


Marcel Dekker, Inc. New York • Basel

Mechanical
Properties of
Engineered 
Materials

Wolé Soboyejo
Princeton University

Princeton, New Jersey

Copyright © 2002 by Marcel Dekker, Inc. All Rights Reserved.

Copyright © 2003 Marcel Dekker, Inc.



ISBN: 0-8247-8900-8

This book is printed on acid-free paper.

Headquarters

Marcel Dekker, Inc.

270 Madison Avenue, New York, NY 10016

tel: 212-696-9000; fax: 212-685-4540

Eastern Hemisphere Distribution

Marcel Dekker AG

Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland

tel: 41-61-260-6300; fax: 41-61-260-6333

World Wide Web

http://www.dekker.com

The publisher offers discounts on this book when ordered in bulk quantities. For

more information, write to Special Sales/Professional Marketing at the headquarters

address above.

Copyright # 2003 by Marcel Dekker, Inc. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, microfilming, and

recording, or by any information storage and retrieval system, without permission

in writing from the publisher.

Current printing (last digit):

10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Copyright © 2003 Marcel Dekker, Inc.



Preface

My primary objective in this book is to provide a simple introduction to the
subject of mechanical properties of engineered materials for undergraduate
and graduate students. I have been encouraged in this task by my students
and many practicing engineers with a strong interest in the mechanical
properties of materials and I hope that this book will satisfy their needs. I
have endeavored to cover only the topics that I consider central to the
development of a basic understanding of the mechanical properties of mate-
rials. It is not intended to be a comprehensive review of all the different
aspects of mechanical properties; such a task would be beyond the capabil-
ities of any single author. Instead, this book emphasizes the fundamental
concepts that must be mastered by any undergraduate or graduate engineer
before he or she can effectively tackle basic industrial tasks that require an
understanding of mechanical properties. This book is intended to bridge the
gap between rigorous theory and engineering practice.

The book covers essential principles required to understand and inter-
pret the mechanical properties of different types of materials (i.e., metals,
ceramics, intermetallics, polymers, and their composites). Basic concepts are
discussed generically, except in cases where they apply only to specific types/
classes of materials. Following a brief introduction to materials science and
basic strength of materials, the fundamentals of elasticity and plasticity are
presented, prior to a discussion of strengthening mechanisms (including
composite strengthening concepts). A simple introduction to the subject
of fracture mechanics is then presented along with fracture and toughening
mechanisms and a description of the effects of fatigue and the environment.
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The book concludes with an overview of time-dependent viscoelastic/visco-
plastic behavior, creep, and creep crack growth phenomena. Wherever pos-
sible, the text is illustrated with worked examples and case studies that show
how to apply basic principles to the solution of engineering problems.

This book has been written primarily as a text for a senior under-
graduate course or first-level graduate course on mechanical properties of
materials. However, I hope that it will also be useful to practicing engineers,
researchers, and others who want to develop a working understanding of the
basic concepts that govern the mechanical properties of materials. To ensure
a wide audience, I have assumed only a basic knowledge of algebra and
calculus in the presentation of mathematical derivations. The reader is also
assumed to have a sophomore-level understanding of physics and chemistry.
Prior knowledge of basic materials science and strength of materials con-
cepts is not assumed, however. The better-prepared reader may, therefore,
skim through some of the elementary sections in which these concepts are
introduced.

Finally, I would like to acknowledge a number of people that have
supported me over the years. I am grateful to my parents, Alfred and
Anthonia, for the numerous sacrifices that they made to provide me with
a good education. I am indebted to my teachers, especially John Knott,
Anthony Smith, David Fenner, and Stan Earles, for stimulating my early
interest in materials and mechanics. I am also thankful to my colleagues in
the field of mechanical behavior who have shared their thoughts and ideas
with me over the years. In particular, I am grateful to Frank McClintock for
his critical review of the first five chapters, and his suggestions for the book
outline.

I also thank my colleagues in the mechanical behavior community for
helping me to develop my basic understanding of the subject over the past
15 years. I am particularly grateful to Anthony Evans, John Hutchinson,
Paul Paris, Robert Ritchie, Richard Hertzberg, Gerry Smith, Ali Argon,
Keith Miller, Rod Smith, David Parks, Lallit Anand, Shankar Sastry,
Alan Needleman, Charlie Whitsett, Richard Lederich, T. S. Srivatsan,
Pranesh Aswath, Zhigang Suo, David Srolovitz, Barrie Royce, Noriko
Katsube, Bob Wei, Campbell Laird, Bob Hayes, Rajiv Mishra, and many
others who have shared their understanding with me in numerous discus-
sions over the years.

I am indebted to my past and present staff scientists and postdoctoral
research associates (Chris Mercer, Seyed Allameh, Fan Ye, Pranav
Shrotriya, and Youlin Li) and personal assistants (Betty Adam, Alissa
Horstman, Jason Schymanski, Hedi Allameh, and Yingfang Ni) for their
assistance with the preparation of the text and figures. Betty Adam deserves
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special mention since she helped put the book together. I simply cannot
imagine how this project could have been completed without her help.

I am grateful to my students and colleagues at Princeton University,
MIT, and The Ohio State University who have provided me with a stimu-
lating working environment over the past few years. In particular, I thank
Lex Smits, my current department chair, and all my colleagues. My inter-
actions with colleagues and students have certainly been vital to the devel-
opment of my current understanding of the mechanical behavior of
materials.

Partial financial support for the preparation of this book was provided
by the National Science Foundation (DMR 0075135 and DMR 9458018). I
would like to thank the Program Managers, Dr. Bruce McDonald and Dr.
K. L. Murty, for providing the financial support and encouragement that
made this book possible. Appreciation is also extended to Prof. Tom Eager
and Prof. Nam Suh of MIT for inviting me to spend a sabbatical year as
Visiting Martin Luther King Professor in the departments of Materials
Science and Engineering and Mechanical Engineering at MIT. The sabba-
tical year (1997–1998) at MIT provided me with a stimulating environment
for the development of the first few chapters of this book.

I also thank Dawn Wechsler, Janet Sachs, Elizabeth Curione, and Rita
Lazzazzaro of Marcel Dekker, Inc., for their patience and understanding.
This project would certainly not have been completed (by me) without their
vision, patience, and encouragement.

Finally, I thank my wife, Morenike, for giving me the freedom and the
time to write this book. This was time that I should have spent with her and
our young family. However, as always, she was supportive of my work, and
I know that this book could have never been completed without her fore-
bearance and support.

Wolé Soboyejo
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1

Overview of Crystal/Defect Structure
and Mechanical Properties and
Behavior

1.1 INTRODUCTION

The mechanical behavior of materials describes the response of materials to
mechanical loads or deformation. The response can be understood in terms
of the basic effects of mechanical loads on defects or atomic motion. A
simple understanding of atomic and defect structure is, therefore, an essen-
tial prerequisite to the development of a fundamental understanding of the
mechanical behavior of materials. A brief introduction to the structure of
materials will be presented in this chapter. The treatment is intended to serve
as an introduction to those with a limited prior background in the principles
of materials science. The better prepared reader may, therefore, choose to
skim this chapter.

1.2 ATOMIC STRUCTURE

In ancient Greece, Democritus postulated that atoms are the building blocks
from which all materials are made. This was generally accepted by philoso-
phers and scientists (without proof) for centuries. However, although the
small size of the atoms was such that they could not be viewed directly with
the available instruments, Avogadro in the 16th century was able to deter-
mine that one mole of an element consists of 6:02� 1023 atoms. The peri-
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odic table of elements was also developed in the 19th century before the
imaging of crystal structure was made possible after the development of x-
ray techniques later that century. For the first time, scientists were able to
view the effects of atoms that had been postulated by the ancients.

A clear picture of atomic structure soon emerged as a number of
dedicated scientists studied the atomic structure of different types of materi-
als. First, it became apparent that, in many materials, the atoms can be
grouped into unit cells or building blocks that are somewhat akin to the
pieces in a Lego set. These building blocks are often called crystals.
However, there are many materials in which no clear grouping of atoms
into unit cells or crystals can be identified. Atoms in such amorphous mate-
rials are apparently randomly distributed, and it is difficult to discern clear
groups of atoms in such materials. Nevertheless, in amorphous and crystal-
line materials, mechanical behavior can only be understood if we appreciate
the fact that the atoms within a solid are held together by forces that are
often referred to as chemical bonds. These will be described in the next
section.

1.3 CHEMICAL BONDS

Two distinct types of chemical bonds are known to exist. Strong bonds are
often described as primary bonds, and weaker bonds are generally described
as secondary bonds. However, both types of bonds are important, and they
often occur together in solids. It is particularly important to note that the
weaker secondary bonds may control the mechanical behavior of some
materials, even when much stronger primary bonds are present. A good
example is the case of graphite (carbon) which consists of strong primary
bonds and weaker secondary bonds (Fig. 1.1). The relatively low strength of
graphite can be attributed to the low shear stress required to induce the
sliding of strongly (primary) bonded carbon layers over each other. Such
sliding is easy because the bonds between the sliding (primary bonded)
carbon planes are weak secondary bonds.

1.3.1 Primary Bonds

Primary bonds may be ionic, covalent, or metallic in character. Since these
are relatively strong bonds, primary bonds generally give rise to stiff solids.
The different types of primary bonds are described in detail below.

1.3.1.1 Ionic Bonding

Ionic bonds occur as a result of strong electrostatic Coulomb attractive
forces between positively and negatively charged ions. The ions may be
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formed by the donation of electrons by a cation to an anion (Fig. 1.2). Note
that both ions achieve more stable electronic structures (complete outer
shells) by the donation or acceptance of electrons. The resulting attractive
force between the ions is given by:

F ¼ ��Q1Q2

r2
ð1:1Þ

FIGURE 1.1 Schematic of the layered structure of graphite. (Adapted from
Kingery et al., 1976. Reprinted with permission from John Wiley and Sons.)

FIGURE 1.2 Schematic of an ionic bond—in this case between a sodium atom
and a chlorine atom to form sodium chloride. (Adapted from Ashby and
Jones, 1994. Reprinted with permission from Pergamon Press.)
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where a is a proportionality constant, which is equal to 1=ð4�"0), "0 is the
permitivity of the vacuum (8:5� 10�12 F/m), Q1 and Q2 are the respective
charges of ions 1 and 2, and r is the ionic separation, as shown in Fig. 1.2.
Typical ionic bond strengths are between 40 and 200 kcal/mol. Also, due to
their relatively high bond strengths, ionically bonded materials have high
melting points since a greater level of thermal agitation is needed to shear
the ions from the ionically bonded structures. The ionic bonds are also
nonsaturating and nondirectional. Such bonds are relatively difficult to
break during slip processes that after control plastic behavior (irreversible
deformation). Ionically bonded solids are, therefore, relatively brittle since
they can only undergo limited plasticity. Examples of ionically bonded
solids include sodium chloride and other alkali halides, metal oxides, and
hydrated carbonates.

1.3.1.2 Covalent Bonds

Another type of primary bond is the covalent bond. Covalent bonds are
often found between atoms with nearly complete outer shells. The atoms
typically achieve a more stable electronic structure (lower energy state) by
sharing electrons in outer shells to form structures with completely filled
outer shells [(Fig. 1.3(a)]. The resulting bond strengths are between 30 and
300 kcal/mol. A wider range of bond strengths is, therefore, associated with
covalent bonding which may result in molecular, linear or three-dimensional
structures.

One-dimensional linear covalent bonds are formed by the sharing of
two outer electrons (one from each atom). These result in the formation of
molecular structures such as Cl2, which is shown schematically in Figs 1.3b
and 1.3c. Long, linear, covalently bonded chains, may form between quad-
rivalent carbon atoms, as in polyethylene [Figs 1.4(a)]. Branches may also
form by the attachment of other chains to the linear chain structures, as
shown in Fig. 1.4(b). Furthermore, three-dimensional covalent bonded

FIGURE 1.3 The covalent bond in a molecule of chlorine (Cl2) gas: (a) planetary
model; (b) electron dot schematic; (c) ‘‘bond-line’’ schematic. (Adapted from
Shackleford, 1996. Reprinted with permission from Prentice-Hall.)
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structures may form, as in the case of diamond [Fig. 1.4(c)] and the recently
discovered buckeyball structure [Fig. 1.4(d)].

Due to electron sharing, covalent bonds are directional in character.
Elasticity in polymers is associated with the stretching and rotation of
bonds. The chain structures may also uncurl during loading, which generally
gives rise to elastic deformation. In the case of elastomers and rubber-like
materials, the nonlinear elastic strains may be in excess of 100%. The elastic
moduli also increase with increasing temperature due to changes in entropy
that occur on bond stretching.

FIGURE 1.4 Typical covalently bonded structures: (a) three-dimensional
structure of diamond; (b) chain structure of polyethylene; (c) three-
dimensional structure of diamond; (d) buckeyball structure of C60. (Adapted
from Shackleford, 1996. Reprinted with permission from Prentice-Hall.)
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Plasticity in covalently bonded materials is associated with the sliding
of chains consisting of covalently bonded atoms (such as those in polymers)
or covalently bonded layers (such as those in graphite) over each other [Figs
1.1 and 1.4(a)]. Plastic deformation of three-dimensional covalently bonded
structures [Figs 1.4(c) and 1.4(d)] is also difficult because of the inherent
resistance of such structures to deformation. Furthermore, chain sliding is
restricted in branched structures [Fig. 1.4(b)] since the branches tend to
restrict chain motion.

1.3.1.3 Metallic Bonds

Metallic bonds are the third type of primary bond. The theory behind
metallic bonding is often described as the Drüde–Lorenz theory. Metallic
bonds can be understood as the overall effect of multiple electrostatic attrac-
tions between positively charged metallic ions and a ‘‘sea’’ or ‘‘gas’’ of
delocalized electrons (electron cloud) that surround the positively charged
ions (Fig. 1.5). This is illustrated schematically in Fig. 1.5. Note that the
outer electrons in a metal are delocalized, i.e., they are free to move within
the metallic lattice. Such electron movement can be accelerated by the appli-
cation of an electric field or a temperature field. The electrostatic forces
between the positively charged ions and the sea of electrons are very strong.
These strong electrostatic forces give rise to the high strengths of metallically
bonded materials.

Metallic bonds are nonsaturating and nondirectional in character.
Hence, line defects within metallically bonded lattices can move at relatively
low stresses (below those required to cause atomic separation) by slip pro-
cesses at relatively low stress levels. The mechanisms of slip will be discussed
later. These give rise to the ductility of metals, which is an important prop-
erty for machining and fabrication processes.

FIGURE 1.5 Schematic of metallic bonding. (Adapted from Ashby and Jones,
1994. Reprinted with permission from Pergamon Press.)

Copyright © 2003 Marcel Dekker, Inc.



1.3.2 Secondary Bonds

Unlike primary bonds, secondary bonds (temporary dipoles and Van der
Waals’ forces) are relatively weak bonds that are found in several materials.
Secondary bonds occur due to so-called dipole attractions that may be
temporary or permanent in nature.

1.3.2.1 Temporary Dipoles

As the electrons between two initially uncharged bonded atoms orbit their
nuclei, it is unlikely that the shared electrons will be exactly equidistant from
the two nuclei at any given moment. Hence, small electrostatic attractions
may develop between the atoms with slightly higher electron densities and
the atoms with slightly lower electron densities [Fig. 1.6(a)]. The slight
perturbations in the electrostatic charges on the atoms are often referred
to as temporary dipole attractions or Van der Waals’ forces [Fig. 1.6(a)].
However, spherical charge symmetry must be maintained over a period of
time, although asymmetric charge distributions may occur at particular
moments in time. It is also clear that a certain statistical number of these
attractions must occur over a given period.

Temporary dipole attractions result in typical bond strengths of
� 0:24 kcal/mol. They are, therefore, much weaker than primary bonds.

FIGURE 1.6 Schematics of secondary bonds: (a) temporary dipoles/Van der
Waals’ forces; (b) hydrogen bonds in between water molecules. (Adapted
from Ashby and Jones, 1994. Reprinted with permission from Pergamon
Press.)
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Nevertheless, they may be important in determining the actual physical
states of materials. Van der Waals’ forces are found between covalently
bonded nitrogen (N2) molecules. They were first proposed by Van der
Waals to explain the deviations of real gases from the ideal gas law. They
are also partly responsible for the condensation and solidification of mole-
cular materials.

1.3.2.2 Hydrogen Bonds

Hydrogen bonds are induced as a result of permanent dipole forces. Due to
the high electronegativity (power to attract electrons) of the oxygen atom,
the shared electrons in the water (H2O) molecule are more strongly attracted
to the oxygen atom than to the hydrogen atoms. The hydrogen atom there-
fore becomes slightly positively charged (positive dipole), while the oxygen
atom acquires a slight negative charge (negative dipole). Permanent dipole
attractions, therefore, develop between the oxygen and hydrogen atoms,
giving rise to bridging bonds, as shown in Fig. 1.6(b). Such hydrogen
bonds are relatively weak (0.04–0.40 kcal/mol). Nevertheless, they are
required to keep water in the liquid state at room-temperature. They also
provide the additional binding that is needed to keep several polymers in the
crystalline state at room temperature.

1.4 STRUCTURE OF SOLIDS

The bonded atoms in a solid typically remain in their lowest energy config-
urations. In several solids, however, no short- or long-range order is
observed. Such materials are often described as amorphous solids.
Amorphous materials may be metals, ceramics, or polymers. Many are
metastable, i.e., they might evolve into more ordered structures on sub-
sequent thermal exposure. However, the rate of structural evolution may
be very slow due to slow kinetics.

1.4.1 Polymers

The building blocks of polymers are called mers [Figs 1.7(a) and 1.7(b)].
These are organic molecules, each with hydrogen atoms and other elements
clustered around one or two carbon atoms. Polymers are covalently bonded
chain structures that consist of hundreds of mers that are linked together via
addition or condensation chemical reactions (usually at high temperatures
and pressures). Most polymeric structures are based on mers with covalently
bonded carbon–carbon (C–C) bonds. Single (C–C), double (C––C), and
triple (C–––C) bonds are found in polymeric structures. Typical chains con-
tain between 100 and 1000 mers per chain. Also, most of the basic properties
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of polymers improve with increasing average number of mers per chain.
Polymer chains may also be cross-linked by sulfur atoms (Fig. 1.7(b)].
Such cross-linking by sulfur atoms occurs by a process known as vulcaniza-
tion, which is carried out at high temperatures and pressures. Commercial
rubber (isoprene) is made from such a process.

The spatial configurations of the polymer chains are strongly influ-
enced by the tetrahedral structure of the carbon atom [Fig. 1.7(c)]. In the
case of single C–C bonds, an angle of 109.58 is subtended between the

FIGURE 1.7 Examples of polymeric structures: (a) polymerization to form
poly(vinyl chloride) (C2H3Cl)n; (b) cross-linked structure of polyisoprene; (c)
bond angle of 109.58; (d) bond stretching and rotation within kinked and
coiled structure. (Adapted from Shackleford, 1996. Reprinted with permission
from Prentice-Hall).
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carbon atom and each of the four bonds in the tetrahedral structure. The
resulting chain structures will, therefore, tend to have kinked and coiled
structures, as shown in Figs 1.7(d). The bonds in tetrahedral structure
may also rotate, as shown in Fig. 1.7(d).

Most polymeric structures are amorphous, i.e., there is no apparent
long-or short-range order to the spatial arrangement of the polymer chains.
However, evidence of short- and long-range order has been observed in
some polymers. Such crystallinity in polymers is due primarily to the
formation of chain folds, as shown in Fig. 1.8. Chain folds are observed
typically in linear polymers (thermoplastics) since such linear structures are
amenable to folding of chains. More rigid three-dimensional thermoset
structures are very difficult to fold into crystallites. Hence, polymer crystal-
linity is typically not observed in thermoset structures. Also, polymer chains
with large side groups are difficult to bend into folded crystalline chains.

In general, the deformation of polymers is elastic (fully reversible)
when it is associated with unkinking, uncoiling or rotation of bonds
[Fig. 1.7(d)]. However, polymer chains may slide over each other when
the applied stress or temperature are sufficiently large. Such sliding may
be restricted by large side groups [Fig. 1.4(b)] or cross-links [Fig. 1.7(b)].
Permanent, plastic, or viscous deformation of polymers is, thus, associated
with chain sliding, especially in linear (thermoplastic) polymers. As discussed

FIGURE 1.8 Schematic of amorphous and crystalline regions within long-
chain polymeric structure. (Adapted from Ashby and Jones, 1994.
Reprinted with permission from Pergamon Press.)
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earlier, chain sliding is relatively difficult in three-dimensional (thermoset)
polymers. Hence, thermosets are relatively rigid and brittle compared to
thermoplastics.

Long-chain polymeric materials exhibit a transition from rigid glass-
like behavior to a viscous flow behavior above a temperature that is gen-
erally referred to as the glass transition temperature, Tg. This transition
temperature is usually associated with change in coefficient of thermal
expansion which may be determined from a plot of specific volume versus
temperature (Fig. 1.9). It is also important to note that the three-dimen-
sional structures of thermosets (rigid network polymers) generally disinte-
grate at elevated temperatures. For this reason, thermosets cannot be reused
after temperature excursions above the critical temperature levels required
for structural disintegration. However, linear polymers (thermoplastics) do
not disintegrate so readily at elevated temperatures, although they may
soften considerably above Tg. They can thus be re-used after several ele-
vated-temperature exposures.

1.4.2 Metals and Ceramics

Metals are usually solid elements in the first three groups of the periodic
table. They contain de-localized outer electrons that are free to ‘‘swim
about’’ when an electric field is applied, as discussed in Sect. 1.3.1.3 on
metallic bonding. Ceramics are compounds formed between metals and

FIGURE 1.9 Schematic illustration of ductile-to-brittle transition in plot of
specific volume versus temperature (Adapted from Shackleford, 1996.
Reprinted with permission from Prentice-Hall.)
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nonmetals. Ceramics may have ionic, covalent, or mixed ionic and covalent
bonds. The relatively high compressive strengths of most ceramics may also
be attributed largely to strong ionic and/or covalent bonds. Unfortunately,
however, most ceramics are brittle due to their inability to accommodate
strains in the presence of crack tips (especially under tensile loading where
cracks tend to open up).

Metals and ceramics usually have long-range, ordered, crystalline
structures. However, amorphous structures may also form under certain
processing conditions. In the case of crystalline metallic and ceramic mate-
rials, the atoms within each crystal all have the same orientation. A crystal-
line lattice, consisting of regular repeated units (somewhat akin to Lego
building blocks in a child’s play kit) in a regular lattice, is observed. Each
repeated unit is usually referred to as a unit cell, and the unit cell is generally
chosen to highlight the symmetry of the crystal.

An example of a two-dimensional unit cell is shown in Fig. 1.10(a).
This illustrates the two-dimensional layered structure of graphite which is
one of the allotropes of carbon. Note that each carbon atom in the graphite
structure is surrounded by three near neighbors. However, the orientations
of the near neighbors to atoms A and B are different. Atoms similar to A are
found at N and Q, and atoms similar to B are found at M and P. In any
case, we may arbitrarily choose a unit cell, e.g., OXAY, that can be moved
to various positions until we fill the space with identical units. If the repeti-
tion of the unit is understood to occur automatically, only one unit must be
described to describe fully the crystal.

The unit chosen must also be a parallelogram in two dimensions, or a
parallelepiped in three dimensions. It is referred to as a mesh or a net in two
dimensions, or a unit cell in three dimensions. Since atoms at the corner of
the mesh or unit cell may be shared by adjacent nets/unit cells, the total
number of atoms in a unit cell may depend on the sum of the fractions of
atoms that are present with an arbitrarily selected unit cell. For example, the
mesh shown in Fig. 1.10(a) contains (4� 1=4) 1 atom. The three-dimensional
parallelepiped also contains (8� 1=8) 1 atom per unit cell [Fig. 1.10(b)].

It is also important to note here that the origin of the unit cell is at the
corner of the unit cell [Fig. 1.10(c)]. The sides of the unit parallelepiped also
correspond to the cartesian x, y, z axes, and the angles �, �, � are the axial
angles. The arrangement of atoms may therefore be described by a three-
dimensional grid of straight lines that divide the space into parallelepipeds
that are equal in size. The intersection of lines is called a space lattice, and
the crystal is constructed by stacking up the unit cells in a manner somewhat
analogous the stacking of Lego pieces [Fig. 1.10(c)].

The most common crystalline lattices in metallic materials are the
body-centered cubic, face-centered cubic, hexagonal closed-packed and
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the simple cubic structures. These are shown schematically in Fig. 1.11. The
hexagonal and cubic structures can be constructed by the stacking of
individual crystals, as shown in [Figs 1.12 (a and b)]. Note that the hexago-
nal closed packed (h.c.p.) have an ABABAB stacking sequence, while the

FIGURE 1.10 Schematics of possible unit cells. (a) Two-dimensional structure
of graphite. (From Kelly and Groves, 1970.) (b) Parrellepiped/unit cell showing
axes and angles. (c) A space lattice. (Adapted from Hull and Bacon, 1984.
Reprinted with permission from Pergamon Press.)
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FIGURE 1.11 Schematics of 14 Bravais lattices. (Adapted from Shackleford,
1996. Reprinted with permission from Prentice-Hall.)

FIGURE 1.12 Schematic of stacking sequence in closed packed lattices:
(a) hexagonal closed packed structure; (b) face-centered cubic structure.
(Adapted from Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.)
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(f.c.c.) structure has an ABCABC stacking sequence. Also, both f.c.c. and
h.c.p. structures are closed packed structures with several closed-packed
planes on which plastic flow can occur.

Crystalline ceramic materials generally have more complex structures
with lower symmetry. In general, however, 14 Bravais lattices are possible in
crystalline materials, as shown in Fig. 1.11. Note the increasing complexity
and the reduction in symmetry of the Bravais lattices that do not have cubic
or hexagonal crystal structures. Crystalline cermics have less symmetric
structures. The loss of symmetry is partly responsible for the relatively
brittle behavior that is typically observed in ceramic systems. This will be
discussed later. Further discussion on Bravais lattices can be found in any
standard text on crystallography.

1.4.3 Intermetallics

Intermetallics are compounds formed between different metals. The bonds
are often mixed metallic and covalent bonds. However, most intermetallics
are often metallic-like in character. Intermetallics are, therefore, generally
strong, but brittle as a result of their mixed bonding character. They also
have predominantly noncubic (nonsymmetric) structures. Nevertheless,
(relatively) light weight, high-temperature intermetallics such as gamma-
based titanium aluminides (TiAl) and niobium aluminides (Nb3Al) are of
commercial interest, especially in the aerospace industry where they are
being considered as possible replacements for heavier nickel-, iron-, or
cobalt-base superalloys, themselves often containing intermetallics (Fig.
1.13). Some recent improvements in the balance of properties of these mate-
rials suggests that they may be used in the next generation of aircraft tur-
bines.

1.4.4 Semiconductors

These are typically group IV elements (or their compounds) that have four
outer electrons. The outer electrons can be excited into the conduction
bands by application of electric fields. Electrical conductivity in semicon-
ductors occurs either by electron or hole movement [Figs 1.14(a) and
1.14(b)]. In recent years, semiconductor packages have been applied in sev-
eral electronic devices consisting of layered configurations of semiconduc-
tors deposited on metallic substrates within polymeric or ceramic
encapsulants (Fig. 1.15). Such layered structures behave very much like
structural materials. The mechanical properties of semiconductor devices
has thus emerged as one of the fastest growing areas in the field of mechan-
ical behavior.
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1.4.5 Composites

Composites are mixtures of two or more phases [Figs 1.15(a)–(d)]. Usually,
the continuous phase is described as the matrix phase, while the discontin-
uous phase is described as the reinforcement phase. Composites constitute
the great majority of materials that are encountered in nature. However,
they may also be synthetic mixtures. In any case, they will tend to have
mechanical properties that are intermediate between those of the matrix and

FIGURE 1.13 Microstructures of some metallic and intermetallic materials:
(a) grains of single phase � niobium metal; (b) duplex �þ � microstructure
of Ti–6Al–4V alloy; (c) eutectoid �þ � microstructure of gamma-based
titanium aluminide intermetallic (Ti–48Al–2Cr); (d) intermetallic �0 (Ni3Nb)
precipitates in a �-nickel solid solution matrix within IN718 superalloy.
(Courtesy of Dr Christopher Mercer.)
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reinforcement phases. Mixture rules are sometimes used to predict the
mechanical properties of composites. The fracture behavior but not the
stiffness of most composites are also strongly affected by the interfacial
properties between the matrix and reinforcement phases. The interfaces,
along with the matrix, must be engineered carefully to obtain the desired
balance of mechanical properties.

FIGURE 1.14 Schematic illustration of semiconduction via: (a) electron move-
ment; (b) hole movement. (Adapted from Shackleford, 1996. Reprinted with
permission from Prentice-Hall.)

FIGURE 1.15 Schematic of typical semiconductor package. (Courtesy of Dr
Rheiner Dauskardt.)
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An almost infinite spectrum of composite materials should be readily
apparent to the reader. However, with the exception of natural com-
posites, only a limited range of composite materials have been produced
for commercial purposes. These include: composites reinforced with brittle
or ductile particles, whiskers, fibers, and layers [Figs 1.16(a)–(d)].
Composites reinforced with co-continuous, interpenetrating networks of
reinforcement matrix and reinforcement materials have also been
produced, along with woven fiber composites from which most textiles
are made. Most recently, there has also been considerable interest in the
development of functionally (continuously) graded layered composites in
which the interfacial layers are graded to control composite residual stress
levels and thermal characteristics.

In addition to the relatively exotic structural composites described
above, more conventional materials have also been fabricated from compo-
sites. These include construction materials such as concrete, which is a
mixture of sand, gravel, and cement. Reinforced concrete is another example
of a composite material that consists of steel rods buried in concrete struc-
tures. Such composites may also be prestressed or post-tensioned to increase
the inherent resistance to fracture. Concrete composites reinforced with steel
or carbon fibers have also been developed in recent years. Since these fibers
have very high strengths, concrete composites with extremely high strengths
have been developed for a range of civil and structural engineering applica-
tions. Concrete composites have been used recently in various bridge deck
designs and in other structural engineering applications. Polymer matrix
composites (polymer matrices reinforced with stiff fibers) have also been
considered for possible use in bridge applications due to their attractive
combinations of mechanical properties. However, there are some concerns
about their ability to withstand impact loading.

Wood is an example of a commonly used composite material. It is
composed of tube-like cells that are aligned vertically or horizontally along
the height of a tree. The tubular cells reinforce the wood in a similar manner
to fibers in a synthetic composite. The fibers serve as reinforcements within
the matrix, which consists of lignin and hemicellulose (both polymeric
materials). Other natural composite materials include natural fibers such
as silk, cotton and wool. These are all polymeric composites with very
complex layered structures.

Layered composite structures also exist in all of the electronic
packages that are used in modern electronic devices. Since the reliability
of these packages is often determined by the thermal and mechanical prop-
erties of the individual layers and their interfaces, a good understanding of
composite concepts is required for the design of such packages. Electronic
packages typically consist of silica (semiconductor) layers deposited on
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metallic substrates within polymeric composites (usually silica filled
epoxies). The other materials that have been used in electronic packaging
include: alumina, aluminum, silicon nitride, and a wide range of other
materials. The layered materials have been selected due to their combina-
tions of heat conductivity (required for Joule/I2R heat dissipation) and
electrical properties.

1.5 STRUCTURAL LENGTH SCALES:
NANOSTRUCTURE, MICROSTRUCTURE, AND
MACROSTRUCTURE

It should be clear from the above discussion that the structure of solids can
be considered at different length scales (from atomic to microscopic and
macroscopic scales). Physicists often work at the atomic level, while most
materials scientists work on the microscopic level. Unfortunately, however,
most engineers tend to have only a macroscopic level of understanding of
structure [Figs 16(a)–(d)]. They are often unaware of the atomic and micro-
structural constituents that can affect the mechanical behavior of materials
and of the role mechanics plays even on the atomic scale. Failure to recog-
nize the potential importance of these issues can lead to bad design. In the
worst cases, failure to understand the effects of microscale constituents on
the mechanical properties of materials has led to plane crashes, bridge fail-
ures, and shipwrecks. An understanding of mechanical behavior on different
length scales is, therefore, essential to the safe design of structures.

The major challenge in this area is how to link existing theoretical
models on different length scales, i.e., it is generally difficult to link atomistic
models to microscopic models, or microscopic models to macroscopic mod-
els. At crack tips, all length scales may enter into the problem. The engineer
must appreciate the relevant aspects of mechanical behavior at the different
length scales. Furthermore, the size scale of the structure can affect the
mechanical behavior of the materials, and the length scales may range
from nanometers (close to atomic dimensions) to millimeters (easily viewed
with the naked eye).

Unfortunately, however, there are no unifying concepts that bridge the
gap between the different length scales. Quantitative models must, therefore,
be developed at the appropriate length scales. This book presents the basic
concepts required for a fundamental understanding of mechanical behavior
at the different scales. However, since the mechanical behavior of materials
is strongly affected by structure and defects, a brief review of defect struc-
tures and microstructures is provided in Chap. 2 along with the indicial
notation required for the description of atomic structure.
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1.6 SUMMARY

A brief introduction to the structure of materials has been presented in this
chapter. Following a review of the structure of crystalline and amorphous
materials, the different classes of materials (metals, polymers, ceramics,
intermetallics, and semiconductors and composites) were introduced. The
chapter then concluded with an introduction to structural length scales
related to nanostructure, microstructure, and macrostructure.

FIGURE 1.16 Examples of composite microstructures. (a) Al2O3 particulate-
reinforced Al composite. (Courtesy of Prof. T. S. Srivatsan.) (b) TiB whisker-
reinforced Ti–6Al–4V composite. (c) SiC fiber-reinforced Ti–15V–3Cr–3Al–3Sn
composite. (d) Layered MoSi2/Nb composite.
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2

Defect Structure and Mechanical
Properties

2.1 INTRODUCTION

Since the mechanical behavior of solids is often controlled by defects, a brief
review of the different types of defects is presented in this chapter along with
the indicial notation that is often used in the characterization of atomic
planes and dimensions. The possible defect length scales are also discussed
before presenting a brief introduction to diffusion-controlled phase trans-
formations. Finally, an overview of the mechanical behavior of materials is
presented in an effort to prepare the reader for more detailed discussion in
subsequent chapters. The material described in this chapter is intended for
those with limited prior background in the principles of materials science.
The better prepared reader may, therefore, choose to skim this chapter and
move on to Chap. 3 in which the fundamentals of stress and strain are
presented.

2.2 INDICIAL NOTATION FOR ATOMIC PLANES AND
DIRECTIONS

Abbreviated notation for the description of atomic planes and directions are
presented in this section. The so called Miller indicial notation is presented
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first for cubic lattices. This is followed by a brief introduction to Miller–
Bravais notation, which is generally used to describe atomic planes and
directions in hexagonal closed packed structures.

2.2.1 Miller Indicial Notation

Miller indicial notation is often used to describe the planes and directions in
a cubic lattice. The Miller indices of a plane can be obtained simply from the
reciprocal values of the intercepts of the plane with the x, y, and z axes. This
is illustrated schematically in Figs 2.1 and 2.2. The reciprocals of the inter-
cepts are then multiplied by appropriate scaling factors to ensure that all the
resulting numbers are integer values corresponding to the least common
factors. The least common factors are used to represent the Miller indices
of a plane. Any negative numbers are represented by bars over them. A
single plane is denoted by (x y z) and a family of planes is usually repre-
sented as {x y z}.

Similarly, atomic directions may be specified using Miller indices.
These are vectors with integer values that represent the particular atomic
direction [u v w], as illustrated in Fig. 2.3(a). The square brackets are gen-
erally used to denote single directions, while angular brackets are used to
represent families of directions. An example of the h111i family of directions
is given in Fig. 2.3(b).

The Miller indices of planes and directions in cubic crystals may be
used to determine the unit vectors of the direction and the plane normal,
respectively. Unit vectors are given simply by the direction cosines [l m n] to
be

n ¼ l îiþmĵjþ nk̂k ð2:1Þ

FIGURE 2.1 Determination of Miller indices for crystal planes. (Adapted from
Shackleford, 1996. Reprinted with permission from Prentice-Hall.)
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In the case of a direction, d1, described by unit vector ½x1 y1 z1�, the
direction cosines are given by

d̂d1 ¼ x1 îiþ y1 ĵjþ z1k̂kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ y2

1 þ z21

q ð2:2Þ

In the case of a plane with a plane normal with a unit vector, n̂n2, that
has components ðu1 v1 w1Þ, the unit vector, n̂n1, is given by

n̂n1 ¼ u1 îiþ v1 ĵjþw1k̂kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ v2

1 þw2
1

q ð2:3Þ

FIGURE 2.2 Examples of crystal planes. (Adapted from Shackleford, 1996.
Reprinted with permission from Prentice-Hall.)

FIGURE 2.3 Determination of crystal directions: (a) single [111] directions; (b)
family of h111i directions. (Adapted from Shackleford, 1996. Reprinted with
permission from Prentice-Hall.)
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The angle, �, between two directions d1 ¼ ½x1 y1 z1� and d2 ¼ ½x2 y2 z2�
is given by

cos � ¼ d̂d1 � d̂d2 ¼ x1x2 îiþ y1y2 ĵjþ z1z2k̂kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

1 þ y2
1 þ z21 Þðx2

2 þ y2
2 þ z22 Þ

q ð2:4Þ

Similarly, the angle � between two planes with plane normals given by
n1 ¼ ðu1 v1 w1) and n2 ¼ ðu2 v2 w2), is given by

cos � ¼ u1u2 îiþ v1v2 ĵjþw1w2k̂kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2

1 þ v2
1 þw 2

1 þw 2
1 Þðu2

2 þ v2
2 þw2

2 Þ
q ð2:5Þ

The direction of the line of intersection of two planes n1 and n2 is
given by the vector cross product, n3 ¼ n1 � n2, which is given by

cos � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2

1 þ v2
1 þw 2

1 Þðu2
2 þ v2

2 þw 2
2 Þ

q îi ĵj k̂k
u1 v1 w1

u2 v2 w2

������
������ ð2:6Þ

2.2.2 Miller–Bravais Indicial Notation

In the case of hexagonal closed packed lattices, Miller–Bravais indicial nota-
tion is used to describe the directions and the plane normals. This type of
notation is illustrated schematically in Fig. 2.4. Once again, the direction
is described by a vector with the smallest possible integer components.
However, three (a1 a2 a3) axes are used to specify the directions in the
horizontal (a1 a2 a3) plane shown in Fig. 2.4(a).

The fourth co-ordinate in Miller–Bravais notation corresponds to the
vertical direction, which is often denoted by the letter c. Miller–Bravais
indicial notation for direction is thus given by n ¼ ½a1 a2 a3 c]. Similarly,
Miller–Bravais indicial notation for a plane is given by the reciprocals of the
intercepts on the a1, a2, a3 and c axes. As before, the intercepts are multi-
plied by appropriate scaling factors to obtain the smallest possible integer
values of the Miller–Bravais indices.

The Miller–Bravais notation for planes is similar to the Miller indicial
notation described earlier. However, four indices (a1 a2 a3 c) are needed to
describe a plane in Miller–Bravais indicial notation, as shown in Fig. 2.4(b).
Note that a1, a2, a3, c correspond to the reciprocals of the intercepts on the
a1, a2, a3, and c axes. The indices are also scaled appropriately to represent
the planes with the smallest integer indices. However, only two of the three
basal plane co-ordinates are independent. The indices a1, a2, and a3 must,
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therefore, be selected such that ai þ aj ¼ �ak, for sequential values of i, j,
and k between 1 and 3.

To assist the reader in identifying the Miller–Bravais indicial notation
for directions, two examples of Miller–Bravais direction indices are pre-
sented in Fig. 2.4. These show two simple methods for the determination
of Miller–Bravais indices of diagonal axes. Fig. 2.5(a) shows diagonal axes
of Type I which correspond to directions along any of the axes on the basal
plane, i.e., a1, a2 or a3. Note that the Miller–Bravais indices are not [1000]
since these violate the requirement that ai þ aj ¼ �ak. The diagonal axes of
Type I, therefore, help us to identify the correct Miller–Bravais indices for
the a1 direction as ½2110�. Note that the unit vector along the a1 direction is
1/3½2110�. Similarly, we may show that the unit vectors along the a2 and a3
directions are given by 1/3½1210� and 1/3½1120�. The diagonal axis of Type I,
therefore, enables us to find the Miller–Bravais indices for any of the direc-
tions along the axes on the basal plane.

The other common type of diagonal axis is shown in Fig. 2.5(b). This
corresponds to a direction that is intermediate between ai and �ak. In the
example shown in Fig. 2.5(b), the vector s is given simply by the sum of the
unit vectors along the a1 and �a3 directions. The Miller–Bravais indices for
this direction are, therefore, given by 1=2½1010�. It is important to note here
that the c component in the Miller–Bravais notation should always be
included even when it is equal to zero. The vectors corresponding to differ-
ent directions may also be treated using standard vector algebra.

FIGURE 2.4 Miller–Bravais indicial notation for hexagonal closed packed
structures: (a) example showing determination of direction indices; (b) exam-
ple showing determination of plane indices. (Adapted from Shackleford,
1996. Reprinted with permission from Prentice-Hall.)
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2.3 DEFECTS

All solids contain defects. Furthermore, structural evolution and plastic
deformation of solids are often controlled by the movement of defects. It
is, therefore, important for the student of mechanical behavior to be
familiar with the different types of defects that can occur in solids.

FIGURE 2.5 Schematic illustration of diagonal axes of (a) Type I, and (b) Type
II. (Adapted from Read-Hill and Abbaschian, 1992. Reprinted with permission
from PWS Kent.)
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Defects are imperfections in the structure. They may be one-dimensional
point defects (Fig. 2.6), line defects (Fig. 2.7), two-dimensional plane
defects (Fig. 2.8), or three-dimensional volume defects such as inclusions
or porosity, Fig. 1.16(d). The different types of defects are described briefly
in this section.

2.3.1 One-Dimensional Point Defects

One-dimensional point defects [Fig. 2.6) may include vacancies [Fig. 2.6(a)],
interstitials [Figs 2.6(a) and 2.6(b)], solid solution elements [Fig. 2.6(b)], and
pairs or clusters of the foregoing, Fig. 2.6(c). Pairs of ions (Frenkel defects)
or vacancies (Schottky defects) are often required to maintain charge neu-
trality, Fig. 2.6(c). Point defects can diffuse through a lattice, especially at
temperatures above approximately 0.3–0.5 of the absolute melting tempera-
ture. If the movement of point defects produces a net state change, it causes
thermally activated stress-induced deformation, such as creep. The diffusion
of point defects such as vacancies may also lead to the growth of grains in a
polycrystalline material.

2.3.2 Line Defects

Line defects consist primarily of dislocations, typically at the edges of
patches where part of a crystallographic plane has slipped by one lattice

FIGURE 2.6 Examples of point defects: (a)] vacancy and interstitial elements;
(b) substitutional element and interstitial impurity element; (c) pairs of ions
and vacancies. [(a) and (c) are adapted from Shackleford, 1996—reprinted
with permission from Prentice-Hall; (b) is adapted from Hull and Bacon,
1984. Reprinted with permission from Pergamon Press.]

Copyright © 2003 Marcel Dekker, Inc.



spacing (Fig. 2.7). The two pure types of dislocations are edge and screw,
Figs 2.7(a) and 2.7(b). Edge dislocations have slip (Burgers) vectors perpen-
dicular to the dislocation line [Fig. 2.7a)], while screw dislocations have
translation vectors parallel to the dislocation line, Fig. 2.7(b). In general,
however, most dislocations are mixed dislocations that consist of both edge
and screw dislocation components, Fig. 2.7(c). Note that the line segments
along the curved dislocation in Fig. 2.7(c) have both edge and screw com-
ponents. However, the deflection segments are either pure edge or pure
screw at either end of the curved dislocation, Fig. 2.7(c).

FIGURE 2.7 Examples of line defects: (a) edge dislocations; (b) screw disloca-
tions; (c) mixed dislocations. (Adapted from Hull and Bacon, 1980. Reprinted
with permission from Pergamon Press.)
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2.3.3 Surface Defects

Surface defects are two-dimensional planar defects (Fig. 2.8). They may be
grain boundaries, stacking faults, or twin boundaries. These are surface
boundaries across which the perfect stacking of atoms within a crystalline
lattice changes. High- or low-angle tilt or twist boundaries may involve
changes in the crystallographic orientations of adjacent grains, Figs 2.8(a)
and 2.8(b). The orientation change across the boundary may be described
using the concept of coincident site lattices. For example, a � ¼ 5 or

FIGURE 2.8 Examples of surface defects: (a) low-angle tilt boundary; (b) high-
angle tilt boundary; (c) S ¼ 5 boundary; (d) twin boundary; (e) intrinsic stack-
ing fault; (f) extrinsic stacking fault. (Adapted from Shackleford, 1996.
Reprinted with permission from Prentice-Hall.)
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��1 ¼ 1=5 boundary is one in which 1 in 5 of the grain boundary atoms
match, as shown in Fig. 2.8(c).

Twin boundaries may form within crystals. Such boundaries lie across
deformation twin planes, as shown in Fig. 2.8(d). Note that the atoms on
either side of the twin planes are mirror images. Stacking faults may also be
formed when the perfect stacking in the crystalline stacking sequence is
disturbed, Figs 2.8(e) and 2.8(f). These may be thought of as the absence
of a plane of atoms (intrinsic stacking faults) or the insertion of rows of
atoms that disturb the arrangement of atoms (extrinsic stacking faults).
Intrinsic and extrinsic stacking faults are illustrated schematically in Figs
2.8(e) and 2.8(f), respectively. Note how the perfect ABCABC stacking of
atoms is disturbed by the insertion or absence of rows of atoms.

2.3.4 Volume Defects

Volume defects are imperfections such as voids, bubble/gas entrapments,
porosity, inclusions, precipitates, and cracks. They may be introduced into a
solid during processing or fabrication processes. An example of volume
defects is presented in Fig. 2.9. This shows MnS inclusions in an A707
steel. Another example of a volume defect is presented in Fig. 1.16(d).
This shows evidence of �1–2 vol % of porosity in a molybdenum disilicide
composite. Such pores may concentrate stress during mechanical loading.
Volume defects can grow or coalesce due to applied stresses or temperature
fields. The growth of three-dimensional defects may lead ultimately to cat-
astrophic failure in engineering components and structures.

FIGURE 2.9 MnS inclusions in an A707 steel. (Courtesy of Jikou Zhou.)
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2.4 THERMAL VIBRATIONS AND
MICROSTRUCTURAL EVOLUTION

As discussed earlier, atoms in a crystalline solid are arranged into units that
are commonly referred to as grains. The grain size may be affected by the
control of processing and heat treatment conditions. Grains may vary in size
from nanoscale (�10–100 nm) to microscale (�1–100 �m), or macroscale
(�1–10 mm). Some examples of microstructures are presented in Figs
1.13(a–d). Note that the microstructure may consist of single phases [Fig.
1.13(a)] or multiple phases [Figs 1.13(b–d)]. Microstructures may also
change due to diffusion processes that occur at temperatures above the
so-called recrystallization temperature, i.e., above approximately 0.3–0.5
of the melting temperature in degrees Kelvin.

Since the evolution of microstructure is often controlled by diffusion
processes, a brief introduction to elementary aspects of diffusion theory is
presented in this section. This will be followed by a simple description of
phase nucleation and grain growth. The kinetics of phase nucleation and
growth and growth in selected systems of engineering significance will be
illustrated using transformation diagrams. Phase diagrams that show the
equilibrium proportions of constituent phases will also be introduced
along with some common transformation reactions.

2.4.1 Statistical Mechanics Background

At temperatures above absolute zero (0 K), the atoms in a lattice vibrate
about the equilibrium positions at the so-called Debye frequency, 	, of
� 1013 s�1. Since the energy required for the lattice vibrations is supplied
thermally, the amplitudes of the vibration increase with increasing tempera-
ture. For each individual atom, the probability that the vibration energy is
greater than q is given by statistical mechanics to be

P ¼ e�q=kT ð2:7Þ
where k is the Boltzmann constant (1:38� 10�23 J�atom�1K�1) and T is the
absolute temperature in degrees Kelvin. The vibrating lattice atoms can only
be excited into particular quantum states, and the energy, q, is given simply
by Planck’s law (q ¼ h	). Also, at any given time, the vibrational energy
varies statistically from atom to atom, and the atoms continuously exchange
energy as they collide with each other due to atomic vibrations.
Nevertheless, the average energy of the vibrating atoms in a solid is given
by statistical mechanics to be 3kT at any given time. This may be sufficient
to promote the diffusion of atoms within a lattice.
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2.4.2 Diffusion

Diffusion is the thermally- or stress-activated movement of atoms or vacan-
cies from regions of high concentration to regions of low concentration
(Shewmon, 1989). It may occur in solids, liquids, or gases. However, we
will restrict our attention to considerations of diffusion in solids in the
current text. Consider the interdiffusion of two atomic species A and B
shown schematically in Fig. 2.10; the probability that nA atoms of A will
have energy greater than or equal to the activation barrier, q, is given by
nAe

�q=kT . Similarly, the probability that nB atoms of B will have energy
greater than or equal to the activation barrier is given by nBe

�q=kT . Since
the atoms may move in any of six possible directions, the actual frequency in
any given direction is 	=6. The net number of diffusing atoms, n, that move
from A to B is thus given by

nd ¼ 


6
ðnA � nBÞe�q=KT ð2:8Þ

If the diffusion flux, J, is defined as the net number of diffusing atoms, nd,
per unit area, i.e., J ¼ nd=ðl1l2Þ, and the concentration gradient, dC=dx,

FIGURE 2.10 Schematic illustration of diffusion: activation energy required to
cross a barrier. (Adapted from Ashby and Jones, 1994. Reprinted with per-
mission from Pergamon Press).
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which is given simply by �ðCA � CBÞ=r0, the diffusion flux, J, may then be
expressed as

J ¼ D0 exp
�q

kT

� � dC

dx

� �
ð2:9Þ

If we scale the quantity q by the Avogadro number, then the energy term
becomes Q ¼ NAq and R ¼ kNA. Equation (2.9) may thus be expressed as

J ¼ �D0 exp
�Q

RT

� �
dC

dx

� �
ð2:10Þ

If we now substitute D ¼ �D0 exp
�Q

RT

� �
into Eq. (2.10), we obtain the

usual expression for J, i.e., J is given by

J ¼ �D
dC

dx
ð2:11Þ

The above expression is Fick’s first law of diffusion. It was first pro-
posed by Adolf Hicks in 1855. It is important to note here that the diffusion
coefficient for self-diffusion, D, can have a strong effect on the creep proper-
ties, i.e., the time-dependent flow of materials at temperatures greater than
�0.3–0.5 of the melting temperature in degrees Kelvin. Also, the activation
energy, Q, in Eq. (2.10) is indicative of the actual mechanism of diffusion,
which may involve the movement of interstitial atoms [Fig. 2.11(a)] and
vacancies [Fig. 2.11(b)].

Diffusion may also occur along fast diffusion paths such as dislocation
pipes along dislocation cores [Fig. 2.12(a)] or grain boundaries [Fig. 2.12(b)].
This is facilitated in materials with small grain sizes, dg, i.e., a large number
of grain boundaries per unit volume. However, diffusion in most crystalline
materials occurs typically by vacancy movement since the activation ener-
gies required for vacancy diffusion (�1 eV) are generally lower than the
activation energies required for interstitial diffusion (�2–4 eV). The activa-
tion energies for self-diffusion will be shown later to be consistent with
activation energies from creep experiments.

2.4.3 Phase Nucleation and Growth

The random motion of atoms and vacancies in solids, liquids, and gases are
associated with atomic collisions that may give rise to the formation of small
embryos or clusters of atoms, as shown in Figs 2.13(a) and 2.13(b). Since the
initial free-energy change associated with the initial formation and growth
of such clusters is positive (Read-Hill and Abbaschian, 1992), the initial
clusters of atoms are metastable. The clusters may, therefore, disintegrate
due to the effects of atomic vibrations and atomic collisions. However, a
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FIGURE 2.11 Schematic illustration of diffusion mechanisms: (a) movement of
interstitial atoms; (b) vacancy/solute diffusion. (Adapted from Shewmon,
1989. Reproduced with permission from the Minerals, Metals, and Materials
Society.)

FIGURE 2.12 Fast diffusion mechanisms: (a) dislocation pipe diffusion along
dislocation core; (b) grain boundary diffusion. (Adapted from Ashby and
Jones, 1980. Reprinted with permission from Pergamon Press.)
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statistical number of clusters or embryos may grow to a critical size, beyond
which further growth results in a lowering of the free energy. Such clusters
may be considered stable, although random atomic jumps may result in
local transitions in cluster size to dimensions below the critical cluster
dimension.

Beyond the critical cluster size, the clusters of atoms may be consid-
ered as nuclei from which new grains can grow primarily as a result of
atomic diffusion processes, Figs 2.13(c) and 2.13(d). The nuclei grow until
the emerging grains begin to impinge on each other, Fig. 2.13(e). The growth
results ultimately in the formation of a polycrystalline structure, Fig. 2.13(f).

Subsequent grain growth occurs by interdiffusion of atoms and vacan-
cies across grain boundaries. However, grain growth is mitigated by inter-
stitial and solute ‘‘atmospheres’’ that tend to exert a drag on moving grain
boundaries. Grain growth is also associated with the disappearance of smal-
ler grains and the enhanced growth of larger grains. Due to the combined
effects of these factors, a limiting grain size is soon reached. The rate at
which this limiting grain size is reached depends on the annealing duration
and the amount of prior cold work introduced during deformation proces-
sing via forging, rolling, swaging, and/or extrusion.

FIGURE 2.13 Schematic illustration of nucleation and growth: (a, b) formation
of embryos; (c,d) nuclei growth beyond critical cluster size; (e) impingement
of growing grains; (f) polycrystalline structure. (Adapted from Altenpohl,
1998.)
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The simple picture of nucleation and growth presented above is gen-
erally observed in most crystalline metallic materials. However, the rate of
nucleation is generally enhanced by the presence of pre-existing nuclei such
as impurities on the mold walls, grain boundaries, or other defects. Such
defects make it much easier to nucleate new grains heterogeneously, in
contrast to the difficult homogeneous nucleation schemes described earlier.
In any case, the nuclei may grow by diffusion across grain boundaries to
form single-phase or multi-phase microstructures, such as those shown in
Fig. 1.13.

A simple model of grain growth may be developed by using an analogy
of growing soap bubbles. We assume that the growth of the soap bubbles
(analogous to grains) is driven primarily by the surface energy of the bubble/
grain boundaries. We also assume that the rate of grain growth is inversely
proportional to the curvature of the grain boundaries, and that the curva-
ture itself is inversely proportional to the grain diameter. We may then
write:

dðDÞ=dt ¼ k=d ð2:12Þ
where D is the average grain size, t is time elapsed, and k is a proportionality
constant. Separating the variables and integrating Eq. (2.12) gives the
following expression:

D2 ¼ kt þ c ð2:13Þ
where c is a constant of integration. For an initial grain size of D0 at time
t ¼ 0, we may deduce that c ¼ D2

0. Hence, substituting the value of c into
Eq. (2.13) gives

D2 � D2
0 ¼ kt ð2:14Þ

Equation (2.14) has been shown to fit experimental data obtained for
the growth of soap bubbles under surface tension forces. Equation (2.14)
has also been shown to fit the growth behavior of metallic materials when
grain growth is controlled by surface energy and the diffusion of atoms
across the grain boundaries. In such cases, the constant k in Eq. (2.14)
exhibits an exponential dependence which is given by

k ¼ k0 expð�Q=RT Þ ð2:15Þ
where k0 is an empirical constant, Q is the activation energy for the grain
growth process, T is the absolute temperature, and R is the universal gas
constant. By substituting Eq. (2.15) into Eq. (2.14), the grain growth law
may be expressed as

D2 � D2
0 ¼ tk0 expð�Q=RT Þ ð2:16Þ
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If we assume that D0 ¼ 0, then the grain growth law [Eq. (2.14)]
becomes

d ¼ ðktÞ1=2 ð2:17Þ
Equations (2.16) and (2.17) are consistent with data for grain growth in
alpha brass (10% Zn–90% Cu) presented in Fig. 2.14. However, the expo-
nent in the grain growth law is often somewhat different from the value of
1=2 in Eq. (2.17). It is, therefore, common to report the grain growth law in
the following form:

d ¼ k 0ðtÞn ð2:18Þ
where n is a number that is generally less than the value of 1/2 predicted for
diffusion across grain boundaries, and k0 is an empirical constant.

2.4.4 Introduction to Phase Diagrams

Let us start by considering a simple two-component system, e.g., a system
consisting of Cu and Ni atoms. Since Cu and Ni have similar atomic radii,
crystal structures, valence, and electronegativities, they are completely mis-
cible across the complete composition range. The equilibrium structures in
the Cu and Ni system can be represented on a phase diagram, Fig. 2.15(a). A
phase diagram may be considered as a map that shows the phases (a phase is
a physically distinct, homogeneous aspect of a system) that exist in equili-
brium as a function of temperature and composition, Fig. 2.15(a).

FIGURE 2.14 Grain growth isotherms for �-brass (10% Zn–90% Cu). Note that
D2 varies directly with time. (Adapted from Feltham and Copley, 1958.)
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In the case of the Cu–Ni phase diagram shown in Fig. 2.15(a), the
mixtures exist either as solid phases (below the solidus line) or liquid phases
(above the liquidus line). A mixed two-phase (solid þ liquid) region also
exists between the solidus and liquidus in Fig. 2.15(a). Since Ni and Cu are
completely soluble across the complete composition regime, the phase dia-
gram in Fig. 2.15(a) is often referred to as a binary isomorphous phase
diagram.

The compositions at the extreme left and extreme right of the phase
diagram [Fig. 2.15(a)] correspond to 100% Ni and 100% Cu, respectively.
However, intermediate compositions consist of both Cu and Ni atoms. The
phase diagram may be read simply by identifying the phases present at the
specified co-ordinates. For example, point x on Fig. 2.15(a) represents a
solid phase that contains 80% Ni and 20% Cu at 5008C. It should be
clear that the mixtures to the left of the diagram have more Ni than Cu.
Vice versa, the mixtures to the right of the phase diagram have more Cu
than Ni.

Now, consider the composition of the point y in the two-phase (solid
þ liquid) regime. This point has a composition that is in between those at

FIGURE 2.15 Cu/Ni phase diagram: (a)] complete phase diagram; (b) illustra-
tion of the Lever rule in partial phase diagram. (Adapted from Read-Hill and
Abbaschian, 1992. Reprinted with permission from PWS Kent.)
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points m and n. The compositions of m and n may be read directly from the
abscissa in Fig. 2.15(a). The points m and n correspond to mixtures contain-
ing 62 and 78% copper, respectively. The liquid + solid mixture at y
actually contains 70% Cu and 30% Ni, as shown in Fig. 2.15(a).

Now refer to the enlarged region of the solid–liquid region shown in
Fig. 2.15(b). The composition at point z in Fig. 2.15(b) may be determined
using the so-called Lever rule. The Lever rule states that the fraction of
mixture m at point z is given simply by (b=aÞ� � 1, Fig. 2.15(b). Similarly,
the fraction of mixture n at point z is given by (a=bÞ � 1, Fig. 2.15(b). Note
also that the fraction of mixture n is equal to one minus the fraction of
mixture m. Conversely, the fraction of mixture m is equal to one minus the
fraction of mixture n. Hence, as we move across the isothermal (tie) line
from m to n, the composition changes from 100% solid to 100% liquid in
Fig. 2.15(b). We may, therefore, use the Lever rule to find the fractions of
solid and liquid at point m. The reader should be able show that the fraction
of solid phase at z is b/l. Similarly, the fraction of liquid phase is a/l at point
z, Fig. 2.15(b).

Intermediate phases may also form due to supersaturation with one of
the alloying elements. This may result in the formation of two-phase mix-
tures in more complex phase diagrams. Fig. 2.16 shows the Al–Cu phase
diagram. Note that the �-Al phase becomes quickly supersaturated with Cu.

FIGURE 2.16 Left-hand section of the aluminum–copper phase diagram.
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A significant fraction of the phase diagram, therefore, consists of a two-
phase regime in which the � phase and � phase (CuAl2) are in equilibrium.
The Al–Cu system also exhibits a minimum melting point at which liquid
aluminum undergoes a reaction to form an � phase and a � phase. Such
reactions involving the formation of two solid phases from a single liquid
phase are known as eutectic reactions. Eutectic reactions are generally asso-
ciated with zero freezing range and lowest melting points. They therefore
form the basis for the design of low melting point solder and braze alloys.

The left-hand section of the Fe–C phase diagram is shown in Fig. 2.17
(Chipman, 1972). This is a very important phase diagram since it provides
the basis for the design of steels and cast irons that are generally the materi-
als of choice in structural applications. Steels are Fe–C mixtures that con-
tain less than 1.4 wt % carbon, whereas cast irons typically contain between
1.8 and 4 wt % carbon. Note also that we may further subdivide steels into
low-carbon steels (< 0.3 wt % C), medium-carbon steels (0.3–0.8 wt % C)
and high-carbon (0.8–1.4 wt % C) steels.

The five phases observed on the left-hand side of the Fe–C diagram are
�-Fe (also called ferrite), �-Fe (also called austenite), �-Fe, Fe3C (also called
cementite), and a liquid solution of C in Fe (Brooks, 1996). The �-Fe has a
body-centered cubic (b.c.c.) structure. It contains randomly distributed car-

FIGURE 2.17 Left-hand section of the iron–carbon phase diagram.
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bon atoms in solution in b.c.c. iron. The maximum solubility of C (in �-Fe)
of only 0.035 wt % occurs at 7238C. Pure �-Fe iron is also stable below
9148C. However, above this temperature, �-Fe is the stable phase. This is a
random solid solution of carbon in face-centered cubic (f.c.c) iron. The
maximum solid solubility of C in �-Fe of 1.7 wt % occurs at 11308C.
Body-centered cubic � ferrite is stable between 13918 and 15368C. It contains
a random interstitial solid solution of C in b.c.c. iron.

A number of important transformations are illustrated on the Fe–C
diagram (Fig. 2.17). Note the occurrence of a eutectic reaction (Liquid 1 ¼
Solid 2 þ Solid 3) at a carbon content of 4.3 wt %. A similar reaction also
occurs at a carbon content 0.8 wt %. This ‘‘eutectic-like’’ reaction involves
the formation of two new solids from another solid phase (Solid 1 ¼ Solid 2
þ Solid 3). Such a reaction is referred to as a eutectoid reaction. Eutectoid
reactions generally result in the formation of lamellar microstructures. In
the case of eutectoid steels, a lamellar structure called pearlite is formed as a
result of the eutectoid reaction, Figs 2.18(a) and 2.18(b). It is formed by the

FIGURE 2.18 Eutectoid reaction in steels: (a)] phase transformations that occur
during the cooling of a eutectoid steel; (b) pearlitic microstructure showing
alternating layers of ferrite and cementite. (Adapted from Van Vlack, 1980.
Reprinted with permission from Addison Wesley.)
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decomposition of austenite (�-Fe) into ferrite (�-Fe) and cementite (Fe3C).
The resulting structure consists of alternating platelets of ferrite and cemen-
tite with proportions and spacing given by the Lever rule.

Hypoeutectoid structures are formed for compositions to the left of
the eutectoid compositions (<0.8 wt % C), as shown in Fig. 2.19(a). These
consist of proeutectoid ferrite (formed before the eutectoid transformation
at 7238C) and pearlite (formed as a result of the eutectoid reaction at
7238C). Similarly, hypereutectoid structures are produced for compositions
to the right of the eutectoid (>0.8 wt % C), as shown in Fig. 2.19(b). These
consist of proeutectoid carbide (formed before the eutectoid transformation
at 7238C) and pearlite (formed as a result of the eutectoid reaction at
7238C).

2.4.5 Introduction to Transformation Diagrams

As discussed earlier, phase diagrams show the phases that are present under
equilibrium conditions. However, they do not show the phase changes that
occur during microstructural evolution towards equilibrium. Since the for-
mation of new phases is strongly influenced by temperature and time, it is
helpful to represent the formation of such phases on plots of temperature
versus time. Such diagrams are referred to as transformation diagrams since
they show the phase transformations that can occur as a function of tem-
perature and time.

2.4.5.1 Time–Temperature–Transformation Diagrams

Phase transformations that occur under isothermal conditions (constant
temperature conditions) are represented on temperature–time-transforma-
tion (TTT) diagrams or C-curves (Fig. 2.20). Such diagrams are produced
by the cooling of preheated material to a given temperature, and subsequent
isothermal exposure at that temperature for a specified duration, before
quenching (fast cooling) the material to room temperature. The phases
formed during the isothermal exposure are then identified during subsequent
microstructural analysis. A TTT diagram for pure iron is shown in Fig.
2.20(a). This was produced by fast cooling from the austenitic field (stable
f.c.c. iron) to different temperatures in the � field. Note that metastable
austenite (f.c.c. iron) is retained initially, Fig. 2.20(a). However, austenite
is metastable in the � field. Stable body b.c.c. iron therefore forms by a
process of nucleation and growth during the isothermal exposure.

The number 1 shown at the ‘‘nose’’ of the first TTT curve [Fig. 2.20(a)]
corresponds to the start of the transformation (1% transformation).
Similarly, the curves labeled 25, 50, 75, and 99 correspond, respectively,
to different stages of the transformation, i.e., the transformations are 25,
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FIGURE 2.19 Phase transformations that occur during the cooling of (a)
hypoeutectoid steel and (b) hypereutectoid steel. (Adapted from Van Vlack,
1980. Reprinted with permission from Addison Wesley.)
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FIGURE 2.20 Time–temperature–transformation (TTT) curves for (a) pure iron and (b) eutectoid steel. (Adapted from
Ashby and Jones, 1994. Reprinted with permission from Pergamon Press.)
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50, 75, and 99% complete along these curves. These C-curves, therefore,
span the entire range between the start and the finish of the transformations
in the semischematic shown in Fig. 2.20(a). They are, therefore, useful in the
study of the kinetics (paths) of the phase transformations.

Another example of a TTT diagrams is presented in Fig. 2.20(b). This
shows a TTT diagram for a eutectoid steel with the designation 1080 steel,
i.e., a 10XX series plain carbon steel that contains 0.80 wt % C. As before
[Fig. 2.20(a)], metastable austenite is retained initially after the initial
quench from the austenitic field [Fig. 2.20(b)]. The metastable austenite
then transforms by nucleation and growth to form �-ferrite and carbide
(Fe3C) after isothermal exposure in the �þ Fe3C field, Fig. 2.20(b).

It is important to note that the morphology of the �þ Fe3C phases in
eutectoid steel (Fe–0.08C) depends on whether the isothermal exposure is
carried out above or below the nose of the TTT curve, Fig. 2.20(b). For
annealing above the nose of the curve, pearlite is formed. The pearlite has a
coarse morphology (coarse pearlite) after exposure at much higher tempera-
tures above the nose, and a fine morphology (fine pearlite) after exposure at
lower temperatures above the nose of the TTT curve. Bainite is formed after
annealing below the nose of the TTT curve. Upper bainite is formed at
higher temperatures below the nose, and lower bainite is formed at lower
temperatures below the nose, Fig. 2.20(b).

It is also interesting to study the bottom section of TTT diagram for
the eutectoid 1080 steel, Fig. 2.20(b). This shows that a phase called mar-
tensite is formed after fast cooling (quenching) from the austenitic field. This
plate-like phase starts to form at the so-called MS (martensite start) tem-
perature. Martensite formation is completed by fast cooling to temperatures
below the MF (martensite finish) temperature, Fig. 2.20(b). However, unlike
the other phases discussed so far, martensite does not form by a process of
nucleation and growth since there is insufficient time for long-range diffu-
sion to occur during fast cooling from the austenitic field.

Instead, martensite forms by a diffusionless or shear transformation
that involves only the local shuffling of atoms. Martensite formation is
illustrated in Fig. 2.21. First, local shuffling of atoms results in two adjacent
f.c.c. cells coming together. This results in the face-centered atom in the f.c.c.
unit cell becoming the body-centered atom in the distorted body-centered
cubic cell. A body-centered tetragonal unit cell is formed at the center of the
two adjacent f.c.c. cells, as shown in Fig. 2.21(a). Furthermore, there is no
one-to-one matching (coherence) between the corner atoms in the new cell
and the old cells. However, coherency may be obtained by rotating the b.c.c.
lattice.

Martensite growth occurs at high speeds (close to the speed of sound),
and the parent phase is replaced by the product phase as the martensite
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advances. Since the interface advances rapidly, no composition change is
associated with martensitic phase transformations. Furthermore, no diffu-
sion is required for martensitic phase transformations to occur. It is also
important to note that martensitic phase transformations have been shown
to occur in ceramic materials and other metallic materials such as titanium.
Also, martensites are always coherent with the parent lattice. They grow as
thin lenses on preferred planes along directions that cause the least distor-
tion of the lattice. The crystallographic directions for martensites in pure
iron are shown in Fig. 2.21(b).

Steel martensites contain a significant amount of interstitial carbon
atoms that are locked up in the distorted b.c.c. structure after quenching
from the austenitic field. Such interstitial carbon atoms promote significant
strengthening by restricting the movement of dislocations. However, they
also contribute to the brittle behavior of steel martensites, i.e., martensitic
steels are strong but brittle. Furthermore, since martensite is metastable,
subsequent heating (tempering) in the �þ Fe3C phase field will result in
the transformation of martensite into a more stable structure consisting of
�-ferrite and carbide (Fig. 2.22).

Finally in this section, it is important to note that the tempering of
martensitic steels is often used to produce so-called tempered martensitic
steels. Some martensite may also be retained in such structures, depending

FIGURE 2.21 Formation of martensite: (a) local shuffling brings two f.c.c. lat-
tices together (note that the Bain strain is needed to restore undistorted cubic
cell; (b) coherent thin martensite plate. (Adapted from Ashby and Jones,
1994. Reprinted with permission from Pergamon Press.)

Copyright © 2003 Marcel Dekker, Inc.



on the degree of tempering, i.e., the heating duration and temperature.
Tempered martensitic steels are usually moderately strong and reasonably
ductile. However, they are not as strong as untempered steel martensites.
Nevertheless, their attractive combinations of moderate strength and frac-
ture toughness make them the materials of choice in numerous engineering
applications of steels.

2.4.5.2 Continuous Cooling–Transformation Diagrams

The TTT diagrams are useful for studying the evolution of phases under
isothermal conditions. However, in engineering practice, materials are often
heat treated and cooled to room temperature at different rates. For example,
a hot piece of steel may be removed from a furnace, and air cooled or water
quenched to produce a desired microstructure. The transformations pro-
duced after such controlled cooling are generally not predicted by TTT
diagrams.

The microstructures produced at controlled cooling rates are generally
represented on continuous cooling–transformation (CCT) diagrams. A CCT
diagram for a eutectoid steel is shown in Fig. 2.23. For comparison, iso-
thermal transformation curves and times for the same eutectoid steel are
also shown in dashed lines in Fig. 2.23. Note that the CCT curves are shifted
downwards and to the right, since part of the time was spent at elevated
temperature where the nucleation initiated more slowly (in comparison with

FIGURE 2.22 Schematic illustration of quenching and tempering process on a
CCT curve. (Adapted from Van Vlack, 1980. Reprinted with permission from
Addison Wesley.)
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that in the isothermally exposed material). However, as expected, the aus-
tenite decomposes into pearlite by a process of nucleation and growth.

Figure 2.23 also shows that martensite is formed after fast cooling at
rates that just miss the nose of the transformation curve, i.e., rates that are
faster than the slope of the dashed line labeled CRM in the figure. The
formation of martensite in this regime occurs by the diffusionless transfor-
mation that was described in the previous section. As before, martensite
start (Ms) and martensite finish (MF), temperatures may also be represented
on the CCT diagram. Furthermore, martensite is not produced for cooling
rates below the dashed line labeled as CRP in Fig. 2.23. Cooling rates below
this critical level result only in the formation of pearlite.

In plain carbon eutectoid steels (Fe–0.08C), the critical cooling rates
corresponding to CRM and CRP are 1408C/s and 358C/s, respectively (Fig.
2.23). However, the critical cooling rates are generally lower in more com-
plex alloyed steels. Such steels are alloyed to engineer certain combinations
of microstructure/mechanical properties, and resistance to environmental
attack. The alloying elements in alloyed steels may include Ni, Cr, Mn, W,
and Mo. These elements may stabilize either the ferrite (�) or austenite (�)
phases. Nickel is an austenite stabilizer, i.e., it increases the temperature
range across which the austenite is stable. Chromium is generally added
to promote improved corrosion resistance, and Mn is added to increase
fracture toughness, e.g., in the well-known Hadfield steels. Molybdenum
and W are often added to hot-work tool steels to improve their strength.

FIGURE 2.23 Continuous cooling–transformation (CCT) curve for a eutectoid
steel. (Adapted from Van Vlack, 1980. Reprinted with permission from
Addison Wesley.)
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Further details on steels can be found in specialized texts on steels or phy-
sical metallurgy (Honeycombe and Bhadesia, 1995).

2.5 OVERVIEW OF MECHANICAL BEHAVIOR

The mechanical behavior of materials depends on their response to loads,
temperature, and the environment. In several practical problems, the com-
bined effects of these controlling parameters must be assessed. However, the
individual effects of loads (elastic and plastic deformation) must be studied
in detail before attempting to develop an understanding of the combined
effects of load and temperature, or the effects of load and environment.

The material response may also depend on the nature of the loading.
When the applied deformation increases continuously with time (as in a
tensile test), then reversible (elastic) deformation may occur at small loads
prior to the onset of irreversible/plastic deformation at higher loads. Under
reversed loading, the material may also undergo a phenomenon known as
‘‘fatigue.’’ This occurs even at stresses below those required for bulk plastic
deformation. Fatigue may lead to catastrophic fracture if its effects are not
foreseen in the design of most engineering structures and components.

Engineers must be aware of a wide range of possible material
responses to load, temperature, and environment (Ashby and Jones, 1994;
McClintock and Argon, 1993). These will be discussed briefly in this section
prior to more in-depth presentations in the subsequent chapters.

2.5.1 Tensile and Compressive Properties

The tensile and compressive properties of a material describe its response to
axial loads along the orthogonal (x, y, z) axes. Loads that stretch the
boundaries of a solid are usually described as tensile loads, while those
that compress the system boundaries are described as compressive loads.
For relatively small displacements, the induced deformation is fully recov-
ered upon removal of the applied loads, and the deformation is called
‘‘elastic’’ deformation. Elastic deformation may be linear or nonlinear,
depending on the atomic structure (applied loads are directly proportional
to the displacements of the system boundaries in the case of linear elastic
deformation).

Also, elastic deformation may be time dependent when time is
required for the atoms within a solid to flow to the prescribed displacements.
Such time-dependent, fully reversible, elastic deformation is generally
described as viscoelastic deformation if the system boundaries flow back
to their original positions after some period of time subsequent to the
removal of the applied loads. Viscoelastic deformation may occur in poly-
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mers, metals, and ceramics. Viscoelastic behavior is associated with under-
lying molecular flow processes. A fundamental understanding of molecular
flow processes is, therefore, helpful to the understanding of viscoelastic
behavior.

When the imposed loads per unit area are sufficiently high, the distor-
tions of the systems’ boundaries may not be fully recovered upon removal of
the imposed loads. This occurs when the atoms cannot flow back to their
original positions upon removal of the applied loads. This results in perma-
nent or plastic deformation, since the shape of the material is changed
permanently as a result of the applied loads. Plastic deformation may
occur under tensile or compressive loading conditions, and it is generally
associated with zero volume change. Furthermore, plastic deformation is
nearly time independent at temperatures below the recrystallization tem-
perature.

2.5.2 Shear Properties

When a twisting moment is applied to a solid, relative movement is induced
across a surface due to the imposed loads. The shear properties of a material
describe its response to the imposed shear loads. Both positive and negative
(counterclockwise or clockwise) shear may be imposed on a solid, and the
resulting shear (angular) displacements are fully reversible for small levels of
angular displacement. Instantaneous elastic or viscoelastic shear processes
may also occur, as discussed in the previous section on axial properties.
Furthermore, yielding may occur under shear loading at stresses that are
lower in magnitude than those required for plastic flow under axial loading.
In general, however, the conditions required for plastic flow are strongly
dependent on the combinations of shear and axial loads that are applied.
These will be discussed in detail in subsequent chapters.

2.5.3 Strength

With the exception of metallic materials, most materials derive their
strengths from their primary and secondary bond strengths. In general,
however, the measured strength levels are less than the theoretical strengths
due to chemical bonding. This is due to the effects of defects which generally
give rise to premature failure before the theoretical strength levels are
reached. The effects of stress concentrators are particularly severe in brittle
materials such as ceramics and brittle intermetallics. Strength levels in such
brittle materials are often associated with statistical distributions of defects.

The situation is somewhat different in the case of metallic materials. In
addition to the inherent strength of metallic bonds, most metallic materials
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derive their strengths from the interactions of dislocations with defects such
as solid solution alloying elements, interstitial elements, other dislocations,
grain boundaries, and submicroscopic precipitates. These defects (including
the dislocations themselves) strengthen the metallic lattice by impeding the
movement of dislocations. Most metals are, therefore, modified by alloying
(adding controlled amounts of other elements) and processing to improve
their resistance to dislocation motion. However, excessive restriction of
dislocation motion may result in brittle behavior. Brittle behavior may
also occur due to the effects of cracks or notches which may form during
manufacturing.

2.5.4 Hardness

The hardness of a material is a measure of its resistance to penetration by an
indenter. Hardness is also a measure of strength and often has the units of
stress. The indenter is often fabricated from a hard material such as diamond
or hardened steel. The tips of the indenters may be conical, pyramidal, or
spherical in shape. The indenter tips may also be relatively small (nano- or
micro-indenters) or very large (macroindenters). Since indentation tests are
relatively easy to perform (macroindentations require only limited specimen
preparation), they are often used to obtain quick estimates of strength.

Micro- and nano-indenters have also been developed. These enable us
to obtain estimates of moduli and relative estimates of the strengths of
individual phases within a multiphase alloy. However, due to the nature
of the constrained deformation around any indenter tip, great care is needed
to relate hardness data to strength.

Nevertheless, some empirical and approximate theoretical ‘‘rules-of
thumb’’ have been developed to estimate the yield strength from the hard-
ness. One ‘‘rule-of-thumb’’ states that the yield strength (or tensile strength
in materials that strain harden) is approximately equal to one-third of the
measured hardness level.

Since hardness tests are relatively easy to perform (compared to
tensile tests), estimates of the yield strengths (or ultimate strength) are
often obtained from hardness measurements. However, the users of such
rules must always remember the approximate nature of such relationships
between hardness and strength, i.e., they only provide estimates of strength
within 20%, adequate for many practical purposes. Furthermore, the mea-
sured hardnesses may vary with indenter size when the indents are less
than 1 �m. The size dependence of such small indents has been attributed
to plasticity length-scale effects which may give rise to strain gradient
effects.
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2.5.5 Fracture

If the applied monotonic loads (loads that increase continuously with time)
are sufficiently large, fracture will occur due to the separation of atomic
bonds or due to the growth of holes from defects by plastic deformation.
Fracture by pure bond rupture occurs only in the case of brittle cleavage
failure in which atomic separation occurs (without plasticity) along low
index planes. Slight deviations from planarity lead to fracture surfaces
that have ‘‘river lines’’ that are akin to what one might expect to see on a
geographical map, Fig. 2.24(a).

FIGURE 2.24 Typical fracture modes: (a)] brittle cleavage fracture mode in
Ti–48Al; (b) ductile dimpled fracture mode in an IN 718 nickel-based super-
alloy. (Courtesy of Dr. Chris Mercer).
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In most cases, however, fracture is preceded by plastic deformation
(even in the case of so-called cleavage fracture), crack nucleation, and crack
growth phenomena. Final fracture occurs when cracks grow to a critical
size. Since brittle fracture is controlled mainly by the separation of bonds,
fracture processes are typically controlled by maximum axial (hydrostatic)
stresses.

In contrast, microductile fracture processes are often preceded and
accompanied by plastic flow that is controlled mainly by shear stresses
which tend to promote the movement of line defects such as dislocations
(Fig. 2.7). At the same time, the hole growth is promoted by triaxial tensile
stresses. The conditions for the onset of ductile fracture are also strongly
dependent on the nucleation and linkage of holes in ductile metals. This
often results in a ductile dimpled fracture mode in metallic materials, Fig.
2.24(b). Fracture mechanisms will be discussed in greater detail in sub-
sequent chapters.

2.5.6 Creep

As discussed earlier, at temperatures above the recrystallization temperature
(�0.3–0.5 of the absolute melting temperature) thermally and stress acti-
vated flow processes may contribute strongly to deformation. These flow
processes occur due to the movement of point defects (vacancies) or line
defects (dislocations) under static loading. Creep deformation may also be
associated with microvoid formation or microvoid coalescence, especially
during the final stages of deformation prior to fracture.

Creep deformation occurs in both crystalline and noncrystalline mate-
rials, and the time to failure may range from minutes/hours (in materials
deformed at high stresses and temperature) to geological time scales (mil-
lions of years) in materials within the earth’s crust. A study of the micro-
mechanisms of creep and creep fracture is often a guide to the development
of phenomenological relations between applied stress and temperature.

Before fracture, the tolerance of precision-made components in high-
temperature gas turbines may be lost due to creep deformation. For this
reason, creep-resistant high-temperature materials such as nickel- and
cobalt-base alloys are used in turbines. The microstructures of the creep-
resistant alloys are tailored to improve their inherent resistance to creep
deformation. Nevertheless, creep remains one of the major life-limiting fac-
tors in the design of turbines because, in the interest of high efficiency,
engineers will increase the operating temperature until creep and turbine
blade replacement is a problem.

There is, therefore, a strong interest in the development of alternative
high-temperature materials such as intermetallic titanium aluminide alloys,
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Fig. 1.13(c). These alloys have the potential to replace existing aerospace
materials for intermediate temperature applications, due to their attractive
combinations of light weight and elevated-temperature strength retention at
temperatures up to 8008C. However, they are relatively brittle below
� 650�7008C.

2.5.7 Fatigue

Fatigue is the response of materials to reversing, or cyclic loads. Fatigue
occurs as a result of the formation and growth of cracks at stress levels that
may be half the tensile strength or less. The initiation of such macrocracks is
associated either with reversing slip on crystallographic planes or with crack
growth from pre-existing defects such as notches, gas bubble entrapments,
precipitates, or inclusions. The cycle-by-cycle accumulation of localized
plasticity often, but not always, leads to microcrack nucleation. In most
cases, the most intense damage occurs at the surface, and fatigue crack
initiation is usually attributed to surface roughening due to surface plasticity
phenomena. Fatigue crack initiation is also associated with environmentally
induced chemical reactions or chemisorption processes that limit the extent
of reversibility of plastic flow during load reversal.

Upon the initiation of fatigue cracks, the remaining life of a structure
is controlled by the number of reversals that are required to grow dominant
cracks to failure. Such cracks may grow at stresses that are much lower than
the bulk yield stress. Fatigue failure may, therefore, occur at stress levels
that are much lower than those required for failure under different loading
conditions. Hence, it is essential to assess both the initiation and propaga-
tion components of fatigue life in the design of engineering structures and
components for service under reversed loading conditions.

2.5.8 Environmental Effects

In some environments, chemical species can initiate or accelerate the crack
initiation and growth processes. This results in stress-assisted processes that
are commonly referred to as stress corrosion cracking or corrosion fatigue.
Stress corrosion cracking may occur at stresses that are much lower than
those required for fracture in less aggressive environments. It may occur as a
result of hydrogen embrittlement (attacking or redirecting bonds by the
diffusion of hydrogen atoms into the regions of high stress concentration
ahead of a crack tip) or anodic dissolution processes. In both cases, the
useful life and limit loads that can be applied to a structure can be drasti-
cally reduced. Stress corrosion cracking may also occur in conjunction with
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fatigue or creep loading. Furthermore, the irradiation damage induced by
particles in nuclear reactors must be assessed for safe use of such reactors.

2.5.9 Creep Crack Growth

As discussed in the section on creep deformation, microvoid nucleation may
lead to cracking or accelerated creep that terminates creep life. In structures
containing pre-existing cracks, creep crack growth may occur by vacancy
coalescence ahead of a dominant crack. This occurs primarily as a result of
creep processes immediately ahead of the crack tip. Creep crack growth is,
therefore, a potential failure mechanism in elevated-temperature structures
and components. This is particularly true when the structures or compo-
nents operate at temperatures above the recrystallization temperature
(�0.3–0.5 of the absolute melting temperature). Hence, creep crack growth
may occur by void growth and linkage in gas turbines, nuclear reactors, and
components of chemical plants that undergo significant exposures to ele-
vated temperature at intermediate or high stresses.

2.6 SUMMARY

A brief introduction to the Miller and Miller–Bravais indicial notation was
presented at the start of this chapter. A statistical mechanics framework was
then described before introducing the basic concepts of diffusion-controlled
and diffusionless phase transformations. Finally, an overview of the
mechanical behavior of materials was presented. Mechanical behavior was
introduced as the simple response of materials to mechanical loads. Material
response to applied loads was also shown to be dependent on temperature
and/or environment. Further details on the mechanical behavior of materi-
als will be presented in subsequent chapters along with the mechanics con-
cepts that are needed to acquire a quantitative understanding.
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3

Basic Definitions of Stress and Strain

3.1 INTRODUCTION

The mechanical properties of materials describe their characteristic
responses to applied loads and displacements. However, most texts relate
the mechanical properties of materials to stresses and strains. It is, therefore,
important for the reader to become familiar with the basic definitions of
stress and strain before proceeding on to the remaining chapters of this
book. However, the well-prepared reader may choose to skip/skim this
chapter, and then move on to Chap. 4 in which the fundamentals of elas-
ticity are introduced.

The basic definitions of stress and strain are presented in this chapter
along with experimental methods for the measurement and application of
strain and stress. The chapter starts with the relationships between applied
loads/displacements and geometry that give rise to the basic definitions of
strain and stress. Simple experimental methods for the measurement of
strain and stress are then presented before describing the test machines
that are often used for the application of strain and stress in the laboratory.

3.2 BASIC DEFINITIONS OF STRESS

The forces applied to the surface of a body may be resolved into compo-
nents that are perpendicular or parallel to the surface, Figs 3.1(a)–3.1(c). In
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FIGURE 3.1 Different types of stress: (a)] uniaxial tension; (b) uniaxial com-
pression; (c) twisting moment. (After Ashby and Jones, 1996. Courtesy of
Butterworth Heinemann.)
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cases where uniform forces are applied in a direction that is perpendicular to
the surface, i.e., along the direction normal to the surface, Figs 3.1(a) and
3.1(b), we can define a uniaxial stress, �, in terms of the normal axial load,
Pn, divided by the cross-sectional area, A. This gives

� ¼ Applied load (normal to surface)

cross-sectional area
¼ Pn

A
ð3:1Þ

It is also apparent from the above expression that stress has SI units of
newtons per square meter (N/m2) or pascals (Pa)]. Some older texts and
most engineering reports in the U.S.A. may also use the old English units
of pounds per square inch (psi) to represent stress. In any case, uniaxial
stress may be positive or negative, depending on the direction of applied
load Figs 3.1(a) and 3.1(b). When the applied load is such that it tends to
stretch the atoms within a solid element, the sign convention dictates that
the stress is positive or tensile, Fig. 3.1(a)]. Conversely, when the applied
load is such that it tends to compress the atoms within a solid element, the
uniaxial stress is negative or compressive, Fig. 3.1(b). Hence, the uniaxial
stress may be positive (tensile) or negative (compressive), depending on the
direction of the applied load with respect to the solid element that is being
deformed.

Similarly, the effects of twisting [Fig. 3.1(c)] on a given area can be
characterized by shear stress, which is often denoted by the Greek letter, 
,
and is given by:


 ¼ Applied load (parallel to surface)

cross-sectional area
¼ Ps

A
ð3:2Þ

Shear stress also has units of newtons per square meter square (N/m2)

or pounds per square inch (psi). It is induced by torque or twisting moments
that result in applied loads that are parallel to a deformed area of solid, Fig.
3.1(c). The above definitions of tensile and shear stress apply only to cases
where the cross-sectional areas are uniform.

More rigorous definitions are needed to describe the stress and strain
when the cross-sectional areas are not uniform. Under such circumstances, it
is usual to define uniaxial and shear stresses with respect to infinitesimally
small elements, as shown in Fig 3.1. The uniaxial stresses can then be defined
as the limits of the following expressions, as the sizes, dA, of the elements
tend towards zero:

� ¼ lim
dA!0

Pn

dA

� �
ð3:3Þ
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and


 ¼ lim
dA!0

Ps

dA

� �
ð3:4Þ

where Pn and Ps are the respective normal and shear loads, and dA is the
area of the infinitesimally small element. The above terms are illustrated
schematically in Figs 3.1(a) and 3.1(c), with F being equivalent to P.

Unlike force, stress is not a vector quantity that can be described
simply by its magnitude and direction. Instead, the general definition of
stress requires the specification of a direction normal to an area element,
and a direction parallel to the applied force. Stress is, therefore, a second
rank tensor quantity, which generally requires the specification of two direc-
tion normals. An introduction to tensor notation will be provided in Chap. 4.
However, for now, the reader may think of the stress tensor as a matrix that
contains all the possible components of stress on an element. This concept
will become clearer as we proceed in this chapter.

The state of stress on a small element may be represented by ortho-
gonal stress components within a Cartesian co-ordinate framework (Fig.
3.2). Note that there are nine stress components on the orthogonal faces of

FIGURE 3.2 (a) States of Stress on an Element, (b) positive shear stress and (c)
Negative shear stress. Courtesy of Dr. Seyed M. Allameh.
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the cube shown in Fig. 3.2. Hence, a 3� 3 matrix may be used to describe
all the possible uniaxial and shear stresses that can act on an element. The
reader should note that a special sign convention is used to determine the
suffixes in Fig. 3.2. The first suffix, i, in the �ij or 
ij terms corresponds to
the direction of normal to the plane, while the second suffix, j, corresponds
to the direction of the force. Furthermore, when both directions are posi-
tive or negative, the stress term is positive. Similarly, when the direction of
the load is opposite to the direction of the plane normal, the stress term is
negative.

We may now describe the complete stress tensor for a generalized
three-dimensional stress state as

½�� ¼
�xx 
xy 
xz

yx �yy 
yz

zx 
zy �zz

2
4

3
5 ð3:5Þ

Note that the above matrix, Eq. (3.5), contains only six independent terms
since 
ij ¼ 
ji for moment equilibrium. The generalized state of stress at a
point can, therefore, be described by three uniaxial stress terms (�xx, �yy,
�zz) and three shear stress terms (
xy, 
yz, 
zx). The uniaxial and shear
stresses may also be defined for any three orthogonal axes in the
Cartesian co-ordinate system. Similarly, cylindrical (r; �;L) and spherical
(r; �;L) co-ordinates may be used to describe the generalized state of stress
on an element.

In the case of a cylindrical co-ordinate system, the stress tensor is given
by

½�� ¼
�rr 
r� 
rL

�r ��� 
�L

Lr 
L� �LL

2
4

3
5 ð3:6Þ

Similarly, for a spherical co-ordinate system, the stress tensor is given by

½�� ¼
�rr 
r� 
r�

�r ��� 
��

�r 
�� ���

2
4

3
5 ð3:7Þ

It should be apparent from the above discussion that the generalized
three-dimensional states of stress on an element may be described by any of
the above co-ordinate systems. In general, however, the choice of co-ordi-
nate system depends on the geometry of the solid that is being analyzed.
Hence, the analysis of a cylindrical solid will often utilize a cylindrical co-
ordinate system, while the analysis of a spherical solid will generally be done
within a spherical co-ordinate framework.
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In all the above co-ordinate systems, six independent stress compo-
nents are required to fully describe the state of stress on an element. Luckily,
most problems in engineering involve simple uniaxial or shear states [Fig.
3.1). Hence, many of the components of the above stress tensors are often
equal to zero. This simplifies the computational effort that is needed for the
calculation of stresses and strains in many practical problems. Nevertheless,
the reader should retain a picture of the generalized state of stress on an
element, as we develop the basic concepts of mechanical properties in the
subsequent chapters of this book. We will now turn our attention to the
basic definitions of strain.

3.3 BASIC DEFINITIONS OF STRAIN

Applied loads or displacements result in changes in the dimensions or shape
of a solid. For the simple case of a uniaxial displacement of a solid with a
uniform cross-sectional area [Fig. 3.3(a)], the axial strain, ", is can be defined
simply as the ratio of the change in length, u, to the original length, l. This is
given by [Fig. 3.3(a)]:

" ¼ u=l ð3:8Þ
Note that uniaxial strain is a dimensionless quantity since it represents

the ratio of two length terms. Furthermore, strain as described by Eq. (3.8),
is often referred to as the engineering strain. It assumes that a uniform
displacement occurs across the gauge length [Fig. 3.3(a)]. However, it
does not account for the incremental nature of displacement during the
deformation process. Nevertheless, the engineering strain is generally satis-
factory for most engineering purposes.

Similarly, for small displacements, a shear strain, �, can be defined as
the angular displacement induced by an applied shear stress. The shear
strain, �, is given by

� ¼ w=l ¼ tan � ð3:9Þ
where �, w, l and � are shown schematically in Fig. 3.3(b). The angle � has
units of radians. However, the shear strain is generally presented as a dimen-
sionless quantity.

It is important to note here that the above equations for the engineer-
ing strain assume that the stresses are uniform across the area elements or
uniform cross-sections that are being deformed. The engineering shear and
axial strains must be distinguished from the so-called ‘‘true strains’’ which
will be described in Chap. 5.

Similar to stress, the engineering strain may have three uniaxial ("xx,
"yy, "zz) and shear (�xy, �yz, �zx) components, Fig. 3.4(a). The three-dimen-
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sional strain components may also be perceived in terms of the simple
definitions or axial and shear strains presented earlier (Fig. 3.3). However,
the same shape change may also be resolved as an axial or shear strain,
depending on the choice of co-ordinate system. Also, note that the displace-
ment vectors along the (x, y, z) axes are usually described by displacement
co-ordinates (u, v, w). The uniaxial strain, "xx, due to displacement gradient
in the x direction is given by

"xx ¼
u þ @u

@x

� �
dx

� �
� u

dx
¼ @u

@x
ð3:10Þ

FIGURE 3.3 Definitions of strain: (a)] uniaxial strain; (b) shear strain. (After
Ashby and Jones, 1996. Courtesy of Butterworth-Heinemann.)
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Similarly, the shear strain due to relative displacement gradient in the y-
direction is given by Fig. 3.4 to be:

"xy ¼
v þ @v

@x

� �
dx

� �
� v

dx
¼ @v

@x
ð3:11Þ

It should be clear from the above equations that nine strain components can
be defined for a generalized state of deformation at a point. These can be
presented in the following strain matrix:

FIGURE 3.4 Definitions of strain and rotation: (a) components of strain; (b)
rotation about the x–y plane. (After Hearn, 1985—courtesy of Elsevier
Science.)
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½"� ¼
"xx "xy "xz

"yx "yy "yz

"zx "zy "zz

2
64

3
75 ¼

@u

@x

@u

@y

@u

@z
@v

@x

@v

@y

@v

@z
@w

@x

@w

@y

@w

@z

2
6666664

3
7777775

ð3:12Þ

Note that some texts may use the transposed version of the displace-
ment gradient matrix given above. If this is done, the transposed versions
should be maintained to obtain the results of the strain matrix that will be
presented subsequently. Also, the above form of the displacement gradient
strain matrix is often avoided in problems where strain can be induced as a
result of rotation without a stress. This is because we are often concerned
with strains induced as a result of applied stresses. Hence, for several pro-
blems involving stress-induced deformation, we subtract out the rotation
terms to obtain relative displacements that describe the local changes in
the shape of the body, Fig. 3.4(b).

The rotation strains may be obtained by considering the possible rota-
tions about any of the three orthogonal axes in a Cartesian co-ordinate
system. For simplicity, let us start by considering the special case of defor-
mation by rotation about the z axis, i.e., deformation in the x–y plane. This
is illustrated schematically in Fig. 3.4(b). The average rotation in the x–y
plane is given by

!xy ¼ 1

2

@v

@x
� @u

@y

� �
ð3:13Þ

Similarly, we may obtain expressions for !yz and !zx by cyclic permu-
tations of the x, y and z position terms and subscripts, and the correspond-
ing (u, v, w) displacement terms. This yields:

!yz ¼
1

2

@w

@y
� @v
@z

� �
ð3:14Þ

and

!zx ¼ 1

2

@u

@z
� @w
@x

� �
ð3:15Þ

The components of the rotation matrix can thus be expressed in the
following matrix form:

Copyright © 2003 Marcel Dekker, Inc.



