






Preface

This book aims to bring together continuum elasticity theory, electronic

structure and the concept of fractals as applied to roughness and toughness of

metals.

Of course, a major contribution to fracture was made by Griffith, in which,

though incomplete for reasons that are now largely understood, he derived an

expression for the limiting strength of a material. This involved intimately

the surface energy, which subsequently, at least in a simple metal like Al with

s and p electrons, has been related to the energy of formation of a vacancy.

However, a tremendous step forward came with the concept of a dislocation.

It was shown that if a limited area of one plane slips by one atomic distance

over the neighbouring plane, the boundary of this area is a closed loop of dis-

location. Once this loop is formed, glide can propagate across the plane by the

spreading of the area, which is a motion of the dislocation line across its glide

plane. General interest in dislocation theory was aroused by its success in pro-

viding atomistic theories for plastic deformation and crystal growth. Progress

has been made in this field for more than one decade on the treatment of elas-

tic anisotropy and dislocation mobility. For more than two decades, interests

have concentrated on deepening our understanding of the structure and role

of the dislocation core the behaviour of a pile-up of dislocations (simulating

a crack). Interatomic forces (electronic structure) play a decisive role in the

structure of the dislocation core and even in fracture. In particular, the tem-

perature dependence of fracture toughness of materials has a close relationship

to the interatomic forces. Molecular dynamics has been applied to understand

the dislocation motion and the emission of dislocations at the crack tip under

loading. Dynamics of crack propagation has become an area of considerable

current interest for theoretical physicists and material scientists.

As to electronic structure, electron density theory based on a one-body po-

tential V (r) including electron-electron exchange and correlation interactions

has transformed what can be done on electronic structure of both perfect and
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defective crystals. Nevertheless, it is still important to subsume ideas involved

there into interatomic force fields, which can then be used to study extended

defects such as surfaces, grain boundaries, dislocations and cracks. There is

still, however, much to do in understanding, in metals, the role of collective

effects (including plasmons) in determining mechanical properties and tribol-

ogy of conducting materials. If our book proves to make a contribution to

furthering the progress in relating and enriching ideas from continuum theory,

from electronic structure, and from concepts of fractal structure, then that will

be more than ample justification for the effort involved in the present project.

We are conscious that in some areas embraced in our book, there is rapid

movement at the time of writing. If authors in electron theory or in very

practical aspects of materials science and engineering see where we ought to do

better, we shall count it a privilege if they write to us with positive suggestions

for improvement.

Over a decade or more, diverse scientists have recognized that many of

the structures common in their experiments have a special kind of geometrical

complexity. Mandelbrot in his pioneering work introduced the concept of frac-

tals and used the idea of a fractal dimension which often is not an integer to

characterize the complex structure quantitatively. Fractals may be considered

as systems which obey the law of self-similarity, or are self-affine.

Since Mandelbrot et al. (1984) showed that fractured surfaces are fractals

in nature and that the fractal dimensions of the surfaces correlate well with the

toughness of the material, many authors have found that the fractal dimension

depends on the fracture properties of materials, but the values of it seem in

a narrow range for measurements with a resolution down to the micron scale.

This has led to much discussion on the universality and specificity of the fractal

dimension of fractured surfaces. However, the roughness index (or local fractal

dimension) is found to display wide differences depending on materials on a

small length scale by means of scanning electron microscopy (SEM). Another

problem is that the negative correlation of the fractal dimension of fractured

surfaces with toughness of ductile materials is quite difficult to understand.

These basic problems remain open at the time of writing and much remains to

be done.

We could not end this Preface without acknowledging our indebtedness to

other workers. C. W. Lung wishes to thank Professor P. L. Zhang for leading

him into active research in materials physics, Professors T. S. Ge(Kê) and K. X.

Guo for their advice, collaboration and much practical support, and Professors

H. Wu, X. Li, J. Z. Gao and C. X. Shi for their continuous encouragement.
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Chapter 1

Background and Some Concepts

Introduction

We assume knowledge of general solid state physics as in Rosenberg (1992).

However, we shall begin by briefly summarizing a few concepts* that are basic

to an understanding of later chapters below.

1.1. Elastic and Plastic Regimes

It is helpful to classify the discussion of mechanical properties by defining two

regimes (i) elastic and (ii) plastic.

1.1.1. Elastic Deformation

The mechanical properties of materials are of vital importance in determining

their fabrication and practical applications. Initially as a load is applied on

the material, the nominal stress is defined as the load divided by the original

cross section area, and the nominal strain as the extension divided by the

original length. As the stress is increased, the strain increases uniformly and

the deformation produced is completely reversible. This is so-called the elastic

region. The stress and resulting strain are proportional to one another and

obey Hooke’s law.

From an atomistic point of view, if we pull two atoms apart or push them

together by a force, the atoms can find a new equilibrium position in which the

atomic and applied forces are balanced. The force in the bond is a function of

the displacement. The deformation of the bond being reversible means that,

when the displacement returns to the initial value, so does the force return

*Readers may skip this Chapter if they are familiar with this background material.
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2 Mechanical Properties of Metals

simultaneously to its corresponding value. The bulk elastic behaviour of large

solid bodies is the aggregate effect of the individual deformations of the bonds

which are the building blocks.

When the applied forces are sufficiently small, the elastic displacement is

always proportional to force. This is Hooke’s law. The elastic constant is

a key parameter, to express the coefficient of proportionality between force

and displacement. When the applied forces are large, the elastic displacement

deviates from Hooke’s law. The relation between force and displacement is

nonlinear. This is then called nonlinear elasticity.

1.1.2. Atomic Forces and Elastic Properties

Taking NaCl type ionic crystals as an example, Cottrell (1964a) discussed the

interaction energy of a pair of univalent ions at a distance r as

U(r) = ±e2

r
+

B

rs
(1.1.1)

where, s ≈ 9, and where + and − refer to like and unlike ions respectively.

Having summed the repulsive and attractive interactions with nearest neigh-

bours, the total interaction energy of an ion can be written as

Uz = −A
e2

r
+ 6

B

rs
(1.1.2)

where A is called the Madelung constant, equal to 1.7476 for the NaCl type

crystals. At the equilibrium condition, dUz
dr
= 0, at r = r0. Thus,

B =
Ae2rs−10

6s
(1.1.3)

and

Uz = −Ae2

r

[
1−
(
1

s

)(
r0

r

)s−1]
. (1.1.4)

This is the work required to dissociate the crystal into 2N separate ions (N

positive and N negative).

The elastic constant E,

E =
f

u
=

(
1

6

)(
∂2Uz

∂r2

)
r=r0

=
(s− 1)Ae2

6r30
(1.1.5)

where Uz
6 is the energy per each nearest-neighbour bond, and u = r − r0, is

the elastic displacement.
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The bulk modulus of elasticity of the material is defined by

p = −K
∆V

V
(1.1.6)

where p is a hydrostatic pressure, ∆V
V
is the volume change.

K =
−p(
∆V
V

) = − pr20
r20
(
∆V
V

) ∼= f

r20
(
3u
r0

) = 1

3r0

(
f

u

)
=
(s− 1)Ae2

18r40
. (1.1.7)

In KCl, it gives KT = 1.88 × 1011 dyn cm2, whereas the observed value

(extrapolated to OK) is 2× 1011 dyn cm2. The corresponding calculations of

elastic constants of metallic crystals are much more difficult for the laws of

force are much more complicated. We shall discuss this in Chap. 5.

1.1.3. Plastic Deformation

Plastic deformation is characterized by a permanent deformation of the ma-

terial. Unlike elastic deformation, it does not reverse on unloading but leaves

the material with a permanent shape. This is called the plastic region. Be-

tween these two regions, there is a limiting stress, called the yield stress of the

material, or the critical resolved shear stress for a single crystal.

The crystallinity of the structure is the prime cause of this behaviour, for it

enables whole slabs of crystal to glide past one another. Each slip is a displace-

ment, in certain glide direction, generally the crystal direction of closest atomic

packing on certain crystal planes which is called the slip plane. In fcc and hcp

metals, these are mainly close-packed planes, but in bcc metals, the situation

is complicated. It will be discussed later. Slip begins on some small area of

the surface.* The slip-front line between the slipped and unslipped areas is by

definition a dislocation line. The glide motion of a dislocation is a property

of a periodic crystal. The transition from the slipped to the unslipped region

is spread over several atomic distances which is the width of the dislocation.

Every atom in this transition region is pushed only a little further out of its

original equilibrium site when it moves forward. This is the reason why dislo-

cations can move easily in the crystal. Thus, the yield stress is much lower than

the theoretical strength of crystals. Dislocation theory plays important role

in understanding the microscopic processes in plastic deformation. Even the

elastic theory of dislocations may explain many phenomena, such as yielding,

*See, for instance, the early paper of Chen and Pond (1952).
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work hardening, etc. etc. It provides not only a deeper qualitative physical pic-

ture of plastic deformation but also to a certain degree a quantitative analysis

of it.

Plastic deformation can also occur by twinning. The atoms slide, layer by

layer to bring each deformed slab into mirror-image lattice orientation relative

to the undeformed material. The critical stress of twinning is usually higher.

Twins form at low temperature and under rapid deformation, e.g. bcc iron

strained quickly at room temperature and slowly at 100K.

1.2. Griffith Criterion: Role of Surfaces

Griffith (1924) derived an expression for the elastic crack propagation on the

basis of thermodynamic considerations. He reasoned that a crack would ad-

vance when the incremental release of stored elastic strain energy dWE in a

body became greater than the incremental increase of surface energy dWs as

new crack surface was created. For the two-dimensional case in plane stress

WE =
πσ2c2

E

Ws = 4cγs

(1.2.1)

where, σ is the nominal stress; E, the elastic modulus; 2c, the length of the

crack, and γs the specific surface energy.

The Griffith criterion can then be written as with σF , the fracture stress,

σF =

√
2Eγs

πc
(1.2.2)

by the condition that
∂

∂c
WE ≥ ∂Ws

∂c
.

Subsequent analysis* in fracture mechanics defines a parameter, crack ex-

tension force, G = K2/E (in plane strain) being equal to a critical value, GIc,

*This is associated with the names of Irwin (1957) and Inglis (1913). The analysis given by
Inglis has been generalized by R. Löfstedt (Phys. Rev. E55, 6726, 1997) who has proposed
an inequality involving a ratio of time scales to determine whether a material is brittle or
ductile. One time scale is ‘ductile’, and is associated with the rate of decrease of the tensile
stress at the tip of a narrow crack. The above ductile time scale is to be compared with
a characteristic ‘phonon time’ a/vs, where vs is the velocity of sound, and a measures the
lattice spacing. See also R. W. Armstrong (Mat. Sci. Eng. 1, 251, 1996) also A. Kelly, W.
R. Tyson and A. H. Cottrell, Phil. Mag. 15, 567, 1967 and J. R. Rice and R. Thomson,
Phil. Mag. 29, 73, 1974).
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the crack-resistance force of the material. For the elastic crack in an infinitely

wide plate

GIc =
K2
Ic

E
=

σ2Fπc

E
(1.2.3)

where K is the stress intensity factor: KIc is called fracture toughness.

Comparing to Eq. (1.2.2), GIc = 2γs — the two approaches lead to the

same result although their methods are different. The specific surface energy

plays a very important role in brittle fracture.

Engineering materials do not fracture in a completely elastic manner. The

localized plastic deformation near crack tip gives the materials some toughness,

or resistance to crack propagation.* Orowan (1948) proposed to add a term

γp, the plastic work expanded during crack propagation to the elastic work γs
as an effective specific surface energy in Eq. (1.2.2). The Griffith equation is

modified to read (in plane stress)

σF =

√
2E

πc
(γs + γp) ∼

√
2Eγp

πc
. (1.2.4)

(Some authors wrote 2(γs+γp) as 2γs+γ
′
p; then, γ

′
p = 2γp.) From Eq. (1.2.4), it

seems γs is no longer an important factor in this process. However, Tetelman

et al. (1967) showed that for the case of Fe–3% Si, by Frank-Read source

multiplication (Cottrell 1964a):

γm = const. γsN
3
2
0

(
vs

vc

)2
T
5
2 (1.2.5)

where γm is defined as the product of the work done in a unit volume element of

material when the crack advances and the distance perpendicular to the crack

in which the deformation is extensive. N0 is the density of mobile dislocation

sources, vs and vc are velocities of sound and the crack respectively. γm,

like γp is a measure of the intrinsic toughness of a solid. In Eq. (1.2.5), γs
is a multiplying factor and not an addition term. The change of γs directly

influences the change of γm.

Moreover, Lung and Gao (1985) calculated the relative Kic value of metals

with a simplified dislocation motion model and BCS dislocation distribution

function at the crack tip

Gp
ic
∼= 2γp ∝ Wi = E0(K

0
ic)

2Fi(θ0)r
∗
i (θ0)

1
2 (1.2.6)

*A general article on failure of solids is that of M. Marder and J. Fineberg (Phys. Today,
September 1996, p. 24).
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whereK0
ic is the fracture toughness in linear elastic case (=

√
EG0

ic or
√
2γsE);

r∗i , the plastic zone size; and E0 ∝ E−1. The E0 in Eq. (1.2.6) is proportional

to the inverse of the elastic modulus of materials, and Fi(θ), the angular de-

pendent function respectively. θ0 is the direction of r
∗
max of the plastic zone.

Comparing Eqs. (1.2.6) with (1.2.5), the two approaches lead to the same

conclusion that γs plays the role of a multiplying factor in the expression of

critical crack extension forces. For a multiplying factor,

∆(γsf)

(γsf)
=
∆γs

γs
+
∆f

f
. (1.2.6)′

The relative change of γs is as important as that of f . If we consider

the underlying role of atomic forces in the structure of dislocation core and

dynamics, the role of interatomic forces is not only in the surface energy term

but also in the dislocation core structure.

1.3. Peierls Stress and Barrier

A dislocation experiences an oscillating potential energy as it glides in a crystal.

In the Peierls model (Peierls, 1940), the bonds across the glide plane were

considered to interact via an interatomic potential, while the remainder of the

lattice was linearly elastic. Nabarro (1957) gave an analytical expression for

the dislocation core model. One can approximately estimate the ideal lattice

resistance to dislocation motion by means of the Peierls model. The resolved

applied stress necessary to move the dislocation over the Peierls barrier is

called the Peierls stress, σp. The Peierls stress comes from the expression

for the Peierls energy which changes for a translation of the dislocation by a

distance smaller than the Burgers vector.

Figure 1.1, reproduced from Nabarro (1967), shows the Peierls model of

a dislocation. The material above A and below B is regarded as forming an

elastic continuum. The force between the rows A and B is a periodic function

of the displacement.

As the dislocation moves through the lattice, it passes through an un-

symmetrical configuration to a different symmetrical configuration in which

one half plane of atoms on the expanded side of the glide plane lies mid-

way between two half planes on the compressed side. Further motion passes

through unsymmetrical configurations back to a state equivalent to the origi-

nal. The dislocation moves if a finite force acts on it. The critical stress is the

Peierls stress. After a lengthy calculation, the approximate energy of misfit
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Fig. 1.1. Peierls’s model of a dislocation. The material above A and below B is regarded as
forming an elastic continuum. The force between the rows A and B is a periodic function of
the displacement.

is given by (Nabarro, 1967)

E =

[
b2µ

4π(1− ν)

]{
1 + 2 cos 4πα exp

(−4πζ
b

)}
. (1.3.1)

The force acting on unit length of the edge dislocation is,

F = −
(
1

b

)
dE

dα
=

2bµ

(1− ν)
sin 4πα exp

(−4πζ
b

)
(1.3.2)

where ζ = a
2(1−ν) is a parameter measuring the width of dislocation, αb, the

displacement of the centre of the dislocation from the original equilibrium

position, µ, the shear modulus and ν Poisson’s ratio.

The maximum value of Eq. (1.3.2) is the critical shear strength; the Peierls

stress is given by

σp =
2µ

4π(1− ν)
exp

(−4πζ
b

)
. (1.3.3)

Considering the spirit of this model, and extending the displacement of

the centre of the dislocation to include the thermal vibration amplitude, the

temperature dependence of the crss can be obtained (see Lung et al., 1966; or

later Sec. 10.3).
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1.4. Dislocation Core and Atomic Force

Early development of dislocation theory, and related theoretical treatment

of metallic properties controlled by dislocations, focussed most attention on

the effects of long-range elastic fields. In the present context (see also Vitek,

1995) mechanical properties were frequently analyzed in terms of long-range

dislocation-dislocation, dislocation-point defects, etc interactions. The atti-

tude prevailing in the late 1960s that dislocation cores were of but secondary

importance in the plastic deformation of metals was radically altered in the

next two decades. It became widely recognized then that dislocation core phe-

nomena could play a role at least as important as long-range interactions in

the deformation behaviour of many materials. As emphasized in the studies

of Vitek and co-workers (Vitek, 1985) clear signatures of core effects are to be

found in deformation modes and slip geometry, strong orientation and tem-

perature dependences of the yield stress, and also in anomalous temperature

dependence of the yield and flow stresses (see also Duesbery and Richardson,

1991).

Significant impetus for such atomistic modeling has been the marked

improvement in experimental techniques (see Appendix 2.1), such as high res-

olution electron microscopy (HREM), that are capable of atomic resolution.

1.5. Stacking Faults

Rosenberg (1992) discussed how close-packed planes of hard spheres can be

stacked to form, say, an fcc structure, Fig. 1.2 being reproduced from his

account.

Fig. 1.2. The close-packed array of spheres. Note the three different possible positions. A,
B and C for the successive layers.
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The first and second layers can be in positions labelled A and B while the

third layer can be placed above the C positions. The pattern continues as

ABCABC. . . , the pattern repeating at every third layer.

A stacking fault* in such an fcc structure occurs if this sequence gets dis-

turbed, as in ABCBCABC. . . . Here a layer A is missing, while in the sequence

ABCABACABC. . . an extra A layer has been introduced. While stacking

faults can, at least in principle, extend through the entire crystal, they usually

occupy only a part of the plane. In this last case, of a stacking fault which

terminates within the crystal, the configuration at the termination is referred

to as a partial dislocation.

1.6. Glissile and Sessile Dislocations

Dislocations that can move by pure slip are called glissile. Dislocations which

cannot glide, but have to move by some form of mass transport are called

sessile (Read, 1953).

In crystals, the dislocation core spreads to certain crystallographic planes

containing the dislocation line. If the core spreads into one of such planes, the

core is planar and is glissile. If the core spreads into several non-parallel planes

of the zone of the dislocation line, it is non-planar and is sessile. In the former

case the dislocation moves easily in the plane of the core spreading, while in the

latter case, it moves only with difficulty (Vitek, 1992). A Shockley partial is a

partial dislocation, the Burgers vector of which lies in the plane of the fault.

Then, Shockley partials are glissile. A Frank partial is a partial dislocation,

the Burgers vector of which is not parallel to the fault. Then, Frank partials

are sessile.

1.7. Concept of Fractals

Over a decade or more, diverse scientists have recognized that many of the

structures common in their experiments have a quite special kind of geomet-

rical complexity. The pioneering work was that of Mandelbrot (1977, 1979,

1982, 1988) who drew attention to the particular geometrical properties of

such things as the shore of continents, tree branches, or the surface of clouds.

*Stacking faults remain a challenge for interatomic force fields. A novel system which might
test N-body force lows discussed in Chapter 8 has arisen from the study of S. A. de Vries
et al., (Phys. Rev. Lett. 81, 381, 1998). These authors have studied the influence of Sb
on the formation of stacking faults due to Ag(111) growth using X-ray scattering (see also
related theoretical studies of S. Oppo et al., Phys. Rev. Lett. 71, 2437, 1993).
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Mandelbrot used the word ‘fractal’ for these complex shapes, in order to em-

phasize that they are to be characterized by a non-integer (fractal) dimension-

ality.

Our interest here is the fractal aspects of fractured surfaces. Mandelbrot

et al. (1984) gave an elegant route for determining the fractal dimension D

of the fractured surface. Their work pointed to a correlation between tough-

ness and D. Further studies were performed by Lung (1986), Pande (1987),

Lung and Mu (1988) and Xie and Chen (1988). Bouchaud et al. (1990) later

reported their findings that for a variety of rupture modes and materials the

observed fractal dimensions were the same to within the error bars. Dauskardt

et al. (1990) reported a fractal dimension D ∼= 2.2, which, when combined with
the studies of Bouchaud et al. (1990) may turn out to be a universal value (but

also see below).

Though it is known that cracks in nature can have fractal character, at

the time of writing it is still difficult to specify just how this fractal nature

arises. For it is certainly true that the mechanisms leading to fracture are

highly material dependent (see Liebowitz, 1984). This, we will discuss further

in Sec. 4.17.

Progress has resulted from modelling the growth of a single, connected

crack. With the assumption of central forces numerical simulations of media

with a breaking probability proportional to the elongation of springs revealed

that the cracks resulting are fractal (Louis et al., 1986; Hinrichen et al., 1989).

The fractal dimension of such cracks appears to be sensitive to the type of

external force (e.g. uniaxial tension, shear, uniform dilatation) but since only

rather small cracks can be grown, more precision is lacking. Herrmann (1989)

has considered therefore deterministic models.

1.8. ‘Glue’ and Related Models of Interatomic Force Fields

Ab initio simulation of complex processes is fairly commonplace at the time

of writing. But it is still eminently worth while (compare Heine, 1994) to

ask whether empirical models for accounting for interatomic bonding can be

refined so as to make them, even if not completely satisfactory, at least widely

useful.

In the field of interest of our book, namely metals and metallic alloys, the

various types of ‘glue’ models (Finnis and Sinclair, effective medium, embed-

ded atom, etc.) developed since the early 1980s embody metallic many-atom

bondings and therefore are major advances over earlier models.
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One can certainly anticipate continuing refinements of such empirical po-

tentials. So far, they have been mainly, though not exclusively, fitted to some

experimental quantities relating to perfect or nearly perfect metallic crystals,

e.g. equilibrium lattice spacing, coheseive energy, elastic moduli, plus some

particular phonon characteristics. But one would envisage, in refinements (see

also Heine, 1994) information about unusual bonding geometries (e.g. at re-

constructed metal surfaces) or perhaps an interstitial atom at the maximum

of its migration barrier, also being embodied.

1.9. Pair Potentials

Simulations using empirical interatomic potentials can often supply efficient

and usually inexpensive routes for studying ionic structure and dynamics in

metallic systems. For a long time, pair potentials were used very extensively in

such simulation studies. They can reproduce usefully total energies for many

systems. But when one turns to elastic properties, deficiencies begin to emerge

(e.g. their inability to reproduce the so-called Cauchy discrepancy: see for in-

stance Johnson, 1972). This situation can be remedied by the addition to the

pair potential contribution of a volume-dependent, structure independent en-

ergy (the reasons being set out in Chaps. 6 and 7). But in specific examples,

such as fracture of surfaces, where the volume is ambiguous, pair potential

models need transcending. A further difficulty in the (simplest) pair poten-

tial scheme comes up in the determination to the vacancy formation energy

Ev (compare Johnson, 1987). It is found empirically that this energy Ev is

typically about 1/3 of the cohesive energy. In contrast, the straightforward

pair potential models predict that, excluding the contribution from relaxation

which is modest in close-packed metals, these two energies are equal. These

limitations of the simple pair potential approximation have been addressed by

the development of empirical many-body potentials which is the major theme

of Chap. 8.

1.10. Grain and Twin Boundaries

Most solids do not occur as single crystals. Usually, they are assemblies of small

crystallites randomly oriented with respect to one another. The boundaries

between them are referred to as grain boundaries (Mclean, 1957; Kê, 1947,

1990). Rosenberg (1978) gives a figure (Fig. 3.7, p. 42) of crystallites and

grain boundaries in α-brass: the specimen having been first cold-rolled and

then annealed. Generally the structure of a grain boundary is complicated, but
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Fig. 1.3. Twinning. The crystal structure is reflected in the plane XY which forms the twin
boundary. The vertical sides of the crystal as drawn are no longer smooth.

a special case of importance is that for which the orientation of neighbouring

grains is very similar: such cases are termed low-angle boundaries. Their

geometry is relatively simple and can be expressed in terms of dislocations.

We shall return to grain boundaries in Chap. 8 when we report atomistic

structures with some realistic force laws. However, let us summarize here a

few basic facts on twin boundaries.

Crystals are frequently produced with a fault which is such that one region

of the crystal is a mirror image of the other part. The atoms in one region

are in positions produced by reflecting the atoms in the second part at some

symmetry plane of the crystal. Figure 1.3, reproduced from Rosenberg (1992),

is an example of twinning. The crystal structure is reflected in the plane XY

which forms the twin boundary.

Twinning frequently occurs in metals which have a small stacking fault

energy as this fact then implies that the additional energy needed for any small

atomic mismatch is small. Twinning can also happen during deformation.

Twinning planes can often been seen by optical microscopy, and the presence

of twins can be detected by X-ray diffraction. This is due to extra sets of spots

which are produced from the twinned regions.

1.11. Alloy Formation: Rules and Models

1.11.1. Solid Solubility: Hume-Rothery Factors

Hume-Rothery et al. (1934, 1969) in very early work proposed several factors

controlling the extent of solid solubility. Even at the time of writing, these

factors form a useful basis for discussing the formation of extensive or restricted

solid solutions (see also Alonso and March, 1989).
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(a) Size effects

The ‘size rule’ asserts that solid solutions should not be anticipated if the

atomic sizes of solute and solvent differ by more than 15%. Provided that

‘other factors are favourable’ solid solutions may form if the size difference is

less than this value. Waber et al. (1963) applied this rule to some 1400 solid

solutions. 90% of the systems predicted to be insoluble by the above ‘size rule’

were indeed found to have limited solid solubility, the distinction between a

limited and an extensive solid solution being taken at 5 atomic %. However, of

the systems predicted to form extensive solid solutions, only 50% were found

to occur. In other words, it would appear to be the case that a favourable

size factor is a necessary but not sufficient condition for the formation of solid

solutions with extensive solubility.

(b) Electrochemical factor

The second rule of Hume-Rothery states that the electrochemical nature of the

two elements involved must be similar for solid solutions to be expected. On

the other hand, if their electrochemical characters are very different, compound

formation is likely to occur. A measure of the electrochemical natures of the

elements is afforded by their electronegativity. Introduced into chemistry by

Pauling and by Mulliken, electron density theory, to be summarized in Chap. 6

holds promise that eventually a fully quantitative measure of this important

chemical concept will be possible via the chemical potential of the inhomoge-

neous electronic charge cloud in an atomic (or molecular) system. Difference

in electronegativity between two atoms, A and B say, drives the redistribution

of charge as these approach one another to form, say, a stable AB molecule.

Such charge transfer turns out to contribute to the enthalpy of formation.

Darken and Gurry (1963) made important progress in the prediction of

solid solubility when they made simultaneous use of size and of electrochemical

factors. In particular, these workers constructed a plot in which the coordinates

are the electronegativity and the atomic radius. The values of these coordinates

characterize the position of each chemical element in the plot.

Figure 1.4 reproduced from Alonso and March (1989), shows such a plot

for various solutes in a Ag host. The solid circles indicate alloys in which

extensive solution are found. The solid squares refer to alloys in which limited

or zero solid solubility is obtained. The ellipse drawn in Fig. 1.4 approximately

acts as a ‘boundary’ between soluble and insoluble impurities. To summarize

the above very briefly, one can say that only chemically similar elements are

mutually soluble (see also Alonso and March, 1989).
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Fig. 1.4. Darken–Gurry plot for various solutes dissolved in Ag. Circles indicate alloys in
which extensive solutions are found: squares indicate alloys in which limited or no solid
solubility is found. The ellipse approximately separates soluble and insoluble impurities.

(Redrawn after Waber et al.)

(c) Valence-difference effect

Hume-Rothery formulated a third rule which states that a higher-valent metal

is more soluble in a lower-valent host than vice versa. Darken and Gurry

(1963) have re-formulated this rule in a slightly broader framework by asserting

(see also Alonso and March, 1989) ‘a disparity in valence is conducive to low

solubility and this disparity has an especially pronounced effect when the solute

valence is lower than the solvent valence’

Alonso and March (1989) separate two aspects of the above rule:

(i) The statement concerning absolute solubility: a difference in valence

leads to low solubility and

(ii) The assertion concerning the relative solubilities of A in B and B

in A.

The work of Gschneidner (1980) and of Goodman et al. (1983), see also

Watson et al. (1983), has clarified the situation regarding relative solubilities
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Fig. 1.5. Experimental relative solubilities in transition-metal alloys. The dotted region
indicates systems where the d-bands of the constituents are equally far from half-filled: the
hatched region indicates a diagonal boundary region in which no clear bias appears in the
relative solubilities. (Redrawn after Watson et al.)

(see also Alonso and March, 1989). Gschneidner studied 300 systems formed by

two metals having different valence and for which the terminal solid solubilities

are known at both ends of the phase diagram. The result was that 55% of the

systems do not confirm to the rule. The work of Goodman and co-workers deals

with the relative solubilities in transition-metal alloys. Figure 1.5, reproduced

from Alonso and March (1989) serves to illustrate the findings of these authors.

The chart can be divided into two regions separated by a diagonal boundary

(the cross-hatched region). Only in one of the regions is the relative-valence

rule obeyed. In contrast, in the other region the rule obeyed is that ‘the lower-

valent metal is more soluble in the higher-valent one than vice-versa’ (see also

Alonso and March, 1989). We shall return to this point briefly in Chap. 6
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on electronic structure, when we discuss the role of d-band filling in determining

some of the physical properties of transition metals.

The final point to be made is that Chelikowsky (1979) has presented solu-

bility plots in which the two coordinates are prompted by the semi-empirical

theory of Miedema (Alonso and March, 1989). Since, however, electronic struc-

ture also enters this theory, we shall defer further discussion to Chap. 6.

1.12. Friction Mechanisms*

The mechanisms of friction are discussed in early books on the subject

(e.g. Bowden and Tabor, 1950). Here we refer to the subsequent account

of Stoneham et al. (1993). These workers note the following mechanisms:

(i) Adhesion: surfaces adhere and then work is done in separating them.

(ii) Ploughing: one surface pulls away small amounts of the other and

(iii) Anelasticity: here the assumption is that energy is dissipated by dislo-

cation motion and plastic deformation in the material.

We shall, in later chapters, discuss friction on a mesoscopic scale as well

as specific atomistic studies. As to the first of these, we shall see below that

two main steps are involved. The first of these is the characterization of rough

surfaces and their contact. The second step is to invoke some law of friction.

In such a law, we want to stress here the central importance of atomic force

microscope (AFM) data (see Appendix 2.5) and its interpretation.

Tribology, the study of surfaces in moving contact, is an important area

for technology. In spite of this, friction, at the time of writing, is not well

understood at an atomistic level. Persson (1994) has posed some fundamental

questions as follows:

(1) What is structure of sliding interface: both geometric and electronic?

(2) Where does the sliding take place?

(3) What is the physical origin of the sliding force?

Persson follows these somewhat general points with some more specific

questions:

(i) Why is the frictional force F usually proportional to the load N?

(ii) What is the microscopic origin of ‘stick-and-slip’ motion? (see follow-

ing page).

*The reader who requires an advanced account should refer to the book Physics of Sliding
Friction, Eds. B. N. J. Persson and E. Tosatti, NATO ASI series E: Applied Sciences, Vol 311
(1996): (Kluwer: Dordrecht).
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Persson (1994) has discussed the theory of friction. He asserts that, during

sliding of a metal block on a metal substrate (in the absence of any lubricant),

the frictional force is due mainly to the shearing of cold-welded contact ‘points’

junctions (see also Bowden et al., 1967). After a junction has been formed,

it is first elastically deformed, a slow process if the sliding velocity v is small,

followed by plastic deformation involving rapid motion of dislocations, and

other fast, nonadiabatic, rearrangement processes. As the block slides across

the substrate, junctions are continually ‘broken’ and ‘formed’ at a rate propor-

tional to the sliding velocity v. Persson argues that this is the reason why the

frictional force is velocity independent. He asserts that the fundamental prob-

lem in sliding friction is to understand the microscopic features of the above

rapid processes and then to relate these to the macroscopic movement of the

metal block over the metal substrate.

Landman (1995) emphasized the importance of atomic-scale simulation in

this problem. Simulations often reveal that the physical behaviour of materials

at interfaces can be very different from that in the bulk. For example, the

traditional picture of stick-slip motion ascribed it to a negative slope in the

friction-velocity function but subsequent work has put this in reverse: in many

cases stick-slip behaviour is found to be the primary process — arising from

successive freezing and melting transitions of the shearing film — and it is this

which gives rise to the negative friction-velocity dependence.



Chapter 2

Phenomenology and Experiments

It is well known that the elastic properties of metals are determined primarily

by the atomic forces, and the lattice imperfections only introduce small devi-

ations from the behaviour of a perfect crystal of an amount of not more than

order of a few per cent. The plastic properties are determined primarily by

these imperfections. Dislocations, grain boundaries, vacancies, and interstitial

atoms affect the plastic properties greatly. There was abundant direct experi-

mental evidence for the existence of dislocations. Many prominent phenomena

of plastic properties could be described in the framework of the continuum

theory of dislocations. Books (Indenbom and Lothe, 1992; Hirth and Lothe,

1982; Nabarro, 1967; Friedel, 1964; Seeger, 1955; van Bueren, 1960; Read,

1953; Cottrell, 1953) and reviews have been published from time to time.

This book is not intended to be an exhaustive attempt to cover all aspects in

this field; instead it will try to cover rather fully, the atomistic* and fractal

approaches. The motivation of this intention will be developed in this chapter.

Earlier developments of dislocation theory, and related theoretical analyses

of mechanical properties controlled by dislocations, concentrated on the effects

of long range elastic fields of dislocation-dislocation, dislocation-point defects

and dislocation-particles interactions. In the seventies and eighties when dislo-

cation core phenomena were recognized to play at least as important a role as

long-range interactions in the deformation behaviour of most materials, atom-

istic studies of dislocations started and became common for investigation of

structures of dislocation cores in the eighties. The progress of computer science

and recognition of the role of the dislocation core made such studies feasible

from the mid-eighties onwards (Vitek, 1994, 1995).

*This embraces interatomic force fields and electronic structure.

19
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2.1. Plastic Deformation of bcc Metals

2.1.1. Deviation from the Schmid Law

We first summarize the Schmid law about the mechanism of plastic flow in

crystals: The plastic flow always occurs on close-packed planes in the direction

of the densest atomic packing, and begins when the resolved shear stress on

this slip system reaches a critical value. For close-packed metals, experiments

in Zn (Jillson, 1950); Mg (Barke and Hibbard Jr, 1952), α-brass (Fenn Jr

et al., 1950) and Al (Rosi and Mathewson, 1950) showed no significant devi-

ation from the predictions of the Schmid law. For bcc metals, experiments

in Fe-Si alloys (Sěsták and Libovický 1963a; 1963b) showed very different be-

haviour. The crss* is strongly dependent on temperature and on the orienta-

tion of the applied stress. Surface slip traces are sometimes diffuse and wavy,

tending to lie parallel to non-crystallographic planes. Curiously, in the twen-

ties, Taylor and his coworkers (1926; 1928) found that in the cases of α-iron

and β-brass slips were not confined to low index crystal planes and thereby

established evidence of deficiencies in the Schmid law. However, few scientists

paid attention to it. Extensive investigation of the mechanical behaviour of

bcc metals and alloys started in J. W. Christian’s group at Oxford in the mid-

sixties. Excellent reviews on experimental and theoretical studies have been

published (Vitek, 1992; Duesbery, 1989; Christian, 1983; Kubin, 1982; Vitek,

1975; Taylor, 1992). The principal finding of the deformation behaviour of bcc

materials is that the effects observed are due to intrinsic characteristics of the

bcc lattice; especially to the properties of the cores of screw dislocations in this

structure. They found the reason why bcc metals, different from close-packed

metals, deviate from the Schmid law. The slip was not confined to well-defined

low index crystal planes and the flow stress was found to be dependent on the

orientation of the slip plane. We shall not repeat the details of these papers,

here. Rather, we will briefly report some experiments which have not been

well known. Zhou (1963) found in his Mo single crystal experiment that the

slip could be any apparent plane between {110} and {112}, but the direction is
always 〈111〉. The apparent slip plane could change at different temperatures
and it depends on the orientation of the crystal. The apparent slip traces on

{112}, {123}, {145} . . . observed are possibly combined in two groups (or four
groups) of {110} plane along the same 〈111〉 direction. These he termed “con-
fined slips”. Lung and He (1964) found that in molybdenum single crystals,

*CRSS refers throughout to critical resolved shear stress.
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Fig. 2.1. (a) The relationship of crss with cos φ cosλ.

Fig. 2.1. (b) The orientation of Mo single crystals.

the critical resolved shear stress (CRSS) depends upon the cosφ cosλ value,*

and that this effect becomes increasingly important at lower temperatures

(Fig. 2.1).

2.1.2. Temperature Dependence of Critical Resolved Shear Stress

of bcc Metals

In bcc metals, the crss is very large. For example, the crss for 〈110〉 load-
ing in W at 77K is much larger than the crss in Cu at 4.2K. Normalised to

the shear modulus, the crss values for bcc crystals range from 0.003 µ for K

*cos φ cos λ is called Schmid factor to characterize the orientation of the slip plane and
direction of cryetals under loading.
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to 0.005 µ for W at 77K, compared to 5 × 10−5 for Cu. The large crss in
bcc crystals is strongly temperature-dependent. For example, the crss in W

drops by a factor of 4 as the temperature is increased from 77K to 450K; in

Mo, between 4.2K and 420K the crss decreases by a factor of 20. In K, the

crss drops by a factor of 10 between 1.5K and 25K. For Cu in contrast, the

crss varies by a factor of two only between 4.2K and 295K (Duesbery, 1989).

Hirsch (1960) first proposed the core structure of the screw dislocation and

pointed out that its core is not confined to the slip plane but extends into

several planes. This provides an explanation for the large Peierls stress and

the strong temperature dependence of the flow stress. He found that the move-

ment of such sessile dislocations can only be aided by thermal activation if the

width of the core spreading is of the order of a few lattice spacings. Then, it

became very desirable to study the atomic structure of dislocations directly.

Observation of atomic configurations is feasible now with the development of

high resolution electron microscopy. Studies with positron annihilation effects*

have found dislocation trapping useful for understanding this problem (Shen

et al., 1986; Shi et al., 1990; Shirai et al., 1992). The theoretical descriptions

of interatomic forces are available for studies of lattice defects at present (see

e.g. Vitek, 1989). The importance of core effects for understanding the basic

feature of plastic behaviour was first recognized in the case of bcc metals. The

core structures control deformation phenomena. Interatomic forces have been

used in dislocation studies to elucidate the atomic structure and atomic level

properties of dislocations in materials (see, for instance, Chapter 3).

Lung et al. (1964) investigated the temperature dependence of the crss

of molybdenum single crystals. The orientation of the crystals were chosen

according to two requirements: (1) Considering that the slip system of Mo

single crystals with the same orientation may vary with the testing tempera-

ture, they chose the orientation in such a way that (110)[111] remained to be

the only slip system throughout the testing temperature range. (2) The varia-

tion of cosφ cosλ value was kept within 0.01 in order to minimize its effect upon

the crss. The experimental results showed the logarithm value of crss varies

linearly with the absolute temperature. The absolute value of crss and the

slope of the line are influenced by the purity of specimens. The experimental

results did not agree with Fisher’s simplified treatment of Cottrell-Bilby’s the-

ory (σαT−1), neither with Cottrell’s simplified theory (σ(T ) = σ(0)− kT 1/3),

nor with Seeger’s dislocation-forest model (σ = A − BT ). For comparison,

*See Chapter 9 for full details.
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Fig. 2.2. (a) CRSS−T 1/3 relationship.

Fig. 2.2. (b) ln CRSS−ln T relationship.
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Fig. 2.2. (c) ln CRSS−T relationship.

Fig. 2.2. (d) σ(T )/σ(0) − T relationship.
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in Fig. 2.2, it is of interest to note that the yield data obtained by Lawley

et al. (1962) can be well represented by exponential relationship given by them

except that the result at 77K appears to depart from their curve.

The absolute value of crss can be expressed by the following equation

approximately:

σ(T ) = σ(0) e−BT .

This relationship is consistent with that proposed by Petch et al. (1958) based

on P-N model* and also with that by Castaing et al. (1981), Lagerlof

et al. (1994) and Suzuki et al. (1995) on the experimental data of temper-

ature dependence of the plastic flow stress of covalent crystals.†

He et al. (1966) found that the B value is lowered when more carbon atoms

are dissolved in α-iron. The concentration of carbon in α-iron was measured by

internal friction method in that work. In order to explain this, they assumed

that there exists a strong exchange bond between the impurity atoms and the

dangling atoms with unpaired electrons along the dislocation axes. When a

dislocation line anchored at both ends is subjected to move, vigorous vibra-

tions accur with a rise in temperature. The distance between the impurity

and dangling atoms will be lengthened with the consequence of weakening the

chemical exchange bond between them, and this will, in turn, lower the fric-

tional stress of motion of dislocations. Lung et al. (1964) was one group of the

earliest authors who recognized the important role of the dislocation core and

used a simple interatomic force model to explain the temperature dependence

of the crss of Mo-single crystals.

2.2. Phonons, Electrons and Plasticity

When a dislocation moves through a medium it produces a varying strain field.

Dissipative processes within the medium relax these strains, generating entropy

and retarding the motion of the dislocation. Shear stresses can be relaxed

by several mechanisms, each of which can be represented by a coefficient of

viscosity η. Here, we consider specifically the effects of phonon viscosity and

of electron viscosity.

*The Peierls-Nabarro model has been referred to in Section 1.3.
†After analysis of experimental results of Mo, Fe, Al and Mg single crystals, Lung
et al. (1997) pointed out that the approximate exponential relationship between crss and the
absolute temperature is common, even for bcc single crystals, provided that the slip plane
and direction are kept the same.
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2.2.1. Phonon Drag of Dislocations in Metals

The method of treating the contribution of viscosity to the drag on a dislocation

developed by Mason (1955) for phonon viscosity η was modified by Nabarro

(1967). For a screw dislocation with displacement

s =
b

2π
tan−1

y

x− vt
, (2.2.1)

the velocity is

ṡ =
bv

2π

y

(x− vt)2 + y2
. (2.2.2)

The rate of dissipation of energy in unit volume is

η

2

{(
∂ṡ

∂x

)2
+

(
∂ṡ

∂y

)2}
(2.2.3)

where η is the viscosity of the medium. In cylindrical coordinates, this become

b2v2η/(8π2r4). The total dissipation from unit length of the dislocation is

W =
b2v2η

4π

∫ ∞
r0

dr

r3
(2.2.4)

where r0 is the inner cut-off radius. Equating the power supplied by a shearing

stress σ to the power dissipated by unit length of dislocation,W = b2v2η/8πr20.

σbv = b2v2η/(8πr20) = B1v
2 (2.2.5)

Then

B1 =

(
b2

8πr20

)
η . (2.2.6)

2.2.2. Electron Drag of Dislocations in Metals

The electron contribution to energy losses during plastic deformation is in

principle determined by the same dissipative processes in the electron system

of the metal which determine the electrical conductivity.

The dislocation viscous drag coefficient will be denoted by B2 and is defined

by the equation (Hirth and Lothe (1982)):

F

L
= σb = B2vD (2.2.7)
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Here, F/L or σb is the force per unit length that must be applied to the

dislocation to keep it in uniform motion with velocity vD. By the definition of

viscosity

η = σ/(vD/ct) (2.2.8)

where ct is the transverse-sound-wave velocity. Comparing the above equa-

tions:

η =
B2ct

b
. (2.2.9)

The method of treating the contribution of viscosity to the drag on a

dislocation was developed by Mason (1955):

B2 = b2η/(8πλ2) (2.2.10)

where:
η = Nmλv̄/3

λ = σemv̄/(Ne2)
(2.2.11)

where λ is the electron mean free path, N is the number of electrons in unit

volume, e is the charge of each, m their mass, v̄ their mean speed and σe the

electrical conductivity. Then (Nabarro, 1967):

B2 = (bNe)2/(24πσe) . (2.2.12)

It is seen from Eq. (2.2.12) that B2 is directly proportional to the electrical

resistivity. For copper at room temperature a dislocation speed of 2.5×105 cm
sec−1 would be attained under a stress of 3 × 105 dyn cm−1, so this drag is
very small, but is essential at low temperature, at which phonons are ‘frozen

out’.

However, many discussions on this relationship arose. Some authors

thought that the basic contribution to the energy dissipation takes place by

processes of electron scattering in the short-wavelength part of the packet

where a macroscopic description is not allowed and where it is required that

the spatial dispersion of electrical conductivity is taken into account (Alshits,

1992).

2.2.3. Superconductivity and Plasticity

An increased plasticity of materials entering the super-conducting state was

found at the end of 1960’s by Pustovalov et al. (Pb) (1969) and by Kojima

and Suzuki (Pb) (1968). The stress required to maintain the deformation in
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constant strain-rate tests drops. For creep measurements at constant stress,

Soldatov et al. (1971) found that the strain rate increases by factors of up

to 250. For stress-relaxation experiments at constant strain, Suenage and

Galligan (1970) demonstrate that the stress drops suddenly. The stress-change

effects observed are typically of the order of 0.1% to 10%, but effects as large

as 50% have been reported. Pustovalov et al. (1969) have reported an average

change of 30% for the critical resolved shear stress of lead single crystals with

tension axes close to 〈110〉 and of 20% for crystals of some different orientations.
For polycrystalline samples of comparable microstructure, the yield stress

was found to decrease by 35 to 40%. Ni et al. found that the critical current

density (Jc) of YBCO superconductors increases synchronously with the im-

provement of mechanical properties (Vickers hardness) (Ni et al., 1993). From

these experiments it was suggested that the strain variation depends on the

influence of the normal to superconducting state.

Different models have been proposed to explain the experimental results

(Granato, 1971; Suenaga and Galligan, 1971). In the superconducting metals

the electron drag in the superconducting state reduces drastically. Discussions

can be found in review papers given by Startsev (1983) and Nabarro (1980).

The resistance to the motion of a dislocation, expressed by the drag coef-

ficient BD, is as follows:

BD = Fv/vD = σb/vD . (2.2.13)

The coefficient BD has the dimensions of viscosity. vD is the velocity of the

dislocation, σ, the stress and b the Burgers vector. At ordinary temperatures,

the drag coefficient is due principally to the scattering of phonons. At low tem-

peratures, the phonon scattering tends to a low value, and BD is determined

principally by the interaction between the dislocation and the conduction elec-

trons. One of the mechanisms assumes that the Fermi surface is adiabatically

distorted to conform to instantaneous strain, and then energy is dissipated as

the Fermi surface relaxes to its equilibrium form.

The theories of Granato (1970) and of Natisk (1972) both start from the

vibrating-string model of a dislocation. However, the idea of Hutchison and

McBride (1972) is different. These workers assumed that the dislocation breaks

away from an obstacle under the applied stress, and impinges on the next

obstacle with an appreciable kinetic energy. The kinetic energy is turned to

heat when the dislocation strikes the second obstacle, and raises the local

temperature. Since the thermal conductivity in a superconductor is low, the
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effective temperature is raised for an appreciable time, and the stress σ required

to maintain a prescribed strain rate ε̇ is decreased. This model depends on the

role of obstacles. It cannot explain why these effects still exist in high purity

single crystalline metals.

Ultrasonic measurements have particular advantages for this problem

(Granato, 1990).* They are particularly well suited for the study of quantum

Fig. 2.3. Zn crystals irradiated with 1 MeV electrons during plastic deformation at 77K:
(a) electron beam parallel to the (0001) glide plane: (b) beam normal to glide plane:
(c) resulting stress-elongation curves for the beams parallel and normal to the glide plane
and without irradiation. From Troitskii and Likhtman (1963).

*See also Appendix 2.4.



30 Mechanical Properties of Metals

system. Information about energy gaps and stress coupling strengths are read-

ily obtained from ultrasonic attenuation peaks and velocity changes at low

temperature for defects in concentrations of a few ppm.

2.2.4. The Electroplastic Effects in Metals

It has long been recognized that an electric current (drift of electrons) can

enhance the mobility of dislocations. It was first reported in 1963 by Troitskii

and Likhtman (1963). Upon irradiating Zn crystals with 1 MeV electrons under

uniaxial tension at low temperatures, they found that the flow stress was less

when the slip plane was parallel to the electron beam. Also, the elongation at

fracture increased for irradiation along the slip plane compared to irradiation

normal to the slip plane (Fig. 2.3) or without irradiation.

Troitskii and other Soviet workers carried out an extensive series of stud-

ies into the effects of high density (103 − 105 A/cm2) electric current pulses

(∼ 100 µs duration) on the mechanical properties of metals including the flow
stress, stress relaxation, creep, dislocation generation and mobility, brittle frac-

ture, fatigue and metal working (Conrad and Sprecher, 1989). High current

densities were employed to enhance the effects of the drift electrons, short pulse

times to reduce Joule heating. Conrad and co-workers (1989) conducted a se-

ries of investigations into the effects of single, high density (105 − 106 A/cm2)

current pulses (∼ 60 µs) on the tensile flow stress at 300K of a number of

polycrystalline metals (Al, Cu, Pb, Ni, Fe, Nb, W, Sn, Ti) representing a

range in crystal structures, rate-controlling dislocation mechanisms and elec-

tronic properties. Lai and co-workers (1989, 1988, 1992) found that electric

current pulses affect the microstructural modification at atomic level in amor-

phous alloys, the recrystallization of cold worked α-Ti and cyclic softening in

a secondary hardening peak.

The electroplastic (ep) effect is not restricted to metals. Martin (1980)

found that the creep rate of the intermetallic compound V3Si at elevated tem-

peratures increased when the specimen was heated by the passage of electric

current through the specimen, compared to indirect heating.

Direct measurements of the effects of an electric current on dislocation mo-

bility have been made by Zuev et al. (1978). Employing the etch pit technique,

the effect of a single current pulse applied simultaneously with a mechanical

stress pulse of 10−2 − 10−1 s duration on the velocity of dislocations in Zn
crystals at 77–300K was studied. The increase in dislocation velocity for the

parallel direction is larger than for the antiparallel directions. This showed a
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Fig. 2.4. Effect of a single current pulse (j = 0.75×103 A/cm2, tp = 200 µs) on the velocity
of {112̄2} 〈112̄3〉 dislocations in Zn parallel and antiparallel to the electron current as a
function of the mechanically applied stress τ . Data from Zuev et al. (1978).

vectorial effect of the current, i.e. an electron wind effect (Fig. 2.4) (Fig. 19 of

Conrad and Sprecher, 1989). The fact that an increase in velocity over that

for j = 0 still occurred when the current was antiparallel to the dislocation

velocity suggests a scalar effect of the current in addition to an electron wind.

2.3. High Temperature Strength of Alloys

It has been found empirically that the strength of metals and alloys is closely

related to interatomic bonding. Diffusion coefficient, Debye temperature, elas-

tic modulus, melting temperature and sublimation energy are important pa-

rameters for characterization of the high temperature strength of metals and

alloys (Ocipov, 1960), especially for long time services of mechanical compo-

nents.

2.3.1. Diffusion Creep

Nabarro (1948) and Herring (1950) proposed a diffusion creep model to explain

the relationship between creep and diffusion. If a tensile stress is applied,

vacancies flow in the directions indicated in Fig. 2.5.
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Fig. 2.5. Stress-directed flow of vacancies inside a grain ABCD.

Along AB and CD the vacancy excess is:

C − C0

C0

∼= ln C

C0
=

σb3

kT
. (2.3.1)

If L is the grain size, the rate at which vacancies migrate from the ends to the

sides is:
∂v

∂t
∼= LDσb3/(kT ) (2.3.2)

and the creep rate is:

ε̇ =
1

L3

∂v

∂t
= α

Dσb3

L2kT
. (2.3.3)

According to Eq. (2.3.3), diffusion creep is linearly dependent on the diffusion

coefficient, which is in relation to interatomic forces between atoms in metals

and alloys. Equation (2.3.3) has been supported by experiments on wires or

foils of Ag (Greenough, 1952), Au (Buttner et al., 1952), Cu (Pranatis and

Pound, 1955) and Cu-Sb alloys (Tipler, see also Mclean, 1962) at a creep rate,

to within an order of magnitude.
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Löfstedt (1997) has suggest that the ‘diffusion constant’ d of dislocations

is experimentally accessible via the creep of a bar under its own weight.

The proposal is that the time rate of change l̇ of the height of the bar is

l̇ = −d(4/3)(µρ g/E)(1 + ν) where E is Young’s modulus and ν is Poisson’s

ratio. However, atomic diffusion may perhaps enter such a measurement as an

additional creep mechanism.

2.3.2. Effect of Solute Atoms

Solute atoms in high melting point metals have stronger effects on strength-

ening the metal at high temperatures. This was explained by the climbing

mechanism of dislocations in which the strong interatomic force increases the

activation energy for diffusion.

In metals, the electric dipole produced in a metal by an edge dislocation

creates a field which can act on the nuclear charge of an impurity atom. In

a metal the cloud of conduction electrons takes energies which range between

two limits E0 and EM . These vary with the dilatation δ of the lattice (Friedel,

1964):

∆EM = − 4

15
(EM −E0)δ . (2.3.4)

Near to an edge dislocation, the dilation δ is not uniform. The electrons in

the compressed regions (∆EM > 0) tend to flow towards the dilated regions

(∆EM < 0) to compensate for the differences ∆EM of the Fermi level. Peutz

(1963) calculated this kind of interaction, and demonstrated that the binding

energy is small. For example, for Cu-Zn, We = −0.005 eV. It is not important
in most cases. It is one order of magnitude smaller than the elastic interac-

tion. It may however become important for large differences of valency. The

description for the dislocation core structure seems too simple.

de Hosson (1980) and Wang et al. (1993) studied the electronic struc-

ture of dislocation core which was not calculated in details previously. From

the modified atomic coordinates and by use of the recursion method, Wang

et al. (1993) calculated the electronic structure of edge dislocation in iron.

According to their calculations, it seems that the binding energy is large and

cannot be ignored compared to the elastic interaction.

The electrostatic interaction is the main term in an ionic solid. A straight

edge dislocation introduces locally an excess of positive (or negative) charge.

Similar excess charges of alternating signs, appear on the successive lattice

planes along an edge dislocation line. Such a dislocation attracts electrostati-
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cally charged impurities of both signs. The binding energy can be appreciable

and probably of the same order as that of the elastic binding energy.

Most impurity atoms can form a sort of chemical exchange bond with the

unpaired electrons of the atoms at the dislocation core. The binding energy is

then of the order of a few eV; much larger than that corresponding to purely

electrostatic interaction (Van Bueren, 1960).

2.4. The Crack and Fracture

Thomson (1986) proposed three prototype cracks: cracks which cleave, cracks

which emit dislocations, and plastically blunted notches which merely activate

external plastic flow in the surrounding medium. The physical mechanism in

each case are quite distinct, and each type tends to correspond to a particular

geometry.

2.4.1. Cleavage Cracks

The crack is capable of cleavage advance without intrinsic generation of dislo-

cation. (By intrinsic is meant generation from the crack tip itself, independent

of external sources). The form of the crack in the cleavage case is atomically

shaped at its tip.

2.4.2. Emitting Cracks

In this case, dislocations are emitted from the tip without cleavage when the

crack is stressed. Crack advance takes place by ledge formation or slide off the

crack tip.

2.4.3. Plastically Blunted Cracks

The effect of plasticity external to the crack is to blunt the crack by means

of the steps formed on the cleavage surfaces when dislocations are annihilated

there. The final macroscopic shape of the crack blunted by dislocation absorp-

tion will be determined by the combined effect of the available slip systems,

stress distribution around the crack, the characteristics of the sources such as

operating stress, etc., and the mobility and mean free path of the dislocations.

In general the shape of the crack will not be dominated by crystallographic

features as in the case for the cleaving or emitting crack. The crack advance

takes place by accretion of the voids to the main crack.
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Qualitatively, the brittle form is associated with the cleavage crack, while

the emitting crack and the plastically blunted crack are forms of ductile frac-

ture. The atomic structure of the tip will dictate whether the crack is a cleaver

or an emitter, and the properties of the dislocations and their sources in the

medium and their interactions with the crack will determine whether the core

of the crack can ever be stressed sufficiently so that cleavage or emission is

possible.

2.4.4. The Condition for Intrinsic Brittleness

Rice and Thomson (1974) suggested that the condition for intrinsic brittleness

in a material is the activation energy for dislocation emission from cracks.

The combined criterion for cleavage/emission in pure Mode I is:

KIE < KIC emission

KIE > KIC cleavage .
(2.4.1)

The added subscript E on K refers to the critical values for emission. This

form of the cleavage-emission criterion was first given by Mason (1979). Later,

Rice (1992) introduced a parameter, the unstable stacking energy γus, which

characterizes the resistance to displacement along the slip plane, and thus to

dislocation nucleation. In terms of γus, the emission criterion is as follows (see

Zhou et al., 1993):

KIIe =
√
2γusµ/(1− ν) (2.4.2)

where µ is the shear modulus, ν(� 0.25) is Poisson’s ratio. In a systematic

atomic analysis, Zhou et al. (1993) have found that Eq. (2.4.2) is very accurate

for a two-dimensional hexagonal model, using a “Mode II” geometry in which

an edge dislocation is emitted along the cleavage plane ahead of the crack.

Simulations in the 2D hexagonal lattice by Zhou et al. (1994) have shown that

for a variety of force laws, the ductile-brittle crossover is independent of γs, and

is determined by a critical value of the γus only. They found the dependence

of K1e on γs to be the same as that of K1e in the form:

K1e = 2
√
γsµ(1 + ν)f(γus) . (2.4.3)

The brittle-to-ductile crossover is determined by the ratio of K1e to K1c:

not K1e itself. The new finding is striking in that all previous criteria express

the crossover as a competition between the values of γs and γus. That is, a low

ratio of γs/γus would imply a brittle material. The new criterion replaces this
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competition with a simple critical value for γus. It is interesting that the new

criterion for the ductile-brittle crossover is equivalent to structure-dependent

critical value for the Peierls energy of the dislocation in the material. Thus,

the interatomic force plays an important role in crack propagation processes.

Using a 35-hundred-atom simulation cell, Zhou et al. (1997), with an EAM-

type potential* for copper, calculated the dislocation emission at a crack tip

in a ductile material.

2.4.5. Dislocation Shielding, Antishielding and Annihilation at the

Crack Tip

The discussion on intrinsic brittleness in a material is the ideal case. The term

“intrinsic” assumed an intrinsic homogeneous property of the crack in the given

material (Zhou et al., 1993). In the material, there is no dislocation formation

at sources outside the core region of the crack. Actually, in the vicinity of a

crack, pairs of dislocations with opposite Burgers vectors may be created by

various multiplication mechanisms at dislocation sources. Lin and Thomson

(1983) have analyzed the stress on the source and the shielding of the crack tip

as a function of the number of dislocations produced. The local stress intensity

factor k can be written as

k = KC +KD (2.4.4)

where,

KD = −
′∑

j �=1

µb

(2πxj)1/2

and KC is the stress intensity factor due to the crack tip, xj is the distance

of the j dislocations piling up from the crack tip and k is termed the effective

stress intensity factor which modifies the original KC with the effects of dis-

locations near the crack tip, if a dislocation source exists in front of a sharp

crack from which a pair of dislocations with opposite Burgers vectors has been

emitted. It seems possible if the local stress near the crack tip exceeds the

maximum shear stress to form a semi-circle of a Frank-Read source. Positive

ones, with shielding Burgers vectors, are repelled by the crack tip and nega-

tive ones, with anti-shielding Burgers vectors, are attracted towards the crack

tip (Zhou et al., 1989). Negative ones may be absorbed and annihilated by

the open cleavage surface by producing steps on this surface (Lung, 1990).

*See Chapter 8.
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The entry of dislocations into the tip blunts the cracks (Weertman, 1980). A

dislocation free zone is formed (Lung, 1990; Ha et al., 1900).

The elementary processes may be Bardeen-Herring climb sources, the

double-cross-slip mechanism, vacancy disc nucleation and nucleation of glide

loops (Hirth and Lothe, 1982). The central physical quantities are the line-

tension force and the energy of the dislocation line. The influence of crystal

structure on the atomic configurations of dislocations and with the stresses

and energies associated with them must be considered. The treatment of non-

linear region as a thin strip in the glide plane in the Peierls-Nabarro model

has successfully allowed analytical results. However, this model is somewhat

physically unrealistic in view of the cylindrical symmetry of dislocation fields.

There were a number of atomic calculations with the use of pair potentials to

describe atomic interactions (Puls, 1981; Gehlen, 1972). Thomson et al. (1992)

studied imperfections by use of lattice Green’s functions. This method built

on earlier work by Kanzaki (1957) on lattice statics and Tewary (1973) on

Green’s-function methods.

2.4.6. Dislocation Dynamics and Fracture

Roberts (1991, 1993, 1994) proposed a dynamical model for dislocation motion

near crack tips. When dislocations are at stresses well above any friction stress

and if the stress is kept constant, the array would continue to grow, position

of the dislocations depending on stress history of the test, and their stress,

temperature and velocity relation. Effective k at the crack tip is reduced by

dislocation stress field (Eq. 2.4.4).

The extent of shielding depends on the number of dislocations and on their

positions. Using the dislocation motion model to monitor Keff with time, the

material will fracture as Keff reaches KIc.

The dislocation velocity is:

vD = A

(
σ

σ0

)m
e−

Ud
kT (2.4.5)

and the values of A, τ0, m and Ud are known accurately from the literature.

Thus knowing the velocity of each dislocation, its position change over a small

time interval can be calculated. Then, knowing the position of each dislocation,

the Keff change over a small time can be calculated. The material fractures at

Keff = KIc.



38 Mechanical Properties of Metals

Relating to Ud, many calculations have been performed. Bullough and

Perrin (1968) constructed an atomic model to study the core configurations

of certain dislocations and vacancies in iron. The core structures control-

ling deformation phenomena have later been reviewed by a number of authors

(Duesbery, 1989; Vitek, 1992).

2.5. Power Law Relation between the Plastic Strain and the

Number of Cycles to Fatigue Failure

During fatigue,* plastic strain occurs in every cycle. It is well known that

Manson-Coffin relationship holds in fatigue processes of many metals (Raraty

and Suhr, 1960). The relationship is given by

∆εp ∝ N
−1
2

f (2.5.1)

where ∆εp is the plastic strain andNf is the number of cycles to fatigue failure.

Suppose that the plastic strain occurring in every cycle is εpf ∝ N−1f . Then,

∆εp ∝ ε
1
2

pf . (2.5.2)

It seems that this process possesses a scaling property in this dynamical

system.

2.6. Statistical Behaviour for the Fracture of Disordered Media

Most metals and alloys are not homogeneous and their heterogeneity strongly

influences their mechanical behaviour. We should obtain information at the

macroscopic level starting from a microscopic one and taking into account

local fluctuations due to disorder. Fracture is much more sensitive to disorder

and mean field theory is expected to give rather poor results in either two

or three dimensions. Fracture naturally enhances the effect of the preexisting

heterogeneities. Some models indicate that the final stage of rupture can be

interpreted as a critical point (Arcangelis et al., 1989). We should emphasize

the relevance of the collective behaviour of microscopic or mesoscopic-elements

in the presence of disorder (i.e. random variations of the local properties from

one element to the next, or randomness in the initial state or during the time

evolution, etc.).

*See ASM Handbook, Vol. 19: Fatigue and Fracture (ASM International: Materials Park,
OH, USA) 1996.



Phenomenology and Experiments 39

There are three basic experimental facts which show that disorder plays an

important role in real materials.

2.6.1. Statistical Fluctuations in the Rupture Stress of Materials

It is well known that two pieces made of the same material under the same

condition, will not break at the same stress or at the same time under same

stress loading. The statistical fluctuations are very often large (Volkov, 1960).

In high strength materials, the stress concentration is well localized. The

fracture behaviour is highly sensitive to defects in materials. A micro crack of

the order of several µm’s would lead the material to fracture. These sample to

sample fluctuations are present in most brittle materials, and on all scales.*

2.6.2. The Dependence of the Mean Fracture Stress on the Sample Size

In case of usual sample size, say several cms, the dependence of the mean

fracture stress on the sample size is not important. However, it was well

known that the strength of thin glass wire depends on its diameter. The

strength of a thin glass wire of 22 µm diameter is 22 kg/mm2; and of 16 µm

diameter, 107 kg/mm2; of 12.5 µm diameter, 146 kg/mm2 and of 8 m diameter,

207 kg/mm2. It was explained that the probability of existence of dangerous

cracks is high in large size materials (Frenkel, 1950).

Similarly, if the system size remains constant, that if the characteristic size

of the microstructure changes, the mean fracture stress will be affected. This

has been observed in many materials, where the microstructure is controlled

by the grain size. It is explained by the Hall-Petch relationship based on

dislocation theory. These size effects tell us that we cannot neglect the small

scale structure of the medium even if the interaction between atoms has been

chosen to be the same.

2.6.3. Local Damage Zones

The shape of the stress-strain curve is shown schematically in Fig. 2.6. This

shape is quite frequently encountered in many materials such as concrete.

*A. Buchel and J. P. Sethna (Phys. Rev. E55, 7669, 1997) have studied extensively the
statistical mechanics of cracks. More specifically, these workers studied a class of models for
brittle fracture, namely elastic theory models that have cracks but do not allow for plastic
flow. Their conclusion is that such models display a transition to fracture under applied load
that has similarities to the first-order liquid-gas transition.
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Fig. 2.6. Typical behaviour of a simple elastic solid with damage.

In the decreasing part of the curve, damage has concentrated in local zones.

Treating this model numerically with a finite element code, we will see that

the localization of damage is very dependent on the mesh size used. The finer

the mesh, the more localized the damage. Its behaviour is not scale invariant.

Facing these experimental facts, Herrmann and Roux (1990) proposed

mesoscopic lattice models for fracture alternative to molecular dynamics and

continuum mechanics. These methods do not pretend to describe nature on an

atomistic level as molecular dynamics but have their validity at much larger

length scales where the medium can be described by continuous vector fields.

The big advantage of the lattice models is that they allow very naturally for

the introduction of disorder. Small cracks are sharply defined and it is possible

to simulate simultaneously many cracks within rather moderate lattice sizes.

Cracks can be grown on a lattice by deterministic rules and their patterns

can be fractal* due only to the interplay of anisotropy and memory. Herrmann

and de Arcangelis (1990) showed cracks of various shapes generated by different

breaking criteria. They discussed the universal scaling behaviour. They found

that the distribution of local strain has multifractal scaling properties just

before the system breaks fully apart.

*See Section 1.7.
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2.7. The Roughness of the Crack Surface

In a common fracture sequence, an initially smooth and mirror-like fracture

surface begins to appear misty and then evolves into a rough, hackled region
with a limiting velocity of about six-tenths the Rayleigh speed. In some brittle

materials, the crack pattern can also exhibit a wiggle of a characteristic wave-

length. Some experiments have shown that violent crack velocity oscillations
occur beyond a speed of about one-third the Rayleigh speed and are correlated

with the roughness of the crack surface. These may be universal behaviour in
fracture (Abraham, 1994). On the other hand, materials are not homogeneous

in microstructures. If the stress is uniform, the crack would propagate along

the cleavage plane. The nonuniform stress distribution combined with the
anisotropic properties of crystals would make many complicated cases for the

crack to change cleavage plane abruptly (Thomson, 1986). Then, the crack
propagates along zigzag path even in a single crystal. This is the other origin

of the roughness of the crack surface. For intergranular crack, the material

fractures along the grain boundaries. This is also an origin of the roughness
of crack surface (Lung, 1986). In Chapter 4 we shall see that the fractal di-

mension can describe the roughness of crystal surface as a continuous variable
parameter for fracture properties of materials.

2.8. Dynamic Instabilities of Fracture

Ching et al. (1996) found that moving cracks are strongly unstable against
deflection in essentially all conventional cohesive-zone models of fracture dy-

namics. In the ideal central force model, cracks are stable in the limit of the

crack speed v approaching zero, and are unstable at nonzero speeds. The sta-
bility appears only when the cohesive shear stress is larger than its central-force

value. They found that the instability is governed by detailed mechanisms of
deformation and decohesion at crack tips; it cannot be detected by quasistatic

far-field theories that consider only energy balance and neglect relevant dy-

namic degrees of freedom. They stressed that the challenge for future research
is to understand why dynamic fracture sometimes seems to be stable. What

mechanisms might cause the cohesive shear stress to be larger than its central-

force value? What is the role of dissipative forces?

The picture of intrinsic instability found by them shows the necessity

to study more complete dynamic models of deformation and decohesion at
crack tips.

There are some other physical sources proposed to form fractal structures
of many fractured surfaces. They will be discussed in Chap. 4.



Chapter 3

Introduction to Extended Defects and
Mechanical Strength

Dislocation theory relates the plastic properties of crystals to atomic struc-

ture. Dislocations are more complicated than most other lattice defects. It is

not easy to work with real laws of interatomic force, derived from quantum

mechanics (see Chaps. 6–8). The strain field of a dislocation has a long range

part, and this part can be discussed rigorously from simple elasticity theory.

The amount of work on applications of the theory to the understanding of

the structure-sensitive properties of crystals greatly exceeds that on the pure

theory itself. The topic is vast, and it will not be possible to give a compre-

hensive description in one chapter. We will limit ourselves to an overview for

those who already have some textbook knowledge of dislocation theory (see,

for example, Rosenberg, 1992). We will concentrate our attention on disloca-

tion mobility and fracture. Much of what follows is based on the writings by

Lothe (1992) and Cottrell (1964): see also Hull and Bacon (1984).

3.1. Some Basic Theory of Crystal Dislocations

3.1.1. Dislocations and Slip

— Slip line. One part of the crystal slides as a unit across a neighbouring

part along the slip direction lying in the surface of slip. The line of intersection

of this surface with the outer surface of the crystal is called a slip line.

— Schmid’s law. Slip begins on a given plane and direction when shear

stress resolved on that plane and direction reaches a critical value.

— Dislocation. The boundary line between a slipped and an unslipped area

is called a dislocation line. A dislocation line can never end within a crystal; it

must form a closed ring or end at a free surface or be joined to other dislocation

lines (Fig. 3.1).

43
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Fig. 3.1. A loop C enclosing a surface A.

— Slip direction. The slip usually occurs along the crystallo-graphic direc-

tion of closed package in the slip plane, even when the applied stress is not

precisely oriented along this direction, and it would occur instead along the

line of greatest stress.

To create a dislocation in a perfect crystal, slip should occur over part of

a slip plane. The shear strength of a perfect lattice may be calculated. The

limiting shear strength of the lattice is given by:

σm =
µ

2π

b

a
∼ µ

10
(3.1.1)

where, b and a are lattice parameters in the slip plane and perpendicular

direction respectively. Using better approximations to the law of interatomic

force in the slip plane reduces the value of σm to about µ/30. It can be seen

that high stress is needed to create a dislocation. This is the theoretical shear

strength or the upper limiting yield strength of the lattice (Cottrell, 1964).

Calculations on this problem will be discussed later (Zhou et al., 1994; Rice,

1992).

Lattice defects distort the electron and phonon structure of the crystal;

the electronic levels are displaced (see Chap. 6), and local vibrations can arise

(Indenbom, 1992).

Fig. 3.2. The construction of a Burgers circuit.
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3.1.2. Burgers Vector

Before giving the definition of the Burgers vector, we use the slip definition to

classify dislocations.

(i) Super dislocations are those with Burgers vectors larger than the unit

lattice vectors. These may be either perfect or imperfect.

(ii) Unit dislocations, which have a Burgers vector equal to a unit lattice

vector.

(iii) Partial dislocations, which have a Burgers vector smaller than a unit

lattice vector.

The Burgers vector b for a given loop can be found by the following proce-

dure: construct a Burgers circuit C encircling the dislocation in a right-handed

way relative to the dislocation line (Fig. 3.2). The circuit would be closed if

the crystal was perfect. The circuit will not be closed; then the vector from

the starting point S to the finishing point F is the Burgers vector b.

According to this definition, the local Burgers vector depends on the lattice

strains. If we define b more precisely, meaning the corresponding translational

vector in an unstrained reference lattice, b is well defined and independent of

the Burgers circuit and is a characteristic vector for the whole dislocation line

(Lothe, 1992).

In real crystals, the cut surface would prefer to have the Burgers vector

producing a low energy stacking fault or twin boundary. Thus, only the one

or two shortest perfect lattice Burgers vectors are stable in high symmetry

crystals: 1
2 〈110〉 and 〈100〉 in fcc, 1

2 〈111〉 and 〈100〉 in bcc, and 〈0001〉 and
1
6 〈112̄0〉 in hcp (Hirth, 1992).
The sign of the direction of a dislocation ξ was arbitrarily chosen. If the

sign of ξ is reversed, the sign of b also changes. The Burgers vector b as well

as ξ must be specified for a complete characterization of a dislocation loop C.

A straight dislocation with b ‖ ξ is a screw dislocation. A straight dislocation

with b ⊥ ξ is an edge dislocation.

If the dislocation branches, the sum of the Burgers vector of the dislocations

after branching must be equal to the Burgers vector of the initial dislocation

(Fig. 3.3). If we assume that all the dislocations are directed towards (or

outwards from) the branching point (node) the sum of their Burgers vectors

must be equal to zero (Fig. 3.4). This is the condition for conservation of the

Burgers vector along the dislocation.∑
i

bi = 0 (3.1.2)
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Fig. 3.3. Branch of a dislocations line.

Fig. 3.4. Burgers vectors at a node.

3.1.3. Glide and Climb

Suppose that the element dl = ξdl of the dislocation loop in Fig. 3.1 moves by

δr (Fig. 3.5). The motion of dl contributes to the change in the enclosed area

A with

δA = δr× dl (3.1.3)

and material in the amount

δV = b · dA = (dl× b) · δr (3.1.4)

must be removed over the cut surface A in the process (δV < 0, added) in

order that material continuity be preserved.
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Fig. 3.5. Motion δr of an element dl.

If δr lies in the plane containing both b and dl, then δV = 0. In this case,

no material transport to or from the dislocation element is required. This is a

conservative motion of the dislocation. Such motion is called glide. The glide

plane is (dl× b).

Motion out of the glide plane requires material transport to or from the

dislocation, and is called climb. These are non-conservative motions. Since

the dislocation “climb” out of its true glide plane (defined by b · dA = 0) as it

moves. The net amount of material removed is given by

V = b ·
∫
A

dA . (3.1.5)

It is proportional to the area projected onto a plane perpendicular to b,

no matter how A is chosen, provided the loop is given. Voids (δV > 0) or

interstitial atoms are produced in the track of the moving dislocation.

3.1.4. Jogs

When non-parallel dislocations with non-parallel Burgers vectors cut through

one another, jogs can be produced. The type of jog produced by such an

intersection can be found by establishing whether the ξ of one dislocation

crosses the slip plane of the other from the negative to the positive face, or

vice versa.

In the case of an edge cutting an edge, only the stationary dislocation

acquires a jog; in the case of an edge cutting a screw, a jog appears only in the

moving dislocation. The reason is that a jog must be normal to the slip plane

of the dislocation; a jog in the slip plane would immediately be eliminated

since the dislocation would straighten out by pure glide.

In general, a jog in a moving dislocation produces a drag that slows down

the dislocation. The details are shown in the book by Read (1953).
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3.1.5. Forces on Dislocations

If we have formed a dislocation loop C in a crystal with Burgers vector b which

has elastic self-energy E, another stress σ2 is present (due to another loop C2

or externally applied forces), the work needed for the creation of loop C1 is

reduced by

E1−2 = −
∫
A1

b1 · σ2 · dA1 . (3.1.6)

Then, the total energy will be

E = E1 +E2 +E1−2 . (3.1.7)

Let us now deform the loop C1 by moving the elements dl1 by δr1, while the

field σ2 is kept constant and the configuration of the loop C2 is not changed.

Then, δσ2 = 0 and δE2 = 0. From Eq. (3.1.7),

δE = δE1 + δE1−2 (3.1.8)

where, by Eqs. (3.1.6) and (3.1.3)

δE1−2 = −
∮
C1

[(b1 · d2)× dl1] · δr1 (3.1.9)

or:

δE1−2 = −
∫
C1

df1−2 · δr1 (3.1.10)

where df1−2 is the force on element dl1 due to the stress σ2 and is given by
(Peach and Koehler, 1950)

df1−2 = (b1 · σ)× dl1 . (3.1.11)

If the shear stress σ2 is on the slip plane (b1×dl1), then, the force per unit

length acting on the dislocation line is simplified as

F = σb . (3.1.12)

3.2. Elastic Field of Straight Dislocation

The stress field of a straight dislocation line is long-range, falling off as r−1. At
a distance 104b the stress is of order 10−5 µ, i.e. as large as the yield stress of a
soft crystal. Hence dislocations strongly interact with one another elastically.
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3.2.1. Summary of Isotropic Elasticity Theory

In isotropic solids

Cijkl = µ(δikδjl + δilδjk) + λδijδkl (3.2.1)

where λ is the Lamé constant and µ the shear modulus. The relation between

stress, σij , and strain, is given by

σij = λ(ε11 + ε22 + ε33)δij + µεij (3.2.2)

where

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(3.2.3)

and ui and uj are displacements along i and j directions respectively.

The inverse of Eq. (3.2.2) is

εij =
1

2µ
σij − ν

E
(σ11 + σ22 + σ33)δij (3.2.4)

where ν is the Poisson ratio

ν =
λ

2(µ+ λ)
(3.2.5)

and E is Young’s modulus

E =
µ(3λ+ 2µ)

µ+ λ
. (3.2.6)

It follows simply from Eqs. (3.2.5) and (3.2.6) that

µ =
E

2(1 + ν)
. (3.2.7)

From Eq. (3.2.4) ε11 can be written as

ε11 =
1

E
[σ11 − ν(σ22 + σ33)] . (3.2.8)

Navier’s equation expressed by displacement (3.2.10) can be obtained by sub-

stituting (3.2.2) to stress equilibrium Eq. (3.2.9) (Peach and Koehler, 1950)

σij,j + Fi = 0 (3.2.9)

µ∇2ui + (λ+ µ)e,i + Fi = 0 (3.2.10)
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where,

∇2 =
∂2

∂xi∂xi

e = uj,j .

Beltrami–Michell’s compatibility equation expressed by stress can be obtained

by substituting (3.2.4) to strain compatibility equation,

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (3.2.11)

∇2σij +
1

1 + ν
Θ,ij = − ν

1− ν
δijFk,k − (Fi,j + Fj,i) (3.2.12)

where,

Θ = σk,k .

In the special case when the body force is constant, then

∇2Θ = −1 + ν

1 + ν
Fi,i = 0

is a harmonic function. Then, from Eq. (3.2.12),

∇2σij = − 1

1 + ν
Θ,ij (3.2.13)

∇2∇2σij = ∇4σij = 0 . (3.2.14)

From the relation between stress and strain, we also have

∇4εij = 0 .

Both σij and εij satisfy biharmonic equations.

