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Preface

This textbook is intended for use in a first course in mechanics of materials.
Programs of instruction relating to the mechanical sciences, such as mechan-
ical, civil, and aerospace engineering, often require that students take this
course in the second or third year of studies. Because of the fundamental
nature of the subject matter, mechanics of materials is often a required course,
or an acceptable technical elective in many other curricula. Students must
have completed courses in statics of rigid bodies and mathematics through
integral calculus as prerequisites to the study of mechanics of materials.

This edition maintains the organization of the previous edition. The
first eight chapters are dedicated exclusively to elastic analysis, including
stress, strain, torsion, bending and combined loading. An instructor can
easily teach these topics within the time constraints of a two-or three-credit
course. The remaining five chapters of the text cover materials that can be
omitted from an introductory course. Because these more advanced topics
are not interwoven in the early chapters on the basic theory, the core mate-
rial can e‰ciently be taught without skipping over topics within chapters.
Once the instructor has covered the material on elastic analysis, he or she
can freely choose topics from the more advanced later chapters, as time
permits. Organizing the material in this manner has created a significant
savings in the number of pages without sacrificing topics that are usually
found in an introductory text.

The most notable features of the organization of this text include the
following:

. Chapter 1 introduces the concept of stress (including stresses acting on
inclined planes). However, the general stress transformation equations
and Mohr’s circle are deferred until Chapter 8. Engineering instructors
often hold o¤ teaching the concept of state of stress at a point due to
combined loading until students have gained su‰cient experience ana-
lyzing axial, torsional, and bending loads. However, if instructors wish
to teach the general transformation equations and Mohr’s circle at the
beginning of the course, they may go to the freestanding discussion in
Chapter 8 and use it whenever they see fit.. Advanced beam topics, such as composite and curved beams, unsym-
metrical bending, and shear center, appear in chapters that are distinct
from the basic beam theory. This makes it convenient for instructors to
choose only those topics that they wish to present in their course.. Chapter 12, entitled ‘‘Special Topics,’’ consolidates topics that are
important but not essential to an introductory course, including energy
methods, theories of failure, stress concentrations, and fatigue. Some,
but not all, of this material is commonly covered in a three-credit
course at the discretion of the instructor.
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. Chapter 13, the final chapter of the text, discusses the fundamentals of
inelastic analysis. Positioning this topic at the end of the book enables
the instructor to present an e‰cient and coordinated treatment of
elastoplastic deformation, residual stress, and limit analysis after
students have learned the basics of elastic analysis.. Following reviewers’ suggestions, we have included a discussion of
the torsion of rectangular bars. In addition, we have updated our
discussions of the design of columns and reinforced concrete beams.

The text contains an equal number of problems using SI and U.S. Cus-
tomary units. Homework problems strive to present a balance between directly
relevant engineering-type problems and ‘‘teaching’’ problems that illustrate the
principles in a straightforward manner. An outline of the applicable problem-
solving procedure is included in the text to help students make the sometimes
di‰cult transition from theory to problem analysis. Throughout the text and
the sample problems, free-body diagrams are used to identify the unknown
quantities and to recognize the number of independent equations. The three
basic concepts of mechanics—equilibrium, compatibility, and constitutive
equations—are continually reinforced in statically indeterminate problems.
The problems are arranged in the following manner:

. Virtually every section in the text is followed by sample problems and
homework problems that illustrate the principles and the problem-
solving procedure introduced in the article.. Every chapter contains review problems, with the exception of optional
topics. In this way, the review problems test the students’ compre-
hension of the material presented in the entire chapter, since it is not
always obvious which of the principles presented in the chapter apply to
the problem at hand.. Most chapters conclude with computer problems, the majority of
which are design oriented. Students should solve these problems using
a high-level language, such as MATHCAD= or MATLAB=, which
minimizes the programming e¤ort and permits them to concentrate on
the organization and presentation of the solution.

Ancillaries To access additional course materials, please visit www.
cengagebrain.com. At the cengagebrain.com home page, search for the ISBN
of your title (from the back cover of your book) using the search box at the
top of the page, where these resources can be found, for instructors and stu-
dents. The following ancillaries are available at www.cengagebrain.com.

. Study Guide to Accompany Pytel and Kiusalaas Mechanics of Materi-
als, Second Edition, J. L Pytel and A. Pytel, 2012. The goals of
the Study Guide are twofold. First, self-tests are included to help the
student focus on the salient features of the assigned reading. Second, the
study guide uses ‘‘guided’’ problems which give the student an opportunity
to work through representative problems before attempting to solve the
problems in the text. The Study Guide is provided free of charge.. The Instructor’s Solution Manual and PowerPoint slides of all
figures and tables in the text are available to instructors through
http://login.cengage.com.
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1
Stress

1.1 Introduction

The three fundamental areas of engineering mechanics are statics, dynamics,
and mechanics of materials. Statics and dynamics are devoted primarily to
the study of the external e¤ects upon rigid bodies—that is, bodies for which
the change in shape (deformation) can be neglected. In contrast, mechanics

of materials deals with the internal e¤ects and deformations that are caused
by the applied loads. Both considerations are of paramount importance in
design. A machine part or structure must be strong enough to carry the
applied load without breaking and, at the same time, the deformations must
not be excessive.

Bolted connection in a steel frame. The

bolts must withstand the shear forces

imposed on them by the members of the

frame. The stress analysis of bolts and

rivets is discussed in this chapter. Courtesy

of Mark Winfrey/Shutterstock.
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The di¤erences between rigid-body mechanics and mechanics of mate-
rials can be appreciated if we consider the bar shown in Fig. 1.1. The force P

required to support the load W in the position shown can be found easily
from equilibrium analysis. After we draw the free-body diagram of the bar,
summing moments about the pin at O determines the value of P. In this
solution, we assume that the bar is both rigid (the deformation of the bar is
neglected) and strong enough to support the load W. In mechanics of mate-
rials, the statics solution is extended to include an analysis of the forces act-
ing inside the bar to be certain that the bar will neither break nor deform
excessively.

1.2 Analysis of Internal Forces; Stress

The equilibrium analysis of a rigid body is concerned primarily with the
calculation of external reactions (forces that act external to a body) and
internal reactions (forces that act at internal connections). In mechanics of
materials, we must extend this analysis to determine internal forces—that is,
forces that act on cross sections that are internal to the body itself. In addi-
tion, we must investigate the manner in which these internal forces are dis-
tributed within the body. Only after these computations have been made can
the design engineer select the proper dimensions for a member and select the
material from which the member should be fabricated.

If the external forces that hold a body in equilibrium are known, we
can compute the internal forces by straightforward equilibrium analysis. For
example, consider the bar in Fig. 1.2 that is loaded by the external forces F1,
F2, F3, and F4. To determine the internal force system acting on the cross
section labeled z1 , we must first isolate the segments of the bar lying on
either side of section z1 . The free-body diagram of the segment to the left of
section z1 is shown in Fig. 1.3(a). In addition to the external forces F1, F2,
and F3, this free-body diagram shows the resultant force-couple system of
the internal forces that are distributed over the cross section: the resultant
force R, acting at the centroid C of the cross section, and CR, the resultant
couple1 (we use double-headed arrows to represent couple-vectors). If the
external forces are known, the equilibrium equations SF ¼ 0 and SMC ¼ 0

can be used to compute R and CR.
It is conventional to represent both R and CR in terms of two compo-

nents: one perpendicular to the cross section and the other lying in the cross
section, as shown in Figs. 1.3(b) and (c). These components are given the

FIG. 1.1 Equilibrium analysis will determine the force P, but not the strength or
the rigidity of the bar.

FIG. 1.2 External forces acting on
a body.

FIG. 1.3(a) Free-body diagram
for determining the internal force
system acting on section z1 .

FIG. 1.3(b) Resolving the internal
force R into the axial force P and the
shear force V .

FIG. 1.3(c) Resolving the internal
couple CR into the torque T and the
bending moment M.

1The resultant force R can be located at any point, provided that we introduce the correct re-

sultant couple. The reason for locating R at the centroid of the cross section will be explained

shortly.

2 CHAPTER 1 Stress
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following physically meaningful names:

P: The component of the resultant force that is perpendicular to the cross
section, tending to elongate or shorten the bar, is called the normal force.

V: The component of the resultant force lying in the plane of the cross
section, tending to shear (slide) one segment of the bar relative to the
other segment, is called the shear force.

T : The component of the resultant couple that tends to twist (rotate) the
bar is called the twisting moment or torque.

M: The component of the resultant couple that tends to bend the bar is
called the bending moment.

The deformations produced by these internal forces and internal cou-
ples are shown in Fig. 1.4.

Up to this point, we have been concerned only with the resultant of the
internal force system. However, in design, the manner in which the internal
forces are distributed is equally important. This consideration leads us to
introduce the force intensity at a point, called stress, which plays a central
role in the design of load-bearing members.

Figure 1.5(a) shows a small area element DA of the cross section lo-
cated at the arbitrary point O. We assume that DR is that part of the re-
sultant force that is transmitted across DA, with its normal and shear com-
ponents being DP and DV , respectively. The stress vector acting on the cross
section at point O is defined as

t ¼ lim
DA!0

DR

DA
(1.1)

Its normal component s (lowercase Greek sigma) and shear component t

(lowercase Greek tau), shown in Fig. 1.5(b), are

s ¼ lim
DA!0

DP

DA
¼ dP

dA
t ¼ lim

DA!0

DV

DA
¼ dV

dA
(1.2)

FIG. 1.4 Deformations produced by the components of internal forces and
couples.

FIG. 1.5 Normal and shear
stresses acting on the cross section at
point O are defined in Eq. (1.2).

1.2 Analysis of Internal Forces; Stress 3
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The dimension of stress is [F/L2]—that is, force divided by area. In SI
units, force is measured in newtons (N) and area in square meters, from
which the unit of stress is newtons per square meter (N/m2) or, equivalently,
pascals (Pa): 1.0 Pa ¼ 1:0 N/m2. Because 1 pascal is a very small quantity in
most engineering applications, stress is usually expressed with the SI prefix M
(read as ‘‘mega’’), which indicates multiples of 106: 1.0 MPa ¼ 1:0� 106 Pa.
In U.S. Customary units, force is measured in pounds and area in square
inches, so that the unit of stress is pounds per square inch (lb/in.2), frequently
abbreviated as psi. Another unit commonly used is kips per square inch (ksi)
(1.0 ksi ¼ 1000 psi), where ‘‘kip’’ is the abbreviation for kilopound.

The commonly used sign convention for axial forces is to define tensile
forces as positive and compressive forces as negative. This convention is car-
ried over to normal stresses: Tensile stresses are considered to be positive,
compressive stresses negative. A simple sign convention for shear stresses does
not exist; a convention that depends on a coordinate system will be introduced
later in the text. If the stresses are uniformly distributed, Eq. (1.2) gives

s ¼ P

A
t ¼ V

A
(1.3)

where A is the area of the cross section. If the stress distribution is not uni-
form, then Eqs. (1.3) should be viewed as the average stress acting on the
cross section.

1.3 Axially Loaded Bars

a. Centroidal (axial) loading

Figure 1.6(a) shows a bar of constant cross-sectional area A. The ends of the
bar carry uniformly distributed normal loads of intensity p (units: Pa or psi).
We know from statics that

when the loading is uniform, its resultant passes through the centroid of

the loaded area.

Therefore, the resultant P ¼ pA of each end load acts along the centroidal
axis (the line connecting the centroids of cross sections) of the bar, as shown in
Fig. 1.6(b). The loads shown in Fig. 1.6 are called axial or centroidal loads.

Although the loads in Figs. 1.6(a) and (b) are statically equivalent,
they do not result in the same stress distribution in the bar. In the case of the
uniform loading in Fig. 1.6(a), the internal forces acting on all cross sections
are also uniformly distributed. Therefore, the normal stress acting at any
point on a cross section is

s ¼ P

A
(1.4)

The stress distribution caused by the concentrated loading in Fig.
1.6(b) is more complicated. Advanced methods of analysis show that on
cross sections close to the ends, the maximum stress is considerably higher
than the average stress P=A. As we move away from the ends, the stress

FIG. 1.6 A bar loaded axially by
(a) uniformly distributed load of
intensity p; and (b) a statically
equivalent centroidal force P ¼ pA.

4 CHAPTER 1 Stress
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becomes more uniform, reaching the uniform value P=A in a relatively short
distance from the ends. In other words, the stress distribution is approx-
imately uniform in the bar, except in the regions close to the ends.

As an example of concentrated loading, consider the thin strip of width
b shown in Fig. 1.7(a). The strip is loaded by the centroidal force P. Figures
1.7(b)–(d) show the stress distribution on three di¤erent cross sections. Note
that at a distance 2:5b from the loaded end, the maximum stress di¤ers by
only 0.2% from the average stress P=A.

b. Saint Venant’s principle

About 150 years ago, the French mathematician Saint Venant studied the
e¤ects of statically equivalent loads on the twisting of bars. His results led to
the following observation, called Saint Venant’s principle:

The di¤erence between the e¤ects of two di¤erent but statically equivalent

loads becomes very small at su‰ciently large distances from the load.

The example in Fig. 1.7 is an illustration of Saint Venant’s principle.
The principle also applies to the e¤ects caused by abrupt changes in the
cross section. Consider, as an example, the grooved cylindrical bar of radius
R shown in Fig. 1.8(a). The loading consists of the force P that is uniformly
distributed over the end of the bar. If the groove were not present, the nor-
mal stress acting at all points on a cross section would be P=A. Introduction
of the groove disturbs the uniformity of the stress, but this e¤ect is confined
to the vicinity of the groove, as seen in Figs. 1.8(b) and (c).

Most analysis in mechanics of materials is based on simplifications
that can be justified with Saint Venant’s principle. We often replace loads
(including support reactions) by their resultants and ignore the e¤ects of
holes, grooves, and fillets on stresses and deformations. Many of the simpli-
fications are not only justified but necessary. Without simplifying assump-
tions, analysis would be exceedingly di‰cult. However, we must always
keep in mind the approximations that were made, and make allowances for
them in the final design.

FIG. 1.7 Normal stress distribution in a strip caused by a concentrated load.
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c. Stresses on inclined planes

When a bar of cross-sectional area A is subjected to an axial load P, the
normal stress P=A acts on the cross section of the bar. Let us now consider
the stresses that act on plane a-a that is inclined at the angle y to the cross
section, as shown in Fig. 1.9(a). Note that the area of the inclined plane is
A=cos y: To investigate the forces that act on this plane, we consider the
free-body diagram of the segment of the bar shown in Fig. 1.9(b). Because
the segment is a two-force body, the resultant internal force acting on
the inclined plane must be the axial force P, which can be resolved into the
normal component P cos y and the shear component P sin y. Therefore, the
corresponding stresses, shown in Fig. 1.9(c), are

s ¼ P cos y

A=cos y
¼ P

A
cos2 y (1.5a)

t ¼ P sin y

A=cos y
¼ P

A
sin y cos y ¼ P

2A
sin 2y (1.5b)

FIG. 1.8 Normal stress distribution in a grooved bar.

FIG. 1.9 Determining the stresses acting on an inclined section of a bar.

6 CHAPTER 1 Stress
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From these equations we see that the maximum normal stress is P=A, and it
acts on the cross section of the bar (that is, on the plane y ¼ 0). The shear
stress is zero when y ¼ 0, as would be expected. The maximum shear stress
is P=2A, which acts on the planes inclined at y ¼ 45� to the cross section.

In summary, an axial load causes not only normal stress but also shear
stress. The magnitudes of both stresses depend on the orientation of the
plane on which they act.

By replacing y with yþ 90� in Eqs. (1.5), we obtain the stresses acting
on plane a 0-a 0, which is perpendicular to a-a, as illustrated in Fig. 1.10(a):

s 0 ¼ P

A
sin2 y t 0 ¼ � P

2A
sin 2y (1.6)

where we used the identities cosðyþ 90�Þ ¼ �sin y and sin 2ðyþ 90�Þ ¼
�sin 2y. Because the stresses in Eqs. (1.5) and (1.6) act on mutually perpen-
dicular, or ‘‘complementary’’ planes, they are called complementary stresses.
The traditional way to visualize complementary stresses is to draw them on
a small (infinitesimal) element of the material, the sides of which are parallel
to the complementary planes, as in Fig. 1.10(b). When labeling the stresses,
we made use of the following important result that follows from Eqs. (1.5)
and (1.6):

t 0 ¼ �t (1.7)

In other words,

The shear stresses that act on complementary planes have the same

magnitude but opposite sense.

Although Eq. (1.7) was derived for axial loading, we will show later
that it also applies to more complex loadings.

The design of axially loaded bars is usually based on the maximum
normal stress in the bar. This stress is commonly called simply the normal

stress and denoted by s, a practice that we follow in this text. The design
criterion thus is that s ¼ P=A must not exceed the working stress of the
material from which the bar is to be fabricated. The working stress, also
called the allowable stress, is the largest value of stress that can be safely
carried by the material. Working stress, denoted by sw, will be discussed
more fully in Sec. 2.2.

d. Procedure for stress analysis

In general, the stress analysis of an axially loaded member of a structure
involves the following steps.

Equilibrium Analysis

. If necessary, find the external reactions using a free-body diagram
(FBD) of the entire structure.. Compute the axial force P in the member using the method of sections.
This method introduces an imaginary cutting plane that isolates a seg-
ment of the structure. The cutting plane must include the cross section
of the member of interest. The axial force acting in the member can

FIG. 1.10 Stresses acting on two
mutually perpendicular inclined
sections of a bar.
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then be found from the FBD of the isolated segment because it now
appears as an external force on the FBD.

Computation of Stress

. After the axial force has been found by equilibrium analysis, the aver-

age normal stress in the member can be obtained from s ¼ P=A, where
A is the cross-sectional area of the member at the cutting plane.. In slender bars, s ¼ P=A is the normal stress if the section is su‰-
ciently far from applied loads and abrupt changes in the cross section
(Saint Venant’s principle).

Design Considerations For purposes of design, the computed stress
must be compared with the allowable stress, also called the working stress.
The working stress, which we denote by sw, is discussed in detail in the next
chapter. To prevent failure of the member, the computed stress must be less
than the working stress.

Note on the Analysis of Trusses The usual assumptions made in the
analysis of trusses are: (1) weights of the members are negligible compared to
the applied loads; (2) joints behave as smooth pins; and (3) all loads are
applied at the joints. Under these assumptions, each member of the truss is an
axially loaded bar. The internal forces in the bars can be obtained by the
method of sections or the method of joints (utilizing the free-body diagrams of
the joints).

8 CHAPTER 1 Stress

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sample Problem 1.1

The bar ABCD in Fig. (a) consists of three cylindrical steel segments with di¤erent
lengths and cross-sectional areas. Axial loads are applied as shown. Calculate the
normal stress in each segment.

1.3 ft

9000 lb 2000 lb 7000 lb

C
32

(a)

(b) Free-body diagrams (FBDs)

(c) Axial force diagram
               (tension assumed positive)

4000 lb

4000 lb PAB = 4000 lb

P (lb)

PBC = 5000 lb

PCD = 7000 lb 7000 lb

1

A

A

4000 lb

4000

1.3

−5000
−70001.6

1.7

A

A
B C D

x (ft)

B D

B

1.2 in.2
1.8 in.2 1.6 in.2

1.6 ft 1.7 ft

9000 lb

Solution

We begin by using equilibrium analysis to compute the axial force in each segment of
the bar (recall that equilibrium analysis is the first step in stress analysis). The
required free body diagrams (FBDs), shown in Fig. (b), were drawn by isolating the
portions of the beam lying to the left of sections z1 and z2 , and to the right of
section z3 . From these FBDs, we see that the internal forces in the three
segments of the bar are PAB ¼ 4000 lb ðTÞ;PBC ¼ 5000 lb ðCÞ, and
PCD ¼ 7000 lb ðCÞ, where (T) denotes tension and (C) denotes compression.

The axial force diagram in Fig. (c) shows how the how the internal forces vary
with the distance x measured along the bar from end A. Note that the internal forces
vary from segment to segment, but the force in each segment is constant. Because the
internal forces are discontinuous at points A, B, C, and D, our stress calculations will be
valid only for sections that are not too close to these points (Saint Venants principle).

The normal stresses in the three segments are

sAB ¼
PAB

AAB

¼ 4000 lb

1:2 in:2
¼ 3330 psi ðTÞ Answer

sBC ¼
PBC

ABC

¼ 5000 lb

1:8 in:2
¼ 2780 psi ðCÞ Answer

sCD ¼
PCD

ACD

¼ 7000 lb

1:6 in:2
¼ 4380 psi ðCÞ Answer

Observe that the lengths of the segments do not a¤ect the calculations of the
stresses. Also, the fact that the bar is made of steel is irrelevant; the stresses in the
segments would be as calculated, regardless of the materials from which the segments
of the bar are fabricated.

1
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Sample Problem 1.2

For the truss shown in Fig. (a), calculate the normal stresses in (1) member AC; and
(2) member BD. The cross-sectional area of each member is 900 mm2.

Solution

Equilibrium analysis using the FBD of the entire truss in Fig. (a) gives the following
values for the external reactions: Ay ¼ 40 kN, Hy ¼ 60 kN, and Hx ¼ 0.

Part 1

Recall that according to the assumptions used in truss analysis, each member of the
truss is an axially loaded bar. To find the force in member AC, we draw the FBD of
pin A, as shown in Fig. (b). In this (FBD), PAB and PAC are the forces in members AB

and AC, respectively. Note that we have assumed both of these forces to be tensile.
Because the force system is concurrent and coplanar, there are two independent
equilibrium equations. From the FBD in Fig. (b), we get

X
Fy ¼ 0 þ" 40þ 3

5
PAB ¼ 0

X
Fx ¼ 0 !þ PAC þ

4

5
PAB ¼ 0

Solving the equations gives PAC ¼ 53:33 kN (tension). Thus, the normal stress in
member AC is

sAC ¼
PAC

AAC

¼ 53:33 kN

900 mm2
¼ 53:33� 103 N

900� 10�6 m2

¼ 59:3� 106 N=m2 ¼ 59:3 MPa ðTÞ Answer

Part 2

To determine the force in member BD, we see that section z1 in Fig. (a) cuts through
members BD, BE, and CE. Because three equilibrium equations are available for a
portion of the truss separated by this section, we can find the forces in all three
members, if needed.

The FBD of the portion of the truss lying to the left of section z1 is shown in
Fig. (c) (the portion lying to the right could also be used). We have again assumed
that the forces in the members are tensile. To calculate the force in member BD, we
use the equilibrium equationX

ME ¼ 0 þ

m

�40ð8Þ þ 30ð4Þ � PBDð3Þ ¼ 0

10
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which yields

PBD ¼ �66:67 kN ¼ 66:67 kN ðCÞ

Therefore, the normal stress in member BD is

sBD ¼
PBD

ABD

¼ �66:67 kN

900 mm2
¼ �66:67� 103 N

900� 10�6 m2

¼ �74:1� 106 N=m2 ¼ 74:1 MPa ðCÞ Answer

1
Sample Problem 1.3

Figure (a) shows a two-member truss supporting a block of weight W . The
cross-sectional areas of the members are 800 mm2 for AB and 400 mm2 for AC.
Determine the maximum safe value of W if the working stresses are 110 MPa for
AB and 120 MPa for AC.

Solution

Being members of a truss, AB and AC can be considered to be axially loaded bars.
The forces in the bars can be obtained by analyzing the FBD of pin A in Fig. (b). The
equilibrium equations areX

Fx ¼ 0 !þ PAC cos 60� � PAB cos 40� ¼ 0

X
Fy ¼ 0 þ" PAC sin 60� þ PAB sin 40� �W ¼ 0

Solving simultaneously, we get

PAB ¼ 0:5077W PAC ¼ 0:7779W

Design for Normal Stress in Bar AB
The value of W that will cause the normal stress in bar AB to equal its working stress
is given by

PAB ¼ ðswÞABAAB

0:5077W ¼ ð110� 106 N=m2Þð800� 10�6 m2Þ

W ¼ 173:3� 103 N ¼ 173:3 kN

Design for Normal Stress in Bar AC
The value of W that will cause the normal stress in bar AC to equal its working stress
is found from

PAC ¼ ðswÞACAAC

0:7779W ¼ ð120� 106 N=m2Þð400� 10�6 m2Þ

W ¼ 61:7� 103 N ¼ 61:7 kN

Choose the Correct Answer

The maximum safe value of W is the smaller of the preceding two values—namely,

W ¼ 61:7 kN Answer

We see that the stress in bar AC determines the safe value of W . The other
‘‘solution,’’ W ¼ 173:3 kN, must be discarded because it would cause the stress in
AC to exceed its working stress of 120 MPa.

1
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Sample Problem 1.4

The rectangular wood panel is formed by gluing together two boards along the 30-
degree seam as shown in the figure. Determine the largest axial force P that can be
carried safely by the panel if the working stress for the wood is 1120 psi, and the
normal and shear stresses in the glue are limited to 700 psi and 450 psi, respectively.

Solution

The most convenient method for analyzing this design-type problem is to calculate
the largest safe value of P that satisfies each of the three design criteria. The smallest
of these three values is the largest safe value of P for the panel.

Design for Working Stress in Wood

The value of P for which the wood would reach its working stress is found as follows:

P ¼ swA ¼ 1120ð4� 1:0Þ ¼ 4480 lb

Design for Normal Stress in Glue

The axial force P that would cause the normal stress in the glue to equal its max-
imum allowable value is computed from Eq. (1.5a):

s ¼ P

A
cos2 y

700 ¼ P

ð4� 1:0Þ cos2 30�

P ¼ 3730lb

Design for Shear Stress in Glue

The value of P that would cause the shear stress in the glue to equal its maximum
value is computed from Eq. (1.5b):

s ¼ P

2A
sin 2y

450 ¼ P

2ð4� 1:0Þ sin 60�

P ¼ 4160lb

Choose the Correct Answer

Comparing the above three solutions, we see that the largest safe axial load that can
be safely applied is governed by the normal stress in the glue, its value being

P ¼ 3730 lb Answer

1
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1.0 in.
4 in.

30°
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Problems

1.1 A hollow steel tube with an inside diameter of 80 mm must carry an axial
tensile load of 330 kN. Determine the smallest allowable outside diameter of the tube
if the working stress is 110 MN/m2:

1.2 The cross-sectional area of bar ABCD is 600 mm2. Determine the maximum
normal stress in the bar.

FIG. P1.2

1.3 Determine the largest weight W that can be supported by the two wires AB

and AC: The working stresses are 100 MPa for AB and 150 MPa for AC. The cross-
sectional areas of AB and AC are 400 mm2 and 200 mm2, respectively.

FIG. P1.3

1.4 Axial loads are applied to the compound rod that is composed of an aluminum
segment rigidly connected between steel and bronze segments. What is the stress in
each material given that P ¼ 10 kN?

2P
4P P

3P

3 m 5 m 4 m

Bronze
A = 400 mm2

Aluminum
A = 600 mm2

Steel
A = 300 mm2

FIG. P1.4, P1.5

1.5 Axial loads are applied to the compound rod that is composed of an aluminum
segment rigidly connected between steel and bronze segments. Find the largest safe
value of P if the working stresses are 120 MPa for steel, 68 MPa for aluminum, and
110 MPa for bronze.

1.6 The wood pole is supported by two cables of 1=4-in. diameter. The turnbuckles
in the cables are tightened until the stress in the cables reaches 60 000 psi. If the
working compressive stress for wood is 200 psi, determine the smallest permissible
diameter of the pole. FIG. P1.6

Problems 13
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1.7 The column consists of a wooden post and a concrete footing, separated by a
steel bearing plate. Find the maximum safe value of the axial load P if the working
stresses are 1000 psi for wood and 450 psi for concrete.

1.8 Find the maximum allowable value of P for the column. The cross-sectional
areas and working stresses (sw) are shown in the figure.

1.9 The 1200-lb uniform plate ABCD can rotate freely about the hinge AB. The
plate is supported by the cables DE and CE. If the working stress in the cables is
18 000 psi, determine the smallest safe diameter of the cables.

1.10 The homogeneous bar AB weighing 1800 lb is supported at either end by a steel
cable. Calculate the smallest safe area of each cable if the working stress is 18 000 psi for
steel.

1.11 The homogeneous 6000-lb bar ABC is supported by a pin at C and a cable
that runs from A to B around the frictionless pulley at D. Find the stress in the cable
if its diameter is 0.6 in.

1.12 Determine the largest weight W that can be supported safely by the structure
shown in the figure. The working stresses are 16 000 psi for the steel cable AB and
720 psi for the wood strut BC. Neglect the weight of the structure.

FIG. P1.7 FIG. P1.8

A

B

D

C

E

3 ft

2 ft

6 ft
4 ft

FIG. P1.9

2 ft
1.5 ft

5 ft

A B

FIG. P1.10 FIG. P1.11 FIG. P1.12
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1.13 Determine the mass of the heaviest uniform cylinder that can be supported in
the position shown without exceeding a stress of 50 MPa in cable BC. Neglect fric-
tion and the weight of bar AB: The cross-sectional area of BC is 100 mm2.

1.14 The uniform 300-lb bar AB carries a 500-lb vertical force at A. The bar
is supported by a pin at B and the 0:5-in. diameter cable CD. Find the stress in the
cable.

1.15 The figure shows the landing gear of a light airplane. Determine the com-
pressive stress in strut AB caused by the landing reaction R ¼ 40 kN. Neglect the
weights of the members. The strut is a hollow tube, with 50-mm outer diameter and
40-mm inner diameter.

1.16 The 1000-kg uniform bar AB is suspended from two cables AC and BD; each
with cross-sectional area 400 mm2. Find the magnitude P and location x of the
largest additional vertical force that can be applied to the bar. The stresses in AC and
BD are limited to 100 MPa and 50 MPa, respectively.

1.17 The cross-sectional area of each member of the truss is 1.8 in.2. Calculate the
stresses in members CE, DE, and DF . Indicate tension or compression.

FIG. P1.13

3 ft 3 ft

500 lb

4 ft

FIG. P1.14

600

Dimensions in mm

A

B C

R

400

FIG. P1.15

FIG. P1.16 FIG. P1.17
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1.18 Determine the smallest safe cross-sectional areas of members CD, GD, and
GF for the truss shown. The working stresses are 140 MPa in tension and 100 MPa in
compression. (The working stress in compression is smaller to reduce the danger of
buckling.)

1.19 Find the stresses in members BC, BD, and CF for the truss shown. Indicate
tension or compression. The cross-sectional area of each member is 1400 mm2:

1.20 Determine the smallest allowable cross-sectional areas of members CE, BE,
and EF for the truss shown. The working stresses are 20 ksi in tension and 14 ksi in
compression. (The working stress in compression is smaller to reduce the danger of
buckling.)

8 ft

18 ft

A

G

F

E

B C D8 ft 8 ft

30 kips30 kips

FIG. P1.20
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1.21 Determine the smallest allowable cross-sectional areas of members BD, BE,
and CE of the truss shown. The working stresses are 20 000 psi in tension and 12 000
psi in compression. (A reduced stress in compression is specified to reduce the danger
of buckling.)

1.22 The two pieces of wood, 2 in. by 4 in., are glued together along the 40� joint.
Determine the maximum safe axial load P that can be applied if the shear stress in
the glue is limited to 250 psi.

1.23 The rectangular piece of wood, 50 mm by 100 mm, is used as a compression
block. The grain of the wood makes a 20� angle with the horizontal, as shown in the
figure. Determine the largest axial force P that can be applied safely if the allowable
stresses on the plane of the grain are 18 MPa for compression and 4 MPa for shear.

1.24 The figure shows a glued joint, known as a finger joint, in a 6-in. by 3=4-in.
piece of lumber. Find the normal and shear stresses acting on the surface of the joint.

1.25 The piece of wood, 100 mm by 100 mm in cross section, contains a glued
joint inclined at the angle y to the vertical. The working stresses are 20 MPa for
wood in tension, 8 MPa for glue in tension, and 12 MPa for glue in shear. If y ¼ 50�,
determine the largest allowable axial force P.

FIG. P1.25

FIG. P1.21 FIG. P1.22

FIG. P1.23 FIG. P1.24
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1.4 Shear Stress

By definition, normal stress acting on an interior plane is directed per-
pendicular to that plane. Shear stress, on the other hand, is tangent to the
plane on which it acts. Shear stress arises whenever the applied loads cause
one section of a body to slide past its adjacent section. In Sec. 1.3, we
examined how shear stress occurs in an axially loaded bar. Three other
examples of shear stress are illustrated in Fig. 1.11. Figure 1.11(a) shows two
plates that are joined by a rivet. As seen in the FBD, the rivet must carry the
shear force V ¼ P. Because only one cross section of the rivet resists the
shear, the rivet is said to be in single shear. The bolt of the clevis in Fig.
1.11(b) carries the load P across two cross-sectional areas, the shear force
being V ¼ P=2 on each cross section. Therefore, the bolt is said to be in a
state of double shear. In Fig. 1.11(c) a circular slug is being punched out of a
metal sheet. Here the shear force is P and the shear area is similar to the
milled edge of a coin. The loads shown in Fig. 1.11 are sometimes referred
to as direct shear to distinguish them from the induced shear illustrated in
Fig. 1.9.

The distribution of direct shear stress is usually complex and not easily
determined. It is common practice to assume that the shear force V is uni-
formly distributed over the shear area A, so that the shear stress can be
computed from

t ¼ V

A
(1.8)

FIG. 1.11 Examples of direct shear: (a) single shear in a rivet; (b) double shear in
a bolt; and (c) shear in a metal sheet produced by a punch.
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Strictly speaking, Eq. (1.8) must be interpreted as the average shear stress. It
is often used in design to evaluate the strength of connectors, such as rivets,
bolts, and welds.

1.5 Bearing Stress

If two bodies are pressed against each other, compressive forces are devel-
oped on the area of contact. The pressure caused by these surface loads is
called bearing stress. Examples of bearing stress are the soil pressure beneath
a pier and the contact pressure between a rivet and the side of its hole. If the
bearing stress is large enough, it can locally crush the material, which in turn
can lead to more serious problems. To reduce bearing stresses, engineers
sometimes employ bearing plates, the purpose of which is to distribute the
contact forces over a larger area.

As an illustration of bearing stress, consider the lap joint formed by the
two plates that are riveted together as shown in Fig. 1.12(a). The bearing
stress caused by the rivet is not constant; it actually varies from zero at the
sides of the hole to a maximum behind the rivet as illustrated in Fig. 1.12(b).
The di‰culty inherent in such a complicated stress distribution is avoided by
the common practice of assuming that the bearing stress sb is uniformly
distributed over a reduced area. The reduced area Ab is taken to be the pro-

jected area of the rivet:

Ab ¼ td

where t is the thickness of the plate and d represents the diameter of the
rivet, as shown in the FBD of the upper plate in Fig. 1.12(c). From this FBD
we see that the bearing force Pb equals the applied load P (the bearing load
will be reduced if there is friction between the plates), so that the bearing
stress becomes

sb ¼
Pb

Ab

¼ P

td
(1.9)

FIG. 1.12 Example of bearing stress: (a) a rivet in a lap joint; (b) bearing stress is
not constant; (c) bearing stress caused by the bearing force Pb is assumed to be
uniform on projected area td.
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Sample Problem 1.5

The lap joint shown in Fig. (a) is fastened by four rivets of 3/4-in. diameter. Find the
maximum load P that can be applied if the working stresses are 14 ksi for shear in
the rivet and 18 ksi for bearing in the plate. Assume that the applied load is dis-
tributed evenly among the four rivets, and neglect friction between the plates.

Solution
We will calculate P using each of the two design criteria. The largest safe load will be
the smaller of the two values. Figure (b) shows the FBD of the lower plate. In this
FBD, the lower halves of the rivets are in the plate, having been isolated from their
top halves by a cutting plane. This cut exposes the shear forces V that act on the
cross sections of the rivets. We see that the equilibrium condition is V ¼ P=4.

Design for Shear Stress in Rivets

The value of P that would cause the shear stress in the rivets to reach its working
value is found as follows:

V ¼ tA

P

4
¼ ð14� 103Þ pð3=4Þ2

4

" #

P ¼ 24 700 lb

Design for Bearing Stress in Plate

The shear force V ¼ P=4 that acts on the cross section of one rivet is equal to the
bearing force Pb due to the contact between the rivet and the plate. The value of
P that would cause the bearing stress to equal its working value is computed from
Eq. (1.9):

Pb ¼ sbtd

P

4
¼ ð18� 103Þð7=8Þð3=4Þ

P ¼ 47 300 lb

Choose the Correct Answer

Comparing the above solutions, we conclude that the maximum safe load P that can
be applied to the lap joint is

P ¼ 24 700 lb Answer

with the shear stress in the rivets being the governing design criterion.

1
20
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Problems

1.26 What force is required to punch a 20-mm-diameter hole in a plate that is 25
mm thick? The shear strength of the plate is 350 MN/m2.

1.27 A circular hole is to be punched in a plate that has a shear strength of 40
ksi—see Fig. 1.11(c). The working compressive stress for the punch is 50 ksi. (a)
Compute the maximum thickness of a plate in which a hole 2.5 in. in diameter can be
punched. (b) If the plate is 0.25 in. thick, determine the diameter of the smallest hole
that can be punched.

1.28 Find the smallest diameter bolt that can be used in the clevis in Fig. 1.11(b) if
P ¼ 400 kN. The working shear stress for the bolt is 300 MPa.

1.29 Referring to Fig. 1.11(a), assume that the diameter of the rivet that joins the
plates is d ¼ 20 mm. The working stresses are 120 MPa for bearing in the plate and
60 MPa for shear in the rivet. Determine the minimum safe thickness of each plate.

1.30 The lap joint is connected by three 20-mm-diameter rivets. Assuming that the
axial load P ¼ 50 kN is distributed equally among the three rivets, find (a) the shear
stress in a rivet; (b) the bearing stress between a plate and a rivet; and (c) the max-
imum average tensile stress in each plate.

FIG. P1.30, P1.31

1.31 Assume that the axial load P applied to the lap joint is distributed equally
among the three 20-mm-diameter rivets. What is the maximum load P that can be
applied if the allowable stresses are 40 MPa for shear in rivets, 90 MPa for bearing
between a plate and a rivet, and 120 MPa for tension in the plates?

1.32 A key prevents relative rotation between the shaft and the pulley. If the
torque T ¼ 2200 N �m is applied to the shaft, determine the smallest safe dimension
b if the working shear stress for the key is 60 MPa.

FIG. P1.32
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1.33 The bracket is supported by 1=2-in.-diameter pins at A and B (the pin at B

fits in the 45� slot in the bracket). Neglecting friction, determine the shear stresses in
the pins, assuming single shear.

1.34 The 7=8-in.-diameter pins at A and C that support the structure are in single
shear. Find the largest force F that can be applied to the structure if the working
shear stress for these pins is 5000 psi. Neglect the weights of the members.

1.35 The uniform 2-Mg bar is supported by a smooth wall at A and by a pin at B

that is in double shear. Determine the diameter of the smallest pin that can be used if
its working shear stress is 60 MPa.

1.36 The bell crank, which is in equilibrium under the forces shown in the figure,
is supported by a 20-mm-diameter pin at D that is in double shear. Determine (a) the
required diameter of the connecting rod AB, given that its tensile working stress is
100 MPa; and (b) the shear stress in the pin.

1.37 Compute the maximum force P that can be applied to the foot pedal. The
6-mm.-diameter pin at B is in single shear, and its working shear stress is 28 MPa.
The cable attached at C has a diameter of 3 mm. and a working normal stress of
140 MPa.

FIG. P1.33 FIG. P1.34 FIG. P1.35

FIG. P1.36

50 mm

150 mm
50 mm

FIG. P1.37
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1.38 The right-angle bar is supported by a pin at B and a roller at C: What is the
maximum safe value of the load P that can be applied if the shear stress in the pin is
limited to 20 000 psi? The 3=4-in.-diameter pin is in double shear.

1.39 The bar AB is supported by a frictionless inclined surface at A and a 7=8-
in.-diameter pin at B that is in double shear. Determine the shear stress in the pin
when the vertical 2000-lb force is applied. Neglect the weight of the bar.

1.40 A joint is made by gluing two plywood gussets of thickness t to wood boards.
The tensile working stresses are 1200 psi for the plywood and 700 psi for the boards.
The working shear stress for the glue is 50 psi. Determine the dimensions b and t so
that the joint is as strong as the boards.

1.41 The steel end-cap is fitted into grooves cut in the timber post. The working
stresses for the post are 1:8 MPa in shear parallel to the grain and 5:5 MPa in bearing
perpendicular to the grain. Determine the smallest safe dimensions a and b.

1.42 The halves of the coupling are held together by four 5=8-in.-diameter bolts.
The working stresses are 12 ksi for shear in the bolts and 15 ksi for bearing in the
coupling. Find the largest torque T that can be safely transmitted by the coupling.
Assume that the forces in the bolts have equal magnitudes.

FIG. P1.38 FIG. P1.39

FIG. P1.40 FIG. P1.41

FIG. P1.42
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1.43 The plate welded to the end of the I-beam is fastened to the support with four
10-mm-diameter bolts (two on each side). Assuming that the load is equally divided
among the bolts, determine the normal and shear stresses in a bolt.

1.44 The 20-mm-diameter bolt fastens two wooden planks together. The nut is
tightened until the tensile stress in the bolt is 150 MPa. Find the smallest safe diameter
d of the washers if the working bearing stress for wood is 13 MPa.

1.45 The figure shows a roof truss and the detail of the connection at joint B.
Members BC and BE are angle sections with the thicknesses shown in the figure. The
working stresses are 70 MPa for shear in the rivets and 140 MPa for bearing stress
due to the rivets. How many 19-mm-diameter rivets are required to fasten the fol-
lowing members to the gusset plate: (a) BC; and (b) BE ?

1.46 Repeat Prob. 1.45 if the rivet diameter is 22 mm, with all other data remain-
ing unchanged.

FIG. P1.45, P1.46

FIG. P1.43 FIG. P1.44
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Review Problems

1.47 The cross-sectional area of each member of the truss is 1200 mm2. Calculate
the stresses in members DF, CE, and BD.

1.48 The links of the chain are made of steel that has a working stress of 300 MPa
in tension. If the chain is to support the force P ¼ 45 kN, determine the smallest safe
diameter d of the links.

1.49 Segment AB of the bar is a tube with an outer diameter of 1.5 in. and a wall
thickness of 0.125 in. Segment BC is a solid rod of diameter 0.75 in. Determine the
normal stress in each segment.

1.50 The cylindrical steel column has an outer diameter of 4 in. and inner diame-
ter of 3.5 in. The column is separated from the concrete foundation by a square
bearing plate. The working compressive stress is 26 000 psi for the column, and the
working bearing stress is 1200 psi for concrete. Find the largest force P that can be
applied to the column.

FIG. P1.47 FIG. P1.48

FIG. P1.49

7 in.

3.5 in.

4 in.

FIG. P1.50
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1.51 The tubular tension member is fabricated by welding a steel strip into a 12�

helix. The cross-sectional area of the resulting tube is 2.75 in.2. If the normal stress
acting on the plane of the weld is 12 ksi, determine (a) the axial force P; and (b) the
shear stress acting on the plane of the weld.

1.52 An aluminum cable of 6 mm diameter is suspended from a high-altitude
balloon. The density of aluminum is 2700 kg/m3, and its breaking stress is 390 MPa.
Determine the largest length of cable that can be suspended without breaking.

1.53 The 0.8-in-diameter steel bolt is placed in the aluminum sleeve. The nut is
tightened until the normal stress in the bolt is 12 000 psi. Determine the normal stress
in the sleeve.

8 in.

0.80 in. 1.00 in. 1.25 in.

FIG. P1.53

1.54 For the joint shown in the figure, calculate (a) the largest bearing stress
between the pin and the members; (b) the average shear stress in the pin; and (c) the
largest average normal stress in the members.

1.55 The lap joint is fastened with four 3/4-in.-diameter rivets. The working
stresses are 14 ksi for the rivets in shear and 18 ksi for the plates in bearing. Find the
maximum safe axial load P that can be applied to the joint. Assume that the load is
equally distributed among the rivets.

FIG. P1.51

FIG. P1.54 FIG. P1.55
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1.56 Three wood boards, each 4 in. wide, are joined by the 3/4-in.-diameter bolt.
If the working stresses for wood are 800 psi in tension and 1500 psi in bearing, find
the largest allowable value of the force P.

1.57 The cast iron block with cross-sectional dimensions of 2.5 in. by 2.5 in. con-
sists of two pieces. The pieces are prevented from sliding along the 55� inclined joint
by the steel key, which is 2.5 in. long. Determine the smallest safe dimensions b and h

of the key if the working stresses are 40 ksi for cast iron in bearing and 50 ksi for the
key in shear.

1.58 Find the stresses in members BC and BE for the truss shown. The cross-
sectional area of each member is 4:2 in:2. Indicate whether the stresses are tensile (T) or
compressive (C).

1.59 The boom AC is a 4-in. square steel tube with a wall thickness of 0.25 in. The
boom is supported by the 0.5-in.-diameter pin at A, and the 0.375-in.-diameter cable
BC. The working stresses are 25 ksi for the cable, 18 ksi for the boom, and 13.6 ksi
for shear in the pin. Neglecting the weight of the boom, determine the largest safe
load P that can be applied as shown.

FIG. P1.56 FIG. P1.57
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Computer Problems

C1.1 The symmetric truss ABC of height h and span 2b carries the upward vertical
force P at its apex C. The working stresses for the members are st in tension and sc

in compression. Given b, P, st, and sc, write an algorithm to plot the required vol-
ume of material in the truss against h from h ¼ 0:5b to 4b. Also find the value of h

that results in the smallest volume of the material in the truss. Assume that the truss
is fully stressed (each member is stressed to its working stress). Use the following data:
b ¼ 6 ft, P ¼ 120 kips, st ¼ 18 ksi, and sc ¼ 12 ksi.

FIG. C1.1, C1.2

C1.2 Solve Prob. C1.1 assuming that P acts vertically downward.

C1.3 The truss ABC has an overhang b, and its two members are inclined at angles
a and y to the horizontal, both angles being positive. A downward vertical force P

acts at A. The working stresses for the members are st in tension and sc in com-
pression. Given b, P, a, st, and sc, construct an algorithm to plot the required vol-
ume of material in the truss against y from y ¼ 0� to 75�. Assume that each member
of the truss is stressed to its working stress. What is the value of y that results in the
smallest material volume? Use the following data: b ¼ 1:8 m, P ¼ 530 kN, a ¼ 30�,
st ¼ 125 MPa, and sc ¼ 85 MPa.

C1.4 A high-strength adhesive is used to join two halves of a metal bar of
cross-sectional area A along the plane m-n, which is inclined at the angle y to the
cross section. The working stresses for the adhesive are sw in tension and tw in shear.
Given A, sw, and tw, write an algorithm that plots the maximum allowable axial
force P that can be applied to the bar as a function of y in the range 0�a y a 60�.
Assume that the metal is much stronger than the adhesive, so that P is determined by
the stresses in the adhesive. Use the following data: A ¼ 4 in.2, sw ¼ 3500 psi, and
tw ¼ 1800 psi.

FIG. C1.3 FIG. C1.4
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C1.5 The concrete cooling tower with a constant wall thickness of 1.5 ft is loaded
by its own weight. The outer diameter of the tower varies as

d ¼ 20 ft� 0:1xþ ð0:35� 10�3 ft�1Þx2

where x and d are in feet. Write an algorithm to plot the axial stress in the tower as a
function of x. What is the maximum stress and where does it occur? Use 150 lb/ft3

for the weight density of concrete.

FIG. C1.5
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2
Strain

2.1 Introduction

So far, we have dealt mainly with the strength, or load-carrying capacity, of
structural members. Here we begin our study of an equally important topic
of mechanics of materials—deformations, or strains. In general terms, strain

is a geometric quantity that measures the deformation of a body. There are
two types of strain: normal strain, which characterizes dimensional changes,
and shear strain, which describes distortion (changes in angles). Stress and
strain are two fundamental concepts of mechanics of materials. Their rela-
tionship to each other defines the mechanical properties of a material, the
knowledge of which is of the utmost importance in design.

An assortment of tensile test specimens. The tensile test

is a standard procedure for determining the mechanical

properties of materials. An important material property

is the stress-strain diagram, which is discussed in this

chapter. Courtesy of Andrew Brookes, National Physical

Laboratory/Photo Researchers, Inc.
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Although our emphasis in this chapter will be on axially loaded bars,
the principles and methods developed here apply equally well to more com-
plex cases of loading discussed later. Among other topics, we will learn how
to use force-deformation relationships in conjunction with equilibrium anal-
ysis to solve statically indeterminate problems.

2.2 Axial Deformation; Stress-Strain

Diagram

The strength of a material is not the only criterion that must be considered
when designing machine parts or structures. The sti¤ness of a material is
often equally important, as are mechanical properties such as hardness,
toughness, and ductility. These properties are determined by laboratory
tests. Many materials, particularly metals, have established standards that
describe the test procedures in detail. We will confine our attention to only
one of the tests—the tensile test of steel—and use its results to illustrate
several important concepts of material behavior.

a. Normal (axial) strain

Before describing the tensile test, we must formalize the definition of normal
(axial) strain. We begin by considering the elongation of the prismatic bar of
length L in Fig. 2.1. The elongation d may be caused by an applied axial
force, or an expansion due to an increase in temperature, or even a force and
a temperature increase acting simultaneously. Strain describes the geometry
of deformation, independent of what actually causes the deformation. The
normal strain � (lowercase Greek epsilon) is defined as the elongation per unit

length. Therefore, the normal strain in the bar in the axial direction, also
known as the axial strain, is

� ¼ d

L
(2.1)

If the bar deforms uniformly, then Eq. (2.1) represents the axial strain every-
where in the bar. Otherwise, this expression should be viewed as the aver-

age axial strain. Note that normal strain, being elongation per unit length, is

FIG. 2.1 Deformation of a prismatic bar.
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a dimensionless quantity. However, ‘‘units’’ such as in./in. or mm/mm are
frequently used for normal strain.