½!ij �¼
0 !xy !xz

!yx 0 !yz

!zx !zy 0

2
64

3
75¼

0
1

2

@u

@y
� @v
@x

� �
1

2

@u

@z
� @w
@x

� �
1

2

@v

@x
� @u

@y

� �
0

1

2

@v

@z
� @w
@y

� �
1

2

@w

@x
� @u
@z

� �
1

2

@w

@y
� @v
@z

� �
0

2
66666664

3
77777775

ð3:16Þ
Subtracting Eq. (3.16) from Eq. (3.12) yields the following matrix for the
shape changes:

½"ij �¼
"xx "xy "xz

"yx "yy "yz

"zx "zy "zz

2
64

3
75¼

@u

@x

1

2

@u

@y
þ @v
@x

� �
1

2

@u

@z
þ @w
@x

� �
1

2

@v

@x
þ @u

@y

� �
@v

@y

1

2

@v

@z
þ @w
@y

� �
1

2

@w

@x
þ @u
@z

� �
1

2

@w

@y
þ @v
@z

� �
@w

@z

2
66666664

3
77777775

ð3:17Þ
Note that the sign convention is similar to that described earlier for

stress. The first suffix in the eij term corresponds to the direction of the
normal to the plane, while the second suffix corresponds to the direction
of the displacement induced by the applied strain. Similarly, three shear
strains are the strain components with the mixed suffixes, i.e., "xy, "yz, and
"zx. It is also important to recognize the patterns in subscripts (x, y, z) and
the displacements (u, v, w) in Eqs (3.16) and (3.17). This makes it easier to
remember the expressions for the possible components of strain on a three-
dimensional element. Note also that the factor of 1/2 in Eq. (3.17) is often
not included in several engineering problems where only a few strain com-
ponents are applied. The tensorial strains ("ij terms) are then replaced by
corresponding tangential shear strain terms, �ij which are given by

�ij ¼ 2"ij ð3:18Þ
The strain matrix for stress-induced displacements is thus given by

½�ij � ¼
0 �xy �xz

�yx 0 �yz

�zx �zy 0

2
64

3
75 ¼

0
@u

@y
þ @v
@x

@u

@z
þ @w
@x

@v

@x
þ @u

@y
0

@v

@z
þ @w
@y

@w

@x
þ @u
@z

@w

@y
þ @v
@z

0

2
6666664

3
7777775

ð3:19Þ
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The above shear strain components are often important in problems
involving plastic flow. Similarly, the volumetric strains are important in
brittle fracture problems where atomic separation can occur by bond rup-
ture due to the effects of axial strains. For small strains, the volumetric
strain (Fig. 3.5) is given by the sum of the axial strains:

"v ¼ �V

V
¼ "xx þ "yy þ "zz ð3:20Þ

The above definitions of strain apply to cases where the displacements
are relatively small. More accurate strain formulations, e.g., large-strain
Lagrangian formulations, may be needed when the strains are larger. The
reader is referred to standard texts on plasticity and experimental mechanics
for further details on these formulations.

Finally in this section, it is important to note that stress-free thermal
strains may also be induced as a result of the thermal expansion or thermal
contraction that can occur, respectively, on heating or cooling to or from a
reference temperature. Under such conditions, the thermal strains are given
by

�"i ¼ �i�T ¼ �i ðT � T0Þ ð3:21Þ
where�"i is the thermal strain along an axis i, T is the actual temperature of
the solid, and T0 is a reference stress-free temperature. Thermal strains are
particularly important in problems involving surface contact between two
materials with different thermal expansion coefficients. When the thermal
expansion coefficient mismatch between the two materials in contact is
large, large strains/stresses can be induced at the interfaces between the
two faces. The mismatch thermal strains can also result in internal residual
strains/stresses that are retained in the material on cooling from elevated

FIGURE 3.5 Schematic illustration of volumetric strain. (After Ashby and
Jones, 1996. Courtesy of Butterworth-Heinemann.)
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temperature. Under such conditions, the residual stresses, �i, can be
estimated from expressions of the form:

�i � E���T ¼ Ei ð�1 � �2ÞðT � T0Þ ð3:22Þ
where Ei is the Young’s modulus in the i direction, � is the thermal expan-
sion coefficient along the direction i, subscripts 1 and 2 denote the two
materials in contact, T is the actual/current temperature, and T0 is the
reference stress-free temperature below which residual stresses can build
up. Above this temperature, residual stresses are relaxed by flow processes.

Interfacial residual stress considerations are particularly important in
the design of composite materials. This is because of the large differences
that are typically observed between the thermal expansion coefficients of
different materials. Composites must, therefore, be engineered to minimize
the thermal residual strains/stresses. Failure to do so may result in cracking
if the residual stress levels are sufficiently large. Interfacial residual stress
levels may be controlled in composites by the careful selection of composite
constituents that have similar thermal expansion coefficients. However, this
is often impossible in the real world. It is, therefore, more common for
scientists and engineers to control the interfacial properties of composites
by the careful engineering of interfacial dimensions and interfacial phases to
minimize the levels of interfacial residual stress in different directions.

3.4 MOHR’S CIRCLE OF STRESS AND STRAIN

Let us now consider the simple case of a two-dimensional stress state on an
element in a bar of uniform rectangular cross sectional area subjected to
uniaxial tension, [Fig. 3.6]. If we now take a slice across the element at an
angle, �, the normal and shear forces on the inclined plane can be resolved
using standard force balance and basic trigonometry. The dependence of the
stress components on the plane angle, �, was first recognized by Oligo Mohr.
He showed that the stresses, �x0x0 , �y0y0 , 
x0y0 along the inclined plane are
given by the following expressions:

�x 0x 0 ¼ �xx þ �yy
2

þ �xx � �yy
2

� �
cos 2� ð3:23aÞ

�y 0y 0 ¼ �xx þ �yy
2

þ �xx � �yy
2

� �
cos 2� ð3:23bÞ


x 0y 0 ¼ � �xx � �yy
2

� �
sin 2� ð3:23cÞ

where �, �xx, �yy, 
xy, �x0x0 , �y0y0 , and 
x0y0 are stresses shown in Fig. 3.6. The
above equations can be represented graphically in the so-called Mohr’s
circle (Fig. 3.7) which has radius, R, and center, C, given by
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx � �yy

2

� �2
þ
2xy

r
ð3:24Þ

and

C ¼ �xx þ �yy
2

ð3:25Þ
Note the sign convention that is used to describe the plane angle, 2y,

and the tensile and shear stress components in Fig. 3.7. It is important to
remember this sign convention when solving problems involving the use of
Mohr’s circle. Failure to do so may result in the wrong signs or magnitudes
of stresses. The actual construction of the Mohr’s circle is a relatively simple
process once the magnitudes of the radius, R, and center position, C, have
been computed using Eqs (3.24) and (3.25), respectively. Note that the locus
of the circle describes all the possible states of stress on the element at the
point, P, for various values of � between 08 and 1808. It is also important to
note that several combinations of the stress components (�xx, �yy, 
xy) may
result in yielding, as the plane angle, �, is varied. These combinations will be
discussed in Chap. 5.

When a generalized state of triaxial stress occurs, three Mohr’s circles
[Fig. 3.8(a)] may be drawn to describe all the possible states of stress. These
circles can be constructed easily once the principal stresses, �1, �2, and �3,

FIGURE 3.6 Schematic of stresses on a plane inclined across an element.
Courtesy of Dr. Seyed M. Allameh
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are known. The principal stresses �1, �2, and �3 are usually arranged in
increasing algebraic order, with �1 > �2 > �3.

Similarly, principal strains may be determined from graphical plots of
shear strain versus axial strain. However, the tensorial strain components,
�xy/2, must be plotted on the ordinates of such plots, Fig. 3.8(b). Otherwise,
the procedures for the determination of principal strains are the same as
those described above for principal stresses.

3.5 COMPUTATION OF PRINCIPAL STRESSES AND
PRINCIPAL STRAINS

Although principal stresses and strains may be determined using Mohr’s
circle, it is more common to compute them using some standard polyno-
mial expressions. It is important to remember that the same form of
equations may be used to calculate principal stresses and strains.
However, the shear strains must be represented as �xy/2 when the poly-
nomial equations are used in the determination of principal strains.
Nevertheless, to avoid repetition, the current discussion will focus on the
equations for the computation of principal stresses, with the implicit
understanding that the same form of equations can be used for the calcu-
lation of principal strains. Principal stresses may be determined by solving
polynomial equations of the form:

�3i � I1�
2
i � I2�i � I3 ¼ 0 ð3:26Þ

FIGURE 3.7 Mohr’s circle of stress—note the sign convention. (After Courtney,
1990. Courtesy of McGraw-Hill.)
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FIGURE 3.8 Mohr’s circle representation of generalized three-dimensional
states of (a)] stress and (b) strain. (After Hearn, 1985. Courtesy of Elsevier
Science.)

Copyright © 2003 Marcel Dekker, Inc.



where �i represents the total stress on an element, and I1, I2, and I3
correspond to the first, second, and third invariants of the stress tensor.
These stress invariants do not vary with the choice of orthogonal axes (x,
y, z). Also, the values of the stress invariants (I1, I2 and I3) can be com-
puted from the second rank stress tensor, �ij , presented earlier. This is
given by

�ij ¼
�xx 
xy 
xz

yx �yy 
yz

zx 
zy �zz

2
4

3
5 ð3:27Þ

The first invariant of the stress tensor, I1, is given by the sum of the
leading diagonal terms in the stress tensor. Hence, I1 can be determined
from:

I1 ¼ �xx þ �yy þ �zz ð3:28Þ
Similarly, I2, the second invariant of the stress tensor can be obtained

from the algebraic sum of the cofactors of the three terms in any of the three
rows or columns of the stress tensor. This gives the same value of I2, which
may also be computed from

I2 ¼ ��xx�yy � �yy�zz � �zz�xx þ 
2xy þ 
2yz þ 
2zx ð3:29Þ
Note the rotational symmetry in the above equation, i.e., xy is fol-

lowed by yz, which is followed by zx. It should be easy to remember the
equation for I2 once you recognize the pattern.

When the above equation for I3 is expanded and simplified, it can be
shown that I3 is given simply by

I3 ¼ �xx�yy�zz þ 2
xy
yz
zx � �xx
2yz � �yy
2zx � �zz
2xy ð3:30Þ
It is important to note here that the above coefficients I1, I2 and I3 can

be obtained by solving the following eigenvalue problem:

�ij x ¼ �x ð3:31Þ
where �ij is the stress tensor, x is the eigenvector of �ij and � is the

corresponding eigenvalue, i.e. the principal stress. Rearranging Equation
3.31 now gives

�ij � � I
	 


x ¼ 0 ð3:32Þ
where I is the identity matrix and the other terms have their usual

meaning. The non-trivial solution to Equation 3.32 is given by Equation

det �ij � l�
	 
 ¼ 0 ð3:33aÞ
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or

�xx � � 
xy 
xz

yx �yy � � 
yz

zx 
zy �zz � �

2
4

3
5 ¼ 0 ð3:33bÞ

Writing out the terms of the determinant given by Equation 3.33b
gives the characteristic equation, which corresponds to the polynomial
expression presented in Equation 3.26.

Once again, it is important to note the rotational symmetry of the x, y,
z subscripts in the above equation. The equation for I3 is relatively easy to
remember once the rotational symmetry in the (x, y, z) terms is recognized.

Once the values of I1, I2, and I3 are known, the three principal stresses
can be determined by solving Eq. (3.26) to find the values of �i for which
�1 ¼ 0. The three solutions are the three principal stresses. They can then be
ranked algebraically to determine the solutions that correspond to �1, �2,
and �3, respectively. Once these stresses are determined, it is relatively easy
to construct the Mohr’s circle for a three-dimensional state of stress, as
shown in Fig. 3.8(a). It is important to note that all the possible states of
stress on an element are represented by the shaded area in this figure. The
three principal shear stress values can also be deduced from Fig. 3.8(a).
Finally, in this section, it is important to note that the Mohr’s circle for
pure hydrostatic state of stress (� ¼ �xx ¼ �yy ¼ �xx) reduces to a point. The
reader should verify that this is indeed the case before proceeding on to the
next section.

3.6 HYDROSTATIC AND DEVIATORIC STRESS
COMPONENTS

The components of stress at a point, �i may be separated into hydrostatic,
�h, and deviatoric, �d, stress components, i.e., �i ¼ �h þ �d. The hydrostatic
stress represents the average of the uniaxial stresses along three orthogonal
axes. It is very important in brittle fracture processes where failure may
occur without shear. This is because the axial stresses are most likely to
cause separation of bonds, in the absence of shear stress components that
may induce plastic flow. In any case, the hydrostatic stress can be calculated
from the first invariant of the stress tensor. This gives

�h ¼ I1
3
¼ �xx þ �yy þ �zz

3
ð3:34Þ

Hence, the hydrostatic stress is equal to the average of the leading
diagonal terms in the stress tensor, Eqs (3.5) and (3.34). A state of pure
hydrostatic stress is experienced by a fish, at rest in water. This is illustrated
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in Fig. 3.9. Note that the hydrostatic stress occurs as a result of the average
water pressure exerted on the fish. This pressure is the same for any given
choice of orthogonal stress axes. The hydrostatic stress tensor, �00ij , is given
by

½�00ij � ¼
� 0 0
0 � 0
0 0 �

2
4

3
5 ð3:35Þ

where � ¼ �xx ¼ �yy ¼ �zz. It is important to realize that there are no shear
stress components in the hydrostatic stress tensor. However, since most
stress states consist of both axial and shear stress components, the general-
ized three-dimensional state of stress will, therefore, consist of both hydro-
static and deviatoric stress components.

The deviatoric stresses are particularly important because they tend to
cause plasticity to occur in ductile solids. Deviatoric stress components, �0ij ,
may be represented by the difference between the complete stress tensor, �ij ,
and the hydrostatic stress tensor, �00ij . Hence, �0ij ¼ �ij � �00ij. The deviatoric
stress tensor, �0ij , is therefore given by

�0ij ¼ �ij � �00ij ¼
�xx 
xy 
xz

yz �yy 
yz

zx 
zy �zz

2
4

3
5�

I1
3

0 0

0
I1
3

0

0 0
I1
3

2
666664

3
777775 ð3:36aÞ

or

FIGURE 3.9 Hydrostatic stress on fish at rest in water (After Ashby and Jones,
1996. Courtesy of Butterworth-Heinemann.)
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�0ij ¼
�xx � I1

3

xy 
xz


yx �yy � I1
3


yz


zx 
zy �zz �
I1
3

2
666664

3
777775 ð3:36bÞ

The maximum values of the deviatoric stresses (principal deviatoric
stresses) may also be computed using a polynomial expression similar to the
cubic equation presented earlier (Eq. (3.26) for the determination of the
principal stresses. Hence, the three principal deviatoric stresses may be
computed from:

�0ij
3 � J1 �

0
ij

	 
2�J2 �
0
ij

	 
� J3 ¼ 0 ð3:37Þ

where J1, J2, and J3 are the first, second, and third invariants of the devia-
toric stress tensor. As before, J1 may be determined from the sum of the
leading diagonal terms, J2 from the sum of the cofactors, and J3 from the
determinant of the �0ij tensor. Upon substitution of the appropriate para-
meters, it is easy to show that J1 ¼ 0.

It is particularly important to discuss the parameter J2 since it is often
encountered in several problems in plasticity. In fact, the conventional the-
ory of plasticity is often to referred to as the J2 deformation theory, and
plasticity is often observed to occur when J2 reaches a critical value. As
discussed, J2 can be computed from the sum of the cofactors of any of the
rows or columns in the deviatoric stress tensor. If the stress components in
the first row of the deviatoric stress tensor are used for this purpose, it can
be shown that J2 is given by

J2 ¼ �yy � I1
3


yz


zy �zz � I1
3

������
�������


yx 
yz


zx �zz �
I1
3

������
������þ 
yx �yy � I1

3

zx 
zy

������
������ ð3:38Þ

Expanding out the determinants in the above equations, and substitut-
ing appropriate expressions for I1, I2, and I3 into the resulting equation, it
can be shown that J2 is given by

J2 ¼ 1
6 ð�xx � �yy Þ2 þ ð�yy � �zzÞ2 þ ð�zz � �xx Þ2 þ 6ð
2xy þ 
2yz þ 
2zx Þ
h i

ð3:39aÞ
or

J2 ¼ 1
6½ð�1 � �2Þ2 þ ð�2 � �3Þ2 þ ð�3 � �1Þ2� ð3:39bÞ
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A number of empirical plastic flow rules are based on J2 deformation
theory. In particular, the Von Mises yield criterion suggests that yielding
occurs under uniaxial or multiaxial loading conditions when the maximum
distortional energy reaches a critical value of J2. These will be discussed in
Chap. 5 along with the fundamentals of plasticity theory.

Finally, in this section, it is important to remember that equations with
the same form as the above equations (for stress) may be used to calculate
the corresponding hydrostatic and deviatoric strain components. However,
as before, the shear strain components must be represented by tensorial
strain components, �ij=2, in such equations.

3.7 STRAIN MEASUREMENT

It is generally difficult to measure stress directly. However, it is relatively
easy to measure strain with electric resistance strain gauges connected to
appropriate bridge circuits. It is also possible to obtain measurements of
strain from extensometers, grid displacement techniques, Moiré interfero-
metry, and a wide range of other techniques that are beyond the scope of
this book. The interested reader is referred to standard texts on experimental
strain measurement. However, since most experimental strain measurements
are obtained from strain gauges, a basic description of strain gauge mea-
surement techniques is presented in this section. Photoelasticity is also
described as one example of a stress measurement technique.

3.7.1 Strain Gauge Measurements

The strain gauge is essentially a length of wire of foil that is attached to a
nonconducting substrate. The gauge is bonded to the surface that is being
strained. The resistance of the wire, R, is given by

R ¼ �l

A
ð3:40Þ

where R is the resistivity, l is the length of the wire, and A is the cross-
sectional area. Hence, the resistance of the wire will change when the length
of wire changes due to applied strain or stress. The changes in gauge resis-
tance may be expressed as

�R

R
¼ k

�l

l
ð3:41Þ

where �R is the change in resistance, �l is the change in length, and k is the
gauge factor (usually specified by the strain gauge manufacturer).
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Alternatively, since �l=l is equivalent to strain, ", strain may be estimated
from the following expression:

" ¼ ð�R=RÞ
k

ð3:42Þ

Since the strain levels in most engineering components are relatively
low, sensitive Wheatstone bridge circuits are needed to determine the resis-
tance levels (Fig. 3.10). The conditions required for a galvanometer reading
of zero (a balanced bridge circuit) are given by

R1 � R3 ¼ R2 � R4 ð3:43Þ
A number of bridge configurations may be used to measure strain. A

half-bridge wiring consists of one active gauge (the gauge that is being
strained) and one dummy gauge (attached to an unstrained material that
is similar to the unstrained material). The dummy gauge cancels out the
effects of temperature changes that may occur during the strain measure-
ments. Such temperature compensation may significantly improve the accu-
racy of strain measurement in half-bridge circuits. The other two resistances
(R3 and R4) in the half-bridge circuit are standard resistors. It is important
to note here that quarter-bridge and full-bridge circuits may also be used in
practice. A quarter-bridge circuit contains only one active resistance with no
dummy gauge for temperature compensation, while four (full) bridge con-
figurations contain four active gauges. Furthermore, the Wheatstone bridge

FIGURE 3.10 Wheatstone bridge circuit. (After Hearn, 1985. Courtesy of
Elsevier Science.)
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may be powered by a direct current or alternating current source. The latter
eliminates unwanted noise signals. It also provides a more stable output
signal.

3.7.2. Introduction to Photoelasticity

As discussed earlier, it is generally difficult to measure stress. However, the
stresses in some transparent materials may be measured using photoelastic
techniques. These rely on illumination with plane-polarized light obtained
by passing light rays through vertical slots that produce polarized light
beams with rays that oscillate only along one vertical plane (Fig. 3.11).
When the model is stressed in a direction parallel to the polarizing axis, a
fringe pattern is formed against a light (bright field) background.
Conversely, when the stress axes are perpendicular to the polarizing axis,
a ‘‘dark field’’ or black image is obtained.

In some materials, the application of stress may cause an incident
plane-polarized ray to split into two coincident rays with directions that
coincide with the directions of the principal axes. Since this phenomenon
is only observed during the temporary application of stress, it is known as
‘‘temporary birefringence.’’ Furthermore, the speeds of the rays are propor-
tional to the magnitudes of the stresses along the principal directions.
Hence, the emerging rays are out of phase. They, therefore, produce inter-
ference fringe patterns when they are recombined. If they are recombined at
an analyzer (shown in Fig. 3.11), then the amount of interference in the

FIGURE 3.11 Interaction of polarized light with loaded specimen prior to
recombination after passing through analyzer. (After Hearn, 1985. Courtesy
of Elsevier Science.)
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emerging rays is directly proportional to the difference between the principal
stress levels �p and �q. Therefore, the amount of interference is related to the
maximum shear, which is given by


max ¼ 1

2
ð�p � �qÞ ð3:44Þ

The fringe patterns therefore provide a visual indication of the varia-
tions in the maximum shear stress. However, in the case of stresses along a
free unloaded boundary, one of the principal stresses is zero. The fringe
patterns therefore correspond to half of the other principal stress.
Quantitative information on local principal/maximum shear stress levels
may be obtained from the following expression:

�p � �q ¼ nf

t
ð3:45Þ

where �p and �q are the principal stress levels, f is the material fringe
coefficient, n is the fringe number or fringe order at a point, and t is the
thickness of the model. The value of f may be determined from a stress
calibration experiment in which known values of stress on an element are
plotted against the fringe number (at that point) corresponding to various
loads.

3.8 MECHANICAL TESTING

Displacements and loads are usually applied to laboratory specimens using
closed-loop electromechanical (Fig. 3.12) and servohydraulic (Fig. 3.13)
testing machines. Electromechanical testing machines are generally used
for simple tests in which loads or displacements are increased at relatively
slow rates, while servohydraulic testing machines are used for a wider vari-
ety of ‘‘slow’’ or ‘‘fast’’ tests. Both types of testing machines are usually
controlled by feedback loops that enable loads or displacements to be
applied to test specimens with reasonably high levels of precision. The
loads are measured with load cells, which are essentially calibrated springs
connected to load transducers. The latter generate electrical signals that are
proportional to the applied loads.

Displacements are typically measured with extensometers (Figs 3.12
and 3.13) that are attached to the test specimen. Transducers attached to the
extensometer generate voltage changes that are proportional to the relative
displacements between the extensometer attachments. Alternatively, the
composite displacement of the load train (a combination of the test speci-
men and all the loading fixtures) may be determined from the so-called
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stroke reading on a electromechanical or servohydraulic testing machine.
However, it is important to remember that the composite stroke reading
includes the displacements of all the elements along the load train (Figs 3.12
and 3.13). Such stroke readings may, therefore, not provide a good measure
of the displacements within the gauge section of the test specimen.

Electromechanical and servohydraulic test machines may also be con-
trolled under strain control using signals from load cells, extensometers,
strain gauges, or other strain transducers. However, it is important to
note that strain gauges and extensometers have a resolution limit that is
generally between 10�3 and 10�4. Higher resolution strain gauges and laser-
based techniques can be used to measure strain when better resolution is
required. These can measure strains as low as �10�5 and 10�6.

Furthermore, in many cases, it is informative to obtain plots of load
versus displacement, or stress versus strain. The resolution of such plots
often depends on the speed with which data can be collected by the electrical
circuits in the data-acquisition units (mostly computers although chart
recorders are still found in some laboratories) that are often attached to

FIGURE 3.12 Schematic of screw-driven electromechanical testing machine.
(After Courtney, 1990. Courtesy of McGraw-Hill.)
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mechanical testing systems. Some of the important details in the stress–
strain plots may, therefore, be difficult to identify or interpret when the
rate of data acquisition is slow. However, very fast data collection may
also lead to problems with inadequate disk space for the storage of the
acquired load–displacement data.

In any case, electromechanical and servohydraulic testing machines
are generally suitable for the testing of all classes of materials.
Electromechanical testing machines are particularly suitable for tests in
which the loads are increased continuously (monotonic loading) or
decreased continuously with time. Also, stiff electromechanical testing
machines are suitable for the testing of brittle materials such as ceramics

FIGURE 3.13 Servohydraulic testing machine. (Courtesy of the MTS Systems
Corporation, Eden Prarie, MN.)
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and intermetallics under monotonic loading, while servohydraulic testing
machines are well suited to testing under monotonic or cyclic loading.
Finally, it is important to note that the machines may be programmed to
apply complex load/displacement spectra that mimick the conditions in
engineering structures and components.

3.9 SUMMARY

An introduction to the fundamental concepts of stress and strain is pre-
sented in this chapter. Following some basic definitions, the geometrical
relationships between the stress components (or strain components) on an
element were described using Mohr’s circle.

Polynomial expressions were then presented for the computation of
principal stresses and principal strains for any generalized state of stress or
strain on an element. Finally, hydrostatic and deviatoric stresses/strains
were introduced before describing some simple experimental techniques
for the measurement and application of strain and stress.
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4

Introduction to Elastic Behavior

4.1 INTRODUCTION

Elastic deformation, by definition, does not result in any permanent defor-
mation upon removal of the applied loads. It is induced primarily by the
stretching or bending of bonds in crystalline and noncrystalline solids.
However, in the case of polymeric materials, elastic deformation may also
involve the rotation of bonds in addition to the stretching and unwinding of
polymer chains.

Elastic deformation may be linear or nonlinear in nature (Fig. 4.1). It
may also be time dependent or time independent. When it is time indepen-
dent, the strains are fully (instantaneously) recovered on removal of the
applied loads, Fig. 4.1(a). However, in materials, e.g., polymeric materials,
some time may be needed for the viscous flow of atoms or chain stretching/
rotation to occur to return the atoms to their initial configurations. The
elastic behavior of such materials is, therefore, time independent, i.e., vis-
coelastic. Also, the elastic strains in polymers can be very large (typically
5–1000%) compared to relatively low elastic strain limits (0.1–1.0%) in
metallic and nonmetallic materials (Figs 4.1).

This chapter presents an introduction to basic concepts in elasticity.
Following a brief description of the atomic displacements that are respon-
sible for elastic deformation, the anisotropic elasticity of crystalline materi-
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als is described before presenting an overview of continuum elasticity the-
ory. The final sections of the chapter contain advanced topics that may be
omitted in an introductory course on mechanical properties. These include
sections on tensors and generalized elasticity theory using shorthand tensor
nomenclature.

4.2 REASONS FOR ELASTIC BEHAVIOR

Consider two atoms (A and B) that are chemically bonded together. Note
that these bonds may be strong primary bonds (ionic, covalent, or metallic)
or weaker secondary bonds (Van der Waals’ forces or hydrogen bonds).
During the earliest stages of deformation, the response of materials to
applied loads is often controlled by the stretching of bonds (Fig. 4.2).

FIGURE 4.1 Schematic illustration of (a) linear elastic time-independent elastic
deformation of 1020 steel at room temperature and (b) nonlinear elastic
deformation of rubber at room temperature. (Adapted from McClintock and
Argon, 1966. Courtesy of Addison-Wesley.)

FIGURE 4.2 Stretching of chemical bonds between A and B. (Adapted From
Ashby and Jones, 1996. Reprinted with permission from Butterworth
Heinemann.)
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This occurs before the onset of plasticity (irreversible/permanent damage).
Under such conditions, the potential energy, U, of the bonded system
depends on the attractive and repulsive components, UA and UR, respec-
tively. These are given by

UA ¼ �A

rm
ð4:1Þ

and

UR ¼ B

rn
ð4:2Þ

where r is the separation between the atoms, A and B are material constants,
and m and n are constants that depend on the type of chemical bonds.
Combining Eqs (4.1) and (4.2), the total potential energy, U, is thus given by

U ¼ UA þUR ¼ �A

rm
þ B

rn
ð4:3Þ

The relationship between U and r is shown schematically in Fig. 4.3 along
with the corresponding plots for UR versus r, and UA versus r. Note that the
repulsive term, UR, is a short-range energy, while the attractive term, UA, is
a long-range energy. The force, F , between the two atoms is given by the
first derivative of U. This gives

F ¼ �dU

dr
¼ � Am

rmþ1
þ Bn

rnþ1
ð4:4Þ

Similarly, Young’s modulus is proportional to the second derivative of U
with respect to r. That is

E � d2U

dr2
¼ dF

dr
¼ Amðm þ 1Þ

rmþ2
� Bnðn þ 1Þ

rnþ2
ð4:5Þ

The relationship between F and r is shown schematically in Fig.
4.3(b). Note that the point where F ¼ 0 corresponds to the equilibrium
separation, r0, between the two atoms where the potential energy is a mini-
mum, Fig. 4.3(a). Also, the relationship between F and r is almost linear in
the regime where r � r0. Small displacements (by forces) of the atoms, there-
fore, result in a linear relationship between force and displacement, i.e,
apparently linear elastic behavior. Note that large forces may also result
in nonlinear elastic behavior since the force–separation curves are not linear
for large deformations, Fig. 4.3(b). Elastic moduli for several engineering
materials are listed in Table 4.1.

It should be readily apparent from the above discussion that Young’s
modulus is a measure of resistance to deformation. Also, since Young’s
modulus varies with the type of chemical bonding, it does not change
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much (� �5%) with processing/heat treatment variations or minor alloying
additions that can have little effect on chemical bonding. In contrast, minor
alloying, processing, and heat treatment can have very significant effects (as
much as �2000%) on strength. Young’s modulus is, therefore, a material

FIGURE 4.3 Formation of a chemical bond: relationship between U and r ;
(b) relationship between F and r . (Adapted from Ashby and Jones, 1996).
Reprinted with permission from Butterworth Heinemann.)
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property that is generally independent of microstructure. However, since it
depends strongly on the equilibrium atomic separation, which increases as a
result of more vigorous atomic vibrations at elevated temperature, Young’s
modulus will generally decrease with increasing temperature.

Finally in this section, it is important to note that the slope of the
force–distance curve in the linear regime close to r0 is a measure of the
resistance of a solid to small elastic deformation. However, the modulus
of a solid may also depend strongly on the direction of loading, especially
in crystals that are highly anisotropic. The modulus may also vary with
direction, as discussed in the next section.

4.3 INTRODUCTION TO LINEAR ELASTICITY

The simple relationship between stress and strain was first proposed by
Robert Hooke in 1678. For this reason, the basic relationship between stress
and strain in the elastic regime is often referred to as Hooke’s law. This law
states simply that the strain, ", in an elastic body is directly proportional to
the applied stress, �.

For axial loading [Figs 3.1(a) and 3.1(b)], the proportionality constant
is commonly referred to as Young’s modulus, E. The modulus for shear
loading [Fig. 3.1(c)] is defined as the shear modulus, while the modulus
for triaxial/pressure loading is (Figs. 3.5 and 3.9) generally referred to as
the bulk modulus, K . The respective elasticity equations for isotropic tensile,
shear, and bulk deformation are given by

� ¼ E" ð4:6aÞ

 ¼ G� ð4:6bÞ

and

p ¼ �K
�V

V
¼ �K� ð4:6cÞ

where � is the applied axial stress, " is the applied axial strain, 
 is the
applied shear stress, � is the applied shear strain, p is the applied volumetric
pressure/triaxial stress, and � is the volumetric strain (Equation 3.20).

It is also important to recall that axial extension is typically associated
with lateral contraction, while axial compression often results in lateral
extension. The extent of lateral contraction (or extension) may be repre-
sented by Poisson’s ratio, 	, which is defined as (Fig. 4.4):

	 ¼ � Lateral strain

Longitudinal strain
¼ � "yy

"xx
ð4:7Þ
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TABLE 4.1 Elastic Moduli For Different Materials

Material E (GN m�2) Material E (GN m�2)

Diamond
Tungsten carbide (WC)
Osmium
Cobalt/tungsten carbide
cermets

Borides of Ti, Zr, Hf
Silicon carbide, SiC
Boron
Tungsten and alloys
Alumina (Al2O3)
Beryllia (BeO)
Titanium carbide (TiC)
Titanium carbide (TaC)
Molybdenum and alloys
Niobium carbide (NbC)
Silicon nitride (Si3N4)
Beryllium and alloys
Chromium
Magnesia (MgO)
Cobalt and alloys
Zirconia (ZrO2)
Nickel
Nickel alloys
CFRP
Iron
Iron-based super-alloys
Ferritic steels, low-alloy
steels

Stainless austenitic
steels

Mild steel
Cast irons
Tantalum and alloys
Platinum
Uranium
Boron/epoxy composites
Copper
Copper alloys
Mullite
Vanadium
Titanium
Titanium alloys

1000
450–650
551

400–530
450–500
430–445
441
380–411
385–392
375–385
370–380
360–375
320–365
320–340
280–310
290–318
285–290
240–275
200–248
160–241
214
130–234
70–200
196
193–214

196–207

190–200
200
170–190
150–186
172
172
80–160
124
120–150
145
130
116
80–130

Palladium
Brasses and bronzes
Niobium and alloys
Silicon
Zirconium and alloys
Silica glass, SiO2

(quartz)
Zinc and alloys
Gold
Calcite (marble,
limestone)

Aluminium
Aluminium and alloys
Silver
Soda glass
Alkali halides (NaCl,
LiF, etc.)

Granite (Westerly
granite)

Tin and alloys
Concrete, cement
Fiberglass (glass-fiber/
epoxy)

Magnesium and alloys
GFRP
Calcite (marble,
limestone)

Graphite
Shale (oil shale)
Common woods, || to
grain

Lead and alloys
Alkyds
Ice (H2O)
Melamines
Polyimides
Polyesters
Acrylics
Nylon
PMMA
Polystyrene
Epoxies

124
103–124
80–110
107
96

94
43–96
82

70–82
69
69–79
76
69

15–68

62
41–53
30–50

35–45
41–45
7–45

31
27
18

9–16
16–18
14–17
9.1
6–7
3–5
1.8–3.5
1.6–3.4
2–4
3.4
3–3.4
2.6–3
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Furthermore, the resistance of a crystal to deformation is strongly
dependent on its orientation. It is, therefore, important to develop a more
complete description of elastic behavior that includes possible crystal aniso-
tropy effects. This can be achieved by rewriting Eqs (4.6a) and (4.6b) with
their respective stress and strain components as the independent variables:

Material E (GN m�2) Material E (GN m�2)

Polycarbonate
Common woods, ? to
grain

Polypropylene
PVC
Polyethylene
(high density)

2.6

0.6–1.0
0.9
0.2–0.8

0.7

Foamed
polyurethane

Polyethylene (low
density)

Rubbers
Foamed polymers

0.01–0.06

0.2
0.01–0.1
0.001–0.01

After Ashby and Jones, 1996. Reprinted with permission from Butterworth
Heinemann.

TABLE 4.1 Continued

FIGURE 4.4 Schematic illustration of lateral contraction. (Adapted from Ashby
and Jones, 1996—reprinted with permission from Butterworth Heinemann.)
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�11
�22
�33

23

13

12

2
66666664

3
77777775

¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

2
66666664

3
77777775

"11
"22
"33
�23
�13
�12

2
66666664

3
77777775

ð4:8aÞ

where the terms in the Cij matrix represent the elastic stiffness. Similarly, the
three-dimensional strains can be expressed as

"11
"22
"33
�23
�13
�12

2
66666664

3
77777775
¼

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

2
66666664

3
77777775

�11
�22
�33

23

13

12

2
66666664

3
77777775

ð4:8bÞ

where the terms in the Sij matrix are the so-called compliance coefficients.
At first glance, both the Cij and Sij matrices contain 36 terms. However, due
to the existence of a unique strain energy, only 21 of the terms are indepen-
dent in each of matrices in Eqs (4.8) and (4.9). The number of independent
terms in the Cij and Sij matrices also decreases with increasing crystal sym-
metry. The least symmetric triclinic crystals have 21 independent elastic
constants; orthorhombic crystals have nine independent elastic constants,
and tetragonal crystals have six. Hexagonal crystals have five independent
elastic constants and cubic crystals have three. Hence, for cubic crystals, Eqs
(4.8a) and (4.8b) reduce to Eqs (4.9a) and (4.9b):

�11
�22
�33

23

13

12

2
66666664

3
77777775

¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

2
66666664

3
77777775

"11
"22
"33
�23
�13
�12

2
66666664

3
77777775

ð4:9aÞ

"11
"22
"33
�23
�13
�12

2
6666664

3
7777775
¼

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

2
6666664

3
7777775

�11
�22
�33

23

13

12

2
6666664

3
7777775

ð4:9bÞ
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The moduli in the different directions can be estimated from the stiffness
coefficients. For cubic crystals, Young’s modulus along a crystallographic
[hkl] direction is given by

1

Ehkl
¼ S11 � 2 ðS11 � S12Þ �

S44

2

� �
ðI21 l2þ2 l22 l

2
3 þ l23 l

2Þ
2 Þ ð4:10Þ

where l1, l2, and l3 are the direction cosines of the angle between the vector
corresponding to the direction, and the x, y, z axes, respectively.

The room-temperature values of Cij and Sij for selected materials are
listed in Table 4.2. The direction cosines for the most widely used principal
directions in the cubic lattice are also given in Table 4.3. Note that the
uniaxial elastic moduli of cubic crystals depend solely on their compli-
ance/stiffness coefficients, and the magnitudes of the direction cosines.
Also, the modulus in the [100] direction 1=E111 ¼ S11 � 2=3½ðS11 � S12Þ �
S44=2�. Hence, depending on the relative magnitudes of (S11 � S12Þ and
S44=2, the modulus may be greatest in the [111] or [100] directions. The
average modulus of a polycrystalline material in a given direction depends
on the relative proportions of grains in the different orientations.

The modulus of a polycrystalline cubic material may be estimated
from a simple mixture rule of the form: E ¼Pn

i¼1 ViEi, where Vi is the
volume fraction of crystals with a particular crystallographic orientation,
Ei is the modulus in that particular orientation, and n is the number of
possible crystallographic orientations.

Finally in this section, it is important to note that the degree of aniso-
tropy of a cubic crystal (anisotropy ratio) is given by:

Anisotropy ratio ¼ 2ðS11 � S12Þ
S44

ð4:11Þ

Anisotropy ratios are presented along with elastic constants for several
cubic materials in Table 4.4. Note that with the exception of tungsten, all of
the materials listed are anisotropic, i.e., their moduli depend strongly on
direction. The assumption of isotropic elasticity in several mechanics and
materials problems may therefore lead to errors. However, in many
problems in linear elasticity, the assumption of isotropic elastic behavior
is made to simplify the analysis of stress and strain.

4.4 THEORY OF ELASTICITY

4.4.1 Introduction

The rest of the chapter may be omitted in an undergraduate class on the
mechanical behavior of materials. However, this section is recommended
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TABLE 4.2 Summary of Elastic Stiffness and Compliance Coefficients

Material

(1010 Pa) ð10�11 Pa�1)

c11 c12 c44 s11 s12 s44

Cubic

Aluminum 10.82 6.13 2.85 1.57 –0.57 3.51
Copper 16.84 12.14 7.54 1.50 –0.63 1.33
Gold 18.60 15.70 4.20 2.33 –1.07 2.38
Iron 23.70 14.10 11.60 0.80 –0.28 0.86
Lithium
fluoride

11.2 4.56 6.32 1.16 –0.34 1.58

Magnesium
oxide

29.3 9.2 15.5 0.401 –0.096 0.648

Molybdenumb 46.0 17.6 11.0 0.28 –0.08 0.91
Nickel 24.65 14.73 12.47 0.73 �0:27 0.80
Sodium
chlorideb

4.87 1.26 1.27 2.29 �0:47 7.85

Spinel
(MgAl2O4)

27.9 15.3 14.3 0.585 �0:208 0.654

Titanium
carbideb

51.3 10.6 17.8 0.21 �0:036 0.561

Tungsten 50.1 19.8 15.14 0.26 �0:07 0.66
Zinc sulfide 10.79 7.22 4.12 2.0 �0:802 2.43

c11 c12 c13 c33 c44 s11 s12 s13 s33 s44

Hexagonal
Cadmium 12.10 4.81 4.42 5.13 1.85 1.23 �0:15 �0:93 3.55 5.40
Cobalt 30.70 16.50 10.30 35.81 7.53 0.47 �0:23 �0:07 0.32 1.32
Magnesium 5.97 2.62 2.17 6.17 1.64 2.20 �0:79 �0:50 1.97 6.10
Titanium 16.0 9.0 6.6 18.1 4.65 0.97 �0:47 �0:18 0.69 2.15
Zinc 16.10 3.42 5.01 6.10 3.83 0.84 0.05 �0:73 2.84 2.61

After Hertzberg, 1996—reprinted with permission from John Wiley.
aSources: Huntington (1958) and Hellwege (1969).
bNote that E100 > E111.
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for graduate students, or those who simply want to develop a deeper
understanding of elasticity and plasticity concepts. Following a review of
equilibrium equations and possible states of stress, compatibility condi-
tions are described prior to a simple presentation of Airy stress functions.
Short-hand tensor notation is also explained in a simple presentation that
will enable the reader to interpret abbreviated versions of equations that
are often used in the literature. A generalized form of Hooke’s law is then
presented along with a basic definition of the strain energy density func-
tion at the end of the chapter.

TABLE 4.3 Summary of Direction
Cosines For Cubic Lattices

Direction l1 l2 l3

h100i 1 0 0
h110i 1=

ffiffiffi

2
p

1=
ffiffiffi

2
p

0
h111i 1=

ffiffiffi

3
p

1=
ffiffiffi

3
p

1=
ffiffiffi

3
p

After Hertzberg, 1996. Reprinted with
permission from John Wiley.

TABLE 4.4 Summary Anisotropy Ratios at Room Temperature

Metal

Relative
degree of
anisotropy
2ðs11 � s12Þ

s44

� �

E111 (106 psi) E100 (106 psi)

E111

E100

� �

Aluminum 1.219 11.0 9.2 1.19
Copper 3.203 27.7 9.7 2.87
Gold 2.857 16.9 6.2 2.72
Iron 2.512 39.6 18.1 2.18
Magnesium oxide 1.534 50.8 36.2 1.404
Spinel (MgAl2O4) 2.425 52.9 24.8 2.133
Titanium carbide 0.877 62.2 69.1 0.901
Tungsten 1.000 55.8 55.8 1.00

After Hertzberg, 1996. Reprinted with permission from John Wiley.
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4.4.2 Equilibrium Equations

The relationships between stress and strain may be obtained by determining
the conditions for equilibrium of an element. If we consider a magnified
cubic element, as shown in Fig. 4.5, it is easy to imagine all the forces that
must be applied to the cube to keep it suspended in space. These forces may
consist of applied normal and shear stresses as described in Chap. 3 (Fig.
3.1). They also consist of body forces that have x, y, and z components.
Body forces may be due to gravitational or centrifugal forces which act
throughout the volume. They have the units of force per unit volume.
Considering stress gradients across the cube and force equilibrium in the
(x, y, z) directions, it is relatively easy to show that

@�xx
@x

þ @
xy
@y

þ @
xz
@z

þ Fx ¼ �
@2x

@t2
ð4:12aÞ

@
yx
@x

þ @�yy
@y

þ @
yz
@z

þ Fy ¼ �
@2y

@t2
ð4:12bÞ

@
zx
@x

þ @
zy
@y

þ @�zz
@z

þ Fz ¼ �
@2z
@t2

ð4:12cÞ

FIGURE 4.5 State of stress on an element in the Cartesian co-ordinate system.
Only components affecting equilibrium are labeled. (Adapted from Hearn,
1985. Reprinted with permission from Pergamon Press.)
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where Fx, Fy, and Fz are the body forces per unit volume, � is the density, x,
y, and z are the Cartesian co-ordinates, and the acceleration terms in
Newton’s second law are given by the second derivatives on the right-
hand side of Eqs 4.12(a)–(c). In the case of stationary bodies, the accelera-
tion terms on the right-hand side of these equations are all equal to zero.
Also, the body forces are usually small when compared to the applied forces.
Hence, we have the usual forms of the equilibrium equations that are
generally encountered in mechanics and materials problems. These are

@�xx
@x

þ @
xy
@y

þ @
xz
@z

¼ 0 ð4:13aÞ
@
yx
@x

þ @�yy
@y

þ @
yz
@z

¼ 0 ð4:13bÞ
@
zx
@x

þ @
zy
@y

þ @�zz
@z

¼ 0 ð4:13cÞ

The equilibrium equations for cylindrical and spherical co-ordinate
systems may also be derived from appropriate free-body diagrams (Fig.
4.6). These alternative co-ordinate systems are often selected when the geo-
metrical shapes that are being analyzed have cylindrical or spherical sym-
metry. Under such conditions, considerable simplification may be achieved
in the analysis by using cylindrical or spherical co-ordinate systems. Force
components in the free-body diagrams can also be obtained by applying

FIGURE 4.6 State of stress over an element in the cylindrical co-ordinate
system.
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Newton’s second law to the special case of a stationary body. In the case of
cylindrical co-ordinates, if we neglect body forces, the equations of equili-
brium are given by

@�rr
@r

þ 1

r

@
r�
@�

þ @
rz
@z

þ �rr � ���
r

¼ 0 ð4:14aÞ
@
r�
@r

þ 1

r

@���
@�

þ @
z�
@z

þ 2
r�
r

¼ 0 ð4:14bÞ
@
rz
@r

þ 1

r

@
z�
@�

þ @�zz
@z

þ 
zr
r

¼ 0 ð4:14cÞ

Similarly, the equations of equilibrium for problems with spherical
symmetry may be derived by summing the force components in the r, y,
and f directions. Hence, the equilibrium equations are given by

@�rr
@r

þ 1

r sin�

@
r�
@�

þ 1

r

@
r�
@�

þ 2�rr � ��� � ��� þ 
r� cot�
r

þ Fr ¼ 0

ð4:14dÞ
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cot�þ F� ¼ 0 ð4:14eÞ
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þ 1
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@���
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þ ��� � ���
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cot�þ 3
r�
r

þ F� ¼ 0 ð4:14fÞ

The above equations (three each for any three-dimensional coordinate
system) are insufficient to solve for the six independent stress components.
The remaining three components of stress can only be found from a simulta-
neous solution with the stress–strain relationships inmost elasticity problems.

4.4.3 States of Stress

4.4.3.1 Plane Stress and Plane Strain Conditions

The above discussion has focused largely on the general three-dimensional
state of stress on an element [Figs 4.5 and 4.6). However, in many problems
in mechanics and materials, it is possible to achieve considerable simplifica-
tion in the analysis of stress and strain by assuming biaxial stress (plane
stress) or biaxial strain (plane strain) conditions. Such problems are often
referred to as plane problems (Fig. 4.7).

In plane elastic problems, neither the stresses nor strains vary in the z
direction. Furthermore, the loads on the sides and the body forces must be
distributed uniformly across the thickness. Also, plane stress conditions
often apply to problems in which the thickness is small, while plane strain
conditions usually apply to problems in which the thickness is large with
respect to the other dimensions.
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In plane stress problems, all the z components of stress are assumed to
be zero, i.e., �zz, 
xz, and 
yz are all equal to zero. Note also that the effective
value of �zz may be reduced to zero by imposing an equal stress of opposite
sign in the z direction. The equilibrium equations thus reduce to the follow-
ing expressions:

@�xx
@x

þ @
xy
@y

þ Fx ¼ 0 ð4:15aÞ
@
xy
@x

þ @�yy
@y

þ Fy ¼ 0 ð4:15bÞ

The relationships between strain and stress are now given by

"xx ¼ �xx
E

� 	�yy
E

ð4:16aÞ

"yy ¼ �yy
E

� 	�xx
E

ð4:16bÞ

�xy ¼ 
xy
G

ð4:16cÞ

Under plane strain conditions, all of the strains in the z direction are zero.
Hence, "zz ¼ "xz ¼ "yz ¼ 0. Also, for all plane problems, 
xz ¼ 
yz ¼ 0. The
equilibrium equations are thus given by

FIGURE 4.7 Schematic of a plane element.
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þ Fz ¼ 0 ð4:17cÞ

The relationships between strain and stress are now given by

"xx ¼ ð1� 	2Þ
E

�xx � 	

ð1� 	Þ �yy
� �

ð4:18aÞ

"yy ¼ ð1� 	2Þ
E

�yy � 	

ð1� 	Þ �xx
� �

ð4:18bÞ

�xy ¼ 
xy
G

ð4:18cÞ

Note that the plane strain equations can be obtained from the plane stress
equations simply by replacing 	 with 	=ð1� 	Þ and E with E=ð1� 	2).
Furthermore, the above equations may be rearranged to obtain stress com-
ponents in terms of strain. For plane stress conditions, this gives

�xx ¼ E

ð1� 	2Þ ½"xx þ 	"yy � ð4:19aÞ

�yy ¼ E

ð1� 	2Þ ½"yy þ 	"xx � ð4:19bÞ


xy ¼ G�xy ð4:19cÞ

Similarly, for plane strain conditions, we may rearrange Eqs 4.19(a–c)
to obtain the following expressions for stress components in terms of strain:

�xx ¼ Eð1� 	Þ
ð1þ 	Þð1� 2	Þ "xx þ 	

ð1� 	Þ "yy
� �

ð4:20aÞ

�yy ¼ Eð1� 	Þ
ð1þ 	Þð1� 2	Þ "yy þ 	

ð1� 	Þ "xx
� �

ð4:20bÞ


xy ¼ G�xy ð4:20cÞ

4.4.3.2 Generalized Three-Dimensional State of Stress

Thermal stresses may also be included in the equilibrium equations simply
by treating them as body forces. For a generalized three-dimensional state of
stress, the equations of equilibrium are given by
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@�xx
@x

þ @
xy
@y

þ @
xz
@z

þ �x�T ¼ 0 ð4:21aÞ

@
yx
@x

þ @�yy
@y

þ @
yz
@z

þ �y�T ¼ 0 ð4:21bÞ

@
zx
@x

þ @
zy
@y

þ @�zz
@z

þ �z�T ¼ 0 ð4:21cÞ

Equations 4.21(a–c) are not applicable to plasticity problems.
Also, similar expressions may be written for the equilibrium conditions
in spherical and cylindrical co-ordinates under elastic conditions.
However, in general, the above equations cannot be solved without
satisfying the so-called compatibility conditions. These are discussed in
the next section.

4.4.3.3 Compatibility Conditions and Stress Functions

To ensure that the solutions to the above equations are consistent with
single valued displacements, the compatibility conditions must be satisfied.
These are derived in most mechanics texts on elasticity. The compatibility
conditions are given by three equations of the form:

@2"ii
@x2

j

þ @
2"jj

@x2
i

¼ @2�ij
@xi@xj

ð4:22Þ

where subscripts i and j can have values between 1 and 3 corresponding to
subscripts x, y, and z, respectively. Also, three other compatibility equations
of the following form can be obtained from linear elasticity theory, which
gives

2@2"ii
@xj@xk

¼ @

@xi
� @�jk
@xi

þ @�ki
@xj

þ @�ij
@xk

� �
ð4:23Þ

Three equations of the above form can be obtained by the cyclic
permutation of i, j, and k in the above equation. As the reader can probably
imagine, the above equations are difficult to solve using standard methods.
It is, therefore, common to employ trial and error procedures in attempts to
obtain solutions to elasticity problems.

One class of trial functions, known as Airy functions, are named after
Sir George Airy, the British engineer who was the first person to introduce
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them in the 19th century. The Airy stress function, �, defines the following
relationships for �xx, �yy, and 
xy:

�xx ¼ @2�

@y2
ð4:24aÞ

�yy ¼ @2�

@x2
ð4:24bÞ


xy ¼ �@2�
@x@y

ð4:24cÞ

The compatibility condition can also be expressed in terms of the Airy stress
function. This gives

@4�

@x4
þ 2@4�

@x2@y2
þ @4�

@y4
¼ 0 ð4:25Þ

For stress fields with polar symmetry, the Airy stress functions are
given by

�rr ¼
1

r

@�

@r
þ 1

r2
@2�

@�2
ð4:26aÞ

��� ¼
@2�

@r2
ð4:26bÞ

�r� ¼ � @

@r

1

r

@�

@�

� �
ð4:26cÞ

The compatibility conditions are satisfied when the Airy stress function
satisfies Laplace’s equation and the biharmonic equation. Hence,

r2c ¼ 0 ð4:27Þ
and

r4c ¼ 0 ð4:28Þ
where the r2 operator is given by

r2 � @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@�2
ð4:29Þ

The compatibility condition is, therefore, satisfied when Laplace’s equation
and the biharmonic function are satisfied, i.e., when Eqs (4.27) and (4.28)
are satisfied.
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4.5 INTRODUCTION TO TENSOR NOTATION

So far, the description of linear elasticity concepts has used simple matrix
notation that any reader with a basic knowledge of linear algebra can follow
without too much difficulty. However, it is common in technical publications
to formalize the use of matrix notation in a manner that is not self-evident to
the untrained reader. The formal notation that is often used is generally
referred to as tensor notation. The latter is commonly used because it facil-
itates the simplified/abbreviated presentation of groups of numbers.

Tensors are essentially groups of numbers that represent a physical
quantity such as the state of stress on an element. The order, n, of a tensor
determines the number of components of a tensor. The number of compo-
nents of a tensor is given by 3n. Hence, the simplest tensors are scalar
quantities, which are a special class of tensors of order zero, i.e., n ¼ 0
and the number of components is 3n ¼ 30 ¼ 1. Temperature is one example
of a zeroth-order tensor. Vectors are tensor quantities of the first order.
They, therefore, have three components given by 3n ¼ 31 ¼ 3. The three
components are often referred to three independent axes, e.g., x, y, z or 1,
2, 3. Similarly, second rank tensors may be defined as tensors with n ¼ 2.
They have 3n ¼ 32 ¼ 9 components.

Tensors can be used to represent stress, strain, and physical properties
such as electrical/thermal conductivity and diffusivity. Tensors may also be
used to represent the anisotropy of stiffness and compliance. Stress and
strain are examples of second rank tensors since they require specifications
of the directions of the plane normal and applied force. Stress and strain are
also examples of symmetric tensors since �ij ¼ �ji and "ij ¼ "ji, i.e., their
components are symmetric about their diagonals.

Tensor notation is particularly useful because it provides a short-hand
notation for describing transformations between different orthogonal sets of
axes. If we now consider the simple case of two sets of orthogonal co-
ordinate axes (x1, x2, x3) and (x01, x

0
2, x

0
3) that describe the same vector,

A, then it is easy to express the vector A in terms of the unit vectors
along the old axes (i, j, k) or the unit vectors across the new axes (i0, j0,
k0). The components of A are transformed from one co-ordinate system to
the other simply by multiplying them by the direction cosines between the
old axes and the new axes (Fig. 4.8). Hence, the components of the the
vector A in the new vector basis are given by the following expression:

Ai ¼ ‘ikAk ð4:30Þ
where Ai are the vector components in the new basis, Ak are the vector
components in the old basis, and ‘ik is the direction cosine of the angle
between the ith axis in the new basis and the kth axis in the old basis.
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We may now turn our attention to second-order tensors which are
next in order of complexity after scalars and vectors. A second-order
tensor consists of nine components. One example of a tensor quantity is
the stress tensor, which the reader should be familiar with from Chap. 3.

FIGURE 4.8 Definition of direction cosines between two sets of axes.

FIGURE 4.9 State of stress on an inclined plane through a given point in a
three-dimensional Cartesian co-ordinate system.
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The nine components of the second-order stress tensor are given by (Figs.
4.8 and 4.9):

½�� ¼
�xx 
xy 
xz

yx �yy 
yz

zx 
zy �zz

2
4

3
5 ð4:31Þ

Note that Eq. (4.31) presents the components of the stress tensor in the old
co-ordinate system. However, by definition, the components of a second-
order tensor transform from one co-ordinate system to another via the so-
called transformation rule. This is given by (Figs. 4.8 and 4.9):

�ij ¼
X3
k¼1

X3
l¼1

‘ik‘jl�kl ð4:32Þ

where the �kl terms represent the stress components referred to the old axes,
‘ik represents the direction cosines that transform the plane normal compo-
nents to the new set of axes, while ‘jl represent the direction cosines that
transform the force components to the new set of axes.

Similar expressions may also be written for the strain tensor and the
transformation of the strain tensor. These are given by

"ij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
ð4:33Þ

and

"ij ¼
X3
k¼1

X3
l¼1

‘ik‘jl"kl ð4:34Þ

We note here that a more compact form of the above equations can be
obtained by applying what is commonly known as the Einstein notation or
the summation convention. This notation, which was first proposed by
Albert Einstein, states that if a suffix occurs twice in the same term, then
summation is automatically implied over values of i and j between 1 and 3.
Hence, Eqs (4.32) and (4.34) can be expressed as

�ij ¼ ‘ik‘jl�kl ð4:35Þ
and

"ij ¼ ‘ik‘jl"kl ð4:36Þ
where the ‘ik and ‘jl terms represent the direction cosines of the angles
between the new and old axes. Note that the subscripts k and l in the
above equations can be replaced by any other letter (apart from i and j)
without changing their functional forms. Hence, these subscripts are com-
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monly referred to as ‘‘dummy suffixes’’ since they can be replaced by any
letter. Similarly, the equilibrium equations [4.12(a–c)] may be expressed in
abbreviated tensor notation, which gives

�ij;j þ Fi ¼ �ii;i ð4:37Þ
It is also important to note here that the Kronecker delta function may also
be defined as the unit tensor, �ij, with a value of 1 when i ¼ j. This is related
to the direction cosines via the following expression:

‘ij‘il ¼ �jk ð4:38Þ
So far, we have learned that zeroth, first and second order tensors

transform, respectively, according to the following transformation laws:
� ¼ �0; A0

i ¼ ‘ikAk, and �ij ¼ ‘ik‘jl�kl. Also, in general, a tensor of order n
has 3n components, as discussed at the start of this section.

In general, a tensor of order n may be defined as one that undergoes
transformation from one co-ordinate system to another by the following
transformation rule:

Ai1i2...;in ¼ ‘i1k1‘i2k2‘i3k3 . . . ‘inknAk1k2k3...;kn ð4:39Þ
where Ak1k2k3...;kn are the components of the tensor in the old co-ordinate
system, Ai1i2...;in are the components of the tensor of order n in the new co-
ordinate system, and ‘i1k1 ; ‘i2k2 , ‘i3k3 . . . ; ‘inkn are the direction cosines
between the axes in the new and old co-ordinate systems.

For example, three vectors A, B and C would form a third-order
tensor given by Ai1i2i3

¼ ‘i1k1‘i2k2‘i3k3Ak1k2k3
. Similarly, if a second-order ten-

sor, Aik ¼ �iklmBlm is a linear function of another second-order function,
they are related by a fourth-order tensor via:

Aik ¼ �iklmBlm ð4:40Þ
Finally, in this section, it is important to note that the permutation

tensor, "ijk, may be defined as having values of 1, �1, and 0, depending on
whether the order of i, j, and k is cyclic (123, 231, 312) or repeated (112, 221,
331), etc. The permutation tensor is not commonly used, although it is
useful in selected problems involving the application of couple stresses.
The permutation tensor may also be used to represent the vector cross-
product, which is given by

a � b ¼ "ijkniajbk ð4:41Þ
where a and b are vectors, ni is the normal to both vectors a and b, and "ijk is
the permutation tensor. Furthermore, a small rotation of an element may be
expressed as

! ¼ !knk ¼ nk"ijkui;j

2
ð4:42Þ
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This completes our brief introduction to tensor notation. The inter-
ested reader is referred to a number of excellent texts (listed in the biblio-
graphy) for further details on the subject. In particular, the classical text by
Nye (1953) provides what is generally considered by many to be the clearest
introduction to tensor notation.

4.6 GENERALIZED FORM OF LINEAR ELASTICITY

With the above introduction to tensor notation now complete, we will now
return to Hooke’s law of linear elasticity. This is simply an expression of the
linear spring-like behavior of elastic solids (Fig. 4.2). Using tensor notation,
Hooke’s law may be expressed as

�ij ¼ Cijkl"kl ð4:43Þ
where Cijkl is the fourth-order tensor that represents all the possible elastic
constants. Expressed in terms of the direction cosines, Cijkl is given by

Cijkl ¼
X3
i 0¼1

X3
j 0¼1

X3
k 0¼1

X3
l 0¼1

Ci 0j 0k 0l 0‘i 0i‘j 0j‘k 0k‘l 0l ð4:44Þ

The primed terms in Eq. (4.44) refer to the new co-ordinates, while the
nonprimed terms refer to the old axes. It is also important to note that
the order of ij and kl does not matter. Hence, Cijkl ¼ Cklji, Cij ¼ Cji, and
Ckl ¼ Clk. Similarly, the above elastic expressions can be expressed in terms
of the fourth order elastic compliance tensor Sijkl :

"ij ¼
X3
k¼1

X3
l¼1

Sijkl�kl þ �ij�T ð4:45Þ

where �ij represents the thermal expansion coefficients, and �T is the tem-
perature difference between the actual temperature and a stress-free tem-
perature. The components of the compliance tensor transform in a manner
similar to the elastic stiffness tensor, Cijkl. For an isotropic material, i.e., a
material with two independent elastic constants, Cijkl is given by

Cijkl ¼ ��ij�kl þ �ð�ik�jl þ �il�jk Þ ð4:46Þ
where � is the shear modulus, � is Lame’s constant, and �ij is the Kronecker
delta for which �ij ¼ 0 when i 6¼ j and �ij ¼ 1 when i ¼ j. Young’s modulus,
E, and Poisson’s ratio, 
, are given by

E ¼ �ð3�þ 2�Þ
�þ � ð4:47Þ
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and


 ¼ �

2ð�þ �Þ ð4:48Þ

As discussed earlier in this chapter, E represents the resistance to axial
deformation, and 
 represents the ratio of the transverse contractions to the
axial elongation under axial loading. Values of E, G, and 
 for selected
materials are presented in Table 4.5. Note that these elastic properties are
not significantly affected by minor alloying or microstructural changes.

TABLE 4.5 Summary of Elastic Properties of Assumed Isotropic Solids

Material at 688F E (106 psi) G (106 psi) �

Metals
Aluminum 10.2 3.8 0.345
Cadmium 7.2 2.8 0.300
Chromium 40.5 16.7 0.210
Copper 18.8 7.0 0.343
Gold 11.3 3.9 0.44
Iron 30.6 11.8 0.293
Magnesium 6.5 2.5 0.291
Nickel 28.9 11.0 0.312
Niobium 15.2 5.4 0.397
Silver 12.0 4.4 0.367
Tantalum 26.9 10.0 0.342
Titanium 16.8 6.35 0.321
Tungsten 59.6 23.3 0.280
Vanadium 18.5 6.8 0.365

Other materials
Aluminum oxide (fully dense) � 60 — —
Diamond � 140 — —
Glass (heavy flint) 11.6 4.6 0.27
Nylon 66 0.17 — —
Polycarbonate 0.35 — —
Polyethylene (high density) 0.058–0.19 — —
Poly(methyl methacrylate) 0.35–0.49 — —
Polypropylene 0.16–0.39 — —
Polystyrene 0.39–0.61 — —
Quartz (fused) 10.6 4.5 0.170
Silicon carbide � 68 — —
Tungsten carbide 77.5 31.8 0.22

Adapted from Hertzberg, 1996—reprinted with permission from John Wiley.
aSource: Kaye and Laby (1973).
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Also, typical values for Poisson’s ratio, 	, are close to 0.3 for a large variety
of materials.

It is important to note here that an isotropic material has only two
independent elastic constants. Hence, if any two of the elastic constants (E,
G, K , and 
) are known, then the other two elastic constants may be calcu-
lated from equations of isotropic linear elasticity. The expressions that relate
the elastic constants for isotropic solids are summarized in Table 4.6. In
reviewing the table, it is important to remember that the different moduli
and elastic properties are associated with the chemical bonds between
atoms. They are, therefore, intrinsic properties of a solid that do not vary
significantly with microstructure or minor alloying additions.

The elastic constants may also be derived from energy potentials of the
kind presented earlier in this chapter. However, detailed quantum
mechanics derivations of the potentials are only now becoming available
for selected materials. A summary of stiffness and compliance coefficients
for a range of materials is presented in Table 4.2.

4.7 STRAIN ENERGY DENSITY FUNCTION

Under isothermal elastic conditions, the work done per unit volume in
displacing the surfaces/boundaries of a system, dw ¼ dW=V , can be

TABLE 4.6 Relationships Between Elastic Properties of Isotropic Solids

G K E �

G;E
GE

3ð3G � EÞ
E � 2G

2G

G; �
2Gð1þ �Þ
3ð1� 2�Þ 2Gð1þ �Þ

G;K
9KG

3K þG

1

2

3K � 2G

3K þG

� �

E ; �
E

2ð1þ �Þ
E

3ð1� 2�Þ

E ;K
3EK

9K � E

1

2

3K � E

3K

� �

�;K
3K ð1� 2�Þ
2ð1þ �Þ 3K ð1� 2�Þ

Courtesy of L. Anand, MIT.
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expressed in terms of the incremental work done per unit volume. This
yields:

dw ¼ �ijd"ij ¼ Cijkl"kld"ij ð4:49Þ
Equation (4.49) may also be applied to incremental plasticity problems, as
discussed in Chap. 5. In any case, under isothermal incremental elastic
loading conditions, the total work per unit volume is a single valued func-
tion of the form:

w ¼ 1

2
Cijkl"ij"kl ¼ �ð"ij Þ ð4:50Þ

where w is the strain energy density, which is given by

�ij ¼
@�

@"ij
ð4:51Þ

Differentiating the strain energy density gives

@2�

@"ij@"kl
¼ @�ij
@"kl

¼ Cijkl ð4:52Þ

It is important to note that Eqs (4.43) and (4.52) suggest that there are
81 independent elastic constants. However, the equalities �ij ¼ �ji and "ij ¼
"ji reduce the number of independent elastic constants to 36. Also, the
reversibility of elastic deformation leads to the result that the work done
during elastic deformation is a unique function of strain that is independent
of the loading path. Hence,

@2�

@"ij@"kl
¼ @2�

@"kl@"ij
¼ Cijkl ¼ Cklij ð4:53Þ

From Eq (4.53), it can be deduced that Cij ¼ Cji, and hence there are only 21
independent elastic constants, as discussed in Sect 4.3. The concept of the
strain energy density will be discussed further in subsequent sections on
plasticity and fracture mechanics.

4.8 SUMMARY

An introduction to elasticity has been presented in this chapter. Following a
brief description of the physical basis for elastic behavior, an introduction to
anisotropic linear elasticity was presented. Equilibrium equations were then
introduced for Cartesian, spherical, and cylindrical co-ordinate systems. An
overview of the mathematical theory of elasticity was then presented before
introducing tensor notation. Finally, the basic equations of elasticity were
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described in tensor form before concluding with a section on the strain
energy density function.
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5

Introduction to Plasticity

5.1 INTRODUCTION

After a high enough stress is reached, the strain no longer disappears on the
release of stress. The remaining permanent strain is called a ‘‘plastic’’ strain
(Fig. 5.1). Additional incremental plastic strains may also be accumulated
on subsequent loading and unloading, and these can lead ultimately to
failure. In some cases, the dimensional and shape changes associated with
plasticity may lead to loss of tolerance(s) and premature retirement of a
structure or component from service. An understanding of plasticity is,
therefore, important in the design and analysis of engineering structures
and components.

This chapter presents a basic introduction to the mechanisms and
mechanics of plasticity in monolithic materials. Following a simple review
of the physical basis for plasticity in different classes of monolithic materials
(ceramics, metals, intermetallics, and polymers), empirical plastic flow rules
are introduced along with multiaxial yield criteria. Constitutive equations of
plasticity are then presented in the final section of the chapter.
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5.2 PHYSICAL BASIS FOR PLASTICITY

5.2.1 Plasticity in Ceramics

Most ceramics only undergo only elastic deformation prior to the onset of
catastrophic failure at room temperature. Hence, most reports on the
mechanical properties of ceramics are often limited to elastic properties.
Furthermore, most ceramists report flexural properties obtained under
three- or four-point bending. Typical strength properties of selected ceramic
materials are presented in Table 5.1. Note that ceramics are stronger (almost
15 times stronger) in compression than in tension. Also, the flexural
strengths are intermediate between the compressive and tensile strength
levels. Reasons for these load-dependent properties will be discussed in
subsequent chapters. For now, it is simply sufficient to state that the trends
are due largely to the effects of pre-existing defects such as cracks in the
ceramic structures.

The limited capacity of ceramic materials for plastic deformation is
due largely to the limited mobility of dislocations in ceramic structures. The
latter may be attributed to their large Burgers (slip) vectors and unfavorable
(for plastic deformation) ionically/covalently bonded crystal structures.
Plastic deformation in ceramics is, therefore, limited to very small strains
(typically < 0.1–1%), except at elevated temperatures where thermally acti-
vated dislocation motion and grain boundary sliding are possible. In fact,
the extent of plasticity at elevated temperatures may be very significant in

FIGURE 5.1 Schematic illustration of plastic strain after unloading.
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ceramics deformed at elevated temperature, and superplasticity (strain levels
up to 1000% plastic strain) has been shown to occur due to creep phenom-
ena in some fine-grained ceramics produced.

However, in most ceramics, the plastic strains to failure are relatively
small (<1%), especially under tensile loading which tends to open up pre-
existing cracks that are generally present after processing. Also, since inci-
pient cracks in ceramics tend to close up under compressive loading, the
strength levels and the total strain to failure in compression are often greater
than those in tension. Furthermore, very limited plasticity (permanent
strains on removal of applied stresses) may occur in some ceramics or cera-
mic matrix composites by microcracking or stress-induced phase transfor-
mations.

Microcracking generally results in a reduction in Young’s modulus, E,
which may be used as a global/scalar measure of damage (Fig. 5.2). If we
assume that the initial ‘‘undeformed’’ material has a damage state of zero,
while the final state of damage at the point of catastrophic failure corre-
sponds to a damage state of 1, we may estimate the state of damage using
some simple damage rules. For an initial Young’s modulus of E0 and an
intermediate damage state, the damage variable, D, is given simply by
D ¼ 1� E=E0. Damage tensors may also be used to obtain more rigorous
descriptions of damage (Lemaitre, 1991).

Plasticity in ceramics may also occur by stress-induced phase transfor-
mations. This has been observed in partially stabilized zirconia (ZrO2

alloyed with CaO, Y2O3, or CeO to stabilize the high-temperature tetragonal

TABLE 5.1 Strength Properties of Selected Ceramic Materials

Material

Compressive
strength

(MPa (ksi)]

Tensile
strength

[MPa (ksi)]

Flexural
strength

[MPa (ksi)]

Modulus of
elasticity

[GPa (106 psi)]

Alumina (85% dense) 1620 (235) 125 (18) 295 (42.5) 220 (32)
Alumina (99.8% dense) 2760 (400) 205 (30) 345 (60) 385 (56)
Alumina silicate 275 (40) 17 (2.5) 62 (9) 55 (8)
Transformation
toughened zirconia

1760 (255) 350 (51) 635 (92) 200 (29)

Partially stabilized
zirconia þ9% MgO

1860 (270) — 690 (100) 205 (30)

Cast Si3N4 138 (20) 24 (3.5) 69 (10) 115 (17)
Hot-pressed Si3N4 3450 (500) — 860 (125) —

Sources: After Hertzberg, 1996. Reprinted with permission from John Wiley.
a Guide to Engineering Materials. vol. 1(1). ASM, Metals Park, OH, 1986, pp 16, 64, 65.
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phase down to room temperature). Under monotonic loading, the meta-
stable tetragonal phase can undergo stress-induced phase transformations
from the tetragonal to the monoclinic phase. This stress-induced phase
transformation is associated with a volume increase of � 4%, and can
give rise to a form of toughening known as transformation toughening,
which will be discussed in Ch. 13.

Stress-induced phase transformations occur gradually in partially sta-
bilized zirconia, and they give rise to a gradual transition from linearity in
the elastic regime, to the nonlinear second stage of the stress–strain curve
shown in Fig. 5.3. The second stage ends when the stress-induced transfor-
mation spreads completely across the gauge section of the specimen. This is
followed by the final stage in which rapid hardening occurs until failure. It is
important to note that the total strain to failure is limited, even in partially
stabilized zirconia polycrystals. Also, as in conventional plasticity, stress-
induced transformation may be associated with increasing, level, or decreas-
ing stress–strain behavior (Fig 5.4).

5.2.2 Plasticity in Metals

In contrast to ceramics, plastic deformation in metals is typically associated
with relatively large strains before final failure. This is illustrated in Fig. 5.5
using data obtained for an aluminum alloy. In general, the total plastic
strains can vary between 5 and 100% in ductile metals deformed to failure
at room temperature. However, the elastic portion of the stress–strain curve
is generally limited to strains below � 0:1 to 1%. Furthermore, metals and
their alloys may exhibit stress–strain characteristics with rising, level, or

FIGURE 5.2 Schematic showing the change in modulus due to damage during
loading and unloading sequences.
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decreasing stress, as shown in Fig. 5.4. Materials in which the stress level
remains constant with increasing strain [Fig. 5.4(b)] are known as elastic–
perfectly plastic. Materials in which the stress level decreases with increasing
strain are said to undergo strain softening [Fig. 5.4(c)], while those in which
the stress level increases with increasing strain are described as strain hard-
ening materials, Fig. 5.4(a).

FIGURE 5.3 Schematic of the three stages of deformation in material under-
going stress-induced phase transformation. (After Evans et al., 1981.)

FIGURE 5.4 Types of stress–strain response: (a) strain hardening; (b) elastic–
perfectly plastic deformation; (c) strain softening.
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Strain hardening occurs as a result of dislocation interactions in the
fully plastic regime. These may involve interactions with point defects
(vacancies, interstitials, or solutes), line defects (screw, edge, or mixed dis-
locations), surface defects (grain boundaries, twin boundaries, or stacking
faults), and volume defects (porosity, entrapped gases, and inclusions). The
dislocation interactions may give rise to hardening when additional stresses
must be applied to overcome the influence of defects that restrict dislocation
motion. This may result in rising stress–strain curves that are characteristic
of strain hardening behavior, Fig. 5.4(a).

As discussed earlier, the stress–strain curves may also remain level
[Fig. 5.4(b)], or decrease or increase continuously with increasing strain,
Fig. 5.4(c). The reasons for such behavior are generally complex, and not
fully understood at present. However, there is some limited evidence that
suggests that elastic–perfectly plastic behavior is associated with slip planar-
ity, i.e., slip on a particular crystallographic plane, while strain softening
tends to occur in cases where slip localizes on a particular microstructural
feature such as a precipitate. The onset of macroscopic yielding, therefore,
corresponds to the stress needed to shear the microstructural feature. Once
the initial resistance to shear is overcome, the material may offer decreasing
resistance to increasing displacement, giving rise ultimately to strain soft-
ening behavior, Fig. 5.4(c).

Since the moving dislocations interact with solute clouds, serrated
yielding phenomena may be observed in the stress–strain behavior [Fig
5.6). Different types of serrated yielding phenomena have been reported
due to the interactions of dislocations with internal defects such as solutes
and interstitials. The phenomenon is generally referred to as the Portevin–

FIGURE 5.5 Stress–strain behavior in an aluminum alloy. (After Courtney,
1990. Reprinted with permission from McGraw-Hill.)
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LeChatelier effect, in honor of the two Frenchmen who first reported it
(Portevin and LeChatelier, 1923). The serrations are caused by the pinning
and unpinning of groups of dislocations from solutes that diffuse towards it
as it moves through a lattice. The mechanisms is particularly effective at
particular parametric ranges of strain-rate and temperature (Cottrell, 1958).

Finally in this section, it is important to discuss the so-called anom-
alous yield phenomena that has been reported in some plain carbon steels
(Fig. 5.7). The stress–strain plots for such materials have been observed to
exhibit double yield points in some annealed conditions, as shown in Fig.
5.7. The upper yield point (UYP) corresponds to the unpinning of disloca-
tions from interstitial carbon clouds. Upon unpinning, the load drops to a
lower yield point (LYP). Lüder’s bands (shear bands inclined at � 458
degrees to the loading axis) are then observed to propagate across the

FIGURE 5.6 Types of serrated yielding phenomena: (a) Type A; (b) Type B; (c)
Type C; (d) Type S. (Types A–C After Brindley and Worthington, 1970; Type S
After Pink, 1994. Reprinted with permission from Scripta Met.)
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gauge sections of the tensile specimens, as the strain is increased further
(Fig. 5.7). Note that the stress remains relatively constant in the so-called
Lüder’s strain regime, although serrations may be observed with sufficiently
sensitive instrumentation. The strain at the end of this constant stress regime
is known as the Lüders strain. This corresponds to the point at which the
Lüder’s bands have spread completely across the gauge section of the speci-
men. Beyond this point, the stress generally increases with increasing due to
the multiple interactions between dislocations, as discussed earlier for con-
ventional metallic materials (Fig. 5.5).

5.2.3 Plasticity in Intermetallics

As discussed in Chap. 1, intermetallics are compounds between metals and
other metals. Due to their generally ordered structures, and partially cova-
lently or ionically bonded structures, intermetallics generally exhibit only
limited plasticity at room-temperature. Nevertheless, some ductility has
been reported for ordered gamma-based titanium aluminide intermetallics

FIGURE 5.7 Anomalous yielding in 1018 plain carbon steel. (After Courtney,
1990. Reprinted with permission from McGraw-Hill.)
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with duplex �2 þ � microstructures. These two phase intermetallics have
room temperature plastic elongations to failure of about 1–2% due to defor-
mation by slip and twinning (Kim and Dimiduk, 1991). Their limited room-
temperature ductility has been attributed to the soaking up of interstitial
oxygen by the �2 phase. This results in a reduction in interstitial oxygen
content in the gamma phase, and the increased dislocation mobility of dis-
locations in the latter which gives rise to the improved ductility in two-phase
gamma titanium aluminides (Vasudevan et al., 1989).

Niobium aluminide intermetallics with plastic elongations of 10–30%
have also been developed in recent years (Hou et al., 1994; Ye et. al., 1998).
The ductility in these B2 (ordered body-centered cubic structures) interme-
tallics has been attributed to the partial order in their structures. Similar
improvements in room-temperature (10–50%) ductility have been reported
in Ni3Al intermetallics that are alloyed with boron (Aoki and Izumi, 1979;
Liu et al., 1983), and Fe3Al intermetallics alloyed with boron (Liu and
Kumar, 1993).

The improvements in the room-temperature ductilities of the nickel
and iron aluminide intermetallics have been attributed to the cleaning up of
the grain boundaries by the boron additions. However, the reasons for the
improved ductility in ordered or partially ordered intermetallics are still not
fully understood, and are under investigation. Similarly, anomalous yield-
point phenomena (increasing yield stress with increasing temperature) and
the transition from brittle behavior at room temperature to ductile behavior
at elevated temperature are still under investigation.

5.2.4 Plasticity in Polymers

Plasticity in polymers is not controlled by dislocations, although disloca-
tions may also exist in polymeric structures. Instead, plastic deformation in
polymers occurs largely by chain sliding, rotation, and unkinking (Figs 1.7
and 1.8). Such chain sliding mechanisms do not occur so readily in three-
dimensional (thermoset) polymers (Fig. 1.8). However, chain sliding may
occur relatively easily in linear (thermoplastic) polymers when the sliding of
polymer chains is not hindered significantly by radical side groups or other
steric hindrances. The plastic deformation of polymers is also associated
with significant changes in entropy, which can alter the local driving force
for deformation.

Elasticity and plasticity [Fig. 5.8(a)] in rubbery polymers may result in
strain levels that are between 100 and 1000% at fracture. Such large strains
are associated with chain sliding, unkinking, and uncoiling mechanisms.
Furthermore, unloading does not result in a sudden load drop. Instead,
unloading follows a time-dependent path, as shown in Fig. 5.8(b).
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Elasticity and plasticity in rubbery polymers are, therefore, often time
dependent, since time is often required for the polymer chains to flow to
and from the deformed configurations. Cyclic deformation may result in
hysterisis loops since the strain generally lags the stress (Fig. 5.9), and
anomalous stress–strain behavior may also be associated with chain inter-
actions with distributed side groups which are often referred to as steric
hindrances.

Crystalline polymers (Fig. 1.9) may also exhibit interesting stress–
strain behavior. The minimum in the stress–strain curve is due to cold
drawing and the competition between the breakdown of the initial crys-
talline structure, and the reorganization into a highly oriented chain
structure.

5.3 ELASTIC–PLASTIC BEHAVIOR

A generic plot of stress versus strain is presented in Fig. 5.10. This shows a
transition from a linear ‘‘elastic’’ regime to a nonlinear ‘‘plastic regime.’’
The linear elastic regime persists up to the proportional limit, at which the
deviation from linear elastic behavior occurs. However, the onset of non-
linear stress–strain behavior is generally difficult to determine experimen-
tally. An engineering offset yield strength is, therefore, defined by drawing a
line parallel to the original linear elastic line, but offset by a given strain
(usually an engineering strain level of 0.002 or 0.2%).

FIGURE 5.8 Elastic–plastic deformation in rubbery polymers. (a) Rubber rand
deformed at room temperature. (After Argon and McClintock, 1990) (b)
Viscoelasticity in a rubbery polymer. (After Hertzberg, 1996. Reprinted with
permission from John Wiley.)
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The arbitrary offset strain level of 0.002 is recommended by the ASTM
E-8 code for tensile testing for the characterization of stresses required for
bulk yielding. However, it is important to remember that the offset strain
level is simply an arbitrary number selected by a group of experts with a
considerable amount of combined experience in the area of tensile testing.

Above the offset yield strength, A, the stress may continue to increase
with increasing applied strain. The slope of the stress–strain curve in the

FIGURE 5.9 Hysterisis loop in a cyclically deformed polymer.

FIGURE 5.10 Schematic of stress–strain behavior in the elastic and plastic
regimes.
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plastic regime depends largely on the underlying dislocation interactions.
The resulting shape changes in the gauge sections of tensile specimens are
illustrated in Fig. 5.11. Stretching in the vertical direction is accompanied by
Poisson contraction in the elastic regime. However, the contraction in the
horizontal direction is countered by hardening during the initial stages of
plastic deformation in which the gauge section deforms in a relatively uni-
form manner, Fig. 5.12(a). The rate of rate of hardening is, therefore,
greater than the rate of horizontal contraction, and the total volume of
deformed material remains constant, Fig. 5.12(a). This inequality persists
until the ultimate tensile strength, M, is reached in Fig. 5.11. At this stress
level, the rate of hardening is equal to the rate contraction of the gauge area,
as shown in Fig. 5.12(b).

Beyond the point M, in the stress–strain plot, geometrical instabilities
(internal microvoids and microcracks within the gauge section) dominate
the plastic response, and the rate of horizontal contraction is greater than
the rate of hardening, Fig. 5.12(c). The deformation is thus concentrated
within regions with the highest crack/microvoid density, and a phenomenon
known as ‘‘necking’’ [Figs 5.11 and 5.12(c)] occurs beyond the ultimate

FIGURE 5.11 Schematic illustration of gauge deformation in the elastic and
plastic regimes.
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tensile stress. This involves the gradual reduction in the cross-sectional area
in the regime of concentrated deformation. This reduction occurs because of
the rate of horizontal contraction is now greater than the rate of hardening,
Fig. 5.12(c). Necking may continue until the geometrical instabilities coa-
lesce. In any case, catastrophic failure occurs when a critical condition is
reached.

It is important to note here that the onset of necking may be delayed
by the application of hydrostatic stresses to the gauge section of a tensile
specimen. This was first shown by Bridgman (1948) who demonstrated that
the ductility of metals could be increased significantly with increasing hydro-
static stress. This is because the hydrostatic stresses tend to close up pores
and voids that lead ultimately to necking and fracture.

The geometrical instabilities are, therefore, artifacts of the test condi-
tions and specimen geometries that are used in tensile tests (Fig 5.13). Note
that the tensile specimen geometries (usually dog-bone shapes) are typically
designed to minimize stress concentrations in the region of transition from
the grip to the gauge sections. This is done to avoid fracture outside the

FIGURE 5.12 Hardening versus geometrical instability: (a) rate of hardening >
rate of geometrical instability formation; (b) rate of hardening ¼ rate of geo-
metrical instability formation (onset of necking); (c) rate of hardening < rate of
geometrical instability formation (necking down to failure) (After Courtney,
1990. Reprinted with permission from McGraw-Hill.)
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gauge section. Also, the engineering definitions of stress and strain may not
be applicable to situations in which the cross-sectional area changes signifi-
cantly during incremental plastic deformation to failure (Figs 5.11 and 5.12).

True stress and true strain levels must, therefore, be defined, especially
in the plastic regime. The true engineering stress, �T, is given by the ratio of
applied load, P, to the actual cross-sectional area, A. This gives

FIGURE 5.13 Types of tensile specimen geometries: (a) cylindrical cross--
sections, (b) dog-bone specimen (wedge grips); (c) dog-bone specimen (pin
loaded).
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�T ¼ True stress ¼ Applied load

Actual cross-sectional area
¼ P

A
ð5:1Þ

In contrast, the engineering stress, �E, is given simply by the ratio of applied
load, P, to the original cross-sectional area, A0. This gives

�E ¼ Engineering stress ¼ Applied load

Original cross-sectional area
¼ P

A0

ð5:2Þ
Similarly, the engineering strain levels are different from the true strain

levels which are known to increase in an incremental manner. The true
strain, "T, is obtained from the incremental theory of plasticity by separating
the total displacement into incremental portions. This gives

"T ¼
Xn
i¼1

d‘i
‘j

ð5:3Þ

where d‘i is the increment in specimen length that occurs during the ith
deformation stage, and n is the number of incremental deformation stages.
In the limit, Eq. (5.3) may be expressed in integral form, which gives

"T ¼
ð‘
‘0

d‘

‘
¼ ln

‘

‘0

� �
ð5:4Þ

where ‘ is the actual instantaneous (deformed) length, ‘0 is the initial
(undeformed) length, and ln denotes natural logarithms. The true strain
is, therefore, different from the engineering strain, "E, which is given simply
by the ratio of the change in gauge length, �‘ ¼ ‘� ‘0, to the original
(undeformed) length, ‘0:

"E ¼ �‘

‘0
¼ ‘� ‘0

‘0
ð5:5Þ

Furthermore, since the deformed volume remains constant during
plastic deformation, the initial volume of the gauge section before plastic
deformation must be equal to the final volume of the gauge section during
plastic deformation. If the initial (undeformed) gauge cross-sectional area is
A0 and the deformed cross-sectional area is A (during plastic deformation),
then the initial volume ðA0‘0Þ and the deformed volume (A‘) must be the
same. Hence, the area ratio, A0=A, must be equal to the length ratio, ‘=‘0.
The equations for engineering strain and true strain (Equations (5.4) and
(5.5)] may, therefore, be expressed as
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"E ¼ ‘

‘0
� ‘ ¼ A0

A
� ‘ ð5:6Þ

and

"T ¼ 1n
‘

‘0

� �
¼ 1n

A0

A

� �
¼ 1nð‘þ "EÞ ð5:7Þ

Similarly, the true stress, �T, may be expressed in terms of the engineering
stress since

�T ¼ P

A
¼ P

A0
� A0

A
¼ �E

A0

A
¼ �E

1

10
¼ �Eð1þ "EÞ ð5:8Þ

It is important to note here that all of the above definitions of true
stress and true strain are valid for stress levels below or equal to the ultimate
tensile strength (the maximum engineering stress) in the plot of engineering
stress versus engineering strain (Fig. 5.11). However, due to the effects of
geometrical instabilities (Fig. 5.12), the expressions involving the gauge
length terms should not be used in the regime beyond the ultimate tensile
strength. This is because the cross-sectional areas decrease by necking in
areas with the greatest concentrations of geometrical instabilities. Area
ratios should, therefore, be used in the determination of true stress and
true strain levels for deformation beyond the ultimate tensile strength.

A characteristic plot of true stress versus true strain is compared with a
typical engineering stress–strain plot in Fig. 5.14. The ‘‘true’’ stress–strain
plot obtained from length ratios is shown in solid lines, while the true stress–
strain plot obtained from area ratios is represented by the dashed lines in
Fig. 5.14. The two plots are coincident until the ultimate tensile stress is
reached. Note also that the true stress–strain plots are shifted to the top and
to the left of the original points on the engineering stress–strain plots (Fig.
5.14). Also, there is no indication of an ultimate tensile strength on the true
stress–strain plot. This is because the ultimate tensile strength is purely a test
artifact that is due to the presence of geometrical instabilities within a test
specimen.

As discussed earlier, the smooth parabolic stress–strain curves
observed in the plasticity regime are generally associated with the bulk/
irreversible movement of dislocations in metals and intermetallics. The plas-
tic stress–strain curves may also be associated with chain sliding and chain
uncoiling/unkinking processes in noncrystalline polymers. In any case, the
slope in the rising portion of the plastic stress–strain plots is a measure of
resistance to plastic deformation (Fig. 5.11). The material is said to undergo
strain hardening in this regime (Fig. 5.11).
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It is important to note here, however, that some materials do not
undergo any strain hardening. In cases where constant stress levels are
required to continue the plastic straining, the materials are described as
perfectly plastic materials, Fig. 5.4(b). In contrast, strain softening occurs
when the stress required for deformation decreases with increasing strain,
Fig. 5.4(c). In most materials, however, the portion of the stress strain curve
between the onset of bulk yielding (bulk yield stress) and the onset of
necking (the ultimate tensile stress) tends to exhibit the type of rising
stress–strain behavior shown in Fig. 5.4(a).

5.4 EMPIRICAL STRESS–STRAIN RELATIONSHIPS

It is currently impossible to develop ab initio methods for the prediction of
the stress–strain behavior of materials from detailed descriptions of the
underlying atomic and defect structures. However, some useful empirical
relationships have been developed for the characterization of the true
stress–strain behavior. The most popular empirical mathematical relation-
ship is usually attributed to Hollomon (1945), although it was first proposed
by Bülfinger (1735) about 200 years earlier. The so-called Hollomon equa-
tion is given by

� ¼ K ð"Þn ð5:9Þ

FIGURE 5.14 Comparison of true stress–strain behavior with engineering
stress–strain behavior.
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where � is the true stress, K is a proportionality constant that represents the
true stress at a true strain of 1.0, and n is the strain hardening/work hard-
ening exponent which is a measure of the resistance to plastic deformation.
In general, the strain hardening, n, is a number between 0 and 1. Also, n is
sensitive to thermomechanical processing and heat treatment, and it is gen-
erally higher in materials tested in the annealed or hot worked conditions.
Strain hardening exponents for selected materials are presented in Table 5.2.
Such data may be obtained readily from log–log plots of true stress versus
true strain. Taking logarithms of Eq. (5.9) gives

log � ¼ log k þ n log " ð5:10Þ
Equation (5.10) is the equation of a straight line, with a slope of n, and

a y axis intercept of log K . Hence, from Eq. (5.10), the material constants K
and n may be obtained from the intercept and slope, respectively, of a plot
of log � versus log ". However, it is important to note that the straight-line
relationship suggested by Eq. (5.10) is not always followed by every mate-
rial. Error analysis must, therefore, be performed to determine the applic-
ability of the Hollomon equation. Also, in several materials, the hardening
coefficient, n, is often found empirically to be approximately equal to the
true strain at the ultimate tensile strain. This is referred to as the Considere
criterion, and it may be derived simply by noting that P ¼ �A, and finding
the condition for which dP ¼ �dAþ Ad� ¼ 0 (see Sect. 5.5). In any case, it
is important to remember that the applicability of the Considere criterion
must be verified by appropriate error analysis.

In general, however, the strain hardening exponent of a metallic mate-
rial increases with increasing strength and decreasing dislocation mobility.
The stress–strain behavior of a material may also be significantly affected by

TABLE 5.2 Strain Hardening Exponents
of Selected Metallic Materials

Material
Strain hardening
coefficient, n

Stainless steel 0.45–0.55
Brass 0.35–0.4
Copper 0.3–0.35
Aluminum 0.15–0.25
Iron 0.05–0.15

After Hertzberg, 1996. Reprinted with
permission from John Wiley.

Copyright © 2003 Marcel Dekker, Inc.



the strain-rate, _"" ¼ d"=dt. The effects of strain rate can be modeled using the
following empirical power law equation:

� ¼ K 0ð _""Þm ð5:11Þ
where � is the true stress, _"" is the true strain-rate, K 0 is a proportionality
constant corresponding to the stress for a strain-rate of 1 s–1, and m is the
strain-rate sensitivity factor which can have values between 0 and 1. As for
the strain hardening exponent, the strain-rate sensitivity can be determined
from log–log plots of stress versus _"". Materials with strain-rate sensitivity
factors between 0 and 0.1 are not strain-rate sensitive, while materials with
strain-rate sensitivities between 0.5 and 1 are very strain-rate sensitive.

Most materials have strain-rate sensitivity values close to 0.2.
However, very strain-rate sensitive materials such as ‘‘silly putty’’ may
have strain-rate sensitivity values close to 1. Such materials are resistant
to fracture due to necking. They may, therefore, deform extensively by
necking down to a point. This is because the rate of hardening at high
strain-rates tends to prevent the onset of necking. In the most extreme
cases, this leads to superplastic behavior which is associated with extremely
high plastic strain levels between 100 and 1000%. High values of the strain-
rate sensitivity index, m, are, therefore, one indication of the potential for
superplasticity.

Finally in this section, it is of interest to note that the combined effects
of strain-rate sensitivity and strain hardening (on the true stress) can be
assessed using the following equation which is obtained by combining Eqs
(5.9) and (5.11). This gives

� ¼ K 00ð"Þnð _""Þm ð5:12Þ
where � is the true stress, and K 00 is a proportionality constant which is
related to the material constants, K and K 0. The variable, ", is the true
plastic strain, n is the strain hardening exponent, _"" is the strain-rate, and
m is the strain-rate sensitivity. As before, the proportionality constants may
be determined form appropriate log–log plots. Note that either strain, ", or
strain-rate, _"", may be varied independently or simultaneously in Eq. (5.12).
The applicability of Eq. (5.12) must also be established by comparing pre-
dicted true stresses with actual true stresses obtained for each material, i.e.,
error analysis must be performed to determine the applicability of Eq.
(5.12).

Tensile properties for some common engineering materials are pre-
sented in Table 5.3. Note that the data presented in this latter table are
very dependent on microstructure and composition. The effects of these
variables on yield strength will be discussed in detail in Chap. 7. For now,
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it is simply sufficient to note that tensile strength generally increases with
decreasing grain size.

5.5 CONSIDERE CRITERION

As stated in Sect. 5.4, the Considere criterion may be derived by considering
the conditions that must be satisfied at the ultimate tensile strength (Fig.
5.11). The ultimate tensile strength corresponds to the maximum value of
load, P, in the plot of load versus strain. Since P ¼ �A, the maximum value
of P may be obtained by equating the first derivative, dP, to zero. This gives

dP ¼ Ad� þ �dA ¼ 0 ð5:13Þ
Rearranging Eq. (5.13) and separating variables gives

�dA

A
¼ d�

�
ð5:14Þ

Since there is no change in volume, V ¼ A‘, associated with plastic defor-
mation, we may also assume that dV ¼ 0. Hence,

dV ¼ Ad‘þ ‘dA ¼ 0 ð5:15Þ
Rearranging Eq. (5.15) and separating variables, we obtain:

�dA

A
¼ d‘

‘
¼ d" ð5:16Þ

If we now assume that the Hollomon equation can be used to describe the
stress–strain response, i.e., � ¼ K"n, then d�, obtained by differentiating Eq.
(5.9), is given by

d� ¼ Kn"n�1d" ¼ nðK"nÞ"�1d" ¼ n�"�1d" ð5:17Þ
Also, substituting Eqs (5.14) and (5.16) into Eq. (5.17) yields:

d" ¼ n�"�1d"

�
ð5:18aÞ

or

n ¼ " ð5:18bÞ
Equation 5.18(b) is often referred to as the Considere criterion. It states

that the strain at the onset of necking is equal to the strain hardening expo-
nent. It is a very useful ‘‘rule-of-thumb.’’ It is important to remember that
the Considere criterion is only applicable when Hollomon’s equation can be
used to describe the stress–strain behavior of a material.
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TABLE 5.3 Tensile Properties of Selected Engineering Materials

Material Treatment

Yield
strength
(MPa)

Tensile
strength
(MPa)

Elongation
in 5-cm

gauge (%)

Reduction
in area
(1.28 cm
diameter)

(%)

Steel alloys
1015 As-rolled 315 420 39 61
1050 As-rolled 415 725 20 40
1080 As-rolled 585 965 12 17
1340 Q þ T (2058C) 1590 1810 11 35
1340 Q þ T (4258C) 1150 1260 14 51
1340 Q þ T (6508C) 620 800 22 66
4340 Q þ T (2058C) 1675 1875 10 38
4340 Q þ T (4258C) 1365 1470 10 44
4340 Q þ T (6508C) 855 965 19 60
301 Annealed plate 275 725 55 —
304 Annealed plate 240 565 60 —
310 Annealed plate 310 655 50 —
316 Annealed plate 250 565 55 —
403 Annealed bar 275 515 35 —
410 Annealed bar 275 515 35 —
431 Annealed bar 655 860 20 —

AFC-77 Variable 560–1605 835–2140 10–26 32–74
PH 15-7Mo Variable 380–1450 895–1515 2–35 —

Titanium alloys
Ti-5Al-2.5Sn Annealed 805 860 16 40
Ti-8Al-I Mo-1V Duplex annealed 950 1000 15 28
Ti-6Al-4V Annealed 925 995 14 30
Ti-13V-11Cr-3Al Solution + age 1205 1275 8 —

Magnesium alloys
AZ31B Annealed 103–125 220 9–12 —
AZ80A Extruded bar 185–195 290–295 4–9 —
ZK60A Artificially aged 215–260 295–315 4–6 —

Aluminum alloys
2219 -T31, -T351 250 360 17 —
2024 -T3 345 485 18 —
2024 -T6, -T651 395 475 10 —
2014 -T6, -T651 415 485 13 —
6061 -T4, -T451 145 240 23 —
7049 -T73 475 530 11 —
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5.6 YIELDING UNDER MULTIAXIAL LOADING

5.6.1 Introduction

So far, we have considered only yielding under uniaxial loading conditions.
However, in several engineering problems of practical interest, yielding may
occur under multiaxial loading conditions that include both axial and shear
components (Fig. 3.2). The yielding conditions under multiaxial loading will
clearly depend on the magnitudes and directions of the local axial and shear
components of stress. To avoid unnecessary dependence on the choice of co-
ordinate systems, stress invariants of the stress tensor are often defined for
the local stress states. These stress invariants are independent of the choice
of co-ordinate system, and they can be used to develop yielding criteria that
are independent of co-ordinate system. Multiaxial yielding criteria will be
presented in this section for monolithic materials. The reader should review

Material Treatment

Yield
strength
(MPa)

Tensile
strength
(MPa)

Elongation
in 5-cm

gauge (%)

Reduction
in area
(1.28 cm
diameter)

(%)

7075 -T6 505 570 11 —
7075 -T73 415 505 11 —
7178 -T6 540 605 11 —

Plastics
ACBS Medium impact — 46 6–14 —
Acetal Homopolymer — 69 25–75 —
Poly(tetra
fluorethylene) — — 14–48 100–450 —

Poly(vinylidene
fluoride) — — 35–48 100–300 —

Nylon 66 — — 59–83 60–300 —
Polycarbonate — — 55–69 130 —
Polyethylene Low density — 7–21 50–800 —
Polystyrene — — 41–54 1.5–2.4 —
Polysulfone — 69 — 50–1000 —

Sources: After Hertzberg, 1996. Reprinted with permission from John Wiley
aDatebook 1974, Metal Progress (mid-June 1974).