For plane deformation problems, it is useful to introduce Airy’s stress func-

tion, Φ, which is given by

σ11 − V = Φ,22 , σ12 = −Φ,12 , σ22 − V = Φ,11 . (3.2.15)

It can be shown that the elastic equation for plane deformation is satisfied by

any solution of the biharmonic equation

∇4Φ = 0 , (3.2.16)
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where the body force has been ignored. The solution of Eq. (3.2.16) is

Φ(x, y, z) = Φ0(x, y) + zΦ1(x, y)− ν

2(1 + ν)
z2∇2Φ0 (3.2.17)

where Φ0 and Φ1 have the forms

Φ0 =
1

2
xφ(x, y) + f0(x, y)

Φ1 =
1

4
k(x2 + y2) + f1(x, y)

(3.2.18)

and f0, f1 are harmonic functions. σij can be obtained by Eq. (3.2.15) (the

body force has been ignored V ≈ 0). Using Eq. (3.2.4), εij could be calculated
explicitly. Here, ∇2Φ0 in Eq. (3.2.17) is given by

∇2Φ0 = Θ0(x, y) (3.2.19)

Θ0 = Θ− kz (3.2.20)

and Θ is defined by Eq. (3.2.12),

Θ = σkk = σ11 + σ12 . (3.2.21)

3.2.2. Elastic Field of An Edge Dislocation

An edge dislocation is a case of plane strain. Consider a long edge dislocation

along the localized axis. The discontinuity in displacement, b, is normal to the

line. Hence we seek solutions for ux and uy, uz = 0 and ∂ux/∂z = ∂uy/∂z = 0.

Taking the separable form

Φ = R(r)Θ(θ) (3.2.22)

and solving the resulting ordinary differential equations, the solution for a

positive edge dislocation is obtained of the form

Φ = −Dr ln r sin θ = −Dy ln(x2 + y2)1/2 (3.2.23)

where

D = µb/(2π(1− ν)) .
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The stresses are given by

σxx = − µb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2

σyy =
µb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2

σxy =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2

σzz = ν(σxx + σyy) = − µbν

π(1− ν)

y

x2 + y2

σxz = σyz = 0 .

(3.2.24)

The displacements are

ux =
b

2π

[
tan−1

y

x
+

xy

2(1− ν)(x2 + y2)

]

uy = − b

2π

[
1− 2ν
4(1− ν)

ln(x2 + y2) +
x2 − y2

4(1− ν)(x2 + y2)

]
.

(3.2.25)

In cylindrical coordinates, the formulae for the stresses are

σrr = σθθ = − µb sin θ

2π(1− ν)r

σrθ =
µb cos θ

2π(1− ν)r

σzz = ν(σrr + σθθ) = − µbν sin θ

π(1− ν)r
.

(3.2.26)

The displacements in Eq. (3.2.5) take the form

ur =
b

2π

[
− (1− 2ν)
2(1− ν)

sin θ ln r +
sin θ

4(1− ν)
+ θ cos θ

]

uθ =
b

2π

[
− (1− 2ν)
2(1− ν)

cos θ ln r − cos θ

4(1− ν)
− θ sin θ

]
.

(3.2.27)
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Fig. 3.6. The formation of an edge dislocation by slip.

The energy per unit length We/L in the region between two cylinders of radii

r0 and R (Fig. 3.6) can be calculated as the work done on the plane AB,

We

L
=

µb2

4π(1− ν)
ln

(
R

r0

)
. (3.2.28)

The work done on the outer cylinder of radius R just compensates the same

amount of work extracted at the inner cylinder of radius r0.

3.2.3. Elastic Field of Screw Dislocation

The field is not one of plane deformation and so cannot be found from the

biharmonic equation. For a right-handed screw dislocation along the localized

axis in an infinite medium, the displacement is:

uZ =
bθ

2π
=

b

2π
tan−1

(y
x

)
. (3.2.29)

The discontinuity surface is chosen on y = 0, x > 0. The stresses can be

obtained from Eq. (3.2.29) as

σxz = −µb

2π

y

x2 + y2

σyz =
µb

2π

x

x2 + y2

σxy = σxx = σyy = σzz = 0 .

(3.2.30)



54 Mechanical Properties of Metals

Fig. 3.7. A right-handed screw dislocation along the axis of a cylinder.

Fig. 3.8. A region defined by two coaxial cylinders.

In cylindrical coordinates (Fig. 3.7)

σθz =
µb

2πr

σxz = σrθ = σrr = σθθ = σzz = 0 .

(3.2.31)

The energy per unit length Ws/L in the region between two cylinders of

radii r0 and R (Fig. 3.8) is

Ws

L
=
1

2

∫ R

r0

σyz(y = 0) bdx =
µb2

4π
ln

(
R

r0

)
. (3.2.32)

Equations (3.2.28) and (3.2.32) diverge as r0 → 0, indicating the failure of the

continuum description near the core.

3.2.4. Uniform Dissociation Model of Dislocation Core

Lothe (1992) considered the divergencies of dislocation theory and proposed a

spread-out dislocation core instead of the ideal line dislocation to remove this
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Fig. 3.9. The dislocation of the standard core.

divergence. His mathematically simple model for the core for the screw may be

used consistently in all calculations, as a standard reference core. A uniform

dissociation of the core within a strip of width d, as indicated in Fig. 3.9 was

assumed.

A strip of width dx within the interval [−d/2, d/2] contributes with db,

db = bdx/d (3.2.33)

to the Burgers vector, and the relative displacement over the discontinuity

surface is then

∆uz = 0 x < −d

2

∆uz = b

(
1

2
+

x

d

)
, −d

2
< x <

d

2

∆uz = b x >
d

2
.

(3.2.34)

The stress given by this continuous distribution of dislocations is written as

σyz =
µb

2πd
P

∫ + d2

−d
2

1

x− x′
dx′ .

That is

σyz =
µb

2πd
ln

(
x+d
2

x−d
2

)
x >

d

2

σyz =
µb

2πd
ln

(
d
2 + x
d
2 − x

)
−d

2
< x <

d

2
.

(3.2.35)
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The stress-distribution, given in Eq. (3.2.35) is logarithmically divergent, but

integrable. The work per unit length done on the discontinuity surface y = 0,

−d/2 < x < R can be derived from Eqs. (3.2.34) and (3.2.35)

W

L
=
1

2

∫ R

d
2

σyz∆uzdx =
µb2

4π
ln

(
Re3/2

d

)
, whenR � d . (3.2.36)

The work done on the outer cylinder can be ignored compared with Eq. (3.2.36).

The total elastic energy per unit length within a cylinder of radius R is

Ws

L
=

µb2

4π
ln

(
Re3/2

d

)
. (3.2.37)

For brevity, Lothe (1992) defined a parameter ρ which is

ρ = de−3/2/2 . (3.2.38)

Equation (3.2.37) can be more simply written as

Ws

L
=

µb2

4π
ln

(
R

2ρ

)
. (3.2.39)

The Ws/L value of a single dislocation in infinite media remains divergent

at outer radius R. If we consider the dislocation dipole, it is a well-defined

value. Let r be the separation of dislocations of opposite sign in the plane of

core dissociation,

W

L
= 2

µb2

4π
ln

(
r

2ρ

)
, r � 2ρe3/2 . (3.2.40)

Analogous to the treatment of the screw dislocation, except that now there

is a non-zero energy input at the cylindrical surface, the elastic energy per unit

length edge dislocation can be written as

We

L
=

µb2

4π(1− ν)
ln

(
R

2ρ

)
+

µb2(1− 2ν)
16π(1− ν)2

. (3.2.41)

For a dipole consisting of two opposite sign standard-core edge dislocations

in the same glide plane and separated by a distance r,

W

L
= 2

µb2

4π(1− ν)
ln

(
r

2ρ

)
, (r � 2ρe3/2) . (3.2.42)
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Beyond the slip plane, other core dissociations, say in the climb plane,

could be imagined. For the same separation, the radial dislocation-dislocation

interaction force is the same in the climb plane as in the glide plane, the energy

per unit length of a dipole in the climb plane and with climb core dissociation

is the same form as Eq. (3.2.42). The total energy of the dislocation core

contains both an elastic part and a misfit energy part. The real width and

form of the dissociation is determined by the balance between elastic terms and

misfit terms. Planes with a misfit energy function allowing wide dissociation

will thus be the favored planes for core dissociation. Anyhow, the model of

uniform glide plane dissociation is considered as a standard reference.

3.2.5. Mixed Dislocations

A mixed dislocation can be considered as a superposition of a screw dislocation

and an edge dislocation. Strains and stresses are obtained by the superposition

of screw and edge solutions. From Eqs. (3.2.39) and (3.2.41), it follows that,

W

L
=

µb2

4π

(
cos2 α+

sin2 α

1− ν

)
ln

(
R

2ρ

)
+

µb2(1− 2ν) sin2 α
16π(1− ν)2

(3.2.43)

for the standard core mixed dislocation, and that for the standard core dipole

lying in the glide plane

W

L
= 2

µb2

4π

(
cos2 α+

sin2 α

1− ν

)
ln

(
r

2ρ

)
, (r � 2ρe3/2) . (3.2.44)

3.2.6. Dislocations in Anisotropic Media

The calculation of the self-stress of dislocations is quite complicated for

anisotropic crystals. For many purposes, a calculation assuming isotropy is

adequate in view of the inaccuracy in the theories other than the neglect of

anisotropy. However, reactions and interactions between dislocations in low-

index crystallographic directions are necessarily to be treated with theories

including anisotropy.

3.3. Interactions of Dislocation with Other Defects

3.3.1. Interactions with Point Defects

With the dislocation axis lying at a distance d > a from the point defect,

where a is the distance between neighbouring glide planes, the dislocation
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interaction with the defect can be described in an elastic approximation. With

d ≤ a, an analysis in terms of interatomic interactions is needed, to compute

the behaviour of the impurity atom in the dislocation core. In this section, we

shall consider the first case.

The elastic interaction of dislocations with a point defect is by the inter-

ference term in the elastic energy (Indenbom and Cheronov, 1992).

W = Sijkl

∫
dV σ

(1)
ij σ

(2)
ki (3.3.1)

where index (1) refers to the dislocation, and index (2) to the point defect. Ac-

cording to the Colonnetti theorem (see Indenbom, 1992), the work of internal

stresses on total deformations of any origin vanishes

W = −
∫

dV σ
(1)
ij ε0ij = −V0σ

(1)
ij ε0ij (3.3.2)

which means that the energy of elastic interaction between the dislocation

and the point defect is equal (but opposite in sign) to the work of the in-

ternal stresses δν
(1)
ij due to the dislocation of the self-deformations of the

point defect ε0ij . At distances of the order of the lattice parameter, various

non-linear effects become significant, while modulus and non-linear effects far-

from the dislocation diminish more rapidly than the first-order size effect and

become insignificant.

Considering an edge dislocation interacting with a dilation center, we take

into account only the pressure distribution in the dislocation elastic field

(Lothe, 1992).

p = −1
3
σii =

µb

3π

(
1 + ν

1− ν

)
sin θ

r
(3.3.3)

Here, b is the Burgers vector, r is the distance from the dislocation axis to the

point defect and θ is the azimuth angle taken from the Burgers vector towards

the extra half-plane. If the dislocation is located along the Z-axis, the Burgers

vector is directed along the x-axis and the dilation center, and the self-volume

is δv = ε0ijV0, is at the point with coordinates (x, y, z). Then, the interaction

energy:

W =
µb

3π
δV
(1 + ν)

(1− ν)

y

x2 + y2
. (3.3.4)
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Taking y0 as the distance between the point defect and the glide plane, the

energy W assumes its extreme value when x = 0

W0 =
µb

3πy0
δV

(
1 + ν

1− ν

)
(3.3.5)

which is the binding energy. The interaction force can be calculated from

Eq. (3.3.4)

F = ±∂W

∂x
= ∓2W0

xyy0

(x2 + y2)2
.

The upper sign means directed from the point defect to the dislocation and

vice versa.

3.3.2. Interactions with Planar Free Surface

Consider a right-handed screw dislocation s parallel to a planar free surface,

B, as shown in Fig. 3.10. The distance from s to B is l. If we superpose the

self-stress of the screw and that of an imaginary screw of the same strength and

opposite sign at the mirror position outside the solid, the boundary condition

that at the free surface, νxz = 0 is met. The image stress at the dislocation

then is

σyz =
µb

4πl
(3.3.6)

Fig. 3.10. A screw dislocation parallel to a free surface and an image dislocation.
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The screw is drawn toward the surface by a force

Fx

L
= σyzb =

µb2

4πl
(3.3.7)

per unit length.

As the image problem for the edge dislocation, even for the relatively simple

problem as above the mathematics is somewhat lengthy and tedious.

More complicated image-force problems are discussed by Eshelby, (1979);

Lothe, (1992).

3.4. Crystal Lattice Effects

In the continuum model of dislocations, the displacement of the cut and the

magnitude of Burgers vector are arbitrary. In a crystal lattice, the cut surface

would have an unacceptably large surface energy unless the Burgers vector

were a translation vector of the perfect lattice or a vector producing a low

energy stacking fault or twin boundary. Morever, if a dislocation splitting is

energetically favorable, the dislocation can split into two product dislocations.

Thus, only the one or two shortest perfect lattice Burgers vectors are stable in

high symmetry crystals: 1
2 〈110〉 and 〈100〉 in fcc, 12 〈111〉 and 〈110〉 in bcc, and

〈0001〉 and 1
6 〈1120〉 in hcp (Read, 1953; Hirth, 1992).

3.4.1. Stacking Order in Closed-Packed Structures

Closed-packed fcc and hcp are two simple examples of spheres stacked in close

packing. First lay down a closed-packed layer; call it the A layer. The second

layer can go either of the two sets of hollows on the first layer; call these the B

and C positions, respectively. Every layer in the stack has to lie in one of the

three positions — A,B, or C — if the stack is close packed. The normal f.c.c.

sequence is . . . ABCABCABC . . . in a perfect crystal. Three simple faults

have relatively low surface energies: the first twin,

|
. . . ABCA B ACBA . . .

|
the intrinsic stacking fault (removing a plane),

|
. . . ABCA BA BCA . . .

|
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Fig. 3.11. Atomic scale view normal to a {111} glide plane in an fcc crystal.

and the extrinsic stacking fault (inserting a plane)

|
. . . ABCAB A CABC . . . .

|
The value of the extrinsic fault energy γE is close to γI , and is the double

value of the twin boundary energy γT , 2γT = γE = γI , (Hirth, 1992). γT =

24 mJm−2 and 15 mJm−2 for Cu and Au respectively.

3.4.2. Partial and Extended Dislocations in fcc Crystals

In Fig. 3.11, motion of a perfect 1
2 [011] dislocation shears an atom from

position 1 to position 2. Alternatively, the dislocation can dissociate into a

partial 16 [112], shearing the atom from 1 to 3 and creating an intrinsic stacking

fault and a partial 1
6 [1̄21] completing the shear from 3 to 2 and annihilating

the fault.

Suppose a stacking fault does not extend all the way through the crystal,

it must terminate on a line imperfection. The boundary of a stacking fault is

called a partial dislocation. There are various partial dislocations. Read, 1953

and Hirth, 1992, deal with partial dislocations and stacking faults in detail.

Two parallel partials connected by a strip of stacking fault form an extended

dislocation.

3.4.3. Stacking Faults and Extended Dislocations in Plastic Deformation

Extended dislocations affect the form of slip lines. If an extended screw dis-

location wants to shift from one plane to another, it must first collapse into a
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single dislocation, then split into a second pair of partials on the second plane.

The strong repulsion between the two partials prevents their coming together.

There will be an activation energy for it to change slip planes. This is the

reason why bcc metals, different from close-packed metals, deviate from the

Schmid law, the slip was not confined to well-defined low index crystal planes

and the flow stress was found to be dependent on the orientation of the slip

plane (Vitek, 1992).

Face-centered-cubic metals have a decided preference for slip on the close-

packed planes. Extended dislocations have less energy than others, and they

lie on {111} planes; therefore dislocations should form more easily on {111}
planes. The critical stress for the Frank-Read mechanism is proportional to

dislocation energy; the mechanism should therefore operate preferentially on

{111} planes.
If the slip takes place on a plane that intersects the stacking fault, it cuts

the fault into two halves, which are displaced parallel to the slip vector. These

boundaries of the halves are partial dislocations. The slip that cuts the fault

has to supply the energy to create the partials. Therefore a stacking fault is a

barrier to slip on an intersecting plane. It hardens the crystal. Furthermore,

the two new partials must have equal and opposite Burgers vectors, which are

held close together by a strong attraction. This would resist the slip on the

intersecting plane of the partials from being moved farther apart.

Dislocations can harden intersecting slip systems. An extended dislocation

is hard to cut; where it jogs, the partials have to come together. The mutual

repulsion of the partials which resists unsplitting before it can be cut hardens

the system.

3.5. Dislocation Motion over Peierls Barrier

A dislocation experiences an oscillating potential energy as it glides in a crystal.

In the Peierls model (1940), the bonds across the glide plane were considered

to interact via an interatomic potential, while the remainder of the lattice was

linearly elastic. Nabarro (1947) gave an analytical expression for the disloca-

tion core model. Accurate theoretical evaluation of the Peierls barrier poses a

very difficult problem, even with modern computers at hand. Another model

is the Frenkel-Kontorova model (1938). This model has been widely used and

has received much attention. It assumed that an infinite set of atoms were tied

together in a chain by elastic bonds, and situated in the periodic potential of a

substratum. When the number of atoms does not agree with the substrate
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potential valleys, defects will arise. These defects, in current terminology

called solitons, can be considered to picture dislocation cores. For a review

of current models and methods in numerical dislocation modelling, see Puls’

paper (1981).

3.5.1. Peierls Model

One can approximately estimate the ideal lattice resistance to dislocation mo-

tion by means of the Peierls model. The resolved applied stress necessary to

move the dislocation over the Peierls barrier is called Peierls stress, σp. It

depends on crystal structure and elastic moduli. Nabarro (1947) derives

σp =
2µ

1− ν
exp

(
−2πξ

b

)
. (3.5.1)

Here, ξ = 1
2a(1 − ν), is the dislocation core width, a the lattice period, µ is

the shear modulus, ν is Poisson’s ratio and b is the Burgers vector.

Equation (3.5.1) comes from the expression for the Peierls energy,

W (α) =
µb2

4π(1− ν)
+

Wp

2
cos(4πα) (3.5.2)

where α is a parameter for a translation of the dislocation by a distance αb.

Hirth and Lothe (1982) pointed out that Eq. (3.5.2) predicts that, α = 0

and 1/2, correspond to maximum energy configuration and α = 1/4 corre-

sponds to the minimum energy. This point has led to some confusion in many

literatures. In spite of the inadequacy of the model, the Peierls-Nabarro model

can be used to demonstrate that a small finite stress is required to move a dis-

location and that this stress decreases rapidly with increasing spread of misfit

width across the glide plane.

3.5.2. Frenkel-Kontorova Model

In this model, the atoms above the slip plane are replaced by a series of mass

points connected by identical springs, and the atoms on the bottom of the slip

plane are replaced by a sinusoidal potential substrate. We may think of this

configuration as a series of chain connected balls relaxing onto a corrugated

trough under the force of gravity (Frenkel and Kontorova, 1938). With one

more ball than at normal trough, there are potential minima, a one-dimensional

dislocation is formed, having stable and unstable equilibrium configurations
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Fig. 3.12. The model of Frenkel and Kontorova.

just as for the Peierls energy (Fig. 3.12). The dislocation begins to move when

its energy is larger than a certain minimum energy W0 (see Frenkel, 1957).

W0 =
4

π

√
mw2

0A

where w0 is the propagation velocity of a sound wave, m is the mass, A is

the work done for an atom to move from one appropriate place to another

appropriate place. The maximum effective length of the dislocation (or the

width of the dislocation line) λ0 is:

λ0 =
a

2π

√
mw2

0

A
. (3.5.3)

The Frenkel-Kontorova model also has the feature that the Peierls stress

drops markedly with increasing dislocation width.

Atomic calculations and interpretation of experimental results have led to

the general agreement that the Peierls barrier exists and that the magnitude

of σp varies from ∼ (10−3−10−4) µ for closest packed metals and alkali-halide
crystals to ∼ 10−2 µ for elemental semiconductor with directed covalent bonds.
The bcc metals are in an intermediate position. There, microscopic core models

somewhat different from the original Peierls model apply (Hirth, 1960; Vitek

and Kroupa, 1966; Vitek, 1974).

3.5.3. Phase Transition: Analytical Mechanism Motion of Dislocations

When the externally applied stress is less than the Peierls stress, simple me-

chanical motion will not take place. It can move over only by means of fluctu-

ations helping it to overcome energy barriers. The original dislocation position

corresponds to the metastable phase and the role of a “new phase” is played

by dislocation segments which have overcome the barrier (Lothe and Hirth,

1959). The configuration that a dislocation segment in a new valley next to

the original valley lies between two kinks which take the dislocation over the

hill between the two valleys is called a double kink. The double kink plays the

Administrator
ferret
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role of an embryo of “new phase”. In the spirit of nucleation theory as applied

to phase transitions, we assume an Arrhenius law:

n = n0 exp

[
−E(σ)

kT

]
(3.5.4)

for the nucleation frequency of double kinks. This quantity, together with

the kink mobility, will specify the time for complete ‘transition’ of the entire

dislocation. Calculation of the energy barrier E(σ) for double-kink nucleation

involves a specification of the saddle point in the many-dimensional potential

for double-kink formation on an originally unkinked dislocation. The saddle

point is determined by application of equilibrium conditions to the dislocation

in an interaction with the periodic potential and external stress σ. In order

to arrive at a complete solution of the problem of determining n, including

the preexponential factor n0, we must resort to the kinetic equations for the

distribution function describing fluctuational deviations of the dislocation out

of the potential valley. Explicit solutions have been obtained in two limiting

cases: The case of an applied stress which is small compared with the Peierls

stress σp and the case of an applied stress that is close to σp. Since overcoming

the barrier proceeds by changes of the shape of the dislocation, one must start

with a general geometrical study of the topography of the energy in the space

of all possible dislocation configurations. Such an approach gives a rigorous

foundation for the theory of kinks on dislocations and makes it possible to

describe the transition from one valley to the next one in terms of fluctuations

around the saddle point, and which can be described in kink terminology,

relative to fluctuations about equilibrium on an otherwise straight dislocation

in the potential valley (see Indenbom et al., 1993).

For the cases σ � σp,

n =
Da(U ′′0 )3/2

kT
√
k

Le
−V0
kT

e−γγγ

Γ(γ)
(3.5.5)

where we have introduced the abbreviation γ = (σab/kT )(k/U ′′0 )1/2. For high
values of γ, the activation energy V0 is given by:

V0 = 2V1 − σab

√
K

U ′′0
ln
(σ∗
σ

)
, (σ∗ ∼ σp) . (3.5.6)

For the cases σ ∼ σp, and σp − σ � σp,

n = 215/8
15Dab11/8|U ′′′0 |3/8
(2πkT )3/2K1/4

L(σp − σ)11/8 exp

(
− V0

kT

)
(3.5.7)
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where

V0 =
21/448

√
k(σpb)

5/4

5|U ′′′0 |3/4
(
1− σ

σp

)5/4
(3.5.8)

Here, k is the line tension, U(y) is a planar potential (Peierls potential) and

U ′′0 and U ′′ ′0 are evaluated at the point y = 0 and the inflection point of the

potential curve respectively, a is the distance from a valley to the neighbouring

valley along y-axis, L is the length of the segment, and D is the “atomic” dif-

fusion coefficient. Equations (3.5.6) and (3.5.8) are convenient for comparison

with experiments.

3.5.4. Dislocation Velocity

The quantity n/L = J is interpreted as the probability of double-kink nu-

cleation per unit time per unit length of dislocation. When the dislocation

is short, the process would not involve the kink-kink annihilation. In this

case, the dislocation velocity shows simple proportionality with the length of

the dislocation,

vD ∼ an ∼ aJL . (3.5.9)

For sufficiently long segments, nucleation will take place in parallel at dif-

ferent places along the dislocation and the process will then also involve the

rate of annihilation by kink-kink collisons. For a straight, originally unkinked

dislocation, the mean distance between kinks after a time t will be ∼ (1/Jt).

The transition time for motion into the next valley is estimated by requiring

that the distance travelled by a kink vnt equals the distance it must go to an-

nihilation with another kink, that is the mean kink separation. This balance

gives approximately

t ∼ 1√
Jvn

(3.5.10)

for the transition time. Equation (3.5.10) gives a dislocation velocity

vD ∼ a

tn
∼ a
√

Jvn (3.5.11)

where, vn is the velocity of the kink which is determined by the kink mobility

µ (the Einstein relation µ = D1/kT ), the discreteness parameter a and the

force per unit length σb.



Extended Defects and Mechanical Strength 67

3.5.5. Quantum Motion of Dislocations

At sufficiently low temperatures, quantum effects should be important and

change a sharp decrease of dislocation mobility into a gradual transition to an

athermal regime.
Weertman (1958) considered the dislocation in a sort of ‘particle’ picture

and used the expression

W ∼ exp
[
−2
�

∫ √
2mU(x)dx

]
(3.5.12)

for the tunneling transition probability. In this expression, m was taken to the

mass of one atom of the material, and the barrier was described to be of height
2V1 and width ∼ b.

Indenbom et al. (1992) pointed out that for dislocation process, it is quasi-

particle tunneling which corresponds to double-kink widening. The potential
barrier for the process is

V (1) = 2V1 − σabl . (3.5.13)

The mass related to double-kink widening can be deduced from the kinetic
energy in the string as function of the velocity of widening lo. Calculating the

integral in Eq. (3.5.12), they obtained:

w ∼ exp
(
−16
3
M1/2 V

3/2
1

�σab

)
. (3.5.14)

The difference between Eq. (3.5.14) andWeertman’s result consists in the stress

dependence of the transition probalility.

The most likely candidates for appreciable quantum effects will be crystals
where the zero point motion has a large relative amplitude, such as inert-gas

crystals and also solid hydrogen, solid deuterium and solid methane.

3.5.6. Flow Limit

In the simplest case, the macroscopic deformation velocity ε can be written as:

ε̇ = ρDbvD (3.5.15)

where ρD is the density of mobile dislocations. Equation (3.5.15) can be em-

ployed to interpret experiments on the temperature dependence of the flow
limit σ(T ). The σ(T ) must be such that the condition

ε̇ = ρDbvD = const. (3.5.16)

is fulfilled, where the constant is the velocity imposed by the machine.
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It is interesting to discuss σ(T ) of a composite system of edge and screw

dislocations (Lung, 1995; Jiang and Lung, 1996).

ve = v0

(
σ

σe

)m

vs = v0

(
σ

σs

)m (3.5.17)

v̄ = (ρeve + ρsvs)/ρT

ε̇ = bv0σ
m

(
ρe

σme
+

ρs

σms

)
.

(3.5.18)

Let:

x =
bv0σ

m

ε̇
, x1 =

σme
ρe

, x2 =
σms
ρs

1

x
=
1

x1
+
1

x2
. (3.5.19)

Unlike the configuration of resistors in series, these processes seem like the

configuration of resistors in parallel. We should note that the small one usually

controls the change of the whole system. This conclusion seems in contradiction

to the widely accepted concept, the difficult part, the screw, controls the change

of σ in bcc metals and alloys.

Moreover,

∆σ

σ
=

σms ρe

σme ρs + σms ρe

(
∆σe

σe

)
+

σme ρs

σme ρs + σms ρe

(
∆σs

σs

)
. (3.5.20)

Let:

α =
σms
σme

, β =

(
∆σs

σs

)
/

(
∆σe

σe

)
, ρ =

ρs

ρe

and then
∆σ

σ
=

α+ ρβ

ρ+ α

(
∆σe

σe

)
. (3.5.21)

The relative values of α and ρβ determine which kind of dislocations con-

tributes more in ∆σ/σ. If ρβ > α, the screw contributes more in the deforma-

tion. Figure 3.13 (Fig. 2(c) of Jiang and Lung, 1996) shows the relationship

of total stress change with (∆σe
σe
) and s, where s = ρs/(ρs + ρe), α = 10 and
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Fig. 3.13. Total stress changes vs ∆σe/σe for α = 10 and β = 1: contribution from the
screw. (Jiang and Lung, 1996)

β = 1. This figure shows that the screw contributes mainly when s > 10
11 .

We believe that in many bcc metals, this condition is satisfied. Therefore, the

above may not contradict with the previous experimental results and concrete

conclusions on bcc metals. However, Lung et al. doubt the general concept

that the difficult part controls the change of the whole composite system with

the configuration in parallel. We noticed that Pharr and Nix (1979) proposed

a model of strong dependence of the mobile dislocation density, ρ, on effective

stress to account for some of the plastic flow behaviour observed in fcc metals

(Pharr and Nix, 1979). Stein and Low (1960) have found that the tempera-

ture dependence of the applied stress on edge dislocation moving at constant

velocity is also very strong in Fe-Si single crystals.

3.6. Dislocations and Cracks

There are many similarities between the mechanical behaviour of a macro-

crack and dislocations piled up against a locked dislocation. Both have stress

concentration effects. The Griffith formula for brittle fracture of solid may

be derived from the fundamental properties of dislocations piled up against

a locked dislocation (Hirth and Lothe, 1982). But the physical concept of a

crack dislocation is not the same as an ordinary one (Bilby and Eshelby, 1968).
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The extra half atomic plane does not really exist, and crack dislocations are

defined by discontinuities occuring naturally across unwelded cuts when a body

is stressed. Perhaps the simplest way is to regard a crack dislocation as a type

of imperfect dislocation whose associated sheet of bad crystal is a missing plane

of atoms. The existence of the applied stress is necessary for the existence of

crack dislocations. It should be noted that crack dislocation densities cannot

be any distribution other than that satisfying the condition of the stress-free

surface on crack planes. This was reviewed by Smith (1979).

3.6.1. Fundamental Properties of Dislocation Arrays

If the dislocation density is D(x′) and the stress applied at the point x on

the crack plane is σAyy(x) (Fig. 3.14) the dislocation density distribution func-

tion can be determined by the condition that the crack planes should be free

surfaces.

Then we have (Bilby and Eshelby, 1968)

σAyy(x) +A

∫ a

−a

D(x′)dx′

x− x′
= 0 . (3.6.1)

Fig. 3.14. The crack dislocation model.
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A = (µb)/(2π(1− ν)), µ is the shear modulus, b is the Burgers vector. Solving

Eq. (3.6.1), the dislocation density distribution function D(x′) can be deter-
mined.

The total stress σA + σD can be determined at any point of the solid

material and

σDij (r) = b

∫ a

−a
D(x′)σyij(x− x′, y, z)dx′ . (3.6.2)

σDij (r) is the stress at point r due to the dislocation, the core of which is at x
′

and the Burgers vector of which is [010].

Since σD is much larger than σA in the neighbourhood of the crack tip, we

need to consider only σD. Now we may displace the origin of coordinates to

the crack tip. Let s = x−a, which is taken to be small. After some calculation,

the expressions for σD(s) and D(s) may be obtained,

σD =
KD

(2π)1/2
s−1/2 (3.6.3)

D(s) =
KD

Aπ(2π)1/2
(−s)−1/2 . (3.6.4)

By comparing expression (3.6.3) with that in conventional fracture mechanics,

we see that they are similar in mathematical form,

σc =
Kc

(2π)1/2
s−1/2 . (3.6.5)

Therefore,
σc(s)

σD(s)
=

Kc

KD
= α . (3.6.6)

We do not know whether they are similar or equivalent, as this depends on

whether or not α is equal to unity. Although the general solution of KD from

Eq. (3.6.1) is the same as that of Kc in the central symmetrical crack case as

has been done in symposium ASTM, STP 381, it is still necessary to compare

the numerical results from Eqs. (3.6.3) and (3.6.4)with those from conventional

fracture mechanics. According to the definition of the stress intensity factor,

KD = (2π)1/2 lim
S→0

S1/2σD(S) (3.6.7)

and from Eq. (3.6.4),

(KD)2 = 2πA2 lim
x→a

D2(x) . (3.6.8)
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Solving the integral equation, Eq. (3.6.1), D(x) is obtained and the KD may be

obtained from Eq. (3.6.8). Expressions (3.6.4) and (3.6.8) have been described

by Bilby and Eshelby (1968); but no practical numerical results calculated

with this method have been reported. It is not so easy to solve the integral

equation for D(x′) analytically because of the variety of distribution of σAyy(x).

3.6.2. Solution of Integral Equation with Chebyshev Polynomials

Tn(x) and Un(x) are a pair of normalized orthogonal polynomials between

(−1,+1), the weight function of which are (1 − x2)−1/2, respectively. Tn(x)

and Un(x) are called Chebyshev Polynomials.

T0(x) = 1, T1(x) = x, T2(x) = 2x
2 − 1, T3(x) = 4x

3 − 3x, . . .

U0(x) = 0, U1(x) = 1, U2(x) = 2x, U3(x) = 4x
2 − 1, . . .

(3.6.9)

The relation between Tn(x) and Un(x) is:

1

π

∫ 1

−1

1

y − x

[
Tn(y)

(1− y2)1/2

]
dy = Un(x) . (3.6.10)

If the applied stress σA(x) can be expanded to be polynomials of Un(η) terms,

σA(x) =
n∑

n=0

anx
n =

n∑
n=0

(ana
n)ηn =

n+1∑
n=1

Cn(a)Un(η) (3.6.11)

where η = x/a, Un(η) has the form of (3.6.9). Comparing (3.6.9) with (3.6.1),

Lung (1980) obtained:

A

∫ 1

−1

D(η)dη

η − x
a

= σAyy

(x
a

)
. (3.6.12)

Using the relations of (3.6.10) and (3.6.12), Lung obtained D(η) and then the

expression for KD. After certain steps of calculation and check for the edge

crack case, Lung (1980) applied this method to a rotary plate (a model for

the steam turbine wheel) with an edge crack at the central hole. The result

obtained is compared with that of the finite element method (Fig. 3.15). The

difference in percentage are about 2–15%. However, the calculation based on

the dislocation theory is simpler.

The Chebyshev polynomials may be applied to more general cases. Any

stress distribution function σ(x) can be expressed in terms of Un(x) in principle
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Fig. 3.15. The stress intensity factors of a rotary plate with an edge crack at the central
hole. (Lung, 1980)

and σ(x) can be obtained from design data. From the above, it was shown

that the fractural behaviour of the dislocation model gives approximately the

same results as that calculated by other methods in fracture mechanics.

3.6.3. Elastic Energy Momentum Tensor in Defect Problem

In general, point defects, dislocations, crack tips, etc. and all other defects

may be considered as singularities in an elastic field. Their mechanical be-

haviour obeys the law of the general elastic field theory. Their differences

reflect their specificities. Eshelby has discussed the interaction between the

applied stress and the defects (point defects and dislocations) (Eshelby, 1956).

The Lagrangian density for the free elastic field:

L =
1

2
ρu̇2 −W (ui,j) (3.6.13)

with an external force density fi, is not taken into account in the Lagrangian.
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The equation of motion is:

∂

∂xi

∂L

∂ui,j
− ∂L

∂u
= 0 . (3.6.14)

The methods of field theory enable us to derive an elastic energy momentum

tensor (EEMT),

Tηλ =

(
∂L

∂ui,η

)
ui,λ − Lδηλ (3.6.15)

where η, λ = 1, 2, 3, 4, x4 = t, u4 = 0 and their components are

Tjl = Pjl − 1

2
ρu̇2δjl , T44 =W +

1

2
ρu̇2

Sj = Tj4 = −σij u̇i , gi = T4l = ρu̇2iui,l

(3.6.16)

and Pjl =Wδjl − σijui,l and the relation σij = ∂W/∂uij is used.

The physical significance of Tjl is the l component of momentum flowing

through the unit area which is perpendicular to the l axis in unit time (Landau

and Lifshitz, 1961). They are tensors. For the static case in the absence of a

body force, only Pjl and W of Tηλ come into existence.

Eshelby has used an elastic singularity motion model to derive the following

expression:

Fl =

∫
Σ

Pjldsj (3.6.17)

where Fl is the l-component of the forces acting on all the sources of internal

stresses as well as elastic inhomogeneities in region I (Fig. 3.16). These forces

are caused by sources of internal stresses and elastic inhomogeneities in region

II and by the image effects associated with boundary conditions.

Fig. 3.16. The internal stress source in an elastic continuum medium.
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Suppose there is only one defect in region I; Fl may be taken as the force

acting on the defect. Formula (3.6.17) is the form in three dimensions. If one

uses the form in two dimensions, the components of Fl are,

F1 =

∮ [
Wdx2 − t ·

(
∂u

∂x1

)
ds

]

F2 =

∮ [
Wdx1 − t ·

(
∂u

∂x2

)
ds

] (3.6.18)

where t is the traction vector on s having unit outward normal n, u is the

displacement vector and W is the energy density.

Assuming a straight dislocation line in infinite homogenous continuous me-

dia, its energy will not change due to its position change. Therefore, the first

form for this dislocation in (3.6.18) is zero. The force acting on the dislocation

is mainly the second term. Then,

Fl = F1 cosα+ F2 sinα

= −
∮

t0 ·
[
∂u

∂x1
cosα+

∂u

∂x2
sinα

]
ds

= −
∮

t0 · ∂u
∂s

ds

= −t0
∮

du

= −t0 · b (3.6.19)

where α is the angle between l and x1,
∮
du = b, t0 the surface traction for

the displacement of the dislocation. If one lets t0 = (σ11, 0), then

F2 = −σ11b . (3.6.20)

Similarly,
F1 = σ23b , F2= −σ13b (screw)

F1 = σ12b , F2= −σ11b (edge) .

Here, the expressions are derived from the EEMT.

Suppose there is a crack tip; F1 may be taken as the force acting on the

crack tip. Expression (3.6.18) is similar to the J integral in fracture mechanics

(Lung, 1980).

If mode II deformation is mixed with mode I, the direction of Flo, the max-

imum F1, would not coincide with the x1 direction. Suppose it has an angle α
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Fig. 3.17. The direction of Fl0 and the direction of the fractural plane.

with x1 (Fig. 3.17),
∂Fl

∂α
= 0, α0 = arctan

(
F2

F1

)
(3.6.21)

because [∂2Fl/∂α
2] < 0, so that α0 denotes the direction of maximum Fl0,

Flo =
√

F 2
1 + F 2

2 = F1 secα0 . (3.6.22)

Suppose Flo(k1, k2) ≥ Floc, the crack extends; this is the criterion of fracture

under combined mode deformation. Flo is the maximum value of F1 and Floc
is the critical value of Flo, which is a materials constant.

For fracture under combined mode I and mode II loading (Lung, 1976),

α0 = arctan

[
− (1− 2ν)K1K2

(1− ν)(K2
1 +K2

2)

]
(3.6.23)

Fl0 =
1 + ν

E
[(K4

1 +K4
2 )(1− ν)2 + (K1K2)

2(3− 8ν + 6ν2)]1/2 . (3.6.24)

For uniaxial applied stress,

K1 = KA sin
2 β, K2 = KA sinβ cosβ (3.6.25)
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Fig. 3.18. The relationship between (σcr
√

a) and β. (Lung, 1980)

where

KA = σA
√
πaY .

2a is the crack length, σA is the applied stress and Y is the geometrical factor.

From Eqs. (3.6.23) and (3.6.24),

α0 = arctan

[
− (1− 2ν)
2(1− ν)

sin 2β

]
. (3.6.26)

Fl0 =
1− ν2

ε
(K2

1 +K2
2 ) secα0 =

1− ν2

E
K2
A sin

2 β secα0 . (3.6.27)

Equation (3.6.27) has been compared with other theories in fracture mechanics

(Fig. 3.18). It was found that their differences are quite small when β > 40◦.
The cracking angle α0 has a relation to the fracture angle θ0, in fracture

mechanics,

α0 = θ0 − β +
π

2
= θ0 − arctan

(
K1

K2

)
+

π

2
. (3.6.28)

Figure 3.19 represents the theoretical curves calculated with Eqs. (3.6.26) and

(3.6.28) in comparison with the finite element method, strain energy density

method and maximum stress method. Five groups of experimental data are

also represented. In spite of a larger difference with other theoretical curves

below β = 40◦, the qualitative forms of curves and the maximum cracking

angles are nearly the same.
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Fig. 3.19. The fracture angle α vs β relationship. (Lung, 1996)

3.6.4. Gauge Field Theory of Defects

The relation between dislocation theory and non-Riemannian geometry was

first recognized by Kondo (1952) and independently by Bilby et al. (1955).
Since then, some works (Bilby, 1960; Kröner, 1960; Wit, 1981) in the sub-

ject have been done, gradually the non-Riemannian geometric continuum

theory of defects has been developed and widely accepted. On the other
hand, Golebiewska-Lasota (1979) first discovered that dislocation equations

have gauge invariance. From then on, some researchers engaged in the subject
of gauge theory of defects. Kadic and Edelen (1983) imitated the electro-

magnetic theory to build up a gauge theory of dislocations and disclinations;

Duan and Duan (1986), having applied gauge field theory of defects continuum
theory, also formulated a gauge field theory of a continuum with dislocations

and disclinations (Comparing to the usual translation dislocations, a rotation

dislocation defined by an extended Burgers circuit is called disclination; see
Friedel, 1979; and also Appendix 3.1 of this book.). Some other contributions

to the subject have been made by Gairola (1981), Kröner (1986) and Kunin
(1986). New various gauge theories of defects not only developed the defects

theory, but also extended our scope of understanding to gauge field theory it-

self and the underlying relation between gauge field theory and defects theory.
These theories need to be further developed and perfected.
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Deng et al. (1991) combine the non-Riemannian geometric continuum the-

ory of defects with the classical gauge field theory to propose a new gauge field

theory of a continuum with dislocations and disclinations.

The key point of non-Riemannian geometric continuum theory of defects is

that all the structural quantities in the plastically deformed manifold should

be defined by comparing the deformed material elements with those in an

idealized state, i.e. by mapping the deformed material in to the idealized state.

The plastic manifold constitutes a non-Riemannian space and the metric ten-

sor, the torsion tensor and the Riemannian-Christoff curvature tensor have

corresponding relations to the strain tensor, the dislocation density tensor and

the disclination density tensor.

The strain tensor of the material body is:

EAB =
1

2
(gAB − δAB) (3.6.29)

where gAB is metric tensor of non-Riemannian apace, and the capital letters

A, B, etc. run from 1 to 3. Deng et al. decomposed the strain tensor EAB into

two parts, one is the elastic strain tensor Eel
AB, the other is the plastic strain

tensor Epl
AB ,

Eel
AB =

1

2
(hAB − δAB) , Epl

AB =
1

2
(gAB − hAB) (3.6.30)

where hAB = δij∂Ax
i∂Bx

j .

The reference state, the elastic deformed state (first added by Deng

et al. 1991) and the final state are referred as the r-state, e-state and the

f-state respectively.

In gauge field theory, the covariant derivative should be substituted for

the ordinary partial differential in order to keep the field quantity differential

having same form with the field quantity under the gauge transformation, i.e.

∂A → DA = ∂A − ωA (3.6.31)

where ωA is called the gauge potential or gauge connection which has relation

to the gauge group.

Deng et al. set the distortion tensor φBi, as field quantity. The covariant

derivative of φBi, etc. is:

DAφBi = ∂AφBi − ωjAiφBj

DAφ
B
i = ∂Aφ

B
i − ωjAiφ

B
j

(3.6.32)
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where i, j, etc. run from 1 to 3. Treating the φBi as a vector in non-Riemannian

space and keeping the index i unchanged, affine connection ΓcAB can be defined

through the conventional covariant derivative of φBi with respect to the index

A as:

∇AφBi = ∂AφBi − ΓcABφci . (3.6.33)

Considering both affine connection ΓcAB and gauge connection ωjAi, after some

arguments, it is obvious that the total covariant derivatives of φBi and φBi are:

DAφBi = ∂AφBi − ΓcABφci − ωjAiφBj

DAφ
B
i = ∂Aφ

B
i + Γ

B
Acφ

c
i − ωjAiφ

B
j .

(3.6.34)

Usually, one assumes that the total covariant derivative of φAi is identically

zero in non-Riemannian geometry, i.e.

DAφBi = ∂AφBi − ΓcABφci − ωjAiφBj = 0 .

It is obvious that:
DAφBi = Γ

c
ABφci

∇AφBi = ωjAiφBj
(3.6.35)

i.e.
ΓcAB = φciDAφBi

ωjAi = φBj∇AφBi .
(3.6.36)

The torsion tensor is defined as:

T c
AB =

1

2
(ΓcAB − ΓBAc) . (3.6.37)

It can be used to define the dislocation tensor:

αAB = (g)εACDTB
CD (3.6.38)

where (g)εACD is the permutation symbol derived by g1/2 and g = det(gAB).

αAB is invariant under the gauge transformation. The curvature tensor is

defined as:

RD
ABC = ∂AΓ

D
BC − ∂BΓ

D
AC + Γ

D
AEΓ

E
BC − ΓEACΓDBE . (3.6.39)

It can be used to define the dislocation density tensor:

θAB = (g)εACD(g)εBEFRCDEF . (3.6.40)
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To derive the governing equations of the system, the Lagrangian density was

assumed:

L =
1

2
ρ0δij ẋ

iẋj −W (xA; xi; φAi; φAi,B; ω
j
Ai; ω

j
Ai,B) (3.6.41)

where ρ0 is the mass density of the material body, ẋ
i, φAi,B and ω

j
Ai,B represent

the time differential of xi, and φAi and ωjAi the differential with respect to x
B .

The action integral is:

I =

∫ f2

f1

dt

∫ L

E3

Ld3x . (3.6.42)

Fixing the boundary conditions, the Euler equations was obtained on the in-

variant principle δI = 0,
∂Aσ

A
i − fi = ρ0ẍ

i

∂Bσ
AB
i − fAi = 0

∂Bσ
AB
ij − fAij = 0

(3.6.43)

Here, the σAi , σ
AB
i and σABij are called strain tensors; the fi, f

A
i and fAij the

strain density tensors respectively,

σAi =
∂W

∂xi,A
, σABi =

∂W

∂φAi,B
, σABij =

∂W

∂ωjAi,B

fi =
∂W

∂φi
, fAi =

∂W

∂φAi
, fAij =

∂W

∂ωjAi
.

(3.6.44)

Equation (3.6.43) represents the linear momentum equations, the dislocation

balance equations and the disclination balance equations. They comprise 21

equations: the same number as quantities needed for describing the motion

and deformation of the material body.

Dong et al. (1984) gave Noether’s symmetrical theorem and the conserva-

tion laws on a gauge theory of defect continuum and applied to plastic zone

near a crack tip. They proposed a dynamical criterion for crack propagation

in the defect continuum. The critical driving force or energy release rate of a

crack in the presence of dislocations and disclinations is Fkc, a local material

constant. When the total driving force acting on the crack can be expressed

by an integral Fk and

Fk > Fkc (3.6.45)



82 Mechanical Properties of Metals

the crack starts to propagate. In the case of defect free materials (perfect

brittle materials), the Fk integral can be reduced to the same form of Rice’s J

integral* in fracture mechanics; the extension force acting on a crack tip. The

F integral is the generalization of the J integral in the existence of dislocations

and disclinations.

3.6.5. Interactions of Dislocations with Crack

Rice and Thomson (1973) and Asaro (1975) have shown that the interaction

between a semi-infinite long crack and a straight dislocation is of a remarkably

simple form. They pointed out that the image force (interaction) exerted

by the crack on the dislocation is given by Fr = −E∞/r, where E∞ is the

prelogarithmic energy factor of the same dislocation in the infinite uncracked

medium. Asaro used a simple conformal mapping technique which may be

improved in some points: (i) Generally a crack is of finite length. The crack

with semi-infinite length is true only in the limiting case. (ii) The author

subtracted from the potential Ω(z) the contribution of the screw dislocation

located at z0 in the infinite uncracked solid. This perhaps duplicates one part

of the potential calculation.

Using Eshelby’s expression (1979) for the image force on a dislocation near

a circular hole, Lung and Wang (1984) calculated the image force on the dislo-

cation near an elliptical hole with conformal mapping technique. Allowing the

axis of the ellipse to tend to zero, the crack-limit solution is obtained. After a

lengthy calculation, the image force may be expressed as:

4Fx =
µb2s
2πa

1[((
x
a

)2
− 1
)1/2][(

x
a
+
{(

x
a

)2
− 1
}1/2)2

− 1
] (3.6.46)

where µ is the shear modulus, 2a is the crack length, and x is the distance

of the dislocation from the center of the crack. This is an expression for the

image force near a finite-length crack. Taking an approximate expression, let

x = a+ s and s � a; then, Fs ∼ Ab2s/4s. That is, even in the ideal crack case,

the image force is approximately half the value given by Rice and Thomson

(1973) and Asaro (1975). If s � ρ(ρ = b2/a) or s is even smaller than the

radius of curvature of the ellipse at the end of the major axis, it can be proved

that Fs ∼ Ab2s/2s. This is just the value given by the above authors.

*The J integral is a path independent quantity and formally equivalent to the change in
potential energy when the notch is extended by an amount da in non-linear elastic cases and
it corresponds to the same function as does G in linear elastic theory.



Extended Defects and Mechanical Strength 83

Fig. 3.20. The dislocation near (a) a free plane and (b) a crack tip. (x = Re z, y = Im z;
ξ = Re ζ, η = Im ζ)

Lung calculated the image force again (1984a; 1984b). He used a simple

mapping function:

ζ = Z2 (3.6.47)

which gives a one-to-one mapping of the right half-plane of the complex variable

Z, onto the ζ-plane with an infinitely long slit or a crack along the negative

real axis (Fig. 3.20). The change of the potential energy due to the interaction

between a dislocation and its relevant free surface is:

E(ζ) = E[ζ(Z)] = E(Z) . (3.6.48)

The image force between the dislocation and the crack in the ζ-plane is:

Fζ = −dE

dζ
= −dE

dZ

∣∣∣dZ
dζ

∣∣∣ = FZ

∣∣∣ dζ
dZ

∣∣∣−1 . (3.6.49)

It is well known that the image force on the dislocation near a free plane is:

FZ = − Ab2

2ReZ
(3.6.50)

where A = µ/2π, b is the Burgers vector, and µ is the shear modulus. There-

fore, the image force on the dislocation near a semi-infinite crack is:

Fζ = − Ab2

4|Z|ReZ = − Ab2

4|ζ1/2|Re (ζ1/2) . (3.6.51)

In general, Fζ depends on the argument of the complex variable ζ. In partic-

ular, if the dislocation is on the real axis (ξ �= 0 and η = 0), the image force

on a dislocation exerted by the semi-infinite crack is:

Fξ = −Ab2

4ξ
= −µb2

8πξ
. (3.6.52)
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The image force calculated is exactly one half the value of previous works (Rice

and Thomson, 1973; Asaro, 1975), but it is consistent with the approximate

value of Eq. (3.6.46) when s � a.

Lung introduced another mapping function which maps the ζ-plane with an

infinitely long crack onto a W -plane with a finite length crack. The mapping

function is

W =
aζ + b

cζ + d
=

a′ζ + b′

c′ζ + 1
(3.6.53)

where a′, b′, c′ are equal to a/d, b/d and c/d, respectively, if d �= 0. The

coefficient a′, b′, c′ can be determined from the condition that the points −∞,
−1 and 0 in the ζ-plane are conformally equivalent to the points −a, −a/2

and 0 on the W -plane, respectively (a is the crack length).

From this condition one can obtain:

W =
aζ

1− ζ
(3.6.54)

or:

ζ = w/(a+ w) .

In analogy to Eq. (3.6.49):

Fw =
−Ab2a

4(a+ w)2|( w
a+w

)1/2|Re ( w
a+w

)1/2 . (3.6.55)

Then, the image force on a dislocation on the real axis exerted by the finite

length crack is:

Fs =
−Ab2a

4s(s+ a)
(3.6.56)

where s = ReW .

From Eq. (3.6.56), one may see that:

(i) Fs is a function of crack length a.

(ii) If s � a; then Fs �= −µb2/(8πs). This expression is consistent with

Eqs. (3.6.52) and (3.6.46) when s � a.

In Fig. (3.21) the dependence of the dislocation image force on the distance

between the dislocation and a crack tip is shown.

The differences among the curves 2, 3 and 4 are quite small when both ζ

and s/a are smaller than 0.1. When both the distances ξ and s/a are larger

than 0.1, the differences among them are large.

At a distance s/a < 0.005, all the image forces calculated by Eqs. (3.6.46),

(3.6.52) and (3.6.56) approach the same value y = 1/(4ζ).
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Fig. 3.21. The relationship of dislocation image force with the distance of the dislocation
from a crack tip. 1. Rice and Thomson, 1973; Asaro, 1975; 2. Lung and Wang, 1983; 3.
Eq. (3.6.52) 4. Eq. (3.6.56). (Lung, 1984)

Using the non-local elasticity theory developed by Kröner, Erlinger and

others, the interaction between a finite-length crack and a straight screw dis-

location parallel to the crack plane has been investigated by Pan (1994). The

non-local image force on a screw dislocation due to a finite-length crack was

calculated. The result showed that there is no singularity of the image force

calculated previously and there is a maximum of the force at the crack,

FN
x = − Aac

x(x+ c)

[
1− exp

(
−4k

2x(a+ c)

a(x+ c)

)]
. (3.6.57)

A finite value of the dislocation image force can be obtained, when the distance

of the dislocation from the crack tip tends to zero.

FN
x0
= −4k2A

(
1 +

a

c

)
(3.6.58)

where A = µb2/(8πa), a is the lattice parameter, c is the crack length and k

is a constant in the expression of a non-local kernel function, which has been

given by comparing dispersion relations for plane waves with those from lattice

dynamics. From Eq. (3.6.58), a maximum of the image force |FN
x0
|/A = 3.8877

is obtained with c/a = 10.

When the lattice parameter a tends to b(a ∼ b), the Burgers vector of the

dislocation, Eq. (3.6.57) becomes:

FN
x = − µb2c

8πx(x+ c)

[
1− exp

(
−4k

2x(b+ c)

b(x+ c)

)]
. (3.6.59)
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For a microcrack of µm length, c/b ∼ 104, Eq. (3.6.59) approaches,

FN
x

∼= − µb2c

8πx(x+ c)
. (3.6.60)

It reverts to Eq. (3.6.56).

Zhou and Lung (1988) modified the calculations in order to find the exact

solution by letting the total Burgers vector of image dislocations inside the

crack go to zero. The results are very near the results of Lung and Wang

(1984). When s/a � 1, the image force approaches Ab2s/(4s); and, if s is even

smaller ((2ss/a)
1/2 � 1), the image force approaches Ab2s/(2s).

Zhang and Li (1989) discussed the image dislocations inside a finite crack.

They pointed out that it is not necessary to add positive screw images at the

center of the hole if the dislocations are emitted from the crack. On the other

hand, if a dislocation moves from another source into the vicinity of the crack

which is originally stress-free, a Burgers circuit enclosing only the crack would

be closed. Hence in this case, the total Burgers vector of the image dislocation

must be zero. Comparing to the previous case, an extra distribution of positive

image dislocations should be added to compensate for all the negative ones, as

has been done by Eshelby (1979).

3.6.6. Dislocation Distribution Function in Plastic Zone at Crack Tip

The problem of dislocation distribution in the plastic zone at a crack tip was

first studied by Bilby et al. (BCS-type crack model) (1963). They described the

plastic zone by an array of dislocations co-planar with the crack and derived

the same relationship between the crack size (c), the plastic zone size (a–

c), and the applied stress (σ∞) as Dugdale (1960) had done macroscopically
before. Kobayashi and Ohr (1980) investigated crack propagation and the

structure of the plastic zone formed ahead of a crack with the help of in situ

electron microscope fracture experiments of the b.c.c. metals molybdenum and

tungsten. They found that a part of the plastic zone immediately ahead of the

crack tip is free of dislocations. Weertman (1981) proposed that in many real

cases, dislocations are not emitted directly from the crack tip, and that pairs

of partial or perfect dislocations of opposite sign are created on the slip plane

immediately ahead of the crack tip. Dislocations of the positive ones move

away from the tip region leaving dislocations of negative sign piled up against

the crack tip. When the applied stress is sufficiently large the piled up negative

dislocations can enter the crack tip and blunt it.
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The dislocation density function in the original BCS-type crack model

monotonically decreases with the distance from the cracktip, all the dislo-

cations are of positive sign. Lung and Xiong (1983) calculated this problem

from different points of views. Unlike the original BCS-type crack model, they

treated this problem within a homogeneous and continuous system. Actually,

they only consider the plastic zone which does not include both the crack and

plastic zone in a whole system to avoid discontinuity and inhomogeneity. We

know that the crack plane is a free surface and the resistance to motion of

the dislocations in the crack region (σ0) is different from that in the plastic

zone (σ1). They avoided treating the problem in a composite system and just

considered the crack effect as a boundary applied stress.

At first, they did not consider crack blunting. Suppose one of the disloca-

tion with Burgers vector of magnitude b is located at a distance x from a crack

of length 2c (Fig. 3.22). In this case the resultant shear stress on it is zero

when the system is in equilibrium (Bilby et al., 1963) This condition leads to

the following integral equation for the density function D(x) of the dislocation:

A

∫ D

0

D(x′)
x− x′

dx′ − σ1 + σ∞ + σc = 0 (3.6.61)

where A = µb/(2π(1− ν)), µ is the shear modulus, b is Burgers vector. The

first term is the interaction between this dislocation and the others. σ1 is the

frictional stress for the dislocation motion (which is taken as the yield stress),

and σ∞ is the applied stress field taken as constant, and σc is the elastic stress

field due to the crack tip calculated with linear elastic fracture mechanics. The

image stress at the crack tip was ignored in that calculation. For small scale

yielding, one may write:

σc =
K

(2πx)1/2
, K = σ∞(πa)1/2 . (3.6.62)

Fig. 3.22. Schematic figure of dislocations in the plastic zone at a crack tip.
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Let u = x′/a, w = x/a where a is the plastic zone size, u and w are dimen-

sionless parameter, then from Eq. (3.6.61),

A

∫ 1

0

D(u)

w − u
du− σ1 + σ∞ + σc = 0 . (3.6.63)

This singular integral equation can be solved by finite Hilbert transforma-

tion:

D(u) =
σ1

π2A

(
1− u

u

)1/2
(1− α)π

[
1− 1

4
√
1− u

ln

(
1 +

√
1− u

1−√
1− u

)]
(3.6.64)

where α = σ∞/σ1.

The conditions for it to exist lead to the relation (Lung and Xiong, 1983),

a

c
=

[
2
√
2α

π(1− α)

]2
. (3.6.65)

As expected, a → 0, when α = 0; that is σ1 → ∞ (infinite resistance to

dislocation motion) or σ∞ → 0 (no applied stress on dislocations). Again,

a → ∞, that is, yielding spreads across the infinite plate, when α → 1, this

means σ∞ → σ1 (applied stress tends to resistance σ1 to dislocation motion)

(Fig. 3.23).

Unlike the original BCS-type crack model, D(u) can change sign from u = 0

to u = 1. It results from the solution of Eq. (3.6.63). This means, there are

opposite sign dislocations existing in the plastic zone simultaneously as shown

in Fig. 3.24(a). In this type of σc, D(u) = 0 at u0 = 0.08, and it seems

Fig. 3.23. Relationship between the plastic zone size a/c and the applied stress α = σ∞/σ1.

(1) a
c
=
[

2
√
2α

π(1−α)
]2
; (2) BCS: a

c
= sec

(
π
2

a
) − 1; (3) a = π

2
√
2n+arccos 2n−1

2n+1

; (4) a
c
= α2.

(Lung and Xiong, 1983)
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Fig. 3.24. Dislocation distribution in the plastic zone under small scale yielding. (a) x/a as
unit, (b) x/c as unit. (Lung and Xiong, 1983)

independent of α. That is, the dislocations always change their sign at x0 =

0.08a. The fact that D(u) is negative in Eq. (3.6.64) means that the sign of the

Burgers vector of the dislocations relative to that of crack dislocations which

create a positive stress field is negative.

Figure 3.24(b) is the plot of D(x/c) vs x/c, where the authors used the

length of crack as unit. It is shown that the higher the applied stress level,

the larger the area under the distribution function curve; and then, the

larger the COD* of the cracked material.

If the size of plastic zone at fracture is not very much less than the crack

length, Eq. (3.6.62) is too simple for describing the stress field near the crack

tip accurately. The following expression may be a refinement:

σe =
σ∞√

1− ( c
x+c)

2
− σ∞ . (3.6.66)

The solution is:

D(u) = E(α)

√
1− u

u
−F (α)

u+ n√
u(u+ 2n)

ln
[
√
2n+

√
(2n+ u)(1− u)]2 + u2]

u(2n+ 1)

(3.6.67)

*COD means the crack opening displacement as a parameter which might be treated as a
characteristic of crack-tip region, for a given material tested under a given set of conditions.
The critical COD value for a given material at fracture is sensibly constant.
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where

E(α) =
σ1

π2A

{
2α
[
arctan

√
2n− π

2

]
+ π
}

F (α) =
ασ1

π2A

n =
c

a
.

The condition for it to exist leads to the relation:

α =
π

2
√
2n+ arccos

(
2n−1
2n+1

) . (3.6.68)

The size of plastic zone as a function of various applied stress levels (α) is shown

in Fig. 3.23. The distribution function of dislocations in the plastic zone as

a function of distance from the crack tip is given in Figs. 3.25(a) and (b).

Similar to the small scale yielding case, the dislocation distribution function

has a maximum value and a range of negative values.

Equation (3.6.61) ignored the image stress at the crack tip which may

change the distribution. Lung and Deng (1989), and Liu et al. (1987) calcu-

lated the problems including the image effects and showed qualitatively similar

distribution functions to Lung and Xiong (1983). The possibility that negative

dislocations may exist at the crack tip was first discussed in Lung and Xiong’s

model (1983). Such behaviour was observed near a crack tip in NaCl (Narita

and Takamura, 1985). The work in stainless steel confirmed the existence of

negative dislocations at the immediate vicinity of the crack tip (Ohr, 1987).

Antishielding dislocations are found to exist near the crack tip of I and II

modes in bulk aluminium single crystal (Xu, 1991).

Fig. 3.25. Dislocation distribution in the plastic zone under elastic plastic stress field. (a)
x/a as unit, (b) x/c as unit. (Lung and Xiong, 1983)
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In the case of Eq. (3.6.61), only the equilibrium condition of stresses has

been considered. Let us consider the thermal dynamical equilibrium condition

of the whole system. Lung (1990) found that the system is unstable because

of its higher total energy.

We know that positive crack dislocations and negative crystal dislocations

prefer to attract and to annihilate with each other. This is due to the smaller

amount of energy expended in creating new surfaces (γsb ≈ Eb2

20 ) compared to

the energy of the existing dislocations (∼ µb2). In principle, only when the

size of negative dislocation zone (x0 in Sec. 3.6.6) is larger than that of the

dislocation-free-zone (δ3 in Sec. 3.6.9), can negative dislocations remain at the

crack tip.

3.6.7. Dislocation Emission from Cracks

A material is said to be intrinsically ductile (or brittle) if a sharp crack emits

a dislocation at stress-intensity levels below that where crack cleavage occurs

(or vice versa), because except in special geometries, the emitted dislocation

blunts the crack and renders it uncleavable. The intrinsic stability of the bonds

at a crack tip against shear breakdown and dislocation formation is thought to

be the underlying reason why certain broad classes of materials such as the fcc

metals are generally ductile, and others such as ceramics are generally brittle

(Zhou et al., 1994).

Let us discuss the case of a specimen with a crack at the edge. A dislocation

near the crack tip may be attracted to the crack tip by the image force between

the dislocation and the crack. The dislocation may be acted on by another

force due to the K stress field at the crack tip. In the case that this force is

smaller than the image force, it will have the same direction as the frictional

force.

In mode III, the condition for zero force on a reference dislocation i at x

in the pile-up near a crack tip is given by (Thomson, 1983):

fd =
KIIIb√
2πx

− µb2

4πx
+
∑
j �=1

′ µb

2π(x− xj)

xj

x
. (3.6.69)

For simplicity, we have used the expression of image force for the semi-infinite

long crack. For the dislocation at x ≈ 0, x is much smaller than the plastic

zone size. Then,

fd ∼= kIIIb√
2πx

− µb2

4πx
(3.6.70)
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and:

kIII = KIII −
∑
j=i

′ µb

(2πxj)1/2

where fd is the force acting on the reference dislocation. KIII is the stress

intensity factor due to the crack tip, xj is the distance of the j dislocations

piling up from the crack tip and kIII is called the effective stress intensity

factor which modifies the original KIII with the effects of dislocations near

the crack tip.

The condition for zero force on the dislocation is given by:

kIII√
2πδ2

− A

2δ2
+ σ1 = 0 (3.6.71)

where A = (µb)/(2π). The solution for δ2 is

δ2(kIII) =
A

2

1(
Aσ1 +

k2
III

2π

)
±
[(

Aσ1 +
k2
III

2π

)2
−A2σ21

]1/2 . (3.6.72)

It is reasonable to take the plus sign in the solution, because δ2 is smaller than

δ1, (= A/(2σ1)), the solution for kIII = 0.

For simplicity, we change k to a new parameter:

kIII = (2πAσ1)
1/2β .

Replacing in (3.6.72),

δ2(β) =
A

2σ1

1

1 + β2 + [(1 + β2)2 − 1]1/2 . (3.6.73)

Here δ2(β) is the position of the dislocation where fd = 0.

If δ2(kIII) ≈ b, kIII = ke and for k > ke, a dislocation at any position in

the material sees a repulsive elastic force, and it never traverses an attractive

regime; then, dislocation emission will occur spontaneously. KIIIe(kIIIe) is

called the critical stress-intensity factor for emission. The above description is

the same as Thomson (1983) though it is simpler.

The cleavage/emission criterion is obtained by combining (3.6.70) with the

Griffith criterion for cleavage. Now we use the mode I symbol for convenience.

The Griffith criterion for cleavage is:

kIc = 2

√
µγ

1− ν
. (3.6.74)



Extended Defects and Mechanical Strength 93

The criterion for cleavage/emission in pure Mode I then becomes:

kIE < kIc emission

kIE > kIc cleavage .
(3.6.75)

There have been several attempts (Weertman, 1981; Schoek, 1991; Rice, 1992;

Zhou et al., 1994) to develop analytic, continuum-based estimates of the critical

stress intensity factor for emission, KIe, There have also been several atomistic

calculations (Hoagland, 1990; Cheung, 1991). The most successful continuum

based analysis has recently been performed by Rice (1992) who found that for

plane stress the critical stress-intensity factor for emission, KIe, is given by:

Ke =
√
2γusµ(1 + ν)Y (3.6.76)

where ν = 0.25 is Poisson’s ratio, Y is a geometric factor given by the angle

of dislocation emission, and γus is the ‘unstable stacking energy.’ The latter

is defined as the maximum energy barrier encountered when two semi-infinite

blocks of material are sheared relative to one other, and is thus a measure of the

theoretical shear strength of the material. For simple lattices, the maximum

energy barrier corresponds to a relative displacement of b/2 between the blocks,

where b is the magnitude of the dislocation’s Burgers vector. In Rice’s analysis,

this implies that the crack-tip dislocation is precisely half formed at the critical

point of emergence.

Zhou et al. (1994) used a form of the force law which generalizes the uni-

versal binding energy relation (UBER) form:

Fα = −kue−(u/l)
α

. (3.6.77)

Here, u is the radial displacement between two atoms relative to their equilib-

rium position, l is a length-scale parameter, and α varies the shape of the force

law. They performed a series of atomistic calculations to establish criteria for

dislocation emission from a crack in a model hexagonal lattice. From this,

they proposed a new ductility criterion for materials which does not depend

on the intrinsic surface energy, but contains only the unstable stacking fault

parameter.

In the range of calculation, the crossover (KIe = KIc) is very different

from that predicted by the continuum theory. It corresponds fairly closely

to γus/ka = 0.005 or, using b = a and the easily derived relationship µ =

(31/2/4)k,

γus/µb = 0.012 . (3.6.78)
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Thus the crossover is essentially independent of γs. This does not imply that

KIe is independent of γs, since the crossover is determined by the ratio of KIe

and KIc, not by KIe itself. The observed γus independence of the crossover

requires that the dependence of KIe on γs be the same as that of KIc,

KIe = KIcf(γµs) = 2
√
γsµ(1 + ν)f(γus) (3.6.79)

where f(0.012µb) = 1. The physical interpretation of this is that KIe is dom-

inated by the surface energy required to blunt the crack. Further, since the

ledge surface is created during a shear dislocation formation process, emission

will involve both γus as well as γs, unlike pure cleavage which involves only

γs. Because both cleavage and emission events produce surface energy, the

surface energy cancels out in the ductility criterion, which involves a ratio of

the two separate criteria for emission and cleavage. In order to gain confidence

in this prediction, Thomson and Carlsson (1994) expose a continuum elastic

description of the emission process, which can give insight into the physical

basis for, and limit to, the new criterion. The models confirm the prediction

of Zhou et al., but suggest that at lower values of the intrinsic surface energy

than explored by Zhou et al., there exists a regime where the new criterion

breaks down, and the ductility criterion reverts to the older predictions.*

3.6.8. Dislocation Pair Creation and Separation from the Crack Tip

Weertman (1981) treated smeared-out rather than discrete dislocations in an

analysis of a mode II shear crack, and showed that a partial dislocation can

be emitted at the crack tip and that one or more pairs of partial or perfect

dislocations are created ahead of the crack tip. Positive perfect dislocations

move into the crystal lattice away from the crack tip and negative partial or

perfect dislocations move into the tip and cause the crack tip to advance by

one or more interatomic distances. If the crack is a mode I crack and the

dislocations are on inclined slip planes, the entry of dislocations into the tip

blunts the crack. He believed that perfect dislocations are not emitted directly

from the crack tip into the lattice, although the net result is the same as if

they had been directly emitted. When the ratio σmax/τmax, where σmax is the

theoretical tensile strength and τmax is the theoretical shear strength, is very

large, a number of dislocations will be piled-up against the crack tip before the

lead dislocation enters the crack tip.

*Atomistic and continuum approaches to fracture toughness are reviewed by A. E. Carlsson
and R. M. Thomson in Solid State Physics 51, 233 (1998).



Extended Defects and Mechanical Strength 95

Table 3.1. Values of σmax/τmax.

Material σmax/τmax

Gold 34

Silver 30

Copper 28

Nickel 22

Iridium 10

Potassium 10

Iron 6.75

Tungsten 5.04

Diamond 1.16

When the ratio σmax/τmax is equal to or larger than about 7 a mode I

crack tip should blunt before brittle propagation occurs. The common fcc

metals satisfy this condition. The bcc metals iron and tungsten have σmax/τmax
ratio somewhat smaller than 7 and thus cracks in these metals may not blunt.

Table 3.1 lists values of this ratio for various materials given by Kelly (1973).

Zhou and Lung (1989) discussed the influence of external dislocations on the

crack tip process using the superdislocation pair model with numerical calcu-

lation, and analytical treatment. These results showed that negative external

dislocation annihilation at a crack is much easier than dislocation emission

from the crack tip. In other words, an external dislocation can be annihi-

lated at a crack before a dislocation can be emitted from the crack tip if the

source is sufficiently near the crack tip. Since negative dislocation is nearer to

the crack tip than the positive one. The net effect of an external dislocation

pair on the crack is anti-shielding. Hence, external dislocations can play a

significantly promotive role in dislocation emission. This might be one of the

reasons that the measured values of KIIIe, which are about 50 kPam
1/2 in LiF

(Burns, 1986) were much lower than the theoretical values, which are about

230 kPam1/2, evaluated by using the theories of Rice and Thomson (1973).

In Secs. 3.6.7 and 3.6.8, we have discussed the fracture properties of metals

with simple composition and structure. For real materials, the relation between

composition and properties is complicated. For example, it has been shown

that the addition of hydrogen to Ti alloys may have certain beneficial effects

on hot working properties. Further experimental studies might be helpful in

prompting theoretical explanations (Gong et al., 1993; Xu et al., 1992).
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3.6.9. Dislocation Free Zone at Crack Tip

Kobayashi and Ohr (1980) investigated the use of in situ electron microscope

fracture experiments of the bcc metals molybdenum and tungsten. They found

that a part of the plastic zone immediately ahead of the crack tip is free of

dislocations. This is called dislocation free zone (DFZ) ahead of the crack tip.

There are three problems: (i) Does the DFZ really exist in bulk materials?

(ii) How can it form? (iii) How can it influence the fracture property of the

material?

Since the paper (Kobayashi and Ohr, 1980) was published, there was certain

doubt about the existence of DFZ in bulk materials (Robertson and Birnbaum,

1985). Ohr repeated his experiments with thicker specimens (Fe single crys-

tals of 1 µm in thickness) by HVEM technique.* The existence of DFZ was

reconfirmed. However, 1 µm in still quite different from the bulk, especially

in the state of loading. Ha et al. (1990) used specimens of 30 × 10 × 2 mm3

dimensions of high purity (99.999%) Al single crystal to investigate DFZ at the

crack tip. They have not only verified the existence of such a DFZ, but also

showed its three-dimensional characteristics in bulk crystals. Its appearance

may be influenced by many factors, such as crystal orientation, length and

sharpness of the crack, pinning condition of dislocations in the lattice, applied

load and the method of crystal preparation, etc.. The size of the DFZ they

observed is much larger than that observed under TEM.† Ha et al. attribute
this mainly to the large pre-crack tip radius.

The problem on the formation of DFZ at a crack tip is open. Image force

on positive dislocations near a crack may be one of the mechanisms for the

formation of DFZ. Discussions along this line have led to many important con-

cepts such as dislocation emission, brittle and ductile transition, etc.. It is well

known that any free surface produces image forces on the nearby dislocations.

A dislocation near the free surface may move out the material due to the at-

traction of image forces (Friedel, 1964). As a result of that process, a DFZ

may be left in the material near the surface. Near a free plane surface, the size

of the DFZ due to image forces may be estimated by the following arguments.

The image force due to a free plane surface is given by:

σI = A/(2x) (3.6.80)

*See Appendix 2.1.
†See again Appendix 2.1.
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Fig. 3.26. Schematic figure for the dislocation free zone at a crack tip and a free plane.

where x is the distance of the dislocation from the free surface, A = µb/(2π).

µ is the shear modulus and b is the Burgers vector. If σI is larger than the

frictional stress σ1 the dislocation is attracted by the surface and may move

out from the free surface. The furthest distance that the dislocation can move

out of the free surface is given by σI = σ1. The size of the DFZ near a free

plane results in (Fig. 3.26):

δ1 = x1 = A/(2σ1) (3.6.81)

For the crack tip, the stress concentration must be considered. The dislo-

cation symbol in Fig. 3.26 may be taken to indicate any type (edge or screw);

the subsequent analysis is in terms of screw dislocations, but an equivalent

edge dislocation model may of course be developed. In addition to the image

force, the dislocation may be acted on by another force due to the K stress

field at a crack tip. In the case that this force is smaller than the image force it

will have the same direction as the frictional force. According to this analysis,

the crack should inhibit the formation of a DFZ. However, observation of the

original photograph from Kobayashi and Ohr (1980), shows the DFZ at the

edge is not larger than the one at the crack tip. Therefore, the image force

theory seems to disagree with Kobayashi and Ohr’s experiment. We extend

this argument further below (Lung, 1990). In mode III, the condition for zero

force on a reference positive dislocation i at x in the pile-up near a crack tip

is given by Eq. (3.6.69).
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As the DFZ is much smaller than the plastic zone, we can assume x ≈ 0

(or x � xj), which is a valid approximation. Then, fd is given by Eq. (3.6.70).

The condition for zero force on the dislocation is Eq. (3.6.71). The solution

for δ2(kIII) is given in Eqs. (3.6.72) and (3.6.73).

Replacing A/2σ1 with δ1 in Eq. (3.6.73):

δ2(β)

δ1
=

1

1 + β2 + [(1 + β2)2 − 1]1/2 (3.6.82)

where δ2(β) is the size of above mentioned DFZ due to the image force mecha-

nism. Figure 3.27 shows the δ2(β)− β curve. From Fig. 3.27 and Eq. (3.6.82),

we may conclude:

(1) ∂δ2/∂β < 0 or ∂δ2/∂kIII < 0. The crack inhibits the formation of

DFZ. This conclusion, consistent with above qualitative argument, is

contrary to Kobayashi and Ohr’s observation (1980). In their photo-

graph, the DFZ at the crack tip is much larger than that at the edge

of a free plane, where the DFZ is too small to be seen.

(2) K = 0, δ2(0) = A/(2δ1) = δ. It reduces to the size of the corresponding

zone near a free plane.

(3) If δ2(k) ∝ b, k = ke and for k > ke there is no DFZ near the crack

tip. This is the condition for dislocation emission at the crack tip.

However, to our knowledge, no experimental result showed that the

DFZ size decreases with increasing k.

Fig. 3.27. The relationship of the DFZ size with applied stress β(K) according to image
force theory. (Lung, 1990)



Extended Defects and Mechanical Strength 99

Fig. 3.28. A pair of screw dislocations emitted from an external source labelled S.

We propose another mechanism to explain the formation of DFZ. In the

vicinity of a crack, pairs of dislocations with opposite Burgers vectors may be

created by various multiplication mechanisms at dislocation sources. Positive

ones with shielding Burgers vectors are repelled by the crack tip, while the

negative ones, with antishielding Burgers vectors, are attracted. The negative

ones may be observed and annihilated by the open cleavage surface produc-

ing steps on this surface. This qualitative picture has been pointed out by

Tetelman and McEvily (1967) and Thomson (1983).

Following the analysis of Li (1981) we obtain the force exerted on the

negative external dislocation at x from the crack tip (Fig. 3.28).

fd =
KIII(−b)√

2πx
+

µ(−b)

2π

[
−(−b)

2x
+
(−b)

d− x

√
d

x

]
(3.6.83)

where d and x are the distances of the positive and negative dislocations from

the crack tip respectively.

The simplest assumption is that d � x, or d → ∞

fd ∼= −kIIIb√
2πx

− Ab

2x
, kIII = KIII +

µb√
2πd

. (3.6.84)

The boundary of a DFZ is given by the condition for zero force on the dislo-

cation at δ3,
kIII√
2πδ3

+
A

2δ3
− σ1 = 0 . (3.6.85)

The physical solution of δ3 (for σ1 > 0) is given by

δ3(kIII) =
A2

2

1(
Aσ1 +

k2
III

2π

)
−
[(

Aσ1 +
k2
III

2π

)2
−A2σ21

]1/2 . (3.6.86)
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δ3(kIII) is the size of the DFZ due to the dislocation annihilation mechanism

at the crack tip. Let us again change the parameter kIII to β

kIII = (2πAσ1)
1/2β

δ3(β)

δ1
=

1

1 + β2 − [(1 + β2)2 − 1]1/2 . (3.6.87)

The relationship between Eqs. (3.6.82) and (3.6.87) is

δ3(β)δ2(β) = δ21 (3.6.88)

or [δ3(β)/δ1][δ2(β)/δ1] = 1. Therefore,

dδ3

dβ
= −δ3

δ2

dδ2

dβ
> 0 (3.6.89)

or
dδ3

dkIII
> 0 ,

(
dδ2

dkIII
< 0

)
.