If the deformation is not uniform, we must define strain at a point. In
Fig. 2.1, we let O be a point in the bar located at the distance x from the
fixed end. To determine the axial strain at point O, we consider the de-
formation of an imaginary line element (fiber) OA of length Dx that is em-
bedded in the bar at O. Denoting the elongation of OA by Dd, we define the
axial strain at point O as

� ¼ lim
Dx!0

Dd

Dx
¼ dd

dx
(2.2)

Observe that normal strain, like normal stress, is defined at a point in a given

direction.
We note that if the distribution of the axial strain is known, the elon-

gation of the bar can be computed from

d ¼
ðL

0

dd ¼
ðL

0

� dx (2.3)

For uniform strain distribution (the axial strain is the same at all points),
Eq. (2.3) yields d ¼ �L, which agrees with Eq. (2.1).

Although the preceding discussion assumed elongation, the results are
also applicable to compression. By convention, compression (shortening)
carries a negative sign. For example � ¼ �0:001 means a compressive strain
of magnitude 0:001.

b. Tension test

In the standard tension test, the specimen shown in Fig. 2.2 is placed in the
grips of a testing machine. The grips are designed so that the load P applied
by the machine is axial. Two gage marks are scribed on the specimen to de-
fine the gage length L. These marks are located away from the ends to avoid
the local e¤ects caused by the grips and to ensure that the stress and strain
are uniform in the material between the marks.

The testing machine elongates the specimen at a slow, constant rate
until the specimen ruptures. During the test, continuous readings are taken
of the applied load and the elongation of the gage length. These data are
then converted to stress and strain. The stress is obtained from s ¼ P=A,
where P is the load and A represents the original cross-sectional area of the
specimen. The strain is computed from � ¼ d=L, where d is the elongation

FIG. 2.2 Specimen used in the standard tension test.
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between the gage marks and L is the original gage length. These results,
which are based on the original area and the original gage length, are re-
ferred to as nominal stress and nominal strain.

As the bar is being stretched, its cross-sectional area becomes smaller
and the length between the gage marks increases. Dividing the load by the
actual (current) area of the specimen, we get the true stress. Similarly, the
true strain is obtained by dividing the elongation d by the current gage
length. The nominal and true measures are essentially the same in the work-
ing range of metals. They di¤er only for very large strains, such as occur in
rubber-like materials or in ductile metals just before rupture. With only a few
exceptions, engineering applications use nominal stress and strain.

Plotting axial stress versus axial strain results in a stress-strain diagram.
If the test is carried out properly, the stress-strain diagram for a given
material is independent of the dimensions of the test specimen. That is,
the characteristics of the diagram are determined solely by the mechanical
properties of the material. A stress-strain diagram for structural steel is
shown in Fig. 2.3. The following mechanical properties can be determined
from the diagram.

Proportional Limit and Hooke’s Law As seen in Fig. 2.3, the
stress-strain diagram is a straight line from the origin O to a point called the
proportional limit. This plot is a manifestation of Hooke’s law:1 Stress is
proportional to strain; that is,

s ¼ E� (2.4)

where E is a material property known as the modulus of elasticity or Young’s

modulus. The units of E are the same as the units of stress—that is, Pa or psi.
For steel, E ¼ 29� 106 psi, or 200 GPa, approximately. Note that Hooke’s

FIG. 2.3 Stress-strain diagram obtained from the standard tension test on a
structural steel specimen.

1This law was first postulated by Robert Hooke in 1678.
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law does not apply to the entire diagram; its validity ends at the propor-
tional limit. Beyond this point, stress is no longer proportional to strain.2

Elastic Limit A material is said to be elastic if, after being loaded, the
material returns to its original shape when the load is removed. The elastic

limit is, as its name implies, the stress beyond which the material is no longer
elastic. The permanent deformation that remains after the removal of the
load is called the permanent set. The elastic limit is slightly larger than
the proportional limit. However, because of the di‰culty in determining the
elastic limit accurately, it is usually assumed to coincide with the propor-
tional limit.

Yield Point The point where the stress-strain diagram becomes almost
horizontal is called the yield point, and the corresponding stress is known as
the yield stress or yield strength. Beyond the yield point there is an appreci-
able elongation, or yielding, of the material without a corresponding in-
crease in load. Indeed, the load may actually decrease while the yielding
occurs. However, the phenomenon of yielding is unique to structural steel.
Other grades of steel, steel alloys, and other materials do not yield, as
indicated by the stress-strain curves of the materials shown in Fig. 2.4.
Incidentally, these curves are typical for a first loading of materials that
contain appreciable residual stresses produced by manufacturing or aging
processes. After repeated loading, these residual stresses are removed and
the stress-strain curves become practically straight lines.

For materials that do not have a well-defined yield point, yield stress is
determined by the o¤set method. This method consists of drawing a line
parallel to the initial tangent of the stress-strain curve; this line starts at a
prescribed o¤set strain, usually 0.2% (� ¼ 0:002). The intersection of this line
with the stress-strain curve, shown in Fig. 2.5, is called the yield point at

0.2% o¤set.

Ultimate Stress The ultimate stress or ultimate strength, as it is often
called, is the highest stress on the stress-strain curve.

Rupture Stress The rupture stress or rupture strength is the stress at
which failure occurs. For structural steel, the nominal rupture strength is
considerably lower than the ultimate strength because the nominal rupture
strength is computed by dividing the load at rupture by the original cross-
sectional area. The true rupture strength is calculated using the reduced area
of the cross section where the fracture occurred. The di¤erence in the two
values results from a phenomenon known as necking. As failure approaches,
the material stretches very rapidly, causing the cross section to narrow, as
shown in Fig. 2.6. Because the area where rupture occurs is smaller than the
original area, the true rupture strength is larger than the ultimate strength.
However, the ultimate strength is commonly used as the maximum stress
that the material can carry.

2The stress-strain diagram of many materials is actually a curve on which there is no definite

proportional limit. In such cases, the stress-strain proportionality is assumed to exist up to a

stress at which the strain increases at a rate 50% greater than shown by the initial tangent to the

stress-strain diagram.

FIG. 2.4 Stress-strain diagrams for
various materials that fail without
significant yielding.

FIG. 2.5 Determining the yield
point by the 0.2% o¤set method.

FIG. 2.6 Failed tensile test
specimen showing necking, or
narrowing, of the cross section.

2.2 Axial Deformation; Stress-Strain Diagram 35

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



c. Working stress and factor of safety

The working stress sw, also called the allowable stress, is the maximum safe
axial stress used in design. In most designs, the working stress should be
limited to values not exceeding the proportional limit so that the stresses
remain in the elastic range (the straight-line portion of the stress-strain
diagram). However, because the proportional limit is di‰cult to determine
accurately, it is customary to base the working stress on either the yield
stress syp or the ultimate stress sult, divided by a suitable number N, called
the factor of safety. Thus,

sw ¼
syp

N
or sw ¼

sult

N
(2.5)

The yield point is selected as the basis for determining sw in structural steel
because it is the stress at which a prohibitively large permanent set may oc-
cur. For other materials, the working stress is usually based on the ultimate
strength.

Many factors must be considered when selecting the working stress. This
selection should not be made by the novice; usually the working stress is set by a
group of experienced engineers and is embodied in building codes and specifi-
cations. A discussion of the factors governing the selection of a working stress
starts with the observation that in many materials the proportional limit is
about one-half the ultimate strength. To avoid accidental overloading, a work-
ing stress of one-half the proportional limit is usually specified for dead loads
that are gradually applied. (The term dead load refers to the weight of the
structure and other loads that, once applied, are not removed.) A working stress
set in this way corresponds to a factor of safety of 4 with respect to sult and is
recommended for materials that are known to be uniform and homogeneous.
For other materials, such as wood, in which unpredictable nonuniformities
(such as knotholes) may occur, larger factors of safety are used. The dynamic
e¤ect of suddenly applied loads also requires higher factors of safety.

2.3 Axially Loaded Bars

Figure 2.7 shows a bar of length L and constant cross-sectional area A that
is loaded by an axial tensile force P. We assume that the stress caused by P

is below the proportional limit, so that Hooke’s law s ¼ E� is applicable.
Because the bar deforms uniformly, the axial strain is � ¼ d=L, which upon

FIG. 2.7 Axially loaded bar.
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substitution into Hooke’s law yields s ¼ Eðd=LÞ. Therefore, the elongation
of the bar is

d ¼ sL

E
¼ PL

EA
(2.6)

where in the last step we substituted s ¼ P=A. If the strain (or stress) in the
bar is not uniform, then Eq. (2.6) is invalid. In the case where the axial strain
varies with the x-coordinate, the elongation of the bar can be obtained by
integration, as stated in Eq. (2.3): d ¼

Ð L

0 � dx. Using � ¼ s=E ¼ P=ðEAÞ,
where P is the internal axial force, we get

d ¼
ðL

0

s

E
dx ¼

ðL

0

P

EA
dx (2.7)

We see that Eq. (2.7) reduces to Eq. (2.6) only if P, E, and A are constants.

Notes on the Computation of Deformation

. The magnitude of the internal force P in Eqs. (2.6) and (2.7) must be
found from equilibrium analysis. Note that a positive (tensile) P results
in positive d (elongation); conversely, a negative P (compression) gives
rise to negative d (shortening).. Care must be taken to use consistent units in Eqs. (2.6) and (2.7). It is
common practice to let the units of E determine the units to be used
for P, L, and A. In the U.S. Customary system, E is expressed in psi
(lb/in.2), so that the units of the other variables should be P [lb], L

[in.], and A [in.2]. In the SI system, where E is in Pa (N/m2), the con-
sistent units are P [N], L [m], and A [m2].. As long as the axial stress is in the elastic range, the elongation (or
shortening) of a bar is very small compared to its length. This property
can be utilized to simplify the computation of displacements in struc-
tures containing axially loaded bars, such as trusses.
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Sample Problem 2.1

The steel propeller shaft ABCD carries the axial loads shown in Fig. (a). Determine
the change in the length of the shaft caused by these loads. Use E ¼ 29� 106 psi for
steel.

Solution

From the free-body diagrams in Fig. (b) we see that the internal forces in the three
segments of the shaft are

PAB ¼ PBC ¼ 2000 lb ðTÞ PCD ¼ 4000 lb ðCÞ

Because the axial force and the cross-sectional area are constant within each segment,
the changes in the lengths of the segments can be computed from Eq. (2.6):
d ¼ PL=ðEAÞ. The change in the length of the shaft is obtained by adding the con-
tributions of the segments. Noting that tension causes elongation and compression
results in shortening, we obtain for the elongation of the shaft

d ¼
XPL

EA
¼ 1

E

PL

A

� �
AB

þ PL

A

� �
BC

� PL

A

� �
CD

� �

¼ 1

29� 106

2000ð5� 12Þ
pð0:5Þ2=4

þ 2000ð4� 12Þ
pð0:75Þ2=4

� 4000ð4� 12Þ
pð0:75Þ2=4

" #

¼ 0:013 58 in: ðelongationÞ Answer

1
Sample Problem 2.2

The cross section of the 10-m-long flat steel bar AB has a constant thickness of
20 mm, but its width varies as shown in the figure. Calculate the elongation of the
bar due to the 100-kN axial load. Use E ¼ 200 GPa for steel.
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Solution
Equilibrium requires that the internal axial force P ¼ 100 kN is constant along the
entire length of the bar. However, the cross-sectional area A of the bar varies with
the x-coordinate, so that the elongation of the bar must be computed from Eq. (2.7).

We start by determining A as a function of x. The cross-sectional areas at A

and B are AA ¼ 20� 40 ¼ 800 mm2 and AB ¼ 20� 120 ¼ 2400 mm2. Between A

and B the cross-sectional area is a linear function of x:

A ¼ AA þ ðAB � AAÞ
x

L
¼ 800 mm2 þ ð1600 mm2Þ x

L

Converting the areas from mm2 to m2 and substituting L ¼ 10 m, we get

A ¼ ð800þ 160xÞ � 10�6 m2 (a)

Substituting Eq. (a) together with P ¼ 100� 103 N and E ¼ 200� 109 Pa into
Eq. (2.7), we obtain for the elongation of the rod

d ¼
ðL

0

P

EA
dx ¼

ð10 m

0

100� 103

ð200� 109Þ½ð800þ 160xÞ � 10�6� dx

¼ 0:5

ð10 m

0

dx

800þ 160x
¼ 0:5

160
½lnð800þ 160xÞ�10

0

¼ 0:5

160
ln

2400

800
¼ 3:43� 10�3 m ¼ 3:43 mm Answer

1
Sample Problem 2.3

The rigid bar BC in Fig. (a) is supported by the steel rod AC of cross-sectional area
0:25 in.2. Find the vertical displacement of point C caused by the 2000-lb load. Use
E ¼ 29� 106 psi for steel.

Solution
We begin by computing the axial force in rod AC. Noting that bar BC is a two-force
body, the FBD of joint C in Fig. (b) yields

SFy ¼ 0 þ" PAC sin 40� � 2000 ¼ 0 PAC ¼ 3111 lb

The elongation of AC can now be obtained from Eq. (2.6). Noting that the length of
the rod is

LAC ¼
LBC

cos 40�
¼ 8� 12

cos 40�
¼ 125:32 in:

we get

dAC ¼
PL

EA

� �
AC

¼ 3111ð125:32Þ
ð29� 106Þð0:25Þ ¼ 0:053 78 in: ðelongationÞ
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The geometric relationship between dAC and the displacement DC of C is illus-
trated in the displacement diagram in Fig. (c). Because bar BC is rigid, the movement
of point C is confined to a circular arc centered at B. Observing that the displace-
ments are very small relative to the lengths of the bars, this arc is practically the
straight line CC 0, perpendicular to BC. Having established the direction of DC , we
now resolve DC into components that are parallel and perpendicular to AC.
The perpendicular component is due to the rotation of bar AC about A, whereas the
parallel component is the elongation of AC. From geometry, the enlarged portion of
the displacement diagram in Fig. (c) yields

DC ¼
dAC

sin 40�
¼ 0:053 78

sin 40�
¼ 0:0837 in: # Answer

1
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Problems

2.1 The following data were recorded during a tensile test of a 14.0-mm-diameter
mild steel rod. The gage length was 50.0 mm.

Load (N) Elongation (mm) Load (N) Elongation (mm)

0 0 46 200 1:25

6 310 0:010 52 400 2:50

12 600 0:020 58 500 4:50

18 800 0:030 65 400 7:50

25 100 0:040 69 000 12:50

31 300 0:050 67 800 15:50

37 900 0:060 65 000 20:00

40 100 0:163 61 500 Fracture

41 600 0:433

Plot the stress-strain diagram and determine the following mechanical properties:
(a) proportional limit; (b) modulus of elasticity; (c) yield stress; (d) ultimate stress;
and (e) nominal rupture stress.

2.2 The following data were obtained during a tension test of an aluminum alloy.
The initial diameter of the test specimen was 0.505 in., and the gage length was
2.0 in.

Load ( lb) Elongation (in.) Load ( lb) Elongation (in.)

0 0 14 000 0:020

2 310 0:0022 14 400 0:025

4 640 0:0044 14 500 0:060

6 950 0:0066 14 600 0:080

9 290 0:0088 14 800 0:100

11 600 0:0110 14 600 0:120

13 000 0:0150 13 600 Fracture

Plot the stress-strain diagram and determine the following mechanical properties:
(a) proportional limit; (b) modulus of elasticity; (c) yield stress at 0.2% o¤set;
(d) ultimate stress; and (e) nominal rupture stress.
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2.3 The bar ABC in Fig. (a) consists of two cylindrical segments. The material of
the bar has the stress-strain diagram shown in Fig. (b). Determine the approximate
elongation of the bar caused by the 20-kN axial load.

50

40

30

20

10

0
0.000 0.005 0.010 0.015 0.020

St
re

ss
 (

M
Pa

)

(b)

Strain
0.025 0.030 0.035 0.040

FIG. P2.3

2.4 A uniform bar of length L, cross-sectional area A, and mass density r is
suspended vertically from one end. (a) Show that the elongation of the bar is
d ¼ rgL2=ð2EÞ, where g is the gravitational acceleration and E is the modulus of
elasticity. (b) If the mass of the bar is M, show that d ¼MgL=ð2EAÞ.

2.5 A steel rod having a cross-sectional area of 300 mm2 and a length of 150 m is
suspended vertically from one end. The rod supports a tensile load of 20 kN at its
free end. Given that the mass density of steel is 7850 kg/m3 and E ¼ 200 GPa, find
the total elongation of the rod. (Hint: Use the results of Prob. 2.4.)

2.6 Determine the elongation of the tapered cylindrical aluminum bar caused by
the 30-kN axial load. Use E ¼ 72 GPa.

FIG. P2.6

2.7 The steel strip has a uniform thickness of 50 mm. Compute the elongation
of the strip caused by the 500-kN axial force. The modulus of elasticity of steel is
200 GPa.

500 kN 500 kN

50 mm 50 mm120 mm

1000 mm 1000 mm

FIG. P2.7

2.8 A 4-mm-diameter steel wire, 3.2 m long, carries an axial tensile load P. Find
the maximum safe value of P if the allowable normal stress is 280 MPa and the
elongation of the wire is limited to 4 mm. Use E ¼ 200 GPa.

50 mm

20 kN 20 kN

25 mm

400 mm
A B C

300 mm

(a)
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2.9 The compound bar ABCD has a uniform cross-sectional area of 0:25 in:2

When the axial force P is applied, the length of the bar is reduced by 0.018 in.
Determine the magnitude of the force P. The moduli of elasticity are 29� 106 psi for
steel and 10� 106 psi for aluminum.

Steel

18 in. 18 in.6 in.

Steel
Aluminum

A
P P

B DC

FIG. P2.9

2.10 The steel rod is placed inside the copper tube, the length of each being ex-
actly 15 in. If the assembly is compressed by 0.0075 in., determine the stress in each
component and the applied force P. The moduli of elasticity are 29� 106 psi for steel
and 17� 106 psi for copper.

2.11 A steel hoop, 10 mm thick and 80 mm wide, with inside diameter 1500.0 mm,
is heated and shrunk onto a steel cylinder 1500.5 mm in diameter. What is the nor-
mal force in the hoop after it has cooled? Neglect the deformation of the cylinder,
and use E ¼ 200 GPa for steel.

2.12 The timber member has a cross-sectional area of 1750 mm2 and its modulus
of elasticity is 12 GPa. Compute the change in the total length of the member after
the loads shown are applied.

40 35 20

FIG. P2.12

2.13 The member consists of the steel rod AB that is screwed into the end of the
bronze rod BC. Find the largest value of P that meets the following design criteria: (i)
the overall length of the member is not to change by more than 3 mm; and (ii) the
stresses are not to exceed 140 MPa in steel and 120 MPa in bronze. The moduli of
elasticity are 200 GPa for steel and 80 GPa for bronze.

2.14 The compound bar carries the axial forces P and 2P. Find the maximum
allowable value of P if the working stresses are 40 ksi for steel and 20 ksi for alumi-
num, and the total elongation of the bar is not to exceed 0.2 in.

FIG. P2.14

2.15 The compound bar containing steel, bronze, and aluminum segments carries
the axial loads shown in the figure. The properties of the segments and the working
stresses are listed in the table.

A (in.2) E (psi) sw (psi)

Steel 0:75 30� 106 20 000

Bronze 1:00 12� 106 18 000

Aluminum 0:50 10� 106 12 000

Determine the maximum allowable value of P if the change in length of the entire
bar is limited to 0.08 in. and the working stresses are not to be exceeded.

FIG. P2.10

FIG. P2.13

FIG. P2.15
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2.16 A compound bar consisting of bronze, aluminum, and steel segments is
loaded axially as shown in the figure. Determine the maximum allowable value of P

if the change in length of the bar is limited to 2 mm and the working stresses pre-
scribed in the table are not to be exceeded.

A (mm2) E (GPa) sw ( MPa)

Bronze 450 83 120

Aluminum 600 70 80

Steel 300 200 140

2.17 The bar ABC is supported by a pin at A and a steel wire at B. Calculate
the elongation of the wire when the 36-lb horizontal force is applied at C. The cross-
sectional area of the wire is 0:0025 in:2 and the modulus of elasticity of steel is
29� 106 psi.

2.18 The rigid bar AB is supported by two rods made of the same material. If the
bar is horizontal before the load P is applied, find the distance x that locates the
position where P must act if the bar is to remain horizontal. Neglect the weight of
bar AB.

2.19 The rigid bar ABC is supported by a pin at A and a steel rod at B. Determine
the largest vertical load P that can be applied at C if the stress in the steel rod is
limited to 35 ksi and the vertical movement of end C must not exceed 0.12 in. Ne-
glect the weights of the members.

2.20 The rigid bar AB, attached to aluminum and steel rods, is horizontal before
the load P is applied. Find the vertical displacement of point C caused by the load
P ¼ 50 kN. Neglect all weights.

2.21 The rigid bars ABC and CD are supported by pins at A and D and by a steel
rod at B. There is a roller connection between the bars at C. Compute the vertical
displacement of point C caused by the 50-kN load.

FIG. P2.16

6 ft

4 ft

36 lbC

5 ft
B

A

D

FIG. P2.17

FIG. P2.18 FIG. P2.19
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2.22 The structure in the figure is composed of two rigid bars (AB and CD) and
two vertical rods made of aluminum and steel. All connections are pin joints.
Determine the maximum force P that can be applied to the structure if the vertical
displacement of its point of application is limited to 6 mm. Neglect the weights of the
members.

2.23 The rigid bars AB and CD are supported by pins at A and D. The vertical
rods are made of aluminum and bronze. Determine the vertical displacement of the
point where the force P ¼ 10 kips is applied. Neglect the weights of the members.

2.24 The uniform 2200-lb bar BC is supported by a pin at C and the aluminum
wire AB. The cross-sectional area of the wire is 0.165 in.2. Assuming bar BC to be
rigid, find the vertical displacement of B due to the weight of the bar. Use E ¼
10:6� 106 psi for aluminum.

300
500

FIG. P2.20 FIG. P2.21

300

500

FIG. P2.22 FIG. P2.23

FIG. P2.24
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2.25 The steel bars AC and BC, each of cross-sectional area 120 mm2, are joined
at C with a pin. Determine the displacement of point C caused by the 15-kN load.
Use E ¼ 200 GPa for steel.

FIG. P2.25, P2.26

2.26 Solve Prob. 2.25 if the 15-kN load acts horizontally to the right.

2.27 The steel truss supports a 6000-lb load. The cross-sectional areas of the
members are 0.5 in.2 for AB and 0.75 in.2 for BC. Compute the horizontal displace-
ment of B using E ¼ 29� 106 psi.

FIG. P2.27
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2.4 Generalized Hooke’s Law

a. Uniaxial loading; Poisson’s ratio

Experiments show that when a bar is stretched by an axial force, there is a
contraction in the transverse dimensions, as illustrated in Fig. 2.8. In 1811,
Siméon D. Poisson showed that the ratio of the transverse strain to the axial
strain is constant for stresses within the proportional limit. This constant,
called Poisson’s ratio, is denoted by n (lowercase Greek nu). For uniaxial
loading in the x-direction, as in Fig 2.8, Poisson’s ratio is n ¼ ��t=�x, where
�t is the transverse strain. The minus sign indicates that a positive strain
(elongation) in the axial direction causes a negative strain (contraction) in
the transverse directions. The transverse strain is uniform throughout the
cross section and is the same in any direction in the plane of the cross section.
Therefore, we have for uniaxial loading

�y ¼ �z ¼ �n�x (2.8)

Poisson’s ratio is a dimensionless quantity that ranges between 0.25 and 0.33
for metals.

Using sx ¼ E�x in Eq. (2.8) yields the generalized Hooke’s law for
uniaxial loading (sy ¼ sz ¼ 0):

�x ¼
sx

E
�y ¼ �z ¼ �n

sx

E
(2.9)

b. Multiaxial Loading

Biaxial Loading Poisson’s ratio permits us to extend Hooke’s law for
uniaxial loading to biaxial and triaxial loadings. Consider an element of the
material that is subjected simultaneously to normal stresses in the x- and
y-directions, as in Fig. 2.9(a). The strains caused by sx alone are given in
Eqs. (2.9). Similarly, the strains due to sy are �y ¼ sy=E and �x ¼
�z ¼ �nsy=E. Using superposition, we write the combined e¤ect of the two
normal stresses as

�x ¼
1

E
ðsx � nsyÞ �y ¼

1

E
ðsy � nsxÞ �z ¼ �

n

E
ðsx þ syÞ (2.10)

which is Hooke’s law for biaxial loading in the xy-plane (sz ¼ 0). The first
two of Eqs. (2.10) can be inverted to express the stresses in terms of the
strains:

sx ¼
ð�x þ n�yÞE

1� n2
sy ¼

ð�y þ n�xÞE
1� n2

(2.11)

FIG. 2.8 Transverse dimensions
contract as the bar is stretched by an
axial force P.

FIG. 2.9 (a) Stresses acting on a
material element in biaxial loading;
(b) two-dimensional view of stresses;
(c) deformation of the element.
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Two-dimensional views of the stresses and the resulting deformation in the
xy-plane are shown in Figs. 2.9(b) and (c). Note that Eqs. (2.10) show that
for biaxial loading �z is not zero; that is, the strain is triaxial rather than
biaxial.

Triaxial Loading Hooke’s law for the triaxial loading in Fig. 2.10 is
obtained by adding the contribution of sz, �z ¼ sz=E and �x ¼ �y ¼ �nsz=E,
to the strains in Eqs. (2.10), which yields

�x ¼
1

E
½sx � nðsy þ szÞ�

�y ¼
1

E
½sy � nðsz þ sxÞ�

�z ¼
1

E
½sz � nðsx þ syÞ�

(2.12)

Equations (2.8)–(2.12) are valid for both tensile and compressive ef-
fects. It is only necessary to assign positive signs to elongations and tensile
stresses and, conversely, negative signs to contractions and compressive
stresses.

c. Shear loading

Shear stress causes the deformation shown in Fig. 2.11. The lengths of the
sides of the element do not change, but the element undergoes a distortion
from a rectangle to a parallelogram. The shear strain, which measures the
amount of distortion, is the angle g (lowercase Greek gamma), always ex-
pressed in radians. It can be shown that the relationship between shear stress
t and shear strain g is linear within the elastic range; that is,

t ¼ Gg (2.13)

which is Hooke’s law for shear. The material constant G is called the shear

modulus of elasticity (or simply shear modulus), or the modulus of rigidity.
The shear modulus has the same units as the modulus of elasticity (Pa or
psi). We will prove later that G is related to the modulus of elasticity E and
Poisson’s ratio n by

G ¼ E

2ð1þ nÞ (2.14)

FIG. 2.10 Stresses acting on a
material element in triaxial loading.

FIG. 2.11 Deformation of a
material element caused by shear
stress.
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Sample Problem 2.4

The 50-mm-diameter rubber rod is placed in a hole with rigid, lubricated walls. There
is no clearance between the rod and the sides of the hole. Determine the change in the
length of the rod when the 8-kN load is applied. Use E ¼ 40 MPa and n ¼ 0:45 for
rubber.

Solution
Lubrication allows the rod to contract freely in the axial direction, so that the axial
stress throughout the bar is

sx ¼ �
P

A
¼ � 8000

p

4
ð0:05Þ2

¼ �4:074� 106 Pa

(the negative sign implies compression). Because the walls of the hole prevent trans-
verse strain in the rod, we have �y ¼ �z ¼ 0. The tendency of the rubber to expand
laterally (Poisson’s e¤ect) is resisted by the uniform contact pressure p between the
walls and the rod, so that sy ¼ sz ¼ �p. If we use the second of Eqs. (2.12) (the third
equation would yield the same result), the condition �y ¼ 0 becomes

sy � nðsz þ sxÞ
E

¼ �p� nð�pþ sxÞ
E

¼ 0

which yields

p ¼ � nsx

1� n
¼ � 0:45ð�4:074� 106Þ

1� 0:45
¼ 3:333� 106 Pa

The axial strain is given by the first of Eqs. (2.12):

�x ¼
sx � nðsy þ szÞ

E
¼ sx � nð�2pÞ

E

¼ ½�4:074� 0:45ð�2� 3:333Þ� � 106

40� 106
¼ �0:026 86

The corresponding change in the length of the rod is

d ¼ �xL ¼ �0:026 86ð300Þ

¼ �8:06 mm ¼ 8:06 mm ðcontractionÞ Answer

For comparison, note that if the constraining e¤ect of the hole were neglected,
the deformation would be

d ¼ �PL

EA
¼ � 8000ð0:3Þ

ð40� 106Þ p

4
ð0:05Þ2

� � ¼ �0:0306 m ¼ �30:6 mm

1
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Sample Problem 2.5

Two 1.75-in.-thick rubber pads are bonded to three steel plates to form the shear
mount shown in Fig. (a). Find the displacement of the middle plate when the 1200-lb
load is applied. Consider the deformation of rubber only. Use E ¼ 500 psi and
n ¼ 0:48 for rubber.

Solution

To visualize the deformation of the rubber pads, we introduce a grid drawn on the
edge of the upper pad—see Fig. (b). When the load is applied, the grid deforms as
shown in the figure. Observe that the deformation represents uniform shear, except
for small regions at the edges of the pad (Saint Venant’s principle).

Each rubber pad has a shear area of A ¼ 5� 9 ¼ 45 in.2 that carries half the
1200-lb load. Hence, the average shear stress in the rubber is

t ¼ V

A
¼ 600

45
¼ 13:333 psi

50

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



This stress is shown acting on the sides of a grid element in Fig. (c). The corre-
sponding shear strain is g ¼ t=G, where from Eq. (2.14),

G ¼ E

2ð1þ nÞ ¼
500

2ð1þ 0:48Þ ¼ 168:92 psi

Therefore,

g ¼ t

G
¼ 13:333

168:92
¼ 0:07893

From Fig. (b) we see that the displacement of the middle plate (the lower plate in the
figure) is

tg ¼ 1:75ð0:078 93Þ ¼ 0:1381 in: Answer

1
Sample Problem 2.6

An initially rectangular element of material is deformed as shown in the figure (note
that the deformation is greatly exaggerated). Calculate the normal strains ex and ey,
and the shear strain g for the element.

A
C

x

yB

0.25 in.

0.7 × 10–4 in.

1.2 × 10–4 in.

1.5 × 10–4 in.

Deformed

1.8 × 10–4 in.

0.
2 

in
.Undeformed

Solution
The elongation of side AC is dAC ¼ 0:7� 10�4 in. Therefore, the horizontal strain of
the element is

ex ¼
dAC

AC
¼ 0:7� 10�4

0:25
¼ 280� 10�6 Answer

The elongation of side AB is dAB ¼ 1:2� 10�4 in:, which yields for the vertical
strain

ey ¼
dAB

AB
¼ 1:2� 10�4

0:2
¼ 600� 10�6

Answer

The shear strain is the angle of distortion (change in the angle of a corner of
the element), measured in radians. Referring to the corner at A, we have

g ¼ rotation angle of AC þ rotation angle of AB

¼ 1:8� 10�4

0:25
þ 1:5� 10�4

0:2
¼ 1470� 10�6

Answer

1
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Problems

2.28 A solid cylinder of diameter d carries an axial load P. Show that the change
in diameter is 4Pn=ðpEdÞ.

2.29 The polyethylene sheet is subjected to the biaxial loading shown. Determine
the resulting elongations of sides AB and AC. The properties of polyethylene are
E ¼ 300 ksi and n ¼ 0:4.

2.30 A sheet of copper is stretched biaxially in the xy-plane. If the strains in the
sheet are �x ¼ 0:40� 10�3 and �y ¼ 0:30� 10�3, determine sx and sy. Use E ¼ 110
GPa and n ¼ 0:35.

2.31 The normal stresses at a point in a steel member are sx ¼ 8 ksi, sy ¼ �4 ksi,
and sz ¼ 10 ksi. Using E ¼ 29� 103 ksi and n ¼ 0:3, determine the normal strains at
this point.

2.32 The rectangular block of material of length L and cross-sectional area A fits
snugly between two rigid, lubricated walls. Derive the expression for the change in
length of the block due to the axial load P.

2.33 The two sheets of soft plastic are bonded to the central steel strip. Determine
the magnitude of the largest force P that can be safely applied to the steel strip and
the corresponding displacement of the strip. For the plastic, use tw ¼ 10 ksi and
G ¼ 800 ksi. Neglect deformation of the steel strip.

2.34 A material specimen is subjected to a uniform, triaxial compressive stress
(hydrostatic pressure) of magnitude p. Show that the volumetric strain of the mate-
rial is DV=V ¼ �3pð1� 2nÞ=E, where DV is the volume change and V is the initial
volume.

2.35 A rubber sheet of thickness t and area A is compressed as shown in the figure.
All contact surfaces are su‰ciently rough to prevent slipping. Show that the change in
the thickness of the rubber sheet caused by the load P is

d ¼ ð1þ nÞð1� 2nÞ
ð1� nÞ

Pt

EA

(Hint: The roughness of the surfaces prevents transverse expansion of the sheet.)

1.2 ksi

A B

C D

1.2 ksi

4 ft

y

x

6 ft

2 
ks

i

2 
ks

i

FIG. P2.29

FIG. P2.32

0.75 in.0.75 in.

Steel

Plastic

Top view

P

10 in.

4 in.

FIG. P2.33

FIG. P2.35
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2.36 A torsion test shows that the shear modulus of an aluminum specimen is
4:60� 106 psi. When the same specimen is used in a tensile test, the modulus of
elasticity is found to be 12:2� 106 psi. Find Poisson’s ratio for the specimen.

2.37 An initially rectangular element of a material is deformed into the shape
shown in the figure. Find �x, �y, and g for the element.

2.38 The initially square element of a material is deformed as shown. Determine
the shear strain of the element and the normal strains of the diagonals AC and BD.

2.39 The rectangular element is deformed in shear as shown. Find the shear strain.

2.40 The square element of a material undergoes the shear strain g. Assuming that
gf 1, determine the normal strains of the diagonals AC and BD.

2.41 The plastic sheet, 1/2 in. thick, is bonded to the pin-jointed steel frame.
Determine the magnitude of the force P that would result in a 0.18-in. horizontal
displacement of bar AB. Use G ¼ 70� 103 psi for the plastic, and neglect the de-
formation of the steel frame.

2.42 The steel shaft of diameter D is cemented to the thin rubber sleeve of thick-
ness t and length L. The outer surface of the sleeve is bonded to a rigid support.
When the axial load P is applied, show that the axial displacement of the shaft is
d ¼ Pt=ðpGDLÞ, where G is the shear modulus of rubber. Assume that tfD.

2.43 Show that if the rubber sleeve in Prob. 2.42 is thick, the displacement of the
shaft is

d ¼ P

2pGL
ln

Dþ 2t

D

FIG. P2.42, P2.43

FIG. P2.37
FIG. P2.38 FIG. P2.39

FIG. P2.40

FIG. P2.41
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2.5 Statically Indeterminate Problems

If the equilibrium equations are su‰cient to calculate all the forces (includ-
ing support reactions) that act on a body, these forces are said to be
statically determinate. In statically determinate problems, the number of
unknown forces is always equal to the number of independent equilibrium
equations. If the number of unknown forces exceeds the number of
independent equilibrium equations, the problem is said to be statically

indeterminate.
Static indeterminacy does not imply that the problem cannot be solved;

it simply means that the solution cannot be obtained from the equilibrium
equations alone. A statically indeterminate problem always has geometric
restrictions imposed on its deformation. The mathematical expressions of
these restrictions, known as the compatibility equations, provide us with the
additional equations needed to solve the problem (the term compatibility

refers to the geometric compatibility between deformation and the imposed
constraints). Because the source of the compatibility equations is deforma-
tion, these equations contain as unknowns either strains or elongations. We
can, however, use Hooke’s law to express the deformation measures in terms
of stresses or forces. The equations of equilibrium and compatibility can
then be solved for the unknown forces.

Procedure for Solving Statically Indeterminate Problems In
summary, the solution of a statically indeterminate problem involves the
following steps:

. Draw the required free-body diagrams and derive the equations of
equilibrium.. Derive the compatibility equations. To visualize the restrictions on
deformation, it is often helpful to draw a sketch that exaggerates the
magnitudes of the deformations.. Use Hooke’s law to express the deformations (strains) in the compati-
bility equations in terms of forces (or stresses).. Solve the equilibrium and compatibility equations for the unknown
forces.

54 CHAPTER 2 Strain

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sample Problem 2.7

The concrete post in Fig. (a) is reinforced axially with four symmetrically placed steel
bars, each of cross-sectional area 900 mm2. Compute the stress in each material when
the 1000-kN axial load is applied. The moduli of elasticity are 200 GPa for steel and
14 GPa for concrete.

Solution

Equilibrium The FBD in Fig. (b) was drawn by isolating the portion of the post
above section a-a, where Pco is the force in concrete and Pst denotes the total force
carried by the steel rods. For equilibrium, we must have

SF ¼ 0 þ" Pst þ Pco � 1:0� 106 ¼ 0

which, written in terms of stresses, becomes

sstAst þ scoAco ¼ 1:0� 106 N (a)

Equation (a) is the only independent equation of equilibrium that is available in this
problem. Because there are two unknown stresses, we conclude that the problem is
statically indeterminate.

Compatibility For the deformations to be compatible, the changes in lengths of the
steel rods and the concrete must be equal; that is, dst ¼ dco. Because the lengths of
steel and concrete are identical, the compatibility equation, written in terms of
strains, is

�st ¼ �co (b)

Hooke’s Law From Hooke’s law, Eq. (b) becomes

sst

Est
¼ sco

Eco
(c)

Equations (a) and (c) can now be solved for the stresses. From Eq. (c) we obtain

sst ¼
Est

Eco
sco ¼

200

14
sco ¼ 14:286sco (d)

Substituting the cross-sectional areas

Ast ¼ 4ð900� 10�6Þ ¼ 3:6� 10�3 m2

Aco ¼ 0:32 � 3:6� 10�3 ¼ 86:4� 10�3 m2

and Eq. (d) into Eq. (a) yields

ð14:286scoÞð3:6� 10�3Þ þ scoð86:4� 10�3Þ ¼ 1:0� 106

Solving for the stress in concrete, we get

sco ¼ 7:255� 106 Pa ¼ 7:255 MPa Answer

From Eq. (d), the stress in steel is

sst ¼ 14:286ð7:255Þ ¼ 103:6 MPa Answer

1
Sample Problem 2.8

Let the allowable stresses in the post described in Sample Problem 2.7 be sst ¼ 120
MPa and sco ¼ 6 MPa. Compute the maximum safe axial load P that may be
applied.
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Solution

The unwary student may attempt to obtain the forces by substituting the allowable
stresses into the equilibrium equation—see Eq. (a) in Sample Problem 2.7. This ap-
proach is incorrect because it ignores the compatibility condition—that is, the equal
strains of the two materials. From Eq. (d) in Sample Problem 2.7, we see that equal
strains require the following relationship between the stresses:

sst ¼ 14:286sco

Therefore, if the concrete were stressed to its limit of 6 MPa, the corresponding stress
in the steel would be

sst ¼ 14:286ð6Þ ¼ 85:72 MPa

which is below the allowable stress of 120 MPa. The maximum safe axial load is thus
found by substituting sco ¼ 6 MPa and sst ¼ 85:72 MPa into the equilibrium equa-
tion:

P ¼ sstAst þ scoAco

¼ ð85:72� 106Þð3:6� 10�3Þ þ ð6� 106Þð86:4� 10�3Þ

¼ 827� 103 N ¼ 827 kN Answer

1
Sample Problem 2.9

Figure (a) shows a copper rod that is placed in an aluminum tube. The rod is 0.005
in. longer than the tube. Find the maximum safe load P that can be applied to the
bearing plate, using the following data:

Copper Aluminum

Area (in.2) 2 3

E (psi) 17� 106 10� 106

Allowable stress (ksi) 20 10

Solution

Equilibrium We assume that the rod deforms enough so that the bearing plate
makes contact with the tube, as indicated in the FBD in Fig. (b). From this FBD we
get

SF ¼ 0 þ" Pcu þ Pal � P ¼ 0 (a)

Because no other equations of equilibrium are available, the forces Pcu and Pal are
statically indeterminate.

Compatibility Figure (c) shows the changes in the lengths of the two materials (the
deformations have been greatly exaggerated). We see that the compatibility equation
is

dcu ¼ dal þ 0:005 in: (b)

Hooke’s Law Substituting d ¼ sL=E into Eq. (b), we get

sL

E

� �
cu

¼ sL

E

� �
al

þ 0:005 in:

or

scuð10:005Þ
17� 106

¼ salð10Þ
10� 106

þ 0:005
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which reduces to

scu ¼ 1:6992sal þ 8496 (c)

From Eq. (c) we find that if sal ¼ 10 000 psi, the copper will be overstressed to
25 500 psi. Therefore, the allowable stress in the copper (20 000 psi) is the limiting
condition. The corresponding stress in the aluminum is found from Eq. (c):

20 000 ¼ 1:6992sal þ 8496

which gives

sal ¼ 6770 psi

From Eq. (a), the safe load is

P ¼ Pcu þ Pal ¼ scuAcu þ salAal

¼ 20 000ð2Þ þ 6770ð3Þ ¼ 60 300 lb ¼ 60:3 kips Answer

1
Sample Problem 2.10

Figure (a) shows a rigid bar that is supported by a pin at A and two rods, one made
of steel and the other of bronze. Neglecting the weight of the bar, compute the stress
in each rod caused by the 50-kN load, using the following data:

Steel Bronze

Area (mm2) 600 300

E (GPa) 200 83

Solution

Equilibrium The free-body diagram of the bar, shown in Fig. (b), contains four un-
known forces. Since there are only three independent equilibrium equations, these
forces are statically indeterminate. The equilibrium equation that does not involve
the pin reactions at A is

SMA ¼ 0 þ

m

0:6Pst þ 1:6Pbr � 2:4ð50� 103Þ ¼ 0 (a)

Compatibility The displacement of the bar, consisting of a rigid-body rotation
about A, is shown greatly exaggerated in Fig. (c). From similar triangles, we see that
the elongations of the supporting rods must satisfy the compatibility condition

dst

0:6
¼ dbr

1:6
(b)

Hooke’s Law When we substitute d ¼ PL=ðEAÞ into Eq. (b), the compatibility
equation becomes

1

0:6

PL

EA

� �
st

¼ 1

1:6

PL

EA

� �
br

Using the given data, we obtain

1

0:6

Pstð1:0Þ
ð200Þð600Þ ¼

1

1:6

Pbrð2Þ
ð83Þð300Þ

which simplifies to

Pst ¼ 3:614Pbr (c)
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Note that we did not convert the areas from mm2 to m2, and we omitted the factor
109 from the moduli of elasticity. Since these conversion factors appear on both sides
of the equation, they would cancel out.

Solving Eqs. (a) and (c), we obtain

Pst ¼ 115:08� 103 N Pbr ¼ 31:84� 103 N

The stresses are

sst ¼
Pst

Ast
¼ 115:08� 103

600� 10�6
¼ 191:8� 106 Pa ¼ 191:8 MPa Answer

sbr ¼
Pbr

Abr
¼ 31:84� 103

300� 10�6
¼ 106:1� 106 Pa ¼ 106:1 MPa Answer

1
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Problems

2.44 The figure shows the cross section of a circular steel tube that is filled with
concrete and topped with a rigid cap. Calculate the stresses in the steel and in the
concrete caused by the 200-kip axial load. Use Est ¼ 29� 106 psi and
Eco ¼ 3:5� 106 psi.

2.45 A reinforced concrete column 200 mm in diameter is designed to carry an
axial compressive load of 320 kN. Determine the required cross-sectional area of the
reinforcing steel if the allowable stresses are 6 MPa for concrete and 120 MPa for
steel. Use Eco ¼ 14 GPa and Est ¼ 200 GPa.

2.46 A timber column, 8 in. by 8 in. in cross section, is reinforced on all four sides
by steel plates, each plate being 8 in. wide and t in. thick. Determine the smallest
value of t for which the column can support an axial load of 300 kips if the working
stresses are 1200 psi for timber and 20 ksi for steel. The moduli of elasticity are
1:5� 106 psi for timber and 29� 106 psi for steel.

2.47 The rigid block of mass M is supported by the three symmetrically placed
rods. The ends of the rods were level before the block was attached. Determine the
largest allowable value of M if the properties of the rods are as listed (sw is the
working stress):

E (GPa) A (mm2) sw (MPa)

Copper 120 900 70

Steel 200 1200 140

2.48 The concrete column is reinforced by four steel bars of total cross-sectional
area 1250 mm2. If the working stresses for steel and concrete are 180 MPa and
15 MPa, respectively, determine the largest axial force P that can be safely applied to
the column. Use Est ¼ 200 GPa and Eco ¼ 24 GPa.

2.49 The rigid slab of weight W, with center of gravity at G, is suspended from
three identical steel wires. Determine the force in each wire.

2.50 Before the 400-kN load is applied, the rigid platform rests on two steel bars,
each of cross-sectional area 1400 mm2, as shown in the figure. The cross-sectional
area of the aluminum bar is 2800 mm2. Compute the stress in the aluminum bar after
the 400-kN load is applied. Use E ¼ 200 GPa for steel and E ¼ 70 GPa for alumi-
num. Neglect the weight of the platform.

200 kips

Steel
Concrete 6 in.

6.5 in.

FIG. P2.44

FIG. P2.47

Dimensions
in mm

250

250

P

FIG. P2.48

1.2b

G
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b b

FIG. P2.49 FIG. P2.50
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2.51 The three steel (E ¼ 29� 106 psi) eye-bars, each 4 in. by 1.0 in. in cross sec-
tion, are assembled by driving 7/8-in.-diameter drift pins through holes drilled in the
ends of the bars. The distance between the holes is 30 ft in the two outer bars, but
0.045 in. less in the middle bar. Find the shear stress developed in the drift pins.
Neglect local deformation at the holes.

2.52 The rigid bar ABC of negligible weight is suspended from three aluminum
wires, each of cross-sectional area 0.3 in.2. Before the load P is applied, the middle
wire is slack, being 0.2 in. longer than the other two wires. Determine the largest
safe value of P if the working stress for the wires is 12 ksi. Use E ¼ 10� 106 psi for
aluminum.

2.53 The rigid bar AB of negligible weight is supported by a pin at O. When the
two steel rods are attached to the ends of the bar, there is a gap D ¼ 4 mm between
the lower end of the left rod and its pin support at C. Compute the stress in the
left rod after its lower end is attached to the support. The cross-sectional areas are
300 mm2 for rod AC and 250 mm2 for rod BD. Use E ¼ 200 GPa for steel.

2.54 The rigid bar AB of negligible weight is supported by a pin at O. When the
two steel rods are attached to the ends of the bar, there is a gap D between the lower
end of the left rod and its pin support at C. After attachment, the strain in the left rod
is 1:5� 10�3. What is the length of the gap D? The cross-sectional areas are 300 mm2

for rod AC and 250 mm2 for rod BD. Use E ¼ 200 GPa for steel.

2.55 The homogeneous rod of constant cross section is attached to unyielding
supports. The rod carries an axial load P, applied as shown in the figure. Show that
the reactions are given by R1 ¼ Pb=L and R2 ¼ Pa=L.

2.56 The homogeneous bar with a cross-sectional area of 600 mm2 is attached
to rigid supports. The bar carries the axial loads P1 ¼ 20 kN and P2 ¼ 60 kN, as
shown. Determine the stress in segment BC. (Hint: Use the results of Prob. 2.55 to
compute the reactions caused by P1 and P2 acting separately. Then use superposition
to compute the reactions when both loads are applied.)

FIG. P2.51 FIG. P2.52
FIG. P2.53, P2.54

FIG. P2.55 FIG. 2.56
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2.57 The composite bar is firmly attached to unyielding supports. Compute the
stress in each material caused by the application of the axial load P ¼ 40 kips.

2.58 The composite bar, firmly attached to unyielding supports, is initially stress-
free. What maximum axial load P can be applied if the allowable stresses are 10 ksi
for aluminum and 18 ksi for steel?

2.59 The steel rod is stress-free before the axial loads P1 ¼ 150 kN and P2 ¼ 90
kN are applied to the rod. Assuming that the walls are rigid, calculate the axial force
in each segment after the loads are applied. Use E ¼ 200 GPa.

2.60 The bar BCD of length L has a constant thickness t, but its width varies as
shown. The cross-sectional area A of the bar is given by A ¼ btð1þ x=LÞ. The ends
of the bar are attached to the rigid walls, and the bar is initially stress-free. Compute
the reactions at B and D after the force P is applied at the midpoint C of the bar.

C

Top view

D
B

P

L

t

2

x

b

L

b

b

2

FIG. P2.60

2.61 The steel column of circular cross section is attached to rigid supports at A

and C. Find the maximum stress in the column caused by the 25-kN load.

2.62 The assembly consists of a bronze tube and a threaded steel bolt. The pitch of the
thread is 1/32 in. (one turn of the nut advances it 1/32 in.). The cross-sectional areas are
1.5 in.2 for the tube and 0.75 in.2 for the bolt. The nut is turned until there is a compressive
stress of 4000 psi in the tube. Find the stresses in the bolt and the tube if the nut is given
one additional turn. Use E ¼ 12� 106 psi for bronze and E ¼ 29� 106 psi for steel.