TABLE 5.3 Continued
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the section on the invariants of the stress tensor in Chap. 3 before proceed-
ing with the rest of this chapter.

5.6.2 Multiaxial Yield Criteria

Unlike uniaxial loading, yielding under multiaxial loading may be induced
by an almost infinite combination of stresses. It is, therefore, very difficult to
develop first principles models for the prediction of the combinations of
stresses that are required for the initiation of bulk plastic flow under multi-
axial loading conditions. Instead of first principles models, empirical flow
rules have been used for the prediction of the combined stresses required to
cause yielding under multiaxial loading conditions. It is important to
remember that these flow rules are empirical in nature. They are, therefore,
approximate solutions. However, extensive work has been done to verify
their general applicability to a wide range of engineering materials.

5.6.2.1 Tresca Yield Criterion

The simplest and most commonly used flow rule was first proposed by
Tresca (1869). It is, therefore, called the Tresca yield criterion. This criterion
states that yielding will occur under multiaxial loading when the shear stress
at a point is a maximum, i.e., when the shear stress is equal to half the
uniaxial yield stress, Fig. 5.15(a). The Tresca yield criterion is given by

�1 � �3
3

¼ �y
2

¼ 
y ð5:19Þ

where �1 and �3 are the maximum and minimum principal stress values, is
the uniaxial yield stress, and 
y is the shear yield stress. Note that the yield
locus for the Tresca yield criterion is a hexagon in two dimensions. It is a
useful exercise to try to construct this locus from Eq. (5.19). The trick is to
note that the signs of the principal stresses change from quadrant to
quadrant.

The Tresca yield criterion is often used in industry because of its
simplicity. However, it neglects the possible contributions from shear com-
ponents. Significant errors may, therefore, be associated with the Tresca
yield criterion, especially in cases where the terms in the deviatoric stress
tensor are significant.

5.6.2.2 Von Mises Yield Criterion

The Von Mises yield criterion is used in many cases where improved accu-
racy is required. It was proposed independently by Von Mises (1913),
although an equivalent expression was suggested in earlier work by Huber
(1904). Both Huber and Von Mises equate the yield stress to the distortional
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FIGURE 5.15 Loci of yield criteria: (a) two-dimensional Tresca yield criterion;
(b) two-dimensional Von Mises yield criterion; (c) three-dimensional Tresca
and Von Mises yield criteria.
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energy, U. This gives the following empirical condition for plastic flow
under multiaxial loading:

�y ¼ 1ffiffiffi
2

p ð�xx � �yy Þ2 þ ð�yy � �zzÞ2 þ ð�zz � �xx Þ2
n

þ 6ð
2xy þ 
2yz þ 
2zx
o1

2

ð5:20aÞ

or

�y ¼ 1

6
ð�1 � �2Þ2 þ ð�2 � �3Þ2 þ ð�3 � �1Þ2�

1
2

h
ð5:20bÞ

For consistency, we will refer to the above yield criterion as the Von Mises
yield criterion. We note here that the Von Mises yield criterion includes all
the six independent stress components (Fig. 3.2). Also, in the case of two-
dimensional stress states, the Von Mises yield locus is an ellipse, Fig. 5.15(b).
The Von Mises ellipse can be constructed from the hexagonal yield locus of
the Tresca yield locus. However, unlike the Tresca yield criterion discussed
earlier, the Von Mises yield criterion accounts for the effects of the shear
stress components on yielding under multiaxial loading conditions.
Furthermore, the three-dimensional yield locus for the Von Mises yield
criterion is a cylinder, as shown in Fig. 5.15(c). Similarly, the three-dimen-
sional yield locus for the Tresca yield criterion is a hexagonal prism, Fig.
5.15(c). Finally, it is important to recognize that yielding in several metallic
materials is generally observed to occur at stress levels that are intermediate
between those predicted by the Tresca and Von Mises yield criteria (Fig.
5.16).

5.7 INTRODUCTION TO J2 DEFORMATION THEORY

It is useful at this stage to identify some general relationships between stress
state and yield criteria under multiaxial loading. First, it is important to note
that yielding generally occurs when the combinations of J2 [see Eqs (3.38)
and (3.39)] and the yield stress in pure shear, 
y, reach a critical value.
Hence, yielding occurs when

f ðJ2; 
y Þ ¼ 0 ð5:21Þ
where J2 is the second invariant of the deviatoric stress tensor. In tensor
notation, J2 is given by

J2 ¼ 1

2
�0ij�

0
ij ð5:22Þ
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where �0ij is the deviatoric stress described in Chap. 3. As discussed, J2 and 
y
are related to both the Tresca and Von Mises yield criteria. The Tresca yield
criterion may thus be expressed as


y ¼ �1 � �3
2

ð5:23Þ

where �1and �3 are the maximum and minimum principal stresses, respec-
tively. The Von Mises yield criterion may also be expressed in terms of J2
and 
y, which give

J2 ¼ 
2y ð5:24Þ

However, it is important to remember that the value of 
y depends on
the yield criterion used. Appropriate values of 
y for the Tresca and Von
Mises yield criteria are given below:


y ¼

�y
2
(Tresca yield criterion)

�yffiffiffi
3

p (Von Mises yield criterion)

8>><
>>: ð5:25Þ

where �y is the yield stress under uniaxial loading conditions.

FIGURE 5.16 Comparison of experimental and empirical multiaxial yield cri-
teria. (After Courtney, 1990. Reprinted with permission from McGraw-Hill.)
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5.8 FLOW AND EVOLUTIONARY EQUATIONS
(CONSTITUTIVE EQUATIONS OF PLASTICITY)

Finally in this chapter, constitutive equations will be presented for the pre-
diction of plastic flow in monolithic materials. The most commonly used
equations were first proposed by Prandtl and Reuss. The so-called Prandtl–
Reuss equations are constitutive equations that describe the elastic–plastic
response of work hardening and non-work hardening material. For non-
work hardening materials, i.e., elastic–perfectly plastic materials, the incre-
mental plastic strains and stresses are given by

d"0ij ¼
3�0ij
2�y

d"p þ
d�0ij
2G

ð5:26Þ

d"ii ¼
ð1� 2	Þ

E
d�ii ð5:27Þ

�0ij�
0
ij ¼ 2
2y ¼ constant ð5:28Þ

For work hardening materials, the hydrostatic and deviatoric strain
increments are given by

d"ii ¼
ð1� 2	Þ

E
d�ii ð5:29Þ

d"0ij ¼
3�0ijd�
2�H

þ d�0ij
2G

ð5:30Þ

where � is the effective stress given by 3�ij�ij=2, H is the slope of the uni-
axial/effective stress versus plastic strain, "p, plot, E is Young’s modulus, G
is the shear modulus, 	 is Poisson’s ratio and d"p is the equivalent plastic
strain defined by 3d"pijd"

p
ij=2. Upon unloading, the above equations can be

reduced to an elastic equation given by

d"ii ¼
ð1� 2	Þ

E
d�ii ð5:31Þ

d"0ij ¼
d�ij
2G

ð5:32Þ

The above equations are useful in incremental simulations of plastic
flow processes such as metal forming. Such simulations often involve incre-
mental changes in plastic strains. Further details on the application of incre-
mental plasticity theories may be found in texts on plasticity theory by
Nadai (1950), Hill (1950), and Prager (1951). It is interesting to note that
both Nadai and Prager were students of Prandtl in Gottingen. Other stu-
dents of Prandtl include Von Karman, Professor and Mrs. Flügge, and Den
Hartog, who all went on to make important contributions in the field of
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mechanics. In recent years, the original ideas of Prandtl have also been
extended by Anand and Kalidindi (1994) to include microscopic details
on crystal plasticity models within a finite element framework.

5.9 SUMMARY

An introduction to plasticity is presented in this chapter. Following a brief
description of the physical basis of plasticity in ceramics, metals, interme-
tallics, and polymers, empirical plastic flow rules were introduced along with
the Considere criterion. A simple review of J2 deformation theory was also
presented along with the flow and evolutionary (constitutive) equations of
plasticity (Prandtl–Reuss equations).
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6

Introduction to Dislocation
Mechanics

6.1 INTRODUCTION

Early in the 20th century, a number of scientists tried to predict the theore-
tical strength of a crystalline solid by estimating the shear stress required to
move one plane of atoms over another (Fig. 6.1). They found that the
predicted theoretical strengths were much greater than the measured
strengths of crystalline solids. The large discrepancy (an order of magnitude
or two) between the theoretical and measured shear strengths puzzled many
scientists until Orowan, Polanyi, and Taylor (1934) independently published
their separate classical papers on dislocations (line defects).

The measured strengths were found to be lower than the predicted
theoretical levels because plasticity occurred primarily by the movement
of line defects called dislocations. The stress levels required to induce dis-
location motion were lower than those required to shear complete atomic
planes over each other (Fig. 6.1). Hence, the movement of dislocations
occurred prior to the shear of atomic planes that was postulated by earlier
workers such as Frenkel (1926).

Since 1934, numerous papers have been published on the role of dis-
locations in crystalline plasticity. A number of books (Hirth and Lothe,
1982; Hull and Bacon, 1984; Weertman and Weertman, 1992) have also
been written on the subject. This chapter will, therefore, not attempt to
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present a comprehensive overview of dislocations. Instead, the fundamental
ideas in dislocation mechanics required for a basic understanding of crystal-
line plasticity will be presented at an introductory level. The interested
reader is referred to papers and more advanced texts that are listed in the
bibliography at the end of the chapter.

6.2 THEORETICAL SHEAR STRENGTH OF A
CRYSTALLINE SOLID

Frenkel (1926) obtained a useful estimate of the theoretical shear strength of
a crystalline solid. He considered the shear stress required to cause shear of
one row of crystals over the other (Fig. 6.1). The shear strain, �, associated
with a small displacement, x, is given by

� ¼ x

a
ð6:1Þ

Hence, for small strains, the shear stress, 
, may be obtained from


 ¼ G� ¼ G
x

a
ð6:2Þ

where G is the shear modulus. Similarly, we may also use an approximate
sinusoidal potential function to obtain an expression for the variation in the
applied shear stress, 
, as a function of displacement, x (Fig. 6.2). This gives


 ¼ 
max sin
2�x

b

� �
ð6:3Þ

FIGURE 6.1 Shear of one row of atoms over another in a perfect crystal.
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where 
max is the maximum shear stress in the approximately sinusoidal 

versus x curve shown in Fig. 6.2; x is the displacement, and b is the intera-
tomic spacing (Fig. 6.1). For small displacements, sin(2�x=bÞ � 2�x=b.
Hence, 
 is given by


 ¼ 
max
2�x

b

� �
ð6:4Þ

We may now equate Eqs (6.4) and (6.2) to obtain an expression for 
max.
Noting that for cubic crystals b this gives


max ¼ G

2�
ð6:5Þ

Equation 6.5 provides an approximate measure of the theoretical shear
strength of a crystalline solid. More rigorous analysis using more represen-
tative interatomic potentials (Fig. 6.2) gives estimates of the theoretical
shear strength to be � G=30. However, most estimates of the theoretical
shear strength are about one or two orders of magnitude greater than the
measured values obtained from actual crystalline solids.

This discrepancy between the measured and theoretical strengths led
Orowan, Polanyi, and Taylor (1934) to recognize the role of line defects
(dislocations) in crystal plasticity. However, these authors were not the first
to propose the idea of dislocations. Dislocation structures were first pro-
posed by Volterra (1907), whose purely mathematical work was unknown to
Orowan, Polanyi, and Taylor in 1934 when they published their original
papers on dislocations.

FIGURE 6.2 Schematic illustration of shear stress variations. The dashed curve
corresponds to more precise shear stress – displacement function.
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Since the early ideas on dislocations, considerable experimental and
analytical work has been done to establish the role of dislocations in crystal
plasticity. Materials with low dislocation/defect content (whiskers and
fibers) have also been produced by special processing techniques. Such
materials have been shown to have strength levels that are closer to theore-
tical strength levels discussed earlier (Kelly, 1986). The concept of disloca-
tions has also been used to guide the development of stronger alloys since
much of what we perceive as strengthening is due largely to the restriction of
dislocation motion by defects in crystalline solids.

6.3 TYPES OF DISLOCATIONS

There are basically two types of dislocations. The first type of dislocation
that was proposed in 1934 is the edge dislocation. The other type of dis-
location is the screw dislocation, which was proposed later by Burgers
(1939). Both types of dislocations will be introduced in this section before
discussing the idea of mixed dislocations, i.e., dislocations with both edge
and screw components.

6.3.1 Edge Dislocations

The structure of an edge dislocation is illustrated schematically in Fig. 6.3.
This shows columns of atoms in a crystalline solid. Note the line of atoms at
which the half-filled column terminates. This line represents a discontinuity
in the otherwise perfect stacking of atoms. It is a line defect that is generally
referred to as an edge dislocation. The character of an edge dislocation may
also be described by drawing a so-called right-handed Burgers circuit
around the dislocation, as shown in Fig. 6.4(a). Note that S in Fig. 6.4
corresponds to the start of the Burgers circuit, while F corresponds to the
finish. The direction of the circuit in this case is also chosen to be right-
handed, although there is no general agreement on the sign convention in
the open literature. In any case, we may now proceed to draw the same
Burgers circuit in a perfect reference crystal, Fig. 6.4(b). Note that the finish
position, F, is different from the start position, S, due to the absence of the
edge dislocation in the perfect reference crystal.

We may, therefore, define a vector to connect the finish position, F, to
the start position, S, in Fig. 6.4(b). This vector is called the Burgers vector. It
is often denoted by the letter, b, and it corresponds to one atomic spacing
for a single edge dislocation. It is important to remember that we have used
a right-handed finish-to-start definition in the above discussion. However,
this is not always used in the open literature. For consistency, however, we
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will retain the current sign convention, i.e., the finish-to-start (F=S) right-
handed rule.

Finally in this section, it is important to note that we may define the
sense vector, s, of an edge dislocation in a direction along the dislocation
line (into the page). The sense of an edge dislocation, s, is therefore perpen-
dicular to the Burgers vector, b. Hence, we may describe an edge dislocation

FIGURE 6.3 Schematic of edge dislocation. (Taken from Hirthe and Lothe,
1982. Reprinted with permission from John Wiley.)

FIGURE 6.4 Finish to start (F=S) right-handed Burgers circuits: (a) around edge
dislocation; (b) in a perfect reference crystal. (Taken from Hirthe and Lothe,
1982. Reprinted with permission from John Wiley.)
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as a line defect with a sense vector, s, that is perpendicular to the Burgers
vector, b, i.e. b.s ¼ 0.

6.3.2 Screw Dislocations

The structure of a screw dislocation may be visualized by considering the
shear displacement of the upper half of a crystal over the lower half, as
shown in Fig. 6.5(a). If the atoms in the upper half of the crystal are denoted
as open circles, while those in the lower half are denoted as filled circles [Fig.
6.5(a)], then the relative displacements between the open and filled circles
may be used to describe the structure of a screw dislocation. The arrange-
ment of the atoms around the dislocation line AB follows a spiral path that
is somewhat similar to the path that one might follow along a spiral stair-
case. This is illustrated clearly in Fig. 6.5(b) for a right-handed screw dis-
location.

As before, we may also define a Burgers vector for a screw dislocation
using a finish-to-start right-handed screw rule. This is shown schematically
in Fig. 6.6. Note that the Burgers vector is now parallel to the sense vector,
s, along the dislocation line. This is in contrast with the edge dislocation for
which the Burgers vector is perpendicular to the sense vector. In any case,
we may now formally describe a right-handed screw dislocation as one with
b:s ¼ b. A left-handed screw dislocation is one with b:s ¼ �b.

6.3.3 Mixed Dislocations

In reality, most dislocations have both edge and screw components. It is,
therefore, necessary to introduce the idea of a mixed dislocation (one with
both edge and screw components). A typical mixed dislocation structure is
shown in Fig. 6.7(a). Note that this dislocation structure is completely screw
in character at A, and completely edge in character at B. The segments of
the dislocation line between A and B have both edge and screw components.
They are, therefore, mixed dislocation segments.

Other examples of mixed dislocation structures are presented in Figs
6.7(b) and 6.7(c). The screw components of the mixed dislocation segments,
bs, may be obtained from the following expression:

bs ¼ ðb:sÞs ð6:6Þ

Similarly, the edge components, be, of the mixed dislocation segments may
be obtained from

be ¼ s� ðb� sÞ ð6:7Þ

Copyright © 2003 Marcel Dekker, Inc.



FIGURE 6.5 Structure of a screw dislocation: (a) displacement of upper half of
crystal over lower half; (b) spiral path along the dislocation line. (From Read,
1953. Reprinted with permission from McGraw-Hill.)
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6.4 MOVEMENT OF DISLOCATIONS

As discussed earlier, crystal plasticity is caused largely by the movement of
dislocations. It is, therefore, important to develop a clear understanding of
how dislocations move through a crystal. However, dislocations also
encounter lattice friction as they move through a lattice. Estimates of the
lattice friction stress were first obtained by Peierls (1940) and Nabarro
(1947). Considering the motion of a dislocation in a lattice with lattice
parameters a and b (Fig. 6.1), they obtained a simple expression for the
lattice friction stress, 
. The so-called Peierls–Nabarro lattice friction stress
is given by


f ¼ G exp
�2�a

bð1� 	
� �

ð6:8aÞ

or


f ¼ G exp
�2�w

b

� �
ð6:8bÞ

where a is the vertical spacing between slip planes, b is the slip distance or
Burgers vector, G is the shear modulus, w is the dislocation width (Fig 6.8),

FIGURE 6.6 Right-handed Burgers circuits: (a) around screw dislocation; (b) in
perfect reference crystal. (From Hull and Bacon, 1984. Reprinted with permis-
sion from Pergamon Press.)
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and 	 is Poisson’s ratio. The lattice fraction stress is associated with the
energy or the stress that is needed to move the edge dislocation from posi-
tion A to position D (Fig. 6.9). Note that the dislocation line energy [Fig.
6.10(a)] and the applied shear stress [Fig. 6.10(b)] vary in a sinusoidal man-
ner. Also, the shear stress increases to a peak value corresponding to 
f [Fig.
6.10(b)], the friction stress. The latter may, therefore, be considered as the
lattice resistance that must be overcome to enable dislocation motion to
occur between A and D (Fig. 6.9). It is important to note that 
f is generally
much less than the theoretical shear strength of a perfect lattice, which is

FIGURE 6.7 Structure of a mixed dislocation: (a) quarter loop; (b) half loop; (c)
full loop.
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given by Eq. (6.5) for a cubic lattice. Slip is, therefore, more likely to occur
by the exchange of bonds, than the complete shear of atomic planes over
each other, as suggested by Fig. 6.1.

The reader should examine Eqs (6.8a) and (6.8b) carefully since the
dependence of the lattice friction stress, 
f , on lattice parameters a and b has
some important implications. It should be readily apparent that the friction
stress is minimized on planes with large vertical spacings, a, and small
horizontal spacings, b. Dislocation motion is, therefore, most likely to
occur on close-packed planes which generally have the largest values of a
and the smallest values of b. Dislocation motion is also most likely to occur
along close-packed directions with small values of b. Hence, close-packed
materials are more likely to be ductile, while less close-packed materials such
as ceramics are more likely to be brittle.

We are now prepared to tackle the problem of dislocation motion in
crystalline materials. First, we will consider the movement of edge disloca-
tions on close-packed planes in close-packed directions. Such movement is
generally described as conservative motion since the total number of atoms
on the slip plane is conserved, i.e., constant. However, we will also consider
the nonconservative motion of edge dislocations which is often described as

FIGURE 6.8 Schematic of (a) wide and (b) narrow dislocations. (From Cottrell,
1957. Reprinted with permission from Institute of Mechanical Engineering.)
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FIGURE 6.9 Schematic of atomic rearrangements associated with edge dislo-
cation motion: (a) atoms B and C equidistant from atom A along edge dis-
location line at start of deformation; (b) greater attraction of C towards A as
crystal is sheared; (c) subsequent motion of edge dislocation to the right; (d)
formation of step of Burgers vector when dislocation reaches the edge of the
crystal.
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dislocation climb.* Since dislocation climb involves the exchange of atoms
and vacancies outside the slip plane, the total number of atoms in the slip
plane is generally not conserved by dislocation climb mechanisms.
Following the discussion of edge dislocation motion by slip and climb, we
will then discuss the conventional movement of screw dislocations, and the
cross-slip of screw dislocations.

6.4.1 Movement of Edge Dislocations

The movement of edge dislocations is relatively easy to visualize. Let us start
by considering the movement of the positive edge dislocation shown sche-
matically in Fig. 6.9. Prior to the application of shear stress to the crystal,
the atom A at the center of the edge dislocation is equidistant from atoms B
and C, Fig. 6.9(a). It is, therefore, equally attracted to atoms B and C.
However, on the application of a small shear stress, 
, to the top and bottom
faces of the crystal, atom A is displaced slightly to the right. The slight
asymmetry develops in a greater attraction between A and C, compared
to that between A and B. If the applied shear stress is increased, the
increased attraction between atoms A and C may be sufficient to cause
the displacement of atom C and surrounding atoms to the left by one atomic
spacing, b, Fig. 6.9(b). The half column of atoms (positive edge dislocation),

FIGURE 6.10 Variation of (a) dislocation line energy and (b) stress with the
position of the dislocation core.
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therefore, appears to move to the right by a distance of one lattice spacing, b
[Fig. 6.9(b)].

If we continue to apply a sufficiently high shear stress to the crystal,
dislocation motion will continue [Fig. 6.9(c)] until the edge dislocation
reaches the edge of the crystal, Fig. 6.9(d). This result in slip steps with
step dimensions that are proportional to the total number of dislocations
that have moved across to the edge of the crystal. The slip sites may actually
be large enough to resolve under an optical or scanning electron microscope
when the number of dislocations that reach the boundary is relatively large.
However, in many cases, the slip steps may only be resolved by high mag-
nification scanning electron or transmission electron microscopy techniques.

In addition to the conservative motion of edge dislocations on close-
packed planes along close-packed directions, edge dislocation motion may
also occur by nonconservative dislocation climb mechanisms. These involve
the exchange of atoms and vacancies, shown schematically in Fig. 6.11. The
exchange of atoms and vacancies may be activated by stress and/or tem-
perature and is diffusion controlled. Hence, dislocation climb is most often
observed to occur at elevated temperature.

6.4.2 Movement of Screw Dislocations

The movement of screw dislocations is a little more difficult to visualize. Let
us start by considering the effects of an applied shear stress on the screw
dislocation shown in Fig. 6.12. The shear stress on the upper part of the
crystal displaces the atoms on one half of the crystal over the other, as
shown in Fig. 6.12. However, in this case, the Burgers vector is parallel to
the dislocation line. The direction of screw dislocation motion is perpendi-
cular to the direction of the applied shear stress (Fig. 6.12).

FIGURE 6.11 Climb by the exchange of atoms and vacancies.
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Unlike the edge dislocation, the screw dislocation can glide on a large
number of slip planes since the Burgers vector, b, and the sense vector, s, are
parallel. However, in most cases, screw dislocation motion will tend to occur
on close-packed planes in close-packed directions. Screw dislocations also
generally tend to have greater mobility than edge dislocations.

Nevertheless, unlike edge dislocations, screw dislocations cannot avoid
obstacles by nonconservative dislocation climb processes. Instead, screw
dislocations may avoid obstacles by cross-slip on to intersecting slip planes,
as shown in Fig. 6.13. Note that the Burgers vector is unaffected by cross-
slip process. The screw dislocation may also cross-slip back on to a parallel
slip plane, or the original slip plane, after avoiding an obstacle.

6.4.3 Movement of Mixed Dislocations

In reality, most dislocations in crystalline materials are mixed dislocations,
with both edge and screw components. Such dislocations will, therefore,
exhibit aspects of screw and edge dislocation characteristics, depending on
the proportions of screw and edge components. Mixed dislocations are
generally curved, as shown in Fig. 6.7. Also, the curved dislocation loops
may have pure edge, pure screw, and mixed dislocation segments.

It is a useful exercise to identify the above segments of the mixed
dislocation loops shown in Fig. 6.7. It is also important to note that dis-
location loops may be circular or elliptical, depending on the applied stress

FIGURE 6.12 Arrangement of atoms around a screw dislocation—open circles
above and closed circles below plane of diagram. (Taken from Hull and
Bacon, 1984. Reprinted with permission from Pergamon Press.)
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levels. Furthermore, dislocation loops tend to develop semielliptical shapes
in an attempt to minimize their strain energies. This will become apparent
later after the concept of the dislocation line/strain energy is introduced.

Finally, it is important to note that dislocations cannot terminate
inside a crystal. They must, therefore, either form loops or terminate at
other dislocations, grain boundaries, or free surfaces. This concept is illu-
strated in Fig. 6.14 using a schematic of the so-called Frank net. Note that
when three dislocations meet at a point (often called a dislocation node), the
algebraic sum of the Burgers vectors, b1, b2, and b3 (Fig. 6.14) is zero.
Hence,

X3
i¼1

b1 þ b2 þ b3 ¼ 0 ð6:9Þ

When the sense vectors of the dislocations are as shown in Fig. 6.14, then
Eq. (6.9) may be expressed as

b1 ¼ b2 þ b3 ð6:10Þ

FIGURE 6.13 Schematic illustration of the cross-slip of a screw dislocation in a
face-centered cubic structure. Note that since [ �1101] direction is common to
both the (111) and (1 �111Þ closed packed planes, the screw dislocation can glide
on either of these planes: (a,b) before cross-slip; (c) during cross-slip; (d)
double cross-slip. (Taken from Hull and Bacon, 1984. Reprinted with permis-
sion from Pergamon Press.)
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The above expressions are, therefore, analogous to Kirchoff’s equations for
current flow in electrical circuits.

6.5 EXPERIMENTAL OBSERVATIONS OF
DISLOCATIONS

A large number of experimental techniques have been used to confirm the
existence of dislocations. They include:

1. Etch-pit techniques
2. Dislocation decoration techniques
3. X-ray techniques
4. Transmission electron microscopy
5. Field ion microscopy

Other specialized techniques have also been used to reveal the existence of
dislocations. However, these will not be discussed in this section. The inter-
ested reader is referred to the text by Hull and Bacon (1984) that is listed in
the bibliography at the end of the chapter. This section will, therefore,
present only a brief summary of experimental techniques that have been
used to confirm the existence of dislocations.

FIGURE 6.14 The Frank net. (Taken from Cottrell, 1957. Reprinted with permis-
sion from Institute of Mechanical Engineering.)
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The most widely used tool for the characterization of dislocation sub-
structures is the transmission electron microscope (TEM). It was first used
by Hirsch (1956) to study dislocation substructures. Images in the TEM are
produced by the diffraction of electron beams that are transmitted through
thin films (� 1�2 �mÞ of the material that are prepared using special speci-
men preparation techniques. Images of dislocations are actually produced as
a result of the strain fields associated with the presence of dislocations. In
most cases, dislocations appear as dark lines such as those shown in Fig.
6.15(a). It is important also to note that the dark lines are actually horizon-
tal projections of dislocation structures that are inclined at an angle with
respect to the image plane, as shown in Fig. 6.15(b).

Dislocations have also been studied extensively using etch-pit techni-
ques. These rely on the high chemical reactivity of a dislocation due to its
strain energy. This gives rise to preferential surface etching in the presence of
certain chemical reagents. Etch-pit techniques have been used notably by
Gilman and Johnston (1957) to study dislocation motion LiF crystals (Fig.
6.16). Note that the etch pit with the flat bottom corresponds to the position
of the dislocation prior to motion to the right. The strain energy associated
with the presence of dislocations has also been used to promote precipita-
tion reactions around dislocations. However, such reactions are generally
limited to the observation of relatively low dislocation densities.

At higher dislocation densities, dislocations are more likely to interact
with other defects such as solutes/interstitials, other dislocations and pre-
cipitates (Fig. 6.17). These interactions are typically studied using the TEM.
Dislocation substructures have also been studied using special x-ray diffrac-
tion and field ion microscopy techniques. However, by far the most com-
monly used technique today for the study of dislocation substructures is the
TEM. The most modern TEMs may be used today to achieve remarkable
images that are close to atomic resolution. Recently developed two-gun
focused ion beam may also be used to extract TEM foils with minimal
damage to the material in the foils. These also offer some unique opportu-
nities to do combined microscopy and chemical analyses during TEM ana-
lyses.

6.6 STRESS FIELDS AROUND DISLOCATIONS

The stress fields around dislocations have been derived from basic elasti-
city theory. These fields are valid for the region outside the dislocation
core (which is a region close to the center of the dislocation where linear
elasticity theory breaks down). The radius of the dislocation core will be
denoted by R in subsequent discussion. Note that R is approximately
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equal to 5b, where b is the Burgers vector. Linear elasticity theory may be
used to estimate the stress fields around individual edge and screw disloca-
tions in regions where r > 5b. Detailed derivations of the elastic stress
fields around dislocations are beyond the scope of this book. However,
the interested reader may refer to Hirth and Lothe (1982) for the deriva-
tions. Stress fields around individual stationary edge and screw disloca-
tions are presented in this section.

FIGURE 6.15 Images of dislocations: (a) thin-film transmission microscopy
micrograph showing parallel rows of dislocations; (b) line diagram demon-
strating that thin-foil image is a line projection of a three-dimensional config-
uration of dislocations. (Taken from Hull and Bacon, 1984. Reprinted with
permission from Pergamon Press.)
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6.6.1 Stress Field Around a Screw Dislocation

The stress field around a single dislocation may be derived by considering
the shear displacements (in the z direction) around a right-handed screw
dislocation (Fig. 6.18). The displacement in the z direction, w, increases
with the angle, �, as shown in Fig. 6.18. This gives:

w ¼ b�

2�
¼ b

2�
tan�1 y

x

� �
ð6:11Þ

where b is the Burgers vector. The elastic strains and stresses (away from the
dislocation core, r > 5b) around the dislocation may be calculated using
elasticity theory. Noting that x ¼ r cos � and y ¼ r sin �, the elastic strains
around the screw dislocation are thus given by

�zx ¼ �xz ¼ � b

2�

y

ðx2 þ y2Þ ¼ � b

2�

sin �

r
ð6:12Þ

FIGURE 6.16 Etch pits in a lithium fluoride crystal after etching three times to
reveal the motion of dislocations. The dislocation at A has not moved between
each etching treatment since the etch pit still extends to a point. However,
dislocation B has moved from the left to the right. The current position of
dislocation corresponds to the sharp pit labeled B. Subsequent etching pro-
duces flat-bottomed pits at prior positions of dislocation B. (From Gilman and
Johnston, 1957. Reprinted with permission from John Wiley.)
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FIGURE 6.17 High-resolution transmission electron microscopy image of a
dislocation at the interface between a titanium carbide precipitate in a
niobium alloy (Courtesy of Dr. Seyed Allameh.)

FIGURE 6.18 Stress field around a screw dislocation. (From Hull and Bacon,
1984—reprinted with permission from Pergamon Press.)
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and

�zy ¼ �yz ¼
b

2�

x

ðx2 þ y2Þ ¼
b

2�

cos �

r

� �
ð6:13Þ

All the other strain terms are zero in the case of a pure screw dislocation.
Hence, "xx ¼ "yy ¼ "zz ¼ �xy ¼ 0. The stress field around a screw dislocation
is thus given by


zx ¼ 
xz ¼ �Gb

2�

y

ðx2 þ y2Þ ¼
�Gb

2�

sin �

r
ð6:14Þ

and


yz ¼ 
yz ¼
Gb

2�

x

ðx2 þ y2Þ ¼
Gb

2�

cos �

r
ð6:15Þ

Using the appropriate definitions of stress and strain and cylindrical
co-ordinates, we may show that


zr ¼ 
xz cos � þ 
yz sin � ð6:16aÞ
and


�z ¼ �
xz sin � þ 
yz cos � ð6:16bÞ
Substituting appropriate expressions for 
xz and 
yz from Eqs. (6.14), (6.15),
and (6.16) gives the only non-zero stress term as:


�z ¼
Gb

2�r
ð6:17Þ

As before, the expression for the shear strain ��z ¼ �z� ¼ b=ð2�rÞ.
It should be readily apparent from the above equations that the stres-

ses and strains around a screw dislocation approach infinity as r ! 0. Since
the stress levels in the dislocation core may not exceed the theoretical shear
strength of a solid ðG=2�Þ, we may estimate the size of the dislocation core
by introducing a cut-off at the point where 
�z � G=2�. This gives an esti-
mate of the size of the dislocation core to be on the order of R � 5b. Finally,
it is important to note here that the elastic stress fields surrounding a screw
dislocation generally decay as a function of 1=r.

6.6.2 Stress and Strain Fields Around an Edge
Dislocation

The elastic strain fields around single edge dislocations have also been
determined using linear elasticity theory. For regions outside the dislocation
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core, if we adopt the sign convention shown in Fig. 6.19, the strain compo-
nents are given by

"xx ¼ � b

2�ð1� 	Þ
y ð3x2 þ y2Þ
ðx2 þ y2Þ2 ð6:18Þ

"yy ¼ b

2�ð1� 	Þ
y ðx2 � y2Þ
ðx2 þ y2Þ2 ð6:19Þ

�xy ¼ b

2�ð1� 	Þ
x ðx2 � y2Þ
ðx2 þ y2Þ2 ð6:20Þ

FIGURE 6.19 Stress field around an edge dislocation. (From Read, 1953.
Reprinted with permission from McGraw-Hill.)
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Note that 
zx ¼ 
xz ¼ 
yz ¼ 
zy ¼ 0 for an edge dislocation. The elastic
stress field around a stationary edge dislocation is thus given by

�xx ¼ � Gb

2�ð1� 	Þ
y ð3x2 þ y2Þ
ðx2 þ y2Þ2 ð6:21Þ

�yy ¼ Gb

2�ð1� 	Þ
y ðx2 � y2Þ
ðx2 þ y2Þ2 ð6:22Þ


xy ¼ Gb

2�ð1� 	Þ
x ðx2 � y2Þ
ðx2 þ y2Þ2 ð6:23Þ

�zz ¼ 	ð�xx þ �yy Þ ¼ � Gb	

�ð1� 	Þ
y

x2 þ y2Þ ð6:24Þ

The above stress fields may also be expressed in cylindrical co-ordinates.
This gives

�rr ¼ ��� ¼ � Gb sin �

2�ð1� 	Þr ð6:25Þ


r� ¼
Gb cos �

2�ð1� 	Þr ð6:26Þ

�zz ¼ 	ð�rr þ ���Þ ¼ �Gb	 sin �

�ð1� 	Þr ð6:27Þ

Also, 
rz ¼ 
�z ¼ 0 for an edge dislocation. Once again, the elastic
stress fields exhibit a 1=r dependence. The self-stresses around an edge dis-
location also approach infinity as r ! 0. The elastic stress fields are, there-
fore, valid only for regions outside the dislocation core, i.e., r > 5b.

6.7 STRAIN ENERGIES

The stress and strain fields surrounding individual dislocations give rise to
internal strain energies that depend on the dislocation type. The magnitudes
of the internal strain energies are particularly important since dislocations
generally try to reduce their overall line energies by minimizing their lengths.
The elastic strain energy per unit length of a screw dislocation may be
estimated by considering the cylindrical domain around the screw disloca-
tion shown in Fig. 6.20. If we now unroll the cylindrical element of radius, r,
and thickness, dr, it is easy to see that the shear strain, �, must be given by
[Fig. 6.20]:

��z ¼
b

2�r
ð6:28Þ
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The increment in the strain energy per unit volume, dU 0
s, may be

determined by integrating the relationship between shear stress and shear
strain in the elastic regime. This gives

dU 0
s ¼

ð�
0


�zd��z ¼
ð�
0

G��z d��z ¼
G�2�z
2

ð6:29Þ

hence, dU 00
s, the increment in the strain energy in Fig. 6.20(a) is given by the

volume of the element multiplied by dU 0
s. This gives

dU 00
s ¼ ð2�rl drÞ Gb2

8�2r2

 !
¼ Gb2l

4�

dr

r
ð6:30Þ

Since the core energy, Ucore, is generally considered to be a small
fraction of the overall energy, Utot ¼ Ucore þUs, the core energy, Ucore,
may be neglected. Hence, neglecting the core energy, we may integrate
Eq. (6.30) between r ¼ r0 and r ¼ R to find an expression for the elastic
strain energy per unit length, Us. This is given by

Us ¼
U 0

s

I
¼ Gb2

4�
ln

R

r

� �
ð6:31Þ

FIGURE 6.20 Strain energy around a screw dislocation.
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For single crystals, R is the crystal radius. However, it is much more
difficult to determine R for polycrystals that contain several dislocations.
Nevertheless, the coefficient of Gb2 in Eq. (6.31) may be approximated by
unity for order-of-magnitude comparisons. This gives the strain energy per
unit length of screw dislocations as

Us � Gb2 ð6:32Þ
Similar calculations of the elastic strain energy per unit length of an

edge dislocation may also be carried out. However, the calculations are
more complex since edge dislocations have more complex stress and strain
fields associated with them. Using similar assumptions to those used in the
screw dislocation derivation above, we may show that the strain energy per
unit length of an edge dislocation, Ue, is given by

Ue � Gb2

1� 	 ð6:33Þ

where 	 is Poisson’s ratio, and the other terms have their usual mean-
ing. Since 	 is generally close to 0.3 in most elastic solids, comparison of Eqs
(6.32) and (6.33) shows that edge dislocations have higher strain energy per
unit length than screw dislocations. Mixed dislocations (consisting of edge
and screw components) will, therefore, try to minimize the lengths of their
edge components, while maximizing the lengths of their screw components
which have lower energies per unit length. By so doing, they can minimize
their overall line energies. For this reason, a circular dislocation loop would
tend to evolve into an elliptical shape that maximizes the length of the screw
segments. Similarly, an initially straight edge dislocation may become
curved in an effort to minimize the overall line energy per unit length.

6.8 FORCES ON DISLOCATIONS

When a crystal is subjected to external stresses, the resulting motion of
dislocations may be considered to arise from the effects of ‘‘virtual’’ internal
forces that act in directions that are perpendicular to segments on the dis-
location line. Let us start by considering the motion of the right-handed
screw dislocation in the crystal shown in Fig. 6.21. The external force
applied to the surface of the crystal is given by the product of stress, 
xz,
multiplied by surface area, L dx, where dx is the distance the dislocation
moves and L is the dislocation length. This causes a Burgers vector displa-
cement, b, of the upper half of the crystal relative to the lower half. Hence,
the external work done, W , by the applied stress is given by

W ¼ 
xzL�x ð6:34Þ
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If the magnitude of the ‘‘virtual’’ force per unit length is f , then the internal
work done in moving the dislocation of length, L, through a distance �x is
fL�x. Hence, equating the internal and external work gives

fL�x ¼ 
xzLdxb ð6:35aÞ
or

f ¼ 
xzb ð6:35bÞ
The force per unit length, f , is, therefore, the product of the applied shear
stress and the Burgers vector, b. It is also important to note that this force
acts along the slip plane in a direction that is perpendicular to the disloca-
tion line.

Similarly, we may consider the motion of a positive edge dislocation in
a crystal subjected to an external shear stress (Fig. 6.22). As before, if we
assume that the dislocation extends across the width of the crystal, then the
external force on the surface of the crystal is given by the product of the
surface shear stress, 
xy, and the area, Ldy. The external work,W , is now the
product of this force and the Burgers vector, b. This gives

FIGURE 6.21 Effect of applied shear stress on the glide of a screw dislocation.
(Taken from Read-Hill and Abbaschian, 1994. Reprinted with permission from
PWS Publishing Co.)
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W ¼ 
xyLdyb ð6:36Þ
Furthermore, the internal ‘‘virtual’’ force is given by fL, and the internal
work done by this force is fL�y. Equating the internal and external work
now gives

f L�y ¼ 
xyL�yb ð6:37aÞ
or

f ¼ 
xyb ð6:37bÞ
The fictitious force per unit length f on an edge dislocation is, there-

fore, the product of the applied shear stress, 
xy, and the Burgers vector, b.
As in the case of the screw dislocation, the force acts along the slip plane in a
direction that is perpendicular to the dislocation line.

Furthermore, when a normal stress is applied to a crystal, the resulting
virtual force on an edge dislocation may cause it to move up or down,
depending on the sign of the applied stress (tensile or compressive). This
is shown schematically in Fig. 6.23 for an applied tensile stress. Once again,

FIGURE 6.22 Effect of applied shear stress on the glide of an edge dislocation.
(Taken from Read-Hill and Abbaschian, 1994. Reprinted with permission from
PWS Publishing Co.)
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the external force is the product of the stress, �xx, and the area, L�z. Hence,
the external work, W , required to move the dislocation down through a
distance of one Burgers vector is given by

W ¼ ��xxL�zb ð6:38Þ
The corresponding internal work due to the virtual force arising from the
imposed external stress is now fL�z. Hence, equating the internal and
external work gives

fL�z ¼ ��xxL�zb ð6:39aÞ
or

f ¼ ��xx b ð6:39bÞ
The climb force per unit length, f , is, therefore, a product of the applied
tensile stress, �xx, and the Burgers vector, b. Note that a tensile stress will
cause the dislocation to move down, while an applied compressive stress will
cause the dislocation to move up. Furthermore, unlike applied shear stres-
ses, which induce dislocation motion along the slip plane, applied normal

FIGURE 6.23 Effect of applied tensile stress on the climb of an edge disloca-
tion. (Taken from Read-Hill and Abbaschian, 1994. Reprinted with permission
from PWS Publishing Co.)
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(tensile or compressive) stresses induce vertical dislocation motion out of the
slip plane. However, in both cases (applied normal or shear stresses), the
motion of the dislocation is always in a direction that is perpendicular to the
dislocation line (Figs 6.21–6.23).

Since most dislocations are mixed dislocations (that contain both
screw and edge components), it is of interest to examine how mixed disloca-
tions move. However, before doing this, it is necessary to recall our defini-
tions of the sense and Burgers vectors. The sense vector, s, defines the unit
vector that is tangential to the dislocation line. It has components, sx, sy and
sz. Similarly, the Burgers vector, b, has components bx, by and bz. If we
denote a general state of stress, F , by components Fx, Fy and Fz, then the
virtual force per unit length of dislocation, f , is given by the vector cross
product of F and s:

f ¼ F � s ¼
i j k
Fx Fy Fz
sx sy sz

������
������ ð6:40Þ

where the components of FðFx;Fy;Fz) are obtained from

Fx ¼ bx �xx þ by 
xy þ bz 
xz

Fy ¼ bx 
yx þ by �yy þ bz 
yz ð6:41Þ
Fz ¼ bx 
zx þ by 
zy þ bz �zz

The relationship between the force, Burgers vector, stress, and the sense
vector may now be expressed as

f ¼ ðb � �Þ � s ð6:42Þ
This is the so-called Peach–Kohler equation. It is an extremely useful expres-
sion for calculating the force on a dislocation. Furthermore, since the ficti-
tious forces on the edge and screw dislocation segments are perpendicular,
then the virtual force on a mixed dislocation segment must also be perpen-
dicular to the dislocation segment.

6.9 FORCES BETWEEN DISLOCATIONS

The total energy of two dislocations, 1 and 2, Utot, may be obtained from
the sum of the self-energies of dislocations 1 and 2, U1 and U2, and an
interaction term, Uint, due to the interactions between the stress fields of
dislocations 1 and 2. This gives

Utot ¼ U1 þU2 þUint ð6:43Þ
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The forces between the two dislocations are obtained from the derivatives of
Uint with respect to the appropriate axes. The interaction energy is deter-
mined from the work done in displacing the faces of the cut that creates
dislocation 2 in the presence of the stress field due to dislocation 1. This may
be done by cutting in a direction parallel to the x or y axes. The resulting
two alternative expressions for Uint are

Uint ¼
ð1
x

ðbx
xy þ by�yy þ bz�zy Þdx ð6:44aÞ

or

Uint ¼
ð1
y

ðbx�xx þ by
yx þ bz
zx Þdy ð6:44bÞ

The components of force, Fx and Fy, on dislocation 2 (Fig. 6.24) are
obtained from the first derivatives of the interaction energy, Uint, with
respect to the appropriate axes. These are given by

Fx ¼ � @Uint

@x
ð6:45aÞ

Fy ¼ � @Uint

@y
ð6:45bÞ

For two parallel edge dislocations (Fig. 6.24) with parallel Burgers vectors,
b ¼ bx; by ¼ bz ¼ 0, the forces Fx and Fy on dislocation 2 (Fig. 6.24) are
given by

Fx ¼ 
xyb ð6:46Þ
and

Fy ¼ ��xxb ð6:47Þ
Note that the expressions for the force between two edge dislocations are
identical to those obtained earlier for forces due to an applied shear stress on
a crystal. Furthermore, the expressions for �xx and 
xy are the self-stresses
acting at (x; y). Also, �xx and 
xy are given by the expressions for the self-
stresses in Eqs (6.21) and (6.23). Note that the signs of the forces are
reversed if the sign of either dislocation 1 or 2 is reversed. Also, equal
and opposite forces (from those at 2) act on dislocation 1.

The force Fx is particularly important since it determines the horizon-
tal separation between the two dislocations in Fig. 6.24. Plots of Fx versus
separation are presented in Fig. 6.25. The solid lines correspond to forces
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between edge dislocations of the same kind, while the dashed line corre-
sponds to edge dislocations of opposite sign. Note that the force is zero at
x ¼ y. Hence, stable dislocation configurations (tilt boundaries) tend to
occur when like edge dislocations lie above each other, Fig. 6.26(a). Also,
edge dislocations of opposite sign tend to glide past each other and form
edge dislocation dipoles, as shown in Fig. 6.26(b).

The component of force, Fy, does not promote conservative disloca-
tion glide on the slip plane. Instead, it acts to promote nonconservative
dislocation climb out of the slip plane. This occurs by the exchange of
atoms and vacancies, as shown schematically in Fig. 6.11. Dislocation
climb is, therefore, both thermally and stress assisted since it involves
atom/vacancy exchanges. In any case, when the two edge dislocations are
of opposite sign, dislocation climb occurs in the opposite direction. This
results ultimately in the annihilation of the two edge dislocations.

Let us now consider the force between two screw dislocations, with
dislocation 1 lying on the z axis, and dislocation 2 on a parallel axis. In this
case, the components of force are given by

Fr ¼ 
�z b ð6:48Þ

and

F� ¼ 
zr b ð6:49Þ

where 
zr and 
�z are given by Eqs (6.16a) and (6.16b), respectively.
Substituting Eqs (6.14)–(6.16) into Eqs (6.48) and (6.49), it is easy to
show that the force components Fr and F� are given by

FIGURE 6.24 Schematic of interaction forces between two edges. (From
Cottrell, 1953.)
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Fr ¼
Gb2

2�r
ð6:50Þ

and

F� ¼ 0 ð6:51Þ
The forces between two parallel screw dislocations are, therefore, much
simpler than those between two edge dislocations due to the radial symme-
try of the dislocation field around a screw dislocation. As before, the signs of

FIGURE 6.26 Stable positions for two dislocations: (a) same sign; (b) opposite
sign. (Taken from Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.)

FIGURE 6.25 Forces between parallel edge dislocations. The solid curve cor-
responds to dislocations of the same sign. Note that the attractive force that
occurs for x < y causes sub-boundaries to form. (From Cottrell, 1957.
Reprinted with permission from Institute of Mechanical Engineering.)
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the forces depend on whether the dislocations are parallel or antiparallel.
Finally in this section, it is important to note that there are no forces
between parallel edge and screw dislocations.

6.10 FORCES BETWEEN DISLOCATIONS AND FREE
SURFACES

Since a compliant free surface offers no stress in opposition to the displace-
ments of an approaching dislocation, the strain energy of a crystal will
decrease as a dislocation approaches a free surface. This tends to pull the
dislocation towards the free surface to form a step of one interatomic dis-
tance. The reduction in the strain energy of the crystal may also be expressed
in terms of a ‘‘force’’ that pulls the dislocation out of a crystal. This has been
shown by Koehler (1941) and Head (1953) to correspond to a force that
would be exerted by an image dislocation of opposite sign on the opposite
side of the surface (Fig. 6.27).

If the surface contains a thin layer, e.g., a surface film, that prevents
the dislocation from being pulled out, some limited surface hardening may
occur due to pile up of dislocations against the surface layer. Image forces
are often used to model the effects of grain boundaries on dislocations in a
crystal. However, it is important to recognize that the boundary conditions
for free surfaces are much simpler, and significantly different from those for
grain boundaries.

For a screw dislocation approaching a surface, the components of
stress are (Fig. 6.28a):


zx ¼ �Gb

2�

y

ðx � dÞ2 þ y2
� ��Gb

2�

y

ðx þ dÞ2 þ y2
� � ð6:52Þ

and


zy ¼ Gb

2�

ðx � dÞ
ðx � dÞ2 þ y2
� ��Gb

2�

y

ðx þ dÞ2 þ y2
� � ð6:53Þ

The force, Fx, on the screw dislocation at x ¼ d, y ¼ 0 is thus given by

Fx ¼ 
zyb ¼ �Gb2

4�d
ð6:54Þ

Note that this force diminishes with increasing distance from the free sur-
face. Similarly, for an edge dislocation near a surface (Fig. 6.28b), we may
superpose the stress fields of the dislocation at x ¼ d on those of the image
dislocation. The �xx terms cancel out, but the 
xy terms do not. The resulting
stress field is given by
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xy ¼
Dðx � dÞ ðx � dÞ2 � y2

h i
ðx � dÞ2 þ y2
� �2 �

Dðx þ dÞ ðx þ dÞ2 � y2
h i

ðx þ dÞ2 þ y2
� �

�
2Dd ðx � dÞðx þ dÞ3 � 6x ðx þ dÞ þ y2 þ y4

h i
ðx þ dÞ2 þ y2Þ3� �

ð6:55Þ

where D ¼ Gb=½2�ð1� 	Þ]. The first term in the above equation corresponds
to the self-field of dislocation 1 in the absence of the second dislocation. The

FIGURE 6.28 Image dislocations at a distance d from the surface: (a) screw
dislocation approaching a surface; (b) edge dislocation approaching a sur-
face. (Taken from Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.

FIGURE 6.27 Image dislocation tending to pull a dislocation near a surface out
of a crystal by glide. (Taken from Argon and McClintock, 1966: Addison
Wesley.)
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second term is the interaction term, and the third term is required to keep

xy ¼ 0 at the free surface. The force Fx on the dislocation at x ¼ d, y ¼ 0 is
now given by

Fx ¼ b 
xy ¼ �Gb2

4�ð1� 	Þd ð6:56Þ

Once again, the image force decreases with increasing distance from the free
surface. However, edge dislocations that are sufficiently close to the surface
will be attracted to the surface, and some may be removed from the surface
by such image forces.

6.11 SUMMARY

This chapter has presented an introduction to dislocation mechanics.
Following a brief derivation of the theoretical shear strength of a solid,
the discrepancy between the measured and theoretical strengths was attrib-
uted to the presence of dislocations. The different types of dislocations
(screw, edge, and mixed) were then introduced before describing the atomic
rearrangements associated with dislocation motion and lattice friction. The
stress fields around individual dislocations were also presented, along with
expressions for dislocation line energies, forces per unit length on disloca-
tions, and forces between dislocations. The chapter concluded with a brief
description of image forces between dislocations and free surfaces. The dis-
location mechanics topics covered in this chapter should provide the foun-
dation for the development of a basic understanding of the plastic
deformation of metals in Chap. 7.
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7

Dislocations and Plastic Deformation

7.1 INTRODUCTION

Let us begin this chapter by performing the following thought experiment.
Imagine picking up a piece of copper tubing that can be bent easily, at least
the first time you try to bend it. Now think about what really happens when
you bend the piece of copper a few times. You will probably remember from
past experience that it becomes progressively harder to bend the piece of
copper tubing after each bend. However, you have probably never asked
yourself why.

Upon some reflection, you will probably come to the conclusion that
the response of the copper must be associated with internal changes that
occur in the metal during bending. In fact, the strength of the copper, and
the progressive hardening of the copper, are associated with the movement
of dislocations, and their interactions with defects in the crystalline copper
lattice. This is hard to imagine. However, it is the basis for crystalline
plasticity in most metallic materials and their alloys.

This chapter presents an overview of how dislocation motion and
dislocation interactions contribute to plastic deformation in crystalline
materials. We begin with a qualitative description of how individual dis-
locations move, interact, and multiply. The contributions of individual
dislocations to bulk plastic strain are then considered within a simple con-
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tinuum framework. This is followed by an introduction to the crystallogra-
phy of slip in hexagonal and cubic materials. The role that dislocations play
in the deformation of single crystals and polycrystals is then explained.

7.2 DISLOCATION MOTION IN CRYSTALS

As discussed in Chap. 6, dislocations tend to glide on close-packed planes
along close-packed directions. This is due to the relatively low lattice friction
stresses in these directions, Eq. (6.8a) or (6.8b). Furthermore, the motion of
dislocations along a glide plane is commonly referred to as conservative
motion. This is because the total number of atoms across the glide plane
remains constant (conserved) in spite of the atomic interactions associated
with dislocation glide (Fig. 6.9). In contrast to conservative dislocation
motion by glide, nonconservative dislocation motion may also occur by
climb mechanisms (Fig. 6.11). These often involve the exchange of atoms
with vacancies. Since the atom/vacancy exchanges may be assisted by both
stress and temperature, dislocation climb is more likely to occur during
loading at elevated temperature.

So far, our discussion of dislocation motion has focused mostly on
straight dislocations. Furthermore, it is presumed that the dislocations lie in
the positions of lowest energy within the lattice, i.e., energy valleys/troughs
(Fig. 6.10). However, in many cases, kinked dislocations are observed (Fig.
7.1). These have inclined straight or curved line segments that all lie on the
same glide plane (Fig. 7.1). The shape of the kinked dislocation segment is
dependent on the magnitude of the energy difference between the energy
peaks and energy valleys in the crystalline lattice. In cases where the energy
difference is large, dislocations can minimize their overall line energies by
minimizing their line lengths in the higher energy peak regime. This gives
rise to sharp kinks (A in Fig. 7.1) that enable dislocations to minimize their
line lengths in the high-energy regions. It also maximizes the dislocation line
lengths in the low-energy valley regions.

In contrast, when the energy difference (between the peaks and the
valleys) is small, a diffuse kink is formed (C in Fig. 7.1). The diffuse kink has
significant fractions of its length in the low-energy valleys and high-energy
peak regions. In this way, a diffuse kink can also minimize the overall line
energy of the dislocation.

The motion of kinked dislocations is somewhat complex, and will only
be discussed briefly in this section. In general, the higher energy regions
along the kink tend to move faster than those along the low-energy valleys
which have to overcome a larger energy barrier. Once the barriers are over-
come, kink nucleation and propagation mechanisms may be likened to the
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FIGURE 7.1 Schematic of kinked dislocation configurations between peaks
and valleys in a crystalline lattice. Note that sharp kink is formed when energy
difference is large, diffuse kink is formed when energy difference is small (B),
and most kinks are between the two extremes. (From Hull and Bacon, 1984.
Reprinted with permission from Pergamon Press.)
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snapping motion of a whip. As in the case of a snapped whip, this may give
rise to faster kink propagation than that of a straight dislocation. The over-
all mobility of a kink will also depend on the energy difference between the
peaks and the valleys, and the orientation of the dislocation with respect to
the lattice.

Before concluding this section, it is important to note here that there is
a difference between a sharp kink [A in Fig. 7.1 and Figs 7.2(a) and 7.2(b)]
and a jog, Figs 7.2(a) and 7.2(b). A kink has all its segments on the same
plane as the glide plane (Fig. 7.1). In contrast, a jog is produced by disloca-
tion motion out of the glide plane as the rest of the dislocation line. Kinks
and jogs may exist in edge and screw dislocations, Figs 7.2(a)–7.2(d).
However, kinked dislocations tend to move in a direction that is perpendi-
cular to the dislocation line, from one valley position to the other.
Furthermore, kinks may also move faster than straight dislocation seg-
ments, while jogged dislocation segments are generally not faster than the
rest of the dislocation line. In fact, they may be less mobile than the rest of
the dislocation line, depending on the directions of their Burgers vectors
relative to those of the unjogged segments.

FIGURE 7.2 (a), (b) Kinks in edge and screw dislocations; (c), (d) jogs in edge
and screw dislocations. The slip planes are shaded. (From Hull and Bacon,
1984. Reprinted with permission from Pergamon Press.)
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7.3 DISLOCATION VELOCITY

When the shear stress that is applied to a crystal exceeds the lattice friction
stress, dislocations move at a velocity that is dependent on the magnitude of
the applied shear stress. This has been demonstrated for LiF crystals by
Johnston and Gilman (1959). By measuring the displacement of etch pits
in crystals with low dislocation densities, they were able to show that the
dislocation velocity is proportional to the applied shear stress. Their results
are presented in Fig. 7.3 for both screw and edge dislocations.

Note that, at the same stress level, edge dislocations move at faster
speeds (up to 50 times faster) than screw dislocations. Also, the velocities of
dislocations extend over 12 orders of magnitude on the log–log plot shown

FIGURE 7.3 Dependence of dislocation velocity on applied shear stress. (From
Johnston and Gilman, 1959. Reprinted with permission from J. Appl. Phys.)
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in Fig. 7.3. However, for uniform dislocation motion, the limiting velocity
for both screw and edge dislocations corresponds to the velocity of trans-
verse shear waves. Also, damping forces increasingly oppose the motion of
dislocations at velocities above 103 cm/s.

Dislocation velocities in a wide range of crystals have been shown to
be strongly dependent on the magnitude of the applied shear stress (Fig.
7.4), although the detailed shapes of the dislocation velocity versus stress
curves may vary significantly, as shown in Fig. 7.4. For the straight sections
of the dislocation–velocity curves, it is possible to fit the measured velocity
data to power-law equations of the form:

v ¼ Að
Þm ð7:1Þ

where v is the dislocation velocity, 
 is the applied shear stress, A is a
material constant, and m is a constant that increases with decreasing tem-
perature. An increase in dislocation velocity with decreasing temperature
has also been demonstrated by Stein and Low (1960) in experiments on Fe–
3.25Si crystals (Fig. 7.5). This increase is associated with the reduced damp-
ing forces due to the reduced scattering (phonons) of less frequent lattice
vibrations at lower temperatures.

FIGURE 7.4 Dependence of dislocation velocity on applied shear stress. The
data are for 208C except for Ge (4508C) and Si (8508C). (From Haasen, 1988.
Reprinted with permission from Cambridge University Press.)
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7.4 DISLOCATION INTERACTIONS

The possible interactions between screw and edge dislocations will be dis-
cussed in this section. Consider the edge dislocations (Burgers vectors per-
pendicular to the dislocation lines) AB and XY with perpendicular Burgers
vectors, b1 and b2, shown in Fig 7.6. The moving dislocation XY [Fig. 7.6(a)]
glides on a slip plane that is a stationary dislocation AB. During the inter-
section, a jog PP0 corresponding to one lattice spacing is produced as dis-
location XY cuts dislocation AB, Fig. 7.6(b). Since the jog has a Burgers
vector that is perpendicular to PP0, it is an edge jog. Also, since the Burgers
vector of PP0 is the same as that of the original dislocation, AB, the jog will
continue to glide along with the rest of the dislocation, if there is a large
enough component of stress to drive it along the slip plane, which is per-
pendicular to that of line segments AP or P0 B, Fig. 7.6(b).

Let us now consider the interactions between two edge dislocations
(XY and AB) with parallel Burgers vectors, Fig. 7.7(a). In this case, disloca-

FIGURE 7.5 Dependence of dislocation velocity on temperature and applied
shear stress in Fe–3.25Si Crystals. (From Stein and Low, 1960. Reprinted with
permission from J. Appl. Phys.)
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tion XY intersects dislocation AB, and produces two screw jogs PP0 and
QQ0. The jogs PP0 and QQ0 are screw in nature because they are parallel to
the Burgers vectors b1 and b2, respectively, Figs 7.7(a) and 7.7(b). Since the
jogged screw dislocation segments have greater mobility than the edge dis-
locations to which they belong, they will not impede the overall dislocation
motion. Hence, interactions between edge dislocations do not significantly
affect dislocation mobility.

This is not true for interactions involving screw dislocations. For
example, in the case of a right-handed screw dislocation that intersects a
moving edge dislocation [Fig. 7.8(a)], the dislocation segment PP0 glides

FIGURE 7.7 Interactions between two edge dislocations with parallel Burgers
vectors: (a) before intersection; (b) after intersection. (From Hull and Bacon,
1984. Reprinted with permission from Pergamon Press.)

FIGURE 7.6 Interactions between two edge dislocations with perpendicular
Burgers vectors: (a) before intersection; (b) after intersection. (From Hull
and Bacon, 1984. Reprinted with permission from Pergamon Press.)
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down one level (from one atomic plane to the other) following a spiral path
(staircase) along the dislocation line XY, as it cuts the screw dislocation XY,
Fig. 7.8(b). This produces a jog PP0 in AB, and a jog QQ0 in XY. Hence, the
segments AP0 and PB lie on different planes, Fig. 7.8(b). Furthermore, since
the Burgers vectors of the dislocation line segments PP0 and QQ0 are per-
pendicular to their line segments, the jogs are edge in character. Therefore,
the only way the jog can move conservatively is along the axis of the screw
dislocation, as shown in Fig. 7.9. This does not impede the motion of the
screw dislocation, provided the jog glides on the plane (PP0RR0).

However, since edge dislocation components can only move conserva-
tively by glide on planes containing their Burgers vectors and line segments,
the movement of the edge dislocation to A0QQ0B (Fig. 7.9) would require
nonconservative climb mechanisms that involve stress- and thermally
assisted processes. This will leave behind a trail of vacancies or interstitials,
depending on the direction of motion, and the sign of the dislocation. This is
illustrated in Fig. 7.10 for a jogged screw dislocation that produces a trail of
vacancies. Note that the dislocation segments between the jogs are bowed
due to the effects of line tension. Bowing of dislocations due to line tension
effects will be discussed in the next section. In closing, however, it is impor-
tant to note here that the interactions between two screw dislocations (Fig.
7.11) can give rise to similar phenomena to those discussed above. It is a
useful exercise to try to work out the effects of such interactions.

FIGURE 7.8 Interactions between right-handed screw dislocation and edge
dislocations: (a) before intersection; (b) after intersection. (From Hull and
Bacon, 1984. Reprinted with permission from Pergamon Press.)
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FIGURE 7.9 Movement of edge jog on a screw dislocation; conservative
motion of jog only possible on plane PP0RR. Motion of screw dislocation to
A0QQ0B would require climb of the jog along plane PQQ0P. (From Hull and
Bacon, 1984. Reprinted with permission from Pergamon Press.)

FIGURE 7.10 Schematic illustration of trail of vacancies produced by glide of
screw dislocation. (From Hull and Bacon, 1984—reprinted with permission
from Pergamon Press.)

FIGURE 7.11 Interactions between two screw dislocations: (a) before intersec-
tion; (b) after intersection. (From Hull and Bacon, 1984. Reprinted with per-
mission from Pergamon Press.)

Copyright © 2003 Marcel Dekker, Inc.



7.5 DISLOCATION BOWING DUE TO LINE TENSION

It should be clear from the above discussion that interactions between dis-
locations can give rise to pinned dislocation segments, e.g., dislocation line
segments that are pinned by jogs, solutes, interstitials, or precipitates. When
a crystal is subjected to a shear stress, the so-called line tension that develops
in a pinned dislocation segment can give rise to a form of dislocation bowing
that is somewhat analogous to the bowing of a string subjected to line
tension, T . In the case of a dislocation, the line tension has a magnitude
� Gb2. The bowing of dislocation is illustrated schematically in Fig 7.12.

Let us now consider the free body diagram of the bowed dislocation
configuration in Fig. 7.12(b). For force equilibrium in the y direction, we
may write:

2T sin
��

2

� �
¼ 
bL ð7:2Þ

where 
 is the applied shear stress, b is the Burgers vector, L is the disloca-
tion line length, and the other parameters are shown in Fig. 7.12. For small
curvatures, sin (��=2Þ � ��=2, and so Eq. (7.2) reduces to

T �� ffi 
bL ð7:3Þ
Recalling that T � Gb2 and that �� ¼ L=R from Fig. 7.12, we may simplify
Eq. (7.3) to give

Gb2 L

R
¼ 
bL ð7:4aÞ

or


 ¼ Gb

R
ð7:4bÞ

FIGURE 7.12 Schematics of (a) pinned dislocation segment and (b) bowed
dislocation configuration due to applied shear stress, 
. Note that T is the
line tension � Gb2.
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The critical shear stress described by Eq. (7.4b) is sufficient to cause the
pinned dislocation to continue to bow in a stable manner until it reaches a
semicircular configuration with r ¼ L=2. This bowing forms the basis of one
of the most potent mechanisms for dislocation multiplication, which is dis-
cussed in the next section.

7.6 DISLOCATION MULTIPLICATION

The discerning reader is probably wondering how plastic deformation can
actually continue in spite of the numerous interactions between dislocations
that are likely to give rise to a reduction in the density of mobile disloca-
tions. This question will be addressed in this section. However, before
answering the question, let us start by considering the simplest case of a
well-annealed crystal. Such crystals can have dislocation densities as low as
108�1012 m/m3. When annealed crystals are deformed, their dislocation
densities are known to increase to � 1016�1018 m/m3. How can this happen
when the interactions between dislocations are reducing the density of
mobile dislocations?

This question was first answered by Frank and Read in a discussion
that was held in a pub in Pittsburgh. Their conversation led to the mechan-
ism of dislocation breeding that is illustrated schematically in Fig. 7.13. The
schematics show one possible mechanism by which dislocations can multiply
when a shear stress is applied to a dislocation that is pinned at both ends.
Under an applied shear stress, the pinned dislocation [Fig. 7.13(a)] bows
into a circular arc with radius of curvature, r ¼ L=2, shown in Fig. 7.13(b).
The bowing of the curved dislocation is caused by the line tension, T , as
discussed in Sect. 7.5 (Fig. 7.12). This causes the dislocation to bow in a
stable manner until it reaches the circular configuration illustrated schema-
tically in Fig. 7.13(b). From Eq. (7.4b), the critical shear stress required for
this to occur is � Gb=L.

Beyond the circular configuration of Fig. 7.13(b), the dislocation bows
around the pinned ends, as shown in Fig. 7.13(c). This continues until the
points labeled X and X0 come into contact, Fig. 7.13(d). Since these disloca-
tion segments are opposite in sign, they annihilate each other. A new loop is,
therefore, produced as the cusped dislocation [Fig. 7.13(e)] snaps back to the
original straight configuration, Fig. 7.13(a).

Note that the shaded areas in Fig. 7.13 correspond to the regions of
the crystal that have been sheared by the above process. They have, there-
fore, been deformed plastically. Furthermore, subsequent bowing of the
pinned dislocation AB may continue, and the newly formed dislocation
loop will continue to sweep through the crystal, thereby causing further
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plastic deformation. New loops are also formed, as the dislocation AB
repeats the above process under the application of a shear stress. This
leads ultimately to a large increase in dislocation density (Read, 1953).
However, since the dislocation loops produced by the Frank–Read sources
interact with each other, or other lattice defects, back stresses are soon set
up. These back stresses eventually shut down the Frank–Read sources.
Experimental evidence of the operation of Frank–Read sources has been
presented by Dash (1957) for slip in silicon crystals (Fig. 7.14).

A second mechanism that can be used to account for the increase in
dislocation density is illustrated in Fig. 7.15. This involves the initial activa-
tion of a Frank–Read source on a given slip plane. Screw dislocation seg-
ments then cross-slip on to a different slip plane where a new Frank–Read

FIGURE 7.13 Breeding of dislocation at a Frank–Read source: (a) initial pinned
dislocation segment; (b) dislocation bows to circular configuration due to
applied shear stress; (c) bowing around pinned segments beyond loop
instability condition; (d) annihilation of opposite dislocation segments X
and X0, (e) loop expands out and cusped dislocation AXB returns to initial
configuration to repeat cycle. (Adapted from Read, 1953. Reprinted with per-
mission from McGraw-Hill.)
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FIGURE 7.14 Photograph of Frank–Read source in a silicon crystal. (From Dash
1957. Reprinted with permission from John Wiley.)

FIGURE 7.15 Dislocation multiplication by multiple cross-slip mechanism.
(From Low and Guard, 1959. Reprinted with permission from Acta Metall.)

Copyright © 2003 Marcel Dekker, Inc.



source is initiated. The above process may continue by subsequent cross-slip
and Frank–Read source creation, giving rise to a large increase in the dis-
location density on different slip planes. The high dislocation density
(1015�1018 m/m3) that generally results from the plastic deformation of
annealed crystals (with initial dislocation densities of � 108�1010 m/m3)
may, therefore, be explained by the breeding of dislocations at single
Frank–Read sources (Fig. 7.12), or multiple Frank–Read sources produced
by cross-slip processes (Fig. 7.15).

7.7 CONTRIBUTIONS FROM DISLOCATION DENSITY
TO MACROSCOPIC STRAIN

The macroscopic strain that is developed due to dislocation motion occurs
as a result of the combined effects of several dislocations that glide on
multiple slip planes. For simplicity, let us consider the glide of a single
dislocation, as illustrated schematically in Fig. 7.16. The crystal of height,
h, is displaced by a horizontal distance, b, the Burgers vector, due to the
glide of a single dislocation across distance, L, on the glide plane. Hence,
partial slip across a distance, x, along the glide plane results in a displace-
ment that is a fraction, x=L, of the Burgers vector, b. Therefore, the overall
displacement due to N dislocations shearing different glide planes is given

FIGURE 7.16 Macroscopic strain from dislocation motion: (A) before slip; (B)
slip steps of one Burgers vector formed after slip; (C) displacement due to
glide through distance �x . (From Read-Hill and Abbaschian, 1994. Reprinted
with permission from McGraw-Hill.)
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by

� ¼
XN
i¼1

xi
hi

� �
b ð7:5Þ

For small displacements, we may assume that the shear strain, �, is
� �=h. Hence, from Eq. (7.4), we may write:

� ¼ �

h
¼
XN
i¼1

xi
L

� �b
h

ð7:6Þ

If we also note that the dislocation density, �, is given by Nz=ðhzL), we may
rewrite Eq. (7.6) as

� ¼
Xh
i¼1

�b xi
N

ð7:7Þ

Assuming that the average displacement of each dislocation is x, Eq.
(7.7) may now be written as

� ¼ �bx ð7:8Þ
The shear strain rate, _��, may also be obtained from the time derivative

of Eq. (7.8). This gives

_�� ¼ d�

dt
¼ �bv ð7:9Þ

where v is the average velocity of dislocations, which is given by dx=dt. It is
important to note here that � in the above equations may correspond either
to the overall dislocation density, �tot, or to the density of mobile disloca-
tions, �m, provided that x and v apply to the appropriate dislocation con-
figurations (mobile or total). Hence, �mxm ¼ �totxtot or �mvm ¼ �totvtot in
Eqs (7.8) and (7.9).

Finally in this section, it is important to note that Eqs (7.8) and (7.9)
have been obtained for straight dislocations that extend completely across
the crystal width, z. However, the same results may be derived for curved
dislocations with arbitrary configurations across multiple slip planes. This
may be easily realized by recognizing that the sheared area fraction of the
glide plane, dA=A, corresponds to the fraction of the Burgers vector, b, in
the expression for the displacement due to glide of curved dislocations.
Hence, for glide by curved dislocations, the overall displacement, �, is
now given by
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� ¼
XN
i¼1

�Ai

A
b ð7:10Þ

As before [Eq. (7.6)], the shear strain, �, due to the glide of curved disloca-
tions is also given by �=h. Hence,

� ¼ �

h

XN
i¼1

�Ai

A

� �
b

h
ð7:11Þ

Similarly, the shear strain rate may be obtained from the time derivative of
Eq. (7.11).

7.8 CRYSTAL STRUCTURE AND DISLOCATION
MOTION

In Chap. 6, we learned that the Peierl’s (lattice friction) stress [Eq.
(6.8)] is minimized by small Burgers vectors, b, and large lattice spacings,
a. Hence, dislocation motion in cubic crystals tends to occur on closed
packed (or closest packed) planes in which the magnitudes of the Burgers
vectors, b, are minimized, and the vertical lattice spacings, a, are maximized.
Since the lattice friction stresses are minimized on such planes, dislocation
motion is most likely to occur on closed packed planes along closed packed
directions (Table 7.1).

7.8.1 Slip in Face-Centered Cubic Structures

Close-packed planes in face-centered cubic (f.c.c.) materials are of the {111}
type. An example of a (111) plane is shown in Fig. 7.17(a). All the atoms
touch within the closed packed (111) plane. Also, the possible {111} slip
planes form an octahedron if all the {111} planes in the eight possible
quadrants are considered. Furthermore, the closed packed directions corre-
spond to the h110i directions along the sides of a {111} triangle in the
octahedron. Hence, in the case of f.c.c. materials, slip is most likely to
occur on octahedral {111} planes along h110i directions. Since there are
four slip planes with three slip directions in the f.c.c. structure, this indicates
that there are 12 (four slip lanes � three slip directions) possible {111} h110i
slip systems (Table 7.1).

7.8.2 Slip in Body-Centered Cubic Structures

In the case of body-centered cubic (b.c.c.) structures, there are no close-
packed planes in which all the atoms touch, although the {101} planes are
the closest packed. The close-packed directions in b.c.c. structures are the
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h111i directions. Slip in b.c.c. structures is most likely to occur on {101}
planes along h111i directions, Fig. 7.17(b). However, slip may also occur on
{110}, {112}, and {123} planes along h111i directions. When all the possible
slip systems are counted, there are 48 such systems in b.c.c. structures (Table
7.1). This rather large number gives rise to wavy slip in b.c.c. structures.
Nevertheless, the large number of possible slip systems in b.c.c. crystals
(four times more than those in f.c.c. materials) do not necessarily promote
improved ductility since the lattice friction (Peierls–Nabarro) stresses are
generally higher in b.c.c. structures.

FIGURE 7.17 Closed packed planes and directions in (a) face-centered cubic
structure, (b) body-centered cubic crystal, and (c) hexagonal closed packed
structure. (From Hertzberg, 1996. Reprinted with permission from John
Wiley.)
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7.8.3 Slip in Hexagonal Closed Packed Structures

The basal (0001) plane is the closed packed plane in hexagonal closed
packed (h.c.p.) structures. Within this plane, slip may occur along closed
packed h1120i directions, Fig. 7.17(c). Depending on the c=a ratios, slip may
also occur on nonbasal (1010) and (1011) planes along h1120i directions
(Table 7.1). This is also illustrated schematically in Fig. 7.18. Nonbasal
slip is more likely to occur in h.c.p. metals with c=a ratios close to 1.63,
which is the expected value for ideal close packing. Also, pyramidal (1011)
slip may be represented by equivalent combinations of basal (0001) and
prismatic (1010) slip.

7.8.4 Condition for Homogeneous Plastic
Deformation

The ability of a material to undergo plastic deformation (permanent shape
change) depends strongly on the number of independent slip systems that
can operate during deformation. A necessary (but not sufficient) condition
for homogeneous plastic deformation was first proposed by Von Mises
(1928). Noting that six independent components of strain would require
six independent slip components for grain boundary compatibility between
two adjacent crystals (Fig. 7.19), he suggested that since plastic deformation
occurs at constant volume, then �V=V ¼ "xx þ "yy þ "zz ¼ 0. This reduces
the number of grain boundary compatibility equations by one. Hence, only
five independent slip systems are required for homogeneous plastic defor-

TABLE 7.1 Summary of Slip Systems in Cubic and Hexagonal Crystals

Crystal
Structure

Slip
Plane

Slip
direction

Number of
nonparallel

planes

Slip
directions
per plane

Number
of slip
systems

Face-centered
cubic {111} h110i 4 3 12 ¼ ð4� 3Þ

Body-centered
cubic {110} h111i 6 2 12 ¼ ð6� 2Þ

{112} h111i 12 1 12 ¼ ð12� 1Þ
{123} h111i 24 1 24 ¼ ð24� 1Þ

Hexagonal
close-packed {0001} h1120i 1 3 3 ¼ ð1� 3Þ

{1010} h1120i 3 1 3 ¼ ð3� 1Þ
{1011} h1120i 6 1 6 ¼ ð6� 1Þ
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FIGURE 7.18 Planes in a hexagonal closed packed structure, with a common
[1120� direction. (From Hull and Bacon, 1984. Reprinted with permission from
Pergamon Press.)

FIGURE 7.19 Strain conditions for slip compatibility at adjacent crystals. (From
Courtney, 1990. Reprinted with permission from McGraw-Hill.)
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mation. This is a necessary (but not sufficient) condition for homogeneous
plastic deformation in polycrystals.

The so-called Von Mises condition for homogeneous plastic deforma-
tion is satisfied readily by f.c.c. and b.c.c. crystals. In the case of f.c.c.
crystals, Taylor (1938) has shown that only five of the 12 possible {111}
h110i slip systems are independent, although there are 384 combinations of
five slip systems that can result in any given strain. Similar results have been
reported by Groves and Kelly (1963) for b.c.c. crystals in which 384 sets of
five {110} h111i slip systems can be used to account for the same strain. A
much larger number of independent slip systems is observed in b.c.c. struc-
tures when possible slips in the {112} h111i and {123} h111i systems are
considered. The large number of possible slip systems in this case have been
identified using computer simulations by Chin and coworkers (1967, 1969).

In contrast to b.c.c. and f.c.c. crystals, it is difficult to show the exis-
tence of five independent slip systems in h.c.p. metals/alloys in which slip
may occur on basal, prismatic, and pyramidal planes, Fig. 7.17(c). However,
only two of the {0001} h1120i slip systems in the basal plane are indepen-
dent. Similarly, only two of the prismatic {1020} h1120i type systems are
independent. Furthermore, all the pyramidal slip systems can be reproduced
by combinations of basal and prismatic slip. There are, therefore, only four
independent slip systems in h.c.p. metals. So, how then can homogeneous
plastic deformation occur in h.c.p. metals such as titanium? Well, the answer
to this question remains an unsolved puzzle in the field of crystal plasticity.

One possible mechanism by which the fifth strain component may be
accommodated involves a mechanism of deformation-induced twinning.
This occurs by the co-ordinated movement of several dislocations (Fig.
7.18). However, further work is still needed to develop a fundamental under-
standing of the role of twinning in titanium and other h.c.p. metals/alloys.

7.8.5 Partial or Extended Dislocations

In f.c.c. crystals, the zig-zag motion of atoms required for slip in the h110i
directions may not be energetically favorable since the movement of dislo-
cations requires somewhat difficult motion of the ‘‘white’’ atoms over the
‘‘shaded’’ atoms in Fig. 7.20. The ordinary h110i dislocations may, there-
fore, dissociate into partial dislocations with lower overall energies than
those of the original h110i type dislocations.

The partial dislocations may be determined simply by vector addition,
as shown schematically in Fig. 7.21. Note that B1C ¼ b2 ¼ 1=6½121�.
Similarly, CB2 can be shown to be given by CB2 ¼ b3 ¼ 1=6½211]. The ordin-
ary dislocation b1 ¼ 1=2½110] may, therefore, be shown by vector addition to
be given by
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b1 ¼ b2 þ b3 ð7:12aÞ
or

1

2
½110� ¼ 1

6
½211� þ 1

6
½121� ð7:12bÞ

The partial dislocations, b2 and b3, are generally referred to as Shockley
partials. They are formed because the elastic energies of the ordinary dis-
locations of type b1 are greater than the sum of the line energies of the
Shockley partials. Hence,

Gðb1Þ2 > Gðb2Þ2 þGðb3Þ2 ð7:13aÞ
or

G

4
ð�1Þ2 þ ð1Þ2 þ ð0Þ2
h i

>
G

36
ð�1Þ2 þ ð2Þ2 þ ð�1Þ2
h i

þ G

36
ð�2Þ2 þ ð1Þ2 þ ð1Þ2
h i ð7:13bÞ

or

G

2
>

G

3
ð7:13cÞ

The above dislocation reaction is, therefore, likely to proceed since it is
energetically favorable. This separation occurs because the net force on

FIGURE 7.20 Zig-zag motion of atoms required for slip in face-centered cubic
crystals. Note that ‘‘white’’ atoms are in a row above the ‘‘shaded’’ atoms.
(From Read-Hill and Abbaschian, 1991. Reprinted with permission from
McGraw-Hill.)
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the partials is repulsive. As the partials separate, the regular ABC stacking
of the f.c.c. lattice is disturbed. The separation continues until an equili-
brium condition is reached where the net repulsive force is balanced by the
stacking fault energy (Fig. 7.22). The equilibrium separation, d, between the
two partials has been shown by Cottrell (1953) to be

d ¼ Gb2b3

2��
ð7:14Þ

where G is the shear modulus, � is the stacking fault energy, and b2 and b3
correspond to the Burgers vectors of the partial dislocations. Stacking faults
ribbons corresponding to bands of partial dislocations are presented in Fig.
7.22(b). Typical values of the stacking fault energies for various metals are
also summarized in Table 7.2. Note that the stacking fault energies vary
widely for different elements and their alloys. The separations of the partial
dislocations may, therefore, vary significantly, depending on alloy composi-
tion, atomic structure, and electronic structure.

The variations in stacking fault energy have been found to have a
strong effect on slip planarity, or conversely, the waviness of slip in metals
and their alloys that contain partial (extended) dislocations. This is because
the movement extended dislocations is generally confined to the plane of the
stacking fault. The partial dislocations must, therefore, recombine before
cross-slip can occur. For this reason, metals/alloys with higher stacking fault
energies will have narrow stacking faults [Eq. (7.14)], thus making recombi-

FIGURE 7.21 Path of whole (ordinary) and partial (Shockley) dislocations.
(From Courtney, 1990. Reprinted with permission from McGraw-Hill.)
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nation and cross-slip easier. This reduces the stress required for recombina-
tion.

Conversely, metals and alloys with low stacking fault energies have
wide separations (stacking faults) between the partial dislocations. It is,
therefore, difficult for cross-slip to occur, since the recombination of partial
dislocations is difficult. Furthermore, because the movement of uncombined

FIGURE 7.22 (a) Shockley b2 and b3 surrounding stacking fault region A; (b)
stacking fault ribbons in a stainless steel. (From Michelak, 1976. Reprinted
with permission from John Wiley.)

TABLE 7.2 Stacking Fault Energies for
Face Centered Cubic Metals and Alloys

Metal
Stacking faulty energy
(mJ/m2 ¼ ergs/cm2)

Brass < 10
Stainless steel < 10
Ag � 25
Au � 75
Cu � 90
Ni � 200
Al � 250

Source: Hertzberg (1996). Reprinted with
permission from John Wiley.
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partial dislocations is confined to planes containing the stacking faults,
materials with lower stacking fault energies (wide separations of partials)
tend to exhibit higher levels of strain hardening (Table 7.3).

7.8.6 Superdislocations

So far, our discussion has focused on dislocation motion in disordered
structures in which the solute atoms can occupy any position within the
crystal structure. However, in some intermetallic systems (intermetallics
are compounds between metals and metals), ordered crystal structures are
formed in which the atoms must occupy specific sites within the crystal
structure. One example of an ordered f.c.c. structure is the Ni3Al crystal
shown in Fig. 7.23. The nickel and aluminum atoms occupy specific posi-
tions in the structure, which must be retained after dislocation glide through
{111} planes. However, the movement of a single dislocation on the glide
plane disturbs the ordered arrangement of atoms, giving rise to an energe-
tically unfavorable arrangement of atoms, Fig. 7.24(a).

A favorable arrangement is restored by the passage of a second dis-
location, which restores the lower energy ordered crystal structure, Fig.

TABLE 7.3 Stacking Faults and Strain Hardening Exponents

Metal
Stacking faulty energy

(mJ/M2)
Strain-hardening

coefficient
Slip

character

Stainless steel <10 –0.45 Planar
Cu � 90 � 0:3 Planar/wavy
Al � 250 � 0:15 Wavy

Source: Hertzberg (1996). Reprinted with permission from John Wiley.

FIGURE 7.23 Ordered face-centered cubic structure of Ni3Al. (From Hertzberg,
1996. Reprinted with permission from John Wiley.)
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7.24(b). The two dislocations are referred to as superlattice dislocations or
superdislocations. Like superdislocations, superdislocations maintain an
equilibrium separation that corresponds to the equilibrium separation
between the repulsive force (between two like dislocations) and the anti-
phase boundary (APB). Examples of superdislocation pairs in Ni3Al are
shown in Fig. 7.25.

Finally in this section, it is of interest to note that the individual
dislocations may in turn dissociate into partial dislocations that are sepa-
rated by stacking faults and APBs, as shown schematically in Fig. 7.26.

7.9 CRITICAL RESOLVED SHEAR STRESS AND SLIP
IN SINGLE CRYSTALS

Let us now consider a general case of slip in a single crystal that is subjected
to axial loading, as shown in Fig. 7.27. Whether or not a dislocation will
move on the slip plane in a given slip direction depends on the magnitude of
the resolved shear stress in the direction of slip. Slip will only occur when the
resolved shear stress (due to the applied load) is sufficient to cause disloca-
tion motion. Noting that the magnitude of the resolved load along the slip
plane is P cos �, and the inclined cross-sectional area is Ao= cos�, we may
then write the following expression for the resolved stress, 
RSS:


RSS ¼ P cos �

ðA0 cos �Þ
P

A0
ð7:15aÞ

FIGURE 7.24 Effects of dislocation motion on atomic arrangements in Ni3Al:
(a) unfavorable atomic arrangement associated with passage of a single dis-
location; (b) favorable ordered arrangement restored by passage of a second
dislocation. (From Hertzberg, 1996. Reprinted with permission from John
Wiley.)
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where P is the applied axial load, A0 is the cross-sectional area perpendicular
to the applied load, and angles � and � are shown schematically in Fig. 7.27.
The product cos � cos � is known as the Schmid factor, m. It is important
because it represents a geometrical/orientation factor that determines the
extent to which the applied load can induce shear stresses that may even-
tually cause dislocation motion to occur on possible slip lanes. Furthermore,

FIGURE 7.25 Superdislocation pairs in Ni3Al. (Courtesy of Dr. Mohammed
Khobaib and reprinted from Hertzberg, 1996. Reprinted with permission
from John Wiley.)

FIGURE 7.26 Schematic of stacking fault and antiphase boundaries bounded
by partial dislocation pairs: A {011} superlattice dislocation in an AB3 super-
lattice. (From Marcinkowski et al., 1961.)
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the onset of plasticity by dislocation motion corresponds to the critical shear
stress (for a given slip system) that is just sufficient to induce dislocation
motion. Hence, from Eq. (7.15a), yielding will initiate on the plane with the
highest Schmid factor.

For the different combinations of slip planes and slip directions asso-
ciated with any given slip system, yielding is generally found to occur at the
same value of the critical resolved shear stress. The yield stress, �ys, of a
single crystal may, therefore, be found by rearranging Eq. (7.15a) and
noting that �y ¼ Py=A0, where Py is the load at the onset of yielding. This
gives

�y ¼ 
CRSS
cos � cos �

¼ 
CRSS
m

ð7:15bÞ

where 
CRSS is the critical resolved shear stress, m is the Schmid factor, and
the other variables have their usual meaning. The unaxial yield strength of a
single crystal will, therefore, depend on the slip system that has the highest
Schmid factor, since this will result in the lowest value of �y. Consequently,
the uniaxial yield strength of a single crystal may vary significantly with

FIGURE 7.27 Slip plane and slip direction in a cylindrical single crystal sub-
jected to axial deformation.
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crystal orientation, even though the critical resolved shear stress does not
generally change with crystal orientation, for yielding in a given slip system.

A schematic of a typical shear stress versus shear strain response of a
single crystal is shown in Fig. 7.28. During the early stages of deformation,
Stage I slip occurs by easy glide in a single slip direction along a single slip
plane. There is limited interaction between dislocations, and the extent of
hardening is limited. However, due to the constraints imposed by the speci-
men grips, the slipped segments of the single crystal experience close to pure
rotation in the middle of the crystals, and pure bending near the grips (Fig.
7.29). The rotation of the slip plane gradually changes the Schmid factor
until slip is induced in other slip systems. The interactions between disloca-
tions gliding on multiple slip systems then results in hardening in Stage II, as
shown schematically in Fig. 7.28. Stage II hardening is associated with a
characteristic slope of � G=300 in several metals. Stage II hardening con-
tinues until Stage III is reached (Fig. 7.28), where the hardening is relaxed
by cross-slip of screw dislocation segments. A cell structure is also likely to
develop during Stage III in which the dislocation substructures closely
resemble those observed in polycrystalline metals and their alloys.

The stress–strain behavior discussed above may vary significantly with
test temperature and impurities. Furthermore, depending on crystal orienta-
tion and initial dislocation density, Stage I deformation may be absent in
crystals in which two or more slip systems are initiated at the same stress
level (Fig. 7.30). Since the dislocations can interact, rapid Stage II hardening
may be observed in some crystals at the onset of plastic deformation.

FIGURE 7.28 Three stages of plastic deformation in a single crystal.
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Finally in this section, it is important to note that an alternative
explanation of the above hardening behavior has been presented by
Kuhlmann-Wilsdorf (1962, 1968). She attributes the low levels of Stage I
hardening to heterogeneous slip of a low density of dislocations. In this
theory, Stage II slip corresponds to the onset of significant dislocation–
dislocation interactions, but not necessarily the onset of multiple slip. This
results ultimately in the formation of a dislocation cell structure with a
characteristic mesh length that remains stable from the onset of Stage III
deformation.

7.10 SLIP IN POLYCRYSTALS

In Sect. 7.8.4, we showed that the homogeneous plastic deformation of
polycrystals requires dislocation motion to occur on five independent slip

FIGURE 7.29 Schematic illustration of the effects of deformation constraint on
the deformation behavior of a single crystal: (a) before deformation; (b) defor-
mation without grip constraint; (c) deformation with group constraint.
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systems (the Von Mises condition). This occurs relatively easily in f.c.c. and
b.c.c. crystals. However, homogeneous plastic deformation is difficult to
explain in h.c.p. crystals, which require the activation of additional defor-
mation modes such as deformation-induced twinning. The simple picture of
slip in single crystals developed in the previous section will be extended to
the more general case of slip in polycrystals in this section.

Let us start by recalling from Sect. 7.9 that slip in a single crystal
occurs when a critical resolved shear shear stress is reached. Furthermore,
for slip without relative sliding of the boundary between adjacent grains A
and B (Fig. 7.19), the strain components on either side of the boundary must
be equal, i.e., "xx;A ¼ "xx;B; "yy;A ¼ "yy;B, "zz;A ¼ "zz;B; �xy;A ¼ �xy;B;
�yz;A ¼ �yz;B, and �zx;A ¼ �zx;B. Since the volume does not increase during
plastic deformation, it follows that �V=V ¼ "xx þ "yy þ "zz is equal to zero.
Hence, only five independent slip systems are needed for homogeneous
plastic deformation.

FIGURE 7.30 Different types of stress–strain behavior in copper single crystals
with different initial orientations with respect to the tensile axis. Although the
critical resolved shear stress is the same for all the crystals, only the [123]
exhibits the easy glide Stage I regime. Duplex slip occurs initially in the [112]
oriented crystal, giving rise to greater hardening at the onset of plastic defor-
mation. More pronounced hardening to observed in the [111] oriented crys-
tals in which six slip systems are activated initially. (From Diehl, 1956.)
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However, the matching of strain components at the boundaries
between grains imposes significant restrictions on the possible slip systems
that can occur within polycrystals. The total number of possible slip systems
in actual grains within polycrystals may, therefore, be significantly less than
those in single crystals that are favorably oriented for slip. Furthermore,
each grain has its own characteristic Schmid factor, and grains with the
lowest Schmid factor deform last. The average Schmid factor is also more
strongly affected by grains with unfavorable orientations (for plastic defor-
mation).

In any case, the stress–strain behavior of polycrystals may be under-
stood by considering an effective orientation factor, m, that is somewhat
analogous to the Schmid factor, m, that was introduced in Sect 7.9.
However, the effective orientation factor, m, is a more complex parameter
than the Schmid factor, m, because it must somehow account for the numer-
ous orientations of crystals that are possible between grains in a polycrystal.
The effective orientation factor must also account for the stronger effects of
less favorably oriented grains. This was first considered by Taylor (1938) for
the deformation of f.c.c. crystals, which were shown to have values of �mm of
� 3:1. More recent simulations have also shown that the values of �mm are
close to 3.0 for b.c.c. crystals. However, due to the large number of possible
slip systems in b.c.c. metals, the simulations are much more complex than
those required for f.c.c. crystals which have fewer slip systems. The b.c.c.
simulations have, therefore, required the use of computers, as discussed by
Chin and coworkers (1967, 1969).

We may now apply this concept of the equivalent orientation factor to
a polycrystal. Using similar concepts to those presented earlier for single
crystals in Sect. 7.8, we may express the effective stress and strain in a
polycrystal by the following relationships:


 ¼ �mm 
 ð7:16Þ
and

� ¼ �

�mm
ð7:17Þ

where 
 and � are the resolved shear stress and shear strain, respectively,
that would apply to an equivalent single crystal. Hence, differentiating Eqs
(7.16) and (7.17) gives

d


d�
¼ ðmÞ2 


�
ð7:18Þ

Plots of shear stress versus shear strain will, therefore, be expected to exhibit
stress levels that are a factor of ðmÞ2 greater than the equivalent plots for
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single crystals. This is shown to be the case for b.c.c. crystals of niobium
(with m2 � 32 ¼ 9Þ in Fig. 7.31 in which plots of shear stress versus shear
strain are elevated by approximately one order of magnitude. Similar eleva-
tions are also observed in plots of axial flow stress versus axial strain for
polycrystals.

7.11 GEOMETRICALLY NECESSARY AND
STATISTICALLY STORED DISLOCATIONS

The discussion so far has focused largely on the role of initial dislocation
substructures formed during processing, and those produced by dislocation
breeding mechanisms, e.g., Frank–Read sources (Figs 7.13 and 7.14) and
multiple cross-slip (Fig. 7.15) mechanisms. Such dislocations are produced
by ‘‘chance’’ events and are generally termed statistically stored dislocations
(SSDs). The increase in the density of SSDs may be used qualitatively to
account for the contributions of dislocations to plastic strain in the absence
of high-stress gradients, as was done in Sect. 7.7.