Figure 3.29 shows the curve of δ3(β) − β. We know that K ∝ c1/2. Assuming

that βi = β0(c1/c0)
1/2, we can obtain a series of curves for different crack

lengths. There is a rough similarity between the curves calculated by us and

the experimental ones measured by Ha et al. (1989) [57] (Fig. 3.30). Due to the

Fig. 3.29. The relationship of the DFZ size with applied stress β(K) according to dislocation
annihilation mechanism. (Lung, 1990)
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Fig. 3.30. Dependence of the size of DFZ on crack length and applied load in Fe–3% Si single
crystal (Ha, 1989). DFZ = 0–0.2 mm. ∂(DFZ)/∂p > 0, ∂(DFZ)/∂a > 0, ∂(DFZ)/∂K > 0.
(Lung, 1990)

simplicity of our model, it makes no sense to compare the two curves numeri-

cally. From Fig. 3.29 and Eq. (3.6.87), we may see:

(i) ∂δ3/∂kIII > 0. The crack would promote the formation of a DFZ.

It seems that this mechanism is consistent with Kobayashi and Ohr’s

original experimental results qualitatively, which showed a much larger

DFZ at the crack tip than at the free plane.

(ii) K = 0, δ3 = A/(2σ1) = δ. It reduces to the size of the DFZ near a

free plane.

(iii) δ3(k) > δ1 > δ2(k). Usually δ3(k) is larger than δ1 and δ2(k). From the

above calculations, we conclude that the mechanism of annihilation of

negative dislocations by the open cleavage surface is the most likely one

for the formation of a DFZ. Without completely neglecting the effect

of image forces on positive dislocations as a possible mechanism, we

believe that most experimentally found DFZs are due to annihilation

of external dislocations by the open cleavage surface.

Since the experimental work showed much bigger DFZ (Ha, 1990), the effect

on fracture properties of metals can not be ignored. Brede and Haasen (1988)

suggested that a local stress intensity factor must be introduced

kIII =
3k

2π

( c
d

)1/2(
ln
4d

c
+
4

3

)
(3.6.90)
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where c is the size of the DFZ, d = 2X = k2/(πσ2y), double the size of the plas-

tic zone. Ha et al. (1994) proposed a model for the ductile-brittle transition

(DBT) in bulk single crystals. The essential principle is that the brittle frac-

ture initiates by an elastic opening of the DFZ ahead of the crack tip, so the

prerequisite for brittle fracture is the formation of such a DFZ. Ductile frac-

ture is characterized by void nucleation growth and coalescence through the

activation of existing dislocations ahead of the crack tip. Both the crack tip

and the existing dislocations near the crack tip might be regarded as effective

dislocation sources in bulk single crystals. No matter how complicated these

mechanisms may be, they let v1 be a characteristic initial velocity by which

dislocations escape from the crack tip, and f1 be the corresponding local driv-

ing force exciting the unit length of dislocation in the slip plane along the

slip dislocation into the lattice. Then the product v1f1 will be the energy con-

sumption rate of unit length dislocations emitted from the crack tip. Similarly,

they let v2 be the average velocity of a dislocation excited in the centre of the

plastic zone, and f2 be the corresponding local driving force acting upon the

unit length of the dislocation in the slip plane along the slip direction. Then

the product v2f2 will be the energy consumption rate of unit length dislocation

moving from the centre of the plastic zone. Thus if

v1f1 > v2f2 (3.6.91)

ductile fracture is more favourable than brittle fracture from the energy con-

sumption rate point of view; similarly, if

v1f1 < v2f2 (3.6.92)

brittle fracture is more favourable. Consequently, the DBT temperature can

be found from the following equality

v1f1 = v2f2 . (3.6.93)

One of their conclusions obtained from this model is that the effect of disloca-

tion density on DBT temperature is negligibly small. This has been verified

by their experimental results in bulk Fe–3% Si single crystals on the DBT

temperature (Ha et al., 1995).

3.7. Geometrical Aspects of Grain Boundaries

As set out by, for example by Christian, (1975; see also Vitek, 1995) any

interface may be described as a network of dislocations. Suppose the two
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adjoining crystals are obtained from a reference lattice by transformations

which are represented by R1 and R2. Denoting an arbitrary vector in the

interface by P, the total Burgers vector of dislocations crossing this vector can

be written (Christian, 1975; Christian and Crocker, 1980):

B = (R−11 −R−12 ) · P . (3.7.1)

If the interface is then a grain boundary separating grains misoriented by angle

θ, then the two transformations are equal and opposite rotations by an angle

θ/2 about a common direction, say e. Equation 3.7.1 then leads to the Frank

formula (Frank, 1950)

B = 2 sin

(
θ

2

)
(P⊗ e) . (3.7.2)

This result of Frank may appear to determine the dislocation content in this

boundary. As Vitek (1995) stresses, neither the choice of the reference lattice

nor that of the transformation matrix is unique, and therefore the dislocation

content representing a given interface is not unique. However, certain choices

for the dislocation content may have a particular physical significance. Vitek

(1995) cites in this context, the fact that the short-range elastic field associated

with the interface may be identified with the elastic field of a specific dislocation

network that satisfies the Burgers vector Eq. (3.7.2). In such a case, that part

of the interfacial energy stored in the elastic field can be calculated by means

of such a model. Vitek (1995) refers specifically to the Read-Shockley model of

low angle grain boundaries (see Appendix 3.4) which are viewed as networks

of lattice dislocations (Read and Shockley, 1950).

Vitek (1995) further emphasizes that grain boundaries may not possess any

periodicities. However, he notes that boundaries with periodic structures have

frequently been observed and, at least in cubic metals, any grain boundary

may be approximated usefully by a boundary with periodic structure. This

then leads to the simplification that, in atomistic studies of grain boundaries

(see Chap. 8) one can impose periodic boundary conditions. Such periodic

boundaries can be characterized and geometrically constructed using the con-

tent of the coincidence site lattice first formulated by Brandon et al. (1964; see

also the summary in Appendix 3.4).

3.7.1.
∑
= 3 Tilt Boundary with a 〈112〉 Rotation Axis in Cu

Atomistic studies by Schmidt et al. (1995) have revealed that a particular∑
= 3 tilt boundary with a 〈112〉 rotation axis stabilized Cu in the bcc confi-



104 Mechanical Properties of Metals

guration. Cu has earlier been observed in the bcc form either as in bcc iron by

Celinski et al. (1991) or as small precipitates in a bcc Fe matrix (see eg, Jenkins

et al., 1991). The study of Schmidt et al. (1995) demonstrates that the bcc

structure can also occur under purely internal constraints in grain boundaries.

The boundary under discussion is an asymmetrical tilt configuration with in-

clination of the boundary plane 84◦ with respect to the usual (111)/(111̄)
coherent twin. Laub et al. (1994), by thermal grooving experiments obtained

indications that the boundary energy of
∑
3〈112〉 tilt boundaries has a mini-

mum at this inclination of the boundary plane.

The atomistic calculation, using Finnis-Sinclair type potentials for Cu (Ack-

land et al., 1987; Ackland and Vitek, 1990) demonstrated that a layer of bcc

structure forms in this boundary and {110}bcc planes connect the {111}fcc
planes of each grain (see also Vitek, 1995). Vitek stresses that the structure of

the phase boundaries between bcc and fcc is a near coincidence type, involv-

ing a compromise in lattice strains. It is best suited to this specific boundary

inclination and accounts for its lower energy relative to neighboring inclina-

tions. However, an essential prerequisite is that the energy difference between

bcc and fcc Cu is especially small (0.023 ev/atom: see Vitek, 1995). This

was, in fact, demonstrated by the ab initio calculations of Paxton et al. (1993)

and of Kraft et al. (1993). The structure discussed above has been confirmed

experimentally by HREM* (Schmidt et al., 1995).

3.7.2. Grain Boundary Phases in Copper-Bismuth Alloys

As emphasized by Vitek (1995), the copper-bismuth system is well suited to

study segregation and embrittlement phenomena.

Some of the experimentally observed facts are briefly summarized in

Appendix 2.1: a remarkable phenomenon is the segregation induced faceting

(Ference and Balluffi, 1988). It appears (Vitek, 1995) that this phenomenon is

associated with the formation of a new two-dimensional phase. This motivated

a combined atomistic theoretical and HREM investigation, which not only re-

vealed the existence of this phase but also determined its detailed structure

(Luzzi, 1991; Yan et al., 1993).

Finnis-Sinclair type many-body potentials were set up. The Cu-Bi interac-

tion was fitted to (i) the lattice parameter (ii) bulk modulus of the theoretical

Cu3Bi compound in the Ll2 structure and (iii) the enthalpy of mixing for

*See Appendix A2.1.
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the Cu-Bi liquid solution at 1200K. The parameters for the Ll2Cu3Bi struc-

ture were found from an ab initio LMTO calculation (Yan et al., 1993; Vitek,

1995).

Vitek (1995) describes the structure of the (111)/(111̄) facets containing Bi;

first extracted from HREM observations (see Appendix 2.1) and then confirmed

as the stable structure by molecular statics calculations, as follows. Using the

‘ABC’ notion for the stacking of (111) atomic planes in fcc structures, the∑
= 3(111)/(111̄) twin in pure Cu can be depicted as

|
A−B − C −A− B − C − B −A− C −B −A− C

|
where the vertical lines show the position of the boundary. The structure with

Bi could be represented also as above, except that in the marked layer C one

third of the Cu atoms are replaced by hexagonally arranged Bi atoms. How-

ever, as Vitek (1995) stresses, the Bi atoms are centred outside this atomic

plane so that a physically more appropriate representation of the model struc-

ture is

|
A−B − C −A−B − C′ − C(Bi)−B −A− C −B −A

|
Here C′ stands for a plane of Cu atoms in which one third of the atoms are
replaced by hexagonally arranged vacancies, and C(Bi) denotes the plane of

Bi atoms positioned above these vacancies. Vitek (1995) points out that the

structure can thus be interpreted, to a useful aproximation, as splitting of one

of the {111} planes, C, into two C′ and C(Bi) planes, containing Cu and Bi

respectively. While the Bi atoms (i.e. the whole layer C(Bi)) are contracted

towards the plane of Cu containing vacancies (C′), there is a substantial overall
expansion between the Cu layer C′ and the Cu layer above the Bi layer.
A detailed comparison between calculated and observed structures showed

an almost perfect match between theoretical and experimental images. Quan-

titative features such as total expansion, i.e. the relative displacement of the

two grains in the direction, perpendicular to the boundary, are shown by Yan

et al. (1993) to be within the experimental limits of accuracy.

As Vitek (1995) discusses, this study demonstrates that a two-dimensional

ordered phase may form at the (111)/(111̄) twin boundaries in Cu-Bi provided
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a sufficient amount of Bi is available at this boundary. He stresses that these

results provide concrete evidence that empirical many-body potentials are very

useful even in a relatively complex Cu-Bi system, provided sufficient relevant

input is employed to construct them. He emphasizes in the present example the

importance of ab initio electronic structure calculations, which sample atomic

configurations not attainable in the laboratory. Such input allows the size of

a Bi atom when surrounded by Cu atoms to be correctly incorporated.

3.7.3. Grain Boundary in NiAl with N-body Empirical Potentials

Following the HREM image of the
∑

= 5, (310) [001] grain boundary in

NiAl (see Fig. 1 of Fonda et al., 1995) reproduced in Appendix 3.4, atomistic

calculations were also performed by Fonda et al. (1995). They used N-body

empirical potentials constructed following the Finnis-Sinclair (1984) approach

(compare Ackland et al., 1987). The total energy E of the system of N atoms

is expressed as

E =
1

2

N∑
i,j=1

Vsisj (Rij)−
N∑
i=1

(∑
i

φsisj (Rij)

) 1
2

. (3.7.3)

The first term on the right-hand side represents the energy of direct interac-

tion between two atoms, while the second term accounts for the many-body

attractive part of the cohesive energy. The quantities V and φ are, of course,

dependent on the species Si and Sj , Rij being the separation of atom i and

j. Both V and φ are empirical fitted pair potentials, as used in the study of

Fonda et al. (1995).

Specifically, the Ni-Ni potential was adjusted to fit (i) to experimental

lattice parameter (ii) cohesive energy (iii) elastic constants and (iv) vacancy

formation energy of pure Ni (Ackland et al., 1987). The procedure for con-

structing the Al-Al potential was analogous to that for Ni-Ni (Vitek et al.,

1991). For separations less than the first nearest-neighbour distance in the Al

fcc structure, the Al-Al repulsive interaction was increased in order to make

the Al antisite defect on Ni site energetically unfavorable relative to the forma-

tion of double vacancies on Ni sites. Fonda et al. (1995) base this requirement

on the evidence that Al enrichment in NiAl is associated with the formation

of constitutional vacancies on Ni sites (Bradley and Taylor, 1937; Wasilewski,

1968).

The Ni-Al interactions were constructed as follows (Fonda et al., 1995).

φNiAl was written as the geometric mean of the φ potentials for pure Ni and
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pure Al; this is consistent with its interpretation in terms of hopping integrals

(Ackland et al., 1988). The direct interaction VNiAl, finally, was constructed to

reproduce (i) the known lattice constant (ii) cohesive energy and (iii) elastic

constants of the NiAl B2 compound. At atomic separations smaller than the

first nearest-neighbour distance, VNiAl was adjusted by Fonda et al. to obey

equation of state requirements. With these potentials, the NiAl B2 structure

is energetically favoured over the Ll0 structure and is also stable up to 2000K.

In addition, these potentials give the energy of the [110] antiphase boundary

to within the experimentally known range (Mirade, 1993).

3.7.4. Example (Schematic) of Low-Energy Grain-Boundary Structure as

Determined by Atomistic Simulation

The relaxed structure which had the lowest energy and also was in accord with

the experimental images (see Appendix 3.4) was produced by ordering the

antisite defects on sites G and H with equal numbers of defects on each site as

Fig. 3.31. (a) and (b)
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shown in Figs. 3.31(a) and (b) (Fonda et al., 1995). This particular ordering

removes all Al-Al interactions along [001] for these sites. The grain-boundary

energy was calculated by Fonda et al. (1995) to be 618 mJm−2, which is only
∼ 50% of the grain-boundary energy calculated for the stoichiometric struc-

ture. The final structure obtained by these workers contains a rigid-body

displacement along the grain boundary of 0.39 Å and a grain-boundary expan-

sion of 0.27 Å, in good agreement with experiment. Images simulated from this

grain-boundary structure correlate well with the experimental images (Fonda

et al., 1995).

3.8. Creep: Example of Single Crystal of Lead

Wang (1994) has re-examined data on creep in single crystals of Pb, rutile

(TiO2) and ice: the metal crystal Pb will be focus of the summary below.

Wang first notes that experimental studies of creep processes in crystalline

materials have shown that the creep rate ε̇ is related to the stress σ and the

grain size d by

ε̇ ∝
(
B

d

)p ( σ
G

)n
. (3.8.1)

In Eq. 3.8.1, G denotes the shear modulus, B the length of the Burgers vector

while p and n are the grain size and stress exponents respectively. At interme-

diate stresses, Wang asserts that power-law dislocation creep is the dominant

process, leading to exponent n from 3 to 5 and exponent p equal to zero.

However at low stresses creep is often Newtonian corresponding to n = 1. In

this case, p = 2 for lattice diffusional creep (Nabarro, 1948; see also Herring,

1950), p = 3 for grain-boundary diffusional creep (Coble, 1963), and p = 0 for

Harper-Dorn (1957) (H −D) creep.

Wang records many subsequent observations of H −D creep in both single

crystals and in polycrystalline materials (he records for metals references on Al,

Pb, Sn, α-Ti, α-Fe, α-Zr and β-Co). Using literature data, Wang (1994) argues

for the operation of H−D creep in single crystals of Pb. He uses, in particular

the data of Gifkins and Snowden (1967) on Pb, deformed at a temperature

T = 295K (∼ 1
2 of melting temperature Tm). Their data, along with results

on polycrystalline Pb (d = 200 µm), at the same temperature, are displayed

in Fig. 3.32, taken from Wang (1994, Wang’s Fig. 1). This figure lends some

support to Wang’s assertion that, below a transition stress σt ∼ 1.4 MPa, the
single crystals exhibited Newtonian creep behaviour.
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Fig. 3.32. Variation in strain rate with stress in lead. A Newtonian regime in single crystals
at stresses lower than 1.4 MPa is indicated (Wang, 1994).

Wang also presented data on rutile and on ice and argued that all three

materials deform by Newtonian creep under certain conditions. He noted that

such Newtonian behaviour is probably induced by the operation of H−D creep

which involves dislocation motion. Diffusional creep is also invoked to account

for the deformation of single-crystal specimens.

Wang (1993) had earlier shown that the stress marking the transition from

power-law creep at higher stresses to H −D creep at lower stress values (σt)

is determined by the Peierls stress, τp say, of the material: the greater τp, the

larger is σt. A relation of the same kind between σt and τp also holds for single

crystals of Pb, rutile and ice (Wang, 1994).

Kosevich (1979) writes the equation for τp as

τp =
2G

1− γ
exp(−2πη) : η = 3− 2γ

4(1− γ)

L

B
(3.8.2)

where L is the distance between atomic planes. In estimating τp for crystals,

L is taken as the distance between the closest-packed atomic planes in the

lattice, and B as the atomic distance in the close-packed direction on the

closest-packed planes (Wang, 1993). Wang (1994) asserts that the values of

τp thereby determined represent the lower limit of the true Peierls stress of a

crystal. Wang (1994) plots σt/E vs τp/G, E being Young’s modulus and for

the three materials Pb, TiO2 and H2O (ice) it is clear that σt/E increases as

τp/G increases.
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3.9. Superplastic Materials

Mabuchi and Higashi (1994) have considered superplastic deformation in metal

matrix composites.

Superplastic materials are polycrystalline solids which can undergo large

uniform elongations in excess of 200% prior to failure. Experiments of Lee

(1969) and of Lin et al. (1988) have led to the view, prevailing at the time of

writing, that grain-boundary sliding plays a major role in superplastic flow for

metallic materials. Mabuchi and Higashi assert that sliding processes are also

important in superplastic deformation mechanisms of composites too.

Raj and Ashby (1971) developed an equation for the sliding rate, based on

the assumption that the sliding displacements are too large to be elastic, and

the sliding is accommodated by diffusional or plastic flow. The sliding rate,

written as ε̇d with ε̇ the strain rate and d the grain size, at a plane boundary

containing an array of discrete impermeable particles, is given by the above

workers as

ε̇d =
1.6τaΩ

kBT

{
λ2

a3
DL

[
1 +

5δDGB

aDL

]}
. (3.9.1)

Here τa is the local stress, Ω the atomic volume, kBT the thermal energy

and λ the particle spacing, DL denotes the lattice diffusion constant, a is

the reinforcement size, δ the grain-boundary thickness and DGB is the grain-

boundary diffusion coefficient. Equation 3.9.1 is readily rearranged, of course,

to yield the local stress around the matrix-reinforcement interfaces.

3.10. Mechanical Properties of Fatigued fcc Crystals and their

Dislocation Arrangements

Holzwarth and Etzmann (1994) have emphasized that fatigued fcc metals ex-

hibit characteristic dislocation arrangements which depend on the applied am-

plitude of resolved plastic shear strain. Experimental work on these struc-

tures has been brought together in a number of reviews (e.g. Grosskreutz and

Mughrabi, 1995; Mughrabi et al., 1979; Brown, 1981; Basinski and Basin-

ski, 1992). What the experiments reveal is that, at a certain stress level, the

so-called matrix structure transforms into the peculiar dislocation arrange-

ment of persistent slip bands (see, for example, Fig. 2 of Holzwarth and Et-

zmann, 1994). The study of Holzwarth and Etzmann had as its aim to test

whether it would be possible to retransform the characteristic ladder-like dislo-

cation arrangement of persistent slip bands into a matrix-like structure. Their
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conclusion, using transmission electron microscopy, was that such a retrans-

formation did not occur.

Following Kê’s earlier work in 1962, Wang and Kê (1981) studied the early

stage of fatigue damage by means of energy loss studies with low frequency

internal friction method. Later on, a method for measuring the charge of ul-

trasonic attenuation in the course of push-pull loading was developed. This

method is very sensitive to the instantaneous variation of dislocation mobility.

Gremaud et al. (1981), Vincent et al. (1986) and Zhu and Fei (1990) studied

ultrasonic attenuation effects in polycrystalline Al; they used models of inter-

action between attenuation under low strain amplitude (< 3 × 10−5). Zhu
and Fei (1990) found that the average stress field of dislocation created by the

applied alternative load induces the redistribution of point defects and thus a

stable saturation stage would be reached with the increasing of cyclic number.

Heinz and Neumann (1990) studied twin boundary (TB) cracking in

austenitic stainless steel polycrystals and proposed that the elastic anisotropy

of crystals can induce an additional shear stress near the TBs, and that the

plastic strain due to the stress could be localized at the TBs near the fatigue

limit. Llanes and Laird (1992) also reported that the TBs can act as stress

concentrators due to elastic strain incompactibility.

In closing this chapter, we recommend the reader to consult the various

Appendix 3.1–3.4 as supplementary reading.



Chapter 4

Some Characteristic Features of Fractals

Introduction

Following the ideas of Mandelbrot (1982), a wide range of complex structures

of interest to scientists have been quantitatively characterized using the idea

of a fractal dimension: a dimension that corresponds in a unique fashion to

the geometrical shape under study, and often is not an integer. The key to

this progress is the recognition that many random structures obey a symmetry

such that objects look the same on many different scales of observation. The

purpose of this section is to provide a brief introduction to fractal phenomena.

For the details, the reader may refer to special books and articles (for example,

Mandelbrot, 1983; Feder, 1988; Pietronero and Tosatti, 1986; Aharony and

Feder, 1989; Herrmann and Roux, 1990). Although there are many different

types of fractal phenomena, we shall concentrate on mechanical properties and

especially on fracture* (Mandelbrot et al., 1984; Lung, 1986; Herrmann, 1990;

Milman et al., 1994).

4.1. Self-Similarity and Fractals

Before discussion on the definition of fractals, we introduce the law of self-

similarity which was ignored in Euclidean geometry and which was called ir-

regular shapes for many years. Regular and irregular things are in a relative

sense. Fractals may be considered as regular things which obey the law of

self-similarity . What is self-similarity?

*For the reader already acquainted with fractals, the application to fractured surfaces begins
in earnest in Section 4.13.
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Let us take the von Koch curve as an example to illustrate it. A simple line

segment is divided into three and the middle segment is replaced by two equal

segments forming part of an equilateral triangle. At the second stage, in the

construction, each of these 4 segments is replaced by 4 new segments with

length 1
3 of their parents according to the original pattern. Repeated over and

over, a von Koch curve is yielded (Fig. 4.1).

In this figure, each small portion of the curve, when magnified, can repro-

duce exactly a larger portion. The curve is said to be invariant under changes

of scale. We may say that the curve possesses as an exact self-similariity

Fig. 4.1. Construction of the triadic Koch curve.



Some Characteristic Features of Fractals 115

property. At each stage in its construction the length of the curve increases by

a factor of 4
3 . Thus, the limiting curve is of infinite length as it is of infinite

generations. In nature, many curves modelled with Koch curves are only of

finite generations (see later sections).

The property of self-similarity, or scaling, is one of the central concepts of

fractal geometry. Mandelbrot (1986) proposed the definition of a fractal:

A fractal is a shape made of parts similar to the whole in some way .

Previously, Mandelbrot (1982) offered another tentative definition of the

fractal:

A fractal is by definition a set for which the Hausdorff-Besicovitch di-

mension D (see Eq. 4.2.3) strictly exceeds the topological dimension DT (see

Sec. 4.3).

The previous definition is too mathematical, though correct and precise.

However, an ideal definition of fractals is still lacking. Fractals are a decid-

edly modern invention. However, it has been recognized as useful to natural

scientists only since around 1980.

Euclidean geometry provided an accurate description of shapes of objects

which were called regular (lines, curves, circles and so on). Euclidean dimension

has a rigorous definition; such as:

(i) A point has no volume,

(ii) A line is a breadthless length,

(iii) A surface has length and breadth only.

Fractals, like the Koch curve, possess no characteristic sizes, whereas reg-

ular shapes have them, or at most a few, characteristic sizes or length scales

(the radius of a sphere, the side of a cube etc.). Fractal shapes are said to be

self-similar or scale invariant. Some regular shapes also possess this property

but not all of them. We can divide a cube into self-similar parts but cannot

do so for circles, ellipses and other complex Euclidean shapes. Fractals pro-

vide an excellent description of many natural shapes and have already given

computer imaginary natural landscapes whereas Euclidean geometry provides

concise accurate descriptions of man-made objects such as mechanical parts

of a machine. Finally, fractals, in general, are the result of a construction

procedure of algorithm that is often recursive and ideally suited to computers,

whereas Euclidean shapes are usually described by simple algebraic formula

(e.g. A = a2 defines an area of a square of edge length a). In short, frac-

tal geometry is more appropriate for natural shapes than Euclidean geometry.
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Fractals are still approximate descriptions of objects in nature though many

scientists deem appropriate for the irregular shapes of the real world. Man-

delbrot found the law of self-similarity to describe shapes for which Euclidean

geometry is inappropriate. Then he expanded the concept of regular shapes to

more broad geometrical objects. We can say that fractals may describe shapes

by iteration of a very simple rule of self-similarity.

4.2. Self-Similarity and Dimension

An object, say two-dimensional, such as a square area in the plane, can be

divided into N self-similar parts, each of which is scaled down by a factor

r = 1√
N
, or N = r−2. For a line segment, (one dimensional), N = r−1, and

a solid cube, (three dimensional), N = r−3. This concept can be generalized
to fractal dimension with self-similarity. A D-dimensional self-similar object

can be divided into N smaller copies of itself each of which is scaled down by a

factor r;

N =

(
1

r

)D
. (4.2.1)

Equation (4.2.1) is a power-law relationship. If we change r to br, a self-

similarity relationship can be obtained

N(br) = b−DN(r) . (4.2.2)

Then, the fractal or similarity (or scaling) dimension is given by

D =
lnN

ln(1
r
)
. (4.2.3)

The fractal dimension does not need to be an integer. For the above example,

the Koch curve, N = 4, r = 1
3 . Its fractal dimension is D = ln 4

ln 3 = 1.2618 . . . .

This non-integer dimension, greater than one but less than two, reflects the

fact that the curve fills more of space than a line (D = 1), but less than a

Euclidean area of a plane (D = 2).

The form of Eq. (4.2.1) can be changed to read

1

N
= rD = v . (4.2.4)

In other words, if the generalized volume of a geometrical object is enlarged

(or reduced) by a factor v with the enlargement (of reduction) of a factor r in
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linear dimension; then, the fractal dimension is given by

D =
ln v

ln r
. (4.2.5)

For a line segment (one dimension), L
L0
= r1; a square area in the plane,

A
A0
= r2, and a solid cube, V

V0
= r3. For the Koch curve:

(i) v = V
V0
= 4, r = 3 (enlargement); or

(ii) v = V
V0
= 1

4 , r =
1
3 (reduction); therefore, the fractal dimension of

Koch curve is ln 4
ln 3 , as above.

4.3. Hausdorff-Besicovitch Dimension

Now, we turn back to the tentative definition of fractals given by Mandelbrot

(1982). This definition requires previous definitions of Hausdorff-Besicovitch

dimension and topological dimension.

The Hausdorff dimension D of a subset S of Euclidean space arises from

asking ‘how big is S’ for very general sets. The answer comes from counting

the number of open balls* needed to cover the set S. For each r > 0, let N(r)

denote the smallest number of open balls of radius r needed to cover S. One

can show that the limit (see Hastings and Sugihara, 1993)

D = lim
r→0

− lnN(r)
ln r

(4.3.1)

exists. The value of D is called the Hausdorff dimension of S. Since ln r → −∞
as r → 0; the negative sign is needed in order that D should be positive.

Equation (4.3.1) is equivalent to an approximate power-law relationship

N(r) ≈ const. r−D . (4.3.2)

Assume that S can be decomposed into n rescaled copies of itself, each

contracted by a linear factor k. From Eq. (4.2.3)

D =
lnn

ln k
(4.3.3)

where k = 1
r . Now, we suppose that S can be covered by N(r0) open balls

of radius r0. Each reduced copy can be covered by n “rescaled” open balls

*Open balls or open boxes (boxes without their boundaries) are used to define the Hausdorff
dimension and topological dimension by the properties of suitably minimal open covering.
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of radius r0
k
. Then, S can be covered by nN(r0) open balls of radius

r0
k
,

(Eq. 4.3.2). At least approximately,

N
(r0
k

)
= nN(r0) . (4.3.4)

The iteration of the above process m times gives

N
( r0

km

)
= nmN(r0), (m = 1, 2, 3, . . .) . (4.3.5)

Equation (4.3.5) means that

lim
m→∞

[− lnN( r0
km
)

ln( r0
km
)

]
= lim

m→∞

[− lnnmN(r0)

ln( r0
km
)

]

= lim
m→∞

[(m lnn+ lnN(r0)]

(m ln k − ln r0)
= lnn/ lnk

= D . (4.3.6)

Therefore, the scaling dimension is equivalent to the Hausdorff dimension.

The condition that the limit of Eq. (4.3.1) exists is equivalent to finding a

real value D such that, for the set S, the d-measure is infinite if d < D and

vanishes if d > D. D is called the Hausdorff dimension of S, and is also

called the Hausdorff-Besicovitch dimension when non-integer values of D are

included.

Topology is a study of continuity (see Mumkres, 1975; Mansfield, 1963).

Two geometrical figures are topologically equivalent, or homomorphic, if each

can be transformed into the other by a continuous deformation. That means,

the intrinsic qualitative property does not change when the object under con-

sideration is subjected to stretching, contracting and bending but without

tearing. For example, if a piece of plasticine is moulded into various different

shapes without making breaks or joins, then all the associated geometrical fig-

ures are topologically equivalent. Thus the surfaces of a sphere, an ellipsoid, a

cube and a tetrahedron are all topologically equivalent. Lines of finite length

can be contracted continuously into a point and all the elements of the set

are not connected. Thus their topological dimension is zero (Cantor set). The

perimeter of an island cannot be contracted continuously into a point and the

dimension of its arbitrary small neighborhood is zero. Thus, their topologi-

cal dimension is unity (Koch island). The Sierpinski gasket and carpet (see
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Appendix 4.1) can be contracted continuously into lines. Their topological di-

mension is also unity. Similarly, that of the Menger sponge (see Appendix 4.1)

is two.

It is interesting to discuss which shape is fractal according to the definitions

of 1982 and of 1986 by Mandelbrot. It seems that some shapes are fractals

according to the definition of 1986, but not according to the definition of 1982

(for instance, see Fig. 4.2(a)). At order one, the unit square is divided into

nine equal-sized smaller squares with r = 1/3. At order two, the remaining

squares are divided into nine smaller equal-sized squares with length, r2 = 1/9.

If N1 = 1, N2 = 1, then, D = ln 1
ln 3 = 0. DT = 0, D = DT . (see also:

Turcotte, 1992, Fig. 2.2(a) and Fig. 3.2, f = 1/8). It is not a fractal according

to the definition of 1982, even the shapes are self-similar. However, if N1 = 9,

N2 = 81, D = ln 9
ln 3 = 2, D > DT (Fig. 4.2(b)) (see also: Turcotte, 1992,

Fig. 2.2(e)), it is a fractal even though the shapes are regular in Euclidean

geometry.

Fig. 4.2(a)

Fig. 4.2(b)
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It also seems that some objects are fractals according to the definition of

1982 but not according to the definition of 1986.

Suppose an area of any shape is divided into nine equal-area smaller areas

without limitations to their shapes, and more than one smaller areas are re-

tained. Then, if N1 > 1, (say N = 2), D = ln 2
ln 3 = 0.6309. D > DT = 0. It is a

fractal according to the definition of 1982, but it does not possess self-similarity

property in shapes.

Mathematics, be it qualitative or quantitative, must be based upon precise

definitions (see Mansfield, 1963). A definition should be as broad as possible,

so that it would include all special cases as the various examples were useful in

mathematics; but the definition would also be required to be narrow enough to

distinguish it from other fields. This is always the problem when one is trying

to formulate a new mathematical concept to decide how general its definition

should be. The definition finally settled on may seem a bit abstract, but as

one works through the various ways of constructing fractal structures (Stanley,

1991; Feder, 1988; Voss, 1988; Vicsek, 1989; and Lung, 1992, . . .), one will get

a better feeling for what the concept means.

4.4. The Koch Curves

The triadic Koch curves represent interesting examples of fractal figures. We

have already discussed a typical one in the above paragraphs (Fig. 4.1: see also

Fig. 4.17).

Now, if N = 2, and

r =
L1

L0
=
1

2
csc

(
θ

2

)
,

then

D =
ln 2

[ln 2 + ln sin( θ2 )]
. (4.4.1)

The upper bound value of D is 2; and the lower bound value is 1. If the angle

α = 1
2 (π − θ), this means that, the range of α is 0 < α < 45◦.
Mandelbrot gives many variations of the von Koch construction and two

others are presented in Fig. 4.3. In one figure, a segment is replaced by 8 new

segments, the length of each is 1
4 of the initial one, and

D =
ln 8

ln 4
= 1.5 .
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(a)

(b)

Fig. 4.3 Construction of the quadratic Koch curves. (a) N = 8, r = 1
4

, D = 3
2
; (b) N =

9, r = 1
3

, D = 2.

In another figure, each segment is replaced by 9 new segments, the length

of each is 1
3 of the initial one, and

D =
ln 9

ln 3
= 2 .

The total length of a Koch curve is given by

LF (ε) = N(ε) · ε = ε · ε−D = ε1−D . (4.4.2)

The total length of the residual set is given by

LR(ε) = 1− ε1−D < 0 . (4.4.3)
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The negative value means an addition of this amount of segments in the stages

of construction instead of removing some segments.

Equation (4.4.3) shows that LR(ε) is not a power-law relationship. How-

ever, the generation distribution (or the total length created in one generation)

of it is given by

LR(εn+1)− LR(εn) = ε
(1−D)
n+1 − ε(1−D)

n = εn(1−D)[1− ε(1−D)] = const. ε(1−D)
n .

(4.4.4)

It is a power-law (fractal) relationship with the same fractal dimension D

as the original Koch curve. The length of the initial segment is (1 − ε1−D).

4.5. The Cantor Set

The Cantor set is constructed as a limit of an iterative process in which the

first stage, stage number 0, is the closed unit interval [1, 0], and the generation

divides the interval into three equal parts and deletes the open middle third of

the closed interval. This procedure is applied to the remaining two parts again.

Referring to Fig. 4.4, the processes are repeated again and again. Given any

stage n, the next stage n+ 1 is constructed by deleting the open middle third

of each closed interval of stage n. The Cantor set is the resulting limit. The

stage n is the union of 2n closed intervals, each of length (1/3)n. Thus stage

n has length or linear measure (2/3)n, which approaches zero as n approaches

infinity.

According to Eq. (4.2.3)

N = 2, r =
1

3
.

Fig. 4.4. Construction of the triadic Cantor set. The initiator is the unit interval [0, 1]. The
generator removes the open middle third. The figure shows the construction of the five first
generations. D = ln 2/ ln 3 = 0.6309.
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The fractal dimension is given by

D =
ln 2

ln 3
∼ 0.6309 .

The stage n has length ( 23 )
n; let it be (13 )

nβ , then,

β =
ln 2− ln 3
− ln 3 = 1− ln 2

ln 3
= 1−D . (4.5.1)

The total length of the Cantor set at stage n, then, is given by

CF (εn) = ε(1−D)
n . (4.5.2)

It is the same as Eq. (4.4.2). The length of the residual set is given by

CR(εn) = 1− ε(1−D)
n = 1−

(
2

3

)n
> 0 . (4.5.3)

The positive value means deletion of this amount of segments in the stages

of construction. Equation (4.5.3) shows that CR(ε) is not a power law (fractal)

relationship. However, the generation distribution (or the total length created

in one generation) of it is given by

CR(εn+1)− CR(εn) =

(
2

3

)n(
1− 2

3

)
=

(
1

3

)(
1

3

)n(1−D)

. (4.5.4)

Equation (4.5.4) is power-law relationship with the same fractal dimension D

as the original Cantor set.

A generalized model of a triadic Cantor set is assumed such that the deleted

part is Ck (k stage) where 0 < Ck < 1. The length of the elements in the nth

generation is (see Vicsek, 1989),

εn =
1

2n

n∏
k=1

(1− Ck) . (4.5.5)

The total length of the nth generation is

Cn = εβn (4.5.6)
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and the residual set is given by

CR,n = 1− εβn . (4.5.7)

β = lim
n→∞

ln(1− CR,n)

ln εn

= lim
n→∞

ln
∏n

k=1(1− Ck)

n ln(12 ) + ln
∏n

k=1(1− Ck)
.

(CR,∞ = 1, CR,n = 1− 2n · εn) (4.5.8)

Assuming C1 = C2 = C3 = · · · = Ck = · · · = C; and ln
∏n

k=1(1 − Ck) =∑n
k=1 ln(1 − Ck)

β ≈ ln(1− C)

ln(1− C)− ln 2 ≡ 1−D .

where D has the meaning of fractal dimension.

For a regular Cantor set, C = 1
3

β = 1− ln 2

ln 3
= 1−D .

Indeed, D is the fractal dimension of the Cantor set.

An extension of a triadic Cantor set is N and r being various numbers. For

example

N = 2, r =
4

15
,

(
or C =

7

15

)

D =
ln 2

ln(154 )
∼= 0.524 .

Another discussion on fractals is the following: From Eq. (4.2.1), if we

choose D as a definite value, N and r can vary according to Eq. (4.2.1),

r =

(
1

N

) 1
D

(4.5.9)

r−1 = N
1
E

0 = N
1
D . (4.5.10)

Let

N0 = mE , N = mD (4.5.11)
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where N0 is the number of smaller size copies which the parent is divided into

and E is the Euclidean dimension. N is the number of smaller size copies

remaining. N and m should be positive integers. Many values of N and m can

form fractals with the same fractal dimension. Morever, any changes of the

distribution ofN which is important for the construction and properties, do not

change the value ofD. This means that for a definite valueD, the configuration

of fractals is not unique. Fractal dimension, as a parameter can characterize

the continuous change of a configuration, but we cannot overestimate its role

to request a one to one correspondence between D and any construction.

4.6. The Residual Set and “Fat Fractals”

For a fractal, the total generalized volume is given by

VF (ε) = εβ (4.6.1)

where ε = rε0 and ε0 is the length of the initiator, β = E −D. E and D are

the Euclidean and fractal dimensions respectively.

For the residual set, the total volume is given by

VR(ε) = VF (1)− εβ

VR(0) = VF (1) = 1 .
(4.6.2)

It is not a power-law relationship. However, the generation distribution (or

the volume created in one particular generation) is given by

VR(εn+1)− VR(εn) = εβn(1− εE−D) = const. εβn . (4.6.3)

It is a power relationship, and

β = lim
ε→0

ln[VF (1)− VR(ε)]

ln ε

= lim
ε→0

ln[VR(0)− VR(ε)]

ln ε

= E −D (4.6.4)

β = E −D (4.6.5)

VF (ε) + VR(ε) = VF (1) = 1 . (4.6.6)
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Furthermore, we let

VR(εn+1)− VR(εn) = VR(n+ 1, n)

VF (εn) + VR(εn) = VF (εn) +
n∑
i=1

VR(n, n− 1) = 1 .

Generally, the fat fractal proposed by Mandelbrot and Farmer (see Farmer,

1986) can be expressed in the form

V (ε) ≈ V (0) +Aεβ (4.6.7)

Equation (4.6.2) can be expressed as

VR(ε) = VR(0)− εβ . (4.6.8)

Thus the residual set of a fractal is a kind of “fat fractal” in the case of

A = −1. Fat fractals are in general not self-similar objects; they are not

power-law relationships. However, the volume created is given by

V (εn+1)− V (εn) = Aεβn(1− εβ) = const. εβn (4.6.9)

where

β = E −D . (4.6.10)

It is a fractal with the fractal dimension E − β.

4.7. Statistical Self-Similarity

The above exact fractals may be considered as approximate models of nature.

For example, upon magnification segments of the coastline look like segments

at different scales. The property of self-similarity is in a statistical sense. The

property that objects can look statistically similar while at the same time

different in detail at different length scales, is the central feature of fractals

in nature. Thus, the hierarchic structure should be experimentally verified.

Secondly, the results of measurements should indicate power-law relationships

within experimental error over a sufficiently wide range of scale.

For exact fractals, N should be a positive integer, but no limitation exists

for a fractal in the statistical self-similarity sense. For exact fractals only

discrete values for N and 1
r
are allowed. This is perhaps the reason why

sometimes we can only obtain discrete values of data on a straight line in double
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logarithmic plots. For statistical self-similarity fractals nearly continuous data

with a certain degree of scatter would be obtained on a straight line in double

logarithmic plots.

However, only one of the factors mentioned above is insufficient to chara-

terize a fractal structure. There are some complicated cases, which will be

discussed later.

4.8. Brownian Motion and Time Series

The central concept of Brownian motion that has played an important role

in both physics and other sciences is the self-affinity, or non-uniform scaling

property of the traces and probability distribution.

Consider the random walk in one-dimensional line, the particle jumps a

step of +ξ, or −ξ every τ seconds. In the diffusion process, ξ may be regarded

as some microscopic length and τ as microscopic time interval — the collision

time.

The step length, ξ has a Gaussian or normal probability distribution

P (ξ, τ) =

(
1√
4πDτ

)
exp

( −ξ2

4πDτ

)
(4.8.1)

where P (ξ, τ) is the probability of finding the particle in the range ξ and ξ+dξ

and τ .

In Eq. (4.8.1), if we replace ξ∗ = b
1
2 ξ and τ∗ = bτ , then, it becomes

P ∗(ξ∗, τ∗) = b
−1
2 P (ξ, τ) (4.8.2)

and ∫ ∞
−∞

P ∗(ξ∗, τ∗) dξ∗ = b
1
2

∫ ∞
−∞

b
−1
2 P (ξ, τ) dξ = 1 . (4.8.3)

Thus, the distribution does not change under change of ξ to b
1
2 ξ and τ to bτ .

The variance of this process is given by

〈ξ2〉 =
∫ ∞
−∞

ξ2P (ξ, τ) dξ = 2Dτ (4.8.4)

where D is called the diffusion coefficient. We change the scales of ξ and τ

again, (ξ∗ = b
1
2 ξ; τ∗ = bτ). We obtain
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〈ξ∗2〉 =
∫ ∞
−∞

ξ∗2P ∗(ξ∗, τ∗) dξ∗

= b

∫ ∞
−∞

ξ2P (ξ.τ) · b−12 d(b
1
2 ξ)

= 2D(bτ)

= 2Dτ∗ . (4.8.5)

It is also scale invariant but in different scale change ratios for ξ and τ . The

expressions in Eqs. (4.8.3) and (4.8.5) indicate that the system has anisotropic

scaling. This is not a homogeneous fractal. It is called a self-affine fractal.

An extension of the central concept of Brownian motion was proposed by

Mandelbrot and Van Ness (1968). It is called fractional Brownian motion

(fBm). Many computer fractal simulations are based on an extension of fBm

to higher dimensions such as landscape. It is also a good starting point for

understanding anomalous diffusion and random walks on fractals.

A fBm, VH(t), is a single valued function of one variable, t (usually time).

The typical change in V (∆V = V (t2)−V (t1)), to the time interval ∆t = t2−t1
is given by

∆V ∝ ∆tH . (4.8.6)

H is a parameter which characterizes the scaling behaviour of the different

traces of fBm: 0 < H < 1. H = 1
2 corresponds to a trace of Brownian motion.

Wang (Wang and Lung, 1990; Wang, 1992) investigated the dynamical

mechanisms from the starting point of the generalized Langevin equation and

Fokker-Planck equation, and established the bridge between the fBm, anoma-

lous diffusion and the long-time correlation effects. It has been shown that a

kind of dynamical mechanism for anomalous diffusion is the long-time corre-

lation effects. Wang (1992) studied biased diffusion and found the probability

density function for finding the Brownian particle at displacement X and t.

The probability density function has Gaussian distribution for displacement

X. Furthermore, Wang (1994) investigated the diffusive motion of a Brownian

particle which is acted upon by both a friction force with memory effect and

a noise with long-range correlation effects. Due to the long-range correlation

effects, the effective diffusion coefficient is dependent on both the displace-

ment and time, and the probability density for finding the Brownian particle

at displacement X and t is a non-Gaussian distribution.
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The fBm problem is related to Hurst’s empirical law and rescaled range

analysis, (R/S analysis). For details, one may refer to Feder’s book (1988).

The model of fBm has been applied to describe the fractal structure of fractured

surfaces. We will return to this problem in later sections.

4.9. Self-Similarity and Self-Affinity

It is important to distinguish self-similarity and self-affinity. Consider a set S

of points at positions

x = (x1, x2, . . . , xE)

in Euclidean space of dimension E under a similarity transform with real scal-

ing ratio 0 < r < 1, the set becomes rS with points at

rx = (rx1, rx2, . . . , rxE) .

A bounded set S is self-similar when S is the union of N non-overlapping dis-

tinct subset each of which is congruent to rS, where congruent means identical

under translations and rotations.

The set S is also self-similar if each of the N subsets is scaled down from

the whole by a different similarity ratio rn. In this case, D is given by (Feder,

1988)
N∑
n=1

rDn = 1 . (4.9.1)

In some cases, rn’s are correlated. For example, the ratios of
rn
r1
are a series

of constant ratio.

N∑
n=1

(
rn

r1

)D
= r−D1 ,

(
rn+1

rn
= a < 1

)
(4.9.2)

N∑
n=1

(
rn

r1

)D
=
1− aND

1− aD
. (4.9.3)

For infinite number of N , N → ∞ it gives

1

1− aD
= r−D1

rD1 + aD = 1 . (4.9.4)
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The equation has been simplified even with a large value of N . In general,

numerical solution of Eq. (4.9.4) for D is needed. Long et al. (1995) calculated

the fractal dimension of martensite structure with this method subsequently.

If the E coordinates of x may be scaled by a different ratio (r1, r2, . . . , rE),

the set S is transformed to r(S) with points at r(x) = (r1x1, . . . , rExE). It

is called self-affinity. A bounded set S is self-affine when S is the union of N

distinct (non-overlapping) subsets each of which is congruent to r(S). S is also

statistically self-affine when S is the union of N distinct subsets each of which

is congruent in distribution to r(S). For example, Brownian motion in Sec. 4.8

is self-affine. It is scaling in different scale change ratios for ξ and τ .

4.10. The Relation of D to H

The fractal dimension of even the simplest self-affine fractals is not uniquely

defined. The difficulties have been illustrated with the case of fBm by Voss

(1985) and Pietronero (1987).

Suppose the time span is divided into N equal intervals, each with ∆t
t0
=

N−1, where t0 is the unit of time. Each of these intervals will contain one

portion of vertical range

∆VH

V0
=

(
∆t

t0

)H
= N−H . (4.10.1)

The occupied portion of each interval will be covered by(
∆VH
V0

)
(
∆t
t0

) =
1

NH−1 (4.10.2)

square boxes of linear scale l = N−1. Now, we have a square box of linear size
L on the horizonal axis. The number of square boxes is

N ′
(
L

t0

)
=

(
L

t0

)−1
. (4.10.3)

The fractal volume of it will be covered by

N ′
(
L

t0

)
F

=

(
L

t0

)−1
· 1

N ′H−1
=

(
L

t0

)H−2
. (4.10.4)

where F means fractal.
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Change the scale from L
t0
to λL

t0
,

N ′
(
λL

t0

)
= λ2−HN ′

(
L

t0

)
= λDN ′

(
L

t0

)
. (4.10.5)

Then,

D = 2−H (4.10.6)

for a trace of VH(t). Consequently, the trace of normal Brownian motion is

D = 1.5.

The total length LT (H, Lt0 ) is given by

N ′
(
L

t0

)
F

·
(
L

t0

)
=

(
L

t0

)H−1
. (4.10.4)′

Equation (4.10.4)′ reduces to

LT
(
H,

L

t0

)
= LT

(
D,

L

t0

)
=

(
L

t0

)1−D
(4.10.4)′′

as H = 2−D. It is of a similar form to Eq. (4.4.2).

Voss introduced another method to estimate D for a trace of fBm from the

“coastline” method. One may divide the curve into N segments by walking a

ruler of size l along the curve. The length along each segment is

l

t0
=

√(
∆t

t0

)2
+

(
∆V

V0

)2
. (4.10.7)

Using Eq. (4.10.1) and l0 =
√
2t0, V0 = t0,

√
2l

l0
=
∆t

t0

√
1 +

(
∆t

t0

)2H−2
. (4.10.8)

When ∆t
t0

� 1, the second term in Eq. (4.10.8) dominates and

(
l

l0

)
≈
(
∆t

t0

)H
;

N =

(
∆t

t0

)−1
.
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Thus,

N

(
l

l0

)
=

t0

∆t
≈
(

l

l0

)− 1
H

D =
1

H
. (4.10.9)

On the other hand, on larger scales with ∆t
t0

� 1, the first term in Eq. (4.10.8)

dominates and

D = 1 .

Thus, the same VH(
t
t0
) trace can have an apparent self-similar dimension D

either 1, 1
H . or 2−H depending on the measurement technique and arbitrary

choice of length scale. The same conclusion has been reached by Pietronero in

taking normal Brownian motion as an example.

Moreover, the total length L of the “coastline” is given by

L

(
H,

l

l0

)
=

Nl

l0
=

(
∆t

t0

)−1(
l

l0

)

≈
(

l

l0

)1− 1
H

. (4.10.10)

The fracture toughness may be analyzed based on Eq. (4.10.10) if the fractured

surface is considered as self affine. Equation (4.10.10) reduces to

L

(
H,

l

l0

)
≈
(

l

l0

)1−D
(4.10.10)′

when ∆t
t0

� 1 and H = 1
D
. Equation (4.10.10)′ is of similar form to

Eq. (4.4.2).

In general, if we have

∆V = ∆tH

tgα =
∆V

∆t
= ∆tH−1 .

α depends on ∆t; then, the fractal dimension which depends on α is variable

due to the change of ∆t or that of the scale. If ∆t ≈ ∞, α ≈ 0 (because

H < 1); then, the curve looks flat (D = 1). On the other hand, if ∆t is small,
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α may be large; then, the curve looks rough (D > 1) (see Eq. (4.4.1)). We will

discuss this problem again in Sec. 4.13.2.

4.11. Multifractal Measures

Multifractal measures are related to the study of the distribution of physical

or other quantities on a geometric support. The support may be an ordinary

plane, the surface of a sphere or a volume, or it could itself be a fractal. The

idea that a fractal measure may be represented in terms of intertwined fractal

subsets having different scaling exponents allows substantial progress for the

applications of fractal geometry to physical systems.

Let us consider the triadic Cantor bar. A bar of unit length and mass is

divided into two halves of equal mass µi and hammered to reduced length δi,

so that the density ρ increases. Repeating this process, we have N = 2n small

bars in the nth generation, each with a length, δn and a mass, µi = 2
−n. Note

that the process conserves the mass so that

N∑
i=1

µi = 1 . (4.11.1)

The mass of a segment of length δi when this is very small, is given by

µi = δαi . (4.11.2)

Here the scaling exponent α is given by

α =
− ln 2
ln δ

. (4.11.3)

The density of each of the small pieces is

ρi =
ρ0µi

δi
= ρ0δ

α−1
i (4.11.4)

which diverges as δi → 0. The scaling exponent α is called the Lipschitz-Hölder

exponent. This exponent controls the singularity of the density. From

Eq. (4.11.4), ρ = ρ0, a constant, if α = 1; ρ has a derivative if α > 1; and is

singular if 0 ≤ α < 1.

The singularities of the measure of physical quantities, M(x) are charac-

terized by α. The measure M(x) is characterized by the Sα, (see Feder, 1988):

M(x) =
x∑
i

µ(i) =
x.2n∑
i=0

µi =
x.2n∑
i=0

δαi . (4.11.5)
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Fig. 4.5. Fractal subsets of the measure generated by a binomial multiplicative process with
p = 0.25. The fractal dimension of subsets Sα having a Lipschitz-Hölder exponent α, as a
function of α.

It is convenient to use α as the parameter and then the measure is

given by

Md(Sα) ≈ δ−f(α)δd . (4.11.6)

The measure has a mass exponent d = f(α) for which the measure neither

vanishes nor diverges as δ → 0. Then f(α) is the fractal dimension. The

f(α) vs α curve is (Fig. 4.5) the measure of the population generated by the

multiplicative process (Feder, 1988).

For more complicated processes, such as the coastline folding back and forth

so that it crosses a given ‘box’ a number of times ni, that box still contributes

only 1 to the number of boxes needed to cover the set in box-counting method

which counts the number of N(δ) of cubes that contain at least one point of

the set S. We need a sequence of mass exponents τ(q) for the set depending

on the moment order q chosen. The measure is then characterized by a whole

sequence of exponents τ(q) that controls how the moments of the probabilities

µi scale with δ. The weighted number of boxes N(q, δ) has the form

N(q, δ) =
∑
i

µqi ≈ δτ(q) (4.11.7)

and the mass exponent is given by

τ(q) = − lim
δ→0

lnN(q, δ)

ln δ
. (4.11.8)
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(i) q = 0, N(0, δ) = N(δ). It is simply the number of boxes needed to

cover the set, and τ(0) = D equals the fractal dimension of the set.

(ii) q = 1. N(1, δ) = 1, τ(1) = 0 from Eq. (4.11.8).

Taking the multiplicative binomial process as a typical example we find

that

N(d, δ) =
n∑

k=0

(
n
k

)
pqk(1− p)q(n−k) = [pq + (1− p)q]n . (4.11.9)

With the relation δ = 2−n, τ(q) is given by

τ(q) =
ln[pq + (1− p)q]

ln 2
. (4.11.10)

In this equation, τ(0) = 1, which is the dimension of the support, i.e. the unit

interval.

In general, the support may be a fractal; then what are the fractal dimen-

sions in this system? What is the relation between τ(q) and f(α)?

Now we choose α, the Lipschitz-Hölder exponent, as the parameter. The

fractal set S is the union of fractal subsets Sα which have fractal dimensions

f(α) < D, the fractal dimension of the complete set S. The number N(α, δ)

of segments of length δ needed to cover the subset Sα in the range α to α+dα

is

N(α, δ)dα = ρ(α)dαδ−f(α) (4.11.11)

where ρ(α)dα is the number of sets from Sα to Sα+dα. The measure for the

set S may be written as

Md(q, δ) =

∫
ρ(α)dαδ−f(α)δαqδ−τ(q) . (4.11.12)

This integral is determined by the term which has its minimum exponent, the

condition of which is given by

d

dα
{qα− f(α)− τ(q) + d} = 0 . (4.11.13)

The solution of this equation is α = α(q). Then,

τ(q) = qα(q)− f(α(q)) . (4.11.14)
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If we know τ(q), we may determine α(q) and f(α(q)) by

dτ(q)

dq
= α(q) (4.11.15)

and Eq. (4.11.14). In fact the pair of Eqs. (4.11.14) and (4.11.15) can be

obtained by Legendre transformation. Usually we calculate the mass exponent

τ(q), say for the binomial process as an example, Eq. (4.11.10). Then, we may

obtain α and f(α(q)) by using the pair of equations (Fig. 4.5).

4.12. Percolation Models of Breakdown

Diffusion process as random walks have been discussed in Sec. 4.8. Another

type of randomness is frozen into the medium itself: the percolation process

discussed by Broadbent and Hammersley (1957). A diffusing particle may

reach any position in the medium. Percolation processes are different in that

there exists a percolation threshold, below which the spreading process is con-

fined to a finite region. The typical example is the spread of blight from tree

to tree in an orchard where the trees are planted on the intersections of a

square lattice (see Stauffer, 1985, Feder, 1988). If the probability for infecting

a neighboring tree falls below a critical value, pc where the spacing between

the trees is increased) then the blight will not spread over the orchard. For

site percolation, on a square lattice, pc = 0.59275.

The concept of percolation has been applied to crack problems in materi-

als. A critical threshold for the concentration of cracks is expected. Duxbury

and Li (1990) briefly reviewed progress on the percolation model that plays

a central role in extreme properties, such as brittle failure, impact strength,

yield strength and creep. Based on percolation theory introduced by Stauffer

(1985), they defined a volume fraction of removed bonds, f . On application

of an external stress, one or more of the bonds of the network may fail, and in

this way the random network may become progressively more damaged and,

for sufficiently large external load, will eventually fail. For tensile fracture of

brittle porous materials, the result is (Duxbury et al., 1988; 1987a; 1987b;

Sieradski and Li, 1986),

σb(f) ≈ σ0ξ
−x
ν

1 + km

(
d ln(Lξ )

ξ1

)α (4.12.1)

where d is the dimension, σb(f) is the strength of a brittle material of size

L containing volume fraction f of random pores, and σ0 = σb(0), km is an
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undetermined constant and x lies in the range (d − 1)ν < x < dν, ξ is the

percolation correlation length, while ξ1 = ln(f). α lies in the range 1
2(d−1) <

α < 1.

These workers have studied critical scaling in the mechanical case, by using

perforated sheets, and have found qualitative agreement with predicted critical

exponents (Sieradski and Li, 1986).

Percolation models may show a transition from brittle to ductile behaviour

(Duxbury and Leath, 1987; Li and Duxbury, 1988).

Although the qualitative feature of percolation models of breakdown was

given, the dependence of size distribution on fracture, it seems, cannot be

ignored (Sieradski, 1989).

4.13. Fractal Description of Fractures

Mandelbrot et al. (1984) were the first to show that fractured surfaces are frac-

tals in nature and that the fractal dimensions of the surfaces correlate well with

the toughness of the material. Later, one of the present authors (Lung, 1986)

analyzed the critical crack extension force with the fractal model and pointed

out that the true areas of the fractured surfaces in materials are actually larger

than that indicated by the data obtained by macroscopic measurements. The

effective critical extension force in the linear elastic fracture case would thereby

be larger than that calculated from a flat fractured surface. Since then, many

authors have found that the fractal dimension depends on the fracture proper-

ties of materials (Lung, 1986; Pande et al., 1987; Lung and Mu, 1988; Xie and

Chen, 1988; Mu and Lung, 1988; Wang et al., 1988; Peng and Tian, 1990; etc.)

but the values of fractal dimension seem to lie in a narrow range for measure-

ments with a resolution down to the micron scale. Herrmann (1990), in his

theoretical analysis, modelled fractures on a square lattice and found that the

patterns of cracks calculated can be fractal even without including noise due

only to interplay of anisotropy and memory. The shapes of the cracks calcu-

lated can be compared to the ones found experimentally for stress corrosion in

a qualitative sense. It seems that the scaling hypothesis on fractured surfaces

has been firmly established by many studies and for many materials.

Fractal description of fractures is a question of technological importance

and also an interesting theoretical problem. Further, Bauchaud et al. (1990),

Maløy et al. (1992) and Thør Engøy et al. (1994) reported that fracture surfaces

possess a statistically self-affine scaling property. They proposed that the

roughness exponent could be universal (independent of the material for a range
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of materials). Implementing the molecular dynamics simulation technique,

Abraham et al. (1994) found that the crack tip initially propagates straight,

then the onset of the crack instability begins as a roughening of the created

surfaces which eventually results in the zigzag tip motion at 30◦ from the mean
crack direction. From the profiles, the roughness exponent was found to be

0.81. They supported the assumption on the universality of the roughness

exponent.

Three questions arose:

— Do fracture surfaces possess a statistically self-similar or self-affine scal-

ing property? Which fractal model is better to describe them?

— What is the relationship between the fracture properties and fractal

structures (D or H)? Is the roughness exponent universal?

— How can the fractal structure form?

Different points of view have appeared in some related studies (Milman

et al., 1993; 1994; and Hansen et al., 1993). We will comment on these in the

following sections.

Before we discuss the fractal description of fracture in materials, we should

know some specialities of fractals in materials. Fractals in nature are approxi-

mate models. The difference between fractals in nature and rigorous ones are

(Liu, 1990; Vicsek, 1989):

— The range of scaling in which self-similarity holds is bounded from above

by the size of the object and from below by the size of the smallest

building block.

— They usually appear random,but are self-similar in a statistical sense.

Fractals in materials are more complicated and sometimes not so typical as

the sea shore, snow flowers and trees even in a statistical sense. The range of

length in which self-similarity holds is small. Some authors pointed out that

a constant value of fractal dimension in a certain range of scale is a necessary

prerequisite for self-similarity of a structure; e.g. the number of generations

should be larger than three and the range of scale should be observable for

more than one or two orders of magnitude (Hornbogen, 1989).

The approximation to self-similarity in materials is poor even in a statistical

sense. There may be many physical sources of self-similarities in some ranges

of scale and sometimes they overlap each other which leads to more complexity.
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The problem is how to find out the decisive one corresponding to the property

studied.

Fractal analysis has by now been applied to macro- and microstructural

elements in materials which were usually described by their integer Euclidean

dimension; for example, macroscopic crack lines, or planes, vacancies, disloca-

tions, grain boundaries, dispersive particles etc. However, a fractal structure

should be geometrically scaling.

Self-similarity implies that a similar morphology appears in a wide range

of magnification in the analysis. Fractured surfaces require careful metallo-

graphic analysis to determine not only a D value but also to establish their

self-similarity property. How wide should be the range is an open problem.

For instance, the total length, Ln(ε) of a Koch curve is given by

Ln(η)

L0
= L(ε) = ε1−D =

(
η

L0

)1−D
(4.13.1)

where η is the yardstick length (or the smallest step of the crack), ε is the

normalized yardstick length with respect to L0, the length of the initiator.

ε = η
L0
; D is the fractal dimension of the Koch curve. We know that εn = rn,

where r is the reduction ratio in scale by one iteration of n. Now, if we restrict

the range of scale of ε only one or two decades then that means only two

or five generations are enough to expose the self-similarity in these ranges of

scale if r = 1
3 . However, two, even five generations seem not adequate to be

considered as a fractal at least for measuring the fractal dimension with the

slit-island method (Lung, 1988; Lung and Zhang, 1989). Wang et al. (1990,

1993) simulated the perimeter-area relationship and found that the fractal

dimension measured with SIM (see Section 4.13.1) approaches the real value

when the number of generations is over 18.

Usually, n and r take discrete values; then from Eq. (4.13.1) the length of

the yardstick cannot change continuously. The measured lnLn(η) vs ln η plot

would be wavy rather than a straight line if the yardstick length is changed

continuously.

Many techniques of fractal analysis of surfaces have been developed re-

cently: the Richardson plot, slit island method (SIM) (Mandelbrot et al., 1984),

perimeter-diameter scaling method (Mu et al., 1993), return probability his-

togram method (Malφy et al., 1992) variation method, (Dubuc et al., 1989),

direct surface area measurement (Denley, 1990; Friel and Pande, 1993), scan-

ning tunneling microscopy (STM) method (Blumenfeld and Ball, 1993) and
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other physical and chemical methods such as: structure factor measurement

(Kjen, 1991), Faradaic current dependence (Imre,1992); secondary electron line

scanning, (Huang et al., 1989), and positron annihilation, (Lung, 1993). An

introduction can be found in the review article by Milman et al. (1994) and

related papers. In the following paragraphs, we will discuss mainly the former

two methods which at the time of writing are the most widely used.

4.13.1. Slit-island Method (SIM) and Difficulties

The slit-island method was proposed by Mandelbrot et al., (1984) and has been

widely used for fractal dimension measurements (Pande et al., 1987; Mu and

Lung, 1988; Wang et al. 1988; Xie and Chen, 1988 and etc.). In spite of various

explanations on the dependencies of toughness on fractal dimension, Lung

and Mu (1988) based on experiments, pointed out that the fractal dimension

determined by the slit-island method is dependent on the yardstick chosen

at least over a certain range of scale. The measured value would not be the

real fractal dimension of fractured surfaces when the yardstick length is not

sufficiently small .

The theoretical basis of the slit-island method is that the ratio

αD(ε) =
[L(ε)]

1
D

[A(ε)]
1
2

(4.13.2)

is size independent, but it does depend on yardstick chosen, ε (Feder, 1988).

Islands similar in shape satisfy the following perimeter-area relation due to

Mandelbrot (see Feder, 1988)

L(ε) = Cε(1−D)
√

A(ε)
D

(4.13.2′)

where C is the constant of proportionality. This holds for any given yardstick

ε small enough to have the measured value of A(ε) approaching the limiting

finite value. Then, the local fractal dimension can be determined by the slope

of the straight line fitted data of various islands similar in shape to lnL(ε)

figure. However, if ε is not small enough (not only for accurate measurement

of the smallest island), C would not be a constant, the measured value of Dm

by Eq. (4.13.2′) may depend on ε as Lung and Mu (1988), Lung and Zhang

(1989), Wang et al. (1990, 1993) and Shi et al. (1996) have analyzed.

Usually, the selection of islands similar in shape is guided by eye and in

practice by checking the linearity in lnP vs lnA figure. In principle, one may
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keep the relative error of the ratios of the axes in different directions of various

islands within a chosen small value to keep selected island similar in shape

more rigorously.

Actually, in practical measurements, it is more convenient to keep η con-

stant as has been done in many measurements. We did not keep ε, which is

equal to η
L0
, constant, due to different sizes of the Koch islands, (L0).

In this case, actually, for the Koch perimeter, we have (Lung, 1986; 1992)

Ln(η) = LD0 η
1−D . (4.13.3)

The ratio of the Koch island is

αn(η) =
Ln(η)

1
Dm

An(η)
1
2

= L0η
(1−D)
D An(η)

−1
2 . (4.13.4)

In general, from Eq. (4.13.4), we may see that αn(η) is dependent on the size

of the Koch island (L0). The relationship is complicated between logarithmic

values of A′ns and L′ns of different size similar Koch islands with a constant
yardstick length η.

Furthermore, εi =
η
L0i
. For the larger island, εi is smaller. The smaller

normalized yardstick sees more generations. In addition, αn(ε) is yardstick

dependent, αi(εi) �= αj(εj). The measured values of Dm must be yardstick de-

pendent. As was expected, the experimental data verified the above conclusion

(Lung and Mu, 1988) (Fig. 4.6).

Fig. 4.6 The dependence of measured Dm on yardstick η (Lung and Mu 1988).
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We notice that

α0 =
L0

A
1
2
0

, for D = 1, and η = L0 .

From Eq. (4.13.4)

αn(η) = α0

[
A0

An(η)

] 1
2

η
(1−D)
D . (4.13.5)

A0
An(η)

would approach a constant value as n > nc (nc ≈ 20 for a quadric Koch
island, (Lung and Mu, 1988; Lung, 1992); nc ≈ 100 for a triadic Koch island

(Lung and Zhang, 1989) and then αn(η) is size independent approximately. In

the limiting case, one can obtain

Dm(η) ≈ D . (4.13.6)

Fractals in materials with only several self-similar generations (n < nc) are

not appropriate for measuring D in general with the slit-island method. The

approximation would be poor.

In Fig. 4.6, the D vs η relation is an empirical one; it is not necessarily a

straight line, if one considers the limiting value due to Eq. (4.13.6). The reason

why the line for high toughness material has higher slope is not clear. However,

it is not unreasonable to assume L0 to be the distance of one step of crack prop-

agation from initiation to temporary arrest and the wavy path as due to crack

instability, intergranular cracking, transgranular cracking, etc. Then, L0 would

be longer for brittle materials. This has been verified by experiments (Lung

and Mu, 1996). With the same value of η (the yardstick length) the normalized

yardstick length ε(= η
L0
) is smaller for the brittle materials. Then, it is nearer

to the limiting value, D. This perhaps is the reason why in brittle materials,

the measured values of fractal dimension is less dependent on the ruler length

(Lung and Mu, 1988; Mecholsky et al., 1989). Instead of Fig. 4.6, one may

draw Fig. 4.7 schematically. At equal ruler length, the dependence of D on

ruler length for ductile materials is stronger than for brittle materials. One

may expect that at a certain larger ruler length, the two curves can intersect

to change positive correlation to a negative value, since εp (for ductile case) is

much larger than the εb (for brittle case) at the same value of η. Figure 4.7(a)

shows the calculated results by computer on the variation of Dm and α as

functions of the number of generations of fractal islands (Wang et al., 1990,

1991, 1993). These results are consistent with previous model calculations
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Fig. 4.7. (a) The change in fractal dimensionality Dm and measurement constant α in
measurement of many islands with N different generations.

Fig. 4.7 (b) Schematic figure for the transition from a negative correlation to a positive one
as the yardstick used becomes smaller.

Fig. 4.7 (c) Experimental evidence for the transition from a negative correlation to a positive
one as the yardstick used becomes smaller.
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(Fig. 4 of Lung and Mu, 1988; Fig. 2 of Lung and Zhang, 1989). Figure 4.7(b)

is a schematic figure which shows the intersection of two Dm(η) curves. The

two Dm(ε) curves show the general property in Fig. 4.7(a). The reason why

the two Dm(η) curves intersect is that brittle materials have larger L0 and that

workers usually keep η constant instead of ε constant in SIM measurements.

Therefore, at larger yardstick length, η1, the correlation of Dm with fracture

toughness is a negative one; but at smaller yardstick length, η2 it changes to

be positive (see Fig. 4.7(c)).*

The condition that Eq. (4.13.6) holds is n > nc; however, from an experi-

mental point of view, the problem is how can one know that the normalized

yardstick length is small enough to have satisfied the approximation condition

within reasonable experimental error. This is difficult to judge.

Morever, in many cases, the scaling range in materials, n0 is limited. If

n0 < nc, it is not useful to reduce the yardstick length to the condition that

the measured ε(n) < εc(nc) < ε0(n0); (or n > nc > n0) because ε is outside

the lower limit of the scaling range of the fractal (Lung and Zhang, 1989; Lung,

1992).

SIM is used in many cases due to its convenience (measurement of different

sizes is easier than to change the ruler length over an order of magnitude) and

the advantage of less error (Milman et al., 1994). We recommend that results

obtained by this method should be checked with others and we consider it to

be a subsidiary method.

It seems that the best way to measure the fractal dimension of fractured

surfaces may be through the relation (Lung, 1986),

Ln(η) = LD0 η
1−D . (4.13.7)

One may measure the total length of crack propagation with different

lengths of yardstick on one island or on several islands with the same size

and shape. Then, D can be obtained from the slope of the linear relationship

between lnLn(η) and ln η,

lnLn(η) = D lnL0 + (1−D) ln η . (4.13.8)

L0 can also be determined after D is known. This relation seems not to be

recommended (see Milman et al., 1994).

*Shi et al (1996) analysed the effects of the area change of the island on the Dm value. They
showed that the area change influences the Dm value greatly if the yardstick is not small
enough.
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Another way to measure D may be with the same yardstick length on

different sizes of islands (L0i) of similar shapes. Then, Eq. (4.13.8) changes to

Eq. (4.13.9),

lnLn(L0i) = D lnL0i + const. . (4.13.9)

Equation (4.13.9) is reasonable due to its scaling property with the sizes of

islands. This experiment has been done (Mu et al., 1993) and yields better

results than the slit-island method. The fractal dimension measured is almost

independent of the length of the yardstick in a certain range of the scale. It is

called the perimeter-diameter scaling (PDS) method (see also Milman, 1994).

4.13.2. The Roughness Exponent

Bauchaud et al. (1990) and Malφy et al. (1992) have reported elegant experi-

mental studies of the roughness exponent ζ for fractured surfaces of different

brittle materials. This exponent describes the scaling of roughness w, defined

as the width of the profile, with the length L of a one-dimensional cut through

the surface, w ∝ Lζ . They found that the value of ζ is universal for all brittle

materials, and conjectured that this universal value may also apply for ductile

fracture. In spite of controversial points of view on universality of roughness

exponent (Milman et al., 1993; Hansen et al., 1993) we shall first discuss this

problem from the standpoint of methods of measurements in this section.

Since most real surfaces scale differently in the plane of fracture and in

the vertical direction, they are self-affine rather than self-similar. What will

happen if one measures the self-affine surfaces with D, or describes the self-

similar surfaces with H?

If the surface is self-affine, we may determine H from double logarithmic

plots of ∆V (t) vs ∆t, where V is the vertical height and t is the horizonal

axis. Then, H might be a constant which is independent of the yardstick.

However, if we measure the fractal dimension of the surface artificially, the D

value might be yardstick dependent. From Eqs. (4.10.7) and (4.10.8):

N

(
l

l0

)
=

(
∆t

t0

)−1
=

1√
2

(
l

l0

)−1 [
1 +

(
∆t

t0

)2H−2] 12
(4.13.10)

N

(
l

l0

)
=

(
l

l0

)−D
. (4.13.11)
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Therefore,

D = 1−
ln
[
1
2

(
1 +
(
∆t
t0

)2H−2)]
2 ln
(
l
l0

) , (4.13.12)

which becomes, with the substitution

ξ =
1

2

[
1 +

(
∆t

t0

)2H−2]
,

D

(
H,
∆t

t0

)
= 1−

[
1 +

2 ln(∆t
t0
)

ln ξ

]−1
. (4.13.13)

(i) When ∆t
t0

� 1, N = (∆t
t0
)−1 ≈ ( l

l0
)
−1
H ; and then D = 1

H
.

(ii) When ∆t
t0
= 1, D approaches the limiting value 2

(1+H) .

Figure 4.8 shows the relationship of D(H, ∆t
t0
) with l

l0
. In the double log-

arithm plots, the dependence of D with ∆t
t0
becomes weaker and weaker as H

rises from 0.5 to 1. One cannot judge whether D is dependent on the yardstick

when H value rises up to a certain value near unity (say 0.8 < H < 1) within

the accuracy of measurements. In this case, we cannot distinguish which one,

self-similarity or self-affinity, is better to describe the fractal surface.

Fig. 4.8. D vs lg(l/l0) curve (H = 0.5, 0.8, 1).
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Fig. 4.9. lgL vs lg(l/l0) curve (H = 0.5, 0.8, 1).

Figure 4.9 shows the relationship of L( l
l0
) with l

l0
. In this figure, L( l

l0
) is

calculated as ( l
l0
)1−D where D(l) is calculated by Eq. (4.13.13). Because D is

a function of H and l, L(H, l) and l do not show linearity in double logarithmic
plots. From Fig. 4.9, the deviation of linear relationship is larger when H = 0.5

and smaller when H = 0.8. L( l
l0
) is independent of l

l0
when H = 1. Similarly,

as H approaches 1 (say 0.8 < H < 1), we cannot judge whether it is a curve
or a straight line within the range of experimental error.

Moreover, the values of L(l) are points on the L vs l double logarithmic
plots with various values of H. The slope of the curve does not have the

meaning of fractal dimension. The real fractal dimension (l −D) is the slope

of the straight line connected to the point (L/Lo, l
l0
) and the zero point (0, 0).

On the other hand, if the fracture surface is of self-similar structure, one

may determine D from the double logarithmic plots of the L( ll0 ) and
l
l0

relationship. The value of D might be a constant and is independent of l
l0
. If

one measures the roughness exponent of the surface, the value of H might be
yardstick dependent.

Now, we have

H(l,D) = 1 +
ln
[
2
(
l
l0

)2−2D
− 1
]

2 ln
(
∆t
t0

) . (4.13.14)

(i) When l
l0

� 1

H(l,D) =
1

D
+

ln 2

2 ln(∆t
t0
)
≈ 1

D
. (4.13.15)
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(ii) When l
l0
= 1, the limiting value of H(l,D) = 2

D
− 1.

Figure 4.10 shows the double logarithmic plots of H(D, l
l0
) and l

l0
. Similar

to the above, the dependence of H on l
l0
becomes weaker and weaker as D

approaches unity.

Figure 4.11 shows the double logarithmic plots of ∆V (D, l
l0
) and ∆t

t0
. As

above, the deviation from a straight line is smaller and smaller as D

approaches unity.

Fig. 4.10. H vs lg(l/l0) curve (D = 1.1, 1.3, 1.9).

Fig. 4.11. lg(∆V/V0) vs lg(∆t/t0) curve (D = 1.1, 1.3, 1.9).
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From the above analysis, one may draw the following conclusions:

If one describes a surface of a self-affine structure with fractal dimension,

the apparent fractal dimension might be yardstick dependent. However, the

dependence is very weak as the H value is near unity. On the other hand, if
one describes a surface of self-similar structure, with roughness exponent, the

apparent H value might be yardstick dependent. However, the dependence

cannot be correctly appraised when the D value is near unity.

In principle, comparing the linearity of H vs l and D vs l relation in double
logarithmic plots, one may make an appraisal as to which structure, either

self-affine or self-similar, is the correct one. However, if the surface appears

to flatten, this experimental method is not sensitive; one should then adopt
another experimental method to make the appraisal.

In addition, comparing Figs. 4.8 and 4.10, we can see that the dependence of
H(D, l

l0
) on l

l0
is weaker than that of D(H, l

l0
) on l

l0
. Then, the measurement

of the roughness exponent is a less sensitive way to judge the deviation from
self-affinity than the fractal dimension is to the deviation from self-similarity.

The range of H values from 0.5 to 1 is half the range of D values from 1 to 2.

Using the measured values of the H parameter to characterize the roughness of
materials, the differences among them are easy to be ignored or the universal

properties are easy to be emphasized. (Deng et al., 1999)

The above discussion on D and H is important. Considering the com-

plicated mechanisms of fracture in materials, it is worthwhile to check if the
fractured surface is self-similar or self-affine experimentally. Usually we discuss

the case of mode I fracture (see Thomson, 1986), but how are mode II, mode

III and Complex Mode? If we consider the fractured surface on an atomic
level, say the dislocation mechanism of micro-crack nucleation; the percolation

model for brittle fracture, or the fragmentation, friction, wear, corrosion and
other processes, what will happen?

In the following sections, we consider the crack as a Koch line (self-similar)
as a tentative model and for reasons of simplicity. The total length of it is based

on Eq. (4.4.2). If one considers the crack surface as self-affine, one should use

Eq. (4.10.10).

4.14. Multirange Fractals in Materials

Fractals in materials are more complicated. There are many kinds of struc-

ture able to form fractals; e.g. intergranular crack lines, transgranular crack

lines, dislocation lines, vacancy clusters, etc. They are geometrically scaling in
different ranges of scale (Hornbogen, 1989; Lung, 1992; 1993; 1994).
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In materials, the fractal property of fractured surfaces is the total contri-

bution of many elementary processes. Every elementary microstructure con-
tributes its fractal or non-fractal property in its own characteristic range of

scale. In principle, we should pick out the decisive one among them. If one

measures the fractal dimension outside the scale range of the decisive fractal,
one may find that the fractal dimension measured is insensitive to the property

(Lung, 1992).
If more than two fractals exist in a material in different ranges of scale, we

call them multirange fractals . Multirange fractals are not necessarily multi-

scaling fractals even when they have overlapping ranges of scale. For instance,
if transgranular cracking and intergranular cracking are associated with frac-

ture toughness values differing by a large amount, they preferentially occur at
different levels of stress and do not mix with each other in every generation.