2.63 The two vertical rods attached to the rigid bar are identical except for length.
Before the 6600-lb weight was attached, the bar was horizontal. Determine the axial
force in each bar caused by the application of the weight. Neglect the weight of the bar.

FIG. P2.57, P2.58 FIG. P2.59

FIG. P2.61

FIG. P2.62
FIG. P2.63
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2.64 The rigid beam of negligible weight is supported by a pin at O and two ver-
tical rods. Find the vertical displacement of the 50-kip weight.

2.65 The rigid bar of negligible weight is pinned at O and attached to two vertical
rods. Assuming that the rods were initially stress-free, what is the largest load P that
can be applied without exceeding stresses of 150 MPa in the steel rod and 70 MPa in
the bronze rod?

2.66 The rigid, homogeneous slab weighing 600 kN is supported by three rods of
identical material and cross section. Before the slab was attached, the lower ends of
the rods were at the same level. Compute the axial force in each rod.

2.67 The rigid bar BCD of negligible weight is supported by two steel cables of
identical cross section. Determine the force in each cable caused by the applied
weight W.

2.68 The three steel rods, each of cross-sectional area 250 mm2, jointly support
the 7.5-kN load. Assuming that there was no slack or stress in the rods before the
load was applied, find the force in each rod. Use E ¼ 200 GPa for steel.

2.69 The bars AB, AC, and AD are pinned together as shown in the figure. Hori-
zontal movement of the pin at A is prevented by the rigid horizontal strut AE. Cal-
culate the axial force in the strut caused by the 10-kip load. For each steel bar,
A ¼ 0:3 in.2 and E ¼ 29� 106 psi. For the aluminum bar, A ¼ 0:6 in.2 and
E ¼ 10� 106 psi.

FIG. P2.64 FIG. P2.65

FIG. P2.66

FIG. P2.67 FIG. P2.68 FIG. P2.69
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2.70 The horizontal bar ABC is supported by a pin at A and two rods with iden-
tical cross-sectional areas. The rod at B is steel and the rod at C is aluminum.
Neglecting the weight of the bar, determine the force in each rod when the force
P ¼ 10 kips is applied. Use Est ¼ 29� 106 psi and Eal ¼ 10� 106 psi.

2.71 The lower ends of the three vertical rods were at the same level before the uni-
form, rigid bar ABC weighing 3000 lb was attached. Each rod has a cross-sectional
area of 0.5 in.2. The two outer rods are steel and the middle rod is aluminum.
Find the force in the middle rod. Use Est ¼ 29� 106 psi and Eal ¼ 10� 106 psi.

2.72 Solve Prob. 2.71 if the steel rod attached at C is replaced by an aluminum
rod of the same size.

2.73 The uniform rigid bar ABC of weight W is supported by two rods that are
identical except for their lengths. Assuming that the bar was held in the horizontal
position when the rods were attached, determine the force in each rod after the
attachment.

2.6 Thermal Stresses

It is well known that changes in temperature cause dimensional changes in a
body: An increase in temperature results in expansion, whereas a temper-
ature decrease produces contraction. This deformation is isotropic (the same
in every direction) and proportional to the temperature change. It follows
that the associated strain, called thermal strain, is

�T ¼ aðDTÞ (2.15)

where the constant a is a material property known as the coe‰cient of ther-

mal expansion, and DT is the temperature change. The coe‰cient of thermal
expansion represents the normal strain caused by a one-degree change in
temperature. By convention, DT is taken to be positive when the temper-
ature increases, and negative when the temperature decreases. Thus, in Eq.
(2.15), positive DT produces positive strain (elongation) and negative DT

produces negative strain (contraction). The units of a are 1=�C (per degree
Celsius) in the SI system, and 1=�F (per degree Fahrenheit) in the U.S.
Customary system. Typical values of a are 23� 10�6=�C (13� 10�6=�F) for
aluminum and 12� 10�6=�C (6:5� 10�6=�F) for steel.

FIG. P2.70 FIG. P2.71, P2.72 FIG. P2.73
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If the temperature change is uniform throughout the body, the thermal
strain is also uniform. Consequently, the change in any dimension L of the
body is given by

dT ¼ �T L ¼ aðDTÞL (2.16)

If thermal deformation is permitted to occur freely (by using expansion
joints or roller supports, for example), no internal forces will be induced in
the body—there will be strain, but no stress. In cases where the deformation
of a body is restricted, either totally or partially, internal forces will develop
that oppose the thermal expansion or contraction. The stresses caused by
these internal forces are known as thermal stresses.

The forces that result from temperature changes cannot be determined
by equilibrium analysis alone; that is, these forces are statically in-
determinate. Consequently, the analysis of thermal stresses follows the same
principles that we used in Sec. 2.5: equilibrium, compatibility, and Hooke’s
law. The only di¤erence here is that we must now include thermal expansion
in the analysis of deformation.

Procedure for Deriving Compatibility Equations We recommend
the following procedure for deriving the equations of compatibility:

. Remove the constraints that prevent the thermal deformation to occur
freely (this procedure is sometimes referred to as ‘‘relaxing the
supports’’). Show the thermal deformation on a sketch using an
exaggerated scale.. Apply the forces that are necessary to restore the specified conditions
of constraint. Add the deformations caused by these forces to the
sketch that was drawn in the previous step. (Draw the magnitudes
of the deformations so that they are compatible with the geometric
constraints.). By inspection of the sketch, write the relationships between the thermal
deformations and the deformations due to the constraint forces.

64 CHAPTER 2 Strain
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Sample Problem 2.11

The horizontal steel rod, 2.5 m long and 1200 mm2 in cross-sectional area, is secured
between two walls as shown in Fig. (a). If the rod is stress-free at 20�C, compute
the stress when the temperature has dropped to �20�C. Assume that (1) the walls
do not move and (2) the walls move together a distance D ¼ 0:5 mm. Use a ¼
11:7� 10�6=�C and E ¼ 200 GPa.

Solution

Part 1

Compatibility We begin by assuming that the rod has been disconnected from the
right wall, as shown in Fig. (b), so that the contraction dT caused by the temperature
drop DT can occur freely. To reattach the rod to the wall, we must stretch the rod to
its original length by applying the tensile force P. Compatibility of deformations re-
quires that the resulting elongation dP, shown in Fig. (c), must be equal to dT ; that is,

dT ¼ dP

Hooke’s Law If we substitute dT ¼ aðDTÞL and dP ¼ PL=ðEAÞ ¼ sL=E, the com-
patibility equation becomes

sL

E
¼ aðDTÞL

Therefore, the stress in the rod is

s ¼ aðDTÞE ¼ ð11:7� 10�6Þð40Þð200� 109Þ

¼ 93:6� 106 Pa ¼ 93:6 MPa Answer

Note that L canceled out in the preceding equation, which indicates that the stress is
independent of the length of the rod.

Part 2

Compatibility When the walls move together a distance D, we see from Figs. (d) and
(e) that the free thermal contraction dT is related to D and the elongation dP caused
by the axial force P by

dT ¼ dP þ D

Hooke’s Law Substituting for dT and dP as in Part 1, we obtain

aðDTÞL ¼ sL

E
þ D

The solution for the stress s is

s ¼ E aðDTÞ � D

L

� �

¼ ð200� 109Þ ð11:7� 10�6Þð40Þ � 0:5� 10�3

2:5

� �

¼ 53:6� 106 Pa ¼ 53:6 MPa Answer

We see that the movement of the walls reduces the stress considerably. Also observe
that the length of the rod does not cancel out as in Part 1.

1
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Sample Problem 2.12

Figure (a) shows a homogeneous, rigid block weighing 12 kips that is supported by
three symmetrically placed rods. The lower ends of the rods were at the same level
before the block was attached. Determine the stress in each rod after the block is at-
tached and the temperature of all bars increases by 100�F. Use the following data:

A (in.2) E (psi) a (/�F)

Each steel rod 0.75 29� 106 6:5� 10�6

Bronze rod 1.50 12� 106 10:0� 10�6

Solution

Compatibility Note that the block remains horizontal because of the symmetry of
the structure. Let us assume that the block is detached from the rods, as shown in
Fig. (b). With the rods unconstrained, a temperature rise will cause the elongations
ðdT Þst in the steel rods and ðdT Þbr in the bronze rod. To reattach the block to the rods,
the rods must undergo the additional deformations ðdPÞst and ðdPÞbr, both assumed to
be elongations. From the deformation diagram in Fig. (b), we obtain the following
compatibility equation (recall that the block remains horizontal):

ðdT Þst þ ðdPÞst ¼ ðdT Þbr þ ðdPÞbr

Hooke’s Law Using Hooke’s law, we can write the compatibility equation as

½aðDTÞL�st þ
PL

EA

� �
st

¼ ½aðDTÞL�br þ
PL

EA

� �
br

Substituting the given data, we have

ð6:5� 10�6Þð100Þð2� 12Þ þ Pstð2� 12Þ
ð29� 106Þð0:75Þ

¼ ð10:0� 10�6Þð100Þð3� 12Þ þ Pbrð3� 12Þ
ð12� 106Þð1:50Þ

If we rearrange terms and simplify, the compatibility equation becomes

0:091 95Pst � 0:1667Pbr ¼ 1700 (a)

Equilibrium From the free-body diagram in Fig. (c) we obtain

SF ¼ 0 þ" 2Pst þ Pbr � 12 000 ¼ 0 (b)

Solving Eqs. (a) and (b) simultaneously yields

Pst ¼ 8700 lb and Pbr ¼ �5400 lb

The negative sign for Pbr means that the force in the bronze rod is compressive (it
acts in the direction opposite to that shown in the figures). The stresses in the rods
are:

sst ¼
Pst

Ast
¼ 8700

0:75
¼ 11 600 psi ðTÞ Answer

sbr ¼
Pbr

Abr
¼ �5400

1:50
¼ �3600 psi ¼ 3600 psi ðCÞ Answer

1
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Sample Problem 2.13

Using the data in Sample Problem 2.12, determine the temperature increase that
would cause the entire weight of the block to be carried by the steel rods.

Solution

Equilibrium The problem statement implies that the bronze rod is stress-free. Thus,
each steel rod carries half the weight of the rigid block, so that Pst ¼ 6000 lb.

Compatibility The temperature increase causes the elongations ðdT Þst and ðdT Þbr in
the steel and bronze rods, respectively, as shown in the figure. Because the bronze rod
is to carry no load, the ends of the steel rods must be at the same level as the end of
the unstressed bronze rod before the rigid block can be reattached. Therefore, the
steel rods must elongate by ðdPÞst due to the tensile forces Pst ¼ 6000 lb, which gives

ðdT Þbr ¼ ðdT Þst þ ðdPÞst

Hooke’s Law Using Hooke’s law, the compatibility equation becomes

½aðDTÞL�br ¼ ½aðDTÞL�st þ
PL

EA

� �
st

ð10� 10�6ÞðDTÞð3� 12Þ ¼ ð6:5� 10�6ÞðDTÞð2� 12Þ þ 6000ð2� 12Þ
ð29� 106Þð0:75Þ

which yields

DT ¼ 32:5�F Answer

as the temperature increase at which the bronze rod would be unstressed.

1
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Problems

2.74 A steel rod with a cross-sectional area of 0.25 in.2 is stretched between two
fixed points. The tensile force in the rod at 70�F is 1200 lb. (a) What will be the stress
at 0�F? (b) At what temperature will the stress be zero? Use a ¼ 6:5� 10�6=�F and
E ¼ 29� 106 psi.

2.75 A steel rod is stretched between two walls. At 20�C, the tensile force in the
rod is 5000 N. If the stress is not to exceed 130 MPa at �20�C, find the minimum
allowable diameter of the rod. Use a ¼ 11:7� 10�6=�C and E ¼ 200 GPa.

2.76 Steel railroad rails 10 m long are laid with end-to-end clearance of 3 mm at a
temperature of 15�C. (a) At what temperature will the rails just come in contact? (b)
What stress would be induced in the rails at that temperature if there were no initial
clearance? Use a ¼ 11:7� 10�6=�C and E ¼ 200 GPa.

2.77 A steel rod 3 ft long with a cross-sectional area of 0.3 in.2 is stretched
between two fixed points. The tensile force in the rod is 1200 lb at 40�F. Using a ¼
6:5� 10�6=�F and E ¼ 29� 106 psi, calculate the temperature at which the stress in
the rod will be (a) 10 ksi; and (b) zero.

2.78 The bronze bar 3 m long with a cross-sectional area of 350 mm2 is placed
between two rigid walls. At a temperature of �20�C, there is a gap D ¼ 2:2 mm, as
shown in the figure. Find the temperature at which the compressive stress in the bar
will be 30 MPa. Use a ¼ 18:0� 10�6=�C and E ¼ 80 GPa.

2.79 Calculate the increase in stress in each segment of the compound bar if the
temperature is increased by 80�F. Assume that the supports are unyielding and use
the following data:

A (in.2) E (psi) a (/�F)

Aluminum 1.5 10� 106 12:8� 10�6

Steel 2.0 29� 106 6:5� 10�6

2.80 A prismatic bar of length L fits snugly between two rigid walls. If the bar is
given a temperature increase that varies linearly from DTA at one end to DTB at the
other end, show that the resulting stress in the bar is s ¼ aEðDTA þ DTBÞ=2.

2.81 The rigid bar ABC is supported by a pin at B and two vertical steel rods.
Initially the bar is horizontal and the rods are stress-free. Determine the stress in each
rod if the temperature of the rod at A is decreased by 40�C. Neglect the weight of bar
ABC. Use a ¼ 11:7� 10�6/�C and E ¼ 200 GPa for steel.

FIG. P2.78 FIG. P2.79

FIG. P2.81
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2.82 The rigid, horizontal slab is attached to two identical copper rods. There is a
gap D ¼ 0:18 mm between the middle bar, which is made of aluminum, and the slab.
Neglecting the mass of the slab, calculate the stress in each rod when the temperature
in the assembly is increased by 85�C. Use the following data:

A (mm2) a (/�C) E (GPa)

Each copper rod 500 16:8� 10�6 120

Aluminum rod 400 23:1� 10�6 70

2.83 A bronze sleeve is slipped over a steel bolt and held in place by a nut that is
tightened to produce an initial stress of 2000 psi in the bronze. Find the stress in each
material after the temperature of the assembly is increased by 100�F. The properties
of the components are listed in the table.

A (in.2) a (/�F) E (psi)

Bronze sleeve 1.50 10:5� 10�6 12� 106

Steel bolt 0.75 6:5� 10�6 29� 106

2.84 The rigid bar of negligible weight is supported as shown in the figure. If
W ¼ 80 kN, compute the temperature change of the assembly that will cause a ten-
sile stress of 50 MPa in the steel rod. Use the following data:

A (mm2) a (/�C) E (GPa)

Steel rod 300 11:7� 10�6 200

Bronze rod 1400 18:9� 10�6 83

2.85 The rigid bar of negligible weight is supported as shown. The assembly is in-
itially stress-free. Find the stress in each rod if the temperature rises 20�C after a load
W ¼ 120 kN is applied. Use the properties of the bars given in Prob. 2.84.

2.86 The composite bar is firmly attached to unyielding supports. The bar is
stress-free at 60�F. Compute the stress in each material after the 50-kip force is ap-
plied and the temperature is increased to 120�F. Use a ¼ 6:5� 10�6/�F for steel and
a ¼ 12:8� 10�6/�F for aluminum.

2.87 At what temperature will the aluminum and steel segments in Prob. 2.86
have stresses of equal magnitude after the 50-kip force is applied?

2.88 All members of the steel truss have the same cross-sectional area. If the truss
is stress-free at 10�C, determine the stresses in the members at 90�C. For steel,
a ¼ 11:7� 10�6/�C and E ¼ 200 GPa.

FIG. P2.82

FIG. P2.84, P2.85

FIG. P2.86, P2.87 FIG. P2.88
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2.89 The rigid bar ABCD is supported by a pin at B and restrained by identical
steel bars at C and D, each of area 250 mm2. If the temperature is increased by 80�C,
determine the force P that will cause the bar at C to be stress-free. Use E ¼ 200 GPa
and a ¼ 12� 10�6=�C.

2.90 The compound bar, composed of the three segments shown, is initially stress-
free. Compute the stress in each material if the temperature drops 25�C. Assume that
the walls do not yield and use the following data:

A (mm2) a (/�C) E (GPa)

Bronze segment 2000 19:0� 10�6 83

Aluminum segment 1400 23:0� 10�6 70

Steel segment 800 11:7� 10�6 200

2.91 The rigid bar AOB is pinned at O and connected to aluminum and steel rods. If
the bar is horizontal at a given temperature, determine the ratio of the areas of the two
rods so that the bar will be horizontal at any temperature. Neglect the mass of the bar.

FIG. P2.91

2.92 The aluminum and bronze cylinders are centered and secured between two
rigid end-plates by tightening the two steel bolts. There is no axial load in the as-
sembly at a temperature of 50�F. Find the stress in the steel bolts when the temper-
ature is increased to 200�F. Use the following data:

A (in.2) a (/�F) E (psi)

Aluminum cylinder 2.00 12:8� 10�6 10� 106

Bronze cylinder 3.00 10:5� 10�6 12� 106

Each steel bolt 0.75 6:5� 10�6 29� 106

2.93 The assembly consists of a bronze tube fitted over a threaded steel bolt. The nut
on the bolt is turned until it is finger-tight. Determine the stresses in the sleeve and bolt
when the temperature of the assembly is increased by 200�F. Use the following data:

A (in.2) a (/�F) E (psi)

Bronze 1.5 10� 10�6 12� 106

Steel 0.75 6:5� 10�6 29� 106

3 m 0.8 m
0.6 m

BA

P

C D

FIG. P2.89 FIG. P2.90

FIG. P2.92

Bronze tube

40 in.

FIG. P2.93
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Review Problems

2.94 The elastic strip with a cutout is of length L, width b, and thickness t. Derive
the expression for the elongation of the strip caused by the axial load P.

2.95 The aluminum bar of cross-sectional area 0.6 in.2 carries the axial loads
shown in the figure. Compute the total change in length of the bar given that E ¼
10� 106 psi.

2.96 The uniform beam of weight W is to be supported by the two rods, the lower
ends of which were initially at the same level. Determine the ratio of the areas of the
rods so that the beam will be horizontal after it is attached to the rods. Neglect the
deformation of the beam.

2.97 A round bar of length L, modulus of elasticity E, and weight density g tapers
uniformly from a diameter 2D at one end to a diameter D at the other end. If the bar
is suspended vertically from the larger end, find the elongation of the bar caused by
its own weight.

2.98 The timber member BC, inclined at angle y ¼ 60� to the vertical, is supported
by a pin at B and the 0.75-in.-diameter steel bar AC. (a) Determine the cross-sectional
area of BC for which the displacement of C will be vertical when the 5000-lb force is
applied. (b) Compute the corresponding displacement of C. The moduli of elasticity
are 1:8� 106 psi for timber and 29� 106 psi for steel. Neglect the weight of BC.

2.99 The collar B is welded to the midpoint of the cylindrical steel bar AC of length 2L.
The left half of the bar is then inserted in a brass tube and the assembly is placed between
rigid walls. Determine the forces in the steel bar and the brass tube when the force P is ap-
plied to the collar. Neglect the deformation of the collar and assume ðEAÞst ¼ 3ðEAÞbr.

L
L

B CA
P

FIG. P2.99

2.100 A solid aluminum shaft of diameter 80 mm fits concentrically inside a hol-
low tube. Compute the minimum internal diameter of the tube so that no contact
pressure exists when the aluminum shaft carries an axial compressive force of 400
kN. Use n ¼ 1=3 and E ¼ 70 GPa for aluminum.

2.101 The normal stresses in an aluminum block are sx ¼ �4000 psi and
sy ¼ sz ¼ �p. Determine (a) the value of p for which �x ¼ 0; and (b) the corre-
sponding value of �y. Use E ¼ 10� 106 psi and n ¼ 0:33:

P P

0.4 L

0.6b b

L

FIG. P2.94

FIG. P2.95 FIG. P2.96

FIG. P2.98
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2.102 The three steel wires, each of cross-sectional area 0.05 in.2, support the
weight W. Their unstressed lengths are 74.98 ft, 74.99 ft, and 75.00 ft. (a) Find the
stress in the longest wire if W ¼ 1500 lb. (b) Determine the stress in the shortest wire
if W ¼ 500 lb. Use E ¼ 29� 106 psi.

2.103 The figure shows an aluminum tube that is placed between rigid bulkheads.
After the two steel bolts connecting the bulkheads are turned finger-tight, the tem-
perature of the assembly is raised by 90�C. Compute the resulting forces in the tube
and bolts. Use the following data:

E (GPa) a (/�C) Diameter (mm)

Aluminum tube 70 23� 10�6 outer: 68; inner: 60

Steel bolts 200 12� 10�6 each bolt: 12

2.104 The rigid bar ABCD is supported by a pin at B and restrained by identical
steel bars at C and D. Determine the forces in the bars caused by the vertical load P

that is applied at A.

3 m 0.8 m
0.6 m

BA

P

C D

FIG. P2.104

2.105 The rigid bar ACE is supported by a pin at A and two horizontal aluminum
rods, each of cross-sectional area 50 mm2. When the 200-kN load is applied at point
E, determine (a) the axial force in rod DE and (b) the vertical displacement of point
E. Use E ¼ 70 GPa for aluminum.

2.106 The two vertical steel rods that support the rigid bar ABCD are initially
stress-free. Determine the stress in each rod after the 20-kip load is applied. Neglect
the weight of the bar and use E ¼ 29� 106 psi for steel.

2.107 The rigid bar ABCD of negligible weight is initially horizontal, and the steel
rods attached at A and C are stress-free. The 20-kip load is then applied and the
temperature of the steel rods is changed by DT . Find DT for which the stresses in the
two steel rods will be equal. Use a ¼ 6:5� 10�6/�F and E ¼ 29� 106 psi for steel.

FIG. P2.102

135 mm

200 mm

FIG. P2.103

FIG. P2.105
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FIG. P2.106, P2.107

2.108 The rigid horizontal bar ABC of negligible mass is connected to two rods
as shown in the figure. If the system is initially stress-free, calculate the temperature
change that will cause a tensile stress of 90 MPa in the brass rod. Assume that both
rods are subjected to the same change in temperature.

FIG. P2.108

Computer Problems

C2.1 The figure shows an aluminum bar of circular cross section with variable di-
ameter. Use numerical integration to compute the elongation of the bar caused by
the 6-kN axial force. Use E ¼ 70� 109 Pa for aluminum.

C2.2 The flat aluminum bar shown in profile has a constant thickness of 10 mm.
Determine the elongation of the bar caused by the 6-kN axial load using numerical
integration. For aluminum E ¼ 70� 109 Pa.

C2.3 The shaft of length L has diameter d that varies with the axial coordinate x.
Given L, dðxÞ, and the modulus of elasticity E, write an algorithm to compute the
axial sti¤ness k ¼ P=d of the bar. Use (a) L ¼ 500 mm and

FIG. C2.1, C2.2 FIG. C2.3
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d ¼ ð25 mmÞ 1þ 3:8
x

L
� 3:6

x2

L2

� �

and (b) L ¼ 200 mm and

d ¼ ð24� 0:05xÞ mm if x a 120 mm

18 mm if x b 120 mm

�

C2.4 The symmetric truss carries a force P inclined at the angle y to the vertical. Given
P and the angle a, write an algorithm to plot the axial force in each member as a function
of y from y ¼ �90� to 90�. Assume the cross-sectional areas of the members are the
same. Use P ¼ 10 kN and (a) a ¼ 30�; and (b) a ¼ 60�. (Hint: Compute the e¤ects of the
horizontal and vertical components of P separately, and then superimpose the e¤ects.)

C2.5 The rigid bar BC of length b and negligible weight is supported by the wire
AC of cross-sectional area A and modulus of elasticity E. The vertical displacement
of point C can be expressed in the form

DC ¼
Pb

EA
f ðyÞ

where y is the angle between the wire and the rigid bar. (a) Derive the function f ðyÞ
and plot it from y ¼ 20� to 85�. (b) What value of y yields the smallest vertical dis-
placement of C?

C2.6 The steel bolt of cross-sectional area A0 is placed inside the aluminum tube,
also of cross-sectional area A0. The assembly is completed by making the nut ‘‘finger-
tight.’’ The dimensions of the reduced segment of the bolt (length b and cross-sectional
area A) are designed so that the segment will yield when the temperature of the as-
sembly is increased by 200�F. Write an algorithm that determines the relationship be-
tween A=A0 and b=L that satisfies this design requirement. Plot A=A0 against b=L

from b=L ¼ 0 to 1.0. Use the properties of steel and aluminum shown in the figure.

FIG. C2.4 FIG. C2.5

FIG. C2.6
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3
Torsion

3.1 Introduction

In many engineering applications, members are required to carry torsional
loads. In this chapter, we consider the torsion of circular shafts. Because a
circular cross section is an e‰cient shape for resisting torsional loads, circu-
lar shafts are commonly used to transmit power in rotating machinery. We
also discuss another important application—torsion of thin-walled tubes.

Torsion is our introduction to problems in which the stress is not uni-
form, or assumed to be uniform, over the cross section of the member.
Another problem in this category, which we will treat later, is the bending of

The drive shaft of a twin-rotor helicopter.

The power output of the turbine is

transmitted to the rotors by the shaft. The

relationship between transmitted power and

shear stress in the shaft is one of the topics

in this chapter. Courtesy of

dutourdumonde/Shutterstock.
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beams. Derivation of the equations used in the analysis of both torsion and
bending follows these steps:

. Make simplifying assumptions about the deformation based on experi-
mental evidence.. Determine the strains that are geometrically compatible with the as-
sumed deformations.. Use Hooke’s law to express the equations of compatibility in terms of
stresses.. Derive the equations of equilibrium. (These equations provide the re-
lationships between the stresses and the applied loads.)

3.2 Torsion of Circular Shafts

a. Simplifying assumptions

Figure 3.1 shows the deformation of a circular shaft that is subjected to
a twisting couple (torque) T. To visualize the deformation, we scribe the
straight line AB on the surface of the shaft before the torque is applied. After
loading, this line deforms into the helix AB 0 as the free end of the shaft
rotates through the angle y. During the deformation, the cross sections
are not distorted in any manner—they remain plane, and the radius r does
not change. In addition, the length L of the shaft remains constant. Based on
these observations, we make the following assumptions:

. Circular cross sections remain plane (do not warp) and perpendicular
to the axis of the shaft.. Cross sections do not deform (there is no strain in the plane of the
cross section).. The distances between cross sections do not change (the axial normal
strain is zero).

The deformation that results from the above assumptions is relatively
simple: Each cross section rotates as a rigid entity about the axis of the shaft.
Although this conclusion is based on the observed deformation of a cylin-
drical shaft carrying a constant internal torque, we assume that the result
remains valid even if the diameter of the shaft or the internal torque varies
along the length of the shaft.

FIG. 3.1 Deformation of a circular shaft caused by the torque T. The initially
straight line AB deforms into a helix.
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b. Compatibility

To analyze the deformation in the interior of the shaft in Fig. 3.1, we con-
sider the portion of the shaft shown in Fig. 3.2(a). We first isolate a segment
of the shaft of infinitesimal length dx and then ‘‘peel’’ o¤ its outer layer,
leaving us with the cylindrical core of radius r. As the shaft deforms, the two
cross sections of the segment rotate about the x-axis. Because the cross sec-
tions are separated by an infinitesimal distance, the di¤erence in their rota-
tions, denoted by the angle dy, is also infinitesimal. We now imagine that the
straight line CD has been drawn on the cylindrical surface. As the cross
sections undergo the relative rotation dy, CD deforms into the helix CD 0. By
observing the distortion of the shaded element, we recognize that the helix
angle g is the shear strain of the element.

From the geometry of Fig. 3.2(a), we obtain DD 0 ¼ r dy ¼ g dx, from
which the shear strain is

g ¼ dy

dx
r (3.1)

The quantity dy=dx is the angle of twist per unit length, where y is expressed
in radians. The corresponding shear stress, illustrated in Fig. 3.2(b), is
determined from Hooke’s law:

t ¼ Gg ¼ G
dy

dx
r (3.2)

Note that Gðdy=dxÞ in Eq. (3.2) is independent of the radial distance r.
Therefore, the shear stress varies linearly with the radial distance r from the

axis of the shaft. The variation of the shear stress acting on the cross section
is illustrated in Fig. 3.3. The maximum shear stress, denoted by tmax, occurs
at the surface of the shaft.

c. Equilibrium

For the shaft to be in equilibrium, the resultant of the shear stress acting on
a cross section must be equal to the internal torque T acting on that cross
section. Figure 3.4 shows a cross section of the shaft containing a di¤erential
element of area dA located at the radial distance r from the axis of the shaft.
The shear force acting on this area is dP ¼ t dA ¼ Gðdy=dxÞr dA, directed
perpendicular to the radius. Hence, the moment (torque) of dP about the
center O is r dP ¼ Gðdy=dxÞr2 dA. Summing the contributions of all the
di¤erential elements across the cross-sectional area A and equating the result
to the internal torque yields

Ð
A

r dP ¼ T , or

G
dy

dx

ð
A

r2 dA ¼ T

Recognizing that
Ð

A
r2 dA ¼ J is (by definition) the polar moment of inertia

of the cross-sectional area, we can write this equation as Gðdy=dxÞJ ¼ T , or

dy

dx
¼ T

GJ
(3.3)

FIG. 3.2 (a) Shear strain of a
material element caused by twisting
of the shaft; (b) the corresponding
shear stress.

FIG. 3.3 Distribution of shear
stress along the radius of a circular
shaft.

FIG. 3.4 Calculating the resultant
of the shear stress acting on the cross
section. Resultant is a couple equal
to the internal torque T.
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The rotation of the cross section at the free end of the shaft, called the
angle of twist, is obtained by integration:

y ¼
ðL

0

dy ¼
ðL

0

T

GJ
dx (3.4a)

If the integrand is independent of x, as in the case of a prismatic bar carry-
ing a constant torque, then Eq. (3.4a) reduces to the torque-twist relationship

y ¼ TL

GJ
(3.4b)

Note the similarity between Eqs. (3.4) and the corresponding formulas for
axial deformation: d ¼

Ð L

0 ðP=EAÞ dx and d ¼ PL=ðEAÞ.

Notes on the Computation of Angle of Twist

. It is common practice to let the units of G determine the units of the
other terms in Eqs. (3.4). In the U.S. Customary system, the consistent
units are G [psi], T [lb � in.], L [in.], and J [in.4]; in the SI system, the
consistent units are G [Pa], T [N �m], L [m], and J [m4].. The unit of y in Eqs. (3.4) is radians, regardless of which system of
units is used in the computation.. In problems where it is convenient to use a sign convention for torques
and angles of twist, we represent torques as vectors (we use double-
headed arrows to represent couples and rotations) using the right-hand
rule, as illustrated in Fig. 3.5. A torque vector is considered positive if
it points away from the cross section, and negative if it points toward
the cross section. The same sign convention applies to the angle of
twist y.

d. Torsion formulas

From Eq. (3.3) we see that Gðdy=dxÞ ¼ T=J, which, upon substitution into
Eq. (3.2), gives the shear stress acting at the distance r from the center of the
shaft:

t ¼ Tr

J
(3.5a)

FIG. 3.5 Sign conventions for torque T and angle of twist y.
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The maximum shear stress is found by replacing r by the radius r of the
shaft:

tmax ¼
Tr

J
(3.5b)

Because Hooke’s law was used in the derivation of Eqs. (3.2)–(3.5),
these formulas are valid only if the shear stresses do not exceed the propor-
tional limit of the material in shear.1 Furthermore, these formulas are
applicable only to circular shafts, either solid or hollow.

The expressions for the polar moments of circular areas are given in
Fig. 3.6. Substituting these formulas into Eq. (3.5b), we obtain:

Solid shaft: tmax ¼
2T

pr3
¼ 16T

pd 3
(3.5c)

Hollow shaft: tmax ¼
2TR

pðR4 � r4Þ ¼
16TD

pðD4 � d 4Þ (3.5d)

Equations (3.5c) and (3.5d) are called the torsion formulas.

e. Power transmission

In many practical applications, shafts are used to transmit power. The
power P transmitted by a torque T rotating at the angular speed o is given
by P ¼ To, where o is measured in radians per unit time. If the shaft
is rotating with a frequency of f revolutions per unit time, then o ¼ 2pf ,
which gives P ¼ Tð2pf Þ. Therefore, the torque can be expressed as

1Equation (3.5b) is sometimes used to determine the ‘‘shear stress’’ corresponding to the torque

at rupture, although the proportional limit is exceeded. The value so obtained is called the tor-

sional modulus of rupture. It is used to compare the ultimate strengths of di¤erent materials and

diameters.

FIG. 3.6 Polar moments of inertia of circular areas.
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T ¼ P

2pf
(3.6a)

In SI units, P in usually measured in watts (1.0 W ¼ 1.0 N �m/s) and f in
hertz (1.0 Hz ¼ 1.0 rev/s); Eq. (3.6a) then determines the torque T in N �m.
In U.S. Customary units with P in lb � in./s and f in hertz, Eq. (3.6a) cal-
culates the torque T in lb � in. Because power in U.S. Customary units is often
expressed in horsepower (1.0 hp ¼ 550 lb � ft/s ¼ 396� 103 lb � in./min), a
convenient form of Eq. (3.6a) is

T ðlb � in:Þ ¼ P ðhpÞ
2pf ðrev=minÞ �

396� 103 ðlb � in:=minÞ
1:0 ðhpÞ

which simplifies to

T ðlb � in:Þ ¼ 63:0� 103 P ðhpÞ
f ðrev=minÞ (3.6b)

f. Statically indeterminate problems

The procedure for solving statically indeterminate torsion problems is sim-
ilar to the steps presented in Sec. 2.5 for axially loaded bars:

. Draw the required free-body diagrams and write the equations of
equilibrium.. Derive the compatibility equations from the restrictions imposed on the
angles of twist.. Use the torque-twist relationships in Eqs. (3.4) to express the angles of
twist in the compatibility equations in terms of the torques.. Solve the equations of equilibrium and compatibility for the torques.
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Sample Problem 3.1

Figure (a) shows a 2-in.-diameter solid steel cylinder that is built into the support at
C and subjected to the torques TA and TB. (1) Determine the maximum shear stresses
in segments AB and BC of the cylinder; and (2) compute the angle of rotation of end
A. Use G ¼ 12� 106 psi for steel.

3 ft

TB = 400 lb·ft TA = 900 lb·ft

5 ft

(a)

(b) FBDs (c) FBDs (using the right-hand rule)

C A

x

2 in. dia.

TB = 400 lb·ft

TB = 400 lb·ft

TC = 500 lb·ft

TBC = 500 lb·ft

TA = 900 lb·ft

TA = 900 lb·ft

3 ft 5 ft 3 ft 5 ftC A

B A

x

TB = 400 lb·ftTBC = 500 lb·ft TA = 900 lb·ft

5 ft

B A

TA = 900 lb·ftTAB = 900 lb·ft

A A

TB = 400 lb·ft

TC = 500 lb·ft TA = 900 lb·ft

BC A

TAB = 900 lb·ft TA = 900 lb·ft

x

x

x

x

x

B

B

Solution

Preliminary calculations

Before we can find the required stresses and the rotation of end A, we must first use
equilibrium analysis to determine the torque in each of the two segments of the cylinder.

Figure (b) displays three FBDs. The top FBD shows the torques acting upon
the entire cylinder. The middle and bottom FBDs expose the internal torques acting
on arbitrary sections of segments AB and BC, respectively. Applying the moment
equilibrium equation, �Mx ¼ 0, determines the reactive torque at C to be
TC ¼ 500 lb � ft, with the torques in the segments being TAB ¼ 900 lb � ft and
TBC ¼ 500 lb � ft. Both internal torques are positive according to the sign convention
in Fig. 3.5. Furthermore, note that the torque in each segment is constant.

You may find it convenient to use the equivalent FBDs shown in Fig. (c),
where the torques are represented as double-headed vectors using the right-hand rule.
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The polar moment of inertia for the cylinder is

J ¼ pd4

32
¼ pð2Þ4

32
¼ 1:5708 in:4

Part 1

We calculate the maximum shear stress in each segment using Eq. (3.5b) as follows
(converting the torques to pound-inches):

ðtmaxÞAB ¼
TABr

J
¼ ð900� 12Þð1:0Þ

1:5708
¼ 6880 psi Answer

ðtmaxÞBC ¼
TBCr

J
¼ ð500� 12Þð1:0Þ

1:5708
¼ 3820 psi Answer

Part 2

The rotation of end A of the cylinder is obtained by summing the angles of twist of
the two segments:

yA ¼ yA=B þ yB=C

Using Eq. (3.4b), we obtain (converting the lengths to inches and the torques to
pound-inches)

yA ¼
TABLAB þ TBCLBC

GJ
¼ 900� 12ð Þ 5� 12ð Þ þ 500� 12ð Þ 3� 12ð Þ

12� 106ð Þ 1:5708ð Þ
¼ 0:045 84rad ¼ 2:63̊ Answer

The positive result indicates that the rotation vector of A is in the positive x-direction;
that is, yA is directed counterclockwise when viewed from A toward C.

1
Sample Problem 3.2

The shaft in Fig. (a) consists of a 3-in.-diameter aluminum segment that is rigidly joined
to a 2-in.-diameter steel segment. The ends of the shaft are attached to rigid supports.
Calculate the maximum shear stress developed in each segment when the torque T ¼ 10
kip � in. is applied. Use G ¼ 4� 106 psi for aluminum and G ¼ 12� 106 psi for steel.

Solution

Equilibrium From the FBD of the entire shaft in Fig. (b), the equilibrium equation is
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SMx ¼ 0 ð10� 103Þ � Tst � Tal ¼ 0 (a)

This problem is statically indeterminate because there are two unknown torques
(Tst and Tal) but only one independent equilibrium equation.

Compatibility A second relationship between the torques is obtained by noting that
the right end of the aluminum segment must rotate through the same angle as the left
end of the steel segment. Therefore, the two segments must have the same angle of
twist; that is, yst ¼ yal. From Eq. (3.4b), this condition becomes

TL

GJ

� �
st

¼ TL

GJ

� �
al

Tstð3� 12Þ

ð12� 106Þ p

32
ð2Þ4

¼ Talð6� 12Þ

ð4� 106Þ p

32
ð3Þ4

from which

Tst ¼ 1:1852 Tal (b)

Solving Eqs. (a) and (b), we obtain

Tal ¼ 4576 lb � in: Tst ¼ 5424 lb � in:

From the torsion formula, Eq. (3.5c), the maximum shear stresses are

ðtmaxÞal ¼
16T

pd 3

� �
al

¼ 16ð4576Þ
pð3Þ3

¼ 863 psi Answer

ðtmaxÞst ¼
16T

pd 3

� �
st

¼ 16ð5424Þ
pð2Þ3

¼ 3450 psi Answer

1
Sample Problem 3.3

The four rigid gears, loaded as shown in Fig. (a), are attached to a 2-in.-diameter
steel shaft. Compute the angle of rotation of gear A relative to gear D. Use G ¼
12� 106 psi for the shaft.

Solution

It is convenient to represent the torques as vectors (using the right-hand rule) on the
FBDs in Fig. (b). We assume that the internal torques TAB, TBC , and TCD are positive
according to the sign convention introduced earlier (positive torque vectors point
away from the cross section). Applying the equilibrium condition SMx ¼ 0 to each
FBD, we obtain
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500� 900þ 1000� TCD ¼ 0

500� 900� TBC ¼ 0

500� TAB ¼ 0

which yield

TAB ¼ 500 lb � ft TBC ¼ �400 lb � ft TCD ¼ 600 lb � ft

The minus sign indicates that the sense of TBC is opposite to that shown on the FBD.
The rotation of gear A relative to gear D can be viewed as the rotation of gear

A if gear D were fixed. This rotation is obtained by summing the angles of twist of
the three segments:

yA=D ¼ yA=B þ yB=C þ yC=D

Using Eq. (3.4b), we obtain (converting the lengths to inches and torques to pound-inches)

yA=D ¼
TABLAB þ TBCLBC þ TCDLCD

GJ

¼ ð500� 12Þð5� 12Þ � ð400� 12Þð3� 12Þ þ ð600� 12Þð4� 12Þ
½pð2Þ4=32�ð12� 106Þ

¼ 0:028 27 rad ¼ 1:620� Answer

The positive result indicates that the rotation vector of A relative to D is in the positive
x-direction; that is, yAD is directed counterclockwise when viewed from A toward D.

1
Sample Problem 3.4

Figure (a) shows a steel shaft of length L ¼ 1:5 m and diameter d ¼ 25 mm that
carries a distributed torque of intensity (torque per unit length) t ¼ tBðx=LÞ, where
tB ¼ 200 N �m=m. Determine (1) the maximum shear stress in the shaft; and (2) the
angle of twist of the shaft. Use G ¼ 80 GPa for steel.

Solution

Part 1

Figure (b) shows the FBD of the shaft. The applied torque acting on a length dx

of the shaft is t dx, so that the total torque applied to the shaft is
Ð L

0 t dx. The
maximum torque in the shaft is TA, which occurs at the fixed support. From the FBD
we get

SMx ¼ 0

ðL

0

t dx� TA ¼ 0
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Therefore
TA ¼

ðL

0

t dx ¼
ðL

0

tB
x

L
dx ¼ tBL

2

¼ 1

2
ð200Þð1:5Þ ¼ 150 N �m

From Eq. (3.5c), the maximum shear stress in the shaft is

tmax ¼
16TA

pd 3
¼ 16ð150Þ

pð0:025Þ3
¼ 48:9� 106 Pa ¼ 48:9 MPa Answer

Part 2

The torque T acting on a cross section located at the distance x from the fixed end
can be found from the FBD in Fig. (c):

SMx ¼ 0 T þ
ð x

0

t dx� TA ¼ 0

which gives

T ¼ TA �
ð x

0

t dx ¼ tBL

2
�
ð x

0

tB
x

L
dx ¼ tB

2L
ðL2 � x2Þ

From Eq. (3.4a), the angle of twist of the shaft is

y ¼
ðL

0

T

GJ
dx ¼ tB

2LGJ

ðL

0

ðL2 � x2Þ dx ¼ tBL2

3GJ

¼ 200ð1:5Þ2

3ð80� 109Þ½ðp=32Þð0:025Þ4�
¼ 0:0489 rad ¼ 2:80� Answer

1
Sample Problem 3.5

A solid steel shaft in a rolling mill transmits 20 kW of power at 2 Hz. Determine the
smallest safe diameter of the shaft if the shear stress is not to exceed 40 MPa and the
angle of twist is limited to 6� in a length of 3 m. Use G ¼ 83 GPa.

Solution

This problem illustrates a design that must possess su‰cient strength as well as
rigidity. We begin by applying Eq. (3.6a) to determine the torque:

T ¼ P

2pf
¼ 20� 103

2pð2Þ ¼ 1591:5 N �m

To satisfy the strength condition, we apply the torsion formula, Eq. (3.5c):

tmax ¼
16T

pd 3
40� 106 ¼ 16ð1591:5Þ

pd 3

which yields d ¼ 58:7� 10�3 m ¼ 58:7 mm.
We next apply the torque-twist relationship, Eq. (3.4b), to determine the

diameter necessary to satisfy the requirement of rigidity (remembering to convert y

from degrees to radians):

y ¼ TL

GJ
6

p

180

� �
¼ 1591:5ð3Þ
ð83� 109Þðpd 4=32Þ

from which we obtain d ¼ 48:6� 10�3 m ¼ 48:6 mm.
To satisfy both strength and rigidity requirements, we must choose the larger

diameter—namely,

d ¼ 58:7 mm Answer

1
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Problems

3.1 The steel shaft, 3 ft long and 4 in. in diameter, carries the end torque of
15 kip � ft. Determine (a) the maximum shear stress in the shaft; and (b) the angle
of twist of the shaft. Use G ¼ 12� 106 psi for steel.

3.2 The 12 kN � m torque is applied to the free end of the 6-m steel shaft. The angle of
rotation of the shaft is to be limited to 3�. (a) Find the diameter d of the smallest shaft that can
be used. (b) What will be the maximum shear stress in the shaft? Use G ¼ 83 GPa for steel.

3.3 The torque of 100 kip � ft produces a maximum shear stress of 8000 psi in the
16-ft-long hollow steel shaft. Note that the inner diameter of the shaft is two-thirds of
its outer diameter D. (a) Determine the outer diameter D. (b) Find the angle of twist
of the shaft. Use G ¼ 12� 106 psi for steel.

3.4 The inner diameter of the hollow shaft is one-half its outer diameter D. Show that
the maximum torque that can be carried by this shaft is 15/16th of the maximum torque
that could be carried by a solid shaft of diameter D that is made of the same material.

3.5 The 16-ft solid steel shaft is twisted through 4�. If the maximum shear stress is
8000 psi, determine the diameter d of the shaft. Use G ¼ 12� 106 psi for steel.

3.6 Two forces, each of magnitude P, are applied to the wrench. The diameter of
the steel shaft AB is 15 mm. Determine the largest allowable value of P if the shear
stress in the shaft is not to exceed 120 MPa and its angle of twist is limited to 5�. Use
G ¼ 80 GPa for steel.

3.7 The 1.25-in.-diameter steel shaft BC is built into the rigid wall at C and sup-
ported by a smooth bearing at B. The lever AB is welded to the end of the shaft.
Determine the force P that will produce a 2-in. vertical displacement of end A of the
lever. What is the corresponding maximum shear stress in the shaft? Use
G ¼ 12� 106 psi for steel, and neglect deformation of the lever.

4 in.

15 kip • ft

3 ft

FIG. P3.1

12 kN • m

6 m

d

FIG. P3.2

100 kip • ft
2
3

D

D

16 ft

FIG. P3.3

T

D

D/2

L

FIG. P3.4

T

d

16 ft

FIG. P3.5

B

P
P

A

500 mm

300 mm

FIG. P3.6
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3.8 The steel shaft is formed by attaching a hollow shaft to a solid shaft.
Determine the maximum torque T that can be applied to the ends of the shaft with-
out exceeding a shear stress of 70 MPa or an angle of twist of 2:5� in the 3.5-m
length. Use G ¼ 83 GPa for steel.

3.9 The compound shaft consists of bronze and steel segments, both having
120-mm diameters. If the torque T causes a maximum shear stress of 100 MPa in the
bronze segment, determine the angle of rotation of the free end. Use G ¼ 83 GPa for
steel and G ¼ 35 GPa for bronze.

3.10 The stepped steel shaft carries the torque T. Determine the maximum allow-
able magnitude of T if the working shear stress is 12 MPa and the rotation of the free
end is limited to 4�. Use G ¼ 83 GPa for steel.

3.11 The solid steel shaft carries the torques T1 ¼ 750 N �m and T2 ¼ 1200 N �m.
Using L1 ¼ L2 ¼ 2:5 m and G ¼ 83 GPa, determine the smallest allowable diameter
of the shaft if the shear stress is limited to 60 MPa and the angle of rotation of the
free end is not to exceed 4�.

3.12 The solid compound shaft, made of three di¤erent materials, carries the two
torques shown. (a) Calculate the maximum shear stress in each material. (b) Find the
angle of rotation of the free end of the shaft. The shear moduli are 28 GPa for alu-
minum, 83 GPa for steel, and 35 GPa for bronze.

A

P

B

12 in.

75 in.

C

FIG. P3.7 FIG. P3.8

FIG. P3.9 FIG. P3.10

FIG. P3.11 FIG. P3.12
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3.13 The shaft consisting of steel and aluminum segments carries the torques T

and 2T . Find the largest allowable value of T if the working shear stresses are 14 000
psi for steel and 7500 psi for aluminum, and the angle of rotation at the free end must
not exceed 8�. Use G ¼ 12� 106 psi for steel and G ¼ 4� 106 psi for aluminum.

3.14 Four pulleys are attached to the 50-mm-diameter aluminum shaft. If torques
are applied to the pulleys as shown in the figure, determine the angle of rotation of
pulley D relative to pulley A. Use G ¼ 28 GPa for aluminum.

3.15 The tapered, wrought iron shaft carries the torque T ¼ 2000 lb � in. at its free
end. Determine the angle of twist of the shaft. Use G ¼ 10� 106 psi for wrought
iron.

3.16 The shaft carries a total torque T0 that is uniformly distributed over its
length L. Determine the angle of twist of the shaft in terms of T0, L, G, and J.

3.17 The steel shaft of length L ¼ 1:5 m and diameter d ¼ 25 mm is attached to
rigid walls at both ends. A distributed torque of intensity t ¼ tAðL� xÞ=L is acting
on the shaft, where tA ¼ 200 N �m/m. Determine the maximum shear stress in the
shaft.

FIG. P3.13 FIG. P3.14

FIG. P3.15 FIG. P3.16

FIG. P3.17
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3.18 The compound shaft is attached to a rigid wall at each end. For the bronze
segment AB, the diameter is 75 mm and G ¼ 35 GPa. For the steel segment BC, the
diameter is 50 mm and G ¼ 83 GPa. Given that a ¼ 2 m and b ¼ 1:5 m, compute the
largest torque T that can be applied as shown in the figure if the maximum shear
stress is limited to 60 MPa in the bronze and 80 MPa in the steel.

3.19 For the compound shaft described in Prob. 3.18, determine the torque T and
the ratio b=a so that each material is stressed to its permissible limit.

3.20 The ends of the compound shaft are attached to rigid walls. The maximum
shear stress is limited to 10 000 psi for the bronze segment AB and 14 000 psi for the
steel segment BC. Determine the diameter of each segment so that each material is
simultaneously stressed to its permissible limit when the torque T ¼ 16 kip � ft is ap-
plied as shown. The shear moduli are 6� 106 psi for bronze and 12� 106 psi for steel.