However, yet another group of dislocations must be considered in
cases where high-stress gradients are encountered, e.g., near grain bound-
aries or in metallic structures with thicknesses that are comparable to their
grain sizes. This second group of dislocations are referred to as geometrically

FIGURE 7.31 Comparison of stress–strain behavior in single crystal and poly-
crystalline niobium. (From Courtney, 1990. Reprinted with permission from
McGraw-Hill.)
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necessary dislocations (GNDs). They were first proposed by Ashby (1970).
GNDs are accumulated in regions of high-stress gradients, and are needed
to avoid overlap or void formation during plastic deformation in such
regions. They are accumulated in addition to the SSDs discussed earlier.

The need for GNDs may be visualized by considering the plastic bend-
ing of a rod, as shown schematically in Fig. 7.32. The initial configuration of
the rod of length l and width t is shown in Fig. 7.32(a). On the application of
a bending moment, a curved profile with a radius of curvature, r, is pro-
duced. The length of the outer surface is increased from l to l þ �l, and the
length of the inner surface is decreased from l to l � �l. Hence, the deforma-
tion of the outer surface is tensile, while that in the inner surface is com-
pressive. There is, therefore, a stress gradient from the outer surface to the
inner surface, which corresponds to the gradient of the bending stress field
across the thickness, t, in Fig. 7.32(b).

FIGURE 7.32 Schematics of plastic bending of a rod to highlight the need for
geometrically necessary dislocations: (a) before deformation; (b) curvature
after bending; (c) geometrically necessary dislocations. (From Ashby, 1970.
Reprinted with permission from Phil. Mag.)
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From basic geometry, l ¼ r�, l þ �l ¼ ððrþ tÞ=2Þ� and l-�l ¼ ððr-tÞ=2Þ�.
Hence, � ¼ t�=2. Furthermore, the strain on the outer surface is l þ �l, while
the strain in the inner surface is ��l=l. Since the strain gradient, d"=dt, is
linear across the length t, we may write:

d"

dt
¼ 2

t

�l

l
¼ 2

t

t�

2l

� �
¼ �

l
¼ ‘

r
ð7:19Þ

To appreciate the next few steps, it is important to re-examine Fig. 7.32(a),
and note that the number of atomic rows on the original surface is equal to
the length, l, divided by the atomic separation, b. From Fig. 7.32(b), it
should also be clear that the total number of rows on the outer surface of
the crystal is (l þ �lÞ=b. The difference between the total number of planes
on the outer and inner surface can be accommodated by the introduction of
edge dislocations of the same sign, as shown schematically in Fig. 7.32(c).
These dislocations are GNDs. They are needed to maintain compatibility in
the presence of stress gradients, e.g., near grain boundaries.

The total number of GNDs is given simply by 2�l=b. The density of
GNDs, �G, may also be expressed as the ratio of the number of GNDs
divided by the area ðltÞ. This gives

�G ¼ 2�l

bðltÞ ¼
1

rb
¼

d"

dt

� �
b

ð7:20Þ

The total density of dislocations, �tot, in a polycrystal is, therefore, given by
the sum of the statistically stored dislocation dislocations, �S, and the geo-
metrically necessary dislocation density, �G. This gives

�tot ¼ �S þ �G ð7:21Þ
It is important to remember that the role of GNDs is only important in cases
where stress gradients are present. Hence, in the absence of strain gradients,
�tot � �S. The importance of GNDs has been highlighted in recent years by
the development of strain gradient plasticity theories by Fleck et al. (1994).
These theories include phenomenological models that attempt to predict
length scale effects in crystal plasticity. These length scale effects are asso-
ciated with the role of GNDs.

For example, the torsional stress–strain behavior of fine copper wires
(Fleck et al., 1994) has been shown to exhibit a size scale dependence, with
thinner wires having higher flow stresses than thicker wires (Fig. 7.33).
Indentation tests (Stelmashenko et al., 1993; Ma and Clarke, 1995; Poole
et al., 1996) on different metals have also revealed a dependence of hardness
on indenter size, with smaller indenters (<10–20 �m) resulting in higher
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(2–3 times) hardness levels than the size-independent values that are typi-
cally observed for larger indenters.

In cases where the density of geometrically necessary dislocations, �G,
is significant, the flow stress, 
y, is given by the following modified Taylor
expression:


y ¼ cGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s þ �G

p ð7:22Þ

where c is a number that depends on the crystal type, G is the shear mod-
ulus, and b is the Burgers vector. Furthermore, in the vicinity of strain
gradients of magnitude d"=dt, the increment in plastic strain due to
GNDs is � �G bL, where L is the distance over which the strain gradients
affect plastic flow. Similarly, the increment of plastic strain associated with
the generation of new SSDs that travel through a distance L is �s bL. An
alternative derivation by Nix and Gao (1998) has shown that the length
scale parameter, L, is given by

L ¼ b
G

�y

� �2

ð7:23Þ

where b is the Burgers vector, G is the shear modulus, and �y is the yield
stress. It is important to note here that the magnitude of L is generally on
the order of a few micrometers ð� 0:25�1 �m for stretch gradients and 4–5
�m for rotational gradients).

FIGURE 7.33 Effects of length scale on the flow stress of copper wires: (a)
torque versus twist per unit length normalized in a way that material with
no internal length scales would fall on to one another; (b) uniaxial stress
versus strain for the same material shows almost no size effect in tension.
(From Fleck et al., 1994. Reprinted with permission from Acta Metall. Mater.)
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FIGURE 7.34 Examples of MEMS structures: (a) accelerometer; (b) magnetic motor. (From Madou, 1997.
Reprinted with permission from CRC Press.)
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Two approaches have been proposed for the estimation of the incre-
ment in plastic strain due to the combined effects of SSNs and GNDs. The
first is by Fleck et al. (1994) who, guided by the Taylor relation, suggest that
the dislocation density, �, increases in proportion to

� / ð"pÞ� þ ð‘@"p=@tÞ�� �1=� ð7:24Þ

where ‘ is the length scale parameter, "p is the plastic strain, and � is
generally between 1 and 2.

The second approach proposed by Nix and Gao (1998) and Gao et al.
(1998, 1999) assumes that GNDs have no direct effects on the accumulation
of SSDs. Hence, from the Taylor relation, the density of SSDs is propor-
tional to f ð"pÞ2. Strain gradients are introduced into this theory which gives
the flow stress dependence as

�y /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð"pÞ2 þ ‘d"p=@t

q
ð7:25Þ

The strain gradient plasticity (SGP) theory incorporates the length scale
parameter, ‘, into the J2 deformation theory. As in the conventional J2
theory, the J2 SGP theory has both a small strain deformation version
and an incremental version with a yield surface.

The deformation theory version gives the effective strain, Ee, as

E2
e ¼ 2

3
"0ij"

0
ij þ ‘21�0ð1Þijk �

0ð1Þ
ijk þ ‘22�0ð2Þijk �

0ð2Þ
ijk þ ‘23�0ð3Þijk �

0ð3Þ
ijk ð7:26Þ

where "ij is the strain tensor, "0ij is the deviatoric strain, �ijk ¼ uk;ij is the
strain gradient, and �0ijk is the deviatoric strain gradient. The three deviatoric
strain gradients are mutually ortogonal. Hence,

�0ijk
ðIÞ�0ijk

ðJÞ ¼ 0 for I 6¼ J ð7:27Þ

Furthermore, any strain gradient deviator �0ijk can be expressed as a
sum of three mutually orthogonal strain gradient tensors (Smyshlyaev and
Fleck, 1996).

The deformation theory proposes the use of an energy density,
WðEe; "kkÞ, which is determined by fitting monotonic shear or axial
stress–strain data, and assuming elastic compressibility. The stress and
higher order stress terms are obtained from

�ij ¼
@W

@"ij
ð7:28aÞ
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and


ijk ¼ @W

@�ijk
ð7:28bÞ

where the virtual work term, W , is given by Toupin (1962) and Mindlin
(1965) to be:

W ¼
ð
V

�ij�"ij þ 
ijk��ijk
� �

dV ¼
ð
A

ti�ui þ rini�ui;j

� �
dA ð7:29Þ

where �I is the outward normal to the surface, rI ¼ njnk
ijk is the double
stress acting on the surface, and the surface traction is given by

tk ¼ ni ð�ik � 
ijkj;Þ þ ninj
ijk ðDp npÞ � Dj ðni 
ijk Þ ð7:30Þ
where Dj is the surface gradient, which is given by

Dj ¼ ð�jk � nj nk Þ @k ð7:31Þ
It is important to note here that the second and third invariants of the strain
gradient depend only on the rotation gradient Xij ¼ �ij;¼ eipk "kj;p

0, where
the rotation is given by �i ¼ "ijk uk;j=2. The equivalent strain expression of
Eq. (7.26) may thus be expressed as

E2
e ¼ 2

3
" 0ij"

0
ij þ ‘21�0ð1Þijk �

0ð1Þ
ijk þ 2

3
2‘22 þ

12

5
‘23

� �
�ij�ij

þ 2

3
2‘22 �

12

5
‘23

� �
�ij�ji

ð7:32Þ

However, in most problems the relative contributions of the �ij �ji
term is relatively small. Hence, it is common to ignore this term and express
the effective strain term as

E2
e ¼ 2

3
"0ij"

0
ij þ ‘2SG� 0ð1Þijk� 0ð1Þijk þ

2

3
‘2RG�ij�ij ð7:33Þ

where ‘SG and ‘RG are the stretch and rotation gradients, respectively, which
are given by

‘2SG ¼ ‘21 ð7:34aÞ
and

‘2RG ¼ 2‘22 þ
12

5
‘23 ð7:34bÞ

Experimental measurements of ‘SR and ‘RG have been obtained by
Fleck et al. (1994), Begley and Hutchinson (1998), and Stölken and Evans
(1998). For annealed copper wires, Fleck et al. (1994) have shown that
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‘RG � 4 �m. Stölken and Evans (1998) have also shown, by measuring the
amount of elastic springback in bending experiments, that nickel thin films

have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2RG þ 8=5‘2SG

q
� 5�m. Since the bending stress field is dominated by

rotational gradients, ‘RG � 5 �m. Similarly, Begley and Hutchinson (1998)
have analyzed indentation results from a number of metals, for which the
length scale parameter is associated primarily with stretch gradients. Their
analysis suggests that ‘SG is between 0.25 and 1.0 for various metals.

The above size effects are important in the modeling of plasticity in the
microscale regime. For example, in the case of microelectromechanical sys-
tems (MEMS), machines are being fabricated on the microscale regime
between � 1 and 750 �m. Most MEMS structures on a length scale between
� 1 and 50 �m are being produced from silicon micromachining technology
(Madou, 1997 (Fig. 7.34)). The emerging products include actuators, sen-
sors, gears, microsatellites, and micromirrors. For thicker and larger
devices, electroplated nickel structures are being used in applications such
as microswitches and accelerometers in modern air bags. Aluminum MEMS
structures are also being used in micromirror applications. In all the metal
MEMS applications, it is likely that the phenomenological SGP J2 theory
could be useful in the modeling of length scale effects (Hutchinson, 2000).
However, it is possible that higher order strain gradient theories may be
needed to model the effects of constrained deformation due to dislocation
pile-ups at the interfaces between brittle ceramic layers and ductile layers.

7.12 DISLOCATION PILE-UPS AND BAUSCHINGER
EFFECT

It has been shown by numerous workers that the thermally induced nuclea-
tion of dislocations is energetically unfavorable (Argon and McClintock,
1963). However, dislocations may be produced within a grain by Frank–
Read sources or by multiple cross-slip mechanisms. If we now consider the
movement of dislocations from such sources within a grain, it is easy to
envisage a dislocation pile-up that can result as the dislocations glide on a
slip plane towards a barrier such as a grain boundary (Fig. 7.35). Since the
dislocation loops are of the same sign, they will pile up without annihilating
each other. The elastic interactions between the self-fields of the individual
dislocations will result in an equilibrium separation of dislocations that
decreases as the grain boundary is approached (Fig. 7.35).

Now consider the case of n dislocations approaching a boundary. The
leading dislocation experiences a force due to the applied shear stress, 
.
However, the remaining ‘‘trailing’’ (n� 1) dislocations experience a back
stress, 
b, due to the effect of the barrier. Hence, if the leading and trailing
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dislocations move forward by a small distance, �x, then the increase in the
interaction energy between the loading dislocation and the barrier is 
b �x.
Similarly, the work done per unit length of dislocation is 
ðn �xÞ. Since work
and energy terms must be equal, and 
1 ¼ 
, then the stress at the pile-up is
given by


 ¼ n 
b ð7:35Þ
The stress at a pile-up is, therefore, amplified by the total number of dis-
locations involved in the pile-up. This may result ultimately in the nu-
cleation of slip or deformation-induced twinning, or crack nucleation in
adjacent grains. The total number of dislocations, n, has been shown by
Eshelby et al. (1951) to be given by

m ¼ L


A
ð7:36Þ

where A ¼ Gb=� for screw dislocations and A ¼ Gb=�=ð1� 	Þ for edge
dislocations. Dislocation pile-ups, therefore, produce long range stresses,
which is why they can exert some influence on the nucleation of yielding
or cracking adjacent grains.

One of the major consequences of these long-range stresses are back
stresses that can affect the yield strengths of crystalline solids deformed
under cyclic tension–compression loading. During forward loading to a
prestress, �p, forward dislocation motion results in plastic deformation
and yielding at a yield stress, �y. However, if the loading is reversed, yielding
is observed to occur in compression at a magnitude of stress that is lower
than that in tension. This is illustrated schematically in Fig. 7.36. It was first
observed by Bauschinger (1886) in experiments on wrought iron. It is, there-
fore, known as the Bauschinger effect.

FIGURE 7.35 Schematic illustration of dislocation pile-up at grain boundaries.
(From Hull and Bacon, 1984. Reprinted with permission from Pergamon
Press.)
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The difference between the flow strain in the tensile and compressive
loading conditions (Fig. 7.36) is known as the Bauschinger strain. It is
generally a function of the prestress, although it may also be a function of
the prestrain. The compressive stress–strain curve, therefore, never reaches
the image of the tensile stress strain curve shown by the dashed lines in Fig.
7.36. The Bauschinger effect must, therefore, involve some mechanisms of
permanent softening.

The premature yielding that occurs on load reversal can be avoided by
the use of stress relief heat treatments. However, its effects are often ignored,
although they are known to be important in several engineering problems
that involve the fatigue (damage due to cyclic loading in tension and/or
compression) and creep (high-temperature deformation under static loads)
of metals and their alloys. Work by Li et al. (2000) has resulted in the
development of numerical finite element schemes for the modeling of the
role of the Bauschinger effect in sheet metal forming processes. Such models
are critical to the optimization of processing schemes that are used in the
fabrication of smooth automotive car body panels.

7.13 MECHANICAL INSTABILITIES AND
ANOMALOUS/SERRATED YIELDING

So far, our discussion of plastic deformation has ignored the possible effects
of the dislocation interactions with solutes or interstitials that are present in

FIGURE 7.36 Bauschinger effect in a decarbonized tubular steel in torsion.
(Data by Deak, 1961. From McClintock and Argon, 1966. Reprinted with per-
mission from Addison Wesley.)
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all crystalline solids. These interactions can give rise to some interesting
mechanical instabilities that are considered in this section.

7.13.1 Anomalous Yielding Phenomena

Anomalous yielding phenomena have been observed in mild steels and
single crystal iron during tensile deformation. An example of anomalous
yielding in a plain carbon steel is presented in Fig. 7.37. This shows a typical
plot of stress versus strain obtained from a tensile test. Note that the stress
rises initially to an upper yielding point (UYP) before dropping to a lower
yield point (LYP). The initiation of deformation at the UYP is localized to a
region within the gauge section of the tensile specimen. At the UYP, evi-
dence of the localized deformation may be seen in the form of Lüders bands
that are aligned at an angle of � 458 to the loading axis. The localized
deformation (Lüders bands) then spreads across the gauge section until
the gauge section is completely filled with Lüders bands at the so-called
Lüders strain. Homogeneous deformation and hardening then continues
(Fig. 7.37) to failure, as would be expected from a typical metallic material.

FIGURE 7.37 Anomalous yielding in a single crystal of iron containing 0.003%
carbon and deformed continuously to failure at a strain rate of 105 s�1 at 195
K. (Data by Paxton and Bear, 1955. Adapted from McClintock and Argon,
1963. Reprinted with permission from Addison Wesley.)

Copyright © 2003 Marcel Dekker, Inc.



Two theories have been proposed to explain the anomalous yielding
phenomena. One theory is by Cottrell and Bilby (1949) and the other is by
Hahn (1962). The theory of Cottrell and Bilby (1949) attributes the yield
phenomena to the effects of dislocation interactions with interstitials in
b.c.c. metals. Since these cause large unsymmetrical distortions in the lattice
structure, they interact strongly with edge and screw dislocations. At suffi-
ciently high temperatures, the interstitials diffuse towards the dislocation
cores, and thus impede the motion of dislocations. Higher stresses are,
therefore, needed to break the dislocations free from the solute/interstitial
clouds and move them through the lattice.

The theory of Hahn (1962) attributes the observed instabilities to the
strong stress dependence of the velocity of dislocations. Hence, when the
dislocations break away from the solute atmospheres, they must move at
faster velocities to enable the imposed strain rate to be achieved. The high
velocity requires high stress, which in turn results in rapid dislocation multi-
plication by double cross-slip (Fig. 6.13). Hence, as the dislocation density
increases, both the velocity and the stress decrease. Both theories appear to
be plausible. However, further research is needed to explain the observed
dependence of the UYP and LYP on grain size.

7.13.2 Portevin–LeChatelier Effect

The interactions between dislocations and impurities (solutes and intersti-
tials) or vacancies can give rise to serrated yielding (strain aging) phenomena
in metallic and nonmetallic materials. The serrations were first observed by
Portevin and LeChatelier (1923) in experiments on Duralumin (an Al–Cu
alloy). For this reason, the occurrence of serrated yielding is often known as
the Portevin–LeChatelier effect. The instabilities are associated with the
interactions of groups of dislocations with solute/interstitial atoms. These
result in jerky dislocation motion, and serrations in the stress–strain curves,
as shown schematically in Fig 5.6.

The serrations are an indication of discontinuous yielding that occurs
due to groups of dislocations breaking free from the pinning of dislocations
which is caused by the (dislocation core stress-assisted) diffusion of inter-
stitials and solutes towards the gliding dislocations (Fig. 7.38). These can
give rise to different types of serrations (Fig. 5.6), depending on the nature
of the dislocation/solute or dislocation/interstitial interactions. The periodi-
city and characteristic shapes of the serrations have been attributed by
Cottrell (1958) to the thermally activated release of dislocations, and their
subsequent pinning by interstitial and solute clouds. Serrated yielding (strain
aging) has been observed in solid solutions of zinc and aluminum. It has also

Copyright © 2003 Marcel Dekker, Inc.



been reported to occur in some intermetallics such as gamma-based titanium
aluminides and nickel aluminides.

7.14 SUMMARY

The role of dislocations in the plasticity of crystalline metals and their alloys
has been examined in this chapter. Following a brief description of the
motion of dislocations by glide, climb, and kink nucleation/propagation
mechanisms, the factors that control dislocation velocity were discussed
briefly for edge and screw dislocations. The bowing of dislocations due to
line tension forces was then explored before introducing the concept of
dislocation breeding from Frank–Read sources and multiple cross-slip
sources. The contributions from dislocations to plastic strain were then
elucidated within a simple continuum framework. The crystallography of
slip was introduced for f.c.c., b.c.c., and h.c.p. structures, before describing
dislocation dissociation mechanisms, partial/extended dislocations, stacking
faults, superdislocations, and APBs. The concept of a critical resolved shear
stress was also examined before describing the contributions from slip to
plastic deformation in single crystals and polycrystals. Finally, SSNs and
GNDs were described briefly before concluding with sections on the
Bauschinger effect and mechanical instabilities.
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8

Dislocation Strengthening
Mechanisms

8.1 INTRODUCTION

The dislocation strengthening of metals and their alloys is perhaps one of
the major technological accomplishments of the last 100 years. For example,
the strength of pure metals such as aluminum and nickel have been
improved by factors of 10–50 by the use of defects that restrict dislocation
motion in a crystal subjected to stress. The defects may be point defects
(solutes or interstitials), line defects (dislocations), surface defects (grain
boundaries or twin boundaries), and volume defects (precipitates or disper-
sions). The strain fields that surround such defects can impede the motion of
dislocations, thus making it necessary to apply higher stresses to promote
the movement of dislocations. Since yielding and plastic flow are associated
primarily with the movement of dislocations, the restrictions give rise ulti-
mately to intrinsic strengthening.

The basic mechanisms of intrinsic strengthening are reviewed in this
chapter, and examples of technologically significant materials that have
been strengthened by the use of the strengthening concepts are presented.
The strengthening mechanisms that will be considered include:

1. Solid solution strengthening (dislocation interactions with
solutes or interstitials).
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2. Dislocation strengthening which is also known as work/strain
hardening (dislocation interactions with other dislocations).

3. Boundary strengthening (dislocation interactions with grain
boundaries or stacking faults).

4. Precipitation strengthening (dislocation interactions with preci-
pitates).

5. Dispersion strengthening (dislocation interactions with dispersed
phases).

Note the above sequence of dislocation interactions with: zero-dimensional
point defects (solutes or interstitials); one-dimensional line defects (other
dislocations; two-dimensional defects (grain boundaries or stacking faults),
and three-dimensional defects (precipitates or dispersoids).

8.2 DISLOCATION INTERACTIONS WITH OBSTACLES

Before presenting the specific details of individual dislocation strengthening
mechanisms, it is important to examine the interactions of dislocations with
arrays of obstacles such as solutes/interstitials and particles/precipitates
(Fig. 8.1). When dislocations encounter such arrays as they glide through
a lattice under an applied stress, they are bent through an angle, �, before
they can move on beyond the cluster of obstacles (note that 0 < � < 1808Þ.
The angle, �, is a measure of the strength of the obstacle, with weak obsta-
cles having values of � close to 1808, and strong obstacles having obstacles
close to 08.

It is also common to define the strength of a dislocation interaction by
the angle, �0 ¼ 180� � through which the interaction turns the dislocation
(Fig. 8.1). Furthermore, the number of obstacles per unit length (along the
dislocation) depends strongly on �. For weak obstacles with � � 1808, the

FIGURE 8.1 Dislocation interactions with a random array of particles.
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number of obstacles per unit length may be found by calculating the number
of particle intersections with a random straight line. Also, as � decreases, the
dislocations sweep over a larger area, and hence interact with more particles.
Finally, in the limit, the number of intersections is close to the square root of
the number of particles that intersect a random plane.

The critical stress, 
c, required for a dislocation to break away from a
cluster of obstacles depends on the particle size, the number of particles per
unit volume, and the nature of the interaction. If the critical breakaway
angle is �c, then the critical stress at which breakaway occurs is given by


c ¼
Gb

L
cos

�c
2

� �
ð8:1Þ

Equation (8.1) may be derived by applying force balance to the geometry of
Fig. 8.1. However, for strong obstacles, breakaway may not occur, even for
� ¼ 0. Hence, in such cases, the dislocation bows to the semi-circular
Frank–Read configuration and dislocation multiplication occurs, leaving a
small loop (Orowan loop) around the unbroken obstacle. The critical stress
required for this to occur is obtained by substituting r ¼ L=2 and � ¼ 0 into
Eq. (8.1). This gives


c ¼
Gb

L
ð8:2Þ

Hence, the maximum strength that can be achieved by dislocation
interactions is independent of obstacle strength. This was first shown by
Orowan (1948). The above expressions [Eqs (8.1) and (8.2)] provide simple
order-of-magnitude estimates of the strengthening that can be achieved by
dislocation interactions with strong or weak obstacles. They also provide a
qualitative understanding of the ways in which obstacles of different types
can affect a range of strengthening levels in crystalline materials.

8.3 SOLID SOLUTION STRENGTHENING

When foreign atoms are dissolved in a crystalline lattice, they may reside in
either interstitial or substitutional sites (Fig. 8.2). Depending on their sizes
relative to those of the parent atoms. Foreign atoms with radii up to 57% of
the parent atoms may reside in interstitial sites, while those that are within
�15% of the host atom radii substitute for solvent atoms, i.e. they form
solid solutions. The rules governing the formation of solid solutions are
called the Hume–Rothery rules. These state that solid solutions are most
likely to form between atoms with similar radii, valence, electronegativity,
and chemical bonding type.
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Since the foreign atoms have different shear moduli and sizes from the
parent atoms, they impose additional strain fields on the lattice of the sur-
rounding matrix. These strain fields have the overall effect of restricting
dislocation motion through the parent lattice, Fig. 8.2(b). Additional
applied stresses must, therefore, be applied to the dislocations to enable
them to overcome the solute stress fields. These additional stresses represent
what is commonly known as solid solution strengthening.

The effectiveness of solid solution strengthening depends on the size
and modulus mismatch between the foreign and parent atoms. The size
mismatch gives rise to misfit (hydrostatic) strains that may be symmetric
or asymmetric (Fleischer, 1961, 1962). The resulting misfit strains, are pro-
portional to the change in the lattice parameter, a, per unit concentration, c.
This gives

"b ¼ 1

a

da

dc
ð8:3Þ

Similarly, because the solute/interstitial atoms have different moduli
from the parent/host atoms, a modulus mismatch strain, "G, may be defined
as

"G ¼ 1

G

dG

dc
ð8:4Þ

In general, however, the overall strain, "s, due to the combined effect of the
misfit and modulus mismatch, may be estimated from

"s ¼ j"0G � �"bj ð8:5Þ

FIGURE 8.2 Interstitial and solute atoms in a crystalline lattice: (a) schematic of
interstitial and solute atoms; (b) effects on dislocation motion. [(a) Adapted
from Hull and Bacon (1984) and (b) adapted from Courtney (1990). Reprinted
with permission from Pergamon Press.]
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where � is a constant close to 3 "0G ¼ "G=ð1þ ð1=2Þj"GjÞ, and "b is given by
equation 8.3. The increase in the shear yield strength, �
s, due to the solid
solution strengthening may now be estimated from

�
s ¼
G"3=2s c1=2

700
ð8:6Þ

where G is the shear modulus, "s is given by Eq. (8.5), and c is the solute
concentration specified in atomic fractions. Also, �
s may be converted into
��s by multiplying by the appropriate Schmid factor.

Several models have been proposed for the estimation of solid solution
strengthening. The most widely accepted models are those of Fleischer (1961
and 1962). They include the effects of Burgers vector mismatch and size
mismatch. However, in many cases, it is useful to obtain simple order-of-
magnitude estimates of solid solution strengthening, ��s, from expressions
of the form:

��s ¼ ksc
1=2 ð8:7Þ

where ks is a solid solution strengthening coefficient, and c is the concentra-
tion of solute in atomic fractions. Equation (8.7) has been shown to provide
reasonable fits to experimental data for numerous alloys. Examples of the
c1=2 dependence of yield strength are presented in Fig. 8.3.

In summary, the extent of solid solution strengthening depends on the
nature of the foreign atom (interstitial or solute) and the symmetry of the
stress field that surrounds the foreign atoms. Since symmetrical stress fields

FIGURE 8.3 Dependence of solid solution strengthening on c1=2. (Data taken
from Fleischer (1963). Reprinted with permission from Acta Metall.)
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interact only with edge dislocations, the amount of strengthening that can be
achieved with solutes with symmetrical stress fields is very limited (between
G=100 and G=10). In contrast, asymmetric stress fields around solutes inter-
act with both edge and screw dislocations, and their interactions give rise to
very significant levels of strengthening (� 2G� 9G), where G is the shear
modulus. However, dislocation/solute interactions may also be associated
with strain softening, especially at elevated temperature.

8.4 DISLOCATION STRENGTHENING

Strengthening can also occur as a result of dislocation interactions with each
other. These may be associated with the interactions of individual disloca-
tions with each other, or dislocation tangles that impede subsequent dislo-
cation motion (Fig. 8.4). The actual overall levels of strengthening will also
depend on the spreading of the dislocation core, and possible dislocation
reactions that can occur during plastic deformation. Nevertheless, simple
estimates of the dislocation strengthening may be obtained by considering
the effects of the overall dislocation density, �, which is the line length, ‘, of
dislocation per unit volume , ‘3.

The dislocation density, �, therefore scales with ‘=‘3. Conversely, the
average separation, ‘, between dislocations may be estimated from

‘ ¼ 1

��1=2
ð8:8Þ

FIGURE 8.4 Strain hardening due to interactions between multiple disloca-
tions: (a) interactions between single dislocations; (b) interactions with forest
dislocations.

Copyright © 2003 Marcel Dekker, Inc.



The shear strengthening associated with the pinned dislocation seg-
ments is given by

�
d ¼ �Gb

‘
ð8:9Þ

where � is a proportionality constant, and all the other variables have their
usual meaning. We may also substitute Eq. (8.8) into Eq. (8.9) to obtain the
following expression for the shear strengthening due to dislocation interac-
tions with each other:

�
d ¼ �Gb�1=2 ð8:10Þ
Once again, we may convert from shear stress increments into axial

stress increments by multiplying by the appropriate Schmid factor, m. This
gives the strength increment, ��d, as (Taylor, 1934):

��d ¼ m�Gb�1=2 ¼ kd�
1=2 ð8:11Þ

where kd ¼ m �Gb and the other variables have their usual meaning.
Equations (8.10) and (8.11) have been shown to apply to a large number
of metallic materials. Typical results are presented in Fig. 8.5. These show

FIGURE 8.5 Dependence of shear yield strength on dislocation density. (From
Jones and Conrad, 1969. Reprinted with permission from TMS-AIME.)
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that the linear dependence of strengthening on the square root of dislocation
density provides a reasonable fit to the experimental data.

It is important to note here that Eq. (8.11) does not apply to disloca-
tion strengthening when cell structures are formed during the deformation
process (Fig. 8.6). In such cases, the average cell size, s, is the length scale
that controls the overall strengthening level. This gives

��0d ¼ k 0
dðsÞ�1=2 ð8:12Þ

where ��0d is the strengthening due to dislocation cell walls, k0d is the dis-
location strengthening coefficient for the cell structure, and s is the average
size of the dislocation cells.

8.5 GRAIN BOUNDARY STRENGTHENING

Grain boundaries also impede dislocation motion, and thus contribute to
the strengthening of polycrystalline materials (Fig. 8.7). However, the
strengthening provided by grain boundaries depends on grain boundary

FIGURE 8.6 Dislocation cell structure in a Nb–Al–Ti based alloy. (Courtesy of
Dr. Seyed Allameh.)
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structure and the misorientation between individual grains. This may be
understood by considering the sequence of events involved in the initiation
of plastic flow from a point source (within a grain) in the polycrystalline
aggregate shown schematically in Fig. 8.8.

Due to an applied shear stress, 
app dislocations are emitted from a
point source (possibly a Frank–Read source) in one of the grains in Fig. 8.8.
These dislocations encounter a lattice friction stress, 
i, as they glide on a
slip plane towards the grain boundaries. The effective shear stress, 
eff , that
contributes to the glide process is, therefore, given by


eff ¼ 
app � 
i ð8:13Þ

However, since the motion of the dislocations is impeded by grain bound-
aries, dislocations will generally tend to pile-up at grain boundaries. The
stress concentration associated with this pile-up has been shown by Eshelby
et al. (1951) to be � ðd=4rÞ1=2, where d is the grain size and r is the distance
from the source. The effective shear stress is, therefore, scaled by this stress
concentration factor. This results in a shear stress, 
12, at the grain bound-
aries, that is given by

FIGURE 8.7 Dislocation interactions with grain boundaries. (From Ashby and
Jones, 1996. Reprinted with permission from Pergamon Press.)
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12 ¼ 
app � 
i
	 
 d

4r

� �1=2

ð8:14Þ

If we now consider bulk yielding to correspond to the condition slip for
transmission to adjacent grains when a critical 
12 is reached, then we may
rearrange Eq. (8.14) to obtain the following expression for 
app at the onset
of bulk yielding:


app ¼ 
i þ
4r

d

� �1=2


12 ð8:15Þ

The magnitude of the critical shear stress, 
12, required for slip trans-
mission to adjacent grains may be considered as a constant. Also, the aver-
age distance, r, for the dislocations in the pile-up is approximately constant.
Hence, (4r)1=2 
12 is a constant, k0y, and Eq. (8.15) reduces to


y ¼ 
i þ k 0
yd

�1=2 ð8:16Þ
Once again, we may convert from shear stress into axial stress by multi-
plying Eq. (8.16) by the appropriate Schmid factor, m. This gives the follow-
ing relationship, which was first proposed by Hall (1951) and Petch (1953):

�y ¼ �0 þ kyd
�1=2 ð8:17Þ

where �0 is the yield strength of a single crystal, ky is a microstructure/grain
boundary strengthening parameter, and d is the grain size. The reader
should note that Eq. (8.17) shows that yield strength increases with decreas-
ing grain size. Furthermore, (�o may be affected by solid solution alloying
effects and dislocation substructures.

FIGURE 8.8 Schematic illustration of dislocation emission from a source.
(From Knott, 1973. Reprinted with permission from Butterworth.)
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Evidence of Hall–Petch behavior has been reported in a large number
of crystalline materials. An example is presented in Fig. 8.9. Note that the
microstructural strengthening term, ky, may vary significantly for different
materials. Furthermore, for a single-phase solid solution alloy with a dis-
location density, �, the overall strength may be estimated by applying the
principle of linear superposition. This gives

�y ¼ �0 þ ksc
1=2 þ kd�

1=2 þ kyd
1=2 ð8:18Þ

Note that Eq. (8.18) neglects possible interactions between the indivi-
dual strengthening mechanisms. It also ignores possible contributions from
precipitation strengthening mechanisms that are discussed in the next sec-
tion.

8.6 PRECIPITATION STRENGTHENING

Precipitates within a crystalline lattice can promote strengthening by imped-
ing the motion of dislocations. Such strengthening may occur due to the
additional stresses that are needed to enable the dislocations to shear the
precipitates (Fig. 8.10), or avoid the precipitates by looping/extruding in

FIGURE 8.9 Hall–Petch dependence of yield strength. (From Hu and Cline,
1968. Original data presented by Armstrong and Jindal, 1968. Reprinted
with permission from TMS-AIME.)
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between the spaces that separate the precipitates (Fig. 8.11). The favored
mechanism depends largely on the size, coherence, and distribution of the
precipitates.

The different ways in which dislocations can interact with particles
make the explanation of precipitation strengthening somewhat complicated.
However, we will attempt to simplify the explanation by describing the
mechanisms in different sub-sections. We will begin by considering the
strengthening due to looping of dislocations around precipitates (Fig. 8.1).
This will be followed by brief descriptions of particle shearing that can give
rise to ledge formation (Fig. 8.10) in disordered materials, and complex
association phenomena in ordered materials. The applications of precipita-
tion strengthening to the strengthening of aluminum alloys will then be
discussed after exploring the transitions that can occur between dislocation
looping and particle cutting mechanisms.

8.6.1 Dislocation/Orowan Strengthening

Precipitation strengthening by dislocation looping (Fig. 8.11) occurs when
sub-micrometer precipitates pin two segments of a dislocation. The rest of
the dislocation line is then extruded between the two pinning points due to
the additional applied shear stress �
 (Fig. 8.11). The strengthening result-
ing from this mechanisms was first modeled by Orowan, and is commonly
known as Orowan strengthening. This gives

�
 ¼ Gb

L� 2r
¼ Gb

L0
ð8:19Þ

where G is the shear modulus, b is the Burger’s vector, L is the center-to-
center separation between the precipitates, r is the particle radius, and L0 is
the effective particle separation, L0 ¼ L� 2r. Note that the simplest, one-

FIGURE 8.10 Schematic illustration of ledge formation and precipitation
strengthening due to dislocation cutting of precipitates: (a) before cutting;
(b) during cutting; (c) after cutting.
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dimensional estimate of the particle volume fraction, f, for the above con-
figuration is equal to r=L. The shear strengthening term may also be con-
verted into an axial strengthening term by premultiplying by an effective
Schmid factor.

Equation (8.19) neglects changes in dislocation character along the line
length of the dislocation. The critical stress, 
c, for dislocations bowing
through two pinning segments (Fig. 8.11) may be estimated from expres-
sions of the form:


c ¼ Að�Þ Gb

2�L0
ln

L0

r
þ Bð�Þ

� �
ð8:20Þ

FIGURE 8.11 Schematic of Orowan strengthening due to looping of disloca-
tions between precipitates: (a) dislocation approaching particles; (b) disloca-
tion extruding through particles; (c) critical situation when extruded
dislocation reaches semicircular configuration; (d) escape situation. (From
Ashby and Jones, 1996. Reprinted with permission from Pergamon Press.)
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where � is the angle between the dislocation line and the Burgers vector, Að�Þ
and Bð�Þ are both functions of �, L0 is the effective particle separation,
L0 ¼ L� 2r, b is the Burgers vector, and r is the particle radius. The function
Að�Þ has been determined by Weeks et al. (1969) for critical conditions
corresponding to the instability condition in the Frank–Read mechanism.
The special result for this condition is


c ¼ Að�Þ Gb

2�L0
ln

L0

r

� �
ð8:21Þ

where the function Að�Þ ¼ 1 for initial edge dislocation segments or Að�Þ ¼
1=ð1� 	Þ for initial screw dislocation segments. Critical stresses have been
calculated for different types of bowing dislocation configurations (Bacon,
1967; Foreman, 1967; Mitchell and Smialek, 1968).

Average effective values of A and B have been computed for the dis-
location configurations since the values of � vary along the dislocation lines.
For screw dislocations with horizontal side arms, Fig. 8.11(a), B ¼ �1:38,
while A ¼ �0:92 for corresponding edge dislocation configurations.
Similarly, for bowing screw and edge dislocations with vertical side arms, B
¼ 0:83 and 0.32, respectively. As the reader can imagine, different effective
values of A and B have been obtained for a wide range of dislocation
configurations. These are discussed in detail in papers by Foreman (1967)
and Brown and Ham (1967).

8.6.2 Strengthening by Dislocation Shearing or
Cutting of Precipitates

In addition to bowing between precipitates, dislocations may shear or cut
through precipitates. This may result in the formation of ledges at the
interfaces between the particle and the matrix, in the regions where disloca-
tion entry or exit occurs (Fig. 8.10). Alternatively, since dislocation cutting
of ordered precipitates by single dislocations will result in the disruption of
the ordered structure, the passage of a second dislocation is often needed to
restore the ordered structure (Fig. 8.12). Such pairs of dislocations are gen-
erally referred to as superdislocations. For energetic reasons, the superdislo-
cations will often dissociate into superpartials that are bounded by stacking
faults (SFs) and (APBs), as shown in Fig. 8.12.

Hence, the shearing of ordered precipitates results in the creation of
new surfaces (APBs), while the shearing of disordered precipitates results in
ledge formation, as shown schematically in Figs 8.10 and 8.12.

Furthermore, since an applied shear stress is needed to overcome the
precipitate resistance to shear by APB or ledge formation, significant
strengthening may be accomplished by dislocation shear/cutting mechan-
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isms, especially when the nature of the particle boundaries permit disloca-
tion entry into the particles, as shown schematically in Figs 8.13(a) and
8.13(b) for coherent and semicoherent interfaces (note that coherent inter-
faces have matching precipitate and matrix atoms at the interfaces, while
semicoherent interfaces have only partial matching of atoms). In contrast,
dislocation entry (into the precipitate) is difficult when the interfaces are
incoherent, i.e., there is little or no matching between the matrix and pre-
cipitate atoms at the interfaces, Fig. 8.13(c). Dislocation entry into, or exit
from, particles may also be difficult when the misfit strain, ", induced as a
result of lattice mismatch (between the matrix and precipitate atoms) is
significant in semicoherent or coherent interfaces. This is because of the
need to apply additional stresses to overcome the coherency strains/stresses
associated with lattice mismatch.

As discussed earlier, particle shearing of disordered particles results in
the formation of a slip step on entry, and another slip step on exit from the
particle. For a particle volume fraction, f , and similar crystal structures in
the matrix and particle, it can be shown that the shear strengthening pro-
vided by particle shearing of disordered precipitates is given by (Gleiter and
Hornbogen, 1967):

�
ps ¼
3Gðbp � bmÞ

b

r

d

� �
ð8:22Þ

FIGURE 8.12 View of an edge dislocation penetrating an ordered precipitate
(the crystal structure of the precipitate is simple cubic and its composition is
AB). In (a) the dislocation has not yet entered the precipitate. In (b) it is
partially through. Slip in the precipitate is accompanied by the formation of
an antiphase domain boundary (A–A and B–B bonds) across the slip plane.
After the dislocation exits the particle, the antiphase domain surface occupies
the whole of the slip plane area of the precipitate and the energy increase is
� �r2 (APBE). The increase in energy is linear with the position of the dis-
location in the particle. Thus, Fmax ¼ �r2 (APBE)/2r ¼ �r (APBE)/2. (From
Courtney, 1990. Reprinted with permission from McGraw-Hill.)
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where G is the average shear modulus, bp is the particle Burgers vector, bm is
the matrix Burgers vector, b is the average Burgers vector, d is the distance
traveled by the dislocation along the particle, and r is the particle radius. In
cases where the misfit strain (due to lattice mismatch between the matrix and
particle) is significant, the overall strengthening is the stress required to
move the dislocations through the stress/strain fields at the particle bound-
aries.

The increase in shear strength is then given by

�
m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 � 4 � b � "3E3

�T ð1þ 	Þ3

s
f 4=6r1=2 ð8:23Þ

where E is the Young’s modulus, b is the Burgers vector, " is the misfit
strain, T is the line energy of the dislocation, 	 is Poisson’s ratio, f is the
precipitate volume fraction, and r is the precipitate radius. The mismatch
strain, ", is now given by

" ¼ 3K ð�a=aÞ
3K þ 2=1þ 	Þ ð8:24Þ

where K is the bulk modulus, 	 is Poisson’s ratio, and the other constants
have their usual meanings.

It is important to note here that Eq. (8.23) may be used generally in
precipitation strengthening due to any type of misfit strain. Hence, for
example, " may represent misfit strains due to thermal expansion mismatch.
In cases where the sheared particles are ordered, e.g., intermetallic com-
pounds between metals and other metals (Fig. 8.12), the shearing of the
particles often results in the creation of SFs and APBs. The shear strength-

FIGURE 8.13 Schematic of the different types of interfaces: (a) coherent inter-
face; (b) semicoherent interface; (c) incoherent interface. (From Courtney,
1990. Reprinted with permission from McGraw-Hill.)
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ening term then becomes quite significant, and is given by (Gleiter and
Hornbogen, 1965):

�
pc ¼
0:28�3=2f 1=3

b2

r

G

� �1=2
ð8:25Þ

where � is the anti-phase boundary energy, f is the particle volume fraction,
r is the particle radius, b is the Burgers vector, and G is the shear modulus.
As before, the above strengthening equations can be multiplied by the
appropriate Schmid factor to obtain expressions for axial strengthening.

8.6.3 Dislocation Looping Versus Shear

It is important at this stage to examine forms of the precipitation strength-
ening equations, (8.22), (8.23) and (8.25). Two of the expressions for dis-
location cutting [Eqs (8.23) and (8.25)] show a strength dependence that
varies as r1=2, while the simplest cutting expression [Eq. (8.22)] shows a
dependence on r. However, the strengthening due to dislocation looping
[Equation (8.19)] exhibits dependence on r�1. Hence, as particle size
increases (for the same volume fraction of particles), the strength depen-
dence due to dislocation looping and dislocation shearing will be of forms
shown schematically in Fig. 8.14.

It should be clear from Fig. 8.14 that the stresses required for particle
shearing are lower than those required for particle looping when the particle

FIGURE 8.14 Schematic of the role of precipitation hardening mechanisms in
the overall aging response. (From Hertzberg, 1996. Reprinted with permission
from John Wiley.)
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sizes are below the critical size, rc. Hence, particle shearing will dominate
when the particle sizes are below rc (usually between 10 and 100 nm).
However, above the critical size, rc, the stress increment required for dis-
location cutting (Figs 8.10 and 8.12) is greater than that required for dis-
location looping (Fig. 8.11). Hence, it is easier to loop or extrude around the
precipitates, and the effective strengthening mechanism is dislocation loop-
ing (Orowan strengthening) when the average particle size is above the
critical particle radius rc (Fig. 8.14).

The favored strengthening mechanism should, therefore, change from
particle shearing to dislocation looping, as the precipitate size increases. The
increase in the average particle size may be due to heat treatment, which can
give rise to the diffusion-controlled coarsening of precipitates. Since heat
treatments can be used to control the sizes and distributions of precipitates,
it is common in industry to use aging heat treatments to achieve the desired
amounts of precipitation strengthening.

It is important to note here that the above discussion has been based
largely on idealized microstructures with uniform microstructures (precipi-
tate sizes and spacings). This is clearly not the case in real microstructures,
which generally exhibit statistical variations in precipitate size, distribution,
and shape. A statistical treatment of the possible effects of these variables is,
therefore, needed to develop a more complete understanding of precipita-
tion strengthening. Nevertheless, the idealized presentation (based on aver-
age particle sizes and distribution and simple particle geometries) is an
essential first step in the development of a basic understanding of the physics
of precipitation strengthening.

In any case, when the average particle sizes that result from aging heat
treatment schedules have radii that are less than rc, the strengths are less
than the peak strength values corresponding to r ¼ rc, and the material is
said to be under-aged. If heat treatment results in precipitates with average
radii, r ¼ rc, the material has the highest strength, and is described as peak
aged. Aging heat treatment for even longer durations (or higher tempera-
tures) will promote the formation of precipitates with average radii, r > rc;
hence, lower strengths that are associated with overaged conditions. The
relative strengths in the underaged, peak aged, and overaged conditions
may also be estimated easily by performing hardness tests.

8.6.4. Precipitation Strengthening of Aluminum
Alloys

One example of the practical use of precipitation strengthening is in the age
hardening of aluminum alloys. Such alloys are typically solution treated (to
dissolve all second phases) and aged (Fig. 8.15) for different durations to
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precipitate out second phase particles with the desired sizes and coherence.
The initial strengths of such alloys increase with increasing particle size,
until they reach peak levels (peak aged condition) where their hardnesses
are maximum (Fig. 8.16). This typically corresponds to the critical particle
radius, rc, described above. Beyond rc, strengthening occurs by dislocation
looping, and the strength decreases with increasing particle size, as the
annealing duration is increased (Fig. 8.16). The alloys are said to be over-
aged in these conditions. Similarly, aging durations that result in particle
radii below rc correspond to underaged conditions (Figs 8.15 and 8.16).

One classical example of an age-hardened system is the Al–Cu system
(Fig. 8.15). This was first studied during the first half of the 20th century,
and is perhaps the best understood aluminum alloy system. Following a
solution treatment (to remove any cold work or prior precipitates) and
quenching, the Al–Cu system is supersaturated with Cu in solid solution
(Fig. 8.15). Hence, subsequent aging results in the precipitation of Al–Cu
platelets/precipitates, provided that the aging temperatures and durations
are sufficient to promote the nucleation and growth of these new phases
within reasonable periods of time. The nature of the precipitates that form
also depend on the aging temperatures.

The first set of nano-scale particles that form are known as Guinier–
Preston (G-P) zones. These consist of copper atoms that are arranged into
plate-like structures. The G-P zones (Fig. 8.17) are named after the two
scientists (Guinier and Preston) who first discovered them. The first set of

FIGURE 8.15 (a) Left-hand section of the Al–Cu phase diagram; (b) aging heat
treatment schedule. (From Courtney, 1990. Reprinted with permission from
Pergamon Press.)
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G-P zones that form are known as G-P I zones. They are � 25 atoms in
diameter and are oriented parallel to {100} planes in the face-centered cubic
aluminum solid solution matrix. The G-P I zones are coherent and they
provide moderate strengthening by dislocation shearing. The second set of
G-P zones are � 75 atoms wide and � 10 atoms thick. They contain an
almost stoichiometric ratio of Al to Cu, and are known as G-P II zones.

Further aging results in the formation of metastable partially coherent
or coherent �0 precipitates. The �0 phase corresponds to the equilibrium
CuAl2 phase, but it also has a different lattice structure. Furthermore, the
maximum (peak) hardness is associated with the presence of both �0 and G-P
II zones (Fig. 8.16). Eventually, only �0 precipitates are present when the

FIGURE 8.16 Role of Guinier–Preston zones and � precipitates in the strength-
ening of Al–Cu alloys aged at 1308 and 1908C. (From Courtney, 1990.
Reprinted with permission from Pergamon Press.)
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alloys reach the overaged condition in which hardness, tensile strength, and
ductility are reduced on further aging.

Subsequent aging may result in the formation of coarse incoherent �
precipitates, if aging is carried out between 1708 and 3008C. The resulting
material now contains microscale coarse CuAl2 precipitates that are visible
under a light microscope. The material is also softer than in the quenched
state, because of the loss of the solid solution strengthening by Cu atoms,
which have now largely diffused from the aluminum matrix to form the
coarse CuAl2 precipitates.

The above trends are summarized in Fig. 8.16. Note that the figure
also indicates that the extent of hardening/strengthening increases with
increasing volume fraction of precipitate/increasing copper content, and
that the highest strengths are achieved at lower aging temperatures for
longer aging temperatures and durations.

8.7 DISPERSION STRENGTHENING

Before concluding this section on strengthening, it is important to discuss a
form of particulate strengthening that is known as dispersion strengthening.
Dispersion strengthening is usually associated with incoherent precipitates
that are larger in size than those encountered during Orowan strengthening

FIGURE 8.17 Schematic of Guinier–Preston zone.
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or dislocation cutting. Since the elastic energies of gliding dislocations can
be lowered by interactions with the boundaries of stiff elastic particles at
high temperatures, the dislocations are attracted and pinned by the bound-
aries. This problem was first analyzed by Dundurs and Gundagarajan
(1969) for time-independent deformation. Subsequent work by Srolovitz
et al. (1983, 1984) extended the models to the analyses of diffusion-assisted
relaxation of interfacial stresses that can occur during high-temperature
creep deformation.

Details of the above elasticity models are beyond the scope of the
current text. The interested reader is, therefore, referred to the relevant
literature, which is cited at the end of this chapter. Nevertheless, it is impor-
tant to note here that dispersion strengthening can be engineered to be as
effective as precipitation strengthening.

One important example of dispersion strengthening is that provided by
oxide particles. Oxide dispersion strengthening has been used recently to
strengthen aluminum alloys and nickel-base superalloys. This has been
achieved largely by the addition of Al2O3 flakes and ThO2 particles to
aluminum and nickel matrices. The overall strengthening from such rela-
tively large incoherent particles is less than that from precipitation strength-
ened alloys at lower temperatures. However, oxide dispersion strengthened
(ODS) alloys retain their strengths at very high temperatures (approaching
the melting points of nickel- and aluminum-base alloys). This is because the
Al2O3 and ThO2 particles are morphologically stable at very high tempera-
tures. It is, therefore, possible to design alloys for very high-temperature
applications where intermetallic precipitates would coarsen. This has led to
turbine blade and turbine vane applications of ODS nickel-base superalloys
at temperatures greater than � 9508C.

8.8 OVERALL SUPERPOSITION

The above discussion has considered strengthening mostly within an
athermal framework. However, it is important to realize that phase
changes (coarsening/transformations) may change the overall strengthen-
ing contributions from different mechanisms. Dislocation pile-ups may
also be relaxed by thermally assisted climb mechanisms. Furthermore,
cutting and dislocation looping may occur simultaneously within a given
alloy.

In any case, superposition concepts may be used to obtain order-of-
magnitude estimates of the overall strengthening levels when the fractional
contributions from each of the strengthening mechanisms are known
approximately. In such cases, the contributions of the different strengthen-
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ing mechanisms (to the overall strength of an alloy) may be estimated from
expressions of the form:


y ¼ 
0 þ�
s þ�
d þ�
gb þ�
p ð8:26Þ
or

�y ¼ �0 þ��s þ��d þ��gb þ��p ð8:27Þ
where subscripts 0, s, d, gb, and p denote single crystal, solid solution,
dislocation, grain boundary and particle strengthening components, respec-
tively. It is also important to remember that the above expressions neglect
possible interactions between strengthening mechanisms. They are intended
only to provide insights into the sources of dislocation strengthening in
metals and their alloys, i.e., they are not sufficiently well developed to be
fully predictive tools.

8.9 SUMMARY

An introduction to dislocation strengthening mechanisms has been pre-
sented in this chapter. Strengthening was shown to occur by the use of
defects (point defects, surface defects and volume defects in the restriction
of dislocation motion in engineering alloys. A semiqualitative account of the
different types of strengthening mechanisms include: (1) solid solution
strengthening; (2) dislocation strengthening; (3) grain boundary strengthen-
ing; (4) precipitation strengthening, and (5) dispersion strengthening. The
chapter concluded with a brief description of factors that can contribute to
the overall strengths of engineering alloys. It is particularly important to
note that the expressions presented in this chapter are only intended to serve
as semiquantitative guides for the estimation of order-of-magnitude values
of strengthening due to dislocation/defect interactions.
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9

Introduction to Composites

9.1 INTRODUCTION

Two approaches can be used to engineer improved mechanical properties of
materials. One involves the modification of the internal structure of a given
material system (intrinsic modification) by minor alloying, processing, and/
or heat treatment variations. However, after a number of iterations, an
asymptotic limit will soon be reached by this approach, as the properties
come close to the intrinsic limits for any given system. In contrast, an almost
infinite array of properties may be engineered by the second approach which
involves extrinsic modification by the introduction of additional (external)
phases.

For example, the strength of a system may be improved by reinforce-
ment with a second phase that has higher strength than the intrinsic limit of
the ‘‘host’’ material which is commonly known as the ‘‘matrix.’’ The result-
ing system that is produced by the mixture of two or more phases is known as
a composite material.

Note that this rather general definition of a composite applies to both
synthetic (man-made) and natural (existing in nature) composite materials.
Hence, concrete is a synthetic composite that consists of sand, cement and
stone, and wood is a natural composite that consists primarily of hemi-
cellulose fibers in a matrix of lignin. More commonly, however, most of
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us are familiar with polymer matrix composites that are often used in mod-
ern tennis racquets and pole vaults. We also know, from watching athletic
events, that these so-called advanced composite materials promote signifi-
cant improvements in performance.

This chapter introduces the concepts that are required for a basic
understanding of the effects of composite reinforcement on composite
strength and modulus. Following a brief description of the different types
of composite materials, mixture rules are presented for composite systems
reinforced with continuous and discontinuous fibers. This is followed by an
introduction to composite deformation, and a discussion on the effects of
fiber orientation on composite failure modes. The effects of statistical var-
iations in fiber properties on the composite properties are then examined at
the end of the chapter. Further topics in composite deformation will be
presented in Chap. 10.

9.2 TYPES OF COMPOSITE MATERIALS

Synthetic composites are often reinforced with high-strength fibers or whis-
kers (short fibers). Such reinforcements are obtained via special processing
schemes that generally result in low flaw/defect contents. Due to their low
flaw/defect contents, the strength levels of whiskers and fibers are generally
much greater than those of conventional bulk materials in which higher
volume fractions of defects are present. This is shown in Table 9.1 in
which the strengths of monolithic and fiber/whisker materials are compared.
The higher strengths of the whisker/fiber materials allow for the develop-
ment of composite materials with intermediate strength levels, i.e., between
those of the matrix and reinforcement materials. Similarly, intermediate
values of modulus and other mechanical/physical properties can be achieved
by the use of composite materials.

The actual balance of properties of a given composite system depends
on the combinations of materials that are actually used. Since we are gen-
erally restricted to mixtures of metals, polymers, or ceramics, most synthetic
composites consist of mixtures of the different classes of materials that are
shown in Fig. 9.1(a). However, during composite processing, interfacial
reactions can occur between the matrix and reinforcement materials.
These result in the formation of interfacial phases and interfaces (bound-
aries), as shown schematically in Fig. 9.1(b).

One example of a composite that contains easily observed interfacial
phases is presented in Fig. 9.2. This shows a transverse cross-section from
a titanium matrix (Ti–15V–3Cr–3Al–3Sn) composite reinforced with car-
bon-coated SiC (SCS-6) fibers. The interfacial phases in this composite
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have been studied using a combination of scanning and transmission
electron microscopy. The multilayered interfacial phases in the Ti–15V–
3Cr–3Al–3Sn/SCS-6 composite (Fig. 9.2) have been identified to contain
predominantly TiC. However, some Ti2C and Ti5Si3 phases have also
been shown to be present in some of the interfacial layers (Shyue et al.,
1995).

The properties of a composite can be tailored by the judicious control
of interfacial properties. For example, this can be achieved in the Ti–15V–
3Cr–3Al–3Sn/SCS-6 composite by the use of carbon coatings on the SiC/

TABLE 9.1 Summary of Basic Mechanical/Physical Properties of
Selected Composite Constituents: Fiber Versus Bulk Properties

Young’s
modulus
(GPa)

Strengtha

(MPa)

Alumina: fiber (Saffil RF) 300 2000
monolithic 382 332

Carbon: fiber (IM) 290 3100
monolithic 10 20

Glass, fiber (E) 76 1700
monolithic 76 100

Polyethylene: fiber (S 1000) 172 2964
monolithic (HD) 0.4 26

Silicon carbide: fiber (MF) 406 3920
monolithic 410 500

aTensile and flexural strengths for fiber and monolithic, respectively.

FIGURE 9.1 Schematic illustration of (a) the different types of composites and
(b) interfaces and interfacial phases formed between the matrix and reinfor-
cement materials.
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SCS-6 fibers. The hexagonal graphite layers in the carbon coatings tend to
align with axial stress, thus making easy shear possible in the direction of
interfacial shear stress. Hence, the interfacial shear strengths of silicon car-
bide fiber-reinforced composites can be controlled by the use of carbon
coatings that make interfacial sliding relatively easy. Such interfacial sliding
is critical in the accommodation of strain during mechanical loading or
thermal cycling.

Composite properties are also controlled by the selection of consti-
tuents with the appropriate mix of mechanical and physical properties
(Tables 9.1 and 9.2). Since light weight is often of importance in a large
number of structural applications, especially in transportation vehicles
such as cars, boats, airplanes, etc., specific mechanical properties are
often considered in the selection of composite materials. Specific properties
are given by the ratio of a property (such as Young’s modulus and
strength) to the density. For example, the specific modulus is the ratio
of Young’s modulus to density, while specific strength is the ratio of
absolute strength to density.

It is a useful exercise to compare the absolute and specific properties in
Table 9.2. This shows that ceramics and metals tend to have higher absolute
and specific moduli and strength, while polymers tend to have lower abso-
lute properties and moderate specific properties. In contrast, polymer matrix
composites can be designed with attractive combinations of absolute specific

FIGURE 9.2 (a) Transverse cross-section of Ti–15V–3Cr–3Al–3Sn composite
reinforced with 35 vol% carbon-coated SiC (SCS-6) fibers and (b) Interfacial
Phases in Ti-15-3/SCS6 composite.
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TABLE 9.2 Summary of Basic Mechanical/Physical Properties of Selected Composite Constituents: Constituent
Properties

Density
(mg/m3)

Young’s
modulus
(GPa)

Strengtha

(MPa)
Ductility

(%)

Toughness,
KIC

(M Pa m1=2Þ

Specific
modulus
[(GPa)/
(mg/m3)]

Specific
strength
[(MPa)/
(mg/m3)]

Ceramics
Alumina (Al2O3) 3.87 382 332 0 4.9 99 86
Magnesia (MgO) 3.60 207 230 0 1.2 58 64
Silicon nitride (Si3N4) 166 210 0 4.0
Zirconia (ZrC2) 5.92 170 900 0 8.6 29 152
�-Sialon 3.25 300 945 0 7.7 92 291
Glass–ceramic Silceram 2.90 121 174 0 2.1 42 60

Metals
Aluminum 2.70 69 77 47 26 29
Aluminum–3%Zn–0.7%Zr 2.83 72 325 18 25 115
Brass (Cu-30%Zn) 8.50 100 550 70 12 65
Nickel–20%Cr–15%Co 8.18 204 1200 26 25 147
Mild steel 7.86 210 460 35 27 59
Titanium–2.5% Sn 4.56 112 792 20 24 174

Polymers
Epoxy 1.12 4 50 4 1.5 4 36
Melamine formaldehyde 1.50 9 70 6 47
Nylon 6.6 1.14 2 70 60 18 61
Poly(ether ether ketone) 1.30 4 70 3 54
Poly(methyl methacrylate) 1.19 3 50 3 1.5 3 42
Polystyrene 1.05 3 50 2 1.0 3 48
Poly(vinyl chloride) rigid 1.70 3 60 15 4.0 2 35

aStrength values are obtained from the test appropriate for the material, e.g., flexural and tensile for ceramics and metals,
respectively.
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strength and stiffness. These are generally engineered by the judicious selec-
tion of polymer matrices (usually epoxy matrices) and strong and stiff
(usually glass, carbon, or kevlar) fibers in engineering composites, which
are usually polymer composites.

The specific properties of different materials can be easily compared
using materials selection charts such as the plots of E versus �, or �f versus �
in Figs 9.3 and 9.4, respectively. Note that the dashed lines in these figures
correspond to different ‘‘merit’’ indices. For example, the minimum weight
design of stiff ties, for which the merit index is E=�, could be achieved by
selecting the materials with the highest E=� from Fig. 9.3. These are clearly
the materials that lie on dashed lines at the top left-hand corner of Fig. 9.3.

FIGURE 9.3 Materials selection charts showing attractive combinations of spe-
cific modulus that can be obtained from engineering composites.
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Similarly, the materials with the highest specific strengths, �f =�, are the
materials at the top left-hand corner of the strength materials selection
chart shown in Fig. 9.4. In both charts (Figs 9.3 and 9.4), polymer matrix
composites such as carbon fiber-reinforced plastics (CFRPs), glass fiber-
reinforced plastics (GFRPs), and kevlar fiber-reinforced plastics (KFRPs)
emerge clearly as the materials of choice. For this reason, polymer matrix
composites are often attractive in the design of strong and stiff lightweight
structures.

A very wide range of synthetic and natural composite materials are
possible. Conventional reinforcement morphologies include: particles (Fig.
9.5), fibers [Fig. 9.6(a)], whiskers [Figs 9.6(b) and 9.6(c)], and layers, Fig.
9.6(d). However, instead of abrupt interfaces which may cause stress con-

FIGURE 9.4 Materials selection charts showing attractive combinations of spe-
cific strength that can be obtained from engineering composites.
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centrations, graded interfaces may be used in the design of coatings and
interfaces in which the properties of the system are varied continuously from
100% A to 100% B, as shown schematically in Fig. 9.7. Such graded transi-
tions in composition may be used to avoid abrupt changes in stress states
that can occur at nongraded interfaces.

Furthermore, composite architectures can be tailored to support loads
in different directions. Unidirectional fiber-reinforced architectures [Fig.
9.6(a)] are, therefore, only suitable for structural applications in which the
loading is applied primarily in one direction. Of course, the composite fiber
may be oriented to support axial loads in such cases. Similarly, bidirectional
composite systems (with two orientations of fibers) can be oriented to sup-
port loads in two directions.

The fibers may also be discontinuous in nature [Figs 9.6(b) and 9.6(c)],
in which case they are known as whiskers. Whiskers generally have high
strengths due to their low defect densities. They may be aligned [Fig. 9.6(b)],

FIGURE 9.5 Schematic illustration of particulate reinforcement morphologies:
(a) spherical; (b) irregular; (c) faceted.

Copyright © 2003 Marcel Dekker, Inc.



FIGURE 9.6 Examples of possible composite architectures: (a) unidirectional
fiber reinforcement; (b) aligned whisker reinforcement; (c) randomly oriented
whisker reinforcement; (d) continuous layers.

FIGURE 9.7 Schematic illustration of graded reinforcements.
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or randomly oriented, Fig. 9.6(c). The reader may recognize intuitively that
aligned orientations of whiskers or fibers will give rise to increased strength
in the direction of alignment, but overall, to anisotropic properties, i.e.,
properties that vary significantly with changes in direction. However, ran-
dom orientations of whiskers will tend to result in lower average strengths in
any given direction, but also to relatively isotropic properties, i.e., properties
that do not vary as much in any given direction.

In addition to the synthetic composites discussed above, several com-
posite systems have been observed in nature. In fact, most materials in
nature are composite materials. Some examples of natural composites
include wood and bone. As discussed earlier, wood is a natural composite
that consists of a lignin matrix and spiral hemicellulose fibers. Bone, on the
other hand, is a composite that consists of organic fibers, inorganic crystals,
water, and fats. About 35% of bone consist of organic collagen protein
fibers with small rod-like (5 nm � 5 nm � 50 nm) hydroxyapatite crystals.
Long cortical/cancellous bones typically have low fat content and compact
structures that consist of a network of beams and sheets that are known as
trabeculae.

It should be clear from the above discussion that an almost infinite
array of synthetic and artificial composite systems are possible. However,
the optimization of composite performance requires some knowledge of
basic composite mechanics and materials concepts. These will be introduced
in this chapter. More advanced topics such as composite ply theory and
shear lag theory will be presented in Chap. 10.

9.3 RULE-OF-MIXTURE THEORY

The properties of composites may be estimated by the application of simple
rule-of-mixture theories (Voigt, 1889). These rules can be used to estimate
average composite mechanical and physical properties along different direc-
tions. They may also be used to estimate the bounds in mechanical/physical
properties. They are, therefore, extremely useful in assessment of the com-
binations of basic mechanical/physical properties that can be engineered via
composite reinforcement. This section will present constant-strain and con-
stant-stress rules of mixture.

9.3.1 Constant-Strain and Constant-Stress Rules of
Mixtures

An understanding of constant-strain and constant-stress rules of mixtures
may be gained by a careful study of Fig. 9.8. This shows schematics of the
same composite system with loads applied parallel [Fig. 9.8(a)] or perpen-

Copyright © 2003 Marcel Dekker, Inc.



dicular [Fig. 9.8(b)] to the reinforcement layers. In the case where the loads
are applied parallel to the reinforcement direction [Fig. 9.8(a)], the strains in
the matrix and reinforcement layers must be equal, to avoid relative sliding
between these layers.

In contrast, the strains in the individual matrix and reinforcement
layers are different when the loads are applied in a direction that is perpen-
dicular to the fiber orientation, Fig. 9.8(b). Since the same load is applied to
the same cross-sectional area in the reinforcement and matrix layers, the
stresses in these layers must be constant and equal for a given load. The
loading configuration shown in Fig. 9.8(b), therefore, corresponds to a
constant stress condition.

Let us now return to the constant strain condition shown schemati-
cally in Fig. 9.8(a). If the initial length of each of the layers, L, and applied
load, P, is partitioned between the load in the reinforcement, Pr, and the

FIGURE 9.8 Schematic illustration of loading configurations for (a) constant-
strain rule of mixtures and (b) constant-stress rule of mixtures.
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load in the matrix, Pm, then simple force balance gives

Pc ¼ Pm þ Pr ð9:1Þ
However, from our basic definitions of stress, �, we know that

� ¼ P

A
ð9:2Þ

where P is the load and A is the cross-sectional area. Also, for uniaxial
elastic deformation, Hooke’s law gives

� ¼ E" ð9:3Þ
where E is Young’s modulus and " is the uniaxial strain.

Substituting Eqs (9.2) and (9.3) into Eq. (9.1), and using subscripts c,
m, and r to denote the composite, matrix, and reinforcement, respectively,
gives

Pc ¼ �cAc ¼ �mAm þ a�
r

ð9:4aÞ
and

Pc ¼ Ec"cAc ¼ Em"mAm þ Er"rAr ð9:4bÞ
where Ac is the area of composite, Am is the area of matrix, and Ar is the
area of the reinforcement. Noting that the strains in the composite, matrix,
and reinforcement are equal, i.e., "c ¼ "m ¼ "r, we may simplify Eq. (9.4b)
to obtain:

Ec ¼
Am

Ac

� �
Em þ Ar

Ac

� �
Er ð9:5Þ

However, the ratio (Am=Ac) corresponds to the area or volume frac-
tion of matrix, Vm, while the area fraction (Ar=Ac) corresponds to the area
or volume fraction of reinforcement, Vr. Equation (9.5) may, therefore, be
simplified to give:

Ec ¼ VmEm þ VrEr ð9:6Þ
Similarly, substituting Vm and Vm into Eq. (9.4a) gives the strength of the
composite, �c, as

�c ¼ Vm�c þ Vr�r ð9:7Þ
Equations (9.6) and (9.7) are the respective constant-strain rule-of-

mixture expressions for composite modulus and composite strength. They
represent the upper bound values for composite modulus and strength for
the composite system shown schematically in Fig. 9.8. Furthermore, the
constant-strain rule-of-mixture equations indicate that upper-bound com-
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posite properties are averaged according to the volume fraction of the com-
posite constituents.

The fraction of the load supported by each of the constituents also
depends on the ratio of the in moduli to the composite moduli. Hence, for
most reinforcements, which typically have higher moduli than those of
matrix materials (Tables 9.1 and 9.2) most of the load is supported by the
fibers, since:

Pr

Pc
¼ Vr

Er

Ec
ð9:8Þ

Substituting typical numbers for engineering composites (mostly poly-
mer matrix composites reinforced with ceramic fibers), Er=Ec � 10 and
Vr � 0:55, then Pr=Pc to 0.92. Hence, a very large fraction of the applied
load is supported by the fibers due to their higher moduli.

Let us now consider the constant-stress rule-of-mixtures condition
shown schematically in Fig. 9.8(b). In this case, the stresses are equal in
the composite, matrix and reinforcement, i.e., �c ¼ �m ¼ �r. However, the
composite displacement,�‘c, is now given by the sum of the displacement in
the matrix, �‘m, and the displacement in the reinforcement, �‘r. Hence, the
composite displacement, �‘c, may be expressed as

�‘c ¼ �‘m þ�‘r ð9:9Þ
Noting that the engineering strain, �, is defined as the ratio of length exten-
sion, �‘, to original length, ‘, we may write:

"c‘c ¼ ‘m"m þ ‘r"r ð9:10Þ
Since the area or volume fractions now correspond to the length frac-

tions of matrix and reinforcement, we may write

Vm ¼ ‘m
‘c

ð9:11aÞ

and

Vr ¼
‘r
‘c

ð9:11bÞ

Dividing both the left- and right-hand sides of Eq. (9.10) by ‘c, and
noting that Vm ¼ ‘m=‘c and Vr ¼ ‘r=‘c [from Eqs (9.11a) and (9.11b)] gives

"c ¼
‘m
‘c

� �
"m þ ‘r

‘c

� �
"r ð9:12aÞ

or

"c ¼ Vm"m þ Vr"r ð9:12bÞ
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The composite strain is, therefore, averaged between the matrix and reinfor-
cement for the constant stress condition. The composite modulus for the
constant stress condition may be obtained by substituting " ¼ �=E into
Eq. (9.12b):

"c ¼
�c
Ec

Vm
�m
Em

þ Vr
�r
Er

ð9:13Þ

However, since �c ¼ �m ¼ �r, Eq. (9.13) reduces to

1

Ec
¼ Vm

Em
þ Vr

Er
ð9:14aÞ

or inverting Eq. (9.14a) gives

Ec ¼
EmEr

VmEr þ VrEm
ð9:14bÞ

Equation (9.14b) represents the loci of lower bound composite moduli for
possible reinforcement volume fractions between 0 and 1 (Fig. 9.9). Note that
the constant-strain rule-of-mixtures estimates represent the upper bound
values in Fig. 9.9. Furthermore, the actual composite moduli for most sys-
tems are in between the upper and lower bound values shown schematically
in Fig. 9.9. For example, particulate composites will tend to have composite
moduli that are closer to the lower bound values, as shown in Fig. 9.9.

The expressions for modulus may be generalized for the wide range of
possible composite materials between the constant strain (iso-strain) and
constant stress (iso-stress) conditions (Fig. 9.9). This may be accomplished
by the use of an expression of the form:

ðXcÞn ¼ VmðXmÞn þ VrðXrÞn ð9:15Þ
where X is a property such as modulus, n is a number between þ1 and �1,
and subscripts c, m, and r denote composite, matrix, and reinforcement,
respectively. Equation (9.15) reduces to the constant strain and constant
stress expressions at the limits of n ¼ þ1 and n ¼ �1.

Also, the wide range of possible composite properties may be esti-
mated for actual composites for which values of n are between �1 and
þ1. Furthermore, the values of n for many composites are close to zero.
However, there are no solutions for n ¼ 0, for which Eq. (9.15) gives the
trivial solution 1 ¼ 1. Iterative methods are, therefore, required to obtain
the solutions for n ¼ 0.

Although the discussion so far has focused largely on iso-stress and
iso-strain conditions, the above rule-of-mixture approach can be applied
generally to the estimation of physical properties such as density, thermal
conductivity, and diffusivity. The rule-of-mixture expressions can, therefore,
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be used to estimate the effects of reinforcements on many important physi-
cal properties. They may also be used to estimate the bounds in a wide range
of physical properties of composite materials. Such rule-of-mixture calcula-
tions are particularly valuable because they can be used in simple ‘‘back-of-
the-envelope’’ estimates to guide materials selection and design.

Finally, in this section, it is important to note that the simple aver-
aging schemes derived above for two-phase composite systems can be
extended to a more general case of any n-component system (where
n 
 2). This gives

ðXcÞn ¼
Xm
i¼1

Vi ðXi Þn ð9:16Þ

where Xi may correspond to the physical/mechanical properties of matrix,
reinforcement, or interfacial phases (Figs 9.1 and 9.2).

9.4 DEFORMATION BEHAVIOR OF UNIDIRECTIONAL
COMPOSITES

Let us start this section by considering the uniaxial deformation of an
arbitrary unidirectional composite reinforced with stiff elastic fibers.

FIGURE 9.9 Schematic illustration of upper and lower bound moduli given by
constant-strain and constant-stress mixture rules. Note that particulate-rein-
forced composites have moduli that are closer to lower bound values. (From
Ashby and Jones, 1984. Reprinted with permission from Pergamon Press.)
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During the initial stages of deformation, both the matrix and fibers deform
elastically (Fig. 9.10). Furthermore, since the axial strains in the matrix and
fiber are the same (iso-strain condition), then the stresses for a given strain,
�ð"Þ, are given simply by Hooke’s law to be

�cð"Þ ¼ Ec" ¼ VmEm"þ VfEf" ð9:17aÞ

�mð"Þ ¼ VmEm" ð9:17bÞ

�fð"Þ ¼ VfEf" ð9:17cÞ
where �ð"Þ denotes the stress corresponding to a given strain, ", and
subscripts c, m, and f correspond, respectively, to the composite, matrix,
and fiber. The composite modulus in the elastic regime may also be
estimated from Eq. (9.17a) by dividing by the uniaxial strain, ". Also,
each of the constituents in the composite will deform elastically until a
critical (yielding or fracture) condition is reached in the matrix, fiber, or
interface.

If we now consider the specific case of a ductile matrix composite
reinforced with strong brittle fibers, matrix yielding is most likely to precede
fiber fracture. In this case, the onset of composite yielding will correspond to
the matrix yield strain, "my, as shown schematically in Fig. 9.11. Also, the
composite yield stress, and the stresses in the matrix and fiber are given,
respectively, by

�cð"myÞ ¼ Vm�mð"myÞ þ Vf�fð"myÞ ð9:18aÞ

FIGURE 9.10 Stress–strain curves associated with uniaxial deformation of stiff
elastic composite.
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�mð"myÞ ¼ Vm�mð"myÞ ð9:18bÞ

�fð"myÞ ¼ Vf�fð"myÞ ð9:18cÞ
where the subscript ‘‘my’’ corresponds to the matrix yield stress and sub-
scripts c, m, and f denote composite, matrix, and fiber, respectively.
Following the onset of matrix yielding, codeformation of the matrix and
fibers continues until the fiber fracture strain, "cf , is reached. The stresses
corresponding to this strain are again given by constant-strain rule-of-
mixtures to be

�cð"cfÞ ¼ Vm�mð"cfÞ þ Vf�fð"cfÞ ð9:19aÞ

�mð"cfÞ ¼ Vm�mð"cfÞ ð9:19bÞ

�fð"cfÞ ¼ Vf�fð"cfÞ ¼ VfEf"cf ð9:19cÞ
where all the above variables have their usual meaning. It is important to
note that the onset of fiber fracture in many composite systems often coin-
cides with the onset of catastrophic failure in the composite, Fig. 9.12(a).
However, in other composites, matrix deformation may continue after fiber
fracture. Such extended matrix deformation may continue until final failure
occurs by matrix fracture. The resulting stress–strain behavior is shown
schematically in Fig. 9.12(b).

The behavior shown schematically in Figs 9.11 and 9.12 may occur in
either a ductile metal/polymer or matrix composites reinforced with strong/
stiff elastic fibers. However, in the case of brittle matrix composites, such as
a ceramic matrix or thermoset polymer matrix composites reinforced with
strong/stiff fibers, the composite deformation is often restricted to the elastic

FIGURE 9.11 Schematic illustration of stages of deformation in an elastic–-
plastic composite.
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regime, i.e., elastic deformation is truncated by composite failure. The above
summary therefore provides a general framework for an appreciation of
composite deformation in the different types of unidirectional composites
that can be obtained by reinforcement with strong, brittle fibers.

9.5 MATRIX VERSUS COMPOSITE FAILURE MODES
IN UNIDIRECTIONAL COMPOSITES

Depending on the volume fraction of matrix and fiber, and the ductilities of
the matrix and fiber materials, different failure modes may occur in unidir-
ectional composite materials. The composite ‘‘strength’’ will also depend on
the sequence of matrix and fiber fracture. If fiber fracture occurs before
matrix fracture, then the composite strength, �c, is given simply by the
matrix contribution to be

�c ¼ Vm�mð"mfÞ ð9:20Þ

where �mð"mf Þ is the stress in the matrix at the matrix fracture strain, "mf .
Conversely, if matrix fracture somehow occurs before fiber failure, then the
composite strength is given by the remaining fiber bundle strength:

�c ¼ Vf�fð"cfÞ ð9:21Þ

FIGURE 9.12 Schematic illustration of possible stress–strain curves in elastic–
plastic composites: (a) composite failure coincides with fiber failure; (b)
matrix deformation continues after fiber fracture. (From Courtney, 1990.
Reprinted with permission from McGraw-Hill.)
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Finally, if matrix and fiber failure occur simultaneously at the same strain,
"c, then the composite fracture strength is given simply by constant-strain
rule of mixtures to be

�c ¼ Vm�mð"cÞ þ Vf�fð"cÞ ð9:22Þ
The above summary provides a simple picture of the application of con-
stant-strain rule of mixtures to the analysis of possible failure modes in
unidirectional composites. However, it neglects the effects of stress concen-
trations (due to reinforcement geometries) and geometric constraints that
are inherent in composite deformation. Nevertheless, such simple under-
standing of composite deformation and failure phenomena is an essential
prerequisite to the development of an intuitive understanding of composite
behavior.

In the case of fiber-reinforced composites, the failure modes are
strongly affected by the volume fraction of fiber. This is illustrated in Fig.
9.13 in which the stress levels corresponding to matrix-dominated failure
(composite failure at the matrix fracture strain) and composite-dominated
failure are plotted. The composite failure stress increases linearly with
increasing fiber volume fraction, since the fiber strength is generally greater
than the matrix strength. However, the stress for matrix-dominated failure
decreases continuously with increasing fiber volume fracture, since the
matrix volume fraction undergoes a corresponding decrease as the fiber
volume fraction increases (Vm ¼ 1� Vf Þ.

Fig. 9.13 shows that composite strength is determined by the matrix-
dominated failure locus for small fiber volume fractions. This is because the
stresses required for matrix failure in this regime exceed those required for
composite failure at low fiber volume fractions. The fiber volume fraction
above which the composite failure stress exceeds the matrix-dominated fail-
ure stress is denoted by Vmin in Fig. 9.13. This is obtained by equating the
equation for composite failure Eq. (9.22) to that for matrix-dominated fail-
ure, Eq. (9.20):

Vc�fð"cfÞ þ ð1� VcÞ�mð"cfÞ ¼ ð1� VcÞ�mð"mfÞ ð9:23aÞ
or

Vc ¼
�mð"mfÞ � �mð"cfÞ

�fð"cfÞ þ �mð"mfÞ � �mð"cfÞ
ð9:23bÞ

Similarly, we may obtain a condition for the minimum fiber volume
fraction, Vmin, at which the composite fracture strength, �cð"mf Þ, exceeds the
matrix fracture strength, �mð"mf Þ:

�mð"mfÞ ¼ ð1� VminÞ�mð"cfÞ þ Vmin�fð"cfÞ ð9:24aÞ
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or

Vmin ¼ �mð"mfÞ � �mð"cfÞ
�fð"cfÞ � �mð"cfÞ

ð9:24bÞ

Typical values for Vc and Vmin range between 0.02 and 0.10. Hence,
relatively small volume fractions of fiber reinforcement are needed to
improve the strengths of unidirectional fiber-reinforced composites, com-
pared to those of the matrix. Also, composite failure modes are likely to
occur in composites with volume fractions greater than Vc (Fig. 9.13).

9.6 FAILURE OF OFF-AXIS COMPOSITES

So far, we have focused primarily on the deformation behavior of unidirec-
tional fiber-reinforced composites. However, it is common in several appli-
cations of composite materials to utilize fiber architectures that are inclined
at an angle to the loading axis. Such off-axis composites may give rise to
different deformation and failure modes, depending on the orientation of
the fibers with respect to the loading axis.

To appreciate the possible failure modes, let us start by considering the
loading of the arbitrary off-axis composite shown schematically in Fig. 9.14.
The uniaxial force vector, F , may be resolved into two components: F cos �
and F sin �. The component F cos � results in loading of the fibers along

FIGURE 9.13 Loci of stress levels corresponding to matrix-dominated and
composite failure modes.
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the fiber axis. Since the area normal to the fibers is A0= cos �, then the force
acting on the plane parallel to the fiber direction is given by

�� ¼
F cos�

ðA0= cos �Þ
¼ F

A0
cos2 � ¼ �0 cos

2 � ð9:25Þ

where �� is the stress along the fiber direction, is the angle of inclination of
the fibers, �� is the applied axial stress ð�0 ¼ F=A0Þ, and the other variables
have their usual meaning. The resolved component of the applied stress
along the fiber axis is given by Eq. (9.25). This results in the deformation
of planes in the fiber and matrix that are perpendicular to the fiber direction.

Since the fibers are brittle, fiber failure will eventually occur when �� is
equal to the tensile strength of a composite inclined along the 08 orientation,
i.e., at a stress level corresponding to the strength of a unidirectional fiber-
reinforced composite. If we assume that this tensile strength is given by
(T.S.)0, then the tensile strength corresponding to fiber failure in a compo-
site reinforced with fibers inclined at an angle, �, is given by Eq. (9.25) to be

ðT:S:Þ� ¼
ðT:S:Þ0
cos2 �

ð9:26Þ

Since cos � is less than 1 for � > 0, (T.S.)� will increase with increasing �
between 0 and 908. Hence, the composite strength will increase initially with
increasing �, for small values of �, as shown in Fig. 9.15.

FIGURE 9.14 Arbitrary off-axis composite configuration showing deformed
areas.
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In addition to the axial loading on the fibers, the force component,
F cos�, will induce shear stresses on the planes that are parallel to the fiber
directions. The matrix shear force, F cos�, will act on cross-sectional areas
of magnitude A0= sin�. Hence, the matrix shear stress, 
�, is given by


� ¼
F cos �

ðA0= sin�Þ
¼ F

A0
sin � cos � ¼ �0 sin� cos � ð9:27Þ

In ductile matrix composites, the applied shear stress may cause matrix
yielding to occur when the matrix shear yield strength, 
my, is reached. For
many materials, 
my is approximately equal to half of the uniaxial matrix
yield strength, �my. More precisely, the shear yield stress is given by the Von
Mises yield criterion to be �y=

ffiffiffi
3

p
, where �y is the uniaxial yield stress. In any

case, the applied stress required to cause failure by matrix yielding is given
by

�0 ¼ 
my

sin � cos �
ð9:28Þ

Variations in �0 for matrix yielding by shear are illustrated in Fig.
9.15. Note that �0 for matrix shear failure is initially greater than the corre-
sponding values for fiber failure for small values of �. However, as �
increases, a critical condition is reached at which the stresses required for

FIGURE 9.15 Dependence of composite strength and failure modes on fiber
orientation.
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fiber failure and matrix yielding are equal. This critical condition (for the
transition from fiber-dominated failure to matrix shear yielding) is given by

�0
cos2 �

¼ 
my

sin� cos �
ð9:29aÞ

or

�c1 ¼ tan�1 
my

�0

� �
ð9:29bÞ

where �c1 is the angle at which the transition occurs, �0 is the strength of the
composite in the zero-degree orientation, i.e., �0 ¼ ðT:S:Þ0 ¼ Vm�mð"f Þþ
Vf�f ð"f Þ. Typical values for fc1 (Fig. 9.15) for most composites are below
108. It is important to note here that fiber fracture dominates for � > �c1,
while matrix shear yielding occurs for � > �c1, as shown in Fig. 9.15.

At even higher fiber angles ð� > �c1), a second transition can occur
from matrix shear yielding to matrix failure in a direction normal/perpen-
dicular to the fiber direction. The matrix normal stresses can be found by
dividing the load component, F sin�, by the area A0= sin� (Fig. 9.14). The
normal matrix stress, �n, is thus given by (Fig. 9.14) to be

�n ¼ F sin �

ðA0= sin�Þ
¼ F

A0
sin2 � ð9:30Þ

For ductile matrix composites, matrix failure normal to the fiber direction
occurs when �n is equal to the uniaxial matrix yield strength, �my. Hence,
rearranging Eq. (9.30), and substituting �my with �n gives

�0 ¼ �my

sin2 �
ð9:31Þ

where �0 is the applied stress required for failure to occur by normal matrix
yielding. This stress becomes lower than that required for matrix shear
yielding at higher values of � (Fig. 9.15). The transition from matrix
shear to normal matrix yielding occurs when �0 for matrix shear and normal
matrix yielding are equal. From Eqs (9.28) and (9.31), this is given by

�my

sin2 �
¼ 
my

sin � cos �
ð9:32aÞ

or

�c2 ¼ cot�1 
my

�my

� �
ð9:32bÞ

Since 
my � �my=2, typical values for �c2 at the transition from matrix
shear to normal matrix yielding are � cot�1ð1=2Þ � 63:48. In summary, the
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composite strength depends strongly on fiber orientation angle, �, as shown
schematically in Fig. 9.15. Also, the strength dependence on � will be deter-
mined by the underlying mechanisms of failure, and the critical conditions
required for the transition from one mechanism to another.

9.7 EFFECTS OF WHISKER/FIBER LENGTH ON
COMPOSITE STRENGTH AND MODULUS

So far, our discussion has focused on the behavior of long fiber-reinforced
composites. However, such composites are often too expensive for practical
applications, in spite of the attractive combinations of strength and stiffness
that can be engineered by the judicious selection of appropriate fiber and
matrix materials. In cases where moderate strength/stiffness and low/mod-
erate cost are of the essence, it may be desirable to use composites that are
reinforced with short fibers, which are also referred to as whiskers.

An example of a titanium boride (TiB) whisker-reinforced titanium
matrix composite is presented in Fig 9.16. This shows aligned TiB whiskers
in a titanium alloy matrix. The whiskers have been aligned by an extrusion
process (Dubey et al., 1997). The resulting composite properties are inter-
mediate between those of the titanium matrix alloy and an equivalent fiber-
reinforced composite. However, the whisker-reinforced composite is much
cheaper than possible fiber-reinforced composite alternatives.

Let us now return to answer the original question of why the whisker-
reinforced composite has lower strength and modulus. We will begin by
extracting a representative volume element or unit cell from the whisker-
reinforced composite structure. This is illustrated in Figs 9.17(a) and (b).
The representative volume element or unit cell is a microstructural config-
uration that captures the volume fraction and spatial geometry of the com-
posite. Once it is obtained, we may proceed to do a force balance analysis to
determine the stresses along the fibers.

Consider the conditions required for horizontal force equilibrium in
the free body diagram shown in Figs 9.17(c) and (d). For force equilibrium,
the axial force in the whisker must be balanced by the shear force in the
matrix or interface, Fig. 9.17(d):

�d2

4
ð� þ d� � �Þ � 
ð�dÞdx ¼ 0 ð9:33Þ

Simplifying Eq. (9.32) and integrating between appropriate limits giveðx
0

d� ¼
ðx
0

4


d
dx ð9:34Þ
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FIGURE 9.16 (a) SEM micrograph of Ti–6Al–4V–0.5B (7048C/1 h/AC) showing
�þ �Widmanstatten structure and second-phase TiB whiskers aligned in the
extrusion direction; (b) TEM micrograph of the undeformed Ti–6Al–4V–0.5B
showing � grains in a � matrix as well as TiB whiskers. Note that AC corre-
sponds to air cool and the Widmanstatten structure consists of aligned colo-
nies of x platelets with prior b grains. (From Dubey et al., 1997. Reprinted with
permission from Elsevier.)

FIGURE 9.17 Sections of (a) whisker-reinforced composite, (b) half of a repre-
sentative whisker, (c) loading, and (d) free body diagram.
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For regions in the middle of the fiber, 
 can be assumed to be constant.
However, close to the fiber ends, 
 may vary significantly in the matrix.
Similarly, the stresses at the ends of the whiskers/fibers are equal to zero.
Hence, neglecting the variations in 
 near the fiber ends, Eq. (9.34) may be
integrated to obtain the following approximate solution for the stress in the
fiber, �f :

�f ¼
4


d

� �
x ð9:35Þ

Equation (9.35) suggests a linear increase in stress with increasing distance,
x, from by the fiber ends. By symmetry, a similar linear increase in �f will be
expected from the other end of the short fiber shown in Fig. 9.17. Hence, for
small fiber/whisker lengths ð‘ < ‘cÞ, the stress distribution along the whisker
will have a triangular profile, as shown in Fig. 9.18. The peak fiber stress for
short fibers/whiskers will, therefore, occur at the center of the whisker/short
fiber.

As the whisker length increases, the peak stress at the center of the
whisker increases, as shown in Fig. 9.18. This continues until the peak stress
reaches the value that would be expected in a long fiber under constant strain
conditions, �f ð"f Þ. The fiber length corresponding to this critical condition
corresponds to ‘c in Fig. 9.18. For values of ‘ > ‘c, the linear increase in
stress occurs from both ends of the whisker/short fiber until �f ð"f Þ is reached
at x ¼ ‘c=2. A constant fiber stress is then maintained for values of x > ‘c=2.
This is illustrated in Fig. 9.18 with the trapezoidal profiles for which ‘ > ‘c.

It should be clear fromFig. 9.18 that the average fiber stress, ���f , depends
on whether the fiber length is less than or greater than ‘c. For fibers with
lengths greater than ‘c, the average fiber stress is given by Fig. 9.18a to be:

�f ¼ �fð"cÞ 1� ‘c
‘

� �� �
þ 1

2
�fð"cÞ

‘c
2‘

� �� �
ð9:36Þ

Hence, applying the rule of mixtures to the composite with ‘ > ‘c gives the
composite strength to be

�cð"cÞ ¼ Vf�f þ Vm�mð"cÞ ¼ Vf�fð"cÞ 1� ‘c
2‘

� �� �
þ Vm�mð"cÞ ð9:37Þ

where �cð"cÞ is the stress in the composite at the critical condition at which
long-fiber conditions are reached, and �f ð"cÞ are the corresponding stresses
in the fiber and matrix, respectively. The expression [‘� ð‘c=2‘Þ� can be
regarded as a fiber efficiency factor, �f . Hence, substituting �f into Eq.
(9.37) gives

�cð"cÞ ¼ �fVf�fð"cÞ þ Vm�mð"cÞ ð9:38Þ

Copyright © 2003 Marcel Dekker, Inc.



Similarly, we may consider the case of a subcritical short fiber/whisker-
reinforced composite with ‘4‘c (Fig. 9.18). In this case, the average fiber
stress for the triangular profile is given by

�f ¼
1

2
�fð"Þ

‘

‘c
ð9:39Þ

As before, the composite stress is given by simple rule of mixtures to be

�cð"Þ ¼ Vm�mð"Þ þ Vf�fð"Þ ¼ Vm�mð"Þ þ
1

2
Vf�fð"Þ

‘

‘c
ð9:40Þ

Also, ‘=ð2‘cÞ may be considered to be a fiber efficiency factor, �f , for
whiskers of length, ‘4‘c. Hence, Eq. (9.40) may now be expressed as

�cð"Þ ¼ Vm�cð"Þ þ �fVf�fð"Þ ð9:41Þ
The strengths of composites with whisker geometries may, therefore, be
expressed in terms of constant-strain rule of mixtures and fiber efficiencies.
Furthermore, expressions for composite moduli may be derived by noting
that � ¼ E" for the composite, matrix, and fibers:

Ec ¼ VmEm þ �fVfEf ð9:42Þ

FIGURE 9.18 Stress variations along the length of a whisker/short fiber. (From
Matthews and Rawlings, 1994. Reprinted with permission from Chapman and
Hall.)
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Equation (9.42) applies to all lengths of whiskers (‘4‘c and ‘ > ‘cÞ
provided that the appropriate expressions are used in the estimation of �f .

So far, the equations presented in this section have been derived for
aligned whiskers, as shown in Figs 9.17 and 9.18. However, in cases where
the whiskers are randomly oriented [Fig. 9.6(c)], an orientation efficiency
factor, �0, must be introduced (Matthews and Rawlings, 1994). Detailed
derivations of �0 are beyond the scope of this text. It is simply sufficient
to note here that the whisker orientation factors account for the average
decrease in composite strength (in any given direction) due to the random
orientations of the fibers. When this is taken into account, the modified rule-
of-mixture expressions for composite strength and modulus are given by

�cð"Þ ¼ Vm�mð"Þ þ �0�fVf�fð"Þ ð9:43Þ
and

Ec ¼ VmEm þ �0�fVfEf ð9:44Þ
Typical values of �0 are 0.375 for random in-plane two-dimensional

arrays and 0.2 for three-dimensional random arrays. Also, �0 is 1 for aligned
longitudinal whiskers, and values of �f are between 0 and 1.

9.8 CONSTITUENT AND COMPOSITE PROPERTIES

The rule-of-mixture expressions presented in the preceding sections can be
used to facilitate our understanding of the effects of the constituents on
composite strength and modulus. In most engineering composites, polymer
or metal matrices are reinforced with strong/brittle fibers. However, our
discussion in this section will be more general in nature. We will examine
the properties of composite constituents, and how the constituent properties
contribute to composite behavior.

9.8.1 Fibers and Matrix Materials

In Chap. 6, we showed that the theoretical strength of a solid is � G=2�,
where G is the shear modulus. However, due to the existence of defects, the
actual measured strengths of solids are generally a few orders of magnitude
below the predicted theoretical strengths. In an effort to develop strengths
that are closer to theoretical values, special processing techniques have been
developed for the fabrication of composite fibers and whiskers with low
defect content (small crack sizes).

The importance of defect size is illustrated in Fig. 9.19 in which com-
posite strength is plotted against flaw size. Since the maximum possible
crack size per unit volume increases with increasing fiber size, fiber strengths
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will decrease with increasing fiber length. This is because failure is more
likely to initiate from larger flaws, which are more likely to exist in longer
fibers. The mechanical properties of fibers, therefore, exhibit statistical var-
iations. These statistical variations are often well described by Weibull dis-
tributions (Weibull, 1951).

Typical values of the strengths and moduli for selected composite
fibers are compared with those of their monolithic counterparts in Table
9.1. Note that the fiber strengths are approximately one order of magnitude
greater than the strengths of the monolithic materials. Also, depending on
the molecular orientation and structure of organic fibers (such as carbon
and polyethylene fibers), the moduli of the fibers and their monolithic coun-
terparts may be significantly different. This is because the long-chain poly-
mer structures have stiffnesses that depend on how their covalent bonds and
Van der Waals’ forces are oriented with respect to the applied loads. Stiff
polymer fibers can, therefore, be engineered by the careful orientation of
strong covalent bonds along the fiber direction.

FIGURE 9.19 Variation in whisker/fiber strength as a function of flaw size.
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9.8.2 Composites

With the understanding of mixture rules developed in the earlier sections, it
should be clear that the incorporation of stiff/strong fibers can be used to
engineer composites with higher overall strengths and moduli than their
monolithic counterparts. The strength and modulus of a composite may,
therefore, be increased by increasing the volume fraction of strong/stiff
fibers.

However, it is generally difficult to process uniform composite archi-
tectures with fiber volume fractions that are greater than 50–60%. This is
because the viscosity of the composite ‘‘mix’’ (during composite processing)
increases with increasing fiber volume fraction. This increase in viscosity
makes it very difficult to achieve homogeneous mixing as the volume frac-
tion of stiff/strong reinforcements is increased beyond about 50–60%.
Furthermore, fibers are more likely to ‘‘swim’’ during processing, and
thus come into contact after the fabrication of composites with reinforce-
ment volume fractions greater than 50–60%. For these reasons, most fiber-
reinforced composite systems are limited to maximum fiber volume fractions
of � 50–60%.

9.8.2.1 Polymer Composites

Once the fibers are incorporated into the composite structure, matrix loads
are transmitted to the fibers by shear. Since the fibers are stronger, they will
support greater loads than the matrix can. This means that the load-carrying
ability of most composites is provided by the fibers. This is always the case
for polymer matrix composites in which the matrix strength and moduli are

TABLE 9.3 Typical Mechanical and Physical Properties of Bulk
Monolithic Materials

Young’s
modulus
(GPa)

Yield
stress
(MPa)

Tensile
strength
(MPa)

Ductility
(%)

Al–Cu–Mg (2618A) 74 416 430 2.5
Al–Cu–Mg + 20%Al2O3 90 383 0.8
Al–Zn–Mg � 70 273 11.5
Al–Zn–Mg + 25%Al2O3 80 + 266 1.5
Titanium (wrought) 120 200 400 25
Titanium +35%SiC 213 1723 <1
Ti–Al–V (wrought) 115 830 1000 8
Ti–Al–V+35%SiC 190 1434 0.9
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generally much less than those of the fibers (Table 9.4). The resulting com-
posite properties are, therefore, dependent on the fiber properties, and the
polymer matrix serves mostly as a ‘‘glue’’ that keeps the structure bonded,
and the fibers separated from each other. The bonding between the matrix
and the fiber materials also enables stresses to be transmitted from the
matrix to the fiber via shear.

Since polymers have relatively open structures, they are typically less
dense than ceramics and metallic materials (Fig. 9.4). Furthermore, the
density, �, of a composite may be estimated from simple rule of mixtures:

�c ¼ Vm�m þ Vf�f ð9:45Þ
where subscripts c, m, and f denote composite, matrix, and fiber, respec-
tively. Composites reinforced with a significant fraction of less dense poly-
mers will, therefore, have densities lower than those of most metal alloys
and ceramic materials (Fig. 9.4).

For several applications of composites in which light weight is desir-
able, in addition to absolute strength of stiffness, it is useful to consider
density normalized strength and modulus values. These are often referred to
as specific strength and specific modulus, respectively. Due to their relatively
low densities, polymer matrix composites have relatively high specific
strengths. They are, therefore, used in the wings of military aircraft such
as the Harrier jet.

The incorporation of stiff fibers into polymer matrices raises the com-
posite moduli to levels that are sufficient to make engineering composites
(mostly polymer matrix composites) very competitive with metallic and
ceramic materials. This is shown clearly in Fig. 9.3. The most commonly
used polymer matrix composites are epoxy matrix composites reinforced
with stiff glass fibers (GFRPs) or carbon fibers (CFRPs).

It is of interest to note the dashed lines corresponding to the per-
formance indicators ðE=�;E1=2=�, and E1=3=�Þ in Fig. 9.3. These provide a
normalized measure of how well a given system will perform under: ten-
sion without exceeding a design load (E=�); compression without buckling
(E1=2=�); and bending with minimum deflection (E1=3=�). Further details
on performance indices may be found in an excellent text by Ashby
(1999).

9.8.2.2 Ceramic Matrix Composites

Due to their strong ionically and/or covalently bonded structures, ceramics
tend to be relatively strong and stiff, compared to metals and polymers.
However, ceramics are brittle, and are susceptible to failure by the propaga-
tion of pre-existing cracks. For this reason, there are relatively few applica-
tions of ceramic matrix composites (compared to those of polymer matrix
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TABLE 9.4 Typical Mechanical Properties of Polymer Matrix Composites and Polymer Matrix Materials

Density
(mg/m3)

Young’s
modulus
(GPa)

Tensile
strength
(MPa)

Ductility
(%)

Flexural
strength
(M Pa)

Specific
modulus
[(GPa)/
(mg/m3)]

Specific
strength
[(MPa)/
(mg/m3)]

Nylon 66 + 40% carbon fiber 1.34 22 246 1.7 413 16 184
Epoxide + 70% glass fibers

unidirectional—longitudinal 190 42 750 1200 22 395
unidirectional—transverse 1.90 12 50 6 26

Epoxy +60% Aramid 1.40 77 1800 55 1286
Poly(ether imide) + 52%Kevlar 54 253
Polyester + glass CSM 1.50 7.7 95 170 5 63
Polyester + 50%glass fiber

undirectional–longitudinal 1.93 38 750 1.8 20 389
unidirectional—transverse 1.93 10 22 0.2 5 11
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composites). Most of the applications of ceramic matrix composites take
advantage of their excellent high-temperature properties. They include
applications in nozzles, brakes, and heat shields such as the tiles of the
space shuttle. Nevertheless, structural applications of ceramic composites
have been difficult due to the problems associated with their inherent
brittleness.

Typical strengths and moduli of selected ceramic matrix composites
are presented in Table 9.5. Their moduli are relatively high due to the
strong/stiff nature of the ionically or covalently bonded structures.
However, the tensile strengths of these composites are moderate, due to
the inherent susceptibility to internal/inherent populations of microcracks
in the ceramic matrices.

9.8.2.3 Metal Matrix Composites

Unlike ceramics, metals are generally very ductile. Nevertheless, there are
only a few applications of metal matrix composites (compared to numerous
applications of polymer matrix composites) in engineering structures and
components. The applications include connecting rods, struts, pistons, and
valves in automobile engines (Saito et al., 1998). One example of a recent
application of a titanium matrix composite is shown in Fig. 9.20. This shows
an automotive valve fabricated from a low-cost in-situ titanium matrix
composite reinforced with TiB whiskers (Fig. 9.16). The valve is currently
being used in Toyota Alzetta motor vehicles in Japan. This selection of in-

TABLE 9.5 Typical Mechanical Properties of Ceramic Matrix
Composites and Ceramic Materials

Young’s
modulus
(GPa)

Strength
(MPa)

Toughness,
KIC

(MPa m1=2Þ

Alumina (99%purity) 340 300 4.5
Alumina + 25%SiC whiskers 390 900 8.0
Borosilicate glass (Pyrex) 70 0.7
Pyrex + 40%Al2O3 CFa 305 3.7
LASb glass–ceramic 86 160 1.1
LAs þ 50%SiC CF 135 640 17.0
Mullite 244 2.8
Mullite + 20%Sic whiskers 452 4.4

aCF = continuous fibers.
bLAS = lithium aluminosilicate.

Copyright © 2003 Marcel Dekker, Inc.



situ titanium matrix composite valves was due to the improved performance
and fuel savings that was achieved by the replacement of steel valves (with a
density of � 7:8 g/cm3) with the former valves (with a density of � 4:5
g/cm3). Further details on in-situ titanium matrix composites may be
found in papers by Saito (1994), Soboyejo et al. (1994), and Dubey et
al. (1997).

In general, however, the applications of metal matrix composites have
been limited by their cost and limited durability. Most of the applications
have involved the use of lightweight aluminum matrix composites reinforced
with SiC or Al2O3 particulates or whiskers (Fig. 1.16a). These take advan-
tage of the low density (� � 2:7 g/cm3) and low cost (generally less than $1
per pound) of aluminum and its alloys. Since aluminum alloys typically have
relatively low strengths compared to structural alloys such as steels, the
reinforcement of aluminum matrices with SiC or Al2O3 can significantly
improve the strengths and moduli of aluminum matrix composites to levels
where they are very competitive with other structural alloys/composites.

The strengths of aluminum/aluminum alloys and composites are com-
pared with those of other structural metal/alloys and composites in Table

FIGURE 9.20 In-situ titanium matrix composite valve. (Courtesy of Tadahiko
Furuta of Toyota Corporation, Japan.)
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9.6. Also included in Table 9.6 are data for titanium matrix composites
reinforced with SiC fibers. These have higher strengths and moduli than
those of titanium alloys. However, they may undergo premature failure
due to the initiation of damage from the brittle SiC fibers (Majumdar and
Newaz, 1992; Soboyejo et al., 1997).

9.9 STATISTICAL VARIATIONS IN COMPOSITE
STRENGTH

Due to the susceptibility of fiber strength to variations in crack populations,
composite strengths may exhibit significant statistical variations. The sensi-
tivity to defects (mostly cracks) is particularly strong in the case of brittle
fibers. There is, therefore, a need to account for the variations in fiber/
composite strength within a statistical framework. The statistical distribu-
tions that best describe the variations in strength depend to a large extent on
ductility/brittleness. The variabilities in the strengths of most ductile phases
are often well characterized by Gaussian distributions (Fig. 9.21). For such
materials, f ðxÞ, the frequency of failure at a given stress level, x, is given by
[Fig. 9.21(a)]:

f ðx Þ ¼ 1ffiffiffiffiffiffi
2�

p
�
exp � 1

2

x � x

�

� �2
" #

ð9:46Þ

where x is the mean stress, and � is the standard deviation. The function
f ðxÞ may be integrated to obtain an expression for the probability of failure,
FðxÞ or Pf ðxÞ, at a given stress level, x:

TABLE 9.6 Typical Mechanical Properties of Metal Matrix Composites

Young’s
modulus
(GPa)

Yield
stress
(MPa)

Tensile
strength
(MPa)

Ductility
(%)

Al–Cu–Mg (2618A) 74 416 430 2.5
Al–Cu–Mg + 20%Al2O3 90 383 0.8
Al–Zn–Mg � 70 273 11.5
Al–Zn–Mg + 25%Al2O3 80 + 266 1.5
Titanium (wrought) 120 200 400 25
Titanium + 35%SiC 213 1723 <1
Ti–Al–V (wrought) 115 830 1000 8
Ti–Al–V + 35%SiC 190 1434 0.9
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Pfðx Þ ¼
ð�
�1

f ðx Þdx ð9:47Þ

The function Pf ðxÞ, represents the cumulative density function, which
is shown schematically in Fig. 9.21(b). The function f ðxÞ corresponds to
the probability density function shown in Fig. 9.21(a). Conversely, the
probability of survival, PsðxÞ, may be determined from the following
expression:

Psðx Þ ¼ 1� Pfðx Þ ¼
ð1
x

f ðx Þdx ð9:48Þ

In the case of brittle materials, such as strong and stiff fibers, the statistical
variations in strength do not often follow the Gaussian distribution. Instead,
most brittle materials exhibit strength variations that are well characterized
by a distribution function that was first proposed by Weibull (1951). The so-
called Weibull distribution gives PsðVÞ, the probability of survival of a
stressed volume, V , that is subjected to a stress, x, as

FIGURE 9.21 Normal or Gaussian probability density functions: (a) probability
density function; (b) cumulative density function.
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PsðV Þ ¼ exp � V

V0

x � xu
x0

� �m
 �
ð9:49aÞ

where V is the actual volume, V0 is a reference volume, x is the applied
stress, xu is the stress corresponding to zero probability of failure, x0 is the
mean strength, and m is the Weibull modulus.

A schematic of the Weibull distribution is shown in Fig. 9.22(a); this
shows the probability of survival plotted as a function of stress, x. Note that
the probability of survival is 1 for x ¼ 0, and 0 for x ¼ 1. Also, the median
strength corresponds to PsðV0Þ ¼ 1=2. Furthermore, for V ¼ V0 and ðx�
xuÞ ¼ x0 in Eq. (9.49a), PsðV0Þ ¼ 1=e ¼ 0:37. Hence, at a stress of x0 þ xu,
37% of the fibers will survive.

Equation (9.49a) may also be expressed in terms of the probability of
failure, Pf ðVÞ, of a stressed volume, V :

PfðV Þ ¼ 1� PsðV Þ ¼ 1� exp � V

V0

x � xu
x0

� �m
 �
ð9:49bÞ

The Weibull modulus, m, is a key parameter in Eqs (9.49a) and (9.49b). It is
a measure of the homogeneity of the strength data. Typical values of m are
less than 10. Larger values of m are generally associated with less variable
strength data, which would be expected from increased homogeneity.

Conversely, smaller values of m would be associated with increased
variability or inhomogeneity. Typical values of m are between 1 and 10 for
ceramics such as SiO2, SiC, Al2O3 and Si3N4, and � 100 for most steels. In
any case, taking natural logarithms twice on both sides of Eq. (9.49a) gives

‘n ‘n
1

PsðV Þ
� �

¼ ‘nV � ‘nV0 þm‘nðx � xuÞ �m‘nx0 ð9:50aÞ

or

‘n ‘n
1

PsðV Þ
� �

¼ m‘nXþ C1 ð9:50bÞ

where C1 ¼ ‘nV � ‘nV0 �m‘nx0 and X ¼ x� xu. Also, C1 is a constant for
fixed values of V , V0, xu, and x0. The value of m may be determined by
plotting ‘n ‘nð1=PsðVÞÞ against ‘nX on Weibull paper. The Weibull mod-
ulus may thus be determined from the negative of the slope of the Weibull
plot. Typical Weibull plots are shown in Fig. 9.22(b).

It is important to note here that the median strength corresponds to
PsðxÞ ¼ Pf ðxÞ ¼ 0:5. Similarly, depending on the defect content, two differ-
ent stresses, x1 and x2, may be associated with the same failure or survival
probabilities. Under such circumstances, substitution of x1 and x2 into Eq.
(9.49a) gives
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FIGURE 9.22 Weibull plots: (a) Weibull distribution function; (b) plot of survival probability on Weibull probability axes.
(From Ashby and Jones, 1986. Reprinted with permission from Pergamon Press.
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ðx2ÞnV1 ¼ ðx2ÞnV2 ð9:51Þ
Equation (9.51) may be rearranged to obtain estimates of V or x.
Appropriate statistical checks are needed to verify the applicability of any
of the above distributions (Gaussian or Weibull) to the assessment of the
variabilities in the strengths. These checks require the use of methods that
are described in most introductory texts on statistics.

Finally in this section, it is interesting to comment on the behavior of
fiber bundles, and the statistics of fiber-bundle fracture. Let us consider a
fiber bundle that consists of N fibers that are subjected to an axial stress, �.
Before loading, the fiber bundle strength is �f . If the fibers are assumed to
fail at the weakest link(s), with no load carrying capability in the individual
broken fibers following the breaks, then we may obtain a first estimate of the
fiber-bundle strength by considering the ratio of the remaining unbroken
fibers, N, to the initial number of fibers, N0. Hence, the fiber-bundle
strength, �B, corresponding to N unbroken fibers is given by

�B ¼ N

N0
�f ð9:52Þ

The probability of survival, S, at a stress of �, is given by the ratio of N to
N0. Therefore, the probability of failure, Gð�Þ, may be obtained from

Gð�Þ ¼ 1� Sð�Þ ¼ 1� N

N0

� �
ð9:53Þ

However, recalling from Eq. (9.52) that �B ¼ ðN=N0Þ�f , Eq. (9.53) may now
be rewritten as

�B ¼ ½1�Gð�Þ��f ð9:54Þ
The fiber-bundle strength, �B, is important because it characterizes the

remaining strength of the fibers after fiber breaks. Since statistical fiber
breaks are inherent to composite deformation, the estimation of composite
properties is often based on fiber-bundle stress estimates that account for the
effects of fiber breaks. Such estimates will generally result in lower compo-
site strength levels than those predicted for undamaged fiber bundles.
Hence, if the statistical function that describes the probability of failure,
Gð�Þ, is known, then the fiber-bundle stress may be obtained from Eq.
(9.54). The maximum fiber-bundle strength may also be obtained by differ-
entiating Eq. (9.54) to obtain d�B=d�f ¼ 0.

It is important to remember that the probability of failure is given by
the expressions presented earlier for the different statistical distributions.
For example, in the case of Gaussian distributions, the probability of fail-
ure, Gð�Þ, is given by Eq. (9.47). For strength variabilities that are well
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described by Weibull distributions, e.g., brittle fibers, Gð�Þ is given by Eq.
(9.49).

In general, however, the variabilities may not be well described by any
of the well-known statistical functions (Gaussian, log normal, or Weibull).
When this occurs, minimally biased entropy functions may be used to char-
acterize the statistical variabilities, as proposed by Soboyejo (1973). More
detailed descriptions of the statistics of fiber fracture may be found in papers
by Sastry and Phoenix (1993, 1994), Curtin (1998) and Torquato (1991).

9.10 SUMMARY

This chapter presents a simple introduction to the deformation of composite
materials. Following a brief review of the different types of composites,
simple rule-of-mixture theories were introduced for the estimation of com-
posite strength and moduli and the possible bounds in composite strength
and moduli. A general framework was also described for the estimation of
the physical properties of composites within a rule-of-mixture framework.
Composite deformation behavior was then discussed before exploring the
possible effects of fiber/whisker length and whisker orientation on compo-
site strength and modulus. The failure modes in composites with off-axis
fibers were examined before presenting an introduction to the statistical
approaches that are used in the modeling of variabilities in individual
fiber strengths and fiber-bundle strengths.
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10

Further Topics in Composites

10.1 INTRODUCTION

The introduction to composite deformation provided in the last chapter is
adequate for the development of an intuitive understanding of composite
deformation. However, the simple expressions presented in the last chapter
cannot be used easily in the analysis of multi-ply composites with plies of
arbitrary orientation. Furthermore, the models are only suitable for compo-
sites that contain simple reinforcement geometries, and the rule-of-mixture
expressions provide only moderately accurate estimates of composite
strength and modulus. More advanced composites concepts are, therefore,
needed to complement the introductory initial framework presented in
Chap. 9.

Following the brief introduction to the structure and deformation of
composite materials in Chap. 9, this chapter presents further topics on
composite deformation and design. The chapter is suitable for those that
want to develop a more complete understanding of composites. It should
probably be skipped in most undergraduate courses, and even in some
graduate courses.

The chapter begins with systematic introduction to ply theory. This
is done by first presenting a framework for the analysis of single composite
plies, before explaining the assembly of global stiff matrices for multiply
composites. Composite design concepts are then discussed briefly along
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with composite failure criteria. The shear lag theory is also described
before briefly discussing the experimental methods that are used for the
measurement of the interfacial strengths of fiber-reinforced composite
materials.

10.2 UNIDIRECTIONAL LAMINATES

Let us begin by considering the elastic deformation of a unidirectional ply
(Fig. 10.1). Typical plies in engineering composites (mostly polymer matrix
composites) have thicknesses of � 0:125 mm and fiber volume fractions
between 0.50 and 0.65. The plies are also transversely isotropic (orthothro-
pic), which means that the transverse properties are symmetric about the
longitudinal axis. However, the stiffnesses of the orthotropic composite plies
are greater along the longitudinal/fiber directions than in any of the trans-
verse directions.

Unlike isotropic materials, which require two independent elastic con-
stants for the modeling of deformation, orthotropic materials require four
elastic constants to describe their deformation. These include: the longitu-
dinal Young’ modulus, E11, the transverse Young’s modulus, E22, the shear
modulus, G12, and the major Poisson’s ratio, 	12, or the minor Poisson’s
ratio, 	21. Hooke’s law for an orthotropic ply (Fig. 10.1) may thus be
expressed as

FIGURE 10.1 Deformation of a unidirectional ply. (From Matthews and
Rawlings, 1994. Reprinted with permission from Chapman and Hall.)
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�12 Q "12

�11

�22


12

2
6666666664

3
7777777775

¼

E11

1� 	12	21
	21E11

1� 	12	21
0

	12E22

1� 	12	21
E22

1� 	12	21
0

0 0 G12

2
6666666664

3
7777777775

"11

"22

�12

2
6666666664

3
7777777775

ð10:1aÞ

or, in short-hand notation:

�12 ¼ Q"12 ð10:1bÞ
Alternatively, we may write strain as a function of stress by inverting the
stiffness, Q, matrix:

"12 Q �12

"11

"22

�12

2
6666666664

3
7777777775
¼

1

E11

�	21
E22

0

�	12
E11

0 0

0 0
1

G12

2
66666666664

3
77777777775

�11

�22


12

2
6666666664

3
7777777775

ð10:2aÞ

or

"12 ¼ S�12 ð10:2bÞ
It is important to note here that the compliance matrix, S, is the inverse of
the stiffness matrix, Q. The above expressions are, therefore, matrix versions
of Hooke’s law. For most composite plies, the elastic constants in Eqs
(10.1a) and (10.2a) can be obtained from tables of materials properties.
Also, the minor Poisson’s ratio may be estimated from the following expres-
sion, if the other three elastic constants are known:

	21 ¼ E22

E11
	12 ð10:3Þ

Since E22 < E11 (the transverse modulus is less than the longitudinal mod-
ulus), then the minor Poisson’s ratio, 	21, must be less than the major
Poisson’s ratio, 	12. The stress–strain response of a unidirectional ply
may, therefore, be modeled easily by the substitution of appropriate elastic
constants into Eqs (10.1) and (10.2).
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10.3 OFF-AXIS LAMINATES

Let us now consider the deformation of an off-axis ply reinforced with fibers
inclined at an angle, �, to the x–y axes (Fig. 10.2). The biaxial stresses �xx,
�yy, and 
xy are applied, as shown in Fig. 10.2. The components of stress that
are parallel or perpendicular to the fibers are given by the resolved compo-
nents �11, �22, and 
12. Similarly, the components of the strain tensor may be
expressed in terms of the 1–2 or x–y axes to be ð"11 "22 �12=2Þ and
"xx "yy �xy=2), respectively. The stress and strain components in the x–y
and 1–2 co-ordinate systems are thus given by Rawlings and Matthews
(1994) to be

�12 ¼ f�11 �22 
12g ð10:4aÞ
�xy ¼ f�xx �yy 
xy g ð10:4bÞ
"12 ¼ f"11 "22 �12=2g ð10:4cÞ
"xy ¼ f"xx "yy �xy=2g ð10:4dÞ

We may transpose between strain or stress components in the x–y and 1–2
co-ordinate system by the simple use of a transposition matrix, T . This gives

�12 ¼ T�xy ð10:5aÞ
"12 ¼ T "xy ð10:5bÞ

FIGURE 10.2 Deformation of an off-axis ply. (From Matthews and Rawlings,
1994. Reprinted with permission from Chapman and Hall.)
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where the transposition matrix, T , is given by the following:

T ¼
c2 s2 2cs

s2 c2 �2cs

�cs cs ðc2 � s2Þ

2
64

3
75 ð10:5cÞ

with c ¼ cos � and s ¼ sin �. The strain and stress components in the x–y
system may be obtained from the inverse transformation, T�1. This gives:

�xy ¼ T�1�12 ð10:6aÞ
"xy ¼ T�1"12 ð10:6bÞ
where T�1 is given by

T�1 ¼
c2 s2 �2cs

s2 c2 2cs

cs �cs ðc2 � s2Þ

2
64

3
75 ð10:6cÞ

Furthermore, we may describe the strain components "12 ¼ f"11 "22 �12g
and "xy ¼ f"xx "yy �xyg. These may be obtained by multiplying the strain
components of "12 and "xy by a matrix, R, which gives

"12 R "12
"11

"22

�xy

2
666666664

3
777777775

¼

1 0 0

0 1 0

0 0 2

2
666666664

3
777777775

"11

"22

�12
2

2
666666664

3
777777775

ð10:7aÞ

or

"12 ¼ R"12 ð10:7bÞ
and

"xy R "xy
"xx

"yy

�xy

2
666666664

3
777777775

¼

1 0 0

0 1 0

0 0 2

2
666666664

3
777777775

"xx

"yy

�xy
2

2
666666664

3
777777775

ð10:8aÞ
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or

"xy ¼ R"xy ð10:8bÞ

Hence, we may write the following expressions for the strain compo-
nents:

"12 ¼ R"12 ð10:9aÞ
"12 ¼ R�1"12 ð10:9bÞ
"xy ¼ R"xy ð10:9cÞ
"xy ¼ R�1"xy ð10:9dÞ

For linear elastic materials, the stress tensor is linearly related to the strain
tensor via the transformed stiffness matrix, Q. This gives:

�xy ¼ Q"xy ð10:10Þ

To find Q, we must go through a series of matrix manipulations to trans-
pose completely from the 1–2 co-ordinate system to the x–y co-ordinate
system. From Eq. (10.6a), we may express �xy in terms of �12. This gives
�xy ¼ T�1 �12. Also, recalling from Eq. (10.1b) that �12 ¼ Q"12 and "12 ¼
R"12 [Eq. (10.2b)], we may now rewrite Eq. (10.6a) as

�xy ¼ T�1�12 ¼ T�1ðQ"12Þ ¼ T�1QðR"12Þ ð10:11Þ

Furthermore, noting that "12 ¼ T"xy [Eq. (10.6b)] and "xy ¼ R�1 "xy [Eq.
(10.9d)], we may simplify Eq. (10.11) to give

�xy ¼ T�1QRð"12Þ ¼ T�1QRðT "xy Þ ¼ ðT�1QRTR�1Þ"xy ð10:12Þ

or

Q "xy

�xy ¼ Q"xy ¼
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

2
64

3
75

"xx

"yy

�xy

2
64

3
75 ð10:13Þ

where Q is the transformed stiffness matrix which is given by
Q ¼ T�1QRTR�1. By substitution of the appropriate parameters into the
T , Q, and R matrices, it is possible to show that the components of the Q
matrix are
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Q11 ¼ Q11c
4 þ 2ðQ12 þ 2Q33Þs2c2 þQ22s

4 ð10:14aÞ
Q22 ¼ Q11s

4 þ 2ðQ12 þ 2Q33Þs2c2 þQ22c
4 ð10:14bÞ

Q12 ¼ ðQ11 þQ22 � 4Q33Þs2c2 þQ12ðc4 þ s4Þ ð10:14cÞ
Q33 ¼ ðQ11 þQ22 � 2Q33Þn2c2 þQ33ðc4 þ s4Þ ð10:14dÞ
Q13 ¼ ðQ11 �Q12 � 2Q33Þsc3 þ ðQ12 �Q22 þ 2Q33Þs3c ð10:14eÞ
Q23 ¼ ðQ11 �Q12 � 2Q33Þs3c þ ðQ12 �Q22 þ 2Q33Þsc3 ð10:14fÞ

where the components of the stiffness matrix, Qij, are given by Eq. (10.1a).
Alternatively, we may also express "xy as a function of �xy. In this case,
"xy ¼ Q

�1
�xy, where Q

�1
corresponds to the compliance matrix, S, which

has the components:

S11 ¼ S11c
4 þ 2ðS12 þ S33Þs2c2 þ S22s

4 ð10:15aÞ
S22 ¼ S11s

4 þ 2ðS12 þ S33Þs2c2 þ S22c
4 ð10:15bÞ

S12 ¼ ðS11 þ S22 � S33Þs2c2 þ S12ðc4 þ s4Þ ð10:15cÞ
S33 ¼ 2ð2S11 þ 2S22 � 4S12 � S33Þs2c2 þ S33ðc4 þ s4Þ ð10:15dÞ
S13 ¼ ð2S11 � 2S12 � S33Þmn3 þ ð2S12 � 2S22 þ S33Þcs3 ð10:15eÞ
S23 ¼ ð2S11 � 2S12 � S33Þcs3 þ ð2S12 � 2S22 þ S33Þc3s ð10:15fÞ

As the reader can imagine, calculation of the components of the S and Q
matrices can become rather tedious. For this reason, simple computer
programs are often used to obtain the components of these matrices using
the expressions presented above.

10.4 MULTIPLY LAMINATES

We are now in a position to consider the deformation of laminates that
consist of multiple plies with different fiber orientations (Fig. 10.3). The
overall stiffness of such a composite stack may be found by summing up
the stiffness contributions from all of the individual plies. The overall
strains, "totxy , in the composite may also be separated into axial, "0xy, and
bending, "bxy, strain components (Fig. 10.4). Hence, applying the principle
of linear superposition gives

"totxy ¼ "0xy þ "bxy ¼ "0xy þ z� ð10:16aÞ
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or

"xy "0xy �

"xx

"yy

�xy

2
664

3
775 ¼

"0xy

"0yy

�0xy

2
6664

3
7775þ z

�x

�y

�xy

2
664

3
775 ð10:16bÞ

where � represents the curvatures, z is the distance from the neutral axis, and
the other parameters have their usual meaning.

For linear elastic deformation, Hooke’s law applies. Hence, we may
write:

�xy ¼ Q"totxy ¼ Qð"0xy þ "bxy Þ ¼ Qð"0xy þ �zÞ ð10:17aÞ

FIGURE 10.3 Schematic of a multiply laminate. (From Matthews and
Rawlings, 1994. Reprinted with permission from Chapman and Hall.)

FIGURE 10.4 Superposition of axial and bending strain components. (From
Matthews and Rawlings, 1994. Reprinted with permission from Chapman
and Hall.)
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�xy "0xy �

�xx

�yy


xy

2
664

3
775 ¼ Q

"0xx

"0yy

�0xy

2
664

3
775þQz

�x

�y

�xy

2
664

3
775 ð10:17bÞ

where the above terms have their usual meaning, and the sign convention for
the axial strain components and curvatures are given by Fig. 10.5. The force
per unit length on each ply is obtained from the products of the stress
components (�xx �yy 
xyÞ and the layer thicknesses, ti (Fig. 10.3). Hence,
for a composite consisting of p plies, the overall force per unit length in any
given direction is obtained from the following summation of the forces in
each of the plies:

Nx ¼
Xp
i¼1

�xx ti ð10:18aÞ

Ny ¼
Xp
i¼1

�yy ti ð10:18bÞ

Nxy ¼
Xp
i¼1


xy ti ð10:18cÞ

FIGURE 10.5 Sign convention for axial strain components, curvatures, and
moments. (From Matthews and Rawlings, 1995. Reprinted with permission
from Chapman and Hall.)
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However, the thickness, ti, may also be expressed in integral form since

ti ¼
Ðzi

zi�1

dz. Substituting this integral form into Eq. (10.18), and noting that

�xy ¼ Q "xy, gives

N ¼
Nx

Ny

Nxy

2
4

3
5 ¼

Xp
i¼1

"0xy

ðzj
zi�1

Q dz þ
Xp
i¼1

�

ðzi
zi�1

Qz dz ð10:19Þ

Within each ply Q, is independent of z. Also, "0xyand � are applied to
the whole multiply composite and are independent of z or i. Hence, we may
solve easily for the integrals in Eq. 10.19:

N ¼ A"0xy þ B� ð10:20aÞ

where

A ¼
Xp
i¼1

Q

ðzj
zi�1

dz ¼
Xp
i¼1

Qrs;i ðzi � zi�1Þ ð10:20bÞ

and

B ¼
Xp
i¼1

kQ

ðzj
zi�1

z dz ¼
Xp
i¼1

Qrs;i
1

2
ðz2i � z2i�1Þ ð10:20cÞ

Similarly, we may consider the moments per unit length associated
with the stresses applied to the individual layers in the multiply laminate
shown schematically in Fig. 10.3. For each layer, the bending moments (Fig.
10.5) are given by

Mi ¼
Mxi

Myi

Mxyi

2
4

3
5 ¼ �xy ;i ti zi ¼

ðzi
zi�1

�xy ;i z dz þ
ðzi

zi�1

Qizð"0xy þ �zÞdz

ð10:21Þ

where z is the distance from the neutral axis, t is the thickness of the ply, and
i corresponds to the number designation of the ply. As before, we may sum
up the overall moments per unit length associated with the p plies in the
composite:
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M ¼
Xp
i¼1

Mi

Mx

My

Mxy

2
4

3
5 ¼

Xp
i¼1

"0xy

ðzi
zi�1

Qi"
0
xy z dz þ

Xp
i¼1

ðzj
zi�1

Qi �z
2dz

ð10:22Þ

since Qi is independent of z for a given ply, and and "0xy and � are indepen-
dent of z or i, we may solve the integrals in Eq. 10.22 to obtain:

M ¼
Mx

My

Mz

2
664

3
775 ¼ B"0xy þ D� ð10:23Þ

where the Bmatrix may be obtained from Equation 10.20c and the Dmatrix
is given by:

D ¼
Xp
i¼1

Qi

3
� z3i � z3i�1

� �
ð10:24Þ

We may also combine Eqs (10.20a) and (10.23) to obtain the plate
constitutive equation that describes the overall response of any multiply
composite subjected to axial loads and moments (Figs 10.4 and 10.5):

N

M

" #
¼

A B

B D

" #
"0xy

�

" #
ð10:25Þ

where the ABD matrix is the global stiffness matrix. The terms A, B, and D
in a global stiffness matrix each correspond to 3� 3 matrices, with nine
terms in each matrix. Equation (10.25) may be used to determine the axial
strains and curvatures, "0xy and �, associated with prescribed loads and dis-
placements. This may be done by multiplying eq. (10.25) by the inverse of
the ABD matrix, which gives

"0xy

�

" #
¼

A B

B D

" #�1
N

M

#
¼

A0 B 0

B 0 D 0

" #
N

M

" #
ð10:26aÞ

where A0, B0, and D0 are given by

A0 ¼ A� þ B�½D���1½B��t ð10:26bÞ
B 0 ¼ B� � ½D���1 ð10:26cÞ
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D 0 ¼ ½D���1 ð10:26dÞ
A� ¼ A�1 ð10:26eÞ
B� ¼ A�1B ð10:26fÞ
D� ¼ D � BA�1B ð10:26gÞ
Simple computer programs are often used to perform the matrix

manipulations involved in solving for strains and curvatures or forces and
moments. Furthermore, although the matrices presented in this section may
look intimidating at first, most of the expressions may be viewed simply as
matrix expressions of Hooke’s law.

10.5 COMPOSITE PLY DESIGN

The design of multi-ply composite laminates for different structural func-
tions can be accomplished to a large extent by the judicious selection of
fiber orientations and ply stacking sequences. This section will briefly
discuss the ways in which the individual plies within a multi-ply composite
can be arranged to achieve different types of coupling between axial,
bending, and twisting modes. The couplings between these different defor-
mation modes are controlled by the components of the ABD matrix.
These are shown completely in the following expanded version of Eq.
(10.25):

Nx

Ny

Nxy

2
664

3
775 ¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

2
664

3
775

"0x

"0y

"0xy

2
664

3
775þ

B11 B12 B13

B21 B22 B23

B31 B32 B33

2
664

3
775

�x

�y

�xy

2
664

3
775

ð10:27Þ
Mx
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Mxy
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B11 B12 B13

B21 B22 B23

B31 B32 B33

2
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"0x

"0y

"0xy

2
664

3
775þ

D11 D12 D13

D21 D22 D23

D31 D32 D33

2
664

3
775

�x

�y

�xy

2
664

3
775

The A, B, and D matrices are symmetric, with Aij ¼ Aji, Bij ¼ Bji, and
Dij ¼ Dji. Also, the axial, bending and shear forces are related to the com-
ponents Aij, Bij, and Dij of the ABD matrices. These give the following
couplings:

1. A13 and A23 relate in-plane axial forces to in-plane shear strains,
or in-plane shear forces to axial strains.
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2. B13 and B23 relate in-plane direct forces to plate twisting, or
torques to in-plane direct strains.

3. B11, B12 and B13 relate in-plane bending moments to axial strains,
or axial forces to in-plane curvatures.

4. B33 relates in-plane shear force to plate twisting, or torque to in-
plane shear strain.

5. D13 and D23 relate bending moments to plate twisting, or torque
to plate curvatures.

Since some of the couplings listed above may be undesirable in struc-
tural applications, it is common practice to select ply stacking sequences
that result in zero values of the ‘‘undesirable’’ coupling parameters. For
example, the coupling between in-plane strains and shear forces may be
eliminated by choosing stacking sequences that result in A23 ¼ A13 ¼ 0.
This may be achieved by choosing balanced composite lay-ups in which
every þ� ply is balanced by a �� ply. However, the stacking sequence in
the composite does not need to be symmetric. Examples of balanced com-
posite lay-ups include: ðþ308=� 308Þ, (08=þ 458=� 458Þ, ðþ608=� 608Þ, and
ð08=þ 758=� 758Þ.

It is also important to note that we may set A23 ¼ A13 ¼ 0 by choosing
composites plies with 08 and/or 908 fiber orientations. Furthermore, we may
eliminate bending membrane coupling by setting the B matrix to zero. This
may be engineered by designing composite stacking sequences that are sym-
metric about the midplane. Examples of symmetric stacking sequences
include: ð�308=þ 308=þ 308= � 308Þ, (08=þ 458=þ 458=08Þ, etc.

The coupling between bending and twisting is avoided by setting
D13 ¼ D23 ¼ 0. This is achieved by the use of balanced antisymmetric lay-
ups for which every þ� ply above the midplane is balanced by a �� of
identical thickness at the same distance below the midplane, and vice
versa. Examples of such composite lay-ups include: ðþ458=� 458=08=þ
458=� 458Þ and (908=458=08=� 458=� 908Þ.

The above discussion has focused on the stacking sequences required
for the elimination of couplings. However, in many cases, composite
designers may take advantage of couplings by using them to engineer
coupled elastic responses that are not possible in relatively isotropic materi-
als. For example, desirable aeroelastic responses may be engineered by the
use of swept-wing profiles that are produced between twisting and bending.
Judicious selection of coupling parameters D13 and D23 can be used to
achieve aircraft wing profiles in which the wing twists downwards and
bends upwards under aerodynamic loads. Such aeroelastic coupling may
be used to achieve stable aerodynamic maneuvers in military aircraft during
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air combat. The tailoring of the composite ply lay-ups is, therefore, a key
component of military aircraft design.

10.6 COMPOSITE FAILURE CRITERIA

Due to the relatively complex nature of composite structures (compared to
the structure of relatively isotropic monolithic alloys), a wider range of
failure modes is observed in such materials. As discussed in Sect. 9.5, com-
posite failure may occur by fiber fracture, matrix shear, or matrix failure in
tension or compression (perpendicular to fiber direction). The stress state is
also inherently multiaxial within each of the composite plies. Hence, local
failure criteria may vary widely within plies and across plies.

10.6.1 Critical Stress or Critical Strain Approaches

In this approach, we assume that failure occurs when critical conditions
(such as failure stresses or strains) are reached locally within any of the
regions in a composite. We neglect the possible changes in failure conditions
due to multiaxial stress conditions and interactions between the failure
modes. Failure is thus postulated to occur when local critical conditions
are first exceeded in tension, compression, or shear.

If the local critical stress failure criteria in tension, compression, and
shear are denoted by �̂�1T, �̂�2T, �̂�1c, �̂�2c, and 
̂
12, respectively, then we assume
that local failure will occur when any of these strengths are first exceeded.
Similarly, in cases where local failure is strain controlled, we assume that
failure will occur when critical strains are exceeded in tension, compression
or shear. These are denoted, respectively, by "̂"1T; "̂"2T; "̂"1c; "̂"2c, and �̂�12.

The discerning reader will realize that the failure of a single ply does
not correspond to complete composite failure. Also, a ply may continue to
have load-bearing capacity even after local failure criteria have been
exceeded. It is, therefore, important to make some assumptions about the
nature of the load-bearing capacity of individual plies after local failure
criteria are exceeded.

In the most extreme cases, the failed plies are assumed to support low
loads. This often leads to excessively conservative predictions of failure.
Hence, it is more common to assume that the failed ply supports some
fraction of the load that it carried before final ‘‘failure.’’ Similar approaches
are also applied to predictions in which interlaminar failure occurs between
plies. However, these approaches often require iteration and good judgment
in the determination of load-carrying capacity of the failed plies.
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10.6.2 Interactive Failure Criteria

The second approach that is often used to predict failure involves the use of
interactive failure criteria. These attempt to account for the possible inter-
actions between stresses and failure criteria. The most commonly used fail-
ure criterion is the Tsai–Hill failure criterion, which was first proposed by
Azzi and Tsai (1965). This empirical criterion predicts that failure of an
anisotropic ply occurs when

�11
�̂�11

� �2

� �11�22
�̂�211

� �
þ �22

�̂�22

� �2

þ 
12

̂
12

� �2


 1 ð10:28Þ

where the signs of the strength terms (�̂�11; �̂�22, and 
̂
12Þ correspond to the
signs of the local stress components (�11; �22; and 
12Þ. The corresponding
strength terms are, therefore, positive for tensile stresses, and negative for
compressive stresses.

In cases where a uniaxial stress, �xx, is applied to off-axis plies (Fig.
10.2), the Tsai–Hill criterion becomes

�xx cos
2 �

�̂�11

 !2

� �
2
xx cos

2 � sin2 �

�̂�211
þ �2Xx sin

2 �

�̂�22

 !2

þ �xx sin � cos �


̂
12

� �2


 1

ð10:29Þ
Equation (10.29) can be solved to obtain a unique solution for �xx as a
function of �. This gives �xx as a continuous function of �, as shown in
Fig. 10.6. This is in contrast to the separate curves presented earlier in Chap.
9 for the composite matrix shear and matrix normal failure (Fig. 9.15).

It is also of interest to note that a reserve factor, R, can be described
for cases in which the applied loads are insufficient to cause failure accord-
ing to the Tsai–Hill criterion. The reserve factor corresponds to the factor by
which the applied load can be scaled to induce failure according to the Tsai–
Hill criterion. Hence, Eq (10.29) is now given by

R�11
�̂�11

� �2

� R�11R�22
�̂�11�̂�}22

� �
þ R�22

�̂�22

� �2

þ R
12

̂
12

� �2

¼ 1 ð10:30Þ

or

�11
�̂�11

� �2

� �11�22
�̂�211

� �
þ �22

�̂�22

� �2

þ 
12

̂
12

� �2

¼ 1

R2
ð10:31Þ

The reserve factor, R, is important because it provides a measure of
how much the applied stress(es) can be increased before reaching the failure
condition that is predicted by the Tsai–Hill criterion.

Copyright © 2003 Marcel Dekker, Inc.



10.7 SHEAR LAG THEORY

The shear lag model was first developed by Cox (1952) and later modified by
Nardone and Prewo (1986). It is applicable to composites reinforced with
whiskers or short fibers (Fig. 10.7). The model assumes that the applied load
is transferred from the matrix to the whiskers/short fibers via shear. A
representative volume element/unit cell of a whisker-reinforced composite
is shown schematically in Fig. 10.7. This corresponds to a repeatable unit
that can be used to model the behavior of a composite. Such unit cells are
often used to obtain representative solutions to composite problems (Taya
and Arsenault, 1989).

The Cox model assumes that the displacement gradient in the fiber,
d�f=dz, is proportional to the difference between the displacement in the
fiber and the matrix, i.e., u–v:

d�f
dz

¼ hðu � v Þ ð10:32Þ

FIGURE 10.6 Dependence of �xx on �.
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where u is the axial fiber displacement, v is the axial matrix displacement,
and h is a proportionality constant. Also, from the simple force balance in
Fig. 10.7(b), we can show that

�f
�d2 dx

4
þ 
m�d:dx ¼ 0 ð10:33aÞ

or

�f ¼ � 4

d

m ð10:33bÞ

Substituting Eq. (10.33b) into Eq. (10.32) gives

d�f
dz

¼ hðu � v Þ ¼ � 4
m
d

ð10:34aÞ

FIGURE 10.7 The shear lag model: (a) representative short fiber/whisker; (b)
unit cell for shear lag analysis. (From Taya and Arsenault, 1989. Courtesy of
Pergamon Press.)
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or

�f ¼
4h

d
ðu � v Þ ð10:34bÞ

Note that, by definition, du=dz ¼ "f , the strain in the fiber. Similarly,
dv=dz ¼ "m ¼ e, the strain in the matrix. Also, the strain in the fiber, �f ,
is given by �f=Ef . Hence, if we now differentiate Eq. (10.34a) with respect to
z, we obtain:

d2�f
dz2

¼ h
du

dz
� dv

dz

� �
¼ h

�f
Ef

� e

� �
ð10:35Þ

Equation (10.35) can be solved to give

�f ¼ Ef"f þ C1 cosh �z þ C2 sinh �z ð10:36Þ
where

� ¼
ffiffiffiffiffi
h

Ef

s
ð10:37Þ

If we now apply the boundary conditions at the end of the fiber, we have
�f ¼ �0. Furthermore, in the middle of the fiber, d�f=dz ¼ 0. We may then
solve for C1 and C2 and show that

�f ¼ Ef"m 1þ
�0
Efe

� 1

� �
cosh �z

cosh
�‘

2

� �
2
664

3
775 ð10:38Þ

Cox’s original model (Cox, 1952) proposed that �0 ¼ 0. However, Nardone
and Prewo (1986) later recognized that �0 6¼ 0 for strongly bonded fiber
ends. Furthermore, the average fiber stress, �f , may also be determined
from:

�f ¼
2

‘

ð1=2
0

d‘ ¼ Efe 1þ
�0
Efe

� 1

� �
tanh

�‘

2

� �
�‘

2

� �
2
664

3
775 ð10:39Þ

Now applying the rule of mixtures to obtain the average composite stress
gives

�c ¼ ð1� VfÞ�m þ Vf�f ð10:40Þ
where �m is the average matrix stress. Also, the stresses in the matrix and
composite are, respectively,
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�m ¼ Eme ð10:41Þ
and

�c ¼ Ece ð10:42Þ
Substituting Eqs (10.39), (10.41), and (10.42) into Eq. (10.40) now gives

Ec ¼ ð1� VfÞEm þ VfEf 1þ
�0
Efe

� 1

� �
tanh

�‘

2

� �
�‘

2

� �
2
664

3
775 ð10:43Þ

For special cases when the fiber ends are stress free (Cox model), we have
�0 ¼ 0. This gives

Ec ¼ ð1� VfÞEm þ VfEf 1�
tanh

�‘

2

� �
�‘

2

� �
2
664

3
775 ð10:44Þ

Also, when �0 ¼ �m ¼ Eme, Eq. (10.44) may be expressed as

Ec ¼ ð1� VfÞEm þ V
f
1�

Em

Ef
� 1

� �
tanh

�‘

2

� �
�‘

2

� �
2
664

3
775 ð10:45Þ

The above expressions provide useful estimates of composite modulus.
However, there are some inherent inconsistences in the use of the con-
stant-strain condition in the shear lag formulation. For this reason, more
rigorous tensor methods, such as those developed by Eshelby (1957, 1959),
are needed when greater accuracy is required. However, these are beyond
the scope of this book.

Finally, in this section, it is important to determine the constant, B, in
Eqs (10.36)–(10.45). This can be found by analyzing the simple unit cell
given in Fig. 10.7. Consider the relative displacement between a point at r ¼
D=2 (where the displacement ¼ u) and an arbitrary point in the matrix at
r ¼ r. From horizontal force balance we may write:


0ð�dÞdx ¼ 
ð2�rÞdx ð10:46Þ
Also, the shear strain, �, is given by

g ¼ dw

dr
¼ 


Gm
¼ 
0d

2rGm
ð10:47Þ
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Integrating Eq. (10.47) between r ¼ d=2 and R ¼ D=2 gives

w ¼ 
mD

2Gm

ðD=2
d=2

1

r
¼ 
m

2Gm
ln

D

d

� �
ð10:48Þ

Hence, since w ¼ u� v, we can combine Eqs (10.34a) and (10.48) to give

4
m
d

¼ hðu � v Þ ¼ h

md

2Gm
ln

D

d

� �
ð10:49Þ

or

h ¼ UGm

d2
ln

D

d

� �
ð10:50Þ

Therefore, since � ¼
ffiffiffiffiffiffiffiffiffiffi
h=Ef

p
[Equation (10.37)], we may thus substitute Eq.

(10.50) into Eq. (10.37) to obtain:

� ¼
ffiffiffiffiffiffiffiffiffiffi
8Gm

d2Ef

s
ln

D

d
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¼ 2

ffiffiffi
2
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d

ffiffiffiffiffiffiffiffi
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Ef

s
ln

D

d

� �
ð10:51Þ

where Gm is the matrix shear modulus, Ef is the fiber Young’s modulus, d is
the fiber diameter, and D is the diameter of the unit cell shown schematically
in Fig. 10.7.

10.8 THE ROLE OF INTERFACES

The above discussion has focused largely on the role of matrix and fiber
materials in the deformation of composite materials. However, in several
composite systems, the deformation characteristics and failure modes are
strongly affected by the strong role of interfaces. In particular, weak or
moderately strong interfaces tend to promote debonding or interfacial slid-
ing between the matrix and the fiber. Since interfacial sliding and debonding
may promote significant toughening in ceramic matrix and metal matrix
composites (Evans and co-workers, 1990, 1991), considerable effort has
been expended in the tailoring of interfaces with low/moderate shear
strengths.

In the case of silicon carbide fibers that are used for the reinforcement
of metal matrix composites, carbon coatings have been deposited on to the
SiC fibers (Fig. 9.2) to obtain the desired interfacial sliding and debonding.
However, the relatively high cost and limited durability of such composites
have prevented potential structural applications in aeroengine structures
and components (Soboyejo et al., 1997).

Since the interfacial properties of composite materials are of practical
importance to the design of damage tolerant composites, significant efforts
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have been made to develop test techniques for the measurement of inter-
facial strength. The fiber pull-out test (Fig. 10.8) and the fiber push-out test
(Fig. 10.9) have been the most commonly used techniques for interfacial
strength measurement. These rely, respectively, on the pull-out or push-out
of fibers from a thin slice of composite material that is polished and etched
to reveal the fibers under an in-situ microscope. The applied load is mea-
sured with a load cell, while the displacement is often determined with a
capacitance gauge. In this way, plots of load versus displacement can be
obtained for subsequent analysis of fiber push-out behavior.

Typical plots of load versus displacement obtained from a fiber pull-
out or push-out test and a fiber push-back test on a Ti-15-3/SiC composite
are shown in Figs 10.10(a) and 10.10(b), respectively. During the fiber push-
out test, the initial deformation involves elastic bending. This is associated
with a linear increase in load until a critical load is reached at which debond-
ing occurs between the matrix and the fiber. A significant load drop is
observed at the onset of debonding, Fig. 10.10(a). This is followed by an
increase in load that is associated with geometric decorrelation during the
initially matching fiber and matrix geometries during fiber displacement
(Mackin et al., 1992). Subsequent fiber push-out is accompanied by a load
drop, as the length of fiber in sliding contact decreases during the fiber push-
out stage, Fig. 10.10(a).

If the push-out fiber is now pushed back in, i.e., returned to its original
location, a load drop is experienced as the fiber reseats into its original
position, Fig. 10.10(b). This load drop is associated with the geometric
‘‘memory’’ of the debond surface between the fiber and the matrix.

The average shear stress, 
, experienced by the fiber may be expressed
simply as

FIGURE 10.8 Schematic illustration of fiber pull-out test.

Copyright © 2003 Marcel Dekker, Inc.




 ¼ P

2�rt
ð10:52Þ

where P is the applied load, r is the fiber radius, and t is the thickness of the
push-out or pull-out specimen (Figs 10.8 and 10.9). To avoid excessive
bending during the fiber push-out test, t is usually selected to be � 2:5�
3:0 times the fiber diameter. Hence, for SCS-6 fibers with diameters of
� 150 �m, t is � 450 �m.

If we assume that the interfaces between the matrix and the fiber are
smooth, fiber sliding may be analyzed using a generalized sliding friction
law. This is given by Hutchinson and co-workers (1990, 1993) to be


 ¼ 
0 � ��r ð10:53Þ

where 
0 is the sliding stress, 
0 is the contact sliding stress, � is the friction
coefficient, and �r is the radial clamping stress, which is due largely to the
thermal expansion mismatch between the matrix and fibers. The fiber push-
out stress has also be shown by Hutchinson and co-workers (1990, 1993) to
be

�u ¼ �0½expð2�Bt=RÞ � 1�ð1� f Þ
½f ðEf=EmÞ expð2�Bt=RÞ þ 1� f � ð10:54Þ

where f is the volume fraction of fiber, R is the fiber radius, t is the
embedded length of fiber in contact with the matrix, E is Young’s modulus,
subscripts m and f denote matrix and fiber, respectively, and

B ¼ 	E½Efð1þ 	Þ þ Eð1� 	Þ��1 ð10:55aÞ

FIGURE 10.9 Schematic of fiber push-out test. (From Mackin et al., 1992.
Reprinted with permission from Elsevier Scientific.)
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FIGURE 10.10 Load–displacement plot obtained from (a) fiber push-out test
and (b) fiber push-back test on a Ti–15–3Cr–3Al–3Sn/SCS-6 composite. (From
Mackin et al., 1992. Reprinted with permission from Elsevier Scientific.)
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�0 ¼ Ef"T
	

þ 
0
�

� �
E

BEð1� f Þ ð10:55bÞ

t ¼ h� d ð10:55cÞ
where 	 is Poisson’s ratio, which is assumed to be the same in the fiber and
the matrix, h is the specimen thickness and d is the sliding distance of the
fiber.

However, as noted originally by Jero and co-workers (1990, 1991), the
fiber roughness has a significant effect on interfacial sliding phenomena, in
addition to the effects of interfacial clamping pressure. Detailed analyses by
Carter et al. (1990) modeled the asperity contacts as Hertzian contacts that
result in a sinusoidal variation of sliding stress. Work by Kerans and
Parthasarathy (1991) has also considered the effects of asperity pressure
on fiber debonding and sliding, as well as the effects of abrasion of fibers.

The interfacial roughness introduces a misfit, "T, that depends on the
roughness along the interface:

"T ¼ "a þ
�ðzÞ
R

ð10:56Þ

where "a is a misfit due to the thermal expansion mismatch between the
matrix and the fiber (along the embedded fiber length), and �ðzÞ=R is the
local misfit strain, which induces an additional pressure, p. If we assume that
the local interfacial stress is predominantly Coulombic, then the interfacial
stress is given by


 ¼ �ð�r þ pÞ ð10:57Þ
If the asperity pressure is obtained from the integral of the asperity pressure
over the fiber length, then the fiber push-out stress may be expressed as
(Mackin et al., 1992):

�uðdÞ ¼
"a
2B

½expð2�Bt=Rð1� d=tÞÞ � 1�

þ ð2E�=R2Þ expð�2�Bd=RÞ
ðh
d

½expð2z=RÞ��ðzÞdz
ð10:58Þ

where d is the push-out distance (Fig. 10.10) and the other constants have
their usual meaning.

The above discussion has focused largely on the fiber push-out test.
However, other tests may also be used to measure the interfacial shear
strengths of composites. These include fiber pull-out tests (Fig. 10.8) and
fiber fragmentation tests (Fig. 10.11) that relate the fiber length distributions
of fractured segments (obtained by pulling individual fibers) to the inter-
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facial strengths between the matrix and fiber. Details of the fiber fragmenta-
tion test can be found in a paper by Ho and Drzal (1995).

10.9 SUMMARY

Further topics in composite deformation are presented in this chapter, fol-
lowing the introduction to composites in Chap. 9. The chapter begins with a
systematic introduction to composite ply theory. This includes a detailed
treatment of single- and multi-ply laminates. It is followed by a description
of how the components of the ABD matrices can be used in composite
design. Composite failure criteria are then presented before introducing
the shear lag theory for whisker or short fiber-reinforced composites.
Finally, the role of interfaces is considered in a section that includes con-
siderations of debonding and fiber sliding during fiber push-out testing to
determine interfacial properties.
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11

Fundamentals of Fracture Mechanics

11.1 INTRODUCTION

In the 17th century, the great scientist and painter, Leonardo da Vinci,
performed some strength measurements on piano wire of different lengths.
Somewhat surprisingly, he found that the strength of piano wire decreased
with increasing length of wire. This length-scale dependence of strength was
not understood until the 20th century when the serious study of fracture was
revisited by a number of investigators. During the first quarter of the 20th
century, Inglis (1913) showed that notches can act as stress concentrators.
Griffith (1921) extended the work of Inglis by deriving an expression for the
prediction of the brittle stress in glass. Using thermodynamic arguments,
and the concept of notch concentration factors from Inglis (1913), he
obtained a condition for unstable crack growth in brittle materials such as
glass. However, Griffith’s work neglected the potentially significant effects
of plasticity, which were considered in subsequent work by Orowan (1950).

Although the work of Griffith (1921) and Orowan (1950) provided
some insights into the role of cracks and plasticity in fracture, robust engi-
neering tools for the prediction of fracture were only produced in the late
1950s and early 1960s after a number of well-publicized failures of ships and
aircraft in the 1940s and early to mid-1950s. Some of the failures included
the fracture of the so-called Liberty ships in World War II (Fig. 11.1) and
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the Comet aircraft disaster in the 1950s. These led to significant research and
development efforts at the U.S. Navy and the major aircraft producers such
as Boeing.

The research efforts at the U.S. Naval Research laboratory were led by
George Irwin, who may be considered as the father of fracture mechanics.
Using the concepts of linear elasticity, he developed a crack driving force
parameter that he called the stress intensity factor (Irwin, 1957). At around
the same time, Williams (1957) also developed mechanics solutions for the
crack-tip fields under linear elastic fracture mechanics conditions. Work at
the Boeing Aircraft Company was pioneered by a young graduate student,
Paul Paris, who was to make important fundamental contributions to the
subject of fracture mechanics and fatigue (Paris and coworkers, 1960, 1961,
1963) that will be discussed in Chap. 14.

Following the early work on linear elastic fracture mechanics, it was
recognized that further work was needed to develop fracture mechanics
approaches for elastic–plastic and fully plastic conditions. This led to the
development of the crack-tip opening displacement (Wells, 1961) and the J
integral (Rice, 1968) as a parameter for the characterization of the crack
driving force under elastic–plastic fracture mechanics conditions. Three-

FIGURE 11.1 Fractured T-2 tanker, the S.S. Schenectady, which failed in1941.
(Adapted from Parker, 1957—reprinted with permission from the National
Academy of Sciences.)
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parameter fracture mechanics approaches have also been proposed by
McClintock et al. (1995) for the characterization of the crack driving
force under fully plastic conditions.

The subject of fracture mechanics is introduced in this chapter. The
chapter begins with a brief description of Griffith fracture theory, the
Orowan plasticity correction, and the concept of the energy release rate.
This is followed by a derivation of the stress intensity factor, K , and some
illustrations of the applications and limitations of K in linear elastic fracture
mechanics. Elastic–plastic fracture mechanics concepts are then introduced
along with two-parameter fracture concepts for the assessment of con-
straint. Finally, the relative new subject of interfacial fracture mechanics
is presented, along with the fundamentals of dynamic fracture mechanics.

11.2 FUNDAMENTALS OF FRACTURE MECHANICS

It is now generally accepted that all engineering structures and components
contain three-dimensional defects that are known as cracks. However, as
discussed in the introduction, our understanding of the significance of
cracks has only been developed during the past few hundred years, with
most of the basic understanding emerging during the last 50 years of the
20th century.

11.3 NOTCH CONCENTRATION FACTORS

Inglis (1913) modeled the stress concentrations around notches with radii of
curvature, �, and notch length, a (Fig. 11.2). For elastic deformation, he was
able to show that the notch stress concentration factor, Kt, is given by

Kt ¼
maximum stress around notch tip

Remote stress away from notch
¼ 1þ 2

ffiffiffi
a

�

r
ð11:1Þ

Hence, for circular notches with a ¼ �, he was able to show that Kt � 3.
This rather large stress concentration factor indicates that an applied stress
of � is amplified by a factor of 3 at the notch tip. Failure is, therefore, likely
to initiate from the notch tip, when the applied/remote stresses are signifi-
cantly below the fracture strength of the un-notched material. Subsequent
work by Neuber (1945) extended the work of Inglis to include the effects of
notch plasticity on stress concentration factors. This has resulted in the
publication of handbooks of notch concentration factors for various
notch geometries.

Returning now to Eq. (11.1), it is easy to appreciate that the notch
concentration factor will increase dramatically, as the notch-tip radius
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approaches the limiting value corresponding to a single lattice spacing, b.
Hence, for an atomistically sharp crack, the relatively high levels of stress
concentration are likely to result in damage nucleation and propagation
from the crack tip.

11.4 GRIFFITH FRACTURE ANALYSIS

The problem of crack growth from a sharp notch in a brittle solid was first
modeled seriously by Griffith (1921). By considering the thermodynamic
balance between the energy required to create fresh new crack faces, and
the change in internal (strain) energy associated with the displacement of
specimen boundaries (Fig. 11.3), he was able to obtain the following energy
balance equation:

UT ¼ ���
2a2B

E 0 þ 4a�sB ð11:2Þ

where the first half on the right-hand side corresponds to the strain energy
and the second half of the right-hand side is the surface energy due to the
upper and lower faces of the crack, wihch have a total surface area of 4aB.
Also, � is the applied stress, a is the crack length, B is the thickness of the
specimen, E0 ¼ E=ð1� 	2Þ for plane strain, and E0 ¼ E for plane stress,

FIGURE 11.2 Stress concentration around a notch. (Adapted from Callister,
1999—reprinted with permission from John Wiley.)
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where E is Young’s modulus, 	 is Poisson’s ratio, and �s is the surface
energy associated with the creation of the crack faces.

The critical condition at the onset of unstable equilibrium is deter-
mined by equating the first derivative of Eq. 11.2 to zero, i.e.,
dUT=da ¼ 0. This gives

dUT

da
¼ � 2��2aB

E 0 þ 4�B ¼ 0 ð11:3Þ

or

�c ¼
ffiffiffiffiffiffiffiffiffiffi
2�E 0

�a

r
ð11:4Þ

where �c is the Griffith fracture stress obtained by rearranging Eq. (11.3),
and the other terms have their usual meaning. Equation (11.4) does not
account for the plastic work that is done during the fracture of most mate-
rials. It is, therefore, only applicable to very brittle materials in which no
plastic work is done during crack extension.

Equation (11.4) was modified by Orowan (1950) to account for plastic
work in materials that undergo plastic deformation prior to catastrophic

FIGURE 11.3 A center crack of length 2a in a large plate subjected to elastic
deformations. (Adapted from Suresh, 1999—reprinted with permission from
Cambridge University Press.)
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failure. Orowan proposed the following expression for the critical fracture
condition, �c :

�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�s þ �pÞE 0

�a

r
ð11:5Þ

where �p is a plastic energy term, which is generally difficult to measure
independently.

Another important parameter is the strain energy release rate, G,
which was first proposed by Irwin (1964). This is given by:

G ¼ � 1

B

dðUL þUEÞ
da

ð11:6Þ

where UL is the potential energy of the loading system, UE is the strain
energy of the body, and B is the thickness of the body. Fracture should
initiate when G reaches a critical value, Gc, which is given by

GC ¼ 2ð�s þ �pÞ ð11:7Þ

11.5 ENERGY RELEASE RATE AND COMPLIANCE

This section presents the derivation of energy release rates and compliance
concepts for prescribed loading [Fig. 11.4(a)] and prescribed displacement
[Fig. 11.4(b)] scenarios. The possible effects of machine compliance are
considered at the end of the section.

11.5.1 Load Control or Deadweight Loading

Let us start by considering the basic mechanics behind the definition of the
energy release rate of a crack subjected to remote load, F , Fig. 11.4(a). Also,
u is the load point displacement through which load F is applied. The energy
release rate, G, is defined as

G ¼ � 1

B

@PE

@a

� �
ð11:8Þ

where B is the thickness of the specimen, PE is the potential energy, and a is
the crack length. The potential energy for a system with prescribed load, F ,
is given by (Fig. 11.5):

�� ¼ PE ¼ SE�WD ¼ 1

2
F�u� F�u ¼ � 1

2
F�u ð11:9Þ

where SE is the strain energy and WD is the work done. By definition, the
compliance, C, of the body is given simply by
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FIGURE 11.5 Schematic of load–displacement curve under prescribed load.
(Adapted from Suresh, 1999—reprinted with permission from Cambridge
University Press.)

FIGURE 11.4 Schematic of notched specimens subject to (a) prescribed load-
ing or (b) prescribed displacement. (Adapted from Suresh, 1999—reprinted
with permission from Cambridge University Press.)
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C ¼ u

F
ð11:10Þ

where C depends on geometry and elastic constants E and 	. Hence, the
potential energy is given by [Eqs (11.9) and (11.10)]:

PE ¼ � 1

2
Fu ¼ � 1

2
FðCFÞ ¼ � 1

2
F2C ð11:11Þ

and the energy release rate is obtained by substituting Eq. (11.11) into Eq.
(11.8) to give

G ¼ 1

B

@PE

@a
¼ 1

2B
F2 dC

da
ð11:12Þ

11.5.2 Displacement-Controlled Loading

Let us now consider the case in which the displacement is controlled [Fig.
11.4(a)], and the load, F , varies accordingly (Fig. 11.6). When the crack
advances by an amount �a under a fixed displacement, u, the work done
is zero and hence the change in potential energy is equal to the strain energy.

FIGURE 11.6 Schematic of load–displacement curve under prescribed dis-
placement. (Adapted from Suresh, 1999—reprinted with permission from
Cambridge University Press.)
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��
fixed
u � �PE
��� ���

fixed
u ¼ SE ¼ �G�A ¼ �GB�a ð11:13Þ

where �A is the change in crack area, dA ¼ B�a. Hence, rearranging Eq.
(11.13) now gives

G ¼ �1

B

@PE

@a

� �����
fixed
u

ð11:14Þ

The strain energy, SE, is given simply by the shaded area in Figure 11.6:

SE ¼ 1

2
u�F ¼ � F

2
�F ð11:15Þ

Since the compliance is u/F, then from Equation 11.15, we have:

G ¼ �1

B

@PE

@a fixed
u ¼ �u

2B

@F

@a

����
����
fixed
u

¼ F2

2B

dC

da
ð11:16Þ

Hence, the expression for the energy release rate is the same for displace-
ment control [Eq. (11.16)] and load control [Eq. (11.12)]. It is important to
note the above equations for G are valid for both linear and non-linear
elastic deformation. They are also independent of boundary conditions.

11.5.3 Influence of Machine Compliance

Let us now consider the influence of machine compliance, CM, on the
deformation of the cracked body shown in Fig. 11.7. The total displacement,

FIGURE 11.7 Schematic of deformation in a compliant test machine. (Adapted
from Hutchinson, 1979—with permission from the Technical University of
Denmark.)
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�T, is now the sum of the machine displacement, �M, and the specimen
displacement, �. If the total displacement is prescribed, then we have

�T ¼ �þ�M ¼ �þ FCM ð11:17Þ
since C ¼ �=F , we may also write:

�T ¼ �þ CM

C
� ð11:18Þ

The potential energy is now given by

PE ¼ SEþ 1

2
CMF

2 ¼ � 1

2B
C�1�2 þ 1

2B
C�1
M ð�T ��Þ2 ð11:19Þ

and the energy release rate is

G ¼ � @PE

@a

� �
�T

¼ � C�1�� C�1
M ð�T ��Þ
B

" #
@A

@a

� �
�T

þ 1

2B
C�2�2 dC

da

¼ 1

2B
C�2�2 dC

da
¼ 1

2B
F 2 dC

da

ð11:20Þ

Hence, as before, the energy release rate does not depend on the nature of the
loading system. Also, the measured value of G does not depend on the com-
pliance of the loading system. However, the experimental determination of G
is frequently done with rigid loading systems that correspond to CM ¼ 0.

11.6 LINEAR ELASTIC FRACTURE MECHANICS

The fundamentals of linear elastic fracture mechanics (LEFM) are presented
in this section. Following the derivation of the crack-tip fields, the physical
basis for the crack driving force parameters is presented along with the
conditions required for the application of LEFM. The equivalence of G
and the LEFM cracking driving force (denoted by K) is also demonstrated.

11.6.1 Derivation of Crack-Tip Fields

Before presenting the derivation of the crack-tip fields, it is important to
note here that there are three modes of crack growth. These are illustrated
schematically in Fig. 11.8. Mode I [Fig. 11.8(a)] is generally referred to as
the crack opening mode. It is often the most damaging of all the loading
modes. Mode II [Fig. 11.8(b)] is the in-plane shear mode, while Mode III
[Fig. 11.8(c)] corresponds to the out-of-plane shear mode. Each of the
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modes may occur separately or simultaneously. However, for simplicity, we
will derive the crack-tip fields for pure Mode I crack growth. We will then
extend our attention to Modes II and III.

Now, let us begin by considering the equilibrium conditions for a
plane element located at a radial distance, r, from the crack-tip (Fig.
11.9). For equilibrium in the polar co-ordinate system, the equilibrium
equations are given by

@�rr
@r

þ 1

r

@�r�
@�

þ �rr � ���
r

¼ 0 ð11:21aÞ

FIGURE 11.8 Modes of crack growth: (a) Mode I; (b) Mode II; (c) Mode III.
(Adapted from Suresh, 1999—reprinted with permission from Cambridge
University Press.)

FIGURE 11.9 In-plane co-ordinate system and crack-tip stresses.
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@�r�
@r

þ 1

r

@���
@�

þ 2�r�
r

¼ 0 ð11:21bÞ

The in-plane strain components are given by

"rr ¼
@ur

@r
ð11:21cÞ

"�� ¼
ur

r
þ 1

r

@u�
@�

ð11:21dÞ

"r� ¼
1

2

1

r

@ur

@�
þ @u�
@r

� u�
r

� �
ð11:21eÞ

Finally, for strain compatibility we must satisfy

@2"��
@r2

þ 2

r

@"��
@r

� 1

r

@2"r�
@r@�

� 1

r2
@"r�
@r�

þ 1

r2
@"2rr
@�2

� 1

r

@"rr
@r

¼ 0 ð11:22Þ

For the in-plane problem (Modes I and II), the crack-tip strains are
only functions of r and �. Also, for the plane stress problem �zz ¼ 0. The
relationship between stress and strain is given by Hooke’s law:

E"rr ¼ �rr � 	��� ð11:23aÞ

E"�� ¼ ��� � 	�rr ð11:23bÞ

2�"r� ¼ ��r� ¼ �r� ð11:23cÞ
As discussed in Chap. 4, the solutions to the above equations are

satisfied by the Airy stress function via:

�rr ¼
1

r

@�

@r
þ 1

r2
@2�

@�2
ð11:24aÞ

��� ¼
@2�

@r2
ð11:24bÞ

�r� ¼ � @

@r

1

r

@�

@�

� �
ð11:24cÞ

When the compatibility condition is expressed in terms of the Airy stress
function, we obtain a biharmonic equation of the form:

r2ðr2�Þ ¼ 0 ð11:25aÞ
where
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r2 � @

@r2
þ 1

r

@

@r
þ 1

r2
@2

@�2
ð11:25bÞ

Since the crack faces are traction free, ��� ¼ �r� ¼ 0 at � ¼ ��. Also,
the Airy stress function (trial function) must be single valued and have the
appropriate singularity at the crack-tip. One possible form of the airy stress
function is

� ¼ r2pðr; �Þ þ qðr; �Þ ð11:26Þ
where pðr; �Þ and qðr; �Þ are both harmonic functions that satisfy Laplace’s
equations, i.e., r2p ¼ 0 and r2q ¼ 0. Following the approach of Williams
(1957), let us consider expressions for pðr; �Þ and qðr; �Þ that are of separable
form � ¼ RðrÞ � �ð�Þ. From Williams (1957) we have

pðr; �Þ ¼ A1r
� cos �� þ A2r

� sin �� ð11:27aÞ

qðr; �Þ ¼ B1r
�þ2 cosð�þ 2Þ� þ B2r

�þ2 sinð�þ 2Þ� ð11:27bÞ
From Eq. (11.26) we may now write the following expression for �:

� ¼ r�þ2½A1 cos �� þ B1 cosð�þ 2Þ��
þ r ð�þ2Þ½A2 sin �� þ B2 sinð�þ 2Þ��

ð11:28Þ

The solution to the first expression in brackets (the symmetric part) corre-
sponds to the Mode I solution for the crack-tip fields, while the solution to
the second expression in brackets (the antisymmetric part) corresponds to
the Mode II solution. For pure Mode I, we may obtain the crack-tip fields
by substituting the terms in the brackets on the left-hand side into the Airy
stress function expressions given by Eqs (11.24):

��� ¼
@2�

@r2
¼ ð�þ 2Þð�þ 1Þr�½A1 cos �� þ B1 cosð�þ 2Þ�� ð11:29aÞ

�r� ¼ ½ @
@r

1

r

@�

@�

� �
¼ ð�þ 1Þr�½�A1 sin �� þ ð�þ 2ÞB1 sinð�þ 2Þ��

ð11:29bÞ
Also, since the crack faces are traction free, ��� ¼ �r� ¼ 0 at � ¼ ��. This
gives

ðA1 þ BÞ cosð��Þ ¼ 0 ð11:30aÞ
and

½�A1 þ ð�þ 2ÞB1� sinð��Þ ¼ 0 ð11:30bÞ
Equations (11.30a) and (11.30b) are satisfied if
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A1 ¼ �B and sin ð��Þ ¼ 0 (hence, � ¼ Z ; where Z is an integer)

ð11:31Þ
or

A1 ¼ 0
ð�þ 2ÞB1

�
and cosð��Þ ¼ 0 this gives A ¼ 2Z þ 1

2

� �
ð11:32Þ

since Equations (11.31) and (11.32) are linear, then any linear combination
of solutions is admissible. Hence, � ¼ Z=2 is admissible. It is important to
note that other linear combinations of solutions are also admissible.
Furthermore, there is no basis to reject any value of �. However, the solu-
tion can be chosen to reflect the lowest order singularity based on physical
arguments. From Eq. (11.29), we note that �ij � r� and "ij � r�. Hence, the
strain energy density, �, is given by

� ¼ 1

2
�ij"ij � r2� ð11:33Þ

The total strain energy, �, in the annular region at the crack tip is
given by the following integration:

� ¼
ð2�
0

ðR
r0

1

2
�ij"ij r dr d� ¼

ð2�
0

ð2�
r0

r2�þ1dr d� ð11:34Þ

However, � must be finite (� <1Þ and this requires that � > �1. Also,
since the displacements uI � r�þ1, finite displacement requires � > �1.

Hence, the admissible values of � ¼ z

2
are given by

� ¼ � 1

2
; 0;þ 1

2
; 1;

3

2
; 2 . . . ;

Z

2
ð11:35Þ

The most singular term is given by � ¼ �1=2, for which B1 ¼ A1=3.
Substituting these into Eq. (11.28) for � now gives

� ¼ r3=2A1 cos
�

2
þ 1

3
cos

3�

2

� �
þOðr2Þ þOðr5=2Þ ð11:36aÞ

or

�ij ¼ A1r
�1

2 ~��Iij ð�Þ þOij ðIr0Þ þOij ðr1=2Þ ð11:36bÞ
The second term on the right-hand side (with an exponent of zero) is a
nonsingular, nonvanishing term. The higher order terms, with exponents
greater than zero, become insignificant as r ! 0. Hence, replacing A with
a=

ffiffiffi
2

p
� now gives
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�ij ¼ Iffiffiffiffiffiffiffiffi
2�r

p �Iij ð�Þ þ T �ix�jx þ insignificant higher order terms

ð11:37Þ
where KI is the Mode I stress intensity factor, �Iijð�Þ is a function of � for
Mode I conditions, T is the so-called T stress (Williams, 1957; Irwin, 1960;
Larsson and Carlsson, 1973; Rice, 1974; Bilby et al., 1986), and �ij is the
Kronecker delta defined in Chap. 4 (Section 4.6). The in-plane crack-tip
stresses may thus be expressed as

�xx �xy

�xy �yy

" #
¼ K1ffiffiffiffiffiffiffiffi

2�r
p

~��1xx ð�Þ ~��Ixy ð�Þ
~��Iyx ð�Þ ~��Iyy ð�Þ

2
4

3
5þ

T 0

0 0

" #
ð11:38Þ

In general, the T term is only used to characterize the crack-tip fields
when constraint (crack-tip triaxiality) is important. It is also used in the
characterization of short fatigue cracks and mixed mode cracks (Suresh,
1999). In most cases, however, the T stress is not considered. For the
Cartesian co-ordinate system, the resulting Mode I crack-tip fields are
given by

�xx

�yy

�xy

2
664

3
775 ¼ KIffiffiffiffiffiffiffiffi

2�r
p cos

�

2

1� sin
�

2
sin

3�

2

1þ sin
�

2
sin

3�

2

sin
�

2
cos

3�

2

2
66666664

3
77777775

ð11:39aÞ

Using the cylindrical co-ordinate system, the Mode I stress fields are
given by

�rr

���

�r�

2
664

3
775 ¼ K1ffiffiffiffiffiffiffiffi

2�r
p cos

�

2

1þ sin2 �

2

� �

cos2
�

2

� �

sin
�

2

� �
cos

�

2

� �

2
666666664

3
777777775

ð11:39bÞ

�zz ¼ 	1ð�rrþ���Þ ð11:40Þ

�xz ¼ �yz ¼ �rz ¼ ��z ¼ 0 ð11:41Þ
The corresponding displacements for Mode I are given by
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ux

uy

2
64

3
75 ¼ K1

2E

ffiffiffiffiffiffi
r

2�

r 1þ 	Þ ð2�� 1Þ cos �
2
� cos

3�

2

� �

ð1þ 	Þ ð2�� 1Þ sin �
2
� sin

3�

2

� �
2
6664

3
7775 ð11:42aÞ

ur

u�

2
64

3
75 ¼ K1

2E

ffiffiffiffiffiffi
r

2�

r 1þ 	Þ ð2�� 1Þ cos �
2
� cos

3�

2

� �

ð1þ 	Þ �ð2�� 1Þ sin �
2
� sin

3�

2

� �
2
6664

3
7775 ð11:42bÞ

where

� ¼ 3� 	
1þ 	 ; v1 ¼ v ; v2 ¼ 0 (for plane stress) ð11:43aÞ

and

� ¼ ð3� 4	Þ; 	1 ¼ 	; 	2 ¼ 0 (for plane strain) ð11:43bÞ
The term KI in the above expressions is the amplitude of the crack-tip

field under Mode I conditions. It represents the driving force for crack
growth under these conditions. It is also important to note here that K1 is
independent of elastic constants. Similarly, the near-tip fields for Mode II
can be derived by applying the boundary conditions to the antisymmetric
part of Eq. 11.28. The resulting solutions are

�rr

���

�r�

2
6666664

3
7777775
¼ KII

2�r

� sin
�

2
1� 3 sin2 �

2

� �

�3 sin
�

2
cos2

�

2
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2
1� 3 sin2 �

2

� �

2
66666664

3
77777775

ð11:44Þ

�zz ¼ 	1ð�rr þ ���Þ ð11:45Þ

�rz ¼ ��z ¼ 0 ð11:46Þ
The displacements in Mode II are given by

ur

u�

2
64

3
75 ¼ KII

2E

ffiffiffiffiffiffi
r

2�

r ð1þ 	Þ �2�� 1Þ sin �
2
þ sin

3�

2

� �

ð1þ 	Þ �ð2�þ 1Þ cos �
2
þ 3 cos

3�

2

� �
2
6664

3
7775 ð11:47Þ
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uz ¼
	2z

E
ð�xx þ �yy Þ ¼

	2z

E
ð�n þ ���Þ ð11:48Þ

For Mode III:

�rz

��z

� �
¼ KIIIffiffiffiffiffiffiffiffi

2�r
p

sin
�

2

cos
�

2

2
64

3
75 ð11:49Þ

�rr ¼ ��� ¼ �zz ¼ 0 ð11:50Þ

uz ¼
KIII

2E

ffiffiffiffiffiffi
r

2�

r
2ð1þ 	Þ sin �

2

� �
ð11:51Þ

ur ¼ u� ¼ 0 ð11:52Þ
Hence, in general, the expressions for the crack-tip fields and displacements
may be expressed, respectively, by equations of the form:

~��ij ¼
KMffiffiffiffiffiffiffiffi

2�r
p

~��Mij ð�Þ�
h ð11:53Þ

uM
i ¼ KM

2E

ffiffiffiffiffiffi
r

2�

r
~uuM
i ~��Mij ð�Þ�
h

ð11:54Þ

where KM is the stress intensity factor for a given mode of failure (I, II, or
III), and the other terms have their usual meeting. The stress intensity factor
for each mode may also be defined as

K1 ¼ lim
r!0

ffiffiffiffiffiffiffiffi
2�r

p
�yy j�¼0

h i
ð11:55aÞ

KII ¼ lim
r!0

j
ffiffiffiffiffiffiffiffi
2�r

p
�xy j�¼0� ð11:55bÞ

KIII ¼ lim
r!0

ffiffiffiffiffiffiffiffi
2�r

p
�xz j�¼0

h i
ð11:55cÞ

Stress intensity factor solutions for selected geometries are presented
in Fig. 11.10. More comprehensive solutions for a wide range of geometries
can be found in the handbooks by Tada et al. (1999), Sih (1973), and
Murakami (1987).
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11.6.2 Crack Driving Force and Concept of Similitude

According to Eqs (11.55), the stress fields of all cracks are identical, except
for the scaling factor, K . Therefore, K can be used to represent the ampli-
tude of the crack-tip fields. More importantly, however, K represents the
driving force for crack growth under LEFM conditions. The stress intensity
factor, K , is generally given by expressions of the form (Fig. 11.10):

K ¼ f ða=W Þ� ffiffiffiffiffiffi
�a

p ð11:56Þ

where � is the applied stress, f ða=WÞ is a function of the crack length, a, and
W is the width of the specimen/component. As discussed earlier, geometry
functions for different fracture mechanics geometries are presented in Fig.
11.10. More complete summaries of geometry functions can also be found in
fracture mechanics handbooks such as the ones by Tada et al. (1999), Sih
(1973), and Murakami (1987). Most of these solutions apply to two-dimen-
sional cracks (mostly through-thickness cracks that are relatively easy to
monitor in crack growth experiments). Such cracks are found commonly in
standard fracture mechanics specimens that include single-edge notched
bend (SENB), compact tension (C-T), and other specimen geometries
(Fig. 11.10).

FIGURE 11.10a K solutions for common specimen geometries. (Adapted from
Hertzberg, 1996—reprinted with permission from John Wiley.)
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However, most engineering structures and components contain sur-
face cracks with semielliptical crack geometries (Fig. 11.11). The stress
intensity factor solutions for such cracks have been obtained using detailed
finite element solutions. The most comprehensive solutions for semielliptical
cracks are by Newman and Raju (1982). These solutions show that the stress
intensity factors vary with position around the semielliptical crack front.
Also, depending on the aspect ratio (ratio of semimajor to semiminor axes)
and the loading mode (tension or bending), the maximum stress intensity
factor may occur either at the surface positions or at the deepest point along
the crack front.

Finally in this section, it is important to note that the stress intensity
factor has found widespread application due largely to the concept of simi-
litude. This concept states simply that different crack geometries have the
same crack driving force when the stress intensity factor at the crack tips are

FIGURE 11.10 (continued).
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FIGURE 11.11 Semielliptical crack profiles in a Q1N pressure-vessel steel.
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the same. Hence, the material response of a small laboratory specimen may
be used to study the material response of a large structure to the same stress
intensity factor.

11.6.3 Plastic Zone Size

11.6.3.1 Plastic Zone Size for Plane Stress and Plane
Strain Conditions

The singularity of stress at the crack tip suggests that crack-tip stresses
approach infinity. However, in reality, infinite stresses cannot be sustained.
Hence, yielding occurs in an annular region around the crack-tip. The shape
and size of this zone depends strongly on the stress state (plane stress versus
plane strain) and the stress intensity factor, K , under small-scale yielding
conditions (Fig. 11.12). In general, however, the size of the plastic zone may
be estimated from the boundary of the region in which the tensile yield
stress, �ys, is exceeded (Irwin, 1960). For the region ahead of the crack-tip
in which � ¼ 0, that gives

rp ¼ 1

3�

K

�ys

� �2

(for plane strain) ð11:57aÞ

FIGURE 11.12 Schematics of plastic zones under (a) plane stress and (b) plane
strain conditions. (Adapted from Hutchinson, 1979—reprinted with permis-
sion from the Technical University of Denmark.)
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rp ¼ 1

�

K

�ys

� �2

(for plane stress) ð11:57bÞ

For plane strain conditions, it is important to note that the plastic zone size
is less than the thickness, B, under small-scale yielding conditions in which
rp � a ðrp < a=50Þ. Also, the reader should note that the plastic zone size
under plane strain conditions is less than that under plane stresses condi-
tions.

11.6.3.2 Dugdale Model

Dugdale (1960) considered the problem of a Mode I crack in a thin plate of
an elastic–perfectly plastic solid deformed under plane stress conditions. The
Dugdale model proposes thin plastic strips of length, rp, ahead of the two
crack tips shown in Fig. 11.13. Tractions of magnitude �yy ¼ �ys are applied
to these thin regions over the length, rp. The tractions superimpose a nega-
tive stress intensity factor, K 00, on the crack tips:

K 00 ¼ ��ys
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ða þ rpÞ

q
þ 2�ys

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a þ rp
�

r
sin�1 a

a þ rp

� �
ð11:58Þ

FIGURE 11.13 Schematic of the Dugdale plastic zone model. (Adapted from
Suresh, 1999—reprinted with permission from Cambridge University Press.)
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If the tractions were zero over the strips of length, rp, the stress intensity
factor, K , due to the remote applied stress, �1, will be given by the solution
for a center crack in an infinitely wide plate:

K ¼ �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ða þ rpÞ

q
ð11:59Þ

However, for the stresses to be bounded at the point x ¼ aþ rp,
K þ K 00 ¼ 0. Solving for rp now gives

rp
a

¼ sec
��1

2�ys

� �
� 1 ð11:60Þ

Since the remote stress, �1; is generally much less than the yield stress, �ys,
the asymptotic series expansion of the above equation leads to the following
approximate expression for the Dugdale plastic zone:

rp ¼ �

8

K

�ys

� �2

ð11:61Þ

From the above equations, it is clear that the sizes of the Dugdale and plane
stress plastic zones are comparable. However, the shapes of the plane stress
and Dugdale plastic zones are somewhat different (Figs 11.12 and 11.13).
Furthermore, it is important to note that the plastic zone size, rp, only gives
an approximate description of the plastic zone since the plastic zone bound-
ary varies significantly ahead of the crack tip.

Before, closing, it is important to note that the Dugdale model can be
used to estimate the crack-tip opening displacement, �t, at the points
x ¼ �a, and y ¼ 0. The crack-tip opening displacement is given by

�t ¼
8�ya

�E
ln sec

��1

2�ys

� �� �
ð11:62Þ

For most cases, however, �1 � �ys, and hence the asymptotic form of
the crack-tip opening displacement is given by

�t ¼
K 2

�ysE
(for plane stress) ð11:63Þ

Rice (1974) has shown that the crack-tip opening displacement under plane
strain conditions may be expressed as

�t ¼
K 2

2�ysE
(for plane strain) ð11:64Þ
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11.6.3.3 Barenblatt Model

Barenblatt (1962) has developed a model for brittle materials that is analo-
gous to the Dugdale model (Fig. 11.12). However, in the Barenblatt model,
the traction, �yy, is equal to the theoretical bond rupture strength of a brittle
solid, �th � E=10 (Lawn, 1993). The critical condition for fracture may,
therefore, be expressed in terms of a critical cohesive zone size, rco, or in
terms of the critical crack opening displacement, �c ¼ 2	c (Rice, 1968). The
latter gives

Gc ¼ 2

ð	c
0

�yyd	 ¼
8�2thrco
�E

¼ 2�s ð11:65Þ

where the terms in the above expression have their usual meaning. It is
important to note here that Gc � 2�s for a purely brittle solid. This was
discussed in Sect. 11.4.

11.6.4 Conditions of K Dominance

The stress intensity factor, K is only valid within a small annular region at
the crack tip where the asymptotic singular solutions (K and T terms)
characterize the crack-tip fields to within 10%. Beyond the annular region,
higher order terms must be included to characterize the crack-tip field. In
general, however, the concept of K holds when the plastic zone, rp, at the
crack tip is small compared to the crack length ðrp < a=50Þ. The concept of
K also applies to blunt notches with small levels of notch-tip plasticity.
Furthermore, it applies to scenarios where small-scale deformation occurs
by mechanisms other than plasticity. These include stress-induced phase
transformations and microcracking in brittle ceramics. Such mechanisms
give rise to the formation of deformation process zones around the crack
tip. The size of the region of K dominance is affected by the sizes of these
process zones.

11.6.5 Equivalence of G and K

The relationship between G and K is derived in this section. Consider the
generic crack-tip stress profile for Mode I that is shown in Fig. 11.14(a). The
region of high stress concentration has strain energy stored over a distance
ahead of the crack tip. This strain energy is released when a small amount of
crack advance occurs over a distance, �a. If G is the energy release rate,
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then energy released due to crack extension, G�a, is related to the traction
�22 ðx; 0Þ via:

G�a ¼ 1

2

ð
�22ðx ; 0Þ½v ðx ; 0þ � v ðx ; 0�Þ� ð11:66Þ

where vðx; 0þÞ � vðx; 0�Þ is the crack face separation in the final position
where the crack length is aþ�a. For small crack extension,�a, this is given
by

v ðx ; 0þ � v ðx ; 0�Þ ¼ K ða þ�aÞ 1þ �
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a � x

2�

r
ð11:67Þ

where Kðaþ daÞ is the value of K after crack extension. Hence, the energy
balance becomes

G�a ¼ ð1þ �Þ
4�G

K ðaÞK ða þ daÞ
ð�a

0

�a � x

2�

� �
ð11:68aÞ

or

G�a ¼ ð1þ �Þ
8G

K ðaÞK ða þ daÞ�a ð11:68bÞ

FIGURE 11.14 Schematic of crack-tip profile and stress state: (a) before incre-
mental crack growth; (b) after incremental crack growth. (Adapted from
Hutchinson, 1983—reprinted with permission from the Technical University
of Denmark.)
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Hence, from the definition of � [Eq (11.43a) and (11.43b)], the following
expressions are obtained for G under plane strain and plane stress condi-
tions:

G ¼ ð1� 	2Þ
E

K 2 (for plane strain) ð11:69aÞ

or

G ¼ K 2

E
(for plane stress) ð11:69bÞ

where the above terms have their usual meaning. Since energy is a scalar
quantity, we may also add the energy release rate (for Modes I, II, and III)
per unit length of crack edge. Hence, in a three-dimensional solid subjected
to KI, KII, and KIII, we have

G ¼ ð1� 	2Þ
E

ðK 2
I þ K 2

II Þ þ ð1� 	ÞK 2
III (for plane strain)

ð11:70aÞ
and

G ¼ 1

E
ðK 2

I þ K 2
II Þ (for plane stress) ð11:70bÞ

11.6.5.1 Worked Example—G and K for Double Cantilever
Bend Specimen

Consider the example of the double cantilever bend specimen shown in
Fig. 11.15:

FIGURE 11.15 Schematic of a cantilever bend specimen. (Adapted from
Hutchinson, 1979—reprinted with permission from the Technical University
of Denmark.)
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1. Using the approaches discussed in Sect., 11.5, derive an expres-
sion for the energy release rate, G.

2. Derive an expression for the stress intensity factor, K, from the
result obtained in part 1.

Solution. 1. We may solve the problem by considering the in-plane
deflection of two ‘‘cantilever’’ on either side of the crack. For crack length,
a, and deflection, �=2, on either side of the crack, we may write the follow-
ing expression from beam theory:

�

2
¼ Pa3

3EI
ð11:71Þ

where I is the second moment of area. If the cantilever has a thickness, B,
and a height, b, then the second moment of area, I , is given by

I ¼ Bb3

12
ð11:72Þ

Hence, substituting Eq. (11.72) into Eq. (11.71) gives

�

2
¼ 4Pa3

EBb3
ð11:73Þ

By definition, the energy release rate [from Eq. (11.20)] is given by

G ¼ P 2

2B

dC

da
ð11:74Þ

where C is the compliance which is given by

C ¼ �

P
¼ 8a3

Eb3
ð11:75Þ

Hence, G is given by Eq. (11.74) to be

G ¼ P 2

2B

dC

da
¼ 12P 2a2

BEb3
ð11:76Þ

2. For plane stress the stress intensity factor, K is given by

K ¼
ffiffiffiffiffiffiffi
EG

p
¼ 12EP 2a2

BEb3

 !1
2

¼ 2
ffiffiffi
3

p
Pa

Bb3=2
ð11:77Þ

and for plane strain conditions:

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG

ð1� 	2Þ

s
¼ 12EP 2a2

BEð1� 	2Þb3

 !1
2

¼ 2
ffiffiffi
3

p
Pa

Bð1� 	2Þ1=2b3=2
ð11:78Þ
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11.7 ELASTIC–PLASTIC FRACTURE MECHANICS

In many practical problems, the assumption of small-scale plasticity is not
valid, especially when the plastic zone sizes are large compared to the crack
size or specimen dimensions. Various approaches are presented in this sec-
tion for the characterization of elastic–plastic fracture. The first approach
involves the crack opening displacement (COD), which is a parameter that
was first introduced by Wells (1961) and Cottrell (1961). The J integral is
then described along with two-parameter approaches for the assessment of
constraint/size effects.

11.7.1 Crack Opening Displacement

The COD is the amount of crack opening before crack extension (Figs 11.16
and 11.17). It was proposed independently by Cottrell (1961) and Wells
(1961) as a parameter for characterizing the stress–strain field ahead of
the crack tip. In plane stress, this is given by (Smith, 1962; Bilby et al.,
1963; and Burdekin and Stone, 1966):

� ¼ 8�ysa

�E

� �
ln sec

�a

2�ys

� �
ð11:79Þ

Expanding Eq. (11.79) and taking the first terms gives the COD under plane
stress conditions as

� ¼ K 2

E�ys
ð11:80aÞ

Rice (1974) has also obtained the following expression for the COD under
plane strain conditions, using finite element analyses:

� ¼ K 2

2E�ys
ð11:80bÞ

The COD is generally measured with a crack-mouth clip gauge. Using
similar triangles (Fig. 11.16), accurate measurements with this gauge can be
related easily to the crack-tip opening displacement (CTOD). The CTOD
corresponds to the displacement between points on the crack face that are
intersected by 458 lines from the center of the crack (Fig. 11.17). Values of
the CTOD measured at the onset of fracture instability correspond to the
fracture toughness of a material. Hence, the CTOD is often used to repre-
sent the fracture toughness of materials that exhibit significant plasticity
prior to the onset of fracture instability. Guidelines for CTOD testing are
given in the ASTM E-813 code.
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11.7.2 The J Integral

The J integral is a path-independent integral that relies on the determination
of an energy term which expresses the change in potential energy when a
crack is extended by an amount, da, in a manner analogous to the strain
energy release rate, G, which is used for the linear elastic condition. The J
integral was developed by Rice and Rosengren (1968) for a nonlinear elastic
body, and is defined as

J ¼
ð
�

Wdy � T
du

dx
ds

� �
ð11:81Þ

FIGURE 11.16 Diagram showing relationships between crack-tip displacement
and knife-edge displacement for a rigid rotation about C . (Adapted from
Knott, 1973—with permission from Butterworth.)
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where W is the strain energy density, which is given by

W ¼ W ðx ; y Þ ¼ W ð"Þ ¼
ð"
0

�ijd"ij ð11:82Þ

where � is an arbitrary closed contour followed counterclockwise in a
stressed solid (Fig. 11.18), T is the traction perpendicular to � in an outward
facing direction, u is the displacement in the x direction, and ds is an element
of � (see Fig. 11.18).

For a nonlinear elastic solid, the J integral is defined as the change in
potential energy, V, for a virtual crack extension, da (Rice, 1968):

J ¼ � 1

B

@PE

@a
ð11:83Þ

For a linear elastic material, �1=Bð@PE=@aÞ ¼ G, which means that J ¼ G
for the linear elastic case. Also, under small scale yielding, J is uniquely
related to K by

J ¼ K 2

E 0 ð11:84Þ

where E0 ¼ E for plane stress, E0 ¼ E=ð1 ¼ 	2Þ for plane strain, and 	 is
Poisson’s ratio.

Hutchinson (1968) and Rice and Rosengren (1968) have shown that
the crack-tip fields during plane strain deformation of power law hardening
materials under nonlinear elastic conditions are given by the so-called
Hutchinson–Rice–Rosengren (HRR) fields. These are given by the following

FIGURE 11.17 Measurement of the crack-tip opening displacement.

Copyright © 2003 Marcel Dekker, Inc.



expressions for stresses, strains, and displacements ahead of the near-tip,
which exhibit, r�1=ðnþ1Þ, r�n=nðnþ1Þ, and r1=ðnþ1Þ singularity, as shown in the
following, respectively,

�ij ¼ �y
J

��y"yInr

� �1=ðnþ1Þ
~��ij ð�;nÞ ð11:85aÞ

"ij ¼ �"y
J

��y"yInr

� �n=ðnþ1Þ
~""ij ð�;nÞ ð11:85bÞ

ui ¼ �"y
J

��y"yIn

� �n=ðnþ1Þ
r1=ðnþ1Þ ~uui ð�;nÞ ð11:85cÞ

where n is the hardening exponent in the Ramberg–Osgood equation:

"="y ¼ �=�y þ ��=�yÞn ð11:85dÞ
and �y is the yield stress, "y is the yield strain, r is the radial distance from
the crack-tip, � is a dimensionless constant, In is an integration constant
(Fig. 11.19), and ~��ijð�; nÞ, ~""ijð�; nÞ, and ~uuið�; nÞ can be found in most standard
texts on fracture mechanics (Broek, 1978; Ewalds and Wanhill, 1984;
Kanninen and Popelar, 1985). Plots of ~��ijð�; nÞ are presented in Fig. 11.19.

FIGURE 11.18 Schematic of the components of the path independent J inte-
gral. (Adapted from Suresh, 1999—reprinted with permission from the
Cambridge University Press.)
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FIGURE 11.19 Dependence of In and ~��ij on �. (Adapted from Anderson, 1995—
reprinted with permission from CRC Press.)
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It is important to note here that J is the amplitude of the crack-tip field
under elastic–plastic fracture mechanics conditions. However, the applic-
ability of J to such scenarios was only established after careful work by
Begley and Landes (1972a,b) and Landes and Begley (1977). Their work
showed that J provides a measure of the driving force for crack growth
under elastic–plastic fracture conditions.

11.7.3 Conditions of J Dominance

The J integral provides a unique measure of the amplitude of the crack-tip
fields under nonlinear fracture conditions. However, it is only applicable
when the conditions for J dominance are satisfied (Hutchinson, 1983). This
requires that:

1. The J2 deformation theory of plasticity must provide an ade-
quate model of the small-strain behavior of real elastic–plastic
materials under the monotonic loads being considered.

2. The regions in which finite strain effects are important and the
region in which microscopic processes occur must be contained
within the region of the small-strain solution dominated by the
singularity fields.

The first condition is critical in any application of the deformation
theory of plasticity. It is satisfied if proportional loading occurs everywhere,
i.e., the stress components change in fixed proportion everywhere.
Nevertheless, although the requirement for proportional loading is not ful-
filled exactly in most cases under monotonic loading, the applications of
uniaxial loads to stationary cracks do provide a good framework for the use
of the deformation theory of plasticity.

The second condition is somewhat analogous to the so-called small-
scale yielding condition for linear elastic fracture mechanics. It also provides
a physical basis for the determination of the inner radius of the annular
region of J dominance. This is illustrated schematically in Fig. 11.20, which
is adapted from a review by Hutchinson (1983). The annular zone of J
dominance corresponds to the region where the HRR field solutions are
within � 10% of the full crack-tip field solutions obtained from finite ele-
ment analyses (McMeeking, 1977; McMeeking and Parks, 1979). These
analyses suggest that finite strain effects are significant over a distance of
� 3�t. This distance must be greater than the microstructural process zone
for the J integral to be applied. The size of the microstructural process zone
may correspond to the mean void spacing in the case of ductile dimpled
fracture, or the grain size in the case of cleavage or intergranular fracture.
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Under small-scale yielding conditions, the HRR field solutions have
been shown to be applicable over a distance corresponding to � 20�25% of
the plastic zone size. However, under large-scale yielding conditions, the
region of J dominance is highly dependent on specimen configuration. In
cases where the entire uncracked ligament is completely engulfed by the
plastic zone, the size of the region of J dominance may be as low as 1%
of the uncracked ligament for a center-cracked tension specimen or 7% of
the uncracked ligament for a deeply cracked SENB or compact-tension (C-
T) specimen (McMeeking and Parks, 1979).

Since the conditions for J dominance are so highly specimen depen-
dent, standards have been developed to provide guidelines for the measure-
ment of critical values of J. One of the most widely used codes is the ASTM
E-813 code for JIc testing developed by the American Society for Testing
and Materials, Conshohocken, PA. This code requires the use of deeply
cracked SENB or C-T specimens with initial precrack length-to-specimen
width ratios of 0.5. In general, such specimens provide a unique measure of
the JIc when the remaining ligament, W � a, is

W � a 
 25
JIc
�ys

� �
ð11:86Þ

FIGURE 11.20 Schematic of annular region of J dominance. (From
Hutchinson, 1983—reprinted with permission from the Technical University
of Denmark.)
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where the JIc for linear elastic conditions is given by

JIc ¼
K 2
Ic

E 0 ð11:87Þ

where E0 ¼ E for plane stress and E 0 ¼ E=ð1� 	2Þ for plane strain condi-
tions. Furthermore, since the J integral does not model elastic unloading
and the distinctly nonproportional loading that occurs near the crack tip
when crack advance occurs, J-controlled crack growth requires that the
regime of elastic unloading and nonproportional loading be confined within
the zone of J dominance (Fig. 11.20). This gives

�a � R ð11:88aÞ

and

dJ

da
� J

R
ð11:88bÞ

The above two conditions for J-controlled crack growth were first
proposed by Hutchinson and Paris (1979). The first ensures that crack
growth occurs within a zone that is uniquely characterized by J (Fig.
11.20). However, the second condition is less transparent. In any case, the
HRR field solutions are for stationary cracks, and the growth of cracks
causes deviations form these solutions. Work by Rice et al. (1980) has
shown that the crack-tip fields for growing cracks are comparable to
Prandtl slip line fields, except in regions behind the crack tip where differ-
ences of up to � 10% may occur. Growing cracks also exhibit logarithmic
singularity that is somewhat weaker than the 1=r singularity for a growing
crack.

In general, the initiation J integral, Ji, may be decomposed into an
elastic component, Jel, and a plastic component, Jpl:

Ji ¼ Jel þ Jpl ð11:89aÞ

For a plate deformed under three-point bending with a span-to-width ratio
of 4, Ji is given by

Ji ¼
K 2
i

E 0 þ
2Ai

BðW � aÞ ð11:89bÞ

where B is the specimen thickness, Ai is the area under the load displacement
curve, W � a is the remaining ligament, and E0 ¼ E for plane stress or E0 ¼
E=ð1� 	2Þ for plane strain. For a compact tension specimen:
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Ji ¼
K 2
i

E 0 þ Ai

2þ 0:522ðW � aÞ
W

� �
BðW � aÞ ð11:89cÞ

11.7.4 Two-Parameter J–Q

Under the condition of large-scale yielding, K�T theory cannot adequately
define the stress field ahead of the crack tip. O’Dowd and Shih (1991) have
proposed a family of crack-tip fields that are characterized by a triaxility
parameter. The application of these fields has given rise to a two-parameter
ðJ�QÞ theory for the characterization of the effects of constraint on crack-
tip fields. As before, the J integral characterizes the amplitude of the crack-
tip field. However, the Q term now characterizes the contributions from
hydrostatic stress. This has led to the J �Q theory. In the region of the
crack tip where j�j < �=2 and J=�y < r < 5J=�ys, the stress field is given by

�ij ¼ ð�ij ÞHRR þQ�ys�ij j�j < �=2 ð11:90Þ

where Q is a measure of the crack-tip stress triaxiality, ð�ijÞHRR is the HRR
field, and �y is the yield stress. As an operational definition, Q is the differ-
ence, normalized by the yield strength, �ys, between the actual hoop stress at
the crack tip and that given by the HRR singular field at a fixed distance
2J=�y directly ahead of the crack tip. the definitive equation for Q is

Q � ��� � ð���ÞHRR
�y

at � ¼ 0; r ¼ 2J

�y
ð11:91Þ

Figure 11.21 shows the variation of hoop stress, ���, as a function of
the normalized distance ahead of the crack tip, r=ðJ=�yÞ, for plane strain and
for E=�y ¼ 500 and v ¼ 0:3. For comparison, Fig. 11.21(a) shows the HRR
field solution for a small strain, while Fig. 11.21(b) shows the solution from
the J�Q theory for a finite strain. It is clear from these figures that the
location of the maximum hoop stress depends strongly on the triaxiality
of stress (represented by Q in the finite-strain calculation) and the hardening
exponent, n.

For small strain conditions the maximum hoop stress appears just at
the tip of the crack. However, the maximum values of hoop stresses occur at
certain values of r=ðJ=�ÞyÞ, which are related to the hardening exponent, n.
Also, the distance from the crack tip correpsonding to the maximum hoop
stress increases with increasing strain hardening exponent, n.
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11.8 FRACTURE INITIATION AND RESISTANCE

Fracture initiation and/or resistance are typically studied using fracture
mechanics specimens containing atomistically sharp fatigue precracks
(Fig. 11.10). However, special specimen geometries may be selected to pro-
mote stable crack growth. For example, a finite crack in an infinite plate

FIGURE 11.21 Plots of ��� versus r=ðJ=�ysÞ for the J�Q field: (a) small strain; (b)
large strain.
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loaded by concentrated loads exhibits stress intensity factors that decrease
with increasing crack length when the load is fixed. These are given by

K ¼ Paffiffiffiffiffiffi
�a

p ð11:92Þ

Fracture specimens are typically loaded in incremental stages (under displa-
cement or load control) until stable crack growth is observed to initiate. The
crack driving force ðK or J) at which this initiates is known as the initiation
toughness, Ki or Ji. Perfectly brittle materials offer no resistance to crack
growth [Fig. 11.21(a)] and hence crack growth continues as long as K ¼ Kc,
which is needed to propagate the crack. However, most materials exhibit
some resistance-curve behavior, as shown in Fig. 11.21(b). Hence, higher
crack driving forces, K or J, are needed to grow the crack with increasing
crack growth. Furthermore, the resistance curve approaches a steady-state
toughness if the specimen is large enough to permit sufficient stable crack
growth.

The observed resistance-curve behavior depends strongly on the
underlying energy dissipative (toughening) mechanisms that give rise to
stable crack growth. These may involve plasticity at the crack tip, or
crack-tip shielding concepts that will be discussed in detail in Chap. 13. In
any case, the condition for continued crack advance is that the crack-driving
force lies on the measured resistance curve, i.e., K ¼ Kð�aÞ or J ¼ Jð�aÞ,
where the terms on the left-hand side ðJ or K) correspond to the ‘‘applied’’
crack driving forces, and the terms on the right-hand side correspond to the
material response. The condition for stable crack advance is now given by

dK

da

� �
L

<
dKR

d�a
ð11:93aÞ

or

dJ

da

� �
L

<
dJR
d�a

ð11:93bÞ

Hence, from Eq. (11.93a) and (11.93b), crack growth instability occurs when

dK

da

� �
L

¼ dKR

d�a
ð11:94aÞ

or

dJ

da

� �
L

¼ dJR
d�a

ð11:94bÞ

where the partial derivatives with respect to crack length, a, are taken with
the prescribed loading conditions fixed. Hence, the transition from stable to
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unstable crack growth can be determined by the analysis of the resistance
curve, as shown in Fig. 11.22. The dashed KðLi; aÞ curves depict K as a
function of a at fixed loading conditions, Li. These could correspond to
prescribed loads or prescribed displacements. Also, Li < L2 < L3 < L4,
and so on. The value of K at instability, K�, in Fig. 11.22, depends on
other R curves as well as the loading conditions. It is associated with L4

in Fig. 11.22. Similar arguments may be proposed for JðLi; aÞ curves under
elastic–plastic fracture conditions.

Alternatively, fracture toughness values may be obtained from simple
tests in wihch the loads are increased monotonically until fracture occurs.
The crack-mouth opening displacements are typically measured in such tests
along with the corresponding applied loads. The fracture toughness is thus
determined by the analysis of load–displacement plots to identify peak loads
in accordance with ASTM E-399 criteria (Fig. 11.23). The most commonly
used method for the determination of toughness is the 95% secant method.
This is used to extract the peak load, as shown schematically in Fig. 11.23.
The peak load is determined from the point of intersection of a radial line
with a slope correpsonding to 95% of that of the original load–displacement
line. Values of K corresponding to this load are known as the fracture
toughness, KQ.

FIGURE 11.22 Schematic illustration of resistance-curve analysis. (Adapted
from Hutchinson, 1983—reprinted with permission from the Technical
University of Denmark.)
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The fracture toughness values, therefore, correspond to points of
instability on a rising R curve. A strict set of conditions must be satisfied
before a critical stress intensity factor can be accepted as a material property
called the fracture toughness. These conditions are specified in the ASTM E-
399 code. The most critical criteria are associated with the need to maintain
highly triaxial/plane strain conditions at the crack tip. This is generally
achieved by using thick specimens in fracture toughness tests. In general,
the tests must satisfy the following criteria:

B < 2:5
KQ

�ys

� �2

ð11:95aÞ

W < 2:5
KQ

�ys

� �2

ð11:95bÞ

ðW � aÞ < 2:5
KQ

�ys

� �2

ð11:95cÞ

where W , a, and B correspond to the specimen dimensions (Fig. 11.10), and
the other terms have their usual meaning. When the above conditions are

FIGURE 11.23 Schematics of load–displacement plots. (Taken from the ASTM
E-399 Code.)
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satisfied [Eqs (11.97a–c)], the measured fracture toughness, KQ, is indepen-
dent of specimen thickness (Fig. 11.24). For Mode I loading conditions, the
critical value of the stress intensity factor is generally referred to as the KIc.
This is a material property just like yield strength and Young’s modulus.
Similarly, we may obtain fracture critical conditions, KIIc and KIIIc for
Modes II and III, respectively.

Before closing, it is important to note that the thickness dependence of
KQ is illustrated in Fig. 11.24. This is associated largely with a transition
from plane stress conditions (in thin specimens) to plane strain conditions
(in thick specimens). Less triaxial or biaxial stress fields give rise to less
intense damage, and hence the KQ levels are greater under plane stress
conditions. The lowest values of KQ correspond to the conditions of high-
stress triaxility that give rise to the most intense damage at the crack-tip.

Once plane strain conditions are attained at the crack tip, the KQ value
does not decrease with increasing thickness (Fig. 11.24). Hence, the mea-
sured values of KQ for sufficiently thick specimens correspond to a material
property that is independent of thickness. This property is known as the
fracture toughness. Typical values of fracture toughness are presented in Fig.
11.25 for different materials. It is important to note here that fracture
toughness values are dependent on composition, microstructure, and load-
ing rates. These effects will be discussed in Chap. 12.

11.9 INTERFACIAL FRACTURE MECHANICS

In brittle solids, cracks extend at a specified toughness along a defined
trajectory governed solely by the opening mode (Cottrell and Rice, 1980;
Evans et al., 1999). Accordingly, the likelihood that a crack present in the

FIGURE 11.24 Dependence of fracture toughness on specimen thickness.
(Adapted from Hutchinson, 1979—reprinted with permission from the
Technical University of Denmark.)
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material will extend upon loading, as well as its expected trajectory through
the material, can be explicitly determined, once the opening mode toughness
has been measured and provided that the stress intensity factors have been
calculated from the applied loads using a numerical technique such as the
finite element method (FEM). Fracture at interfaces is more complex,
because cracks can remain at the interface in the presence of mode mixity,
requiring that a mixity-dependent toughness be determined and used to
analyze failure. The most basic relations governing interface crack growth
are a follows. The amplitudes of the normal and shear stresses on an inter-
face, distance x ahead of a plane strain interfacial crack, are characterized
by two stress intensity factors, KI and KII.

FIGURE 11.25 Fracture toughness values for different materials. (From Ashby,
1999—reprinted with permission from Butterworth Heinemann.)
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�22 ¼ KI=
ffiffiffiffiffiffiffiffiffi
2�x

p
ð11:96aÞ

and

�12 ¼ KII=
ffiffiffiffiffiffiffiffiffi
2�x

p
ð11:96bÞ

These two quantities can be calculated for any interface crack using the
finite element method. They can be combined to formulate two alternative
parameters, G and  , found to constitute a more convenient practical mea-
sure of interface crack growth. One is designated the energy release rate, G:

G ¼ 1

2

1� 	21
E1

þ 1� 	22
E2

 !
ðK 2

I þ K 2
II Þ ð11:97Þ

where the subscripts I and II denote Modes I and II, and the subscripts 1
and 2 denote the two dissimilar materials. The other is the mixity angle,  ,
defined as

 ¼ tan�1 KII

KI

� �
ð11:98Þ

The criterion for crack growth is that G atain a critical level, �i: designated
the interfacial toughness (Hutchinson and Suo, 1992). The integrity of an
interface within a joint can be analyzed, through finite element calculations,
once �0

i and  have been measured for that interface duplicated in labora-
tory specimens.

Conducting studies on interfaces is more challenging than the corre-
sponding studies performed on their homogeneous counterparts. There are
two main issues: (1) the geometric configurations encompassing interfaces of
practical interest often constrain specimen design, and (2) large-scale inelas-
tic deformations limit options, because of the different thermomechanical
properties of the adjoining materials. When interfaces can be made in
layered configurations by bonding procedures (such as sintering or adhesive
attachment), a number of test geometries (Figure 11.26) are available. Most
are limited to relatively narrow ranges of mode mixities, Figs 11.26(a) and
11.26(b). It is, therefore, common for serval specimen geometries to be used.
The exceptions are the dissimilar mixed mode bend specimen (Soboyejo et
al., 1999) and the Brazil specimen [shown in Figs 11.26(c) and 11.26(d)]
(Hutchinson and Suo, 1992), which can be used to probe the full range of
mixities.

There have been some studies of interfacial fracture between polymers
and oxides (Cao and Evans, 1989; Ritter et al., 1999). These indicate mode
mixity effects and reveal a strong-influence of moisture on the crack growth
rates. Many more experimental results have been obtained for metal/oxide
interfaces (Dalgleish et al., 1989; Reimanis et al., 1991; Bagchi and Evans,

Copyright © 2003 Marcel Dekker, Inc.



1996; McNaney et al., 1996; Turner and Evans, 1996; Gaudette et al., 1997;
Lipkin et al., 1998; Evans et al., 1999). The systems that have been most
extensively studied include Al2O3 bonded to Al (Dalgleish et al., 1989;
McNaney et al., 1996), Au (Reimanis et al., 1991; Turner and Evans,
1996), and SiO2 bonded to Cu (Bagchi and Evans, 1989).

The above systems exhibit resistance-curve behavor and fracture ener-
gies significantly greater than the thermodynamic work of adhesion. The
high toughness has been attributed to: crack-tip shielding by ductile liga-

FIGURE 11.26 Types of interfacial fracture mechanics specimens: (a) double
cleavage drilled compression ( � 408�458Þ; (b) mixed-mode flexure speci-
men; (c) Brazil specimen ð08 
 � 
 908), (d) dissimilar mixed-mode bending
specimen (0 
  908Þ

Copyright © 2003 Marcel Dekker, Inc.



ments; plastic dissipation in the metallic constituent; and friction at aspe-
rities in the wake of the crack. These same phenomena give rise to a tough-
ness that varies appreciably with mode mixity (Cao and Evans, 1989,
Soboyejo et al., 1999).

Furthermore, crack-path selection criteria for cracks between dissim-
ilar solids depend on the mode mixity and the ratio of interfacial toughness,
�i, to the toughness, �s, of the adjoining material (Fig. 11.27) (Evans and
Dalgleish, 1992). Note that the transition from interface cracking to mate-
rial cracking is dependent not only on the ratio of �i to �s, but also on the
mode mixity angle,  .

11.10 DYNAMIC FRACTURE MECHANICS

In 1951, Elizabeth Yoffe published a classical paper in which she analyzed
the influence of crack velocity on the growth cracks. This pioneering work
established the fundamental basis for future studies of dynamic fracture
mechanics. Dynamic fracture is the study of crack initiation and growth
under conditions in which the loading rates and crack velocities approach
the Rayleigh wave speed, cR. Such high crack velocities give rise to high
local strain rates and local crack-tip phenomena such as dynamic shear

FIGURE 11.27 Diagram indicating region in which fracture deviates from inter-
face. Using fracture energy/phase angle space. (From Evans and Dalgleish,
1992—reprinted with permission from Elsevier Science.)
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localization or adiabatic shear bonding, and crack branching, which was
predicted by the original analyses of Yoffe (1951). A common feature of all
of these phenomena is the rapid loss of stress carrying ability at time scales
such that inertial and/or material rate sensitivity effects are important
(Rosakis and Ravichandran, 2000).

Dynamic fracture is associated with the rapid creation of new surfaces,
while shear localization considers the deformation conditions that lead ulti-
mately to the creation of high-velocity cracks. The resulting shear bands,
whihc are produced under high strain rate or strain gradients, may lead
ultimately to the initiation and growth of cracks under dynamic fracture
conditions. Dynamic shear localization is also strongly influenced by mate-
rial strain hardening, strain rate sensitivity, and thermal softening due to the
intense heating associated with the dissipation of plastic work.

The subject of dynamic fracture mechanics may be divided into two
major problem sreas: one associated with dynamically loaded cracks result-
ing in crack initiation times t, that are short compared to the transit time of
a Rayleigh wave (wave speed, cR), along a crack of length, aðcRt < aÞ; and
the other associated with cracks that are moving at speed that are greater
than 20% of the Rayleigh wave speed.

Since the early work of Yoffe (1951), a large number of researchers
have contributed significantly to the subject of dynamic fracture. They
include: Broberg (1960); Atkinson and Eshelby (1968); Achenbach (1970,
1974); Kostrov and Nikitin (1970); Freund (1971); Willis (1975). A compre-
hensive text on dynamic fracture has also been published by Freund (1990).

For a running crack with length aðtÞ at time, t, and an instantaneous
crack speed, _aaðtÞ and load, PðtÞ, the dynamic stress intensity factor may be
expressed as (Freund, 1990):

Kd
I ðP ðtÞ; aðtÞ; _aaðtÞÞ ¼ kð _aaÞKd

I ðP ðtÞ; aðtÞ; 0Þ ð11:99Þ
where Kð _aaÞ is a universal function of crack-tip speed that decreases from 1 to
0, as the crack-tip speed increases from zero to the Rayleigh wave speed. In
general, however, single crack fronts are not stable at high crack speeds
(above � 40�45% cRÞ. Hence, crack branching is generally observed to
occur with increasing crack velocity (Kobayashi et al., 1974; Ravi-
Chandar and Knauss, 1984; Gao, 1997; Suzuki et al., 1998). Crack branch-
ing occurs primarily because it reduces the overall energy required for sub-
sequent crack extension. However, alternative explanations have also been
proposed by researchers in the physics community. These are discussed in
detail in the book by Freund (1990).

In the case of ductile materials subjected to dynamic fracture, the
mechanics is less well developed due to the complexity of the associated
phenomena. For growing two-dimensional cracks in idealized plastic solids,
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asymptotic analytical solutions have been reported by Achenbach et al.
(1981), Freund and Douglas (1982), Lam and Freund (1985), and Deng
and Rosakis (1994). However, although these results are of fundamental
importance, they have not provided adequate measures of dynamic crack
growth toughness or dynamic crack growth criteria in ductile materials. The
few results are limited to small-scale yielding conditions in which _KKd

Ic ðKd
I Þ is

used as a measure of initiation toughness (Costin and Duffy, 1979;
Nakamura et al., 1985; Owen et al., 1998). Under elastic–plastic conditions,
Nakamura et al. (1988) and Guduru et al. (1997) have proposed the use of
the J integral, Jd

c Þð _JJdÞ, as a measure of dynamic initiation toughness.
Nishioka and Atluri (1983) have also proposed the use of the CTOD
under elastic–plastic conditions.

In spite of the limited mechanistic understanding of dynamic fracture,
dynamic fracture mechanics concepts have been applied to the analyses of a
wide range of practical engineering problems. These include: the analyses of
pipeline fracture (Kanninen et al., 1976; Kobayashi et al., 1988) and con-
ventional pressure vessels (Kanninen and Popelar, 1985). Dynamic fracture
concepts have also been applied to problems of armor penetration, high-
speed machining, spacecraft/satellite shielding, and aircraft hardening.

11.11 SUMMARY

This chapter presents an introduction to the fundamentals of fracture
mechanics. Following a brief review of Griffith fracture theory, the
Orowan plasticity correction and the notion of the energy release rate, linear
elastic, and fracture mechanics concepts are presented. These include: the
basic ideas behind the derivation of the stress intensity factor parameter; the
interpretation of the stress intensity factor parameter; the equivalence of the
energy release rate and the stress intensity factor; and the applications of
linear elastic fracture mechanics. Elastic–plastic fracture mechanics concepts
are then examined within the framework of the J integral and the crack-tip
opening displacement (CTOD). A two-parameter fracture J–Q approach is
proposed for the assessment of constraint effects under elastic–plastic con-
ditions before discussing the fundamentals of fracture testing. Finally, basic
concepts in interfacial fracture mechanics and dynamic fracture are intro-
duced.
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12

Mechanisms of Fracture

12.1 INTRODUCTION

Fracture occurs by the separation of bonds. However, it is often preceded by
plastic deformation. Hence, it is generally difficult to understand the physi-
cal basis of fracture without a careful consideration of the deformation
phenomena that precede it. Nevertheless, at one extreme, one may consider
the case of brittle fracture with limited or no plasticity. This represents an
important industrial problem that can be overcome largely by the under-
standing of the factors that contribute to brittle fracture. However, ab initio
models for the prediction of brittle fracture are yet to emerge.

On the other hand, ductile fracture mechanisms represent another class
of important fracture modes in engineering structures and components.
They are somewhat more complex to analyze due to the nonlinear nature
of the underying plasticity phenomena. However, a significant amount of
scientific understanding of ductile fracture processes has facilitated the safe
use of metals and their alloys in a large number of structural applications.

Most recently, there have been significant efforts to develop novel
composite materials and engineered materials with improved fracture resis-
tance. These efforts have led to an improved understanding of how to tailor
the microstructure/architecture of a material for improved fracture tough-
ness. The research that has been performed in the past 25–35 years has also
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led to identification of toughening mechanisms that can be used to engineer
improved fracture toughness in all classes of materials. These will be dis-
cussed in detail in Chap. 13.

This chapter presents an introduction to the micromechanisms of frac-
ture in different classes of materials. Following an initial review of brittle
and ductile fracture mechanisms, the mechanisms of fracture in different
classes of materials are discussed along with mechanics models that provide
some additional insights into the mechanisms of fracture. Quantitative and
qualitative approaches are also presented for the characterization of fracture
modes before concluding with a section on the thermal shock response of
materials.

12.2 FRACTOGRAPHIC ANALYSIS

To most people, there is a natural tendency to assume that macroscopic
ductility is a clear indication of ductile fracture, e.g., during tensile fracture
of smooth ‘‘dog-bone’’ specimens. However, although this may be true for
many solids, evidence of macroscopic ductility is generally insufficient in
fracture analysis. Instead, we are usually compelled to perform detailed
analyses of the fracture surface(s) using scanning or transmission electron
microscopy techniques. These provide the local evidence of microscopically
ductile or brittle fractures.

In the case of scanning electron microscopy (Fig. 12.1), electrons are
accelerated from an electron gun (cathode). The electron beam is collimated
by a series of lenses and coils until it hits the specimen surface (fracture
surface). The electrons are then reflected from the specimen surface after
interacting with a small volume of material around the surface. The two
types of electrons that are reflected back from the surface are secondary
electrons and back-scattered electron. These are detected by detectors that
are rastered to form a TV image. The second electron images usually pro-
vide good depth of field and clear images of surface topography, while the
back-scattered electron images have the advantage of providing atomic
number contrast that can be used to identify different phases (due to differ-
ences in chemical composition).

The fracture surfaces of conducting materials (mostly metals/interme-
tallics) can generally be viewed directly with little or no surface preparation
prior to scanning electron microscopy. However, the fracture surfaces of
nonconducting materials are generally coated with a thin (a few nanometers)
layer of conducting material, e.g, gold, to facilitate fractographic examina-
tion in a scanning electron microscope (SEM). The SEM can be used to
obtain images over a wide range of magnifications (100–100,000�).
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Most elaborate fracture surface preparation is needed for the exam-
ination of fracture surfaces in the transmission electron microscope. These
involve the preparation of replicas of the fracture surface. The centers of the
replicas must also be thinned to facilitate the transmission of electrons. In
the case of transmission electron microscopy, the collimated electron beams
are transmitted through thinned specimens (Fig. 12.2). The transmitted
electron beams may then be viewed in the diffraction mode [Fig.
12.29(a)], or in the imaging mode [Fig. 12.2(b)]. Some of the early studies
of fracture were done using transmission electron microscopy analyses of
the replicas of fracture surfaces in the 1950s and 1960s. However, with the
advent of the SEM, it has become increasingly easier to perform fracto-
graphic analyses. Most of the images of fracture surfaces presented in this
chapter will, therefore, be images obtained from SEMs. These have good
depth of focus, and can produce images with resolutions of � 5�10 nm.

FIGURE 12.1 Schematic illustration of the operation of a scanning electron
microscope. (From Reed-Hill and Abbaschian, 1991—reprinted with permis-
sion from PWS Publishing Co.)
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12.3 TOUGHNESS AND FRACTURE PROCESS ZONES

Fracture experiments are usually peformed on smooth or notched speci-
mens. The experiments on smooth specimens generally involve the
measurement of stress–strain curves, as discussed in Chap. 3. The
smooth specimens are loaded continuously to failure at controlled strain
rates, in accordance with various testing codes, e.g., the ASTM E-8
specification.

The area under the generic stress–strain curve is representative of the
energy per unit volume required for the fracture. This is often described as
the toughness of the material. Hence, in the representative stress–strain
curves shown in Fig. 12.3, material B is the toughest, while materials A
and C are not as tough. However, material A is strong and brittle, while
material C is weak and ductile.

FIGURE 12.2 Schematic ray diagrams for (a) the diffraction mode and (b) the
imaging mode of a transmission electron microscope. Most microscopes
have more lenses than those shown here. (From Hull and Bacon, 1984—
adapted from Loretto and Smallman, 1975—reprinted with permission from
Pergamon Press.)
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The toughness or energy per unit volume, W , is given by

W ¼
ð"f
0

� d" ð12:1Þ

where "f is the fracture strain, and � is the applied stress, expressed as a
function of strain, ". The toughness must be distinguished from the fracture
toughness, which may be considered as a measure of the resistance of a
material to crack growth.

Materials with high toughness or fracture toughness generally require
a significant amount of plastic work prior to failure. In contrast, the fracture
toughness of purely brittle materials is controlled largely by the surface
energy, �s, which is a measure of the energy per unit area required for the
creating of new surfaces ahead of the crack tip. However, there is a strong
coupling between the surface energy, �s, and plastic energy term, �p. This
coupling is such that small changes in �s can result in large changes in �p,
and the overall toughness or fracture toughness.

Finally in this section, it is important to note that the deformation
associated with the fracture of tough materials generally results in the
creation of a deformation process zone around the dominant crack.
This is illustrated schematically in Fig. 12.4 The surface energy term is
associated with the rupture of bonds at the crack tip, while the plastic
work term is used partly in the creation of the deformation process zone.
Details of the phenomena that occur in the deformation process zones are
presented in the next few sections on fracture in the different cases of
materials.

FIGURE 12.3 Illustration of toughness as the area under the stress–strain
curves for materials A, B, and C.
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12.4 MECHANISMS OF FRACTURE IN METALS AND
THEIR ALLOYS

12.4.1 Introduction

Fracture in metals and their alloys occurs by nominally brittle or ductile
fracture processes. In cases where brittle fracture occurs without local plas-
ticity along low index crystallographic planes, the failure is described as a
cleavage fracture. Cleavage fracture usually occurs by bond rupture across
gains. It is, therefore, often referred to as transgranular cleavage. However,
bond rupture may also occur between grains, giving rise to a form of frac-
ture that is known as intergranular failure.

In the case of ductile failure, fracture is usually preceded by local
plasticity and debonding of the matrix from rigid inclusions. This debond-
ing, which occurs as a result of the local plastic flow of the ductile matrix, is
followed by localized necking between voids, and the subsequent coales-
cence of voids to form dominant cracks. It results in ductile dimpled fracture
modes that are characteristic of ductile failure in crystalline metals and their
alloys.

In contrast, the fracture of amorphous metals typically occurs by the
propagation of shear bands, and the propagation of microcracks ahead of
dominant cracks. These different fracture mechanisms are discussed briefly
in this section for metals and their alloys.

12.4.2 Cleavage Fracture

As discussed earlier, cleavage fracture occurs by bond rupture along low
index crystallographic planes. It is usually characterized by the presence of
‘‘river lines’’ (Fig. 12.5) that are formed as a result of the linkage of ledges
produced by cracking along different crystallographic planes (Tipper, 1949).
The river lines often resemble river lines on a map, and are relatively easy to
identify. However, the presence of river lines alone may not be sufficient
evidence to infer the occurrence of ‘‘pure’’ cleavage fracture in cases where

FIGURE 12.4 Schematic of the fracture process zone.
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fracture is preceded by some local plasticity. Under such conditions, fracture
is preceded by some local plasticity and the mirror halves of the two fracture
surfaces do not match. This gives rise to a form of brittle fracture that is
known as ‘‘quasi-cleavage’’ (Thompson, 1993).

Cleavage fracture is often obseved in metals at lower temperatures.
Furthermore, a transition from brittle to ductile fracture is generally
observed to occur with increasing temperature in body-centered cubic
(b.c.c.) metals and their alloys, e.g., steels. This transition has been studied
extensively, but is still not fully understood.

The first explanation of the so-called brittle-to-ductile transition
(BDT) was offered by Orowan (1945) who considered the variations in
the temperature dependence of the stresses required for yielding and clea-
vage (Fig. 12.6). He showed that the cleavage fracture stress exhibits a
weak dependence on temperature, while the yield stress generally increases
significantly with decreasing temperature. This is illustrated schematically
in Fig. 12.6. The stresses required for yielding are, therefore, lower than
those required for cleavage fracture at higher temperatures. Hence, failure
above the BDT regime should occur by ductile fracture. In contrast, since
the cleavage fracture stresses are less than the yield stresses below the
BDT regime, cleavage fracture would be expected to occur below this
regime.

Following the work of Orowan (1945), other researchers recognized
the critical role that defects play in the nucleation of cleavage fracture. Stroh
suggested that cleavage fracture occurs in a polycrystal when a critical value
of tensile stress, ��� is reached in an unyielded grain.

FIGURE 12.5 Cleavage fracture in niobium aluminide intermetallics: (a) Nb–
15Al–10Ti, (b) Nb–15Al-25Ti. (From Ye et al., 1999.)

Copyright © 2003 Marcel Dekker, Inc.



Using similar arguments to those employed in the Hall–Petch model
(Chap. 8), Stroh (1954, 1957) derived the following relationship between the
cleavage fracture stress, �c, and the grain size, d:

�c ¼ �i þ kfd
�1

2 ð12:2Þ

where kf is the local tensile stress required to induce fracture in an adjacent
grain under nucleation-controlled conditions. This theory correctly predicts
the inverse dependence of the cleavage fracture stress on grain size, but it
suggests a constant value of ky that is not true for finer grain sizes.

Subsequent work by Cottrell (1958) showed that if the tensile stress is
the key parameter, as suggested by experimental results, then cleavage frac-
ture must be growth controlled. Cottrell suggested that cleavage fracture in
iron occurs by the intersection of a

2
h�11�111i dislocations gliding on {101} slip

planes. This results in the following dislocation reaction (Fig. 13.7):

a

2
h �11 �111ið101Þ þ

1

2
h111ið �1101Þ ! a½001� ð12:3Þ

Since the resulting a[001] dislocation is sessile, this provides the first stage of
crack nucleation that occurs due to the relative motion of material above
and below the slip plane. Furthermore, the pumping of n pairs of disloca-
tions into the wedge results in a displacement nb of length c. The total

FIGURE 12.6 Schematic of Orowan ductile-to-brittle transition. (From Knott,
1973—reprinted with permission from Butterworth-Heinemann.
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energy per unit thickness now consists of the following four components
(Knott, 1973).

1. The Griffith energy of a crack of length, c, under tensile stress, p:

U1 ¼
�p2ð1� 	2Þ

E

c

2

� �2
ð12:4aÞ

(for a crack of length 2a ¼ cÞ
2. The work done by the stress in forming the nucleus:

U2 ¼ � 1

2
pnbc ð12:4bÞ

3. The surface energy:

U3 ¼ 2�c ð12:4cÞ
4. The strain energy of the cracked edge dislocation of Burgers

vector nb:

Uv ¼ �ðnbÞ2
4�ð1� 	Þ ln

2R

c

� �
ð12:4dÞ

where R is the distance over which the strain field is significant, � is
the shear modulus, and c=2 is the radius of the dislocation score of the
cracked dislocation. The equilibrium crack lengths are found from @=@c

FIGURE 12.7 Cottrell’s model of brittle fracture. (From Knott 1973—reprinted
with permission from Butterworth-Heinemann.)
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ðU1 þU2 þU3 þU4Þ ¼ 0. This gives a quadratic function with two possible
solutions for the crack lengths. Alternatively, there may be no real roots, in
which case the total energy decreases spontaneously. The transition point is
thus given by

pnb ¼ 2� ð12:5aÞ
or for b ¼ 2½001�:

pna ¼ 2� ð12:5bÞ
The tensile stress that is needed to propagate a nucleus is thus given by

p 
 2��

ky

� �
d�1

2 ð12:5cÞ

Cottrell (1958) used the above expression to explain the results of Low
(1954) for mild steel that was tested at 77 K (Fig. 12.8). By substituting
p ¼ �y ¼ 2
y into the above expression, he obtained the following expres-
sions for the stress to propagate an existing nucleus:


y 
 ��

ky

� �
d�1

2 ð12:5dÞ

or

�y 
 2��

ky

� �
d�1

2 ð12:5eÞ

FIGURE 12.8 Yield and fracture stress in mild steel as functions of grain size.
(From Low, 1954—reprinted with permission from ASM International.)
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However, for grains coarser than d� in Fig. 12.8, the fracture is not growth
controlled. This is because it is necessary to first form the dislocations before
a nucleus can be produced. The fracture stress is thus simply equal to the
yield stress. However, for grains larger than d�, yielding occurs prior to
fracture, and the nucleus will spread when

�c 

2��

ky

� �
d�1

2 ð12:6Þ

The Cottrell model suggests that the cleavage fracture stress is
controlled by the grain size ðd�1=2Þ and yielding parameters such as
ky. However, it does not account for the effects of carbides that can
also induce cleavage fracture is steels. This was first recognized by
McMahon and Cohen (1965) in their experiments on steels containing
fine and coarse carbides. Materials containing coarse carbides were
shown to be susceptible to cleavage, while those containing fine car-
bides were more ductile. The effects of carbides were later modeled by
Smith (1966) who showed that the condition for growth-controlled
fracture is

d0

d

� �
�2c þ 
2eff 1þ 4

�

c0
d

� �1
2 
i

eff

� �2

 4E�p
�ð1� 	2Þd ð12:7Þ

where 
eff ¼ 
� � 
i; 
i is the intrinsic yield strength in the absence of grain
boundaries, 
y is the yield stress of a polycrystal, and the other terms have
their usual meaning, as depicted in Fig. 12.9.

Work by Hull (1960) also recognized that cleavage fracture can be
nucleated by interactions between dislocations twins. Similar results were
later reported by Knott and Cottrell (1963) for fracture in polycrystalline
mild steel. In the case of b.c.c. metals, twinning occurs by the movement
of a=6h�1111i dislocations on {211} planes. The twinning shear is 0.707.
This can produce significant displacements normal to the cleavage
plane. Estimates of � associated with these displacements are � 20 J/m2.
These are approximately one order of magnitude greater than the surface
energies.

Since the early work on cleavage fracture, subsequent research has
shown that cleavage fracture is most likely to occur under conditions of
high-stress triaxiality. In most cases, the so-called triaxiality factor, T.F.,
is expressed as a ratio of the hydrostatic stress to the Von Mises stress:
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T:F: ¼
1
3 ð�11 þ �22 þ �33Þ

1ffiffi
2

p ð�11 þ �22Þ2 þ ð�22 þ �33Þ2 � ð�33 þ �þ11Þ2
� �1=2

¼
1
3 ð�xx þ �yy þ �zz Þ

1ffiffi
2

p ð�xx � �yy Þ2 þ ð�yy � �zz Þ2 þ ð�zz � �xx Þ2 þ 6ð
2xy þ 
2yz þ 
2zx Þ2
� �1

2

ð12:8Þ
Typical values of T.F. are between 2 and 3. Furthermore, stress states with
higher triaxiality factors are more likely to result in brittle cleavage fracture
modes. It is important to note here that the occurrence of cleavage fracture
alone is not necessarily an indication of the lack of ductility. This is parti-
cularly true for b.c.c. refractory metals in which cleavage fracture modes are
likely to occur at high strain rates, or in the presence of notches. In any case,
most b.c.c. metals and their alloys are ductile at room temperature, even in
cases where final failure occurs by cleavage-or quasi-cleavage fracture
mechanisms.

The critical role of crack-tip/notch-tip stress distributions in the
nucleation of brittle cleavage fracture was first examined in detail by
Ritchie, Knott, and Rice (1973). By considering the results of finite ele-
ment calculations of the notch-tip fields of Griffith and Owens (1972),

FIGURE 12.9 Schematic of cleavage fracture nucleation from carbides. (From
Knott, 1973—reprinted with permission from Butterworth-Heinemann.)

Copyright © 2003 Marcel Dekker, Inc.



Ritchie et al. (1973) postulated that cleavage-fracture nucleation is most
likely to occur at a distance of 2–3 CTODs ahead of the notch-tip, Fig.
12.10(a). The so-called Ritchie–Knott–Rice (RKR) theory recognized the
need for local tensile stresses to exceed the local fracture stress over a
microstructurally significant distance ahead of a notch/crack tip, as
shown in Fig. 12.10(a).

Subsequent work by Lin et al. (1986) resulted in the development of a
statistical model for the prediction of brittle fracture by transgranular clea-
vage. Using weakest link statistics to characterize the strength distributions
of the inclusions ahead of the notch tip/crack tip, they showed that the
failure probability associated with the element of material in the plastic
zone is given by

�� ¼ 1� exp½�bfN"K 4
1 �

2ðn�2Þ
0 S�m

0 ð�0 � SuÞm��ð2nþ3Þd�� ð12:9Þ
where b is the characteristic dimension along the crack tip, f is the frac-
tion of particles that participate in the fraction initiation, N is the number
of particles per unit volume, K1 is the Mode I stress intensity factor, �0 is
the yield or flow stress, S0 is the Weibull scale parameter, Su is the lower
bound strength (of the largest feasible cracked particle), m is the shape
factor, n is the work hardening exponent ð1 < n <1Þ, � is the local stress
within plastic zone, and " is a strain term that is given by Lin et al. 1986
to be:

" ¼ 2ðn þ 1Þ 1� 	2
In

" #2ð�
0

~��2ðnþ1Þd� ð12:10Þ

The elemental failure probability expressed by Eq. (12.9) exhibits a
maximum at a characteristic distance, r�, from the crack tip, which is given
by ðd�� ¼ 0Þ:

r� ¼ 1� 	2
In

" #
2n þ 3�m

2n þ 3

� �nþ1 K1

�0

� �2 �0
Su

� �nþ1

~��nþ1 ð12:11aÞ

occurring at the stress:

�� ¼ 2n þ 3

2n þ 3�m

� �
Su ð12:11bÞ

as illustrated in Fig. 12.10(b), which shows the dependence of elemental
fracture probability, ��, and tensile stress distribution on the same sche-
matic plot.

A number of other researchers have made significant contributions to
the modeling of cleavage fracture within a statistical framework. These
include Curry (1980), Evans (1983), Beremin (1983), Mudry (1987),
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FIGURE 12.10 Stress distributions ahead of blunt notches: (a) Ritchie–Knott–
Rice (RKR) model; (b) Lin–Evans–Ritchie model. (From Lin et al., 1986—rep-
rinted with permission from Elsevier Science.)
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Rousselier (1987), Fontaine et al. (1987), Rosenfield and Majumdar (1987),
and Thompson and Knott (1993). All of these studies have suggested refine-
ments to the approach of Lin et al. (1986). In general, however, the trends
predicted by the different models are generally consistent. However, the size
effect predicted by the Beremin (1983) and Evans (1983) theories are not the
same.

12.4.3 Ductile Fracture

Ductile fracture in metals and their alloys is generally associated with the
nucleation of voids around rigid inclusions. Since plastic flow of the matrix
can occur around the inclusions, the matrix may become debonded from
the rigid inclusions during plastic flow, Figs 12.11(a) and 12.11(b).
Subsequent localized void growth [Fig. 12.11(c)] and deformation and
necking [Figs 12.11(d) and 12.11(e)] may then occur prior to the coales-
cence of microvoids and final fracture, Fig. 12.11(f). This gives rise to the
formation of larger dominant cracks that may propagate in a ‘‘stable’’
manner until catastrophic failure occurs. Not surprisingly, the fracture
surfaces will contain dimples (Fig. 12.12) associated with the microvoid
nucleation and propagation processes. The inclusions associated with
nucleation and propagation may also be seen in some of the microvoids
(Fig. 12.12).

Considerable experimental work has also been done to provide
insights into the mechanisms of ductile fracture. The pioneering work in
this area has been done by Knott and co-workers (1973, 1987). Other experi-
mental researchers that have made significant contributions to the under-
standing of ductile fracture include Thompson and Knott (1993) and
Ebrahimi and Seo (1996).

The studies by Ebrahimi and Seo (1996) explored the three-dimen-
sional nature of crack initiation in ferritic and bainitic steels. They con-
cluded that crack initiation occurs by the formation of disconnected
cracks along the crack front. Inclusions and highly strained regions were
found to be the sites for crack nucleation in ferritic–pearlitic steels, while
geometrical inhomogenities associated with fatigue provided the sites for
crack nucleation in bainitic steels.

In general, however, the dominant viewpoint is that voids nucleate at
particles (Rice and Tracey, 1969). These include primary and secondary
particles formed by phase transformations, and inclusions that are intro-
duced largely during processing, e.g., during casting or powder processing.

The pioneering theoretical work on void growth was done by
McClintock (1968), who analyzed the effects of stress rate on the growth
of a long cylindrical void. Subsequent work by Rice and Tracey (1969)
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proposed the well-known Rice–Tracey (RT) model for the characterization
of the growth rate of an isolated spherical void (Fig. 12.13). The void growth
rate predicted under continuum plasticity conditions in which
(
ffiffiffi
3

p
�app�2 > 1Þ is

ln
R

R0

� �
¼
ð"q
0

0:283
3

2

�m
�ys

� �
d"p	 ð12:12Þ

where "q is the equivalent Von Mises plastic strain, �ys is the yield stress
(which may be replaced with the effective stress), �m is the mean stress, R0 is
the particle size, and R is given by the stress traxiality:

R ¼ R1 þ R2 þ R3

3
ð12:13Þ

FIGURE 12.11 Schematics of ductile fracture processes in metals and their
alloys: (a) onset of deformation; (b) microvoid nucleation; (c) void growth;
(d) strain localization between voids; (e) necking between voids; (f) knife-edge
separation. (From Thomason, 1990—reprinted with permission from
Pergamon Press.)
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However, in rear materials, more than one void nucleates almost at the same
time, and there are interactions between the different growing voids. Also,
although the RT model does not consider the interactions between voids, it
is generally used to predict void growth behavior in ductile fracture pro-
cesses.

Several modifications have been made to develop the RT model. By
considering the nucleation and propagation of dislocation in the matrix
between voids, Kameda (1989) deduced that the relationships between the
void growth rate and the hydrostatic tensile stress and the void fracture is a
function of the thermally activated shear stress and the activation volume
for dislocation motiton in the matrix triaxility.

Idealizing the process of ductile fracture by confining void growth
and coalescence to a material layer of initial thickness, D, ahead of the
initial crack tip, Xia and Shih (1996) developed a mechanism-based cell
model for the characterization of ductile tearing, and the transition from
ductile-to-brittle fracture. The most important fracture process parameters
are the initial void volume fracture in the cell, f0, and the characteristic
length of a cell, D, which should be interpreted as the mean spacing
between the voids nucleated from the large inclusions. Microvoids
nucleated from small inclusions assist with the process of hole link-up
with the crack tip during the coalescence phase. The current void volume
fraction, f , and the current flow stress of the matrix � also change during
the ductile fracture process.

FIGURE 12.12 Ductile dimpled fracture in an A707 steel. (Courtesy of Jikou
Zhou.)
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The yield surface has been derived from approximate solutions for a
single cell containing a centered spherical void. Gurson’s yield condition
(1977) has been used. This gives

�ð�e; �m; �; f Þ �
�e
�

� �2
þ2q1f cosh

3q2�m
2�

� �
¼ ½1þ ðq1f Þ2� ¼ 0

ð12:14Þ
where �e is the macroscopic effective Mises stress, �m if the macroscopic
means stress, and q1 and q2 are the factors introduced by Tvergaard (1982)
to improve the accuracy of the model.

Under small-scale yielding conditions, the energy balance of cell mod-
els is given by

� ¼ �0 þ �p þ �E ð12:15Þ
where � is the total work of fracture per unit area of crack advance, �0 is
work of the ductile fracture process, �p is the plastic dissipation in the
background material, and �E is the additional contribution taking into
account the work related to changes in the process zone size and the elastic
energy variation within and just outside the plastic zone due to changes in
the plastic zone size.

Tvergaard and Needleman (1984) have modified the original Gurson
model by replacing f with an effective volume fraction, f �. Thomason (1990)
has also proposed a simple limit load model for internal necking between

FIGURE 12.13 Schematic of spherical void growth in a solid subjected to a
triaxial stress state. (From Anderson, 1994—reprinted with permission from
CRC Press.)
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voids at a critical net section stress, �nðcÞ. This is illustrated schematically in
Fig. 12.14 for a simple two-dimensional case. For in-plane void dimensions,
2a and 2b, and spacing 2d between voids, the critical condition for necking is
given by

�nðcÞ >
d

d þ b
> �1 ð12:16aÞ

and the critical condition for growth is given by

�nðcÞ
d

d þ b
¼ �1 ð12:16bÞ

where �1 is the remote principal stress.
Thomason (1990) has also applied the void growth model of Rice and

Tracey (1969) to the prediction of void size and shape. The predicted failure
strains were close to experimental observations, but an order of magnitude
lower than those predicted by the Gurson model.

12.4.4 Intergranular Fracture

In cases where the grain boundary cohesion is reduced, crack growth may
occur across the grain boundaries, giving rise to an intergranular fracture
mode (Fig. 12.15). The grain boundary cohesion may be reduced by the
segregation of atomic species such as sulfur or phosphorus to the grain

FIGURE 12.14 Mechanisms of ductile crack growth. (From Thomason, 1990—
reprinted with permission from Pergamon Press.)
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boundary regions (Briant, 1988). This is particularly true in steels and nickel
base superalloys in which parts per million levels of sulfur and phosphorus
have been shown to be sufficient to induce intergranular fracture. The result-
ing intergranular fracture modes are faceted, since the fracture paths follow
the grain boundary facets, as shown in Fig. 12.15 Intergranular fracture may
also occur as a result of the reduction in grain boundary cohesion by grain
boundary precipitation and the stress-assisted diffusion of hydrogen. In
some metals/alloys, intergranular fracture may also be induced at high
strain rates or under cyclic loading. However, the fundamental causes of
intergranular fracture in such scenarios are not well understood.

12.5 FRACTURE OF INTERMETALLICS

Intermetallics are compounds that form between metals and other metals.
Examples include compounds between titanium and aluminum (titanium
aluminides such as TiAl or Ti3Al) or compounds between nickel and
aluminum (nickel aluminides such as Ni3al or NiAl). Due to their ordered
or partially ordered structures, it is generally difficult to achieve the five
independent slip systems required for homogeneous plastic deformation in
intermetallic systems. Furthermore, even in cases where five independent
slip systems are possible, reduced grain boundary cohesion of some inter-
metallics (such as Ni3Al or Nial) may limit their potential for significant

FIGURE 12.15 Intergranular fracture in a plain carbon steel. (Courtesy of Dr.
Christopher Mercer.)
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levels of deformation by slip (George and Liu, 1990; Liu et al., 1989).
Room-temperature fracture, therefore, tends to occur by brittle cleavage
or intergranular fracture modes in most intermetallic systems (Fig. 12.16).

FIGURE 12.16 Room-temperature fracture modes in high-temperature inter-
metallics: (a) cleavage in Ti–48Al; (b) intergranular fracture in NiAl. (Courtesy
of Dr. Padu Ramasundaram.)
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However, since the grain boundary cohesion of some intermetallics
(such as Ni3Al and Fe3Al) may be improved by alloying, it is possible to
improve the room-temperature ductilities of such intermetallics by alloying.
In the case of Ni3Al, Liu et al. (1989) and George and Liu (1990) have
shown that significant improvements in ductility can be achieved by alloying
with boron, which is known to increase the grain boundary cohesion.
Similarly, alloying with boron has been shown to improve the fracture
resistance of Fe3Al (Stoloff and Liu, 1994). Alloying with sufficient levels
of boron also promotes a transition from intergranular fracture to ductile
dimplied fracture.

Ductile dimpled fracture has also been reported to occur in partially
ordered B2 niobium aluminide intermetallics such as Nb–15Al–40Ti (Ye et
al., 1998, 1999). In such systems, the transitions from brittle to ductile
fracture have been attributed to the effects of dislocation emission, which
have been modeled using atomistic simulations (Farkas, 1997; Ye et al.,
1999). Khantha et al. (1994) have also developed dislocation-based concepts
that explain the ductile-to-brittle transition in a number of intermetallic
systems.

The fracture modes in most intermetallic systems have been observed
to exhibit strong temperature dependence. This is shown in Fig. 12.17 using
images obtained from the fracture surfaces of Ti–48Al. In general, the tran-
sitions from brittle to ductile fracture modes have been attributed to the
contributions from additional slip systems at elevated temperature
(Soboyejo et al., 1992). However, thermally assisted grain boundary diffu-
sion may result in intergranular fracture modes at intermediate temperatures
(Fig. 12.17). A transition to a ductile transgranular fracture mode is also
observed in TiAl-based alloys at even higher temperatures (between 8158
and 9828C), as shown in Fig. 12.17.

Similar transitions in fracture modes have been observed in other
intermetallic systems such as nickel and iron aluminides. However, the frac-
ture mode transitions in these systems are also significantly influenced by
environmental embrittlement processes (Stoloff and Liu, 1994).

12.6 FRACTURE OF CERAMICS

Ceramics are ionically and/or covalently bonded inorganic compounds. Due
to their bonding and relatively large lattice spacings, slip is relatively diffi-
cult in cereamics. Hence, they tend to fail by brittle fracture modes (Lawn et
al., 1993; Mecholsky and coworkers, 1989, 1991, 1994, 1997, 1999). The
fracture surfaces of ceramics may be divided into four regions, as shown
in Fig. 12.18. They include: the fracture source/initiation site; a smooth
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FIGURE 12.17 Effects of temperature on fracture modes in titanium aluminide
alloys. (a) Cleavage and translamellar fracture at 258C; (b) intergranular frac-
ture at 7008C; and (c) transgranular fracture at 8158C.
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mirror region with a highly reflective surface; a misty region that contains
small radical ridges and microcrack distributions; and a hackle region that
contains larger secondary cracks. The hackle region may also be bounded by
branch cracks in some ceramic systems.

The dimensions of the mirror, mist, and hackle regions have been
related to the fracture stress in work by Mecholsky et al. (1978). From
their analysis of fracture modes in a wide range of ceramics, the following
relationship has been proposed between the fracture stress, �, and the radii
of the mirror–mist, mist–hackle, and hackle–crack branching boundaries,
rm;h;cb:

�ðrm;h;cbÞ
1
2 ¼ Mm;h;cb ð12:17Þ

where Mm;h;cb is a ‘‘mirror constant’’ corresponding to the mirror–mist,
mist–hackle, and hackle–crack branching boundaries. Equation (12.17)
has been shown to provide a good fit to experimental data obtained for a
large number of ceramics. This is shown in Fig. 12.19 using data obtained
for different ceramic materials by Mecholsky et al. (1976).

12.7 FRACTURE OF POLYMERS

A wide range of fracture modes is observed in polymers, depending on the
underlying polymer structure and microstructure. Fracture in amorphous
polymers tends to occur by craze formation due to the stretching of polymer
microfibrils that give rise to gaps between polymer chains. These gaps are
perceived as microcracks or crazes when viewed under a light microscope.

FIGURE 12.18 Schematic of four regions on the fracture surfaces of glassy
ceramics. (From Mecholsky et al., 1978—reprinted with permission from
Materials Research Society.)
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Three stages of cracking are typically observed as a crack advances
through an amorphous polymers. The first stage (Stage A in Fig. 12.20)
involves crazing through the midplane. This results in the formation of a
mirror area by the growth of voids along the craze. The second stage (Stage
B in Fig. 12.20) involves crack growth between the craze/matrix interface.
This results in so-called mackerel patterns. Finally, the third stage (Stage C
in Fig. 12.20) involves cracking through craze bundles. This promotes the
formation of hackle bands, as cracking occurs through bundles of crazes.

FIGURE 12.19 Dependence of fracture stress on mist–hackle radius. (From
Mecholsky et al., 1976—reprinted with permission from Materials Research
Society.)
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Hence, the fracture surfaces of amorphous polymers contain mirror,
mist, and hackle regions (Fig. 12.21) that are somewhat analogous to those
observed in ceramics. However, the underlying mechanisms associated with
these different regions are very different in amorphous polymers. In any
case, the mirror zones on the fracture surfaces of amorphous polymers
often exhibit colorful patterns when viewed under a light microscope. A
single color reflects the presence of a single craze of uniform thickness,

FIGURE 12.20 Schematic of stages of cracking in amorphous polymers.
Region A: crack advance by void formation; region B: crack advance along
alternate craze–matrix interfaces to form patch or mackerel patterns; region c:
crack advance through craze bundle to form hackle bands. (Adapted from
Hull, 1975—reprinted with permission from ASM.)

FIGURE 12.21 Band hackle markings in fast fracture region in poly(aryl ether
ether ketone).
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while multicolor fringes are formed by the reflection of light from multiple
craze layers, or a single craze of variable thickness.

During the final stages of crack growth in amorphous polymers, crack
advance outplaces the crack tip, and hackle bands form between the craze
bundles. The resulting rough fracture surface has a misty appearance, and
parabolic voids are observed on the fracture surfaces (Fig. 12.22). These
voids are somewhat analogous to those observed on the fracture surfaces
of ductile metals in the presence of shear.

In the case of semicrystalline polymers, the fracture modes depend
very strongly on the interactions of the cracks with the underlying micro-
structure. The cracks may follow ‘‘interspherulitic’’ and trans-spherulitic’’
paths, as shown schematically in Fig. 12.23. The crack paths may also be
significantly affected by crack velocity, with trans-spherulitic paths occur-
ring at high velocity, and interspherulitic paths tending to occur at lower
velocities. Relatively rough fracture modes are observed when extensive
local plastic deformation precedes stable crack growth and catastrophic
failure.

FIGURE 12.22 Tear dimples in poly(aryl ether ether ketone).

Copyright © 2003 Marcel Dekker, Inc.



12.8 FRACTURE OF COMPOSITES

Since composite damage mechanisms may occur in the matrix, interface(s)/
interphase(s), and reinforcement(s) in composite materials, a wide range of
complex damage modes can occur in such materials under monotonic load-
ing. Depending on the relative ductility of the matrix and reinforcement
materials, and the interfacial strength levels, damage in composite materials
may occur by:

1. Matrix or fiber cracking (single or multiple cracks).
2. Interfacial or interphase cracking or debonding.
3. Fiber pull-out or fiber cracking.
4. Delamination between piles.
5. Tunneling cracks between layers of different phases.

The complex sequence of damage phenomena is somewhat difficult to
predict a priori. However, in the case of fiber-reinforced composites, the
damage mechanisms that precede catastrophic failure have been studied
by performing experiments in which composite damage mechanisms are
observed in a microscopic at different stages of loading.

An example of the complex sequence of composite damage phenom-
ena is presented in Fig. 12.24 for a titanium matrix composite reinforced
with silicon carbide (SCS-6) fibers. The initial damage is concentrated in
regions containing fibers that touch as a result of so-called ‘‘fiber swim-
ming’’ processes during composite fabrication. Radial cracking and debond-
ing is then observed in the predominantly TiC interphase between the

FIGURE 12.23 Schematics of (a) possible crack growth associated with spher-
ulites in crystalline polymers and (b) orientations of crystal lamellae. (From
Hertzberg, 1996—reprinted with permission from John Wiley.)
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FIGURE 12.24 Damage mechanisms in ½�458� � 2s and ½0=� 458�2s Ti–15V–
3Cr–3Al–3Sn composites reinforced with 35 vol % SiC (SCS-6) fibers: (a)
debonding, microvoid nucleation, and radial cracking in ½�458�2s composite
after loading to 0.1 of the ultimate tensile strength; (b) debonding and radical
cracking in reaction layer in the ½0=� 458�2s composite after loading to 0.1 of
the ultimate tensile strength. (From Jin and Soboyejo, 1998.)
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carbon coating and the titanium amtrix (Fig. 12.24). A summary of the
observed damage modes is presented in Fig. 12.25.

At higher stresses, stress-induced precipitation occurs within the
matrix before subgrain formation and circumferential fiber cracking. The
matrix microvoids then coalesce, as radial cracking continues along the
interphase, Fig. 12.23(e). Slip steps are then observed in the matrix along
with complete debonding between the interphase and matrix. Final fracture
occurs by ductile dimpled fracture in the matrix, and cleavage fracture of the
silicon carbide fibers. There is also clear evidence of fiber pull-out prior to
catastrophic failure.

As the reader can probably imagine, a different sequence of events
would be expected from brittle polymer or ceramic matrix composite rein-
forced with carbon or glass fibers. Such composites tend to exihbit multiple
matrix cracks with relatively uniform vertical spacings. These multiple
matrix cracks evolve as a result of the stress states within the composites.
There have been numerous studies of damage mechanisms in composite
materials. It is, therefore, not possible to provide an adequate overview of
composite damage mechanisms in this section. the interested reader is
referred to texts on composites by Chawla (1987), Taya and Arsenault

FIGURE 12.25 Summary of tensile damage mechanisms in ½�45=� 45�2s Ti–
15V–3Cr–3Al–3Sn reinforced with SiC (SCS-6) fibers. (From Jin and Soboyejo,
1998.)
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(1989), Clyne and Withers (1993), and Matthews and Rawlings (1994) Hull
and Clyne (1996).

12.9 QUANTITATIVE FRACTOGRAPHY

So far, our discussion of fracture modes has provided only qualitative
descriptions of the failure mechanisms in the different types of materials.
However, it is sometimes useful to obtain quantitative estimates of the
features such as asperities on the fracture surfaces. Quantitative measure-
ments of such features may be obtained by the use of stereo microscopes,
profilometers (Talysurf measurement devices), and atomic force micro-
scopes. Software packages have been developed to analyze the crack asper-
ity profiles using roughness parameters that are described in this section.
The fracture characteristics may also be described by fractal numbers that
are presented at the end of this section.

The two types of roughness parameters that are used typically in
stereology are the linear roughness parameter, RL, and the surface rough-
ness parameter, RS. The linear roughness parameter is defined as the ratio of
the true crack profile length, Lt, to the projected crack profile length, Lp:

RL ¼ Lt
Kp

ð12:18Þ

Similarly, the surface roughness parameter may also be defined as the ratio
of the true surface area, As, to the projected surface area, Ap:

Rs ¼
Ht

Ap
¼ 4

�
ðRL � 1Þ þ 1 ð12:19Þ

The surface roughness parameter is generally difficult to measure directly. It
is, therefore, useful to infer it from the linear roughness parameter, RL, and
the expression on the right-hand side of Eq. (12.19). In many cases, Rs is
often greater than 2. A great deal of caution is, therefore, needed in the
measurement of linear profiles/area parameters on fracture surfaces.

Finally, in this section, it is of interest to define a fractal framework
that can be used to analyze fracture surface features. Fractals recognize that
the length of an irregular profile depends on the size scale of the measure-
ment. Also, the size of the measurement increases as the size of the measure-
ment unit decreases. If the apparent length of the measurement unit is Lð�Þ
and the measurement is �, then the size of the measurement is defined
uniquely by

Lð�Þ ¼ L0�
�ðD�1Þ
0 ð12:20Þ
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where L0 is a constant with dimensions of length, and D is the fractal
dimension. It is important to note that D is not a material constant since
it may vary with microstructure and the measurement unit. However, the
fractal parameter, D, may be related to fracture phenomena in different
materials (Mecholsky and coworkers, 1976–1991, West et al., 1994;
Hertzberg, 1996; Chen et al., 1997).

12.10 THERMAL SHOCK RESPONSE

Our discussion so far has focused on the growth of cracks due to monotonic
(load increasing with time) mechanical loading. However, crack growth may
also occur under ‘‘thermal’’ loading. When materials are subjected to rapid
temperature changes that give rise to sudden changes in local stress/strain
stages, crack nucleation and growth can occur due to cracking under down-
quench (cold shock) or up-quench (hot shock) conditions. Such failure is
often characterized as the thermal shock response of the material. It can
occur in metals, polymers, or ceramics. However, it is most prevalent in
ceramics due to their inherent brittleness. The phenomenon of thermal
shock was first studied seriously by Kingery (1955) and Hasselman (1963).

12.10.1 Review of Thermal Shock

Kingery (1955) noted that under conditions where h, the heat transfer coef-
ficient, is so large that the surface of the material is immediately changed to
the surrounding temperature, the temperature difference to just initiate
fracture is given by

�Tc ¼ S
��ð1� 	Þ

E�
¼ SR ð12:21Þ

and

R ¼ ��ð1� 	Þ
E�

ð12:22Þ

where �Tc is the temperature difference to just initiate fracture, S is a shape
factor, which is dependent on the geometry of the sample, �� is the fracture
stress (shear or tension), 	 is Poisson’s ratio, E is the elastic modulus, and �
is the coefficient of thermal expansion; R is known as the fracture resistance
parameter, and increasing R will increase the resistance to fracture initiation
due to thermal shock. For smaller, constant values of h, �Tc is given as:

�Tc ¼ S
k��ð1� 	Þ

E�

1

h
¼ S

hR 0 ð12:23aÞ

and
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R ¼ k��ð1� 	Þ
E�

ð12:23bÞ

where k is the thermal conductivity, h is the heat transfer coefficient, and R0

is a second fracture resistance parameter. The above equations were devel-
oped for a homogeneous, isotropic body with physical properties that are
independent of temperature. From this work, high values of thermal con-
ductivity and strength, along with low values of the elastic modulus,
Poisson’s ratio, and thermal expansion, will lead to the best thermal
shock resistance. Kingery (1955) also demonstrated that placing compres-
sive surface stresses in spherical samples of zirconia leads to improved ther-
mal stress reistance.

Hasselman (1963a) proposed that the temperature difference required
to cause the fracture of a body of low initial temperature subjected to
radiation heating is given by

�Tc ¼
A

�b

� �1
4

� k��ð1� 	Þ
E�

� �1
4

ð12:24Þ

where A is a geometry constant, b is a size constant, � is the density, and k is
the emissivity. Therefore, when a major portion of the heat transfer takes
place by radiation, the emissivity becomes an important part of the thermal
shock parameter. In addition to the parameters determined by Kingery
(1955), a low value of emissivity will improve the resistance to fracture
initiation due to thermal shock. Equation (12.24) does not apply to materi-
als of high strength, or low values of �; k, or E.

Hasselman (1963b) later considered the factors that affect the propa-
gation of cracks in systems subjected to thermal shock. It was originally
proposed by Griffith that a crack will nucleate or propagate as long as the
elastic energy released is equal to or greater than the effective surface energy.
Hasselman noted that, for brittle, polycrystalline refractory materials, the
effective surface energy is approximately equal to the thermodynamic sur-
face energy. He determined the following two damage resistance parameters,
R000 and r0000:

R 000 ¼ E

ð��Þ2ð1� 	Þ ð12:25Þ

R 0000 ¼ E�eff

ð��Þ2ð1� 	Þ ð12:26Þ

where �eff is the effective surface energy. Therefore, materials designed to
have a high fracture resistance would have low damage resistance.
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Hasselman conjectured that these parameters were only valid for the first
thermal shock cycle.

Increasing the porosity has a negative effect on the fracture resistance
parameter R0, because increasing the porosity decreases the thermal con-
ductivity. However, it increases the damage resistance because it decreases
the elastic energy stored in the material. Increasing the surface energy
increases R0000, and can be accomplished by including a second phase. This
was demonstrated in some early work by Tinklepaugh (1960), who was one
of the first to explore the use of ductile phase reinforcement in the toughen-
ing of cermets.

Nakayama and Ishizuka (1969) later tested five brands of commercial
refractory firebricks. They were identically thermally shocked until a weight
loss of 5% was reached. They concluded that the R0000 term correctly pre-
dicted the relative thermal shock resistance of the five types of bricks.

Hasselman (1969) presented a theory that unified the fracture initia-
tion and crack propagation approaches. The conditions of this theory are as
follows: the material is entirely brittle; it contains flaws in the form of
circular, uniformly distributed Griffith microcracks; stress relaxation is
absent; crack propagation occurs by simultaneous propagation of N cracks
per unit volume; all cracks propagate radially; and neighboring cracks stress
fields do not interact. The total energy ðWtÞ of the system per unit volume is
the sum of the elastic energy plus the fracture energy of the cracks:

Wt ¼
3ð� ��TÞ2E0

2ð1� 2	Þ 1þ 16ð1� 	2ÞNl3

9ð1� 2	Þ

" #�1

þ2�Nl2G ð12:27Þ

where G is the surface fracture energy, E0 is the elastic modulus of the
uncracked matrix, and l is the radius of the cracks. Combining Eq.
(12.27) with Griffith’s approach (cracks are unstable between the limits
for which):

dWt

dl
¼ 0 ð12:28Þ

leads to the critical temperature difference required for crack instability:

�Tc ¼
�Gð1� 	2Þ
2E0�

2ð1� 	Þ

" #1=2

� 1þ 16ð1� 	2ÞNl3

9ð1� 2	Þ

" #�1

� ½l��1=2 ð12:29Þ

For initially short cracks, the term ½16ð1� 	2ÞNl3=9ð1� 2	Þ� becomes small
compared to unity. Thus, the �Tc for short cracks becomes:
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�Tc ¼
�Gð1� 2	Þ2
2E0�

2ð1� 	2Þ

" #1=2

ð12:30Þ

For long cracks, the term ½16ð1� 	2ÞNl3=9ð1� 2	Þ� becomes negligible com-
pared to unity. The �Tc for long cracks therefore becomes:

�Tc ¼
128�Gð1� 	2ÞN2l5

81E0�
2

" #1=2

ð12:31Þ

Hasselman noted that Eq. 12.31 might not be valid because it ignores the
interactions between the stress fields of neighboring cracks. Also, for initi-
ally short cracks, the rate of elastic energy released after initiation of frac-
ture exceeds the surface fracture energy. The excess energy is converted into
kinetic energy of the propagating crack. The crack still possesses kinetic
energy when it reaches the lengths corresponding to the critical temperature
difference in Eqs (12.30) and (12.31). Therefore, the crack continues to
propagate until the potential energy released equals the total surface frac-
ture energy. This process leads to the sudden drop in strength seen in many
ceramics at �Tc, instead of a gradual decrease in strength, as would be
expected, if the cracks propagated quasistatically. The final crack length
can be expressed as

3ð� ��TcÞ2E0

2ð1� 2	Þ 1þ 16ð1� 	2ÞNl30
9ð1� 2	Þ

" #�1

� 1þ 16ð1� 	2ÞNl30
9ð1� 2	Þ

" #�1
8<
:

9=
;

¼ 2�NG l2f � l20

� �
ð12:32Þ

where l0 and lf are the initial and final crack lengths, respectively. When lf �
l0 (initially short cracks), the expression for the final crack length simplifies
to

lf ¼
3ð1� 2	Þ

8ð1� 	2Þl0N
� �

ð12:33Þ

Equation (12.33) indicates that the final crack length of an initially short
crack, except for Poisson’s ratio, is independent of material properties.
Longer cracks will not attain kinetic energy, and propagate in a quasistatic
manner. This leads to a gradual decrease in strength after thermal shock,
instead of the instantaneous decrease often seen in materials with small
initial flaw sizes. Hasselman suggested crack propagation could be mini-
mized by increasing the size of the Griffith flaw. This can be accomplished
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by increasing the grain size, or by introducing cracks large and dense enough
that crack propagation does not occur kinetically.

Gupta (1972) tested the effect of grain size on the strength degradation
of thermally shocked alumina. He used bars (0.3175 mm � 0.3175 mm
�2:8575 mm) of alumina with grain sizes of 10, 34, 40, and 85 �m. The
bars were thermally shocked to varying degrees by heating the samples in a
furnace and then dropping them into a bucket of 258C water. The change in
strength after thermal shock was measured by a four-point bend test. Figure
12.26 shows that the magnitude of the discontinuous decrease in strength at
�Tc decreased as grain size increased. The 10 �m grain size samples exhib-
ited at 75% drop in strength, while the strengths of the 34 and 40 �m
samples dropped by 50 and 42.5%, respectively. The 85 �m grain size
alumina did not exhibit a discontinuous drop in strength. This supports
Hasselman’s suggestion that increasing grain size cold minimize crack pro-
pagation by causing cracks to propagate in a quasistatic manner.

Evans and Charles (1977) studied conditions for the prevention of
crack propagation in thermally shocked Al2O3 and ZrO2 cylinders by
using large precracks. Their criterion for the prevention of crack propaga-
tion is

� < �c �
Kcð1� 	Þ

E��T ðr0Þ1=2
ð12:34Þ

where � is the normalized crack tip stress intensity factor, 	 is Poisson’s
ratio, E is the elastic modulus, � is the thermal expansion coefficient, �T
is the temperature change of the quench, r0 is the critical dimensional mea-
surement, and Kc is the critical stress intensity factor. Crack propagation
was prevented by using cracks of length 60 to 80% of the radius of the
cylinder. Larger radii required larger relative crack lengths.

Faber et al. (1981) performed a different type of thermal shock test.
Using disks that were 5 cm in diameter and 0.25 cm thick, they studied the
thermal shock behavior of Al2O3. One surface was ground and polished,
and precracked by a Knoop indenter with loads from 15 to 33 N. Fine
grinding eliminated the residual stresses from precracking. The samples
were individually tested by heating in a MoSi2 furnace on a bed of fibrous
insulation. The samples were thermally shocked by cooling with high-velo-
city air (100 m/s). If the crack did not extend, the experiment was repeated
using a higher furnace temperature. The temperature difference required to
extend the crack, �Tc, was recorded. Higher indentation loads led to a
lower �Tc required for crack extension.

Bannister and Swain (1990) noted that the ratio of the work of frac-
ture, �WOF, to the notch beam test work of fracture, �NBT, describes the
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FIGURE 12.26 Thermal shock resistance of polycrystalline alumina as func-
tions of quenching temperature and grain size. (From Gupta, 1972—reprinted
with permission from American Ceramics Society.)
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increasing crack resistance during crack extension, or the KR curve. The KR

curve is not a material property, since it depends on the specimen dimen-
sions, testing conditions, initial flaw, and evaluation method. The increasing
resistance to crack propagation is due to crack deflection and/or crack
branching, contact shielding processes, and/or stress-induced zone-shielding
processes that will be described in the next chapter. Two required criteria for
unstable crack growth are related to the KR curve:

KA 
 KRðaÞ ð12:34aÞ
and

dKA

da
>

dKRðaÞ
da

ð12:34bÞ

where KA is the applied stress intensity factor due to thermal stresses, and
KRðaÞ is the value of the KR curve at the crack length, a. Crack arrest occurs
when Eq. (12.34a) is not satisfied; KA can be calculated from the through-
thickness single-edged notched test method, which uses the equation:

KA ¼ Y�f
ffiffiffi
a

p ð12:35Þ
where Y is usually a polynomial of ða=WÞ, W is the specimen width, and �f
is the flexure stress.

The KR curve (Bannister and Swain, 1990) and thermal shock beha-
vior (Swain et al., 1991a,b) were determined for duplex ceramics containing
spherical zones (second phase) homogeneously dispersed in a ceramic matrix
of composition 3 vol% yttria-stabilized tetragonal zirconia polycrystals and
20 wt% Al2O3. The zones contained various fractions of monoclinic ZrO2

particles, and expanded on cooling because of the ZrO2 transformation.
This produced radial compressive and tangential tensile hoop stresses
arond the zones, and hydrostatic pressure within the zones. This microstruc-
ture retained the strength of the matrix, while increasing the crack growth
resistance by encouraging crack deflection and branching.

Mignard et al. (1996) have tried to relate the flexural strength, tough-
ness, and resistance to crack propagation from room temperature to
10008C. The toughness and resistance to crack propagation were measured
by single-edge notched beam techniques. The critical temperature difference,
�Tc, was 6828C (from a 7008C furnace temperature to 188C air tempera-
ture), as determined by a drop in retained strength, a first acoustic peak
(measured in situ using acoustic emission signals), and the beginning of the
decrease in elastic modulus. The first acoustic peak occurred 700 ms after
cooling began. The temperature distribution with the sample was calculated
for a temperature of 7008C after 700 ms of cooling. The largest surface stress
was 115 MPa, and was located at the center of the largest face, which was at
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a temperature of 6008C. This corresponds to the bending strength measured
at 6008C, which was 114� 16 MPa. The stress intensity factor at 7008C also
reaches the KR curve (at the initial flaw size) for the material at 6008C.

12.10.2 Materials Selection for Thermal Shock
Resistance

Following the example of Ashby (1999), we may simplify the analysis of
thermal shock phenomena by considering the simplest case in which sudden
constrained thermal expansion leads to thermal stresses. Such stresses can
give rise to relatively high stresses when they exceed the yield or fracture
stress, �f . The condition at which this occurs is given by

�f � E��Tc (for constrained expansion) ð12:36aÞ
or

�f ¼
E��Tc

C
(for unconstrained expansion) ð12:36bÞ

where C ¼ 1 for axial constraint, ð1� 	Þ for biaxial constraint or normal
quenching, and (1� 2	Þ for triaxial constraint; 	 is Poisson’s ratio. Hence,
the thermal shock resistance may be expressed as the critical temperature
range that is obtained by rearranging Eqs (12.36a) and (12.36b).

However, this is only part of the story. This is because instant cooling
requires an infinite heat transfer coefficient, h at the surface. Since this is
never true in reality, the values of �T obtained at the surface can only be
used to obtain approximate estimates of �T for the ranking of the thermal
shock resistance of materials. Hence, in such cases, the thermal shock resis-
tance is given by

B�T ¼ �f=�E ð12:37Þ
where B ¼ C=A and typical values of A are given in table 12.1 for a 10 mm
thick section. Also, an approximate value of A may be obtained from the
following expression:

A ¼ Hh=�

1þ Hh=�
¼ Bi

1þ Bi
ð12:38Þ

where Hh=� is the so-called Biot number (Bi), H is a typical dimension, and
� is the thermal conductivity. Contours of B�T , therefore, provide a mea-
sure of thermal shock resistance, as shown in Fig. 12.27. The materials with
the highest thermal shock resistance have the highest values of B�T . Since
B ¼ C=A and A equals 1 for most materials, except high-conductivity metals
(Table 12.1), the thermal shock resistance may be determined directly from
the contours for most materials, with the appropriate correction for the
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constraint factor, C. Also, for materials with A 6¼ 1, �T is larger by a factor
of C/A.

If we now examine the possible differences between hot and cold shock
conditions, we may obtain a range of expressions for different levels of heat
transfer. For perfect heat transfer (Bi ¼ 1), the maximum sustainable heat
transfer is given by

�T ¼ A1
�f
E�

ð12:39Þ

where A1 � 1 for cold shock and A1 � 3:2 for hot shock. However, for poor
heat transfer, the maximum sustainable temperature range is greater. In the
limit, for small Biot number (Bi<1), �T is given by

�T ¼ A2
�f
E�

1

Bi
¼ A2

�f
E�

k

hH
ð12:40Þ

where k is the thermal conductivity, A2 � 3:2 for cold shock, and A2 � 6:5
for hot shock. In any case, for both cold and hot shock, the thermal shock
resistance, �T , is maximized by selecting materials with high �f=E� for
materials with high heat transfer (Bi ! 1). However, for poor surface
heat transfer (Bi < 1), the best materials have high k�f=E�. The resulting
materials selection map is shown in Fig. 12.28, which is taken from a paper
by Lu and Fleck (1998). Materials with high thermal shock resistance
lie to the top right of the diagram. These include glass ceramics and
graphites. However, it should also be noted that the relative thermal
shock resistance of the different materials depends significantly on the
Biot number, Bi. Furthermore, when the Biot number if high, then the
parameter of �f=E� becomes the relevant material selection index.

The above framework provides a strength-based approach to the selec-
tion of materials that are resistant to thermal shock. The resulting materials
selection chart (Fig. 12.27) also shows that engineering ceramics and invar

TABLE 12.1 Thermal Shock Parameters for 10 mm Thick Sections

Conditions Foams Polymers Ceramics Metals

Slow air flow (h ¼ 10 W/m2K) 0.75 0.5 3� 10�2 3� 10�3

Black body radiation (5008�08C) 0.93 0.6 0.12 1:3� 10�2

ðh ¼ 40 W/m2K)
Fast air flow ðh ¼ 102 W/m2K) 1 0.75 0.25 3� 10�2

Slow water quench ðh ¼ 103 W/m2K) 1 1 0.75 0.23
Fast water quench ðh ¼ 104 W/m2K) 1 1 1 0.1–0.9

Source: Ashby (1999)—reprinted with permission from Butterworth-Heinemann.
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are some of the most thermal shock-resistant materials. However, engineer-
ing ceramics also have relatively low fracture toughness that can lead to
crack nucleation and growth in systems containing pre-existing flows. There
is, therefore, a need to use fracture mechanics approaches in the selection of
materials that are resistant to thermal shock.

A fracture mechanics framework for the selection of thermal shock-
resistant materials has been proposed by Lu and Fleck (1998). For cracking
in an infinite plate subjected to cold shock, they consider the worst case in
which a Mode I crack is induced from the edge (Fig. 12.29) where the
transient stresses are greatest. In contrast, for hot shock conditions, crack-

FIGURE 12.27 Materials selection chart for thermal shock resistance.
Correction must be applied for constraint and to allow for the effect of ther-
mal conductivity. (From Ashby, 1999—reprinted with permission from
Butterworth-Heinemann.)
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FIGURE 12.28 Materials selection chart for thermal shock resistance. (From Lu
and Fleck, 1998—reprinted with permission from Elsevier.)

FIGURE 12.29 Cracks induced in a finite thickness plate exposed to convective
medium of different temperatures: (a) cold shock; (b) hot shock. (From Lu and
Fleck, 1998—reprinted with permission from Elsevier.)
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ing is assumed to be induced at the center of the plate, Fig. 12.29(b). In any
case, for fracture toughness-controlled cracking due to thermal shock, the
maximum sustainable temperature range for perfect heat transfer (Bi ¼ 1)
is given by Lu and Fleck (1998) to be

�T ¼ A3
KIc

E�
ffiffiffiffiffiffiffi
�H

p ð12:41Þ

where A3 � 4:5 for cold shock, and � 5:6 for hot shock. Furthermore, since
the sustainable temperature jump increases with decreasing Biot number
(heat transfer), the limiting condition for small Biot number (Bi < 1Þ is of
importance. This is given by

�T ¼ A4
KIc

E�
ffiffiffi
�

p
H

k

hH
ð12:42Þ

where A4 � 9:5 for cold shock, and � 12 for hot shock. Hence, from the
above expressions, it is clear that the selection of thermal shock-resistant
materials can be achieved by amximizing KIc=E� for perfect heat transfer
(Bi ¼ 1Þ, or by selecting high kKIc=E� for poor heat transfer (Bi < 1Þ.

Materials selection charts for fracture mechanics-based selection are
presented in Fig. 12.30. The relative positions of the different materials are
similar to those presented in Fig. 12.28. However, glass ceramics and gra-
phite have the best thermal shock resistance among ceramics. Also, for
fracture toughness-controlled fracture, thermal shock resistance decreases
with increasing plate thickness, 2H, at all Biot numbers under hot shock and
cold shock conditions. Hence, the actual material selection process requires
a careful consideration of the section thickness, H, and strength or fracture
toughness-based materials selection parameters.

Finally, it is important to note here that the most significant stresses
are induced during the initial transient period associated with the thermal
shock response of a material to hot shock (heating) or cold shock (cooling).
This transient period, t�, is controlled primarily by the Biot Number, Bi,
which is a nondimensional heat transfer coefficient. For cold shock, the
transient time, t�, is given by Lu and Fleck (1998) to be

FIGURE 12.30 (a) Merit indices for strength-controlled failure k�f=E� at low Bi
values vs. �f=E� at high Bi values; (b) merit indices for toughness-controlled
failure kICE� vs. KIC=E�; (c) KIC=E� vs. �f=E�, with the guidelines Hf added to
help in selecting materials according to both strength- and toughness-based
fracture criteria. (From Lu and Fleck, 1998—reprinted with permission of
Elsevier.)
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t� ¼ 0:48

1þ 1:8Bi
ð12:43Þ

Similarly, for hot shock conditions, the transient period, t�, is given by Lu
and Fleck (1998) to be

t� ¼ 0:115þ 0:45

1þ 2:25Bi
ð12:44Þ

In any case, it should be clear that failure due to thermal shock can be
designed by the careful selection of materials that are resistant to cracking
under either hot shock or cold shock conditions. One way in which this can
be achieved is by the use of reinforcements that reduce the overall crack
driving force by bridging the crack faces. For example, this may be achieved
by composite reinforcement with brittle or ductile phases. Alternatively,
viscous bridging may be used to shield the crack tips from the applied
thermal stress, as shown in Fig. 12.31 for a refractory ceramic. The concept
of crack-tip shielding will be discussed in greater detail in Chap. 13.

12.11 SUMMARY

This chapter presents an overview of the micromechanisms of fracture in the
different classes of materials. The chapter begins with a review of brittle and

FIGURE 12.31 Crack bridging by viscous glassy phase in a refractory ceramic.
(From Soboyejo et al., 2001.)
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ductile fracture mechanisms in metals and their alloys. These include trans-
granular cleavage, intergranular fracture, and ductile dimpled fracture
modes. The possible modes of failure are then elucidated for metallic, inter-
metallic, ceramic, and polymeric materials before exploring a selected range
of possible failure modes in composite materials. The mechanisms of ther-
mal shock are discussed after introducing simple concepts in quantitative
stereology along with the notion of fractals.
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13

Toughening Mechanisms

13.1 INTRODUCTION

The notion of designing tougher materials is not a new one. However, it is
only in recent years that scientists and engineers have started to develop the
fundamental understanding that is needed to guide the design of tougher
materials. The key concept in this area is the notion of shielding the crack
tip(s) from applied stress(es). When this is done, higher levels of remote
stresses can be applied to a material before fracture-critical conditions are
reached.

Various crack-tip shielding concepts have been identified by research-
ers over the past 30 years. These include:

1. Transformation toughening
2. Twin toughening
3. Crack bridging
4. Crack-tip blunting
5. Crack deflection
6. Crack trapping
7. Microcrack shielding/antishielding
8. Crazing
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The above toughening concepts will be introduced in this chapter. However,
it is important to note that toughening may also occur by some mechanisms
that are not covered in this chapter (Fig. 13.1). In any case, the combined
effects of multiple toughening mechanisms will also be discussed within a
framework of linear superposition of possible synergistic interactions
between individual toughening mechanisms.

13.1.1 Historical Perspective

Toughening concepts have been applied extensively to the design of compo-
site materials. Hence, before presenting the basic concepts and associated
equations, it is important to note here that even the simplest topological
forms of composite materials are complex systems. In most cases, these
incorporate interfaces with a wide range of internal residual stresses and

FIGURE 13.1 Crack-tip shielding mechanisms. Frontal zone: (a) dislocation
cloud; (b) microcrack cloud; (c) phase transformation; (d) ductile second
phase. Crack-wake bridging zone: (e) grain bridging; (f) continuous-fiber brid-
ging; (g) short-whisker bridging; (h) ductile second phase bridging. From B.
Lawn, reprinted with permission from Cambridge University Press.)
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thermal expansion misfit. Also, most of the expressions presented in this
chapter are, at best, scaling laws that capture the essential elements of
complex behavior. In most cases, the expressions have been verified by
comparing their predictions with the behavior of model materials under
highly idealized conditions. However, due to the random features in the
topologies of the constituent parts, the agreement between the models and
experiments may be limited when the conditions are different from those
captured by the models (Argon, 2000).

In any case, there are two types of toughening approaches. These are
generally referred to as intrinsic and extrinsic toughening. In this chapter,
intrinsic toughening is associated with mechanistic processes that are inher-
ent to the normal crack tip and crack wake processes that are associated
with crack growth. In contrast, extrinsic toughening is associated with addi-
tional crack tip or crack wake processes that are induced by the presence of
reinforcements such as particulates, fibers, and layers. Available scaling laws
will be presented for the modeling of intrinsic and extrinsic toughening
mechanisms. Selected toughening mechanisms are summarized in Fig. 13.1.

13.2 TOUGHENING AND TENSILE STRENGTH

In most cases, toughening gives rise to resistance-curve behavior, as dis-
cussed in Chap. 11. In many cases, the associated material separation dis-
placements are large. This often makes it difficult to apply traditional linear
and nonlinear fracture concepts. Furthermore, notch-insensitive behavior is
often observed in laboratory-scale specimens. Hence, it is common to obtain
expressions for the local work of rupture, �W , and then relate these to a
fracture toughness parameter based on a stress intensity factor, K , or a J-
integral parameter.

If we now consider the most general case of material with an initiation
toughness (energy release rate) of Gi and a toughening increment (due to
crack tip or crack wake processes) of �G, then the overall energy release
rate, Gc, may be expressed as:

Gc ¼ Gi þ�G ð13:1Þ
Similar expressions may be obtained in terms of J or K . Also, for

linear elastic solids, it is possible to convert between G and K using the
following expressions:

G ¼ K 2=E 0 ð13:2aÞ
or

K ¼
ffiffiffiffiffiffiffiffiffi
E 0G

p
ð13:2bÞ
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where E 0 ¼ E for plane stress conditions, E 0 ¼ E=ð1� 	2Þ for plane strain
conditions, E is Young’s modulus, and 	 is Poisson’s ratio.

In scenarios where the material behaves linear elastically in a global
manner, while local material separation occurs by nonlinear processes that
give rise to long-range disengagement, it is helpful to relate the tensile
strength and the work of fracture in specific traction/separation (T/S)
laws. An example of a T/S law is shown in Fig. 13.2(a). These are mapped
out in front of the crack, as is shown schematically in Fig. 13.2(b).

In the T/S law [Fig. 13.2(a)], the rising portion corresponds to the
fracture processes that take the material from an initial state to a peak
traction corresponding to the tensile strength, S. The declining portion
SD corresponds to the fracture processes beyond the peak state, and the
total area under the curve corresponds to the work of rupture of the mate-
rial. It is also important to note here that the way in which the T/S laws
affect the fracture processes ahead of an advancing crack can be very com-

FIGURE 13.2 Schematic illustration of (a) traction/separation (T/S) across a
plane and (b) T/S law mapped in front of a crack of limited ductility. (From
Argon, 2000.)
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plex. In any case, for a process zone of size, h, crack length, a, and width,W ,
the condition for small-scale yielding is given by Argon and Shack (1975) to
be

CTODc � h < a <W ð13:3Þ
Where CTODc is the critical crack tip opening displacement and the other
variables have their usual meaning. For fiber-reinforced composites, the
CTODc is � 1�2 mm (Thouless and Evans, 1988; Budiansky and
Amazigo, 1997), while in the case of fiber-reinforced cements, it is usually
of the order of a few centimeters. Consequently, very large specimens are
needed to obtain notch-sensitive behavior on a laboratory scale. Failure to
use large enough specimens may, therefore, lead to erroneous conclusions
on notch-insensitive behavior.

13.3 REVIEW OF COMPOSITE MATERIALS

An overview of composite materials has already been presented in Chaps 9
and 10. Nevertheless, since many of the crack-tip shielding mechanisms are
known to occur in composite materials, it is important to distinguish
between the two main types of composites that will be considered in this
chapter. The first consists of brittle matrices with strong, stiff brittle rein-
forcements, while the second consists primarily of brittle matrices with duc-
tile reinforcements. Very little attention will be focused on composites with
ductile matrices such as metals and some polymers.

In the case of brittle matrix composites reinforced with aligned con-
tinuous fibers, the typical observed behavior is illustrated in Fig. 13.3 for
tensile loading. In this case, the composite undergoes progressive parallel
cracking, leaving the fibers mostly intact and debonded from the matrix. At
the so-called first crack strength, �mc, the cracks span the entire cross-sec-
tion, and the matrix contribution to the composite stiffness is substantially
reduced. Eventually, the composite strength resembles the fiber bundle
strength, and there is negligible load transfer between the matrix and the
fibers. This leads to global load sharing, in which the load carried by the
broken weak fibers is distributed to the unbroken fibers.

In the case of unrestrained fracture of all fibers, there would be only
limited sliding/rubbing between broken fiber ends and the loosely attached
matrix segments. This will result in the unloading behavior illustrated in Fig.
13.3(a). The associated area under the stress–strain curve would correspond
to the work of stretching the intact fibers and the work of matrix cracking.
However, this does not translate into fracture toughness improvement or
crack growth resistance.
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For toughening or crack growth resistance to occur, the crack tip or
crack wake processes must give rise to crack-tip shielding on an advancing
crack that extends within a process zone in which the overall crack tip
stresses are reduced. The mechanisms by which such reductions in crack
tip stresses (crack tip shielding) can occur are described in the next few
sections.

13.4 TRANSFORMATION TOUGHENING

In 1975, Garvie et al. (1975) discovered that the tetragonal (t) phase of
zirconia can transform to the monoclinic (m) phase on the application of
a critical stress. Subsequent work by a number of researchers (Porter et al.,
1979; Evans and Heuer, 1980; Lange, 1982; Chen and Reyes-Morel, 1986;

FIGURE 13.3 Schematic (a) progressive matrix cracking in a fiber-reinforced
composite subjected to larger strain to fracture than the brittle matrix, leaving
composite more compliant, and (b) macrocrack propagating across fibers at
� < �mc with three matrix cracks in the process zone. (From Argon, 2000.)
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Rose, 1986; Green et al., 1989; Soboyejo et al., 1994; Li and Soboyejo, 2000)
showed that the measured levels of toughening can be explained largely by
models that were developed in work by McMeeking and Evans (1982),
Budiansky et al. (1983), Amazigo and Budiansky (1988), Stump and
Budiansky (1989a, b), Hom and McMeeking (1990), Karihaloo (1990),
and Stam (1994).

The increase in fracture toughness on crack growth was explained
readily by considering the stress field at the crack tip, as well as the crack
wake stresses behind the crack tip. The latter, in particular, are formed by
prior crack-tip transformation events. They give rise to closure tractions
that must be overcome by the application of higher remote stresses, Fig.
13.4(a). As the crack tip stresses are raised, particles ahead of the crack tip
undergo stress-induced martensitic phase transformations, at speeds close to
that of sound (Green et al., 1989). The unconstrained transformation yields
a dilatational strain of � 4% and a shear strain of � 16%, which are con-
sistent with the lattice parameters of the tetragonal and monoclinic phases,
Fig. 13.4(a) and Table 13.1.

The early models of transformation toughening were developed by
McMeeking and Evans (1982) and Budiansky et al. (1983). These models
did not account for the effects of transformation-induced shear strains,
which were assumed to be small in comparison with those of dilatational
strains. The effects of deformation-induced twinning were assumed to be
small due to the symmetric nature of the twin variants which give rise to
strain components that were thought to cancel each other out, Figs 13.4(c)
and 13.4(d). However, subsequent work by Evans and Cannon (1986),
Reyes-Morel and Chen (1988), Stam (1994), Simha and Truskinovsky
(1994), and Li and Soboyejo (2000) showed that the shear components
may also contribute to the overall measured levels of toughening.

For purely dilatant transformation, in which the transformations
result in pure dilatation with no shear, the dependence of the mean stress,P

m, on the dilational stress is illustrated in Fig. 13.5. In this figure,
Pc

m is
the critical transformation mean stress, B is the bulk modulus and F is the
volume fraction of transformed phase. For a purely isotropic solid, G is
given by G ¼ E=½2ð1þ 	Þ� and B ¼ E=½3ð1� 2	Þ�.

Stress-induced phase transformations can occur when
P

m >
Pc

m.
They can also continue until all the particles are fully transformed.
Furthermore, during transformation, three possible types of behavior may
be represented by the slope B in Fig. 13.5. When B < �4G=3, the transfor-
mation occurs spontaneously and immediately to completion. This behavior
is termed supercritical. When B > �4G=3, the behavior is subcritical, and
the material can remain stable in a state in which only a part of the particle
is transformed. This transformation also occurs gradually without any
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FIGURE 13.4 (a) Schematic illustration of transformation toughening; (b) the
three crystal structures of zirconia; (c) TEM images of coherent tetragonal
ZrO2 particles in a cubic MgO–ZrO2 matrix; (d) transformed ZrO2 particles
near crack plane—n contrast to untransformed ZrO2 particles remote from
crack plane. [(c) and (d) are from Porter and Heuer, 1977.]
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jumps in the stress or strain states. Finally, when B ¼ �4G=3, the material is
termed critical. This corresponds to a transition from subcritical to super-
critical behavior.

Budiansky et al. (1983) were the first to recognize the need to use
different mathematical equations to characterize the physical responses of
subcritical, critical, and supercritical materials. The governing equations for
subcritical behavior are elliptic, so that the associated stress and strain fields
are smooth. Also, the supercritical transformations are well described by
hyperbolic equations that allow for discontinuities in the stress and strain
fields. The stress–strain relations are also given by Budiansky et al. (1983) to
be

TABLE 13.1 Lattice Parameters (in nanometers)
Obtained for Different Phases of Zirconia at
Room Temperature Using Thermal Expansion
Data

l1 l2 l3 �

Cubic 0.507 0.507 0.507 908
Tetragonal 0.507 0.507 0.516 908
Monoclinic 0.515 0.521 0.531 � 818

Source: Porter et al. (1979).

FIGURE 13.5 Schematic illustration of transformation toughening. (From
Stam, 1994.)
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�ij þ
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where _EEij are the stress rates of the continuum element, _SSij ¼ _PP
ij � _PP

m�ij ,
_PP
m ¼ _PP

pp=3, and
_EEij represents the strain rates.

For transformations involving both shear and dilatant strains, Sun et
al. (1991) assume a continuum element, consisting of a large number of
transformable inclusions embedded coherently in an elastic matrix (referred
to by index M). If we represent the microscopic quantities in the continuum
element with lower case characters, the macroscopic quantities are obtained
from the volume averages over the element. The relationship between
macroscopic stresses ð _EEijÞ and microscopic stresses is, therefore, given byX

ij

¼ h�ij iv ¼ 1

v

ð
�ijdV ¼ f h�ij iv1 þ ð1� f Þh�ij iVm

ð13:6Þ

where <> denotes the volume average of microscopic quantities, f is the
volume fraction of transformed material. Note that f is less than fm, the
volume fraction of metastable tetragonal phase.

Furthermore, considerable effort has been expended in the develop-
ment of a theoretical framework for the prediction of the toughening levels
that can be achieved as a result of crack tip stress-induced transformations
(Evans and coworkers, 1980, 1986; Lange, 1982; Budiansky and coworkers,
1983, 1993; Marshall and coworkers, 1983, 1990; Chen and coworkers,
1986, 1998). These transformations induce zone-shielding effects that are
associated with the volume increase (� 3�5% in many systems) that occurs
due to stress-induced phase transformations from tetragonal to monoclinic
phases in partially stabilized zirconia.

For simplicity, most of the micromechanics analyses have assumed
spherical transforming particle shapes, and critical transformation condi-
tions that are controlled purely by mean stresses, i.e., they have generally
neglected the effects of shear stresses that may be important, especially when
the transformations involve deformation-induced twinning phenomena
(Evans and Cannon, 1986), although the possible effects of shear stresses
are recognized (Chen and Reyes-Morel, 1986, 1987; Evans and Cannon,
1986; Stam, 1993; Simha and Truskinovsky, 1994; Li et al., 2000).

In general, the level of crack tip shielding due to stress-induced trans-
formations is related to the transformation zone size and the volume frac-
tion of particles that transform in the regions of high-stress triaxiality at the
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crack-tip. A transformation zone, akin to the plastic zone in ductile materi-
als, is thus developed as a crack propagates through a composite reinforced
with transforming particles. This is illustrated schematically in Fig. 13.4(a).

The size of the transformation zone associated with a Mode I crack
under small-scale transformation conditions has been studied (McMeeking
and Evans, 1982). Based on the assumption that the transformation occurs
when the mean stress level at the crack tip exceeds a critical stress value ð�TCÞ,
McMeeking and Evans (1982) estimated the zone size for an idealized case
in which all the particles within the transformation zone are transformed.
Following a similar procedure, Budiansky et al. (1983) give the following
equation for the estimation of the height of the transformation zone (Fig.
13.4(a):

h ¼
ffiffiffi
3

p ð1þ 	Þ2
12�

K

�TC

 !2

ð13:7Þ

where h is the half-height of the transformation wake, K is the far-field stress
intensity factor, and 	 is Poisson’s ratio. For purely dilational transforma-
tion, the toughening due to the transformation can also be expressed as
(Budiansky et al., 1983):

�Kt ¼
0:22Ecf "

T
C

ffiffiffi
h

p

1� 	 ð13:8Þ

where Ec is the elastic modulus of the composite, f is the volume fraction of
transformed particles, and "TC is the transformation volume strain. The
above continuum model assumes the volume fraction of the transformed
material to be constant with increasing distance, x, from the crack face.
However, in reality, the actual volume fraction of transformed phase varies
with increasing distance from the crack face. Equation (13.8) must, there-
fore, be expressed in an integral form to account for the variation in the
degree of transformation with increasing distance from the crack face. This
yields the following expression for the toughening due to stress-induced
transformations (Marshall et al., 1990):

�Kt ¼
0:22Ec"

T
C

1� 	
ðh
0

f ðx Þ
2

ffiffiffiffi
x

p dx ð13:9Þ

where f ðxÞ is a mathematical function that represents the fraction of trans-
formed zirconia as a function of distance, x, from the crack. The critical
transformation stress necessary to achieve the transformation can be
expressed as a function of the total Gibb’s free energy associated with the
transformation from tetragonal to monoclinic phase. This may be estimated
from (Becher, 1986):
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�TC ¼ �G

"TC
ð13:10Þ

where �TC is the critical stress, and �G is the Gibb’s free energy of the
transformation. The above expression does not account for the effect of
the enthalpy terms in the equivalent Kirchoff circuits for the transformation
nor for the potential residual stresses that can be induced as a result of the
thermal expansion mismatch between the constituents of composites rein-
forced with partially stabilized zirconia particles (Soboyejo et al., 1994).
Depending on the thermal expansion coefficients, the zirconia particles
may be subjected to either mean tension or compression. In general, how-
ever, if the mean stress is compressive, the far-field applied stress necessary
for transformation will increase. On the other hand, the existence of tensile
mean stress will trigger the transformation at a lower level of applied stress.
As a result of this, the mean stress, �m, that is needed to induce the trans-
formation of ZrO2 particles is modified by the radial residual stress, �m. The
modified critical condition for transformation is thus given by (Becher,
1986):

�m ¼ ð�c � �0Þ ð13:11Þ

For simplicity, the above discussion has focused on the toughening due to
pure dilatational effects associated with stress-induced phase transforma-
tions. However, in reality, the shear stresses play a role that may sometimes
cause significant differences between the experimental results and the theo-
retical predictions (Evans and Cannon, 1986). Since the shear strains asso-
ciated with stress-induced phase transformations may be as high as � 14%,
it may be necessary to assess the effects of shear strains in the estimates of
toughening. This has been estimated by Lambropoulus (1986) in an approx-
imate analysis that gives

�Kt ¼ 055
EcVf"

T
c

ffiffiffi
h

p

ð1� 	Þ ð13:12Þ

where the transformations are induced by critical principal strains, and the
transformation strains also develop in that direction. In this model, twin-
ning is assumed to be induced by the shear stresses in the transforming
particles. Also, the model assumes that there is no coupling between the
crack tip fields and the development of the transformation zone. The initial
work of Lambropoulus (1986) and Budiansky et al. (1983) has been fol-
lowed by subsequent work by Stump (1991), Budiansky and Truskinovsky
(1993), Simha and Truskinovsky (1994), Stam (1994), and Li et al. (2000).
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13.5 CRACK BRIDGING

Crack bridging is illustrated schematically in Fig. 13.6. The bridging
reinforcements restrict opening of cracks, and thus promote shielding of
the crack tip. The effective stress intensity factor at the crack tip is, there-
fore, lower than the remote/applied stress intensity factor. In the case of
stiff elastic fibers, interfacial sliding may occur during crack bridging. The
tailoring of the interface to optimize frictional energy dissipation is, there-
fore, critical. This section will concentrate initially on bridging by ductile
reinforcements. This will be followed by a focus on crack bridging by stiff
elastic whiskers/fibers, as well as a section on debonding/fiber pull-out.

FIGURE 13.6 Schematic illustration of crack bridging by (a) ductile particles
and (b) stiff elastic whiskers.
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13.5.1 Bridging By Ductile Phase

An energy approach may be used to explain the toughening due to ductile
phase reinforcement. Within this framework, ductile phase toughening by
crack bridging may be attributed to the plastic work required for the plastic
stretching of the constrained ductile spherical particles. For small-scale brid-
ging in which the size of the bridging zone is much smaller than the crack
length, the increase in strain energy, �GSS, due to the plastic work required
for the stretching of the ductile phase is given by (Soboyejo et al., 1996,
Ashby et al., 1989; Cao et al., 1989; Shaw and Abbaschian, 1994; Kajuch et
al., 1995; Bloyer et al., 1996, 1998; Lou and Soboyejo, 2001):

�GSS ¼ VfC�y� ð13:13Þ

where Vf is the volume fraction of ductile phase that fails in a ductile
manner (note that the actual reinforcement volume fraction is f ), C is a
constraint parameter which is typically between 1 and 6, �y is the uniaxial
yield stress, and � is a plastic stretch parameter. The small-scale bridging
limit may also be expressed in terms of the stress intensity factor, K:

KSS ¼ ðK 2
0 þ E 0f �0t�Þ

1
2 ð13:14Þ

where Kss is the steady-state (or plateau) toughness, K0 is the crack-initia-
tion toughness (typically equal to brittle matrix toughness), is E0 ¼ E=ð1�
	2Þ for plane strain conditions, and E0 ¼ E for plane stress conditions (where
E is Young’s modulus and 	 is Poisson’s ratio), f is the volume fraction, �0 is
the flow stress of ductile reinforcement, t is equivalent to half of the layer
thickness, and � is the work of rupture, which is equal to the area under the
load–displacement curve.

For small-scale bridging, the extent of ductile phase toughening may
also be expressed in terms of the stress intensity factor. This gives the
applied stress intensity factor in the composite, Kc, as the sum of the matrix
stress intensity factor, Km, and the toughening component due to crack
bridging, �Kb. The fracture toughness of the ductile-reinforced composites
may thus be estimated from (Budiansky et al., 1988; Tada et al., 1999):

Kc ¼ Km þ�Kb ¼ Km þ
ffiffiffi
2

�

r
�V

ðL
0

�yffiffiffiffi
x

p dx ð13:15aÞ

where Km is the matrix fracture toughness, x is the distance behind the crack
tip, and L is the bridge length (Fig. 13.6). The toughening ratio due to small-
scale bridging (under monotonic loading) may thus be expressed as
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�b ¼ Kc

Km
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Km

ffiffiffi
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�
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�Vt
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0

�yffiffiffiffi
x

p dx ð13:15bÞ

Equations (13.15) can be used for the estimation of the toughening due to
small-scale bridging under monotonic loading conditions (Li and Soboyejo,
2000; Lou and Soboyejo, 2001).

Alternatively, the toughening due to small-scale bridging by ductile
phase reinforcements may be idealized using an elastic–plastic spring model
(Fig. 13.7). This gives the toughening ratio, �, as (Rose, 1987; Budiansky et
al., Evans, 1988):

� ¼ K

Km
¼ 1þ �2y

kK 2
m

1þ 2up

uy

� �" #1
2

ð13:16aÞ

where Km is the matrix toughness, �y is the uniaxial yield stress, u is the
crack face displacement, k is a dimensionless spring-stiffness coefficient, uy is
the maximum elastic displacement, and up is the total plastic displacement to
failure (Fig. 13.8). Equation (13.16a) can also be arranged to obtain the
following expression for the toughening due to ductile phase bridging:

�Kb ¼ ð�� 1ÞKm ð13:16bÞ
However, Eqs 13.16a and 13.16b do not include a bridging length scale.
Hence, they cannot be readily applied to the prediction of toughening
under large-scale bridging conditions in which the bridge lengths are com-
parable to the crack lengths.

In the case of large-scale bridging, where the bridging length is com-
parable to the specimen width, a somewhat different approach is needed for
the estimation of Kc and �b. Mechanics models have been developed by Zok
and Hom (1990), Cox (1992, 1996), and Odette et al. (1992), for the model-
ing of large-scale bridging. These researchers provide rigorous modeling of
crack bridging by using self-consistent solutions of the crack opening pro-

FIGURE 13.7 Schematic illustration of spring model of crack bridging.

Far-field: �ab � KfabðyÞffiffiffiffiffiffiffiffi
2pr

p
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file, uðxÞ, and the crack face stress distribution, �ðxÞ, where x is the distance
from the crack tip. Since these are not known precisely in most cases, they
require experimental measurements of stress-displacement functions and
iterative numerical schemes that often require significant computational
effort.

In the case of the model by Odette et al. (1992), a trial �0ðxÞ function is
first used to calculate the reduction in the stress intensity factor (shielding)
from the bridging zone. By applying Castigliano’s theorem, the correspond-
ing crack-face closure displacements, u0bðxÞ, are also calculated. For com-
mon fracture mechanics specimen geometries, the solutions may be obtained
from available handbooks such as that by Tada et al. (1999). The resulting
integrals can also be solved numerically. However, for regions close to the
crack tip, asymptotic solutions may be used.

The total trial applied stress intensity factor is taken as
K 0

pðdaÞ ¼ K 0
t þ�K0. A numerical integration scheme (again based on

Castigliano’s theorem) is then used to compute the trial crack opening dis-
placement corresponding to the applied load, P0. The net crack opening is
also computed as u0ðxÞ ¼ u0pðxÞ � u0bðxÞ. This is used to compute a trail �0ðuÞ
from the trial �0ðxÞ and u0ðxÞ. The difference between the specified and trial
stress-displacement functions is then evaluated from "ðuÞ ¼ �ðuÞ � �0ðuÞ. A
solution is achieved when "ðuÞ is less than the convergence criteria.
Otherwise, the iterations are repeated until convergence is achieved.

Alternatively, the distributed tractions across the bridged crack faces
may be estimated using weighting functions. These account for the weighted
distribution of the bridging tractions along a bridge zone (Fett and Munz,
1994) (Fig. 13.9). The shielding due to large-scale bridging, �Klsb, may thus
be expressed as

FIGURE 13.8 Schematic of elastic–plastic spring load–displacement function.
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�Klsb ¼
ð
L

��ðx Þhða; x Þdx ð13:17Þ

where L is the length of the bridge zone, � is a constraint/triaxiality factor,
�ðxÞ is a traction function along the bridge zone, and hða; xÞ is a weight
function given by Fett and Munz (1994):

hða; x Þ ¼
ffiffiffiffiffiffi
2

�a

r
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� x
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r 1þ
X
ð	;�Þ
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� � 1� x
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� �	þ1

2
64

3
75 ð13:18Þ

where a is the crack length andW is the specimen width. The Fett and Munz
coefficients, A	�, are given in Table 13.2 for a single-edge notched bend
specimen. As before, the total stress intensity factor, Kc, may estimated

FIGURE 13.9 Schematic of weighted/distributed bridging tractions.

Table 13.2 Summary of Fett and Munz (1994) Parameters
for Single-Edge Notched Bend Specimen Subjected to
Weighted Crack Bridging Fractions

�

�

0 1 2 3 4

0 0.4980 2.4463 0.0700 1.3187 �3.067
1 0.5416 �5.0806 24.3447 �32.7208 18.1214
2 �0.19277 2.55863 �12.6415 19.7630 �10.986
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from linear superposition (Kc ¼ Km þ�KbÞ and the toughening ratio for
large-scale bridging can be determined from the ratio of Kc to Km. The
simplified expressions presented in Eqs (13.17) and (13.18) have been success-
fully used to predict the resistance-curve behavior of ductile-layer toughened
intermetallics composites (Bloyer et al., 1996, 1998; Li and Soboyejo, 2000).

13.5.2 Crack Bridging by Discontinuous
Reinforcements

Bridging of the crack surfaces behind the crack tip by a strong discontin-
uous reinforcing phase which imposes a closure force on the crack is, at
times, accompanied by pull-out of the reinforcement. The extent of pull-out
(i.e., the pull-out length) of brittle, discontinuous reinforcing phases is gen-
erally quite limited due both to the short length of such phases, and the fact
that bonding and clamping stresses often discourage pull-out. However,
pull-out cannot be ignored, as even short pull-out lengths contribute to
the toughness achieved.

Crack deflection by reinforcements has also been suggested to contri-
bute to the fracture resistance. Often, out-of-plane (non–Mode I) crack
deflections are limited in length and angle, and are probably best considered
as means of debonding the reinforcement–matrix interface. Such interfacial
debonding is important in achieving frictional bridging (bridging by elastic
ligaments which are partially debonded from the matrix) and pull-out pro-
cesses. Frictional bridging elastic ligaments can contribute significantly to
the fracture toughness, as is described in the next section.

Here, we will concentrate on the toughening due to crack bridging by
various brittle reinforcing phases, where the reinforcement simply bridges
the crack surfaces and effectively reduces the crack driving force. This
increases the resistance to crack extension. The bridging contribution to
the toughness is given by

Kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EcJm þ Ec�Jcb

p
ð13:19Þ

where Kc is the overall toughness of the composite, Jm is the matrix fracture
energy, and the term �Jcb corresponds to the energy change due to the
bridging process.

The energy change associated with the bridging process is a function of
the bridging stress/traction, Tu, and the crack opening displacement, u, and
is defined as
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�J ¼
ðumax

0

Tudu ð13:20Þ

where umax is the maximum displacement at the end of the zone.
One can equate the maximum crack opening displacement at the end

of the bridging zone, umax, to the tensile displacement in the bridging brittle
ligament at the point of failure:

umax ¼ "lfldb ð13:21Þ
where "lf represents the strain to failure of the whisker and ldb is the length of
the f debonded matrix–whisker interface (Fig. 13.10). The strain to failure of
the whisker can be defined as

"lf ¼ ð�lf=El Þ ð13:22Þ
where El is the Young’s modulus of the reinforcing phase. The interfacial
debond length depends on the fracture criteria for the reinforcing phase
versus that of the interface and can be defined in terms of fracture stress
or fracture energy:

ldb ¼ ðr� l=6� i Þ ð13:23Þ
where � l=� i represents the ratio of the fracture energy of the bridging liga-
ment to that of the reinforcement–matrix interface.

From Eq. (13.21), one quickly notices that the tensile strain displace-
ment achieved in the bridging reinforcement, and hence the maximum crack
opening displacement at the end of the bridging zone, increases as the
debonded length/gauge length of the reinforcing ligament increases.
Consideration of Eqs (13.22) and (13.23) also shows that increasing the
reinforcing phase strength and/or enhancing interface debonding will con-

FIGURE 13.10 Schematic of debonding whisker.
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tribute to greater tensile displacement within the reinforcing ligament.
Increases in the crack opening displacement supported by the bridging
zone will enhance the toughening achieved by such reinforcements.
Therefore, debonding of the matrix–reinforcement interface can be a key
factor in the attainment of increased fracture toughness in these elastic
systems. In fact, in ceramics reinforced by strong ceramic whiskers, debond-
ing is observed only in those systems which exhibit substantial toughening.

For the case of a bridging stress which increases linearly from zero (at
the crack tip) to a maximum at the end of the bridging zone and immedi-
ately decreases to zero, Eq. (13.20) can be reduced to TmaxðumaxÞ=2. The
maximum closure stress, Tmax, imposed by the reinforcing ligaments in the
crack tip wake is the product of the fracture strength of the ligaments, �lf ,
and the real fraction of ligaments intercepting the crack plane, Al:

Tmax ¼ �lfA
l � �lfV

l ð13:24Þ
where Al is approximated by the volume fraction, Vl , for ligaments which
have large aspect ratios (e.g., l=r > 30 for whiskers). Reinforcement by
frictional bridging introduces a change in energy equal to

�Jflb ¼ �lfV
l �lf1E

l
� �

r� l l� l
� �h i1=2

ð13:25Þ

From these results, the toughness contribution from frictional bridging by
the reinforcing phase in the crack tip wake is

�K flb ¼ �lf r� l=12
� �

Ec=El
� �

� l=� i
� �h i1=2

ð13:26Þ

13.5.3 Bridging by Stiff Fibers and Fiber Pull-Out

In the case of stiff fibers, the bridging provided by the fibers may also be
expressed in the form of closure pressures (Marshall et al., 1985; Suo et al.,
1993) (Fig. 13.11). For a bridged crack with a bridge length, c, much greater
than the fiber spacing, the closure pressure pðxÞ on the crack faces is given by

pðx Þ ¼ T ðx ÞVf ð13:27Þ
where x is the distance from the crack tip to the position on the crack face,
Vf is the fiber volume fraction, and T corresponds to the fiber fractions. For
a uniform remote stress, �1 acting along the crack faces, the net pressure is
[�1 � pðxÞ�. Also, the effective stress intensity factor for a straight crack in
an infinite medium is given by Sih (1973):
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KL ¼ 2
c

�

� �1
2

ðl
0

½�1 � pðX Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2l

p
dx

ð13:28aÞ

or

KL ¼ 2
c

�

� �1
2

ð1
0

½�1 � pðX Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p XdX ð13:28bÞ

for a penny-shaped crack.
In Eqs (13.28), X ¼ x=c, c is the bridge length and x is the distance

from the crack tip (Fig. 13.11).
If crack bridging is associated with fiber pull-out, then the closure

pressure is related to the crack opening by (Marshall et al., 1985):

p ¼ 2 u
V 2
f Efð1þ �Þ=R

h i1
2 ð13:29Þ

where � ¼ EfVv=EmVm, R is the fiber radius, and 
 is the sliding frictional
stress at the interface. The crack opening displacement is then determined by
the distribution of surface tractions (Sneddon and Lowengrub, 1969):

FIGURE 13.11 Crack bridging by stiff elastic fibers.
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uðx Þ ¼ 4ð1� 	2Þc
�Ec

ð1
x

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � X 2

p �
ðs
0

½�1 � pðtÞ�dtffiffiffi
s

p 2 � t2
ds ð13:30aÞ

for a straight crack, or

uðX Þ ¼ 4ð1� 	2Þc
�Ec

ð1
x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x � 2

p �
ðs
0

½�1 � pðtÞ�dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � t2

p ds ð13:30bÞ

where s and t are normalized position co-ordinates, and 	 is the Poisson’s
ratio of the composite. Furthermore, for brittle matrix composites subjected
to crack bridging, debonding, and pull-out, the steady-state pull-out tough-
ening is given by

�GSS
p ¼ 2f

ð1
0

�du ð13:31aÞ

where � is the stress on the fiber between the crack surfaces, f is the fiber
volume fraction, and u is the average crack opening. If the Mode II inter-
facial toughness is low enough for crack front and crack wake debonding to
occur (Fig. 13.12), then the steady-state toughening associated with fiber
pull-out is given by

�GSS
pp ¼ � fEfeTa

��

ðFp
0

Fp;dFp

ð1� 	FpÞ2
ð13:31bÞ

FIGURE 13.12 Schematic of crack front and crack wake debonding. (From
Charalambides and Evans, 1989.)
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where Fp is a nondimensional pull-out stress, eT is a stress-free strain
���TÞ, a is the fiber radius, � is the fraction coefficient, � is
ð1� f Þ=½Xð1þ f Þ þ ð1� f Þð1� 2	Þ�, and 	 is Poisson’s ratio. In general,
the above results indicate that bridging by stiff brittle fibers and fiber
pull-out may be engineered by the design of weak or moderately strong
interfaces in which the interfacial sliding conditions are controlled by coat-
ings. The interested reader is referred to detailed discussion on the modeling
of debonding by Charalambides and Evans (1989) and Hutchinson and
Jenson (1990).

13.6 CRACK-TIP BLUNTING

Crack tips can be blunted when they move from a brittle phase into a ductile
phase, Fig. 13.13(a). Crack-tip blunting may also occur by debonding along
the interface of a composite, Fig. 13.13(b). Crack growth in the ductile phase
can be considered in terms of a critical strain criterion, which assumes that

FIGURE 13.13 Schematic illustration of (a) crack-tip blunting by ductile phase
and associated change in crack-tip stress fields, and (b) crack-tip blunting by
debonding along two-phase boundary. (Courtesy of Dr. Fan Ye.)
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fracture occurs when the strain at a characteristic distance from the crack tip
exceeds a critical value. When the crack-tip is blunted by a ductile phase, the
critical strain value is increased by the presence of a ductile phase, Fig.
13.13(b). Shielding due to crack tip blunting effects can be estimated
using a micromechanics model developed by Chan (1992). In his model,
he postulated that the near-tip effective strain distribution in the matrix/
composite in a ductile-phase reinforced brittle matrix composite could both
be described by the Hutchinson-Rice–Rosengren (HRR) field expressions
given below:

"m ¼ �m"
y
m

Jm
�m"

y
m�

y
mInm

r

" #nm=nmþ1

"ð�;nmÞ ð13:32Þ

and

"c ¼ �c"
y
c

Jc
�c"

y
c�

y
c Inc

r

" #nc=ncþ1

ð"ð�;ncÞ ð13:33Þ

where subscripts m and c represent matrix and composite, respectively,
superscript y represents yield stress, Jm and Jc are path-independent para-
meters (J integrals) that vary with the applied load, crack length, and the
geometry of the specimen, Inm and Inc are numerical constants that depend
on the stress–strain relationship (constitutive equations) of the material, "ð
�; nmÞ and "ð�; ncÞ are also numerical constants related to the angle away
from the crack plane at a particular n value, and �m, �c, nm, and nc are
constants in the Ramberg–Osgood stress–strain relation, which is given by

"

"Y
¼ �

�y
þ � �

�y

� �n
ð13:34Þ

where �y and "y are yield stress and yield strain, respectively, n is the strain
hardening exponent, and � is a dimensionless material constant. The second
term on the right-hand side of Eq. (13.34) describes the plastic or nonlinear
behavior. By assuming that the stress–strain behavior is the same in both the
matrix and composite, i.e., �m ¼ �c ¼ � and nm ¼ nc ¼ n, the following
expression is obtained by dividing Eq. (13.33) by Eq. (13.32):

"c
"m

¼ "yc
"ym

Jc
Jm

� �n=nþ1 "ym�
y
m

"yc�
y
c

� �n=nþ1

ð13:35Þ

By invoking "yc ¼ �yc=Ec, "
y
m ¼ �ym=Em, Jc ¼ ð1� 	2cÞK2

c =Ec, and Jm ¼ ð1�
	2mÞ K2

m=Em and rearranging both sides of the resulting equation, Eq. (13.35)
reduces to

Copyright © 2003 Marcel Dekker, Inc.



Kc

Km
¼ �yc

�ym

� �n�1=2n "jc
"m

� �nþ1=2n Ec

Em

� �nþ1=2n

ð13:36Þ

The toughening ratio, which is defined as the ratio of the applied stress
intensity factor to the stress intensity factor in the matrix, is thus given by

�bl ¼
Kc

Km
¼ ½1þ Vfð�� 1Þ�n�1

2n ½1þ Vfð�� 1Þ�nþ1
2n

Ec

Em

� �nþ1
2n

ð13:37Þ

or

�Kbl ¼ ð�bl � 1ÞKm ð13:38Þ
with

� ¼ �dy
�my

ð13:39Þ

and

� ¼ "df
"mf

ð13:40Þ

where K1 is the applied stress intensity factor, Km is the matrix stress
intensity factor, �y is the yield stress, "f is the fracture strain, n is the inverse
of the strain hardening exponent, Em is the matrix modulus, and super-
scripts m and d denote matrix and ductile phases, respectively.

In composites with brittle matrices, an elastic crack tip stress field is
more likely to describe the stress distribution in the matrix (Soboyejo et al.,
1997). In the plastic region, the strain field in the composite can be described
by the HRR field expression given by Eq. (13.32):

"c ¼ �c"
y
c

Jc
�c"

y
c�

y
c Inc

r

" #nc=ncþ1

"ð�;ncÞ ð13:41Þ

In the elastic region, the strain in the composite is

"c ¼
Kc

Ec

1

ð2�rÞ1=2 "ð�Þ ð13:42Þ

where Kc and Ec are the stress intensity factor and Young’s modulus of the
composite, "ð�Þ is a function of orientation, and r is the distance from the
crack tip. Equations (13.32) and (13.33) can be reformulated as

"c
�c"

y
c

� �ðnþ1Þ=n
¼ Jc
�c"

y
c

1

I
"cð�;ncÞ½ �ðnþ1Þ=n ð13:43Þ
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and

ð"cÞ2 ¼ Kc

Ec

� �2 1

2�r
"cð�Þ�2
h

ð13:44Þ

At the junction between the elastic and plastic regions, "c ¼ "yc . Equations
(13.34) and (13.35) can be combined with

Jc ¼
ð1� 	2cÞK 2

c

Ec
ð13:45Þ

leading to

½"cð�;ncÞ�ðnþ1Þ=n

½"cð�Þ�2
1

Inr

ð1� 	2cÞ
�cð1=�cÞðnþ1Þ=n ¼ 1

2�
ð13:46Þ

For the matrix, the near-tip strain field can be expressed as

ð"mÞ2 ¼ Km

Em

� �2 1

2�r
½"mð�Þ�2 ð13:47Þ

Since "mð�Þ ¼ "cð�Þ, combining Eqs (13.34–3.38) gives

Kc

Km
¼ Ec

Em

ð"cÞðnþ1Þ=2n

"m
ð"ycÞðn�1Þ=2n ð13:48Þ

Hence, the modified blunting toughening ratio is given by

�b ¼ K1
Km

¼ Kc

Km
¼ Ec

Em

ð"cÞðnþ1Þ=2n

"m
ð"ycðn � 1Þ=2n ð13:49Þ

Toughening ratio estimates obtained from the modified crack tip blunting
model are slightly higher than those predicted by the model of Chan (1992).
This result is intuitively obvious since the HRR field expressions may over-
estimate the crack tip field in an elastic material. Conversely, the assumption
of purely elastic behavior in the brittle matrix material is likely to under-
estimate the actual crack tip fields in nearly elastic materials. The most
representative toughening ratios are, therefore, likely to be in between
those predicted by Chan’s model and the model by Soboyejo et al. (1997).

Finally, it is also interesting to note here that crack tip blunting may
occur due to debonding along the interface between two phases. This is
illustrated in Fig. 13.13(b). The stress redistribution associated with such
debonding has been modeled by Chan (1993).
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13.7 CRACK DEFLECTION

Second-phase particles located in the near-tip field of a propagating crack
will perturb the crack path, as shown in Fig. 13.10, causing a reduction in
the stress intensity. The role of in-plane tilting/crack deflection and out-of-
plane twisting can be assessed using the approach of Bilby et al. (1977) and
Cotterell and Rice (1980). The possible tilting and twisting modes are shown
schematically in Figs 13.14(a)–13.14(c). An example of crack deflection by
tilting and twisting around spherical niobium particles is also presented in
Fig. 13.14(d).

The local Modes I, II, and III stress intensity factors K1, K2, and K3 at
the tip of the reflected crack can be expressed in terms of the far-field stress
intensities for the equivalent linear crack (KI and KII). These give

K 1
1 ¼ �21ð�ÞK1 þ �12ð�ÞK11 ð13:50Þ

K 1
2 ¼ �21ð�ÞK1 þ �22ð�ÞK11 ð13:51Þ

where � is the tilt angle, �ijð�Þ are angular functions, and superscript t
denotes the reduction in crack driving force due to tilting through an
angle, �. The corresponding expressions for K1 and K3, due to twisting
through an angle �, are

KT
1 ¼ b11ð�ÞKt

1 þ b12ð�ÞK 1
2 ð13:52Þ

KT
3 ¼ b31ð�ÞK t

1 þ b32ð�ÞK t
32 ð13:53Þ

where the angular functions bijð�Þ are given. The effective crack driving force
in terms of energy release rate G or Keff is, therefore, given by

EG ¼ K 2
1 ð1� 	2Þ þ K 2

2 ð1� 	2Þ þ K 2
3 ð1þ 	2Þ ð13:54Þ

or

Keff ¼
ffiffiffiffiffiffiffi
EG

p
ð13:55Þ

For continuous crack deflection at all possible angles around spherical
reinforcements [Fig. 13.14(d)], the toughening from pure tilt-induced deflec-
tion is given by Faber and Evans (1983):

Gc ¼ Gmð1þ 0:87VfÞ ð13:56Þ
Assuming linear elastic behavior of the composite, this yields:

Kc ¼
ffiffiffiffiffiffiffiffiffiffiffi
EcGc

p
ð13:57Þ

where Kc is the fracture toughness of the composite and Ec is Young’s
modulus of the composite.
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FIGURE 13.14 Crack deflection mechanisms: (a) schematic of putative kink; (b)
deflection by tilting; (c) deflection by twisting; (d) tilting and twisting around
spherical Nb particles in an MoSl2/Nb composite. (From Venkateswara Rao et
al., 1992.)
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Furthermore, crack-tip shielding due to deflection by pure tilting can
be estimated from the Modes I and II stress intensity factors, KI and KII,
induced at the crack tip as a result of crack deflection through an angle �
(Suresh, 1985). For a crack with equal undeflected and deflected segments,
this results in KI and KII values that are given by a simple geometrical model
by Suresh (1985) to be

KI ¼ cos2ð�=2ÞK1 ð13:58Þ
and

KII ¼ sinð�=2Þ cos2ð�=2ÞK1 ð13:59Þ
where K1 is the applied stress intensity factor, and � is deflection angle.

Assuming that crack growth is driven purely by KI, Eq. (13.58) can be
rearranged to obtain the following expression for �d, the toughening ratio
due to crack deflection:

�d ¼ K1
Km

¼ 1

cos2ð�=2Þ ð13:60Þ

Equation 13.58 is a useful expression to remember for simple estimation of
the toughening due to crack deflection. It shows clearly that the toughening
due to deflection by pure tilting is relatively small with the exception of the
tilting cases when angles are large (> 458). Experimental evidence of tough-
ening due to crack deflection is presented in work by Suresh (1985),
Claussen (1990), and Venkateswara Rao et al. (1992).

13.8 TWIN TOUGHENING

The presence of twin process zones around cracks in gamma titanium alu-
minide alloys exerts stress fields that will act in opposition to the stress
intensity factors at the crack tips, causing a shielding effect. This phenom-
enon is known as twin toughening and may be associated with nonlinear
deformation in the crack process zone. The concept of twin toughening is
illustrated schematically in Fig. 13.15. The twin toughening ratio, �t, is
defined as the stress intensity at the crack tip with the presence of a twin
process zone, Kt, divided by the stress intensity in the absence of deforma-
tion-induced twinning,K0. This is given byMercer and Soboyejo (1997) to be

lt ¼ Kt=K0 ¼ ð1þ VtE�GSS=K
2
0 Þ

1
2 ð13:61Þ

Twin toughening appears to be very promising and Dève and Evans (1991),
report two-fold toughness increases due to the presence of deformation-
induced twinning around the crack tip. The original Dève and Evans
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model (1991) has also been extended in later work by Soboyejo et al. (1995a)
and Mercer and Soboyejo (1997).

13.9 CRACK TRAPPING

The toughness enhancement due to crack-trapping (Fig. 13.16) has been
considered theoretically by Rose (1975, 1987), Gao and Rice (1990), and
Bower and Ortiz (1991). Briefly, the crack front is pinned at several points
by particles/fibers that are tougher than the matrix. This results in a
‘‘bowed’’ crack front, with the stress intensity factor along the bowed seg-
ments being lower than the far-field stress intensity factor, while the stress
intensity factor at the pinned points is correspondingly larger. Crack-growth
occurs when the stress intensity factor at the pinned points exceeds the
fracture toughness of the reinforcements.

Apart from the fracture toughness, the important variable that deter-
mines the shape of the crack front and the overall fracture toughness is the
volume fraction of the reinforcement and the average distance between
trapping points. Rose (1975) derived the following expression for the tough-
ening due to crack trapping when the obstacles are penetrated by the crack,
i.e., when Kpar

c < 3Kmat
c :

�tr ¼
K1
Km
lc

¼ 1þ 2R

L

Kpar
Ic

Km
Ic

� �2

�1

" #( )1=2

ð13:62Þ

where K1 is the fracture toughness of the composite, Km
Ic is the fracture

toughness of the matrix, R is the radius of the reinforcement, L is the
average distance between the centers of adjacent pinning points (typically
the distance between the particles where the crack is trapped, but not neces-

FIGURE 13.15 Schematic of twin toughening. (From Soboyejo et al., 1995a.)
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sarily the particle spacing, since not all particles may trap the crack front if
the crack front is not planar), and Kpar

lc is the fracture toughness of the
reinforcement.

In the case where the cracks do not penetrate the particles
ðKpar

c =Kmat
c � 3), both crack bridging and crack trapping occur (Fig.

13.16b) simultaneously. Under these conditions, Bower and Ortiz (1991)
have shown that

K1

Kmat
c

¼ 3:09
R

L

Kpar
c

Kmat
c

ð13:63Þ

where R is the particle radius, L is the particle spacing, Kpar
c is the particle

toughness, and Kmat
c is the material toughness. Equation (13.62) applies to

all ratios of R=L, while Eq. (13.63) only applies to R=L < 0:25.
Experimental evidence of crack trapping has been reported by Argon et
al. (1994) for toughening in transparent epoxy reinforced with polycarbo-
nate rods. Evidence of crack trapping has also been reported by
Ramasundaram et al. (1998) for NiAl composites reinforced with Mo par-
ticles, while Heredia et al. (1993) have reported trapping by Mo fibers in

FIGURE 13.16 Schematic illustration of (a) crack trapping (From Argon et al.,
1994) and (b) crack/reinforcement interactions that give rise to combination of
crack bridging and crack trapping mechanisms.
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NiAl/Mo composites. In these studies, the models were found to provide
reasonable estimates of the measured toughening levels in model compo-
sites.

13.10 MICROCRACK SHIELDING/ANTISHIELDING

Depending on the spatial configurations of cracks, either shielding or anti-
shielding may occur due to the effects of microcrack distributions on a
dominant crack, Figs 13.1(b) and 13.17. The shielding or antishielding
due to distributions of microcracks has been modeled by a number of inves-
tigators (Kachanov (1986); Rose, 1986; Hutchinson, 1987). In cases where a
limited number of microcracks with relatively wide separations are observed
ahead of a dominant crack, the shielding effects of the microcracks can be
treated individually using Rose’s analysis (1986). This predicts that the
change in the stress intensity of the dominant crack, �Ki, is given by

�Ki ¼ ��Pi
ffiffiffiffiffiffiffiffiffiffiffi
2�R1

p
FiðS;R1; �1; �1;��

P
i Þ ð13:64Þ

where 2S is the length of the microcrack located at radial distance, R1, and
an angle of �1, from the crack tip, �1, is the orientation of the microcrack
with respect to the stress axis, and the values of FiðS;R1; �1; �1;��

P
i Þ are

given by mathematical expressions due to Rose (1986). The toughening ratio
due to microcracking �m is given by

�m ¼ K1
K

¼ K1

K1 þ�Kp
1

	 
2
�Kp

1 Þ2
	 �1

2

h ð13:65Þ

where in Eq. (13.65) is less than unity, then microcracks ahead of the crack
tip result in antishielding, i.e., lower fracture toughness. Conversely, values
of �m greater than unity result in toughening by the microcracks. The extent
of antishielding or extrinsic toughening depends largely on the angle
between the microcracks and the dominant crack. Experimental evidence
of microcrack toughening has been reported by Rühle et al. (1987) and
Bischoff and Rühle (1986).

13.11 LINEAR SUPERPOSITION CONCEPT

In cases where multiple toughening mechanisms operate, the total toughen-
ing ratio can be estimated by applying the principle of linear superposition
This neglects possible interactions between the individual toughening
mechanisms. Hence, for toughening by transformation toughening, crack
bridging, crack-tip blunting, and crack deflection, the overall toughening is
given by
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�tot ¼ �T þ ð�b � 1Þ þ ð�bI � 1Þ þ ð�dl � 1Þ ð13:66Þ
or

�Ktot ¼ �KT þ�Kb þ�Kbl þ�Kdl ð13:67Þ

13.12 SYNERGISTIC TOUGHENING CONCEPT

In cases where multiple toughening mechanisms operate, the total toughen-
ing can be estimated from the sum of the contributions due to each mechan-
ism. Such linear superposition concepts neglect the possible interactions
between individual mechanisms. However, synergistic interactions between
individual toughening mechanisms may promote a greater degree of tough-
ening than the simple sum of the toughening components (Amazigo and
Budiansky, 1988).

Amazigo and Budiansky (1988) conducted an original theoretical
study of the possible interactions between toughening effects of crack brid-
ging and transformation toughening. They showed that it is possible to
induce synergy, depending on the parametric ranges of bridging and trans-
formation toughening. In cases where the interaction is synergistic, the over-
all increase in toughness is greater than the sum of the toughening due to
crack bridging and transformation toughening alone. The interaction of

FIGURE 13.17 Schematic of microcrack zone around dominant crack. (From
Shin and Hutchinson, 1989.)
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crack bridging and transformation toughening is characterized in terms of
the following key parameters:

1. The modified toughening ratio due to particulate crack bridging is
given by

�p ¼ �pffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p ¼ Kp

Km

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p ð13:68Þ

where �p is the toughening ratio due to crack bridging, c is the volume
concentration of ductile particles, Kp is the increased toughness due to
bridging by ductile particulate reinforcements, and Km is the fracture tough-
ness of the matrix.

2. The toughening ratio due to transformation toughening is given
by

�T ¼ KT

Km
ð13:69Þ

where KT is the increased toughness from transformation toughening.
3. The combined modified toughening ratio is now given by

� ¼ K

Km

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p ð13:70Þ

where K is the total increased toughness of the composite system.
4. The degree of synergy may be assessed through a coupling para-

meter, �:

� ¼ ð1þ 	ÞcS
�cm

ð13:71Þ

where 	 is Poisson’s ratio, S is the strength of the ductile particle, and �cm is
the mean stress in transformation zone. This coupling parameter governs
the interaction between particulate and transformation toughening when
they occur simultaneously during steady crack growth. Representative
numerical results are presented in Fig. 13.18 for � versus �T, for �p ¼ 2
and 4, respectively. The individual curves in each figure are for selected
values of the coupling parameter in the range (0–1). The limiting results
for � ¼ 1 and 0 are of special interest:

� ¼ �p�T for �! 1 ð13:72Þ
and

� ¼ �2
p þ �2T

h i1
2
for �! 0 ð13:73Þ
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FIGURE 13.18 Coupling parameter, �, for: (a) �p ¼ 2, and (b) �p ¼ 4. (From
Amazigo and Budiansky, 1988b.)
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The anticipated product rule � ¼ �p�T for the combined toughening
ratio holds in the first limiting case. For sufficiently large finite values of �,
bridging and transforming particles interact synergistically, producing a
larger increase in the fracture toughness than the sum of the individual
contributions from crack bridging and transformation toughening. On the
other hand, for � near zero, the combined toughness can be substantially
less than the cumulative.

Due to difficulties in obtaining sufficient information to calculate the
above coupling parameter, �, a new coupling parameter, �, is defined as

� ¼ HTð1� cÞ
Lp

ð13:74Þ

whereHT is the transformation zone height and Lp is the bridging length for
pure particulate toughening. These are process zone characteristics that are
relatively easy to measure. Hence, � is relatively easy to calculate compared
to �. An appropriate choice for can then be made on the basis of observa-
tions of separate toughening mechanisms. For quite small values of �, it is
enough to provide results close to those for � ¼ � ¼ 1, for which the
synergistic product rule applies. It means that synergism is not precluded
despite the fact that transformation toughening zone heights tend to be less
than particulate bridging lengths.

Another study by Cui and Budiansky (1993) has also shown that
transforming particles and aligned fibers may interact synergistically to
increase the effective fracture toughness of a brittle matrix containing a
long, initially unbridged crack. The results obtained from this analysis are
qualitatively similar to those obtained from the model by Amazigo and
Budiansky (1988). Recently, Ye et al. (1999) have shown that the synergy
is associated with increased levels of stress-induced phase transformations
induced by the layer tractions (Figs. 13.19 and 13.20). Li and Soboyejo
(2000) have also confirmed that the Amazigo and Budiansky model provides
good predictions of toughening in synergistically toughened NiAl compo-
sites reinforced with molybdenum particles and zirconia particles that
undergo stress-induced phase transformations.

13.13 TOUGHENING OF POLYMERS

Before closing, it is important to make a few comments on the toughening
mechanisms in polymers. Significant work in this area has been done by
Argon and coworkers (1994, 1997, 2000). There has also been some recent
work by Du et al. (1998). The work of Argon et al. (1994) has highlighted
the importance of stress-induced crazing in cross-linked thermosetting poly-
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FIGURE 13.19 (a) Crack bridging in hybrid MoSi2 + Nb layer (20 vol %) + 2
mol% Y2O3-stabilized ZrO2 (20 vol %) composite; (b) transformation toughen-
ing volume fraction of transformed phase as a function of distance in the
same composite. (From Ye et al., 1999.)
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mers (such as epoxies) and certain flexible-chain thermoelastic polymers.
When these materials undergo crazing, they exhibit brittle behavior (tensile
brittleness and relatively low fracture toughness) in tension and significant
plastic deformation in compression.

Argon et al. (1994) have also shown that the crack trapping mechan-
ism is particularly attractive for the toughening of epoxies. This can be
achieved by the use of well-adhering particles that cause the cracks to
bow around the fibers, Fig. 13.16(a). Also, crazable polymers can be tough-
ened by decreasing the craze flow stress below the threshold strength defined
by the size of the inclusions. The interested reader is referred to papers by
Argon and coworkers (1994, 1997, 2000).

13.14 SUMMARY AND CONCLUDING REMARKS

This chapter has presented an overview of the current understanding of
toughening mechanisms. Whenever appropriate, the underlying mechanics
of crack tip shielding, or antishielding, has been presented to provide some
basic expressions for scaling purposes. The expressions are intended to be
approximate, and are obtained generally under idealized conditions. Hence,
they must be used with this in mind. Nevertheless, the expressions presented

FIGURE 13.20 Schematic illustration of sources of synergism due to interac-
tions between transformation toughening and crack bridging. (Courtesy of Dr.
Fan Ye.)
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in this chapter should serve as useful tools in the microstructural design of
toughened materials.

After a brief review of basic composite concepts, the following tough-
ening mechanisms were examined in this chapter: transformation toughen-
ing; crack bridging; crack-tip blunting; crack deflection; twin toughening;
crack trapping; and microcrack shielding/antishielding. The linear super-
position of multiple toughening mechanisms was then discussed before pre-
senting an introduction to possible synergisms that can be engineered via
interactions between multiple toughening mechanisms. Finally, a qualitative
discussion of polymer toughening mechanisms was presented.
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Cao, H.c., Dalgleish, B.J., Dève, H.E., Elliott, C., Evans, A.G., Mehrabian, R., and

Odette, G.r. (1989) Acta Metall. vol. 37, pp 2969–2977.

Chan, K.S. (1992) Metall Trans. vol. 23A, pp 183–199.

Charalambides, P.G. and Evans, A.G. (1989) J Am Ceram Soc. vol. 72, pp 746–753.

Chen, I.W. and Reyes-Morel, P.E. (1986) J Am Ceram Soc vol. 69, pp 181–189.

Chen, I.W. and Reyes-Morel, P.E. (1987) Transformation plasticity and transforma-

tion toughening in Mg-PSZ and Ce-TZP. Proceedings of Materials Research

Society Symposium, Proc. 78, Boston, MA, pp 75–78.

Claussen, N. (1990) Ceramic platelet composite. In: J.J. Bentzen et al., eds.

Structural Ceramics Processing, Microstructure and Properties. Risø

National Laboratory, Roskilde, Denmark, pp 1–12.

Cotterell, B. and Rice, J.R. (1980) Int J Fract. vol. 16, pp 155–169.

Cox, B.N. and Lo, C.S. (1992) Acta Metall Mater. vol. 40, pp 69–80.

Cox, B.N. and Rose, L.R.F. (1996) Mech Mater. vol. 22, pp 249–263.

Cui, Y.L. and Budiansky, B. (1993) J Mech Phys Solids. vol. 41, pp 615–630.
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14

Fatigue of Materials

14.1 INTRODUCTION

Fatigue is the response of a material to cyclic loading by the initiation and
propagation of cracks. Fatigue has been estimated to account for up to 80–
90% of mechanical failures in engineering structures and components
(Illston et al., 1979). It is, therefore, not surprising that a considerable
amount of research has been carried out to investigate the initiation and
propagation of cracks by fatigue. A summary of prior work on fatigue can
be found in a comprehensive text by Suresh (1999). This chapter will, there-
fore, present only a general overview of the subject.

The earliest work on fatigue was carried out in the middle of the 19th
century, following the advent of the industrial revolution. Albert (1838)
conducted a series of tests on mining cables, which were observed to fail
after being subjected to loads that were below the design loads. However,
Wöhler (1858–1871) was the first to carry out systematic investigations of
fatigue. He showed that fatigue life was not determined by the maximum
load, but by the load range. Wohler proposed the use of S�N curves of
stress amplitude, Sa (Fig. 14.1), or stress range, �S (Fig. 14.1), versus the
number of cycles to failure, Nf , for design against fatigue. Such data are still
obtained from machines of the type shown in Fig. 14.2. He also identified a
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‘‘fatigue limit’’ below which smooth specimens appeared to have an infinite
fatigue life.

Rankine (1843) of mechanical engineering fame (the Rankine cycle)
noted the characteristic ‘‘brittle’’ appearance of material broken under
repeated loading, and suggested that this type of failure was due to recrys-

FIGURE 14.1 Basic definitions of stress parameters that are used in the char-
acterization of fatigue cycles. (From Callister, 2000—reprinted with permis-
sion of John Wiley & Sons.)
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tallization. The general opinion soon developed around this concept, and it
was generally accepted that because these failures appeared to occur sud-
denly in parts that had functioned satisfactorily over a period of time, the
material simply became ‘‘tired’’ of carrying repeated loads, and sudden
fracture occurred due to recrystallization. Hence, the word fatigue was
coined (from the latin word ‘‘fatigare’’ which means to tire) to describe
such failures.

This misunderstanding of the nature of fatigue persisted until Ewing
and Humfrey (1903) identified the stages of fatigue crack initiation and
propagation by the formation of slip bands. These thicken to nucleate
microcracks that can propagate under fatigue loading. However, Ewing
and Humfrey did not have the modeling framework within which they
could analyze fatigue crack initiation and propagation. Also, as a result
of a number of well-publicized failures due to brittle fracture (Smith,
1984), the significance of the pre-existence of cracks in most engineering
structures became widely recognized. This provided the impetus for further
research into the causes of fatigue crack growth.

As discussed earlier in Chapter 11, Irwin (1957) proposed the use of
the stress intensity factor (SIF) as a parameter for characterizing the stress
and strain distributions at the crack tip. The SIF was obtained using a
representation of the crack-tip stresses, proposed initially by Westergaard
(1939) for stresses in the vicinity of the crack tip. It was developed for brittle
fracture applications, and was motivated by the growing demands for devel-
opments in aerospace, pressure vessels, welded structures, and in particular
from the U.S. Space Program. This led to the rapid development of fracture
mechanics, which has since been applied to fatigue crack growth problems.

Paris et al. (1961) were the first to recognize the correlation between
fatigue crack growth rate, da/dN, and the stress intensity range, �K .
Although the work of Paris et al. (1961) was rejected initially by many of

FIGURE 14.2 Schematic of rotating bending test machine. (From Keyser
1973—reprinted with permission of Prentice-Hall, Inc.)
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the leading researchers of the period, it was soon widely accepted by a global
audience of scientists and engineers. Paris and Erdogan (1963) later showed
that da/dN can be related to �K through a simple power law expression.
This relationship is the most widely used expression for the modeling of
fatigue crack growth.

In general, however, the relationshp between da/dN and �K is also
affected by stress ratio, R ¼ Kmin=Kmax. The effects of stress ratio are parti-
cularly apparent in the so-called near-threshold regime, and also at high SIF
ranges. The differences in the near-threshold regime have been attributed
largely to crack closure (Suresh and Ritchie, 1984a, 1984b), which was first
discovered by Elber (1970) as a graduate student in Australia. The high
crack growth rates at high �K values have also been shown to be due to
the additional contributions from monotonic or ‘‘static’’ fracture modes
(Ritchie and Knott, 1973).

Given the success of the application of the SIF to the correlation of the
growth of essentially long cracks, it is not surprising that attempts have been
made to apply it to short cracks, where the scale of local plasticity often
violates the continuum assumptions of linear elastic fracture mechanics
(LEFM) that were made in the derivation of K by Irwin (1957). In most
cases, anomalous growth short cracks have been shown to occur below the
so-called long-crack threshold. The anomalous behavior of short cracks has
been reviewed extensively, e.g., by Miller (1987), and has been attributed
largely to the combined effects of microstructure and microtexture localized
plasticity (Ritchie and Lankford, 1986). Various parameters have been pro-
posed to characterize the stress–strain fields associated with short cracks.
These include the fatigue limit, Coffin–Manson type expressions for low
cycle fatigue (Coffin, 1954; Manson, 1954), and elastic–plastic fracture
mechanics criteria such as �J and the crack opening displacement
(Ritchie and Lankford, 1986).

Considerable progress has also been made in the understanding of
fatigue crack initiation and propagation mechanisms. Although Ewing
and Humfrey observed the separate stages of crack initiation by slip-band
formation and crack propagation as early as in 1903, it was not until about
50 years later that Zappfe and Worden (1951) reported fractographs of
striations associated with fatigue crack propagation. However, they did
not recognize the one-to-one correspondence of striations with the number
of cycles. This was first reported by Forsyth (1961), a year before Laird and
Smith (1962) proposed the most widely accepted model of crack propaga-
tion. Since then, a great deal of research has been carried out to investigate
various aspects of fatigue. A summary of the results obtained from well-
established prior research on the fatigue of materials is presented in this
chapter.
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14.2 MICROMECHANISMS OF FATIGUE CRACK
INITIATION

Microcracks tend to initiate in regions of high stress concentration such as
those around notches and inclusions. They may also initiate in the central
regions of grains, or in the grain boundaries, even when no macroscopic
stress raisers are present. In general, however, microcracks initiate as a result
of slip processes (Wood, 1958) due to stress or plastic strain cycling.
Dislocations either emerge at the surface or pile up against obstacles such
as grain boundaries, inclusions, and oxide films, to form slip bands, which
were first observed by Ewing and Humfrey (1903). Thompson et al. (1956)
later showed that if these slip bands are removed by electropolishing, they
will reappear when fatiguing is recommenced, and so they referred to them
as persistent slip bands (PSBs).

The resistance to the initiation of slip at the central portion decreases
with increasing grain size, following the Hall–Petch relation (Hall, 1951;
Petch, 1953). The resistance of the grain boundary regions can also be
weakened in soft precipitate free zones (PFZs) (Mulvihill and Beevers,
1986) at the regions of intersection of grain boundaries, e.g., triple points
(Miller, 1987), by embrittlement due to grain boundary segregation
(Lewandowski et al., 1987), and also by stress corrosion effects (Cottis,
1986). Hence, cracking can occur within grains or at grain boundaries.

The initiation of microcracks may also be influenced by environment.
Laird and Smith (1963) showed that initiation of fatigue cracks was slower
in vacuum than in air, and they attributed this largely to the effects of the
irreversibility of slip in air.

Four main stages of crack initiation have been identified. They
involve:

1. Localized strain hardening or softening due to the accumulation
of slip steps at the surface. This occurs at sufficiently high alter-
nating plane strain amplitudes. A slip step of one Burgers vector
is created when a dislocation emerges at the surface. Since dis-
locations emerge during both halves of each fatigue cycle, slip
steps can accumulate in a local region, and this leads to severe
roughening of the surface.

2. The formation of intrusions and extrusions (Fig. 14.3). Cottrell
and Hull (1957) have postulated that these can be formed when
sequential slip occurs on two intersecting slip planes, as illu-
strated in Fig. 14.4. Slip occurs in the first slip system and then
in the second during the first half of the cycle, to give the inden-
tation shown in Fig. 14.4(c). The slip systems may operate con-
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secutively or simultaneously during the reverse cycle to give rise
to pairs of intrusions and extrusions, as shown in Figs 14.4(d)
and 14.4(e). It is also possible that intrusions and extrusions may
form as a result of a dislocation avalanche along parallel neigh-
boring slip planes containing dislocation pile-ups of opposite
signs, as postulated by Fine and Ritchie (1979). This is illustrated
in Fig. 14.5. Although it is unlikely that intrusions and extrusions
form exactly by either of these mechanisms, they do illustrate the
kind of slip processes that must be operative.

3. The formation of microcracks. This is often defined by the resol-
ving power of the microscope or the resolution of the nondes-
tructive inspection tool that is used. It is still not clear how
intrusions and extrusions evolve into microcracks. These cracks
often propagate initially along crystallographic planes of maxi-
mum shear stress by Mode II (Forsyth Stage II) shear mechan-
isms (Forsyth, 1961). Since the plasticity associated with the
crack tips of these microcracks is often less than the controlling
microstructural unit size, microstructural barriers, such as grain
boundaries and dispersed precipitates may cause discontinuities
in the crack growth.

4. The formation of macrocracks (usually larger than several grain
sizes) as a result of microcrack coalescence or crack growth to a
particular crack size where the crack begins to propagate by

FIGURE 14.3 Formation of surface cracks by slip. Static slip forms unidirec-
tional step: (a) optical microscope; (b) electron microscope. Fatigue slip by to-
and-fro movements in slip band may form notch (c) or peak (d). (From Wood,
1958—reprinted with permission of Taylor & Francis Ltd.)
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Mode I (Forsyth Stage II) mechanisms (Forsyth, 1961), with the
direction of crack propagation being perpendicular to the direc-
tion of the principal axis. There is no universally accepted defini-
tion of the transition from microcrack to macrocrack behavior,
although a fatigue macrocrack is usually taken to be one that is
sufficiently long to be characterized by LEFM.

14.3 MICROMECHANISMS OF FATIGUE CRACK
PROPAGATION

Various models of fatigue crack propagation have been proposed (Forsyth
and Ryder, 1961; Laird and Smith, 1962; Tomkins, 1968; Neumann, 1969,
1974; Pelloux, 1969, 1970; Tomkins and Biggs, 1969; Kuo and Liu, 1976).
However, none of these models has been universally accepted. It is also
unlikely that any single model of fatigue crack growth can fully explain
the range of crack extension mechanisms that are possible in different mate-
rials over the wide range of stress levels that are encountered in practice.
Nevertheless, the above models to provide useful insights into the kinds of
processes that can occur at the crack tips during crack propagation by

FIGURE 14.4 Cottrell–Hull model for the formation of intrusions and extru-
sions. (From Cottrell and Hull, 1957—reprinted with permission from the
Royal Society.)
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fatigue. Many of them are based on the alternating shear rupture mechan-
ism which was first proposed by Orowan (1949), and most of them assume
partial irreversibility of slip due to the tangling of dislocations and the
chemisorption of environmental species on freshly exposed surfaces at the
crack tip.

One of the earliest models was proposed by Forsyth and Ryder (1961).
It was based on observations of fatigue crack growth in aluminum alloys.
They suggested that fatigue crack extension occurs as a result of bursts of
brittle and ductile fracture (Fig. 14.6) and that the proportion of brittle and
ductile fracture in a situation depends on the ductility of the material. They
also proposed that crack growth could occur in some cases by void linkage.
These voids are formed during the forward cycle around particles that frac-
ture during the previous reverse cycle. Cracking then occurs by the necking
down of intervening material until the void links up with the crack, as
shown in Figs. 14.7.

FIGURE 14.5 Paired dislocation pile-ups against obstacle on metal surface
grow with cyclic straining until they reach a critical size at which an avalanche
occurs to form intrusions and extrusions. (From Fine and Ritchie, 1979—
reprinted with permission of ASM International.)

FIGURE 14.6 Bursts of brittle fracture (A) and ductile fracture (B) along stria-
tion profile. (From Forsyth and Ryder, 1961—reprinted with permission from
Cranfield College of Engineers.)
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Laird and Smith (1962) and Laird (1967) proposed an alternative
model based on the repetitive blunting and sharpening of the crack tip
due to plastic flow. In this model, localized slip occurs on planes of max-
imum shear oriented at � 708 to the crack tip (Irwin, 1957; Williams, 1957)
on the application of a tensile load. As the crack opens during the forward
cycle, the crack tip opens up, Figs 14.8(a) and 14.8(b). Further straining
results in the formation of ears [Fig. 14.8(c)], which they observed clearly at
the peak tensile strain, and the broadening of the slip bands, Fig. 14.8(c).
The crack tip is also blunted progressively [Figs 14.8(b) and 14.8(c)] as a

FIGURE 14.7 Forsyth and Ryder model of crack extrusion by void linkage.
(From Forsyth and Ryder, 1961—reprinted with permission of Metallurgica.)

FIGURE 14.8 Schematic representation of fatigue crack advance by Laird and
Smith’s plastic blunting model. (From Laird and Smith, 1962—reprinted with
permission of Taylor and Francis Ltd.
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result of plastic flow, which is reversed on unloading, Fig. 14.8(d). The crack
faces are brought together as the crack closes, but the adsorption of particles
in the environment at the crack tip on to the freshly exposed surfaces pre-
vents complete rewelding, and hence perfect reversibility of slip. Also, the
newly created surfaces buckle as the crack extends by a fracture of the crack
opening displacement, during the reverse half of the cycle, Figs 14.8(e) and
14.8(f). The corresponding crack-tip geometries obtained on compressing
the specimen during the reverse cycle are shown in Figs 14.8(g–i).

Tomkins and Biggs (1969) and Tomkins (1968) have proposed a model
that is similar to Laird and Smith’s plastic bunting model. They suggest that
new crack surfaces are formed by plastic decohesion on available shear
planes, at the limit of tensile straining. This model also applies to Stage I
growth where they hypothesize that slip will only occur on one of the two
available slip planes. Crack extension by this model is illustrated in Fig. 14.9
for Stage II fatigue propagation.

Pelloux (1969, 1970) has formulated a different model based on alter-
nating shear. The behavor of the crack tip is simulated using fully plastic
specimens containing sharp notches (Fig. 14.10)—this can be justified when
the plastic zone is several times the size of the striation spacing. Pelloux’s
model is illustrated in Fig. 14.11. Crack extension occurs on intersecting slip
planes as a result of alternating slip, which takes place sequentially or

FIGURE 14.9 Plastic flow model of crack advance proposed by Tomkins and
Biggs (1969). (Reprinted with permission of Taylor & Francis Ltd.)
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simultaneously. Complete reversibility is prevented in active environments,
e.g., laboratory air, by the formation of oxide layers on the fresly exposed
surfaces during the reverse cycle. The slower cycle growth rates that are
generally observed in vacuum can also be explained using Pelloux’s alter-
nating shear model, since reversed slip would be expected in a vacuum due
to the absence of oxide layers. Pelloux (1969, 1970) has proposed a model
for crack growth in vacuum which is illustrated in Fig. 14.11i–m.

Similar models based on alternating slip have been proposed by
Neumann (1969, 1974) and Kuo and Liu (1976). Neumann’s coarse slip
model (Fig. 14.12) was proposed for high fatigue crack propagation rates
where more than one pair of slip planes are activated per cycle. However,

FIGURE 14.10 Pelloux’s fully plastic specimen. (Pelloux, 1969, 1970—rep-
rinted with permission of ASM International.)

FIGURE 14.11 Crack extension by Pelloux’s alternating shear model for
laboratory air and vacuum. (From Pelloux, 1970—reprinted with permission
of ASM International.)
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although it requires crack extension to occur as a result of irreversibility of
slip, it does not include crack blunting and sharpening stages. The ‘‘unzip-
ping’’ model by Kuo and Liu (1976) is a simple variant of Pelloux’s alter-
nating slip model, with the added restriction that only shear at the crack tip
will contribute to crack growth. They define a single point with an upper
and lower part Aþ and A� [Figs. 14.13(a–d)] and argue that crack extension
will only occur for a sharp crack when these points are physically separated.
They also suggest that, although plastic deformation may occur at the crack
tip, it will not contribute to crack extension. Cracking by the model is only
allowed by unzipping along slip line fields, as shown schematically in Fig.
14.13(e–j).

14.4 CONVENTIONAL APPROACH TO FATIGUE

14.4.1 Stress Amplitude or Stress Range Approach

Since the original work by Wöhler (1958–1871), the conventional
approach to fatigue has relied on the use of S�N curves. These are curves
usually derived from tests on smooth specimens by applying constant
amplitude load ranges in tension–compression tests with zero mean
load, or in rotating–bending tests, e.g., BS 3518 (1963) They show the

FIGURE 14.12 Neumann’s coarse slip model of crack advance. (From
Neumann, 1974—reprinted with permission of AGARD.)
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dependence of a stress parameter (usually the stress amplitude, Sa or �a,
or the stress range, �S or ��, not the number of cycles required to cause
failures, Nf .

Strain aging materials, such as mild steel show a sharp ‘‘fatigue limit’’
below which no fatigue takes place, and the specimens appear to last indefi-
nitely. Nonaging materials do not show a sharp fatigue limit, and it is
conventional to specify an ‘‘endurance limit’’ for design purposes, which
is usually defined as the alternating stress required to cause failure in 108

cycles. Typical S�N curves are presented in Fig. 14.14. It is important to
note that, although the fatigue limits are less than the yield stress in mild
steels (typically half the yield stress), they are generally greater than the yield
stress and less than the ultimate tensile strength (UTS). In most cases, the
fatigue limits of aging steels are typically � (UTS)/2 in steels.

FIGURE 14.13 Kuo and Liu’s ‘‘unzipping’’ model of crack growth. (From Kuo
and Liu, 1976—reprinted with permission of Elsevier Science.)
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A great deal of work has been carried out on the use of S�N curves,
and a considerable amount of useful data has been accumulated on the
effects of mean stress, environment, notches, and other factors. Such data
have been used, and are still widely used, in the estimation of component
lives in engineering structures. However, the S�N curve is empirical in
nature, and it does not provide any fundamental understanding of the
underlying fatigue processes in structures that may contain pre-existing
flaws.

14.4.2 Strain-range Approach

Fatigue behavior in smooth specimens subjected to low-cycle fatigue is
dependent on the plastic strain range (Coffin 1954; Manson, 1954). The
amount of plastic strain imposed per cycle can be found from the hysteresis
loop in the plot of stress versus strain over one cycle, as shown in Fig. 14.15.
The effect of plastic range, �"p, on the number of cycles to failure, Nf , is
expressed by the Coffin–Manson relationship:

�"p �N�1
f ¼ C1 ð14:1Þ

where �1ð� 0:5Þ and C1 (� 1Þ are material constants. This relationshp was
obtained empirically, and has been shown to hold for different materials
(Fig. 14.16), under conditions of low-cycle fatigue. However, the Basquin

FIGURE 14.14 S�N fatigue curve. Curves of type A are typical of mild steel and
alloys which strainage, and curves of type B are typical of nonaging alloys.
(From Knott, 1973—reprinted with permission from Butterworth-Heinemann.)
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FIGURE 14.15 Hysterisis loop of one fatigue cycle.

FIGURE 14.16 Coffin–Manson relationship: ______ C/Mn steel; - - - - - - Ni/Cr/Mo
alloy steel; - - - � - - - Al–Cu alloy, - - - - x - - - - Al–Mg alloy. (From Knott, 1973—
reprinted with permission from Butterworth-Heinemann.)
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law (Basquin, 1910) is found to be more suitable for high-cycle fatigue. This
relates the elastic strain range, �"e (see Fig. 14.15), to the number of cycles
to failure, Nf , by the following expression:

�"e �N�2
f ¼ C2 ð14:2Þ

where �2 and C2 are material constants.
It is also possible to obtain elastic and plastic strain range fatigue

limits (Lukas et al. 1974), which have been shown to correspond to that
fatigue limit obtained from stress-controlled tests (Kendall, 1986).

14.4.3 Effects of Mean Stress

Mean stress has been shown to have a marked effect on the endurance limit.
Once the yield stress has been exceeded locally, and alternating plastic strain
made possible, a mean tensile stress accelerates the fatigue fracture mechan-
isms. Therefore, since most S�N curves are obtained from tests conducted at
zero mean stress, there is a need for an extra design criterion to account for
the combined effects of mean and alternating stresses. Gerber (1874) and
Goodman (1899) proposed relationships of the form (Figure 14.17):

�� ¼ ��0 1� �m
�t

� �n� �
ð14:3Þ

where � is the fatigue limit at a mean stress of �m, �0 is the fatigue limit for
�m ¼ 0, �t is the tensile strength of the material, and the exponent n ¼ 1 in
the Goodman expression, and n ¼ 2 in Gerber’s versionof Eq. (14.3). The
resulting Goodman line and Gerber parabola are shown in Figs 14.17(a)
and 14.17(b), respectively.

FIGURE 14.17 (a) Goodman line; (b) Gerber parabola.
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14.4.4 Fatigue Behavior in Smooth Specimens

The fatigue behavior in smooth specimens is predominantly initiation con-
trolled (Schijve, 1979). High cyclic stresses (> yield stress) are needed to
cause alternating plastic deformation and hardening in the surface grains.
These deformations are not fully reversible and they result in the formation
of persistent slip bands (Ewing and Humfrey, 1903; Thompson et al., 1956),
which develop into intrusions, and extrusions (Cottrell and Hull, 1957) that
are usually associated with the nucleation of microcracks. The microcracks
usually join up to form a single crack which propagates by Stage I crack
growth (Forsyth, 1961) along an active slip band that is inclined at � 458 to
the direction of the principal stress (Ham, 1966; Laird, 1967). Crack growth
then continues by Stage II propagation (Forsyth, 1961), e.g., when the crack
reaches a critical crack-tip opening (Frost et al., 1974), until the crack
becomes sufficiently long for fast fracture or plastic collapse to take place.

The above processes may be divided into initiation and propagation
stages, and the S�N curve can also be divided into initiation and propaga-
tion regions. The number of cycles for fatigue failure, Nf , is then regarded as
the sum of the number of cycles for fatigue crack initiation, Ni, and the
number of cycles for fatigue crack propagation, Np. The S�N curves can,
therefore, be regarded as the sum of two curves (S�Ni and S�Np), as shown
in Fig. 14.18. The extent to which either process contributes to the total
number of cycles to failure depends on the stress level and the material. In
ductile metals/alloys at low stress levels, Nf is governed by Ni, whereas at
high stress levels, Nf is mainly determined by Np.

FIGURE 14.18 Initiation and propagation components of total fatigue life.
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14.4.5 Limitations of Conventional Approach to
Fatigue

The conventional approach to fatigue is based on the assumption that most
engineering structures are flawless at the beginning of service—hence, the
wide use of smooth specimens in conventional fatigue tests. This assumption
is valid in the design of most machine components, which are more or less
flawless. However, it is now universally accepted that most structures con-
tain defects at the start of service. These defects must be accounted for in
fatigue testing and design.

The relative importance of fatigue crack propagation compared to
fatigue crack initiation has also been recognized for most practical cases.
Although the S�N curves can accont for these two processes, they do not
distinguish clearly between them. The results obtained from the conven-
tional tests cannot, therefore, be used for prediction of the fatigue lives of
most engineering structures with pre-existing flaws. Fatigue crack growth
predictions in such structures require the use of fracture mechanics techni-
ques, which are discussed in Sections 14.6, 14.8, and 14.11

14.5 DIFFERENTIAL APPROACH TO FATIGUE

Various workers have shown that the crack growth rate, da/dN, is a func-
tion of the applied stress range, ��, and the crack length (Head, 1956; Frost
and Dugdale, 1958; McEvily and Illg, 1958; Liu, 1961). Head (1956) pro-
posed that the crack growth rate is given by

da

dN
¼ C3��

3a3=2

ð�ys � �Þw1=2
0

ð14:4Þ

where C3 is a material constant, w0 is the plastic zone size, and a is half the
crack length.

Similar expressions have also been obtained by Frost and Dugdale
(1958) and Liu (1961), which can be written as

da

dN
¼ C4��

�3a�4 ð14:5Þ

where C4 is a material constant, �3 ¼ 2, and �4 ¼ 1.
McEvily and Illg (1958) recognized the significance of the stress con-

centration at the crack tip, and proposed that the crack growth rate is a
function of the maximum stress at the crack tip, �max, i.e.,
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da

dN
¼ f ðKt�netÞ ð14:6Þ

where Kt is the notch concentration factor, and �net is the net section stress.
However, although the success of the application of the differential

method depends on the correlation of actual fatigue crack growth-rate data
with predictions made using the above equations, the stress parameters used
have not been shown to represent the local crack-tip driving force for crack
extension. This is probably why their use has been superseded by the frac-
ture mechanics parameters that are presented in the next section.

14.6 FATIGUE CRACK GROWTH IN DUCTILE SOLIDS

Fatigue crack growth in ductile solids can be categorized into the three
regimes, as shown in Fig. 14.19. The first region (regime A) occurs at low
�K and is called the near-threshold regime. This region corresponds to a

FIGURE 14.19 Schematic variation of da=dN with �K in steels showing pri-
mary mechanisms in the three distinct regimes of fatigue crack propagation.
(From Ritchie, 1979—reprinted with permission of Academic Press.)
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cleavage-like crack growth mechanism, where the crack follows preferred
crystallographic directions. Below the fatigue threshold, �K0, no crack pro-
pagation can be detected with existing instruments, and, in practice, the
fatigue threshold is often defined as the �K that corresponds to a crack
growth rate of 10�8 mm/cycle (approximately one lattice spacing per cycle).
The middle regime (regime B) is a linear region of the plot which follows the
Paris equation:

da

dN
¼ C ð�K Þm ð14:7Þ

where da=dN is the fatigue crack growth rate, C is a material constant that is
often called the Paris coefficient, �K is the stress intensity factor range, and
m is the Paris exponent. Since the above power law expression applies
largely to regime B, the mid-�K regime is often called the Paris regime
(Paris and coworkers, 1961, 1963). Crack propagation usually proceeds by
a mechanism of alternating slip and crack-tip blunting that often results in
striation formation in this regime.

Environment has also been shown to have important effects on the
fatigue crack growth and the formation of striations. It was first shown by
Meyn (1968) that striation formation may be completey suppressed in vacuo
in aluminum alloys which form well-defined striations in moist air. Pelloux
(1969) suggested that the alternating shear process is reversible unless an
oxide film is formed on the slip steps created at the crack tip. This oxide
layer impedes slip on load reversal. A schematic illustration of the opening
and closing of a crack during two fully reversed fatigue cycling in air and in
vacuo is shown in Fig. 14.11.

The third regime (regime C) is called the high �K regime. An increase
in crack growth rate is usually observed in this regime, and the material is
generally close to fracture in this regime (Ritchie and Knott, 1973; Mercer et
al., 1991a,b; Shademan, 2000). Accelerated crack growth occurs by a com-
bination of fatigue and static fracture processes in this regime. Finally, fast
fracture occurs when Kmax is approximately equal to the fracture toughness,
KIc, of the material.

Several studies have been carried out to investigate the factors that
control the fatigue crack growth behavior in ductile solids. The interested
reader is referred to the text by Suresh (1999). The major factors that affect
fatigue crack growth in different regimes (A, B, and C) have also been
identified in a review by Ritchie (1979).

In the near-threshold regime, fatigue crack growth is strongly affected
by microstructure, mean stress, and environment. However, in regime B,
these variables have a smaller effect compared (Figs 14.19 and 14.20) to
those in regime A. In contrast, microstructure, means stress, and specimen
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thickness have a strong effect on fatigue crack growth in regime C, where
static fracture modes (cleavage), and interangular and ductile dimpled frac-
ture modes are observed as Kmax approaches the material fracture toughness
KIc. In fact, the increase in the apparent slope in the da=dN��K plot (in
regime C) has been shown to be inversely related to the fracture toughness,
KIc (Ritchie and Knott, 1973). This is shown in Fig. 14.21.

FIGURE 14.20 Effects of stress ratio on fatigue crack growth rate in mill-
annealed Ti–6Al–4V. (Dubey et al., 1997—reprinted with permission of
Elsevier Science.)

FIGURE 14.21 Variation of apparent slope, m, with monotonic fracture tough-
ness. (From Ritchie and Knott, 1973—reprinted with permission of Elsevier
Science.)
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The mechanisms of fatigue crack growth in regimes, A, B, and C can
be summarized on fatigue mechanism maps that show the domains of �K
and Kmax in which a given mechanism operates (Mercer et al., 199a,b;
Shademan, 2000). Selected examples of fatigue maps are presented in Fig.
14.22 for single crystal and polycrystalline Inconel 718. These show plots of
Kmax (ordinate) against �K (abscissa). Constant-stress ratio domains cor-
respond to straight lines in these plots. Hence, the transitions in fracture
mechanism at a given stress ratio occur along these lines, as �K increases
from regimes A, B, and C (Figs 14.19 and 14.22).

It is particularly important to note that the transitions in fracture
modes correspond directly to the different regimes of crack growth. The
changes in the slopes of the da=dN��K plots are, therefore, associated
with changes in the underying fatigue crack growth mechanisms.
Furthermore, the transitions in the fatigue mechanisms occur gradually,
along lines that radiate outwards. This point corresponds to the upper
limit on the Kmax axis, which also defines the upper limit for the triangle
in which all fracture mode transitions can be described for positive
stress ratios. The point corresponds clearly to the fracture toughness,
KIc or Kc.

14.7 FATIGUE OF POLYMERS

A significant amount of work has been done on the fatigue behavior of
plastics. Most of the important results have been summarized in monograph
by Hertzberg and Manson (1980), and the interested reader is referred to
their book for further details. Although the fatigue behavior of polymers
exhibits several characteristics that are similar to those in metals, i.e., stable
crack growth and S�N type behavior, there are several profound differences
between the fatigue processes in polymers. These include hysteritic heating
and molecular deformation processes that can give rise to the formation of
shear bands and crazes in polymeric materials deformed under cyclic load-
ing. Also, typical Paris exponents in polymers are between 4 and 20.

Fatigue crack growth rate data are presented in Fig. 14.23 for different
polymeric materials. Note that the fatigue thresholds for polymers are gen-
erally very low. Furthermore, most polymers exhibit stable crack growth
over only limited ranges of �K compared to those in metals. Polymers also
exhibit significant sensitivity to frequency, with the crack growth rates being
much faster at lower frequency than at higher frequency. The frequency
sensitivity has been rationalized by considering the possible time-dependent
interactions between the material and the test environment (Hertzberg and
Manson, 1980).
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FIGURE 14.22 Fatigue fracture mechanism maps showing the transitions
between fatigue fracture modes as a function of �K and Kmax for (a) single
crystal IN 718 and (b) polycrystalline IN 718.
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Fatigue crack growth in polymers occurs by a range of mechanisms.
These include striation mechanisms that are somewhat analogous to those
observed in metals and their alloys. In such cases, a one-to-one correpson-
dence has been shown to exist between the total number of striations and the
number of fatigue cycles. However, polymers exhibit striated fatigue crack
growth in the high-�K regime, while metals exhibit striated fatigue crack
growth in the mid-�K regime where the crack growth rates are slower.
Fatigue crack growth in polymers has also been shown to occur by crazing
and the formation of discontinuous shear bands. In the case of the latter, the

FIGURE 14.23 Fatigue crack growth rate data for selected polymers. (From
Hertzberg and Manson, 1980—reprinted with permission from Academic
Press.)
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discontinuous shear bands are formed once every hundred of cycles. There
is, therefore, not a one-to-one correspondence between the number of shear
bands and the number of fatigue cycles. Further details on the mechanisms
of crack growth in polymers can be found in texts by Hertzberg and Manson
(1980) and Suresh (1999).

14.8 FATIGUE OF BRITTLE SOLIDS

14.8.1 Initiation of Cracks

For highly brittle solids with strong covalent or ionic bonding, and very
little mobility of point defects and dislocations, defects such as pores, inclu-
sions, or gas-bubble entrapments serve as potential sites for the nucleation
of a dominant crack (Suresh, 1999). In most brittle solids, residual stress
generated at grain boundary facets and interfaces gives rise to microcracking
during cooling from the processing temperature. This occurs as a result of
thermal contraction mismatch between adjacent grains or phases. These
microcracks may nucleate as major cracks under extreme conditions.
However, in general, a range of microcrack sizes will be nucleated, and
the larger cracks will tend to dominate the behavior of the solid.

For semibrittle solid like MgO (Majumdar et al., 1987), microcracks
may also form as a result of dislocation/microstructure interactions. In such
solids, slip may initiate when the resolved shear stress exceeds a certain
critical value on favorably oriented low-index planes. Dislocation sources
(of the Frank–Read type) are activated, and subsequently, the glide of the
dislocation loops, moving outwardly from the souces, is impeded by obsta-
cles such as grain boundaries and/or inclusions. This results ultimately in
dislocation pile-ups and microcrack nucleation, when critical conditions are
reached (Cotterell, 1958).

14.8.2 Growth of Cracks

For most brittle solids, fatigue crack growth is very difficult to monitor,
especially under tensile loading at room temperature. The Paris exponents,
m, for brittle materials are generally very high, i.e., � 20�200 (Dauskardt et
al., 1990; Ritchie et al., 2000). However, stable crack growth, attributable
solely to cyclic variations in applied loads, can occur at room temperature
(even in the absence of an embrittling environment) in single-phase cera-
mics, transformation-toughened ceramics, and ceramic composites. This
was demonstrated for cyclic compression loading of notched plates by
Ewart and Suresh (1987).
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Unlike ductile solids, where macroscopic fatigue can arise from cyclic
slip, the driving forces for the crack growth at room temperature may
involve the degradation of bridging zones behind the crack tip (Fig.
14.24), microcracking, martensitic transformations, and interfacial sliding
(Sures, 1999). However, at elevated temperature, some semibrittle solids can
exhibit characteristics of fatigue damage that are apparently similar to those
found in ductile metals at elevanted temperature (Argon and Goodrich,
1969).

It is important to note here that several ceramics exhibit stable crack
growth phenomena under static or quasistatic loads (Evans and Fuller,
1974; Widerhorn et al., 1980). Under such conditions, it is common to
express the time rate of crack growth, da=dt, as a function of the linear
elastic stress intensity factor, K :

da

dt
¼ AðK Þp ð14:8Þ

where A and p are material constants that are obtained from crack growth
experiments under static loading. It is also important to note here that stable
crack growth in ceramics is often associated with toughening mechanisms
such as crack bridging or transformation toughness by stress-induced mar-

FIGURE 14.24 Schematic illustration of intrinsic and extrinsic fatigue damage
mechanics. (From Ritchie et al., 2000—reprinted with permission from
Elsevier Science.)
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tensitic phase transformations. The effective stress intensity factors, Keff ,
due to such mechanisms is given by

Keff ¼ K � Ks ð14:9Þ
where K is the applied stress intensity factor and KS is the shielding SIF. In
cases where crack-tip shielding levels are significant, Keff should be used
instead of K in Eq. (14.8). Further details on crack-tip shielding mechanisms
have been presented in Chap. 13. It is simply sufficient to note here that
stable crack growth in ceramics can be largely explained by the inelasticity
associated with crack-tip shielding mechanisms under cyclic loading. This
may involve cyclic breakdown of bridging ligaments due to wear phenom-
ena behind the crack tip (Evans, 1980; Grathwohl, 1998; Dauskardt, 1990;
Horibe and Hirihara, 1991; Lathabai et al., 1991; Kishimoto et al., 1994;
Ramamurthy et al., 1994).

At elevated temperatures, glassy films that are added to most ceramics
during processing often becomes viscous. Since these usually reside at grain
boundaries, they can lead to the in-situ formation of viscous glassy films at
grain bridges. Since such grain bridges undergo viscous flow under cyclic
loading, they result in strong sensitivity to cyclic frequency and mean stress
(Han and Suresh, 1989; Ewart and Suresh, 1992; Lin et al., 1992; Dey et al.,
1995; Ritchie et al., 1997, 2000). Such viscoelastic grain bridging can con-
tribute significantly to the occurrence of inelasticity during each fatigue
cycles, and thus result in stable crack growth in ceramics under cyclic load-
ing at elevated temperature.

In the case of intermetallics (compounds between metals and metals),
the fatigue damage mechanisms are somewhat intermediate between those
of metals and ceramics (Soboyejo et al., 1990; Rao et al., 1992; Davidson
and Campbell, 1993; Mercer et al., 1997, 1999a; Ritchie et al., 1997, 2000,
Stoloff, 1996. In such systems, fatigue crack growth occurs as a result of
intrinsic crack-tip processes (partially reversible dislocation motion, defor-
mation-induced twinning, and crack tip/environmental interactions) and
crack wake processes (degradation of bridging zones), as shown schemati-
cally in Fig. 14.24. Evidence of crack-tip deformation is shown in Fig. 14.25,
which is taken from a paper by Mercer and Soboyejo (1997). This shows
clear evidence of crack-tip deformation-induced twinning in a gamma-based
titanium aluminide intermetallic alloy. Stable fatigue crack growth may also
occur in intermetallics due to the stress-induced martensitic transformations
that occur in intermetallic composites reinforced with partially stabilized zir-
conia particles (Soboyejo et al., 1994; Ye, 1997; Ramasundaram et al., 1998).

However, the slowest fatigue crack growth rates are typically observed
in intermetallics in which crack-tip dislocation processes are predominant.
One example of such systems is the B2 Nb–15Al–40Ti intermetallic, which
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exhibits Paris constants of � 2�4, and comparable fatigue crack growth
resistance to conventional structural alloys such as Ti–6Al–4V and
Inconel 718 (Ye et al., 1998). However, most intermetallics have Paris expo-
nents between 6 and 50 (Soboyejo et al., 1996; Mercer and Soboyejo, 1997,
2000; Ritchie et al., 1998, 1999). They also tend to exhibit fast fatigue crack
growth rates when compared with those of structural metals and their alloys
(Fig. 14.26).

Finally in this section, it is important to note that fatigue crack growth
in brittle and ductile solids is affected by both �K and Kmax. The relative
contributions from each of these variables may be estimated from the mod-
ified two-parameter Paris equation (Jacobs and Chen, 1995; Vasudevan and

FIGURE 14.25 Crack-tip deformation by slip and deformation-induced twin-
ning in gamma titanium aluminide intermetallics. (From Mercer and
Soboyejo, 1997—reprinted with permission of Elsevier Science).
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Sadananda, 1995; Soboyejo et al., 1998; Ritchie et al., 2000), which is given
by

da

dN
¼ C ð�KmÞðKmaxÞn ð14:10Þ

where m is the exponent of Kmax and the other variables have their usual
meaning. In the case of ductile metals and their alloys, the exponent m is
usually much greater than n. However, brittle ceramics exhibit higher values
of n than m, while intermetallics often have comparable values of m and n.
The relative values of m and n, therefore, provide a useful indication of the
contributions of �K and Kmax to the fatigue crack growth process.

The above arguments are also consistent with fractographic data that
show clear evidence of �K-controlled ductile (striations) fatigue fracture
modes in metals, �Kmax-controlled static fracture modes (cleavage-like frac-
ture) in ceramics, and �K- and Kmax-controlled mixed ductile plus static
(mostly cleavage-like plus striations in some ductile intermetallics) fracture
modes in intermetallics (Soboyejo et al., 1996; Stoloff, 1996; Mercer and
Soboyejo, 1997; Ye et al., 1998; Ritchie et al., 2000). Typical fatigue fracture
modes for intermetallic materials are shown in Figs 14.28–14.29.

FIGURE 14.26 Fatigue crack growth rate data for selected intermetallics,
metals, and ceramics. (From Ritchie et al., 2000—reprinted with permission
of Elsevier Science.)
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FIGURE 14.27 Fatigue fracture modes in mill-annealed Ti–6Al–4V. Paris
regimes of the fracture surface showing ductile transgranular fracture
mode: (a) R ¼ 0:02; (b) R ¼ 0:25; (c) R ¼ 0:5; (d) R ¼ 0:8. Evidence of fatigue
striations and cleavage-like fracture surface can be clearly seen. Secondary
cracks can also be seen in (c). (From Dubey et al., 1997—reprinted with per-
mission of Elsevier Science.)
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14.9 CRACK CLOSURE

14.9.1 Introduction

The LEFM approach assumes that the fatigue crack growth rate, da=dN, is
proportional to the stress intensity range, �K . The relationship between
da=dN and �K is given by the power law relationship in Eq. (14.7). This
assumes that a crack in an ideal elastic solid opens and closes at zero load,
and is a direct consequence of the superposition principal that is often
employed in linear elastic stress analysis (Timoshenko and Goodier,
1970). However, there is evidence to suggest that cracks close above zero
load due to extra material that is wedged between the crack flanks.

The first mechanistic justification for this was provided by Elber
(1970). Closure was considered to arise from the compressive residual plastic
wade associated with fatigue growth,. This causes premature contact of the
crack faces (plasticity-induced closure) before the minimum load, Kmin, is
attained in the reverse cycle, Fig. 14.30(a). Compressive stresses than exist in
the lower part of the fatigue cycle, and the crack is ‘‘closed’’ during this
period. This ‘‘closed’’ portion of the fatigue cycle cannot contribute to the
fatigue cycle, and the effective stress intensity range, �Keff , at the crack-tip
is given by

�Keff ¼ Kmax � Kop ð14:11Þ
where Kop is the stress intensity at which the crack becomes fully open in the
fatigue cycle. Elber (1970) postulated that the fatigue crack growth rate is
then governed by �Keff , such that

FIGURE 14.28 Fatigue fracture modes in TiAl-based alloys: (a) 258C; (b) 7008C.
(From Mercer and Soboyejo, 1997—reprinted with permission of Elsevier
Science.)
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da

dN
¼ Að�KeffÞm ð14:12Þ

Initially, plasticity-induced closure was thought to occur only under
plane stress conditions (Lindley and Richards, 1974). However, there is now
considerable evidence to show that plasticity-induced closure can also occur
under plane strain conditions (Fleck and Smith, 1982). Suresh and Ritchie
(1984a) have also shown that plasticity-induced closure is not always the
principal mechanism of crack closure in the near-threshold regime. Similar
conclusions have been reached by Newman (1982) using finite element stu-
dies which have confirmed that plasticity-induced closure, modeled for plane
strain conditions, is insufficient to explain the marked effect of load ratio, R,

FIGURE 14.29 Fatigue fracture modes in mill-annealed Nb–Al–Ti: (a) low �K ;
(b) high �K ; (c) secondary cracking in 40-Ti (DA); (d) relatively flat fracture
surface of 40-Ti (STA). (From Ye et al., 1998—reprinted with permission of
TMS, Warrendale, PA.)
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on the fatigue growth in the near-threshold regime. This was also the case
even when the load-shedding sequence was acconted for in the finite element
model (Newman, 1982).

Numerous independent studies have identified other mechanisms of
closure. These include: (1) closure due to irregular fracture surface morphol-
ogies, i.e., roughness-induced closure [Fig. 14.30(b)], (2) closure due to cor-
rosion deposits or the thickening of oxide layers, i.e., oxide-induced closure
[Fig. 14.30(a)], (3) closure due to the penetration of viscous media into the
crack (viscous fluid-induced closure), and (4) closure due to plasticity asso-

FIGURE 14.30 The three main mechanisms of crack closure: (a) plasticity-
induced closure; (b) roughness-induced closure; (c) oxide-induced closure.
The displacement, @R, is the extra material wedged between the flanks.
(From Fleck, 1983—reprinted with permission of Cambridge University.)
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ciated with phase transformation induced by the advancing crack tip (phase
transformation-induced closure).

The major mechanisms of closure are reviewed in this section. The
significance of the various components of closure is elucidated for near-
threshold fatigue crack propagation, and the main methods of determining
closure loads are also assessed.

14.9.2 Plasticity-induced Closure

Plasticity-induced closure (Elber, 1970, 1971) occurs as a result of residual
plastic deformation in the wake of a propagating crack. Clamping stresses,
due to the elastic constraint of surrounding material on the plastic wake,
bring the crack faces into contact, and hence cause the closure of cracks even
when the applied loads are tensile. This is illustrated in Fig. 14.30(a).

14.9.3 Roughness-induced Closure

Roughness-induced closure (Halliday and Beevers, 1979; Minakawa and
McEvily, 1981) arises from contact between fracture surface asperities at
discrete points behind the crack tip. These wedge open the crack at loads
above the minimum load, as shown in Fig. 14.30(b). Also, the irreversible
nature of crack-tip deformation and the possibility of slip step oxidation in
most environments can lead to mismatch of fracture surface asperities and
higher levels of roughness-induced closure (Suresh and Ritchie, 1982). In
general, however, the level of roughness-induced closure depends on the
height of the fracture surface asperities and the crack opening displacement.
It will, therefore, be most significant in the near-threshold regime at low
stress ratios, due to low crack opening displacements and rough fracture
surface morphologies (Halliday and Beevers, 1979; King, 1981).

14.9.4 Oxide-induced Closure

Oxide-induced closure (Suresh et al., 1981; Soboyejo et al., 1990; Campbell
et al., 1999) occurs in chemically active environments, e.g., water and moist
laboratory air, where fretting debris or corrosion products may develop on
the fracture surface behind the crack tip. Fretting is initiated by corrosion
products and also by plasticity-induced and roughness-induced closure phe-
nomena. This occurs by continual breaking and reforming of the oxide scale
behind the crack tip due to repeated contact between the fracture surfaces
caused by shear displacements (Mode II or Mode III) which are induced by
contact between mating crack faces (Minakawa and McEvily, 1981). This
results in the autocatalytic buildup (Romaniv et al., 1987) of hydrated oxide
layers (Suresh et al., 1981). These thickened hydrated oxide layers, and the
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corrosion debris which can be formed in aggressive environments, wedge
open the crack and enhance closure by causing premature contact between
the fracture surfaces, as shown in Fig. 14.26c.

Oxide-induced closure is promoted by: (1) small crack-tip opening
displacements (CTOD), such as in the near-threshold regime where the
thickness of the excess debris is comparable with the CTOD; (2) highly
oxidizing media such as water, where thermal oxidation is possible, in addi-
tion to, or in the absence of fretting oxidation (Suresh and Ritchie, 1983); (3)
low load ratios where fretting is enhanced by repeated contact between
fracture surfaces through low CTOD values (Suresh et al., 1981); (4)
rough fracture surfaces, which at low load ratios, promote sliding and rub-
bing between mating fracture surfaces, thus enhancing fretting; and (5)
lower strength materials where higher levels of plasticity-induced closure
bring more asperities into contact to induce fretting associated with plasti-
city-induced and roughness-induced closure phenomena.

Evidence of oxide-induced closure in steels is often provided in the
form of dark bands across the fracture surface. These usually occur in the
near-threshold regime, as shown in Fig. 14.31. Measurements of the oxide
thickness have also been made by Suresh and Ritchie (1983) using scanning
Auger spectroscopy. Their peaks confirmed that oxide-induced closure is
predominant when the oxide thickness is comparable with the CTOD.

FIGURE 14.31 Dark hydrated oxide band (oxide thickening) in the near-
threshold regime in Q1N (HY 80) pressure vessel steel.
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14.9.5 Other Closure Mechanisms

It is also possible for crack closure to occur as a result of hydrodynamic
wedging in the presence of viscous fluids (viscous fluid-induced closure) or
from transformations induced by deformation ahead of the crack-tip (phase
transformation-induced closure)—see Suresh and Ritchie (1984a) or Suresh
(1999).

14.9.6 Closure Measurement Techniques

Conflicting results have been obtained by the different methods of measur-
ing crack closure. In many cases, this is because the recorded closure load is
a function of the sensitivity and type of closure instrumentation employed
(Fleck, 1983). The three most popular methods of measuring crack closure
are:

1. complianace techniques (Elber, 1970);
2. d.c. potential difference method (Irving et al., 1973);
3. ultrasonic techniques (Buck et al., 1973).

Crack opening and closing stress intensities, Kop and Kcl, can be
determined from load-closure transducer traces obtained from any of
these methods, as shown in Figs 14.32 and 14.33. It is important to
note that precise locations of the points corresponding to the crack open-

FIGURE 14.32 Determination of crack opening and closure loads by the com-
pliance technique. (From Fleck, 1983—reprinted with permission of University
of Cambridge.)
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ing and closing loads on the load–transducer traces can be very difficult
due to the tendency of cracks to open and close gradually. One was of
overcoming this problem is to use the intersecting tangent method illu-
strated in Fig. 14.33(b). One tangent corresponds to the fully open crack,
while the other corresponds to a fully closed crack. However, although this
method may yield self-consistent closure data, it is questionable whether
the resulting closure loads have any physical significance.

FIGURE 14.33 Determination of crack opening and closure loads: (a) ultra-
sonics; (b) d.c. potential drop method. (From Fleck, 1983—reprinted with per-
mission of University of Cambridge.)
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A more widely accepted method is illustrated in Fig. 14.32. The crack
and closing loads, Kop and Kcl, are determined by identifying points corre-
sponding to the deviation away from linearity in the load-closure traces
(Dubey et al., 1997) during the forward and reverse cycles (Clerivet and
Bathias, 1979; Gan and Weertmen, 1981; Fleck, 1983). These points are
more difficult to obtain since cracks tend to open and close gradually.
However, they do have some physical significance in that they correspond,
respectively, within the limits of experimental error, to the point where the
crack becomes fully open in the forward cycle and to the point of first
contact between asperities in the reverse cycle. Improvements in the accu-
racy of the determination of the closure loads can also be obtained by
incorporating an offset elastic displacement circuit into the compliance clo-
sure measurement system (Fleck, 1982). Typical plots of load versus offset
displacement are shown in Fig. 14.32.

14.10 SHORT CRACK PROBLEM

Since the original discovery by Pearson (1975), the results of several experi-
mental studies show ‘‘anomalous’’ short crack growth when compared with
those obtained by fatigue growth in standard long-crack fracture mechanics
specimens. Reviews are provided by Miller (1987), Smith (1983), and Suresh
and Ritchie (1984b). Short cracks have been generally observed to grow
anomalously, using along favored crystallographic planes, at stress intensi-
ties well below the long crack threshold. Typical sketches of da=dN versus
�K are presented in Fig. 14.34.

In most cases, short crack growth rates exceed long crack growth
rates at low �K values, although there is some evidence in steels of a mild
reverse effect (Lankford, 1977; Romaniv et al., 1982). For very small
cracks (10–100 �m), da=dN does not increase monotonically with �K .
Instead, it usually decreases with increasing �K , until it reaches a mini-
mum, which is often associated with a grain boundary (Lankford, 1982,
1985; Taylor and Knott, 1981). Some cracks become nonpropagating at
the grain boundary if the crystallographic orientation in the next grain
does not favor subsequent propagation. Other cracks exhibit the opposite
trend, and accelerate to merge with long crack data in the early part of the
Paris regime.

Anomalous short crack growth has been shown to be affected by
stress ratio (Gerdes et al., 1984), grain size (Gerdes et al., 1984; Zurek et
al., 1983), and environment (Gangloff and Wei, 1986). It has also been
shown to be a stochastic process that can also be influenced by crack
shape (Pineau, 1986; Wagner et al., 1986), microstructure
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(Ravichandran, 1991), crack closure (Breat et al., 1983; Minakawa et al.,
1983), enhanced crack-tip strains (Lankford and Davidson, 1986), and
crack deflection (Suresh, 1983).

Ritchie and Lankford (1986) have classified the different types of short
cracks: mechanically small cracks have lengths which are comparable with
their plastic zones; microstructurally short cracks have lengths which are
smaller than the controlling microstructural unit size; and physically small
cracks are simply cracks whose lengths are less than 1 mm. Each of these
cracks is associated with particular features that distinguishes it from long
cracks, as shown in Table 14.1.

Table 14.1 also includes suggestions made by Ritchie and Lankford
(1986) for the assessment of the different types of short cracks. These
include the use of �J, strain energy density, and �CTOD for mechanically
short cracks; a probabilistic approach for microstructurally short cracks;

FIGURE 14.34 Typical anomalous short-crack growth rate data.
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and the use of effective SIFs, �keff , for physically short cracks. Various
parameters based on shear strains (Miller, 1987) and fatigue limits
(Kitagawa and Takahashi, 1976) have also been proposed for the assess-
ment of structures containing short cracks.

Appropriate analysis must, therefore, be used to characterize short
crack growth. This is perhaps best illustrated using the ‘‘Kitagawa plot’’
of applied stress range, ��0, versus crack length (Kitagawa and Takahashi,
1976), 2a, shown in Fig. 14.35. Region III shows clearly S�N and LEFM
long crack behavior. Region II represents the anomalous short-crack
growth regime where LEFM and S�N curve data are generaly not applic-
able, and region I shows the conditions for nonpropagation cracks below
the fatigue limit.

Also, failure to correlate short and long crack behavior does not
necessarily indicate anomalous short crack behavior. In many cases, this
may be due to the way in which the theory, usually LEFM, has been imple-
mented. There are numerous examples of so-called anomalies which are
simply the result of wrong or inappropriate applications of fracture
mechanics criteria, e.g., due to the breakdown of similitude conditions
(Ritchie and Suresh, 1983; Lies et al., 1986) or the use of load-controlled
stress fields to describe the growth of short cracks from notches. The correct
procedure in this case would be to superimpose the effect of the displace-
ment-controlled stress field due to the notch on the crack-tip stress field (El
Haddad et al., 1979; Lies et al., 1986).

TABLE 14.1 Classes of Short Cracks

Type of small crack Dimension
Responsible
mechanism

Potential
solution

Mechanically small a9ray Excessive (active)
plasticity

Use of �J, �S, or
crack-tip-opening
displacement

Microstructurally
small

a9db
jg Crack tip shielding

enhanced �"p

Probabilistic
approach

2c9ð5�10Þdg Crack shape
Physically small a91 mm Crack tip shielding

(crack closure)
Use of �Keff

a ry is the plastic zone size or plastic field of notch.
b dg is the critical microstructural dimension, e.g., grain size, a is the crack depth,

and 2c the surface length.
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14.11 FATIGUE GROWTH LAWS AND FATIGUE LIFE
PREDICTION

In addition to the Paris law [Eq. (14.7)], a number of other empirical fatigue
crack growth laws have been proposed to relate fatigue crack growth rates
to mechanical variables. These include crack growth laws by Walker (1970)
and logarithmic and hyperbolic sine functions that have been used to fit
fatigue crack growth rate data in the three regimes of fatigue crack growth.
Most recently, Soboyejo et al. (1998, 2000b) have proposed a multipara-
meter fatigue crack growth law that can account for the effects of multiple
variables, such as the SIF, Kmax, temperature, T , and cyclic frequency. This
gives the fatigue crack growth rate, da=dN, as

da

dN
¼/0 ð�K Þ/1ðRÞ/2ðKmaxÞ/3ðT Þ/4ðf Þ/5 ð14:13Þ

where /0, /1, /2, /3, /4, and /5, are constants that can be determined by
multiple linear regression (Soboyejo et al., 1998, 2000b). It is important to
note here that the above constants need not be independent. In fact, Pearson
correlation coefficients between each of the variables may be used to

FIGURE 14.35 The ‘‘Kitagawa’’ plot. (From Kitagawa and Takahashi, 1976—
Proc. ICM2.)
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ascertain the degree to which each of the variables are linearly correlated.
Furthermore, not all the variables need to be considered in Eq. 14.13.
Hence, variables with exponents close to zero may be neglected, since any
variable raised to the power zero is equal to 1.

The multiparameter law has been shown to apply to steels (Soboyejo
et al., 1998), titanium alloys (Dubey et al., 1997; Soboyejo et al., 2000b), and
nickel base alloys (Mercer et al., 1991a,b). It appears, therefore, to be gen-
erally applicable to the characterization of the effects of multiple variables
on fatigue crack growth rate data.

In general, the multiparameter law may be expressed as

C ¼ /0

Yk
i¼2

X/i

i

 !
¼/0 X

/2

2 X/3

3 . . . ;Xk
k ð14:14aÞ

and

da

dN
¼ C ð�K Þm ¼ /0

Yk
i¼1

X/i

i

 !
ð�K Þm ð14:14bÞ

Note that X1 ¼ �K and /1¼ m in the above formulation. The multipara-
meter law, therefore, provides a simple extension of the Paris law that
reduces the problem of fatigue life prediction to the integration of a simple
equation, Eq. (14.14b). This may be recognized by separating the variables
in this equation and integrating between the appropriate limits:

ða
a0

da ¼
ðN
0

/o

Yk
i¼1

X/i

i dN ð14:15Þ

where a0 is the initial crack length (determined often via nondestructive
inspection), a is the current crack length after N cycles of cycling load,
and other parameters have their usual meaning. Since the Xi variables are
often functions of crack length, a, numerical integration schemes are gen-
erally needed to solve Eq. (14.15). This may be done using available
mathematical software packages.

For the simple single parameter case, in which �K is the dominant
variable, Eq. (14.14b) may be expressed as

ða
a0

da ¼
ðN
0

C ð�K ÞmdN ð14:16Þ

where all the variables have their usual meaning. Since �K is also generally
a function of a, numerical integration schemes are needed to solve Eq.
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(14.15) or (14.16) in most cases. However, Eq. (14.16) may be solved analy-
tically for only the simplest cases in which the geometric function, Fða=WÞ,
in the equation for K , is not dependent on a.

One example is the case of a small edge crack of length a, subjected to
Mode I loading through an applied stress range, ��. The SIF range, �K , is
now given by (Tada et al., 1999):

�K ¼ 1:12ð�K Þð ffiffiffiffiffiffi
�a

p Þ ð14:17Þ
Substituting Eq. (14.17) into Eq. (14.16) gives

ða
a0

da ¼
ðN
0

C ð1:12ð��Þð ffiffiffiffiffiffi
�a

p ÞÞmdN ð14:18aÞ

or

ða
a0

da

am=2
¼
ðN
0

C ð1:12ð��Þð ffiffiffi
�

p ÞÞmdN ð14:18bÞ

Equation (14.18b) can be solved analytically to obtain:

N ¼
2 a�m

2þ1 � a
�m

2þ1
0

h i
C ð2�mÞ½1:12ð��Þð ffiffiffi

�
p Þ�m ð14:19Þ

Equation (14.19) gives the number of fatigue cycles required to reach a crack
length, a, under remote loading at a stress of ��. Hence, it may be used to
estimate the fatigue life if a corresponds to the critical crack length, ac, at the
onset of catastrophic failure, from the condition at which Kmax (during the
fatigue cycle) is equal to the material fracture toughness, KIc:

KIc ¼ F
a

W

� �
ð��Þð ffiffiffiffiffiffiffiffi

�ac
p Þ ð14:20aÞ

or

ac ¼
1

�

KIc

F
a

W

� �
��

0
B@

1
CA

2

ð14:20bÞ

Hence, the number of cycles to failure, Nf , may be estimated by using
ac as the upper integration limit in Eqs (14.15) and (14.16). This provides the
basis for the estimation of fatigue life within a fracture mechanics frame-
work.
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14.12 FATIGUE OF COMPOSITES

Before closing, it is of interest to discuss the micromechanisms of fatigue in
composite materials. As the reader can imagine, no unified theory of fatigue
can be applied to the rationalization of fatigue in composite materials.
However, it is possible to summarize some themes that have emerged
from research over the past few decades. A significant fraction of prior
work on composites has been done on titanium matrix composites
(Harmon and Saff, 1989; Johnson et al., 1990; Sensemeier and Wright,
1990; Jeng et al., 1991; Kantzos et al., 1991; Walls et al., 1991; Majumdar
and Newaz, 1992; Soboyejo and coworkers, 1994, 1997).

Most of the above studies have shown that the fibers tend to trap the
cracks, giving rise ultimately to the formation of bridged cracks, as shown in
Figs. 14.36 for a titanium matrix composite reinforced with TiB whiskers
and TiSi2 particles. The observed crack bridging mechanisms give rise to
slower composite fatigue crack growth rates compared to those in the tita-
nium matrix alloy (Fig. 14.37). Similar crack trapping and crack bridging
phenomena have also been observed in other titanium matrix composites
(Sensemeier and Wright, 1990; Jin and Soboyejo, 1997; Soboyejo et al.,
1997).

To illustrate the multitude of processes that can occur during the cyclic
deformation of composites, photomicrographs of the cyclically deformed
gauge sections of a Ti–15Al–3Cr–3Al–3Sn/SiC composite are presented in
Fig. 14.38, which is taken from a paper by Jin and Soboyejo (1997). In this
composite, which is deformed at a stress range corresponding to � 0:5 of its
ultimate tensile strength (UTS), interfacial debonding and interfacial radial
cracking occur within 10% of the fatigue life, Fig. 14.38(a). This is followed
by stress-induced /-phase precipitation, and cracking of the molybdenum
cross weave that is used to hold the composite together, at 0.2Nf , Fig.
14.38(b). The carbon coating on the SiC then cracks [Fig. 14.38(c)] and
further stress-induced precipitation is observed at 0.3Nf , Fig. 14.38(d).
Fiber cracking is then observed at � 0:5Nf [Fig. 14.38(e)] along with
stress-induced microvoid formation at the interface between the matrix
and the TiC interphase, Fig. 14.38(f). Damage in composite materials
may, therefore, involve interfacial cracking, interfacial debonding, matrix
and/or fracture, fiber pull-out. The actual sequence of fatigue damage will,
therefore, vary widely, depending on the properties of the matrix, fiber,
interface, and interphases.

In cases where crack bridging is observed in composites under cyclic
loading, significant efforts have been made to develop bridging laws for the
estimation of the shielding components due to fiber bridging. The pioneer-
ing work in this area was done by Marshall et al. (1985), who developed a
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modeling framework for analyzing the shielding associated with fiber brid-
ging in cases where frictional bonding exists between the matrix and the
fibers. Following the analysis of Marshall et al. (1985), the bridging traction,
pðxÞ, on penny cracks of size, a, that are greater than the fiber spacing is
given by

FIGURE 14.36 Elastic crack bridging in Ti–8.5Al–1B–1Si: (a) schematic illustra-
tion; (b) actual crack-tip region.
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pðx Þ ¼ Vf�fðx Þ ð14:21Þ
where Vf is the volume fraction of fibers, and �f ðxÞ is the stress in the fibers
expressed as a function of distance, x, from the crack-tip (Fig. 14.39). The
stress intensity factor, K , at the crack tip is thus reduced by the closure
pressure via:

K ¼ 2

ffiffiffiffi
a

n

r ð1
0

½�1 � pðx Þ�XdXffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ð14:22Þ

where X ¼ x=a, and the closure pressure is related to the crack opening
displacement via:

pðx Þ ¼/
ffiffiffiffiffiffiffiffiffiffi
uðx Þ

p
ðfor x > a0Þ ð14:23aÞ

or

pðx Þ ¼ 0 ðfor x < a0Þ ð14:23bÞ
where

FIGURE 14.37 Comparison of fatigue crack growth rates in titanium matrix
alloy and titanium matrix composites. (From Soboyejo et al., 1994—reprinted
with permission of Elsevier Science.)
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FIGURE 14.38 Damage mechanisms in four-ply [75] Ti–15V–3Cr–3Al–3Sn
composite reinforced with carbon-coated SiC fibers and cyclically deformed
at �� ¼ 0:5 �UTS: (a) debonding and reaction layer cracking after 0.1 Nf; (b)
cracking of Mo wire and some stress-induced precipitate after 0.2 Nj; (c) crack
propagation along the reaction layer and the interface between coating and
SiC fiber after 0.3 Nf; (d) stress-induced precipitation (silicon-riched precipi-
tates) along the beta grain boundaries after 0.3 Nf; (e) fiber cracking after 0.5
Nf, (f) stress-induced microvoid formation around the fiber after 0.6 Nf.
(Reprinted with permission of TMS, Warrendale, PA.)
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FIGURE 14.39 Schematic illustration of fiber bridging. (From Sensemeier and
Wright, 1990—reprinted with permission of TMS, Warrendale, PA.)
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/¼ 4
F 2EfEc

REmð1� VfÞ
ð14:24Þ

where R is the factor radius, 
 is the frictional stress, Ef is the fiber Young’s
modulus, Ec is the composite Young’s modulus, Em is the matrix Young’s
modulus, and Vf is the fiber volume fraction. The crack opening displace-
ment, uðxÞ, behind the crack tip is given by

uðX Þ ¼ 4ð1� 	2Þa
�Ec

ð1
x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � x2

p
ðs
0

½�1 � pð�Þ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � �2

p
0
@

1
Ads ð14:25Þ

where s and � are normalized position co-ordinates, and 	 is Poisson’s ratio
for the composite. The displacement function above may be evaluated
readily using numerical integration schemes. The effective SIF may thus
be evaluated by numerical integration of Eqs (14.25) and (14.28).

However, under cyclic loading, the effective crack driving force is
different under forward and revered loading. This is partly because the
tractions are recovered during revered loading. The details of crack bridging
under cyclic loading have been modeled by McMeeking and Evans (1990).
They give the effective crack-tip SIF range, �Ktip, for a zero mean stress/
stress ratio as

�Ktip ¼ 2Ktip
��

2

� �
ð14:26Þ

where Ktipð��=2Þ corresponds to the near-tip SIF for a bridged crack sub-
jected to a stress of ð��=2Þ under monotonic loading. Equation (14.26) has
been used by Soboyejo et al. (1997) to estimate the effective crack-tip SIF
range and the overall fatigue to a wide range of stress. A comparison of the
predictions and the measured fatigue lives is presented in Fig. 14.40 for
possible values of frictional strength, 
, and initial crack length a0. The
predictions in Fig. 14.40 have been obtained using numerical integration
schemes similar to those alluded to earlier. However, �Ktip is used instead
of �K in the simulations, in an effort to account for the shielding effects of
crack bridging. The values of 
 have also been varied to stimulate the
variations due to fatigue degradation of the interfacial strength (Eldridge,
1991). The bounds in the predicted stress-life behavior are generally consis-
tent with the measured stress-life behavior.

14.13 SUMMARY

An overview of the fatigue of materials is presented in this chapter.
Following a brief historical perspective and a review of empirical
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approaches to fatigue, fracture mechanics approaches are presented along
with descriptions of the underlying mechanisms of fatigue in different
classes of materials. Mechanisms of crack closure are also elucidated before
discussing the so-called short-crack problem. Fatigue crack growth laws are
then presented within the context of fatigue life prediction. Finally, more
complex mechanisms of fatigue and crack-tip shielding are examined in
selected composite materials.
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15

Introduction to Viscoelasticity, Creep,
and Creep Crack Growth

15.1 INTRODUCTION

So far, our discussion on the mechanical behavior has considered only time-
independent deformation. However, the mechanical behavior of materials
may also be time dependent. This can give rise to time-dependent strains or
crack growth that can result, ultimately, in component failure or damage.
For several materials deformed at temperatures above about 0.3–0.5 of their
melting temperatures, Tm (in K), time-dependent deformation can occur by
creep or stress relaxation. This may result ultimately in a range of failure
mechanisms that are illustrated schematically in Fig. 15.1. In crystalline
metals and their alloys, creep damage can occur by stress-assisted diffusion
and/or dislocation motion. Microvoids may also form and coalesce by the
same mechanisms during the final stages of creep deformation.
Furthermore, creep damage mechanisms may occur at crack tips, giving
rise ultimately to creep crack growth phenomena.

Time-dependent creep deformation has also been observed in poly-
meric materials by viscous flow processes. These can result in time-depen-
dent elastic (viscoelastic) or time-dependent plastic (viscoplastic) processes.
Such time-dependent flow can happen at temperatures above the so-called
glass transition temperature, Tg. Time-dependent deformation may also
occur in crystalline materials. Depending on the crystal structure and tem-
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perature, these can give rise to stress-assisted movement of interstitials and
vacancies, and an elastic deformation.

This chapter presents an introduction to time-dependent deformation
in crystalline and amorphous materials. Time-dependent deformation/creep
of polymers is described along with the temperature dependence of defor-
mation in polymers. Phenomenological approaches are then described for
the characterization of the different stages of creep deformation. These are
followed by an overview of the creep deformation mechanisms. The creep
mechanisms are summarized in deformation maps before discussing some

FIGURE 15.1 Creep is important in four classes of design: (a) displacement
limited; (b) failure-limited; (c) relaxation limited; (d) buckling limited. [From
Ashby and Jones (1996) with permission from Butterworth-Heinemann.]
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engineering approaches for creep design and the prediction of the creep lives
of engineering structures and components. Finally, a brief introduction to
superplasticity is then presented before concluding with an introduction to
time-dependent fracture mechanics and the mechanisms of creep crack
growth.

15.2 CREEP AND VISCOELASTICITY IN POLYMERS

15.2.1 Introduction

In general, time-dependent deformation occurs in materials at temperatures
between 0.3 and 0.5 of Tm, the melting point (in K). In the case of polymeric
materials, which have relatively low melting points, considerable time-
dependent deformation has been observed, even at room temperature.
The resulting deformation in polymers exhibits much stronger dependence
on temperature and time, when compared to that in metallic and ceramic
materials. This is due largely to Van der Waals forces that exist between
polymers chains (Fig. 1.8). Since the Van der Waals forces are relatively
weak, significant time-dependent deformation can occur by chain-sliding
mechanisms. (Chap. 1).

15.2.2 Maxwell and Voigt Models

In general, the time-dependent deformation of polymers can be described
in terms of creep and stress relaxation, Fig. 15.1(a) and (c). Creep is the
time-dependent deformation that occurs under constant stress conditions,
Fig. 15.1(a), while stress relaxation is a measure of the stress response
under constant strain conditions, Fig. 15.1(c). The underlying mechanics
of the time-dependent response of polymers will be described in this sec-
tion.

Time-independent deformation and relaxation in polymers can be
modeled using various combinations of springs and dashpots arranged in
series and/or parallel. Time-independent elastic deformation can be modeled
solely by springs that respond instantaneously to applied stress, according to
Hooke’s law, Fig. 15.2(a). This gives the initial elastic stress, �o, as the
product of Young’s modules, E, and the instantaneous elastic strain, "1,
i.e., �o ¼ E"o, where "o is the instantaneous/initial strain. Similarly, purely
time dependent strain–time response can be described by the viscous
response of a dashpot. This gives the dashpot time-dependent stress, �d ,
as the product of the viscosity, �, and the strain rate, d"=dt [Fig. 15.2(b),
i.e., �d ¼ � d"=dt.
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The simplest of the spring–dashpot models are the so-called Maxwell
and Voigt models, which are illustrated schematically in Fig. 15.3(a) and (b),
respectively.

15.2.2.1 Maxwell Model

The Maxwell model involves the arrangement of a spring and a dashpot
series, Fig. 15.3(a). Under these conditions, the total strain in the system, ",
is the sum of the strains in the spring, "1, and the strain in the dashpot, "2.
This gives

" ¼ "1 þ "2 ð15:1Þ

FIGURE 15.2 Schematic illustration of (a) spring model and (b) dashpot model.
[From Hertzberg (1996) with permission from John Wiley.]

FIGURE 15.3 Schematic illustration of (a) Maxwell model and (b) Voigt model.
[From Hertzberg (1996) with permission from John Wiley.]
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Since the spring and the dashpot are in series, the stresses are equal in
the Maxwell model. Hence, �1 ¼ �2 ¼ �. Taking the first derivative of strain
with respect to time, we can show from Eq. (15.1) that

d"

dt
¼ d"1

dt
þ d"2

dt
¼ 1

E

d�

dt
þ �
�

ð15:2Þ

where "1 ¼ �=E and d"2=dt ¼ �=�. In general, the Maxwell model predicts
an initial instantaneous elastic deformation, "1, followed by a linear time-
dependent plastic deformation stage, "2, under constant stress conditions
(Fig. 15.4).

However, it is important to note that the strain–time response in most
materials is not linear under constant stress � ¼ �o, i.e., creep conditions.
Instead, most polymeric materials exhibit a strain rate response that
increases with time. Nevertheless, the Maxwell model does provide a good
model of stress relaxation, which occurs under conditions of constant strain,
" ¼ "o, and strain rate, d"=dt ¼ 0. Applying these conditions to Eq. (15.2)
gives

0 ¼ 1

E

d�

dt
þ �
�

ð15:3Þ

Separating variables, rearranging Eq. (15.3), and integrating between
the appropriate limits givesð�

�o

d�

�
¼
ð�1
0

�E

�
dt ð15:4aÞ

or

� ¼ �0 exp �Et

�

� �
ð15:4bÞ

FIGURE 15.4 (a) Strain–time and (b) stress–time predictions for Maxwell and
Voigt models. [From Meyers and Chawla (1998) with permission from
Prentice Hall.]
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Equation (15.4b) shows that the initial stress, �o, decays exponentially
with time (Fig. 15.5). The time required for the stress to relax to a stress of
magnitude �=e (e is exp 1 or 2.718) is known as the relaxation time, 
. This is
given by the ratio, �=E. Equation (15.4) may, therefore, be expressed as

� ¼ �0 exp � t




� �
ð15:5Þ

Equation (15.5) suggests that stress relaxation occurs indefinitely by an
exponential decay process. However, stress relaxation does not go on inde-
finitely in real materials. In addition to polymers, stress relaxation can occur
in ceramics and glasses at elevated temperature (Soboyejo et al., 2001) and
in metallic materials (Baker et al., 2002). However, the mechanisms of stress
relaxation in metals are different from those in polymers. Stress relaxation
in metals involves the movement of defects such as vacancies and disloca-
tions.

15.2.2.2 Voigt Model

The second model illustrated in Fig. 15.3 is the Voigt Model. This involves
the arrangement of a spring and a dashpot in parallel, as shown schemati-
cally in Fig. 15.3(b). For the spring and the dashpot in parallel, the strain in
the spring and strain in the dashpot are the same, i.e., " ¼ "1 ¼ "2. However,

FIGURE 15.5 Effects of increasing molecular weight on the time-dependence
of strain in a viscoelastic polymer. [From Meyers and Chawla (1999) with
permission from Prentice Hall.]
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the total stress is the sum of the stress in the spring and the dashpot. This
gives

� ¼ �1 þ �2 ð15:6Þ
where �1 is the stress in the spring and �2 is the stress in the dashpot.
Substituting the relationships for �1 and �2 into Eq. (15.6) now gives

� ¼ E"1 þ �
d"2
dt

ð15:7aÞ

Furthermore, since " ¼ "1 þ "2, we can write:

� ¼ E"þ � d"

dt
ð15:7bÞ

Under constant stress (creep) conditions, d�=dt ¼ 0. Hence, differentiating
Eq. (15.7b) now gives

d�

dt
¼ 0 ¼ E

d"

dt
þ � d2"

dt
ð15:8Þ

Equation (15.8) can be solved by setting v ¼ d"=dt. This gives

0 ¼ Ev þ � dv

dt
ð15:9aÞ

or

dv

v
¼ �E

�
dt ð15:9bÞ

Integrating Eq. (15.9) between the appropriate limits givesðv
vo

dv

v
¼
ðt
0

�E

�
dt ð15:10aÞ

or

ln
v

v0
¼ �Et

�
ð15:10bÞ

Taking exponentials of both sides of Eq. (15.10) gives

v ¼ v0 exp �Et

�

� �
ð15:11Þ

However, substituting v ¼ d"=dt, vo ¼ d"o=dt ¼ �=�, and 
 ¼ �=E into
Eq. (15.11) results in

_"" ¼ _""0 exp � t




� �
ð15:12aÞ
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or

d"

dt
¼ d"0

dt
exp

�t




� �
¼ �

�
exp

�t




� �
ð15:12bÞ

Separating variables and integrating Equation (15.12b) between limits givesð"
0

d " ¼
ðt
0

�

�
exp

�t




� �
dt ð15:13aÞ

or

" ¼ � �
�

 exp

�t




� �
� 1

� �
ð15:13bÞ

Now since 
 ¼ �=E, we can simplify Eq. (15.13b) to give

" ¼ �

E
1� exp

�t




� �� �
ð15:13cÞ

The strain–time dependence associated with Eq. (15.13c) is illustrated
schematically in Fig. 15.4. In general, the predictions from the Voigt model
are consistent with experimental results. Also, as t ¼ 1 the "! �o=E.
Furthermore, for the stress relaxation case, "="o ¼ constant. Hence,
d"=dt ¼ 0. Therefore, from Eq. (15.7) we have

� ¼ E"0 ð15:14Þ
Equation (15.14) gives the constant stress response shown schematically in
Fig. 15.4(b). It is important to note that the molecular weight and structure
of a polymer can strongly affect its time-dependent response. Hence,
increasing the molecular weight (Fig. 15.5) or the degree of cross-linking
in the chain structure tends to increase the creep resistance. This is because
increased molecular weight and cross-linking tend to increase the volume
density of secondary bonds, and thus improve the creep resistance.

Similarly, including side groups that provide structural hindrance
(steric hindrance) to the sliding chains will also increase the creep resistance.
However, in such polymeric systems, the two-component (Voigt or
Maxwell) models do not provide adequate descriptions of the stress–time
or strain–time responses. Instead, multicomponent spring and dashpot
models are used to characterize the deformation response of such poly-
meric systems. The challenge of the polymer scientist/engineer is to de-
termine the appropriate combination of springs and dashpots that are
needed to characterize the deformation response of complex polymeric
structures.
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Example 15.1

An example of a more complex spring–dashpot model is the four-element
one shown in Fig. 15.6. This consists of a Maxwell model in series with a
Voigt model. The overall strain experienced by this model is given by the
sum of the Maxwell and Voigt strain components. This may, therefore, be
expressed as

" ¼ �

E1
þ �

�1
t þ �

E2
1� exp

�t


2

� �� �
ð15:15Þ

The resulting strain–time response associated with the combined
model is presented in Fig. 15.7. Upon loading, this shows the initial elastic
response, "1, associated with the Maxwell spring element at time t ¼ 0. This

FIGURE 15.6 Four-element model consisting of a Maxwell model in series
with a Voigt model. [From Courtney (1990) with permission from McGraw-
Hill.]
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is followed by the combined viscoelastic and viscoplastic deformation of the
Maxwell and Voigt spring and dashpot elements. It is important to note here
that the strain at long times is � �=�1. This is so because the exponential
term in Eq. (15.15) tends towards zero at long times. Hence, the strain–time
function exhibits an almost linear relationship at long times.

Upon unloading (Fig. 15.7), the elastic strain in the Maxwell spring
is recovered instantaneously. This is followed by the recovery of the vis-
coelastic Voigt dashpot strain components. However, the strains in the
Maxwell dashpot are not recovered. Since the strains in the Maxwell dash-
pot are permanent in nature, they are characterized as viscoplastic strains.

15.3 MECHANICAL DAMPING

Under cyclic loading conditions, the strain can lag behind the stress. This
gives rise to mechanical hysterisis. The resulting time-dependent elastic
behavior is associated with mechanical damping of vibrations. Such damp-
ing phenomena may cause induced vibrations, due to applied stress pulses,
to die out quickly. The hysterisis associated with the cyclic deformation of a

FIGURE 15.7 Strain–time response of combined Maxwell and Voigt model
(four-element model). [From Courtney (1990) with permission from
McGraw-Hill.]
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viscoelastic solid can be modeled by eliminating the Maxwell dashpot from
the four-element model (Figs. 15.6 and 15.7).

Upon loading, there are two limiting values of the modulus. The first
corresponds to the so-called unrelaxed modulus, Eu, at t ¼ 0. This is greater
than the relaxed modulus that is reached after some viscoelastic flow has
occurred over a period of time (Fig. 15.8). Upon unloading, the elastic
strain, "1, is recovered instantaneously. This is followed by the gradual
recovery of the Voigt viscoelastic strain.

For a material subjected to cyclically varying stress and strain [Fig.
15.9(a)], the time available for the above flow processes is controlled by the
cyclic frequency, f . This time period, T , is given by the inverse of the cyclic
frequency, T ¼ 1=f . Hence, if T ¼ 1=f is much greater than the time
required for viscoelastic response to occur, then the stress and the strain
will be in phase, and the stress–strain profile will correspond to that of a
linear elastic solid with a modulus equal to the unrelaxed modulus, Eu, Fig.
15.9(b). In contrast, when the cyclic frequency is slow, there is enough time
for viscoelastic deformation to occur. The stress and strain will also be in
phase under these conditions. However, the modulus will be equal to the
relaxed modulus Er (Fig. 15.9).

At intermediate cyclic frequencies, where the cycle period is compar-
able to the inverse of the viscoelastic time constant, the strain lags the stress,

FIGURE 15.8 Strain–time response of a three-element viscoelastic model.
[From Courtney (1990) with permission from McGraw-Hill.]
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FIGURE 15.9 Schematic illustration of (a) the time dependence of applied
stress and applied strain under cyclic loading and (b) relaxed and unrelaxed
moduli observed respectively at slow and high frequencies. [From Courtney
(1990) with permission from McGraw-Hill.]

FIGURE 15.10 Schematic of (a) strain lagging stress at intermediate cyclic
frequencies and (b) resulting hysteresis cross-plot of stress and strain.
[From Courtney (1990) with permission from McGraw-Hill.]

Copyright © 2003 Marcel Dekker, Inc.



and hysterisis occurs. Under these conditions, the stress–strain paths are
rather different during loading and unloading, and the average modulus is
in between the relaxed and the unrelaxed moduli, i.e., between Er and Eu

(Fig. 15.10). The shaded area in Fig. 15.10(b) represents the hysteritic/irre-
versible energy loss per cycle. This can lead to considerable hysteretic
heating during the cyclic deformation of polymeric materials.

15.4 TEMPERATURE DEPENDENCE OF TIME-
DEPENDENT FLOW IN POLYMERS

Since the time-dependent flow of polymer chains is a thermally activated
process, it can be described by the Arrhenius equation. Time-dependent flow
of polymer chains occurs readily above the glass transition temperature, Tg

(Fig. 1.9). Above Tg, the network structure can breakdown and reform
locally. However, below Tg, there is not enough thermal energy for this to
occur. Hence, the material cannot flow easily below Tg.

As discussed earlier, the deformation response can be studied under
constant stress (creep) or constant strain (stress relaxation) conditions. If we
define the creep compliance, C, as the ratio of the strain (at any given time)
and the stress, then we can describe the deformation–time response in terms
of compliance versus time, as illustrated in Fig. 15.11(a). Note that this
shows different creep curves at different temperatures, above or below the
Tg. However, in general, it is much easier to design with a single master
curve.

A single master curve can be achieved by shifting the curves along the
log time axis to form a single curve, Figs. 15.11(a) and (b). This is of great
practical advantage since the individual creep curves may require years to
obtain. In any case, Williams et al. (1955) have proposed the so-called WLF
equation to describe the time-shift factor, aT . This is given by

log aT ¼ �C1ðT � TsÞ
ðC2 þ T � TsÞ

ð15:16Þ

where C1 and C2 are material constants, T is the temperature, and Ts is a
reference temperature. The amount of the shift can be calculated by setting
the reference temperature, and using techniques that are illustrated schema-
tically in Fig. 15.11(a) and (b). Alternatively, we may also define a stress
relaxation modulus (the inverse of the compliance) as a function of time.
This is shown in Fig. 15.11(c), in which the relaxation modulus is plotted
against temperature. This may also be reduced to a single master curve
[Fig. 15.11(d)] using similar techniques to those described earlier.
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FIGURE 15.11 (a) Dependence of creep compliance on time and temperature;
(b) superposition of different curves by horizontal shifting along the time axis
by an amount log at (c) amount of shift to produce master curve; (d) experi-
mentally determined shift factor. [From Meyers and Chawla (1999) with per-
mission from Prentice Hall.]

FIGURE 15.12 Dependence of relaxation modulus on time and polymer struc-
ture. [From Meyers and Chawla (1999) with permission from Prentice Hall.]

Copyright © 2003 Marcel Dekker, Inc.



Finally, it is important to note that the temperature dependence of the
relaxation modulus is highly dependent on molecular weight and the extent
of cross-linking of the polymer chains. This is illustrated in Fig. 15.12, which
shows the time dependence of the relaxation modulus. This can be exploited
in the management of residual stresses in engineering structures and com-
ponents that are fabricated from polymeric materials.

15.5 INTRODUCTION TO CREEP IN METALLIC AND
CERAMIC MATERIALS

The above discussion has focused largely on creep and viscoelasticity in
polymeric materials. We will now turn our attention to the mechanisms
and phenomenology of creep in metallic and ceramic materials with crystal-
line and noncrystalline structures. Creep in such materials is often studied
by applying a constant load to a specimen that is heated in a furnace. When
constant stresses are required, instead of constant load, then the weight can
be immersed in a fluid that decreases the effective load with increasing
length in a way that maintains a constant applied true stress (Andrade,
1911). This is achieved by a simple use of the Archimedes principle.
Similarly, a constant stress may be applied to the speicmen using a variable
lever arm that applies a force that is dependent on specimen length (Fig.
15.13). In any case, the strain–time results obtained from constant stress or
constant load tests are qualitatively similar. However, the precision of con-
stant stress tests may be desirable in carefully controlled experiments.

Upon the application of a load, the instantaneous deformation is
elastic in nature at time t ¼ 0. This is followed by a three-stage deformation
process. The three stages (I, II, and III) are characterized as the primary
(stage I), secondary (stage II), and tertiary (stage III) creep regimes. These
are shown schematically in Fig. 15.14(a). It is also important to note that the
magnitude of the creep strains increases significantly with increasing tem-
perature and stress, Fig. 15.14(a). Furthermore, the relative fractions of the
differrent stages of creep deformation change significantly with increasing
temperature and stress, Fig. 15.14(b).

In many practical engineering problems, e.g., the design of turbine
blades in aeroengines and the design of land-based engine components,
the applied stresses and temperatures are usually sufficient to induce creep
at temperatures above � 0:3�0:5 of the melting temperature, Tm (in K).
Under such conditions, creep deformation may lead to the loss of tolerance
and component/structural failure after many years of service. In such cases,
the time to creep rupture (the creep rupture life) is an important design
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parameter. In general, this decreases with increasing stress and temperature,
Fig. 15.14(a).

Alternatively, we may plot the strain rate [the slope of Fig. 15.14(a)]
against time, as shown in Fig. 15.14(b). This shows that the strain rate
decreases continuously with time in stage I, the primary or transient regime.
This is followed by the stage II creep regime (secondary creep regime) in

FIGURE 15.13 Schematic of creep testing under constant stress conditions.
Creep machine with variable lever arms to ensure constant stress on speci-
men; note that l2 decreases as the length of specimen increases. (a) Initial
position; (b) length of specimen has increased from L0 to L1. [From Meyers
and Chawla (1999) with permission from Prentice Hall.]

FIGURE 15.14 Schematics showing the time dependence of (a) strain and (b)
strain rate. [(b) Taken from Courtney (1990) with permission from McGraw-
Hill.]
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which the strain rate is constant.Finally, in stage III (the tertiary creep
regime), the strain rate increases continuously with time, until creep rupture
occurs at tf . Figure 15.14(b) also shows that the overall creep strain rates
increase with increasing stress and temperature.

The occurrence of the different stages of creep may be explained by
considering the relative contributions of hardening and recovery phenomena
to the overall creep deformation. In stage I, the creep strain rate decreases
continuously with increasing strain. This is due to work hardening phenom-
ena that are associated with increased dislocation density and the possible
formation of dislocation subgrain structures. In stage II, the steady-state
creep regime is associated with the formation of an invariant microstruc-
ture/dislocation substructure in which the hardening due to dislocation sub-
structure evolution is balanced by recovery or softening mechanisms.
Finally, in stage III (the tertiary creep regime), the creep strain rate increases
with increasing time. This is due largely to the onset of creep damage by
microvoid nucleation/growth mechanisms. Stage III creep may also occur as
a result of dynamic recrystallization (Allameh et al., 2001a). Mechanisms
such as these lead to the accelerating creep rates that result ultimately in
creep fracture at t ¼ tf .

In many engineering scenarios, the time to creep rupture provides
some useful guidelines for component design, e.g., in the hot sections of
gas turbines in aeroengines and land-based engines that operate at tempera-
tures of up to � 10008�11508C. However, it is more common to design these
structures to limit creep to the primary or secondary creep regimes.
Furthermore, the overall damage in the material may be exacerbated
in the presence of aggressive chemical environments, e.g., in chemical or
petrochemical structures or the components of aeroengines or land-based
gas turbines, where chemical degradation can occur by chlorination or
sulfidation reactions and high-temperature oxidation mechanisms (Li et
al., 1998).

Before closing, it is important to note that there is increasing evidence
that a number of structural materials do not exhibit a true steady-state creep
regime (Poirier, 1985). Instead, these materials are thought to exhibit a
minimum creep rate, _""min, which is followed by a gradual increase in
creep rates until rupture. Apparently, such materials do not develop the
steady-state microstructures/substructures that are needed for true steady-
state creep. In any case, it is common in such materials to consider the
conditions for _""min instead of the secondary creep rate, _""ss, in regime II.
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15.6 FUNCTIONAL FORMS IN THE DIFFERENT CREEP
REGIMES

As discussed in Sec. 15.5, the functional forms of the strain–time relation-
ships are different in the primary, secondary, and tertiary regimes. These are
generally characterized by empirical or mechanism-based expressions. This
section will focus on the mechanism-based mathematical relationships.

In the primary creep regime, the dependence of creep strain, ", on time,
t, has been shown by Andrade (1911) to be given by

" ¼ �t1=3 ð15:17aÞ
where � is a constant. Equation (15.17a) has been shown to apply to a wide
range of materials since the pioneering work by Andrade (1911) almost a
century ago. The extent of primary creep deformation is generally of interest
in the design of the hot sections of aeroengines and land-based gas turbines.
However, the portion of the creep curve that is generally of greatest engi-
neering interest is the secondary creep regime.

In the secondary creep regime, the overall creep strain, ", may be
expressed mathematically as

" ¼ "o þ "½1� expð�mtÞ� þ _""sst ð15:17bÞ
where the "o is the instantaneous elastic strain, "½1� expð�mtÞ� is the pri-
mary creep term, _""sst represents the secondary creep strain component, m is
the exponential parameter that characterizes the decay in strain rate in the
primary creep regime, " is the peak strain in the primary creep regime, and t
corresponds to time. Similarly, we may express the secondary/steady state
creep strain rate, _""ss, as

_""ss ¼ A�n exp
�Q

RT

� �
ð15:18aÞ

where A is a constant, � is the applied mean stress, n is the creep exponent, Q
is the activation energy, R is the universal gas constant (8.317 J/mol K), and
T is the absolute temperature in kelvins. Taking logarithms of Eq. (15.18)
gives

log _""ss ¼ logAþ n log � � Q

RT
ð15:18bÞ

Equation (15.18) can be used to extract some important creep para-
meters. First, if we conduct constant stress tests at the same temperature,
then all of the terms in Eq. (15.18) remain constant, except for �. We may
now plot the measured secondary strain rates, _""ss, as a function of the
applied mean stress, �. A typical plot is presented in Fig. 15.15. This

Copyright © 2003 Marcel Dekker, Inc.



shows a linear plot of log _""ss versus log �, which is expected from Eq. (15.15).
The slope of this line is the secondary creep exponent, n.*

The parameter n is important because it provides some important clues
into the underlying mechanisms of secondary creep deformation. When
n ¼ 1, then creep is thought to occur by diffusion-controlled creep.
Similarly, for m between 3 and 8, secondary creep is dislocation controlled.
Values of m greater than 7 have also been reported in the literature, espe-
cially for some intermetallics (Allameh et al., 2001a). These are generally
associated with dynamic recrystallization phenomena (unstable microstruc-
tures) and constant structure creep phenomena that result in _""ss values that
scale with ð�2Þn (Gregory and Nix, 1987). Further details on creep deforma-
tion mechanisms will be presented in Sec. 15.8.

Another important secondary creep parameter is the activation
energy. This can also be used to provide some useful insights into the under-
lying processes responsible for thermally activated and stress-activated creep
processes. From Eq. (15.18), and for all Arrhenius processes, it is clear that
the activation energy, Q, can be determined by plotting the secondary or the
minimum creep rate, _""ss, as a function of the inverse of the absolute tem-
perature 1=T (in K). A typical plot is shown in Fig. 15.16. From Eq. (15.18),
the negative slope of the line corresponds to �Q=R. Hence, the activation
energy, Q, can be determined by multiplying the slope by the universal gas
constant, R.

FIGURE 15.15 Plot of secondary creep strain rate versus mean stress to deter-
mine the creep exponent. [From Ashby and Jones (1996) with permission
from Butterworth-Heinemann.]

Copyright © 2003 Marcel Dekker, Inc.



In general, the constants A, n, and Q can vary with temperature and
stress. This is because the underlying mechanisms of creep deformation can
vary significantly with stress and temperature. In most crystalline materials,
diffusion-controlled creep is more common at low stresses and moderate/
high temperatures, while dislocation-controlled creep is more common at
moderate/high temperatures and higher stress levels.

Furthermore, the transition from the primary to the secondary creep
regime appears as an inflection point when the creep data are collected via
constant-load experiments. The strain rate corresponding to this inflection
point is often characterized as minimum strain rate, _""min. However, Orowan
(1947) has noted that the minimum strain rate obtained from the inflection
point, at the end of the primary creep regime (under constant-load condi-
tions) may not have much to do with the subsequent steady state under
constant-stress conditions. Nevertheless, the practice is very widespread,
and may explain some of the higher creep exponents that have been reported
in the literature.

In general, the rate-controlling process in the secondary creep regime
involves volume diffusion at high homologous temperatures ðT=TmÞ or dis-
location core diffusion at lower homologous temperatures. Furthermore,
although the magnitudes of the activation energies, Q, differ from material
to material, it has been shown that QCD ¼ 0:6Qv (where subscript CD

corresponds to core diffusion and subscript v corresponds to vacancy
diffusion (Burton and Greenwood, 1970a, 1970b).

At higher stress levels, the power law expression breaks down. In this
regime, Garafalo (1963) has found that the creep rate can be represented by

FIGURE 15.16 Determination of the activation energy from a plot of secondary
creep strain rate versus the inverse of the absolute temperature. [From Ashby
and Jones (1996) with permission from Butterworth-Heinemann.]
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_"" ¼ B sinðc�Þm exp � Q

RT

� �
ð15:18cÞ

where B and c are constants, m is the creep exponent, and the other terms
have their usual meaning. In this regime, more of the creep strain rate is
derived from thermally activated glide, and the creep exponents show an
increasing stress dependence from typical values between 3 and 8.

Finally, the overall time dependence of the creep curves can be mod-
eled using the so-called � approach (Evans and Wiltshire, 1985). This gives
the time dependence of the creep strain as

" ¼ �1ð1� e��2t Þ þ �3ðe�4t � 1Þ ð15:18dÞ
where �1 and �3 scale the strains, and �2 and �4 are the curvatures in the
primary and tertiary creep regimes. The � parameters are also dependent on
temperature (Evans et al., 1993; Wiltshire, 1997), as shown in Fig. 15.17. In
any case, the applicability of the so-called � approach has been demonstrated
for a wide range of materials. The � approach can also be used to determine
the activation energies associated with the primary and tertiary creep rate
constants using techniques developed by Evans and Wiltshire (1985).

15.7 SECONDARY CREEP DEFORMATION AND
DIFFUSION

The steady-state creep rate, _""ss, may be characterized by the following
expression of Mukherjee et al. (1969):

_""ss ¼ �Gb

kT
D0 exp

�Q

RT

� �
b

d

� �p �

G

� �
ð15:19Þ

where � is a dimensionless constant, G is the shear modulus, b is the Burgers
vectors, k is the Boltzmann constant, T is the absolute temperature, Do is
the diffusion coefficient, Q is the activation energy, R is the universal gas
constant, d is the grain size, and � is the applied mean stress. Equation
(15.19) suggests that the diffusion coefficient, D, is an important parameter.
This is given by

D ¼ D0 exp
�QD

RT

� �
¼ zb2	D exp

�QD

RT

� �
ð15:20Þ

where Do is a constant, QD is the activation energy for diffusion, R is the gas
constant, T is the absolute temperature, z is the coordination number of
atoms, b is the Burgers vector, and 	D is the atomic jump frequency. The
creep activation energy has been shown to correlate well with the diffusion
activation energy, QD (Sherby and Burke, 1968). This is shown in Fig. 15.18,
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in which Q and QD are shown to be highly correlated for a large number of
metallic and nonmetallic materials.

However, in some materials, the activation energy for creep can be up
to half of that required for bulk/lattice diffusion. Such low creep activation
energies are often associated with grain boundary diffusion processes
ðQGB � 0:5�0:6QDÞ. In any case, it is clear that diffusion processes play
an important role in creep processes, as discussed by Burton and
Greenwood (1970a,b). Also, since diffusion involves vacancy motion, an

FIGURE 15.17 Variations of � parameters (in DT2203Y05) with stress and tem-
perature. [From Wiltshire (1997) with permission from TMS.]
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understanding of this subject is important in developing a basic understand-
ing of microscopic creep processes. These will be described in some detail in
the next section.

15.8 MECHANISMS OF CREEP DEFORMATION

15.8.1 Introduction

As discussed earlier, creep deformation may occur by dislocation-controlled
or diffusion-controlled mechanisms. In cases where creep is dislocation con-
trolled, the underlying mechanisms may involve the unlocking of disloca-
tions that are pinned by precipitates or solute atoms/interstitials. In such
cases, the unlocking may occur by the exchange of atoms and vacancies,
which gives rise to dislocation climb, Fig. 15.19(a). Such climb processes
tend to occur at temperatures above � 0:3Tm (Tm is the melting temperature
in kelvins). Climb may also occur by core diffusion, as illustrated schema-
tically in Fig. 15.19(b).

Alternatively, dislocation creep may occur by a sequence of glide and
climb mechanisms, as illustrated in Fig. 15.20. These involve the detachment
of dislocations from local obstacles by climb processes. This is followed by

FIGURE 15.18 Correlation of the creep activation energy with the self-diffusion
activation energy. [From Sherby and Burke, 1968.]
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dislocation glide. The process then repeats itself when the gliding dislocation
encounters another obstacle. In this way, significant creep deformation can
occur by combinations of dislocation glide and climb processes.

At lower stresses and higher temperatures ð� 0:5�0:99TmÞ, creep may
occur by bulk or grain boundary diffusion mechanisms (Figs 5.21 and
15.22). Bulk diffusion mechanisms involve a flux of vacancies that produce
a net increase in length in the direction of the applied tensile stress (Fig.
15.21) or a net decrease in length in the direction of applied compressive

FIGURE 15.19 How diffusion leads to dislocation climb: (a) atoms diffuse from
the bottom of the half-plane; (b) core diffusion of atoms. [From Ashby and
Jones (1996) with permission from Butterworth-Heinemann.]

FIGURE 15.20 Schematic illustration of dislocation glide and climb processes.
[From Ashby and Jones (1996) with permission from Butterworth-
Heinemann.]
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FIGURE 15.21 Schematic illustration of bulk diffusion. [From Courtney (1990)
with permission from McGraw-Hill.]

FIGURE 15.22 Schematic of grain boundary diffusion (Coble) creep. [From
Meyers and Chawla (1998) with permission from Prentice Hall.]
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stresses. Creep by bulk diffusion is often characterized as Nabarro–Herring
creep, named after Nabarro (1948) and Herring (1950).

Alternatively, in materials with smaller grain sizes, creep deformation
may occur by fast diffusion along grain boundary channels, Fig. 2.12(b).
This gives rise to a creep strain-rate dependence that is very sensitive to
grain size. Furthermore, since unchecked diffusion along grain boundaries
is likely to lead to microvoid nucleation, grain boundary sliding mechanisms
are often needed to accommodate the diffusion or deformation at grain
boundaries. This section reviews the basic mechanisms of creep deformation
in crystalline and noncrystalline metals and ceramics.

15.8.2 Dislocation Creep

As discussed earlier, dislocation creep may occur by glide and/or climb
processes (Fig. 15.20). In the case of pure glide-controlled creep, Orowan
(1947) has proposed that creep involves a balance between work hardening
and recovery during deformation at high temperature. This gives

d� ¼ @�

@"

� �
t ;�

d"þ @�

@t

� �
�;"

dt ð15:21Þ

where
@�

@"

� �
t;�

is the rate of hardening,
@�

@t

� �
�;"

is the rate of recovery, and

the other variables have their usual meaning. Theories have been proposed
for the modeling of dislocation-controlled creep (Weertman, 1955, 1957,
Mukherjee et al., 1969). The models by Weertman (1955, 1957) consider
edge dislocation climb away from dislocation barriers. In the first model
(Weertman, 1955), Lomer–Cottrell locks are considered as barriers. The
dislocations overcome these barriers by climb processes aided by vacancy
or interstitial generation. The second model by Weertman (1957) was devel-
oped for hexagonal closed packed (h.c.p) metals. Subsequent work by Bird
et al. (1969) showed that the secondary creep rate due to the climb of edge
dislocations may be expressed as

_""ss ¼ AGb

kT

�

G

� �n
ð15:22Þ

where A is a constant, and the creep exponent, n, is equal to 5. In general,
however, creep exponents between 3 and 8 have been associated with dis-
location glide–climb mechanisms. Furthermore, creep exponents greater
than 8 have been reported in cases where constant structure creep occurs.
These give rise to strain rates that scale with �2 (and not just �Þ in Eq.
(15.22) (Gregory and Nix, 1987). Hence, the apparent creep exponents asso-
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ciated with constant structure creep may be between � 6 and 16 (Soboyejo
et al., 1993).

Before closing, it is important to discuss the so-called Harper–Dorn
creep mechanism. This was first proposed by Harper and Dorn (1957) for
creep in aluminium with large grain size (d > 400 mm). They concluded that
creep in such material at low stresses and high temperatures can occur by
dislocation climb. The resulting expression for the strain rate due to
Harper–Dorn creep is

_""HD ¼ AHD
DLGb

kT

�

G

� �
ð15:23Þ

where AHD is a constant, DL is the lattice diffusion coefficient, G is the shear
modulus, and all other constants have their usual meaning. Harper–Dorn
creep has been reported in a number of systems, including some ceramics,
where other mechanisms of creep can occur. However, a number of sub-
sequent investigators have found it difficult to replicate the original work
of Harper and Dorn.

15.8.3 Diffusion Creep and Grain Boundary Sliding

Creep may occur by lattice or grain boundary at lower stresses ð�=G � 10�4Þ
and moderate/high temperatures. The mechanisms proposed for bulk/lattice
diffusion-controlled creep are illustrated in Fig. 15.21. Under the applica-
tion of stress, vacancies move from boundary sources to boundary sinks. A
corresponding flux of atoms also occurs in the opposite direction. This was
first studied by Nabarro (1948) and Herring (1950). The strain rate due to
Nabarro–Herring creep can be expressed as

_""ss ¼ ANHDL
Gb

kT

b

d

� �2 �

G

� �
ð15:24Þ

where ANH is a Nabarro–Herring creep constant, DL is the lattice diffusion
coefficient, and the other constants have their usual meaning.

Alternatively, diffusion-controlled creep may also occur by grain
boundary diffusion. This is illustrated in Fig. 15.22. This was first recog-
nized by Coble (1963). The grain boundary diffusion is driven by the same
type of vacancy concentration gradient that causes Nabarro–Herring creep.
However, in the case of Coble creep, mass transport occurs by diffusion
along grain boundaries in a polycrystalline structure, or diffusion along the
surfaces of a single crystal. The expression for the strain rate due to Coble
creep is given by
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_""c ¼ AcDGB
Gb

kT

�

b

� �
b

d

� �3 �

G

� �
ð15:25Þ

where Ac is the Coble creep constant, DGB is the grain boundary diffusion
coefficient, � is the effective thickness of the grain boundary, and the other
terms have their usual meaning. It is important to note here that the Coble
creep rate is proportional to 1=d3 (where d is the grain size). In contrast, the
Nabarro–Herring creep rate is proportional to 1=d2. Coble creep is, there-
fore, much more sensitive to grain size than is Nabarro–Herring creep.
Furthermore, Coble creep is more likely to occur in materials with finer
grain sizes.

The strong sensitivity of Coble creep and Nabarro–Herring creep to
grain size suggests that larger grain sizes are needed to improve the resis-
tance to diffusional creep. This has prompted the development of large grain
superalloys for thermostructural applications in aeroengines and land-based
engines. The most extreme examples of such large grained structures are
single-crystal alloys or directionally solidified alloys with all their grain
boundaries aligned parallel to the applied loads. Issues related to the design
of such creep resistant microstructures will be described later on in this
chapter.

Before concluding this section on diffusion-controlled creep, it is
important to discuss the importance of grain boundary sliding phenomena.
These are needed to prevent microvoid or microcrack formation due to the
mass transfer associated with grain boundary or bulk diffusion (Figs 15.21
and 15.22). Hence, the diffusion creep rates must be balanced exactly by
grain boundary sliding rates to avoid the opening up cracks or voids. This
is illustrated in Figs 15.23(a) and (b), which are taken from a review by
Evans and Langdon (1976). Note that the grain boundary sliding heals the
crack/voids [Fig. 15.23(c)] that would otherwise open up due to grain
boundary diffusion, Fig. 15.23(b). Conversely, we may also consider the
accommodation of grain boundary sliding by diffusional flow processes.
This can be visualized by considering an idealized interface with a sinu-
soidal profile (Fig. 15.24). Note that the sliding of the grain boundaries
(due to an applied shear stress) must be coupled with diffusional accom-
modation to avoid opening up cracks or microvoids. Diffusional creep and
grain boundary sliding are, therefore, sequential processes. As with most
sequential creep processes, the slower of the two processes will control the
creep rate.

Grain boundary sliding is particularly important in superplasticity. In
fact, superplasticity is generally thought to occur largely by grain boundary
sliding. However, large amounts of such sliding may lead, ultimately, to
microvoid nucleation and creep rupture in the tertiary creep regime.
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15.8.4 Deformation Mechanism Maps

The above discussion has shown that creep deformation may occur by a
range of dislocation-controlled and diffusion-controlled mechanisms.
However, the mechanisms that prevail depend strongly on the applied stress,
the environmental temperature, the strain rate and the grain size. The pre-
vailing mechanisms can be summarized conveniently on so-called deforma-
tion mechanism maps (Fig. 15.25). These show that parametric ranges of
normalized parameters associated with different deformation mechanisms.

Examples of deformation mechanism maps are presented in Figs
15.25a and 15.25b. Figure 15.25(a) shows the domains of elastic and plastic
deformation on a plot of normalized stress ð�=GÞ versus the homologous
temperature ðT=TmÞ. Note that elastic deformation is the dominant mechan-
ism at lower stresses and temperatures. Also, conventional plastic flow is the
dominant mechanism at higher stresses and lower temperatures. However,
at intermediate and higher temperatures, dislocation creep is the most likely
mechanism. In contrast, at lower stresses and higher temperatures, grain
boundary diffusion (Coble creep) is the dominant mechanism. The Coble
creep domain also increases with decreasing grain size. At the highest tem-

FIGURE 15.23 (a) Four grains in a hexagonal array before creep deformation;
(b) after deforming by diffusional creep, one dimension of the grain is
increased and the other is decreased, and ‘‘voids’’ are formed between the
grains; (c) the voids are removed by grain boundary sliding. The extent of
sliding displacement is quantified by the distance Y 0Y 00, which is the offset
along the boundary between grains 1 and 3 of the original vertical scribe line
XYZ. [From Evans and Langdon, 1976.]
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peratures and lower stresses, pure viscous flow (creep exponent of 1) occurs
by Nabarro–Herring creep (bulk diffusion).

For comparison, a different type of deformation mechanism map is
presented in Fig. 15.25(b). This shows a plot of strain rate against �=G, in
which the domains for the different deformation mechanisms are clearly
identified. Quite clearly, other types of plots may be used to show the ranges
of nondimensional parameters corresponding to different grain sizes, strain

FIGURE 15.24 (a) Steady-state grain boundary sliding with diffusional accom-
modations; (b) same process as in (a), in an idealized polycrystal—the dashed
lines show the flow of vacancies. [Reprinted with permission from Raj and
Ashby, 1971.]
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rates, temperatures, and applied stresses. The boundaries in the different
maps and the underlying creep deformation mechanisms will also depend
strongly on the structure of the different materials.

A book containing deformation mechanism maps for selected materi-
als has been published by Frost and Ashby (1982). Such maps are extremely
useful in the selection of materials for high-temperature structural applica-
tions. However, the users of such maps must be careful not to attribute too

FIGURE 15.25 Deformation mechanism maps: (a) �=G versus T =Tm; (b) "s
versus �=G. [From Ashby and Jones (1996) with permission from
Butterworth-Heinemann.]
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much precision to these maps. This is due to the fact that the equations and
experimental data from which the maps are constructed are only approx-
imate in nature. Hence, the maps are no better or worse than the equations/
data from which they were constructed (Frost and Ashby, 1982).

15.9 CREEP LIFE PREDICTION

A large number of engineering structures are designed to operate without
creep failure over time scales that can extend over decades. Since the creep
tests that are used to predict the lives of such structures are typically carried
out over shorter time scales (usually months), it is important to develop
methods for the extrapolation of the test data to the intended service dura-
tions. Such approaches assume that the underlying creep mechanisms are
the same in the short-term creep tests and the long-term service conditions.
However, this cannot be guaranteed without testing for extended periods of
time, which is often impractical.

Nevertheless, it is common to use measured creep data to estimate the
service creep lives of several engineering components and structures. One
approach involves the use of experimental results of creep lives obtained at
different stresses and temperatures. An example of such results is presented
in Fig. 15.26. This shows different creep curves obtained over a range of

FIGURE 15.26 Plots of stress versus fracture time obtained from iron-based
alloy (S590) at various temperatures. [Original data from Grant and Bucklin
(1950); adapted from Courtney (1990) with permission from McGraw-Hill.]
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testing temperatures. Such data can be difficult to use in practice due to the
inherent difficulties associated with interpolation and extrapolation between
measured data obtained at different temperatures and stresses. It is, there-
fore, common to use creep master curves that reduce all the measured creep
data to a single creep curve.

The essential idea behind the master curve is that the time to failure, tf ,
is dominated by the secondary creep regime. If this is the case, then we may
take the natural logarithms of Eq. (15.18a) to obtain Eq. (15.18b). If we now
express logAþ n log � as f ð�Þ, we may rewrite Eq. (15.18) as

log _""ss ¼ � Q

RT
þ f ð�Þ ð15:26Þ

where log refers to natural logarithms ðlnÞ, _""ss is the steady-state strain rate,
Q is the activation energy, R is the universal gas constant, and T is the
absolute temperature. Furthermore, if we now assume that the time to fail-
ure, tf , is inversely proportional to the secondary strain rate, _""ss, then tf ¼
k _""ss or _""sstf ¼ k 0, where k and k 0 are proportionality constants (Monkman
and Grant, 1956). Substituting this into Eq. (15.26) and rearranging gives

T ½log tf � log k þ f ð�Þ� ¼ Q

R
ð15:27Þ

Since Q=R is a constant, when the same mechanism prevails in the short-
and long-term tests, then the left-hand side of Eq. (15.27) must be equal to a
constant for a given creep mechanism. This constant is known as the
Larsen–Miller parameter (LMP). It is a measure of the creep resistance of
a material, and is often expressed as

LMP ¼ T ðlog tf þ C Þ ð15:28Þ

where log tf is the log to the base 10 of tf in hours, and C is a constant
determined by the analysis of experimental data. The Larsen–Miller plot for
the experimental data presented in Fig. 15.26 is shown in Fig. 15.27. This
shows that the family of curves in Fig. 15.26 reduces to a single master curve
that can be used to estimate the service creep life over a wide range of
conditions. Since the Larsen–Miller parameter varies with stress, the implicit
assumption is that different temperature and time combinations will have
the same Larsen–Miller parameter at the same stress. This will only be a
good assumption if the underlying creep mechanisms are the same under the
experimental and projected service conditions.
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15.10 CREEP DESIGN APPROACHES

Since creep generally occurs at temperatures above � ð0:3�0:5Þ of the melt-
ing temperature, Tm (in K), it is common to choose higher melting-point
metals and ceramics in the initial stages of creep design (see Fig. 15.28).
However, designing against creep involves much more than simply choosing
a higher melting-point solid. Hence, beyond the initial choice of such a solid,
the internal structure of the material can be designed to provide significant
resistance to creep deformation. In the case of designing against power law
creep in metals and ceramics, there are two primary considerations.

First, the materials of choice are those that resist dislocation motion.
Hence, materials that contain obstacles to dislocation motion are generally
of interest. These include precipitation strengthened and solid solution
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FIGURE 15.27 Larsen–Miller plot of the data presented in Figure 15.26 for S-
590 alloy. [From Hertzberg (1996) with permission from John Wiley.]
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strengthened materials. However, the precipitates or second phases must be
stable at elevated temperature to be effective creep strengtheners.

The second approach to creep strengthening of power law creeping
materials involves the selection of materials with high lattice resistance to
dislocation motion. Such materials are generally covalently bonded solids.
They include oxides, carbides, and nitrides. Unfortunately, however, these
materials are brittle in nature. They therefore present a different set of
problems to the designer.

Most designs are done for power law creeping solids. However, in
materials with relatively small grain sizes, diffusional creep may become
life limiting. This is particularly true in materials subjected to low stresses
and elevated temperature. Material design against creep in such materials
may be accomplished by: (1) heat treatments that increase the grain size, (2)
the use of grain boundary precipitates to resist grain boundary sliding, and
(3) the choice of materials with lower diffusion coefficients. Diffusional
creep considerations are particularly important in the design of structures
fabricated from structural ceramics in which power law creep is suppressed

FIGURE 15.28 Melting or softening temperatures for different solids. [From
Ashby and Jones (1996) with permission from Butterworth-Heinemann.]
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by their high lattice resistance, and diffusion creep is promoted by their
small grain sizes.

15.11 THRESHOLD STRESS EFFECTS

In the case of oxide-dispersion-strengthened (ODS) alloys, a number of
researchers (Williams and Wiltshire, 1973; Parker and Wiltshire, 1975;
Srolovitz et al., 1983, 1984; Rösler and Arzt, 1990; Arzt, 1991) have sug-
gested that a threshold stress is needed to detach grazing dislocations that
are pinned to the interfaces of oxide dispersions and other types of disper-
soids/precipitates. In such cases, the creep strain rate is controlled by a
reduced stress ð� � �oÞ, such that

_"" ¼ A 0ð� � �0Þp exp
�QC

RT

� �
ð15:29Þ

where A 0 is a constant, A 0 6¼ A, p � 4, �o is a back stress or the so-called
threshold stress, Q is the activation energy corresponding to the minimum
creep rate at a constant ð� � �oÞ, and the other constants have their usual
meaning. Unfortunately, however, �o cannot be independently measured or
predicted. Hence, further research is needed to understand better the creep
behavior of ODS alloys.

It is important to note that a wide range of dislocation substructures
have been observed in ODS alloys (Mishra et al., 1993; DeMestral et al.,
1996). Mishra (1992) has also developed dislocation mechanism maps that
show the rate-controlling dislocation processes that are likely to be asso-
ciated with different microscale features. As with a number of creep
researchers that have examined the creep behavior of ODS alloys,
Mishra et al. (1993) have used the concept of a threshold stress in the
analysis of creep data obtained for a number of materials. Their analysis
also separates out the effects of interparticle spacing from the threshold
stress effects.

Finally in this section, it is important to note that the threshold stress
in several aluminum-base particle-hardened systems has also been shown to
exhibit a temperature dependence (Sherby et al., 1997). This temperature
dependence has been explained by dislocation/solute interactions akin to
those observed in dilute solid solutions. In particular, Fe and Mg have
been suggested as the two elements that contribute to the observed threshold
stress effects in aluminum-base particle-hardened systems.
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15.12 CREEP IN COMPOSITE MATERIALS

Composite structures can be designed against creep deformation. This may
be accomplished by the use of stiff elastic reinforcements that resist plastic
flow. The resistance provided by the reinforcements depends strongly on
their shape and elastic/plastic properties. Hence, rod-like reinforcements
provide a different amount of creep strengthening compared to disk-shaped
reinforcements. Also, the geometry of rod-like or disk-shaped reinforce-
ments can significantly affect the overall creep strength of a composite.

The strengthening associated with composites reinforced with rod-like
and disk-shaped reinforcements has been modeled by Rösler et al. (1991)
(see Fig. 15.29). They describe the overall creep strengthening in terms of
a strengthening parameter, � ¼ �=�o, that represents the ratio of the

FIGURE 15.29 Predictions of creep strengthening in composites reinforced
with (a) rod-like reinforcements and (b) disk-shaped reinforcements. [From
Rösler et al. (1991) with permission from Elsevier.]
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composite strength to the matrix strength. In the case of rod-like reinforce-
ments, i.e., whiskers or fibers, � is given by

� ¼ 1þ 2 2þ l

R

� �
f 3=2 ð15:30aÞ

where l is the length of the fibers, R is the fiber radius, and f is the volume
fraction of fibers. The parameter, �, is embedded in the power law creep
expression for a composite _""c ¼ _""0ð�=��0Þn, where � is the stress, n is the
creep exponent, �o is the reference stress, _""0 is the creep coefficient, and _""c is
the composite creep rate. Similarly, � is given by

� ¼ 1þ 5þ l

R

� �
f 3=2 ð15:30bÞ

where l and R correspond to the length and radius of the plate, and f is the
plate volume fraction. Plots of � versus fiber volume fraction are presented
in Fig. 15.29(a) and (b) for composites with different reinforcement volume
fraction, f . These plots show the strong dependence of the creep strengthen-
ing parameter, �, on f and reinforcement shape. The predictions of creep
strengthening have also been shown to provide reasonable estimates of creep
strengthening in in-situ titanium matrix composites reinforced with TiB
whiskers (Soboyejo et al., 1994). However, the TiB whiskers also appear
to resist grain boundary sliding in a way that is not considered in the existing
continuum models.

Before closing, it is important to note that the deformation restraint
provided by the stiff elastic whiskers may be relaxed by diffusional relaxa-
tion mechanisms (Rösler et al., 1991). Such diffusional relaxation processes
are promoted by the stress gradients that exist between the top and middle
sections of fibers/whiskers. These drive a flux that relaxes the deformation
restraint provided by the stiff fibers/whiskers. The process is illustrated
schematically in Fig. 15.30, which is taken from a paper by Rösler et al.
(1991).

15.13 THERMOSTRUCTURAL MATERIALS

Although composite materials are of considerable scientific interest, most of
the existing elevated-temperature structural materials (thermostructural
mateirals) are actually monolithic, metallic, or ceramic materials with rela-
tively high melting points. The common high-temperature metallic systems
include: superalloys and refractory alloys; while the ceramics include silicon
nitride, silicon carbide, and some oxides.
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In recent years, however, high-temperature structural intermetallics
have also been developed for potential structural applications in the inter-
mediate-temperature regime. These include gamma-based titanium alumi-
nides (based on TiAl), nickel aluminides (based on NiAl and Ni3Al), and
niobium aluminides (based on Nb3Al). The structure and properties of these
systems will be discussed briefly in this section on heat-resistant materials.

The superalloys are alloys of Fe, Co, or Ni that have excellent combi-
nations of creep strength, hot corrosion resistance, and thermal fatigue
resistance (Bradley, 1979; Gell et al., 1984; Loria 1989, 1997). These are
typically alloyed with Nb, Mo, W, and Ta to obtain alloys with a remark-
able balance of mechanical properties and resistance to environmental
degradation, which are used extensively in aeroengines, land-based engines,
and nuclear reactors.

Superalloys have been produced by a range of processing techniques.
These include: casting, powder processing, mechanical alloying, forging,
rolling, extrusion, and directional solidification of columnar and single-crys-
tal structures. In the case of nickel-base superalloys, Mo, W, and Ti are
effective solid solution strengtheners; Cr and Co also result in some solid
solution strengthening. However, the main purpose of Co is to stabilize the
Ni3Al � 0 phase in the � nickel solid solution (Fig. 15.31). Furthermore, Nb
or Ta may also substitute for Al in the ordered Ni3Al � 0 structure, which
exhibits a three- to six-fold increase in strength with increasing temperature
between room temperature and � 7008C (Stoloff 1971; Jensen and Tien
1981a, 1981b). Most recently, single-crystal IN 718 alloys containing
Ni3Nb � 00 precipitates have been produced in a � Ni solid solution matrix
(Mercer et al., 1999). These have remarkable combinations of creep and
fatigue resistance.

FIGURE 15.30 Schematic illustration of diffusional relaxation. [From Rösler et
al. (1991) with permission from Elsevier.]
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The use of single-crystal nickel-base superalloys has increased largely
as a reuslt of their superior creep resistance with respect to coarse-grained
versions of these alloys. Furthermore, the absence of grain boundary ele-
ments (which reduce the incipient melting temperature) and the appropriate
use of heat treatments can be used to achieve strength levels that are close to
maximum possible values. In most cases, the crystals are oriented such that
their normals correspond with the [001] orientation, which is generally the
direction of the centrifugal force vector in blade and vane applications.
However, some deviations in crystal orientation (typically controlled less
than 88) are observed in cast single crystals, giving rise to some variability
in the measured creep date.

A number of researchers have studied the mechanisms of creep defor-
mation in single-crystal nickel base superalloys. These include Pollock and
Argon (1992), Moss et al. (1996), and Nabarro (1996). In general, the � 0

phase is difficult to shear. The initial stages of deformation, therefore, occur
by the filling of the � channels with dislocations. In some systems, the � 0

phase may also undergo creep deformation. This gives rise to a rafted mor-
phology that is shown in Fig. 15.32. Evidence of such rafting mechanisms
has been reported (Pearson et al., 1980; Pollock and Argon, 1992; Nabarro,
1996). The rafted morphology is generally associated with a degradation in
creep resistance.

Due to their improved creep resistance, single-crystal nickel-base
superalloys are used extensively in blade and vane applications in the gas
turbines of aeroengines. They are used mostly in the hottest sections of the

FIGURE 15.31 Transmission electron microscope superlattice dark-field
images of � precipitates in MXON. [From Kahn et al. (1984) with permission
from TMS.]
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turbine at temperatures below � 1108C. This temperature limit is due partly
to possible creep failure that can occur during thermal exposures above
11008C (Fig. 15.33). However, since this upper limit defines the limits in
the efficiency and thrust that can be derived from gas turbines, engine
designers have gone to great lengths to introduce internal cooling passages
(Fig. 15.34) and thermal barrier coatings (TBCs) (Fig. 15.35) that can be
used to increase the actual surface temperatures of blades and vanes that are
fabricated from single-crystal nickel-base alloys.

In the schematic shown in Fig. 15.35, the thermal barrier is an yttria-
stabilized zirconia coating (typically ZrO2 þ 7:5mol%Y2O3Þ with a cubic
crystal structure. This can be used to promote a temperature drop of
� 2008C from the surface of the blade to the surface of the nickel-base
superalloy. The TBC is bonded to the nickel-base superalloy with a PtAl
or FeCrAlY bond coat. As a result of interdiffusion mechanisms, a ther-
mally grown oxide (TGO) develops between the bond coat and the zirconia
coating. The thickness of this bond coat increases parabolically (Walter et
al., 2000; Chang et al., 2001) until failure initiates by film buckling or
cracking (Choi et al., 2000) from morphological imperfections at the inter-
face between the bond coat and the TGO (Mumm and Evans, 2001) or
ratcheting due to incremental deformation in the TBC system (Karlsson
and Evans, 2001).

FIGURE 15.32 Electron micrographs of NixAl �
0 precipitates in a � solid solu-

tion matrix: (a) cubic � 0 phase in a � matrix before creep deformation and (b)
rafted structure after creep deformation. [Reprinted with permission from
Fredholm and Strudel.]
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In addition to their applications in blades and vanes, polycrystalline
ingot or powder metallurgy nickel-base superalloys are used extensively in
disk applications within the turbine sections of aeroengines and land-based
engines. Since the temperatures in the disk sections are much lower than
those in the blade/vane sections, the polycrystalline nickel-base superalloys
are generally suitable for applications at temperatures below � 6508C. In
this temperature regime, IN 718, IN 625, and IN 600 are some of the ‘‘work
horses’’ of the aeroengine industry (Loria, 1989, 1997). These alloys have
good combinations of creep and thermal fatigue resistance. However, there
have been efforts to replace them with powder metallurgy nickel-base super-
alloys in recent years.

FIGURE 15.33 Stress versus temperature curves for rupture in 1000 h for
selected nickel-based superalloys. [From Sims and Hagel (1972) with permis-
sion from John Wiley.]
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It should be clear that the upper temperature limits to the applications
of nickel are set by the intrinsic limits (melting point) of nickel. Hence,
efforts to produce engines with greater efficiency have focused largely on
the exploration of materials with inherently greater melting points than
nickel. The systems that have been explored include: ceramics (Si3N4, SiC,
and oxides), ceramic/ceramic composites (Si/SiC and oxide/oxide), and

FIGURE 15.34 Secondary creep behavior in (a) Nb–11Al–41Ti–1.5 Mo–1.5 Cr
alloy in atom % [from Hayes and Soboyejo, 2001) and (b) 44Nb–35Ti–6Al–
5Cr–8V–1W–0.5Mo–0.3Hf–0.5O–0.3C alloy [from Allameh et al., 2001c.]

FIGURE 15.35 Photograph of thermal barrier coating. [Courtesy of Dr. Daniel
R. Mumm.]
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intermetallics (niobium silicides, NiAl, and Mo–Si–B). Unfortunately, how-
ever, none of these materials have the combination of damage tolerance and
creep resistance required for near-term applications in engines. There is,
therefore, a need for further materials research and development efforts to
produce the next generation of gas-turbine materials/systems.

In the intermediate-temperature regime between 5008 and 7008C,
gamma-based titanium aluminides, Ni3Al-base alloys, and niobium-base
alloys are being developed for potential applications. The gamma-based
titanium aluminides have attractive combinations of creep resistance
(Martin et al., 1983; Hayes and London, 1991; Maruyama et al., 1992;
Oikawa, 1992; Wheeler et al., 1992; Bartels et al., 1993; Es-Souni et al.,
1993; Soboyejo and Lederich, 1993; Bartholomeusz and Wert, 1994; Jin
and Bieler, 1995; Lu and Hemker, 1997; Skrotzki, 2000; Allameh et al.,
2001a) at temperatures up to � 7608C. However, gamma-based titanium
aluminides are limited by oxidation phenomena above this temperature
regime and by brittleness at room temperature (Kim and Dimmiduk,
1991; Chan, 1992; Davidson and Campbell, 1993; Campbell et al., 2000;
Lou and Soboyejo, 2001). Similar problems with brittleness have been
encountered with the NiAl intermetallic system (Noebe et al., 1991;
Ramasundaram et al., 1998).

However, in the case of Nb3Al- and Ni3Al-based intermetallics, alloys
with attractive combinations of creep and oxidation resistance have been
designed for intermediate-temperature applications below � 7008C. This
has been achieved largely by alloying with boron in Ni3Al-based systems
(Aoki and Izumi, 1979; Liu, 1993; Sikka, 1997). Similarly, in the case of
Nb3Al-based intermetallics alloyed with 40 atom % Ti (Nb–15Al–40Ti),
attractive combinations of fatigue and fracture behavior (Ye et al., 1998;
Soboyejo et al., 1999) and creep resistance [Fig. 15.34(a)] have been
designed. The creep exponents in the Nb–15Al–40Ti alloy also suggest dif-
fusion-controlled creep at lower stresses ðn � 1Þ and dislocation-controlled
creep at higher stresses ðn � 5Þ.

Adequate combinations of fatigue and fracture resistance (Loria, 1998,
1999) and creep resistance (Allameh et al., 2001b, c) have been reported for
a multicomponent alloy (44Nb–35Ti–6Al–5Cr–8V–1W–0.5Mo–0.3Hf–
0.50–0.3C) developed recently for intermediate-temperature applications
below � 7008C. There have also been detailed studies of creep deformation
and creep strengthening in this alloy (Allameh et al., 2001b, 2001c). Some of
the creep data obtained from this alloy are presented in Figs 15.34(b) and
15.35. The creep exponents in Fig. 15.34(a) suggest a transition from diffu-
sion-controlled creep to dislocation-controlled creep at higher stresses. Also,
as with other b.c.c. metals and their alloys (Wadsworth et al., 1992), an
inverted primary is observed along with truncated secondary and extended
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tertiary creep regime in the multicomponent alloy 44Nb–35Ti–6Al–5Cr–
8V–1W–0.5Mo–0.3Hf–0.5O–0.3C.

Tranmission electron microscopy studies of the above-mentioned alloy
have revealed Orowan-type dislocation/particle interactions [Fig. 15.36(a)],
dislocation grazing of particles (which can also be considered in terms of the
detachment of the dislocations from particles) [Fig. 15.36(b)], the glide of
individual dislocations [Fig. 15.36(c)], and what appears to be dislocation
pairs [Fig. 15.36(d)]. The possible strengthening contributions from different

FIGURE 15.36 Transmission electron micrographs of dislocation substructure
in a 44Nb–35Ti–6Al–5Cr–8V–1W–0.5Mo–0.3Hf–0.5O–0.3C alloy: (a) Orowan-
type dislocations; (b) dislocation grazing of TiC particles; (c) glide of individual
dislocations; (d) possible evidence of dislocation pairs. [From Allameh et al.,
2001a, 2001b.]
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types of dislocation interactions have been modeled in a paper by Allameh
et al. (2001b).

15.14 INTRODUCTION TO SUPERPLASTICITY

Some fine-grained metals and ceramics exhibit plastic strains between a few
hundred and a thousand per cent due to a phenomenon that is known as
superplasticity. This has been observed to occur in certain ranges of tem-
perature and strain rate in which resistance to necking is significant.
Evidence of superplasticity has been observed in titanium alloys such
as Ti–6Al–4V, aluminium alloys, and some ceramics (Table 15.1).
Furthermore, the occurrence of superplasticity has been recognized as an
opportunity for forming complex parts from materials that would otherwise
be difficult to shape. This has been true especially in the aerospace industry,
where superplastic forming techniques are being used increasingly to form
complex aeroengine and airframe parts.

The ability of a material to deform superplastically is strongly related
to its resistance to necking during deformation. This has been correlated

TABLE 15.1 Examples of Materials Exhibiting
Superplastic Behavior

Material Maximum strain (%)

Al–33% Cu eutectic 1500
Al–6% Cu–0.5% Zr 1200
Al–10.7% Zn–0.9% Mg–0.4% Zr 1500
Bi–44% Sn eutectic 1950
Cu–9.5% Al–4% Fe 800
Mg–33% Al eutectic 2100
Mg–6% Zn–0.6% Zr 1700
Pb–18% Cd eutectic 1500
Pb–62% Sn eutectic 4850
Ti–6% Al–4% V 1000
Zn–22% Al eutectoid 2900
Al(6061)–20% SiC (whiskers) 1400
Partially stabilized zirconia 120
Lithium aluminosilicate 400
Cu–10% Al 5500
Zirconia 350
Zirconia + SiO2 1000

Source: Taplin et al. (1979).
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with the strain rate sensitivity, m, for various metals and their alloys (Fig.
15.37). This is defined in Eq. (5.12). Possible values of m are between 0 and
1. However, in the case of superplastic materials, the values of m are closer
to 1. This is due largely to their resistance to necking under certain condi-
tions of strain rate and temperature.

The dependence of stress, �, and strain rate sensitivity, m, on strain
rate is shown in Fig. 15.38. This shows that stress increases more rapidly
than strain rate sensitivity in response to changes in strain rate.
Furthermore, the peak in the strain rate sensitivity, m, occurs in a regime,
in which the stress exhibits the strongest rise with increasing strain rate. This
is the regime in which superplasticity is most likely to occur.

Superplasticity is not observed in regimes I and III in which the strain
rate sensitivities are low. Furthermore, in the regimes where superplasticity
is observed, the amount of superplastic deformation tends to increase with
increasing temperature and smaller grain sizes. This is shown in Fig. 13.39
using data obtained for a Zr–22Al alloy. The possible effects of decreasing
grain size and increasing temperature on stress and strain rate sensitivity are
also illustrated in Fig. 15.40.

Most of the mechanistic efforts to explain superplasticity involve the
accommodation of grain boundary sliding by other plastic flow processes.
As with creep deformation, grain boundary sliding is accommodated either
by diffusional flow and/or dislocation-based mechanisms. The accommoda-

FIGURE 15.37 Effects of strain rate sensitivity, m, on the maximum tensile
strain to failure for different alloys (Fe, Mg, Pu, Pb-Sr, Ti, Zn, and Zr-based
alloys). [From Taplin et al., 1979.]
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FIGURE 15.38 Strain rate dependence of (a) stress and (b) strain rate sensitiv-
ity in a Mg–Al eutectic alloy (grain size 10 mm) tested at 3508C. [From Lee,
1969.]

FIGURE 15.39 Dependence of tensile fracture strain and stress on strain rate.
[From Mohamed et al., 1977.]
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tion by diffusional flow was originally proposed by Ashby and Verall (1973).
This uses a grain switching mechanism to explain how grain shape is
preserved during superplastic deformation. This is illustrated in Fig. 15.41.

In the grain switching model, the grains in the initial state [Fig.
15.41(a)] undergo an increase in grain boundary area in the intermediate
state, Fig. 15.41(b). This is followed by diffusional accommodation of the
shape change in the intermediate stage by bulk or grain boundary diffusion,
Fig. 15.42. Provided that the applied stress exceeds the threshold stress
required for grain switching, the strain rate for grain switching is consider-
ably greater than that required for conventional creep.

Furthermore, the shape accommodation may also occur by dislocation
motion. However, since concentrated dislocation activity is generally not

FIGURE 15.40 (a) Low-stress–strain rate behavior of a material manifesting
superplasticity. In regions I and III, the strain rate sensitivity (b) is fairly
small, whereas it is high in Region II where superplasticity is observed. As
indicated in (a), increases in temperature or decreases in grain size shift the
�– _"" curve downward and to the right. The same changes produce a some-
what higher value on m as shown in (b).
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observed during superplastic deformation, it may occur as a transitional
mechanism. Also, dislocation glide–climb processes may occur in addition
to bulk or grain boundary diffusion processes that preserve shape during
superplastic deformation.

One of the problems that can arise during superplastic deformation is
the problem of cavitation. This can result from incompatible deformation of
adjacent grains that leads ultimately to microvoid formation. The problem
of cavitation can be overcome, to some extent, by the application of hydro-
static stresses during superplastic forming. Otherwise, cavitation can lead to
premature failure and defective parts.

FIGURE 15.41 Grain switching mechanism of Ashby and Verrall: (a) initial
state; (b) intermediate state; (c) final state. [From Ashby and Verall, 1973.]

FIGURE 15.42 Accommodation of intermediate stage of grain switching by
bulk and grain boundary diffusion. [From Ashby and Verall, 1973.]
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Nevertheless, superplastic forming has gained increasing acceptance in
the aerospace and automotive industries, where it is being used increasingly
in the fabrication of components with complex shapes. However, the rela-
tively slow strain rates that are used in superplastic forming result in rela-
tively low production rates and higher production costs. This may be a
serious issue in cost-driven automotive components, but less of an issue in
performance-driven aerospace components.

Before closing, it is important to note that grain refinement has been
proposed as a method for achieving high strain rates during superplastic
forming. This can be achieved by mechanical alloying (MA) or powder
metallurgy (PM) processing to obtain alloys with refined grain sizes. In
the case of aluminum alloys produced by PM and MA techniques, a number
of researchers (Bieler and Mukherjee, 1990; Higashi et al., 1991; Matsuki et
al., 1991; Kim et al., 1995) have shown that high strain rate superplastic
forming can be achieved by microstructural refinement to grain sizes of
� 1 mm or less.

Kim et al. (1995) have also shown that the high strain rate superplas-
ticity can be explained by a model that is analogous to a ‘‘core mantle’’ grain
boundary sliding model proposed originally by Gifkins (1976). In this
model, the mantle corresponds to the outer shell of subgrains where grain
boundary sliding accommodation occurs. However, no deformation occurs
in the inner core subgrains, which remain equiaxed and invariant with
strain.

Kim et al. (1995) have also modified an original theory by Ball and
Hutchison (1969) to obtain the following constructive equation for the
strain rate:

_"" ¼ K
DL

�LL ���

� �
� � �0

E

� �2
ð15:31Þ

where K is a proportionality constant, DL is the lattice diffusion coefficient,
�LL is the average grain size, ��� is the average climb distance (which is related to
the average subgrain size), � is the applied mean stress, E is the unrelaxed
modulus, and �o is a threshold stress that must be exceeded before a grain
boundary sliding can occur at low stresses. It is associated with the pinning
of grain boundaries by fine particles (Kim et al., 1995).

The occurrence of high strain rate superplasticity in fine-grained alloys
has significant implications for the manufacturing of superplastically formed
parts at high production rates. It is also likely that the enhancement in
production rates will be increased further as improved techniques are devel-
oped for the processing of materials with sub–micrometer and nanoscale
grain sizes (Langdon, 2001).
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15.15 INTRODUCTION TO CREEP DAMAGE AND
TIME-DEPENDENT FRACTURE MECHANICS

15.15.1 Creep Damage

The discussion above has shown that stress- and temperature-induced defor-
mation can give rise to creep. Hence, upon the application of a load to a
material or structure, the initial instantaneous elastic deformation is fol-
lowed by the stages of primary, secondary, and tertiary creep. Such time-
dependent deformation can occur at relatively low strains ð� 5�6%Þ due to
formation growth of voids at grain boundaries.

The voids appear predominantly on boundaries that are perpendicular
to the direction of the applied tensile stress. The voids are formed by a
combination of grain boundary and bulk diffusional creep (Fig. 15.43).
However, pre-existing voids may also act as sources of atoms, giving rise
to void growth until the remaining sections can no longer support the
applied loads. When this occurs, the voids grow at an increasing rate until
catastrophic failure occurs.

Grain boundary microvoids or cracks may also form as a result of
incomplete accommodation of shape changes between adjacent grains
undergoing grain boundary sliding phenomena. When these occur, the
voids and cracks can also grow by diffusional creep and dislocation-
induced plasticity until catastrophic failure occurs. Such cavity growth
has been modeled by Ghosh et al. (1999). Cavity nucleation and growth
can give rise to the rapid increase in the creep strain rates that are typically
observed in stage III, the tertiary creep regime (Fig. 15.14). Microscopic
creep damage processes may also give rise to stable crack growth processes

FIGURE 15.43 Formation of grain boundary microvoids due to a combination
of bulk and grain boundary diffusion. [From Ashby and Jones, 1976.]
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associated with crack extension from notches or pre-existing cracks (Argon
et al., 1991).

Continuum creep deformation and diffusional flow have been modeled
by Needleman and Rice (1980) for cases in which deformations occur in
regions close to the boundaries. However, experimental studies have
revealed some surprising modes of crack growth that are not predicted by
the continuum models. For example, in their studies conducted on 304
stainless steel, Ozmat et al. (1991) have shown that creep crack growth
from prior fatigue precracks (with prior fatigue history) does not result in
in-plane crack growth. Instead, the cracks bifurcate along paths that are
inclined at � 458 to the initial crack plane. In contrast, in cases where the
cracks initiate from blunt notches, they meander up and down, and grow
essentially as extensions of the plane of the original notch. Such phenomena
have been modeled using mechanism-based continuum models within a
finite element framework (Argon et al., 1991).

The regimes and modes of creep damage have been studied by a
number of investigators. The experiments have identified two extreme
types of behavior. At one extreme, alloys with inhomogeneous distribu-
tions of grain boundary particles have been shown to exhibit inhomoge-
neous cavity or microcrack nucleation. This has been observed in solid
solution alloys, such as 304 stainless steel. The growth of cavities and
cracks in such materials has been shown to give rise to relatively isolated
grain boundary facets microcracks that grow, coalesce, and result ulti-
mately in final fracture (Chen and Argon, 1981; Don and Majumdar,
1986). The other limiting type of behavior has been observed in creep-
resistant alloys with inherent distributions of heterogeneous phases, e.g.,
Nimonic 80A (Dyson and McLean, 1977) and Astroloy (Capano et al.,
1989). This leads to homogeneous intergranular cavitation on most of the
grain boundaries, resulting in final fracture, without the intermediate for-
mation of a significant density of grain boundary cracks (Capano et al.,
1989).

The above processes have been modeled by Hayhurst et al. (1984a, b)
using phenomenological approaches. Tvergaard (1984, 1985a, 1985b, 1986)
and Mohan and Brust (1998) have also developed mechanistic models for
the prediction of creep damage. These are beyond the scope of the current
text. However, the interested reader is referred to the above references,
which are listed at the end of this chapter. A review of prior theoretical
work in this area can also be found in a paper by Hsia et al. (1990), while
Ashby and Dyson (1984) provide a general catalog of the microscopic
phenomena that can contribute to creep crack growth. We will now turn
our attention to the subject of time-dependent fracture mechanics.
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15.15.2 Time-Dependent Fracture Mechanics

In cases where dominant cracks are present, a range of microscopic crack-
tip damage processes can occur in a small zone close to the crack tip (Fig.
15.44). Since the material at the crack tip is undergoing local failure, the tip
of a growing crack is most likely to be in the tertiary creep regime. However,
depending on the local stress/strain distributions, the regions remote from
the crack tip may be undergoing elastic deformation, or primary and
secondary stages of creep deformation (Fig. 15.44).

Due to the wide range of possible stress states, it is common in most
analytical treatments to consider a few limiting cases. In cases where the
deformation is predominantly elastic in the specimen/component, the crack
tip field can be characterized by linear elastic fracture mechanics, i.e., the
stress intensity factor provides a measure of the crack driving force.
However, for materials undergoing global deformation by steady-state
creep, the crack driving force can be defined by the C� integral (Fig.
15.45). This is defined by replacing displacements with displacement rates,
and strains with strain rates in the definition of the J integral. This gives

C� ¼
ð
�

_ww dy � �ijnj
@ _uui

@x
dsÞ

�
ð15:32Þ

where _ww is the time derivative of the strain energy density (the stress work
rate or power density); �ijnj corresponds to the traction stresses, Ti, acting
on the contour boundaries; ui are the displacement vector components; ds

FIGURE 15.44 Schematic illustration of crack-tip damage zones at the tip of a
crack. [From Anderson, 1995.]
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corresponds to increments in length on the arbitrary contour, �; �ij are the
components of the stress tensor; and nj are the components of the normal
vector to �. The stress work rate, _ww, is given by

_ww ¼
ð"kl
0

�ij d _""ij ð15:33Þ

For steady-state creep, _""ij ¼ A�nij , and the HRR-type local crack-tip
stresses and strain rates are given by

�ij ¼
C�

AInr

� � 1
nþ1

~��ij ðn; �Þ ð15:34aÞ

and

"ij ¼
C�

AInr

� � n
nþ1

~""ij ðn; �Þ ð15:34bÞ

where C� is the amplitude of the crack-tip fields, A is the coefficient in the
power law creep expression ð _""ij ¼ A�nijÞ, n is the creep exponent (and not the
hardening exponent), and the other terms ðIn; r; ~��ij; �Þ have the same mean-
ing as in the HRR field expressions (see Eqs. 11.85a–c). The C� parameter
represents the crack driving force under steady-state creep conditions
(Landes and Begley, 1976; Nikbin et al., 1976; Ohji et al., 1976). It has

FIGURE 15.45 Typical creep crack growth rate data. [From Riedel, 1989.
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been shown to correlate well with creep crack growth data obtained from a
range of structural engineering materials.

As with long fatigue crack growth in the Paris regime, the relationship
between the creep crack growth rate da=dt can be related to the C� integral
(Fig. 15.45). This gives the following power law expression:

da

dt
¼ �ðC�Þ� ð15:35Þ

where � and � are constants. Equation (15.35) is only applicable when
global deformation occurs by steady-state creep. However, long-term defor-
mation is required before steady-state creep conditions can be achieved.
Conversely, short-term deformation occurs by elastic deformation, in
which the crack driving force is characterized by the stress intensity factor,
K . In between the initial elastic and steady-state conditions, the crack
driving force is characterized by a transition parameter CðtÞ. For small-
scale deformation, CðtÞ is given by (Riedel and Rice, 1980):

C ðtÞ ¼ K 2
I ð1� 	2Þ
ðn þ 1ÞEt ð15:36Þ

where KI is the Mode I stress factor, 	 is Poisson’s ratio, n is the creep
exponent, E is Young’s modulus, and t corresponds to time. The transition
time, t1, from short- to long-time behavior is given by

t1 ¼
K 2
I ð1� 	2Þ

ðn þ 1ÞEC� ¼
J

ðn þ 1ÞC� ð15:37Þ

where the above terms have their usual meaning. Between the short- and the
long-time regimes, the parameter CðtÞ can be estimated from

C ðtÞ ¼ C� t1
t
þ 1

� �
ð15:38Þ

The parameter CðtÞ has been found to provide good correlations with mea-
sured creep crack growth rate data in the transitional regime (Saxena, 1989).
However, unlike K and C�, it is difficult to measure CðtÞ experimentally.
This has led Saxena (1986) to propose a Ct parameter that can be measured
by separating the overall/global displacement, �, into elastic components,
�e, and time-dependent creep components, �t. This gives

� ¼ �e þ�t ð15:39Þ
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For fixed loads, _��t ¼ _��, and Ct is given by

Ct ¼ � 1

b

@

@a

ð _��t

0

P d _��t

" #
_��t

ð15:40Þ

where Ct is the creep component of the power release rate, b is the specimen
breath, a is the crack length, P is the applied load, and _��t is the displace-
ment rate due to creep phenomena. Alternative expressions have been
derived for small-scale and transitional creep behavior in work by Saxena
(1986). Furthermore, Bassani et al. (1995) have shown that Ct characterizes
creep crack growth rates better than CðtÞ, C�, and K , using experimental
data over a wide range of C�=Ct ratios. Chun-Pok and McDowell (1990)
have also included the effects of primary creep in the Ct parameter.

15.16 SUMMARY

This chapter presents an introduction to time-dependent deformation and
damage in polymers, metals, intermetallics, and ceramics. The chapter
started with an introduction to creep and viscoelasticity in polymers.
Idealized spring and dashpot models were described for the estimation of
time-dependent and time-independent components of deformation poly-
meric materials. Mechanical damping was also elucidated before discussing
the time-dependent flow of polymer chains associated with creep and stress
relaxation phenomena. This was followed by a brief review of single master
curves represented by the Williams, Landel, and Ferry (WLF) equation.
Finally, the section on polymer deformation ended with some comments
on the effects of temperature on the relaxation modulus. Following the
initial focus on polymer deformation, the rest of the chapter explored the
physics of time-dependent deformation and damage in metals, intermetal-
lics, and ceramics. Phenomenological approaches to creep deformation were
presented along with a discussion on creep deformation mechanisms, i.e.,
diffusional and dislocation-controlled creep mechanisms, and grain bound-
ary sliding phenomena. The mechanisms were summarized in deformation
mechanism maps before describing engineering approaches to the prediction
of creep life. Creep design approaches were then discussed before reviewing
the creep deformation in oxide-dispersion strengthened and composite
materials. This was followed by a review of thermostructural materials
and coatings that are actually used in a number of high-temperature appli-
cations. Finally, a brief introduction to superplasticity was presented before
concluding with a final section on creep damage and time-dependent
fracture mechanics.
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