Each one has its own self-similar system instead of forming one self-similar

system with the same fraction of the population in every generation. Usually,
they superpose in the material (Fig. 4.12). However, if GT

Ic (transgranular)

is near to GI
Ic (intergranular), the probabilities of these two kinds of fracture

are nearly the same, or the crack branches in every step of propagation, these
two processes may mix and form one multiscaling self-similar fractal system

(Lung, 1993; 1994).

Fig. 4.12. Multirange fractals and multiscaling fractals.
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Fig. 4.13. N fractals in various ranges of scale.

N fractals with overlapping regions between two adjacent fractal structures
with different fractal dimensions in the ranges of scale are complicated. Crack

lines are considered as Koch lines. Suppose we have N fractals in a wide range

of measurement with overlapping regions between two adjacent fractals. The
total length of the crack line can be expressed as (Fig. 4.13).

LT (ε2N−1) =
N−1∑
j=1

Pj

j∏
i=1

(1− Pi−1)
(
ε−1
ε0

)1−D1 (ε2i−1
ε2i−3

)1−Di ( ε2j

ε2j−1

)1−Dj

+
N∏
i=1

(1− Pi−1)
(
ε−1
ε0

)1−D1 (ε2i−1
ε2i−3

)1−Di
(4.14.1)

Fig. 4.14. Two fractals with overlapping region of scale.
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where Di is the fractal dimension, ε is the yardstick (ε0 = 1) and Pi is the

fraction of population of segments with Di in the overlapping regions. It is
easy to see that Eq. (4.14.1) holds when N = 1 and 2 (Fig. 14.14). For N = 1,

LT (ε1) = ε1−D11 (if ε0 = 1) . (4.14.2)

For N = 2,

LT (ε3) = P1ε
1−D1
2 + (1− P1)α

D1−D2ε1−D23 (4.14.3)(
if α =

ε0

ε1
= ε−11

)
.

The critical crack extension force is enhanced by the N fractals according
to

GIc(D1 . . .DN , ε2N−1)
GIc(1, 1)

= LT (ε2N−1) (4.14.4)

where GIc(1, 1) is the critical crack extension force when no fractal structure

is formed in the materials. In principle, for N fractals in different ranges of

scale, we should use Eq. (4.14.1) instead of the only one fractal dimension in a
narrow range (say in microns). However, under certain conditions, if one scale

range dominates, the fractal dimension in this range of scale would represent
the fracture property mainly. Otherwise, it is not sensitive to the property.

We will discuss this problem in a later section.

For measurement of DN , we choose ε as a variable in the range ε2N−1 <

ε < ε2N−2. Then, (compare Eq. (4.14.1))

LT (ε) =
N−1∑
j=1

Pj

j∏
i=1

(1− Pi−1)
(
ε−1
ε0

)1−D1 (ε2i−1
ε2i−3

)1−Di ( ε2j

ε2j−1

)1−Dj

+
N−1∏
i=1

(1− Pi−1)
(
ε−1
ε0

)1−D1 (ε2i−1
ε2i−3

)1−Di ( ε

ε2N−3

)1−DN

= A+B

(
ε

ε2N−3

)1−DN
(4.14.5)

where A and B are constants. We introduce a parameter Y (ε); such that

Y (ε) ≡ LT (ε)−A

lnY (ε) = const.+ (1−DN ) ln

(
ε

ε2N−3

)
. (4.14.6)
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From the slope of the straight line in a double-logarithmic plot, DN can

be determined. Sometimes experimentalists plot lnL(ε) vs ln ε straight line
and determine DN from the slope of the line in this double-logarithmic plot.

However, this procedure is incorrect, because

lnLT (ε) �= const.+ (1−DN ) ln ε . (4.14.7)

In the overlap region,

LT (ε) =
N−2∑
j=1

Pj

j∏
i=1

(1− Pi−1)
(
ε−1
ε0

)1−D1 (ε2i−1
ε2i−3

)1−Di ( ε2j

ε2j−1

)1−Dj

+ PN−1
N−2∏
i=1

(1− Pi−1)
(
ε−1
ε0

)1−D1 (ε2i−1
ε2i−3

)1−Di ( ε

ε2N−5

)1−DN−1

+
N−1∏
i=1

(1− Pi−1)
(
ε−1
ε0

)1−D1 (ε2i−1
ε2i−3

)1−Di ( ε

ε2N−3

)1−DN

= A′ +B′
(

ε

ε2N−5

)1−DN−1
+ C′

(
ε

ε2N−3

)1−DN
. (4.14.8)

Fig. 4.15. An example of multirange fractals with N = 4.
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This relation is not simple. However, it should be possible to solve it

numerically on a computer.

Four fractals exist in a material with overlapping regions between two ad-

jacent fractal structures as shown in Fig. 4.15.

Assuming that, ε0 = 1, ε1 = 3×10−1, ε2 = 10−1, ε3 = 3×10−2, ε4 = 10−2,
ε5 = 3 × 10−3, ε6 = 10−3, ε7 = 3 × 10−4, and D1 = 2, D2 = 1.1, D3 = 2,

D4 = 1.1, and P1 = P2 = P3 =
1
2 , the double logarithmic plots are shown

in Fig. 4.15. The superposed curve is non-linear. From this simple non-linear

curve, we cannot conclude that no fractal exists in this material. We should

do some experimental inspections* to make sure that it is not the case of more

than two fractals existing in different ranges of scale with overlapping regions.

In the case of multirange fractals composed of two fractals (Fig. 4.14),

Eqs. (4.14.5), (4.14.6) and (4.14.8) can be simplified as

LT (ε) = ε1−D1 , (ε1 < ε < ε0) (4.14.9a)

LT (ε) = P1ε
1−D1 + (1− P1)α

D1−D2ε1−D2 , (ε2 < ε < ε1) (4.14.9b)

LT (ε) = P1ε
1−D1
2 + (1− P1)α

D1−D2ε1−D2 , (ε3 < ε < ε2) (4.14.9c)

where we assume α = ε0
ε1
= ε2

ε3
. The width of the overlap range, ∆ε, can be

expressed as

∆ε = ε1 − ε2 =
ε0

α
− αε3 . (4.14.10)

When α = 1, ∆ε = ε0 − ε3, which is the case of two fractals overlapping each

other in the whole range. When α = ( ε0
ε3
)
1
2 , which is the case of two fractals

without overlap, when 1 < α < ( ε0ε3 )
1
2 , 0 < ∆ε < ε0 − ε3, i.e. the two fractals

overlap each other partly. Figure 4.16 shows the calculated curves for α = 1, 3,

and 5.

For Fig. 4.16, we may see that if two fractals overlap each other in the entire

range of length scale, an approximate constant value of ‘one’ fractal dimension

in the double logarithmic plot has been obtained. Thus, from a straight line

in the double logarithmic plot, we cannot simply conclude that there is only

one fractal existing in the material.

*For example, scanning electron microscopy could possibly identify whether more than one
fractal exists.



Some Characteristic Features of Fractals 155

Fig. 4.16. Calculated logLT (ε) − log ε curves for α = 1, 3 and 5 (D1 = 1.26, D2 = 1.5,
P1 = 68%).

One of the present authors and his collaborators have done various experi-

ments on fractals. One of our experiments (Long et al., 1992) demonstrated

that in spite of the fractured surfaces being all of mixed inter-transgranular

character, an approximately constant value of the fractal dimension in double-

logarithmic plots was obtained in the range 2 < ηi < 50 µm, where “ηi” is the

yardstick length. On the other hand, two fractal dimensions were observed in

one range of yardstick lengths (Mu et al., 1993). We think that the former is

the case of α = 1 in Fig. 4.16. The calculated curve is approximately linear,

since D1 (intergranular crack) and D2 (transgranular crack) do not differ too

much. The fractal average value, D̄(P,D1,D2), is between D1 and D2 but is

not the simple average of D1 and D2. The latter seems to be the case of α = 5

or 3 in which the two fractals never overlap or partly overlap.

As above, multirange fractals even having overlapping regions are not nec-

essarily multiscaling fractals. However, if GT
Ic is near to G

I
Ic i.e. the probablity

of intergranular cracking is nearly the same as that of transgranular cracking,

or the crack branches in every step of propagation, these two processes may

mix and form one multiscaling self-similar fractal system.

In this case, the physical quantity which we want to measure is the frac-

ture toughness of the complex system. In linear elastic fracture mechan-

ics analysis, this is equal to twice the specific surface energy multiplied by

the crack surface area or by the length of the crack line in the 2D fracture
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Fig. 4.17. Koch curve model for the crack line, ACB.

mechanics. The fraction of the total physical measure includes two factors,

i.e. the probability of intergranular cracking and the length of the segment.
Li
L0
= 1

2 [csc(
θi
2 )] (i = 1, for intergranular cracking and i = 2 for transgranular

cracking) (Fig. 4.17). We assume that

P0 =
GT
Ic

(GI
Ic +GT

Ic)
(4.14.11)

P1 = P0 csc

(
θ1

2

)
;P2 = (1− P0) csc

(
θ2

2

)

P =
P1

P1 + P2
. (4.14.12)

P is the fraction of population for intergranular fracture contributing to the

fracture toughness of the material.

According to Feder (1988),

τ(q) = − lim
δ→0

lnN(q, δ)

ln δ
(4.14.13)

N(q, δ) =
n∑

k=0

(
n
k

)
P qk(1− P )q(n−k)

= [P q + (1− P )q]n (4.14.14)

α(q) =
dτ(q)

dq
=

−1
ln 2

[
P q lnP + (1− P )q ln(1 − P )

P q + (1− P )q

]
(4.14.15)

f(α(q)) = qα(q) + τ(q) . (4.14.16)



Some Characteristic Features of Fractals 157

Empirically, from Long et al.’s experiment (1992), assuming P = 2/3

τ(q) =

(
1

ln 2

)
[ln(2q + 1)− q ln 3] (4.14.17)

α(q) =
ln 3

ln 2
− 2q

(2q + 1)
(4.14.18)

f(α(q)) =
ln(2q + 1)

ln 2
− q2q

2q + 1
(4.14.19)

D(q) =
1

(1− q) ln 2
[ln(2q + 1)− q ln 3] . (4.14.20)

The function D(q) is the spectrum of fractal dimensions for the fractal measure

of
GFIc
G0
Ic

on a geometrical set D(0) = 1 (a straight line) (Fig. 4.18).

We summarize the above discussion as follows:

(i) Unlike the original theoretical model of fractals with an infinite number

of generations, fractals in nature are bounded from above by the

size of the initiator and from below by the size of the smallest building

block. There are a number of multirange fractals existing in materials.

In order to study the relationship between fractal structure and me-

chanical properties we should first make sure which fractal structure

dominates, (e.g. intergranular crack lines, transgranular crack lines or

Fig. 4.18. f(α(q))−α(q) curve for the multifractals of intergranular and transgranular cracks.
(Lung, 1993; 1995)



158 Mechanical Properties of Metals

dislocation lines, etc.) in relation to the particular mechanical

property.

(ii) Multirange fractals with overlapping regions in the range of yardstick

lengths are not necessarily multiscaling fractals. However, if the proba-

bilities of different physical mechanisms are nearly the same, processes

may mix and form one multiscaling self-similar fractal system.

(iii) From a straight line in a double-logarithmic plot, we cannot conclude

whether there is just one fractal structure in the material or more;

and also from a nonlinear curve on a double logarithmic plot, we can-

not conclude that no fractal exists in the materials. Experimental

inspections and measurements in the whole range of scale are to be

recommended.

(iv) The concept of multirange fractals could possibly be extended to other

processes, e.g. fractal cluster growth, surface dynamics, etc.

4.15. Time Evolution of Multirange Fractals

In Long et al.’s experiment (1992), transgranular cracking and intergranular

cracking are associated. They showed that in spite of the fractured surface

being all of mixed inter-transgranular character, an approximately constant

value of the fractal dimension was obtained in the range 2 < ηi < 50 µm,

where “ηi” is the yardstick length. In different stages of crack propagation,

the fractal dimension measured changes. Fractographic investigation showed

that the relative composition of intergranular and transgranular cracks changes

in different stages. Considering that the total crack initiation does not hold

constant in all stages, Eq. (4.14.3) must change in form to

N(t)LT (ε3) = N1(t)ε
1−D1
2 +N2(t)α

D1−D2ε1−D23

Ṅ(t)LT (ε3) = Ṅ1(t)ε
1−D1
2 + Ṅ2(t)α

D1−D2ε1−D23

(4.15.1)

Ṗ1(t) =
Ṅ1(t)

Ṅ(t)
, Ṗ2(t) =

Ṅ2(t)

Ṅ(t)
= 1− Ṗ1(t)

L̇T (ε3, t) = Ṗ1(t)ε
1−D1
2 + [1− Ṗ1(t)]α

D1−D2ε1−D23 . (4.15.2)

As in the experiment of Long et al., (1992), the double logarithmic plot

of LT vs ηi relation appears as a straight line. Empirically, a Deff(t) can
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Fig. 4.19. (a) The locations of the profiles. Section I is the region just ahead of the pre-fatigue
crack tip, followed by Sections II and III successively.

Fig. 4.19. (b) The measured relation between log L (ηi) and log ηi for profiles EE
′-1 (©),

EE′-2 (×) and EE′-3 (∆).
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be defined through

LT (η, t) ≈ const. η1−Deff (t) .
Deff(t) was obtained as a function of the distance from the original crack

tip, or the crack propagation distance which is a function of time t. In this

experiment, as the fraction of transgranular fracture rises from 32% (Sec. I and

Sec. II) to 55% (Sec. III), the Deff(t) rises from 2.19 to 2.21 (Fig. 4.19(a), (b)).

4.16. Fragmentation

Fragmentation plays an important role in a variety of machine, metallurgical,

mining and geological technologies. Fragmentation controls the size distribu-

tion of fragments. The size distribution of fragments controls the quality of

products. Turcotte (1986) and Zhao et al. (1990) described the fragmentation

distributions with power-law relationships in terms of the fractal theory. Xie

and Gao (1991) verified this description with more experimental data on rock

failure in the laboratory. The power-law relationship is taken as evidence that

the fragmentation mechanism is scale invariant.

Many experimental results indicate that there is a simple power-law rela-

tionship in size-frequency distributions of fragments.

N(m > mc) = Cm−bc (4.16.1)

where N(m > mc) is the number of fragments with a mass m greater than mc

and C is a constant.

Another representation is the Weibull dependence:

M(r)

MT
= 1− exp

[
−
( r
σ

)α]
(4.16.2)

whereM(r) is the cumulative mass of fragments with a radius less than r, MT

is the total mass, and σ is related to the mean size. If r
σ
� 1, equation (4.16.2)

reduces to the power-law relationship:

M(r)

MT
≈
( r
σ

)α
. (4.16.3)

From the definition of a fractal, the number N with a characteristic linear

dimension greater than r is given by

N ∝ r−D . (4.16.4)
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Equation (4.16.3) gives

dM ∝ rα−1dr (4.16.5)

Taking the derivative of Eq. (4.16.4), yields

dN ∝ r−D−1dr . (4.16.6)

The increment of number related to the incremental mass is given by

dN ∝ r−3dM . (4.16.7)

Combining Eqs. (4.16.5), (4.16.6) and (4.16.7), one finds

D = 3− α . (4.16.8)

The power-law mass distribution is equivalent to a fractal distribution with

the relation of Eq. (4.16.8).

Many experimental studies on the frequency-size distributions of fragmen-

tations showed fractal distributions. But, how can we describe them with

fractal?

A simple model of how fragmentation can result in a fractal distribution

has been proposed by Turcotte (1992). It is based on the concept of renorma-

lization. A zero-order cube with dimension h is divided into eight zero cubic

elements each with dimension h/2 (Fig. 4.20). The probability that a zero-

order cell will be fragmented into eight zero-order elements is f . The fragments

with dimensions h/2 become first-order cells; each of these have a probability

of being fragmented into eight second-order elements with dimensions h/4.

Fig. 4.20. Illustration of the renormalization group approach to fragmentation. (Following
Turcotte, 1986a)
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The process is repeated to higher orders. The basic structure is a fractal

with fractal dimension

D = 3 ln(2f)/ ln 2 . (4.16.9)

Although this model is very idealized and non-unique, it illustrates the basic

principles of how scale-invariant fragmentation leads to a fractal distribution.

It also illustrates the principle of renormalization. The division into eight

fragments is an arbitrary choice; however, other choices such as the division into

m fragments will give the same result, where m is an integer (1, 2, 3 . . . etc.)

without destroying the self-similarity property. This model is deterministic

rather than statistical. This model relates the probability of fragmentation f

to the fractal dimension D but does not place constraints on the value of the

fractal dimension. The allowed range of f is 1/2 < f < 1 and the equivalent

range of D is 0 < D < 3. Since the ratios 1/r of the above model should be

positive integers, the distributions of fragments are discrete. However, actual

distributions of fragments are continuous. It would be worthwhile to find a

model for which the allowed values of the ratios 1/r may not necessarily be

limited to integers. Jiang and Lung (1995) proposed two models, the scaling

ratios of which may change continuously and which do not place constraints on

the value of the fractal dimension. This was not paid attention to previously

(see Turcotte, 1992).

4.16.1. Equal-Ratio-Edged Orthorhombic Fragments Model (ERE)

Suppose we have an equal-ratio-edged orthorhombic grain with lengths of edges

being 1, r−1 and r respectively. The zero order grain may be divided into three

parts (Fig. 4.21). The two largest parts have edges with lengths 1, r, and r2

respectively.

The volume of the two parts is given by

V1 = V0(2r
3)

where V0 = 1·. The volume of the residual is given by
Vr = V0(1− 2r3) .

Repeating this process, we obtain the total volume of the second order cells,

i.e. cutting into three parts once more:

V2 = V0(2r
3)2 .
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Fig. 4.21. The ERE model. (a) The initial grain is ABCDEFG, AB = r−1, BE = 1, BG = r

and V0 = 1; (b) First generation: BE = 1, BG = r, BL = r2, and V1 = V0(2r3); (c) Second
generation: BG = r, BL = r2, Bd = r3 and V2 = V0(2r3)2.

For the nth order cells, we have

Vn = V0(2r
3)n .

Then, according to the definition of fractal dimension by Mandelbrot (1982)

Vn

V0
= (2r3)n ≡ (r3−D)n

2 = r−D (4.16.10)

D =
ln 2

ln(1
r
)
. (4.16.11)

According to this model, the value of 1/r can be changed continuously. The

allowed range of r is 0 < r < (12 )
1/3 = 0.7937 and the range of D is 0 < D < 3

(Fig. 4.22).

The geometrical shapes of the cells in different orders of generations

are similar. The ratio of the sides are 1 : r : r2, and each one is scaling with

ratio r.

For each generation,

Vn+1(rl) = r3−DVn(l) . (4.16.12)

Equation (4.16.12) satisfies the scaling form (Feder, 1988)

f(λt) = λαf(t) (4.16.13)
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Fig. 4.22. The relationship of D with r in ERE model.

where λ in Eq. (4.16.13) and r in Eq. (4.16.12) are scaling factors and α and 3−
D are the powers of the function, in Eq. (4.16.13) and Eq. (4.16.12) respectively.

As with other fractals, the ERE model has a nice scaling symmetry.

The residual volume of the nth order cells is given by

Vn,R

V0
= 1− (2r3)n . (4.16.14)

Equation (4.16.14) is not a power-law (fractal) relationship. However, the

distribution in one generation of the residual volume is given by

(Vn+1,R − Vn,R)

V0
= (2r3)n(1− 2r3) = const. (2r3)n . (4.16.15)

Equation (4.16.15) is a power-law relation. The fractal dimension of the density

of residual volume is given by

(Vn+1,R − Vn,R)

(Vn,R − Vn−1,R)
= 2r3 ≡ r3−D

′
. (4.16.16)

Then

D′ = ln 2/ ln(1/r) = D . (4.16.17)

The fractal dimension, D′ of the distribution of the residual volume is equal
to that of the original fractal object.
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4.16.2. Volume-scaling Fragmentation (VSF)

The ERE model has strict limitation on geometrical shapes and this may not

be exactly consistent with practical fragments. Therefore a more generalized

model of voluminal self-similarity is proposed below, this model having no

limitation on geometrical shapes. Assuming the size of a zero order grain is

V0, it is divided into two unequal first order grains, rV and frV , where r

and f are the scaling factor and the ratio of the two first order grain sizes

respectively. The values of r and f are smaller than unity. Repeating this

process, we obtain the fractal (Fig. 4.23).

The volume of the first order cells is

VF = rE(1 + f)V0

where E is the Euclidean dimension. The residual volume is given by

VR = V0 − rE(1 + f)V0 = [1− rE(1 + f)]V0 ≥ 0 (4.16.18)

Fig. 4.23. Schematic figure for VSF model.
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Fig. 4.24. The relationship of D with r in VSF model.

and VR should be not negative. Therefore, the necessary condition for r is

r−E ≤ 1 + f . (4.16.19)

If f = 1, E = 3, r ≤ 0.7937 then, according to Feder (1988), the fractal

dimension for such a set is the dimension that satisfies

N∑
i=1

rDi = 1 . (4.16.20)

In our case, N = 2. Then,

rD(1 + fD) = 1 , (4.16.21)

and a special solution of this equation with f = 1 gives Eq. (4.16.3). A

numerical solution of this equation with r = 2/5, f = 5/8 gives D = 0.6110

(Fig. 4.24).

The residual volume of the nth order grains is given by

Vn,R

V0
= [1− (rE(1 + f))n] . (4.16.22)

Equation (4.16.22) is not a power-law relationship. However, the distribution

in one generation of the residual volume is given by

(Vn+1,R − Vn,R)

V0
= [rE(1+f)]n[1−rE(1+f)] = const. [rE(1+f)]n . (4.16.23)
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Equation (4.16.23) is a power law relationship: it is scaling with unequal ratios

as the original fractal. The fractal dimension can be solved numerically as

Eq. (4.16.21), and is equal to the original fractal scaling with unequal ratios.

Previously, Mandelbrot (1982) offered a tentative definition of fractal: “A

fractal is by definition a set for which the Hausdorff-Besicovitch dimension D

strictly exceeds the topological dimension D.” According to this definition, the

VSF model is a fractal, because its Hausdorff-Besicovitch dimension is larger

than the topological dimension, which is equal to zero. However, Mandelbrot

(1986) proposed another definition: “A fractal is a shape made of parts similar

to the whole in some way .”(Feder, 1988). We see from above that the VSF

model satisfies the condition of this definition only in a loose sense. It seems

that the definition of 1982 has more content than that of 1986. It should be

pointed out that a neat and complete characterization of fractals is still lacking

(Mandelbrot, 1987, see also Feder, 1988), but as one works through the various

ways of constructing fractal structures one will get a better feeling for what

the concept means (Feder, 1988; Lung, 1992).

For many years, it has been the aim of engineers to develop quantitative

fractography. A parameter capable of continuous change for characterization of

the fractured surfaces rather than discrete, qualitative and empirical inspection

has been an objective for a long time. Now, fractal dimension is a possible

candidate for this purpose. However, there are some problems on the fractal

description of fractures, such as the method of experimental measurements,

the multirange scaling complexity in materials and self-similarity or self-affinity

properties. In spite of these problems requiring solution, the parameter, fractal

dimension, possibly can be used in some limited and empirical cases, such as

in the case when only one factor is changed in the process. For example,

if only one element is changed in the composition of alloy design, only one

elementary process in phase transformation is related in the heat treatment,

or only one mechanism for degradation of materials is responsible in service

failure, then the fractal dimension may provide information on continuous

changes of structure and properties of materials.

The questions of self-similarity and self-affinity properties on fractured sur-

faces are still open. Which fracture mechanism (sudden break, stress-corrosion

weathering processes, etc.) produces what kind of fractal structure is not

known at the time of writing. We also do not know which materials (bcc and

fcc metals, rocks and woods and etc.) create self-affine fractured surfaces and

which do not. The difference between macro- and micromechanism of fracture
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is not clear. It will be very worthwhile to make experimental studies which

compare these two descriptions along the lines of Sec. 4.13.

4.17. Phenomenological Relation Between Fractal Dimension of

Fractured Surfaces and Fracture Toughness of Materials

Since Mandelbrot et al. (1984) showed that fractured surfaces are fractals in

nature and that the fractal dimensions of the surfaces correlate well with the

toughness of the material, many authors found that the fractal dimension

depends on the fracture properties of materials, but the values of it seem

in a narrow range for measurements with a resolution down to the micron

scale. Some authors found that the roughness exponent could be universal

(independent of the material for a range of materials). Some questions which

have arisen are: Is the roughness exponent universal? What is the relationship

between fracture properties and fractal structures (D orH)? In this section, we

shall discuss the universality and specificity of fractures and then, subsequently,

discuss the relationship of fractal dimensions to fracture properties.

4.17.1. Universality and Specificity of Fractures

According to our concept of multirange fractals in materials, introduced as

above, the fractal dimension of fractured surfaces measured is the total con-

tribution of many elementary processes. Some processes, we think, are less

dependent on the material, but some other processes are materials dependent.

They superpose in the material. If one less materials dependent mechanism,

say instability of the dynamical crack propagation, (Abraham et al., 1994),

complex mode crack propagation (Thomson, 1986; Lung, 1980), etc., pro-

duces fractal dimension Du, and another materials dependent mechanism, say

transgranular cracking, produces fractal dimension Ds; the effective fractal di-

mension Deff (see Sec. 4.14) synthesized by them would be Du < Deff < Ds

if both exist in the same range of scale and if Du < Ds. The concrete value

of Deff depends on the fraction of population of various mechanisms in the

material. Then, the differences of the effective fractal dimensions in various

materials might be reduced by this effect. It may be one of the reasons why

the values of Deff measured seem always to lie within a narrow range. Sec-

ondly, as we have pointed out in Sec. 4.13, the measurement of roughness

exponent is less sensitive than that of fractal dimension. Using the H pa-

rameter as the roughness index the differences among various materials are

less in evidence. Our previous works also have shown systematic differences
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of fractal dimensions for various materials as Milman et al. reported (Milman

et al., 1994). However, it appears that there are some less materials dependent

mechanisms as Hansen et al. (1993) have pointed out in their investigations.

These mechanisms, which we only mean less dependent on materials, may be

multiple. The effective fractal dimension measured seems to be the synthesis

of various elementary fractal structures including material dependent and less

dependent (‘universal’) fractals. It seems impossible that the fractal dimension

of fractured surfaces is a universal constant, though we believe there is not by

any means a real conflict between current viewpoints.*

4.17.2. Linear Elastic Fracture

A model based on linear elastic fracture mechanics theory has been proposed

(Lung, 1986). In Irwin’s approach, the critical strain energy release rate, i.e.,

the critical crack extension force, GIc may be written as GIc(D = 1, εn = ε0 =

1), if there is no fractal or the fractured surface is smooth:

GIc(1, 1) = 2γs (for brittle fracture)

GIc(1, 1) = 2(γs + γp) (for quasi-brittle fracture) , (4.17.1)

where γs is the specific surface energy and γp represents the energy expended

in the plastic zone necessary to produce unstable crack propagation at the

crack tip. In the quasi-brittle case (or the small scale yielding case) we assume

that the plastic zone at the crack tip is very small relative to the crack length

and the thickness of plastic deformation is very thin.

Owing to the crack propagation along a zigzag line (Lung, 1986; Lung and

Mu, 1988) the true areas of fractured surfaces (or lengths of crack lines in 2D

system) are actually larger than the data obtained by macroscopic measure-

ments (Fig. 4.25).

The area of the fractured surface per unit thickness of specimen would be

[ ln(η)
L0
] · 1. (In fracture mechanics, we always simplify the crack as a line in a

two-dimensional system; say, in plane stress or plane strain cases.)

*The work of J. M. Lopez and J. Schmittbuhl (Phys. Rev. E57, 6405, 1998) confirms
again that, in general, crack surfaces exhibit self-affine scaling properties in a wide range
of length scales. These workers also suggest that fracture surfaces may have anomalous
dynamic scaling properties similar to what can occur in models of kinetic roughening.
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Fig. 4.25. (a) Ideal brittle fracture in glass.

Fig. 4.25. (b) Elastic plastic fracture in metal.
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Then, instead of Eq. (4.17.1), we have

GIc(D, εn) = GIc(1, 1)

(
Ln(η)

L0

)

GIc(D, εn) = 2γs

(
Ln(η)

L0

)
.

(4.17.2)

The total length of a Koch curve is given by

Ln(η)

L0
=

(
η

L0

)(1−D)

. (4.17.3)

From Eqs. (4.17.2) and (4.17.3)

GIc(D, εn) = GIc(1, 1)

(
η

L0

)(1−D)

= 2γs

(
η

L0

)1−D
(4.17.4)

where D is the fractal dimension of the fractured surface. Equation (4.17.4)

can be written as

lnGIc(D, εn) = lnGIc(1, 1) + (1−D) ln

(
η

L0

)
(4.17.5)

From Eq. (4.17.4), we may see that GIc(D, εn) and D are positive correla-

tion, due to (
∂GIc(D, εn)

∂D

)
γs,εn

> 0 (4.17.6)

since

ln

(
η

L0

)
< 0 . (4.17.7)

It means that the logarithm value of fractal critical crack extension force

or fracture toughness, is a function of D (fractal dimension) and εn (the lower

bound of the fractal, or the length of the smallest crack step). It is positively

correlated withD, and is in linear relationship with the fractal dimension of the

fractured surface provided GIc(1, 1) (or γs) and
η
L0
(or εn) are constants . This

relation, based on linear elastic fracture mechanics, holds in many experimental

measurements for brittle materials (see Mu and Lung, 1988; Lung, 1992; and

also for the positive correlation, Williford,1988; Milman et al., 1994). In fact,

ln γs does not change largely in many brittle materials. The linear relationship

of Eq. (4.17.5) is approximately true in many brittle fracture cases.
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Fig. 4.26 The relationship of KIc with D of fractured surfaces. (Lung, 1998)

For example, Fig. 4.26 shows a good linear relation using a double loga-

rithmic plot (Lung, 1998).*

*Two straight lines in Fig. 4.26 express the data of fracture toughness and hydrogen cracking
experiments of 30CrMnSi2A high strength steels measured by our group. The lowest straight
line expresses the data performed by Mecholsky et al. on the fracture toughnes of ceramic
materials.

Three conclusions may be drawn:
(1) Three straight lines in Fig. 4.26 show the reasonableness of Eq. (4.17.5).
(2) The values of fractal dimension and of fracture toughness of 30CrMnSi2A steels are

the same at the final critical fracture conditions in spite of their different loading modes.
(3) The data of fracture toughness of ceramic materials were lower than that of high

strength steels. This may be due to the low values of GIc(1,1) in ceramic materials.
However, three points should be noted:
(1) Eq. (4.17.4) was derived from linear elastic fracture mechanics; therefore, it is true

only when the material is brittle or in small scale yielding case approximately.
(2) In Fig. 4.26, we may find that for one fractal dinension there are three values of

fracture toughness in the three straight lines. This shows that we can hardly determine
the fracture toughness by one parameter, fractal dimension, only. Dimensions, including
fractal dimensions cannot subsume all the effects in complicated materials. For example,
a one-dimensional steel wire is much stronger than a one-dimensional thread, even though
their dimensions are the same.

(3) All experiments reported positive correlation between the fractal dimension and
fracture toughness of materials.

In short, if one parameter is changed in one kind of material, say testing temperature,
condition of heat treatment and etc., the relationship of Eq. (4.17.4) holds quite well if no
abrupt structural changes occur.
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Milman et al. (1994) fitted data by Long et al. (1992) and found that the

empirical relation

KIc ∝ K0 exp(β(D
′ − 1)) (4.17.8)

with a positive coefficient β ≈ 30± 6 gave a good fit. This empirical relation
is consistent with Eq. (4.17.5 ) formally, if β = − ln εn. However, in this case
εn ≈ 10−13. It is smaller than the inter-atomic distance in crystals! It seems
unreasonable. However, it can be explained as follows: From Eqs. (4.17.4),

GIc is determined not only by D but the specific surface energy also. In Long

et al’s experiment (1991), the larger the KI at the crack tip, the lower the crit-

ical hydrogen concentration needed to cause crack propagation and the more

ductile the materials at the crack tip as well. Therefore, the energy (γs in

Eqs. (4.17.4)) needed to form the new fracture surface is also higher. The dot-

ted lines in Fig. 4.26 would be expected if another specimen under tensile test

with the same content of hydrogen atoms as the local content at the crack tip

in the slow crack propagation specimen under cantilever bending test. This

explanation was verified by the fact that the fractal dimension reported by

the authors agree well with the results obtained for the same steel under dif-

ferent fracture conditions (Mu et al., 1993; Long et al., 1991). The effect of

multirange fractals (see Sec. 4.14) might be another physical cause to explain

the empirical relation. Unfortunately, previous measurements have been per-

formed only in a narrow range of micron scale. The satisfactory procedure is

to measure values in all ranges of scale. Values of Di (or Hi) could be ob-

tained by Eq. (4.14.6). If one can find a function F (Di) and the relationship

of F with fracture property, it would be reasonable. At the time of writing,

the situation resembles the Chinese saying: “we have seen only the individual

tree instead of the whole forest .” Fractal dimensions measured on fractured

surfaces in atomic scale (Milman et al., 1994) represents a worthwhile research

area.

The difference between the fracture processes on nanometer and mesoscopic

scales may be the effects of long-range elastic fields. It is well known that a

macro plane strain brittle fracture may occur in low carbon steels though they

are ductile from microscopic investigations on slip lines near the crack tip. A

rough surface on an atomic scale may appear smooth on the micron scale.

Indeed, the fracture processes in the two regimes are fundamentally different

(Milman et al., 1994; Hansen et al., 1993). At the end of this chapter, we

may see that the H value of the roughness caused by complex mode fracture

will be not lower than 0.95. The H value of another model of continuum
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media proposed by Bai et al., is about 0.9. Therefore, the synthesized fractal

dimension including the contribution of these low fractal dimensions could not

be high.

Some results exist which seem to contradict the above relationship. Some

experimental data showed that the correlation between D and toughness (dy-

namic tear energy, fracture toughness etc.) is a negative one. We found

that many authors used the perimeter-area method inadequately (Lung and

Mu, 1988; Lung, 1992; Milman et al., 1994; Jiang et al., 1994 and Shi et al.,

1996).

Another problem is that the measured values of GIc may be different for

various materials though they have the same fractal dimension value of frac-

tured surfaces. However, the surface energies are different for various materials.

In Eq. (4.17.5), GIc is determined by the surface energy and the fractal dimen-

sion, not the latter only. It seems reasonable that different materials (ceramics

and ultra high strength steels) have different GIc even with the same values of

DF (see Sec. 4.17.3). For the same kind of materials, γs does not change too

much, even in the case of a small change of structure. Because γs is insensitive

to the structure, it may be considered to be approximately constant; then, the

linear relation between lnGIc and DF (Eq. 4.17.5) holds.

4.17.3. Quasi-brittle Fracture

It is true to say that at the time of writing it has not been proved possible

to clearly understand the correlation between fractal dimension and ductile

properties.

Williford (1988) analysed the collected data of positive and negative cor-

relation between toughness and D and plotted an analogy to the dimension

spectrum as a multifractal (Fig. 4.27).

In his investigation, on the left side of Fig. 4.27, D − 2 for very brittle

ceramics is low because their microcracks are flat. On the right side, D − 2 is
also low when damage is dominated by dislocation processes which also have

a low dimension. The central position is the transition part. The multifrac-

tal concept for this problem given by Williford, aroused the interest of some

scientists as giving further insight into the correlation between the fracture

toughness and fractal dimension. In the limiting case of very ductile mate-

rial, he argued that the large energy given is the work to ideally shear (crack)

a very ductile material into halves by passing a large number of dislocations
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Fig. 4.27. The relationship of D with fracture energy of various metals. (After Williford,
1988).

through the same plane, thus producing an atomically smooth ‘fracture’ sur-

face with very low surface roughness, R and D ≈ 2. However, two prob-

lems have arisen: (1) usually, many measurements were made in the range

of scale of microns. The atomically rough ‘fracture’ surface would be seen

to be flat in the scale of microns, and an atomically smooth ‘fracture’ sur-

face may be rough in microns due to the random orientations of the grains

or of fracture crystal planes. Moreover, later studies by Milman et al. (1994)

showed that the values of H are usually lower (more rough) in the nanometer

scale. (2) The analogy to a multifractal seems not to have a clear physical

interpretation.

Many experiments reported negative correlations of fractal dimensions with

fracture properties of materials. Most of them seem due to the SIM having been

used. However, even the vertical section method having been used in Pande

et al.’s experiments, the negative correlation still appeared and a satisfactory

explanation has not yet been provided.

To find another way to explain the experimental results, based on frac-

ture mechanics, the relationship of D with fracture toughness and the con-

cept of multirange fractals proposed by Lung (1986, 1993) can be used as
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a starting point for the discussion. From Eq. (4.17.5), in the case of elastic-

plastic fracture, GIc(1, 1) loses it rigorous meaning. We should use JIc or the
effective specific surface energy (2γp) as proposed by Orowan (Lung, 1992;

Mu and Lung, 1988; Lung, 1986), which is quite sensitive to the structure of

materials. It changes substantially from one structure to another even in one
kind of material. For discussing the relationship of fracture toughness with

fractal dimension, the GIc(D, εn) value (or other toughness data) should be
normalized by GIc(1, 1). It means that only discussion on the relationship of

the relative value of GIc(D,εn)
GIc(1,1)

with DF is reasonable. According to Tetelman

(1963), his γm (see Chap. 1) has a factor of N
3
2
0 . Here N0 is the number of

mobile dislocations in unit volume. The value of γm increases more rapidly
than the surface (2D) effect with the increase of ductility in ductile materials.

Also in Lung and Gao’s study (1985),

Gp
Ic = 2γp =

Wi

L∆

where L∆×1 is the smooth cracked surface of the plastic zone. The dimension
of L∆ is 2, but the dimension of Wi is 3. It is a volume (3D) effect. The

fractal dimension of fractured surfaces is only between 2 and 3. When the

material becomes more ductile, the volume of the plastic zone increases more
rapidly than the area of the fractal fractured surface. Then, γp changes more

rapidly than the enlargement of the fractal area of fractured surfaces. Unlike
the brittle fracture case, ln γp cannot be approximated as a constant. Then,

the value of the left side in Eq. (4.17.6) does not exist in reality and the

inequality in Eq. (4.17.6) may fail. According to the concept of multirange
fractals proposed by one of the present authors (Lung, 1993, 1994, 1995),

a crack line can be considered as composed of several Koch lines in different
ranges of scale. We assume that fractals composed of dislocation configurations

have no overlapping region with fractals composed of trans or intergranular

cracks. The crack lines created by dislocation processes may be seen as a
flat line in the larger range of micron scale. The Koch lines (crack) created

by intergranular cracking may be seen as a flat line over a larger range of

millimeter scale. The schematic figure is shown in Fig. 4.28. This figure was
designed by the late Dr. Mike Ohr for the 2nd International Conference on the

Fundamentals of Fracture, 1985. He was successful in expressing this natural
phenomenon though he was not familiar with the concept of fractals.

Suppose we have two nonoverlapping fractals in two different ranges of scale

(atomic and metallographic). The total length of these multirange fractals is
(Lung, 1993, 1994, 1996)
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Fig. 4.28. The rough crack line looks relatively flat on a macroscopic range of scale.

LF (ε) =
2∏
i=1

(εi/εi−1)1−Di . (4.17.9)

Then

GF
1c([D], [εn], α) = G1c(1, 1, at.)A1(∼ nm)A2(∼ µm) (4.17.10)

where G1c(1, 1, at.) = 2γs, the specific surface energy of the fractured material,

which is determined by the electronic structure or interatomic forces at the

surface, α indicates the range of scale and Ai = (εi/εi−1)1−Di . [ ] indicates
that all Di’s in various ranges of scale are included.

In the scale range of metallographic grains

G1c(1, 1, gr.) = G1c(1, 1, at.)A1(nm) = 2γp (4.17.11)

where 2γp is the energy expended in the plastic work necessary to produce

unstable crack propagation.

Again, in a larger scale range of continuum media

G1c(1, 1, cont.) = G1c(1, 1, gr.)A2(µm)

= G1c(1, 1, at.)A1(nm)A2(µm) . (4.17.12)
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In general, if we have N nonoverlapping fractals in the entire ranges of scale

GF
1c([D], [ε], α) = G1c(1, 1, at.)

n∏
i=1

Ai . (4.17.13)

The relationship of toughness of materials with the fractal dimension mea-

sured in k range of scale is given by

GF
1c([D], [ε], α)

G1c(1, 1, at.)
∏n

i�=k Ai
= Ak = ε1−Dkk . (4.17.14)

The fractal relationship holds only when the fracture toughness is normal-

ized to a value according to Eq. (4.17.14)

In the quasi-brittle fracture case

G1c ≈ 2γpε(1−D1)1 (4.17.15)

lnG∗1c = lnG1c − ln(2γp) = (1−D) ln ε1 . (4.17.16)

At the time of writing, we still lack knowledge on γp and its changes in

ductile materials. If we treat data cited from Williford’s figure (1988) along

the line of the above thinking we may find some qualitative relationship for

1
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Fig. 4.29. Schematic figure D of G∗Ic −D relationship.
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toughness and D in micron range of scale for quasi-brittle materials though

data are not from rigorous fracture mechanics tests. However, at present we

cannot. Assuming that ZnSe is perfect brittle and all materials obey the same

relationship as ZnSe, we may draw a line parallel to ZnSe (PA). Subtractions

of lnγ values may give us a rough impression on γp of various materials. The

schematic figure showing the relation between G∗Ic and D would be Fig. 4.29.

In this figure, there would be two features common to all materials:

(i) Positive fractal correlation for all materials might be obtained.

(ii) Data for all materials would pass through the point (1,1).

It seems reasonable that the straight lines pass through the point (1,1) in

the figure. We do not know the change of ln εn in various materials. Here,

we assume that the logarithmic value does not change very much. Figure 4.29

shows our analysis to be qualitatively reasonable though not of course rigor-

ous. In this treatment, we have separated the effect of fractal surfaces and that

of other processes, say plastic deformation etc. Dimensions, including fractal

dimensions cannot subsume all the effects in complicated materials . For ex-

ample, a one-dimensional steel wire is much stronger than a one-dimensional

thread, even though their dimensions are the same.

Furthermore, from Eq. (4.17.16),

[
∂ lnG∗Ic(D, εn)

∂D

]
εn

= − ln εn > 0 (4.17.17)

[
∂ lnG∗Ic(D, εn)

∂ ln εn

]
D

= 1−D < 0 (4.17.18)

[
∂(ln εn)

∂(1−D)

]
G∗
Ic

= − ln εn
(1−D)

< 0 (4.17.19)

d lnG∗Ic(D, εn)

dD
= − ln εn + (1−D)

d(ln εn)

dD
(4.17.20)

D =
lnN

ln 1
r

=
−n lnN

ln εn
. (4.17.21)

Because n and N are variable in materials, we cannot say that the diffe-

rential in the second term of Eq. (4.17.20) is positive or negative. However, if

n and N are constants approximately, the differential would be negative and
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then the value of the expression in Eq. (4.17.20) would be positive (εn < 0).

A positive correlation between G∗Ic and D would still be expected.
In summary, the situation regarding ductile fracture in materials is very

complicated. It is an irreversible, dissipative process. More experimental mea-

surements and investigations are needed. Some experiments related to this

problem have already been performed (Williford, 1990; Gong and Lai, 1993).

Moreover, according to the concept of multirange fractals in materials, the

fractal behaviour of a fractured surface is the total contribution of many ele-

mentary processes. Every elementary microstructure contributes its fractal or

non-fractal behaviour at a certain range of scale. Even in the same range, there

are perhaps several elementary physical processes superposed on one another

or leading to multifractal. The relationship between the fractal dimension

measured and the property of materials could be complicated. We should take

care to distinguish which mechanism plays the decisive role in the fracture

process and to measure the fractal dimension in the same range of scale as the

mechanism occurred. Then, the main factor may emerge.

For establishment of the relationship of fractal structure with property, it

is important to factorize out the effect of fractal structure from other physical

causes and separate the appropriate range of scale from multirange fractals.

The universality and specificity of the fractal dimension of fractures is an

interesting problem. More experimental measurements and theoretical analy-

ses are needed. In general, we think that any universality exists in the concrete

natural things on which the specificity appears. In other words, universality

exists in specificity and manifests its existence through specificity. They are

mutually correlated with each other. For example, the experimental crack

propagation picture cited by Herrman (1990) is a specificity of one kind of

material. Herrman’s fractal crack growth simulation (universal) can compare

qualitatively with it only when the parameter η in Eq. (4.18.5) has a definite

value which reflects the specificity of the material.

According to the idea of multirange fractals, if we find a way to separate

the specific fractal dimension of an elementary process from the measured (or

synthesized) fractal dimension, which narrows the differences among various

materials, we may find the relationships of fractal dimensions to fracture pro-

perties of various materials more distinctly.

In failure analysis, it is important to estimate the degradation of materials

promptly after some fractographic inspections. The knowledge of the rela-

tionship of fractal dimension to properties would be very helpful (Lung, 1986;

Wang et al., 1988; Milman et al., 1994; Jaeger et al., 1996 and etc.).
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4.18. Physical Sources of Fractal Surfaces

Usually, crack propagation in metals is like a process in driven system ex-

plained by Schmittmann and Zia, 1995. This simply means that some “force”

constantly pushes the system of interest away from thermal equilibrium. Inter-

faces, crystal lattice planes, corrosion and impurity atoms are sources of the

“force”. This “force” in the material and the external uniform applied force

drive the crack propagation. The “force” greatly influences the formation of

fractal structure.

The fracture property of materials is the synthesized phenomena of mi-

crostructures in different ranges of scale. Metallographic structure, lattice de-

fects and alloy elements influence the properties on different levels of structure.

A double logarithmic plot permits an analysis of the fractal character of a mi-

crostructural feature. This scale range of experimental fractal analysis should

be consistent with the scale range of the microstructure which is related to

the property of material. Many previous experiments were done in the micron

range. It is well known that dislocation configurations and dynamics play a

major role on plastic deformations in metals. Fractals in the nanometer range

and atomic dimension should be focussed on. Only a few investigations have

been made (see Milman et al., 1994) at the time of writing.

4.18.1. Intergranular Fracture Model

Intergranular cracks may form a Koch curve in a statistical and approximate

sense (Fig. 4.30).

One side of the grain boundary of a grain may be considered as the lower

bound of a Koch curve. The crack propagates along a zigzag passage which,

like the sea shore, possesses hierarchical structure. We do not know how many

generations it may have. Experimental data (see Long et al., 1992) indicate

that the real crack length measured is dependent on the yardstick length and

obeys a power-law relationship. In the analysis of the last section, there would

be more than one fractal structure in the entire range of scale. But for the

Fig. 4.30. Zigzag cracks formed in fractal modelled metals.
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intergranular crack, it has its own upper and lower bound in the micron scale

range. In principle, the upper bound also can be measured by experiments.

Real grain boundaries have irregular shapes. In many cases, they are modelled

as hexagonal shapes in a two-dimensional figure. Using this model figure, we

may estimate the fractal dimension of intergranular cracks. The crack prefers

to propagate along a weaker passage near to the general direction determined

by macroscopic continuum fracture mechanics. Figure 4.31 is a schematic

figure of an ideal process.

There are two forms of intergranular fracture (Figs. 4.31 and 4.32). Their

fractal dimensions can be estimated by the definition

D =
lnN

ln 1
r

(4.18.1)

where N = Li
ε0i
, r = ε0i

L0i

Fig. 4.31 Intergranular brittle fracture. (one case)

Fig. 4.32. Intergranular brittle fracture. (another case)
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(i) N = 2, r−1 = 1.732, D = 1.26

(ii) N = 4, r−1 = 3, D = 1.26

Both fractal dimensions of these two forms are 1.26 but the grain sizes are

different. The scaling ratios are also different:

Gc = 2γs

(
Li

L0i

)
= 2γs

(
1

r

)(D−1)
(4.18.2)

(i) Gc = 1.73
0.26(2γs)

(ii) Gc = 3
0.26(2γs)

We can see that case (i) consumes less energy than case (ii), and then it is

preferable.

As the grain size becomes smaller and smaller, the true area of the fracture

surface becomes larger and larger. As above, we have indicated that L0 can

be determined experimentally by Eq. (4.13.8) after DF has determined by

the slope of the straight line in a double logarithmic plot. Theoretically, L0

may be considered as the distance of one step of crack propagation from initial

position to temporary arrest. For an intergranular crack, D = 1.26. This value

seems universal for all intergranular cracking processes in materials due to the

standard simple model. However, experiments of Long et al. (1992) showed

that the measured fractal dimensions of intergranular cracks are lower than

this value. The explanation is that this phenomenon is due to the random

orientation of grains and that the crack prefers the weakest passage if the

stress distribution is appropriate for crack propagation. Another reason may

involve multirange fractals. As was discussed in Secs. 4.13 and 4.14, one fractal

structure, superposed with another low DF fractal, may have the value of

synthesized apparent fractal dimension lying between the two. Then the fractal

dimension measured will appear to be lower.

For brittle materials, L0 is larger. Comparing materials with the same

grain size, the relative lower bound of brittle materials, η
L0
, is smaller; then,

the effect of increase of the fracture toughness due to the fractal structure is

larger than that of ductile materials. This can be seen also in the relation

Gc = 2γs

(
η

L0

)1−D
.

In this equation, (∂Gc
∂L0

)η,D > 0. This means that longer value of L0 (or the

more brittle the material), increases the effect of fracture on Gc value. This

effect is in contrast with that of DF . This effect competes with that of DF .
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Fig. 4.33. The additional angle formed by plastic deformation in the grain.

However, if the number of generations for the fractal is limited or fixed, this

effect is not important because it will have no effect when L0 is so large that

the number of generations lies outside the lower limit. In brittle materials, this

effect was not found. It seems that the effect of DF plays the main role.

In the intergranular cracking mechanism, the fractal dimension 1.26 (D −
1 = 0.26) is not large enough to raise the fracture toughness. Plastic deforma-

tions in the grain would result in the grain boundaries having an additional

angle (Fig. 4.33).

In this case, N = 2; r = [2 cos(30◦ + θ)]−1

D =
ln 2

ln[2 cos(30◦ + θ)]
. (4.18.3)

The value of θ can be estimated as follows

θ =
(ρbL)

L
= ρb (4.18.4)

where ρ is the linear density of mobile dislocations. Typical values of the total

linear density of dislocations range from 106−107/cm for cold worked crystals
to 103/cm for annealed crystals. With b ≈ 3 × 10−8 cm, the range of θ in
Eq. (4.18.4) is from 3× 10−5 (rad.) to 0.03–0.3 (rad.) or (1.7◦ − 17◦). Then,
the fractal dimensions range from 1.26 to 2.23.

Taking D = 2.23, we have

Gc ≈ (2γs)
(

d

L0

)−1.23
.

If d
L0
= 10−4

Gc ≈ 2γs × 8.3× 104 .
The critical crack extension force estimated by this fractal model would rise

rapidly with the decrease of grain size. However, in practical cases, so many
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mobile dislocations in the grain would change the mechanism from intergran-

ular to transgranular cracking. On the other hand, if the grain size decreases

to less than micron or nanometer scales, the deformation and fracture mech-

anism would change back to be intergranular again. Anyhow, in that case,

Hall-Petch’s d−
1
2 relation will not hold.

Equation (4.18.3) shows that if there is an additional angle, the fractal

dimension rises. This is consistent with many experimental results that the

fractal dimension has a positive correlation with the fracture toughness of

brittle materials.

4.18.2. Transgranular Fracture Model

Xie (1989, 1993) proposed a fractal model for transgranular brittle fracture

(Fig. 4.34).

N = 3 , r =
1

2.236

and

D =
ln 3

ln 2.236
= 1.365 .

In general, it consumes more energy than intergranular cracking.

4.18.3. Changes in Fracture Mechanism

The fractal dimension of different parts of a fractured surface of 30CrMnSiNi2A

steel formed by slow stable crack propagation induced by the combined effect

Fig. 4.34. (a) Cleavage step in the crystallographic plane of marble (three point bending
loading). Arrows indicate the direction of crack propagation (scanning electron micrograph
×1000).
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Fig. 4.34. (b) A fractal model of a transgranular brittle fracture.

of hydrogen and static bending moment was determined by using the method
of fracture profile analysis (Long et al., 1992). The results showed that the

fractal dimension measured increases with increase of the relative fraction of
transgranular fracture compared to intergranular fracture as the crack prop-

agates. As we have discussed in Sec. 4.14, the fractal dimension measured

is actually an effective value, superposed by two fractal systems (inter- and
trans-granular fractal cracks). There seems not to be one fractal system of

multiscaling.

It is well known that the crack propagation in a sample of high strength
steel containing hydrogen results from the fact that the aggregation of the

hydrogen atoms at the crack tip will occur under the influence of a stress

gradient, and the local part of the material there becomes brittle. The smaller
the K1 at the crack tip, the higher the critical hydrogen concentration needed

to cause crack propagation and the more brittle the local material at the crack
tip as well. Therefore, the energy needed to form the new fracture surface

is also smaller. As K1 increases, the critical hydrogen concentration needed

for cracking decreases, and the toughness of the local part of the material
at the crack tip retained a higher value; then the energy needed to form the

new fracture surface and the fraction of transgranular fracture also increase.

Thereby, the effective roughness of the fracture surface formed at locally higher
K1 is larger than that formed at locally lower K1. Consequently, the local

density and the depth of the valleys and peaks on the profiles increase as K1

increases, and then the effective fractal dimension as measured increases.

4.18.4. Fractal Crack Growth

Herrmann (1990) described the fracture growth as a moving boundary problem
similar to dielectric breakdown or viscous fingering. He modelled this process



Some Characteristic Features of Fractals 187

on a square lattice (not crystal lattice or atom lattice) by computer simulation

and found that the patterns of cracks can be fractal, even without including

noise, due only to the interplay of anisotropy and memory. His model is similar

to a stable crack propagation. The shapes of the cracks can be compared to

the ones found experimentally for stress corrosion.

The important point is that he assumed a beam model in which the prob-

ability p defined by

p = (f2 + r.max(|m1‖m2|)η (4.18.5)

where f is the traction force applied on the beam and m1 and m2 are the

moments that are acting at the two ends of the beam; this p determines if the

beam will be broken. Each time a beam is broken, the shape of the crack and

consequently the boundary conditions of the equation of motion changes and

one has discretized the equation again to know which beam to break next. If

in Eq. (4.18.5) an exponential instead of a power law was used, the structures

seem to be dense. The form of Eq. (4.18.5) is empirical. For η = 1 this growth

law is inspired by the von Mises yielding criterion, but it is not possible to

derive it from first principles. The power-law seems reasonable if we examine

the crack growth under alternating stress (fatigue).

da

dN
∼ ∆Km , (m ∼ 3− 4) (4.18.6)

where a is the crack length, N is the number of cycles of the alternating stress

and ∆K is the difference of upper and lower limits of the alternating stress

intensity factor. The open problem that remains is to find the relationship

between Eq. (4.18.5) and many physical mechanisms of fracture. Herrmann

(1990) found some universal features due to mechanical instabilities leading to

fracture. However, it seems that the specificities of materials are also subsumed

in the equation and parameters of Eq. (4.18.5). In his computer simulation, the

fractal dimension D of the crack lines depends on the parameter η. D decreases

as η decreases. We know that the material fractures at higher strength when η

is smaller. This result demonstrates that lower fractal dimension corresponds

to more brittle fracture. This is consistent with the above discussion for brittle

fractures.

Moreover, Herrmann (1990) used an equal size lattice, or equivalently an

assumption for the lengths of steps of crack propagation being equal. How-

ever, this is not the case in reality. According to the experiments of Long

et al. (1992), the steps would be smaller and smaller as more ductile
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transgranular cracking is activated and hence leading to smaller L0 (see also

Lung and Mu, 1996).

4.18.5. Dynamic Instability

Measurements by Fineberg et al. (1991) indicated that, at least in plastic

material, the limiting fracture speed is significantly less than the Rayleigh

velocity,* and the approach to this limiting speed is accompanied by the onset

of dynamic instability. This has also been seen experimentally by Yuse et

al. (1993). The velocity-limiting instability involves oscillations in the direction

of crack growth.

Using the molecular dynamics method, Abraham et al. (1994) found that

the crack tip initially propagates straight, then the onset of crack instability

begins as a roughening of the created surfaces which eventually results in the

zigzag tip motion at 30◦ from the mean crack direction. However, the rough-

ness occurring on scales of tens of nanometers might look like a straight line

on scales of microns and minimeters.

The instability roughens the surfaces, and the roughening of the surface

limits the velocity of crack propagation. Xie (1994, 1995) studied crack tip

motion along a fractal crack trace. A formula was derived to describe the

effects of fractal crack propagation on the dynamic stress intensity factor and

on crack velocity. His calculation showed that the dynamic stress intensity

factor and apparent crack velocity are strongly affected by the microstructure

parameter (grain size), fractal dimension, D, and fractal kinking angle of crack

extension path. He reported that his calculation is in good agreement with

experimental results. Here, Xie’s fractal crack path is created not only by

dynamic instability but also includes the microstructure factors.

Dynamic instability is universal; it is not only a mechanical process

(Fineberg, 1991; Yuse, 1993), but is also related to energy dissipated on

the fracture surface which may be converted to heat. Langer (1993) pro-

posed a dynamic model of onset and propagation of fracture. In his model,

the stress acting on the fracture surface includes a dissipative term and ex-

hibits a dissipation-dependent effective threshold for fracture. His calculation

showed that the crack creeps very slowly at external stress just above the Grif-

fith threshold, and makes an abrupt transition to propagation at roughly the

*See the book Dislocation Based Fracture Mechanics by J. Weertman, (World Scientific,
Singapore, 1996) or Fracture of Brittle Solids, 2nd Edition: (Cambridge University Press
UK).
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Rayleigh wave speed at higher stresses. When heating due to dissipation is

taken into account, the model may exhibit a maximum in the crack propaga-

tion speed as a function of applied stress. In addition, the decrease in velocity

at large applied stress might be an indication of some sort of dynamic instabil-

ity (Ching et al., 1996). Summing up Langer’s analysis, Herrmann’s computer

simulation, and many experiments on stress corrosion cracking processes, dy-

namic instability is one of the main sources for fractal structures of fractured

surfaces in materials.

4.18.6. Evolution Induced Catastrophic Model

A model of evolution induced catastrophe (EIC) was proposed by Bai

et al. (1994). This model assumed parallel microcracks nucleated randomly

with a certain size distribution. Provided a crack of length c satisfies the co-

alescence condition, it will coalesce with its neighbor. The coalescence will

continue on a greater and greater scale until complete fracture occurs. This

non-local coalescence condition together with continuing crack nucleation will

lead to a cascade of coalescence of microcracks. This model may predict the

dependence of the fractal dimension DF on the interaction parameter, Lc, a

normalized critical distance between two microcracks. In a two-dimensional

system, the variation could be estimated from

D =
ln(2 + Lc

2 )

ln(2 + Lc
π )

. (4.18.7)

This formula demonstrates a unified spectrum D(Lc) similar to Williford’s

qualitatively; but, as reported by Bai et al., has a peak value much higher

than that obtained in their computer simulation and much lower than that

predicted by Williford’s multifractal model (1988).

4.18.7. Oscillatory Propagation of a Slant Crack

Thomson (1986) analyzed the stress field at the crack tip. In the combined

mode II loading case, there is always a branching force to make the crack

change the direction of propagation. We know that pure mode I, II or III cases

are rare. Even in pure mode I loading, the direction of the maximum stress,

analysed for an isotropic medium, is not always consistent with the direction

of the easiest glide plane in crystals. The angle between these two directions

leads to a complex mode of cracking. This slant crack induces oscillations in

the direction of crack propagation.
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In general, defects may be considered as singularities in an elastic field (Es-

helby, 1956). Eshelby’s elastic energy momentum tensor theory in continuum
media provided a powerful tool for understanding the motion of a singularity

in an elastic field. Now, we consider the crack tip as a singularity in the elastic

field. For uniaxial applied stress, a slant crack with an angle β to the vertical
loading will crack along the direction with an angle α0 to the horizontal axis.

The relation between α0 and β may be written as (Lung, 1980),

α0 = arc tg

[
1− (1− 2ν)

2(1− ν)
sin 2β

]
. (4.18.8)

The cracking angle α0 has a relation to the fracture angle θ0 in traditional
fracture mechanics (Fig. 3.17)

α0 = θ0 − β +
π

2
. (4.18.9)

Figure 3.19 represents the theoretical curves calculated from Eq. (4.18.8),
in comparison with the finite element method, strain energy density method

and maximum stress method. Five groups of experimental data are also re-
presented. In spite of a larger difference with other theoretical curves below

β = 40◦, the qualitative forms of the calculated curves and the maximum
cracking angle are nearly the same.
Figure 4.35 represents the evolution of a slant crack. The curves are

calculated according to Eq. (4.18.8). O′B and O′B′ are straight lines for:
α0 + β − π

2 = 0 and −α0 + β − π
2 = 0. A slant crack at an initial angle

β point A1(β, 0) propagates to A2(β, α01); and then from A2 as a new slant

crack of angle α01, at the new starting position, A3(
π
2 − α01, α01), propagates

to A4(
π
2 − α01, α02), and so on. It will approach O′(π2 , 0), the fixed point fi-

nally. This oscillatory propagation is deterministic. However, the length of
each cracking step is stochastic. The distribution of the initial slant angle is

random. Looking at the power-law relationship for the crack growth process

under alternating stress, (Eq. 4.18.6), it is not unreasonable to assume that
this kind of oscillatory propagation path is like a fractal curve approximately.

The fractal dimension estimated is about 1.05 (H = 0.95). This might be also

one of the sources for fractal formation in the micron range.
Fractals in atomic range of scales have not been much studied to date. We

know that kinks of dislocation lines, clusters of impurity atoms and vacancies,
and localized electrons can have marked influences on mechanical properties

and they might form fractal structures in some cases. One needs further ex-

perimental investigations (Milman et al., 1994). Theoretical investigations are
also required concerning atomic scale fracture.
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Fig. 4.35. The evolution of a slant crack from an initial angle approaching a fixed point

finally.

For fractal studies, there are three fields worthy of future research: (1)

Fractal description of fractures, (2) The relationship of fractal dimension with

fracture properties of materials, and (3) The physical sources of the formation

of fractal structures. At the time of writing, many works have been carried

out on (1) and (2).

Fractals are the geometry of nature; one must still understand how nature

produces them. The origin of fractals is a dynamical problem. Real systems

are dissipative, that is they have friction, and rarely go to their ground state,

unlike the ideal models usually discussed in a first year course of physics. A

typical example is a simple pile of sand. Adding sand slowly to a flat pile will

result only in some local rearrangement of particles. The individual grains, or

degrees of freedom, do not interact over large distances. Continuing the process

will result in the slope increasing to a critical value where an additional grain

of sand gives rise to avalanches of any size, from a single grain falling up to the

full size of the sand pile. The pile can no longer be described in terms of many

local degrees of freedom, but only a whole description in terms of one sandpile

will do. The distribution of avalanches follows a power law. “Self-Organized

Criticality” (SOC) refers to this tendency of large dissipative systems to drive
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themselves to a critical state with a wide range of length and time scales (see

Bak and Chen, 1989; Bak and Creutz, 1993). The idea provides a unifying

concept for large scale behaviour in systems with many degrees of freedom.

Fracture in materials seems very like SOC. Continuing the process of loading

will result in a critical state, fracture. SOC can be expected to be one of the

best theoretical models through which to understand the physical origin of

formation of fractal structure of fractured surfaces in materials.

Subsequent advances in the understanding of the dynamics of interfaces and

lines pinned by quenched random impurities might shed light on the problem of

crack surfaces and fronts (Narayan and Fisher, 1993; Ertas and Karder, 1994;

Ramanathan et al., 1997a; 1997b) since a crack front traverses the sample.

Depinning of interfaces (or lines) is a non-equilibrium critical phenomenon

involving an external force and a pinning potential (Karder, 1990). When the

force is weak the system is stationary, trapped in a metastable state. Beyond

a threshold force the metastable state disappears and the system starts to

move. Before the motion settles to a uniform velocity due to viscous force, the

velocity of the point close to threshold behaves as v ∝ (F −Fc)
β . A self-affine

rough surface (or line) would form as the front of the crack propagates in the

material.

However, as in Section 4.18, we have explained, mechanical properties are

structurally sensitive. Fracture in real materials is a process also driven by

internal forces in the driven media. Consideration of these factors would be

helpful.

In summary, fractal dimension provides a continuous parameter for quan-

titative fractography; however, the following points should be noted:

(1) This method is suitable for materials with continuous changes of struc-

ture rather than abrupt changes.

(2) Selection of a nice method for fractal dimension measurement is impor-

tant.

(3) Plane strain fracture toughness is a useful criterion for toughness of

materials other than impact test and etc.

(4) It is recommended to use a standard specimen for comparison with

mechanical parts in service.



Chapter 5

Elastic Moduli and More General
Phonon Properties

5.1. Outline

A major theme of this Chapter will be the phonon theory of the cleavage force

between half-planes of a metal, and its relation to surface energy. Propagation

of screw dislocations, treated by lattice dynamics, with emission of phonons,

will also be referred to, as will some approximate relations between elastic

constants in hexagonal-close-packed metals.

5.2. Force between Half-Planes of a Metal

The advent of the atomic force microscope means that the force F (z) between

the half-planes of a metal as a function of separation z becomes an observable.

Of course, one of the metal surfaces is the tip; therefore size effects will have

to be considered also.*

Let us note first the early work of Friedel (1976). In his study, all attention

was focused on the small-z form of the force F (z), namely

F (z) = Az : small z . (5.2.1)

Roughly, following Friedel (1976), the cleavage force F (z) per unit area is

F = E(z/a) , z ≤ a

= 0 , z > a

}
. (5.2.2)

*A simple model relevant to such size effects has been worked out by M. Razavy, N. H.
March, B. V. Paranjape, Phys. Rev. B54, 4492 (1996): see also N. H. March, Int. J.
Quantum Chem: Proc. Sanibel Symp. 1997: in press.
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Here E is an appropriate elastic modulus, a is the lattice interplanar spacing

while z is the separation of the two half metal crystals during the cleavage.

But, in contrast to the above emphasis on the short-range form of F (z),

Lifshitz (1956) has shown that when the two halves of the crystal are very far

apart, an attractive polarization force per unit area exists, having the form

F = C/z3 : large z . (5.2.3)

The constant C can be related to the frequency-dependent dielectric function

ε(ω) (see, for example Kohn and Yaniv, 1979). We note here that for a jellium-

type of metal, with plasma frequency

ωp =

(
4πne2

m

)1/2
, (5.2.4)

n being the electron density and m the electron mass, then C in Eq. (5.2.3) is

given by

C = 1.79× 10−3�ωp . (5.2.5)

5.2.1. Relation of Cleavage Force to Surface Energy of Metal

Following Kohn and Yaniv (1979), we consider below only metal crystals with

one atom per unit cell. These workers consider then the situation in which

equal and opposite forces are applied to all atoms on two adjacent planes.

In Fig. 5.1, taken from Kohn and Yaniv (1979), reversible cleavage of the

crystal is depicted. Fig. 5.1(a) shows the uncleaved crystal, with all inter-

planar spacings parallel to the cleavage plane (the dashed line) equal to a.

The crystal during cleavage is depicted in Fig. 5.1(b), having a spacing of

a+ z between the two outermost planes. Relaxation of the spacings between

Fig. 5.1. Reversible cleavage of the crystal. (a) Shows the uncleaved crystal, with all in-
terplanar spacings parallel to the cleavage plane (shown dashed) equal to a. (b) Shows the
crystal during cleavage, with a spacing of a + z between the two outermost planes, and
naturally relaxed spacings between the other planes.
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the other planes is accounted for in the treatment of Kohn and Yaniv (1979),

their work transcending in this respect the earlier important study of Zaremba

(1977) who made the assumption of a rigid lattice.

Including these relaxation effects, the surface energy σ per unit surface

area is equal to one-half the total cleavage work per unit cross-sectional area.

Hence one can write (the factor of 1/2 below arises from the two surfaces

formed during cleavage)

σ =
1

2

∫ ∞
0

F (z)dz . (5.2.6)

While Eq. (5.2.6) is formally exact, if we insert the approximate form (5.2.2)

for F (z) we obtain σ ∼ (1/4)Ea, which estimate, of course, focusses all atten-

tion on the short-range form of F (z). Alternatively one might try using the

longer-range form (5.2.3) for z ≥ z0 and putting F (z) = 0 for z ≤ z0, yield-

ing σ = C/4z20 (Kohn and Yaniv, 1979). In this form, the theory is related

to the ideas of Schmidt and Lucas (1972) and of Craig (1972). These work-

ers presented arguments for choosing z0 = 0.33vF/ωp for metals, where vF
is the Fermi velocity. Making this particular choice leads to semiquantitative

agreement with experimental surface energies.

5.2.2. Kohn-Yaniv Interpolation Formula for Cleavage Force

Kohn and Yaniv (1979) write

F (z) = dU(z)/dz (5.2.7)

and then note that the limiting forms (5.2.1) and (5.2.3) are embraced by the

choice

U = −1
2

(
C

d2 + z2

)
: d2 = (C/A)1/2 . (5.2.8)

Inserting Eqs. (5.2.7) and (5.2.8) into Eq. (5.2.6) readily yields the Kohn-

Yaniv result

σ = −1
2
U(0) =

1

4
(AC)1/2 . (5.2.9)

As already mentioned, the constant A was calculated by Zaremba (1977)

in terms of the phonon spectrum of the crystal, by making a rigid lattice

assumption. Kohn and Yaniv (1979) allow for atomic relaxation as a result of

cleavage. They calculate the constant A in Eq. (5.2.1) as

A =
1

4
ρaω20 (5.2.10)
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where ρ is the density, a the equilibrium interplanar spacing parallel to the

cleavage plane, while ω20 is expressed in terms of the frequencies ω(q) of

the longitudinal phonons perpendicular to the cleavage plane (see Appendix 5.1

for the detailed relation between ω20 and ω2(q)).

5.2.3. Universal Model for Cleavage Force

Besides the interpolation formulae (5.2.7) and (5.2.8) for the cleavage force,

Kohn and Yaniv (1979) propose a ‘universal model’. To construct this, they

scale the force F in units of (A3C)1/4 and the distance z in units of (C/A)1/4:

F (z) = (A3C)1/4f [z/(C/A)1/4] (5.2.11)

so that f(z) = z for z � 1 and f(z) = 1/z3 for z � 1.

The surface energy σ is then given by inserting Eq. (5.2.11) into Eq. (5.2.6)

as

σ = α(AC)1/2 (5.2.12)

where A is given by Eq. (5.2.10), C by the Lifshitz theory already referred

to, and

α =
1

2

∫ ∞
0

f(z)dz (5.2.13)

which Kohn and Yaniv (1979) argue will be characteristic of each material and

each crystal face. These workers note that f(z) has the same form for both

small and large z for all materials and, in the absence of additional information,

they made the hypothesis that f(z) is a universal function for all materials.

Kohn and Yaniv (1979) then compare the prediction (5.2.12) with experi-

ment for the (110) faces of 10 cubic metals for which reliable experimental sur-

face energies exist. They plot σexpt vs (AC)1/2 and find a reasonable straight

line passing through the origin (see Fig. 5.2). A least-squares fit led them to

the value

α = 0.476 , (5.2.14)

which is a little less than twice the value obtained with the simple interpolation

form in Eqs. (5.2.7)–(5.2.9).

Further work, both experiment and theory, the former using the atomic

force microscope, is clearly needed to find the detailed form of the cleavage force

F (z) for a variety of metal crystals, and hence to test the validity of the scaling
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Fig. 5.2. Experimental surface energies vs (AC)1/2. The straight line represents the best fit
with α∗ = 0.476. After Kohn and Yaniv (1979).

hypothesis of Kohn and Yaniv (1979) in more detail. We finally note that

March and Paranjape (1984) have calculated A from electron theory using the

jellium model plus solution of linearized Thomas-Fermi equation.*

Their work has been generalized subsequently by Heinrichs (1986) and re-

lated to the study of Budd and Vannimenus (1973).

5.2.4. Emission of Phonons by Moving Dislocations

Atkinson and Cabrera (1965) have used the Frenkel-Kontorova model to dis-

cuss the acoustic emission from a (one-dimensional) dislocation. Subsequently,

Celli and Flytzanis (1970) have treated the problem of the motion of a screw

dislocation in a crystal from the standpoint of lattice dynamics. For a spe-

cific lattice with piecewise linear nearest-neighbour interactions, the external

stress necessary to maintain the dislocation in uniform motion is calculated as

a function of the dislocation velocity. This stress turns out to have a minimum

at one-half of the velocity of sound and motion still proves possible at hyper-

sonic velocities. Since the calculations were appropriate at absolute zero of

temperature, the only dissipative mechanism that is operative is the emission

of phonons by the core of the moving dislocation. Celli and Flytzanis (1970)

*For subsequent work, see both references added in footnote on p. 1934.
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stress that the theory is relevant to high-velocity dislocation motion,* which is

not of the usual thermally activated kind.

5.2.5. Effect of Stress and Temperature on Velocity of Dislocations in

Fe Single Crystals

In relation to thermal activation, it is relevant here to refer to the work of

Turner and Vreeland (1970) who determined the velocity of edge oriented dis-

locations in Fe single crystals, as a function of stress and temperature. The

velocities were extracted from measurements of the growth of slip bands which

had been subjected to constant amplitude stress activated by a pulsed tech-

nique. Slip bands were detected by using the Berg-Barrett X-ray technique.

The measurements were carried out at 4 temperatures in the range 77–373◦K.
The resolved shear stress covered a range of 10–500 M dyn/cm2, while mea-

sured velocities lay between 10−6 to 1 cm/sec. Turner and Vreeland observed
a strong temperature dependence of the dislocation velocity. They concluded

that their results can only be correlated with theories with a single thermally

activated mechanism if a substantial entropy of activation exists. They dis-

cuss alternative explanations of their experimental findings in term of multiple

processes and differences in slip band structure.

5.2.6. Pair Potential: Uses and Limitations

Simulations using empirical interatomic potentials can often supply efficient

and usually inexpensive routes for studying ionic structure and dynamics in

metallic systems. For a long time, pair potentials were used very extensively

in such simulation studies. They can reproduce usefully total energies for

many systems. But when one turns to elastic properties, deficiencies emerge

(e.g. their instability to reproduce the so-called Cauchy discrepancy; see for

instance Johnson (1972)). This situation can be remedied by the addition to

the pair potential contribution of a volume-dependent, structure independent

energy (the reasons being set out in Chaps. 6 and 7 below). But in specific

examples, such as fracture surfaces, where the volume is ambiguous, pair po-

tential models need transcending. A further difficulty, in the (simplest) pair

potential scheme comes up in the determination of the vacancy formation en-

ergy Ev (compare Johnson, 1987). It is found empirically that this energy Ev

is typically about 1/3 of the cohesive energy. In contrast, the straightforward

*The Celli-Flytzanis lattice dynamical model is discussed in some detail in Chapter 10.
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pair potential models predict that, excluding the contribution from relaxation

which is modest in close-packed metals, these two energies are equal. These

limitations of the simple pair potential approximation have been addressed by

the development of empirical many-body potentials which is the major theme

of Chap. 8 below.

5.2.7. Some Useful Combinations of Elastic Constants for Hexagonal Close

Packed Metals

We wish to include in this chapter related to phonons and elastic constants

some considerations relating particularly to the latter in the specific case of

hexagonal close-packed (hcp) metals.

Early work by Czachor (1965) gave the elastic constants for hcp crystals in

terms of the components of the dynamical matrix. Subsequently, expressions

for the elastic moduli were obtained in the case of a pair interatomic potential

(with third-neighbours interaction range) by Trott and Heald (1971). Both

the above approaches depend on the method of long waves (see Born and

Huang (1956)), in which the elastic properties emerge as a by-product of the

dynamical matrix in the long wavelength limit.

Later work by Martin (1975) used the method of uniform deformation as

applied to general monoatomic lattices. The work of Pasianot and Savino

(1992) on which the remainder of this section is largely based also utilizes this

method of uniform deformation applied to the hcp lattice (see also the earlier

treatment for the cubic metals by Pasianot et al., 1991). Their work is within

the context of a specific type of many-body interatomic potential — this aspect

will be covered in Chap. 8.

However, within such an admittedly constrained framework, Pasianot and

Savino (1992) obtain the following restriction on the elastic constants of an

hcp structure:

1

2
(3c12 − c11) > c13 − c44 . (5.2.15)

Table 5.1, taken from Pasianot and Savino (1992), collects the experimental

values for the two sides of the inequality (5.2.15) for around 10 hcp metals. Zn

and Cd do not satisfy the inequality (5.2.15) and Zr is a marginal case, which

will be discussed further in Chap. 8.

In connection with the same type of many-body interatomic potential, var-

ious authors (Daw, 1989; Carlsson, 1990) have emphasized that one should
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Table 5.1. Experimental values for hcp metals of
the two sides of inequality (5.2.14) (taken from
Pasianot and Savino, 1992). cij are given in
eV/Å3.

1
2
(3c12 − c11) (c13 − c44) c/a ratio

Be −0.67 −0.97 1.568

Mg 0.047 0.025 1.624

Zn −0.20 0.06 1.856

Cd −0.028 0.106 1.886

Y 0.012 −0.05 1.572

Hf 0.11 0.037 1.581

Ti 0.26 0.11 1.588

Zr 0.14 0.18 1.593

Sc 0.09 0.01 1.594

Tl 0.22 0.13 1.598

Co 0.55 0.12 1.623

have (in addition to the inequality (5.2.15)):

c13 − c44 > 0 . (5.2.16)

Table 5.1 shows that this is not the case for Be and Y, but all other hcp

metals satisfy this inequality (5.2.16).

We shall take up these matters again, within the embedded atom and

related methods, in Chap. 8.

5.3. Empirical Relations between Elastic Moduli, Vacancy

Formation Energy and Melting Temperature

We shall conclude this Chapter by briefly mentioning some empirical relations

which are established between elastic moduli, vacancy formation energy and

melting temperature. Some insight into such relations can be gained from

electron theory, as well as from pair potential arguments.

One of these empirical relations connects the Debye temperature, related

to elastic properties (see Eq. (A6.15)) to the vacancy formation energy Ev

(Eq. (A.6.6)). In Appendix A5.2, a model is presented which shows that

Ev ∝ BΩ in some special situations, with B the bulk modulus and Ω the

atomic volume. This is equivalent to the empirical Mukherjee (1965) relation

(A6.16). Finally, the established correlation between Ev and thermal energy
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kBTm associated with the melting temperature is treated by a statistical me-

chanical model in Appendix A7.4.