3.21 Both ends of the steel shaft are attached to rigid supports. Find the distance a

where the torque T must be applied so that the reactive torques at A and B are equal.

3.22 The compound shaft, composed of steel, aluminum, and bronze segments,
carries the two torques shown in the figure. If TC ¼ 250 lb � ft, determine the max-
imum shear stress developed in each material. The moduli of rigidity for steel, alu-
minum, and bronze are 12� 106 psi, 4� 106 psi, and 6� 106 psi, respectively.

3.23 The stepped solid steel shaft ABC is attached to rigid supports at each end.
Determine the diameter of segment BC for which the maximum shear stress in both
segments will be equal when the torque T is applied at B. Note that the lengths of
both segments are given and the diameter of segment AB is 60 mm.

3.24 The steel rod fits loosely inside the aluminum sleeve. Both components are at-
tached to a rigid wall at A and joined together by a pin at B. Because of a slight mis-
alignment of the pre-drilled holes, the torque T0 ¼ 750 N �m was applied to the steel rod
before the pin could be inserted into the holes. Determine the torque in each component
after T0 was removed. Use G ¼ 80 GPa for steel and G ¼ 28 GPa for aluminum.

FIG. P3.24

B
T

1200

800

A

Dimensions in mm

C

60

FIG. P3.23

FIG. P3.18, P3.19 FIG. P3.20

FIG. P3.21 FIG. P3.22
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3.25 A composite shaft is made by slipping a bronze tube of 3-in. outer diameter
and 2-in. inner diameter over a solid steel shaft of the same length and 2-in. diameter.
The two components are then fastened rigidly together at their ends. What is the
largest torque that can be carried by the composite shaft if the working shear stresses
are 10 ksi for bronze and 14 ksi for the steel? For bronze, G ¼ 6� 106 psi, and for
steel, G ¼ 12� 106 psi.

3.26 If the composite shaft described in Prob. 3.25 carries a 2000-lb � ft torque,
determine the maximum shear stress in each material.

3.27 The two identical shafts, 1 and 2, are built into supports at their left ends.
Gears mounted on their right ends engage a third gear that is attached to shaft 3.
Determine the torques in shafts 1 and 2 when the 500-N � m torque is applied to
shaft 3.

3.28 Each of the two identical shafts is attached to a rigid wall at one end and
supported by a bearing at the other end. The gears attached to the shafts are in mesh.
Determine the reactive torques at A and C when the torque T is applied to gear B.

3.29 The two steel shafts, each with one end built into a rigid support, have
flanges attached to their free ends. The flanges are to be bolted together. However,
initially there is a 6� mismatch in the location of the bolt holes as shown in the figure.
Determine the maximum shear stress in each shaft after the flanges have been bolted
together. The shear modulus of elasticity for steel is 12� 106 psi. Neglect deforma-
tions of the bolts and the flanges.

3.30 A solid steel shaft transmits 20 hp while running at 120 rev/min. Find the
smallest safe diameter of the shaft if the shear stress is limited to 5000 psi and the
angle of twist of the shaft is not to exceed 9� in a length of 10 ft. Use G ¼ 12� 106

psi for steel.

2

80

40

60

3

Dimensions in mm

500 Nm

1

FIG. P3.27 FIG. P3.28

FIG. P3.29
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3.31 A hollow steel shaft, 6 ft long, has an outer diameter of 3 in. and an inner
diameter of 1.5 in. The shaft is transmitting 200 hp at 120 rev/min. Determine (a) the
maximum shear stress in the shaft; and (b) the angle of twist of the shaft in degrees.
Use G ¼ 12� 106 psi for steel.

3.32 A hollow steel propeller shaft, 18 ft long with 14-in. outer diameter and
10-in. inner diameter, transmits 5000 hp at 189 rev/min. Use G ¼ 12� 106 psi for
steel. Calculate (a) the maximum shear stress; and (b) the angle of twist of the shaft.

3.33 The figure shows an inboard engine, 8-ft long steel drive shaft, and propeller
for a motor boat. The shaft is to be designed to safely transmit 200 hp at 3500 rev/
min. Determine the diameter of the smallest shaft that can be used and its corre-
sponding angle of twist. For the steel, use a working shear stress of 12 000 psi and
G ¼ 12� 106 psi.

3.34 The steel shaft with two di¤erent diameters rotates at 4 Hz. The power sup-
plied to gear C is 55 kW, of which 35 kW is removed by gear A and 20 kW is re-
moved by gear B. Find (a) the maximum shear stress in the shaft; and (b) the angle of
rotation of gear A relative to gear C. Use G ¼ 83 GPa for steel.

3.35 The motor A delivers 3000 hp to the shaft at 1500 rev/min, of which 1000 hp
is removed by gear B and 2000 hp is removed by gear C. Determine (a) the maximum
shear stress in the shaft; and (b) the angle of twist of end D relative to end A. Use
G ¼ 12� 106 psi for steel, and assume that friction at bearing D is negligible.

3.3 Torsion of Thin-Walled Tubes

Although torsion of noncircular shafts requires advanced methods of analy-
sis, fairly simple approximate formulas are available for thin-walled tubes.
Such members are common in construction where light weight is of para-
mount importance, such as in automobiles and airplanes.

FIG. P3.33
FIG. P3.34

FIG. P3.35
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Consider the thin-walled tube subjected to the torque T shown in Fig.
3.7(a). We assume the tube to be prismatic (constant cross section), but the
wall thickness t is allowed to vary within the cross section. The surface that
lies midway between the inner and outer boundaries of the tube is called the
middle surface. If t is small compared to the overall dimensions of the cross
section, the shear stress t induced by torsion can be shown to be almost
constant through the wall thickness of the tube and directed tangent to the
middle surface, as illustrated in Fig. 3.7(b). It is convenient to introduce
the concept of shear flow q, defined as the shear force per unit edge length of
the middle surface. Thus, the shear flow is

q ¼ tt (3.7)

If the shear stress is not constant through the wall thickness, then t in
Eq. (3.7) should be viewed as the average shear stress.

We now show that the shear flow is constant throughout the tube. This
result can be obtained by considering equilibrium of the element shown in
Fig. 3.7(c). In labeling the shear flows, we assume that q varies in the lon-
gitudinal (x) as well as the circumferential (s) directions. Thus, the terms
ðqq=qxÞ dx and ðqq=qsÞ ds represent the changes in the shear flow over the
distances dx and ds, respectively. The force acting on each side of the ele-
ment is equal to the shear flow multiplied by the edge length, resulting in the
equilibrium equations

SFx ¼ 0 qþ qq

qs
ds

� �
dx� q dx ¼ 0

SFs ¼ 0 qþ qq

qx
dx

� �
ds� q ds ¼ 0

which yield qq=qx ¼ qq=qs ¼ 0, thereby proving that the shear flow is con-
stant throughout the tube.

To relate the shear flow to the applied torque T, consider the cross
section of the tube in Fig. 3.8. The shear force acting over the infinitesimal

FIG. 3.7 (a) Thin-walled tube in torsion; (b) shear stress in the wall of the tube;
(c) shear flows on wall element.
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edge length ds of the middle surface is dP ¼ q ds. The moment of this force
about an arbitrary point O in the cross section is r dP ¼ ðq dsÞr, where r is
the perpendicular distance of O from the line of action of dP. Equilibrium
requires that the sum of these moments must be equal to the applied torque
T; that is,

T ¼
þ

S

qr ds (a)

where the integral is taken over the closed curve formed by the intersection
of the middle surface and the cross section, called the median line.

The integral in Eq. (a) need not be evaluated formally. Recalling that q

is constant, we can take it outside the integral sign, so that Eq. (a) can be
written as T ¼ q

Þ
S

r ds. But from Fig. 3.8 we see that r ds ¼ 2 dA0, where
dA0 is the area of the shaded triangle. Therefore,

Þ
S

r ds ¼ 2A0, where A0 is
the area of the cross section that is enclosed by the median line. Con-
sequently, Eq. (a) becomes

T ¼ 2A0q (3.8a)

from which the shear flow is

q ¼ T

2A0
(3.8b)

We can find the angle of twist of the tube by equating the work done
by the shear stress in the tube to the work of the applied torque T. Let us
start by determining the work done by the shear flow acting on the element
in Fig. 3.7(c). The deformation of the element is shown in Fig. 3.9, where g
is the shear strain of the element. We see that work is done on the element
by the shear force dP ¼ q ds as it moves through the distance g dx. If we as-
sume that g is proportional to t (Hooke’s law), this work is

dU ¼ 1

2
ðforce� distanceÞ ¼ 1

2
ðq dsÞðg dxÞ

Substituting g ¼ t=G ¼ q=ðGtÞ yields

dU ¼ q2

2Gt
ds dx (b)

The work U of the shear flow for the entire tube is obtained by
integrating Eq. (b) over the middle surface of the tube. Noting that q and G

are constants and t is independent of x, we obtain

U ¼ q2

2G

ðL

0

þ
S

ds

t

� �
dx ¼ q2L

2G

þ
S

ds

t
(c)

Conservation of energy requires U to be equal to the work of the applied
torque; that is, U ¼ Ty=2. After substituting the expression for q from
Eq. (3.8b) into Eq. (c), we obtain

T

2A0

� �2
L

2G

þ
S

ds

t
¼ 1

2
Ty

FIG. 3.8 Calculating the resultant
of the shear flow acting on the cross
section of the tube. Resultant is a
couple equal to the internal torque T.

FIG. 3.9 Deformation of element
caused by shear flow.
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from which the angle of twist of the tube is

y ¼ TL

4GA2
0

þ
S

ds

t
(3.9a)

If t is constant, we have
Þ

S
ðds=tÞ ¼ S=t, where S is the length of the median

line. Therefore, Eq. (3.9a) becomes

y ¼ TLS

4GA2
0 t
ðconstant tÞ (3.9b)

If the tube is not cylindrical, its cross sections do not remain plane but
tend to warp. When the ends of the tube are attached to rigid plates or sup-
ports, the end sections cannot warp. As a result, the torsional sti¤ness of the
tube is increased and the state of stress becomes more complicated—there
are normal stresses in addition to the shear stress. However, if the tube is
slender (length much greater than the cross-sectional dimensions), warping is
confined to relatively small regions near the ends of the tube (Saint Venant’s
principle).

Tubes with very thin walls can fail by buckling (the walls ‘‘fold’’ like
an accordion) while the stresses are still within their elastic ranges. For this
reason, the use of very thin walls is not recommended. In general, the shear
stress that results in buckling depends on the shape of the cross section and
the material properties. For example, steel tubes of circular cross section re-
quire r=t < 50 to forestall buckling due to torsion.

Sharp re-entrant corners in the cross section of the tube should also be
avoided because they cause stress concentration. It has been found that the
shear stress at the inside boundary of a corner can be considerably higher
than the average stress. The stress concentration e¤ect diminishes as the
radius a of the corner is increased, becoming negligible when a=t > 2:5,
approximately.
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Sample Problem 3.6

A steel tube with the cross section shown carries a torque T. The tube is 6 ft long and
has a constant wall thickness of 3/8 in. (1) Compute the torsional sti¤ness k ¼ T=y of
the tube. (2) If the tube is twisted through 0:5�, determine the shear stress in the wall
of the tube. Use G ¼ 12� 106 psi, and neglect stress concentrations at the corners.

Solution

Part 1

Because the wall thickness is constant, the angle of twist is given by Eq. (3.9b):

y ¼ TLS

4GA2
0 t

Therefore, the torsional sti¤ness of the tube can be computed from

k ¼ T

y
¼ 4GA2

0 t

LS

The area enclosed by the median line is

A0 ¼ average width� height ¼ 6þ 4

2

� �
ð5Þ ¼ 25 in:2

and the length of the median line is

S ¼ 6þ 4þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 52

p
¼ 20:20 in:

Consequently, the torsional sti¤ness becomes

k ¼ 4ð12� 106Þð25Þ2ð3=8Þ
ð6� 12Þð20:20Þ ¼ 7:735� 106 lb � in:=rad

¼ 135:0� 103 lb � in:=deg Answer

Part 2

The torque required to produce an angle of twist of 0:5� is

T ¼ ky ¼ ð135:0� 103Þð0:5Þ ¼ 67:5� 103 lb � in:

which results in the shear flow

q ¼ T

2A0
¼ 67:5� 103

2ð25Þ ¼ 1350 lb=in:

The corresponding shear stress is

t ¼ q

t
¼ 1350

3=8
¼ 3600 psi Answer

1
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Sample Problem 3.7

An aluminum tube, 1.2 m long, has the semicircular cross section shown in the figure.
If stress concentrations at the corners are neglected, determine (1) the torque that
causes a maximum shear stress of 40 MPa, and (2) the corresponding angle of twist
of the tube. Use G ¼ 28 GPa for aluminum.

Solution

Part 1

Because the shear flow is constant in a prismatic tube, the maximum shear stress
occurs in the thinnest part of the wall, which is the semicircular portion with t ¼ 2 mm.
Therefore, the shear flow that causes a maximum shear stress of 40 MPa is

q ¼ tt ¼ ð40� 106Þð0:002Þ ¼ 80� 103 N=m

The cross-sectional area enclosed by the median line is

A0 ¼
pr2

2
¼ pð0:025Þ2

2
¼ 0:9817� 10�3 m2

which results in the torque—see Eq. (3.8a):

T ¼ 2A0q ¼ 2ð0:9817� 10�3Þð80� 103Þ ¼ 157:07 N �m Answer

Part 2

The cross section consists of two parts, labeled z1 and z2 in the figure, each having a
constant thickness. Hence, we can writeþ

S

ds

t
¼ 1

t1

ð
S1

dsþ 1

t2

ð
S2

ds ¼ S1

t1
þ S2

t2

where S1 and S2 are the lengths of the median lines of parts z1 and z2 , respectively.
Therefore, þ

S

ds

t
¼ pr

t1
þ 2r

t2
¼ pð25Þ

2
þ 2ð25Þ

3
¼ 55:94

and Eq. (3.9a) yields for the angle of twist

y ¼ TL

4GA2
0

þ
S

ds

t
¼ 157:07ð1:2Þ

4ð28� 109Þð0:9817� 10�3Þ2
ð55:94Þ

¼ 0:0977 rad ¼ 5:60� Answer

1
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Problems

Neglect stress concentrations at the corners of the tubes in the following problems.

3.36 Consider a thin cylindrical tube of mean radius r, constant thickness t, and
length L. (a) Show that the polar moment of inertia of the cross-sectional area can be
approximated by J ¼ 2pr3t. (b) Use this approximation to show that Eqs. (3.8b) and
(3.9b) are equivalent to t ¼ T r=J and y ¼ TL=ðGJÞ, respectively.

3.37 A cylindrical metal tube of mean radius r ¼ 5 in., length L ¼ 14 ft, and shear
modulus G ¼ 11� 106 psi carries the torque T ¼ 320 kip � in. Determine the smallest
allowable constant wall thickness t if the shear stress is limited to 12 ksi and the angle
of twist is not to exceed 2�.

3.38 A cylindrical tube of constant wall thickness t and inside radius r ¼ 10t

carries a torque T. Find the expression for the maximum shear stress in the tube
using (a) the torsion formula for a hollow shaft in Eq. (3.5d); and (b) the thin-walled
tube formula in Eq. (3.8b). What is the percentage error in the thin-walled tube
approximation?

3.39 A torque of 800 N �m is applied to a tube with the rectangular cross section
shown in the figure. Determine the smallest allowable constant wall thickness t if the
shear stress is not to exceed 90 MPa.

3.40 The constant wall thickness of a tube with the elliptical cross section shown is
0.12 in. What torque will cause a shear stress of 6000 psi?

3.41 The constant wall thickness of a steel tube with the cross section shown is
2 mm. If a 600-N �m torque is applied to the tube, find (a) the shear stress in the wall
of the tube; and (b) the angle of twist per meter of length. Use G ¼ 80 GPa for steel.

3.42 Two identical metal sheets are formed into tubes with the circular and square
cross sections shown. If the same torque is applied to each tube, determine the ratios
(a) tcircle=tsquare of the shear stresses; and (b) ycircle=ysquare of the angles of twist.

3.43 A steel tube with the cross section shown carries a 50-kip � in. torque.
Determine (a) the maximum shear stress in the tube; and (b) the angle of twist per
foot of length. Use G ¼ 11� 106 psi for steel.

FIG. P3.39 FIG. P3.40

10 mm
10 mm

30 mm

FIG. P3.41

FIG. P3.42 FIG. P3.43
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3.44 An aluminum tube with the hexagonal cross section shown is 2.5 ft long and
has a constant wall thickness of 0.080 in. Find (a) the largest torque that the tube can
carry if the shear stress is limited to 7200 psi; and (b) the angle of twist caused by this
torque. Use G ¼ 4� 106 psi for aluminum.

3.45 A 4-ft-long tube with the cross section shown in the figure is made of alumi-
num. Find the torque that will cause a maximum shear stress of 10 000 psi. Use G ¼
4� 106 psi for aluminum.

3.46 A steel tube with the cross section shown is 6 ft long and has a wall thickness
of 0.12 in. (a) If the allowable shear stress is 8000 psi, determine the largest torque
that can be applied safely to the tube. (b) Compute the corresponding angle of twist.
Use G ¼ 12� 106 psi for steel.

3.47 The segment AB of the steel torsion bar is a cylindrical tube of constant
2-mm wall thickness. Segment BC is a square tube with a constant wall thickness
of 3 mm. The outer dimensions of the cross sections are shown in the figure. The tubes
are attached to a rigid bracket at B, which is loaded by a couple formed by the forces P.
Determine the largest value of P if the shear stress in either tube is limited to 60 MPa.

*3.48 The tapered, circular, thin-walled tube of length L has a constant wall
thickness t. Show that the angle of twist caused by the torque T is

y ¼ 20

9p

TL

Gtd 3
A

(Hint: Apply Eq. (3.9b) to an infinitesimal length dx of the shaft.)

FIG. P3.44

FIG. P3.45

2 in. 2 in.

2 in.

2 in.

FIG. P3.46

FIG. P3.47 FIG. P3.48
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*3.4 Torsion of Rectangular Bars

The analysis of circular shafts in Sec. 3.2 was based upon the assumption that
plane cross sections remain plane and are undistorted. If the cross section of
the shaft is not circular, experiments show that the cross sections distort and do
not remain plane. Therefore, the formulas for shear stress distribution and
torsional rigidity derived in Sec. 3.2 cannot be applied to noncircular members.

Figure 3.10 shows the distortion of a rectangular bar caused by the
torque T. The two significant features of the deformation are:. The cross sections become distorted.. The shear strain (and thus the shear stress) is zero at the edges of the

bar and largest at the middle of the sides.

The reason for the shear strain vanishing at the edges of the bar is illus-
trated in Fig. 3.11. The small element labeled A in Fig. 3.11(a) is located at the
edge of the bar. The shear stresses acting of the faces of this element, shown in
Fig. 3.11(b), are denoted by t1; t2, and t3 (recall that shear stresses acting on
complementary planes have the same magnitude but opposite sense). The two
sides of the element that are shaded must be stress-free because they are free
surfaces. Therefore, t1 ¼ t2 ¼ t3 ¼ 0, which proves that there are no shear
stresses, and therefore no shear strains, at the corners of the bar.

The maximum shear stress tmax occurs on element B in Fig. 3.11(a),
which is located at the centerline of the wider face of the bar. This stress is
shown in Fig. 3.11(c).

T

T

Fig. 3.10 Deformation of a rectangular bar due to torsion.

T

T
(a)

  max

τ1

(b) (c)

A

A B

B

 2  1

 1

 3
 3

 2   max

Fig. 3.11 Rectangular bar in torsion showing locations of zero and
maximum stresses.
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The analytical analysis of the torsion of noncircular bars lies in the
realm of the theory of elasticity, a topic that is beyond the scope of this text.
For the rectangular bar in Fig. 3.12 that carries the torque T, results
obtained by numerical methods2 determine that the maximum shear stress
tmax and the angle of twist y are given by

tmax ¼
T

C1ab2
(3.10a)

and

y ¼ TL

C2ab3G
(3.10b)

where G is the shear modulus. As shown in Fig. 3.12, a and b (a� b) are the
cross-sectional dimensions of the bar and L is its length. The coe‰cients C1

and C2, which depend on the ratio a/b, are listed in Table 3.1.

a/b C1 C2

1:0 0:208 0:141

1.2 0.219 0.166

1.5 0.231 0.196

2.0 0.246 0.229

2.5 0.258 0.249

3.0 0.267 0.263

4.0 0.282 0.281

5.0 0.291 0.291

10.0 0.312 0.312

1 0.333 0.333

Table 3-1

T

T

L

b

a
a ≥ b

  max

Fig. 3.12 Rectangular bar in torsion showing the dimensions used in Eqs. (3.10).

2S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3e, McGraw-Hill, New York, 1970.
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Sample Problem 3.8

The wooden bar consists of two segments, each of length L. One segment has a
square cross section of width d; the cross section of the other segment is a circle of
diameter d. The working stress for the wood is tw ¼ 5 MPa and the shear modulus is
G ¼ 0:5 GPa. Using L ¼ 0:6 m and d ¼ 50 mm, determine (1) the largest torque T

that can be safely applied; and (2) the corresponding angle of twist for the bar.

d

d
L

L

T

Solution

Part 1

Assuming the circular segment governs, the largest safe torque from Eq. (3.5c) is

T ¼ twpd3

16
¼

5� 106
� �

p 0:05ð Þ3

16
¼ 122:7 N �m

Assuming the square segment is critical, Eq. (3.10a) yields for the largest safe torque

T ¼ C1d3tw ¼ 0:208 0:05ð Þ3 5� 106
� �

¼ 130:0 N �m

where C1 ¼ 0:208 was obtained from Table 3.1.
Comparing the above two values for T, we see that the stress in the circular

segment governs. Therefore, the largest torque that can be applied safely is

T ¼ 122:7 N �m Answer

Part 2

The angle of twist of the bar is obtained by adding the contributions of the two seg-
ments using Eqs. (3.4b) and (3.10b):

y ¼ TL

GJ
þ TL

C2d4G
¼ TL

G pd4=32ð Þ þ
TL

0:141ð Þd4G

¼ TL

Gd4

32

p
þ 1

0:141

� �
¼ 17:28

TL

Gd4

¼ 17:28
122:7 0:6ð Þ

0:5� 109ð Þ 0:05ð Þ4
¼ 0:4071 rad ¼ 23:3̊ Answer

1
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Problems

3.49 (a) Determine the largest torque that can be safely applied to the rectangular
steel bar if the maximum shear stress is limited to 120 MPa. (b) Compute the corre-
sponding angle of twist using G ¼ 80 GPa for steel.

3.50 Determine the torque required to produce a 5� twist in the piece of wood.
Use G ¼ 1:0� 106 psi for wood.

3.51 The circular steel bar in Fig. (a) and the square steel bar in Fig. (b) are sub-
jected to the same torque T. (Note that the volumes of the bars are equal.) Determine
(a) the ratio tmaxð Þa= tmaxð Þb of their maximum shear stresses; and (b) the ratio
ymaxð Þa= ymaxð Þb of their angles of twist.

3.52 Equal torques T ¼ 5 kip � ft are applied to the two steel bars with the cross
sections shown. (Note that the cross-sectional areas of the bars are equal.) The length
of each bar is 8 ft. Calculate the maximum shear stress and angle of twist for each
bar. Use G ¼ 12� 106 psi for steel.

3.53 When a bar with the hexagonal cross section shown in Fig. (a) is subjected to
a torque T, numerical analysis shows that the maximum shear stress in the bar is
tmax ¼ 5:7T=c3. Determine the percentage loss in strength that results when a circu-
lar bar of diameter d is machined into the hexagonal shape shown in Fig. (b).

3.54 A steel bar of length L with the cross section shown is twisted through 90�.
Determine the smallest ratio L/b for which the maximum shear stress will not exceed
150 MPa. Use G ¼ 80 GPa for steel.

800 mm

20 mm

6 mm

FIG. P3.49

8 ft

T

1.75 in.3.75 in.

FIG. P3.50

T

aa a

LL

T

(a) (b)

√π

FIG. P3.51

5 in. 10 in.
2 in.

(a) (b)

1.0 in.

FIG. P3.52

c

(a)

Location of

d

(b)

  max

FIG. P3.53

a = 4b

b

FIG. P3.54
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Review Problems

3.55 The torque T is applied to the solid shaft of radius r2. Determine the radius r1

of the inner portion of the shaft that carries one-half of the torque.

3.56 The solid aluminium shaft ABCD carries the three torques shown.
(a) Determine the smallest safe diameter of the shaft if the allowable shear stress is
15 ksi. (b) Compute the angle of rotation of end A of the shaft using G ¼ 4� 106 psi.

3.57 A circular tube of outer diameter D is slipped over a 40-mm-diameter solid
cylinder. The tube and cylinder are then welded together. For what value of D will
the torsional strengths of the tube and cylinder be equal?

3.58 A solid steel shaft 4 m long is stressed to 70 MPa when twisted through 3�.
(a) Given that G ¼ 83 GPa, find the diameter of the shaft. (b) What power does this
shaft transmit when running at 18 Hz?

3.59 Determine the maximum torque that can be applied to a hollow circular steel
shaft of 100-mm outer diameter and 80-mm inner diameter. The shear stress is lim-
ited to 70 MPa, and the angle of twist must not exceed 0.4 � in a length of 1.0 m.
Use G ¼ 83 GPa for steel.

3.60 A 2-in.-diameter steel shaft rotates at 240 rev/min. If the shear stress is lim-
ited to 12 ksi, determine the maximum horsepower that can be transmitted at that
speed.

3.61 The compound shaft, consisting of steel and aluminum segments, carries the
two torques shown in the figure. Determine the maximum permissible value of T

subject to the following design conditions: tst a 83 MPa, tal a 55 MPa, and y a 6�

(y is the angle of rotation of the free end). Use G ¼ 83 GPa for steel and G ¼ 28 GPa
for aluminum.

3.62 The four gears are attached to a steel shaft that is rotating at 2 Hz. Gear B

supplies 70 kW of power to the shaft. Of that power, 20 kW are used by gear A, 20
kW by gear C, and 30 kW by gear D. (a) Find the uniform shaft diameter if the shear
stress in the shaft is not to exceed 60 MPa. (b) If a uniform shaft diameter of 100 mm
is specified, determine the angle by which one end of the shaft lags behind the other
end. Use G ¼ 83 GPa for steel.

T

r1r2

FIG. P3.55

4000 in.

2400 in.

1600 in.

A

B

C

D

36 in.

30 in.
15 in.

FIG. P3.56

40 mm D

FIG. P3.57

FIG. P3.61 FIG. P3.62
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3.63 The composite shaft consists of a copper rod that fits loosely inside an alu-
minum sleeve. The two components are attached to a rigid wall at one end and
joined with an end-plate at the other end. Determine the maximum shear stress in
each material when the 2-kN �m torque is applied to the end-plate. Use G ¼ 26 GPa
for aluminum and G ¼ 47 GPa for copper.

3.64 The torque T is applied to the solid shaft with built-in ends. (a) Show that the
reactive torques at the walls are TA ¼ Tb=L and TC ¼ Ta=L. (b) How would the re-
sults of Part (a) change if the shaft were hollow?

3.65 A flexible shaft consists of a 0.20-in.-diameter steel rod encased in a sta-
tionary tube that fits closely enough to impose a torque of intensity 0.50 lb � in./in. on
the rod. (a) Determine the maximum length of the shaft if the shear stress in the rod
is not to exceed 20 ksi. (b) What will be the relative angular rotation between the
ends of the rod? Use G ¼ 12� 106 psi for steel.

3.66 The shaft ABC is attached to rigid walls at A and C. The torque T0 is dis-
tributed uniformly over segment AB of the shaft. Determine the reactions at A and C.

3.67 A torque of 400 lb � ft is applied to the square tube with constant 0.10-in. wall
thickness. Determine the smallest permissible dimension a if the shear stress is limited
to 6500 psi.

3.68 The cross section of a brass tube is an equilateral triangle with a constant
wall thickness, as shown in the figure. If the shear stress is limited to 8 ksi and the
angle of twist is not to exceed 2� per foot length, determine the largest allowable
torque that can be applied to the tube. Use G ¼ 5:7� 106 psi for brass.

3.69 A torsion member is made by placing a circular tube inside a square tube, as
shown, and joining their ends by rigid end-plates. The tubes are made of the same
material and have the same constant wall thickness t ¼ 5 mm. If a torque T is
applied to the member, what fraction of T is carried by each component?

3.70 A 3-m-long aluminum tube with the cross section shown carries a 200-N �m
torque. Determine (a) the maximum shear stress in the tube; and (b) the relative
angle of rotation of the ends of the tube. For aluminum, use G ¼ 28 GPa.

FIG. P3.63 FIG. P3.64

FIG. P3.66

FIG. P3.67 FIG. P3.68 FIG. P3.69
FIG. P3.70
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Computer Problems

C3.1 An aluminum bar of circular cross section and the profile specified in Prob.
C2.1 is subjected to a 15-N �m torque. Use numerical integration to compute the
angle of twist of the bar. For aluminum, use G ¼ 30 GPa.

C3.2 A steel bar of circular cross section has the profile shown in the figure. Use
numerical integration to compute the torsional sti¤ness k ¼ T=y of the bar. For steel,
use G ¼ 12� 106 psi.

C3.3 The diameter d of the solid shaft of length L varies with the axial coordinate
x. Given L and dðxÞ, write an algorithm to calculate the constant diameter D of a
shaft that would have the same torsional sti¤ness (assume that the two shafts have
the same length and are made of the same material). Use (a) L ¼ 500 mm and

d ¼ ð25 mmÞ 1þ 3:8
x

L
� 3:6

x2

L2

� �

and (b) L ¼ 650 mm and

d ¼

20 mm if x a 200 mm

20 mmþ x� 200 mm

10
if 200 mm a x a 350 mm

35 mm if x b 350 mm

8>>>><
>>>>:

C3.4 The solid shaft ABC of length L and variable diameter d is attached to rigid
supports at A and C. A torque T acts at the distance b from end A. Given L, b, and
dðxÞ, write an algorithm to compute the fraction of T that is carried by segments AB

and BC. Use (a) L ¼ 200 mm, b ¼ 110 mm, and

d ¼ 30 mm� ð20 mmÞ sin
px

L

and (b) L ¼ 400 mm, b ¼ 275 mm, and

d ¼

25 mm if x a 200 mm

25 mmþ ðx� 200 mmÞ2

250 mm
if 200 mm a x a 250 mm

35 mm if x b 250 mm

8>>>><
>>>>:

FIG. C3.2 FIG. C3.3

FIG. C3.4
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C3.5 An extruded tube of length L has the cross section shown in the figure.
The radius of the median line is r ¼ 75 mm, and the wall thickness varies with the
angle a as

t ¼ t1 þ ðt2 � t1Þ sin
a

2

Given L, r, t1, t2, and G, write an algorithm to compute the angle of twist required to
produce the maximum shear stress tmax. Use L ¼ 1:8 m, r ¼ 75 mm, t1 ¼ 2 mm,
t2 ¼ 4 mm, G ¼ 40 GPa (brass), and tmax ¼ 110 MPa.

C3.6 The thin-walled tube in the shape of a truncated cone carries a torque T0 that
is uniformly distributed over its length L. The radius of the median line varies lin-
early from r1 to r2 over the length of the tube. The wall thickness t is constant. Given
L, r1, r2, t, T0, and G, construct an algorithm that (a) plots the shear stress in the tube
as a function of the axial distance x; and (b) computes the angle of rotation at the
free end of the tube. Use L ¼ 10 ft, r1 ¼ 3 in., r2 ¼ 12 in., t ¼ 0:2 in., T0 ¼ 60 kip � ft,
and G ¼ 12� 106 psi (steel).

FIG. C3.5 FIG. C3.6
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4
Shear and Moment in Beams

4.1 Introduction

The term beam refers to a slender bar that carries transverse loading; that is,
the applied forces are perpendicular to the bar. In a beam, the internal force
system consists of a shear force and a bending moment acting on the cross
section of the bar. As we have seen in previous chapters, axial and torsional
loads often result in internal forces that are constant in the bar, or over
portions of the bar. The study of beams, however, is complicated by the fact
that the shear force and the bending moment usually vary continuously
along the length of the beam.

The internal forces give rise to two kinds of stresses on a transverse
section of a beam: (1) normal stress that is caused by the bending moment

Power-generating turbines on a wind farm.

The supporting columns can be modeled as

beams subjected to wind loading. The

determination of shear forces and bending

moments in beams caused by various load

conditions is the topic of this chapter.

Courtesy of 2009fotofriends/Shutterstock.2
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and (2) shear stress due to the shear force. This chapter is concerned only
with the variation of the shear force and the bending moment under various
combinations of loads and types of supports. Knowing the distribution of
the shear force and the bending moment in a beam is essential for the com-
putation of stresses and deformations, which will be investigated in sub-
sequent chapters.

4.2 Supports and Loads

Beams are classified according to their supports. A simply supported beam,
shown in Fig. 4.1(a), has a pin support at one end and a roller support at the
other end. The pin support prevents displacement of the end of the beam,
but not its rotation. The term roller support refers to a pin connection that is
free to move parallel to the axis of the beam; hence, this type of support
suppresses only the transverse displacement. A cantilever beam is built into
a rigid support at one end, with the other end being free, as shown in
Fig. 4.1(b). The built-in support prevents displacements as well as rotations
of the end of the beam. An overhanging beam, illustrated in Fig. 4.1(c), is
supported by a pin and a roller support, with one or both ends of the beam
extending beyond the supports. The three types of beams are statically
determinate because the support reactions can be found from the equilibrium
equations.

A concentrated load, such as P in Fig. 4.1(a), is an approximation of
a force that acts over a very small area. In contrast, a distributed load is
applied over a finite area. If the distributed load acts on a very narrow area,
the load may be approximated by a line load. The intensity w of this loading
is expressed as force per unit length (lb/ft, N/m, etc.). The load distribution
may be uniform, as shown in Fig. 4.1(b), or it may vary with distance along
the beam, as in Fig. 4.1(c). The weight of the beam is an example of dis-
tributed loading, but its magnitude is usually small compared to the loads
applied to the beam.

Figure 4.2 shows other types of beams. These beams are over-supported
in the sense that each beam has at least one more reaction than is necessary
for support. Such beams are statically indeterminate; the presence of these
redundant supports requires the use of additional equations obtained by
considering the deformation of the beam. The analysis of statically
indeterminate beams will be discussed in Chapter 7.

FIG. 4.1 Statically determinate beams.
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4.3 Shear-Moment Equations

and Shear-Moment Diagrams

The determination of the internal force system acting at a given section of a
beam is straightforward: We draw a free-body diagram that exposes these
forces and then compute the forces using equilibrium equations. However,
the goal of beam analysis is more involved—we want to determine the shear
force V and the bending moment M at every cross section of the beam. To
accomplish this task, we must derive the expressions for V and M in terms of
the distance x measured along the beam. By plotting these expressions to
scale, we obtain the shear force and bending moment diagrams for the beam.
The shear force and bending moment diagrams are convenient visual refer-
ences to the internal forces in a beam; in particular, they identify the max-
imum values of V and M.

a. Sign conventions

For consistency, it is necessary to adopt sign conventions for applied load-
ing, shear forces, and bending moments. We will use the conventions shown
in Fig. 4.3, which assume the following to be positive:

. External forces that are directed downward; external couples that are
directed clockwise.. Shear forces that tend to rotate a beam element clockwise.. Bending moments that tend to bend a beam element concave upward
(the beam ‘‘smiles’’).

The main disadvantage of the above conventions is that they rely on
such adjectives as ‘‘downward,’’ ‘‘clockwise,’’ and so on. To eliminate this
obstacle, a convention based upon a Cartesian coordinate system is some-
times used.

FIG. 4.2 Statically indeterminate beams.
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b. Procedure for determining shear force and bending

moment diagrams

The following is a general procedure for obtaining shear force and bending
moment diagrams of a statically determinate beam:

. Compute the support reactions from the FBD of the entire beam.. Divide the beam into segments so that the loading within each segment
is continuous. Thus, the end-points of the segments are discontinuities
of loading, including concentrated loads and couples.

Perform the following steps for each segment of the beam:

. Introduce an imaginary cutting plane within the segment, located at a
distance x from the left end of the beam, that cuts the beam into two
parts.. Draw a FBD for the part of the beam lying either to the left or to the
right of the cutting plane, whichever is more convenient. At the cut
section, show V and M acting in their positive directions.. Determine the expressions for V and M from the equilibrium equa-
tions obtainable from the FBD. These expressions, which are usually
functions of x, are the shear force and bending moment equations for
the segment.. Plot the expressions for V and M for the segment. It is visually desir-
able to draw the V-diagram below the FBD of the entire beam, and
then draw the M-diagram below the V-diagram.

The bending moment and shear force diagrams of the beam are
composites of the V- and M-diagrams of the segments. These diagrams are
usually discontinuous and/or have discontinuous slopes at the end-points of
the segments due to discontinuities in loading.

FIG. 4.3 Sign conventions for external loads, shear force, and bending moment.
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Sample Problem 4.1

The simply supported beam in Fig. (a) carries two concentrated loads. (1) Derive the
expressions for the shear force and the bending moment for each segment of the
beam. (2) Draw the shear force and bending moment diagrams. Neglect the weight of
the beam. Note that the support reactions at A and D have been computed and are
shown in Fig. (a).

Solution

Part 1

The determination of the expressions for V and M for each of the three beam seg-
ments (AB, BC, and CD) is explained below.

Segment AB (0H xH2 m) Figure (b) shows the FBDs for the two parts of the beam
that are separated by section z1 , located within segment AB. Note that we show
V and M acting in their positive directions according to the sign conventions in
Fig. 4.3. Because V and M are equal in magnitude and oppositely directed on the
two FBDs, they can be computed using either FBD. The analysis of the FBD of the
part to the left of section z1 yields

SFy ¼ 0 þ" 18� V ¼ 0

V ¼ þ18 kN Answer

SME ¼ 0 þ

m

�18xþM ¼ 0

M ¼ þ18x kN �m Answer
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Segment BC (2 mH xH 5 m) Figure (c) shows the FBDs for the two parts of the
beam that are separated by section z2 , an arbitrary section within segment BC. Once
again, V and M are assumed to be positive according to the sign conventions in Fig.
4.3. The analysis of the part to the left of section z2 gives

SFy ¼ 0 þ" 18� 14� V ¼ 0

V ¼ þ18� 14 ¼ þ4 kN Answer

SMF ¼ 0 þ

m

�18xþ 14ðx� 2Þ þM ¼ 0

M ¼ þ18x� 14ðx� 2Þ ¼ 4xþ 28 kN �m Answer

Segment CD (5 mH xH7 m) Section z3 is used to find the shear force and bending
moment in segment CD. The FBDs in Fig. (d) again show V and M acting in their
positive directions. Analyzing the portion of the beam to the left of section z3 , we
obtain

SFy ¼ 0 þ" 18� 14� 28� V ¼ 0

V ¼ þ18� 14� 28 ¼ �24 kN Answer

SMG ¼ 0 þ

m

�18xþ 14ðx� 2Þ þ 28ðx� 5Þ þM ¼ 0

M ¼ þ18x� 14ðx� 2Þ � 28ðx� 5Þ ¼ �24xþ 168 kN �m Answer
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Part 2

The shear force and bending moment diagrams in Figs. (f ) and (g) are the plots of
the expressions for V and M derived in Part 1. By placing these plots directly below
the sketch of the beam in Fig. (e), we establish a clear visual relationship between the
diagrams and locations on the beam.

An inspection of the V-diagram reveals that the largest shear force in the beam
is �24 kN and that it occurs at every cross section of the beam in segment CD. From
the M-diagram we see that the maximum bending moment is þ48 kN �m, which oc-
curs under the 28-kN load at C. Note that at each concentrated force the V-diagram
‘‘jumps’’ by an amount equal to the force. Furthermore, there is a discontinuity in
the slope of the M-diagram at each concentrated force.

1
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Sample Problem 4.2

The simply supported beam in Fig. (a) is loaded by the clockwise couple C0 at B.
(1) Derive the shear force and bending moment equations, and (2) draw the shear
force and bending moment diagrams. Neglect the weight of the beam. The support
reactions A and C have been computed, and their values are shown in Fig. (a).

Solution

Part 1

Due to the presence of the couple C0, we must analyze segments AB and BC sepa-
rately.

Segment AB (0H xH3L/4) Figure (b) shows the FBD of the part of the beam to
the left of section z1 (we could also use the part to the right). Note that V and M

are assumed to act in their positive directions according to the sign conventions in
Fig. 4.3. The equilibrium equations for this portion of the beam yield

SFy ¼ 0 þ" �C0

L
� V ¼ 0 V ¼ �C0

L
Answer

SMD ¼ 0 þ

m C0

L
xþM ¼ 0 M ¼ �C0

L
x Answer

Segment BC (3L/4H xH L) Figure (c) shows the FBD of the portion of the beam to
the left of section z2 (the right portion could also be used). Once again, V and M are
assumed to act in their positive directions. Applying the equilibrium equations to the
beam segment, we obtain
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SFy ¼ 0 þ" �C0

L
� V ¼ 0 V ¼ �C0

L
Answer

SME ¼ 0 þ

m C0

L
x� C0 þM ¼ 0 M ¼ �C0

L
xþ C0 Answer

Part 2

The sketch of the beam is repeated in Fig. (d). The shear force and bending moment
diagrams shown in Figs. (e) and (f) are obtained by plotting the expressions for V and
M found in Part 1. From the V-diagram, we see that the shear force is the same for
all cross sections of the beam. The M-diagram shows a jump of magnitude C0 at the
point of application of the couple.

(e)

(f)

(d)

1
Sample Problem 4.3

The overhanging beam ABC in Fig.(a) carries a concentrated load and a uniformly
distributed load. (1) Derive the shear force and bending moment equations; and (2)
draw the shear force and bending moment diagrams. Neglect the weight of the beam.

200 lb

4 ft 10 ft

(a)

120 lb/ft
y

A

B C
x
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Solution

Inspection of the beam in Fig. (a) reveals that we must analyze segments AB and BC

separately.

Part 1

The FBD of the beam is shown in Fig. (b). Note that the uniformly distributed load
has been replaced by its resultant, which is the force 120ð10Þ ¼ 1200 lb (area under
the loading diagram) acting at the centroid of the loading diagram. The reactions
shown at the supports at B and C were computed from the equilibrium equations.

200 lb

1 2

200 lb

4 ft

x ft

RB = 880 lb

RB = 880 lb

RC = 520 lb
10 ft

(b)

(d)

(c)

1200 lb
y

A

A

A

D

M

V

B

B

C
x

5 ft

(x – 4)

120(x – 4) lb
2

ft

4 ft (x – 4) ft

x ft

E

M
200 lb

V

Segment AB (0H xH4 ft) Figure (c) shows the FBD of the portion of the beam that
lies to the left of section z1 . (The part of the beam lying to the right of the section
could also be used.) The shearing force V and the bending moment M that act at
the cut section were assumed to act in their positive directions following the sign
convention in Fig. 4.3. The equilibrium equations for this part of the beam yield

�Fy ¼ 0 þ " � 200� V ¼ 0 V ¼ �200 lb Answer

�MD ¼ 0 þ

m

� 200xþM ¼ 0 M ¼ �200x lb � ft Answer

Segment BC (4 ftH xH 14 ft) The FBD of the part of the beam that lies to the left
of section z2 is shown in Fig. (d). (The portion of the beam lying to the right
of the section could also be used.) Once again, the shearing force V and the
bending moment M are shown acting in their positive directions. Applying
the equilibrium equations to the beam segment, we obtain

�Fy ¼ 0 þ " � 200þ 880� 120ðx� 4Þ � V ¼ 0 V ¼ 1160� 120x lb Answer

�ME ¼ 0þ

m

200x� 880ðx� 4Þ þ 120ðx� 4Þ ðx� 4Þ
2
þM ¼ 0

M ¼ �60x2 þ 1160x� 4480 lb � ft Answer
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Part 2

The FBD of the beam is repeated in Fig. (e). The plots of the shear force and bending
moment diagrams are shown in Figs. (f) and (g), respectively. Note that the shear
force diagram is composed of straight-line segments, and the bending moment
diagram is a straight line between A and B, and a parabola between B and C.

200 lb
120 lb/ft

y

B C

A
x

4 ft

680

5.667

4 4.333

10 ft

(e)

(f)

(g)

RB = 880 lb

V (lb)

–200

–520

x (ft)

–800

1127

M (lb ·ft)

RC = 520 lb

x (ft)

The location of the section where the shear force is zero is determined as follows:

V ¼ 1160� 120x ¼ 0

which gives
x ¼ 9:667 ft

The maximum bending moment occurs where the slope of the moment diagram is
zero; that is, where dM=dx ¼ 0, which yields

dM

dx
¼ �120xþ 1160 ¼ 0

which again gives x ¼ 9:667 ft. (The reason that the maximum bending moment
occurs at the section where the shear force is zero will be explained in Sec. 4.4.)
Substituting this value of x into the expression for the bending moment, we find that
the maximum bending moment is

Mmax ¼ �60ð9:667Þ2 þ 1160ð9:667Þ � 4480 ¼ 1127 lb � ft
1
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Sample Problem 4.4

The cantilever beam in Fig. (a) carries a triangular load, the intensity of which varies from
zero at the left end to 360 lb/ft at the right end. In addition, a 1000-lb upward vertical load
acts at the free end of the beam. (1) Derive the shear force and bending moment equations,
and (2) draw the shear force and bending moment diagrams. Neglect the weight of the beam.

Solution

The FBD of the beam is shown in Fig. (b). Note that the triangular load has been
replaced by its resultant, which is the force 0:5ð12Þð360Þ ¼ 2160 lb (area under the load-
ing diagram) acting at the centroid of the loading diagram. The support reactions at B

can now be computed from the equilibrium equations; the results are shown in Fig. (b).

Because the loading is continuous, the beam does not have to be divided into
segments. Therefore, only one expression for V and one expression for M apply to
the entire beam.
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Part 1

Figure (c) shows the FBD of the part of the beam that lies to the left of section z1 .
Letting w be the intensity of the loading at section z1 , as shown in Fig. (b), we have
from similar triangles, w=x ¼ 360=12, or w ¼ 30x lb/ft. Now the triangular load in
Fig. (c) can be replaced by its resultant force 15x2 lb acting at the centroid of the
loading diagram, which is located at x=3 ft from section z1 . The shear force V and
bending moment M acting at section z1 are shown acting in their positive directions
according to the sign conventions in Fig. 4.3. Equilibrium analysis of the FBD in
Fig. (c) yields

SFy ¼ 0 þ" 1000� 15x2 � V ¼ 0

V ¼ 1000� 15x2 lb Answer

SMC ¼ 0 þ

m

�1000xþ 15x2 x

3

� �
þM ¼ 0

M ¼ 1000x� 5x3 lb � ft Answer

Part 2

Plotting the expressions for V and M found in Part 1 gives the shear force and bend-
ing moment diagrams shown in Figs. (d) and (e). Observe that the shear force dia-
gram is a parabola and the bending moment diagram is a third-degree polynomial
in x.

The location of the section where the shear force is zero is found from

V ¼ 1000� 15x2 ¼ 0

which gives

x ¼ 8:165 ft

The maximum bending moment occurs where the slope of the M-diagram is zero—
that is, where dM=dx ¼ 0. Di¤erentiating the expression for M, we obtain

dM

dx
¼ 1000� 15x2 ¼ 0

which again yields x ¼ 8:165 ft. (In the next section, we will show that the slope of
the bending moment is always zero where the shear force vanishes.) Substituting this
value of x into the expression for M, we find that the maximum bending moment is

Mmax ¼ 1000ð8:165Þ � 5ð8:165Þ3 ¼ 5443 lb � ft

1
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Problems

4.1–4.18 For the beam shown, derive the expressions for V and M, and draw the
shear force and bending moment diagrams. Neglect the weight of the beam.

FIG. P4.1 FIG. P4.2

FIG. P4.3 FIG. P4.4

FIG. P4.5 FIG. P4.6

4 ft4 ft

B

A

y 400 lb/ft

C
x

FIG. P4.7 FIG. P4.8

y

A

2 m 3 m

B

C
x

50 kN · m

10 kN

FIG. P4.9

3 ft

FIG. P4.10

FIG. P4.11 FIG. P4.12
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FIG. P4.13 FIG. P4.14

y

A
B C

D
x

2 kips 4 kips

6 ft2 ft 4 ft

FIG. P4.15
FIG. P4.16

FIG. P4.17 FIG. P4.18

y

A B D
x

C

120 kN/m

2.2 m 2.4 m 2.2 m

FIG. P4.19

y

A

B

C

w = 200x N/m

x

2 m 3 m

FIG. P4.20

y

A
B C

x

6 lb/ft

6 ft 4 ft
Hinge

FIG. P4.21

4.22–4.23 Derive the shear force and the bending moment as functions of the
angle y for the arch shown. Neglect the weight of the arch.

BM0

A

R

θ
C

O

FIG. P4.22

B

P

A

R

θ
C

O

FIG. P4.23
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4.4 Area Method for Drawing

Shear-Moment Diagrams

Useful relationships between the loading, shear force, and bending moment can
be derived from the equilibrium equations. These relationships enable us to plot
the shear force diagram directly from the load diagram, and then construct the
bending moment diagram from the shear force diagram. This technique, called
the area method, allows us to draw the shear force and bending moment diagrams
without having to derive the equations for V and M. We first consider beams
subjected to distributed loading and then discuss concentrated forces and couples.

a. Distributed loading

Consider the beam in Fig. 4.4(a) that is subjected to a line load of intensity wðxÞ,
where wðxÞ is assumed to be a continuous function. The free-body diagram of an
infinitesimal element of the beam, located at the distance x from the left end, is
shown in Fig. 4.4(b). In addition to the distributed load wðxÞ, the segment carries
a shear force and a bending moment at each end, which are denoted by V and M

at the left end and by V þ dV and M þ dM at the right end. The infinitesimal
di¤erences dV and dM represent the changes that occur over the di¤erential
length dx of the element. Observe that all forces and bending moments are
assumed to act in their positive directions, as defined in Fig. 4.3 (on p. 110).

The force equation of equilibrium for the element is

SFy ¼ 0 þ" V � w dx� ðV þ dVÞ ¼ 0

from which we get

w ¼ � dV

dx
(4.1)

The moment equation of equilibrium yields

SMO ¼ 0 þ m �M � V dxþ ðM þ dMÞ þ w dx
dx

2
¼ 0

FIG. 4.4 (a) Simply supported beam carrying distributed loading; (b) free-body
diagram of an infinitesimal beam segment.
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After canceling M and dividing by dx, we get

�V þ dM

dx
þ w dx

2
¼ 0

Because dx is infinitesimal, the last term can be dropped (this is not an
approximation), yielding

V ¼ dM

dx
(4.2)

Equations (4.1) and (4.2) are called the di¤erential equations of equili-

brium for beams. The following five theorems relating the load, the shear
force, and the bending moment diagrams follow from these equations.

1. The load intensity at any section of a beam is equal to the negative of
the slope of the shear force diagram at the section.
Proof—follows directly from Eq. (4.1).

2. The shear force at any section is equal to the slope of the bending
moment diagram at that section.
Proof—follows directly from Eq. (4.2).

3. The di¤erence between the shear forces at two sections of a beam is
equal to the negative of the area under the load diagram between those
two sections.
Proof—integrating Eq. (4.1) between sections A and B in Fig. 4.5, we
obtain ð xB

xA

dV

dx
dx ¼ VB � VA ¼ �

ð xB

xA

w dx

Recognizing that the integral on the right-hand side of this equation
represents the area under the load diagram between A and B, we get

VB � VA ¼ �area of w-diagram�BA Q:E:D:

FIG. 4.5 (a) Simply supported beam carrying distributed loading; (b) free-body
diagram of a finite beam segment.
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For computational purposes, a more convenient form of this equation
is

VB ¼ VA � area of w-diagram�BA (4.3)

Note that the signs in Eq. (4.3) are correct only if xB > xA.
4. The di¤erence between the bending moments at two sections of a beam

is equal to the area of the shear force diagram between these two sec-
tions.
Proof—integrating Eq. (4.2) between sections A and B (see Fig. 4.5),
we have ð xB

xA

dM

dx
dx ¼MB �MA ¼

ð xB

xA

V dx

Because the right-hand side of this equation is the area of the shear
force diagram between A and B, we obtain

MB �MA ¼ area of V -diagram�BA Q.E.D.

We find it convenient to use this equation in the form

MB ¼MA þ area of V -diagram�BA (4.4)

The signs in Eq. (4.4) are correct only if xB > xA.
5. If the load diagram is a polynomial of degree n, then the shear force

diagram is a polynomial of degree ðnþ 1Þ, and the bending moment
diagram is a polynomial of degree ðnþ 2Þ.
Proof—follows directly from the integration of Eqs. (4.1) and (4.2).

The area method for drawing shear force and bending moment
diagrams is a direct application of the foregoing theorems. For example,
consider the beam segment shown in Fig. 4.6(a), which is 2 m long and is
subjected to a uniformly distributed load w ¼ 300 N/m. Figure 4.6(b) shows
the steps required in the construction of the shear force and bending moment
diagrams for the segment, given that the shear force and the bending
moment at the left end are VA ¼ þ1000 N and MA ¼ þ3000 N �m.

b. Concentrated forces and couples

The area method for constructing shear force and bending moment dia-
grams described above for distributed loads can be extended to beams that
are loaded by concentrated forces and/or couples. Figure 4.7 shows the free-
body diagram of a beam element of infinitesimal length dx containing a point
A where a concentrated force PA and a concentrated couple CA are applied.
The shear force and the bending moment acting at the left side of the ele-
ment are denoted by V�A and M�

A , whereas the notation VþA and Mþ
A is used

for the right side of the element. Observe that all forces and moments in
Fig. 4.7 are assumed to be positive according to the sign conventions in Fig. 4.3.

The force equilibrium equation gives

SFy ¼ 0 þ" V�A � PA � VþA ¼ 0
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VþA ¼ V�A � PA (4.5)

Equation (4.5) indicates that a positive concentrated force causes a negative
jump discontinuity in the shear force diagram at A (a concentrated couple
does not a¤ect the shear force diagram).

FIG. 4.6 (a) Free-body diagram of a beam segment carrying uniform loading;
(b) constructing shear force and bending moment diagrams for the beam segment.

FIG. 4.7 Free-body diagram of an
infinitesimal beam element carrying a
concentrated force PA and a
concentrated couple CA.
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The moment equilibrium equation yields

SMA ¼ 0 þ m

Mþ
A �M�

A � CA � VþA

dx

2
� V�A

dx

2
¼ 0

Dropping the last two terms because they are infinitesimal (this is not an
approximation), we obtain

Mþ
A ¼M�

A þ CA (4.6)

Thus, a positive concentrated couple causes a positive jump in the bending
moment diagram.

c. Summary

Equations (4.1)–(4.6), which are repeated below, form the basis of the area
method for constructing shear force and bending moment diagrams without
deriving the expressions for V and M. The area method is useful only if the
areas under the load and shear force diagrams can be computed easily.

w ¼ � dV

dx
(4.1)

V ¼ dM

dx
(4.2)

VB ¼ VA � area of w-diagram�BA (4.3)

MB ¼MA þ area of V -diagram�BA (4.4)

VþA ¼ V�A � PA (4.5)

Mþ
A ¼M�

A þ CA (4.6)

Procedure for the Area Method The following steps outline the pro-
cedure for constructing shear force and bending moment diagrams by the
area method:

. Compute the support reactions from the FBD of the entire beam.. Draw the load diagram of the beam (which is essentially a FBD) show-
ing the values of the loads, including the support reactions. Use the
sign conventions in Fig. 4.3 to determine the correct sign of each load.. Working from left to right, construct the V- and M-diagrams for each
segment of the beam using Eqs. (4.1)–(4.6).. When you reach the right end of the beam, check to see whether the
computed values of V and M are consistent with the end conditions. If
they are not, you have made an error in the computations.

At first glance, using the area method may appear to be more cumber-
some than plotting the shear force and bending moment equations.
However, with practice you will find that the area method is not only
much faster but also less susceptible to numerical errors because of the self-
checking nature of the computations.
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Sample Problem 4.5

The simply supported beam in Fig. (a) supports a 30-kN concentrated force at B and
a 40-kN �m couple at D. Sketch the shear force and bending moment diagrams by
the area method. Neglect the weight of the beam.

Solution

Load Diagram

The load diagram for the beam is shown in Fig. (b). The reactions at A and E were
found from equilibrium analysis. The numerical value of each force (and the couple)
is followed by a plus or minus sign in parentheses, indicating its sign as established by
the sign conventions in Fig. 4.3.

Shear Force Diagram

We now explain the steps used to construct the shear force diagram in Fig. (c). From
the load diagram, we see that there are concentrated forces at A, B, and E that will
cause jumps in the shear force diagram at these points. Therefore, our discussion of
shear force must distinguish between sections of the beam immediately to the left and
to the right of each of these points.
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We begin by noting that V�A ¼ 0 because no loading is applied to the left of A.
We then proceed across the beam from left to right, constructing the diagram as
we go:

VþA ¼ V�A � RA ¼ 0� ð�14Þ ¼ þ14 kN

Plot point za .

V�B ¼ VþA � area of w-diagram�BA ¼ 14� 0 ¼ 14 kN

Plot point zb .

Because w ¼ �dV=dx ¼ 0 between A and B, the slope of the V-diagram is zero be-
tween these points.

Connect za and zb with a horizontal straight line.

VþB ¼ V�B � PB ¼ 14� ðþ30Þ ¼ �16 kN

Plot point zc .

V�E ¼ VþB � area of w-diagram�EB ¼ �16� 0 ¼ �16 kN

Plot point zd .

Noting that w ¼ �dV=dx ¼ 0 between B and E, we conclude that the slope of the
V-diagram is zero in segment BE.

Connect zc and zd with a horizontal straight line.

Because there is no loading to the right of E, we should find that VþE ¼ 0.

VþE ¼ V�E � RE ¼ �16� ð�16Þ ¼ 0 Checks!

Bending Moment Diagram

We now explain the steps required to construct the bending moment diagram shown
in Fig. (d). Because the applied couple is known to cause a jump in the bending
moment diagram at D, we must distinguish between the bending moments at sections
just to the left and to the right of D. Before proceeding, we compute the areas under
the shear force diagram for the di¤erent beam segments. The results of these com-
putations are shown in Fig. (c). Observe that the areas are either positive or negative,
depending on the sign of the shear force.

We begin our construction of the bending moment diagram by noting that
MA ¼ 0 (there is no couple applied at A).

Plot point ze .

Proceeding across the beam from left to right, we generate the moment diagram in
Fig. (d) in the following manner:

MB ¼MA þ area of V -diagram�BA ¼ 0þ ðþ56Þ ¼ 56 kN �m

Plot point zf .

The V-diagram shows that the shear force between A and B is constant and positive.
Therefore, the slope of the M-diagram between these two sections is also constant
and positive (recall that dM=dx ¼ V ).

Connect ze and zf with a straight line.

M�
D ¼MB þ area of V -diagram�DB ¼ 56þ ð�48Þ ¼ 8 kN �m

Plot point zg .

Because the slope of the V-diagram between B and D is negative and constant, the
M-diagram has a constant, negative slope in this segment.

Connect zf and zg with a straight line.
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Mþ
D ¼M�

D þ CD ¼ 8þ ðþ40Þ ¼ 48 kN �m

Plot point zh .

Next, we note that ME ¼ 0 (there is no couple applied at E ). Our computation based
on the area of the V-diagram should verify this result.

ME ¼Mþ
D þ area of V -diagram�ED ¼ 48þ ð�48Þ ¼ 0 Checks!

Plot point zi .

The shear force between D and E is negative and constant, which means that the
slope of the M-diagram for this segment is also constant and negative.

Connect zh and zi with a straight line.

1
Sample Problem 4.6

The overhanging beam in Fig. (a) carries two uniformly distributed loads and a con-
centrated load. Using the area method, draw the shear force and bending moment
diagrams for the beam. Neglect the weight of the beam.
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Solution

Load Diagram

The load diagram for the beam is given in Fig. (b); the reactions at B and D were
determined by equilibrium analysis. Each of the numerical values is followed by a plus or
minus sign in parentheses, determined by the sign conventions established in Fig. 4.3. The
significance of the section labeled F will become apparent in the discussion that follows.

Shear Force Diagram

The steps required to construct the shear force diagram in Fig. (c) are now detailed. From
the load diagram, we see that there are concentrated forces at B, C, and D, which means that
there will be jumps in the shear diagram at these points. Therefore, we must di¤erentiate
between the shear force immediately to the left and to the right of each of these points.

We begin our construction of the V-diagram by observing that VA ¼ 0 because
no force is applied at A.

Plot point za .

V�B ¼ VA � area of w-diagram�BA ¼ 0� ðþ400Þð2Þ ¼ �800 lb

Plot point zb .

We observe from Fig. (b) that the applied loading between A and B is constant and
positive, so the slope of the shear diagram between the two cross sections is constant
and negative (recall that dV=dx ¼ �w).

Connect za and zb with a straight line.
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VþB ¼ V�B � RB ¼ �800� ð�1520Þ ¼ 720 lb

Plot point zc .

V�C ¼ VþB � area of w-diagram�CB ¼ 720� 0 ¼ 720 lb

Plot point zd .

Because w ¼ �dV=dx ¼ 0 between B and C, the slope of the V-diagram is zero in
this segment.

Connect zc and zd with a horizontal straight line.

VþC ¼ V�C � PC ¼ 720� ðþ400Þ ¼ 320 lb

Plot point ze .

V�D ¼ VþC � area of w-diagram�DC ¼ 320� ðþ200Þ4 ¼ �480 lb

Plot point zf .

Because the loading between C and D is constant and positive, the slope of the
V-diagram between these two sections is constant and negative.

Connect ze and zf with a straight line.

Our computations have identified an additional point of interest—the point where
the shear force is zero, labeled F on the load diagram in Fig. (b). The location of F

can be found from

VF ¼ VþC � area of w-diagram�FC ¼ 320� ðþ200Þd ¼ 0

which gives d ¼ 1:60 ft, as shown in Fig. (c).
Continuing across the beam, we have

VþD ¼ V�D � RD ¼ �480� ð�880Þ ¼ 400 lb

Plot point zg .

Next, we note that VE ¼ 0 (there is no force acting at E ). The computation based on
the area of the load diagram should verify this result.

VE ¼ VþD � area of w-diagram�ED ¼ 400� ðþ200Þ2 ¼ 0 Checks!

Plot point zh .

From Fig. (b), we see that the applied loading between D and E is constant and
positive. Therefore, the slope of the V-diagram between these two cross sections is
constant and negative.

Connect zg and zh with a straight line.

This completes the construction of the shear force diagram.

Bending Moment Diagram

We now explain the steps required to construct the bending moment diagram shown
in Fig. (d). Because there are no applied couples, there will be no jumps in the
M-diagram. The areas of the shear force diagram for the di¤erent segments of the
beam are shown in Fig. (c).

We begin by noting that MA ¼ 0 because no couple is applied at A.

Plot point zi .

Proceeding from left to right across the beam, we construct the bending moment
diagram as follows:

MB ¼MA þ area of V -diagram�BA ¼ 0þ ð�800Þ ¼ �800 lb � ft

Plot point zj .
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We note from Fig. (c) that the V-diagram between A and B is a first-degree
polynomial (inclined straight line). Therefore, the M-diagram between these two
cross sections is a second-degree polynomial—that is, a parabola. From dM=dx ¼ V ,
we see that the slope of the M-diagram is zero at A and �800 lb/ft at B.

Connect zi and zj with a parabola that has zero slope at zi and negative slope
at zj . The parabola will be concave downward.

MC ¼MB þ area of V -diagram�CB ¼ �800þ ðþ720Þ ¼ �80 lb � ft

Plot point zk .

Because the V-diagram is constant and positive between B and C, the slope of the
M-diagram is constant and positive between those two cross sections.

Connect zj and zk with a straight line.

MF ¼MC þ area of V -diagram�FC ¼ �80þ ðþ256Þ ¼ þ176 lb � ft

Plot point zl .

Using V ¼ dM=dx, we know that the slope of the M-diagram is þ320 lb/ft at C and
zero at F, and that the curve is a parabola between these two cross sections.

Connect zk and zl with a parabola that has positive slope at zk and zero slope
at zl . The parabola will be concave downward.

MD ¼MF þ area of V -diagram�DF ¼ 176þ ð�576Þ ¼ �400 lb � ft

Plot point zm .

The M-diagram between F and D is again a parabola, with a slope of zero at F and
�480 lb/ft at D.

Connect zl and zm with a parabola that has zero slope at zl and negative slope
at zm . The parabola will be concave downward.

Next, we note that ME ¼ 0 because no couple is applied at E. Our computation
based on the area of the V-diagram should verify this result.

ME ¼MD þ area of V -diagram�ED ¼ �400þ ðþ400Þ ¼ 0 Checks!

Plot point zn .

From the familiar arguments, the M-diagram between D and E is a parabola with a
slope equal to þ400 lb/ft at D and zero at E.

Connect zm and zn with a parabola that has positive slope at zm and zero slope
at zn . The parabola will be concave downward.

This completes the construction of the bending moment diagram. It is obvious
in Fig. (d) that the slope of the M-diagram is discontinuous at zj and zm . Not so
obvious is the slope discontinuity at zk : From dM=dx ¼ V , we see that the slope of
the M-diagram to the left of zk equals þ720 lb/ft, whereas to the right of zk the
slope equals þ320 lb/ft. Observe that the slope of the M-diagram is continuous at zl

because the shear force has the same value (zero) to the left and to the right of zl .

1
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Problems

4.24–4.47 Construct the shear force and bending moment diagrams for the beam
shown by the area method. Neglect the weight of the beam.

4 ft 4 ft

6000 lb 4000 lb 2000 lb

4 ft 4 ft

A
B C D

E

FIG. P4.24

4 m 2 m 2 m
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B
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20 kN

A

FIG. P4.25

60 kN 40 kN 50 kN

A

B C

D
E

1.5 m 1.5 m 1.5 m 2 m

FIG. P4.26
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FIG. P4.27
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2000 lb2000 lb
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FIG. P4.28
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FIG. P4.32
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FIG. P4.33
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FIG. P4.34
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4.48–4.52 Draw the load and the bending moment diagrams that correspond to
the given shear force diagram. Assume no couples are applied to the beam.

FIG. P4.46 FIG. P4.47

4
4800
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2000
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4 46
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FIG. P4.52

Problems 135

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Review Problems

4.53–4.67 Draw the shear force and bending moment diagrams for the beam
shown. Neglect the weight of the beam.
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4.68–4.69 Draw the load and the bending moment diagrams that correspond to
the given shear force diagram. Assume that no couples are applied to the beam.

Computer Problems

C4.1 The cantilever beam AB represents a pile that supports a retaining wall. Due
to the pressure of soil, the pile carries the distributed loading shown in the figure. Use
numerical integration to compute the shear force and the bending moment at B.

C4.2 The overhanging beam carries a distributed load of intensity w0 over its length
L and a concentrated load P at the free end. The distance between the supports is x.
Given L, w0, and P, plot the maximum bending moment in the beam as a function of x

from x ¼ L=2 to L. Use L ¼ 16 ft, w0 ¼ 200 lb/ft, and (a) P ¼ 1200 lb and (b) P ¼ 0.
What value of x minimizes the maximum bending moment in each case?

x

L

A

w0 P

B

FIG. C4.2

FIG. P4.64

2.5 kN/m

4 m4 m

FIG. P4.65

FIG. P4.66 FIG. P4.67

FIG. P4.68 FIG. P4.69

FIG. C4.1
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C4.3 The concentrated loads P1, P2, and P3, separated by the fixed distances a and
b, travel across the simply supported beam AB of length L. The distance between A

and P1 is x. Given the magnitudes of the loads, a, b, and L, write an algorithm to
plot the bending moment under each load as a function of x from x ¼ 0 to L� a� b.
Use (a) P1 ¼ 4000 lb, P2 ¼ 8000 lb, P3 ¼ 6000 lb, a ¼ 9 ft, b ¼ 18 ft, and L ¼ 44 ft;
and (b) P1 ¼ 8000 lb, P2 ¼ 4000 lb, P3 ¼ 6000 lb, a ¼ 5 ft, b ¼ 28 ft, and L ¼ 80 ft.

FIG. C4.3

C4.4 The cantilever beam AB of length L carries a distributed loading w that
varies with the distance x. Given L and wðxÞ, construct an algorithm to plot
the shear force and bending moment diagrams. Use (a) L ¼ 3 m and w ¼
ð50 kN=mÞ sinðpx=2LÞ; and (b) L ¼ 5 m and

w ¼

20 kN=m if x a 1:0 m

ð20 kN=mÞ x

1:0 m
if 1:0 m a x a 4 m

0 if x > 4 m

8>>>><
>>>>:

C4.5 Solve Prob. C4.4 if the beam is simply supported at A and B.

FIG. C4.4, C4.5
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5
Stresses in Beams

5.1 Introduction

In previous chapters, we considered stresses in bars caused by axial loading
and torsion. Here we introduce the third fundamental loading: bending.
When deriving the relationships between the bending moment and the
stresses it causes, we find it again necessary to make certain simplifying as-
sumptions. Although these assumptions may appear to be overly restrictive,
the resulting equations have served well in the design of straight, elastic
beams. Furthermore, these equations can be extended to the more compli-
cated bending problems discussed in later chapters.

Structural framework consisting of steel

beams and columns. After the shear forces

and bending moments in the members have

been determined by the methods discussed

in Chapter 4, the stresses can be computed

using the formulas derived in this chapter.

Courtesy of Joe/Gough Shutterstock.
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We use the same steps in the analysis of bending that we used for tor-
sion in Chapter 3:

. Make simplifying assumptions about the deformation based upon
experimental evidence.. Determine the strains that are geometrically compatible with the
assumed deformations.. Use Hooke’s law to express the equations of compatibility in terms of
stresses.. Derive the equations of equilibrium. (These equations provide the
relationships between the stresses and the applied loads.)

5.2 Bending Stress

a. Simplifying assumptions

The stresses caused by the bending moment are known as bending stresses,
or flexure stresses. The relationship between these stresses and the bending
moment is called the flexure formula. In deriving the flexure formula, we
make the following assumptions:

. The beam has an axial plane of symmetry, which we take to be the xy-
plane (see Fig. 5.1).. The applied loads (such as F1, F2, and F3 in Fig. 5.1) lie in the plane of
symmetry and are perpendicular to the axis of the beam (the x-axis).. The axis of the beam bends but does not stretch (the axis lies some-
where in the plane of symmetry; its location will be determined later).. Plane sections of the beam remain plane (do not warp) and perpen-
dicular to the deformed axis of the beam.. Changes in the cross-sectional dimensions of the beam are negligible.

Because the shear stresses caused by the vertical shear force will distort
(warp) an originally plane section, we are limiting our discussion here to
the deformations caused by the bending moment alone. However, it can be
shown that the deformations due to the vertical shear force are negligible
in slender beams (the length of the beam is much greater than the cross-
sectional dimensions) compared to the deformations caused by bending.

The above assumptions lead us to the following conclusion: Each cross

section of the beam rotates as a rigid entity about a line called the neutral axis

of the cross section. The neutral axis passes through the axis of the beam and

FIG. 5.1 Symmetrical beam with loads lying in the plane of symmetry.
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is perpendicular to the plane of symmetry, as shown in Fig. 5.1. The
xz-plane that contains the neutral axes of all the cross sections is known as
the neutral surface of the beam.

b. Compatibility

Figure 5.2 shows a segment of the beam bounded by two cross sections that
are separated by the infinitesimal distance dx. Due to the bending moment
M caused by the applied loading, the cross sections rotate relative to each
other by the amount dy. Note that the bending moment is assumed to be
positive according to the sign conventions established in Fig. 4.3. Consistent
with the assumptions made about deformation, the cross sections do not
distort in any manner.

Because the cross sections are assumed to remain perpendicular to the
axis of the beam, the neutral surface becomes curved upon deformation, as
indicated in Fig. 5.2. The radius of curvature of the deformed surface is
denoted by r. Note that the distance between the cross sections, measured
along the neutral surface, remains unchanged at dx (it is assumed that the
axis of the beam does not change length). Therefore, the longitudinal fibers
lying on the neutral surface are undeformed, whereas the fibers above the
surface are compressed and the fibers below are stretched.

Consider now the deformation of the longitudinal fiber ab that lies a
distance y above the neutral surface, as shown in Fig. 5.2. In the deformed
state, the fiber forms the arc a 0b 0 of radius ðr� yÞ, subtended by the angle
dy. Therefore, its deformed length is

a 0b 0 ¼ ðr� yÞ dy

The original length of this fiber is ab ¼ dx ¼ r dy. The normal strain of the
fiber is found by dividing the change in length by the original length, yield-
ing

� ¼ a 0b 0 � ab

ab
¼ ðr� yÞ dy� r dy

r dy
¼ � y

r

Assuming that the stress is less than the proportional limit of the ma-
terial, we can obtain the normal stress in fiber ab from Hooke’s law:

s ¼ E� ¼ �E

r
y (5.1)

FIG. 5.2 Deformation of an infinitesimal beam segment.
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Equation (5.1) shows that the normal stress of a longitudinal fiber is pro-
portional to the distance y of the fiber from the neutral surface. The negative
sign indicates that positive bending moment causes compressive stress when
y is positive (fibers above the neutral surface) and tensile stress when y is
negative (fibers below the neutral surface), as expected.

c. Equilibrium

To complete the derivation of the flexure formula, we must locate the neu-
tral axis of the cross section and derive the relationship between r and M.
Both tasks can be accomplished by applying the equilibrium conditions.

Figure 5.3 shows a typical cross section of a beam. The normal force
acting on the infinitesimal area dA of the cross section is dP ¼ s dA. Sub-
stituting s ¼ �ðE=rÞy, we obtain

dP ¼ �E

r
y dA (a)

where y is the distance of dA from the neutral axis (NA). Equilibrium re-
quires that the resultant of the normal stress distribution over the cross sec-
tion must be equal to the bending moment M acting about the neutral axis
(z-axis). In other words, �

Ð
A

y dP ¼M, where the integral is taken over the
entire cross-sectional area A (the minus sign in the expression is needed be-
cause the moment of dP and positive M have opposite sense). Moreover,
the resultant axial force and the resultant bending moment about the y-axis
must be zero; that is,

Ð
A

dP ¼ 0 and
Ð
A

z dP ¼ 0. These three equilibrium
equations are developed in detail below.

Resultant Axial Force Must Vanish The condition for zero axial force
is ð

A

dP ¼ �E

r

ð
A

y dA ¼ 0

Because E=r0 0, this equation can be satisfied only if

ð
A

y dA ¼ 0 (b)

The integral in Eq. (b) is the first moment of the cross-sectional area about
the neutral axis. It can be zero only if the neutral axis passes through the

centroid C of the cross-sectional area. Hence, the condition of zero axial
force locates the neutral axis of the cross section.

Resultant Moment About y-Axis Must Vanish This condition is

ð
A

z dP ¼ �E

r

ð
A

zy dA ¼ 0 (c)

The integral
Ð
A

zy dA is the product of inertia of the cross-sectional area.
According to our assumptions, the y-axis is an axis of symmetry for the
cross section, in which case this integral is zero and Eq. (c) is automatically
satisfied.

FIG. 5.3 Calculating the resultant
of the normal stress acting on the
cross section. Resultant is a couple
equal to the internal bending
moment M.
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Resultant Moment About the Neutral Axis Must Equal M Equating
the resultant moment about the z-axis to M gives us

�
ð

A

y dP ¼ E

r

ð
A

y2 dA ¼M

Recognizing that
Ð
A

y2 dA ¼ I is the moment of inertia1 of the cross-sectional
area about the neutral axis (the z-axis), we obtain the moment-curvature

relationship

M ¼ EI

r
(5.2a)

A convenient form of this equation is

1

r
¼ M

EI
(5.2b)

d. Flexure formula; section modulus

Substituting the expression for 1=r from Eq. (5.2b) into Eq. (5.1), we get the
flexure formula:

s ¼ �My

I
(5.3)

Note that a positive bending moment M causes negative (compressive) stress
above the neutral axis and positive (tensile) stress below the neutral axis, as
discussed previously.

The maximum value of bending stress without regard to its sign is
given by

smax ¼
jMjmaxc

I
(5.4a)

where jMjmax is the largest bending moment in the beam regardless of sign, and
c is the distance from the neutral axis to the outermost point of the cross section,
as illustrated in Fig. 5.3. Equation (5.4a) is frequently written in the form

smax ¼
jMjmax

S
(5.4b)

where S ¼ I=c is called the section modulus of the beam. The dimension of
S is ½L3�, so that its units are in.3, mm3, and so on. The formulas for the

1The moment of inertia of area is reviewed in Appendix A.
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section moduli of common cross sections are given in Fig. 5.4. The section
moduli of standard structural shapes are listed in various handbooks; an
abbreviated list is given in Appendix B.

e. Procedures for determining bending stresses

Stress at a Given Point

. Use the method of sections to determine the bending moment M (with
its correct sign) at the cross section containing the given point.. Determine the location of the neutral axis.. Compute the moment of inertia I of the cross-sectional area about
the neutral axis. (If the beam is a standard structural shape, its cross-
sectional properties are listed in Appendix B.). Determine the y-coordinate of the given point. Note that y is positive
if the point lies above the neutral axis and negative if it lies below the
neutral axis.. Compute the bending stress from s ¼ �My=I . If correct signs are used
for M and y, the stress will also have the correct sign (tension positive,
compression negative).

Maximum Bending Stress: Symmetric Cross Section If the neutral
axis is an axis of symmetry of the cross section, the maximum tensile and
compressive bending stresses in the beam are equal in magnitude and occur
at the section of the largest bending moment. The following procedure is rec-
ommended for determining the maximum bending stress in a prismatic beam:

FIG. 5.4 Section moduli of simple cross-sectional shapes.
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. Draw the bending moment diagram by one of the methods described
in Chapter 4. Identify the bending moment Mmax that has the largest
magnitude (disregard the sign).. Compute the moment of inertia I of the cross-sectional area about
the neutral axis. (If the beam is a standard structural shape, its cross-
sectional properties are listed in Appendix B.). Calculate the maximum bending stress from smax ¼ jMjmaxc=I ¼
jMjmax=S, where c is the distance from the neutral axis to the top or

bottom of the cross section.

Maximum Tensile and Compressive Bending Stresses: Unsymmet-
rical Cross Section If the neutral axis is not an axis of symmetry of the
cross section, the maximum tensile and compressive bending stresses may
occur at di¤erent sections. The recommended procedure for computing these
stresses in a prismatic beam follows:

. Draw the bending moment diagram by one of the methods described
in Chapter 4. Identify the largest positive and negative bending mo-
ments.. Determine the location of the neutral axis and record the distances
ctop and cbot from the neutral axis to the top and bottom of the cross
section.. Compute the moment of inertia I of the cross section about the neutral
axis. (If the beam is a standard structural shape, its cross-sectional
properties are listed in Appendix B.). Calculate the bending stresses at the top and bottom of the cross
section where the largest positive bending moment occurs from
s ¼ �My=I . At the top of the cross section, where y ¼ ctop, we obtain
stop ¼ �Mctop=I . At the bottom of the cross section, we have
y ¼ �cbot, so that sbot ¼Mcbot=I . Repeat the calculations for the cross
section that carries the largest negative bending moment. Inspect the
four stresses thus computed to determine the largest tensile (positive)
and compressive (negative) bending stresses in the beam.

Note on Units Make sure that the units of the terms in the flexure for-
mula s ¼ �My=I are consistent. In the U.S. Customary system, M is often
measured in pound-feet and the cross-sectional properties in inches. It is
recommended that you convert M into lb � in. and compute s in lb/in.2 (psi).
Thus, the units in the flexure formula become

s ½lb=in:2� ¼ �M ½lb � in:� y ½in:�
I ½in:4�

In the SI system, M is usually expressed in N �m, whereas the cross-sectional
dimensions are in mm. To obtain s in N/m2 (Pa), the cross-sectional prop-
erties must be converted to meters, so that the units in the flexure equation
are

s ½N=m2� ¼ �M ½N �m� y ½m�
I ½m4�

5.2 Bending Stress 145

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sample Problem 5.1

The simply supported beam in Fig. (a) has a rectangular cross section 120 mm wide
and 200 mm high. (1) Compute the maximum bending stress in the beam. (2) Sketch
the bending stress distribution over the cross section on which the maximum bending
stress occurs. (3) Compute the bending stress at a point on section B that is 25 mm
below the top of the beam.

Solution

Preliminary Calculations

Before we can find the maximum bending stress in the beam, we must find the max-
imum bending moment. We begin by computing the external reactions at A and E;
the results are shown in Fig. (a). Then we sketch the shear force and bending moment
diagrams using one of the methods (for example, the area method) described in
Chapter 4, obtaining the results in Figs. (b) and (c). We see that the maximum
bending moment is Mmax ¼ 16 kN �m, occurring at D.

In this case, the neutral axis (NA) is an axis of symmetry of the cross section,
as shown in Fig. (a). The moment of inertia of the cross section about the neutral axis
is

I ¼ bh3

12
¼ 0:12ð0:2Þ3

12
¼ 80:0� 10�6 m4

and the distance between the neutral axis and the top (or bottom) of the cross section
is c ¼ 100 mm ¼ 0:1 m.

Part 1

The maximum bending stress in the beam occurs on the cross section that carries
the largest bending moment, which is at D. Using the flexure formula,
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Eq. (5.4a), we obtain for the maximum bending stress in the beam

smax ¼
jMjmaxc

I
¼ ð16� 103Þð0:1Þ

80:0� 10�6
¼ 20:0� 106 Pa ¼ 20:0 MPa Answer

Part 2

The stress distribution on the cross section at D is shown in Fig. (d). When drawing
the figure, we were guided by the following observations: (i) the bending stress varies
linearly with distance from the neutral axis; (ii) because Mmax is positive, the top half
of the cross section is in compression and the bottom half is in tension; and (iii) due
to symmetry of the cross section about the neutral axis, the maximum tensile and
compressive stresses are equal in magnitude.

Part 3

From Fig. (c) we see that the bending moment at section B is M ¼ 9:28 kN �m. The
y-coordinate of the point that lies 25 mm below the top of the beam is
y ¼ 100� 25 ¼ 75 mm ¼ 0:075 m. If we substitute these values into Eq. (5.3), the
bending stress at the specified location becomes

s ¼ �My

I
¼ �ð9:28� 103Þð0:075Þ

80:0� 10�6
¼ �8:70� 106 Pa ¼ �8:70 MPa Answer

The negative sign indicates that this bending stress is compressive, which is expected
because the bending moment is positive and the point of interest lies above the neu-
tral axis.

1
Sample Problem 5.2

The simply supported beam in Fig. (a) has the T-shaped cross section shown. De-
termine the values and locations of the maximum tensile and compressive bending
stresses.
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Solution

Preliminary Calculations

Before we can find the maximum tensile and compressive bending stresses, we must
find the largest positive and negative bending moments. Therefore, we start by com-
puting the external reactions at A and B, and then sketch the shear force and bending
moment diagrams. The results are shown in Figs. (a)–(c). From Fig. (c), we see that
the largest positive and negative bending moments are 3200 lb � ft and �4000 lb � ft,
respectively.

Because the cross section does not have a horizontal axis of symmetry, we
must next locate the neutral (centroidal) axis of the cross section. As shown in Fig.
(d), we consider the cross section to be composed of the two rectangles with areas
A1 ¼ 0:8ð8Þ ¼ 6:4 in.2 and A2 ¼ 0:8ð6Þ ¼ 4:8 in.2. The centroidal coordinates of the
areas are y1 ¼ 4 in. and y2 ¼ 8:4 in., measured from the bottom of the cross section.
The coordinate y of the centroid C of the cross section is

y ¼ A1y1 þ A2y2

A1 þ A2
¼ 6:4ð4Þ þ 4:8ð8:4Þ

6:4þ 4:8
¼ 5:886 in:

We can now compute the moment of inertia I of the cross-sectional area about
the neutral axis. Using the parallel-axis theorem, we have I ¼

P
½I i þ Aiðyi � yÞ2�,

where I i ¼ bih
3
i =12 is the moment of inertia of a rectangle about its own centroidal

axis. Thus,

I ¼ 0:8ð8Þ3

12
þ 6:4ð4� 5:886Þ2

" #
þ 6ð0:8Þ3

12
þ 4:8ð8:4� 5:886Þ2

" #

¼ 87:49 in:4

Maximum Bending Stresses

The distances from the neutral axis to the top and the bottom of the cross section are
ctop ¼ 8:8� y ¼ 8:8� 5:886 ¼ 2:914 in. and cbot ¼ y ¼ 5:886 in., as shown in Fig.
(e). Because these distances are di¤erent, we must investigate stresses at two loca-
tions: at x ¼ 4 ft (where the largest positive bending moment occurs) and at x ¼ 10 ft
(where the largest negative bending moment occurs).

Stresses at x F4 ft The bending moment at this section is M ¼ 3200 lb � ft, causing
compression above the neutral axis and tension below the axis. The resulting bending
stresses at the top and bottom of the cross section are

stop ¼ �
Mctop

I
¼ �ð3200� 12Þð2:914Þ

87:49
¼ �1279 psi

sbot ¼
Mcbot

I
¼ ð3200� 12Þð5:886Þ

87:49
¼ 2580 psi

Stresses at x F10 ft The bending moment at this section is M ¼ �4000 lb � ft,
resulting in tension above the neutral axis and compression below the neutral axis.
The corresponding bending stresses at the extremities of the cross section are

stop ¼ �
Mctop

I
¼ �ð�4000� 12Þð2:914Þ

87:49
¼ 1599 psi

sbot ¼
Mcbot

I
¼ ð�4000� 12Þð5:886Þ

87:49
¼ �3230 psi

Inspecting the above results, we conclude that the maximum tensile and com-
pressive stresses in the beam are

ðsT Þmax ¼ 2580 psi ðbottom of the section at x ¼ 4 ftÞ Answer

ðsCÞmax ¼ 3230 psi ðbottom of the section at x ¼ 10 ftÞ Answer

1
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Sample Problem 5.3

The cantilever beam in Fig. (a) is composed of two segments with rectangular cross
sections. The width of each section is 2 in., but the depths are di¤erent, as shown in
the figure. Determine the maximum bending stress in the beam.

Solution
The shear force and bending moment diagrams are shown in Figs. (b) and (c).
Because the cross section of the beam is not constant, the maximum stress occurs
either at the section just to the left of B (MB ¼ �8000 lb � ft) or at the section at D

(MD ¼ �16 000 lb � ft). Referring to Fig. 5.4, we find that the section moduli of the
two segments are

SAB ¼
bh2

AB

6
¼ ð2Þð4Þ

2

6
¼ 5:333 in:3

SBD ¼
bh2

BD

6
¼ ð2Þð6Þ

2

6
¼ 12:0 in:3

From Eq. (5.4b), the maximum bending stresses on the two cross sections of interest
are

ðsBÞmax ¼
jMBj
SAB

¼ 8000� 12

5:333
¼ 18 000 psi

ðsDÞmax ¼
jMDj
SBD

¼ 16 000� 12

12:0
¼ 16 000 psi

Comparing the above values, we find that the maximum bending stress in the beam is

smax ¼ 18 000 psi ðon the cross section just to the left of BÞ Answer

This is an example where the maximum bending stress occurs on a cross sec-
tion at which the bending moment is not maximum.

1
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Sample Problem 5.4

The wide-flange section1 W14� 30 is used as a cantilever beam, as shown in Fig. (a).
Find the maximum bending stress in the beam.

Solution
The shear force and bending moment diagrams for the beam are shown in Figs. (b)
and (c). We note that the largest bending moment is jMjmax ¼ 15 000 lb � ft, acting
just to the left of section B. From the tables in Appendix B, we find that the section
modulus of a W14� 30 section is S ¼ 42:0 in.3. Therefore, the maximum bending
stress in the beam is

smax ¼
jMjmax

S
¼ 15 000� 12

42:0
¼ 4290 psi Answer

1

1The designation of wide flange and other common structural shapes will be discussed in

Sec. 5.3. The properties of structural shapes are tabulated in Appendix B.
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Problems

Unless directed otherwise, neglect the weight of the beam in the following problems. For

standard structural shapes, use the properties tabulated in Appendix B.

5.1 A beam constructed from 2-in. by 8-in. boards has the cross section shown in
the figure. If the maximum bending moment acting in the beam is M ¼ 16 000 lb � ft,
determine the maximum bending stress in (a) board A; and (b) board B.

5.2 The magnitude of the bending moment acting on the circular cross section of a
beam is M ¼ 30 000 lb � ft. Calculate the bending stresses at the following points on
the cross section: (a) A; (b) B; and (c) D.

5.3 The bending moment acting on the W360� 262 section is 460 kN �m. Find the
maximum bending stress in (a) the flanges; and (b) the web. See Appendix B-2 for
properties of the section.

5.4 The bending moment acting on the triangular cross section of a beam is
M ¼ 3:6 kN �m. Determine the maximum tensile and compressive bending stresses
acting on the cross section.

5.5 Find the maximum bending stress in the rectangular wooden beam.

180 lb/ft

1200 lb

12 ft

4 in.

8 in.A B

FIG. P5.5

5.6 A beam with the square cross section shown carries a maximum bending
moment of 8000 lb � ft. Determine the maximum bending stress if the beam is first
oriented as shown in (a), and then as shown in (b). For both orientations, the z-axis
is the neutral axis; that is, the axis about which the bending moment acts.

6 in.

(a) (b)

6 in. zz

y
y

6 in. 6 i
n.

FIG. P5.6

FIG. P5.1

FIG. P5.2 FIG. P5.3

FIG. P5.4
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5.7 For the cantilever beam shown in the figure, find (a) the maximum bending
stress and its location; and (b) the bending stress at a point 20 mm from the top of
the beam on section B.

5.8 For the beam shown, calculate (a) the maximum bending stress; and (b) the
bending stress at a point 0.5 in. from the top of the beam on section D.

5.9 A steel band saw, 20 mm wide and 0.6 mm thick, runs over pulleys of diameter
d. (a) Find the maximum bending stress in the saw if d ¼ 500 mm. (b) What is the
smallest value of d for which the bending stress in the saw does not exceed 400 MPa?
Use E ¼ 200 GPa for steel.

5.10 A W250� 28:4. A section is used as a cantilever beam of length L ¼ 6 m.
Determine the largest uniformly distributed load w0, in addition to the weight of the
beam, that can be carried if the bending stress is not to exceed 120 MPa. See
Appendix B-2 for the properties of the beam.

5.11 Repeat Prob. 5.10 using a W150� 29:8 section with length L ¼ 4 m.

5.12 The beam ABCD with a rectangular cross section carries the loading shown
in the figure. Determine the magnitude and location of the maximum bending stress
in the beam.

5.13 An S380� 74 section is used as a simply supported beam to carry the uni-
formly distributed load of magnitude 3W and the concentrated load W. What is the
maximum allowable value of W if the working stress in bending is 120 MPa?

5.14 The simply supported beam of rectangular cross section carries a distributed
load of intensity w0 ¼ 3 kN/m and a concentrated force P. Determine the largest
allowable value of P if the bending stress is not to exceed 10 MPa.

FIG. P5.7 FIG. P5.8

FIG. P5.9

FIG. P5.10, P5.11
FIG. P5.12

FIG. P5.13 FIG. P5.14
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5.15 A 200-lb man starts at end A of the wooden plank and walks toward end B.
If the plank will fail when the maximum bending stress is 6000 psi, find the farthest
distance x that the man can walk safely.

12 ft

12 in.

0.75 in.x

A B C

FIG. P5.15

5.16 The box beam is made by nailing four 2-in. by 8-in. planks together as
shown. (a) Show that the moment of inertia of the cross-sectional area about the
neutral axis is 981.3 in.4. (b) Given that w0 ¼ 300 lb/ft, find the largest allowable
force P if the bending stress is limited to 1400 psi.

FIG. P5.16

5.17 Determine the maximum bending stress in the steel beam with the circular
cross section.

400 lb
200 lb/ft

5 ft

A
B C

D

2 ft 4 ft
2 in.

FIG. P5.17

5.18 A wood beam carries the loading shown in the figure. Determine the smallest
allowable width b of the beam if the working stress in bending is 10 MPa.

5.19 The 40-mm-diameter shaft carries a uniformly distributed load of intensity
w0 over half of its span. The self-aligning bearings at A and C act as simple supports.
Find the largest allowable value of w0 if the bending stress in the shaft is limited to
60 MPa.

FIG. P5.18
FIG. P5.19
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5.20 The overhanging beam is made by riveting two C380� 50:4 channels back-
to-back as shown. The beam carries a uniformly distributed load of intensity w0 over
its entire length. Determine the largest allowable value of w0 if the working stress in
bending is 120 MPa. See Appendix B-4 for properties of the channel section.

5.21 Determine the minimum allowable height h of the beam shown in the figure
if the bending stress is not to exceed 20 MPa.

5.22 The simply supported beam consists of six tubes that are connected by thin
webs. Each tube has a cross-sectional area of 0.2 in.2. The beam carries a uniformly
distributed load of intensity w0. If the average bending stress in the tubes is not to
exceed 10 ksi, determine the largest allowable value of w0. Neglect the cross-sectional
areas of the webs.

FIG. P5.22

5.23 The simply supported beam of circular cross section carries a uniformly dis-
tributed load of intensity w0 over two-thirds of its length. What is the maximum al-
lowable value of w0 if the working stress in bending is 50 MPa?

5.24 Find the maximum length L of the beam shown for which the bending stress
will not exceed 3000 psi.

5.25 A circular bar of 1.0-in. diameter is formed into the semicircular arch. De-
termine the maximum bending stress at section B. Assume that the flexure formula
for straight beams is applicable.

FIG. P5.20
FIG. P5.21

FIG. P5.23
FIG. P5.24
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5.26 A cantilever beam, 4 m long, is composed of two C200� 27:9 channels riv-
eted back to back as shown in the figure. Find the largest uniformly distributed load
that the beam can carry, in addition to its own weight, if (a) the webs are vertical as
shown; and (b) the webs are horizontal. Use 120 MPa as the working stress in bend-
ing. See Appendix B-4 for properties of the channel section.

5.27 The overhanging beam is made by welding two S18� 70 sections along their
flanges as shown. The beam carries a uniformly distributed load of intensity w0 in
addition to its own weight. Calculate the maximum allowable value of w0 if the
working stress in bending is 24 ksi. See Appendix B-7 for properties of the S-section.

5.28 The S310� 74:3 section is used as a simply supported beam to carry a uni-
formly distributed load of intensity w0 in addition to its own weight. Determine the
largest allowable value of w0 if the working stress in bending is 120 MPa. See Ap-
pendix B-3 for properties of the S-section.

5.29 The stepped shaft carries a concentrated load P at its midspan. If the work-
ing stress in bending is 18 ksi, find the largest allowable value of P. Assume that the
bearings at A and E act as simple supports.

5.30 The cantilever beam has a circular cross section of 50-mm outer diameter.
Portion AB of the beam is hollow, with an inner diameter of 35 mm. If the working
bending stress is 140 MPa, determine the largest allowable intensity w0 of the uni-
formly distributed load that can be applied to the beam.

FIG. P5.25

27.9

FIG. P5.26

FIG. P5.27

74.3

FIG. P5.28

FIG. P5.29 FIG. P5.30
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5.31 The square timber used as a railroad tie carries two uniformly distributed
loads, each totaling 48 kN. The reaction from the ground is uniformly distributed.
Determine the smallest allowable dimension b of the section if the bending stress in
timber is limited to 8 MPa.

FIG. P5.31

5.32 The wood beam with an overhang of b ¼ 6 ft carries a concentrated load P

and a uniformly distributed load of intensity w0. If the working stress for wood in bend-
ing is 1200 psi, find the maximum values of P and w0 that can be applied simultaneously.

FIG. P5.32, P5.33

5.33 The uniform load applied to the overhang of the beam is w0 ¼ 400 lb/ft.
Determine the largest length b of the overhang and the largest load P that can be
applied simultaneously. The working bending stress for wood is 1400 psi.

5.34–5.38 Determine the maximum tensile and compressive bending stresses in
the beam shown.

FIG. P5.34

FIG. P5.35

6
38 80

FIG. P5.36
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FIG. P5.37

Dimensions in mm
40

1.2 m1.0 m
2 kN

A B C

6 kN

90 40

120

FIG. P5.38

5.39 The overhanging beam carries a uniformly distributed load totaling 8W and
two concentrated loads of magnitude W each. Determine the maximum safe value of
W if the working stresses are 3000 psi in tension and 10 000 psi in compression.

FIG. P5.39

5.40 The beam carries a concentrated load W and a uniformly distributed load
that totals 4W . Determine the largest allowable value of W if the working stresses
are 60 MPa in tension and 100 MPa in compression.

FIG. P5.40

5.41 The inverted T-beam supports three concentrated loads as shown in the fig-
ure. Find the maximum allowable value of P if the bending stresses are not to exceed
3.5 ksi in tension and 8 ksi in compression.

4P

2 ft 3 ft 3 ft 2 ft

FIG. P5.41
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5.42 The intensity of the triangular load carried by the T-section varies from zero
at the free end to w0 at the support. Find the maximum safe value of w0 given that
the working stresses are 4000 psi in tension and 10 000 psi in compression.

FIG. P5.42

5.43 A beam of square cross section is positioned so that the neutral axis coincides
with one of the diagonals. The section modulus of this beam can be increased by
removing the top and bottom corners as shown. Find the ratio a=b that maximizes
the section modulus.

5.44 The beam of rectangular cross section is cut from a round log. Find the ratio
b=h that maximizes the section modulus of the beam.

5.3 Economic Sections

The portions of a beam located near the neutral surface are understressed
compared with those at the top or bottom. Therefore, beams with certain
cross-sectional shapes (including a rectangle and a circle) utilize the material
ine‰ciently because much of the cross section contributes little to resisting
the bending moment.

Consider, for example, a beam with the rectangular cross section shown
in Fig. 5.5(a). The section modulus of this beam is S ¼ bh2=6 ¼ 2ð6Þ2=6 ¼
12 in.3. If the working stress is sw ¼ 18 ksi, the maximum safe bending mo-
ment for the beam is M ¼ swS ¼ 18ð12Þ ¼ 216 kip � in.

In Fig. 5.5(b), we have rearranged the area of the cross section but
kept the same overall depth. It can be shown that the section modulus has
increased to S ¼ 25:3 in.3. Thus, the new maximum allowable moment is
M ¼ 18ð25:3Þ ¼ 455 kip � in., which is more than twice the allowable
moment for the rectangular section of the same area. This increase in
moment-carrying capacity is caused by more cross-sectional area being located
at a greater distance from the neutral axis. However, the section in Fig. 5.5(b)
is not practical because its two parts, called the flanges, are disconnected and
thus would not act as an integral unit. It is necessary to use some of the area to
attach the flanges to each other, as in Fig. 5.5(c). The vertical connecting piece
is known as the web of the beam. As you will learn later in this chapter, the
web functions as the main shear-carrying component of the beam.

FIG. P5.43 FIG. P5.44
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a. Standard structural shapes

Figure 5.5(c) is similar to a wide-flange beam, referred to as a W-shape. A
W-shape is one of the most e‰cient standard structural shapes manufac-
tured because it provides great flexural strength with minimum weight of
material. Another ‘‘slimmer’’ version of this shape is the I-beam (referred to
as an S-shape) shown in Fig. 5.5(d). The I-beam preceded the wide-flange
beam, but because it is not as e‰cient, it has largely been replaced by the
wide-flange beam.

Properties of W- and S-shapes are given in Appendix B. In SI units, a
beam of either type is specified by stating its depth in millimeters and its
mass per unit length in kilograms per meter. For example, the designation
W610� 140 indicates a wide-flange beam with a nominal depth of 610 mm
and a mass per unit length of 140 kg/m. The tables in Appendix B indicate
that the actual depth of this beam is 617 mm. In U.S. Customary units, a
structural section is specified by stating its depth in inches followed by its
weight in pounds per linear foot. As an example, a W36� 302 is a
wide-flange beam with a nominal depth of 36 in. that weighs 302 lb/ft. The
actual depth of this section is 37.3 in. Referring to Appendix B, you will see
that in addition to listing the dimensions, tables of structural shapes give
properties of the cross-sectional area, such as moment of inertia (I ), section
modulus (S), and radius of gyration (r)2 for each principal axis of the area.

When a structural section is selected to be used as a beam, the section
modulus must be equal to or greater than the section modulus determined
by the flexure equation; that is,

S b
jMjmax

sw

(5.5)

This equation indicates that the section modulus of the selected beam must be
equal to or greater than the ratio of the bending moment to the working stress.

If a beam is very slender (large L=r), it may fail by lateral buckling

before the working stress is reached. Lateral buckling entails loss of resist-
ance resulting from a combination of sideways bending and twisting.
I-beams are particularly vulnerable to lateral buckling because of their low
torsional rigidity and small moment of inertia about the axis parallel to the

2The use of r for radius of gyration conforms to the notation of the American Institute of Steel

Construction. Be careful not to confuse this term with the r that is frequently used to indicate

the radius of a circle.

NA NA

FIG. 5.5 Di¤erent ways to distribute the 12-in.2 cross-sectional area in (a)
without changing the depth.
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web. When lateral deflection is prevented by a floor system, or by bracing the
flanges at proper intervals, the full allowable stresses may be used; otherwise,
reduced stresses should be specified in design. Formulas for the reduction of
the allowable stress are specified by various professional organizations, such
as the American Institute of Steel Construction (AISC). In this chapter, we
assume that all beams are properly braced against lateral deflection.

b. Procedure for selecting standard shapes

A design engineer is often required to select the lightest standard structural
shape (such as a W-shape) that can carry a given loading in addition to the
weight of the beam. Following is an outline of the selection process:

. Neglecting the weight of the beam, draw the bending moment diagram
to find the largest bending moment Mmax.. Determine the minimum allowable section modulus from Smin ¼
jMjmax=sw, where sw is the working stress.. Choose the lightest shape from the list of structural shapes (such as in
Appendix B) for which S b Smin and note its weight.. Calculate the maximum bending stress smax in the selected beam caused
by the prescribed loading plus the weight of the beam. If smax a sw, the
selection is finished. Otherwise, the second-lightest shape with S b Smin

must be considered and the maximum bending stress recalculated. The
process must be repeated until a satisfactory shape is found.
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Sample Problem 5.5

What is the lightest W-shape beam that will support the 45-kN load shown in Fig. (a)
without exceeding a bending stress of 120 MPa? Determine the actual bending stress
in the beam.

Solution
After finding the reactions shown in Fig. (a), we sketch the shear force and bending
moment diagrams in Figs. (b) and (c). The maximum bending moment is Mmax ¼ 60
kN �m, occurring under the applied load. The minimum acceptable section modulus
that can carry this moment is

Smin ¼
jMjmax

sw

¼ 60� 103

120� 106
¼ 500� 10�6 m3 ¼ 500� 103 mm3

Referring to the table of properties of W-shapes (Appendix B) and starting at
the bottom, we find that the following are the lightest beams in each size group that
satisfy the requirement S b Smin:

Section S (mm3) Mass (kg/m)

W200� 52 511� 103 52.0

W250� 44:8 531� 103 44.8

W310� 38:7 547� 103 38.7

All the beams in the remaining size groups are heavier than those listed above.
Therefore, our first choice is the W310� 38:7 section with S ¼ 547� 10�6 m3. (One
may wonder why several sizes of beams are manufactured with approximately the
same section modulus. The reason is that although the lightest beam is the cheapest
on the basis of weight alone, headroom clearances frequently require a beam with
less depth than the lightest one.)

The selection of the beam is not complete until a stress calculation is made that
includes the weight of the beam, which for the W310� 38:7 section is

w0 ¼ ð38:7 kg=mÞ � ð9:81 m=s2Þ ¼ 380 N=m ¼ 0:380 kN=m
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Figure (d) shows the beam supporting both the 45-kN load and the weight of the
beam. The maximum bending moment is found to be Mmax ¼ 61:52 kN �m, again
occurring under the concentrated load. (In this example, the weight of the beam is
relatively small compared with the 45-kN load, increasing the maximum bending
moment by only 2.5%.) Therefore, the maximum bending stress in the selected
beam is

smax ¼
jMjmax

S
¼ 61:52� 103

547� 10�6
¼ 112:4� 106 Pa ¼ 112:4 MPa

Because this stress is less than the allowable stress of 120 MPa, the lightest W-shape
that can safely support the 45-kN load is

W310� 38:7 ðwith smax ¼ 112:4 MPaÞ Answer

1
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Problems

5.45 The simply supported beam of length L ¼ 12 m carries a uniformly dis-
tributed load of intensity w0 ¼ 17:5 kN=m over its entire span. Find the lightest
W-shape for which the bending stress does not exceed 120 MPa. What is the actual
bending stress in the beam selected?

5.46 Solve Prob. 5.45 if w0 ¼ 12 kN=m and L ¼ 8 m.

5.47 The simply supported beam of length L ¼ 12 ft carries the concentrated load
P ¼ 7500 lb at its midpoint. Select the lightest S-shape for which the bending stress
does not exceed 18 ksi. What is the actual bending stress in the beam selected?

5.48 The simply supported beam carries the uniformly distributed load w0 ¼ 2000
lb/ft over a part of its span. Using a working stress of 20 ksi in bending, find the lightest
suitable W-shape. What is the actual maximum bending stress in the selected beam?

5.49 Solve Prob. 5.48 if w0 ¼ 5000 lb/ft.

5.50 Find the lightest W-shape for the simply supported beam if the working stress
in bending is 18 ksi. What is the actual maximum bending stress in the beam selected?

5.51 Find the lightest S-shape for the beam shown if the working stress in bending
is 120 MPa. What is the maximum bending stress in the beam selected?

5.52 Beams AB and BC are connected with a hinge at B. Select the lightest
W-shape for each beam if the working stress in bending is 150 MPa. What are the
maximum bending stresses in the selected beams?

5.53 Steel beams, spaced 8 ft apart, are driven into the ground to support the sheet
piling of a co¤er dam. If the working stress in bending is 14 ksi, what is the lightest
S-shape that can be used for the beams? The weight of water is 62.5 lb/ft3.

BA

w0

L

FIG. P5.45, P5.46

P

BA

L
2

L
2

FIG. P5.47

FIG. P5.48, P5.49 FIG. P5.50

40 kN/m

A C

4 m 2.4 m
B

FIG. P5.51

14 kN/m

5 m2 m
B

C

A

FIG. P5.52

FIG. P5.53
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5.54 The beams ABD and DE are joined by a hinge at D. Select the lightest al-
lowable W-shape for beam DE if its working stress in bending is 120 MPa. Also cal-
culate the actual maximum bending stress in beam DE.

FIG. P5.54

5.4 Shear Stress in Beams

a. Analysis of flexure action

If a beam were composed of many thin layers placed on one another, bend-
ing would produce the e¤ect shown in Fig. 5.6. The separate layers would
slide past one another, and the total bending strength of the beam would
be the sum of the strengths of the individual layers. Such a built-up beam
would be considerably weaker than a solid beam of equivalent dimensions.
For a demonstration of this, flex a deck of playing cards between your fin-
gers, holding the cards rather loosely so that they can slide past one another
as they are bent. Then grip the ends of the cards tightly so that they cannot
slip—thus approximating a solid section—and try to flex them. You will
discover that considerably more e¤ort is required.

From the above observation, we conclude that the horizontal layers in
a solid beam are prevented from sliding by shear stresses that act between
the layers. It is this shear stress that causes the beam to act as an integral
unit rather than as a stack of individual layers.

To further illustrate shear stress, consider the simply supported beam
in Fig. 5.7. We isolate the shaded portion of the beam by using two cutting
planes: a vertical cut along section z1 and a horizontal cut located at the
distance y 0 above the neutral axis. The isolated portion is subjected to the
two horizontal forces P and F shown in the figure (vertical forces are not
shown). The axial force P is due to the bending stress acting on the area A0

of section z1 , whereas F is the resultant of the shear stress acting on the
horizontal surface. Equilibrium requires that F ¼ P.

FIG. 5.6 Bending of a layered
beam with no adhesive between the
layers.

 NA

FIG. 5.7 Equilibrium of the shaded portion of the beam requires a longitudinal
shear force F ¼ P, where P is the resultant of the normal stress acting on area A 0 of
section z1 .
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We can calculate P using Fig. 5.8. The axial force acting on the area
element dA of the cross section is dP ¼ s dA. If M is the bending moment
acting at section z1 of the beam, the bending stress is given by Eq. (5.3):
s ¼ �My=I , where y is the distance of the element from the neutral axis,
and I is the moment of inertia of the entire cross-sectional area of the beam
about the neutral axis. Therefore,

dP ¼ �My

I
dA

Integrating over the area A0, we get

P ¼
ð

A0
dP ¼ �M

I

ð
A0

y dA ¼ �MQ

I
(5.6)

where

Q ¼
ð

A0
y dA (5.7a)

is the first moment of area A0 about the neutral axis. The negative sign in Eq.
(5.6) indicates that positive M results in forces P and F that are directed
opposite to those shown in Fig. 5.7. Denoting the distance between the neu-
tral axis and the centroid C 0 of the area A0 by y 0, we can write Eq. (5.7a) as

Q ¼ A0y 0 (5.7b)

In Eqs. (5.7), Q represents the first moment of the cross-sectional area
that lies above y 0. Because the first moment of the total cross-sectional area
about the neutral axis is zero, the first moment of the area below y 0 is �Q.
Therefore, the magnitude of Q can be computed by using the area either
above or below y 0, whichever is more convenient. The maximum value of Q

occurs at the neutral axis where y 0 ¼ 0. It follows that the horizontal shear
force F is largest on the neutral surface. The variation of Q with y 0 for a
rectangular cross section is illustrated in Fig. 5.9.

b. Horizontal shear stress

Consider the free-body diagram (FBD) of the shaded portion of the beam
in Fig. 5.10 (we show only the horizontal forces). This body is bounded by
sections z1 and z2 that are separated by the infinitesimal distance dx, and

FIG. 5.8 Calculating the resultant force of the normal stress over a portion of the
cross-sectional area.
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a horizontal plane located a distance y 0 above the neutral axis of the cross
section. If the bending moment at section z1 of the beam is M, the resultant
force acting on face z1 of the body is given by Eq. (5.6):

P ¼ �M
Q

I

As explained before, Q is the first moment of the area A0 (the area of face z1

of the body), and I is the moment of inertia of the entire cross-sectional area
of the beam. The bending moment acting at section z2 is M þ dM, where
dM is the infinitesimal change in M over the distance dx. Therefore, the re-
sultant normal force acting on face z2 of the body is

Pþ dP ¼ �ðM þ dMÞQ
I

Because these two forces di¤er by

ðPþ dPÞ � P ¼ �ðM þ dMÞQ
I
� �M

Q

I

� �
¼ �dM

Q

I
(a)

equilibrium can exist only if there is an equal and opposite shear force dF

acting on the horizontal surface.
If we let t be the average shear stress acting on the horizontal surface,

its resultant is dF ¼ tb dx, where b is the width of the cross section at y ¼ y 0,
as shown in Fig. 5.10. The equilibrium requirement for the horizontal forces
is

SF ¼ 0: ðPþ dPÞ � Pþ tb dx ¼ 0

FIG. 5.9 Variation of the first moment Q of area A 0 about the neutral axis for a
rectangular cross section.

FIG. 5.10 Determining the longitudinal shear stress from the free-body diagram
of a beam element.
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Substituting for ðPþ dPÞ � P from Eq. (a), we get

�dM
Q

I
þ tb dx ¼ 0

which gives

t ¼ dM

dx

Q

Ib
(b)

Recalling the relationship V ¼ dM=dx between the shear force and the
bending moment, we obtain for the average horizontal shear stress

t ¼ VQ

Ib
(5.8)

Often the shear stress is uniform over the width b of the cross section, in
which case t can be viewed as the actual shear stress.

c. Vertical shear stress

Strictly speaking, Eq. (5.8) represents the shear stress acting on a horizontal
plane of the beam (a plane parallel to the neutral surface). However, we
pointed out in Chapter 1 (without general proof ) that a shear stress is al-
ways accompanied by a complementary shear stress of equal magnitude, the
two stresses acting on mutually perpendicular planes. In a beam, the com-
plementary stress t 0 is a vertical shear stress that acts on the cross section of
the beam, as illustrated in Fig. 5.11(a). Because t ¼ t 0, Eq. (5.8) can be used
to compute the vertical as well as the horizontal shear stress at a point in a
beam. The resultant of the vertical shear stress on the cross-sectional area A

of the beam is, of course, the shear force V; that is, V ¼
Ð
A

t dA.
To prove that t ¼ t 0, consider the infinitesimal element of the beam in

Fig. 5.11(b) as a free body. For translational equilibrium of the element, the
shear stress t on the top face requires an equal, but opposite, balancing shear
stress on the bottom face. Similarly, the complementary shear stress t 0 on
the front face must be balanced by an opposite stress on the back face. The
corresponding forces on the faces of the element are obtained by multiplying
each stress by the area of the face on which it acts. Thus, the horizontal and
vertical forces are t dx dz and t 0 dy dz, respectively. These forces form two
couples of opposite sense. For rotational equilibrium, the magnitudes of the
couples must be equal; that is, ðt dx dzÞ dy ¼ ðt 0 dy dzÞ dx, which yields t ¼ t 0.

d. Discussion and limitations of the shear stress formula

We see that the shear stress formula t ¼ VQ=ðIbÞ predicts that the largest
shear stress in a prismatic beam occurs at the cross section that carries the
largest vertical shear force V. The location (the value of y 0) of the maximum
shear stress within that section is determined by the ratio Q=b. Because Q is
always maximum at y 0 ¼ 0, the neutral axis is usually a candidate for the
location of the maximum shear stress. However, if the width b at the neu-
tral axis is larger than at other parts of the cross section, it is necessary to
compute t at two or more values of y 0 before its maximum value can be
determined.

FIG. 5.11 The vertical stress t 0

acting at a point on a cross section
equals the longitudinal shear stress t

acting at the same point.
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When deriving the shear stress formula, Eq. (5.8), we stated that t

should be considered as the average shear stress. This restriction is necessary
because the variation of shear stress across the width b of the cross section is
often unknown. Equation (5.8) is su‰ciently accurate for rectangular cross
sections and for cross sections that are composed of rectangles, such as
W- and S-shapes. For other cross-sectional shapes, however, the formula for
t must be applied with caution. Let us consider as an example the circular
cross section in Fig. 5.12. It can be shown that the shear stress at the
periphery of the section must be tangent to the boundary, as shown in the
figure. The direction of shear stresses at interior points is unknown, except at
the centerline, where the stress is vertical due to symmetry. To obtain an
estimate of the maximum shear stress, the stresses are assumed to be directed
toward a common center B, as shown. The vertical components of these
shear stresses are assumed to be uniform across the width of the section and
are computed from Eq. (5.8). Under this assumption, the shear stress at the
neutral axis is 1:333V=ðpr2Þ. A more elaborate analysis3 shows that the shear
stress actually varies from 1:23V=ðpr2Þ at the edges to 1:38V=ðpr2Þ at the
center.

Shear stress, like normal stress, exhibits stress concentrations near sharp
corners, fillets, and holes in the cross section. The junction between the web
and the flange of a W-shape is also an area of stress concentration.

e. Rectangular and wide-flange sections

We will now determine the shear stress as a function of y for a rectangular
cross section of base b and height h. From Fig. 5.13, the shaded area is
A0 ¼ b½ðh=2Þ � y�, its centroidal coordinate being y 0 ¼ ½ðh=2Þ þ y�=2. Thus,

Q ¼ A0y 0 ¼ b
h

2
� y

� �� �
1

2

h

2
þ y

� �� �
¼ b

2

h2

4
� y2

� �

and Eq. (5.8) then becomes

t ¼ VQ

Ib
¼ V

2I

h2

4
� y2

� �
(c)

We see that the shear stress is distributed parabolically across the depth of
the section, as shown in Fig. 5.13. The maximum shear stress occurs at the
neutral axis. If we substitute y ¼ 0 and I ¼ bh3=12, Eq. (c) reduces to

r

FIG. 5.12 Shear stress distribution
along a horizontal line of a circular
cross section.

FIG. 5.13 Shear stress distribution on a rectangular cross section.

3See S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed. (New York: McGraw-Hill,

1970).
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tmax ¼
3

2

V

bh
¼ 3

2

V

A
(5.9)

where A is the cross-sectional area. Therefore, the shear stress in a rec-
tangular section is 50% greater than the average shear stress on the cross
section.

In wide-flange sections (W-shapes), most of the bending moment is
carried by the flanges, whereas the web resists the bulk of the vertical shear
force. Figure 5.14 shows the shear stress distribution in the web of a typical
W-shape. In this case, Q (the first moment of A0 about the neutral axis) is
contributed mainly by the flanges of the beam. Consequently, Q does not
vary much with y, so that the shear stress in the web is almost constant. In
fact, tmax ¼ V=Aweb can be used as an approximation to the maximum shear
stress in most cases, where Aweb is the cross-sectional area of the web.

f. Procedure for analysis of shear stress

The following procedure can be used to determine the shear stress at a given
point in a beam:

. Use equilibrium analysis to determine the vertical shear force V acting
on the cross section containing the specified point (the construction of
a shear force diagram is usually a good idea).. Locate the neutral axis and compute the moment of inertia I of the
cross-sectional area about the neutral axis. (If the beam is a standard
structural shape, its cross-sectional properties are listed in Appendix
B.). Compute the first moment Q of the cross-sectional area that lies above
(or below) the specified point.. Calculate the shear stress from t ¼ VQ=ðIbÞ, where b is the width of
the cross section at the specified point. Note that t is the actual shear
stress only if it is uniform across b; otherwise, t should be viewed as
the average shear stress.

The maximum shear stress tmax on a given cross section occurs where
Q=b is largest. If the width b is constant, then tmax occurs at the neutral axis
because that is where Q has its maximum value. If b is not constant, it is
necessary to compute the shear stress at more than one point in order to
determine its maximum value.

In the U.S. Customary system, t is commonly expressed in lb/in.2

(psi). Consistency of units in the shear stress formula then requires the
cross-sectional properties to be in inches and V in pounds. Thus,

t ½lb=in:2� ¼ V ½lb�Q ½in:3�
I ½in:4� b ½in:�

In the SI system, where t is measured in N/m2 (Pa), meters must be used for
the cross-sectional dimensions and V must be in newtons, yielding

t ½N=m2� ¼ V ½N�Q ½m3�
I ½m4� b ½m�

FIG. 5.14 Shear stress distribution
on the web of a wide-flange beam.
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Sample Problem 5.6

The simply supported wood beam in Fig. (a) is fabricated by gluing together three
160-mm by 80-mm planks as shown. Calculate the maximum shear stress in (1) the
glue; and (2) the wood.

24 kN
24 kN

Solution
From the shear force diagram in Fig. (b) we see that the maximum shear force in the
beam is Vmax ¼ 24 kN, occurring at the supports. The neutral axis is the axis of
symmetry of the cross section. The moment of inertia of the cross-sectional area of
the beam about the neutral axis is

I ¼ bh3

12
¼ 160ð240Þ3

12
¼ 184:32� 106 mm4 ¼ 184:32� 10�6 m4

Part 1

The shear stress in the glue corresponds to the horizontal shear stress discussed in
Art. 5.4. Its maximum value can be computed from Eq. (5.8): tmax ¼ VmaxQ=ðIbÞ,
where Q is the first moment of the area A0 shown in Fig. (c); that is,

Q ¼ A0y 0 ¼ ð160� 80Þð80Þ ¼ 1:024� 106 mm3 ¼ 1:024� 10�3 m3

Therefore, the maximum shear stress in the glue, which occurs over either support, is

tmax ¼
VmaxQ

Ib
¼ ð24� 103Þð1:024� 10�3Þ
ð184:32� 10�6Þð0:160Þ

¼ 833� 103 Pa ¼ 833 kPa Answer

Part 2

Because the cross section is rectangular, the maximum shear stress in the wood
occurs at the neutral axis and can be calculated from Eq. (5.9):

tmax ¼
3

2

Vmax

A
¼ 3

2

ð24� 103Þ
ð0:160Þð0:240Þ ¼ 938� 103 Pa ¼ 938 kPa Answer

The same result can be obtained from Eq. (5.8), where now A0 is the area
above the neutral axis, as indicated in Fig. (d). The first moment of this area about
the neutral axis is

Q ¼ A0y 0 ¼ ð160� 120Þð60Þ ¼ 1:152� 106 mm3 ¼ 1:152� 10�3 m3

Equation (5.8) thus becomes
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tmax ¼
VmaxQ

Ib
¼ ð24� 103Þð1:152� 10�3Þ
ð184:32� 10�6Þð0:160Þ

¼ 938� 103 Pa ¼ 938 kPa

which agrees with the previous result.

1
Sample Problem 5.7

The W12� 40 section in Fig. (a) is used as a beam. If the vertical shear force acting
at a certain section of the beam is 16 kips, determine the following at that section:
(1) the minimum shear stress in the web; (2) the maximum shear stress in the web;
and (3) the percentage of the shear force that is carried by the web.

Solution

An idealized drawing of the W12� 40 section is shown in Fig. (b), where the dimen-
sions were obtained from the tables in Appendix B. The drawing approximates the
web and the flanges by rectangles, thereby ignoring the small fillets and rounded
corners present in the actual section. The tables also list the moment of inertia of the
section about the neutral axis as I ¼ 307 in.4.

11.9 in.

8.01 in.

10.87 in.

4148 psi

4148 psi

4917

Part 1

The minimum shear stress in the web occurs at the junction with the flange, where
Q=b is smallest (note that b ¼ 0:295 in. is constant within the web). Therefore, in the
shear stress formula t ¼ VQ=ðIbÞ, Q is the first moment of the area A 01 shown in Fig.
(b) about the neutral axis:

Q ¼ A 01y 01 ¼ ð8:01� 0:515Þ 11:9� 0:515

2
¼ 23:48 in:3

The minimum shear stress in the web thus becomes

tmin ¼
VQ

Ib
¼ ð16� 103Þð23:48Þ

ð307Þð0:295Þ ¼ 4148 psi Answer

Part 2

The maximum shear stress is located at the neutral axis, where Q=b is largest. Hence,
Q is the first moment of the area above (or below) the neutral axis—that is, the
combined moment of areas A 01 and A 02 in Fig. (b). The moment of A 01 was calculated
in Part 1. The moment of A 02 about the neutral axis is A 02y 02, where
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A 02 ¼
11:9

2
� 0:515

� �
ð0:295Þ ¼ 1:6033 in:2

y 02 ¼
1

2

11:9

2
� 0:515

� �
¼ 2:718 in:

Therefore,

Q ¼ A 01y 01 þ A 02y 02 ¼ 23:48þ ð1:6033Þð2:718Þ ¼ 27:83 in:3

and the maximum shear stress in the web becomes

tmax ¼
VQ

Ib
¼ ð16� 103Þð27:83Þ

ð307Þð0:295Þ ¼ 4917 psi Answer

Part 3

The distribution of the shear stress in the web is shown in Fig. (c). The shear force
carried by the web is

Vweb ¼ ðcross-sectional area of webÞ � ðarea of shear diagramÞ

We know from the discussion in Sec. 5.4 that shear stress distribution is parabolic.
Recalling that the area of a parabola is (2/3)(base � height), we obtain

Vweb ¼ ð10:87� 0:295Þ 4148þ 2

3
ð4917� 4148Þ

� �
¼ 14 945 lb

Therefore, the percentage of the shear force carried by the web is

Vweb

V
� 100% ¼ 14 945

16 000
� 100% ¼ 93:4% Answer

This result confirms that the flanges are ine¤ective in resisting the vertical shear.
It was mentioned in Sec. 5.4 that we can use tmax ¼ V=Aweb as a rough ap-

proximation for the maximum shear stress. In this case, we get

V

Aweb
¼ 16� 103

ð10:87Þð0:295Þ ¼ 4990 psi

which di¤ers from tmax ¼ 4917 psi computed in Part 2 by less than 2%.

1
Sample Problem 5.8

The figure shows the cross section of a beam that carries a vertical shear force
V ¼ 12 kips. The distance from the bottom of the section to the neutral axis is
d ¼ 8:90 in., and the moment of inertia of the cross-sectional area about the neutral
axis is I ¼ 547 in.4. Determine the maximum shear stress on this cross section.

Solution

The maximum shear stress may occur at the neutral axis (where Q is largest) or at
level a-a in the lower fin (where the width of the cross section is smaller than at the
neutral axis). Therefore, we must calculate the shear stress at both locations.

Shear Stress at Neutral Axis We take Q to be the first moment of the rectangular
area above the neutral axis (the area below the neutral axis could also be used).
Noting that the dimensions of this area are 2 in. by 7.30 in., we have

Q ¼ A0y 0 ¼ ð2� 7:30Þ 7:30

2
¼ 53:29 in:3

and the shear stress at the neutral axis is
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t ¼ VQ

Ib
¼ ð12� 103Þð53:29Þ

ð547Þð2Þ ¼ 585 psi

Shear Stress at a-a It is easier to compute Q by using the area below the line a-a
rather than the area above the line. The dimensions of this area are b ¼ 1:2 in. and
h ¼ 7:5 in. Consequently,

Q ¼ A0y 0 ¼ ð1:2� 7:5Þ 8:90� 7:5

2

� �
¼ 46:35 in:3

and the shear stress becomes

t ¼ VQ

Ib
¼ ð12� 103Þð46:35Þ

ð547Þð1:2Þ ¼ 847 psi

The maximum shear stress is the larger of the two values:

tmax ¼ 847 psi ðoccurring at a-aÞ Answer

1
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Problems

Neglect the weight of the beam in the following problems.

5.55 The cross section of a timber beam is 60 mm wide and 140 mm high. The
vertical shear force acting on the section is 32 kN. Determine the shear stress at (a)
the neutral axis; and (b) 30 mm above the neutral axis.

5.56 Show that the average shear stress at the neutral axis of a circular cross sec-
tion is t ¼ 4V=ð3pr2Þ, where V is the shear force and r is the radius of the section.

5.57 The figure shows the cross section of a simply supported beam that carries a
uniformly distributed loading of intensity 180 lb/ft over its entire length L. If the
working shear stress is 120 psi, determine the largest allowable value of L.

5.58 The vertical shear force acting on the cross section shown is 1800 lb. De-
termine the shear stress at (a) the neutral axis; and (b) 4 in. above the neutral axis.

5.59 The vertical shear force acting in a beam with the cross section shown in the
figure is 20 kips. Find the maximum shear stress in the beam.

5.60 The square timber is used as a railroad tie. It carries two uniformly distrib-
uted loads of 48 kN each. The reaction from the ground is distributed uniformly over
the length of the tie. Determine the smallest allowable dimension b if the working
stress in shear is 1.0 MPa.

5.61 Figures (a) and (b) show the cross sections of two thin-walled (t� a) beams.
Calculate the maximum shear stress in each beam that would be caused by a vertical
shear force V.

4a 4a
t

t

2a

(a) (b)

2a

a a a a

FIG. P5.61

5.62 The vertical shear force acting on the I-section shown is 100 kN. Compute
(a) the maximum shear stress acting on the section; and (b) the percentage of the
shear force carried by the web.

5.63 Solve Prob. 5.62 if the height of the web is 200 mm instead of 160 mm.

5.64 The beam is built up of 1=4-in. vertical plywood strips separated by wood
blocks. Determine the vertical shear force that causes a maximum shear stress of
200 psi.

FIG. P5.57, P5.58

FIG. P5.59 FIG. P5.60

FIG. P5.62, P5.63

FIG. P5.64
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5.65 The manufactured wood beam carries a uniformly distributed load of in-
tensity w0. Determine the largest safe value of w0 if the maximum shear stress in the
wood is limited to 300 psi.

FIG. P5.65

5.66 For the beam shown in the figure, find the shear stress at a point 30 mm
above the bottom of the beam at section C.

FIG. P5.66

5.67 For the beam shown, compute the shear stress at 1.0-in. vertical intervals on
the cross section that carries the maximum shear force. Plot the results.

FIG. P5.67

5.68 The manufactured wood beam carries the concentrated loads shown. What is
the maximum safe value of P if the working stress in shear is 6 MPa?

3P

FIG. P5.68
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5.69 The simply supported beam is constructed of 20-mm-thick boards as shown.
Determine the largest permissible value of the load intensity w0 if the working shear
stress in the wood is 1.2 MPa.

3 m

20 mm
80 mm

20 mm

20 mm

20 mm

120 mm

FIG. P5.69

5.70 The beam consists of two S18� 70 sections that are welded together as
shown. If the intensity of the uniformly distributed load is w0 ¼ 15 kip/ft, calculate
the maximum shear stress in the beam.

FIG. P5.70

5.71 The maximum shear force in a beam with the cross section shown in the fig-
ure is 36 kips. Determine the maximum shear stress in the beam.

FIG. P5.71
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5.72 The beam shown in cross section is fabricated by welding a fin to the back of
a C250� 45 section. The neutral axis of the cross section is located at d ¼ 8:96 mm,
and the moment of inertia about this axis is I ¼ 4:35� 106 mm4. What is the maxi-
mum shear stress caused by a 200-kN vertical shear force?

FIG. P5.72

5.73 The figure shows the triangular cross section of a beam that carries a vertical
shear force V. Derive the expression for the average shear stress at the neutral axis
(y ¼ 0).
*5.74 A vertical shear force V acts on the triangular beam cross section shown.
(a) Show that the largest average shear stress on the cross section occurs at the point
y ¼ h=6. (b) Derive the expression for the largest average shear stress.

NA

a

y h

h/3

FIG. P5.73, P5.74

5.5 Design for Flexure and Shear

Up to this point, we have considered bending and shear stresses in beams
separately. We now explore the design of beams that satisfy the prescribed
design criteria for both bending and shear. In general, bending stress governs
the design of long beams, whereas shear stress is critical in short beams. We
can draw this conclusion by observing that the shear force V is determined
only by the magnitude of the loading, whereas the bending moment M de-
pends on the magnitude of the loading and the length L of the beam. In other
words, for a given loading, Vmax is independent of L, but Mmax increases as
L is increased.

Shear stress is of concern in timber beams because of the low shear
strength of wood along the grain; the typical ratio of shear strength to bend-
ing strength is 1:10. Very thin webs in metal beams can also fail in shear or
by buckling caused by the shear stress.

The most direct method for satisfying both design criteria is to perform
two separate computations: one based on the bending stress criterion and
the other on the shear stress criterion. Examination of the results will then
reveal which of the designs satisfies both criteria.
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Sample Problem 5.9

The simply supported beam of rectangular cross section in Fig. (a) carries a total
load W that is distributed uniformly over its length L. The working stresses in bend-
ing and shear are sw and tw, respectively. Determine the critical value of L for which
the maximum shear stress and the maximum bending stress reach their working
values simultaneously.

Solution

Figures (b) and (c) show the shear force and bending moment diagrams for the beam.
We see that the maximum shear force Vmax ¼W=2 occurs over the supports, and the
maximum bending moment Mmax ¼WL=8 occurs at midspan.

Design for Shear The maximum value of W that does not violate the shear stress
criterion t a tw is obtained by setting tmax ¼ tw in Eq. (5.9):

tw ¼
3

2

Vmax

A
¼ 3

2

W=2

bh

which gives

W ¼ 4

3
bhtw (a)

Note that this value of W is independent of the length of the beam.

Design for Bending Letting smax ¼ sw in Eq. (5.4b), we get

sw ¼
jMjmax

S
¼WL=8

bh2=6
¼ 3

4

WL

bh2

yielding

W ¼ 4

3

bh2

L
sw (b)

which is the maximum W that does not violate the bending stress criterion s a sw.
Observe that W decreases with increasing L.
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Equating the expressions for W in Eqs. (a) and (b), we obtain

4

3
bhtw ¼

4

3

bh2

L
sw

from which

L ¼ sw

tw

h Answer

For beams longer than this critical length, bending stress governs the design; otherwise,
shear stress governs. If we assume, for example, that sw ¼ 10tw (typical of timber), we
obtain L ¼ 10h.

1
Sample Problem 5.10

The box beam in Fig. (a) supports the concentrated loads 2P and P. Compute the
maximum allowable value of P if the working stresses in bending and shear are
sw ¼ 1000 psi and tw ¼ 100 psi, respectively.

Solution
The support reactions, the shear force diagram, and the bending moment diagram,
shown in Figs. (a)–(c), were obtained by equilibrium analysis (P is assumed to be
measured in pounds). We see that the largest shear force is jVmaxj ¼ 1:5P lb, occur-
ring in the segment BD. The largest bending moment is jMjmax ¼ 5P lb � ft ¼ 60P

lb � in. at D.
The moment of inertia of the cross section in Fig. (a) about the neutral axis is

the di¤erence between the moments of inertia of the outer and inner rectangles:

I ¼ bh3

12

� �
outer

� bh3

12

� �
inner

¼ 8ð10Þ3

12
� 6ð8Þ3

12
¼ 410:7 in:4
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Design for Shear The maximum shear stress occurs at the neutral axis in segment
BD. The first moment of the cross-sectional area above the neutral axis is computed
by subtracting the first moment of the inner rectangle in Fig. (d) from the first
moment of the outer rectangle:

Q ¼ ðA0y 0Þouter � ðA0y 0Þinner ¼ ð8� 5Þð2:5Þ � ð6� 4Þð2Þ ¼ 52:0 in:3

The largest P that can be applied without exceeding the working shear stress is ob-
tained from the shear formula:

tw ¼
jVmaxjQ

Ib
100 ¼ ð1:5PÞð52:0Þ

ð410:7Þð2Þ

which gives P ¼ 1053 lb.

Design for Bending The flexure formula yields the largest P that will not violate the
bending stress constraint. Letting smax ¼ sw and noting that the distance from the
neutral axis to the top of the cross section is c ¼ 5 in., we get

sw ¼
jMjmaxc

I
1000 ¼ ð60PÞð5Þ

410:7

from which we obtain P ¼ 1369 lb.

The maximum value of P that can be applied safely is the smaller of the two
values computed above; namely,

P ¼ 1053 lb Answer

with the maximum shear stress being the limiting condition.

1
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Problems

Neglect the weight of the beam in the following problems.

5.75 A simply supported beam of length L has a rectangular cross section of width
b and height h. The beam carries the concentrated load P in the middle of its span. If
L ¼ 10h, determine the ratio of smax=tmax.

5.76 The laminated beam, shown in cross section, is composed of five 6-in. by
2-in. planks that are glued together. The beam carries a uniformly distributed load
of intensity w0 over its 8-ft simply supported span. If the working stresses are 80 psi
for shear in glue, 110 psi for shear in wood, and 1100 psi for bending in wood, deter-
mine the maximum allowable value of w0.

5.77 The cantilever beam of length L has a circular cross section of diameter d.
The beam carries a distributed load that varies linearly as shown in the figure. Find
the expression for the ratio smax=tmax in terms of L and d. Assume that tmax occurs at
the neutral axis and that its distribution along the diameter of the cross section is
uniform.

5.78 The simply supported wood beam supports a load W that is distributed uni-
formly over its length and a concentrated force 2W . If the working stresses are 1400
psi in bending and 110 psi in shear, determine the maximum allowable value of W.

5.79 A W250� 49:1 section (with the web vertical) is used as a cantilever beam 4
m long. The beam supports a uniformly distributed loading of intensity w0 over its
entire length. Determine the ratio smax=tmax.

5.80 The concentrated load P travels across the 8-m span of the wooden beam
which has the cross section shown. If the working stresses for wood are 20 MPa in
bending and 5 MPa in shear, determine the largest allowable value of P.

5.81 The thin-walled cantilever beam is formed by gluing the two 8-in. by 2-in.
angles to the 10-in.-wide plate. Assume that t is much smaller than the other di-
mensions of the cross section. (a) Determine the smallest thickness t if the working
bending stress is 8000 psi. (b) Find the required shear strength in the glue.

FIG. P5.76

FIG. P5.77

15 in.

9 in.

FIG. P5.78

Dimensions in mm

400
20

8 m

P
x

50

100

FIG. P5.80

1200 lb

5 ft

10 in.
Glue

8 in.

6 in.

t

t

FIG. P5.81
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5.82 The simply supported wood beam, fabricated by gluing together four
wooden boards, carries the three concentrated forces. The working bending and
shear stresses for the wood are 1000 psi and 600 psi, respectively. Determine the
largest allowable value of the force P.

2 ft

P
2

2 ft

0.5 in. 8 in. 0.5 in.

2 in.

2 in.

6 in.
4 ft 4 ft

P
P 2

FIG. P5.82

5.83 The working stresses for the manufactured wood beam are 10 MPa in bending
and 1.4 MPa in shear. Determine the largest allowable value of the load intensity w0.

3 m 6 m

FIG. P5.83

5.84 The overhanging beam carries two concentrated loads W and a uniformly
distributed load of magnitude 4W . The working stresses are 6000 psi in tension,
10 000 psi in compression, and 8000 psi in shear. (a) Show that the neutral axis of the
cross section is located at d ¼ 2:167 in. and that the moment of inertia of the cross-
sectional area about the neutral axis is I ¼ 61:55 in.4. (b) Determine the largest
allowable value of W.

FIG. P5.84
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5.85 The thin-walled tube is used as a beam to support the uniformly distributed
load of intensity w0. (a) Find the largest allowable value of w0 based on the working
stress in bending of 100 MPa. (b) Compute the corresponding maximum shear stress
in the beam.

FIG. P5.85

5.86 The cast iron inverted T-section supports two concentrated loads of magni-
tude P. The working stresses are 48 MPa in tension, 140 MPa in compression, and
30 MPa in shear. (a) Show that the neutral axis of the cross section is located at
d ¼ 48:75 mm and that the moment of inertia of the cross-sectional area about this
axis is I ¼ 11:918� 106 mm4. (b) Find the maximum allowable value of P.

FIG. P5.86

5.87 Determine the largest safe value of the load intensity w0 carried by the I-
beam if the working stresses are 3500 psi in bending and 260 psi in shear.

5.88 The wood beam has a square cross section. Find the smallest allowable cross-
sectional dimensions if the working stresses are 8 MPa in bending and 1.0 MPa in
shear.

4 ft 8 ft 4 ft

FIG. P5.87 FIG. P5.88
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5.89 The rectangular wood beam is loaded as shown in the figure. Determine
the largest allowable magnitude of the load P if the working stresses are 10 MPa in
bending and 1.2 MPa in shear.

FIG. P5.89

5.90 The channel section carries a uniformly distributed load totaling 6W and two
concentrated loads of magnitude W. (a) Verify that the neutral axis is located at
d ¼ 50 mm and that the moment of inertia about that axis is 15:96� 106 mm4. (b)
Determine the maximum allowable value for W if the working stresses are 40 MPa in
tension, 80 MPa in compression, and 24 MPa in shear.

6

FIG. P5.90

5.6 Design of Fasteners in Built-Up Beams

Built-up (fabricated) beams are composed of longitudinal elements that are
rigidly fastened together by rivets, bolts, or nails. As discussed in Sec. 5.4,
these elements tend to slide past one another when the beam is subjected to
bending. In solid beams, the sliding action is prevented by the longitudinal
shear stress between the elements. In built-up beams, the tendency to slide is
resisted by the fasteners. In this section, we consider the design of fasteners.

Consider the beam in Fig. 5.15, which is built up from three planks
fastened together by a row of bolts spaced a distance e apart. From the shear
formula in Eq. (5.8), the average longitudinal shear stress between the upper
two planks is

t ¼ VQ

Ib

where Q is the first moment of the shaded area in Fig. 5.15(c) about the
neutral axis. The shear force F that must be carried by a bolt is obtained by
multiplying this shear stress by the shaded area of magnitude eb in Fig.
5.15(a). Thus,

F ¼ teb ¼ VQ

Ib
ðebÞ ¼ VQe

I
(5.10a)
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Let us now assume that the allowable force (working force) Fw for a bolt in
shear is given. The value of Fw may be governed by the shear strength of the
bolt or by the bearing strength of the planks. If we neglect friction between
the planks, the largest allowable spacing of the bolts is obtained by setting
F ¼ Fw in Eq. (5.10a), yielding

e ¼ FwI

VQ
(5.10b)

If we follow the common practice of having constant spacing of fasteners
throughout the length of the beam, then V in Eq. (5.10b) represents the
maximum shear force in the beam.

FIG. 5.15 Three planks fastened by a row of bolts.
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Sample Problem 5.11

A plate and angle girder is fabricated by attaching four 13-mm-thick angle sections
to a 1100 mm � 10 mm web plate to form the section shown in Fig. (a). The moment
of inertia of the resulting cross-sectional area about the neutral axis is I ¼ 4140� 106

mm4. If the maximum shear force in the girder is Vmax ¼ 450 kN, determine the
largest allowable spacing between the 19-mm rivets that fasten the angles to the web
plate. The allowable stresses are tw ¼ 100 MPa in shear and ðsbÞw ¼ 280 MPa in
bearing.

Solution

The rivets provide the shear connection between the angle sections and the web plate.
Figure (b) shows a segment of an angle section of length e, where e is the spacing of
the rivets. The shear force F in the rivet resists the di¤erence of the longitudinal
forces P1 and P2 (caused by the bending stresses) that act at the two ends of the seg-
ment. The value of F can be obtained from Eq. (5.10a): F ¼ VQe=I , where Q is the
first moment of the cross-sectional area of the angle section about the neutral axis of
the beam. Referring to the data in Fig. (a), we obtain

Q ¼ Ay ¼ ð2630Þð536:3Þ ¼ 1:4105� 106 mm3 ¼ 1:4105� 10�3 m3

Before we can determine the spacing of the rivets, we must calculate the al-
lowable force Fw that can be transmitted by a rivet. Assuming that Fw is governed by
the working shear stress in the rivet, we have

Fw ¼ Arivettw ¼
pð0:019Þ2

4
ð100� 106Þ ¼ 28:35� 103 N

Because the rivets are in double shear, the bearing force between the rivet and
the web plate is 2F . Thus, the allowable value of Fw, determined by the bearing stress

of the web plate, is given by

2Fw ¼ ðdrivettwebÞðsbÞw ¼ ð0:019Þð0:010Þð280� 106Þ

which yields Fw ¼ 26:60� 103 N. There is no need to consider the bearing stress be-
tween the rivet and the angle sections because the bearing force is F, which is only
one-half of the force that acts between the rivet and the web plate. We conclude that
the allowable force transmitted by a rivet is governed by bearing stress between the
rivet and the web plate, its value being

Fw ¼ 26:60� 103 N

The largest allowable spacing of the rivets can now be calculated from Eq. (5.10b):

e ¼ FwI

VQ
¼ ð26:60� 103Þð4140� 10�6Þ
ð450� 103Þð1:4105� 10�3Þ ¼ 0:1735 m ¼ 173:5 mm Answer

1
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Problems

5.91 The beam shown in cross section is fabricated by bolting three 80-mm by
200-mm wood planks together. The beam is loaded so that the maximum shear stress
in the wood is 1.2 MPa. If the maximum allowable shear force in a bolt is Fw ¼ 6.5 kN,
determine the largest permissible spacing of the bolts.

5.92 Figures (a) and (b) show the cross sections of two beams that are constructed
by nailing together four 2-in.-thick wooden boards. Note that the cross sections have
identical cross-sectional dimensions. For each beam, determine the largest allowable
spacing of the nails that will resist an 8000-lb vertical shear force. The allowable
shear force in each nail is 250 lb.

5.93 The figure shows the cross section of a beam that is symmetrical about the
neutral axis. The cross section carries a 3-kN vertical shear force. The bolts holding the
beam together are spaced at 100 mm along the length of the beam. If the working shear
stress for each bolt is 5 MPa, determine the smallest allowable diameter of the bolts.

5.94 The 12-ft-long walkway of a sca¤old is made by screwing two 12-in. by
1/2-in. sheets of plywood to 1.5-in. by 3.5-in. timbers as shown. The screws have a
5-in. spacing along the length of the walkway. The working stress in bending is
sw ¼ 850 psi for the plywood and the timbers, and the allowable shear force in each
screw is Fw ¼ 250 lb. What limit should be placed on the weight W of a person who
walks across the plank?

5.95 A simply supported beam, 10 ft long, consists of three 4-in. by 6-in. planks
that are secured by bolts spaced 12 in. apart. The bolts are tightened to a tensile
stress of 18 ksi. The beam carries a concentrated load at its midspan that causes a
maximum bending stress of 1400 psi. If the coe‰cient of friction between the planks
is 0.3, determine the bolt diameters so that the shear between planks can be trans-
mitted by friction only.

FIG. 5.91

8 in. × 2 in.

(a) (b)

12 in. × 2 in.

6 in. × 2 in. 10 in. × 2 in.

FIG. P5.92

Dimensions
in mm

50
90

NA

25

90

25 50

FIG. P5.93

FIG. P5.94 FIG. P5.95
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5.96 The figure shows the upper half of a built-up girder (the cross section is
symmetric about the neutral axis). All rivets used in fabrication have a diameter of 22
mm. The moment of inertia of the entire cross-sectional area of the girder about the
neutral axis is I ¼ 4770� 106 mm4. The working stresses are 100 MPa for rivets in
shear and 280 MPa for bearing of the web plate. If the maximum shear force carried
by the girder is 450 kN, determine the largest allowable spacing of rivets that join the
angles to the web plate.

5.97 Two C380 � 60 channels are riveted back-to-back and used as a beam with
the web horizontal. The 19-mm rivets are spaced 200 mm apart along the length of
the beam. What is the largest allowable shear force in the beam if the allowable
stresses are 100 MPa for rivets in shear and 220 MPa for the channels in bearing?

5.98 Two C12� 20:7 channels are joined to 8.5-in. by 0.5-in. plates with 3/4-in.
rivets to form a beam with the cross section shown in the figure. The maximum shear
force in the beam is 20 kips. (a) Determine the maximum allowable spacing of the
rivets using 5000 psi for the working shear stress. (b) Compute the corresponding
maximum bearing stress in the channels.

5.99 The beam is fabricated by attaching a C180� 14:6 channel to a W250� 17:9
shape with 15-mm rivets as shown. The maximum shear force in the beam is 65 kN.
(a) Find the maximum allowable spacing of the rivets if the working stress for a rivet
is 100 MPa in shear. (b) What is the corresponding maximum bearing stress exerted
by the rivets?

Review Problems

Neglect the weight of the beam in the following problems.

5.100 The bending moment acting on the cross section of the beam is M ¼ 1:8
kN �m. Find the maximum tensile and compressive bending stresses acting on the
cross section.

5.101 When the end couples M0 are applied to the steel beam, the radius of cur-
vature of the neutral axis of the beam is 200 in. Given that E ¼ 29� 106 psi for steel,
determine the value of M0.

in.
in.

FIG. P5.101

FIG. P5.96 FIG. P5.97 FIG. P5.98

14.6

17.9

FIG. P5.99

FIG. P5.100
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5.102 The figure shows the cross section of a fabricated wood beam. If the work-
ing stress in shear for the wood is 750 psi, determine the largest allowable vertical
shear force that can be carried by the beam.

5.103 The structure consists of the hollow rectangular beam ABC to which is
welded the circular bent bar BDE. Calculate the maximum bending stress in the
structure.

Dimensions in mm

500 500 500
50

E

ba

a

D

B
A

b

C

60

70

75
15 kN

80

Section a-a

Section b-b

FIG. P5.103

5.104 The beam shown in cross section is fabricated by joining two 150-mm by
150-mm wooden boards with 20-mm-thick plywood strips. Knowing that the work-
ing shear stress for plywood is 2 MPa, determine the maximum allowable vertical
shear force that can be carried by the beam.

5.105 The stepped beam has a rectangular cross section 2 in. wide. Determine the
maximum bending stress in the beam due to the 3600-lb � ft couple.

5.106 Determine the magnitude and location of the maximum bending stress for
the beam.

5.107 Determine the maximum tensile and compressive bending stresses in the beam.

FIG. P5.107

5.108 The overhanging beam carries concentrated loads of magnitudes P and 2P.
If the bending working stresses are 15 ksi in tension and 18 ksi in compression, de-
termine the largest allowable value of P.

FIG. P5.108

0.75 in. 0.75 in.6 in.

6 in.

12 in.

2 in.

FIG. P5.102

Dimensions
in mm

150

150

150

75

75

20

FIG. P5.104

FIG. P5.105

2500 lb
12 kip · ft

4 in.

6 in.

FIG. P5.106
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5.109 Find the lightest S-shape for the overhanging beam if the working stress in
bending is 18 ksi. What is the actual maximum bending stress in the beam selected?

5.110 The S380� 74 section carries a uniformly distributed load totaling 3W and
a concentrated load W. Determine the largest value of W if the working stress in
bending is 120 MPa.

5.111 The cast iron beam in the figure has an overhang of length b ¼ 1:0 m at
each end. If the bending working stresses are 20 MPa in tension and 80 MPa in
compression, what is the largest allowable intensity w0 of a distributed load that can
be applied to the beam? Assume that w0 includes the weight of the beam.

FIG. P5.111, P5.112

5.112 Solve Prob. 5.111 using b ¼ 3 m, all other data remaining unchanged.

5.113 A simply supported 20-ft-long beam carries a uniformly distributed load of
intensity 800 lb/ft over its entire length. Find the lightest S-shape that can be used if
the working stress in bending is 18 ksi. What is the actual stress in the beam selected?

5.114 The working stress in bending for the simply supported beam is 120 MPa.
Find the lightest W-shape that can be used, and calculate the actual maximum
bending stress in the beam selected.

5.115 The vertical shear force acting on the cross section shown in the figure is
60 kN. Determine the maximum shear stress on the section.

5.116 The cross section of a beam is formed by gluing two pieces of wood to-
gether as shown. If the vertical shear force acting on the section is 60 kN, determine
the shear stress (a) at the neutral axis; and (b) on the glued joint.

5000 lb 5000 lb

6 ft 10 ft 6 ft

FIG. P5.109 FIG. P5.110

FIG. P5.114 FIG. P5.115

FIG. P5.116
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5.117 The W360� 262 section carries a vertical shear force of 650 kN. For this
section, calculate (a) the minimum shear stress in the web; (b) the maximum shear
stress in the web and (c) the percentage of the vertical shear force carried by the web.

5.118 The simply supported timber beam has a square cross section. Find the
smallest allowable value of the dimension b if the working stresses are 8 MPa in
bending and 1.0 MPa in shear.

5.119 A simply supported beam with the cross section shown supports a
uniformly distributed load of intensity w0 over its length L = 15 ft. Determine the
ratio smax=tmax for this beam.

5.120 The wood beam carries a concentrated load W and a distributed load to-
taling 0:7W . Find the largest allowable value of W if the working stresses are 1200
psi in bending and 150 psi in shear.

FIG. P5.120

5.121 The weight W travels across the span of the wood beam. Determine the
maximum allowable value of W if the working stresses are 1400 psi in bending and
160 psi in shear.

12 ft 4 in.

18 in.

FIG. P5.121

FIG. P5.117

10 kN
5

FIG. P5.118

FIG. P5.119
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5.122 A simply supported beam is made of four 2-in. by 6-in. wood planks that
are fastened by screws as shown in the cross section. The beam carries a concentrated
load at the middle of its 12-ft span that causes a maximum bending stress of 1400 psi
in the wood. (a) Determine the maximum shear stress in the wood. (b) Find the
largest allowable spacing of screws if the shear force in each screw is limited to 200 lb.

5.123 A beam is fabricated by bolting together two W200� 100 sections as
shown. The beam supports a uniformly distributed load of intensity w0 ¼ 30 kN/m
on its 10-m simply supported span. (a) Determine the maximum bending stress in the
beam. (b) If the allowable shear force in each bolt is 30 kN, calculate the largest
permissible spacing of the bolts.

5.124 Two C100� 10:8 channels are joined to 120-mm by 7.5-mm plates with
10-mm rivets to form the beam shown in the figure. The beam carries a uniformly
distributed loading of intensity w0 over its 4-m simply supported span. (a) If
the working bending stress is 120 MPa, find the largest allowable value of w0.
(b) Determine the largest allowable spacing of rivets using 80 MPa as the working
stress for rivets in shear.

Computer Problems

C5.1 The symmetric cross section of a beam consists of three rectangles of dimen-
sions bi by hi (i ¼ 1; 2; 3), arranged on top of one another as shown. A bending mo-
ment of magnitude M acts on the cross section about a horizontal axis. Given the
values of bi, hi, and M, write an algorithm that computes the maximum bending
stress acting on the cross section. Apply the algorithm to the cross sections and mo-
ments shown in parts (a) and (b) of the figure.

FIG. C5.1

FIG. P5.122

FIG. P5.123

10.8

FIG. P5.124
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C5.2 The cantilever beam of length L has a rectangular cross section of constant
width b. The height h of the beam varies as h ¼ h1 þ ðh2 � h1Þðx=LÞ2. The magnitude
of the uniformly distributed load is w0. Given L, b, h1, h2, and w0, construct an al-
gorithm to plot the maximum normal stress acting on the cross section as a function
of x. (a) Run the algorithm with L ¼ 2 m, b ¼ 25 mm, h1 ¼ 30 mm, h2 ¼ 120 mm,
and w0 ¼ 2 kN/m. (b) Find the combination of h1 and h2 that minimizes the max-
imum normal stress in the beam while maintaining the 75-mm average height of the
beam in part (a).

FIG. C5.2

C5.3 The simply supported beam of rectangular cross section has a constant width
b, but its height h varies as h ¼ h1 þ ðh2 � h1Þ sinðpx=LÞ, where L is the length of the
beam. A concentrated load P acts at the distance x from the left support. Given L, b,
h1, h2, and P, write an algorithm to plot the maximum bending stress under the load
as a function of x. Run the algorithm with P ¼ 100 kips, L ¼ 36 ft, b ¼ 4 in. and (a)
h1 ¼ 18 in., h2 ¼ 30 in.; and (b) h1 ¼ h2 ¼ 26:55 in. (The two beams have the same
volume.)

FIG. C5.3

C5.4 The cantilever beam of length L and constant flange width b is fabricated
from a plate with thickness t. The height h of the web varies linearly from h1 to h2.
The beam carries a concentrated load P at the free end. Given L, b, t, h1, h2, and P,
construct an algorithm to plot the maximum normal and shear stresses on the cross
section as functions of the distance x. Run the algorithm with L ¼ 8 ft, b ¼ 4 in.,
t ¼ 0:5 in., h1 ¼ 2 in., h2 ¼ 18 in., and P ¼ 4800 lb.

FIG. C5.4
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6
Deflection of Beams

6.1 Introduction

In this chapter, we consider the deflection of statically determinate beams.
Because the design of beams is frequently governed by rigidity rather than
strength, the computation of deflections is an integral component of beam
analysis. For example, building codes specify limits on deflections as well as
stresses. Excessive deflection of a beam not only is visually disturbing but
also may cause damage to other parts of the building. For this reason, build-
ing codes limit the maximum deflection of a beam to about 1/360th of its
span. Deflections can also govern the design of machinery, cars, and aircraft.
In the design of a lathe, for example, the deflections must be kept below the
dimensional tolerances of the parts being machined. Cars and aircraft must
have su‰cient rigidity to control structural vibrations.

Wing of a commercial airplane. Aircraft

wings can be analyzed for stresses and

deformations by modeling them as

cantilever beams. Since excessive

deformation can destroy aerodynamic

integrity, the deflection of a wing is as

important as its strength. This chapter

discusses several methods for computing

the deflections of beams. Courtsey of

� INSADCO Photography/Alamy.

195

�
IN

S
A

D
C

O
P

h
o

to
g
ra

p
h

y
/A

la
m

y

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Deflections also play a crucial role in the analysis of statically in-
determinate beams. They form the bases for the compatibility equations that
are needed to supplement the equations of equilibrium, as we discovered in
our analysis of axially loaded bars and torsion of shafts.

A number of analytical methods are available for determining the
deflections of beams. Their common basis is the di¤erential equation that
relates the deflection to the bending moment. The solution of this equation is
complicated because the bending moment is usually a discontinuous func-
tion, so that the equations must be integrated in a piecewise fashion. The
various methods of deflection analysis are essentially di¤erent techniques for
solving this di¤erential equation. We consider two such methods in this text:

Method of double integration This method is fairly straightforward in
its application, but it often involves considerable algebraic manipu-
lation. We also present a variation of the method that simplifies the
algebra by the use of discontinuity functions. The primary advantage of
the double-integration method is that it produces the equation for the
deflection everywhere along the beam.
Moment-area method The moment-area method is a semigraphical
procedure that utilizes the properties of the area under the bending
moment diagram. It is the quickest way to compute the deflection at a
specific location if the bending moment diagram has a simple shape.
The method is not suited for deriving the deflection as a function of
distance along the beam without using a computer program.

In this chapter, we also discuss the method of superposition, in which
the applied loading is represented as a series of simple loads for which
deflection formulas are available. Then the desired deflection is computed by
adding the contributions of the component loads (principle of superposition).

6.2 Double-Integration Method

Figure 6.1(a) illustrates the bending deformation of a beam. Recall that in a
real beam, the displacements and slopes are very small if the stresses are be-
low the elastic limit, so that the deformation shown in the figure is greatly
exaggerated. The deformed axis of the beam is called its elastic curve. In this
section, we derive the di¤erential equation for the elastic curve and describe
a method for its solution.

a. Differential equation of the elastic curve

As shown in Fig. 6.1(a), we let x be the horizontal coordinate of an arbitrary
point A on the axis of the beam, measured from the fixed origin O. As the
beam deforms, its axis becomes curved and A is displaced to the position A0.
The vertical deflection of A, denoted by v, is considered to be positive if di-
rected in the positive direction of the y-axis—that is, upward in Fig. 6.1(a).
Because the axis of the beam lies on the neutral surface, its length does not
change. Therefore, the distance OA 0, measured along the elastic curve, is
also x. It follows that the horizontal deflection of A is negligible provided
the slope of the elastic curve remains small.

Consider next the deformation of an infinitesimal segment AB of the
beam axis, as shown in Fig. 6.1(b). The elastic curve A0B 0 of the segment has

196 CHAPTER 6 Deflection of Beams

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



the same length dx as the undeformed segment. If we let v be the deflection
of A, then the deflection of B is vþ dv, with dv being the infinitesimal change
in the deflection over the length dx. Similarly, the slope angles at the ends of
the deformed segment are denoted by y and yþ dy. From the geometry of
the figure, we obtain

dv

dx
¼ sin yAy (6.1)

The approximation is justified because y is small. From Fig. 6.1(b), we also
see that

dx ¼ r dy (a)

where r is the radius of curvature of the deformed segment. Rewriting Eq.
(a) as 1=r ¼ dy=dx and substituting y from Eq. (6.1), we obtain

1

r
¼ d 2v

dx2
(6.2)

When deriving the flexure formula in Sec. 5.2, we obtained the
moment-curvature relationship

1

r
¼ M

EI
(5.2b, repeated)

where M is the bending moment acting on the segment, E is the modulus of
elasticity of the beam material, and I represents the moment of inertia of
the cross-sectional area about the neutral (centroidal) axis. Substitution
of Eq. (5.2b) into Eq. (6.2) yields

d 2v

dx2
¼ M

EI
(6.3a)

which is the di¤erential equation of the elastic curve. The product EI, called
the flexural rigidity of the beam, is usually constant along the beam. It is
convenient to write Eq. (6.3a) in the form

FIG. 6.1 (a) Deformation of a beam; (b) deformation of a di¤erential element of
beam axis.

6.2 Double-Integration Method 197

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



EIv 00 ¼M (6.3b)

where the prime denotes di¤erentiation with respect to x; that is, dv=dx ¼ v 0,
d 2v=dx2 ¼ v 00, and so on.

b. Double integration of the differential equation

If EI is constant and M is a known function of x, integration of Eq. (6.3b) yields

EIv 0 ¼
ð

M dxþ C1 (6.4)

A second integration gives

EIv ¼
ðð

M dx dxþ C1xþ C2 (6.5)

where C1 and C2 are constants of integration to be determined from the pre-
scribed constraints (for example, the boundary conditions) on the deforma-
tion of the beam. Because Eq. (6.5) gives the deflection v as a function of x,
it is called the equation of the elastic curve. The analysis described above is
known as the double-integration method for calculating beam deflections.

If the bending moment and flexural rigidity are smooth1 functions of
the coordinate x, a single di¤erential equation can be written for the entire
beam. If the beam is statically determinate2, there will be two support
reactions, each of which imposes a known constraint on the slope or
deflection of the elastic curve. These constraints, also referred to as boundary

conditions, can be used to determine the two constants of integration. Com-
mon examples of boundary conditions are zero deflection at a pin or roller
support, and zero slope and zero deflection at a built-in (cantilever) support.

If either the bending moment or flexural rigidity is not a smooth func-
tion of x, a separate di¤erential equation must be written for each beam
segment that lies between the discontinuities. The equations for the elastic
curves for two adjacent segments must satisfy two continuity conditions at
the junction between segments:

1. The deflection for the left-hand segment must equal the deflection for
the right-hand segment, and

2. The slope for the left-hand segment must equal the slope for the right-
hand segment.

Physically speaking, the continuity conditions assure that there are no kinks
or gaps at the point where two segments meet.

Consider a beam for which the di¤erential equation of the elastic curve
must be written for n segments. For this beam, two integrations of the
moment equation for each segment will produce a total of 2n constants of
integration (two per segment). There are also 2n independent equations avail-
able for finding the constants. Because there are n� 1 junctions between the
n segments, there are a total of 2ðn� 1Þ continuity equations. Two additional

1The term smooth here means that the function and its derivatives are continuous.

2Statically indeterminate beams are discussed in Chapter 7.

198 CHAPTER 6 Deflection of Beams

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



equations are provided by the boundary conditions imposed by the supports.
Therefore, there are a total of 2ðn� 1Þ þ 2 ¼ 2n equations. As you can see,
the evaluation of the constants of integration can be tedious if the beam con-
tains several segments.

c. Procedure for double integration

The following procedure assumes that EI is constant in each segment of the
beam:

. Sketch the elastic curve of the beam, taking into account the boundary
conditions: zero displacement at pin and roller supports as well as
zero displacement and zero slope at built-in (cantilever) supports, for
example.. Use the method of sections to determine the bending moment M at
an arbitrary distance x from the origin. Always show M acting in the
positive direction on the free-body diagram (this assures that the equi-
librium equations yield the correct sign for the bending moment). If
the loading has discontinuities, a separate expression for M must be
obtained for each segment between the discontinuities.. By integrating the expressions for M twice, obtain an expression for
EIv in each segment. Do not forget to include the constants of
integration.. Evaluate the constants of integration from the boundary conditions
and the continuity conditions on slope and deflection between seg-
ments.

Frequently only the magnitude of the deflection, called the displace-

ment, is required. We denote the displacement by d; that is, d ¼ jvj.
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Sample Problem 6.1

The cantilever beam AB of length L shown in Fig. (a) carries a uniformly distributed
load of intensity w0, which includes the weight of the beam. (1) Derive the equation of
the elastic curve. (2) Compute the maximum displacement if the beam is a W12� 35
section using L ¼ 8 ft, w0 ¼ 400 lb/ft, and E ¼ 29� 106 psi.

Solution

Part 1

The dashed line in Fig. (a) represents the elastic curve of the beam. The bending
moment acting at the distance x from the left end can be obtained from the free-body
diagram in Fig. (b) (note that V and M are shown acting in their positive directions):

M ¼ �w0x
x

2

� �
¼ �w0x2

2

Substituting the expression for M into the di¤erential equation EIv 00 ¼M, we get

EIv 00 ¼ �w0x2

2

Successive integrations yield

EIv 0 ¼ �w0x3

6
þ C1 (a)

EIv ¼ �w0x4

24
þ C1xþ C2 (b)

The constants C1 and C2 are obtained from the boundary conditions at the
built-in end B, which are:

1. v 0jx¼L ¼ 0 (support prevents rotation at B). Substituting v 0 ¼ 0 and x ¼ L into
Eq. (a), we get

C1 ¼
w0L3

6

2. vjx¼L ¼ 0 (support prevents deflection at B). With v ¼ 0 and x ¼ L, Eq. (b)
becomes

0 ¼ �w0L4

24
þ w0L3

6

� �
Lþ C2 C2 ¼ �

w0L4

8

If we substitute C1 and C2 into Eq. (b), the equation of the elastic curve is

EIv ¼ �w0x4

24
þ w0L3

6
x� w0L4

8

EIv ¼ w0

24
ð�x4 þ 4L3x� 3L4Þ Answer
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Part 2

From Table B-6 in Appendix B, the properties of a W12� 35 shape are I ¼ 285 in.4

and S ¼ 45:6 in.3 (section modulus). From the result of Part 1, the maximum dis-
placement of the beam is (converting feet to inches)

dmax ¼ jvjx¼0 ¼
w0L4

8EI
¼ ð400=12Þð8� 12Þ4

8ð29� 106Þð285Þ ¼ 0:0428 in: Answer

To get a better appreciation of the magnitude of the displacement, let us com-
pute the maximum bending stress in the beam. The magnitude of the maximum
bending moment, which occurs at B, is Mmax ¼ w0L2=2. Therefore, the maximum
bending stress is

smax ¼
Mmax

S
¼ w0L2

2S
¼ ð400=12Þð8� 12Þ2

2ð45:6Þ ¼ 33 700 psi

which is close to the proportional limit of 35 000 psi for structural steel. We see that
the maximum displacement is very small compared to the length of the beam even
when the material is stressed to its proportional limit.

1
Sample Problem 6.2

The simply supported beam ABC in Fig. (a) carries a distributed load of maximum
intensity w0 over its span of length L. Determine the maximum displacement of the
beam.

Solution
The bending moment and the elastic curve (the dashed line in Fig. (a)) are symmetric
about the midspan. Therefore, we will analyze only the left half of the beam (segment
AB).

Because of the symmetry, each support carries half of the total load, so that
the reactions are RA ¼ RC ¼ w0L=4. The bending moment in AB can be obtained
from the free-body diagram in Fig. (b), yielding

M ¼ w0L

4
x� w0x2

L

x

3

� �
¼ w0

12L
ð3L2x� 4x3Þ

Substituting M into the di¤erential equation of the elastic curve, Eq. (6.3b), and in-
tegrating twice, we obtain

EIv 00 ¼ w0

12L
ð3L2x� 4x3Þ

EIv 0 ¼ w0

12L

3L2x2

2
� x4

� �
þ C1 (a)

EIv ¼ w0

12L

L2x3

2
� x5

5

� �
þ C1xþ C2 (b)

The two constants of integration can be evaluated from the following two
conditions on the elastic curve of segment AB:

1. vjx¼0 ¼ 0 (no deflection at A due to the simple support). Substituting x ¼ v ¼ 0
in Eq. (b), we obtain

C2 ¼ 0
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2. v 0jx¼L=2 ¼ 0 (due to symmetry, the slope at midspan is zero). With x ¼ L=2

and v 0 ¼ 0, Eq. (a) becomes

0 ¼ w0

12L

3L4

8
� L4

16

� �
þ C1

C1 ¼ �
5w0L3

192

Substitution of the constants into Eq. (b) yields the equation of the elastic
curve for segment AB:

EIv ¼ w0

12L

L2x3

2
� x5

5

� �
� 5w0L3

192
x

EIv ¼ � w0x

960L
ð25L4 � 40L2x2 þ 16x4Þ (c)

By symmetry, the maximum displacement occurs at midspan. Evaluating Eq. (c) at
x ¼ L=2, we get

EIvjx¼L=2 ¼ �
w0

960L

L

2

� �
25L4 � 40L2 L

2

� �2

þ 16
L

2

� �4
" #

¼ �w0L4

120

The negative sign indicates that the deflection is downward, as expected. Therefore,
the maximum displacement is

dmax ¼ jvjx¼L=2 ¼
w0L4

120EI
# Answer

1
Sample Problem 6.3

The simply supported wood beam ABC in Fig. (a) has the rectangular cross section
shown. The beam supports a concentrated load of 300 N located 2 m from the left
support. Determine the maximum displacement and the maximum slope angle of the
beam. Use E ¼ 12 GPa for the modulus of elasticity. Neglect the weight of the beam.
(Note that the reactions at A and C have already been computed by equilibrium
analysis.)

Solution
The moment of inertia of the cross-sectional area is

I ¼ bh3

12
¼ 40ð80Þ3

12
¼ 1:7067� 106 mm4 ¼ 1:7067� 10�6 m4

Therefore, the flexural rigidity of the beam is

EI ¼ ð12� 109Þð1:7067� 10�6Þ ¼ 20:48� 103 N �m2

The elastic curve is shown by the dashed line in Fig. (a). Because the loading is
discontinuous at B, the beam must be divided into two segments: AB and BC. The
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bending moments in the two segments of the beam can be derived from the free-body
diagrams in Fig. (b). The results are3

M ¼
100x N �m in AB ð0 a x a 2 mÞ
100x� 300ðx� 2Þ N �m in BC ð2 m a x a 3 mÞ

�

Because the expressions for bending moments in segments AB and BC are di¤erent,
they must be treated separately during double integration. Substituting the bending
moments into Eq. (6.3b) and integrating twice yields the following:

Segment AB

EIv 00 ¼ 100x N �m

EIv 0 ¼ 50x2 þ C1 N �m2 (a)

EIv ¼ 50

3
x3 þ C1xþ C2 N �m3 (b)

Segment BC

EIv 00 ¼ 100x� 300ðx� 2Þ N �m

EIv 0 ¼ 50x2 � 150ðx� 2Þ2 þ C3 N �m2 (c)

EIv ¼ 50

3
x3 � 50ðx� 2Þ3 þ C3xþ C4 N �m3 (d)

The four constants of integration, C1 to C4, can be found from the following
boundary and continuity conditions:

1. vjx¼0 ¼ 0 (no deflection at A due to the support). Substituting v ¼ x ¼ 0 into
Eq. (b), we get

C2 ¼ 0 (e)

2. vjx¼3 m ¼ 0 (no deflection at C due to the support). Letting x ¼ 3 m and v ¼ 0
in Eq. (d) yields

0 ¼ 50

3
ð3Þ3 � 50ð3� 2Þ3 þ C3ð3Þ þ C4

3C3 þ C4 ¼ �400 N �m3 (f)

3. v 0jx¼2 m� ¼ v 0jx¼2 mþ (the slope at B is continuous). Equating Eqs. (a) and (c) at
x ¼ 2 m, we obtain

50ð2Þ2 þ C1 ¼ 50ð2Þ2 þ C3

C1 ¼ C3 (g)

4. vjx¼2 m� ¼ vjx¼2 mþ (the deflection at B is continuous). Substituting x ¼ 2 m into
Eqs. (b) and (d) and equating the results give

50

3
ð2Þ3 þ C1ð2Þ þ C2 ¼

50

3
ð2Þ3 þ C3ð2Þ þ C4

2C1 þ C2 ¼ 2C3 þ C4 (h)

The solution of Eqs. (e)–(h) is

C1 ¼ C3 ¼ �
400

3
N �m2 C2 ¼ C4 ¼ 0

3The bending moment in BC could be simplified as M ¼ �200xþ 600 N �m, but no advantage

is gained from this simplification. In fact, the computation of the constants of integration is

somewhat easier if we do not simplify.
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Substituting the values of the constants and EI into Eqs. (a)–(d), we obtain the fol-
lowing results:

Segment AB

v 0 ¼ 50x2 � ð400=3Þ
20:48� 103

¼ ð2:441x2 � 6:510Þ � 10�3

v ¼ ð50=3Þx3 � ð400=3Þx
20:48� 103

¼ ð0:8138x3 � 6:510xÞ � 10�3 m

Segment BC

v 0 ¼ 50x2 � 150ðx� 2Þ2 � ð400=3Þ
20:48� 103

¼ ½2:441x2 � 7:324ðx� 2Þ2 � 6:150� � 10�3

v ¼ ð50=3Þx3 � 50ðx� 2Þ3 � ð400=3Þx
20:48� 103

¼ ½0:8138x3 � 2:441ðx� 2Þ3 � 6:150x� � 10�3 m

The maximum displacement occurs where the slope of the elastic curve is zero.
This point is in the longer of the two segments—namely, in AB. Setting v 0 ¼ 0 in seg-
ment AB, we get

2:441x2 � 6:510 ¼ 0 x ¼ 1:6331 m

The corresponding deflection is

vjx¼1:6331 m ¼ ½ð0:8138ð1:6331Þ3 � 6:510ð1:6331Þ� � 10�3

¼ �7:09� 10�3 m ¼ �7:09 mm

The negative sign indicates that the deflection is downward, as expected. Thus, the
maximum displacement is

dmax ¼ jvjx¼1:6331 m ¼ 7:09 mm # Answer

By inspection of the elastic curve in Fig. (a), the largest slope occurs at C. Its
value is

v 0jx¼3 m ¼ ½2:441ð3Þ2 � 7:324ð3� 2Þ2 � 6:150� � 10�3 ¼ 8:50� 10�3

According to the sign conventions for slopes, the positive value for v 0 means that the
beam rotates counterclockwise at C (this is consistent with the sketch of the elastic
curve in Fig. (a)). Therefore, the maximum slope angle of the beam is

ymax ¼ jv 0jx¼3 m ¼ 8:50� 10�3 rad ¼ 0:487�

h

Answer

1
Sample Problem 6.4

The cantilever beam ABC in Fig. (a) consists of two segments with di¤erent moments
of inertia: I0 for segment AB and 2I0 for segment BC. Segment AB carries a uni-
formly distributed load of intensity 200 lb/ft. Using E ¼ 10� 106 psi and I0 ¼ 40
in.4, determine the maximum displacement of the beam.
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Solution

The dashed line in Fig. (a) represents the elastic curve of the beam. The bending
moments in the two segments, obtained from the free-body diagrams in Fig. (b), are

M ¼
�200x

x

2

� �
lb � ft in AB ð0 a x a 6 ftÞ

�1200ðx� 3Þ lb � ft in BC ð6 ft a x a 10 ftÞ

(

Substituting the expressions for M into Eq. (6.3b) and integrating twice yield the
following results:

Segment AB (I F I0)

EI0v 00 ¼ �100x2 lb � ft

EI0v 0 ¼ � 100

3
x3 þ C1 lb � ft2 (a)

EI0v ¼ � 25

3
x4 þ C1xþ C2 lb � ft3 (b)

Segment BC (I F2I0)

Eð2I0Þv 00 ¼ �1200ðx� 3Þ lb � ft or EI0v ¼ �600ðx� 3Þ lb � ft

EI0v 0 ¼ �300ðx� 3Þ2 þ C3 lb � ft2 (c)

EI0v ¼ �100ðx� 3Þ3 þ C3xþ C4 lb � ft3 (d)

The conditions for evaluating the four constants of integration follow:

1. v 0jx¼10 ft ¼ 0 (no rotation at C due to the built-in support). With v 0 ¼ 0 and
x ¼ 10 ft, Eq. (c) yields

0 ¼ �300ð10� 3Þ2 þ C3

C3 ¼ 14:70� 103 lb � ft2

2. vjx¼10 ft ¼ 0 (no deflection at C due to the built-in support). Substituting v ¼ 0,
x ¼ 10 ft, and the value of C3 into Eq. (d), we get

0 ¼ �100ð10� 3Þ3 þ ð14:70� 103Þð10Þ þ C4

C4 ¼ �112:7� 103 lb � ft3

3. v 0jx¼6 ft� ¼ vjx¼6 ftþ (the slope at B is continuous). Equating Eqs. (a) and (c)
after substituting x ¼ 6 ft and the value of C3, we obtain

� 100

3
ð63Þ þ C1 ¼ �300ð6� 3Þ2 þ ð14:70� 103Þ

C1 ¼ 19:20� 103 lb � ft2

4. vjx¼6 ft� ¼ vjx¼6 ftþ (the displacement at B is continuous). Using x ¼ 6 ft and
the previously computed values of the constants of integration in Eqs. (b) and
(d) gives

� 25

3
ð6Þ4 þ ð19:20� 103Þð6Þ þ C2 ¼ �100ð6� 3Þ3

þ ð14:70� 103Þð6Þ � ð112:7� 103Þ

C2 ¼ �131:6� 103 lb � ft3
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The maximum deflection of the beam occurs at A—that is, at x ¼ 0. From Eq.
(b), we get

EI0vjx¼0 ¼ C2 ¼ �131:6� 103 lb � ft3 ¼ �227:4� 106 lb � in:3

The negative sign indicates that the deflection of A is downward, as anticipated.
Therefore, the maximum displacement is

dmax ¼ jvjx¼0 ¼
227:4� 106

EI0
¼ 227:4� 106

ð10� 106Þð40Þ ¼ 0:569 in: # Answer

1
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Problems

6.1 For the simply supported beam carrying the concentrated load P at its
midspan, determine (a) the equation of the elastic curve; and (b) the maximum dis-
placement.

6.2 The simply supported beam carries a uniformly distributed load of intensity
w0. Determine (a) the equation of the elastic curve; and (b) the maximum displace-
ment.

6.3 The intensity of the distributed load on the cantilever beam varies linearly
from zero to w0. Derive the equation of the elastic curve.

6.4 The simply supported beam carries two end couples, each of magnitude M0

but oppositely directed. Find the location and magnitude of the maximum deflection.

6.5 Solve Prob. 6.4 if the couple M0 acting at the left support is removed.

6.6 Compute the location and maximum value of EId for the simply supported
beam carrying the couple M0 at the midspan. (Hint: By skew-symmetry, the de-
flection at midspan is zero.)

6.7 Determine the value of EId at midspan of the simply supported beam. Is the
deflection up or down?

6.8 Determine the maximum deflection of the rectangular wood beam when it is
loaded by the two end couples. Use E ¼ 12 GPa.

FIG. P6.1

FIG. P6.2
FIG. P6.3

FIG. P6.4, P6.5 FIG. P6.6

60 lb/ft

10 ft
1200 lb ⋅ ftA B

FIG. P6.7

3.6 m

9.6 kN ⋅ m 6.6 kN ⋅ m 160 mm

120 mm

FIG. P6.8
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6.9 The intensity of the distributed load on the simply supported beam varies lin-
early from zero to w0. (a) Derive the equation of the elastic curve. (b) Find the loca-
tion of the maximum deflection.

6.10 Determine the maximum displacement of the simply supported beam due to
the distributed loading shown in the figure. (Hint: Utilize symmetry and analyze the
right half of the beam only.)

6.11 Two concentrated loads are placed symmetrically on the simply supported
beam. (a) Determine the expression for the maximum displacement of the beam.
(Hint: Utilize symmetry and analyze the left half of the beam.) (b) Calculate the
maximum displacement and maximum bending moment for a W14� 26 section us-
ing the following data: a ¼ 6 ft;L ¼ 20 ft;P ¼ 6000 lb, and E ¼ 29� 106 psi.

6.12 Determine the maximum displacement of the cantilever beam caused by the
concentrated load P.

6.13 The uniformly distributed load of intensity w0 acts on the central portion of the simply
supported beam. (a) Derive the expression for EIdmax. (Hint: Utilize symmetry and analyze the
left half of the beam.) (b) Calculate dmax and maximum bending moment for a W200� 22:5
section using the following data: a ¼ b ¼ 2 m;w0 ¼ 3:6 kN=m, and E ¼ 200 GPa.

6.14 The left half of the simply supported beam carries a uniformly distributed load of
intensity 600 N/m. (a) Compute the value of EId at midspan. (b) If E ¼ 10 GPa, determine
the smallest value of I that limits the midspan displacement to 1/360th of the span.

6.15 The overhanging beam carries a concentrated load at its free end. (a) Derive
the expression for the displacement under the load. (b) Assuming the beam is a
0.75-in.-diameter steel rod, evaluate the displacement under the load and the max-
imum bending stress in the rod. Use b ¼ 24 in:;P ¼ 25 lb, and E ¼ 29� 106 psi.

6.16 The simply supported steel beam is loaded by the 20-kN �m couple as shown
in the figure. Using E ¼ 200 GPa and I ¼ 8� 10�6 m4, determine the displacement
and slope at the point where the couple is applied.

6.17 The cantilever beam of length 2a supports a uniform load of intensity w0

over its right half. Find the maximum displacement of the beam.

FIG. P6.9

FIG. P6.10 FIG. P6.11

FIG. P6.12

FIG. P6.13

600 N/m

4 m 4 m

FIG. P6.14

FIG. P6.15

20

6 4

FIG. P6.16 FIG. P6.17
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6.18 Two uniformly distributed loads are placed symmetrically on the simply
supported beam. Calculate the maximum value of EId for the beam. (Hint: Utilize
symmetry and analyze the right half of the beam only).

6.19 The steel cantilever beam consists of two cylindrical segments with the di-
ameters shown. Determine the maximum displacement of the beam due to the 420-lb
concentrated load. Use E ¼ 29� 106 psi for steel.

6.20 The stepped beam of length 4a carries a distributed load of intensity w0 over
its middle half. The moments of inertia are 1:5I0 for the middle half and I0 for the
rest of the beam. Find the displacement of the beam at its midspan. (Hint: Utilize
symmetry and analyze the right half of the beam only).

6.21 The moment of inertia of the cantilever beam varies linearly from zero at the
free end to I0 at the fixed end. Find the displacement at the free end caused by the
concentrated load P.

6.3 Double Integration Using

Bracket Functions

Evaluating the constants of integration that arise in the double-integration
method can become very involved if more than two beam segments must be
analyzed. We can simplify the calculations by expressing the bending mo-
ment in terms of discontinuity functions, also known as Macaulay bracket

functions. Discontinuity functions enable us to write a single expression for
the bending moment that is valid for the entire length of the beam, even if
the loading is discontinuous. By integrating a single, continuous expression
for the bending moment, we obtain equations for slopes and deflections that
are also continuous everywhere.

300

4 42 m

300

FIG. P6.18 FIG. P6.19

FIG. P6.20 FIG. P6.21
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As an example, consider the simply supported beam ABCD loaded as
shown in Fig. 6.2(a). The free-body diagrams of the three segments of the
beam are shown in Figs. 6.2(b)–(d). Note that the reactions at A and D have
already been completed using equilibrium analysis. Using the equilibrium
equation SM ¼ 0 for each segment (the moment is taken about the right end
of the segment), we obtain the following bending moments:

Segment M (N . m)

0 a x a 2 m 480x

2 m a x a 3 m 480x� 500ðx� 2Þ
3 m a x a 5 m 480x� 500ðx� 2Þ � 450

2 ðx� 3Þ2

Note that in each successive segment an extra term is added to M, while the rest
of the expression remains unchanged. This pattern suggests using the expression

M ¼ 480x� 500ðx� 2Þ � 450

2
ðx� 3Þ2 N �m

for the entire beam, with the understanding that the term ðx� 2Þ disappears
when x a 2; and ðx� 3Þ2 disappears when x a 3. This idea is formalized by
using the Macaulay bracket functions described below.

FIG. 6.2 (a) Simply supported beam with three segments; (b)–(d) free-body
diagrams of the segments.
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A Macaulay bracket function, often referred to as a ‘‘bracket func-
tion,’’ is defined as

hx� ain ¼
0 if x a a

ðx� aÞn if x b a

�
(6.6)

where n is a nonnegative integer.4 The brackets h� � �i identify the expression
as a bracket function. Note that a bracket function is zero by definition if the
expression in the brackets—namely, ðx� aÞ—is negative; otherwise, it is
evaluated as written. A bracket function can be integrated by the same rule
as an ordinary function—namely,

ð
hx� ain dx ¼ hx� ainþ1

nþ 1
þ C (6.7)

where C is a constant of integration.
With bracket functions, the bending moment equation for the beam in

Fig. 6.2 can be written as

M ¼ 480x� 500hx� 2i� 450

2
hx� 3i2 N �m (a)

This expression, valid over the entire length of the beam, is called the global

bending moment equation for the beam. Its integrals, representing the slope
and deflection of the beam, are continuous functions. Thus, double
integration of Eq. (a) automatically assures continuity of deformation.

Observe that the global bending moment equation in Eq. (a) can be
obtained by writing the bending moment equation for the right-most beam
segment, using the free-body diagram of the beam that lies to the left of
the cutting plane, as in Fig. 6.2(d). Then the parentheses are replaced by
brackets in the appropriate terms.

Referring to Fig. 6.2, we see that the bracket function hx� 3i2 is
caused by the distributed load that starts at x ¼ 3 m and continues to the
right end of the beam. Now suppose that the distributed load were to end at
x ¼ 4 m, as shown in Fig. 6.3(a). The problem is how to handle the termi-
nation in the expression for M. We can do this by letting the distributed load
run to the end of the beam, as in Fig. 6.1(a), but canceling out the unwanted
portion by introducing an equal but oppositely directed load between x ¼ 4
m and the right end of the beam. This technique is shown in Fig. 6.3(b). The
corresponding global expression for the bending moment, obtained from the
free-body diagram in Fig. 6.3(c), is

M ¼ 435x� 500hx� 2i� 450

2
hx� 3i2 þ 450

2
hx� 4i2 N �m

4Negative values of n result in a class of functions called singularity functions, which we do not

need in our analysis.

6.3 Double Integration Using Bracket Functions 211

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



After the global bending moment equation has been written, it can be
integrated to obtain the slope and the deflection equations for the entire
beam. The two constants of integration that arise can then be computed
from the boundary conditions. As mentioned before, continuity of slope and
deflection at the junctions between the segments is automatically satisfied
when bracket functions are used.

FIG. 6.3 (a) Simply supported beam; (b) same beam with equivalent loading;
(c) free-body diagram for determining the bending moment M in the right-most
segment.
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Sample Problem 6.5

The simply supported beam ABC in Fig. (a) carries a concentrated load of 300 N
as shown. Determine the equations for the slope and deflection of the beam using
EI ¼ 20:48� 103 N �m2. (Note: The same beam was analyzed in Sample Problem 6.3.)

RC = 200 N

Solution

The dashed line in Fig. (a) represents the elastic curve of the beam. Using the free-
body diagram in Fig. (b), we obtain the following global bending moment equation:

M ¼ 100x� 300hx� 2i N �m (a)

Note that for segment AB (0 a x a 2 m), the last term is zero by definition of the
bracket function, so that M ¼ 100x N �m. For segment BC (2 m ax a 3 m), the
bending moment equation is M ¼ 100x� 300ðx� 2Þ N �m. Substituting Eq. (a) into
the di¤erential equation of the elastic curve and integrating twice, we obtain

EIv 00 ¼ 100x� 300hx� 2i N �m

EIv 0 ¼ 50x2 � 150hx� 2i2 þ C1 N �m2 (b)

EIv ¼ 50

3
x3 � 50hx� 2i3 þ C1xþ C2 N �m3 (c)

To evaluate the constants of integration C1 and C2, we apply the following
boundary conditions:

1. vjx¼0 ¼ 0 (no deflection at A due to the simple support). Substituting v ¼ x ¼ 0
into Eq. (c) and recalling that h0� 2i3 ¼ 0, we get

C2 ¼ 0

2. vjx¼3 m ¼ 0 (no deflection at C due to the simple support). Substituting v ¼ 0,
x ¼ 3 m, and C2 ¼ 0 into Eq. (c) and noting that h3� 2i3 ¼ ð3� 2Þ3, we ob-
tain

50

3
ð3Þ3 � 50ð3� 2Þ3 þ C1ð3Þ ¼ 0 C1 ¼ �

400

3
N �m2

Substituting the values of EI and the constants of integration into Eqs. (b) and
(c) yields the following global expressions for the slope and the deflection:

v 0 ¼ 50x2 � 150hx� 2i2 � ð400=3Þ
20:48� 103

¼ ½2:441x2 � 7:324hx� 2i2 � 6:150� � 10�3 Answer

v ¼ ð50=3Þx3 � 50hx� 2i3 � ð400=3Þx
20:48� 103

¼ ½0:8138x3 � 2:441hx� 2i3 � 6:150x� � 10�3 m Answer

1
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Sample Problem 6.6

For the overhanging beam in Fig. (a), determine (1) the equation for the elastic
curve; and (2) the values of EId midway between the supports and at point E

(indicate whether each d is up or down).

Solution

Part 1

The dashed line in Fig. (a) represents the elastic curve of the beam. Figure (b) shows
the equivalent loading that is used to determine the bending moment in the beam.
Recall that the use of bracket functions in the expression for the bending moment
requires each distributed load to extend to the right end of the beam. We must,
therefore, extend the 400-N/m loading to point E and cancel the unwanted portion
by applying an equal and opposite loading to CE. The global expression for the
bending moment can now be derived from the free-body diagram in Fig. (c), the
result being

M ¼ 500x� 400

2
hx� 1i2 þ 400

2
hx� 4i2 þ 1300hx� 6i N �m
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Substituting M into the di¤erential equation for the elastic curve and integrat-
ing twice, we get

EIv 00 ¼ 500x� 200hx� 1i2 þ 200hx� 4i2 þ 1300hx� 6i N �m

EIv 0 ¼ 250x2 � 200

3
hx� 1i3 þ 200

3
hx� 4i3 þ 650hx� 6i2 þ C1 N �m2

EIv ¼ 250

3
x3 � 50

3
hx� 1i4 þ 50

3
hx� 4i4 þ 650

3
hx� 6i3

þ C1xþ C2 N �m3 (a)

The boundary conditions follow:

1. vjx¼0 ¼ 0 (deflection at A is prevented by the simple support). Because all the
bracket functions in Eq. (a) are zero at x ¼ 0, we get

C2 ¼ 0

2. vjx¼6 m ¼ 0 (deflection at D is prevented by the simple support). Equation (a)
now gives

0 ¼ 250

3
ð6Þ3 � 50

3
ð6� 1Þ4 þ 50

3
ð6� 4Þ4 þ C1ð6Þ

C1 ¼ �
3925

3
N �m2

When we substitute the values for C1 and C2 into Eq. (a), the equation for the
elastic curve becomes

EIv ¼ 250

3
x3 � 50

3
hx� 1i4 þ 50

3
hx� 4i4

þ 650

3
hx� 6i3 � 3925

3
x N �m3

Answer

Part 2

The deflection midway between the supports is obtained by substituting x ¼ 3 m into
the expression for EIv. Noting that h3� 4i4 ¼ 0 and h3� 6i3 ¼ 0, we obtain

EIvjx¼3 m ¼
250

3
ð3Þ3 � 50

3
ð3� 1Þ4 � 3925

3
ð3Þ ¼ �1942 N �m3

The negative sign shows that the deflection is down, so that the value of EId at
midspan is

EIdmid ¼ 1942 N �m3 # Answer

At point E, we have

EIvjx¼8 m ¼
250

3
ð8Þ3 � 50

3
ð8� 1Þ4 þ 50

3
ð8� 4Þ4 þ 650

3
ð8� 6Þ3 � 3925

3
ð8Þ

¼ �1817 N �m3

Again, the minus sign indicates a downward deflection. Therefore,

EIdE ¼ 1817 N �m3 # Answer

1

215

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sample Problem 6.7

A couple M0 is applied at the midpoint of the cantilever beam of length L, as shown
in Fig. (a). Find the magnitude of the vertical force P for which the deflection at end
C is zero.

Solution

The elastic curve of the beam is shown in Fig. (a) by the dashed line. From the
free-body diagram in Fig. (b), we get for the bending moment

M ¼ ðPL�M0Þ � PxþM0 x� L

2

� �0

Note that hx� L=2i0 ¼ 1 for x b L=2. Substituting this expression into the di¤er-
ential equation for the elastic curve, and integrating twice, we obtain

EIv 00 ¼ ðPL�M0Þ � PxþM0 x� L

2

� �0

EIv 0 ¼ ðPL�M0Þx�
P

2
x2 þM0 x� L

2

� �
þ C1 (a)

EIv ¼ ðPL�M0Þ
x2

2
� P

6
x3 þM0

2
x� L

2

� �2

þ C1xþ C2 (b)

The boundary conditions are:

1. v 0jx¼0 ¼ 0 (the fixed support at A prevents rotation). Substituting x ¼ v 0 ¼ 0
into Eq. (a) yields C1 ¼ 0.

2. vjx¼0 ¼ 0 (the fixed support at A prevents deflection). Setting x ¼ v ¼ 0 in
Eq. (b), we get C2 ¼ 0.

Therefore, the equation of the elastic curve is

EIv ¼ ðPL�M0Þ
x2

2
� P

x3

6
þM0

2
x� L

2

� �2

At end C, we have

EIvjx¼L ¼ ðPL�M0Þ
L2

2
� PL3

6
þM0

2
L� L

2

� �2

¼ PL

3
� 3M0

8

� �
L2

To find the force P that results in zero displacement at C, we set vjx¼L ¼ 0 and solve
for P. The result is

P ¼ 9

8

M0

L
Answer

1
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Problems

6.22 The cantilever beam has a rectangular cross section 50 mm wide and h mm
high. Find the smallest allowable value of h if the maximum displacement of the
beam is not to exceed 10 mm. Use E ¼ 10 GPa.

6.23 Find the value of EIy at the free end of the cantilever beam.

6.24 Determine the value of EId at midspan for the beam loaded by two con-
centrated forces.

6.25 Compute the midspan value of EId for the simply supported beam carrying a
uniformly distributed load over part of its span.

6.26 (a) Derive the equation of the elastic curve for the simply supported beam
that is loaded by the concentrated couple M0. (b) Compute the value of EI at the
point of application of M0.

6.27 For the overhanging beam shown, (a) derive the equation of the elastic curve;
and (b) compute the value of EId at the right end.

6.28 (a) Determine the equation of the elastic curve for the overhanging beam;
and (b) calculate the value of EId midway between the supports.

6.29 (a) Derive the equation of the elastic curve for the simply supported beam.
(b) Determine the maximum value of EId.

FIG. P6.22 FIG. P6.23

FIG. P6.24

FIG. P6.25

M0

3 3
2L

FIG. P6.26

FIG. P6.27

2.7
3

3 3 3 3

FIG. P6.28

FIG. P6.29

Problems 217

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6.30 The simply supported beam carries three concentrated loads as shown in the
figure. Determine (a) the equation of the elastic curve; and (b) the value of EId at
midspan.

6.31 For the overhanging beam, compute the value of EId under the 15-kN load.

6.32 Determine the displacement midway between the supports for the overhang-
ing beam.

6.33 For the overhanging beam, find the displacement at the left end.

6.34 For the overhanging beam, determine (a) the value of EId under the 24-kN
load; and (b) the maximum value of EId between the supports.

6.35 Compute the value of EId at the left end of the cantilever beam.

6.36 The cantilever beam carries a couple formed by two forces, each of magni-
tude P ¼ 2000 lb. Determine the force R that must be applied as shown to prevent
displacement of point A.

6.37 Find the maximum displacement of the cantilever beam.

6.38 Compute the value of EId at the right end of the cantilever beam.

4 kips 8 kips

3 ft 3 ft 3 ft 3 ft

6 kips

FIG. P6.30

FIG. P6.31 FIG. P6.32

FIG. P6.33

FIG. P6.34 FIG. P6.35

FIG. P6.36

FIG. P6.37

2 2

6 ft 3 3

FIG. P6.38

218 CHAPTER 6 Deflection of Beams

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6.39 Determine the value of EIy at each end of the overhanging beam.

6.40 For the simply supported beam, compute the value of EId at midspan.

6.41 Calculate the value of EIy at the right support of the overhanging beam.

6.42 Determine the maximum deflection of the cantilever beam.

6.43 Compute the value of EId at the right end of the overhanging beam.

6.44 The cantilever beam is a 15-ft long W8� 24 steel section ðE ¼ 20� 106 psi;
I ¼ 82:8 in:4Þ. Calculate the maximum displacement of the beam.

390 lb/ft

x

240 lb/ft

6 ft

y

9 ft

FIG. P6.44

*6.4 Moment-Area Method

The moment-area method is useful for determining the slope or deflection of
a beam at a specified location. It is a semigraphical method in which the in-
tegration of the bending moment is carried out indirectly, using the geo-
metric properties of the area under the bending moment diagram. As in the
method of double integration, we assume that the deformation is within the
elastic range, resulting in small slopes and small displacements.

FIG. P6.39

4

4 4

FIG. P6.40 FIG. P6.41

FIG. P6.42 FIG. P6.43
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a. Moment-area theorems

We will now derive two theorems that are the bases of the moment-area
method. The first theorem deals with slopes; the second theorem with de-
flections.

First Moment-Area Theorem Figure 6.4(a) shows the elastic curve AB

of an initially straight beam segment (the deformation has been greatly ex-
aggerated in the figure). As discussed in the derivation of the flexure formula
in Sec. 5.2, two cross sections of the beam at P and Q, separated by the dis-
tance dx, rotate through the angle dy relative to each other. Because the
cross sections are assumed to remain perpendicular to the axis of the beam,
dy is also the di¤erence in the slope of the elastic curve between P and Q, as
shown in Fig. 6.4(a). From the geometry of the figure, we see that dx ¼ r dy,
where r is the radius of curvature of the elastic curve of the deformed ele-
ment. Therefore, dy ¼ dx=r, which upon using the moment-curvature rela-
tionship

1

r
¼ M

EI
(5.2b, repeated)

becomes

dy ¼ M

EI
dx (a)

Integrating Eq. (a) over the segment AB yieldsðB

A

dy ¼
ðB

A

M

EI
dx (b)

FIG. 6.4 (a) Elastic curve of a beam segment; (b) bending moment diagram for
the segment.
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The left-hand side of Eq. (b) is yB � yA, which is the change in the slope be-
tween A and B. The right-hand side represents the area under the M=ðEIÞ
diagram between A and B, shown as the shaded area in Fig. 6.4(b). If we
introduce the notation yB=A ¼ yB � yA, Eq. (b) can be expressed in the form

yB=A ¼ area of
M

EI
diagram

	B

A

(6.8)

which is the first moment-area theorem.

Second Moment-Area Theorem Referring to the elastic curve AB in
Fig. 6.5(a), we let tB=A be the vertical distance of point B from the tangent to
the elastic curve at A. This distance is called the tangential deviation of B

with respect to A. To calculate the tangential deviation, we first determine
the contribution dt of the infinitesimal element PQ and then use tB=A ¼

Ð B

A
dt

to add the contributions of all the elements between A and B. As shown in
the figure, dt is the vertical distance at B between the tangents drawn to the
elastic curve at P and Q. Recalling that the slopes are very small, we obtain
from geometry

dt ¼ x 0 dy

where x 0 is the horizontal distance of the element from B. Therefore, the
tangential deviation is

tB=A ¼
ðB

A

dt ¼
ðB

A

x 0 dy

FIG. 6.5 (a) Elastic curve of a beam segment; (b) bending moment diagram for
the segment.
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Substituting dy from Eq. (a), we obtain

tB=A ¼
ðB

A

M

EI
x 0 dx (c)

The right-hand side of Eq. (c) represents the first moment of the shaded area
of the M=ðEIÞ diagram in Fig. 6.5(b) about point B. Denoting the distance
between B and the centroid C of this area by x=B (read =B as ‘‘relative to
B’’), we can write Eq. (c) as

tB=A ¼ area of
M

EI
diagram

	B

A

� x=B (6.9)

This is the second moment-area theorem. Note that the first moment of area,
represented by the right-hand side of Eq. (6.9), is always taken about the
point at which the tangential deviation is being computed.

Do not confuse tB=A (the tangential deviation of B with respect to A)
with tA=B (the tangential deviation of A with respect to B). In general, these
two distances are not equal, as illustrated in Fig. 6.6.

Sign Conventions The following rules of sign, illustrated in Fig. 6.7,
apply to the two moment-area theorems:

. The tangential deviation tB=A is positive if B lies above the tangent line
drawn to the elastic curve at A, and negative if B lies below the tangent
line.. Positive yB=A has a counterclockwise direction, whereas negative yB=A

has a clockwise direction.

b. Bending moment diagrams by parts

Application of the moment-area theorems is practical only if the area under
the bending moment diagram and its first moment can be calculated without
di‰culty. The key to simplifying the computation is to divide the bending
moment diagram into simple geometric shapes (rectangles, triangles, and
parabolas) that have known areas and centroidal coordinates. Sometimes
the conventional bending moment diagram lends itself to such division, but
often it is preferable to draw the bending moment diagram by parts, with
each part of the diagram representing the e¤ect of one load. Construction of
the bending moment diagram by parts for simply supported beams proceeds
as follows:

FIG. 6.6 Tangential deviations of the elastic curve.

FIG. 6.7 Sign conventions for
tangential deviation and change of
slope.
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. Calculate the simple support reactions and consider them to be applied
loads.. Introduce a fixed support at a convenient location. A simple support
of the original beam is usually a good choice, but sometimes another
point is more convenient. The beam is now cantilevered from this
support.. Draw a bending moment diagram for each load (including the support
reactions of the original beam). If all the diagrams can be fitted on a
single plot, do so, drawing the positive moments above the x-axis and
the negative moments below the x-axis.

Only the last step of the procedure is needed for a cantilever beam
because a fixed support is already present.

As an illustration, consider the simply supported beam ABC in
Fig. 6.8(a). We start by computing the support reactions; the results are
shown in the figure. In Fig. 6.8(b), we introduce a fixed support at C and
show the reaction at A as an applied load. The result is a cantilever beam
that is statically equivalent to the original beam; that is, the cantilever beam
has the same conventional bending moment diagram as the beam in Fig.
6.8(a). We now draw a bending moment diagram for each of the two loads,
as shown in Fig. 6.8(c). The moment M1 due to RA is positive, whereas the

FIG. 6.8 (a) Simply supported beam; (b) equivalent beam with fixed support at
C; (c) bending moment diagram by parts; (d) conventional bending moment
diagram.
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distributed load results in a negative moment M2. The conventional bending
moment diagram, shown in Fig. 6.8(d), is obtained by superimposing M1

and M2—that is, by plotting M ¼M1 þM2.

The benefit of constructing the bending moment diagram by parts be-
comes evident when we compare Figs. 6.8(c) and (d). The former contains
two simple parts: a triangle and a parabola. Not only is the conventional
diagram harder to divide into simple shapes, but also, before this can be
done, the maximum bending moment and its location have to be found.

As mentioned previously, the fixed support can be introduced at any
location along the beam. Let us draw the bending moment diagram by parts
for the beam in Fig. 6.8(a) by placing the fixed support at B, as shown in
Fig. 6.9(a). (This location is not as convenient as C, but it serves as an
illustration.) As a result, we have transformed the original beam into two
cantilever beams sharing the support at B. The applied forces consist of both
the original reactions and the distributed loading. Therefore, the bending
moment diagram in Fig. 6.9(b) now contains three parts. Note that the mo-
ments of the forces about B are balanced. In other words,

SðMBÞR ¼ SðMBÞL

where SðMBÞR and SðMBÞL represent the sum of the moments of the forces
to the right and to the left of B, respectively.

When we construct the bending moment diagram by parts, each part is
invariably of the form M ¼ kxn, where n is a nonnegative integer that rep-
resents the degree of the moment equation. Table 6.1 shows the properties of
areas under the M-diagram for n ¼ 0, 1, 2, and 3. This table is useful in
computations required by the moment-area method.

FIG. 6.9 (a) Beam with fixed support at B that is statically equivalent to the
simply supported beam in Fig. 6.8(a); (b) bending moment diagram by parts.
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c. Application of the moment-area method

Cantilever Beams Consider the deflection of the cantilever beam shown
in Fig. 6.10. Because the support at A is fixed, the tangent drawn to the
elastic curve at A is horizontal. Therefore, tB=A (the tangential deviation of B

with respect to A) has the same magnitude as the displacement of B. In other
words, dB ¼ jtB=Aj, where

tB=A ¼ area of
M

EI
diagram

	B

A

� x=B

Simply Supported Beams The elastic curve of a simply supported
beam is shown in Fig. 6.11. The problem is to compute the displacement dB

of a point B located a distance x from A. Because the point at which a tan-
gent to the elastic curve is horizontal is usually unknown, this computation
is more involved than that for a cantilever beam. If a tangent is drawn to the
elastic curve at A, the tangential deviation tB=A is evidently not the displace-
ment dB. However, from the figure, we see that dB ¼ yAx� tB=A. Therefore,
we must compute the slope angle yA as well as tB=A.

n Plot of M F kxn Area x

0 bh
1

2
b

1
1

2
bh

2

3
b

2
1

3
bh

3

4
b

3
1

4
bh

4

5
b

TABLE 6.1 Properties of Areas Bounded by M ¼ kx n

FIG. 6.10 The displacement
equals the magnitude of the
tangential deviation for point B on
the cantilever beam.
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The procedure for computing dB thus consists of the following steps:

. Compute tC=A from

tC=A ¼ area of
M

EI
diagram

	C

A

� x=C

. Determine yA from the geometric relationship

yA ¼
tC=A

L

. Compute tB=A using

tB=A ¼ area of
M

EI
diagram

	B

A

� x=B

. Calculate dB from

dB ¼ yAx� tB=A

This procedure may appear to be involved, but it can be executed
rapidly, especially if the bending moment diagram is drawn by parts. It must
be emphasized that an accurate sketch of the elastic curve, similar to that
shown in Fig. 6.11, is the basis of the procedure. Such a sketch should be the
starting point of every analysis.

FIG. 6.11 Procedure for calculating dB, the displacement of point B on the
simply supported beam.

226 CHAPTER 6 Deflection of Beams

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sample Problem 6.8

A 600-lb/ft uniformly distributed load is applied to the left half of the cantilever
beam ABC in Fig. (a). Determine the magnitude of force P that must be applied as
shown so that the displacement at A is zero.

Solution
The bending moment diagram, drawn by parts, is shown in Fig. (b). The upper por-
tion is the moment caused by P; the lower part is due to the distributed load. The
area under the diagram can be divided into the four simple shapes shown: the rec-
tangle z1 , the triangles z2 and z3 , and the parabola z4 .

The sketch of the elastic curve in Fig. (c) is drawn so that it satisfies the boun-
dary conditions (dC ¼ yC ¼ 0Þ and the requirement that dA ¼ 0. Because the slope of
the elastic curve at C is zero, we see that tA=C (the tangential deviation of A relative to
C ) is zero. Therefore, from the second moment-area theorem, we obtain

tA=C ¼ area of
M

EI
diagram

	A

C

� x=A ¼ 0

Using the four sub-areas shown in Fig. (b) to compute the first moment of the bend-
ing moment diagram about A, we get (the constant EI cancels)

1

2
ð8� 8PÞ 16

3

� �
� 1

3
ð4� 4800Þð3Þ � ð4� 4800Þð6Þ � 1

2
ð4� 9600Þ 20

3

� �
¼ 0

which yields

P ¼ 1537:5 lb Answer
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Alternative Solution

There are other ways of drawing the bending moment diagram by parts. We could,
for example, replace the distributed loading with the equivalent loading shown in
Fig. (d). The resulting bending moment diagram by parts in Fig. (e) has only three
parts: two parabolas and a triangle. Setting the first moment of the bending diagram
about A to zero, we get

1

2
ð8� 8PÞ 16

3

� �
� 1

3
ð8� 19 200Þð6Þ þ 1

3
ð4� 4800Þð7Þ ¼ 0

giving us, as before,

P ¼ 1537:5 lb Answer

1
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Sample Problem 6.9

The simply supported beam in Fig. (a) supports a concentrated load of 300 N as
shown. Using EI ¼ 20:48� 103 N �m2, determine (1) the slope angle of the elastic
curve at A; and (2) the displacement at D. (Note: This beam was analyzed in Sample
Problems 6.3 and 6.5.)

C

Solution

To obtain the bending moment diagram by parts, we introduce a fixed support at C

and consider the reaction at A to be an applied load, as shown in Fig. (b). The
resulting bending moment diagram is shown in Fig. (c). The sketch of the elastic
curve of the original beam in Fig. (d) identifies the slope angle yA and the displace-
ment dD, which are to be found, together with the tangential deviations tC=A and tD=A.

Part 1

The tangential deviation tC=A can be found from the second moment-area theorem:

tC=A ¼ area of
M

EI
diagram

	A

C

� x=C
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Substituting the given value of EI and computing the first moment of the bending
moment diagram about C with the aid of Fig. (c), we get

tC=A ¼
1

20:48� 103

1

2
ð3� 300Þð1:0Þ � 1

2
ð1:0� 300Þ 1

3

� �
 	
¼ 0:019 531 m

Note that tC=A is positive, which means that C is above the reference tangent at A, as
expected. Assuming small slopes, we obtain from geometry of Fig. (d)

yA ¼
tC=A

AC
¼ 0:019 531

3
¼ 6:510� 10�3 rad ¼ 0:373� g Answer

Part 2

From the second moment-area theorem, the tangential deviation of D relative to A is

tD=A ¼ area of
M

EI
diagram

	D
A

� x=D

Referring to Fig. (e) to obtain the first moment about D of the bending moment di-
agram between A and D, we obtain

tD=A ¼
1

20:48� 103

1

2
ð1:0� 100Þ 1

3

� �
 	
¼ 0:8138� 10�3 m

From Fig. (d), we see that the displacement at D is

dD ¼ yAAD 0 � tD=A ¼ ½6:510ð1:0Þ � 0:8138� � 10�3

¼ 5:696� 10�3 m ¼ 5:70 mm # Answer

(e)

1
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Sample Problem 6.10

Determine the value of EId at end D of the overhanging beam in Fig. (a).

6 ft

Solution
The statically equivalent beam used to draw the bending moment diagram by parts is
shown in Fig. (b). We introduced a built-in support at C and show the reaction at A

as an applied load. The result is, in e¤ect, two beams that are cantilevered from C.
The bending moment diagrams by parts for these beams are shown in Fig. (c).

The elastic curve of the original beam in Fig. (d) was drawn assuming that the
beam rotates counterclockwise at C. The correct direction will be determined from
the sign of the tangential deviation tA=C . Using the second moment-area theorem and
recognizing that EI is a constant, we have
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EItA=C ¼ area of M diagram

	C
A

� x=A

¼ 1

2
ð10� 780Þ 2

3
ð10Þ


 	
� 1

2
ð6� 900Þ 4þ 2

3
ð6Þ


 	
¼ 4400 lb � ft3

The positive value means that point A lies above the reference tangent at C, as shown
in Fig. (d), thereby verifying our assumption. The slope angle at C is (assuming small
slopes) yC ¼ tA=C=AC, or

EIyC ¼
4400

10
¼ 440 lb � ft2

The deviation of D from the reference tangent at C is obtained from

EItD=C ¼ area of M diagram

	D
C

� x=D ¼ �
1

2
ð4� 120Þ 2

3
ð4Þ


 	
¼ �640 lb � ft3

The negative sign indicates that point D on the elastic curve lies below the refer-
ence tangent, as assumed in Fig. (d). According to Fig. (d), the displacement of D is
dD ¼ yCCD� jtD=C j. Therefore,

EIdD ¼ 440ð4Þ � 640 ¼ 1120 lb � ft3 " Answer

1
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Problems

6.45 Solve Sample Problem 6.10 by introducing a built-in support at A rather than
at C.

6.46 For the cantilever beam ABC, compute the value of EId at end C.

6.47 The cantilever beam ABC has the rectangular cross section shown in the
figure. Using E ¼ 69 GPa, determine the maximum displacement of the beam.

6.48 The properties of the timber cantilever beam ABC are I ¼ 60 in.4 and
E ¼ 1:5� 106 psi. Determine the displacement of the free end A.

6.49 For the beam described in Prob. 6.48, compute the displacement of point B.

6.50 The cantilever beam AB supporting a linearly distributed load of maximum
intensity w0 is propped at end A by the force P. (a) Find the value of P for which the
deflection of A is zero. (b) Compute the corresponding value of EIy at A.

6.51 Determine the magnitude of the couple M0 for which the slope of the beam
at A is zero.

6.52 Compute the value of EId at point B for the simply supported beam ABC.

6.53 For the simply supported beam ABCD, determine the values of EId at
(a) point B; and (b) point C.

6 2
4

4

FIG. P6.46 FIG. P6.47

FIG. P6.48, P6.49
FIG. P6.50

12

3 

M0

3

FIG. P6.51

80 lb/ft

FIG. P6.52 FIG. P6.53
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6.54 Find the maximum displacement of the simply supported beam ABC that is
loaded by a couple M0 at its midspan. (Hint: By symmetry, the deflection is zero at
point B, the point of application of the couple.)

6.55 Determine the value of EId at point C for the simply supported beam ABCD.

6.56 For the simply supported beam ABC, determine EId at point B.

6.57 Compute the maximum displacement for the wooden cantilever beam that
has the cross section shown. Use E ¼ 10 GPa for wood.

2 kN/m 75 mm

150 mm

0.8 kN/m

3 m

FIG. P6.57

6.58 Determine the value of EId at end A of the overhanging beam ABCD. (Hint:
By symmetry, the elastic curve midway between the supports is horizontal.)

6.59 For the overhanging beam ABCD, compute the magnitude of the load P that
would cause the elastic curve to be horizontal at support C.

6.60 Determine the displacement at point B of the cantilever beam ABC. Use
E ¼ 10 GPa and I ¼ 30� 106 mm4.

6.61 For the overhanging beam ABCD, compute (a) the value of the force P for which
the slope of the elastic curve at C is zero, and (b) the corresponding value of EId at B.

FIG. P6.61, P6.62

6.62 The overhanging beam ABCD carries the 100-lb load and the force P ¼ 80
lb. Compute the value of EId at point D.

FIG. P6.54

3

200
60

5 5

FIG. P6.55

0.6 L

FIG. P6.56

FIG. P6.58

2 m 4 m 4 m

600 N

FIG. P6.59 FIG. P6.60
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6.63 The overhanging beam ABCD carries the uniformly distributed load of in-
tensity 200 lb/ft over the segments AB and CD. Find the value of EId at point B.

6.64 Determine the value of EId at point A of the overhanging beam ABC.

6.65 The two segments of the cantilever beam ABC have di¤erent cross sections
with the moments of inertia shown in the figure. Determine the expression for the
maximum displacement of the beam.

6.66 The simply supported beam ABC contains two segments. The moment of
inertia of the cross-sectional area for segment AB is three times larger than the mo-
ment of inertia for segment BC. Find the expression for the displacement for point B.

6.67 Calculate the value of EId at point B of the simply supported beam ABC.

6.5 Method of Superposition

The method of superposition, a popular method for finding slopes and de-
flections, is based on the principle of superposition:

If the response of a structure is linear, then the e¤ect of several loads

acting simultaneously can be obtained by superimposing (adding) the

e¤ects of the individual loads.

By ‘‘linear response’’ we mean that the relationship between the cause
(loading) and the e¤ect (deformations and internal forces) is linear. The two
requirements for linear response are (1) the material must obey Hooke’s law;
and (2) the deformations must be su‰ciently small so that their e¤ect on the
geometry is negligible.

4 ft

200 200

4 ft 4 ft

FIG. P6.63

FIG. P6.64 FIG. P6.65

FIG. P6.66 FIG. P6.67
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The method of superposition permits us to use the known displace-
ments and slopes for simple loads to obtain the deformations for more com-
plicated loadings. To use the method e¤ectively requires access to tables that
list the formulas for slopes and deflections for various loadings, such as
Tables 6.2 and 6.3. More extensive tables can be found in most engineering
handbooks.

d ¼ Px2

6EI
ð3L� xÞ dB ¼

PL3

3EI
yB ¼

PL2

2EI

d ¼

Px2

6EI
ð3a� xÞ 0 a x a a

Pa2

6EI
ð3x� aÞ a a x a L

8>>><
>>>:

dB ¼
Pa2

6EI
ð3L� aÞ yB ¼

Pa2

2EI

d ¼ w0x2

24EI
ð6L2 � 4Lxþ x2Þ dB ¼

w0L4

8EI
yB ¼

w0L3

6EI

d ¼

w0x2

24EI
ð6a2 � 4axþ x2Þ 0 a x a a

w0a3

24EI
ð4x� aÞ a a x a L

8>>><
>>>:

dB ¼
w0a3

24EI
ð4L� aÞ yB ¼

w0a3

6EI

d ¼ w0x2

120L EI
ð10L3 � 10L2xþ 5Lx2 � x3Þ dB ¼

w0L4

30EI
yB ¼

w0L3

24EI

d ¼M0x2

2EI
dB ¼

M0L2

2EI
yB ¼

M0L

EI

TABLE 6.2 Deflection Formulas for Cantilever Beams
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Sample Problem 6.11

Compute the midspan value of EId for the simply supported beam shown in Fig. (a)
that is carrying two concentrated loads.

Solution

The loading on the beam can be considered to be the superposition of the loads
shown in Figs. (b) and (c). According to Table 6.3, the displacement at the center of a
simply supported beam is given by

EIdcenter ¼
Pb

48
ð3L2 � 4b2Þ where a > b

We can use this formula to obtain the midspan displacements d1 and d2 of the beams
in Figs. (b) and (c), provided we choose the dimensions a and b as shown in the fig-
ures (note that a must be larger than b). We obtain

EId1 ¼
ð80Þð3Þ

48
½3ð9Þ2 � 4ð3Þ2� ¼ 1035 lb � ft3 #

EId2 ¼
ð100Þð2Þ

48
½3ð9Þ2 � 4ð2Þ2� ¼ 946 lb � ft3 #

The midspan deflection of the original beam is obtained by superposition:

EId ¼ EId1 þ EId2 ¼ 1035þ 946 ¼ 1981 lb � ft3 # Answer

1
Sample Problem 6.12

The simply supported beam in Fig. (a) carries a uniformly distributed load over part
of its length. Compute the midspan displacement.
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Solution

The given loading can be analyzed as the superposition of the two loadings shown
in Figs. (b) and (c). From Table 6.3, the midspan value of EId for the beam in
Fig. (b) is

EId1 ¼
w0

384
ð5L4 � 12L2b2 þ 8b4Þ

¼ 600

384
½5ð6Þ4 � 12ð6Þ2ð2Þ2 þ 8ð2Þ4� ¼ 7625 N �m3 #

Similarly, the midspan displacement of the beam in Fig. (c) is

EId2 ¼
w0a2

96
ð3L2 � 2a2Þ ¼ ð600Þð1Þ2

96
½3ð6Þ2 � 2ð1Þ2� ¼ 662:5 N �m3 "

The midspan displacement of the original beam is obtained by superposition:

EId ¼ EId1 � EId2 ¼ 7625� 662:5 ¼ 6960 N �m3 # Answer

1
Sample Problem 6.13

The overhanging beam ABC in Fig. (a) carries a concentrated load P at end C. De-
termine the displacement of the beam at C.

Solution

From the sketch of the elastic curve in Fig. (b), we see that the displacement of C is

dC ¼ yBbþ d 0C

where yB is the slope angle of the elastic curve at B and d 0C is the displacement at C

due to the deformation of BC. We can obtain yB from the deformation of segment
AB, shown in Fig. (c). Using Table 6.3, we get

yB ¼
ðPbÞa
3EI

From Fig. (d) and Table 6.2, the displacement due to the deformation of BC is

d 0C ¼
Pb3

3EI

239

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Therefore, the displacement at C becomes

dC ¼
Pba

3EI
bþ Pb3

3EI
¼ Pb2

3EI
ðaþ bÞ ¼ Pb2L

3EI
# Answer

1
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Problems

6.68 For the beam in Sample Problem 6.11, find the values of EId under the con-
centrated loads at B and C.

6.69 Determine the value of EId at midspan of the simply supported beam.

6.70 Find the midspan displacement of the simply supported beam using E ¼ 10
GPa and I ¼ 20� 106 mm4.

6.71 Determine the midspan displacement for the simply supported beam.

6.72 Compute the value of EId at the overhanging end A of the beam.

6.73 Determine the value of EId at midspan for the beam loaded by two con-
centrated forces.

6.74 The cross section of the wood beam is 4 in. by 8 in. Find the value of P for
which the downward deflection at the midspan is 0.5 in. Use E ¼ 1:5� 106 psi.

6.75 Determine the value of EId under each of the concentrated loads that are
applied to the simply supported beam.

100 N 100 N

2 m4 m4 m

FIG. P6.69 FIG. P6.70

FIG. P6.71

200

3 3 3

FIG. P6.72
FIG. P6.73

FIG. P6.74 FIG. P6.75
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6.76 The cross section of the rectangular beam is 50 mm wide. Determine the
smallest height h if the midspan deflection is limited to 20 mm. Use E ¼ 10 GPa.

6.77 For the overhanging beam, determine the magnitude and sense of EIy over
the support at C.

6.78 The overhanging beam ABC carries the uniformly distributed load between
its supports and the concentrated load P at end C. Find the value of P for which
there is no deflection at C.

6.79 The overhanging beam ABC carries the uniformly distributed load between
its supports and the concentrated load P at end C. Find the value of P for which the
deflection curve is horizontal at B.

6.80 For the overhanging beam, compute the value of EId under the 3000-lb load.

6.81 The overhanging beam carries the uniformly distributed load w0 over its en-
tire length. Determine the dimension a for which the displacement of the beam at end
C is zero.

6.82 The trapezoidal loading is carried by the simply supported beam AB. The
beam is a steel tube with the cross section shown. Determine the displacement of
the beam at midspan and the slope angle of the elastic curve at end A. Use
E ¼ 200 GPa for steel.

6.83 For the overhanging beam, determine the value of EId under the 6000-lb load.

6.84 Compute the value of EId at the free end of the cantilever beam.

6.85 Calculate the maximum displacement of the simply supported beam.

6.86 Determine the maximum value of EId for the cantilever beam that carries the
triangular loading shown in the figure.

FIG. P6.76 FIG. P6.77
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2

FIG. P6.78, P6.79

4003000

15 ft9 ft

FIG. P6.80
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FIG. P6.81

3 m
BA

15 kN/m
30 kN/m

80 mm

70 mm

FIG. P6.82

6 ft 6 ft

6000 lb 8000 lb ft
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FIG. P6.83

60 kN/m

4 m 2 m 2 m

60 kN/m
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6.87 Compute the value of EId at the right end of the overhanging beam.

6.88 The cantilever beam is made of a W10� 33 section. Determine the displace-
ment and slope angle of the elastic curve at end C.

6.89 Calculate the horizontal displacement at C for the 3/4-in.-diameter bent steel
bar. Use E ¼ 29� 106 psi for steel.

6.90 The cantilever beam AB of length L is loaded by the force P and the couple M0.
Determine M0 in terms of P and L so that the slope of the elastic curve at A is zero.

6.91 The properties of the simply supported beam are E ¼ 70 GPa and
I ¼ 30� 106 mm4. Determine the load intensity w0 that results in the midspan
deflection being equal to 1/360th of the span.

6.92 Determine the vertical displacement of point C of the frame ABC caused by
the applied couple M0. Assume that EI is constant throughout the frame.

6.93 Solve Prob. 6.92 if the couple M0 is replaced by a downward vertical load P.

6.94 Find the vertical displacement of point C of the frame ABC. The cross-
sectional moments of inertia are 2I0 for segment AB and I0 for segment BC.

FIG. P6.85

A

B
3 m 3 m

600 N/m

C

FIG. P6.86

4 m

A

B
C

2 m

1800 N/m
1600 N

FIG. P6.87

8 ft

2400 lb 1500 lb

8 ft

W10 × 33

FIG. P6.88

36 in.

18 in.

30 lb
3/4-in. dia.

A B

C

FIG. P6.89 FIG. P6.90

FIG. P6.91 FIG. P6.92, P6.93

FIG. P6.94
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Review Problems

6.95 (a) Determine the equation of the elastic curve for the cantilever beam.
(b) Using the result of part (a), compare the displacement at the free end with the
corresponding expression given in Table 6.2.

6.96 Derive the equation of the elastic curve for the beam AB. The support at B is
free to move vertically but does not allow rotation.

6.97 Find the equation of the elastic curve for the simply supported beam that
carries a distributed load of intensity w ¼ w0x2=L2.

6.98 The intensity of the distributed loading acting on the simply supported beam
varies linearly from w0 at A to 2w0 at B. Determine the equation of the elastic curve
of the beam.

6.99 Derive the equations of the elastic curve for the two segments of the over-
hanging beam ABC.

6.100 Find the equation of the elastic curve for segments AB and BC of the simply
supported beam.

6.101 Compute the value of EIy at support B of the overhanging beam shown in
the figure.

6.102 Determine the value of EId midway between the supports for the
overhanging beam.

6.103 The overhanging beam carries concentrated loads of magnitudes 100 lb and
P. (a) Determine P for which the slope of the elastic curve at B is zero. (b) Compute
the corresponding value of EId under the 100-lb load.

FIG. P6.95 FIG. P6.96

FIG. P6.97 FIG. P6.98
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FIG. P6.100
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FIG. P6.103
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6.104 Determine the maximum value of EId of the cantilever beam.

6.105 The timber beam of rectangular cross section shown carries two concen-
trated loads, each of magnitude P. Find the maximum allowable value of P if the
midspan displacement of the beam is limited to 0.5 in. Use E ¼ 1:5� 106 psi.

6.106 Compute the value of EId at the right end of the overhanging beam.

6.107 For the simply supported beam, find the value of EId under each con-
centrated load.

6.108 Determine the value of EId at midspan of the simply supported beam.

6.109 The segments AB and BC of the bent bar have the same flexural rigidity EI.
Find the horizontal component of EId at end C.

6.110 The steel bar, consisting of two equal-length segments of di¤erent diame-
ters, is used as a cantilever beam to support the triangular load shown. Calculate the
maximum deflection of the beam. Use E ¼ 29� 106 psi for steel.

0.75 in.
36 in.36 in.

1.0 in.

2.4 lb/in.

A B C

FIG. P6.110

FIG. P6.104 FIG. P6.105

FIG. P6.106

60 90

6 8 4

FIG. P6.107

45

6 4 8

90

FIG. P6.108 FIG. P6.109
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Computer Problems

C6.1 The uniform cantilever beam of length L carries a distributed load w that
varies with the distance x. Given L, wðxÞ, E, and I, write a program to plot the de-
flection of the beam versus x. Apply the program to the steel (E ¼ 29� 106 psi)
beams shown in Figs. (a) and (b). (Hint: Use superposition by applying the deflection
formulas for the beam with concentrated load in Table 6.2 to the load element w dx

and integrating the result from x ¼ 0 to L—see Sample Problem 6.11.)

FIG. C6.1

C6.2 Solve Prob. C6.1 assuming the beam to be simply supported at each end.

C6.3 The concentrated loads P1 and P2 travel across the simply supported beam
of length L and constant cross section. The loads are separated by the constant dis-
tance b. Given P1, P2, L, b, E, and I, plot the deflection under P1 as a function of the
distance x from x ¼ 0 to L. Use the following data: (a) P1 ¼ 12 kN, P2 ¼ 6 kN,
L ¼ 10 m, b ¼ 3 m, E ¼ 70 GPa, I ¼ 250� 106 mm4; and (b) P2 ¼ �6 kN, other
data the same as in part (a). (Hint: Use the method of superposition in conjunction
with Table 6.3.)

C6.4 The overhanging beam of length L and constant cross section carries a uni-
formly distributed loading of intensity w0. The distance between the supports is b.
Given L, b, w0, E, and I, plot the deflection of the beam. Experiment with the pro-
gram to determine the value of b that minimizes the maximum displacement. Use the
following data: L ¼ 6 m, w0 ¼ 12 kN/m, E ¼ 200 GPa, and I ¼ 95� 106 mm4.
(Hint: Use superposition in conjunction with Tables 6.2 and 6.3.)

FIG. C6.4

FIG. C6.3
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C6.5 The cantilever beam of length L carries a concentrated load P at the free end.
The rectangular cross section has a constant width b, but the depth varies as

h ¼ h1 þ ðh2 � h1Þ
x

L

Given L, P, b, h1, h2, and E, plot the elastic curve of the beam. Use the following
data: L ¼ 6 ft, P ¼ 2000 lb, b ¼ 2 in., h1 ¼ 2 in., h2 ¼ 10 in., and E ¼ 29� 106 psi.
(Hint: Use the moment-area method.)

C6.6 The simply supported beam of length L carries a concentrated force P at a
distance b from the left support. The flanges of the beam have a constant cross-
sectional area Af , but the distance h between the flanges varies from h1 to h2 as
shown. The moment of inertia of the cross section can be approximated by
I ¼ 2Af ðh=2Þ2. Given L, b, P, Af , h1, h2, and E, plot the deflection of the beam ver-
sus the distance x. Use the following data: L ¼ 16 ft, b ¼ 10 ft, P ¼ 30 kips, Af ¼ 8
in.2, h1 ¼ 8 in., h2 ¼ 20 in., and E ¼ 29� 106 psi. (Hint: Use the moment-area
method.)

FIG. C6.5 FIG. C6.6
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7
Statically Indeterminate Beams

7.1 Introduction

A beam is statically indeterminate if the number of support reactions ex-
ceeds the number of independent equilibrium equations. In general, two
equilibrium equations are available for a beam supporting lateral loads
(SFy ¼ 0 and SMA ¼ 0, A being an arbitrary point).1 Hence, a statically
determinate beam has two support reactions, which is the minimum number
needed to keep the beam in equilibrium. Additional reactions, being
nonessential for equilibrium, are known as redundant reactions. The number
of redundant reactions is called the degree of indeterminacy of the beam.

Elevated concrete roadway crossing a

river. Roadways of this type can be

modeled as continuous beams resting on

several supports. Continuous beams are

statically indeterminate; they are analyzed

by considering deflections in addition to

equilibrium, as shown in this chapter.

Courtesy of Lan Scott/Shutterstock.

2491We assume that the axial force in the beam is zero, so that SFx is automatically satisfied.
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In our study of axial and torsional loading, we found that the solution
of statically indeterminate problems requires the analysis of compatibility of
deformation as well as equilibrium. For beams, the compatibility equations
are derived from the constraints imposed on the elastic curve by the
supports.

We note that each support reaction corresponds to a constraint im-
posed by the support. For example, a simple support provides a force that
imposes the deflection constraint. A built-in support provides two reactions:
a force imposing the constraint on deflection, and a couple imposing the ro-
tational constraint. Thus, the number of support constraints and the number

of reactions are always equal.

7.2 Double-Integration Method

Recall that in the method of double integration, we derived the equation
for the elastic curve of the beam by integrating the di¤erential equation
EIv 00 ¼M two times, resulting in

EIv ¼
ðð

M dx dxþ C1xþ C2 (6.5, repeated)

If the beam is statically determinate, it has two support reactions and thus two
constraints on its elastic curve. Because the reactions can be computed from
the equilibrium equations, the conditions of constraint are available to compute
C 1 and C 2, the two constants of integration. In a statically indeterminate
beam, each redundant reaction represents an additional unknown. However,
there is also an additional constraint associated with each redundancy, which,
when substituted into Eq. (6.5), provides an extra equation.

For example, the simply supported beam in Fig. 7.1(a) is statically
determinate. It has two deflection constraints (vA ¼ 0 and vB ¼ 0) and two
support reactions (RA and RB), as shown in the figure. The reactions can be
determined from the equilibrium equations, so that the constraints can be
used to compute the constants C1 and C2 in Eq. (6.5).

Beam Reactions Constraints

(a) RA

RB

vA ¼ 0

vB ¼ 0

(b) RA

RB

MA

vA ¼ 0

vB ¼ 0

v 0A ¼ 0

(c) RA

RB

RC

MA

vA ¼ 0

vB ¼ 0

vC ¼ �D

v 0A ¼ 0

Fig. 7.1 Examples of statically determinate and indeterminate beams.
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By building in the support at A, as shown in Fig. 7.1(b), we introduce
the additional constraint v 0A ¼ 0 and the reactive couple MA (a redundant
reaction). Therefore, the beam is statically indeterminate of degree one. The
number of unknowns is now five: three support reactions (RA, RB, and MA)
and two constants of integration (C1 and C2). The number of available
equations is also five: two equilibrium equations and three constraints shown
in the figure.

In Fig 7.1(c), we have added another support at C that has a small in-
itial gap D. Assuming that the beam makes contact with the support at C

when the loading is applied, we see that the support introduces another re-
dundant reaction RC and the corresponding constraint vC ¼ �D. Since there
are now two redundant support reactions, the degree of static indeterminacy
of the beam is two. The number of available equations for determining the
six unknowns (RA, RB, RC , MA, C1, and C2Þ is also six: two equations of
equilibrium and the four constraint conditions shown in the figure.

The above discussion assumes that M is the global expression for the
bending moment (applicable to the entire beam). If the beam is divided into
two or more segments with di¤erent expressions for M, double integration
will result in additional constants of integration. However, there will be an
equal number of new constraints in the form of continuity conditions (de-
flections and slopes must be continuous across the junctions between the
segments). Clearly, the method of double integration can become tedious for
statically indeterminate beams with multiple segments, unless M is expressed
in terms of bracket functions.
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Sample Problem 7.1

Determine all the support reactions for the propped cantilever beam in Fig. (a).

Solution

Equilibrium The free-body diagram of the beam, shown in Fig. (b), yields the equi-
librium equations

SFy ¼ 0 þ" RA þ RB � 7200 ¼ 0 (a)

SMA ¼ 0 þ

m

MA þ RBð12Þ � 7200ð6Þ ¼ 0 (b)

Because there are three support reactions (RA, RB, and MA) but only two in-
dependent equilibrium equations, the degree of static indeterminacy is one.

Compatibility A third equation containing the support reactions is obtained by an-
alyzing the deformation of the beam. We start with the expression for the bending
moment, obtainable from the free-body diagram in Fig. (c):

M ¼ �MA þ RAx� 600x
x

2

� �
lb � ft

Substituting M into the di¤erential equation for the elastic curve and integrating
twice, we get

EIv 00 ¼ �MA þ RAx� 300x2 lb � ft

EIv 0 ¼ �MAxþ RA
x2

2
� 100x3 þ C1 lb � ft2

EIv ¼ �MA

x2

2
þ RA

x3

6
� 25x4 þ C1xþ C2 lb � ft3

Since there are three support reactions, we also have three support constraints. Ap-
plying these constraints to the elastic curve, shown by the dashed line in Fig. (b), we
get

1. v 0jx¼0 ¼ 0 (no rotation at A) C1 ¼ 0
2. vjx¼0 ¼ 0 (no deflection at A) C2 ¼ 0
3. vjx¼L ¼ 0 (no deflection at B)

�MA
ð12Þ2

2
þ RA

ð12Þ3

6
� 25ð12Þ4 ¼ 0 (c)

The solution of Eqs. (a)–(c) is

MA ¼ 10 800 lb � ft RA ¼ 4500 lb RB ¼ 2700 lb Answer

Because the results are positive, the reactions are directed as shown in Fig. (b).

1

600

12 ft

7200

6 ft

600x lb

6 ft
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Sample Problem 7.2

The beam in Fig. (a) has built-in supports at both ends. Determine all the support
reactions.

Solution

The free-body diagram of the beam in Fig. (b) shows four support reactions: the
forces RA and RC and the couples MA and MC . Because there are two independent
equilibrium equations, the degree of static indeterminacy is two.

We can simplify the analysis considerably by taking advantage of symmetries
about the midpoint B. The symmetry of loading implies that MA ¼MC and

RA ¼ RC ¼
w0L

2 Answer

Also, the symmetry of deformation requires that the elastic curve, shown by the
dashed line in Fig. (b), has zero slope at the midpoint B.

Because of the above symmetries, we need to analyze only half of the beam,
such as the segment BC shown in Fig. (c). (The segment AB could also have been
analyzed.)

Equilibrium From the free-body diagram of segment BC in Fig. (c), we get

SFy ¼ 0 þ" VB þ RC �
w0L

2
¼ 0

SMC ¼ 0 þ
m

�MB �MC � VBLþ w0L

2

L

3

� �
¼ 0

Substituting RC ¼ w0L=2 and solving yield VB ¼ 0 and

MC ¼ �MB þ
w0L2

6
(a)

Compatibility From the free-body diagram in Fig. (d), the bending moment in seg-
ment BC is

M ¼MB �
w0x2

2L

x

3

� �
¼MB �

w0x3

6L

Substituting M into the di¤erential equation of the elastic curve and integrating
twice, we obtain

EIv 00 ¼MB �
w0x3

6L

EIv 0 ¼MBx� w0x4

24L
þ C1

EIv ¼MB
x2

2
� w0x5

120L
þ C1xþ C2
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The elastic curve of segment BC is shown with the dashed line in Fig. (c). Applying
the zero slope constraints on this elastic curve at B and C, we obtain

1. v 0jx¼0 ¼ 0 C1 ¼ 0
2. v 0jx¼L ¼ 0

MBL� w0L3

24
¼ 0

which yields

MB ¼
w0L2

24
(b)

Substituting Eq. (b) into Eq. (a) and recalling that MA ¼MC , we get

MA ¼MC ¼ �
w0L2

24
þ w0L2

6
¼ w0L2

8
Answer

Note that we did not use the deflection constraint vjx¼L ¼ 0 because the constant C2

was not needed in this problem.

1
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Problems

7.1 Find all the support reactions for the propped cantilever beam that carries the
couple M0 at the propped end.

7.2 Determine the support reaction at A for the propped cantilever beam due to
the triangular loading shown in the figure.

7.3 The beam carrying the 1200 lb � ft couple at its midpoint is built in at both
ends. Find all the support reactions. (Hint: Utilize the skew-symmetry of deformation
about the midpoint.)

7.4 A concentrated load is applied to the beam with built-in ends. (a) Find all the
support reactions; and (b) draw the bending moment diagram. (Hint: Use symmetry.)

7.5 The beam with three supports carries a uniformly distributed load. Determine
all the support reactions. (Hint: Use symmetry.)

24 kN   m

6 m

FIG. P7.1

FIG. P7.2

1200

4 ft4 ft

FIG. P7.3

FIG. P7.4

180

8 ft8 ft

FIG. P7.5
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7.6 A uniformly distributed load is applied to the beam with built-in supports.
(a) Find all the support reactions; and (b) draw the bending moment diagram.

7.7 The beam is built in at A and supported by vertical rollers at B (the rollers
allow vertical deflection but prevent rotation). If the 3-kN concentrated load is
applied at B, determine all the support reactions.

7.8 A triangular load is applied to the beam with built-in ends. Find all the sup-
port reactions.

7.3 Double Integration Using Bracket

Functions

Because bracket functions enable us to write a global expression for the
bending moment M, they eliminate the need to segment a beam if the load-
ing is discontinuous. Therefore, the number of unknowns is always nþ 2: n

support reactions and two constants arising from double integration. The
number of available equations is also nþ 2: n equations of constraint im-
posed on the deformation by the supports and two equations of equilibrium.

FIG. P7.6

3 kN

5 m

FIG. P7.7

FIG. P7.8
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Sample Problem 7.3

Before the 5000-N load is applied to the beam in Fig. (a), there is a small gap d0 ¼ 30
mm between the beam and the support under B. Find all the support reactions after
the load is applied. Use E ¼ 10 GPa and I ¼ 20� 106 mm4.

Solution
The free-body diagram of the beam is shown in Fig. (b). There are three support re-
actions: RA, RB, and MA. By including RB, we have assumed that the beam deflects
su‰ciently to make contact with the support at B (if the solution yields a positive
value for RB, we will know that this assumption is correct). The number of unknowns
in this problem is five: the three support reactions and the two integration constants
resulting from double integration. There are also five equations: two equations of
equilibrium and three equations of constraint (the deflections at A and B, and the
slope at A are known).

Equilibrium Referring to the free-body diagram of the beam in Fig. (b), we obtain
the following two independent equilibrium equations:

SFy ¼ 0 þ" RA þ RB � 5000 ¼ 0 (a)

SMB ¼ 0 þ

m

MA � RAð4Þ þ 5000ð2Þ ¼ 0 (b)

Compatibility The free-body diagram in Fig. (c) yields the following global bending
moment equation for the beam:

M ¼ �MA þ RAx� 5000hx� 2i N �m

Substituting M into the di¤erential equation of the elastic curve and integrating
twice, we get

EIv 00 ¼ �MA þ RAx� 5000hx� 2i N �m

EIv 0 ¼ �MAxþ RA
x2

2
� 2500hx� 2i2 þ C1 N �m2

EIv ¼ �MA

x2

2
þ RA

x3

6
� 2500

3
hx� 2i3 þ C1xþ C2 N �m3

The constraints imposed by the supports on the elastic curve, shown as the dashed
line in Fig. (b), yield

1. v 0jx¼0 ¼ 0 (no rotation at A) C1 ¼ 0
2. vjx¼0 ¼ 0 (no deflection at A) C2 ¼ 0
3. vjx¼4 m ¼ �d0 ¼ �0:03 m (downward deflection at B equals d0)

ð10� 109Þð20� 10�6Þð�0:03Þ ¼ �MA
ð4Þ2

2
þ RA

ð4Þ3

6
� 2500

3
ð2Þ3

Note that I was converted from mm4 to m4. After simplification, we get

�24MA þ 32RA ¼ 2000 (c)

The solution of Eqs. (a)–(c) is

RA ¼ 3719 N RB ¼ 1281 N MA ¼ 4875 N �m Answer

Because all reactions are positive, their directions shown in Fig. (b) are correct. Pos-
itive RB indicates that the beam does make contact with the support at B, as we had
assumed.

1
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Sample Problem 7.4

The beam in Fig. (a) is built in at both ends and carries a uniformly distributed load
over part of its length. Determine all the support reactions.

Solution

The free-body diagram of the entire beam in Fig. (b) contains four support reactions:
the forces RA and RB and the couples MA and MB. Therefore, the total number of
unknowns is six: the four reactions and two constants of integration arising from
double integration. The number of available equations is also six: two equations of
equilibrium and four conditions of constraint at the supports (the deflection and the
slope at each support must be zero).

Equilibrium From the free-body diagram of the beam in Fig. (b), we obtain the
equilibrium equations

SFy ¼ 0 þ" RA þ RB � 540 ¼ 0 (a)

SMB ¼ 0 þ

m

MA � RAð12Þ þ 540ð4:5Þ �MB ¼ 0 (b)

Compatibility From the free-body diagram in Fig. (c), the global expression for the
bending moment is

M ¼ �MA þ RAx� 60

2
hx� 3i2 lb � ft

Substituting this expression for M into the di¤erential equation of the elastic curve
and integrating twice, we obtain

EIv 00 ¼ �MA þ RAx� 30hx� 3i2 lb � ft

EIv 0 ¼ �MAxþ RA
x2

2
� 10hx� 3i3 þ C1 lb � ft2 (c)

EIv ¼ �MA

x2

2
þ RA

x3

6
� 2:5hx� 3i4 þ C1xþ C2 lb � ft3 (d)

The elastic curve of the beam is shown by the dashed line in Fig. (b). The
constraints imposed by the supports yield

1. v 0jx¼0 ¼ 0 (slope at A is zero) C1 ¼ 0
2. vjx¼0 ¼ 0 (deflection at A is zero) C2 ¼ 0
3. v 0jx¼12 ft ¼ 0 (slope at B is zero)

�MAð12Þ þ RA
ð12Þ2

2
� 10ð9Þ3 ¼ 0 (e)

4. vjx¼12 ft ¼ 0 (deflection at B is zero)

�MA
ð12Þ2

2
þ RA

ð12Þ3

6
� 2:5ð9Þ4 ¼ 0 (f)

The solution of Eqs. (e) and (f ) is

RA ¼ 189:8 lb MA ¼ 532 lb � ft Answer

The equilibrium equations, Eqs. (a) and (b), then yield

RB ¼ 350 lb MB ¼ 683 lb � ft Answer

All the reactions are positive, indicating that the directions assumed on the free-body
diagram in Fig. (b) are correct.

1
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Problems

7.9 Determine all the support reactions for the propped cantilever beam shown in
the figure.

7.10 For the beam with built-in ends, determine (a) all the support reactions; and
(b) the displacement at midspan.

7.11 Find the support reaction at A for the propped cantilever beam.

7.12 Determine all the support reactions for the beam with built-in ends.

7.13 For the beam with built-in ends, determine (a) all the support reactions; and
(b) the displacement at the midpoint C. (Hint: Use symmetry.)

7.14 Determine all the support reactions for the beam with built-in ends.

7.15 Find all the support reactions for the beam shown in the figure.

FIG. P7.9

FIG. P7.10

24 kN 30 kN

3 m 3 m 2 m

FIG. P7.11

FIG. P7.12

FIG. P7.13

2 m 4

24

FIG. P7.14

6 ft3 ft

30 kips

3 ft

FIG. P7.15
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7.16 The beam ABC has a built-in support at A and roller supports at B and C:
Find all the support reactions.

7.17 Before the 2000-lb load is applied to the propped cantilever beam, there is a
gap d0 ¼ 0:4 in. between the beam and the roller support at B. Find all the support
reactions after the load is applied. Use E ¼ 29� 106 psi and I ¼ 36 in.4.

7.18 The properties of the propped cantilever beam are E ¼ 72 GPa and
I ¼ 126� 106 mm4. The built-in support at B has a loose fit that allows the end of
the beam to rotate through the angle y0 ¼ 0:75� when the load is applied, as shown
in the detail. Determine all the support reactions.

FIG. P7.18

*7.4 Moment-Area Method

The moment-area method is well suited for deriving the compatibility equa-
tions for statically indeterminate beams. If the total number of support re-
actions is n, the degree of static indeterminacy of the beam is n� 2. A total
of n equations are available for computing the support reactions: two equi-
librium equations and n� 2 compatibility equations to be obtained from the
moment-area theorems.

FIG. P7.16

8 ft 8 ft

2000 1b

FIG. P7.17
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Sample Problem 7.5

The propped cantilever beam AB in Fig. (a) carries a uniformly distributed load of
intensity w0 along its entire length L. Determine all the support reactions acting upon
the beam.

Solution
From the free-body diagram in Fig. (b), we see that there are three reactions (RA, RB,
and MB). Because there are only two independent equilibrium equations, the beam
is statically indeterminate of degree one. Therefore, one compatibility equation is
required.

Equilibrium The following two independent equilibrium equations can be derived
from the free-body diagram in Fig. (b):

SFy ¼ 0 þ" RA þ RB � w0L ¼ 0 (a)

SMB ¼ 0 þ

m

w0L
L

2

� �
� RAL�MB ¼ 0 (b)

Compatibility Referring to the elastic curve in Fig. (c), we see that the tangent to
the elastic curve at B is horizontal (rotation is prevented by the built-in support).
Therefore, the tangential deviation of A with respect to B is zero. From the bending
moment diagram drawn by parts in Fig. (d), the second moment-area theorem yields
the compatibility equation

EItA=B ¼ area of M-diagram�AB � x=A

¼ 1

2
ðLÞðRALÞ 2L

3

� �
� 1

3
ðLÞ w0L2

2

� �
3L

4

� �
¼ 0

which gives

RA ¼
3

8
w0L Answer

Substituting this value for RA into Eqs. (a) and (b), we find the remaining two
reactions:

RB ¼ w0L� RA ¼ w0L� 3

8
w0L ¼ 5

8
w0L Answer

MB ¼ w0L
L

2

� �
� RAL ¼ 1

2
w0L2 � 3

8
w0L2 ¼ 1

8
w0L2 Answer

1
Sample Problem 7.6

The beam AB in Fig. (a) is built in at both ends and carries a uniformly distributed
load over part of its length. Compute all the support reactions acting on the beam.
(Note: This problem was solved by double integration in Sample Problem 7.4.)
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Solution

The free-body diagram of the entire beam in Fig. (b) contains four unknown end re-
actions: the forces RA and RB and the couples MA and MB. