begin by considering the elastic deformation of a unidirectional ply
(Fig. 10.1). Typical plies in engineering composites (mostly polymer matrix
composites) have thicknesses of ~ 0.125 mm and fiber volume fractions
between 0.50 and 0.65. The plies are also transversely isotropic (orthothro-
pic), which means that the transverse properties are symmetric about the
longitudinal axis. However, the stiffnesses of the orthotropic composite plies
are greater along the longitudinal/fiber directions than in any of the trans-
verse directions.

Unlike isotropic materials, which require two independent elastic con-
stants for the modeling of deformation, orthotropic materials require four
elastic constants to describe their deformation. These include: the longitu-
dinal Young’ modulus, E;;, the transverse Young’s modulus, E,,, the shear
modulus, G,, and the major Poisson’s ratio, vy, or the minor Poisson’s
ratio, v,;. Hooke’s law for an orthotropic ply (Fig. 10.1) may thus be
expressed as

Ficure 10.1 Deformation of a unidirectional ply. (From Matthews and
Rawlings, 1994. Reprinted with permission from Chapman and Hall.)
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012 Q €12

_ _ E E — -
o1 11 V21611 0 €11
T—viavr 1 —vyovp
oy | = v12Ep Ey 0 €99 (10.1a)
T—viavr 1 —vyovp
| T12 | B 0 0 Gy 1 L V12
or, in short-hand notation:
012 = 0812 (101b)

Alternatively, we may write strain as a function of stress by inverting the
stiffness, 0, matrix:

€12 O 012
R I R
o1 En  Ex o
—V12
€2 | = | E 0 0 099 (10.2a)
1
V2] | 0 0 Gy, J L T2
or
€12 = So1s (10.2b)

It is important to note here that the compliance matrix, S, is the inverse of
the stiffness matrix, Q. The above expressions are, therefore, matrix versions
of Hooke’s law. For most composite plies, the elastic constants in Eqs
(10.1a) and (10.2a) can be obtained from tables of materials properties.
Also, the minor Poisson’s ratio may be estimated from the following expres-
sion, if the other three elastic constants are known:

E.
V21 = E—?f‘ﬁz (10.3)

Since E,, < Ej; (the transverse modulus is less than the longitudinal mod-
ulus), then the minor Poisson’s ratio, v,;, must be less than the major
Poisson’s ratio, vi,. The stress—strain response of a unidirectional ply
may, therefore, be modeled easily by the substitution of appropriate elastic
constants into Eqgs (10.1) and (10.2).
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10.3 OFF-AXIS LAMINATES

Let us now consider the deformation of an off-axis ply reinforced with fibers
inclined at an angle, 6, to the x—y axes (Fig. 10.2). The biaxial stresses o,
o,y, and 7, are applied, as shown in Fig. 10.2. The components of stress that
are parallel or perpendicular to the fibers are given by the resolved compo-
nents oy, 0,5, and 1y,. Similarly, the components of the strain tensor may be
expressed in terms of the 1-2 or x—y axes to be (g7 €» ¥2/2) and
Exx €y VYip/2), respectively. The stress and strain components in the x—y
and 1-2 co-ordinate systems are thus given by Rawlings and Matthews
(1994) to be

o12 ={o11 022 T12} (10.4a)
Oxy = {0xx Oyy Txy) (10.4b)
g2 ={en €22 v12/2} (10.4c)
Exy = {exx Eyy Vxy/2} (10.4d)

We may transpose between strain or stress components in the x—y and 1-2
co-ordinate system by the simple use of a transposition matrix, 7. This gives

o1y = Tay, (10.5a)
g12 = Teyy (10.5b)

7 /é \
) l \ Fibers

Ficure 10.2 Deformation of an off-axis ply. (From Matthews and Rawlings,
1994. Reprinted with permission from Chapman and Hall.)
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where the transposition matrix, 7', is given by the following:

> s 2cs

T=| s* ¢* —2cs (10.5¢)
—CcSs ¢S (cz—sz)

with ¢ = cos @ and s = sin6. The strain and stress components in the x—y
system may be obtained from the inverse transformation, 7 '. This gives:

Oy =T "oy (10.6a)
Ty =T &1z (10.6b)
where 77! is given by

c? s? —2cs
T'=|s ¢ 2cs (10.6¢)

cs —cs (02—32)

Furthermore, we may describe the strain components €, = {&;; €» Y12}
and &y, = {&x, &, Vi ). These may be obtained by multiplying the strain
components of gj, and &, by a matrix, R, which gives

€12 R €12
_511 7 _1 0 0— _811 T
g |=10 1 O €22 (10.7a)
Y12
Yxy | |10 0 2| [
or
E12 = R§12 (107b)
and
Exy R Exy
_EXX_ _1 0 0_ [ €xx ]
gy |=10 1 0 Eyy (10.8a)
Vxy
| Vxy | |10 0 2| |5
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or

exy = Ry, (10.8b)

Hence, we may write the following expressions for the strain compo-
nents:

E19 = R§12 (1093)

g1 =R Teqy (10.9b)

exy = Ry (10.9¢)

Ty = R ey, (10.9d)

For linear elastic materials, the stress tensor is linearly related to the strain

tensor via the transformed stiffness matrix, Q. This gives:
Oxy = Qeyy (10.10)

To find O, we must go through a series of matrix manipulations to trans-
pose completely from the 1-2 co-ordinate system to the x—y co-ordinate
system. From Eq. (10.6a), we may express o, in terms of oy,. This gives
Oy = T7! 61,. Also, recalling from Eq. (10.1b) that oy, = Qsepr and g =
Rz, [Eq. (10.2b)], we may now rewrite Eq. (10.6a) as

Oxy = T o9y = T7(Qeq2) = T 'Q(Rz1y) (10.11)

Furthermore, noting that g, = T¢,, [Eq. (10.6b)] and &, = R™! &y [Eq.
(10.9d)], we may simplify Eq. (10.11) to give

0xy = T 'QR(512) = T 'QR(Tey,) = (T'QRTR e, (10.12)

or
a -
Q Qpp Qi3 Exx

oxy = Qeyy, = §21 Qy 0y Eyy (10.13)

Q31 Qxp Qs lvw

where Q is the transformed stiffness matrix which is given by
0=T _IQRTR_I. By substitution of the appropriate parameters into the
T, O, and R matrices, it is possible to show that the components of the O
matrix are
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511 = O11C4 —+ 2(012 + 2033)5202 —+ 02234 (10146)

522 = 01134 + 2(012 + 2033)3202 + 02204 (1014b)
Q1 = (Qrq + Qyp — 4Q33)s°C? + Qpp(c* + s%) (10.14c)
533 = (011 + 022 — 2033)”202 + 033(04 + 34) (1014d)

513 = (011 — 012 — 2033)303 + (012 — 022 + 2033)330 (10146)

where the components of the stiffness matrix, Qj;, are given by Eq. (10.1a).
Alternatively, we may also express ¢,, as a function of oy,. In this case,
&y =0 oy, where Q ~ corresponds to the compliance matrix, .S, which
has the components:

§11 = S1104 + 2(812 + 333)5202 + 82234 (10153)
§22 = S11S4 —+ 2(312 —+ 333)3202 =+ 32204 (1015b)
Si12=(Si1+ Sz — S33)8°¢? + Spap(c* + 5% (10.15c¢)

§33 = 2(2311 + 2322 — 4312 — S33)SZC2 —+ 833(04 + 34) (1015d)
S13 = (2511 — 2815 — S33)mn® + (2S;, — 2S,, + S33)cs®  (10.15e)
S,3 = (2511 — 2S5 — S33)cs® + (281, — 2S5, + Sa3)c®s  (10.15f)

As the reader can imagine, calculation of the components of the S and O
matrices can become rather tedious. For this reason, simple computer
programs are often used to obtain the components of these matrices using
the expressions presented above.

10.4 MULTIPLY LAMINATES

We are now in a position to consider the deformation of laminates that
consist of multiple plies with different fiber orientations (Fig. 10.3). The
overall stiffness of such a composite stack may be found by summing up
the stiffness contributions from all of the individual plies. The overall
strains, e;‘}t, in the composite may also be separated into axial, sgy, and
bending, 82},, strain components (Fig. 10.4). Hence, applying the principle
of linear superposition gives

eﬁf’; = e?(y + egy = egy + zk (10.16a)
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Ficure 10.3 Schematic of a multiply laminate. (From Matthews and
Rawlings, 1994. Reprinted with permission from Chapman and Hall.)

or
0
Exy Exy K
0
Exx Exy Kx
. (10.16b)
8yy == Syy +z Ky
Y 0 K
xy Vxy xy

where « represents the curvatures, z is the distance from the neutral axis, and
the other parameters have their usual meaning.

For linear elastic deformation, Hooke’s law applies. Hence, we may
write:

Oy = Qelot = Q3 + 5,) = Q€Y + k2) (10.17a)

e?

oI
+

z
Ficure 10.4 Superposition of axial and bending strain components. (From

Matthews and Rawlings, 1994. Reprinted with permission from Chapman
and Hall.)
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0

Oxy Exy K
0
Oxx Exx Kx
I _ (10.17b)
oy | =Ql gy | +Q,| &y
0
Txy Vxy Kxy

where the above terms have their usual meaning, and the sign convention for
the axial strain components and curvatures are given by Fig. 10.5. The force
per unit length on each ply is obtained from the products of the stress
components (o, 0,, Ty,) and the layer thicknesses, #; (Fig. 10.3). Hence,
for a composite consisting of p plies, the overall force per unit length in any
given direction is obtained from the following summation of the forces in
each of the plies:

p

Ni=) ot (10.18a)
i=1
p

N, =Y oyt (10.18b)
i=1
p

Ny =D Tt (10.18c)

Ficure 10.5 Sign convention for axial strain components, curvatures, and
moments. (From Matthews and Rawlings, 1995. Reprinted with permission
from Chapman and Hall.)

Copyright © 2003 Marcel Dekker, Inc.



However, the thickness, 7;, may also be expressed in integral form since

t; = jﬁ dz. Substituting this integral form into Eq. (10.18), and noting that

Zi

Oy 7@ €y, gives
N, P g p
N=| N, |=)"¢, J Qdz+) '« J Qzdz (10.19)
ny i=1 2 =1

Within each ply Q, is independent of z. Also, aowand Kk are applied to
the whole multiply composite and are independent of z or i. Hence, we may
solve casily for the integrals in Eq. 10.19:

N = Acly, + Bx (10.20a)
where
b %4 P
A= Z Q J dz = Z Qys.i(zi — zj_1) (10.20b)
i=1 zi—1 =1
and
e [ S L 2 2
B= ; k@ J zdz = ; Qrs,iz(zi -2 1) (10.20c)

Zi1

Similarly, we may consider the moments per unit length associated
with the stresses applied to the individual layers in the multiply laminate
shown schematically in Fig. 10.3. For each layer, the bending moments (Fig.
10.5) are given by

Mxi “ 4
M,' = My,' = axy’,-t,-z,- = J ny,,'Z dz + J O,‘Z(SE)(y + KZ)dZ
Mxyi Zj_q Zjq

(10.21)

where z is the distance from the neutral axis, 7 is the thickness of the ply, and
i corresponds to the number designation of the ply. As before, we may sum
up the overall moments per unit length associated with the p plies in the
composite:
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Mx

M:ZM, y ZEXV J ,sxyzdz—i—z J Q; kZ%dz

i=1 Xy Z

(10.22)

since Q; is independent of z for a given ply, and and 82}, and « are indepen-
dent of z or i, we may solve the integrals in Eq. 10.22 to obtain:

M
M=| M, | =Be}, +D« (10.23)
M,

where the B matrix may be obtained from Equation 10.20c and the D matrix
is given by:

We may also combine Eqs (10.20a) and (10.23) to obtain the plate
constitutive equation that describes the overall response of any multiply
composite subjected to axial loads and moments (Figs 10.4 and 10.5):

) e o)l

where the ABD matrix is the global stiffness matrix. The terms 4, B, and D
in a global stiffness matrix each correspond to 3 x 3 matrices, with nine
terms in each matrix. Equation (10.25) may be used to determine the axial
strains and curvatures, 82}, and «, associated with prescribed loads and dis-
placements. This may be done by multiplying eq. (10.25) by the inverse of
the 4BD matrix, which gives

HERER M
- - (10.26a)
K B D| M B D||lm

where A’, B', and D’ are given by

w|D|

(z 2 1) (10.24)

A = A* + B [D']"[B*]! (10.26b)
B =B —[D" (10.26¢)
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D =[D*" (10.26d)

A* = AT (10.26¢)
B =A"B (10.26f)
D*=D-BA'B (10.269)

Simple computer programs are often used to perform the matrix
manipulations involved in solving for strains and curvatures or forces and
moments. Furthermore, although the matrices presented in this section may
look intimidating at first, most of the expressions may be viewed simply as
matrix expressions of Hooke’s law.

10.5 COMPOSITE PLY DESIGN

The design of multi-ply composite laminates for different structural func-
tions can be accomplished to a large extent by the judicious selection of
fiber orientations and ply stacking sequences. This section will briefly
discuss the ways in which the individual plies within a multi-ply composite
can be arranged to achieve different types of coupling between axial,
bending, and twisting modes. The couplings between these different defor-
mation modes are controlled by the components of the 4ABD matrix.
These are shown completely in the following expanded version of Eq.
(10.25):

[ Ny A A Agg 8?( Bi1 Bz Bz Kx
Ny | =|An Axn Az 83 + | Bxn By B Ky
L ny Az Az Asz 89(,, B31 Bs; Bs Kxy
(10.27)
[ M, By Bz Biz 39( Di1 Dy Dys Kx
My | =| Ba1r B B 8?/ + | D21 Dy Dy Ky
L Mxy B31 Bs; Bss sgy Ds; D3y Dss Kxy

The 4, B, and D matrices are symmetric, with 4; = 45, B; = Bj;, and
D; = Dj;. Also, the axial, bending and shear forces are related to the com-
ponents A4;, B;, and D; of the ABD matrices. These give the following
couplings:

i>

1. Ay and A»; relate in-plane axial forces to in-plane shear strains,
or in-plane shear forces to axial strains.

Copyright © 2003 Marcel Dekker, Inc.



2. Biz and B3 relate in-plane direct forces to plate twisting, or
torques to in-plane direct strains.

3. By, By» and By; relate in-plane bending moments to axial strains,
or axial forces to in-plane curvatures.

4. Bsj relates in-plane shear force to plate twisting, or torque to in-
plane shear strain.

5. Dy3 and D3 relate bending moments to plate twisting, or torque
to plate curvatures.

Since some of the couplings listed above may be undesirable in struc-
tural applications, it is common practice to select ply stacking sequences
that result in zero values of the ‘“undesirable” coupling parameters. For
example, the coupling between in-plane strains and shear forces may be
eliminated by choosing stacking sequences that result in A,; = A3 =0.
This may be achieved by choosing balanced composite lay-ups in which
every +6 ply is balanced by a —6 ply. However, the stacking sequence in
the composite does not need to be symmetric. Examples of balanced com-
posite lay-ups include: (+30°/ — 30°), (0°/ + 45°/ — 45°), (+60°/ — 60°), and
(0°/ +75°/— 175°).

It is also important to note that we may set 4,3 = A;3 = 0 by choosing
composites plies with 0° and/or 90° fiber orientations. Furthermore, we may
eliminate bending membrane coupling by setting the B matrix to zero. This
may be engineered by designing composite stacking sequences that are sym-
metric about the midplane. Examples of symmetric stacking sequences
include: (—=30°/ 4+ 30°/ + 30°/ — 30°), (0°/ 4+ 45°/ +45°/0°), etc.

The coupling between bending and twisting is avoided by setting
D3 = D>3; = 0. This is achieved by the use of balanced antisymmetric lay-
ups for which every +6 ply above the midplane is balanced by a —6 of
identical thickness at the same distance below the midplane, and vice
versa. Examples of such composite lay-ups include: (4+45°/ —45°/0°/ +
45°/ — 45°) and (90°/45°/0°/ —45°/ —90°).

The above discussion has focused on the stacking sequences required
for the elimination of couplings. However, in many cases, composite
designers may take advantage of couplings by using them to engineer
coupled elastic responses that are not possible in relatively isotropic materi-
als. For example, desirable aeroelastic responses may be engineered by the
use of swept-wing profiles that are produced between twisting and bending.
Judicious selection of coupling parameters D;3 and D,3; can be used to
achieve aircraft wing profiles in which the wing twists downwards and
bends upwards under aerodynamic loads. Such aeroelastic coupling may
be used to achieve stable aerodynamic maneuvers in military aircraft during
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air combat. The tailoring of the composite ply lay-ups is, therefore, a key
component of military aircraft design.

10.6 COMPOSITE FAILURE CRITERIA

Due to the relatively complex nature of composite structures (compared to
the structure of relatively isotropic monolithic alloys), a wider range of
failure modes is observed in such materials. As discussed in Sect. 9.5, com-
posite failure may occur by fiber fracture, matrix shear, or matrix failure in
tension or compression (perpendicular to fiber direction). The stress state is
also inherently multiaxial within each of the composite plies. Hence, local
failure criteria may vary widely within plies and across plies.

10.6.1 Critical Stress or Critical Strain Approaches

In this approach, we assume that failure occurs when critical conditions
(such as failure stresses or strains) are reached locally within any of the
regions in a composite. We neglect the possible changes in failure conditions
due to multiaxial stress conditions and interactions between the failure
modes. Failure is thus postulated to occur when local critical conditions
are first exceeded in tension, compression, or shear.

If the local critical stress failure criteria in tension, compression, and
shear are denoted by &1, 0>1, G¢, 02, and 7y, respectively, then we assume
that local failure will occur when any of these strengths are first exceeded.
Similarly, in cases where local failure is strain controlled, we assume that
failure will occur when critical strains are exceeded in tension, compression
or shear. These are denoted, respectively, by &1, &1, £1c, £2¢c, and pps.

The discerning reader will realize that the failure of a single ply does
not correspond to complete composite failure. Also, a ply may continue to
have load-bearing capacity even after local failure criteria have been
exceeded. It is, therefore, important to make some assumptions about the
nature of the load-bearing capacity of individual plies after local failure
criteria are exceeded.

In the most extreme cases, the failed plies are assumed to support low
loads. This often leads to excessively conservative predictions of failure.
Hence, it is more common to assume that the failed ply supports some
fraction of the load that it carried before final “failure.”” Similar approaches
are also applied to predictions in which interlaminar failure occurs between
plies. However, these approaches often require iteration and good judgment
in the determination of load-carrying capacity of the failed plies.
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10.6.2 Interactive Failure Criteria

The second approach that is often used to predict failure involves the use of
interactive failure criteria. These attempt to account for the possible inter-
actions between stresses and failure criteria. The most commonly used fail-
ure criterion is the Tsai—Hill failure criterion, which was first proposed by
Azzi and Tsai (1965). This empirical criterion predicts that failure of an
anisotropic ply occurs when

(o) (o) () (52 = 102
011 o1 022 T2

where the signs of the strength terms (&y,, 025, and ;) correspond to the
signs of the local stress components (o1, 027, and 1;,). The corresponding
strength terms are, therefore, positive for tensile stresses, and negative for
compressive stresses.

In cases where a uniaxial stress, o, is applied to off-axis plies (Fig.
10.2), the Tsai—Hill criterion becomes

2 . . 2 . 2
(crxxcos2 9) _o,z(xcosz@sm29+ (crf(xsmz 9) +(GXXSIFAIQCOS@> -

= ~ =
o1 o1 022 712

(10.29)

Equation (10.29) can be solved to obtain a unique solution for o, as a
function of 6. This gives oy, as a continuous function of 6, as shown in
Fig. 10.6. This is in contrast to the separate curves presented earlier in Chap.
9 for the composite matrix shear and matrix normal failure (Fig. 9.15).

It is also of interest to note that a reserve factor, R, can be described
for cases in which the applied loads are insufficient to cause failure accord-
ing to the Tsai—Hill criterion. The reserve factor corresponds to the factor by
which the applied load can be scaled to induce failure according to the Tsai—
Hill criterion. Hence, Eq (10.29) is now given by

(Raﬂ>2_<RonRozz> N <R“22>2+(R’12)2= i (10.30)
6’1 1 &1 1 6"22 &22 f1 2
o1\’ (01102 022\*  (t2\?_ 1
) (onoz) |, (02)°, (m2)*_ 1 10.31
(011) ( 6% ) <022> (ﬁz) R? ( )

The reserve factor, R, is important because it provides a measure of
how much the applied stress(es) can be increased before reaching the failure
condition that is predicted by the Tsai—Hill criterion.

or
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Ficure 10.6 Dependence of o,, on 6.

10.7 SHEAR LAG THEORY

The shear lag model was first developed by Cox (1952) and later modified by
Nardone and Prewo (1986). It is applicable to composites reinforced with
whiskers or short fibers (Fig. 10.7). The model assumes that the applied load
is transferred from the matrix to the whiskers/short fibers via shear. A
representative volume element/unit cell of a whisker-reinforced composite
is shown schematically in Fig. 10.7. This corresponds to a repeatable unit
that can be used to model the behavior of a composite. Such unit cells are
often used to obtain representative solutions to composite problems (Taya
and Arsenault, 1989).

The Cox model assumes that the displacement gradient in the fiber,
doy/dz, is proportional to the difference between the displacement in the
fiber and the matrix, i.e., u—v:

d(ff

P h(u — v) (10.32)
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Ficure 10.7 The shear lag model: (a) representative short fiber/whisker; (b)
unit cell for shear lag analysis. (From Taya and Arsenault, 1989. Courtesy of
Pergamon Press.)

where u is the axial fiber displacement, v is the axial matrix displacement,
and £ is a proportionality constant. Also, from the simple force balance in
Fig. 10.7(b), we can show that

2

o9 4dx 4 yrd.dx =0 (10.33a)

or
4

01 =~ Tm (10.33b)
Substituting Eq. (10.33b) into Eq. (10.32) gives

do; Ay

o= h(u—v) = - (10.34a)
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or

of =4—;(u— V) (10.34b)

Note that, by definition, du/dz = ¢;, the strain in the fiber. Similarly,
dv/dz = ¢, = e, the strain in the matrix. Also, the strain in the fiber, oy,
is given by o7/ E;. Hence, if we now differentiate Eq. (10.34a) with respect to
z, we obtain:

dor [du dv}

dz2 ~ |dz dz

_ pl%_
& _h[ e} (10.35)

E;
Equation (10.35) can be solved to give
o = Ef8f + C1 cosh ,32 + CZ sinh ,BZ (1036)

where

h
B = \/; (10.37)

If we now apply the boundary conditions at the end of the fiber, we have
op = 0y. Furthermore, in the middle of the fiber, do;/dz = 0. We may then
solve for C| and C, and show that

0o
(Efe 1) cosh Bz

cosh (%)

Cox’s original model (Cox, 1952) proposed that o, = 0. However, Nardone
and Prewo (1986) later recognized that oy # 0 for strongly bonded fiber
ends. Furthermore, the average fiber stress, oy, may also be determined
from:

ot = Erem | 1+ (10.38)

SN

1/2 (ﬂ_ )tanh(%)
& = J de = Ee| 14 Et€ 2 (10.39)
pe

o ()
Now applying the rule of mixtures to obtain the average composite stress
gives
oc = (1= Voom + Vioy (10.40)

where 7, is the average matrix stress. Also, the stresses in the matrix and
composite are, respectively,
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om = Ene (10.41)
and

o. = E.e (10.42)
Substituting Eqgs (10.39), (10.41), and (10.42) into Eq. (10.40) now gives

B
(Ee_ )tanh(;)
E.=(1— V)Em+ ViE| 1+ 5 (10.43)
()

For special cases when the fiber ends are stress free (Cox model), we have
oy = 0. This gives

tanh(’Bz)
E.=(1—WE,+ ViE|1 _T (10.44)
(7)

Also, when oy = 0, = E e, Eq. (10.44) may be expressed as

(EEm - 1) ta”h(ﬁzz)
Eo=(1—Vp)En+ V|1-2— (10.45)
| </%>
2

The above expressions provide useful estimates of composite modulus.
However, there are some inherent inconsistences in the use of the con-
stant-strain condition in the shear lag formulation. For this reason, more
rigorous tensor methods, such as those developed by Eshelby (1957, 1959),
are needed when greater accuracy is required. However, these are beyond
the scope of this book.

Finally, in this section, it is important to determine the constant, B, in
Eqgs (10.36)—(10.45). This can be found by analyzing the simple unit cell
given in Fig. 10.7. Consider the relative displacement between a point at r =
D/2 (where the displacement = ©) and an arbitrary point in the matrix at
r = r. From horizontal force balance we may write:

to(rd)dx = t(27r)dx (10.46)

Also, the shear strain, y, is given by

_dw_ T _ nd
"= dr TG, 2rG,

(10.47)

Copyright © 2003 Marcel Dekker, Inc.



Integrating Eq. (10.47) between r = d/2 and R = D/2 gives

D (P21 Tm D
= —=—+In{= 10.4
W 2Gde/2r 2G, '\d (10.48)
Hence, since w = u — v, we can combine Eqs (10.34a) and (10.48) to give
dry, . Tmd D
d = h(u v)_hZGm|n<d (10.49)
or
UG D
h= d—zmln<a> (10.50)

Therefore, since B = \/h/E; [Equation (10.37)], we may thus substitute Eq.
(10.50) into Eq. (10.37) to obtain:

[8Gn, (D\ 2v2 |G, (D

where G, is the matrix shear modulus, Eyis the fiber Young’s modulus, d is
the fiber diameter, and D is the diameter of the unit cell shown schematically
in Fig. 10.7.

10.8 THE ROLE OF INTERFACES

The above discussion has focused largely on the role of matrix and fiber
materials in the deformation of composite materials. However, in several
composite systems, the deformation characteristics and failure modes are
strongly affected by the strong role of interfaces. In particular, weak or
moderately strong interfaces tend to promote debonding or interfacial slid-
ing between the matrix and the fiber. Since interfacial sliding and debonding
may promote significant toughening in ceramic matrix and metal matrix
composites (Evans and co-workers, 1990, 1991), considerable effort has
been expended in the tailoring of interfaces with low/moderate shear
strengths.

In the case of silicon carbide fibers that are used for the reinforcement
of metal matrix composites, carbon coatings have been deposited on to the
SiC fibers (Fig. 9.2) to obtain the desired interfacial sliding and debonding.
However, the relatively high cost and limited durability of such composites
have prevented potential structural applications in aeroengine structures
and components (Soboyejo et al., 1997).

Since the interfacial properties of composite materials are of practical
importance to the design of damage tolerant composites, significant efforts

Copyright © 2003 Marcel Dekker, Inc.



have been made to develop test techniques for the measurement of inter-
facial strength. The fiber pull-out test (Fig. 10.8) and the fiber push-out test
(Fig. 10.9) have been the most commonly used techniques for interfacial
strength measurement. These rely, respectively, on the pull-out or push-out
of fibers from a thin slice of composite material that is polished and etched
to reveal the fibers under an in-situ microscope. The applied load is mea-
sured with a load cell, while the displacement is often determined with a
capacitance gauge. In this way, plots of load versus displacement can be
obtained for subsequent analysis of fiber push-out behavior.

Typical plots of load versus displacement obtained from a fiber pull-
out or push-out test and a fiber push-back test on a Ti-15-3/SiC composite
are shown in Figs 10.10(a) and 10.10(b), respectively. During the fiber push-
out test, the initial deformation involves elastic bending. This is associated
with a linear increase in load until a critical load is reached at which debond-
ing occurs between the matrix and the fiber. A significant load drop is
observed at the onset of debonding, Fig. 10.10(a). This is followed by an
increase in load that is associated with geometric decorrelation during the
initially matching fiber and matrix geometries during fiber displacement
(Mackin et al., 1992). Subsequent fiber push-out is accompanied by a load
drop, as the length of fiber in sliding contact decreases during the fiber push-
out stage, Fig. 10.10(a).

If the push-out fiber is now pushed back in, i.e., returned to its original
location, a load drop is experienced as the fiber reseats into its original
position, Fig. 10.10(b). This load drop is associated with the geometric
“memory” of the debond surface between the fiber and the matrix.

The average shear stress, t, experienced by the fiber may be expressed
simply as

F

0

/77727748

Ficure 10.8 Schematic illustration of fiber pull-out test.
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Ficure 10.9 Schematic of fiber push-out test. (From Mackin et al., 1992.
Reprinted with permission from Elsevier Scientific.)

r=— (10.52)

where P is the applied load, r is the fiber radius, and ¢ is the thickness of the
push-out or pull-out specimen (Figs 10.8 and 10.9). To avoid excessive
bending during the fiber push-out test, ¢ is usually selected to be ~ 2.5—
3.0 times the fiber diameter. Hence, for SCS-6 fibers with diameters of
~ 150 pm, ¢ is ~ 450 pum.

If we assume that the interfaces between the matrix and the fiber are
smooth, fiber sliding may be analyzed using a generalized sliding friction
law. This is given by Hutchinson and co-workers (1990, 1993) to be

T =1Tg — O, (10.53)

where 1, is the sliding stress, t; is the contact sliding stress, u is the friction
coefficient, and o, is the radial clamping stress, which is due largely to the
thermal expansion mismatch between the matrix and fibers. The fiber push-
out stress has also be shown by Hutchinson and co-workers (1990, 1993) to
be

__oolexp(2u:Bt/R) — 1)1 ~ 1)
Y [f(Et/Em) exp(2uBt/R) + 1 — f]

(10.54)

where f is the volume fraction of fiber, R is the fiber radius, ¢ is the
embedded length of fiber in contact with the matrix, £ is Young’s modulus,
subscripts m and f denote matrix and fiber, respectively, and

B = vE[E(1 +v) + E(1 — v)] " (10.55a)
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Ficure 10.10 Load-displacement plot obtained from (a) fiber push-out test
and (b) fiber push-back test on a Ti-15-3Cr-3AI-3Sn/SCS-6 composite. (From
Mackin et al., 1992. Reprinted with permission from Elsevier Scientific.)
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oy = +_<M)BE“__0 (10.55b)

t=h—d (10.55¢)

where v is Poisson’s ratio, which is assumed to be the same in the fiber and
the matrix, % is the specimen thickness and d is the sliding distance of the
fiber.

However, as noted originally by Jero and co-workers (1990, 1991), the
fiber roughness has a significant effect on interfacial sliding phenomena, in
addition to the effects of interfacial clamping pressure. Detailed analyses by
Carter et al. (1990) modeled the asperity contacts as Hertzian contacts that
result in a sinusoidal variation of sliding stress. Work by Kerans and
Parthasarathy (1991) has also considered the effects of asperity pressure
on fiber debonding and sliding, as well as the effects of abrasion of fibers.

The interfacial roughness introduces a misfit, et, that depends on the
roughness along the interface:

8(2)
R

where ¢, is a misfit due to the thermal expansion mismatch between the
matrix and the fiber (along the embedded fiber length), and &(z)/R is the
local misfit strain, which induces an additional pressure, p. If we assume that
the local interfacial stress is predominantly Coulombic, then the interfacial
stress is given by

7= (o, + p) (10.57)

If the asperity pressure is obtained from the integral of the asperity pressure
over the fiber length, then the fiber push-out stress may be expressed as
(Mackin et al., 1992):

eT =65+ (10.56)

0(d) = S [exp(2uBt/R(1 - d/1) 1]

h (10.58)
+(2Ep/R?) eXp(—Zqu/R)J [exp(2,/R)18(2)dz

d

where d is the push-out distance (Fig. 10.10) and the other constants have
their usual meaning.

The above discussion has focused largely on the fiber push-out test.
However, other tests may also be used to measure the interfacial shear
strengths of composites. These include fiber pull-out tests (Fig. 10.8) and
fiber fragmentation tests (Fig. 10.11) that relate the fiber length distributions
of fractured segments (obtained by pulling individual fibers) to the inter-
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Ficure 10.11 Schematic of fiber length distributions in the fiber fragmenta-
tion test

facial strengths between the matrix and fiber. Details of the fiber fragmenta-
tion test can be found in a paper by Ho and Drzal (1995).

10.9 SUMMARY

Further topics in composite deformation are presented in this chapter, fol-
lowing the introduction to composites in Chap. 9. The chapter begins with a
systematic introduction to composite ply theory. This includes a detailed
treatment of single- and multi-ply laminates. It is followed by a description
of how the components of the 4BD matrices can be used in composite
design. Composite failure criteria are then presented before introducing
the shear lag theory for whisker or short fiber-reinforced composites.
Finally, the role of interfaces is considered in a section that includes con-
siderations of debonding and fiber sliding during fiber push-out testing to
determine interfacial properties.
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11

Fundamentals of Fracture Mechanics

11.1 INTRODUCTION

In the 17th century, the great scientist and painter, Leonardo da Vinci,
performed some strength measurements on piano wire of different lengths.
Somewhat surprisingly, he found that the strength of piano wire decreased
with increasing length of wire. This length-scale dependence of strength was
not understood until the 20th century when the serious study of fracture was
revisited by a number of investigators. During the first quarter of the 20th
century, Inglis (1913) showed that notches can act as stress concentrators.
Griffith (1921) extended the work of Inglis by deriving an expression for the
prediction of the brittle stress in glass. Using thermodynamic arguments,
and the concept of notch concentration factors from Inglis (1913), he
obtained a condition for unstable crack growth in brittle materials such as
glass. However, Griffith’s work neglected the potentially significant effects
of plasticity, which were considered in subsequent work by Orowan (1950).

Although the work of Griffith (1921) and Orowan (1950) provided
some insights into the role of cracks and plasticity in fracture, robust engi-
neering tools for the prediction of fracture were only produced in the late
1950s and early 1960s after a number of well-publicized failures of ships and
aircraft in the 1940s and early to mid-1950s. Some of the failures included
the fracture of the so-called Liberty ships in World War II (Fig. 11.1) and
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Ficure 11.1 Fractured T-2 tanker, the S.S. Schenectady, which failed in1941.
(Adapted from Parker, 1957—reprinted with permission from the National
Academy of Sciences.)

the Comet aircraft disaster in the 1950s. These led to significant research and
development efforts at the U.S. Navy and the major aircraft producers such
as Boeing.

The research efforts at the U.S. Naval Research laboratory were led by
George Irwin, who may be considered as the father of fracture mechanics.
Using the concepts of linear elasticity, he developed a crack driving force
parameter that he called the stress intensity factor (Irwin, 1957). At around
the same time, Williams (1957) also developed mechanics solutions for the
crack-tip fields under linear elastic fracture mechanics conditions. Work at
the Boeing Aircraft Company was pioneered by a young graduate student,
Paul Paris, who was to make important fundamental contributions to the
subject of fracture mechanics and fatigue (Paris and coworkers, 1960, 1961,
1963) that will be discussed in Chap. 14.

Following the early work on linear elastic fracture mechanics, it was
recognized that further work was needed to develop fracture mechanics
approaches for elastic—plastic and fully plastic conditions. This led to the
development of the crack-tip opening displacement (Wells, 1961) and the J
integral (Rice, 1968) as a parameter for the characterization of the crack
driving force under elastic—plastic fracture mechanics conditions. Three-
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parameter fracture mechanics approaches have also been proposed by
McClintock et al. (1995) for the characterization of the crack driving
force under fully plastic conditions.

The subject of fracture mechanics is introduced in this chapter. The
chapter begins with a brief description of Griffith fracture theory, the
Orowan plasticity correction, and the concept of the energy release rate.
This is followed by a derivation of the stress intensity factor, K, and some
illustrations of the applications and limitations of K in linear elastic fracture
mechanics. Elastic—plastic fracture mechanics concepts are then introduced
along with two-parameter fracture concepts for the assessment of con-
straint. Finally, the relative new subject of interfacial fracture mechanics
is presented, along with the fundamentals of dynamic fracture mechanics.

11.2 FUNDAMENTALS OF FRACTURE MECHANICS

It is now generally accepted that all engineering structures and components
contain three-dimensional defects that are known as cracks. However, as
discussed in the introduction, our understanding of the significance of
cracks has only been developed during the past few hundred years, with
most of the basic understanding emerging during the last 50 years of the
20th century.

11.3 NOTCH CONCENTRATION FACTORS

Inglis (1913) modeled the stress concentrations around notches with radii of
curvature, p, and notch length, a (Fig. 11.2). For elastic deformation, he was
able to show that the notch stress concentration factor, K;, is given by

__maximum stress around notch tip 2\/5 1.1

'~ "Remote stress away from notch

Hence, for circular notches with a = p, he was able to show that K; ~ 3.
This rather large stress concentration factor indicates that an applied stress
of o is amplified by a factor of 3 at the notch tip. Failure is, therefore, likely
to initiate from the notch tip, when the applied/remote stresses are signifi-
cantly below the fracture strength of the un-notched material. Subsequent
work by Neuber (1945) extended the work of Inglis to include the effects of
notch plasticity on stress concentration factors. This has resulted in the
publication of handbooks of notch concentration factors for various
notch geometries.

Returning now to Eq. (11.1), it is easy to appreciate that the notch
concentration factor will increase dramatically, as the notch-tip radius
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Shress

Ficure 11.2 Stress concentration around a notch. (Adapted from Callister,
1999—reprinted with permission from John Wiley.)

approaches the limiting value corresponding to a single lattice spacing, b.
Hence, for an atomistically sharp crack, the relatively high levels of stress
concentration are likely to result in damage nucleation and propagation
from the crack tip.

11.4 GRIFFITH FRACTURE ANALYSIS

The problem of crack growth from a sharp notch in a brittle solid was first
modeled seriously by Griffith (1921). By considering the thermodynamic
balance between the energy required to create fresh new crack faces, and
the change in internal (strain) energy associated with the displacement of
specimen boundaries (Fig. 11.3), he was able to obtain the following energy
balance equation:
2,2

UT=—7“’E—"’,'B+4aysB (11.2)
where the first half on the right-hand side corresponds to the strain energy
and the second half of the right-hand side is the surface energy due to the
upper and lower faces of the crack, wihch have a total surface area of 4aB.
Also, o is the applied stress, a is the crack length, B is the thickness of the
specimen, E' = E/(1 — V%) for plane strain, and E' = E for plane stress,
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Ficure 11.3 A center crack of length 2a in a large plate subjected to elastic
deformations. (Adapted from Suresh, 1999—reprinted with permission from
Cambridge University Press.)

where E is Young’s modulus, v is Poisson’s ratio, and y, is the surface
energy associated with the creation of the crack faces.

The critical condition at the onset of unstable equilibrium is deter-
mined by equating the first derivative of Eq. 11.2 to zero, i.e.,
dUy/da = 0. This gives

dUr _ 2r0°aB
da E

2/E
e =/ 7);a (11.4)

where o, is the Griffith fracture stress obtained by rearranging Eq. (11.3),
and the other terms have their usual meaning. Equation (11.4) does not
account for the plastic work that is done during the fracture of most mate-
rials. It is, therefore, only applicable to very brittle materials in which no
plastic work is done during crack extension.

Equation (11.4) was modified by Orowan (1950) to account for plastic
work in materials that undergo plastic deformation prior to catastrophic

+4yB=0 (11.3)

or
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failure. Orowan proposed the following expression for the critical fracture
condition, o :

2 E
o, = ,/% (11.5)

where y, is a plastic energy term, which is generally difficult to measure
independently.

Another important parameter is the strain energy release rate, G,
which was first proposed by Irwin (1964). This is given by:

_1d(UL+ Up)
B da

where Uy is the potential energy of the loading system, Ug is the strain
energy of the body, and B is the thickness of the body. Fracture should
initiate when G reaches a critical value, G, which is given by

Ge = 2(ys + vp) 1.7

G— (11.6)

11.5 ENERGY RELEASE RATE AND COMPLIANCE

This section presents the derivation of energy release rates and compliance
concepts for prescribed loading [Fig. 11.4(a)] and prescribed displacement
[Fig. 11.4(b)] scenarios. The possible effects of machine compliance are
considered at the end of the section.

11.5.1 Load Control or Deadweight Loading

Let us start by considering the basic mechanics behind the definition of the
energy release rate of a crack subjected to remote load, F, Fig. 11.4(a). Also,
u 1s the load point displacement through which load F is applied. The energy
release rate, G, is defined as

1 (oPE
G=_§<_) (11.8)

where B is the thickness of the specimen, PE is the potential energy, and a is
the crack length. The potential energy for a system with prescribed load, F,
is given by (Fig. 11.5):

1 1
8¢ = PE = SE — WD = 2 Fsu — Féu = — - Fsu 11.9)

where SE is the strain energy and WD is the work done. By definition, the
compliance, C, of the body is given simply by
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Ficure 11.4 Schematic of notched specimens subject to (a) prescribed load-

ing or (b) prescribed displacement. (Adapted from Suresh, 1999—reprinted
with permission from Cambridge University Press.)

oD = % Fou

O = Fou

N

H 1+ O
displacement

Ficure 11.5 Schematic of load-displacement curve under prescribed load.

(Adapted from Suresh, 1999—reprinted with permission from Cambridge
University Press.)
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£ (11.10)
where C depends on geometry and elastic constants £ and v. Hence, the
potential energy is given by [Eqs (11.9) and (11.10)]:

1 1 1.
PE = —JFu=—_F(CF)=—-_FC (11.17)

and the energy release rate is obtained by substituting Eq. (11.11) into Eq.
(11.8) to give
_ToPE 1 2 dc

" Boda 2B da (1112

11.5.2 Displacement-Controlled Loading

Let us now consider the case in which the displacement is controlled [Fig.
11.4(a)], and the load, F, varies accordingly (Fig. 11.6). When the crack
advances by an amount A« under a fixed displacement, u, the work done
is zero and hence the change in potential energy is equal to the strain energy.

b= % o

load
Xd‘
o«
O
—.«.”
™
e

displacement
Ficure 11.6 Schematic of load-displacement curve under prescribed dis-

placement. (Adapted from Suresh, 1999—reprinted with permission from
Cambridge University Press.)
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« —dPE
fixed

5 , =SE=—GSA = —GBsa (11.13)

fixed

where SA is the change in crack area, dA = Bsa. Hence, rearranging Eq.
(11.13) now gives

—1 (9PE
G=—|—
B < oa )
The strain energy, SE, is given simply by the shaded area in Figure 11.6:
1 F

(11.14)

u
fixed

SE=§u8F=—§8F (11.15)
Since the compliance is u/F, then from Equation 11.15, we have:
2
G- _19PE|  _—udf) _FdC (11.16)
B 9da |fixed 2B oalf.q 2Bda

Hence, the expression for the energy release rate is the same for displace-
ment control [Eq. (11.16)] and load control [Eq. (11.12)]. It is important to
note the above equations for G are valid for both linear and non-linear
elastic deformation. They are also independent of boundary conditions.
11.5.3 Influence of Machine Compliance

Let us now consider the influence of machine compliance, Cy;, on the
deformation of the cracked body shown in Fig. 11.7. The total displacement,

F. &g

Cm
‘lF.J".".

-—

A
VZ

Ficure 11.7 Schematic of deformation in a compliant test machine. (Adapted
from Hutchinson, 1979—with permission from the Technical University of
Denmark.)

Copyright © 2003 Marcel Dekker, Inc.



Art, 1s now the sum of the machine displacement, Ay, and the specimen
displacement, A. If the total displacement is prescribed, then we have

A=A+ Ay =A+FCy (11.17)
since C = A/F, we may also write:
(&
AT=A+TMA (11.18)

The potential energy is now given by
— 1 2 1 —14A2 1 -1 2
PE_SE+§CMF _—ﬁC A +@CM (A1 —A) (11.19)

and the energy release rate is

G- _(PEY __ C'A-Cu'(Ar—A)[(9A
- \da ), B d9a) ,,

,dC (11.20)
da

1 2
— A
+ZBC

lc—z ,dC _ 1 ,_-2%

" 2B da 2B da

Hence, as before, the energy release rate does not depend on the nature of the
loading system. Also, the measured value of G does not depend on the com-
pliance of the loading system. However, the experimental determination of G
is frequently done with rigid loading systems that correspond to Cy; = 0.

11.6 LINEAR ELASTIC FRACTURE MECHANICS

The fundamentals of linear elastic fracture mechanics (LEFM) are presented
in this section. Following the derivation of the crack-tip fields, the physical
basis for the crack driving force parameters is presented along with the
conditions required for the application of LEFM. The equivalence of G
and the LEFM cracking driving force (denoted by K) is also demonstrated.

11.6.1 Derivation of Crack-Tip Fields

Before presenting the derivation of the crack-tip fields, it is important to
note here that there are three modes of crack growth. These are illustrated
schematically in Fig. 11.8. Mode I [Fig. 11.8(a)] is generally referred to as
the crack opening mode. It is often the most damaging of all the loading
modes. Mode II [Fig. 11.8(b)] is the in-plane shear mode, while Mode III
[Fig. 11.8(c)] corresponds to the out-of-plane shear mode. Each of the
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Ficure 11.8 Modes of crack growth: (a) Mode [; (b) Mode II; (c) Mode lIl.
(Adapted from Suresh, 1999—reprinted with permission from Cambridge
University Press.)

modes may occur separately or simultaneously. However, for simplicity, we
will derive the crack-tip fields for pure Mode I crack growth. We will then
extend our attention to Modes II and III.

Now, let us begin by considering the equilibrium conditions for a
plane element located at a radial distance, r, from the crack-tip (Fig.
11.9). For equilibrium in the polar co-ordinate system, the equilibrium
equations are given by

do 1 009 O —Opg 0

11.21
9, 1 o0 r (11.212)

Dyy

crack i o

Ficure 11.9 In-plane co-ordinate system and crack-tip stresses.
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The in-plane strain components are given by

0 (11.21b)

au,

B =2 (11.21c)

u, 18u9

89927 r@ (1121d)

1[10u, 0duy Uy
— |- 11.21
éro Z[r 0  or r ( e)

Finally, for strain compatibility we must satisfy

82899 2 8899 1 826‘,9 1 88,9 1 88%,— 1 88,,

ar2 ' rar rordd r2ord  r2o? r or

-0 (11.22)

For the in-plane problem (Modes I and II), the crack-tip strains are
only functions of r and 6. Also, for the plane stress problem o,. = 0. The
relationship between stress and strain is given by Hooke’s law:

Egl‘l’ = O'r,- — 1)0'99 (11233)
Eegy = 099 — vo, (11.23b)
2uerg = WY = Org (11.23c)

As discussed in Chap. 4, the solutions to the above equations are
satisfied by the Airy stress function via:

Tox 1 82)(
82)(
=— 11.24b
Opp ar2 ( )
d (10x
—_ 2 (22A 11.24
o0 = "%r (r ae) (11.24c)

When the compatibility condition is expressed in terms of the Airy stress
function, we obtain a biharmonic equation of the form:

V3(v2x) =0 (11.25a)

where
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V= t-— o 11.25b
o2 T rar T e ( )
Since the crack faces are traction free, oy = 0,9 = 0 at 6 = +m. Also,
the Airy stress function (trial function) must be single valued and have the
appropriate singularity at the crack-tip. One possible form of the airy stress
function is

x = r’p(r.0) + q(r. ) (11.26)

where p(r, 0) and ¢(r, 6) are both harmonic functions that satisfy Laplace