Chapter 6

Elements of Electronic Structure Theory

6.1. Free Electron Theory

The phase space result for the electron density at the Fermi level is readily

extended to yield the density of electrons n0(E) below energy E as

n0(E) =
8π

3h3
(2mE)3/2 . (6.1.1)

Thus, since states are doubly filled by electrons with opposed spins, the number

of states/unit volume N0(E)dE lying between energy E and E + dE is given

by the derivative of Eq. (6.1.1); to yield

N0(E) =
4π

h3
(2m)3/2E1/2 . (6.1.2)

Electrons can only undergo excitation into unoccupied states above the Fermi

energy EF because of the Pauli Exclusion Principle. For thermal excitation,

only electrons within ∼ kBT , the thermal energy corresponding to tempera-

ture T , can be excited across EF . At room temperature, kBT ∼ (1/40) eV,

and thus these electrons constitute a small fraction ∼ kBT/EF of the total

number of electrons in a simple metal like Cu or Al. The classical value

of the heat capacity is thus reduced by this factor kBT/EF . Employing

Fermi-Dirac statistics appropriate to almost degenerate electrons, rather than

classical Maxwell-Boltzmann statistics, one obtains (see for example Mott and

Jones (1936)) for the specific heat at constant volume at low T :

cv =
π2

2
kB

kBT

EF
. (6.1.3)

203
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6.1.1. Bulk Moduli of Metals Compared with Free Electron Model

In the free electron model, the total energy E of the metal is just the kinetic

(mean Fermi) energy of the electrons. This energy, per electron is usefully

expressed in terms of the mean interelectronic spacing rs. This represents the

radius of a sphere of volume equal to the volume per electron in the metal. If

rs is given in units of the Bohr radius a0 = �
2/me2, then

E

NZ
=
2 · 21
r2s

, (6.1.4)

Fig. 6.1. Comparison of bulk moduli of metals (obtained from band calculations) with that of

a homogeneous electron gas having a density equal to that in the interstitial region between
atoms in the metal reproduced from Fig. 18 of Alonso and March (1989) and also Williams
et al. (1980).
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where E/NZ is then in Rydbergs(Ry), Z being the valence (1 for Cu: 3 for

Al). The isothermal bulk modulus B of the free-electron gas is then readily

obtained as

B =
0.586

r5s
. (6.1.5)

The simple result (6.1.5) is already in agreement with the experimental bulk

modulus data for alkali metals just above their melting points (see Alonso and

March, 1989). The agreement worsens as the valence Z increases, though it

is true that the prediction (6.1.5) gives the qualitative characteristic that the

bulk modulus B increases with decreasing interelectronic separation rs. The

dashed curve in Fig. 6.1 shows the prediction (6.1.5). The solid circles are

obtained from energy band theory calculations (Williams et al., 1980).

6.2. Exchange and Correlation Interactions

In the homogeneous electron gas, a refined energy calculation transcends the

kinetic energy result (6.1.4) by adding exchange and correlation, as first dis-

cussed by Wigner and Seitz in pioneering work. The physical origin of these

(potential) energy terms is easy to describe in words.

6.2.1. Exchange Hole

The concept of the Fermi hole around an electron one chooses to ‘sit on’,

say with ↑ spin as it moves through the uniform electron gas (jellium model)

goes back to Wigner and Seitz. In the Hartree-Fock approximation, there is

no correlation between antiparallel electrons, while the Pauli Principle causes

electrons of ↑ spin to be repelled from the ↑ spin electron chosen as origin.
Then the uniform electron density n0, relative to the origin and distance r

away becomes n0g(r) where g(r) is the electronic pair function. Evidently

g(r) → 1 as r → ∞ and Wigner and Seitz (1934) obtained the Hartree-Fock

result

g(r) = 1− 9

2

(
j1(kF r)

kF r

)2
(6.2.1)

where j1(x) is the first-order spherical Bessel function [sin x−x cosx]/x2 and kF
is the Fermi wave number, related to the Fermi momentum pF by kF = pF /�.

It is easy to show that there is precisely a deficit of 1 electron as a result of

this hole created around the electron at the origin. This result is not changed

when Coulombic repulsion e2/rij between electrons i and j at separation rij
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is included. In the paramagnetic electron gas considered above, g(r = 0) =

1/2, reflecting that parallel spins cannot sit at the origin because of the Pauli

Principle but antiparallel spins are uncorrelated. When one allows for Coulomb

repulsion, g(r = 0) < 1/2 and since the hole (now called exchange-correlation

hole) must still contain precisely a deficit of one electron, the hole is deepened

but is somewhat less spread out, to preserve this normalization.

Returning to the exchange hole g(r) above, the mean potential energy

per electron is simply exchange energy, as in the jellium model a neutralizing

background of (non-responsive) positive charge is implicit, which cancels the

classical Coulomb potential energy terms. It is then to be noted that the

energy above is essentially the interaction of the Fermi hole electron density

described by Eq. (6.2.1) with the electron, of charge −e, at the origin. Thus,

one merely calculates the electrostatic potential at the origin due to the Fermi

hole density n0[g(r) − 1] to obtain

Exchange energy per electron =
e2

2

∫
n0[g(r)− 1]

r
dr (6.2.2)

where the factor 1/2 avoids double counting of the electron-electron interac-

tions. It is readily shown, by using the above free-electron result locally, that

the exchange energy per unit volume εx of an inhomogeneous electron gas of

density n(r) is

εx(r) = −cxn(r)
4/3 : cx =

3

4
e2
(
3

π

)1/3
. (6.2.3)

From this follows the Dirac-Slater exchange potential Vx(r) ≡ δA/δn(r) where

A =

∫
εx(r)dr (6.2.4)

as

Vx(r) = −4
3
cxn(r)

1/3 . (6.2.5)

This is the still widely used ‘local density approximation’ to the exchange po-

tential entering the Schrödinger equations to calculate the Slater-Kohn-Sham

orbitals in density functional theory.* Of course, Vx(r) needs corrections for

*The important method of Car and Parrinello, which combines density functional theory
and molecular dynamics is reviewed in a practically oriented article by Remler and Madden
(1990). Later, E. Smargiassi and P. A. Madden (Phys. Rev. B51, 129, 1995) use the Car-
Parrinello approach to calculate defect properties without solving the Slater-Kohn-Sham
Eq. (6.2.6), but by treating electronic kinetic energy as a functional of electron density.
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the ‘correlation’ contribution to the ‘exchange-correlation’ hole and this can be

done, again in the local density approximation, by using the quantum Monte-

Carlo simulations by Ceperley and Alder (1980). Their results have led Vosko

et al. (1980), and Perdew and Zunger (1981) to propose sophisticated fitting

formulae, the accuracy of which have been briefly considered by Herman and

March (1984). This all leads, in turn to an exchange-correlation potential*

Vxc(r) to transcend Eq. (6.2.5). This then allows the one-electron Schrödinger

equation

∇2φi +
2m

�2
[εi − VHartree(r) − Vxc(r)]φi = 0 (6.2.6)

to be solved for the Slater-Kohn-Sham orbitals φi. This equation, if Vxc(r)

were known exactly (see Holas and March,1995) would lead, by construction

in an N -electron problem, to the exact ground-state density

n(r) =
N∑
i=1

φi(r)φ
∗
i (r) . (6.2.7)

This route, with approximations such as ‘local density’ detailed above, is now

widely used in condensed phases, both solids that are crystalline or amorphous,

and liquids. The electron theory pair potential for liquid Na just above the

freezing point, discussed in Chap. 7, has been obtained starting from such

Slater-Kohn-Sham equations for φi and then constructing the electron density

n by summing the squares of these wave functions out to the Fermi level.

6.3. Bulk Modulus Including Exchange and Correlation

Having given this brief introduction to the density functional theory of

exchange and correlation in an inhomogeneous electron gas, let us return to

jellium and correct the bulk modulus formula (6.1.5) for electron-electron inter-

actions. If for the correlation part we use the Nozieres-Pines formula (Nozieres

and Pines 1958) then the total energy (per electron) of the homogeneous elec-

tron gas becomes (in Ry)

E

NZ
=
2.21

r2s
− 0.916

rs
− (0.115− 0.0313 ln rs) (6.3.1)

*For semiempirical forms of the exchange — correlation energy Exc[n] and the corresponding
exchange — correlation potential Vxc(r) = δExc/δn(r), see N. C. Handy and D. J. Tozer,
Molecular Physics 94, 707 (1998).
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where the second and third terms on the right-hand side are respectively

(Dirac) exchange (see above) and correlation contributions. The corresponding

bulk modulus B is then given by Ling and Gelatt (1980)

BΩ = Z[22.1− 3.66rs − 0.093r2s]/9r2s (6.3.2)

where Ω is the atomic volume. The interest in this result becomes clear when

one applies it to the electron density (nb say) in the interstitial region between

Wigner-Seitz spheres. The continuous curve of Fig. 6.1 demonstrates that

the bulk modulus, even in transition metals, reflects the energy required to

compress the interstitial electrons (see also Alonso and March, 1989).

6.4. Structural Stability of Non-Transition Metals

Following the work of Corless and March (1961) on the long range oscillating

interaction between test charges (see also Appendix 7.1.) Worster and March

(1964) pointed out that such non-monotonic interatomic potentials would have

interesting implications regarding the equilibrium lattice structures of simple

metals. Much quantitative work has been done subsequently, and we shall

summarize in this section some of the results for nontransition metals.

As discussed later in this chapter, within second-order perturbation

theory the division of the total energy of a metal into a volume-dependent,

structure-independent term, plus a sum of two-body interactions, is well suited

to a treatment of the structural stability of metal. An early review of the pseu-

dopotential theory* of the crystal structures of non-transition metals, in which

trends across the Periodic Table were discussed was that of Heine and Weaire

(1970). Since then, a good deal of progress has been made in the explanation

of structural stability, associated especially with the names of Cohen, Martin,

Hafer and Moriarty (for detailed references, see the book by Alonso and March

(1989).

The account below is based on the approach of Hafner and Heine (1983)

and the review of this work given by Alonso and March (1989). The Hafner-

Heine approach (compare also Corless and March, 1961; Worster and March,

1964) works in coordinate r space, and it demonstrates that the use of a

simple empty-core pseudopotential is adequate to understand the structural

trends. In essence, their work also shows that the structural trends arise from a

*For the reader requiring definitions and a little detail, Section 6.12 could be consulted at
this point.
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characteristic variation of the r space interaction potential with electron den-

sity and pseudopotential.

For reasons set out above, it is useful in discussing structural trends to

analyze structural stability at constant volume. Then one needs only to appeal

to the two-body part of the total energy. Then, for a typical r space interionic

potential, the essential idea governing structure is easy to state; a closed-

packed structure is favored if the nearest neighbors fall on the minimum of the

potential. On the other hand, if the nearest neighbor in the fcc or bcp lattices

fall on a peak, then the crystal may lower its energy by moving some neighbors

closer and moving others further away.

Fig. 6.2. Trends in the reduced interaction Φred(x) for the elements in the Na period. The
circle indicates where the nearest-neighbour distance for close packing falls on the interatomic
potential. Vertical bars indicate nearest-neighbour distances and coordination numbers for
the indicated structures. Redrawn after Hafner and Heine, 1983.
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The trend across a row of the Periodic Table is a change from close-packed

structures at the left to open structures with lower coordination numbers on

the right. Figure 6.2 (Fig. 28 of Alonso and March, 1989) shows the interionic

potential for 2nd row elements, taken from Hafner and Heine (1983). For

Na, Mg and Al the nearest neighbors for a close-packed structure reside at

a minimum of the potential but this is not so for Si or P. This then is the

reason for the stability of the closed-packed structure in the first 3 elements

referred to above, but not in the other 2 cases. This trend, it turns out, is

mainly a consequence of the ratio of the radius of the Wigner-Seitz sphere Rws

to the mean interelectronic spacing rs owing to the different valencies. The

nearest-neighbor distance in a close-packed structure, dcp say, is related to the

Wigner-Seitz radius by dcp = 1.809Rws = 1.809rsZ
1/3. Alonso and March

(1989) give the arguments which lead to†

Rmin

dcp
= 1.106

Rc

rs

1

Z1/3
+
1.824

rsZ
1
3

(6.4.1)

from which the following values of Rmin/dcp(≡ x) result; 1.00(Na), 0.98(Mg)

0.99(Al) 0.91(Si) and 0.87(P). These values demonstrate that the variation of

dcp with Z1/3 is responsible for the instability of the close-packed structures

in Si and P.

Interactions with more distant neighbors need to be invoked to explain

structural energy differences between hcp and fcc structures. In fcc Al, for

example, the neighbors in the second to the fifth shells contribute little to the

pair-interaction energy, since these neighbors avoid both the attractive minima

and the repulsive maxima of the potential. In the hcp structure, on the other

hand, the position of the fifth-neighbors shell is at the maximum of the second

repulsive wiggle, resulting in the hcp structure being less stable than fcc. In

the example of Mg, the hcp is the more stable of these two structures, because

more neighbors sit in the region of the second attractive minimum and less in

the region of the second repulsive wiggle in the former structure.

The trend already referred to above to smaller coordination numbers to

the right of this row is due to decreasing Rmin and dr
* with respect to dcp. A

rough estimate of the shortest possible nearest-neighbor distance in a distorted

structure is dnn = 0.5(Rmin+ dr). From the study of Heine and Weaire (1970)

†Rc is core radius of pseudopotential: Rws = 1.4Rc + 1.305; see also Section 6.12 below.
*dr is a repulsive pseudoatom diameter (see Alonso and March, 1989). Rmin is position of
deep minimum in pair potential.
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the coordination number c can be estimated from the formula

dnn

dcp
=

(
c+ 1

13

)1/3
. (6.4.2)

This leads to c = 5.2 for Si (c = 4 in the diamond structure and c = 6 in

the high-pressure modification) and c = 3.1 for P (c = 3 is the experimental

value).

6.4.1. Trends Along Columns in Periodic Table

The account below follows closely that of Alonso and March (1989). In the

alkali and the alkaline-earth metals, the atomic volume increases quite rapidly

with principal quantum number. This can be thought of, in OPW* or pseu-

dopotential terms, as due to each new electronic shell being pushed outwards

Fig. 6.3. Trends in the reduced interatomic interaction for the B-group elements. The
electron-density parameter has been set constant for a given valence (rs = 2.56 for Z = 2,
rs = 2.20 for Z = 3, rs = 2.05 for Z = 4 and Z = 5). The ratio Rc/rs is given in
parentheses for each case. The dashed line marks the nearest-neighbour distance Dcp for
close packing. Redrawn after Hafner and Heine, 1983.

*Orthogonalized plane wave (OPW) method works with a basis of plane waves orthogonal-
ized to core states.
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by orthogonalization to the core. The interionic potentials corresponding to

these two groups are consistent with the existence of closed-packed structures

in all these metals at some temperature and pressure.

The trend in Group IIB is a transition from hcp structure in Mg to distorted

hexagonal structures in Zn and Cd and then to a unique lattice appropriate to

Hg. Results of a simplified calculation (see Hafner and Heine) with a constant

value of rs are shown in Fig. 6.3 (Fig. 29 of Alonso and March, p. 90, 1989)

and suffice to explain this trend, which is due to the decrease of dr and Rmin

relative to dcp with decreasing Rc/rs. Then dcp moves from a minimum to a

maximum. The damping in the amplitude of the oscillations is also important.

The distorted hexagonal structures of Zn and Cd are related to the ideal case

by a shear distortion. The instability of the close-packed structure can be

expected to manifest itself as a softening in its elastic shear moduli, and this

is well accounted for by the elastic constants obtained from the interionic

potentials (Hafner and Heine, 1983). The two polymorphic forms of Hg can

be looked upon as tetragonal (βHg) or rhombohedral (αHg) distortions of the

fcc structure. The pseudopotential approach also predicts the instability of

the fcc lattice against rhombohedral distortions and the metastability with

respect to tetragonal distortions.

Similar physical effects discussed above for the divalent metals also explain

the structural trends through the trivalent elements. Al is fcc since dcp is at

the first minimum of the interatomic potential. The form of such a potential

for Ga indicates that the close-packed structure is destabilized and a new

(complex) structure results for Ga. Nevertheless, the rapid rise of the repulsive

part of the potential prevents the formation of an open covalent structure

with nearest-neighbor distances smaller than these found in the Ga lattice.

Hafner and Heine (1983) have performed an analysis of the elastic constants

which demonstrates that, as Rc/rs decreases further, a tendency appears for

the close-packed structures to become stable against shear distortions. This

situation is not yet completely reached in In, where the rhombohedral shear has

been removed, resulting in tetragonal In, but finally, Tl is again a close-packed

structure. To summarize, close-packed structures appear again in the heavy

polyvalent metals and this can be related to the damping of the oscillations

in the potential. For the metals In, Tl and Pb, the interionic potential is just

of screened repulsive character and in this situation, a close-packed structure

is favored.

The observed trends in the group with Z = 4 are consistent with the

preceding discussion; covalent structures in the light elements and stabilization
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of the fcc structure for Pb. The same can be said about Z = 5. Comparison of

the interionic potentials of P and Bi supports the trend of decreasing distortion

and increasing coordination number, though Bi is not yet close-packed. Alonso

and March also discuss the work of Pettifor and Ward (1984) but the interested

reader is referred to these sources for details.

6.5. Elastic Constants of Hexagonal Transition Metals* from

Electronic Structure Calculations

Fast et al. (1995) have calculated the elastic constants of the hexagonal 4d

transition metals (Y, Zr, Tc and Ru) and also the 5d elements Re and Os by

first-principles electronic structure theory.

We note first that for a hexagonal lattice, there are five independent elastic

constants, usually denoted as C11, C12, C13, C33 and C55 (see, e.g. Wallace,

1970). This is in contrast to just three independent elastic constants for cubic

materials.

6.5.1. Cauchy Relations for Central Forces

For hexagonal materials, assuming central forces, the following relations hold

between the above elastic constants (see Wallace, 1970):

C13 = C55

C12 = C66 =
1

2
(C11 − C12) .

Fast et al. (1995) have introduced normalized elastic constants C′ij ,
defined as

C′ij = Cij/B

with B the bulk modulus. This ratio is favourable for exposing trends, as

division by the bulk modulus is essentially normalizing the interatomic forces

with an average restoring force of the system.

In Fig. 6.4(a), (b) (Figs. 5(a) and 4(b) from Fast et al., 1995), the experi-

mental results of C′ij are plotted (closed symbols) together with the electronic
structure results calculated by Fast et al. (open circles). These workers stress

that the C′11 and C′33 renormalized elastic constants scatter around the value
1.8 for all transition metals, from both experiment and theory. Similarly, the

normalized C′12, C′13 and C′55 constants group around 0.6.

*See also Section 5.2.7 above.
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Fig. 6.4. Normalized elastic constants (see text), C′ij = Cij/B, for selected hexagonal
transition metals. Closed symbols represent experimental data and open symbols represent
theoretical data. Insert C′11 and C′12 are plotted in (a). C′13, C′33 and C′55 are shown in (b).
The dashed lines correspond to the values appropriate for an isotropic medium. (Reproduced
with permission from Fast et al., 1995.)
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6.5.2. Results for an Isotropic Medium

Fast et al. (1995) next note that, for an isotropic medium, one has C11 =

C13, C12 = C13 = C55. In this case, the Cauchy relation, C12 = (C11 − C12)/2

is valid and one can readily calculate the normalized elastic constants as

C′11 = 1.8, C
′
12 = 0.6 (isotropic material) .

Figure 6.4(a), (b) therefore suggest that the hexagonal transition metals* are

quite isotropic. This is in marked contrast to both bcc and fcc transition
metals.

6.5.3. Changes in Electronic Density of States for Various Strains

Last et al. (1995) have studied the electronic density of states for hcp transition
metals, for the variety of strains used in their calculations of elastic constants.

Their main conclusion is that the density of states maintains its general shape

for all types of distortions. This is again in marked contrast to the bands for
bcc and fcc transition metals, where one observes a substantially larger change

in the density of states when distorting the lattice.
The c/a ratios have also been calculated for the hexagonal metals and the

deviation from experiment is found to be ∼ 1% at most (Last et al., 1995).

Their work, together with the earlier studies of Wills et al. (1992) and of
Söderlind et al. (1993) give a rather complete theoretical description of the

elastic constants of the transition metals. We discuss briefly, before returning
to transition metals, to give a little detail on the potential calculations for

simple metals.

6.6. Energy of Simple Metals as Volume Term Plus Pair Potential

Contribution

The dispersion relation ε(k) of an electron in a crystal characterized by wave

k can be calculated using pseudopotentials to second order. The result is

ε(k) =
�
2k2

2m
+ 〈k|Vks|k〉

+
′∑
q

〈k|Vks|k+ q〉〈k+ q|Vks|k〉
(�2/2m)(k2 − |k+ q|2) . (6.6.1)

*Relevant work here is that of D. J. Bacon and M. H. Liang (Phil. Mas. A53, 163, 1986)
who enumerated the stacking faults in hcp metals. See also G. J. Ackland (Phil. Mas. A66,
917, 1992) and G. J. Ackland, S. J. Wooding and D. J. Bacon (Phil. Mas. A71, 553, 1995).
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Here Vps is the total pseudopotential in the crystal, given by

Vps(r) =
∑

vps(r−Ri) (6.6.2)

where vps is an individual pseudopotential centred at atomic position Ri. The

vectors q in Eq. (6.6.1) are reciprocal lattice vectors.

The matrix element of the pseudopotential Vps in Eq. (6.6.2) is easily cast

into the form

〈k+ q|Vps|k〉 = S(q)r(q) (6.6.3)

where the atomic structure factor

S(q) =
1

N

∑
i

exp(−iq ·Ri) (6.6.4)

depends only on the lattice, while the pseudopotential form factor

v(q) =
1

ϑ

∫
exp (−iq · r) vps (r)dr (6.6.5)

characteristic the type of ion in the crystal. It depends on the ionic positions

only through the atomic volume.

The sum of the final term in Eq. (6.1.1) over occupied state is referred to

as the band-structure energy Ebs. One can cast this sum into the form

Ebs =
′∑
q

S∗(q)S(q)F (q) (6.6.6)

where F (q) is termed the energy-wave number characteristic. It involves

the pseudopotential and the dielectric constant ε(q) of the Fermi gas (see

Appendix A7.2).

6.7. Pair Potentials

We next transform the band-structure energy back into r space. To do so, we

insert the structure factor S(q) into Eq. (6.6.6), to obtain

Ebs =
1

N2

∑
q,i,j

F (q) exp(iq · {Ri −Rj}) . (6.7.1)

If we now define an indirect interaction

Vind(R) =
2Ω

(2π)3

∫
F (q) exp(−iq ·R)dq = Ω

π2

∫ ∞
0

q2F (q)
sin qR

qR
dq (6.7.2)
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the second line exploiting the spherical symmetry of F (q), then Ebs becomes

NEbs =
1

2

′∑
i,j

Vind(Ri −Rj) +
ϑ

(2π)2

∫
F (q)dq (6.7.3)

the prime of the sum meaning that the term i = j is not to be included. The

second term on the right-hand side on NEbs, just as for the free-electron energy

contribution, depends only on the total volume and does not therefore change

when the ions are rearranged at constant volume. In this rearrangement, the

electrostatic energy changes are due to the change in 1
2

∑′
Z2e2/|Ri−Rj| and

hence one can add Vind and Z2e2/R to obtain the effective pair interaction

Φ(R) = Vind(R) +
Z2e2

R
. (6.7.4)

We stress again that beyond the sum of these pair potentials Φ(Rij), there is

to be added a volume-dependent (only) term in the total energy, This repre-

sentation of the energy of simple sp metals is compared with two alternative

representations of interatomic force fields in Appendix.

6.8. Structural Stability of Transition Metals

Alonso and March (1989) have discussed the trends in the crystal structure

of transition metals and Table 6.1 is taken from their book. This shows the

trend hcp → bcc → hcp → fcc with increasing period number. The magnetic

3d-metals Mn, Fe and Co provide exceptions, and are therefore in parentheses

in Table 6.1. It is d-band effects that are responsible for the above structural

trend.

We referred to the density of electronic states for free electrons, No(E) ∝
E1/2, in Eq. (6.1.2). The d-band densities of states for bcc, hcp and fcc

Table 6.1. Crystal structures of the transition metals.

n(s+ d)

Period 3 4 5 6 7 8 9 10 11

3d Sc Ti V Cr (Mn) (Fe) (Co) Ni Cu

4d Y Zr Nb Mo Tc Ru Rh Pd Ag

5d (La) Hf Ta W Re Os Ir Pt Au

Structure hcp hcp bcc bcc hcp hcp fcc fcc fcc
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Fig. 6.5. Density of states for a model transition metal in the (a) bcc, (b) fcc and (c) hcp
structures. The dotted curves represent the integrated density of states. Redrawn after
Pettifor, (1970): see also Alonso and March (1989): Fig. 39.

structures (see Fig. 6.5, Fig. 39 of Alonso and March) depend, from energy

band theory, on the crystal structures. In particular, the d-band of the bcc

lattice is split into a bonding and an anti-bonding regime, separated by a

pronounced minimum. The close-packed fcc and hcp densities of states have

same general similarities, but are both quite distinct from the bcc case.

The relation between the shape of the density of states and crystal structure

is already rather clear in the early work of Ducastelle and Cyrot-Lackmann

(1970), who focussed on the relation between the local atomic environment

and the moments of the density of status.
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Fig. 6.6. Calculated structural energy differences for 3d, 4d and 5d transition metals at
the experimental equilibrium volume as functions of d-occupation numbers. Energies are
measured with respect to the fcc phase. Redrawn after Skriver, 1985.

A subsequent study of the structural energy differences in the 3d, 4d and

5d series is that of Skriver. His results are reproduced in Fig. 6.6 (Fig. 40 of

Alonso and March), and display correctly, for the non-magnetic metals, the

empirical structural trends (see also Alonso and March (1989) for a detailed

discussion).
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6.9. Electron Density in Interstitial Region in Metals

Density functional theory, pioneered by Thomas (1926), Fermi (1928) and

Dirac (1930), whose work was formally completed by Hohenberg and Kohn

(1964), is based on the fact that the ground-state gs electron density n(r)

determines the gs properties of a many-electron system. Plots of n(r) provide

evidently a coordinate-space view of the type of bonding occurring in metals

which complements band-structure type information discussed earlier in this

chapter.

More specifically (see also Alonso and March, 1989) the electron den-

sity, nb say, at the edge of an atomic cell in the solid is a key quantity

for semi-empirical theories of alloy formation (see, for example, Miedema

et al., 1980; and other references there). The boundary density can be usefully

identified with the interstitial electron density nout obtained in an electronic

band-structure calculation of the ‘muffin tin’ type. The calculations of Moruzzi

et al. (1978) reveal distinct trends as a function of atomic number Z, as shown

in Fig. 6.7 (Fig. 49 of Alonso and March). The maxima resulting in the

transition-metal series are, it turns out, due to the parabolic variation of atomic

volume with Z (see Fig. 6.8; Fig. 43 of Alonso and March, 1989).*

Fig. 6.7. Interstitial electron density nout versus atomic number Z . After Moruzzi et al.
1978: see Fig. 49 of Alonso and March (1989).

*The properties displayed in Fig. 6.8 for the 3d- and 4d-metals are excellent examples of cal-
culations employing state-of-the art techniques for self-consistently solving the Schrödinger
equation in crystals: are also the brief account in Section 6.11.
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Fig. 6.8. Cohesive properties: top panel, cohesive energy; middle panel, Wigner-Seitz radius;
bottom panel, bulk modulus. Crosses indicate experimental values. Redrawn after Moruzzi
et al., 1978.

It is worth noting here that calculated electron densities in metals with

atomic number Z <∼ 50 are plotted in the book by Moruzzi et al. (1978).

Localized approaches to construct electron density in periodic crystals have

also, as with electronic energy band results, led to good agreement with X-ray

experiments (Matthai et al, 1978; see also Jones and March, 1985).

6.10. Trends in Vacancy Formation Energy with d-Shell Filling in

Transition Metals

Lannoo and Allan (1971) have discussed the trends of the vacancy formation

energy Ev as the d-shell is filled through the transition-metal series. These

workers employ the tight-binding approach and furthermore they assume that

the perturbation due to the vacancy extends only to near-neighbor atoms. Two

further calculational aids are used: (i) the lattice is taken to be simple cubic

and (ii) the assumption is made that d-orbital angularity need not be explicitly

included.
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The unperturbed energy-wave vector relation then has the form, with k =

(kx, ky, kz) and with lattice constant a:

E(k) = E0 − α− 2λ(cos kxa+ cos kya+ cos kza) (6.10.1)

E0 denoting the atomic energy. The parameters α and λ determined by Lannoo

and Allan (1971) from cohesive energies are recorded in Table 6.2.

Lannoo and Allan (1971) employ the Green-operator method to relate the
perturbed and unperturbed lattices. Their results for Ev/20λ vs fractional

occupation of the d-shell are depicted in Fig. 6.9 (Fig. 52 of Alonso and March,

1989). As these authors emphasize, the values of Ev are too large quantitatively
and they propose the reason for this is due to relaxation in the neighborhood of

the vacancy site. Nevertheless, their results show the known general behaviour
as the d-band fills up; a maximum being found near the middle of the series.

6.11. Bloch’s Theorem and Energy Bands

The free Fermi gas is characterized by planes waves exp(ik · r), related to the
eigenvalue εk by

εk =
�
2k2

2m
. (6.11.1)

Table 6.2. Parameters α and λ in dispersion rela-
tion E(k) of Eq. (6.10.1)

1st series 2nd series 3rd series

12λ (eV) 5 6 7

α (eV) 0.25 0.30 0.35

Fig. 6.9. Variation of vacancy-formation energy Ev with occupation of d-shell (schematic).
Redrawn after Lannoo and Allan, 1971.
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Fig. 6.10. Band structure of fcc aluminium. Redrawn after Pettifor, 1983.

For quite a few metals for which d or f bands are unimportant, the so-called

nearly free electron (NFE) approximation is useful and such behaviour has been

observed experimentally in studies of the Fermi surface. The introduction of

a weak periodic potential introduces a gap in the free-electron band structure,

a result for Al being shown in Fig. 6.10 (Fig. 20 of Alonso and March, 1989).

At the Brillouin zone boundary X, the gap ∆εX is related to the Fourier

component of the crystal potential,* V (200) by

∆εX = 2|V (200)| . (6.11.2)

More generally, when the crystal potential is ‘switched on’ to the free elec-

tron gas, the plane wave exp(ik · r) goes into the Bloch wave eigenfunction
ψk(r) = exp(ik · r)uk(r) (6.11.3)

where uk(r) is a periodic function with the period of the lattice. Using the

reciprocal lattice vectors, {G} say, the periodic function uk(r) can be expanded

in the Fourier series

uk(r) =
∑
G

vkGe
iG·r . (6.11.4)

To speed convergence of such a plane wave expansion Herring (1940) worked

with plane waves that that had previously been orthogonalized to the core

*Compare the plane wave expansion (6.11.4) of another periodic function, where UkG are
its Fourier components.
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(OPW). This method led in a natural way to the concept of pseudopoten-

tials (see Phillips and Kleinman, 1959; Cohen and Heine, 1970) which will be

described below.

6.12. Pseudopotentials

In the pseudopotential method, the true crystal potential, V (r) say, is replaced

by a much weaker pseudopotential Vps(r) chosen to recover the original eigen-

values ε, i.e. [
− �

2

2m
∇2 + Vps

]
φ = εφ .

The true crystal wave function ψ(r), derived from the potential V (r), can

then be written as

ψ = φ+
∑
c

bcφc

where φ is the smooth pseudo wave function introduced above which φc are core

states as in the OPW method mentioned above. The effect of this procedure

is to keep the valence electron out of the core region, and can be expressed by

writing

Vps = Vc + VR

where VR is the effective repulsive potential leading to exclusion of the valence

electron from the core. This sum Vc + VR cancels to a large extent, resulting

in a weak pseudopotential.

VR has, of course, to be obtained. An alternative to theoretical calculation

is to fit the pseudopotential to experiment (see Cohen and Heine, 1970) —

the so-called empirical pseudopotential method (EPM). Figure 6.11 shows the

form of a typical pseudopotential (Fig. 21 from Alonso and March, 1989). The

upper part of this figure shows the r space behaviour. Its Fourier transform

(called V (q)) is expected to be small for large wave vectors q, as depicted in

the lower part of this figure.

Model potentials have also been constructed. One that is widely used is

the so-called Ashcroft empty-core potential (Ashcroft, 1966). The assumption

made is that of complete cancellation between the attractive Coulomb interac-

tion and the repulsive contribution inside the core, and pure Coulombic form

outside:

V ion
empty−core(r)

= 0 r < Rc

= −Ze2

r
r > Rc


 . (6.12.1)
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Fig. 6.11. (a) Schematic drawing of a typical pseudopotential. Redrawn after Cohen, 1970
(b) Schematic pseudopotential in reciprocal space. G is a reciprocal lattice vector, S(G) is
the structure factor and V (G) is the pseudopotential form factor. Redrawn after Cohen,
1970.

The Fourier transform is readily obtained:

V ion
empty−core(q) = −4πZe2

Ωq2
cos qRc . (6.12.2)

The core radius Rc can be fixed, for example, by fitting q0, the position of

the node in V ion
empty−core(q) to q0 of empirical pseudopotentials, yielding Rc =

πq−10 /2. The Fourier components Vps(q) of the lattice potential are found after

screening the above ionic potential by the electron gas.

Finally, ab initio pseudopotentials have been derived (see, Yin and Cohen,

1982) but we shall not go into further details here.
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6.13. Coordination Dependent and Chemical Models

To predict the structural behaviour of small metal clusters, there has been

some emphasis of the concept of site energies: the interaction energy per atom

with a particular coordination number (Strohl and King, 1989; Schoeb et al.,

1992; Yang et al., 1993). Related work is that of Yang and DePristo (1994) on

the factors determining the isomers of metal clusters.

6.13.1. Metal Clusters

In the spirit of the above, Fig. 6.12 shows (Fig. 3 from Yang and Depristo,

1994) the site energy as a function of coordination number for Pt clusters.*

The point at coordination number 12 is simply the bulk cohesive energy of

fcc Pt.

The long dashed line in the Fig. 6.12 shows the extreme limit in which

an atom in dimer is found as strongly as an atom in the 12-coordinated fcc

bulk crystal structure. Compared to the properties of real metal clusters, this

line can be expected to overestimate the binding strength of low-coordinated

atoms. In particular, it can be expected to grossly overestimate the dimer

finding energy.

Fig. 6.12. Site energy (interaction energy per atom) as a function of coordination number
as predicted by MD/MC-CEM calculations using the Pt> and Pt< electron densities. The
two dashed lines encase the typical region of site energies in real systems.

*It is relevant here to note that S. Y. Lien and K.-Y. Chan (Mol. Phys. 86, 939, 1995) have
used the many-body potential of A. P. Sutton and J. Chen (Phil. Mas. Lett. 61, 139, 1990)
for Pt to treat adsorbed Pt on graphite.
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The short dashed line in Fig. 6.12, following again the work of Yang and

DePristo (1994) corresponds to another (never realized!) limiting situation

in which the bond in the dimer is only as strong as one bond in the fcc

structure.

More realistic curves in Fig. 6.12, as calculated from different forces fields

by Yang and Depristo (1994) are labelled Pt> and Pt<. As these workers

stress, the structures of small metal clusters can be very different in spite of

using similar interatomic force fields. Such potentials are based on the same

basic assumptions and approximations and lead to the same cohesive energy

and lattice constant for the bulk fcc crystal. Yang and Depristo (1994) show

how they can differ in yielding low-coordinated site energies.

6.13.2. Binary Metallic Alloys

In subsequent work, related ideas have been developed by Zhu and Depristo

(1995) for binary metallic alloys. In particular, they consider such alloys

formed from Ni, Cu, Rh, Pd and Ag. The site energy (see above) for fixed

coordination is now expressed as a quadratic function of the number of exist-

ing mixed metal bonds. The three parameters entering this functional form

are (over) determined by the mixing energy as a function of composition for

bulk bimetallic fcc systems. The model developed predicts accurately the mi-

crostructures of clusters of Ni101Cu100 and Cu101Pd100 which are prototypes

for bimetallic clusters. For Ni101Pd100 however, the model has some limita-

tions due to the atomic size mismatch of 10%, which distorts the cluster shape

from a perfect lattice structure.

To conclude this section on clemical models, we will summarize the work of

Zhang et al. (1994). This study is concerned with the fracture of transgranular

cleavage of Fe3Al and the intergranular fracture of FeAl.

Zhang et al. make use of an empirical approach to bond energy to demon-

strate that the fracture of transgranular cleavage of Fe3Al and the intergranular

fracture of FeAl are due to their characteristic crystal structures.

6.13.3. Structure and Bonding of Fe3Al and FeAl

Fe-Al alloys are brittle. The Fe-Al alloys containing more than 17.9% Al were

so brittle that their hardness could not be determined, since cracks appeared

in the samples during testing. The brittle property of Fe-Al alloys is of interest

to many materials scientists.



228 Mechanical Properties of Metals

Fig. 6.13. Distribution of atoms in Fe3Al and FeAl. Fe3Al: �, FeI; ©, FeII; 	, Al; FeAl:
©, Fe; 	 & �, Al.

We note that the space group of Fe3Al with DO3 structure and fcc lattice

is O5
h (Fm3m) and its structure formula can be written as Fe

I FeII2 Al. For

FeAl∗ with B2 structure and sc lattice, the space group is O1
h∗ (Pm3m). The

configuration of atoms in Fe3Al and FeAl is depicted in Fig. 6.13 (Fig. 1 of

Zhang et al.). It may be noted, regarding bonding in Fe3Al that the main

bonds are FeII–Al, FeI–FeII, FeI–Al and FeII–FeII. The first two of those are in

the 〈111〉 direction while the others are in the 〈100〉 direction. The two kinds
of atoms in FeAl take the corner and bc sites respectively. Of the three types

of bond in FeAl, the Fe-Al bonding is in the 〈111〉 direction, that between Fe
and Fe and Al-Al being in the 〈100〉 direction.
Zhang et al. use an empirical approach to the bond energy and we shall

not go into calculational detail here but rather give a qualitative description

of their main findings.

The main slip system and the cleavage planes of a crystal with DO3 struc-

ture are {110}〈111〉 and {100} respectively.
The slip of perfect crystals of Fe3Al and FeAl means that two parallel slip

planes {110} glide in the 〈111〉 direction. The energy needed for slip can be
expressed through the energy which is necessary for one atom on the {110}
plane gliding in the 〈111〉 direction. The energy approximately equals the total
energy of all bonds between the atom and the atoms on the near parallel slip
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plane. Similarly, the energy needed by the cleavage of the crystal along the

{100} plane can be characterized by the energy necessary to break all bonds
between an atom and the atoms on the near parallel {100} plane. Details are
given by Zhang et al. (1994). Those workers calculate the energy which is

necessary for an atom gliding on one of the {110} plane in the 〈111〉 direction,
or an atom separated from one of the {100} plane. The two values for Fe3Al
are ∼ 100 kJ/mol and 130 kJ/mol respectively. The corresponding values for

FeAl are ∼ 95 and 120. From these results, Zhang et al. (1994) conclude that

the FeAl crystal cleaves more readily than does Fe3Al.

These workers, from such bond energy arguments, conclude that the frac-

ture of transgranular cleavage of Fe3Al and the intergranular fracture of FeAl

are consequences of the crystal structures from the energetics of the cleavage

mechanism.



Chapter 7

Theory of Pair Potentials in
Simple s-p Metals

We shall build up, in this chapter, from the simplest possible starting point, the

theory of effective pair potentials between ions, mediated by the conduction

electrons, in a simple s-p metal like Na or K.

7.1. Thomas-Fermi Theory of Interaction Between Test Charges

in Initially Uniform Electron Gas

We consider first a positive test charge of magnitude z1e introduced into an

initially uniform degenerate electron gas of density n0. The electrostatic po-

tential, V (r) say, generated by this introduction of the test charge into the

overall neutral jellium model satisfies the linearized Thomas-Fermi equation

∇2V = q2V (7.1.1)

which is the degenerate analogue of the classical linear Debye-Hückel theory

of screening in an electrolyte.

In Eq. (7.1.1), q−1 is the inverse Thomas-Fermi screening length lTF . In

simple physical terms, lTF is the product of a characteristic velocity and a

characteristic time. These are not difficult to identify in a Fermi gas. Since

its properties are dominated by the Fermi level, we must anticipate that the

characteristic velocity is the Fermi velocity vF . As to the characteristic time,

Langmuir recognized that if the electron gas were disturbed, to create an imbal-

ance of charge, the electrons would rush in to screen out the charge imbalance,

overshoot, and oscillate with angular frequency given by

ωplasma ≡ ωp =

(
4πn0e

2

m

)1/2
(7.1.2)

231
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with m the electron mass. The characteristic time then is 2π/ωp, the period

of these so-called plasma oscillations. Hence

lTF � vF
2π

ωp
(7.1.3)

But from Fermi gas theory, phase space theory yields

n0 =
8π

3h3
p3F (7.1.4)

and since the Fermi momentum pF = mvF we can eliminate n0 from ωp in

favor of vF . The final result is then

q2 =
4kF
πa0

(
a0 =

�
2

me2

)
(7.1.5)

where kF is the Fermi wave number, related to pF by pF = �kF . lTF = q−1

turns out for a good metal to be ∼ 1 Å, and the potential obtained by solving
Eq. (7.1.1) for the screening of the test charge z1e is simply

V =
z1e

r
exp(−qr) (7.1.6)

7.1.1. Test Charge Interaction Energy: Basis of Electrostatic Model

The screened potential V created by a test charge z1e will evidently interact

with a second test charge z1e at separation R. According to the electrostatic

model (Lazarus) the interaction energy, ∆E(R) say, will be simply

∆E(R) = (z2e) V (R) =
z1z2e

2

R
exp(−qR) (7.1.7)

This result has been derived from the simplest density functional theory;

namely the Thomas-Fermi method, by Alfred and March (1957; see

Appendix A7.1)

7.1.2. Wave Theory of Interaction Between Test Charges

The linearized Thomas-Fermi (TF) method for the displaced charge ρ(r)− ρ0
by the potential energy V (r), namely

(ρ(r)− ρ0) =
q2V

4π
(7.1.8)
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leads to the disappointing result that two test charges z1e and z2e in a Fermi

gas repel one another at all distances R, with screened Coulomb form Φ(R) =

(z1z2e
2/R) exp(−qR), where q−1 is the TF screening length: ∼ 1 Å in a good

metal like Cu.

Corless and March (1961) pointed out that if Eq. (7.1.8) (akin to ‘geo-

metrical optics’) is replaced by a correct linearized wave theory, then such an

interaction Φ(R) does have attractive regions. Below we first derive the cor-

rect r space equation transcending the semiclassical form (7.1.8), following the

work of March and Murray (1960, 1961).

(a) Integral form of Schrödinger equation

If the self-consistent potential energy in which all electrons are taken to move

is V (r) as above, then the original plane waves Ω−1/2 exp(ik, r), normalized
in a piece of metal (uniform Fermi gas) of volume Ω, are distorted into wave

functions ψk(r) say, the wave vector k here labelling the unperturbed state

from which ψk derives when the perturbed potential V (r) is introduced. One

must then solve

∇2ψk +
2m

�2
[εk − V (r)]ψk = 0 (7.1.9)

Let us proceed by analogy with Poisson’s equation of electrostatics, namely

∇2φ = −4πρ (7.1.10)

A formal solution of Eq. (7.1.10) can be written down immediately as

φ(r) =

∫
dr′ρ(r′)
|r− r′| (7.1.11)

This can be regarded as arising from taking the right-hand side of Eq. (7.1.10),

multiplied by a special solution of the left-hand side equated to zero (i.e.

Laplace’s equation) and integrated over r′. Obviously 1/|r− r′| is such a so-
lution, singular at r = r′. This is one of the simplest examples of a Green
function, which leads directly to the solution (7.1.11).

Let us apply a slight generalization of the above example of solution of

Poisson’s equation to the Schrodinger Eq. (7.1.9) taking the term in V (r) over

to the right-hand side and writing εk explicitly as the free electron energy

�
2k2/2m. This then yields

∇2ψk + k2ψk =
2m

�2
V (r)ψk (7.1.12)
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We can now solve Eq. (7.1.12) when the right-hand side is put to zero, and we

find the (outgoing) spherical wave solution

G(r, r′) =
exp(ik|r− r′|)

|r− r′| (7.1.13)

This obviously reduces correctly to 1/|r− r′| as k → 0.

Then one has, for the full solution of Eq. (7.1.12)

ψk(r) = Ω
−1/2 exp(ik.r) − m

2π�2

∫
dr′G(r, r′)V (r′)ψk(r′) (7.1.14)

which is often referred to as the Lippmann-Schwinger integral form of the

Schrödinger equation. Evidently the first term on the right-hand side of

Eq. (7.1.14) is the (free electron) wave function before the potential V (r) is in-

troduced and the second term is constructed in precise analogy to Eq. (7.1.11).

(b) Solution for first-order change in electron density

Equation (7.1.8) evidently corresponds to an electron density change ρ(r) −
ρo ∝ q2V on introducing the potential V into an originally uniform Fermi

gas of density ρo. We wish now to calculate ρ(r) − ρo from the full wave

theory, but still to first order in V . We can do this correctly by noting that

since the potential V (r′) is already present in the last term of Eq. (7.1.14),

we can merely replace ψk(r
′) in that term by the unperturbed wave function

Ω−1/2 exp(ik.r). To form the electron density ρ(r), we have to sum the wave

function product ψ∗k(r)ψk(r) over all k out to the Fermi surface. Recalling
that, to be consistent, we must only retain terms of first order in V , we find,

with kF as usual denoting the Fermi wave number:∑
|k|<kF

ψ∗k(r)ψk(r) =
∑

|kF |<kF
Ω−1 −

∑
|k|<kF

Ω−1
m

2π�2

∫
dr′V (r′)

× [G(r, r′) exp(ik · r′ − r) +G∗(r, r′)

× exp(−ik · r′ − r)] (7.1.15)

Replacing the summation over k by an integration, using the fact that there

are Ω/(2π)3 states per unit volume of k space and two spin directions, leads

to the displaced electron density ρ(r)− ρo as

ρ(r)− ρo =
−2m
(2π)4�2

∫
dr′V (r′)×

∫
|k|<kF

dk[G(r, r′) exp(ik · r′ − r)

+G∗(r, r′) exp(−ik · r′ − r)] (7.1.16)
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Since, from Eq. (7.1.13), the Green function G depends only on the magnitude

k of the wave vector k, it is straightforward to show that integrating over the

angles of k simply replaces exp(±ik ·r′−r) by sin k|r−r′|/k|r−r′| (this latter
function is just the s(l = 0) term in the expansion of a plane wave in spherical

waves). One then obtains, combining G and G∗, from Eq. (7.1.16)

ρ(r)− ρo =
−2m
(2π)4�2

∫
dr′V (r′)

×
∫ kF

0

dk4πk2
[
sin k|r− r′|
k|r− r′| · 2 cos k|r− r′|

|r− r′|
]

(7.1.17)

Performing the integration over k, the final result for the displaced charge can

be written (March and Murray, 1960)

ρ(r) − ρo =
−mk2F
2π3�2

∫
dr′V (r′)

j1(2kF |r− r′|)
|r− r′|2 (7.1.18)

where

j1(x) = x−2[sinx− x cosx] (7.1.19)

is the first-order spherical Bessel function.

To make contact with the semiclassical Eq. (7.1.8), we next observe that if

V varies sufficiently slowly in space then V (r′) can be replaced approximately
by V (r) to yield

ρ(r)− ρo =
−mk2F
2π3�2

V (r)

∫
dr′

j1(2kF |r− r′|
|r− r′|2 (7.1.20)

which then leads back to Eq. (7.1.8).

Combining the full first-order wave theory result (7.1.20) for the displaced

charge with Poisson’s equation, we find the self-consistent field equation.

∇2V =
2me2

�2

k2F
π2

∫
dr′V (r′)

j1(2kF |r− r′|)
|r− r′|2 (7.1.21)

(c) Form of displaced charge round a localized potential V (r)

Without solving Eq. (7.1.21), it can readily be demonstrated that the displaced

charge can have a very different character at large r, depending on whether

we use the wave theory result (7.1.20) or the semiclassical form (7.1.8). As an

illustrative example, let us insert in Eq. (7.1.20) for ρ(r)− ρo the choice when
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V (r) is very short-range, idealized by V (r) = λδ(r), with δ(r) the Dirac delta

function. Then Eq. (7.1.20) immediately yields

ρ(r) − ρo =
−mk2F
2π3�2

λj1(2kF r)

r2
(7.1.22)

But from the definition of j1(x) in Eq. (7.1.19) it is seen that at large x,

j1(x) ∼ − cosx/x and hence from Eq. (7.1.22):

ρ(r)− ρo ∼ cos(2kF r)

r3
(7.1.23)

This is then the new feature arising from the wave theory and if we use

Poisson’s equation with this asymptotic form of the displaced charge, we find

that the potential V (r) corresponding to ρ(r)−ρo in Eq. (7.1 23) also behaves

as cos(2kF r)/r
3 at sufficiently large r. That such oscillations exist in the long-

range form of the displaced charge round a given fixed perturbation in a Fermi

gas was first pointed out explicitly by Blandin, Daniel and Friedel (1959: see

also March and Murray, 1960). However, such behaviour was certainly at least

implicit in much earlier work by Bardeen.

Below, we shall apply Eq. (7.1.1), following Corless and March, to calculate

the interaction energy Φ(R) of two test charges embedded in a Fermi gas.

However, before doing that, it is important to demonstrate how the above

theories, both semiclassical and wave theory, can be utilized to extract the

dielectric function of a Fermi gas.

(d) Dielectric function

As already discussed, the screened potential energy V (r) round a test charge

ze in a Fermi gas follows from the semiclassical equation ∇2V = q2V as

V (r) =
−ze2

r
exp(−qr) (7.1.24)

To introduce the dielectric function, we take the Fourier transform of V (r)

according to

Ṽ (k) =

∫
dr exp(ik · r)V (r) (7.1.25)

when we find from Eq. (7.1.24) the result

Ṽ (k) =
−4πze2
k2 + q2

(7.1.26)
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More interestingly, the wave theory can also be dealt with analytically

in k space, unlike the situation in r space, where recourse had to be made

to numerical methods (March and Murray, 1961). By Fourier transforming

Eq. (7.1.21) (using a convolution property) we then find

Ṽ (k) =
−4πze2

k2 + kF
πao

g
(

k
2kF

) : ao = �
2

me2
(7.1.27)

where

g(x) = 2 +
(x2 − 1)

x
ln

∣∣∣∣1− x

1 + x

∣∣∣∣ (7.1.28)

This important result is derived in Appendix 7.2. It is to be noted that, in

the long wavelength limit k → 0, the function g(x) tends to the value 4, and

we find the same result

Ṽ (k = 0) =
−4πze2

q2
(7.1.29)

from both semiclassical and wave theories, after using eq. (7.1.5).

Often, it proves valuable to express the above results in term of the wave-

number dependent dielectric function ε(k) of the Fermi gas. This may be

conveniently introduced for the present purposes by writing

Ṽ (k) =
−4πze2
k2ε(k)

(7.1.30)

It follows then from the screened Coulomb form that the semiclassical Thomas-

Fermi (TF) dielectric function is given from Eq. (7.1.26) by

εTF (k) =
k2 + q2

k2
(7.1.31)

while the wave theory yields

ε(k) =
k2 + kF

πao
g
(

k
2kF

)
k2

(7.1.32)

This latter expression appears first to have been given explicitly by Lindhard

(1954), though it is certainly at least implicit in an earlier study by Bardeen

(1937) on electron-phonon interaction.
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7.2. Density Functional Theory of Pair Potentials

Let us state immediately the density functional theory result for the effective

pair interaction energy Φ(R) derived using the superposition density for single-

centre screened ions. The result takes the form

Φ(R) = ∆G(R) + ∆U(R) (7.2.1)

where ∆U(R) is the total potential-energy change which is determined solely

by the total valence screening charge Q(R). This quantity is plotted in Fig. 7.1

for Na (Perrot & March, 1990a) (Fig. 1 of their paper) and in Fig. 7.2 for Be

(Fig. 4 of Perrot & March, 1990b).

Fig. 7.1. Total valence screening charge Q(R) taken from PM (1990) for liquid Na near
freezing. Q(R) determines the pair interaction φ(R) through Eq. (7.2.7) in linear response
theory. Arrow denotes position of principal minimum in “exact” pair potential φ.

Fig. 7.2. Same as Fig. 7.1, but for liquid Be at a density equal to the solid density. Arrows
denote first minimum and following maximum in “exact” pair potential φ(R). See Fig. 7.5
for the corresponding curve for K+.
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Fig. 7.3. This shows pair potentials calculated from local density (TF) theory plus density
gradient corrections T2 and T4 to kinetic energy, for liquid Na near freezing. Various curves
were obtained, using Q(R) in Fig. 7.1, from different degrees of approximation as follows.

φTF, calculated from Eq. (7.2.2); φ
(1)
TFG, from T2 in Fig. 7.4 with λ = 1

9
in which T2 only

is included; φ
(2)
TFG, from theory containing both T2 and T4; φLR = −ZV ;φ(R) is the pair

potential obtained by Perrot and March (1990a).

Fig. 7.4. Same as Fig. 7.3 but for Be. Density gradient correction T2 to kinetic energy,
referred to in Fig. 7.3, is given in terms of electron density ρ(r) by T2 = (λ8)

∫
(∇ρ)2/ρdr.

T4 is by given Perrot and March (1990).
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Thus, the kinetic plus exchange and correlation energy change ∆G(R) is

responsible for differences in Φ(R), given the total screening charge Q(R) for

a particular metal. The Thomas-Fermi potential, corresponding to

ΦTF (R) =
R

4

[
V

(
R

2

)]2
(7.2.2)

is shown in Fig. 7.3 for Na, plus the effects of gradient correlations. The

Perrot-March (1990a) potential φ(r) is the deepest curve in Fig. 7.3: obviously

gradient corrections are improving the Thomas-Fermi potential, but are still far

from the full density functional theory potential of Perrot and March. Similar

results for Be are shown in Fig. 7.4. We outline next the derivation of φ(r).

7.2.1. Density Functional Theory of Pair Potential

The work of Alfred and March (1957) and the later study of Corless and March

(1961) gave the semiclassical and the wave theory result of the interaction

between test charges in a Fermi gas. These can be viewed as simple density

functional theories: both however taking the two-centre density and potential

as appropriate superposition of the corresponding one-centre case.

Perrot and March (1990a, b referred to below as PM) gave a generalization

of these treatments which still represents the density, but now for realistic ions

rather than test charges, as a superposition of one-centre quantities.

Below, we shall give an outline of the main steps in the derivation of PM

(1990). The basic building block is now the screened ion in a Fermi gas. PM

worked out the effective interionic potentials for Na and for Be, their main focus

in these applications being liquid metals. For Na, a direct test of this interionic

potential proves possible, by confrontation with results obtained by inverting

the experimentally measured structure factor S(k) (Johnson and March, 1963;

Reatto, 1988). We shall see below that the main features show quite remarkable

accord between the two approaches, though significant quantitative differences

remain.

Following PM, let us start from the density functional theory equation for a

single ion in an uniform electron gas of density ρ̄. This can be written formally

as

G′[∆ + ρ̄]−G′[ρ̄] = −V (r) (7.2.3)

where G′ is a shorthand notation for the (functional) derivative δG/δρ(r),

which in the TF method - the forerunner of modern DFT - is simply



Theory of Pair Potentials 241

proportional to ρ(r)2/3. As written above, the quantity G = T +Exc includes

the sum of kinetic energy and exchange plus correlation effects. We assume

to be concrete that Exc is taken in the local density approximation following

PM. V is the usual electrostatic potential due to the displaced charge ∆(r) =

ρ(r)− ρ̄: namely

V =
−Z

r
+
1

r
∗∆ (7.2.4)

where the notation ∗ is merely shorthand for the convolution product repre-
senting the electrostatic potential created by ∆(r).

7.2.2. Solution of One-Centre Problem for Na Atom Embedded

in a Cavity in Jellium

To give a definite illustration coming from the (numerical) solution of

Eq. (7.2.3), we take the example of a Na atom embedded in a jellium cav-

ity at an average uniform electron density ρ̄ = 0.0036046 a.u. The radius Ra

of the cavity is such that (4/3)πR3
aρ̄ = z, where z, the valence, is unity for

Table 7.1. Self-consistent density functional calculation of the density dis-
placed by an Na atom embedded in a cavity in jellium at electron density
ρ̄ = 0.0036046 a.u. The radius Ra of the cavity is such that

4
3

πR3
aρ̄ = Z∗ = 1.

xc Ichimaru (1982) xc Hedin-Lundqvist (1969)

Eigenvalues (Ry)

E1s −74.9628 −74.9314
E2s −3.6336 −3.6293
E2p −1.6281 −1.6244

Average of r (a.u): 〈r〉
1s 0.1439 0.1439

2s 0.7916 0.7919

2p 0.8090 0.8096

Average of r2 (a.u): 〈r2〉
1s 0.0279 0.0279

2s 0.7600 0.7609

2p 0.8578 0.8591

Total energy of embedding (Ry)

∆E −322.8526 −322.8237
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Na. Then Table 7.1 collects the eigenvalues and some other properties of this

one-centre density functional theory with two different choices for the exchange

correlation energy Exc. The first follows Ichimaru (1982) and the second uses

also a local density form given by Hedin and Lundqvist (1969). These forms

of Exc, plus the charge 11e on a bare Na nucleus, and the average density

ρ̄ of uniform valence electrons represent the basic input used in constructing

Table 7.1. The differences between the two forms of Exc is seen to be very

small for all properties recorded in Table 7.1, Fig. 7.5 (Fig. 11 of March (1992)

book) depicts the total valence screening charge Q(r) of the valence electrons

in Na: to graphical accuracy the difference between the two forms of Exc is

not discernable. Q(R) must tend to unity as R → ∞ in monovalent metal.

7.2.3. Pair Interaction Between Ions

We turn now to treat the two-ion problem, but still within the ‘superposition’

approximation used to treat test charges in both semiclassical and wave theo-

ries. Then following PM, we take the two ions to be at positions Ri and Rj,

and write ∆i = ∆(r − Ri) and ∆G(∆ + ρ̄) = G[∆ + ρ̄] − G[ρ̄]. For the pair

Fig. 7.5. Total valence screening charge Q(R) inside a sphere of radius R centred on an

K+ion. (After Johnson et al, 1994).*

*See also Chapter 8, Section 8.6.
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interaction Φ between ions i and j PM write

Φ = ∆G[∆i +∆j + ρ̄]−∆G[∆i + ρ̄]

−∆G[∆j + ρ̄] +

(−z

ri

)
·∆j +

(−z

rj

)
·∆i

+
1

2
(∆i +∆j) · 1

r
∗ (∆i +∆j)− 1

2
∆i · 1

r
∗∆i

− 1

2
∆j · 1

r
∗∆j +

z2

R
(7.2.5)

The ∗ notation has already been defined: here the dot means the integral of
the product of functions through the whole of space: technically the scalar

product.

As PM stress, it is true that if one works with the exact density of the Na2
‘molecule’, written as ∆i + ∆j + δ, rather than with just the superposition

approximation ∆i + ∆j , then the final result for Φ(R) to be given below is

correct to O(δ2), due to the stationary properties of the energy functional.

To develop Φ(R) further, we note from Eq. (7.2.4) for V that

zV (R) =
−z2

R
+

∫
z

|r′ −R|∆(r
′)dr′

=
−z2

R
+

∫
z

r′′
∆(r′′ +R)dr′′

=
−z2

R
+

(
z

ri

)
∗∆j (7.2.6)

Utilizing this Eq. (7.2.6) in Eq. (7.2.5), one readily finds

Φ(R) = ∆G[∆i +∆j + ρ̄]−∆G[∆i + ρ̄]

−∆G[∆j + ρ̄] +

(−z

rj
·∆i

)

+
1

2
∆i · 1

r
∗∆j +

1

2
∆j · 1

r
∗∆i

− zV (R) (7.2.7)

In PM, some particular approximations to the result Eq. (7.2.7) were ex-

amined. However, let us go next to the full result of PM for Φ(R) in Na metal.

Their pair potential is the upper curve at large r in Fig. 7.6. The other curve
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Fig. 7.6. Pair potentials for liquid Na at T = 100◦C and density of 0.929 g cm−3. Electron
theory: upper curve for large r. Inversion of liquid structure factor: lower curve for larger r.

Table 7.2. Characteristics of diffraction potential compared with
electron theory form.

Positions of turning Principal First Second First

points and nodes (Å) minimum maximum minimum node

Diffraction φ(r) 3.9 5.76 7.44 3.3

Electron theory φ(r) 3.73 5.67 7.37 3.20

will also be considered in some detail below. Note that in Fig. 7.6 the pair

potential (best for liquid Na just above its freezing point because of the choice

of PM for ρ̄) ϕ(r) is expressed in units of kBT ≡ β−1 where T = 100◦C (the
mass density equivalent of ρ̄ being 0.929 g cm−3) characteristics of this electron
theory pair potential ϕ(r) have been collected in Table 7.2 (Table II of Perrot

and March, 1990a). We turn immediately to make contact between this DFT

calculation of the pair potential in liquid Na metal just above its freezing point

and that which can be extracted from the experimentally measured structure

factor S(k), where S(k)− 1 is the Fourier transform of g(r)− 1, g(r) being the
ionic pair correlation function of the liquid metal.
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7.2.4. Inversion of Measured Liquid Structure Factor S(k) for Na

Near Melting to Extract a ‘Diffraction’ Pair Potential

Johnson and March (1963) proposed a route by means of which a pair potential

φ(r) could be extracted from diffraction measurement of the liquid structure

factor S(k). However, it must be stressed that, for successful application of

their proposal, it is essential to have diffraction experiments (neutrons prefer-

ably but otherwise X-ray) over a very wide range of k. The small angle scat-

tering region turns out to be particularly important: one must measure S(k)

by diffraction at sufficiently small k so that safe extrapolation into the value

of S(o) given by fluctuation theory, namely

S(o) = ρikBTKT (7.2.8)

where ρi is the ionic number density and KT the isothermal compressibility, is

ensured.

Johnson and March (1963) focussed all attention on the so-called force

equation. The ions in, for example, liquid Na just above its freezing point can

be treated classically and we write therefore the Boltzmann form for g(r12) in

terms of the so-called potential of mean force U(r12):

g(r12) = exp(−βU12) ; β = (kBT )
−1 . (7.2.9)

From this result, one can write the total force acting on atom 1 as the negative

of the gradient of U(r12) with respect to r1. This can evidently be divided

into two contributions: (i) That due to the direct pair force −∂φ(r12)
∂r1

between

atoms 1 and 2 at separation r12 and (ii) That due to the remaining atoms.

To deal with the contribution (ii) above, let us introduce the so-called three-

atom correlation function n3(r1 r2 r3), defined such that the probability that

volume elements dr1, dr2 and dr3 around r1, r2 and r3 are occupied by atoms

is n3(r1 r2 r3). Then remembering that the probability of finding atom in the

volume element dr3, when atoms 1 and 2 are certainly in volume elements dr1
and dr2 around r1 and r2 is

n3(r1 r2 r3)dr3
ρ2og(r12)

with ρo the atomic number density, we may write the desired force equation

as −∂U(r12)

∂r1
=

−∂φ(r12)

∂r1
−
∫

n3(r1 r2 r3)

ρ2i g(r12)

∂φ(r13)

∂r1
dr3 (7.2.10)
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This equation, as it stands is an exact consequence of classical statistical me-

chanics, given of course the assumption of pair forces. But to use it directly

to derive φ(r12) from the measured liquid structure factor S(k), from which

g(r) can be found by suitable Fourier transform, one must have knowledge

concerning n3. This three-atom function is therefore at the heart of the liquid

structure problem.

7.2.5. Approximate Analytic Structural Theories

Kirkwood (1935) argued for the simplest possible approximation that n3 could

be ‘decoupled’ as the product of pair terms, i.e.

n3(r1 r2 r3) ∼= ρ3o g(r12) g(r23) g(r31) (7.2.11)

Inserting this into the force equation one is led to the so-called Born-Green

(1946) theory of liquid structure. Rushbrooke (1960) demonstrated that one

could then integrate the force equation to find

U(r)

kBT
=

φ(r)

kBT
− ρ

∫
E(r − r′)h(r′) dr′ (7.2.12)

where h(r) = g(r)− 1 is the total correlation function, while E is defined by

E(r) =

∫ ∞
r

φ′(t)
kBT

g(t)dt (7.2.13)

Since g(t)→ 1 for sufficiently large r, we see from this equation that E(r) →
−φ(r)
kBT

for sufficiently large r. But this can be shown (far from the liquid-gas

critical point) to be the behaviour of the Ornstern-Zernike direct correlation

function introduced in the footnote.* If the definition of c(r) is used, and E(r)

in Eq. (7.2.13). is replaced by c(r), then a second liquid structure theory -

the so-called hyperenetted chain (HNC) theory because of its diagrammatic

derivation - emerges. This yields

φ(r) − U(r)

kBT
= h(r)− c(r) (HNCequation) (7.2.14)

This equation, it turns out (nor the Born-Green approximation) is adequate

for quantitative work on Na near the melting point. It is customary to add

*The Fourier transform c̃(k) of c(r) is defined from the liquid structure factor S(R) intro-
duced above as c̃(k) = [s(k)− 1]/s(k).
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a so-called bridge function B(r) to the right-hand side of Eq. 7.2.14. The

further assumption that B(r) is insensitive to the detail of φ(r), coupled with

computer simulation, has been successfully used by Reatto (1988) and co-

workers to extract the ‘diffraction’ potential shown as the second curve in

Fig. 7.6. Table 7.2 compares the main features of the diffraction potential,

following PM with the electron theory results. The agreement is remarkable.

Even the difference between the two curves at large r can be discussed from

first-principles theory (Blazej and March, 1993, see also Blazej, Flores and

March, 1995), but we will not go into further details here.

7.2.6. Pair Potentials for Iridium and Rhodium*

As Ivanov et al. (1994) emphasize, iridium and rhodium show unusual me-

chanical properties for fcc metals. In particular, they exhibit brittle failure as

single crystals, this occurring after a long stage of plastic deformation (Dou-

glass, Crier and Jaffee, 1961; Hieber, Mordike and Haessen, 1967; Ried and

Routbort, 1972; Gandhi and Ashby, 1979).

As stressed elsewhere in the present Volume (see especially Chap. 8) the

possibility of describing both perfect lattice properties, and defects, both point

and extended, of transition metals by pair interactions is highly questionable.

However, as shown by Greenberg et al. (1990), in the specific case of Ir, such

a pair interaction Φ(r) can be set up, using perturbation theory with a lo-

cal pseudopotential, the contribution of three-body interactions to the lattice

properties turning out to be small corrections. A number of forms of Φ(r) were

put forward by Greenberg et al. (1990) but because of a lack of experimental

data on the phonon spectra a final choice did not prove possible between these

various interactions.

In the work of Ivanov et al. (1994), experimental results using the technique

of inelastic neutron scattering are presented for the phonon dispersion relations

in Ir. These authors then select and study interatomic potentials Φ(r) for Ir

and also for its analogue Rh. As discussed below, these potentials were then

utilized to simulate point defects, stacking faults and some dislocations.

For Ir, Greenbery et al. (1990) constructed Φ(r) for Ir of the form (Ivanov

et al, 1994)

Φ(r) =
Z2

r
− Ωo

π2r

∫ ∞
0

q sin(qr)F (q)dq (7.2.15)

*Though this chapter is dominantly about potentials in s-p metals, it will be useful in
relation to mechanical properties to discuss these more complex metals to conclude.
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where

F (q) =
Ωoq

2

8π
V 2
ps(q)

[
1

ε(q)
− 1
]

(7.2.16)

Here Z is the effective ionic charge, Ωo the atomic volume, Vps(q) the Fourier

transform of the local pseudopotential and ε(q) is the dielectric function.

For ε(q), Greenberg et al. (1990) employed the Geldart-Taylor approxima-

tion with the correlation according to Ceperley. They used the Animalu-Heine

form for Vps(q): (see Ivanov et al., 1994):

Vps(q) =
−4πZ
q2Ωo

{
cos(qro)− u

[
sin(qro)

qro
− cos(qro)

]}

× exp
[
−ξ

(
q

2kfo

)4]
(7.2.17)

kfo being the Fermi wave number at zero temperature T and zero pressure P .

Equation (7.2.17) for the pseudopotential carries three parameters, ro, u and

ξ. These were fitted to (i) the equilibrium condition P (Ωexp) = 0, Ωexp being

the experimental value of the volume per atom, (ii) the Debye temperature

θexp = 425K and (iii) a reasonable value of the hard-sphere packing parameter

η : 0.45 < η < 0.53:

η =
πd3

6Ωo
,

∫ ∞
0

dr

{
1− exp

[−Φ(r)
T

]}
= d (7.2.18)

at the melting temperature T = Tm. In the study of Greenberg et al. (1990).

Z was treated as a fourth free parameter, and they concluded that Φ(r) above

gave an adequate description of physical properties provided 3.5 ≤ Z ≤ 4.5.

Ivanov et al. (1994) appeal to the first-principles energy band calculations of

Dacorogna et al. (1982) to fix Z as 4.5.

Much less experimental data is available for Rh. However, Z was taken

as 3.86 from Dacorogna et al. (1982) while ξ was fixed at the same value

as for Ir. The other two parameters were then fixed from P (Ωexp) = 0 and

B(Ωexp) = Bexp, with B the bulk modulus and Bexp = 26.9×1011 dyne cm−2.
The pseudopotential parameters for both metals are collected in Table 7.3,

taken from Ivanov et al. (1994).

The phonon dispersion curves using this Φ(r) for Ir are shown in Fig. 7.7

(Fig. 2 from Ivanov et al., 1994), compared with the experimental points. The

agreement is better than semi-quantitative. The potential is plotted in Fig. 7.8

(Fig. 4 of Ivanov et al., 1994), together with that for Rh.
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Table 7.3. Ωo, ro and Vo = uZ/ro in atomic units
(after Ivanov et al., 1994).

Metal Ω0 Z ξ ro u −Vo

Ir 95.52 4.5 0.30 2.700 −1.243 2.070

Rh 92.58 3.86 0.30 2.637 −1.247 1.823

Fig. 7.7. Phonon dispersion curves in Ir compared with experimental points (0), after Ivanov
et al. (1994). Broken line — nearest-neighbour only. Results along symmetry directions are
shown.

Fig. 7.8. Pair potentials for Ir (continuous curve) and Rh (dashed curve) taken from Ivanov
et al. (1994).

Table 7.4. Point defect energies in eV for va-
cancy(v) and interstitial(I) from pair potentials
(f ≡ formation, m ≡ migration).

Metal Efv Emv EfI EmI

Ir 1.64 3.05 6.20 0.51

Rh 1.12 2.15 4.44 0.39
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Point defect energies obtained by Ivanov et al. (1994) with the above poten-

tials are collected in Table 7.4. If the monovacancy approximation is assumed

for self-diffusion then the activation energy* Ef
v + Em

v = 4.69 eV for Ir is in

excellent agreement with the experimental value of 4.55 eV given by Arkhipov

et al. (1986), f denoting formation and in m migration.

Stacking fault energies were also calculated from Φ(r), in the {111} plane,
and values of 20 mJm−2 for Ir and ∼ 90 mJm−2 for Rh were obtained. Un-
fortunately there seems to be no experimental data to compare with these

predictions, at the time of wirting.

7.2.7. Structure and Properties of Dislocations

Ivanov et al. (1994) studied also the energy of the generalized stacking fault

and splitting of edge and screw dislocations with Burgers vector b = 1/2〈110〉.
Computations were made with their pair potential Φ(r) for Rh since this force

law yields, as above, a reasonably high value of the stacking fault energy

in the {111} plane and consequently an effective splitting of dislocations in
simulation.

Simulation of screw and edge dislocations by Ivanov et al. (1994) demon-

strate that these split effectively. The splitting width was determined in terms

of the Peierls-Nabarro model. The above width was 14a and 8a for edge and

screw dislocations respectively, and these values agree with estimates from

elasticity theory.

The distribution of the edge and screw components of the displacements

on the slip plane for the screw dislocation was carried out also by Ivanov

et al. (1994) in terms of elasticity theory by means of the formula

1

2
[101̄] =

(
1

4
[101̄] +

x

12
[121̄]

)
+

(
1

4
[101̄] +

x

12
[1̄2̄1]

)
(7.2.19)

There exist a splitting, determined by the minimum sum of the energy of elastic

interaction between partial dislocations and by the energy of the generalized

stacking fault. For the Rh pair potential, the most favorable splitting of the

edge and screw dislocations according to Ivanov et al. (1994) is at x = 0.95.

Refined force fields beyond the pair potential approximation will be discussed

in the following chapter.

*See, e.g., Atomic Transport in Solids by A. R. Allnatt and A. B. Lidiard (Cambridge Univ.
Press UK, 1993).



Chapter 8

Transcending Pair Potentials:
Glue Models of Interatomic Forces

8.1. Introduction

As some background to the present chapter, we note the following points:

(1) In the past, much effort was put into crystallographic characterization of

extended crystal defects: in particular dislocations and grain boundaries.

(2) Properties and behaviour of interfaces, and to a large extent dislocations,

cannot be determined solely by such geometrical characteristics. For disloca-

tions it is the atomic structure in their cores which is a dominant factor.

(3) Investigation of such core structure requires atomic modelling.

(4) One needs a method to evaluate the total energy E of a system of many

particles as a function of their positions.

8.2. Embedded Atom and Related Approaches

In the previous chapter, the theory of pair potentials in simple metals like

Na and K has been developed. But in many metals, one can now transcend

this description. Below, an account will be given of so-called glue models of

interatomic force fields.*

*The description ‘glue models’ is intended to embrace a variety of methods with
different physical origins. These include the following: (i) M. J. Stott and
E. Zaremba (Phys. Rev. B22, 1564, 1980), (ii) M. S. Daw and M. I. Baskes (Phys. Rev.
Lett. 50, 1285, 1983), (iii) M. W. Finnis and J. E. Sinclair (Phil. Mag. A50, 45, 1984),
(iv) K. W. Jacobsen, J. K. Notskov and M. J. Puska (Phys. Rev. B35, 7423, 1987), (v)
F. Ercolessi, M. Parrinello and E. Tosatti (Phil. Mag. A58, 213, 1988) and (vi) D. G.
Pettifor (Phys. Rev. Lett. 63, 2480, 1989).

251
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We begin by summarizing the work on Al by Robertson et al. (1993). As

these workers point out, all the simple glue models to be found in the literature

may be written as follows:

E =
∑
i

Ei (8.2.1)

Ei =
∑
j �=i

φ(rij) + U(ni) (8.2.2)

ni =
∑
j �=i

ρ(rij) . (8.2.3)

As Robertson et al. (1993) stress, the various glue models appropriate to

nontransition metals then differ in the forms chosen for φ, U and ρ, as well as

in the choice of the experimental data used to parametrize the functions.

8.2.1. First-Principles Energy Calculations for Al Structures

Robertson et al. (1993) have constructed a data base of some 170 first-principles

total energy calculations of Al structures. These correspond to coordination

numbers ranging from zero to 12 and nearest-neighbour distance from 2.0 to

5.7 Å. Their calculations elucidate the nature of metallic bonding.

Using this database, Robertson et al. have tested a large range of glue

models set out above. They find that none yields a RMS error less than 0.1 eV

per atom. These workers argue that this minimum error is due to bonding

effects which are outside the glue model framework. Given this, they conclude

that this sets a limit to the ultimate reliability of any glue scheme.

8.2.2. Coordination Number Dependence of Energy/Atom for Al Structures

Robertson et al. (1993) test the above glue formalism by focusing only on

structures for which (i) the near-neighbour distance is fixed at some chosen

value, ro say, and (ii) the constituent atoms have equivalent environments

so that the energy of any structure can be partitioned between the atoms in

accord with Eq. (8.2.1).

As a first step, they then neglect neighbours beyond the nearest. The

energy per atom, Ea say, for this set of structures should then be given by

Ea = cφ(ro) + U(cρ(ro)) (8.2.4)

where c denotes the coordination number.
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Table 8.1. The energies and the coordination numbers for the
eighteen structures of the original database. (After Robertson
et al, 1993).

Energy per atom

Structure Coordination number (eV)

Atom 0 −54.95
Dimer 1 −55.66
Line 2 −56.28
Graphite 3 −56.95
Girder 4 −57.04
Square layer 4 −57.29
Diamond 4 −57.42
Square slab 5 −57.64
Close packed layer 6 −57.49
Simple cubic 6 −57.91
fcc 110 slab 6 −57.54
Close packed slab 7 −57.89
fcc 100 slab 8 −57.85
Vacancy lattice 8 −58.10
Simple hexagonal 8 −58.12
bcc 8 −58.24
fcc 111 slab 9 −57.97
fcc 12 −58.31

Robertson et al. calculate Ea for ro = 2.85 Å, which is near to the equi-

librium separation in fcc Al, for the eighteen structures recorded in Table 8.1

(Table 1 of Robertson et al., 1993).

8.2.3. Methodology

The energies recorded there were calculated using density functional theory.

A local pseudopotential for Al was employed (Cheng et al., 1987), together

with a plane wave basis with a cut-off energy of 190 eV. The exchange and

correlation contribution to the one-body potential was formed from the results

of Ceperley and Alder (1980) as fitted by Perdew and Zunger (1981).

The data in Table 8.1 was fitted by Robertson et al. to a function of

the form

Ea = Eo +A
√
c+Bc . (8.2.5)
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The choice of the function U in Eq. (8.2.4) as proportional to
√
c was

originally proposed by Finnis and Sinclair (1984). Robertson et al. (1993) note

that the fit (8.2.5) has a RMS deviation of 0.20 eV, with

A = −1.41 eV , B = 0.09 eV , Eo = −54.74 eV . (8.2.6)

8.3. Embedded Atom Method: Analytic Model for fcc Metals

Johnson (1988) has studied the implications of the embedded-atom method*

by using a simple nearest-neighbour analytic model for the fcc lattice. The

model has as input information: (i) the atomic volume (ii) the cohesive energy

(iii) the bulk modulus (iv) the average shear modulus and (v) the vacancy

formation energy. Since the embedded-atom method developed from density-

functional theory, microscopic information is also required in addition to the

inputs (i)–(v) above. In Johnson’s model, this latter information is the slope at

the nearest-neighbour distance of the spherically averaged free-atom electron

density calculated with Hartree-Fock theory. This is fitted by an exponentially

decreasing function. Additionally a universal equation relates crystal energy

and lattice constant (Rose et al., 1984). Johnson’s model also employs an

exponential repulsion between nearest-neighbour atoms. Also, in his model,

the anisotropy ratio of the cubic shear moduli is constrained to be 2.

As in the previous section, the energy E per atom, with only nearest-

neighbour interactions included can be written as

E(r0) = F (ρ(r0)) + 6φ(r0) (8.3.1)

with

ρ(r0) = 12f(r0) . (8.3.2)

The difference in the various models then enters through the choice of φ(r)

and f(r).

Johnson’s choice for his analytic model corresponds to:

f(r) = fe exp

{
−γ

(
r

roe
− 1
)}

, r ≤ rc (8.3.3)

where rc is a cut-off parameter, while roe is the equilibrium near-neighbour

distance. The pair potential φ(r) in Eq. (8.3.1) is taken as a Born-Mayer

*See especially M. S. Daw and M. I. Baskes (Phys. Rev. B29, 6443, 1984).
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repulsion:

φ(r) = φe exp

{
−γ

(
r

roe
− 1
)}

, r ≤ rc . (8.3.4)

Finally the embedding function F (ρ) in Eq. (8.3.1) is chosen by Johnson (1988)

as

F (ρ) = −Ec

[
1− α

β
ln

(
ρ

ρe

)](
ρ

ρe

)α(β)
− Φe

(
ρ

ρe

) γ
β

(8.3.5)

where ρe = 12fe and Φe = 6φe, while Ec is the experimental cohesive energy.

Johnson emphasizes that, since only ρ/ρe enters Eq. (8.3.5), the parameter

fe cancels out of the model. Furthermore, for the elastic constants for any

defect calculation in which the relaxations are small, the precise choice of the

cut-off rc plays no role as long as rc is well within the gap between first and

second neighbours, as is true in Johnson’s work.

8.3.1. Average Shear Constant

Finally, the average shear constant Ge is calculated in terms of the parameters

γ, β and φe entering the model as

Ge =
2γ(γ − β)

5Ωe
φe . (8.3.6)

The magnitude of β is determined from atomic wave function calculations.

The cohesive energy, compressibility and lattice parameter (thus also the

equilibrium atomic volume Ωe entering Eq. (8.3.6)) are given exactly, while, as

mentioned above, the shear anisotropy is fixed at a value of 2.

8.3.2. Analytic Results for Vacancy and Divacancy Energetics

Johnson points out that in close-packed fcc metals the energies associated

with vacancy formation, divacancy binding and formation of planar surfaces

are dominated by contributions before atomic relaxation is allowed. Such

unrelaxed energies can be calculated analytically within his model and we

summarize his findings below:

Eunrelaxed
vac. form. =

15ΩeGe

βγ

[
1− 1

24

γ

β
− 1

864

γ

β

(
2− γ

β

)]

+ smaller term proportional to
ΩeBe

β2
. (8.3.7)
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where Be is the equilibrium bulk modulus. The term displayed explicitly in

Eq. (8.3.7), for the parameter values adopted by Johnson (γ ≈ 8, β ≈ 6) is

about 1.2 eV while the term involving Be contributes only ≈ 0.1 eV, for the

example of Cu as the prototype metal considered by Johnson (1988).

The divacancy binding energy EB,unrelaxed
2v is also given approximately by

Johnson (1988, his Eq. (34)) as

EB,unrelaxed
2v =

5

2

ΩeGe

βγ

[
1 +

1

8

γ

β
+
11

864

γ

β

(
2− γ

β

)]

+ term proportional to
ΩeBe

β2
. (8.3.8)

Similarly, Johnson calculates unrelaxed surface energies for the 3 fcc low-

index planes, but we refer the reader to the original paper for his formulae for

these.

However, for his prototypical metal Cu he finds for 111, 100 and 110 low-

index planes the unrelaxed values 991, 1194 and 1292 erg/cm2 respectively.

The sequence from lowest to highest surface energy is {111} to {100} to {110},
as expected for the fcc lattice.

The surprising result which emerges from Johnson’s analytic model based

on the embedded-atom ideas is that the shear modulus, rather than the bulk

modulus or the cohesive energy, is the dominant parameter determining the

vacancy formation energy. However, the unrelaxed divacancy binding energy,

and the unrelaxed surface energies even more so, contain contributions which

depend on the embedding function at electron densities significantly smaller

than the equilibrium value. As Johnson stresses, the curvature thus plays a

more important role and the shear modulus is not as dominant in these cases.

Finally, we have noted that, following Johnson’s numerical estimates, the

shear modulus term is also larger in the divacancy binding energy than

the bulk modulus (though now the factor is only ≈ 4 between the two pieces).
Roughly therefore the vacancy formation energy is ≈ 15 ΩeGe/βγ while the

divacancy formation energy (somewhat less precisely) is 5
2 ΩeGe/βγ, i.e.

the ratio: divacancy binding energy to vacancy formation energy ≈ 1/6.

8.3.3. Hexagonal-Close-Packed Metals

The embedded atom method has subsequently been extended to the hexago-

nal-close-packed (hcp) metal Zr (Goldstein and Jónsson, 1995). These workers
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incorporate the non-ideal c:a ratio and the elastic responses in their fitting

procedure. As in the work of Johnson (1988) reported above, simple functional

forms are assumed for the pair interaction, atomic electron density and

embedding function. Experimental data used to parametrize the functions are

(i) cohesive energy (ii) equilibrium lattice constants (iii) single crystal elastic

constants and (iv) vacancy formation energy. The equation of state set up by

Rose et al. (1984) is employed to reproduce the pressure dependence of the co-

hesive energy, taking account of the anisotropic elastic response of the crystal.

Their interatomic force field has been applied to calculate stacking fault

and self-interstitial formation energies.

8.4. Inequality Relating Vacancy Formation Energy in a Hot

Crystal (Near Melting) to Rigidity

Following the conclusion of Johnson (1988), discussed in the previous section,

that at T = 0 the vacancy formation energy Ev correlates with the shear

modulus in a simple embedded atom model, March (1989) has studied a related

problem, but now for Ev near the melting temperature Tm. His work is related

to the considerations on Ev in Appendices 6.1 and 7.4.

In common with Johnson (1988), the work of March (1989) neglected ionic

relaxation around the vacant site, which is permissible in close-packed crystals

(for simple bcc metals such as Na and K, see Appendix 5.2 for a treatment

of such relaxation effects round a vacant site). Since one is now dealing with

the hot crystal near melting (T = Tm), appeal is also made to the liquid

pair distribution function g(r) at Tm. This is useful if melting leaves the

local coordination of the hot, highly anharmonic, solid largely intact (it would

exclude, e.g. Si and Ge where covalently bonded semiconductors become liquid

metals on melting, with therefore very different force laws in the two phases).

In this ‘liquid-like’ language March (1987) has shown that

Ev = Ω
∂E

∂V

∣∣∣∣
Tm

+ term involving
∂g(r)

∂ρ
(8.4.1)

Rashid and March (1989) have shown in various cases that the term in

Eq. (8.4.1) involving the dependence on ionic number density ρ of the liq-

uid pair function g(r) is small compared with the term involving ‘departures

from Joule’s Law’, i.e. the dependence of the total internal energy E on the

total volume V of the liquid (compare Appendix 7.4).
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Thermodynamics can now be used to yield in the liquid(
∂E

∂V

)
T

� T

(
∂p

∂T

)
V

, (8.4.2)

neglecting the pressure p as small compared with ∂E/∂V . Secondly, one in-

vokes the specific heat difference through

Cp − Cv = −T

(
∂p

∂T

)2
V

(
∂V

∂p

)
T

(8.4.3)

Using the fluctuation theory result for the long wavelength limit k → 0 of

the liquid structure factor S(k) (essentially the Fourier transform of g(r), and

putting this together with Eqs. (8.4.1–8.4.3) yields, with γ = Cp/Cv,

Ev

kBTm
=

[
(γ − 1)CV /kB

S(0)

] 1
2
∣∣∣∣
Tm

(8.4.4)

March (1989) now introduces elastic moduli in the liquid phase. With

application of a high-frequency stress, a liquid responds as a solid and among

other effects will exhibit rigidity. March (1989) has used the arguments of

Schofield (1966) who relates the rigidity G to the liquid structure factor and

an (assumed) pair potential. Schofield establishes an inequality which is used

by March (1989) to show that

γ

S(0)|Tm
≤ 5

3

G

ρkBT

∣∣∣∣
Tm

. (8.4.5)

Using this inequality in conjunction with Eq. (8.4.4) leads to

EV

kBT

∣∣∣∣
Tm

≤
[
5CV

3kB

(
γ − 1
γ

)
GΩ

kBT

]
Tm

(8.4.6)

where Ω is the atomic volume.

Equation (8.4.6) was developed a little further by March (1989) by follow-

ing Johnson (1988) and adopting scaling of GΩ with kBTm. Then, one can

eliminate kBTm from the inequality (8.4.6) in favour of a ‘constant’, J say,

equal to GΩ/kBTm, to yield

Ev ≤
[
5

3

Cv

kB

(
γ − 1
Jγ

)]1/2
GΩ

∣∣∣∣
Tm

, (8.4.7)
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This inequality is the main result of this section.

The above treatment of Ev at the melting temperature Tm leads to the

weaker link than Johnson’s result (now T = 0) between Ev and rigidity G

via the inequality (8.4.7). Nevertheless, it is to be stressed that there is no

conflict between Johnson’s finding from a simplfied version a ‘glue’ model and

the above result (8.4.7), which, it must be reiterated, has only been established

at the melting temperature Tm.

8.5. Screw Dislocation Core Structures for Niobium and

Molybdenum

Vitek (1995) has reported screw dislocation core structures which were

calculated by means of Finnis-Sinclair type potentials for bcc niobium and

molybdenum. The calculated core structures given by Vitek (1995) are

displayed in Figs. 8.1 and 8.2 (Figs. 3 and 4 from Vitek, 1995). To aid

understanding of these figures, and again following Vitek (1995), the orienta-

tions of all the {110} and {112} planes belonging to the [111] zone are shown
in Fig. 8.3 (Fig. 5 of Vitek, 1995).

Figures 8.1(a) and 8.2(a) show the screw components while Figs. 8.1(b) and

8.2(b) display the edge components. In the first case the length of the arrows

used is normalized by |a6 [111]| and when the magnitude of the displacement
is equal to this value the length of the corresponding atom is equal to the

separation of the neighbouring atoms (Vitek, 1995) in the second case the

vectors have been magnified by a factor of ten. The main feature of the cores,

Fig. 8.1. Core structure of the 1/2[111] screw dislocation in molybdenum. (a) Screw com-
ponent. (b) Edge component.
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Fig. 8.2. Core structure of the 1/2[111] screw dislocation in niobium. (a) Screw component.
(b) Edge component.

Fig. 8.3. Orientation of the [110] and [112] planes belonging to the [111] zone.

the non-planar spreading, first proposed by Hirsch (1960, 1979) is the same

in both cases. Nevertheless, the calculated core structure in molybdenum and

niobium can be seen from the figures to be somewhat different.

(i) Detailed results for molybdenum core structure

As Vitek (1995) points out, for molybdenum the core is relatively widely spread

into three {110} planes of the [111] zone, with further spreading into {112}
planes. This induces in these planes shears in the twinning sense. This is

revealed in Fig. 8.2(a) (Vitek, 1995) by the fact that the arrows on these sides

of the {110} planes where the corresponding {112} planes are sheared in the
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twinning sense, are large than on the other sides. Further, as is evidenced

in Fig. 8.2(b), the displacements inside the core also possess significant edge

components. Vitek (1975, see also 1995) gives symmetry arguments that the

dislocation core may exist in two related variants and therefore this core con-

figuration is termed a degenerate structure.

(ii) Results for niobium core structure

In contrast to molybdenum above, the niobium core structure turns out to

be invariant with respect to all the symmetry operation of the lattice. This

different core structure is thus termed non-degenerate. This time the core

spreads symmetrically into the three {110} planes of the [111] zone, but is
much narrower than for molybdenum. Vitek (1994, 1995) observes, from the

evidence in Fig. 8.2(b) that there are now no significant edge components of

the core displacements. Furthermore, twinning-antitwinning asymmetry is not

visible in the core spreading. Nevertheless, studies of the effect of external

stresses on this core by Vitek et al. (1995) exposed this asymmetry in the

orientation dependence of the crss.

To summarize the above, following Vitek (1994, 1995), the results of his

work reported above show that both the degenerate and non-degenerate states

are feasible for the core structure of the bcc screw dislocations and indicate

that the former is appropriate for molybdenum and the latter for niobium.

Vitek also emphasizes that while the twinning-antitwinning asymmetry ap-

pears in both cases, the edge component of the core displacements is only in

evidence in the degenerate case. Due to this component, the non-glide shear

stresses, perpendicular to the Burgers vector, can have a pronounced effect on

the behaviour of the dislocation core and induce significant departures from

the Schmid law (Vitek et al., 1992; 1995). It is relevant in the present context

to note that the experimentally observed orientation dependence of the crss is

substantially less for niobium than it is for molybdenum (Bowen et al., 1967;

Vesely, 1968; Duesbery and Foxall, 1969).

8.6. Quantum-Chemical Model of Cold Metallic Lattice Energies

as Function of Coordination Number c

Following these examples of “glue” models, we turn in this section to a differ-

ent route, via quantum-chemical modelling, to represent the energy of crystal

lattices as a function of near-neighbour distance r0 and coordination num-

ber c. The treatment below follows the study of March, Tosi and Klein, and

presents results of March and Rubio (1997) on metallicK lattices with different
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coordination number (see the related Fig. 7.5 for the screening charge around

an ion K+ in a Fermi gas of density equal to that of the conduction electrons

in metallic K).

The basic equation of the quantum-chemical approach is for the cohesive

energy Ec

Ec =
1

2
cR(r0)− f(c)g(r0) . (8.6.1)

March et al. (1995) note that R(r0) and g(r0) are now characterized by the

appropriate curves of the quantum-chemical dimer. This is K2 in the example

worked out by March and Rubio. One needs ‘potential energy curves’ for K2

for the ground singlet (Σg) and triplet
3Σu excited states. R(r0) is the triplet

3Σu potential curve in Eq. (8.5.1.) while g(r0) is the ‘exchange’ part, which

is half of the difference between the triplet 3Σu and the singlet
1Σν potential-

energy curves.

As noted byMarch et al. (1995), Malrieu et al. (1984) have given Eq. (8.5.1)

for fcc (c = 12), bcc (c = 8) and simple cubic (sc)(c = 6) respectively. These

results correspond to f(c) defined in Eq. (8.6.1) as 4,4 and 3. The work of

March and Rubio (1997) leads them, by study of the diamond lattice of K

atoms, and of chains to f(4) � 2.9, f(2) � 1.2. Thus (compare Eq. (8.2.5) for
Al at one chosen r0) f(c) varies more slowly than linearly with c.

Without going into full details, March and Rubio (1997) have compared the

model (8.6.1) using specific ‘potential energy curves’ for K2 from the chem-

ical literature, with density functional calculations on metallic K lattices of

different coordinate number, the latter approximates the exchange-correlation

potential Vxccr in the Slater-Kohn-Sham one-electron Schrodinger equation

by local density formula (i.e. homogeneous electron liquid, with the constant

density ρ0 there replaced by the local electron density ρ(r) in the periodic

metal crystals). The agreement between the quantum-chemical model and the

density functional calculations is impressive over a range of near-neighbour

distances r0 for the lattices of different coordination numbers c examined by

March and Rubio (1997).

8.7. Further Work on Dislocations and Grain Boundaries

8.7.1. Body-Centred Cubic Metals

As Vitek (1994, 1995) notes, some of the first atomistic studies of dislocations

were carried out on bcc metals. The reason was that their plastic behaviour

shows striking contrast with that of fcc metals (Kubin, 1982; Christian, 1983;

Duesbery, 1989).
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In the fcc metals, the slip systems are always 〈110〉 {111}, the critical
resolved shear stress (crss) is small and essentially independent of orientation

and temperature (∼ 10−5 G at 4.2K) obey the Schmid law already discussed in
Chap. 2. As Vitek (1994, 1995) points out, it is not always recognized that the

above law contains two distinct assertions. The first (compare Chap. 2) is that

plastic flow begins when the resolved shear stress on a possible slip system

reaches a constant, critical value. The second assertion is that this critical

stress is not affected by any other component of the applied stress tensor (see

Vitek, 1994, 1995).

For the bcc metals, slip occurs in the close-packed 〈111〉 directions but the
slip surfaces, not always planar, vary with orientation and sense of the applied

stress. This violates the Schmid law and suggests an intrinsic anisotropic

resistance to the slip in these bcc materials (Vitek, 1994, 1995), The crss is

now strongly dependent on temperature, with values as large as 10−2 G at

4.2K and depends on the orientation of the applied stress. Since prominent

deformation features are the same in alkali and in transition metals (Duesbery,

1989; see also Depersio and Escaig, 1977; Sakia et al., 1979), Vitek (1994, 1995)

stresses that this points to insensitivity to detailed bonding and force law in

the case of the bcc structure.

Early atomistic studies of Vitek et al. (1970), Vitek and Bowen; see also

Vitek (1975) confirmed the proposal of Hirsch (1960, 1979) that the major

aspects of the deformation characteristics of bcc metals can be explained by

the non-planar spreading of the cores of 1/2〈111〉 screw dislocations into several
planes of the 〈111〉 zone.
However, in spite of the generalities referred to above in bcc metals, the

deformation behaviour of all transition bcc metals is not the same.

It is of interest to reiterate some examples of grain boundaries carried out

with Finnis-Sinclair potentials, already discussed in Chapter 3.

8.7.2. Grain Boundaries in Metals and Alloys

(1)
∑
= 3 tilt boundary with a 〈112〉 rotation axis in Cu

Atomistic studies by Schmidt et al. (1995) have revealed that a particular∑
= 3 tilt boundary with a 〈112〉 rotation axis stabilized Cu in the bcc con-

figuration. Cu has earlier been observed in the bcc form either as an epitaxial

layer formed on a substate of bcc iron by Celinski et al. (1991) or as small

precipitates in a bcc Fe matrix (Jenking et al., 1991). The study of Schmidt

et al. (1995) demonstrates that the bcc structure can also occur under purely
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material constraints in grain boundaries. The boundary under discussion is an

asymmetrical tilt configuration with inclination of the boundary plane 84◦ with
respect to the usual (111)/(111̄) coherent twin. Laub et al. (1994), by thermal

studies referred to in Chapter 3, obtained indications that the boundary energy

of
∑
3〈112〉 tilt boundaries has a minimum at this inclination of the boundary

plane.

The atomistic calculations, using glue model potentials for Cu (Ackland

et al., 1987) demonstrate that a layer of bcc structure forms in this boundary

and {110}bcc planes connect the {111}fcc planes of each grain (see also Vitek,
1995). Vitek stresses that the structure of the phase boundaries between bcc

and fcc is a near coincidence type, involving a compromise in lattice strains.

It is best suited to this specific boundary inclination and accounts for its lower

energy relative to neighbouring inclinations. However, a necessary prerequi-

site is that the energy difference between bcc and fcc Cu is especially small

(0.023 eV/atom: see Vitek, 1995). This was, in fact, demonstrated by the ab

initio calculations of Paxton et al. (1990) and of Kraft et al. (1993). The struc-

ture discussed above has been confirmed experimentally by HREM (Schmidt

et al., 1995): see also Chapter 3.

(2) Grain boundaries in copper-bismuth alloys

As discussed in Chapter 3, the copper-bismuth system is well suited to study

segregation and embrittlement phenomena.

Some of the experimentally observed facts are briefly summarized in

Chapter 3: a phenomenon discussed there is the segregation induced faceting

(Ference and Balluffi, 1988). As Vitek, (1995) stresses, this phenomenon is as-

sociated with the formation of a new two-dimensional phase. This motivated

a combined atomistic theoretical and HREM investigation, which not only re-

vealed the existence of this phase but also determined its detailed structure

(Luzzi, 1991; and Yan et al., 1993: see also Chapter 3).

Finnis-Sinclair type many-body potentials were used. The Cu-Bi interac-

tion was fitted to (i) the lattice parameter (ii) bulk modulus of the theoretical

Cu3Bi compound in the Ll2 structure and (iii) the enthalpy of mixing for the

Cu-Bi liquid solution at 1200K. The parameters for the Ll2Cu3Bi structure

were found from an ab initio LMTO calculation (Yan et al., 1993; Vitek, 1995:

see Chapter 3).

This form of many-body potentials was used to calculate the structure of

(111)/(111̄) facets containing Bi. Vitek (1995) describes the structure of the
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(111)/(111̄) facets containing Bi; first extracted from HREM observations (see

Appendix 2.1) and then confirmed as the stable structure by molecular statics

calculations (see Chapter 3).

As discussed in Chapter 3, this study demonstrates that a two-dimensional

ordered phase may form at the (111)/(111̄) twin boundaries in Cu-Bi provided

a sufficient amount of Bi is available at this boundary. Vitek stresses that

these results provide concrete evidence that empirical many-body potentials

are very useful even in a relatively complex Cu-Bi system, provided sufficient

relevant input is employed to construct them. He emphasizes in the present

example the importance of ab initio electronic structure calculations, which

sample atomic configurations not attainable in the laboratory. Such input

allows the size of a Bi atom when surrounded by Cu atoms to be correctly

incorporated (see Chapter 3).

(3) Grain boundary in NiAl with Finnis-Sinclair potentials

The structural unit of the
∑
= 5, (310) [001] grain boundary in NiAl is shown

in Fig. 8.4. Atomistic calculations were performed by Fonda et al. (1995) using

N-body empirical potentials constructed following the Finnis-Sinclair (1984)

approach (compare Ackland et al., 1987). The total energy E of the system of

N atoms is expressed as in Eq. (3.7.3) of Chapter 3.

We reiterate that the Ni-Ni potential was adjusted to fit (i) to experimental

lattice parameter (ii) cohesive energy (iii) elastic constants and (iv) vacancy

formation energy of pure Ni (Ackland et al., 1987). The procedure for con-

structing the Al-Al potential was analogous to that for Ni-Ni (Vitek et al.,

1991). For separations less than the first nearest-neighbour distance in the Al

fcc structure, the Al-Al repulsive interaction was increased in order to make the

Al antisite defect on Ni site energetically unfavorable relative to the formation

Fig. 8.4. Structural unit of the Σ = 5, (310) [001] grain boundary in NiAl. Sites A–D and
F are Ni atoms and sites E, G and H are Al atoms in the stoichiometric boundary.
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of double vacancies on Ni sites. Fonda et al. (1995) base this requirement on

the evidence that Al enrichment in NiAl is associated with the formation of

constitutional vacancies on Ni sites (Bradley and Taylor, 1937; Wasilewski,

1968).

The Ni-Al interactions were constructed as follows (Fonda et al., 1995).

φNiAl was written as the geometric mean of the φ potentials for pure Ni and

pure Al; this is consistent with its interpretation in terms of hopping integrals

(Ackland et al., 1988). The direct interaction VNiAl, finally, was constructed to

reproduce (i) the known lattice constant (ii) cohesive energy and (iii) elastic

constants of the NiAl B2 compound. At atomic separations smaller than the

first nearest-neighbour distance, VNiAl was adjusted by Fonda et al. to obey

equation of state requirements. With these potentials, the NiAl B2 structure

is energetically favoured over the Ll0 structure and is also stable up to 2000K.

In addition, these potentials give the energy of the [110] antiphase boundary

to within the experimentally known range (Miracle, 1993: see also Chapter 3).

8.8. Friction, Mechanical Properties and Interatomic Interactions*

Bhushan and coworkers (1990, 1994) measured the identation hardness of sur-

face films with an identation depth as small as 1 nm for Si(111) and used AFM

measurements to show that ion implantation of silicon surfaces increases their

hardness and thus their wear resistance. They studied friction mechanisms on

an atomic scale, a well characterized freshly cleaved surface of highly oriented

pyrolytic graphite (HOPG), the atomic-scale friction force of which exihited

the same periodicity as the corresponding topography, but the peaks in fric-

tion and those in topography were displaced relative to each other. A Fourier

expansion of the interatomic potential was used to calculate the conservative

interatomic forces between atoms of the AFM (see Appendix 2.5) tip and those

of the graphite surface. Maxima in the interatomic force do not occur at the

same location in the normal and lateral directions.

Landman et al. (1993, 1995) employed large scale molecular-dynamics

simulation to calculate Newtonian equations of motion of some thousand atoms

subjected to appropriate boundary conditions. The nature of the many-body

interactions were derived from quantum-mechanical calculations. They deter-

mined the structural, energetic, dynamical and mechanical properties of the

system on nanometric distance scales and femtosecond timescales. They found

*See also A. M. Stoneham, M. M. D. Ramos and A. P. Sutton, Phil. Mag. A67, 797 (1993).
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that for a clean gold substrate contacted by a nickel tapered and faceted tip,

and for a nickel surface and a gold tip, an instability occurs as the tip ap-

proaches the sample to distance of about 4 Å. At this point, a jump to contact

occurs with gold atoms being displaced by about 2 Å in about 1 picosecond

and with adhesive bonding between the two materials driven and accompa-

nied by atomic-scale wetting of nickel by gold atoms. They argued that the

latter is the result of differences in their surface energies, just as it is for the

case of surface wetting by a liquid film. Retraction of the tip from the surface

after contact causes inelastic deformation of the sample formation of a con-

nective neck of atomic dimensions and eventual rupture. Similar simulations

between the surfaces of crystalline ionic solids (CaF2) and between semicon-

ductor surfaces (silicon) showed similar jumps to contact and force hysteresis,

but less easily deformed plastically and rather tending to brittle failure. Some

of these results have been used to calculate the crss of sheared interfaces and

its temperature dependence: these predictions can be tested by experiments.

8.9. Empirical Potentials vs Density Functional Calculations

for Mechanical Properties

In concluding this chapter, we refer to the article by Heine (1994), who dis-

cusses in general terms the ab initio simulation of complex processes in solids.

He discusses the question ‘Will we ever be able to trust empirical potentials’

and points out that it can be countered by the challenge ‘Can we ever trust ab

initio LDA (local density approximation, density functional) calculations.’ To

the first question, he writes in the above article that in the area of metals, the

various types of glue models considered in this present chapter include metal-

lic many-atom bonding and are vastly better than the models that preceded

them. But LDA is also being transcended and density gradient corrections ap-

pear to improve results to the point where such calculations have become one

focus for theoretical chemistry. Heine takes the example of a grain boundary

between two grains of given orientation, and notes that are four overall degrees

of freedom aside from relaxing individual atomic fractions near the boundary.

And that just sets the lowest energy configuration of one type of boundary,

before one considers any sliding or impurities. ‘How to use efficiently the new

generation of machines with parallel architecture’ will become an important

issue as one approach to extending understanding of mechanical properties of

metals.



Chapter 9

Positron Annihilation: Experiment
and Theory

9.1. Background

The extreme sensitivity of positrons to crystal imperfections in metals and

alloys (vacancies, impurities and their aggregates, various types of dislocations,

stacking faults, grain boundaries as well as surfaces) makes the positron anni-

hilation method capable of yielding unique information on the concentration,

configuration and internal structure of lattice defects in solids. (Hautojärvi

and Corbel, 1995; Nieminen and Manninen, 1979; Nieminen, 1995). For ex-

ample, Schaefer et al. (1992) and Badura et al. (1995) reported their studies of

high-temperature thermal vacancy formation in the intermetallic aluminides

Fe3Al and Ni3Al by means of positron lifetime spectroscopy. The intermetallic

ordered alloys are considered to be of importance as future structural mate-

rials due to their favourable high temperature mechanical properties. Deng

et al. (1995) studied the effects of Nb and Mg on microdefects in NiAl alloys.

The experimental results show that there are large-open-volume defects oc-

curring on the grain boundaries in NiAl alloy and the weakness of the grain

boundary is due to less valence electrons participating in metallic bonds there.

The densities of valence electrons in bulk and grain boundary increase with

the addition of Nb atoms, but decrease with the addition of Mg atoms.

Shen et al. (1986) calculated the positron annihilation effects of a simple

dislocation core model and showed that the effects at pure dislocation lines

are large enough to be measurable even though much weaker than at vacan-

cies. Shi et al. (1990) combined positron lifetime measurements at 100K with

TEM observations on the dislocation structure in deformed zinc single crystals,

and showed that the lifetime of positrons trapped and annihilated in basal

269
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dislocation lines increases by about 20% compared with that in the bulk.

Positrons would be trapped in deeper traps (jogs) via the dislocation line when

the jog concentration along it is sufficiently high. Shirai et al. (1992) studied

the systematic change in positron lifetime with the magnitude of Burgers vec-

tors of dislocations in Al, Cu, Au and Cu-8%Ge alloy. Their results showed

that positron annihilation parameters observed predominantly come from dis-

location lines themselves and also that positron lifetime spectroscopy can be

used to differentiate between different types of dislocations.

Another area where positrons can be employed is in studies of the electronic

structure of metals and alloys. A comprehensive study of spin-dependent ρ(p)*

in Fe is reported by Genould et al. (1988). Singru (1995) reviewed the study of

the angular correlation of positron annihilation radiation in transition metals

in relation to their Fermi surface shape and electron momentum distribution.

Several texts (West, 1973: Hautajärvi, 1979; Brandt and Dupasquier,

1983; Dupasquier and Mills, 1995) providing an introduction to the subject

of positron annihilation in solids exist in the literature. In addition, the pro-

ceedings of ICPA-1 to ICTP-10, the successive International Conferences on

Positron Annihilation, provide a valuable collection of research and review

papers describing the studies of metals using positrons. Readers are recom-

mended to consult these sources for full details of this field. In the following

sections of this chapter, we can give only a brief introduction to experiment and

theory,† while the work on defects and mechanical properties will be reported
in somewhat more detail.

9.2. Interaction of Positrons with Vacancies in Metals

The positron distribution in metals is closely related to potential energy as

follows. The potential energy U(r) comes from the Coulomb attraction of the

electrons and the Coulomb repulsion on the ion cores. Consequently, near the

ion core regions, its wave function amplitude is small but in the interstitial

space between the ions, it increases rapidly to become a maximum. Figure 9.1

schematizes the potential energy of a positron in a direction of the crystal

through both the minima of the potential energy and the lattice sites. In this

figure, the energy of the positron ground state is denoted by ε0 (see Seeger,

1973; 1976; also see Lung and March, 1986).

*ρ(p) is used for the momentum density
†See also J. A. Alonso, J. Jiang, C. W. Lung, J. Y. Wong and N. H. March, An. Fis. (Spain)
93, 136 (1997).
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Fig. 9.1. Potential energy of a positron, U(r), in a crystal direction going through the atom
sites and the positions of minimum potential energy. The energy of the positron ground
state in the potential is denoted by εc.

Fig. 9.2. Potential energy of a positron near a vacancy. The difference between the positron

ground state in the perfect crystal and the energy of the bound state is denoted by ∆ε.

If a vacancy is introduced into a perfect crystal, i.e., an ion in the perfect

crystal is removed to the surface and the gas of the conduction electrons allowed

to fill the additional lattice cell at the surface, the conduction (and valence)

electrons at and near the vacancy redistribute in such a way that the effective

negative charge created by the removal of the ion core is completely screened.

After this process, a repulsive (positive) self-consistent electron potential at

the vacancy is formed. Then, positrons feel an attractive potential. A bound

state for positrons may be formed, and thus the positron wave function may

become localized at the vacancy. The annihilation characteristics of a positron

binding to a vacancy are different from those of the perfect crystal. Since the

electron density at a vacancy is reduced compared to the perfect lattice, the

lifetime of a trapped positron,* τt, is longer than that of a free positron τf

*Early independent proposals of the trapping model are by B. Bergersen and M. J. Stott
(Solid St.Commun. 7, 1203, 1969) and D. C. Connors and R. N. West (Phys. Lett. 30A,
24, 1969).
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Table 9.1. ∆τ/τf values of various metals.

metal τf (ps) ∆τ (ps) ∆τ/τf

Al 172 65 0.378

In 206 64.5 0.313

Zn 175 56 0.320

Cd 200 55.5 0.2775

Pb 220 54 0.245

Tl 210 20 0.095

Mg 235 20 0.085

(the so-called long-slit angular-correlation curves are narrower than for a free

positron). Figure 9.2 depicts the potential energy of a positron near a vacancy.

ε0 is the energy of the positron in the bound state, ∆ε = εc− ε0 being the

binding energy.

The relative difference of the two lifetimes (∆τ = τt − τf ) can sometimes

characterize the depth ∆ε of the bound-state energy ε0. Because of the differ-

ence of τf in different metals, we may use ∆τ/τf as a parameter representing

the binding strength of a positron to a vacancy. Table 9.1 shows ∆τ/τf values

of various metals taken from Seeger (1973). In general, this rule seems to be

working well, though Tl and Mg need further study.

The relationship of τt and ∆ε may be discussed in another way (see Seeger,

1973; also Lung and March, 1986). Trapping effects can only be observed if the

positron does not escape from its trap before it annihilates. From the analogy

to chemical rate theory, Seeger (1973) assumed the escape rate from a trap of

depth ∆ε to be of the order of magnitude

νt =
kBT

h
exp

(
− ∆ε

kBT

)
(9.2.1)

where h is Planck’s constant, kB Boltzmann’s constant, and T the absolute

temperature. Thus the criterion for observing trapping effects is qualitatively

τtνt < 1 . (9.2.2)

Then, from (9.2.1) and (9.2.2)

∆ε > kBT ln

(
kBTτt

h

)
. (9.2.3)
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Table 9.2. ∆ε values for various metals calculated using pseudopotential theory.

Metal Li Na K Mg Zn Cd Al In Sn Pb

∆ε (eV) 0.1 0.1 0.1 0.9 1.1 0.8 2.0 1.4 1.4 1.2

Table 9.3. Positron-annihilation parameters in various defect models (Al)
(Shen et al., 1986).

Model τt (ps) τf (ps) ∆ε (eV) ∆τ/∆ε (ps/eV)

Vacancy 251 168 2.2 37.7

Cylindrical hole 229 168 2.1 29

Arponen et al. (1973) 229 168 2.8 21.8

Peierls-Nabarro model 183 168 1.1 13.6

With τt = 2×10−10 s, the right-hand side of (9.2.3) gives 0.15 eV for T = 250K
(typical of alkali metals) and 0.72 eV for T = 1000K (typical of noble metals).

For monovalent metals this means that the noble metals are more likely to

exhibit trapping at vacancies than the alkali metals. A larger valency is also

favourable for positron trapping (Table 9.2), since the depth of the potential

well increases with increasing screening charge in the Mott-Fumi model. At

the time of writing, trapping effects have been observed in Cu, Ag, Au, Mg,

Zn, Cd, Al, In, Tl and Pb.

Shen et al. (1986) have calculated the positron trapping and annihilation

parameters with two simplified defect-core models representing dislocations.

The calculation with the Peierls-Nabarromodel indicates that a relatively small

but measurable lifetime change is associated with a relatively large value of the

positron-binding energy ∆ε. As the extended character of the defect model

increases, the ∆τ/∆ε value decreases monotonically (Table 9.3). This means

that for different types of defects, one cannot conclude whether ∆ε1 is larger

than ∆ε2 or not if one only knows that τt1 is larger than τt2, even if the

inequality (9.2.3) holds.

9.3. Trapping Model

We should consider situations in which some transitions between the vari-

ous possible states occur in times comparable with that for annihilation. A
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complete analysis requires, in principle, an understanding or a microscopic

model of the mechanisms by which such transitions occur. Complex and com-

prehensive analysis has been set out by Brandt and Paulin (1972), and Seeger

(1973, 1976). A simple rate equation approach involving time-independent

transition rates has been presented by West (1973, 1979).

The following is the calculation by Seeger (1973, 1976), in which the specific

trapping rate, µj(t) is time dependent for discussions on the positron diffusion

mechanism and the enthalpy of formation of vacancies.

Let nf and τf denote the concentration and lifetime of free positrons. We

consider positrons in different types of traps and denote the concentration of

traps of type j by cj , the specific trapping rate by µj(t), the concentration of

positrons localized at these traps by nj , the positron lifetime in the trapped

state by τj and the rate of escape of positrons from the trap by γj (per unit

concentration). Making the plausible assumption that the initial distribution

(at time t = 0) of positron-trap pairs is uniform, the solution of a set of m+1

rate equations is obtained. These can be used to calculate the mean lifetime

τ̄ of positrons.

dnf (t)

dt
= −


 1

τf
+

m∑
j=1

µj(t) cj


nf(t) +

m∑
j=1

γj nj(t)

dnj(t)

dt
= −nj(t)

τj
+ µj(t) cj nf (t)− γj nj (t) (9.3.1)

(j = 1, 2, . . . ,m) .

If γj = 0, Eq. (9.3.1) may be integrated for given (µj(t)
.
= µj)

nf (t) = nf (0) exp(−t/τ0)

nj(t) = τ0τj
µjcj

τ0 − τj
nf (0) exp(−t/τ0) +

[
nj(0)− τ0τj

µjcj

τ0 − τj
nf (0)

]
exp(−t/τj)

where
1

τ0
=
1

τf
+

m∑
j=1

µjcj . (9.3.2)

The mean lifetime is

τ̄ = − [nf(0) +
∫∞
0

∑m
j=1 nj(t)dt]

nf (0) +
∑m

j=1 nj(0)
. (9.3.3)
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Suppose that no trapped positrons exist at the initial time, i.e.

nj(0) = 0 , j = 1, 2, 3, . . . ,m , nf (0) = 1 .

Equation (9.3.3) may be simplified to become

τ̄ = τf ·
1 +
∑m

j=1 τjµjcj

1 + τf
∑m

j=1 µjcj
. (9.3.4)

Equation (9.3.4) is equivalent to Eq. (3.12) in West’s paper (1979) and

Hautojärvi and Corbel (1995), in which λ1 = τ−1f , K1j = µjcj . If m = 1,

that means one type of trapping only

τ̄ = τf · 1 + τ1µ1vC1v

1 + τfµ1vC1v
(9.3.5)

or in familar form

τ̄ − τf

τt − τ̄
= τfµ1vC1v , or

τ̄ − τf

τt − τf
=

µ1vC1v

τ−1f +C1vµ1v
. (9.3.6)

The process of positron capture at defects is basically a quantum-mechani-

cal one, especially in the case of weak trapping and the positron near the traps

not locally depleted.

However, there is a possibility that the mobility of the untrapped positron

sets a limit to the trapping rate, shifting the process from the transition-limited

regime discussed above to the diffusion-limited one. In this case, the diffusion

theory is applied and the process would be temperature dependent.

Manninen and Nieminen (1981) considered the thermodynamics of detrap-

ping for vacancies. Models for positron trapping at dislocations without de-

trapping (Hautojärvi, 1979; Xiong, 1986) and with detrapping (Xiong and

Lung, 1988; Hautojärvi and Cobel, 1995) were proposed for analyses of dis-

location processes in materials. Different initial conditions are assumed to

predict positron annihilation properties at grain boundaries of Zn-23wt% Al

(Yan et al., 1991).

9.3.1. Positron-Diffusion Mechanism and Enthalpy of Formation of

Monovacancies

If the traps are entirely characterized by the radii rj of spherical attractive

potential wells then (Seeger, 1973, 1976; or see Lung and March, 1986)

µj(t) =
4πγjD

Ω
[1 + rj(πDt)−1/2] (9.3.7)
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where Ω is the atomic volume and D the positron-diffusion constant. If t is

sufficiently large then*

µ ≈ 4πDr1v

Ω
. (9.3.8)

In the case where diffusion and transition compete, the full time-dependent

diffusion equation must be solved (Hautojärvi and Corbel, 1995). For more

details, see Dupasquier (1995), for the monovacancy case. Equation (9.3.5)

can then be written as

τ̄ = τf
1 + 4πr1vC1vτ1vD/Ω

1 + 4πr1vC1vτfD/Ω
. (9.3.9)

The concentration of vacancies in thermal equilibrium at absolute temperature

T is given by

C1v = exp

(
− GF

1v

kBT

)
= exp

(
SF1v
kB

)
exp

(
−HF

1v

kBT

)
. (9.3.10)

From (9.3.10) and (9.3.9), we find

HF
1v = kBT

[
SF1v
kB

ln

(
4πD

Ω
r1vτf

)
+ ln

(
τ1v − τ̄

τ̄ − τf

)]
. (9.3.11)

Fig. 9.3. Temperature dependence of mean positron lifetime τ̄ due to trapping by monova-
cancies in thermal equilibrium.

*In Eq. (9.3.8) r1v is the radius of the spherical attractive potential well of the monovacancy.
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Equation 9.3.9 shows that the mean lifetime τ̄ increases with increasing vacancy

concentration C1v or with increasing temperature from the value τf character-

istic of a defect-free crystal to the value τ1v characteristic of a situation where

the vacancy concentration is so high that all positrons are trapped in a time

short compared with the lifetime. This leads to a temperature dependence

as shown in Fig. 9.3. We have assumed that τf and τ1v are temperature in-

dependent. In reality, both quantities may be weakly temperature-dependent

because of thermal-expansion effects; r1v and Ω are also weakly temperature-

dependent for the same reason.

The diffusion coefficient D of the positrons appears in (9.3.11). We can

introduce a positron mobility µ through the Nernst-Einstein relationship.

D = kBTµ/e . (9.3.12)

Owing to experimental difficulties, there exist few direct measurements of

positron mobility in condensed matter. Sometimes the results may be in-

fluenced by the effect of the electric field on the kinetic mobility prior to ther-

malization. Bergersen et al. (1974) have calculated the various contributions

in a number of simple metals. The main contribution of scattering is from

acoustic-phonon scattering. The contribution due to impurity scattering of

conduction electrons is very small (see Nieminen and Manninen, 1979). How-

ever, there are good reasons to expect that typical diffusion constants are of

the order Dt ≈ 0.1 − 1.0 cm2/s at around room temperature. The average

diffusion length before annihilation can be obtained by Fick’s law R2 ≈ 6Dτ

where τ is the lifetime of positrons and D is the diffusion coefficient. In gen-

eral, during the lifetime τ ≥ 10−10 s, the thermalized positron diffuses over a
volume of about (1000 Å)3 (see Paulin, 1983). However, this is the calculated

result under the condition that high purity and defect-free materals have been

assumed. Actually, there are many defects and impurity atoms in industrial

materials. The relation R2(t) ∼ t would not hold in these systems; the diffu-

sion length of thermalized positrons in this case would be different from that

in high-purity defect-free materials.

Lung (1995) discussed the positron diffusion process in fractals medium.

The common feature of these models is that transport can be anomalous, the

mean square displacement scales with time as R2
f (t) ∼ t2/dw , where dw > 2 is

the fractal dimension of the random walk. Lung reported that Rf (t) would be

much shorter than R, the average diffusion length in high-purity and defect-free

materials. This will be discussed in detail in Sec. 9.5.
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9.3.2. Trapping Rate

A quantum-mechanical approach to the trapping rate of positrons by vacancies

was first given by Hodges (see Nieminen and Manninen, 1979) using the Golden

Rule transition rate

σ =
2π

�

∑
i,f,t

Pi|Mi,f,t|2δ(εi − εf − εt) (9.3.13)

where Pi is the occupation probability of an initial positron state |i >, ε de-
notes energy, and the subscripts i, f, and t denote the initial and final states of

the medium and the trapped positron states respectively. The matrix element

Mi,f,t involves the overlap between the initial and final states as well as fac-

tors describing the specific energy-absorption mechanism. Usually, a binding

energy of the positron to the trap of the order of 1 eV will be liberated and

absorbed by elementary excitations of the solid. These are either electron-

hole excitations or lattice vibrations. In metals, the former should provide

the dominant mechanism, and (9.3.13) with a Boltzmann-type distribution Pj
of initial positron states then leads to an essentially temperature-independent

trapping rate for traps with small binding energy. For instance, the trapping

rate of positrons by dislocations may be discussed in terms of the Golden Rule

(Mckee et al., 1974).

σ = v−2/3
2π

�

∑
kz,k,k′

|〈0,k|v+|kz ,k′〉|2fk(1− fk′)

× δ

(
�
2k′2

2m
− �

2k2

2m
− εD +

�
2k2z
2m

)
(9.3.14)

with

〈0,k|v+|kz ,k′〉 = 1

v

∫
d3r

∫
d3r′Ψ∗0(r)Ψkz (r)v+(r − r′) exp[i(k− k′) · r′]

where εD is the positron binding energy of the deepest state due to a disloca-

tion line. Ψ0 is the lowest positron state propagating throughout the sample,

Ψkz is the trapped positron state propagating with momentum �kz along the

dislocation line, and v is the sample volume, v+(r) is the positron-electron

interaction potential, which is assumed to be screened but static. The sum

over kz must be restricted to the trapped states, that is �
2k2z/2m < εD.
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9.4. Positron-Annihilation Characteristics

A first-principles description of the positron-annihilation process constitutes a

difficult many-particle problem even for a perfect metal. We are not going to

describe how the annihilation characteristics for an electron-gas are calculated,

but rather our aim will be, by suitable approximations, to discuss how the

electron-gas data can be used in estimating the annihilation characteristics in

real metals and in defects.

In a homogeneous electron gas of density n the positron annihilation rate

can be written as (Nieminen et al., 1979)

λ(n) = λ0(n)γ(n) = πr20cnγ(n) (9.4.1)

where λ0 is the Sommerfeld free-electron formula, r0 the classical electron ra-

dius and c the velocity of light. γ is the density-dependent enhancement factor

due to the strong electron-positron correlation, which increases the electron

density at the site of the positron.

If the electrons and the positron are treated as independent particles then

the many-body wavefunction is a Slater determinant and the momentum dis-

tribution of the annihilation quanta is

Γ0(p) =
πr20c

(2π)3

∑
j

∣∣∣∣
∫

d3re−ip·rΨj(r)Ψ+(r)

∣∣∣∣
2

(9.4.2)

where Ψ+ is the ground-state positron wavefunction
* and the sum goes over

the occupied electron states Ψj . The conventional long-slit angular-correlation

apparatus measures only one component, pz, of the momentum distribution,

so that the angular-correlation curve is

I(pz) =

∫
dpx

∫
dpyΓ0(p) (9.4.3)

which reduces, in the isotropic case, to

I(pz) = 2π

∫ ∞
pz

dpΓ0(p) =
r20c

4π
(p2F − p2z)θ(pF − |pz|) . (9.4.4)

This is an inverted parabola, whose width is proportional to the Fermi momen-

tum pF . This describes well the observed angular correlation curves of simple

*For early work, see the calculation by B. Donovan and N. H. March (Phys. Rev. 110, 582
(1958)) for Cu metal.
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metals if one neglects the small broad Gaussian part due to the core electrons

and higher momentum components of the valence electrons.

In defect solids, at the vicinity of a lattice defect the electron-density dis-

tribution deviates from that of the perfect lattice-for a positron localized at

the defect, the overlap with the core electron is diminished as ions are missing

from the defect. This leads to narrowing in the angular-correlation curve. On

the other hand, the conduction electron density is also depleted at the defect

region, with a concomitant narrowing in momentum distribution. Further-

more, the localization increases the positron momentum — this is reflected as

a slightly pronounced tail of large momenta.

Two approximations have been proposed with the intention of estimating

the momentum distribution directly from the electron density. One is called a

local approximation — it replaces (9.4.4) by

I(pz) =
r20c

4π

∫
d3r|Ψ+(r)|2λ[n(r)][pF (r)2 − p2z]θ(p

2
F (r) − |pz|2) (9.4.5)

which means simply that at each point r the positron annihilation is as in a

uniform electron gas and produce a free-electron parabola whose width is de-

termined by the local density n(r). Another approximation has been proposed

by Arponen et al. (1973) which partly takes into account the non-local charac-

ter of the momentum distribution and is called mixed-density approximation.

The partial annihilation rate at total momentum p is

Γ(p) =

∫
d3r

∫
d3r′ exp[ip · (r− r′)Ψ∗+(r)Ψ+(r

′)

× g(pF (R)|r− r′|){λ[n(r)]λ[n(r′)]}1/2 (9.4.6)

where R = 1
2 (r + r′) and g is a function related to the electron-electron pair-

correlation function

g(z) =
3

z3
(sin z − z cos z) . (9.4.7)

This approximation also takes into account the momentum associated with

the localized positron state, this being ignored in the local model. The one-

dimensional angular-correlation curves for positrons annihilating in vacancies

in aluminium have been calculated by using the two approximation methods

discussed above. The mixed-density approximation is in a fairly good agree-

ment with the experimental results, whereas the local approximation clearly

overestimates the narrowing of the curve from the free-electron parabola,
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Fig. 9.4. (a) Angular correlation curves for valency electrons in an aluminium vacancy.
(Kusmiss and Stewart, 1967)

Fig. 9.4. (b) Angular correlation curve for positrons annihilating in dislocations of alu-
minium. (Arponen et al. 1973)

(Fig. 9.4). However, calculations by Shen et al. (1985) showed that the calcu-

lated angular-correlation curves are not sensitive to the choice of theoretical

model of calculation.

9.4.1. Vacancies and Vacancy Clusters

Hodges (1970) used the pseudoatom picture while Manninen et al. (1975)

used the density-functional method to study positron binding to vacancies.

In Fig. 9.5, the trapping potential and the positron pseudo-wavefunction are
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Fig. 9.5. Electron and positron densities, n and |ψ+|2, and positron trapping potential V in
an aluminium vacancy. Vcorr and φ are the correlation and electrostatic parts of the trapping
potential. (Manninen et al. 1975)

shown for aluminium. The binding-energy values for Al are sensitive to calcula-

tional details. However, the trapping potentials are very shallow for the alkalis;

both Hodges (1970) and Manninen et al. (1975) pointed out that positron-

binding energies for alkali metals are very small.

To transcend the jellium model, Gupta and Siegel (1977; 1980) employed

a supercell lattice model containing 26 Al atoms and a vacancy in the calcula-

tion of positron-annihilation characteristics in a crystal by the APW method.

Angular-correlation curves in Al were found to be in good agreement with

experiment, but the binding energy calculated by this method for Al seems

somewhat high. Also, detailed electron-positron correlations have been ne-

glected; these play a role for calculation of the lifetime and binding energy.

Furthermore, the vacancy concentration of the supercell model is higher than

that of any solid at the melting point.

The main results of the specific trapping rate, µ1V , calculated by Nieminen

and Laakkonen (1979) can be summarised as follows (µIv = K/cIv):

(1) µ1V = (10
14 − 1015) s−1 for a monovacancy.
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(2) µ1V increases with the positron binding energy. More electrons are

excited above the Fermi surface at higher Eb.

(3) µNV ≈ NµIV for small (N < 10) spherical clusters of N vacancies.

(4) µIV is independent of temperature. The thermal energy and momen-

tum of the free positron are negligible compared to the total energy

and momentum transferred in the process.

(5) µ for vacancy clusters is temperature dependent when the size is com-

parable to λ+th; the thermal de Brozlie wavelength of the positron.

There are uncertainties in the experimental value for the trapping coefficient

µ. Subsequently, Kluin et al. (1991) have correlated positron lifetime, dilatom-

etry, and lattice parameter experiments at high temperatures and obtained

‘absolute’ values for µ1V which are slightly lower than the estimates above.

In metals, calculations have been made assuming that the positron does

not drastically distort the defect one is examining. In the case of shallow

positron traps, where the ‘self-trapping’ effects due to the positron can be

important (see Nieminen, 1995), neglecting the positron-induced relaxations

tends to underestimate the positron localization. The best way to calculate the

positron-induced atomic and electronic relaxation is to include the positron in

the Car-Parrinello scheme* via the two-component density-functional theory.

An accurate plane-wave representation of the positron wave function can be

obtained, potentials and forces calculated accurately, and the ionic relaxation

pattern calculated self-consistently (Gilgien et al., 1994; see also Nieminen,

1995).

The annihilation characteristics of trapped positrons can be used as fin-

gerprints to identify defects. The experimental annihilation characteristics of

monovacancies can be directly measured and compared to theoretical calcula-

tions. However, it is safe to compare with other experimental methods, say

electric resistance measurements etc.

As for vacancy clusters, the annihilation parameters are very sensitive to

their radii. Small spherical cavities can be treated as vacancy clusters. The

calculated lifetime for 3D unrelaxed vacancy clusters in Al and Fe are shown

in Fig. 9.6 as a function of the void radius. Nieminen (1979) pointed out that,

since the number of vacancies is small, the trapping rate of the void is approxi-

mately proportional to the number of vacancies. When the void size increases,

the lifetime rapidly approaches its saturation value, 500 ps, which corresponds

*See, for example, the review by P. A. Madden.
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Fig. 9.6. Positron lifetime at three-dimensional vacancy clusters in Al and Fe. The points
represent the results of theoretical calculations. The solid lines are only to guide the eye.
From Puska and Nieminen, (1983).

to the zero-density limit of the annihilation rate. The deviations from the

smooth curve reflect the discrete structures of the clusters.

Calculations by Corbel et al. (1986) show that the positron lifetime strongly

depends on the geometry of a cluster. In a strongly relaxed vacancy cluster the

lifetime may become even smaller than in a monovacancy. For a relaxed 2D

cluster (loop) the lifetime is about the same as in a monovacancy. For a given

lifetime, Fig. 9.6 gives always a lower limit for the number of monovacancies

in the cluster. The model overestimates the lifetimes in di- and trivacancies,

which in reality are far from spherical. It is also well known that larger clusters

should be considered as essentially macroscopic surfaces.

The sensitivity of annihilation parameters to the size of vacancy clusters

has been used to study the dependence of the apparent microvoid size on the

annealing process in electron irradiated Mo (Eldrup et al., 1976), the vacancy

clustering induced by impurities in cold worked Ni (Dlubek et al., 1979), and

the annealing process in electron — and neutron — irradiated iron and Fe-C

alloys (Hautojärvi et al., 1980).

It is well known that the vacancy concentration in thermal equilibrium is

given by (9.3.10). The formation enthalpy can be determined from the Arrhe-

nius plot of the positron trapping rate K = µ1V C1V in (9.3.6). The advantage

of the positron method is the high sensitivity to the vacancies at relatively

low temperatures (∼ 0.5 Tm) and concentration (∼ 10−6 at−1). Moreover, the
technique can be applied also to dilute and concentrated alloys. Since several

assumptions are needed in analysing experimental results on the temperature

dependence of the positron parameters in the pretrapping and saturation trap-

ping regions, the accuracy is limited to 5%. The role of divacancies near
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the melting point is open (Siegel, 1982; Schaefer, 1982), the vacancy migra-

tion energy enthalpies measured at high temperatures have often given con-

tradictory results to the direct observations of vacancy migration in irradiated

samples at low temperatures.

In general, small amounts of interstitial impurities have no effect on po-

sitron annihilation, since the positron is repelled from the region of high ion

density. The substitutional impurities may attract or repel the positron, de-

pending as a first estimate on the impurity size — the smaller the impurity,

the more free space is left for the positron. Some impurities such as H (Jena

et al., 1981), He (Snead and Goland, 1975), Li (Kubica et al., 1975), and C

(Hautojärvi et al., 1980) have also been investigated.

Hautojärvi et al. (1985) demonstrated experimentally that hydrogen im-

purities can be bound to vacancies, this being observed in Ta at 70K after

low-temperature alpha-particle irradiation. The vacancy-hydrogen-complex

formation shifts the vacancy migration to higher temperatures. Vacancy-

hydrogen complexes still retain the capability to trap positrons. The calcula-

tion by Hautojärvi et al. (1985) are in quite good accord with the experimental

observations on positron and hydrogen interactions with vacancies. From the

result for samples with hydrogen impurities they estimated the upper limit on

the vacancy-hydrogen binding energy to be 1.0–1.2 eV.

Theoretical calculations in conjunction with experiment can lead to esti-

mates of the position of the impurity atom from the centre of the vacancy. For

example, Hansen et al. (1984) showed that a N atom cannot be located near

the centre of the vacancy in Mo. Hautojärvi et al. (1985) pointed out that the

hydrogen trapped in a vacancy is partly delocalized over the entire vacancy,

having maximum densities outside the centre close to the adjacent octahedral

sites. Positrons can also trap at vacancies decorated by one or two hydrogen

atoms, and the calculated annihilation characteristics are in agreement with

positron-lifetime measurements.

Table 9.4 shows the calculated positron lifetime and binding energies in Al

vacancies with one to six H atoms near the Oh sites. The equilibrium site is

assumed not to depend on the number of H atoms in the vacancy, and when

more H atoms are considered they are assumed to surround the vacancy sym-

metrically. From Table 9.4 it can be seen that the lifetime difference between

a clean vacancy and one decorated by a single H atom is quite small (hardly

observable) when assuming a realistic position. The previously predicted life-

time (for one central H atom) of 204 ps is close to the lifetime in a vacancy

with six H atoms (Hansen et al., 1984).
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Table 9.4. Calculated lifetime τV−H and bind-
ing energies ∆ε for positrons in H-decorated
and Al vacancies (Hansen et al., 1984).

Number of atoms τV−H (ps) ∆ε (eV)

0 251 2.2

1 244 2.1

2 231 1.9

4 212 1.5

6 193 0.9

The positron lifetime at the vacancy containing a neutral hydrogen in alu-

minium has been estimated as 223 ps by Sankar and Iyakutti (1985). However,

Jena et al. (1981) have reported the lifetime of the positron in a vacancy-

hydrogen (as proton) complex to be 188 ps. To our knowledge at the time of

writing, there are no experimental data available for comparison.

The thermally activated positron detrapping of defects is also a subject

of some interest. Manninen and Nieminen (1981) showed that the ratio of

detrapping to trapping of vacancies is

ν

σ
= Ω0 exp

(
−SV

kB

)(
m∗kBT
2π�2

)3/2
exp

(
EV −Eb

kBT

)
(9.4.8)

where Ω0 is the volume of a unit cell, SV and EV are the vacancy-formation

entropy and energy respectively. Eb is the positron-binding energy due to the

vacancy. The temperature dependence and fluctuations of Eb are ignored in

(9.4.8). Actually, these are two opposing factors involved. On the one hand,

trapping effects are weakened by thermally activated positron detrapping due

to lattice vibrations, and, on the other hand, the nonlinear expansion of the

crystal lattice would enhance the trapping effects. It is difficult at present

to estimate these two effects accurately. Smedskjaer et al. (1985) measured

the Doppler-broadening parameters of nominally 99.8wt% pure niobium in the

temperature range 300–2580K. Their results showed no measurable effect due

to the presence of oxygen in niobium. The results were discussed in terms of

the two-state trapping model, paying attention to the possibility of thermally

activated positron detrapping from the vacancy.

Meyberg et al. (1985) considered the influence of positron diffusion on trap-

ping and detrapping reactions. They based their work on the differential
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equations
∂ρf (r, t)

∂t
= D+∇2ρf (r, t) + [f(t)− τ−1f ]ρf (r, t)

dρt(t)

dt
=

(
α

vc

)
ρf (r0, t)− [β + τ−1t ]ρt(t)

(9.4.9)

for the densities ρf (r, t) and ρt(t) of the probabilities of finding at time t

a free positron at a distance r(> r0) from a trap and a positron in a trap

(i.e. at r < r0). The first terms on the right-hand side of (9.4.9) describe

the diffusion of free positrons (diffusivity D+) and the transition rate to the

trapped state (frequency α/vc). The rate at which ρf (r, t) changes owing to

reactions involving positrons or traps not belonging to the free- positron-trap

pair considered occurs with the time-dependent frequency f(t), whereas ρ is

the frequency of positron escape from the trapped state. Positron annihilation

is accounted for by the terms containing the lifetimes τf or τt of free or trapped

positrons. Equation (9.4.9) are coupled via the inner boundary condition at

r = r0
4πD+r20

v

[
∂ρf (r, t)

∂r

]
r=r0

=
α

v
ρf (r0, t)− βρt(t) . (9.4.10)

The crystal volume v is assumed to be large. It turns out that in the limit

t → ∞ (except for very small τf ) the space-averaged concentrations nf , nt and

ct of free positrons, trapped positrons and traps obey a mass-action law

nt

nfct
= K (9.4.11)

where K is independent of time.

9.4.2. Dislocations

Positron trapping at dislocations is not so easy to demonstrate unambiguously

because of the difficulty of isolating these defects from other defects, say vacan-

cies, which are created simultaneously during plastic deformation. Theoreti-

cally, the major problem is to find a realistic model for the atomic configuration

around the dislocation core. Knowing this the conduction electron density and

the positron state can be solved using the methods which have been successfully

used for studies of vacancies. Usually, one assumes a simple dislocation model

and calculates its annihilation parameters for comparison with experiments.

The main problem is: does the dislocation line itself act as a trapping site for

positrons? Arponen et al. (1973) proposed a model representing a cylindrical
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hole (dislocation core) associated with the elastic displacement field (outside)

to explain the experimental results of Hautojärvi (1972) on the positron an-

nihilation effects of deformed Al. From this model, a binding energy of about

2.8 eV was obtained for the interaction between the dislocation line and the

positron. This is contrary to the previous calculation of Martin and Paetsch

(1972), based on pairwise interactions between the positron and metal ions,

whose positions were obtained from linear elasticity theory. This approach led

to a very small value of < 0.1 eV in Al. According to them, the annihilation

characteristics of such a state would be indistinguishable from those of a bulk

state. A comparison with the estimate of Arponen et al., shows that the cal-

culated binding energy is very sensitive to the description of the core region.

However, their description is too simple and far from the realistic structure of a

dislocation core. This leads to a very large value of binding energy, ∼ 2.8 eV, in
Al (see Table 9.3). Smedskjaer et al. (1980) reported that the observed changes

in the positron annihilation in parameters due to the presence of dislocations

in deformed metals originate from annihilation in point-like defects (e.g. jogs)

associated with the dislocation line. Park et al. (1985) reported their results

of dislocation density measurements by transmission electron microscopy, etch

pits and positron trapping effects measurement in iron single crystals. They

concluded that positrons are trapped both in edge and screw dislocation lines.

The lifetime of the former is 165 ps and of the later is 142 ps. This reflects the

fact that these authors believe the dislocation line itself is acting as a trapping

site for positrons though deformations limited in most cases to less than 10%

in that work are not enough to hinder the creation of jogs. At the same time,

Shen et al. (1985) used the method by Arponen et al., but made the disloca-

tion core model more realistic, to calculate the binding energy. They assumed

the ion density to be the same as the Peierls-Nabarro (P-N) model which is

more realistic than the cylindrical hole model that Arponen et al. (1973) used,

although it is still not an accurate representation of a dislocation core in a real

crystalline solid.

In the P-N model, the resulting displacement ux in the x-direction can be

solved in a very simple, exact form

ux = − b

2π
tan−1

(
x

ξ

)
(9.4.12)

where ξ = a/2(1− ν) is known as the half-width of a dislocation. To simplify

it to the cylindrically symmetrical case, one obtains
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ur = − b

2π
tan−1

(
r

ξ

)

uθ = 0 .

(9.4.13)

Then, the volume expansion ratio would be

f(r) = divu

= − b

2πr
tan−1

(
r

ξ

)
− b

2πξ

1

1 + ( r
ξ
)2

. (9.4.14)

In Eq. (9.4.14), f(r) ∼ 1
r
, as r � ξ. It is inconsistent with the linear elasticity

theory of dislocations. From this model

ρi(r) = ρ0[1 + f(r)]

= ρ0

[
1− b

2πr
tan−1

(
r

ξ

)
− b

2πξ

1

1 + ( rξ )
2

]
.

(9.4.15)

This led to Eb = 1.1 eV and τd = 183 ps.* One then reaches the following

conclusions: (1) The lifetime for a positron trapped in a pure dislocation line

is 15 ps larger than that for a positron in the perfect lattice. However, it is

measurable in experiments. (2) The positron dislocation binding energy Eb

is not small but one order of magnitude larger than the results calculated

by Martin and Paetsch (1972) without consideration of the dislocation core

structure. The calculated binding energy is much lower than that of Arponen

et al. (1973). It seems more reasonable though this model still exaggerates the

displacement uy in the y-direction due to the use of ur instead of ux in (9.4.13)

and then overestimates the binding energy a little.

Shi et al. (1990) observed the pyramidal and parallel basal dislocations

induced from the deformation with compressive loading normal to the (0001)

plane and to the (101̄2) plane of the Zn single-crystal specimen by TEM and

measured the positron lifetime data for the samples at 100K and 300K. Because

the loading direction is normal to the base plane for sample Zn-A, pyramidal

dislocations are induced by second-order slip systems 〈112̄3〉{112̄2}, As the
forest dislocations become tangled with each other and penetrate the base

plane to form jogs at their intersections easily (Friedel, 1964), the jogs along

*Eb is the positron binding energy, and τd is the lifetime of positron at the dislocation.
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Table 9.5. Results of a free analysis with two components for
T = 100K (Shi et al., 1990).∗

Sample τ1 (ps) I1 (%) τ2 (ps) I2 (%) τ̄ (ps)

Zn-A 100± 4 36 227± 3 64 181

Zn-B 96± 4 22 117± 2 78 160

∗ I1, and I2 are relative intensities (see Section A9.1).

Table 9.6. Results of a free analysis with two components for
T = 300K (Shi et al., 1990). See also Eq. (A9.1.1).

Sample τ1 (ps) I1 (%) τ2 (ps) I2 (%) τ̄ (ps)

Zn-A 129± 3 50 210± 5 50 170

Zn-B 160 100 – – –

the dislocations were quite dense as were seen by TEM. In a sample of Zn-B,

because the locating axis is normal to the (101̄2) plane which is at an angle

of 43◦ with the (0001) plane, according to the Schmid rule, the greatest shear
stress is almost in the 〈112̄0〉 direction, and only the basal slip systems is oper-
ating (Lavrent’yer and Salita, 1979). It can be estimated from the image that

the dislocation density is about 1010 cm−2, and the jog concentration along
them is less than 10−3 nm−1. Due to the mobility of monovacancies in Zn
(Schumacher, 1970), the existence of monovacancies could be ruled out (Hi-

dalgo et al., 1986) and only dislocation-type defects are considered for positron

trapping in the deformed Zn samples. The results of a free analysis with two

components for the lifetime spectra are listed in Table 9.5. The longer lifetimes

in the table are labelled as τ2A for sample Zn-A and τ2B for sample Zn-B. The

difference between them is about 50 ps, and τ2A is close to the lifetime value τV
of 240 ps for a positron annihilated in a vacancy. The lifetime τ2B for sample

Zn-B would be explained by the model for describing a positron-dislocation

interaction because of the jog concentration in it being less than 10−3 nm−1.
This value, τd = 177± 2 ps is nearly 30 ps more than τb,

† in the bulk at 100K.
The positron lifetime results of a free analysis with two components are listed

in Table 9.6 for the samples measured at 300K. The mean lifetime of a positron

annihilating in sample Zn-B is only 4 ps more than in well annealed Zn, even

†τb is the positron lifetime in the pure bulk metal.
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taking into account the change in τb with temperature. No trapping compo-

nent was found. For sample Zn-A, the value of τ2A is almost independent of

the sample temperature, but the component intensity decreases evidently. Shi

et al. (1990) suggested that the decrease in intensity of longer-lifetime compo-

nent as the temperature is raised is induced by the detrapping of the thermally

activated positron from dislocation lines.

In summary, when the jog concentration along a dislocation is sufficiently

high in the sample, the positron-dislocation interaction can be described by the

generalised model (Smedskjaer et al., 1980), in which the dislocation acts as a

stepping stone to even deeper traps (jogs) at T = 100K. If the jog concentration

is less than 10−3 nm−1, most of the positrons trapped along the dislocation
line will be annihilated in it with a lifetime τd of 177 ± 2 ps. It is shown

that the dislocation parameters are different from those in the bulk. It is easy

to imagine that in a certain range of jog concentration, positrons would trap

both along dislocation line and jogs with appropriate distribution and that in

a certain range of temperature, the positrons trapped along the dislocation

line will become unmeasurable gradually. Different experiments are evidently

needed.

Shirai et al. (1992) measured the positron lifetime at 110K for the lattice,

vacancies and dislocations in pure Al, Cu, Au and Cu-8at%Ge alloy. Positron

lifetimes obtained for defects introduced by deformation at room temperature

are 215 ± 2 ps in Al, 159 ± 4 ps in Cu, 166 ± 1 ps in Au and 168 ± 1 ps

in Cu-8at%Ge: the stress level of which is just above the yield point of each

specimen. They reported that these lifetimes can be reasonably considered

to come mainly from dislocations, since vacancies, which may be formed by

deformation, can easily migrate and disappear at room temperature. It is

well established that dislocations in materials which have lower stacking-fault

energy have more tendency to dissociate into partial dislocations. The equi-

librium width d of the extended edge dislocation, stacking-fault energies and

Burgers vectors were known in experiments. It was found that the positron

lifetime of dislocations entirely depends on, and is roughly proportional to, the

magnitude of the Burgers vectors of dislocations. They comment that these

results strongly suggest that positrons are predominantly trapped along dislo-

cation cores, though no discussions on the density of jogs and their influence

were reported.

Xiong (1986), Xiong and Lung (1988) proposed a model for positron trap-

ping and detrapping at dislocations and jogs, in which a critical temperature
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Tc was defined. When T > Tc, positrons are trapped at jogs directly from the

free state, and when T < Tc, positrons can be trapped at dislocation lines. If

the density of jogs is large enough, dislocation lines play the role of stepping

stones and positrons would move along the line and be trapped into deeper

traps (jogs) finally. If the density of jogs is not large enough, positrons would

be trapped at both dislocation lines and jogs with an appropriate ratio for the

distribution. If the density of jogs is small enough, positrons can be mainly

trapped at dislocation lines as in the case of the sample Zn-B at T = 100K.

9.4.3. Grain Boundaries and Interfaces

Since grain boundaries are regions of low atomic density, they would be ex-

pected to serve as trapping sites for positrons. Until now, the structure of grain

boundaries in metals and alloys has not been revealed clearly. However, some

information on grain boundaries can be obtained by the positron annihilation

technique. Mckee et al. (1980) studied the positron lifetime and S-parameter

for Doppler broadening of positron annihilation radiation as a function of mean

grain size in a Zn-Al alloy and they obtained clear evidence of trapping at grain

boundaries. Hidalgo and de Diego (1982) proposed a model for positron trap-

ping at grain boundaries. They suggested a linear relationship between any

linear annihilation parameter and the inverse mean grain size, but this rela-

tionship is dependent on the condition that L > 2L+ where L is the mean

grain size, and L+ is the mean positron diffusion length.

Yan et al. (1991) studied the positron annihilation at grain boundaries

in Zn-22wt%Al alloy. They found that the relationship between the mean

positron lifetime and the inverse grain size is linear only when the grain size is

larger than 0.5 µm, approximately. Figure 9.7(a) shows that the curve deviates

from the straight line when L < 0.5 µm.

Since, the disordered regions (grain boundaries) are not distributed homo-

geneously, the model for prediction of experimental results must include the

positron motion from the point at the end of non-thermal trajectory to the

trapping region. The diffusion trapping model (DTM) is a more complete

version of the well-known simple trapping model (STM). The latter can be

obtained as a limiting case of the former. Seeger (1992) treated the exact solu-

tion of a simple trapping model for the trapping of positrons in grain bound-

aries. Explicit expressions are given for the mean positron lifetime as well

as for the decomposition of the lifetime spectrum into lifetime components in

terms of grain size, positron diffusivity, rate coefficients describing the positron
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Fig. 9.7. (a) Mean positron lifetime τ versus inverse mean grain size L−1.

Fig. 9.7. (b) The relationship between I1Γ1+I2Γ2 and mean grain size L: •, our experimental
results; ©, experimental results of Mckee et al. (1980). The horizontal line is the level for
λf (6 ns

−1).

trapping and detrapping at the grain boundaries, and positron trapping life-

times in the bulk and in the grain boundaries. The model accounts qualita-

tively for the measurements on fine-grained ZnAl alloys.

According to the model (Seeger, 1992), the behaviour of the positrons is

characterized by their bulk diffusivity D+ their bulk (“free”) lifetime τf and

their lifetime τb(> τf ) in the grain boundaries. At time t = 0 a homoge-

neous initial e+ concentration C = C0 has been implanted in the sample. The

temporal and spatial evolution of the e+ concentration, C+(r, t), is governed

by
∂C+

∂t
= D+∇2C+ − C+

τf
. (9.4.16)

The grain structure is modelled by assuming “spherical grains” of radius r0
which are surrounded by grain-boundary layers of unspecified thickness. The

e+ trapped in the grain boundaries are described in terms of a planar
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concentration c+ = c+(t) obeying

dc+

dt
= αC+(r0, t)− (β + τ−1b )c+ (9.4.17)

where α and β denote trapping and detrapping rate coefficients. The continuity

of the e+ flux at the “boundary” between the grain interior and the grain

boundary is expressed by

D∇C+|r=r0 + αC+(r0, t) = βc+(t) . (9.4.18)

Under the above-mentioned conditions the solution of (9.4.16) possesses spher-

ical symmetry. Introducing the Laplace transforms and making the reasonable

assumption that at the grain boundaries local detailed balancing applies:

αC+0 = βc+0 ; c+0/C+0 = α/β . (9.4.19)

Seeger obtained an approximate relationship that at large grain sizes the mean

lifetime τ̄ varies linearly with the inverse grain size l−1 ∝ r−10 , in agreement

with most of the available experimental data (Yan et al., 1991). As the grain

size becomes smaller, τ̄ tends in a sigmoidal fashion towards a limiting value

rb[1− βτf/(1 + βτb)]. This result approaching a limiting value is qualitatively

consistent with the trend of the curve on fine-grained Zn-Al alloys, Fig. 9.6

(Yan et al., 1991).

Dupasquier and Somoza (1995) pointed out that as a limiting case of the

diffusion trapping model (DTM), the well-known simple trapping model (STM)

is appropriate to describe positron trapping when the average distance from

trap to trap is much smaller than the positron diffusion length L+. This means

that the material with grain sizes of the order of ten nanometers embedded

in a disordered matrix is the limiting case of the DTM model. In materials

with grain sizes of the order 1 µm, the motion of thermal positrons should

be adequately described by combining the positron transport and trapping

(DTM) in a set of different equations. The intermediate case is much more

complex. The expressions for τ̄ contain e+ diffusivities in a rather complicated

form (Seeger, 1992). In general, materials are not of high-purity and defect

free. The mean square displacement does not obey Fick’s law R2 ∼ t, but

scales with time as R2(t) ∼ t2/dw , where dw > 2 is the fractal dimension of the

random walk (Lung, 1995). The relation between positron diffusion constant

D+ and the characteristic diffusion length L+, L+ =
√

D+τbulk is not well

defined. Whether the grain dimension (the average distance from trap to trap)
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is much smaller or much larger than the positron diffusion length L+ is quite

difficult to judge.

Moreover, Dupasquier and Somoza (1995) pointed out that the informa-

tion obtained by PAS measurements essentially concerns the volume of open

spaces inside the intergrain regions. Since this is a disordered region, a contin-

uous volume distribution is to be expected. With an ideal set-up with infinite

resolving power, this continuous volume distribution should be reflected in a

continuous distribution of lifetimes. However, to the best of our knowledge,

there has been no attempt at analysing a positron lifetime spectrum in the

grain boundary region or a nanocrystalline solid in terms of a continuous spec-

trum of lifetimes. Usually, one uses the traditional model with a finite (small)

number of lifetimes.

In order to interpret their experimental results, Yan et al. (1991) proposed

a simple model with the following assumptions:

(i) the grain boundary is a kind of three-dimensional composite defect

which occupies a volume fraction α,

(ii) all positrons thermalized are distributed uniformly in the alloy and

thereby a fraction α of the positrons are already trapped at grain

boundaries when they are thermalized,

(iii) there are no other kinds of defect and

(iv) the detrapping rate can be neglected.

Denoting by nf (t) and nt(t) the occupation probabilities of free positrons

and positrons trapped at the grain boundaries, at time t, the rate equations

can be written as
dnf

dt
= −λfnf (t)− knf (t)

dnt

dt
= −λtnt(t) + knf (t)

(9.4.20)

where λf and λt are the positron annihilation rates in the bulk and at grain

boundaries, respectively, defined by λf = 1/τf and λt = 1/τt. k is the positron-

trapping rate for the grain boundaries.

Let t = 0 correspond to the time when positrons are completely thermal-

ized; so that the initial conditions are

nf(0) = 1− α

nt(0) = α .
(9.4.21)
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Table 9.7. Mean grain sizes, L, and thickness of grain bound-
aries, w, for the Zn-Al alloy samples (Yan et al., 1991).

Sample Mean grain size Thickness of grain boundaries

L(µm) w(µm)

0 0.319 ± 0.003 0.071 ± 0.010
1 0.361 ± 0.003 0.047 ± 0.007
2 0.387 ± 0.003 0.033 ± 0.006
3 0.411 ± 0.004 0.030 ± 0.006
4 0.452 ± 0.004 0.034 ± 0.007
5 0.548 ± 0.005 0.022 ± 0.006
6 0.653 ± 0.007 0.017 ± 0.007
7 0.757 ± 0.007 0.014 ± 0.008
8 0.824 ± 0.010 0.013 ± 0.009
9 0.990 ± 0.010 0.010 ± 0.008
10 1.155 ± 0.010 0.007 ± 0.013

From the solutions of Eqs. (9.4.20) and (9.4.21), the following formulae can be

obtained:

I1Γ1 + I2Γ2 = λf − (λf − λt)α (9.4.22)

τ = τf (1 + kτt)/(1 + kτf ) + [(τt − τf )/(1 + kτf )]α . (9.4.23)

In the simple trapping model (STM), the value of I1Γ1 + I2Γ2 (Γ1 =

1/τ1,Γ2 = 1/τ2) should be equal to a constant λf (= 1/τf ). The experimental

values of I1Γ1 + I2Γ2 for the various samples have been calculated using the

data analysis and the relationship between I1Γ1 + I2Γ2 and the grain size L

is shown in Fig. 9.7(b). The experimental results do not agree with the STM.

The results of Mckee et al. (1980) are also plotted in Fig. 9.7(b) for comparison.

Making use of Eq. (9.4.22), the results in Fig. 9.7(b) can be interpreted

very well qualitatively. The smaller the mean grain boundaries in the alloy,

the greater is the difference between the value of I1Γ1+ I2Γ2 and the constant

λf . The results of Mckee et al. (1980) in Fig. 9.7(b) also support this point.

However, Eq. (9.4.22) exhibits a limiting value λf , as α = 0. This is consistent

with the experimental results (Yan et al., 1991). Using Eq. (9.4.23), α and

then the order of thickness of the grain boundaries, w, were estimated by Yan

et al. (1991). All the values of w for the various samples are listed in Table 9.7.
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The thickness of the grain boundaries w estimated by positron measure-

ments seems much larger than by Auger spectroscopy (Balluffi, 1977; also see

Fen et al., 1987). The thickness w is only of the order of a couple of lattice pa-

rameters. However, w estimated by positron measurements is consistent with

the data reported by Arharov (1955, 1958), (also see Fen et al., 1987) which

is about 100–1000 Å. Just as Seeger (1992) pointed out that the thickness of

grain-boundary layers is unspecified, it seems that w includes the disordered

region (∼ order of several lattice parameters) and a transition region of lattices
with defects or impurities to the interior of a grain. This transition region is

large and its thickness can be estimated by the phenomena of solute segre-

gation or interior adsorption at grain boundaries and their nearby distorted

regions in the grain (Arharov, 1955, 1958; McLean, 1957). The thickness of

this transition region depends on the method of measurement. The sensitivity

of positron annihilation at vacancies is of the order 10−7 atomic concentration.
However, the sensitivity of Auger spectroscopy for elements is only 10−2−10−3
atomic concentration. It would appear that techniques with higher sensitiv-

ity would feel thicker transition region than that with lower sensitivity. For

instance, Mishra (1980) investigated the grain boundary of Mn-Zn ferrite and

analysed the chemical contents at the grain boundary with Scanning Electron

Microcopy (SEM)/Energy Dispersive X-ray Spectrum (EDX), and found that

Ca and Si segregate in a region of 2000 Å thick (see also Cui, 1990). Of course,

there are other factors leading to grain boundary segregation. Here, as a sen-

sitive technique for vacancy concentration, it would be reasonable to believe

that the transition region measured by positron annihilation is of 103 Å thick

in order of magnitude.

In their experimental results, Yan et al. (1991) found that the thickness of

the transition region, w of the grain boundaries increases with decreasing grain

size. Perhaps, the larger the curvature of the grain, the larger the number of

defects near the grain boundary in the grain is needed for relaxing the stress

due to the mismatch at the grain boundary.

Slow positron beam apparatus has also been used for studies on interfaces.

It has been shown that it is possible to obtain the depth of the oxide layer

and some information on the nature of interfacial defects (Nielsen et al., 1989;

Baker et al., 1989). Tabuki et al. (1992) studied interfacial phenomena in

the W-Si system. They found that positrons diffused beyond the positive

charge depletion layer towards the Si bulk region and the phase charge during

silicidation. Weng et al. (1995) investigated the solid state reaction of Co/Ti/Si

and Co/Si. They found that the S parameters were sensitive to thin film
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reaction and crystalline characteristics. Xiong et al. (1995) studied defects in

a layered Cu/Co/Cu structure and found significant concentration of open-

volume defects in all three layers of Cu/Co/Cu sputtered on a Si substrate.

The trapping phenomena are often analyzed in terms of the diffusion properties

of positrons in the bulk lattice. Applying the positron diffusion model to low-

energy positron beam results for a sample of Si with an overlayer of SiO2,

Smith et al. (1992) determined the interface depth, the width of the depletion

region and the charge at the interface.

Jiang et al. (1995) reported a theoretical study of the diffusion of positrons

to the surface for a semi-infinite medium and a film with a thickness in semicon-

ductors by using a δ-function method. The results can be used to the analysis

of experimental data for the overlayer/substrate system that contains one film

or several films and a semi-infinite medium. In experiments on semiconductors,

there may be an internal electric field near the surface which can influence the

positron diffusion. The one-dimensional diffusion equation is given by

∂n(t)

∂t
= D+

∂2n(x, t)

∂2x
− vd

∂n(x, t)

∂x
− λeffn(x, t) . (9.4.24)

This equation differs from Eq. (9.4.16) by the second term for a constant

electric field and was the same as that given by Schultz and Lynn (1988). In

Eq. (9.4.24), n(x, t) is the positron density as a function of both time and

position, D+ is the positron diffusing coefficient, λ−1eff = τeff, is the effective

lifetime of the positron in a freely diffusing state and vd is the field-dependent

drift velocity. By applying a radiative boundary condition

n(0, t) = β
∂n(x, t)

∂x
|x=0 (9.4.25)

a general solution n(x, t) can be obtained. For a film of thickness of d, and

boundary conditions, n(0, t) = 0, n(d, t) = 0, and initial conditions at x = a,

n(x, 0) = δ(x − a), the fractions f0 and fd of the positrons diffusing to the

surfaces at x = 0 and x = d respectively can be determined. The results

obtained are the same as those of Beling et al. (1987) and Novikov et al. (1991),

but they used different methods and did not give the result for such general

cases.

9.4.4. Voids and Cracks

As the vacancy cluster size becomes larger than 10 Å, the positron lifetime

approaches an asymptotic value of (450–500) ps which seems saturated and
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independent of the size of the cluster being further increased. This is a large

void seen by positrons. This has been explained in terms of a positron sur-

face state. Efficient positronium (ps) formation at surfaces was a key factor

in facilitating the spectroscopic studies of this basic quantum-electrodynamic

system (see Nieminen, 1983). For thermalized positrons, the analysis of trap-

ping phenomena in voids can be based on the solution of diffusion-annihilation

equations. The lifetime spectrum is a superposition of annihilations in the

bulk, defects, the surface state and ps annihilations. Computer programs for

the void and the semi-infinite geometry are available (Nieminen, 1983).

Further applications of the positron-annihilation techniques to the study

of crack problems in materials appear to have considerable potential interest.

As the cracked metal is loading, a plastic zone always appears at the crack

tip. The size and defect structure of the plastic zone are closely related to the

resistance of crack propagation, which is referred to as the fracture toughness

of materials. The positron-annihilation technique (PAT) can be used to in-

vestigate this problem because of its sensitivity to defects in the plastic zone.

PAT can determine the plastic zone size, as in the work of Jiang et al. (1982)

for α− Ti specimens (Fig. 9.8).

The progress of elastic-plastic fracture of materials needs deeper under-

standing of the defect structure in the plastic zone at the crack tip. Kobayashi

Fig. 9.8. Relative change of S as a function of distance. l-Distance from crack tip along
direction of crack.
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and Ohr (1980) investigated situ the distribution in the plastic zone at a crack

tip. They found that there is a dislocation-free zone at the crack tip, which
is contrary to the original Bilby-Cottrell-Swinden (BCS, 1963) crack dislo-

cation model for the crack. Lung and Xiong (1983) performed calculations

on the dislocation-distribution function in the plastic zone. They found that
there was a negative-sign dislocation zone near the crack tip (see Sec. 3.6.6 in

Chap. 3). Such behaviour was observed near a crack tip in NaCl (Narita and
Takamura, 1985), stainless steel (Ohr, 1987) and Al single crystal (Xu et al.,

1991). The distribution function for dislocations in the plastic zone is directly

related to the calculated results for crack-opening displacement, which is an
important parameter for the fracture toughness of materials. Few studies of

this problem have been performed to date. A high-intensity positron source
focused to produce a very narrow beam may possibly be used for the study

of this problem, although this may lead to some technical difficulties. Ad-

vances in techniques of positron microbeams seem possible to allow a probe
with a diameter of 0.1 µm and more than 106 positrons per second (see Seijbel

et al., 1995). For super high strength steels, the plastic zone size is grossly of

the order of a micrometer. Using PAT for studies of many materials is practical.
Is there really a dislocation-free zone just ahead of the crack tip? Some workers

have suspected that it is an artefact related to the use of a thin specimen in
Ohr’s experiments. If a positron microbeam is used, then thicker specimens

can be studied. Is there also a negative-sign dislocation zone? What is the

dislocation shielding effect on the stress field near the crack tip? Is there any
antishielding effect on the stress field due to the presence of the negative-sign

dislocation? How does the work done in forming this dislocation configuration
relate to the fracture toughness of the materials? All these questions should

lead to deeper understanding of the elastic-plastic fracture of materials.

9.5. Electron and Positron Momentum Distributions in Solids

9.5.1. Introduction

Among the methods for the study of the electronic structure of solids, positron

annihilation has proven to be a valuable tool in the investigation of the electron
momentum distribution in materials. Since the first observation of the angular

correlation between the two annihilation quanta by Beringer and Montgon-
mery (1942), the positron annihilation technique has developed into a method

capable of yielding relevant information on the electronic structure such as

Fermi surface dimensions and relevant wave functions (see Mijnarends, 1979).
In nondilute disordered alloys, excessive electron scattering due to the short
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mean free path of the electrons precludes the use of other methods (say, the de

Haas-van Alphen effect, the magnetoresistance effect, the rf size effect, etc.)
at solute concentrations ≥ 1%. Kohn anomalies in X-ray diffuse scattering

(Moss et al., 1974) or inelastic neutron scattering (Powell et al., 1968), and

Faraday effect (McAlister et al., 1965) can still be used for investigations of
the Fermi surface geometry. The Compton effect (see Williams, 1977) is able to

provide direct information about the entire electron momentum distribution,
but cannot compete in resolution with positron annihilation. For the study of

nondilute alloys, positron annihilation is one of the very few useful techniques.

It also has some problems. The disturbance that the positron produces on the
electron distribution is a point of weakness. The joint electron-positron mo-

mentum density depends not only on the electronic structure of the sample,
but also on the positron wavefunction, and it is affected by the many-body

electron-positron correlation. Fortunately, it has been shown that positron-

electron correlations do not shift the discontinuities of the momentum density
from the true Fermi surface. The accuracy that can be obtained in the determi-

nation of the parameter of the Fermi surface in a sample metal is of the order of

10−3 a.u. which is quite comparable to de Haas-van Alphen data though more
delicate analysis involving band calculation with consideration on many-body

perturbations for the electron wavefunctions is required. The second prob-
lem is its high affinity to low-density lattice defects, but this problem can be

overcome in many cases by careful preparation of the specimens. The vastly

increased resolution in momentum space resulting from the measurement of
two transverse momentum components (2D ACAR),* designed by Berko and

co-workers (1977), instead of one (1D long slit), opened up a new plethora of
problems which could be addressed by the positron technique (see Mijnarends,

1979; 1983; Mijnarends and Bansil, 1995). Early spectra of 1D or 2D ACAR

permitted a straightforward interpretation mostly in terms of the geometry
of Fermi surface. Since the progress of this technique, the complexity of the

systems investigated has grown from pure metals, semiconductors and alloys
to highly complex systems such as half-metallic ferromagnets, heavy-fermion

compounds and high-Tc superconductors.

9.5.2. Positron Implantation and Thermalization

The positron most frequently is taken from a β+ source; in a few laborato-
ries with access to accelerator facilities, positrons from high-energy photon

*1D and 2D ACAR are one-dimensional and two-dimensional angular correlation of annihi-
lation radiation experiments for positron momentum distribution measurements respectively.
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materialization are also used. A high-energy positron, emitted by a radioac-

tive source, enters a solid with an initial energy in a range characteristic of the

beta spectrum of the radioisotope. The implant energy of the positron is an

important variable as it controls the distribution of penetration depths. It is

rapidly slowed down in a time of the order of picoseconds by atomic ioniza-

tion, excitation, positron-electron collisions and positron-phonon interactions,

until it reduces (near) thermal equilibrium with the surrounding crystal. The

stopping profile of energetic positron from a radioactive source is exponential

P (x) = α exp[−αx] ,

α ≈ 16 ρ[g/cm3]

E1.4
max[MeV]

cm−1 (9.5.1)

where ρ is the density of the material and Emax the maximum energy of the

emitted positron. The most common isotope for positron lifetime and Doppler-

broadening exeperiment is 22Na with Emax = 0.54 MeV. For this isotope the

characteristic penetration depth 1/α is 110 µm in Si, 50 µm in Ge, and 14 µm

in W . For monoenergetic positrons in the range 0–30 keV, the stopping profile

can be described by a derivative of a Gaussian function

P (x) = − d

dx
exp[−(x/x0)2] . (9.5.2)

The mean stopping depth is

x̄ = 0.886x0 = AEn[keV] (9.5.3)

where

A ≈ 4

ρ
µg/cm2 , n = 1.6 . (9.5.4)

The mean stopping depth varies with energy from 1 nm up to a few µm. In

a solid, the positron energy loss rate in the range 1 MeV > E+ > 100 keV is

about 1 MeV/ps, and from 100 keV to 100 eV it is 100 keV/ps. Below 100 eV

the effects are gradually switched on. In metals, calculations indicate that

positron momentum distribution rapidly relaxes to the Maxwell-Boltzmann

distribution. The thermalization time at 300K is (1–3) ps, i.e. much less than

a typical positron lifetime of (100–200 ps). Even at 10K, calculated thermal-

ization times are less than the positron lifetime (Nieminen and Oliva, 1980;

Jenson and Walker, 1990). Usually, it is assumed that positrons are thermal-

ized at t ≈ 0, and that the thermalization time in metals and semiconductors
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is negligible compared to the positron lifetime. In an insulator with a wide

band gap of several eV, phonons may not be effective enough to thermalize

positrons during their lifetime; the nonthermal positrons can transverse long

distances to reach the surface (Gullikson and Mill Jr, 1986).

At any one time, there is on the average only one positron in the sample

due to the low e+ density. The positron is in its ground state at the bottom of

the positron conduction band. Its motion obeys the Boltzmann distribution

f+(E+, T ) = (πm
∗kBT )−3/2 exp[−E+/kBT ] (9.5.5)

where E+ denotes the positron kinetic energy, m
∗ its effective mass, and kB

is the Boltzmann constant. With E+ = p2/m∗, it is clear in Eq. (9.5.5) that
depending on temperature and effective mass, the positron displays a small

thermal motion which will broaden the momentum resolution function in an

angular-correlation experiment. There are also contributions due to various

many-body effects and to positron-phonon interaction.

9.5.3. Positron Diffusion

The thermalized positron, scattered by phonons, diffuses until it annihilates

with an electron. During its lifetime, it diffuses over a volume of about L3
+,

where L+ is the average diffusion length before annihilation. The motion of

the thermalized positron in solids is limited by positron-electron interaction,

described by electron-hole pair generation, by positron-lattice interaction and

by scattering off impurities. Owing to experimental difficulties, there exist

few direct measurements of the positron mobility in solids and the diffusion

constant, defined via the Einstein relation

D+ = µ+
kT

e
(9.5.6)

where µ+ is the mobility, and e the positron charge. In metals, the mea-

surement of positron mobility is obviously extremely difficult, and one has

to rely on theoretical estimates. Bergerson et al. (1974) have calculated the

various contributions in a number of simple metals. Soininen et al. (1990) mea-

sured the positron mobility µ+ and positron diffusion constant in high-purity

defect-free Mo, Al, Cu, and Ag single-crystal samples in the temperature range

20–1400K with a slow-positron-beam technique. The values of D0 (D+ = D0

(T/300K)−α) is about 1.0–2.0(cm2/s) where α is the power and is about 0.5.

Brusa et al. (1995) reported measurements of positron mobility in polyethy-

lene, their measurements were carried out by improving the acquisition and
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analysis of Doppler-broadening annihilation spectra. The results measured

(Soininen et al., 1990) are in agreement with theory where thermal positron

motion is limited by scattering from acoustic phonons. The diffusion length

L+ is defined by L+ =
√

D+τb; L+ is about 1100–1800 Å at 300K. This is the

case in high-purity defect-free single-crystals.

In industrial materials, there are many defects and impurity atoms. The

diffusion length L+ of the positron will be shorter. Defects and impurity atoms

may form fractal structures in the material. The diffusion length of thermalized

positrons can be treated as a random walk on fractals (Lung, 1995). The mean

square displacement does not obey Fick’s law R2 ∼ t, but scales with time as

R2(t) ∼ t2/dw , where dw > 2 is the fractal dimension of the random walk.

R and t are dimensionless quantities. In a simple discrete random walk the

walker advances one step in unit time. Now, we have

Rf (t) ∼ t1/dw (9.5.7)

R(t) ∼ t1/2 (9.5.8)

and

Rf (t)/R(t) ∼ tβ , β =
2− dw

2dw
. (9.5.9)

In general, dw > df , the fractal dimension of the objects, Rf (t) < R(t),

due to dw > 2. It has been shown that dw = 3 in a medium that is filled with

static trapping sites at a finite concentration both for traps distributed in a

d-dimensional Euclidean space or in a fractal space (Havlin and Ben-Avraham,

1987). Results of calculated values of diffusion lengths of thermalized positron

in media with traps showed that Rf (t) can be shorter than half of R(t). This

is a quite an approximate model calculation. The key parameter is dw. If

this parameter can be obtained by measurements or precise calculation, the

positron diffusion length can be estimated accurately.

9.5.4. Positron Distribution in Solids

The spatial distribution of the thermalized positron is not uniform. The density

distribution is relatively uniform apart from the ion cores due to the strong

repulsion. Using pseudopotential theory, Stott and Kubica (1975) calculated

accurate positron wave functions and energies with modest numerical labor.

The construction of a single-particle potential for a positron in a metal is

simpler than for electron. There is no exchange repulsion. The positron wave
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Fig. 9.9. Schematic positron wave function and potential in a perfect metal. V is the full
Hartree potential and Ψ the corresponding full wave function. ψ is the pseudo wave function
corresponding to the nearly constant pseudopotential.

function for states near the bottom of the lowest energy band is separated into

two factors. One reflects the strong repulsion of the positron from the ion

core, and the other is a smooth envelope, which is energy dependent, sensitive

to the environment and reflects the positron distribution in the interstitial

regions and/or between atomic cells in the crystal. Figure 9.9 schematizes this

division for a nonzero k corresponding to a temperature of about 1000K. The

envelope satisfies a Schrödinger-like equation with a relatively weak potential

term which, e.g., in perfect metals can be attacked with low-order perturbation

theory.

The positron wave function for a wave vector k = 0 is factorized as

Ψk(r) = U(r−R)ψk(r) (9.5.10)

where r lies in an atomic cell centered on R, and U(r) is chosen to satisfy

the Schrödinger equation with the spherically symmetric single-ion potential

Va(r) with Wigner-Seitz boundary conditions imposed at a conveniently chosen

muffin-tin radius. In the cell,

[
− �

2

2m

∂2

∂r2
+ Va(r)

]
U(r) = EWSU(r) (9.5.11)

∂U

∂r
|r=R0 = 0 (9.5.12)

where R0 is the muffin-tin radius. Between the muffin-tin spheres, U(r) can

be chosen to be a constant, U(r) = U(R0). Substituting (9.5.9) into the full

Schrödinger equation, one can obtain an equation for the pseudo-wave function
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ψk(r) [
− �

2

2m
∇2 +W (r)

]
ψk(r) = E0(k)ψk(r) (9.5.13)

where

W (r) =




Ews + V (r)− Va(r−Rn)− �
2

2m

∇U(r)

U(r)
· ∇

(within the nth muffin-tin)

V (r)

(outside a muffin-tin)

(9.5.14)

and V (r) is the full positron potential. From Eq. (9.5.13), we may see that

the pseudopotential W (r) is much weaker than V (r) in the core regions. This

method has been used to calculate positron ground-state wave functions, ener-

gies and band masses in simple metals and ionic crystals (see Nieminen, 1979;

1983; 1995).

9.5.5. Electron-Positron Correlation in Pure Metals and the Core Effects

The positron attracts a cloud of electron which screens its charge (see Mi-

jnarends and Bansil, 1995). An extra term Vep describing e− − e+ correlation

to the Coulomb-Hartree potential Ve due to the ions and the electron should

be added to describe the mean-field potential felt by the positron

V +(r) = −Vc(r) + Vep(r) . (9.5.15)

This leads to a redistribution of the e+ wave function. Moreover, the pile-

up of the electronic wave functions at the position of the positron increases the

annihilation probability to a value much larger than that obtained via the over-

lap of the independent-particle wave functions. This leads to the enhancement

factor in Eq. (9.4.1). However, the effects of enhancement on the momentum

density are much smaller, but not negligible.

Kahana (1960, 1963) and Carbotte (1966, 1967) presented a theory of cor-

relation, who used a Green function formalism to treat the e−−e+ and e−−e−

correlations in a free-electron gas. Boronski and Nieminen (1986) calculated

the enhancement factor* as

γ(rs) = 1 + 1.23rs + 0.8295r
3/2
s − 1.26r2s + 0.3286r5/2s +

r3s
6

. (9.5.16)

*See also the early work of N. H. March and A. M. Murray, Phys. Rev. 126, 1480 (1962).
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Wang et al. (1995) used the self-consistent charge discrete variational Xα clus-

ter method (SCC-DVM) to calculate the conduction electron density of metals.

Comparing with experimental data on positron annihilation rate, the relation

between electron density and positron annihilation rate is obtained:

λ = 22.57n0.72con (9.5.17)

and an expression for the enhancement factor is given by

γ(rs) = 1.34r
0.84
s + 0.166r3s . (9.5.18)

The enhancement factor is also a function of the momentum p. The en-

hancement due to e− − e+ correlations increases as one approaches the Fermi

surface, while, on the other hand, the high momentum tail, present at |k| > kF
as a result of e−− e− correlations, is strongly attenuated. For k < kF , γ(p, rs)

is given by

γ(p, rs) = a(rs) + b(rs)(p/pF )
2 + c(rs)(p/pF )

4 . (9.5.19)

The interaction of the positron with the correlated electron gas tends to

sharpen the discontinuity at the Fermi momentum. A discussion of e−−e+ and

e− − e− correlations which takes into account the interaction of the particles
with the lattice is extremely complicated. Here, the problem is discussed in

terms of a local-density approximation (LDA) which is introduced in Sec. 9.4

(Eqs. 9.4.5 and 9.4.6).

The more tightly bound “core” electrons on real metals lead to a faster

annihilation rate than what would be predicted from the conduction electron

gas alone. In transition and noble metals, the core contribution is large due to

the extrusive d shell.

West (1973) used the electron gas theories by renormalizing the valence

electron density n according to the description

neff = n

(
1 +

Γc
Γv

)
(9.5.20)

to calculate the annihilation with the core electrons. In Eq. (9.5.20), the Γc
and Γv are the partial annihilation rates with the “core” and “valence” elec-

tron respectively. The ratio Γc/Γv can be estimated from the angular corre-

lation curves, which consist of a separable Gaussian core electron part and a

free electron-like parabola. (Readers may refer also to Stern (1991), Daniuk

et al. (1991), Berko (1983) and Barbiellini et al. (1997).*

*See also J. A. Alonso, J. Jiang, C. W. Lung, J. Y. Wong and N. H. March, An. Fis. (Spain)
93, 136 (1997).
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9.5.6. Momentum Density in Crystalline Solids

The numerous aspects of the technique of band-structure calculation are cov-

ered by a number of review articles and books (see Callaway, 1964, Mijnarends,

1979). The band-structure methods most commonly employed in momentum-

density calculation are the augmented-plane-wave (APW), the Korringa-Kohn-

Rostoker (KKR), and the orthogonalized-plane-wave (OPW) methods. The

most transparent one is the OPW method; the KKR method has been exten-

sively used for momentum density computations in metals and compounds as

complex as the high-Tc superconductors.

In a periodic crystal of volume V = NΩ, where N denotes the number of

lattice sites and Ω the volume of the unit cell, the positron and electron wave

functions are solutions of the Schrödinger equation

[−∇2 + V (r)]ψ(r) = Eψ(r) . (9.5.21)

Here V (r) is the potential ‘felt’ by the positron or electron when it moves

through the crystal, V (r) is a periodic function of r, and ψ(r) has the Bloch

form ψ(r) = V −1/2uk,j(r) exp[ik · r], where uk,j(r) has the periodicity of the

lattice, k denotes the wave vector of the positron or electron, and j labels the

energy bands.

In the KKR formalism the solution of Eq. (9.5.21) is written in the form of

an integral equation

ψk(r) =

∫
G(r, r′)V (r′)ψk(r′)dr′ . (9.5.22)

The integration extends over the unit cell of volume Ω, and the Green function

G(r, r′) is given by

G(r, r′) = Ω−1
∑
n

exp[ikn · (r− r′)]
E − k2n

(9.5.23)

where kn = k+Kn and kn = |kn|, while the summation is over the reciprocal-
lattice vectors. The crystal potential V (r) is assumed to have the muffin-tin

form: spherically symmetric inside the (nonoverlapping) muffin-tin spheres

with radii ri and a constant value V0 between the spheres. When the zero

of energy is chosen such that V0 = 0, the only nonzero contributions to the

integral (9.5.22) come from the interior of the muffin-tin spheres. A trial wave

function in the muffin-tin spheres has the form

ψk(r) =
∑
L

ilCLRl(r, E)YL(r) (9.5.24)
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where YL are the real-spherical harmonics. Substituting ψk(r) into integral

(9.4.2), one finds P0(p). Readers should refer to articles and reviews for details

(see, for example, Mijnarends and Bansil, 1995).

The KKR method of computing the momentum density presented here

can be made into a fast and highly efficient scheme by the extensive use of

interpolation in precomputed tables for many of the relevent quantities such

as the structure functions and by extensive vectorization to which the method

lends itself extremely well.

9.5.7. 1D and 2D ACAR Measurements

A measurement of the deviation from collinearity between two quanta emitted

in the annihilation of a positron could provide information about the momen-

tum distribution of electrons. Apparatus for the measurement of the angular

correlation of annihilation in one or two dimensions (1D or 2D ACAR) has been

developed (see Berko, 1983; Mijnarends, 1979; 1983; Mijnarends and Bansil,

1995).

If both the positron and the electron are at rest, the two photons emit-

ted after annihilation of the pair are at an angle of 180◦, with total en-
ergy ET = 2mc2 − Eb, Eb being the binding energy of the electron and the

Fig. 9.10. (a) (i) Center-of-mass frame; (ii) laboratory frame.

Fig. 9.10. (b) The vector diagram of the momentum conservation in the 2γ-annihilation
process. The momentum of the annihilating pair is denoted by p, subscripts L and T refer
to longitudinal and transverse components, respectively.
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positron in the system. Thermalized positrons have kinetic energy of only

about 0.025 eV at room temperature and usually are considered to be at rest.

In their center-of-mass frame, the positron annihilates with the moving elec-

tron and the two photons emitted are moving strictly into opposite directions.

However, in the laboratory frames, the two photons are not anticollinear be-

cause of the finite momentum p of the electron to be conserved, and their

energy is Doppler shifted. As illustrated in Fig. 9.10(a), in the laboratory

frame, their center-of-mass moves with velocity v relative to the laboratory

frame. Asuming v1, v2, θ1 and θ2 to be the velocities and directions of two

photons relative to the laboratory frame respectively, then,

tan θ1 =

√
1− v2

c2 sin θ0

cos θ0 − v
c

≈ sin θ0
cos θ0 − v

c

tan θ2 =

√
1− v2

c2
sin θ0

cos θ0 +
v
c

≈ sin θ0
cos θ0 +

v
c

θ12 ∼ tan(θ1 − θ2) ≈
2v
c
sin θ0

1− v2/c2
≈ 2v

c
sin θ0 =

PT

m0c
(9.5.25)

The momentum conservation yields the result (9.5.25), due to v � c. It is

illustrated in Fig. 9.10(b).

The Doppler frequency shift in the energy of the annihilation photons mea-

sured in the laboratory system is given by

�ν

ν
=

vL

c
(9.5.26)

where the longitudinal center-of-mass velocity vL of the pair equals PL/2m0.

Since the energy of a photon is proportional to its frequency, the Doppler shift

at the energy m0c
2 is given by

E1,2 =
1
2ET (1± v

c
cos θ0)√

1− v2

c2

∼ 1

2
E′T
(
1± v

c
cos θ0

)

and

E′T ∼ ET = 2E0 = 2m0c
2 − binding energy ∼ 2m0c

2

E1,2 ≈ m0c
2 ± cPL

2
= E0 ±�E . (9.5.27)



Positron Annihilation: Experiment and Theory 311

This shows that the line shape of the annihilation radiation reflects the mo-

mentum distribution of electrons in metals.

In Fig. 9.10(b), given a typical atomic momentum p(|p| ∼ 10−2mc), the

angle between the two photons deviates from 180◦ only by a few milliradians. A
momentum p corresponding to one atomic (momentum) unit (i.e. |p| = 1 a.u.,
m = 1, c = 137) produces an angular deviation of 7.297 mrad., when p is

perpendicular to the 2γ axis, and an energy shift of ±1.86 keV (from 511 keV)
when p is parallel to the 2γ axis.

The angular correlation between the photons, measured in 1D and 2D

ACAR experiments are essentially the one and two dimensional projection

of the momentum density distribution Γ(p) of the photon pairs.

N(py, pz) = const.

∫ +∞

−∞
Γ(p)dpx (9.5.28)

N(pz) = const.

∫ +∞

−∞

∫ +∞

−∞
Γ(p)dpxdpy . (9.5.29)

9.5.8. Examples of Momentum Density Calculations and Experiments

i. Fermi-surface Measurements

Using the high-resolution long-slit apparatus, Stewart’s group reported Fermi

diameter in the [100], [110] and [111] directions of Li at temperatures just above

Fig. 9.11. High-resolution 1D ACAR curve in Mg at 4.2K, pz along the c-axis, by Kubica and
Stewart (1975); ∆p ∼ 0.16 mrad. Inset shows N(pz) in the region of the Fermi momentum
pz = kF .



312 Mechanical Properties of Metals

the martensitic transition (78K) (Berko, 1983). Their data show about a 2%

departure from the free-electron sphere, with small bulges in the [110] direction.

Figure 9.11 shows 1D ACAR from a Mg crystal at 4.2K to exhibit the high

precision required around the Fermi momentum (Kubica and Stewart, 1975)

ii. 2D ACAR Al results

Figure 9.12 shows N(py, pz) for Al with crystal orientation indicated in the

figure (Berko et al., 1977). They obtained good fits with OPW and APW

computations.

Fig. 9.12. 2D ACAR surface of Al by Berko et al. (1977). The orientation of the crystal is
illustrated in terms of the Brillouin zone in the inset. Each crossing of lines is an independent
measurement. Sample at 100K.

Fig. 9.13. Contour map (Berko, 1983) of the experimental (a) vs. theoretical (APW) (b)
N(py, pz)−R(py , pz) for Cu, with px along the [100] direction.
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Fig. 9.14. The contour map of N(py , pz)−R(py , pz) for (a) Cu and (b) Cu-30at.% Zn, with

px along [111]. R(py , pz) is a smooth, rotationally symmetric surface. (Berko, 1983)

Fig. 9.15. The Fermi-surface sections in YBa2Cu3O7, projected onto the kz = 0 plane. The
hatched regions indicate all the points in the projected Brillouin zone where there is a Fermi
surface at some value of kz [110]. (after West, 1995)

iii. Copper

Figure 9.13 shows the contour map of the expermental (a) vs. theoretical

(APW) (b), N(py, pz) − R(py, pz) for Cu, with px along the [100] direction.

(Berko, 1983).
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iv. Disorder alloys

Figure 9.14 shows the contour map of N(py, pz)−R(py, pz) for (a) Cu and (b)

Cu-30at.% Zn, with px along [111]. Berko (1983) found the clear growth of the

FS features in the first zone due to addition of the alloy element Zn.

v. Compounds

Figure 9.15 shows the Fermi-surface sections in YBa2Cu3O7, projected onto

the kz = 0 plane. The theorists predict a total of 4 different Fermi-surface

sections: two large “barrel” hole sections centered on S, a further and smaller

closed-hole pocket at S and the ridge. The barrel sections arise from bands

whose states are predominantly on the Cu-O plane and the remaining two from

states on the Cu-O chains. Both the general depression around S and the lack

of any obvious discontinuities noted by Berko et al. (1991) and West (1995)

are the effects of the positron preference for the Cu-O chain.

9.6. Experimentation with Low-Energy Positron Beams

A high flux of monoenergetic positrons (�E < 1 eV) with variable energy is

most useful as a probe of surface and near-surface phenomena (< 104 Å). From

beta-decay it is known that positrons obtained from radioactive sources have

a broad energy distribution with an average energy of a few hundred keV.

After thermalization the positron diffuses in a Bloch-like state in a defect-

free metal until eventual annihilation. Unlike in metals by direct annihilation,

in vacuum, if a positron and an electron are brought together, positronium

(Ps) forms. This bound state decays from either a singlet state, p-Ps(1S0),

or triplet state, o-Ps(2S1), each of which has unique annihilation characteris-

tics (see Lynn, 1983). Canter et al., Mills and Lynn have shown that Ps does

form with high efficiency, when low-energy positrons impinge on metallic and

semiconductor surfaces. This provides a unique annihilation signature which

enables one to detect that the positron has left the sample. One can use this

result to study the probability of Ps formation under a variety of experimental

conditions with respect to sample temperature, incident-positron energy and

angle (relative to the surface normal), surface conditions and detect concen-

tration. The dominant processes in the interaction of thermalized positrons at

a metallic surface have been shown to be (i) localization of the positron in a

surface state (annihilation or Ps state). (ii) direct re-emission of the positron

from the metal into the vacuum (iii) re-emission into the vacuum as Ps (iv)

reflection of the positron wave from the surface potential back into the metal.

Other processes are less probable.
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9.6.1. Positron Diffusing Back to Metal Surface

The probability of the positron diffusing back to the surface is dependent on

the implantation depth beneath the surface as well as the positron diffusion

constant (Df ) and the effective annihilation rate in the lattice. The diffusion

behaviour of a thermalized positron is determined mainly by scattering from

acoustic phonons.

Positron and Ps interactions with a surface affords a new quantitative

method to examine surfaces. The positron’s sensitivity to lattice defects can

provide unique information on defects residing near a surface or at interfaces.

Central to these measurements is an accurate determination of the fraction

(F) of those positrons which form Ps while leaving the surface of the sample.

The reader is referred to the survey by Lynn (1983) for details related to the

determination of the Ps fraction.

9.6.2. Positron Trapping at Monovacancies Near a Surface

Lynn et al. (see Lynn, 1983) express the diffusion length L+ in terms of an

energy, E0 of the incident-positron; then L+ =
√
Dτeff = AEn

0 . After some

calculation, the Ps fraction F is given by

F =
f0

1 + (E/E0)n
(9.6.1)

where f0 is the branching ratio which includes the term found from the radia-

tive boundary condition. In this derivation no effect from defect trapping or

localization in the surface state has been included (see Lynn, 1983).

In the work of Kreuzer et al. (1980) a series of rate equations including

positron trapping and detrapping at thermally generated vacancies in the bulk,

trapping in the surface state, direct Ps formation and annihilation from these

states has been given and solved in terms of the experimentally varied para-

meters, namely F vs. incident-positron energy and sample temperature.

Figure 9.16 represents the Ps fraction for Al(110) as a function of incident-

positron energy at various sample temperatures. The effect of positron trap-

ping at thermally generated monovacancies can be observed at implant energies

> keV and at higher sample temperatures by the large decrease in the fraction

of the positrons which diffuse back to the surface and form Ps, or by the change

in the curvature demonstrated by solid lines in Fig. 9.16.
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Fig. 9.16. The Ps fraction for Al(100) is shown as a function of incident-positron energy at
various sample temperatures (K): � 323, × 448, + 498, 	 648, ◦ 873. The solid lines are
the best fit of Eq. 9.6.1 with n = 1.35 through the data. No impurities were observed with
AES∗ measurements and a sharp LEED pattern was observed. The statistical-error bars
are approximately the size of the data points. ∗AES is Auger electron spectroscopy. (After
Lynn, 1983)

9.6.3. Defect Profiling with Positron-Beams

The investigation of defects close to the surface by monoenergetic positron

beams has been applied to a wide variety of problems, such as radiation dam-

age, thin films and epitaxial layers. Within a decade, there have been many

studies of Doppler-broadened annihilation radiation (DBAR). Various com-

puter codes have been developed to evaluate the defect profile from the ob-

served DBAR data (see Schultz et al., 1990).

At München and Tsukube, pulsed positron beams have been developed,

which enable also positron lifetime (PLT) studies of defect profiles close to

the surface. Pulsed positron beams provide much more detailed results than

with continuous beams. A brief review by Kögel (1995) was presented on

the 10th International Conference on Positron Annihilation, (Proc. ICPA-10).

Studies on natural oxide layers on V, Nb, Ta; defects close to the surface in
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hydrogen-implanted graphite; in nitrogen-implanted and fatigued titanium and

in laser-shocked nickel have been performed. Puska et al. (1997) studied this

problem two years later.

9.7. Summary

In investigating defects, positron annihilation is an important tool to study

vacancies, dislocations, grain boundaries and surfaces in metals. Compared

with other atomic-scale probes, the positron technique has a firm theoretical

basis though its results are not always easy to interpret.

Positron-defect interactions are well established in metals. The trapping

rate is related to the defect concentration, whereas the annihilation character-

istics of trapped positrons give information on the nature and geometry of the

defects. The positron lifetime is a powerful parameter; the trapped-positron

lifetime reflects the three-dimensional open volume of a defect.

The quantitative interpretation of positron annihilation experiments is cou-

pled to progress in describing the electronic structure. Because of its indirect

nature, the positron probe requires a solid theoretical framework and good

computational method, both of which are now available. The technique is

best used in conjunction with other condensed-matter probes and powerful

computational methods.

The electronic structure of defects is the deeper layer intrinsic quality of

the mechanical property of materials. With the knowledge of positron-defect

interaction, the relationship of the phenomenon (mechanical property) with

the essence (electronic structure) will not doubt be understood more deeply in

the future.



Chapter 10

Stretched Chemical Bonds, Electron
Correlation and Extended Defect Propagation

In the earlier Chaps. (2–9), defects and mechanical properties of metallic ma-

terials including fracture have been discussed together with the elastic strain

field of dislocations (Chap. 3), phonon processes (Chap. 5), electronic structure

(Chap. 6), interatomic forces (Chaps. 7 and 8) and positron annihilation stud-

ies on defects (Chap. 9). For the metallic materials considered in this book,

the plastic deformation processes always occured in degradation and failure

of materials. These processes are now studied in relation to other physical

processes (electric,* thermal, and etc.). Studies on electronic structure and

interatomic forces are important for deeper understanding of mechanical prop-

erties of metallic materials (see Chap. 2). Even in the quantitative analysis of a

fracture surface with the concept of fractals (Chap. 4), interatomic forces and

electronic structure are also necessary intrinsic ingredients (see Sec. 4.17.3).

Below, particular emphasis will be placed on chemical bonding in relation to

electronic structure and mechanical properties (see also Sec. 8.6).

10.1. Roughness and Toughness of Metals and Metallic Alloys

As Mandelbrot and coworkers (1984) have pointed out, fracture surfaces are

self-affine and exhibit scaling properties on two or three decades of length scales

(see, for example, Daguier et al., 1996). The roughness index found in early

studies lay around 0.8 and it was conjectured that this could be a ‘universal

value’ i.e. material-independent and also not sensitive to the fracture mode

*For example, D. Schaible et al. (Phil. Mas. Lett. 78, 121, 1998) have discussed the relation
between residual resistance and plasticity of high purity NiAl single crystal.
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(Bouchaud et al., 1990). Later work has shown that fracture toughness, while

not correlated with the above roughness index, is related to relevant length

scales measured on the fracture surfaces (E. Bouchaud and J. R. Bouchaud,

1994).

For the metallic materials considered in this book, significantly smaller

exponents are determined through scanning tunneling microscopy (see Ap-

pendix A2.5), i.e. for length scales of the order of nanometers. Thus, the

roughness index for fractured tungsten (regular stepped region) is reported

by Milman et al. (1993) to be ∼ 0.6, while that for the semimetal graphite

is near to 0.5 (Milman et al., 1994). Also, low cycle fatigue experiments on

steel yield a roughness index ∼ 0.6 (McAnulty et al., 1992). Subsequently, it

was demonstrated that a different roughness index appropriate to small length

scale could be observed with scanning electron microscopy (SEM) (Bouchaud

and Navéos, 1995) which can associated with ‘quasistatic’ fracture regime.

While this smaller roughness index was found from SEM to be ∼ 0.4-0.5,

subsequent experiments using atomic force microscopy have been reported

on a T i3Al-based alloy, for which the fracture surface has been studied by

both the atomic force microscope and the scanning electron microscopy (Ap-

pendix 2.5) and SEM (Dagiuer et al., 1996). Results from the two techniques

agree quantitatively. Two fracture regimes were observed by Daguier et al.

and it was demonstrated that the roughness index characterizing the regime

of small length scales was 0.5. These same workers note that the length scales

fractal domain extends over five decades of length scales.

Models have emerged which distinguish two regimes, such as mentioned

above. There is a crossover, at some particular length scale, from ‘quasistatic’

to dynamic behavior. Daguier et al. (1996) note that the existence of these

two regimes, with a crossover length decreasing with increasing crack velocity,

has also been observed in the molecular dynamics simulations carried out by

Nakano et al. (1995). For a lattice dynamical model of crack propagation, see

Sec. 10.5.4.

Of particular relevance in the present context is that, as Daguier et al.

(1996) note, the ‘quasistatic’ regime has only been observed in metallic ma-

terials (see Plouraboué et al., 1996). Hence Daguier et al. (1996) infer that

plasticity might be important for the formation of this regime, either due to dif-

ferent fracture mechanisms which are indeed involved within the plastic zone,

or because plastic dissipation may reduce crack propagation velocities in the

region of small length scales.
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What Daguier et al. (1996) have convincingly demonstrated is first that

the results from AFM are quantitatively in agreement with standard SEM.

By simultaneous use of the two techniques, they have been able to observe

the ‘universal’ fracture regime, with a roughness index of 0.8, over about five

decades of length scales in their T i3Al-based metallic alloy. Importantly, at

sufficiently small length scales, a regime has been found, extending over some

three decades, and this has permitted a roughness index of 0.5 to be reliably

extracted.

Two fracture regimes observed by Daguier et al. (1996) strongly support

the concept of multirange fractals introduced in Chap. 4 since the geometrically

scaling found much earlier (see Sec. 4.14). Their results also indicate the

importance of plasticity in the fracture of metallic materials.

One may well enquire why many sorts of materials have been shown to

exhibit scaling properties over only two or three decades of length scale? The

reason may be that materials usually possess complicated microstructures,

some of which form fractal structures which may influence the roughness in-

dex of the main fractal structures considerably. According to the concept of

multirange fractals introduced in Chap. 4, different fractal structures in various

ranges of length scales may partially overlap one another. The overlapping (or

crossover) regions cause the data to deviate from a linear plot (see Fig. 4.15).

From this point of view, the effect of microstructure in the description of frac-

tured surfaces by fractals cannot be ignored.

The debate on the universality and specificity of roughness index is still

going on (see Milman et al., 1993; Hansen et al., 1993) at the time of writing.

However, we believe there is not by any means a real conflict between current

viewpoints. The generality, even in the same universal class (say dynamic in-

stability, complex mode crack propagation, intergranular cracking etc. i.e. less

dependent of material type) may lie low in the specificities of materials. As we

have explained in Sec. 4.17.1, the measured fractal dimension is the synthesis

of various elementary fractal structures including material dependent and less

dependent (“universal”) fractals. In Sec. 4.14, and with particular reference

to Fig. 4.16, if two fractals overlap each other in the entire range of length

scale, the synthesized effective fractal dimension would lie between these two.

The concrete value depends on the fraction of population of the two mech-

anisms in the material. This effect may reduce the specificity of materials.

Let us take an example (see Lung, 1998). If we have two samples of mate-

rials A and B with specific fractal dimensions 1.50 and 1.26 respectively, the
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difference between them is 0.24. This lies outside the experimental error. Now,

we have some universal mechanisms to create fractal structures which are less

material-dependent [say dynamic instability (see Sec. 4.18.5), oscillatory prop-

agation of a slant crack (see Sec. 4.18.7) and evolution induced catastrophic

model (see Sec. 4.18.6)]. Assuming their common fractal dimension value to

be 1.1 (see Bai et al., 1994, and Sec. 4.18.7), the synthesized effective fractal

dimensions would be ∼ 1.3 for sample A and 1.18 for sample B. The difference
between them is then reduced to 0.12. We recall that range of values of D

is between 1-2, which is twice that of the roughness index, 0.5-1. Then, the

difference between A and B is reduced further to ∼ 0.06. This appears to lie

within the experimental error. It seems that the fractal dimension of fractured

surfaces will not correspond to a universal value.

Moreover, from Eq. (4.17.5)

D = 1− ln[GIc(D, εn)/GIc(1, 1)]

ln(η/L0)
(10.1.1)

Even with a large change in the sorts of materials considered, the relative

change of logarithmic values of the ratio GIc(D, εn)/GIc(1, 1) might be small

(in brittle fracture case, GIc(1, 1) = 2γs, the specific surface energy). If we

assume the denominator does not change very much, the observed values of D

being in a narrow range can be understood in a semiquantitative way.

In short, the less material dependent mechanism may lie low in the phe-

nomena of various specificities. At large length scales (r > 0.1 − 1.0 µm, see

Daguier et al., 1996), the fractal dimension has weaker dependence on the ma-

terial; and at smaller length scales (r < 0.1 µm), the fractal dimension is more

strongly dependent on the material.

The results observed by Daguier et al. (1996) strongly support the impor-

tance of plasticity in the fracture of metallic materials. Milman et al. (1994)

showed the material-structural-dependent character of the roughness index (or

local fractal dimension). Both of these groups arrived at the same conclusion

that for metallic materials considered in this book, dislocation processes are

important.

Since the pioneering studies of Vitek and coworkers (see Vitek, 1994, 1995),

there have been many investigations by computer simulation of dislocation core

structure by means of N-body potentials. It seems true to say that interatomic

forces are a decisive factor in dislocation core structures. It also seems that

much progress in studies of mechanical properties with electronic structural
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theory is to be expected though some difficulties for a realistic representation

of an extended defect such as a dislocation are still awaiting a decisive solution

at the time of writing.

10.2. Perfect Crystal Properties: Elastic Constants and

Melting Points

10.2.1. Bonding Energies of Metals

Parallel to many numerical computer ab initio calculations, Rose and Shore

(1995; 1991) studied the qualitative picture of the trends in the cohesive ener-

gies of elemental metals and elastic constants of the transition metals from a

uniform electron gas. Their model includes the additional electron-ion interac-

tion (i.e., that part not accounted for by jellium) by adding an electron poten-

tial that is constant inside pseudojellium and zero outside. Their pseudojellium

model requires an adjustable parameter (fixed by the chemical potential) and

gives reasonably good agreement for the surface properties and cohesive ener-

gies of the simple metals. The only input parameter is the average electron

density. They identify the crucial variables that determine the bonding en-

ergies of the metals as the size of the atom and the electron density at the

cell boundary. Paxton (1995) and collaborators (1991) used the local den-

sity approximation to density functional theory to reexamine the ‘theoretical

strength’ of metals. They calculated ideal twin stress in five b.c.c. transition

metals, and in Ir, Cu and Al.

10.2.2. Melting Energies

Based on analyses of data of melting points, of 14 kinds of metals, Lung and

Wang proposed a qualitative electronic structural criterion for the strength

of atomic bonding (Lung and Wang, 1961). This involved a function f(k)

which is, in essence, a product of a group velocity, dE/dk, which depends on

direction, and density of states. f(k), to be physical is to be evaluated at the

Fermi momentum. Relevant data from Lung and Wong (1961) is collected in

Tables 10.1 to 10.3. Note that group velocity is directionally dependent (see

below). Tables 10.2 and 10.3 show that f(k) reflects the strength of atomic

bonding.

This present criterion for the strength of atomic bonding, synthesizes two

factors, group velocity and neff instead of previous criteria which consider one



Table 10.1. The electronic structure and atomic bonding (Lung and Wang, 1961).

elements melting points m∗/m neff Na EF σ/MΘ2∗

(◦C) (related to density (related to group (×10−24) (eV) (×102)
of states) velocity)

Cu 1084◦ 1.012, 1.5 0.37 0.0842 7.1, 7.0 9.1

Ag 960◦ 0.992 0.89 0.0586 5.51 12.4

Au 1063◦ 0.994 0.73 0.0589 5.51 8.1

Zn 419.5◦ 0.8–0.9 – 0.0662 11 6.1

Cd 320.9◦ 0.75 2.4 0.0463 4.5

Hg −38.9◦ 1.8–2.2 2.1 0.0407 3.4

Be 1300◦ 0.46 – 0.1229 14.8, 13.5, 13.8 2.0

Mg 650◦ 1.33 – 0.0431 7.3, 9.0, 6.2 8.1

Fe 1535◦ 12 – 0.0847 4.4 1.14

Co 1480◦ 14 – 0.0890 5.8 1.7

Ni 1455◦ 18 – 0.0913 4.7 1.9

Li 180◦ 1.4 0.55 0.0463 4.2, 4.1, 3.7 12.9

Na 97.8◦ 0.98 0.87, 1.1 0.0254 3.5, 3.0, 2.5 24

K 63.6◦ 0.93 0.97, 0.75 0.0134 1.9 15.9

∗ σ is the specific electrical conductivity, m is ionic mass and Θ is Debye temperature.
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Table 10.2

f (k)k=kmax melting point

Ag > Au > Cu Cu > Au > Ag

Hg > Cd > Zn Zn > Cd > Hg

Mg > Be Be > Mg

Ni > Co > Fe Fe > Co > Ni

Table 10.3

f (k)k=kmax melting point

Zn > Cu Cu > Zn

Cd > Ag Ag > Cd

Hg > Au Au > Hg

factor only, e.g. density of energy states, Fermi energy of conduction electrons.

It is worthwhile to pointing out that progress in positron annihilation, pho-

ton emission and Compton scattering techniques may provide information on

momentum distribution of electrons, and effective number of free electrons. It

is to be hoped that this qualitative criterion can be checked with new experi-

mental results. Using this qualitative criterion, one can explain the reason why

crystals usually glide along the highest density direction in the highest density

crystal plane. Let us see what will happen on the Brillouin zone when a shear

strain occurs. The lattice vector after a shear strain γ is given by

a1 = a


 10
0


 , a2 = a


 01
0


 , a3 = d


 γ
0
1


 (10.2.6)

where d �= a, and the reciprocal lattice vectors are given by

b1 =
1

a


 1
0
−γ


 , b2 =

1

a


 01
0


 , b3 =

1

d


 00
1


 (10.2.7)
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where γ = x
d
, and the first Brillouin zone is composed by the following eight

planes according to the conditions k · hb = πh2b ,

kx − γkz = ±π

a
(1 + γ2)

1

a
kx +

1

d
kz − γ

a
kz = ±

[
π

a2
+

π

d2
(1− γd

a
)2
]

ky = ±π

a

kz = ±π

d
.

Fig. 10.1(a)

Fig. 10.1(b)
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Assuming that a = d, Fig. 10.1(a) shows the primitive cell of a simple cubic

lattice in two dimensions before and after deformation; 10.1(b) shows the first

Brillouin zone of the simple cubic lattice in two dimensions before and after

deformation. The shape of the first Brillouin zone has been changed by shear

deformation. The distribution of state of electrons in k-space might be changed

under transitions in k-space to a new equilibrium state due to interactions with

the Brillouin zone boundary.

Now, we discuss the case of a �= d. Assuming that atoms will glide when

they displace to a critical value, βa (i.e. γ = βa
d ). We analyse the degree of the

distortion of the Brillouin zone shape. We calculate the interaction between

x − Z plane and planes showed by the first and second equations of the first

Brillouin zone above.

k′x = ±π

a

[
1 + β(1− β)

a2

d2

]

k′Z = ±π

d
(1− 2β) .

(10.2.1)

The ratios of k′x/kx and k′Z/kZ are given by

k′x
kx
= 1 + β(1− β)

a2

d2

k′Z
kZ

= 1− 2β .

(10.2.2)

Equation (10.2.2) reflects the distortion of Brillouin zone. The value of
k′Z
kZ
is

independent on a/d, and however,
k′x
kx
is dependent on a/d. We may see:

(i) If a is smaller,
k′Z
kZ
is nearer to unity. That means smaller distortion

of the Brillouin zone. The atom is easy to glide along the direction in

the line of closest packing (a is smallest).

(ii) If d is larger,
k′Z
kZ
is nearer to unity. That also means smaller distortion

of the Brillouin zone. The slip takes place along crystallographic planes

of the closest packing (d is the largest).

Li and Lin (1982) calculated the second and third order elastic constants

of seven simple metals (Li, Na, K, Cs, Al and Pd) with the one-parameter

Heine-Abarenkov model potential with the Hubbard-Sham dielectric function.

The two adjustable parameters are determined from the experimental data of
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the elastic constant C44 and the lattice constant of the crystal at 0K and zero

applied pressure. The calculated results are in good agreement with experi-

ments. Again, Li (1986, 1987) calculated the third order elastic constants and

the pressure derivatives of the second order elastic constants of noble metals

(Cu, Ag, Au) at 0K with the model of pseudopotential and the overlap en-

ergy of noble metals. This shows that the results for gold are closer to the

experimental data than those of other authors.

10.2.3. Interatomic Forces in Solid Solution of Transition Metal Alloys

In transition metals with partially filled d-band the attractive part of the total

energy originates principally from the formation of this band (Friedel, 1969;

Pettifor, 1983). Within the tight binding framework the total energy of the

system can be divided into a repulsive pair-potential and an attractive bond

energy part (Finnis et al., 1988; Sutton et al., 1988). For a chosen form of the

hopping integral the bond energy of the system can be found. This method

has to be carried out in the k-space representation and thus the system must

be three-dimensionally periodic. Several approximate schemes have been de-

veloped in which the total energy is evaluated in the real space (Carlsson,

1990).

Pettifor et al. (Pettifor, 1981; Aoki and Pettifor, 1994) advanced the bond-

order potentials, which are one such scheme calculated in coordinate space.

The concept of bond order is equal to the difference between the numbers of

electrons in the bonding and antibonding states corresponding to the respective

orbital. In the framework of bond order potentials, for a given configuration

of atoms, it can be done numerically using the recursion scheme. Aoki and

Pettifor (1994) used the bond order potentials to study d-bonded transition

metals.

Another different approach by Cyrot-Lackmann (1967), and Ducastelle and

Cyrot-Lackmann (1970), uses the scalar moments referred to its centre of grav-

ity. A real space description of the energy of transition metals that includes the

dependence on angles between pairs of bonds, has been proposed by Carlsson

(1990). If only a finite number of moments are taken into consideration and a

certain approximation to the shape of the local density of states (LDOS), the

bond energy can be evaluated.

For solid solutions of transition metal alloys, Dehjar et al. (1957) and Gou

et al. (1962) made some qualitative analyses. They discussed the strength of

interatomic forces in transition metal alloys. They analysed experimental data
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on sublimation energy, melting point, elastic modulus, coefficient of thermal

expansion, bulk modulus, Debye temperature and activation energy of diffusion

of Fe-C, Fe-Mo, Fe-W, Fe-V, Fe-Mn, Fe-Ni, Fe-Cr, Ni-Mo, Ni-Mn, Ni-Fe, Ni-

Zr, Ni-Nb, Ni-Cu, Co-Cr, and Co-Ni alloys. Gou et al. (1962) found that

Cr, Mo, W, Mn, and Nb increase the interatomic forces in Fe-alloys, but Ni

decreases it. The role of V is not clear. They also found that Cr, Mo, W, Mn,

Nb, Fe, and Zr increase the interatomic forces in Ni-alloys, but Cu decreases

it. They pointed out that Cr may strengthen atomic forces in Co-alloys but

Ni decreases it. Gou et al. (1962) summarized that for Fe based alloys, the

strength of interatomic forces would increase if elements on the left of iron

in the Periodic Table are added to form solid solutions in general, and would

decrease if elements on the right is added. Furthermore, Gou et al. (1962) drew

the conclusion that elements having more unpaired electrons than the solvent

metal will increase the interatomic force and that elements having less unpaired

electrons than the solvent metals will decrease the interatomic force. Moreover,

Gou et al. (1962) pointed out that there will be a strengthened or weakened

atomic cluster formed when a second element atom is added in the base metal.

If the second element increases the interatomic force, the strengthened atomic

cluster will become more and more as the concentration of the second element

increases. Thus, the macroscopic properties will increase. The concept of

clusters they proposed in 1960’s may be one of the earliest attempts to study

clusters after Taylor et al. (1933) on the growth of a crystal by adding of

successive atoms to a bcc lattice for up to eight sodium atoms and up to

five copper atoms (de Heer et al. 1987). Another interesting phenomena is the

non-monotonic change of properties in extremely dilute solid solution (0.001%–

0.1%at.): Borovski (see Guo et al., 1962) found that it is a general phenomenon

in transition metal alloys, say Fe-W, Fe-Cr, Fe-Mo, Fe-Al alloys and etc. Based

on some experimental data on Al-Ag, Al-Cu, Al-Zn, Al-Mg; Cu-Zn, Cu-Ga,

Cu-Ge, and Cu-Cs alloys, Gou et al. pointed out that it is not only a general

phenomenon in transition metal alloys but also in non-transition metal alloys.

Then, it is universal. They explained this phenomenon as follows: As a second

element (or impurity atom) is added into the base metal, the interatomic force

is strengthened by two mechanisms: One is the unpaired electrons and the

other is the polarization of the second element. The latter effect increases the

atomic force till the polarization spheres of the impurity atoms overlap each

other and then compensate a part of this effect. The maximum effects appear

when the polarization spheres are just in contact with each other.
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10.2.4. Bonding Characteristic of Ni3Al

Ni3Al and its alloys have aroused interest in potential high temperature struc-

tural applications, but their brittleness is the most formidable obstacle to fab-

rication and use. Using discrete variational Xα (DFT-Xα) method, Meng

et al. (1993, 1994) studied a cluster of monocrystalline Ni3Al. Their calcu-

lations show that Ni-Ni bond is very similar to Ni-Al bond. The ductility

of monocrystal is due to the similarity of Ni-Ni bond to Ni-Al bond. The

brittleness of polycrystal is attributed to the weakening of directional cova-

lent bonding at grain boundaries. The addition of ternary elements (Pd, Ag,

Cu, and Co) substituting for the Ni sites leads to the increase of delocalized

bonding electrons, the decrease of the covalent bond directionality and then

the increase of the ductility.

Aoki and Izumi (1977) have shown that an increase in ductility of Ni3Al

could be obtained by B doping. Liu et al. (1989, 1990a, 1990b, 1992) and Wan

et al. (1992a) have demonstrated that the elongation and fracture of LI2-type

ordered intermetallic compounds are commonly very susceptible to the test

atmosphere. Losses of tensile ductility have been observed for a number of

polycrystals with LI2-type structure which were injected by cathodic hydrogen

charging or exposed to hydrogen gas. Wan et al. (1992b) have reported that

the ductility of Ni3Al with low boron content (120 wppm) was sensitive to en-

vironmental embrittlement in the presence of water vapour. Wang et al. (1992)

calculated the localized electronic structure of boron-impurity-vacancy (B-V-

B) complex in Ni for four models with different configurations by use of the

multiple-scattering Xα method. Results are presented for the total energy,

density of states and local charge transfer. Comparisons are made among the

four models. The calculations indicate a strong binding between the boron

atom and the vacancy. Boron-containing alloys with a B-V-B complex show

a strong potential for charge redistribution. Deng et al. (1995) using positron

annihilation technique studied the behaviour of hydrogen in Ni3Al alloys as

well as the interaction of hydrogen and boron with defects in Ni3Al alloys.

Their results demonstrate that the more the hydrogen atoms segregate to de-

fects, the shorter the mean lifetime. The magnitude of the decrease of τ is

about 10 ps in B-free Ni3Al and only 4–5 ps in B-doped Ni3Al. This indicates

that the filling effect of hydrogen into defects in Ni3Al alloys is related to B

content. B atoms which sink into defects such as vacancies, dislocations and

grain boundaries effectively impede the entrance of protons and/or hydrogen

atoms into the defects. More valence electrons are presented in the region of
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defects. This gives some increase of positron mean lifetime. The increase in

ductility of Ni3Al obtained by B doping involves the contributions of both ef-

fects: B strengthening the metallic bonding cohesion in grain boundaries and

B suppressing hydrogen embrittlement.

10.2.5. The Empirical Electron Theory of Solids (EET ) and The Brittleness

of σ-Phase in Fe-Cr Alloys

Based on Pauling’s electron theory of metals, Yü (1978, 1981) proposed an

empirical electron theory of solids and molecules. The empirical electron the-

ory separates the charge distribution in crystals into three kinds of electrons,

the dumb pair electrons,* the covalent bond valence electrons and the lattice

valence electrons, and modifies the relation between the number of equivalent

bonds and the experimental covalent bond lengths. He pointed out that the

dumb pair electrons as well as the covalent bond electrons are made of d elec-

trons, whereas the lattice electrons are made of s and p electrons. He reported

that more than a thousand crystalline and molecular structures together with

some of their related experimental data and experimentally verified theoreti-

cal information, were analyzed for 78 elements of the first six periods in the

Periodic table. To the first order of approximation, the author reported that

the results appear satisfactory.

Chen et al. (1980) calculated the number of dumb electrons, covalent bond

valence electrons and lattice valence electrons in Ni3Al with the empirical elec-

tron theory and compared with that calculated from Cooper’s (1963) structure

diagram of the equidensity curves on surface (110) of outer electron distribu-

tion in Ni3Al (both experimental and theoretical). The calculated results are

listed in Table 10.4. From Table 10.4, one may see that the result calculated

by the EET agrees well with the result from the experimental data in the first

order of approximation whereas that from the theoretical curve by Cooper

(1963) is quite different due to its basis of free electron theory for transition

metal alloys. On the other hand, Wang et al. (1981) applied the EET to the

interpretation and analyses of Cu and Ag charge density distribution diagrams

obtained by Fong et al. (1975) from the bond structures with the pseudopo-

tential method. It was shown that the results by EET and energy band theory

*Y. Guo, R. Yü, R. Zhang, X. Zhang and K. Tao (J. Phys. Chem. B. 102, 9, 1998) offer
the explanation that ‘the so-called dumb pair electrons represent either a bonding and an
antibonding electron, whose resultant bonding power is mutually cancelled by each after and
whose spins are opposite ... It can also represent a pair of nonvalence electrons of opposite
spins, which sinks deeply down to the atomic orbit.
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Table 10.4. Comparison of distribution in Ni3Al of the outer electrons by
the EET with that from Cooper’s data.

Number of Dumb electrons Covalent Lattice Outer total

electrons pairs electrons electrons electrons

E.E.T 2.860 9.710 0.430 13.000

exp.(Cooper) 3∗ 9.229 0.401 12.630

Th.(Cooper) 7.932 no no 13.066∗∗

∗ It is an estimated value.
∗∗ a number of valence electrons, 5.134 has been added.

agree with each other. Yuan (1985) applied the EET to analyse the brittleness

of σ-phase in Fe-Cr alloys. It was found that there are only four weak bonds,

np and nT (np = 0.1584; nT = 0.0946) connecting atoms between two parallel

(001) planes. He reported that it is due to the inhomogeneous distribution of

the covalent electrons, and that this is the physical origin of the brittleness of

Fe-Cr σ-phase crystals.

10.3. Morse Potentials and crss of Iron Single Crystals

The transition-state theory has been applied widely and has had considerable

success in treating thermally activated process, especially in describing the

movement of point defects. This theory has been also applied widely to the

thermally activated movement of dislocations. For a review of these topics see

Dorn (1968). Then, the problem of dislocation motion is simplified to calculate

the energy of dislocation core structure. Schöck (1980) discussed the limita-

tions of transition-state theory and dynamical theory. He pointed out that

the essential assumption of the transition-state theory were that at the saddle

point the modes of the activated complex should need two counter contrary

requirements. The first one is that the system interacts strongly enough with

the temperature bath and stays long enough to acquire thermal equilibrium;

and the second one is that the system interacts weakly enough with the tem-

perature bath that a positive velocity is not reversed. The problem, we think,

is whether the deformation process is quasi-stationary or not. Conrad and

Sprecher (1989) discussed the forces opposing dislocation motion and pointed

out that the motion of dislocations in a metal falls into two general categories:

(i) At high stresses or high velocities, where the waiting time tw at a structural

obstacle is either zero or considerably less than the running time tr between the
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obstacles, the dislocation velocity in this regime is given by a drag mechanism.

The drag coefficient B is given by

B = τ∗b/v (10.3.1)

where τ∗ = τ−τi; τ is the applied stress and τi is the long-range internal stress

resulting from all crystal defects. (ii) At low stresses or low-velocities where

tw > tr, the thermal activation plays a role in overcoming the obstacle. The

average dislocation velocity v is given by

v = v0 exp{−[�G(τ∗)/kT ]} (10.3.2)

where �G(τ∗) is the Gibbs free energy. Three cases of dislocations under high
frequency vibration exist: (1) ultrasonic wave propagation (2) high tempera-

ture creep and (3) the intermediate case of normal plastic deformation which

is more complicated than cases (1) and (2).

Table 10.5 shows the relative values of tw(∼ γ−1) and tr(∼ v−1) of dis-
location lines for normal tension test and creep in comparison with atomic

diffusion. PT (tension) � Pc(creep) � Pd(diffusion). The running time tr is

too short for the tension test case. It seems not sufficient to assume that the

dislocation line stays long enough to acquire thermal equilibrium in tension

test case.

For avoiding the assumption of thermal equilibrium, the thermal activation

was described by so-called “dynamical” theory of thermal activated ion devel-

oped by some authors. A rather simplified dynamical treatment of unpinning

of dislocations can be made when the action of thermal forces was consid-

ered. This was first analysed by Leibfried (1957). He considered a dislocation

Table 10.5

velocity v̄ (b/sec) vibration frequency γ (1/sec) p = γ/v̄(b−1)

Tension test (disl.) ∼ 104 ∼ 1010 105

Creep (disl.) ∼ 1 ∼ 1010 1010

Diffusion (atom)∗ ∼ 1 ∼ 1012 1012

∗ C in α-Fe at 40◦C.
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segment of length L pinned at the ends in the string approximation. Its shape

can be represented by a set of linear oscillators. At the centre, the dislocation

segment is pinned by a force per unit length k = −τ0y acting over a segment of

length l � L. It has been shown that the maximum displacement is essentially

the amplitude of the lowest mode, whereas the higher ones make very little

contribution. He obtained

〈y20〉av ≈ 2kT/(π2E/L+ 2τ0l) . (10.3.3)

The corresponding frequency of the lowest mode is approximately

ν0 = νD[b
2/L2 + 4τ0l/π

2µL]1/2 . (10.3.4)

The basic assumption is that a jump takes place when an atom is displaced a

critical distance from its equilibrium position.

Similar to this approach, Lung et al. (1964, 1965) considered mainly the

stretched chemical exchanging bonds with the moving dislocation centre dan-

gling atoms as the pinning force. The formation and disruption of the bonds

resist the motion of dislocations. The stress needed to overcome this resistance

is the frictional stress. One bond between the dislocation centre atom and the

impure atom has been considered as the representative bond to simplify the

treatment. This seems to be reasonable. Wang et al. (1993) calculated the

electronic structure of edge dislocation in iron and showed that the charge

redistribution of the dislocation core caused by the local inhomogeneous de-

formation forms a stronger interaction between the interstitial impurity atom

(carbon, nitrogen, etc.) and the edge dislocation than the elastic interaction.

Moreover, from Eqs. (1.1.1) and (1.1.2), we may have seen that the interac-

tion energy of a pair of univalent ions is similar to that of having summed

the repulsive and attractive interactions with nearest neighbours. Their dif-

ferences are only between the coefficients. This is quite straight forward for

ionic bonding, the effects of more distant ions are usually taken into account

by a geometrical correction factor called Madelung constant, which depends

on the details of the crystal structure. This concept has been used by Wang

et al. (1989) to calculate the interatomic potential in transition metal Ni. Let

us borrow this concept for a simplified approximate assumption. For covalent

bonds, one has no trouble such as with inequivalent ions. They chose a Morse

potential function as the interaction between the paired atoms.

uc = D{e−2α(r−r0) − 2e−α(r−r0)} . (10.3.5)
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Here r0 is the distance between the dislocation centre atom and the impurity

atom under equilibrium condition, while under the action of applied stress,

it will be changed to r. D is uc under equilibrium condition, and α is the

parameter of the Morse function. These parameters can be calculated from

the quantum theory of molecules.

Figure 10.2 shows the schematic figure of the configuration of the edge

dislocation core in a simple cubic lattice with an impurity atom just below the

dislocation core atom. Like the Peierls model, they chose the edge dislocation

model for simplicity. This analysis will not lose the generality of screw and

other complicated dislocation cores.

r̄ − r0 = {[r20 + (x+ u)2]}1/2 − r0 ∼ x2 + u2

2r0
.

Then Eq. (10.3.5) may be written in the following simplified form

uc = D{e−2Ax2−2BT − 2e−Ax2−BT } (10.3.6)

and A = α
2r0
, B = ( α

2r0
)(u

2

T
). The critical resolved shear stress may be written

as

σc = S−1
(
∂uc

∂x

)
max

(10.3.7)

Fig. 10.2
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and S = [ (cin)
1
3

b ]−1 is a constant with the dimension of area, ci is the atomic
concentration of interstitial, n is the number of atoms per unit volume (con-

taining all solute and solvent atoms), and b is the Burgers vector, T is the

absolute temperature. The value x of (∂uc
∂x
)max is determined by

∂2uc
∂x2

= 0 at

any given temperature, i.e.

BT = − ln 2Ax2c − 1
4Ax2c − 1

−Ax2c . (10.3.8)

From Eqs. (10.3.6) and (10.3.7), one obtains

σc = 2

(
xc

r0

){
e−2Ax

2
c−2BT − e−Ax

2
c−BT

}
αDS−1 . (10.3.9)

In Chap. 2, we have explained that the approximation of Eq. (10.3.7) in ap-

propriate range of temperature may be expressed as σ(T ) = σ∗(0) exp(−BT ).

This expression has been compared with Lung et al.’s experiments on Mo-

single crystals and exhibited good agreement. This expression is also similar

to later experiments on the temperature dependence of the plastic flow-stress

of covalent crystals (Suzuki et al., 1995).

According to quantum theory of molecules and thermal vibration theory of

dislocations by Leibfried (1957), the parameters, A, B, α, D can be calculated

in simple cases. Thus σc at any temperature of this model may be calculated

from Eqs. (10.3.8) and (10.3.9). However, in general, for common metals, espe-

cially for transition metals, it is much more complicated. It is not practical to

calculate the absolute values of critical stress for comparison with experimental

results. To overcome this difficulty, Lung et al. (1966) determined some of the

parameters empirically and using this method they have compared the curve

of their model with experiments in a semi-quantitative sense.

(1) Within a certain temperature range, by means of the asymptotic re-

lationship ln σc(T ) = lnσc(0) − BT in Chap. 2 and the least square

method, the slopes B on the lnσ − T plot have been determined.

They are 1.17 × 10−2(K−1) in the case of Edmondson, (α-iron) and
8.7× 10−3(K−1) in the case of Cox et al. (α-iron).

(2) Assuming that a certain experimental value of crss is fitted with the the-

oretically calculated result, one may calculate the curve of this model.

Figure 10.3 shows the results. Then, the curves can be calculated by

Eqs. (10.3.8) and (10.3.9) and are in good agreement with the experimental

results of iron single curve in the whole range of temperatures.
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Fig. 10.3. σc − T curve of iron single crystals (black lines are theoretical curves). (From
Lung et al. (1996) ◦ – Edmondson; • – Cox et al.

This agreement shows the behaviours of Morse potential in the crss of iron

single crystal especially in the extreme low temperature range though it is not

rigorous to know whether the plastic mechanism is changed or not. Anyway,

the agreement shows another possibility — that Morse potential is one of the

factors deciding the crss beginning to deviate from the usual temperature de-

pendence (exponential relationship) at the temperature (∼ 200K), higher than
that of twinning formation (140K) (Louat and Hutchison, 1962). The authors

emphasize that this is not in contradiction with the available computer simula-

tions on dislocation core structures introduced in Sec. 10.1. (i) The computer

simulation emphasizes the atomistic core structure and energy of dislocations

of different kinds of metals even at high temperature with molecular dynamics

method, not the temperature dependence of crss under the same glide mech-

anism. (ii) Morse potential model is based on the experiments on Mo-single

crystals which are selected to have the orientation in such a way that (110)

[111] remained to be the only slip system throughout the whole testing tem-

perature range. Thus, this model excludes the complicated cases of dislocation

core configuration transformations from the glissile into sessile form with in-

creasing temperature, such as in the LI2 structure crystals.
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The treatment in which only the bonds between the dislocation centre

atoms and impurity atoms have been considered is a somewhat oversimplified
model. However, if one compares this model with the Peierls model, one may

see that it is as rough as Peierls model to have treated the upper and lower

parts of crystals as continuous media.

The treatment needs a deeper understanding through electronic structure

calculations. In principle, this can be done with the local density functional

theory. However, at present, it is used routinely in studies of the stability
of crystal structures. Its application to extended defects is still limited at

the time of writing. Qualitative analysis based on electronic theory is still
worthwhile. If we can calculate the local N(E) at the Fermi surface and the

Neff, we may characterize the local atomic bonding strength at defect core. We

know that Neff has directionality. Neff would be anisotropic at the dislocation
core and thus it describes the different behaviours of dislocation glide and

climb. Positron annihilation can measure the Neff at the dislocation (Deng et
al., 1995) and the momentum distribution of the electrons (see Chap. 9).

Computer simulation with empirical atomic potentials still affords a realis-

tic approach to this problem. However, at the time of writing, calculations on
the structure and energy of the dislocation core at different stages of dislocation

movement in various ranges of finite temperatures are lacking.

The Morse potential model may predict the anomalous yield stress in LI2
alloys in the following way (Fig. 10.4).

Fig. 10.4. Anomalous yield stress versus temperature.
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If the dislocation core structure were not change at T1 or so, the σc vs T

relationship would be along curve a and then, at T1 the σc would be at point

1. As the temperature increases to T2, the dislocation core structure changes

partly to be sessile. If the dislocation core structure does not change at T2
or so, the σc vs T relationship would be along curve b and then, at T2 the

σc would be at point 2. Repeating this argument again, we obtain curve 1

2 3 4 as the anomalous yield stress in LI2 alloys. This explanation is not in

contradiction with electron microscope observations by Hirsch (1992), but is

another kind of “dynamical” model to explain the temperature dependence of

yield stress in bcc metal alloys rather than thermal activation mechanism.

The interaction between phonons and a dislocation has been calculated

by many workers (Maradudin, 1958; Tewary, 1969; Ninomiya, 1970; Boyer

and Hardy, 1971; Tewary and Bullough, 1971; (see also Bullough and Tewary,

1979)). Following the above studies, Ohashi et al. (1978) used the double-time

Green function technique to work out thermal vibrations of a dislocation. An

expression for the mean-square displacement of the dislocation is obtained.

The results were used to calculate the root-mean-square displacement of dis-

locations in fcc metals. In their calculations, they did not consider the disso-

ciation of the perfect dislocation into Shockley partials. However, the authors

argued that the effect of the dissociation of the perfect dislocation does not af-

fect the results obtained for low temperature because at low temperatures the

phonons of long wavelength are dominant. At high temperatures the phonons

of short wavelengths become important and the atomic configurations around

the dislocations must be considered. The results have not been used to bcc

metals. It might be the same way to obtain the root-mean-square displacement

of dislocations provided the dissociation into partials is not being considered.

Their interesting finding is that at low temperatures (T > 0.1 × θD, the De-

bye temperature), mean-square displacements of both edge and screw vary

linearly with temperature. Then the B value in Eq. (10.3.6) would be constant

( 〈u
2〉
T

∼ const.). This conclusion seems the same as the result from experi-

ments on Mo single crystals by one of the present authors and his co-workers

(see Chap. 2). In those experiments, they selected Mo single crystals according

to their orientations being such that all their slip systems are {110} [111]. The
reason why the behaviour of Mo single crystals is like that of fcc metals is not

clear. It seems that the temperature dependence of bcc metals is like that of

fcc metals if samples are selected such that their slip systems are the same in

the entire range of temperatures.
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Based on Lung et al.’s analysis (1997), in Sec. 2.1.2, we pointed out that the

approximate exponential relationship between crss and temperature is common

even for bcc simple crystals provided that the slip plane and direction are kept

the same. Using double-time Green function, Wang et al. (1998) calculated

the thermal vibration of a dislocation line. With Morse potential model, Wang

et al. (1998) calculated values of crss of Al, Cu, Fe, and Mo single crystals.

The calculated results showed that the temperature dependence of crss of many

metals obeys the approximate exponential low.

Using the Morse potential model, one can also explain the influence of the

concentration of solute atoms in metals on the temperature dependence of

yield stress of bcc metals. Jiang et al. (1984, 1989) calculated the B values

in Eq. (2.2.1) of various concentrations of carbon atoms on the temperature

dependence of yield stress of α-Fe. They extended the method by Leibfried

(1954) in which the interaction of impure atom with the dislocation line was

simplified to be frictional stress parameter rather than a Morse potential. It

may be a reasonable approximation when the temperature is low, and u2 is

small enough. Table 10.6 shows the data calculated in comparison with ex-

perimental results measured by He et al. (1966) with internal friction method

for determination of the concentration of carbon solute atoms in α-Fe solid

solution.

Based on the elasticity theory and considering the lattice modification for

the dislocation core, Wang et al. (1993) studied the relaxed atomic structure

of the dislocation core with a self-consistent calculation by using the molecular

dynamics. From the modified atomic coordinates and by use of the recursion

method, they calculated the electronic structure of the dislocation core. They

found that the edge dislocation results in the splitting of degenerate states,

and the movement of Fermi level. The local density of states in the dislocation

core diffuses markedly in energy space, which reflects the perturbation of the

dislocation. The neighboring environment around the atoms in the core affects

the local density of states sensitively.

Table 10.6

Exp. Cal C(×106)
11.00 10.49 66

7.58 8.29 300

6.54 6.40 630

6.16 6.03 720
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It seems that by combining this theoretical calculation on the local density

of states in the dislocation and the measurement of local Neff at the defect

by positron annihilation (Deng et al., 1995), the mechanical behaviour of the

dislocation would be understood more deeply in terms of electronic properties.

10.4. Plastic Deformation of L12 Ordered Alloys

In the context of the relation between mechanical properties and atomistic

(and finally electronic!) structure, we summarize below the study by Tichy

et al. (1986) on the plastic deformation of L12 ordered alloys.

This subject has been studied extensively, both experimentally and theo-

retically (see reviews of Stoloff and Pope, 1966; Liang and Pope, 1977; Pope

and Ezz, 1984; Pope and Vitek, 1984). Often, these investigations had as one

focal point a very prominent feature of the plastic properties of these alloys,

namely the peak in the dependence of the yield stress, observed in a number

of different L12 alloys at high temperatures. The widely accepted mechanism

for this anomalous increase of the flow stress involves cross-slip of screw dislo-

cations from (111) planes, where they are mobile, to (010) planes, where they

are assumed immobile (Kear and Wilsdorf, 1962; Thornton et al., 1970) and

to act as obstacles to moving dislocations. The driving force for the cross-slip

is provided by the anisotropy of the antiphase boundary (APB) energy, which

is lowest for (010) planes (Flinn, 1960).

It is not our purpose here to go into calculational details. But we summarize

the main conclusions of the study of Tichy et al. (1986).

An important deduction from these atomistic studies of screw dislocations

in L12 alloys in which no stable APBs exist on {111} planes is that these dislo-
cations are always sessile. Following Tichy et al. (1986) we note that the cores

of the 1
2 [1̄01] superpartials bounding an APB on the (010) plane are spread

entirely outside this plane into two {111} planes intersecting along the [1̄01]
direction. The core of the 1

3 [1̄1̄2] superpartial bounding a superlattice intrinsic

stacking fault (SISF) on the (111) plane is split, into an edge part 1
6 [12̄1] and a

screw part 1
2 [1̄01]. The core of the latter is again spread into the two intersect-

ing {111} planes. Hence it appears from the work of Tichy et al. (1986) that,

in the alloys they consider, the core of the 1
2 [1̄01] screw dislocation always has

a strong tendency to spread equally into the two most densely packed planes,

(111) and (11̄1), intersecting along the [1̄01] direction. The reason proposed by

Tichy et al. (1986) is that the complex stacking fault (CSF) is also unstable,

and thus the usual planar splitting of 12 [1̄01] dislocations into Shockley partials
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is not possible. Tichy et al. (1986) in this context contrast the situation with

that in pure fcc metals and fcc — based ordered alloys. In these cases, 16 〈112〉
type stacking faults on {111} planes are stable and therefore a glissile form of
1
2 〈101〉 screw dislocations always exists.
Tichy et al. (1986) emphasize that very different plastic behaviour is to be

anticipated for L12 alloys with stable and unstable APBs and CSFs on {111}
planes, respectively. This is due to the markedly different character of screw

dislocations in these two alloy classes. In the former, a glissile configuration of

screw dislocations always exists, even if it is only metastable and energetically

less favorable than the sessile configuration formed by the transformation of

the core to produce a ribbon of APB on the (010) plane. Tichy et al. (1986)

note that such a glissile configuration results when superdislocations split into
1
2 〈101〉 superpartials on {111} planes, and these further dissociate into the
Shockley partials. The low-temperature behaviour can then be anticipated to

be like that of pure fcc metals.

If a more stable sessile configuration exists, however, the glissile disloca-

tions may transform into sessile ones at high temperatures which will result

in anomalous yield behaviour (Tichy et al., 1986; see also Paidar et al., 1984).

On the other hand, as Tichy et al. point out, when the APB is not stable

on {111} planes, the low-temperature plastic behaviour of these alloys will be
like that of pure bcc metals in which no glissile forms of screw dislocations

can occur. Screw dislocations can move only via thermal activation; Tichy

et al. presume via the formation of double kinks. The flow stress will then

rapidy increase with decreasing temperature. Moreover, due to the anisotropy

of the distribution of core displacements a complex slip geometry and devia-

tions from Schmid’s law can be anticipated, as in bcc metals. A detailed theory

of the thermally activated motion of sessile screw dislocations has been given

by Tichy et al. (1986), but we must refer the interested reader to their paper

for details.

10.5. Breaking-Bond Models of Propagation of Extended Defects

The Celli-Flytzanis (CF) (1970) lattice dynamical model of the propagation

of a screw dislocation in a solid has been referred to already in Sec. 2.2.1. It

was stressed there that in contrast to thermally activated motion referred to

above, the CF model is appropriate to high velocity propagation. The model

is crucially about bond-breaking, and therefore we first summarize briefly the

electron theory of the stretching of the simplest chemical bond; namely that

in H2 molecule in free space.
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10.5.1. Stretched Chemical Bond in H2 and Electron Correlation

We present below an argument concerning the crucial role of electron-electron

repulsion in the ground-state of the H2 molecule in free space as we stretch

the chemical bond. The theory presented below, though not the criterion for

bond-breaking proposed, goes back to Coulson and Fischer (1949).

These workers considered two H nuclei, a and b, at internuclear separation

R. They then formed asymmetric orbitals: φa + λφb centred dominantly on

a: 0 < λ ≤ 1, and φb + λφa centred likewise on b. Here φa and φb are

atomic orbitals (to be definite, say hydrogenic atom 1s wave functions centred

on nuclei a and b respectively). Coulson and Fischer (1949) then formed the

spatial ground-state variational wave function Ψ(1,2) (to be multiplied by the

usual anti-symmetric spin wave function):

Ψ(1, 2) = N [φa(1) + λ(R)φb(1)][φb(2) + λ(R)φa(2)] (10.5.1)

withN the normalization factor; ‘parameter’ λ to be determined by minimizing

the expectation value of the Hamiltonian of the H2 molecule with respect to

λ(R) at each value of R.

The finding of Coulson and Fischer is then simply stated. It R equil denotes

the bond length of the free space equilibrium molecule, such a minimization

procedure led to the exact value unity for λ in the range R < 1.6Requil. But

putting λ = 1 in Eq. (10.5.1) regains the usual ‘molecular orbital’ wave function

for H2, in the ‘linear combination of atomic orbitals (LCAO)’. This is the

regime in which the electrons embrace both nuclei a and b equally.

However, for R > 1.6Requil, Coulson and Fischer demonstrated with the

variational wave function (10.5.1) that λ(R) decreased very rapidly from unity,

with a discontinuity in its slope at R = 1.6Requil, and as λ → 0 in Eq. (10.5.1)

one regains φa(1)φb(2) which is one half of the symmetrized Heitler-London

(valence bond) wave function. The interpretation of this is that, when the

chemical bond in H2 is stretched to 1.6 times its equilibrium length, electron-

electron repulsion ‘drives the electrons back on to their own atoms’. The

Coulson-Fischer type of approach is the forerunner of what quantum chemists

refer to as generalized valence bond theory.

We turn immediately to the relevance of this simple example of the essential

role electron correlation eventually plays when a chemical bond is stretched
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to the cleavage force needed to separate two pieces of crystal, discussed at same
length in Chap. 5 and Appendix 5.1.

10.5.2. Cleavage Force in Directionally Bonded Solids

The first example, probably the best available at the time of writing, concerns
the covalently bonded solid, silicon, studied by Matthai and March (1997):
see also Chap. 5. These workers used the coordination-dependent potential
of Tersoff (1989), which was fitted to available density functional calculations
using the local density approximation for the exchange-correlation potential
Vxc(r) (see Secs. 6.9 and 8.6).

The main point we wish to make here is that Matthai and March (1997),
in the example of the free space H2 molecule discussed immediately above,
identified the separation R = 1.6Requil with the ‘breaking of the chemical
bond’ in H2, brought about by electron correlation.

In their Si study, they found that the maximum of the cleavage F (z) (see
Sec. 5.2) occurred at an additional interplanar spacing of ∼ 0.7a, with a the
equilibrium interplanar separation between the two parallel crystal planes be-
ing pulled apart. They interpreted the maximum of F (z), at position zmax ∼
0.7a as the position to be identified with ‘bond-breaking’. Of course, this is a
‘criterion’ again, as for H2 in free space above, but now for bonds in crystalline
Si. These bonds in Si seem comparable then in their ‘elasticity’ with the H2

molecule in free space.

Subsequent work by Osetsky et al. (1998) on the cleavage of Fe, using an
empirical N-body potential has given a less ‘elastic’ directional bond in this
material but it remains to be seen how sensitive this result is to the details of
the interatomic force field employed.

To conclude this brief discussion of cleavage force F (z), it was stressed in
Chap. 5 that for z � zmax, F (z) = c/z3 and that in a metal c can be related to
the electronic plasma frequency ωp. Of course, this quantity ωp is entirely due
to long-range Coulombic correlations between electrons, adding credence to the
view that the cleavage force as one goes to even larger separations, is very de-
pendent on electron correlation. This discussion of stretched chemical bonds,
and bond-breaking, leads us naturally into a discussion of bond-breaking mod-
els for the description of the propagation of extended defects in solids.

10.5.3. Steady-State Propagation of Screw Dislocation in a
Bond-Breaking Model

The Celli-Flytzanis model is a model based on bond-breaking: it was discussed
qualitatively already in Chap 5, Sec. 5.2.4. We set out below the equation of
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motion of this model and then consider explicitly the ‘almost continuum’ limit

as in the subsequent work of March et al. (1998).

Celli and Flytzanis (1970) treat the steady-state propagation of a straight

screw dislocation in uniform motion in a cubic lattice in which nearest-

neighbour interactions are assumed. The only component of the displacement,

denoted below by sm,n, is parallel to the dislocation axis, m and n being half-

integers lablling, atomic positions in a lattice. Their ‘bond-breaking’ model

can then be stated as follows. The force between near neighbours is assumed

to be a linear function of the relative displacement D, that is

F (D) = −A(D − νb) , (10.5.2)

b denoting the lattice spacing in the direction parallel to the dislocation (the

magnitude of Burgers vector) and ν being an integer such |D − νb| < b/2.

Celli and Flytzanis note that D exceeds b/2 only for atom pairs across the slip

plane, before the dislocation passes two given atoms and the connecting bond

breaks.

One may then write the equation of motion as

−M

(
d2sm,n

dt2

)
+A(sm+1,n + sm−1,n + sm,n+1 + sm,n−1 − 4sm,n

= AbΘ[m− (vt/a)][δn, 12 − δn,− 12 ] (10.5.3)

In Eq. (10.5.3), M denotes the atomic mass, v is the constant velocity of the

dislocation, while a is the lattice constant in the plane perpendicular to the

dislocation. Θ(z) in Eq. (10.5.3) is the step function

Θ(z) =

{
1 for z > 0

0 for z < 0 ,
(10.5.4)

and finally the transverse sound velocity c employed below is given by

c2 =

(
Aa2

M

)
(10.5.5)

(1) Replacement of equation of motion (10.5.3) by differential equation

Celli and Flytzanis (1970), using Fourier analysis, provide a complete solu-

tion of Eq. (10.5.3). Here, following March et al. (1998), attention below will

be focussed entirely on replacing Eq. (10.5.3) by a differential equation (see
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Eq. (10.5.13)). Let us proceed by first quoting the result already given by Celli

and Flytzanis for the continuum limit:

sm,n(t) =
b

2
+

b

2π
tan−1




[
na
(
1− v2

c2

) 1
2

]
ma− vt


 (10.5.6)

with c2 as in Eq. (10.5.5).

To motivate physically the construction of a differential equation obeyed

by Eq. (10.5.6), let us first replace the discrete quantities na andma by contin-

uous variables x and y respectively (compare Eq. (2.2.1), with obvious minor

differences). Since the displacement s(x, y, t) is then a function of y − vt, a

‘wave’ equation for propagation with speed v is a natural starting point, for

s0(x, y − vt). However,to see how s0 must be modified to obtain s, March et

al. (1998) invoke energy balance considerations as follows.

Celli and Flytzanis (1970) impose on their discrete lattice dynamical model

the condition that, on average, there be a balance between the work done per

unit-time by the applied stress and the power lost through lattice phonons

emitted by the moving dislocation. Then the net energy flow beyond the nth

atom row is found to be

P (n, t) =
Mc2

a2

∑
m

(sm,n+1 − sm,n)
dsm,n

dt
(10.5.7)

Equation (10.5.7) can be replaced in the ‘almost continuum’ limit (March

et al. (1998) invoke the Euler-Maclaurin summation formula) by

P (x, t) =
Mc2

a2

∫ t+ a2

−a2
dy

∂s

∂x

∂s

∂t
(10.5.8)

This result (10.5.8) lies at the heart of the treatment of March et al. (1998).

Briefly, it motivates the substitution of the point nonlinearity of the interatomic

force on the right-hand side of Eq. (10.5.3) by the radiation force due to the

emission of waves. The physical assumption which underlies the development

below is that the radiation force has the same damping effect as the emission of

waves. But now the loss of discreteness means that the equilibrium positions

must be put in as asymptotic boundary conditions, consistent with the Celli-

Flytzanis limit of Eq. (10.5.6). The above considerations, plus the form of the

integrand in Eq. (10.5.8) for the power p motivate the assumption of March
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et al. (1998) that the appropriate (solitary wave) equation satisfied by the

limit (10.5.6), namely s(x, y, t) in the notation introduced above, has the form

∂2s

∂x2
+

∂2s

∂y2
− 1

v2
∂2s

∂t2
+ C

∂s

∂t

∂s

∂x
= 0 (10.5.9)

Substituting Eq. (10.5.6), with continuum replacements na → x, ma → y,

into Eq. (10.5.9), one readily obtains the constant C as

C =
4π

bv

[
1− v2

c2

] 1
2

(10.5.10)

For reasons that will emerge clearly below, it will be valuable in gaining

further insight into the nature of the solitary wave Eq. (10.5.9) to define

B =

[
1− v2

c2

] 1
2

(10.5.11)

and hence 1/v2 entering the ‘acceleration term, (∂2s/∂t2) in Eq. (10.5.9) can

be replaced by
1

v2
=
1

c2
+

B2

v2
(10.5.12)

Thus one is led to the main result of March et al. (1998), namely to rewrite

Eq. (10.5.9) as

[
∂2s

∂x2
+

∂2s

∂y2
− 1

c2
∂2s

∂t2

]
−
[(

B

v

)2
∂2s

∂t2
−
(
4πB

bv

)
∂s

∂t

∂s

∂x

]
= 0 (10.5.13)

March et al. (1998) stress that, in this solitary wave Eq. (10.5.13), the Celli-

Flytzanis continum limit (10.5.6) makes both the square brackets exhibited in

Eq. (10.5.13) identically zero, as is readily verified by direct insertion. The

solitary wave solutions for fixed x are found to be indeed very localized in y.

10.5.4. Unified Treatment of Lattice Dynamical Models of a Crack and

of a Screw Dislocation

Following their establishment of the solitary wave Eq. (10.5.13) describing the

displacement s(x, y, t) of a propagating screw dislocation in the ‘almost contin-

uum’ limit of the Celli-Flytzanis lattice dynamical model, March et al. (1998)
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have proposed a unified treatment of the above problem and crack propagation*

as described in the (now two-dimensional) model of Slepyan (1981).

The argument of March et al. (1998) proceeds from the displacement

s(x, y, t) given in Eq. (10.5.6) for the screw dislocation propagation. Noting

that this displacement is a function of the single variable, ξ say, defined by

ξ =
Bx

y − vt
(10.5.14)

these workers differentiate s(ξ) to find

∂s(ξ)

∂s
=
constant

(1 + ξ2)
(10.5.15)

Multiplying both sides of Eq. (10.5.4) by (1 + ξ2) and differentiating once

more yields

(1 + ξ2)
∂2s

∂ξ2
+ 2ξ

∂s

∂ξ
= 0 (10.5.16)

It is next noted by March et al. (1998) that this Eq. (10.5.6) is a special

case of Legendre’s equation

(1− x2)
∂2Qν(x)

∂x2
+ 2x

∂Qν(x)

∂x
+ ν(ν + 1)Qν = 0 (10.5.17)

This linear Eq. (10.5.17) has a further linearly independent solution Pv(x)

which will be utilized below.

However, returning to the motion of the screw dislocation, it turns out that

s(ξ) in Eq. (10.5.6) is related to Q0(x) in Eq. (10.5.17) by

s(ξ) = constant Q0(iξ) (10.5.18)

where i =
√−1.

(1) Relation to crack propagation in model of snapping brittle-elastic bonds.

March et al. (1998) have further stressed that the crack propagation treatment

of Slepyan (1981), in which he analyzed, again by a ‘breaking-bonds’ model (see

especially Fig. 1 of Marder and Liu, 1993) cracks in simple two-dimensional

lattices, has an asymptotic solution which is also contained within Legendre’s

Eq. (10.5.17). The physical solution this time is in fact P 1
2
(iξ). Using an

*See also F. S. C. Ching, J. S. Langer and H. Nakanishi (Phys. Rev. Lett. 76, 1087 (1996)).
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integral representation of P 1
2
(iξ), March et al. demonstrate that, for large

ξ, the Slepyan solution for the crack displacement, proportional to ξ−1/2, is
regained from the Legendre function P 1

2

To conclude this section, we first emphasize, as noted by March et al.

(1998), that while it is the solitary wave Eq. (10.5.13) which gives insight into

the screw dislocation propagation, it is the linear Legendre Eq. (10.5.17) which

unifies the ‘bond-breaking’ models of extended defect propagation: both screw

dislocation and crack. In particular, the displacement for crack propagation

can be constructed explicitly from the screw dislocation displacements. This is

satisfying in that previous workers have noted that a crack can be represented

as a pile-up of screw dislocations. Further points to be stressed here are (i)

while the phonons emitted by a moving stress dislocation are embodied in

Eq. (10.5.13), a moving crack emits dislocations and thus the latter point

needs a more complete study; (ii) the Rayleigh wave velocity should play a

role in crack propagation descriptions and this requires further investigation,

and (iii) in a metal, propagation of a crack should take account of the fact

that volume plasmons, with electronic plasma frequency ωp, are converted

to surface plasmons as the propagation proceeds. Such aspects have been

considered already in connection with surface energies of metals in the early

work of Schmit and Lucas (1972); see also Lang, (1983) but they need treating

in the study of crack dynamics. Again, as with bond stretching and breaking,

electronic correlation is involved, but now crucially the long-range Coulombic

electronic correlations.

10.6. Grain Boundaries (GB ),* Plastic Behaviour and Fracture

Zhou et al. (1990) studied the microprocess of deformation and fracture for pure

and bismuth-segregated tilt bicrystals of copper. Using the MD method with

the atoms interacting via the empirical N-body potential proposed by Finnis

and Sinclair (1984), they found that for pure
∑
33 bicrystal, the deformation

is mainly due to the glide of partial dislocations generated from the GB struc-

tural units where the GB dislocation exists. The ductile fracture is attributed

to the dislocation emission, which leads to vacancy generation and void coa-

lescence. The bismuth segregation weakens the atomic bonds between copper

atoms in the vicinity of GB. Under the action of external load, the weakened

bonds break and lead to formation of microcracks. Finally, the brittle fracture

*Z. F. Zhang and Z. G. Wang (Phil. Mag. Lett. 78, 105, 1998) have made experimental
observations which show the effect of GBs on cyclic deformation behaviour.
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takes place along the binding weakening region. Peng et al. (1992) and Zhou

et al. (1992), again studied the selective bismuth segregation and the micro-

process of fracture for the three [101] tilt copper bicrystals
∑
9(21̄2) 38.94◦,∑

11(3̄2̄3) 50.48◦ and
∑
33(5̄4̄5) 58.99◦ by the MD method. The results show

that the Bi segregation and the fracture behaviour of the Cu-Bi bicrystal are

strongly dependent on the grain boundary structure. The severe intergran-

ular brittle fracture that happens in the
∑
9 bicrystal is mainly caused by

the breaking of weakened Cu-Cu bonds, which is related to the highly con-

centrated Bi segregation at the GB region. In the case of the
∑
11 bicrystal,

the segregation of Bi atoms at the GB shows an inhomogeneous distribution

characteristic, as though the fracture is intergranular but with a large amount

of shear deformation. The transgranular fraction that appears in the
∑
33

bicrystal is related to the low concentration of the Bi atoms along the GB and

in the grains. Chen et al. (1992) calculated and showed that the structure

of the grain boundary component of nano-α-Fe appears to have an atomic

distribution of short-range order.

The plastic behaviour of solids is of a high degree of “complexity”. Plastic

deformation is the growth of dissipative structures and is a nonlinear, far-from-

equilibrium situation. The natural approach to the problem of the emergence

of new patterns of dislocations is in terms of the bifurcation theory to chaos.

In the past decade, it has become more evident that plastic processes are

well organized* spatial, temporal, or spatio-temporal structures arising out of

chaotic states. It would be impossible to introduce these new developments in

the framework of this book.

Several texts (Nicolois and Prigogine, 1977; Haken, Synergetics, 1983a,

1983b and etc.) provide an introduction to this subject. In addition, the

proceedings of Workshops on Non-Linear Phenomena in Materials Science

I(1988)–II(1992) (Eds. G. Martin and L. P. Kubin) and III(1995) (Eds.

G. Ananthaktishna, L. P. Kubin and G. Martin) provide a valuable collec-

tion of research and review papers describing the studies in this field. Readers

are recommended to consult these sources for full details of this important

area.

*Self-organization and annealed disorder in fracture is treated, for example, by G. Caldarelli
et al. (Phys. Rev. Lett. 77, 2503, 1996).
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A2.1. High-Resolution Electron Microscopy (HREM ): Use to

Study Grain Boundaries

The experimental image from HREM provides an accurate measure of the

grain-boundary rigid-body displacements. It also gives information on the

internal structure of the grain boundary within the resolution and projection

limits of HREM.

Example of
∑
= 5, (310 ) [001 ] Grain Boundary in NiAl

The experimental HREM image, reproduced from Fonda et al. (1995), (their

Fig. 2), of the
∑
= 5, (310) [001] grain boundary in NiAl, is shown in Fig. A2.1.

The two grains were imaged by Fonda et al. along their common [001] direc-

tions which, for the B2-ordered NiAl, is along columns of pure Ni and Al. This

image displays a repeat distance of 10d13̄0 (9.1 Å) along the grain boundary.

Analysis of this image shows (Fonda et al., 1995) that there is an asymmetry

produced by a 1
2d13̄0 (0.46 Å) rigid-body translation of the top grain towards

the right, with a small grain-boundary expansion within the experimental re-

solution (about 0.2 Å). The way this experimental HREM data can be fruit-

fully combined with atomistic structure calculations using N-body empirical

potentials developed for the NiAl phase is discussed in the main text.

A2.2. Scanning Acoustic Microscope

Wuri et al. (1995) have constructed a scanning acoustic microscope (SAM)

which is suitable for transmission measurements in addition to the usual re-

flection mode. They were concerned, in the example they utilize, with a cubic

single crystal of GaAs, with two polished (100) surfaces, which they examined

351
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Fig. A2.1. HREM image of the
∑

= 5, (310) [001] grain boundary in NiAl. The thickness
is about 58 Å and the defocus about −650 Å.

with their SAM in transmission mode. They emphasize that the images of the

transmitted ultrasound amplitude measured at frequencies of 350–400 MHz

contain sufficient information about the acoustic anisotropy of the crystal to

determine the elastic constants C11, C22 and C44 numerically. They achieved

this by an iterative fitting procedure which correlated simulated images with

the one measured by the SAM.

They stress that their technique appears to be universally applicable to

virtually all kinds of single crystals. The practical point they emphasize is

that, in comparison with plane wave ultrasound (Truell et al., 1969), it avoids

the laborious and sometimes damaging work of cutting and polishing crystals

in several different orientations, since their technique allows use of one single

crystal orientation for a determination of all elastic constants.

A2.3. Quartz-Crystal Microbalance: Application to Study of

Atomic-Scale Friction

Krim et al. (1991) have used a quartz-crystal microbalance (QCM) to study

atomic-scale friction.
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Their QCM considered of a single crystal of quartz which oscillates in trans-

verse shear motion with a quality factor Q near to 105. This was mounted

horizontally within a vacuum chamber which was then plunged into a liquid-

nitrogen bath.

They utilized both Au and Ag surfaces, and observed sliding-friction effects

in Kr monolayers undergoing solidification on these noble metal surfaces.

Results

Their experiments (Krim et al., 1991) were carried out on ‘smooth’ and ‘rough’

Au and Ag surfaces, whose surface areas were found by nitrogen-adsorption

Fig. A2.2. STM images for the “smooth” Au (top) and “rough” Ag (bottom) substrates

utilized for these studies. Each is the surface of a film which has been evaporated onto the
surface of a quartz oscillator which translates back and forth along the horizontal axis with
amplitude of vibration ∼ 1 nm. (From Krim et al. 1991).
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measurements. Their finding was that the systems Kr | Au and Kr | Ag showed
practically no difference in their sliding behaviour, provided the interface mor-

phologies were directly comparable. They argue that this is consistent with

the fact that the van der Waals force which binds a Kr atom to a Au surface

differs only by some 10% of that of a Ag surface (∼ 2 × 10−5 dynes; see also
Rauber et al., 1982).

Figure A2.2 (Fig. 1 from Krim et al., 1991) shows scanning tunnelling

microscope (STM) images for the ‘smooth’ Au (upper part of figure) and the

‘rough’ Ag (lower part) substrates. Each shows the surface of a film which was

evaporated on to the surface of a quartz oscillator, which translates back and

forth along the horizonted axis with amplitude of vibration ∼ 1 nm (Krim et

al., 1991).

The rough Ag surface studied by Krim et al. (1991) were 8- and 5-mhz

commercial quartz crystals. These can be characterized by respective surface

areas 1.5 and 3.5 times that of a geometrically flat plane. These surfaces were

indicated by liquid nitrogen adsorption measurements and analysis of STM

data to be self-affine fractals with local fractal dimension D = 2.3± 0.1 (Krim
et al., 1991).

The adsorbed film of Kr produces shifts in both the frequency (f) and

amplitude of vibration, which are simultaneously recorded as a function of

pressure. Gas-phase corrections were performed and then a characteristic film

slip time (τ) was obtained from the relation (Krim and Widom, 1988)

δ(Q−1) = 4πτδf

where the film-substrate frictional force is assumed to be directly proportional

to the sliding speed (Stokës law: see Krim et al., 1991).

To summarize the results of Krim et al. (1991), solid films slide more easily

on smooth Au than do liquid films, while the reverse situation obtains for the

1.5 rough Ag substrate.

A2.4. Internal Friction

Since the concept of anelasticity behaviour of solids was separated from the

more general viscoelastic behaviour by Zener in his book (1948),* much liter-

ature on this subject has accumulated and showed its successful potential for

*Zener C. Elasticity and Anelasticity of Metals (Univ. of Chicago Press, Chicago, Illinois,
1948).
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application to the understanding of atomic structure and dynamical behaviour

of materials. For example, the Snoek peak has been used to determine the

concentration of carbon atoms in the solid solution of α-iron. Kê’s pendulum

(1947) is still the simplest technique in principle to study the low frequency

internal friction in metals, just as Kê has used it to study the grain boundary

more than 40 years ago. The technique has been developed more recently,

such as the automatic inverted torsion pendulum. electromagnetically excited

forced vibration pendulum. During the eighties, Kê et al. (1989) discovered

a new internal friction peak which is different from the old one and which is

associated with the ‘bamboo’ boundaries. Nowick (1967) has studied internal

friction originating both in dislocations and in point defects.

Ultrasonic measurements provide information about the symmetry of de-

fects, can often be used at low defect concentrations where defect interactions

can be neglected, and permit the determination of properties of individual

defect species even when several different types of defects are present simulta-

neously in the sample. These techniques are also well known for their usefulness

in the study of dynamic dislocation effects. Measurement of the temperature

dependence of the yield stress at constant strain rate have often been found

by theoretical curves based on different assumed force-distance, but the mea-

surements are not sufficiently precise to distinguish between the theories or

to determine the temperature law. Granato (1990) gave a review on defect

tunnelling in ICIFUAS-9. Internal friction has been applied to many topics in

relation to mechanical properties of metals, such as dislocation kinks (Bordoni,

1949; Seeger, 1956), grain boundaries (Kê, 1990b), interaction of dislocations

with point defects (see Kê, 1990a), martensite transformation (Wang et al.,

1990), grain growth (Lung, 1960), creep (Kong, 1990) and other mechanical

properties (see Kê, 1990a).

Takeuchi (1995) asserts that one of the controversial issues over a long

period of time in crystal plasticity is to magnitude of the Peierls stress in fcc

metals. Bordoni (1949) discovered a low temperature internal friction peak of

relaxation type in defined fcc metals (now known as the Bordoni peak). The

mechanism giving rise to the Bordoni peak was proposed by Seeger (1956) in

terms of the thermally-activated kink-pair formation on dislocations lying in

the Peierls potential (see also the review by Fantozzi et al., 1982). Using this

interpretation one can estimate the Peierls stress for the motion of dislocations;

Takeuchi (1995) estimates this stress, from the Bordoni peak, to be ∼ 10−3 in
units of the shear modulus G.
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But Takeuchi (1995) has noted that, in an apparently more straightforward

way, one can make an alternative estimate of the Peierls stress by extrapolating

the critical resolved yield stress to absolute zero of temperature. Mechanical

tests at He temperatures for high-pure fcc metals show that the extrapolated

critical resolved shear stresses are of the order of 10−5 G. Thus, as Takeuchi
(1995) emphasizes, these two estimates of the Peierls stress in fcc metals differ

by 2 orders of magnitude.

Takeuchi (1995) presents arguments that the Bordoni peak observed in

annealed and deformated fcc metals is to be interpreted as due to the slide of

undissociated dislocations, which is controlled by thermally activated kink-pair

formation on the undissociated dislocations.

The Peierls stress for undissociated dislocations can be anticipated to be

much larger than for the dissociated dislocation for the same total Burgers

vector.

Thus, the conclusion of Takeuchi (1995) is that the Bordoni peak in fcc

metals is due to the motion of undissociated dislocations. A more recently

discovered lower temperature peak in Al (Kosugi and Kino, 1989; Kosugi and

Kino, 1993) is attributed by Takeuchi (1995) to the motion of dissociated

dislocations. Takeuchi also points out that the macroscopic yielding of crystals

at helium temperatures is governed by the glide of dissociated dislocations

and hence the Peierls stress estimated from the mechanical test for fcc metals

is inconsistent with that estimated from the Bordoni peak. He proposes an

experiment, namely to observe by transmission electron microscopy whether

the network dislocations in annealed high-purity Cu are dissociated or not,

but, to the knowledge of the present authors, this has not yet been carried out

at the time of writing.

A2.5. Atomic Force Microscope

The atomic-force microscope (AFM) provides a method for measuring ultra-

small forces between a probe tip and an electrically conducting or insulating

surface. The AFM is a combination of the principles of the scanning tunneling

microscopy (STM) and the stylus profilometer (SP). It incorporates a probe of

30 Å and a vertical resolution less than 1 Å. It has been used for topographical

measurements of surfaces on the nanoscale. With the STM, the atomic surface

structure of conductor is well resolved. With the SP 3D images of surfaces with

a lateral resolution of 1000 Å and a vertical resolution of 10 Å are recorded

(Binnig et al., 1986).
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AFM images are obtained by measurement of the force on a sharp tip

created by the proximity to the surface of the sample. This force is kept small

and at a constant level with a feedback mechanism. When the tip is moved

sideways it will follow the surface contours to be a trace.

Subsequent modifications of the AFM led to the development of the friction-

force microscope (FFM) designed for atomic-scale and microscale studies of

friction. This instrument measures frictional forces with an optical beam de-

flection AFM (Meyer, 1990).

A3.1. Disclinations

Disclinations (rotation dislocations) are the topogical concepts which help in

a description of broken symmetries of directional media. Disclinations are

described in references (Friedel, 1964; Kléman, 1980).

A3.1.1. The Volterra Process in a Continuous Medium

Consider a closed line l and cut the crystal along a surface
∑
bounded by l;

displace the two lips
∑

1 and
∑

2 (Fig. A3.1) of the cut surface one relative to

the other by an amount

d(r) = b+ 2 sin
1

2
Ωv × r . (A3.1.1)

Here, b is a translation that preserves the symmetry of the medium; Ω is a

rotation that likewise preserves the symmetry. The displacement may be any

b, or Ω, or a combination of the two as Eq. (A3.1.1).

In the most anisotropic elastic medium, some rotation dislocations are for-

bidden and some allowed rotation dislocations are quantized, the possible ro-

tations are all the rotations of multiples of π around any axis. Less anisotropic

elastic media can have axes of rotation of 1
2π,

2π
3 , . . . or axes of revolution.

Fig. A3.1. The Volterra process.
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Fig. A3.2. Wedge disclination in a solid lattice; (a) perfect lattice and (b) dislocated lattice.

A3.1.2. Disclinations in Crystals

Strong distortions should exist on the line, except when the line is along the

axis of rotation. Figure A3.2 shows the wedge disclination in a cubic crystal

(Ω = 1
4π). It is defined by the condition that the rotation vector (Ω, ν) is along

the line.

The notion of Burgers vector is particularly well adapted for the transla-

tion dislocations. An extension has been adapted to rotation dislocations. In

many cases, the use of this extended Burgers circuit does not add any new

information, because rotation dislocations are equivalent to a distribution of

translation ones. With some exceptions, the use of normal Burgers circuits is

sufficient.

A3.1.3. Energy of a Disclination

The approximate value of the energy of wedge disclinations was calculated by

Huang and Mura (1970) (also see Lihaqiaov and Hayinov, 1989).

EΩ � GΩ2R2

16π(1− ν)
(r0 � R) . (A3.1.2)

Comparing with that of an edge dislocation

Eb � Gb2

4π(1− ν)
ln

R

r0
(A3.1.3)

we may find that unlike dislocations, the energy per unit length of disclinations

depends on R strongly. Even for small crystals (R ∼ 10−3 cm), the energy
per unit length of disclinations is much larger than that of dislocations even if
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Ω ∼ 1◦ and R ∼ 10−3 cm. This is the reason why disclinations rarely exist in
common crystals.

A3.2. Dislocation Interactions

A3.2.1. Interaction between Two Dislocation Loops

If dislocation loop 1 is created while loop 2 is present, the stresses originating

from loop 2 do work −W12, when W12 is the interaction energy between the

two loops. When the loops are composed of straight line segments, the total

interaction splits into interactions between the individual segments. Although

an isolated dislocation segment has no physical meaning, formal expressions for

segment-segment interaction enable us to determine by summation the total

interaction with any piecewise straight dislocation array.

It has been shown that the interaction energy between two dislocation loops

is

W12 = − µ

2π

∮
c1

∮
c2

(b1 × b2) · (dl1 × dl2)

R

+
µ

4π

∮
c1

∮
c2

(b · dl1)(b2 · dl2)
R

+
µ

4π(1− γ)

∮
c1

∮
c2

(b1 × dl1) ·T · (b2 × dl2) (A3.2.1)

where T is a tensor with components

Tij =
∂2R

∂xi∂xj
(A3.2.2)

b1 and b2 are Burgers vectors of loop 1(c1) and 2(c2) respectively. R = r− r′

and dl and dl′ are along dislocation lines ξ1 and ξ2 (Fig. A3.3).

A3.2.2. Force Produced by an External Stress Acting on a

Dislocation Loop

The force produced by an external stress acting on a dislocation loop can

be calculated in a simple way. Let σ denote the stress tensor in the medium,

excluding the self-stress of the dislocation loop under consideration. The stress

does work for creating the loop

W =

∫
A

−b · (σ · dA) . (A3.2.3)
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Fig. A3.3. Two dislocation loops within the same elastic continuum.

The line element dl of the loop is displaced by some distance, and the area

A changes by increments δr× dl and the stress σ does additional work

δW =

∮
c

dF · δr

= −
∮
c

b · [σ · (δr× dl)]

= −
∮
c

(b · σ) · (δr× dl)

=

∮
c

[(b · σ)× dl] · δr . (A3.2.4)

Then

dF = (b · σ)× dl (A3.2.5)

Equation (A3.2.5) can be used to determine the interaction force between

dislocation segments.

A3.2.3. Interaction between Two Parallel Straight Dislocations

Consider two screw dislocations parallel with the z-axis, and with Burgers

vectors b1 and b2. These two segments can be considered to be segments of

two closed loops (Fig. A3.4). Only these two segments are close enough to

contribute appreciably to Eq. (A3.2.1). The end effects, the other interaction

terms have a negligible effect on the interaction energy as a function of R, the

distance between two parallel dislocation lines, in the limit of L � R. For the
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Fig. A3.4. Two coplanar dislocation loops.

special case, b1 = b2 = (0, 0, bz) the only term that varies with R is

W (A1 −A2)

L
=

µb2z
2π

ln
2L

R
. (A3.2.6)

The interaction energy can be expressed as the increase in the energy of

the system when the dislocations are brought together from some value Ra to

a separation R:
W12

L
= −µb2z

2π
ln

R

Ra
. (A3.2.7)

The interaction force per unit length is

F

L
= −∂(W12/L)

∂R
=

µb2z
2πR

. (A3.2.8)

In the case b1//b2, |b1| �= |b2|,
F

L
= −∂(W12/L)

∂R
=

µb1b2

2πR
. (A3.2.9)

Screw dislocations of like sign (b1b2 > 0) repel, while those of unlike sign

(b1b2 < 0) attract. It is a radial force.
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Dropping end-effect terms, an expression for the interaction energy between

parallel dislocations with arbitrary Burgers vectors can be derived,

W12

L
= −µ(b1 · ξ)(b2 · ξ)

2π
ln

R

Ra

− µ

2π(1− ν)
[(b1 × ξ) · (b2 × ξ)] ln

R

ra

− µ

2π(1− ν)R2
[(b1 × ξ) ·R][(b2 × ξ) ·R] . (A3.2.10)

This equation was first derived by Nabarro (1952). Here, we cite from Hirth

and Lothe (1982).

A3.3. Inclusion Model for a Crack

Inclusion theory, first suggested by Eshelby (1957), has been applied in the

studies of fracture (Zhang et al., 1981; 1983; 1985; 1989), mechanical behaviour

of composite materials (Wu and Chou, 1982; Zhang and Chou, 1985).

The inclusion model considers the crack as an elliptic inclusion in 2-dimen-

sional system with the elastic constant being zero (Fig. A3.5). Assuming the

applied stress is along the y-axis, (σA22 = p), the strain induced is given by

εA22 =
p

2G(1 + ν)
, εA11 = εA33 = − νp

2G(1 + ν)

εA = εA11 + εA22 + εA33 =
(1− 2ν)p
2G(1 + ν)

(A3.3.1)

Fig. A3.5. The elliptic hole.
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where G is the shear modulus and ν is the Poisson’s ratio. Solving a series of

equations, the eigenstrains of the elliptic hole under the unidirectional exten-

sion are given by

εA11 = − p

2G
(1− ν)

(
1− ν2

1− ν2

)

εA22 =
p

2G
(1− ν)

(
2

β
+

1

1− ν2

)

εA33 = − p

2G
(1− ν) ·

(
ν

1− ν2

)
(A3.3.2)

where β = b/a, the ratio of the two axis of the elliptic hole. In the limiting

case of β � 1, Zhang and Zhe (1981) calculated the approximate values of the

stress field near the crack tip,

σcxx =
G

1− ν

( πa

2πr

)1/2
· β(ε∗22 − ε∗11) cos

α

2

[
1− sin α

2
sin

3α

2
− 2(ε∗11 + νε∗33)

(ε∗22 − ε∗11)

]

σcyy =
G

1− ν

( πa

2πr

)1/2
β(ε∗22 − ε∗11) cos

α

2

[
1 + sin

α

2
sin

3α

2
+
2(ε∗11 + νε∗33)
(ε∗22 − ε∗11)

]

τcxy =
G

1− ν

( πa

2πr

)1/2
β(ε∗22 − ε∗11) sin

α

2

[
cos

α

2
cos

3α

2
− 2(ε∗11 + νε∗33)

(ε∗22 − ε∗11)

]

(A3.3.3)

Equation (A3.3.3) is the same form as stress field near a crack tip when ε∗11 +
νε∗33 = 0. The stress intensity factor in this theory may be defined as

K1 =
G

1− ν
(πa)1/2 · β(ε∗22 − ε∗11) ·

[
1 +

2(ε∗11 + νε∗22)
(ε∗22 − ε∗11)

]
. (A3.3.4)

If we substitute the limiting value of Eq. (A3.3.2) when β → 0 to Eq. (A3.3.3),

the stress intensity factor can be obtained as

K1 = p(πa)1/2 . (A3.3.5)

This is the well known form in fracture mechanics. The advantage of this

model is that only solutions of series of algebraic equations are needed, which

is simpler than solving integro-differential equations in the crack dislocation

model.



364 Mechanical Properties of Metals

A3.4. Coincidence Site Lattice (CSL ) and Notion of Displacement

Shift Complete (DSC ) Dislocations

Following again Vitek (1994, 1995), to construct a coincidence site lattice (CSL:

see Brandon et al., 1964) one can consider two interpenetrating ideal lattices

which fill the whole of space but are misoriented with respect to one another.

For certain relative orientation, in the cubic case, a three-dimensional lattice

of coinciding lattice point is formed. Such a lattice is the CSL and can be char-

acterized by the reciprocal density of the coincidence sites,
∑
; this quantity

being the ratio of the crystal lattice sites to the coincidence sites found in a

unit volume (for further information the reader is referred to Warrington and

Grimmer, 1974).

Coupled with the CSL is the important notion of dislocation shift complete

(DSC) dislocations (Bollman, 1970; see also Vitek, 1994, 1995). The Burgers

vector of such dislocations is any vector joining the lattice points of either of the

interpenetrating crystals involved in the CSL. Though the origin of the CSL

may thereby be shifted, displacement by such a vector of one of the lattices

recreates the pattern of the interpenetrating lattices. Though these disloca-

tions are not, in general, lattice dislocations, for a given
∑
the corresponding

DSC dislocations may be present in grain boundaries (Vitek, 1995) since the

structure far from them will not be altered by their presence. However (King

and Smith, 1980), DSC dislocations may introduce steps into the boundaries.

As Vitek (1995) points out, a boundary with the misorientation slightly de-

viating away from a coincidence
∑

can be regarded as the boundary with

the misorientation corresponding to this value of
∑
containing a network of

relevant DSC dislocations which accommodate the additional misorientation,

just as the lattice dislocations do in the case of low angle boundaries. Their

content in a boundary satisfies the Frank Eq. (3.7.2), where the angle θ is now

the additional misorientation away from the coincidence
∑
. For further anal-

ysis of geometrical concepts relating particularly to dislocations and to grain

boundaries the reader is referred to Sutton (1984; see also Sutton and Balluffi,

1995).

A4.1. The Sierpinski Carpet

The initiator is a square. At the first stage, the square is divided into nine

smaller squares. The middle one is deleted. Eight of the remaining smaller

squares are divided into smaller squares again. This process is repeated in-

finitely. Then, (Fig. A4.1)
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Fig. A4.1. Construction of the Sierpinski carpet. The initiator is a square and the generator
(shown on the left-hand side) is made of N = 8 squares. They are obtained by contractions
of ratio r = 1

3
. The right-hand side of the figure shows the fourth construction state. The

similarity dimension is D = ln 8/ ln 3 = 1.89 . . . .

N = 8

r = 1/3

D =
ln 8

ln 3
∼ 1.89 .

The total area of the fractal is AF (εn) = ε2−Dn . The total area of the

residual is AR(εn) = 1 − ε2−Dn . It is not a power-law relationship, but the

generation distribution (or the area created in one generation) given by

AR,n+1 −AR,n = εn(2−D)(1− ε(2−D)) = const. εn(2−D)

is a power-law relationship with a fractal dimension which is the same as that

of the original fractal.

This model can be used for fragmentation (Turcotte, 1992). Most rock has

a natural porosity. This porosity often provides the necessary permeability for

fluid flow. A spatial formation of the Sierpinski carpet is the Menger sponge.

The Menger sponge can be taken as a simple model for a porous medium. For

the Menger sponge, the fractal dimension is (Fig. A4.2)

D = ln 20/ ln 3 = 2.727 . (4.2.48)

The porosity of the nth-order Menger sponge, or the residual set of it, is

not a power-law (fractal) relation though the density of the nth-order Menger

sponge is. Since the ratios (1/r) of above models should be positive integers,

the distributions of fragments are discrete. Actual distributions of fragments

are statistically continuous.
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Fig. A4.2. The Menger sponge.

A5.1. Phonon Calculation of Cleavage Force F (z) = Az for

Small Separation

Following Kohn and Yaniv, let us calculate the displacements u1 and u0 (=

−u1) when forces F (and −F ) per unit area are acting on the lattice planes

m = 1 (and m = 0). They therefore study the equations of motion of the

planes under the influence of a general force Fm:

Müm =
∑
E

A(l)um,l + Fm , (A5.1.1)

M being the mass of a lattice plane per unit area, given in turn by ρa where

ρ is the density and a denotes the interplanar spacing. Finally the quantities

A(l) represent the interplanar force constants.

Writing the harmonic modes of vibrations of the planes in the form of

displacements

um = exp (ikma− ωt)

where the square of the angular frequency ω(k) is

ω2(k) =
−1
M

∑
l

A(l) exp (ikla) (A5.1.2)
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one now Fourier analyzes Fm → F (k) and um → u(k). Substitution into

Eq. (A5.1.1) then yields

um =
∑
k

F (k)

Mω2(k)
exp (ikma) . (A5.1.3)

For the case where Fm = F (δm,1 − δm,0) and imposing periodic boundary

conditions after N planes one finds, after Kohn and Yaniv (1979):

um =
F

NM

∑
k

1

ω2(k)
[exp (ik{m− l}a− exp (ikma))] . (A5.1.4)

In particular, one then finds the displacement u1 of the plane m = 1 to be

given by

u1 =
Fa

πM

∫ π/a

−π/a

sin2(ka/2)

ω2(k)
dk . (A5.1.5)

Since z = (u1 − u0) = 2u1 we have

F =

(
1

4
ρa
1

ω2o

)
z (A5.1.6)

which is the result of Kohn and Yaniv (1979) when ω2o is found from

1

ω2o
=

a

2π

∫ π/a

−π/a

sin2(ka/2)

ω2(k)
dk . (A5.1.7)

Hence the coefficient A in F (z) = Az for small z is determined by knowledge

of the bulk phonon spectrum of the solid. Kohn and Yaniv compare their

result with that of Zaremba (1977). For the case when only nearest-neighbour

interplanar forces are significant, there is complete accord between the two

values of A. However, when interactions are included between planes beyond

near neighbour, then A ≤ Arigid. Kohn and Yaniv (1979) find that in typical

cases A is some 20 to 40% below Arigid.

A5.2. Interstitial Formation Energy in Relation to Vacancy

Formation Energy in Alkali Metals

In Appendix 6.1, we present an electron theory argument, with neglect of

ionic relaxation, which, in the end, relates the vacancy formation energy Ev in

close-packed metals (e.g. fcc metal) to phonon energies.
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We shall see below that a similar formula can be obtained, though from a

wholly different starting point, for open bcc metals. Flores and March (1981)

proposed a theory showing how the long-range ionic displacements round a

vacancy stem from both the elastic long-wavelength limit and from the effect

of the topology of the Fermi surface, known as the Kohn anomaly (see Kohn,

1959; Jones and March, 1985). However, when attention is focused on the

alkali metals Na and K, with almost-spherical Fermi surfaces, it can be reason-

ably assumed that the elastic displacements dominate. A model of ‘complete

relaxation’ around a vacancy in then shown by Flores and March (1981) to

relate formation energy Ev, bulk modulus B and atomic volume Ω through

Ev = constant×BΩ (A5.2.1)

which is equivalent to the empirical Mukherjee relation (A6.16) given below.

A5.2.1. Application of ‘Complete Relaxation’ Model to Relate Vacancy and

Interstitial Formation Energy in Alkali Metals

The above model was elaborated by Flores and March to relate vacancy and

interstitial formation energies in the nearly free-electron alkali metals Na and

K. Their basic argument was that the interstitial with the lowest formation

energy would be that in which the relaxed near-neighbour configuration most

closely resembles the local relaxation round the vacancy. Then the ratio of

interstitial to vacancy formation was calculated. The outcome of this study

was to argue that the formation of the interstitial in Na is only some hundreds

of an electron volt higher than that for the vacancy.

The major step to be taken, beyond the vacancy study outlined above,

is to use the complete-relaxation model of the self-interstitial in a variety of

symmetry-allowed configurations in a bcc lattice. Flores and March presented

results for 4 different interstitial configurations. The most interesting case, as

already anticipated above, arises for a configuration which has close similarity

to the relaxed configuration round the vacancy. What can then be calcu-

lated is the ratio of interstitial to vacancy formation energies. The result (see

Eq. (A5.2.2)) below, can be expressed in terms of a force ratio w. For this

relaxed interstitial configuration, w is certainly greater than unity. One then

must adopt some value for w in order to evaluate the ratio of formation ener-

gies. As already indicated, a reasonable choice leaves the interstitial formation

energy only some hundredths of an eV higher than that of the vacancy. Of

course the force ratio w will eventually need to be calculated from an accurate
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representation of the force field in such crystals. But the work of Flores and

March strongly suggests that the interstitial energy in Na, say, is already de-

termined to better than 0.05 eV. Since it was demonstrated conclusively by

Brown et al. (1971) that the migration energy of a self-interstitial was exceed-

ingly small in a bcc lattice, for purely geometrical reasons, it is clear that any

realistic discussion of diffusion mechanisms in Na and K must pay serious at-

tention to the contribution via interstitial sites (see also March and Pushkarov,

1996).

A5.2.2. Relaxation Round Self-Interstitials

Flores and March considered several configuration for self-interstitials (Fig. 53,

Alonso and March, 1989): the octahedral, the tetrahedral and the crowdion

configuration, shown in Fig. A5.1(a), (b) and (c) respectively. However, in each

of these cases the interstitial formation energy turned out to be well above the

corresponding vacancy value. The fourth configuration these workers studied

was therefore the relaxed interstitial shown in Fig. A5.1(d). It is assumed that

this interstitial is formed by introducing one atom, say A′, and displacing the
atom A in such a way that both A and A′ are placed along a line parallel to
the cube edge.

Fig. A5.1. (a) Relaxation around octahedral interstitial in Na. (b) Relaxation around
tetrahedral interstitial in Na. (c) Relaxation around crowdion in Na. (d) Relaxation around
split interstitial in Na. Redrawn after Flores and March.
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The point to be emphasized is that this is now a configuration very similar

to that of the vacancy discussed earlier. In fact, following Flores and March, it

can be assumed that forces are applied to the atoms labelled 1–8 in Fig. A5.1(d)

(Fig. 53(d) of Alonso and March book), in order to increase the crystal volume

by one atomic cell. In the vacancy calculation sketched above, one could also

regard forces to be applied, in order to decrease the crystal volume by this

same value. Once there is room to accommodate an additional atom, this is

introduced, while at the same time atom A is moved to its final position. It

must be stressed here that the energy spent in this final process of moving

atom A and introducing atom A′ is small in Na.
It then turns out that the energy of formation of the self interstitial in the

configuration shown in Fig. A5.1(d) is essentially the energy spent in increasing

the size of the crystal by one atomic volume. Although, at first sight it might

appear that this is equal, in the present model, to the vacancy formation

energy, there is an important difference to account for. For a vacancy, the

symmetry is such that the forces applied to the eight atoms are directed along

the diagonals. However, the symmetry is different for the interstitial, these

being indicated in Fig. A5.1(d). It is this changed symmetry which, in the

model under discussion, is responsible for a different energy for the interstitial.

Denoting the force ratio for energy configuration (d) in Fig. A5.1, by w, the

formation energy ERI of the relaxed self-interstitial turns out to be (see Alonso

and March, 1989)

ERI =
3(1 + 2w2)Ev

(1 + 2w)2
. (A5.2.2)

From various arguments, it appears that w must be less than say 4, which

indeed seems to be a very extreme case. But if this value is adopted, then

ERI � 1.2Ev whereas a value w = 2 seems more reasonable, thus yielding

ERI = 1.08Ev.

A6.1. Vacancy Formation Related to Phonon Properties

(e.g. Velocity of Sound and Debye Temperature )

We discuss in this Appendix a model of a vacancy in a metal that will be most

appropriate, for reasons elaborated on below, to simple close-packed metals.

Here, it will be assumed (admittedly in an oversimplified model) that the

vacancy can be treated as a perturbation on the free conduction electron gas.

The simplest approach is to use the linearized Thomas-Fermi (TF) relation

between density and potential, discussed in the main text. If ρ0 is the mean
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conduction electron density before the vacancy is introduced, then the inho-

mogeneous electron density ρ(r) in the presence of the vacancy is related to

the perturbing potential V (r) caused by removal of an ion from the bulk metal

by (with kF the Fermi wave number):

ρ(r) − ρ0 =
q2

4π
V (r) : q2 =

4kF
πa0

, a0 =
�
2

me2
. (A6.1)

In a metal of valence z, one can model the vacancy, before screening, as a

point charge −ze and screening converts the bare Coulomb potential energy

felt by a conduction electron at distance r from the vacancy, namely ze2/r, to

the screened Coulomb form

V (r) =
ze2

r
exp (−qr) . (A6.2)

Let us proceed to estimate the vacancy formation energy Ev by consi-

dering the change in the one-electron energy levels caused by the above self-

consistent perturbation potential energy V . Since one is assuming a free elec-

tron gas model, the unperturbed conduction electron wave functions are simply

ϑ−1/2 exp(ik · r) and the energy change ∆εk of the state of wave vector k is

evidently, from first-order perturbation theory

∆εk = ϑ−1
∫
exp(−ik · r)V (r) exp(ik · r) dr . (A6.3)

This is clearly independent of k and therefore summing over the occupied

states, replacing the summation by an integration with the usual factor for the

density of states, leads to the total change ∆E in the one-electron eigenvalue

sum as

∆E = ρ0

∫
V (r) dr . (A6.4)

Using either the semiclassical screened Coulomb potential, or the improved

wave theory potential of March and Murray (1960) in the above Eq. (A6.4),

one finds the same final result

∆E =
2

3
zEF (A6.5)

with z the valence and EF the Fermi energy. We want to stress that the

formula (A6.5) is strictly a perturbation theory in the potential V , having

strength proportional to z (we will display the inadequacy of Eq. (A6.5) as
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it stands for polyvalent metal vacancies below). But before proceeding to

that, we must note an important correction that must be made to Eq. (A6.5)

before using it to estimate the vacancy formation energy Ev even for small

z. This correction is because, when an atom is removed from the bulk metal

and placed on the surface, the crystal volume is increased by one atomic cell

size in the present model of no relaxation (appropriate only therefore to close-

packed metals). This lowers the kinetic energy of the conduction electrons by

an amount first calculated by Fumi (1955) to be (2/5)zEF . Subtracting this

value from Eq. (A6.5) yields the approximation

Ev = (4/15)zEF . (A6.6)

Of course, as already stressed, this perturbative argument could, at very

best, only be applicable for small valence z, i.e. for say Cu, Ag or Au (see

Fig. A6.21; March, 1990), when experimental values of Ev are scaled in units

of the valence times the free electron Fermi energy and plotted against the

valence. The constant 4/15 in Eq. (A6.6) fits reasonably on to this data as the

extrapolation back to z → 0 is made. Such a figure makes it abundantly clear

that Eq. (A6.6), though valid for sufficiently small z, must only be used, and

then for semiquantitative purposes, for the monovalent metals.

However, while the above makes it plain that the Fermi energy entering

Eq. (A6.6) is an inappropriate unit in terms of which to measure Ev for poly-

valent metals, let us next combine this equation with the so-called Bohm-Staver

formula for the velocity of sound, vs, in a metal (March, 1966).

Derivation of Velocity of Sound in Simple Metals

The above formula for vs is derived as follows. First, let us write a formula for

the plasma frequency of the ions, taken to have mass M and carrying charge

ze with z as usual the valence. If one denotes the ionic density by ρi, then this

ionic plasma frequency is given by the usual Langmuir expression

ωionsplasma =

{
4πρi(ze)

2

M

}1/2
. (A6.7)

But next one notes that (i) ρiz is the conduction electron density ρ0 and (ii)

Eq. (A6.7) represents an ‘optical’ rather than the desired acoustic mode.

The reason for this becomes clear from the above discussion of the screening

of the vacancy, represented by charge−ze. Applying the same argument to the
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screening of ions, around which, of course, in a metal, electrons must pile-up

to screen out long-range electric fields which cannot exist in such a conductor,

one can write that the bare Coulomb potential of an ion, namely in k-space

4πze2/k2, must be screened according to Eq. (A6.2):

4πze2/k2 → 4πze2/(k2 + q2TF ) . (A6.8)

Thus, in the long wavelength limit k → 0 appropriate to sound waves

ze → zek2/q2TF (A6.9)

and rewriting Eq. (A6.7) by analogy yields

(
4πρ0ze

m

) 1
2

→
(
4πρ0ze

m

) 1
2 k

qTF
(A6.10)

which evidently converts an ‘optical mode’ into the desired acoustic branch, to

yield a dispersion relation as k tends to zero:

ω = vsk (A6.11)

where the velocity of sound vs is given by

vs =
( zm
3M

) 1
2

vF (A6.12)

with vF the Fermi velocity: mvF = �kF : q
2
TF = 4kF /πa0, a0 being the Bohr

radius a0 = �
2/me2. Equation (A6.12) is the so-called Bohm-Staver formula.

A6.2. Relation of Vacancy Formation Energy to Debye

Temperature

The above formula will now allow the vacancy formation energy Ev to be

rewritten in terms of a characteristic ‘phonon energy’, rather than the Fermi

energy EF which we have seen to be an inappropriate unit for other than small

z. Squaring Eq. (A6.12) and rearranging yields almost immediately

Mv2s =
zm

3
v2F =

2

3
zEF (A6.13)

and hence, eliminating zEF from Eq. (A6.6) for Ev in favour of Mv2s leads to

the result

Ev =
2

5
Mv2s . (A6.14)
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At this point, it is useful to bring this result into contact with an empirical

relation proposed by Mukherjee (1965) in which Ev is related rather directly to

the Debye temperature θ. Using the elementary model for the phonons in an

isotropic solid, as set out for example in the book by Mott and Jones (1936),

the Debye temperature θ is given in terms of vs by

θ =
vs

Ω1/3
h

kB

(
3

4π

)1/3
(A6.15)

with Ω the atomic volume. Utilizing this equation in Eq. (A6.13) yields (March,

1966)

θ =
h

kB

{
3

4πΩ

}1/3{
2Ev

3αM

}1/2
. (A6.16)

For the predicted value α = 4/15, this formula (A6.16) is not quite quantita-

tively in agreement with the empirical relation proposed by Mukherjee (1965).

But changing α from 4/15 to 1/6 brings Eq. (A6.16) into good agreement with

Mukherjee’s empirical formula.

The important conclusion of this Appendix is that the vacancy formation

energy Ev in close-packed metals is most fundamentally related to a charac-

teristic phonon energy. By eliminating zEF , the obvious weaknesses of using

first-order perturbation theory based on a free-electron gas model are avoided

and it is then to be emphasized that one is led to a quantitatively useful es-

timate of the vacancy formation energy by very simple electron plus phonon

theory.

A7.1. Validity of Electrostatic Model for Interaction Energy

between Test Charges in a Fermi Gas

In the main text, the semiclassical linearized Thomas-Fermi (TF) method was

used to derive the interaction energy between test charges 1 and 2, at distance

R. In the course of that derivation, it was assumed that one could simply

calculate the screened potential due to test charge 1 at the site of charge 2 and

then simply multiply by that charge.

Below the justification of this procedure is given, following Alfred and

March (1957).

We consider below the two-centre problem posed above, but still using

∇2V = q2V . (A7.1.1)



Appendix 375

If the test charges, 1 and 2, create potentials V1 and V2 when present alone in

the Fermi gas, then the total potential V of the two-centre problem is, because

of the linearity of Eq. (A7.1.1)

V = V1 + V2 (A7.1.2)

i.e. just the superposition potential of the two charges at the specific separation

R.

The interaction energy between the test charges may now be obtained from

(A7.1.2). It will make zero contribution to the kinetic energy difference between

the test charges at infinite separation and at distance R.

We are now in a position to calculate the changes in both kinetic and

potential energies when we bring the charges together. We may write down

the explicit contributions as follows (Alfred and March, 1957).

(i) The interaction energy between the charge ze on centre 1 and the perturbing

potential, say V2, due to the other.

(ii) The interaction energy between the displaced charge (in linearized TF

theory) (q2/4πe2)V1 round the first charge and the potential V2 due to the

second.

(iii) The change in kinetic energy.

For equal test charges ze, these terms are evidently given by

(i) z2e2 exp(−qR)/R

(ii) −(q2/4πe2) ∫ V1V2 dr
(iii) (−q2/4πe2)2(EF /3ρo) [

∫
({V1+V2}2−V 2

1 −V 2
2 ) dr] = (q

2/4πe2)
∫
V1V2 dr

Equation (iii) follows directly from the earlier calculation of the kinetic energy

change in Eq. (A7.1.1). Thus, it can be seen that the cancellation between (ii)

and (iii) above is complete and one is left with the desired result

Φ(R) = z2e2 exp(−qR)/R (A7.1.3)

obtained here from first-principles by calculating the difference between the

total energy of the metal when the charges are at infinite separation and when

they are brought together to separation R. Clearly, this procedure is all to be

carried out in the Fermi sea of constant density.
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Separate Changes in Kinetic and Potential Energy

The kinetic energy in Thomas-Fermi theory, for inhomogeneous density n(r)

can be obtained from phase space arguments (see e.g. March, 1992) as

T = ck

∫
ρ(r)5/3 dr (A7.1.4)

where ck = (3h2/10m) (3/8π)2/3. It is convenient to measure kinetic energy

changes relative to the unperturbed Fermi gas state with kinetic energy To and

density ρo:

T − To = ck

∫ [
ρ(r)5/3 − ρ5/3o

]
dr (A7.1.5)

and writing the displaced charge ρ(r) − ρo = ∆ρ one has for small ∆ρ from

Eq. (A7.1.5) the result

T − To = EF

∫
∆ρ dr+

EF

3ρo

∫
(∆ρ)2 +O(∆ρ3) (A7.1.6)

with ρo and EF related in the usual free-electron fashion. We now observe that

the first term on the right-hand side for T−To involves simply the normalization

condition for the displaced charge.

Corless and March (1961) have subsequently carried out the calculation for

Φ(R) in the wave theory and have again demonstrated the cancellation of the

corresponding wave theory contributions to (ii) and (iii) above. Thus, from

the screening of a single test charge discussed in the body of the text, one finds

the (now asymptotic) result

Φ(R) ∼ A
cos(2kFR)

R3
: R large . (A7.1.7)

Modifications of this result occur when the test charges are replaced by ions as

in real metals. But there are still oscillations of wavelength π/kF , related to

the de Broglie wavelength of electrons at the Fermi surface. But cos(2kFR)→
cos(2kFR+ ∝) with a non-zero phase shift ∝ and the amplitude A must also

be appropriately modified from the result of the linearized theory.

The introduction of a weak pseudopotential into the Corless-March (1961)

treatment has been considered by Ziman (1964).

A7.2. Derivation of Dielectric Function of a High Density

Fermi Gas

We take as starting point the equation of March and Murray (1960). In atomic

units m = � = 1 this reads
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∇2V =
2kF

2

π2

∫
V (r′)

j1(2kF |r− r′|)
|r− r′|2 dr′ . (A7.2.1)

Introducing the Fourier transform Ṽ (k) of the potential, and taking the (test)

charge being shielded as having magnitude unity for convenience, we find the

bare Coulomb potential has Fourier transform Ṽ (k) = −4π/k2 (while the
screened Coulomb potential has Ṽ (k) = −4π/(k2 + q2)).

In the wave theory corresponding to Eq. (A7.2.1) it will be demonstrated

below that q2 in the screened Coulomb potential case will be replaced by

a quantity intimately related to the Fourier transform of the wave factor

j1(2kF r)/r
2 appearing on the right-hand side of Eq. (A7.2.1).

Substituting

V (k) =

∫
V (r) exp (ik · r) dr (A7.2.2)

in Eq. (A7.2.2), we find almost immediately∫
(−k2)Ṽ (k) exp (ik · r)dk = 2kF

2

π2

∫
Ṽ (k) exp (ik · r′)

× j1(2kF |r− r′|)
|r− r′|2 dr′dk

+ 4π

∫
exp (ik · r) dk (A7.2.3)

where the second term on the right-hand side of this equation accounts for

the unit point charge placed at the origin (charge density equal to the Dirac

delta function δ(r) with constant Fourier components therefore). Now the

integral over r′ required in the second term can be performed by introducing

the difference vector R = r′ − r through the function J(kF , k) defined by

J(kF , k) = 2kF
2π2
∫
exp (ik ·R)j1(2kFR)

R2
dR . (A7.2.4)

This definite integral can be evaluated and after some calculation one finds

J(kF , k) =
2kF
π
+

(
2kF

2

πk
− k

2π

)
ln

∣∣∣∣k + 2kFk − 2kF

∣∣∣∣ . (A7.2.5)

Returning to Eq. (A7.2.3) this reads, by introducing the function J :∫
(−k2)Ṽ (k) exp (ik · r) dk =

∫
Ṽ (k) exp (ik · r)J(kF , k) dk

+ 4π

∫
exp (ik · r) dk . (A7.2.6)
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From Eq. (A7.2.6), we have then the desired solution

Ṽ (k) =
−4π

k2 + J(kF , k)
. (A7.2.7)

As anticipated above, the role of q2 in the screened Coulomb Fourier compo-

nent is taken over by J , with its characteristic singularity at the Fermi sphere

diameter k = 2kF . Contact between the two treatments (semiclassical and

wave) is readily established by taking the long wavelength limit k → 0 in the

equation for J(k, kF ), when one finds

J(kF , k = 0) =
4kF
π

= q2 . (A7.2.8)

Using the definition of the dielectric function ε(k) in Eq. (7.1.32) of the main

text, the so-called Lindhard dielectric function follows.

It is now known that away from the high density limit kF → ∞, exchange
plus correlation correlations become significant. The reader is referred to the

review article by Singwi and Tosi (1981) and the book by March and Tosi

(1984) for details.

A7.3. Pair Potential for Be Metal from Density Functional Theory

In the main text, the density functional theory (DFT) of pair potentials was

set out and applied to Na metal. At a density appropriate to liquid Na just

above its melting point, it proved possible to bring this electron theory pair

potential φ(r) into contact with that obtained by inverting the liquid structure

factor S(k) — the so-called diffraction potential.

The purpose of this Appendix is to record related electron theory work on

φ(r) for Be metal. Unfortunately, because of the toxic nature of liquid Be,

there seems to be no accurate diffraction data for S(k) at the time of writing.

As for the analogous case of Na, the input data into the calculation on Be

of Perrot and March was (a) atomic number 4, (b) mean electron density of

conduction electrons and (c) a local density approximation for exchange plus

correlation (see Holas and March, 1995, for an exact formula for the exchange-

correlation potential in terms of low-order density matrices).

The basic building block is then the total screening charge Q(R) around

the divalent ion Be2+ embedded in an initially uniform Fermi gas of electrons.

For perfect screening, as must obtain in the conductor, Q(R) → 2 or R →
∞ and its detailed form is shown in Fig. 4 of PM(b). Using the DFT for
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Fig. A7.1. Radial valence density 4πr2∆n(r) for Na nucleus embedded in the center of a
cavity in originally uniform electron liquid. For graphical accuracy, this is the same for either
choice of Vxc(r). See also Fig. 7.5 for screening charge around K+ ion.

φ(r) set out in the body of Chap. 7, PM(b) obtained the result shown in their

Fig. 5. It turns out that the first repulsive hump after the initial minimum is

predicted to be very large in this case. Some experimental check of this φ(r)

for Be is obviously very desirable: just as the displaced charge ∆n(r) for Na+

shown in Fig. A7.1 has been checked in PM(a).

A7.4. Relation of Vacancy Formation Energy, in Units of Thermal

Energy at Melting, to Departures from Joule’s Law

In a hot solid, near its melting temperature Tm, the vacancy, formation energy

Ev can be obtained by taking out an atom from the bulk solid and placing it

on the surface (compare Appendix, for simple metals). This leaves a ‘localized

hole’, where the atom has been plucked out. Now consider that, at melting,

the localized hole no longer exists and therefore let us compare the change

in internal energy E of the liquid at volume ϑ and at volume ϑ + Ω, with Ω

denoting the atomic volume. This assumes no atomic relaxation around the

vacant site, which is reasonable for close-packed solids, but inappropriate for

bcc structures. Thus, one equates

Ev = E(ϑ+Ω)−E(ϑ) (A7.4.1)

and since Ω is O(1/N) of the total volume ϑ, one can Taylor expand in

Eq. (A7.4.1) to find

Ev � Ω∂E

∂ϑ
. (A7.4.2)
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One can now calculate the ‘departure from Joule’s law’, ∂E
∂ϑ
, purely ther-

modynamically; after some modest manipulation (March, 1987), one finds

Ev

kBTm
=

{
(γ − 1)(cv/kB)

S(o)

}1/2
. (A7.4.3)

Here γ = cp/cv is the ratio of the specific heats in the liquid metal just above

the melting temperature Tm. S(o) is the long wavelength limit (i.e. k → 0)

at the melting temperature Tm. S(o) is related, via fluctuation theory, to the

isothermal compressibility kT by the result

S(o) = ρkB T KT (A7.4.4)

where ρ is the atomic number density. S(k) is the liquid structure factor.

Rashid and March (1989; see also Alonso and March 1989) have consid-

ered Eq. (A7.4.3) in relation to a number of metals. The relation is useful,

though not fully quantitative, as evidenced by the fact that the average value

of Ev/kBTm from experiment for the metals considered by the above workers

is approximately 11, whereas Eq. (A7.4.3) predicts a number close to 8 for

close-packed metals.

Comparison with Statistical Mechanical Theory Appropriate to (say ) Argon

As mentioned earlier, Faber (1972) with metals specifically in mind, has ex-

pressed the vacancy formation energy Ev, for a pair force model and in the

absence of relaxation, in terms of the pair potential, assumed to possess a

Fourier transform as in the pseudopotential description of simple metals, and

the liquid structure S(k) referred to immediately above.

Bhatia and March (1984) have employed the alternative r-space description

of Minchin et al. (1974), their formula for the vacancy formation energy Ev

being

Ev + pΩ = −ρ

2

∫
gφ dr− ρ

6

∫
r
∂φ

∂r
g dr . (A7.4.5)

Here p is the pressure, Ω the atomic volume, ρ the number density, g(r) the

atomic pair correlation function in the liquid just above Tm(g(r) − 1 is the

Fourier transform of the liquid structure factor S(k) reduced by unity) and

φ(r) the (assumed) pair potential.

Bhatia and March (1984) were concerned specifically with condensed phases

of rare gases, rather than metals discussed earlier in this Appendix. Neverthe-

less the results are related to those obtained above for metals and will therefore

be discussed below.
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If one invokes the virial equation for the pressure p, namely

p = ρkBT − ρ2

6

∫
r
∂φ

∂r
g(r) dr (A7.4.6)

one notes that putting p = 0 yields the second term on the right-hand side of

Eq. (A7.4.6) for Ev as −kBTm. Since Ev is known empirically, it is apparent

that the term involving ∂φ/∂r makes only a modest contribution to Ev. Thus

Eq. (A7.4.5) becomes

Ev = −ρ

2

∫
gφ d(r)− kBT . (A7.4.7)

For argon, Bhatia and March argued that since g = 0 within the core

diameter σ and the direct correlation function c(r) of Ornstein and Zernike

defined in terms of the so-called total correlation function h(r) = g(r) − 1 by

h(r) = c(r) + ρ

∫
h (r− r′) c(r′) dr′ (A7.4.8)

is zero for hard spheres in the Percus-Yevick approximation outside the core

(see, for example, Appendix 3.1 of March, 1990), then following the study of

Woodhead-Gallaway, Gaskell and March (1968) where (in the so-called mean

spherical approximation, MSA)

c(r) = −φlr(r)

kBT
, r > σ (A7.4.9)

(φlr denotes the long-range part of the pair potential), Eq. (A7.4.7) can be

rewritten in the form:

2Ev =

{
ρkBT

[∫
g(r) c(r) dr − 2

ρ

]}
. (A7.4.10)

One must again caution here that Eq. (A7.4.10) immediately above is appro-

priate for argon, but will not apply as it stands for the metals discussed earlier

in this Appendix.

However, for the condensed rare gases, Eq. (A7.4.10) can be rewritten in

terms to the total correlation function h(r) = g(r) − 1 as
Ev

kBTm
=
1

2
ρ

∫
h(r) c(r) dr − 1

2
c̃(q = 0)− 1 (A7.4.11)

where c̃(q) is the Fourier transform of c(r) defined in Eq. (A7.4.8) above.
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Utilizing now the convolution relation (A7.4.8) between h(r) and c(r) at

the point r = 0 and the fact that in dense liquids g(r = 0) = 0, one can readily

show that

−1 = c(r = 0) + ρ

∫
h(r) c(r) dr . (A7.4.12)

Using this relation to eliminate the integral term in Eq. (A7.4.11) leads directly

to the Bhatia-March result

Ev

kBTm
=
1

2
[c(r = 0)− c̃(q = 0) + 3]Tm . (A7.4.13)

In this admitted simple model then, the vacancy energy in units of the ther-

mal energy kBTm at melting, is determined entirely by the direct correlation

function c(r) of the liquid just above the freezing point. Because c (r = 0) is a

large negative number, and c̃ (q = 0) is approximately the same (e.g. in a hard

sphere model they differ by unity, as shown by Bhatia and March (1984)), it

is evident why the ratio Ev/kBTm is a large number, found empirically to be

∼ 10.

A8.1. An Embedded Atom Potential for hcp Metal Zr

Goldstein and Jónsson (1995) have extended the embedded atom method

(EAM), discussed elsewhere in the body of Chap. 8, to deal with the hcp

metal Zr. The non-ideal c/a ratio and the elastic responses have been incor-

porated in the fitting procedure which these authors employ. They assume

simple functional forms for the pair interaction, atomic electron density and

embedding function. They parametrize the functions by fitting to experimen-

tal values of (i) cohesive energy, (ii) equilibrium lattice constants, (iii) single

crystal elastic constants and (iv) vacancy formation energy.

Furthermore an equation of state proposed by Rose et al. (1984) is em-

ployed to reproduce the pressure dependence of the cohesive energy. Taking

into account the anisotropic elastic response of crystal Goldstein and Jónsson

also reproduce dimer data and a high energy sputtering potential in order

to extrapolate the range of utility of their potential into regions of extreme

electron density-both high and low.

These workers then obtain fairly good accord with other experimentally

observed properties. They have applied their potential to the calculation of

stacking fault and self-interstitial formation energies and we summarize their

main findings on these latter properties immediately below.
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A8.2. Stacking Fault Energy

A satisfactory potential must evidently stabilize the hcp structure of Zr with

respect to other types of lattice. During the fitting procedure employed by

Goldstein and Jónsson (1995), stability with respect to the fcc and bcc lattices

was ensured.

As these workers point out, another test for the structural stability is to

calculate the I2 stacking fault energy. The fault occurs in the basal plane and

corresponds to a translation in one close-packed plane to give the stacking . . .

ABABABCACAC . . . . The stacking fault energy must be positive and the

theoretical estimates of Legrand (1984) suggest it should be large.

Goldstein and Jónsson (1995) have computed the I2 stacking fault energy

by employing a system of 1584 atoms consisting of 22 planes of 72 atoms.

They combined two equivalent hcp crystals, translating one with respect to the

other to give the desired stacking. They point out that, in effect, this creates

two stacking faults as periodic boundaries are employed to model the infinite

lattice. The size of the system was selected such that the two faults, separated

by 10 planes, would not affect each other with the range of the interaction

extending over some three layers. Goldstein and Jónsson obtained with their

EAM potential a stacking fault energy of ∼ 120 mJm−2, which is considerably
lower than the theoretical estimate (> 300 mJm−2) of Legrand (1984). It is
relevant here to note that Finnis-Sinclair potentials were generated by Igarashi

et al. (1991) for Co, Zr, Ti, Ru, Hf, Zn, Mg and Be. These workers reported

a very low value of the stacking fault energy with their potential namely ∼
30 mJm−2 and they noted that it did not prove possible to obtain a reasonably
high stacking fault energy without compromising the lattice stability under

deformation. (See also footnote before Sec. 6.5.3).

A8.3. Self-Interstitial Formation Energies

To test the potential further, under non-equilibrium conditions, Goldstein and

Jónsson (1995) also computed the self-interstitial formation energies and their

results are reproduced in Table A8.1 below.

The interstitial sites are as proposed by Johnson and Beeler (1981) and

the calculations were carried out by Goldstein and Jónsson (1995) on 4 system

sizes, from 1152 to 4800 atoms, in order to investigate possible size effects. The

interstitial atom was introduced by these authors to the system was permitted

to relax while the volume of the system was held constant. Though the calcu-

lated energies showed differences, Goldstein and Jónsson note that the effect of
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Table A8.1. Self-interstitial formation energy (in eV) and I2 stack-
ing fault energies (in mJm−2) for Zr (after Goldstein and Jónsson,
1995).

Self-interstitial Goldstein- Willaime- Oh- Igarashi

configuration Jósson Massobrio Jósson et al.

(1995) (1991) (1988) (1991)

Bc 4.1 Bo Bo 8.1

Bo 4.6 4.3 4.7 9.2

Bc 4.2 Bo ∗ 8.8

C 4.2 4.3 4.5 7.7

O 4.6 4.5 4.6 7.5

T 4.2 C C 9.1

S 4.2 C 4.9 8.7

I2 stacking

fault energy 121 ∗ ∗ 27

∗ above indicates no data is available.

system size is tiny (< 1%): the values they report being for a system with

2048 lattice atoms. At the time of writing a comparison of the self-interstitial

formation energies with experiment is not possible.

Thus, in Table A8.1, their results are compared with previously reported

computations. For such a comparison, Goldstein and Jónsson make several

points as follows:

(i) The potentials which accurately reproduce the non-ideal c/a ratio find

stable minima for each of the proposed sites. The potentials resulting

in a near-ideal c/a ratio predict the Bc, T (Oh and Johnson, 1988;

Willaime and Massobrio, 1990), Bt and S (Willaime and Massobrio,

1990) sites to be unstable: atoms introduced into these positions decay

to the C or Bo sites.

(ii) The values of Igarashi et al. (1991) for the interstitial formation ener-

gies are roughly twice those of Goldstein and Jónsson (1995).

(iii) Goldstein and Jónsson find the Bc configuration to be the most stable.

Although the C, T and S configurations relax to the same energies,

the sites remain unique with a separation of 0.59 Å between C and T

and 0.49 Å between C and S.
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A9.1. Experimental Techniques on Positron Spectroscopy

Positrons can have several states each of which gives a characteristic lifetime

τi = 1/λi. The probability of an annihilation at time t is the sum of exponential

decay components:

−dn(t)

dt
=
∑
i

Iiλi exp[−λit] ,

∑
i

Ii = 1 (A9.1.1)

with relative intensities Ii. This is normally analyzed by computers in order to

extract lifetime values τi and relative intensities Ii associated with the different

components. The timing pulses are obtained by differential constant-fraction

discrimination. The time delays between the start and stop signals are con-

verted into amplitude pulse the heights of which are stored into a multichannel

analyser. A typical time resolution is (200–250) ps.

Since there are only 2–3 decades of the exponential part of Eq. (A9.1.1) in

an experimental lifetime spectum, typically only two lifetime components can

be used to analyse the spectra in metals. The separation of two lifetimes is

successful only if λ1/λ2 > 1.5.

The average lifetime given by

τav =

∫
dt t

(
−dn(t)

dt

)
=
∑
i

Iiτi (A9.1.2)

is a good and statistically accurate parameter. It can be used to label various

states of the sample, but part of the underlying physical information connected

with different annihilation modes is lost.

A9.2. Lineshape Parameters of Doppler-Broadening Spectroscopy

For characterizing the 511 keV line, the parameter S is defined as the ratio of

the counts in the central region of the annhilation line of total number of the

counts in the line. The wing parameterW is the relative fraction of the counts

in the wing regions of the line. The annihilations with valence electrons fall

predominantly in the region of the S parameter due to their low momentum.

Therefore, the S parameter reflects the behaviour of valence annihilation. On

the other hand, the W parameter reflects the behaviour of core annihilations

due to the high momentum of core electrons.
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The absolute values of the parameters are meaningless. The relative va-

lues like S/Sref and W/Wref are practically comparable between various

experiments. When positrons are trapped, the lineshape is characteristic of

the trapping defect. In a vacancy-type defect, the density of valence electrons

is reduced. This leads to the narrowing of their momentum distribution which

is seen as an increase in S. On the other hand, the core electrons are decreased

in a vacancy-type defect. This leads to a decrease in the core annihilation pa-

rameter W .
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tion in Solids, 1989, Beijing, China. (Kê, T. S. et al.), (International Academic
Publishers, Pergamon Press, Beijing, 1990a) p. 113.

Kelly, A., Strong Solids, 2nd edition, (Oxford: Clarendon Press, 1973).
King, A. M. and Smith, D. A., Acta Cryst. 36, 335 (1980).

Kirkwood, J. G., J. Chem. Phys. 3, 300 (1935).
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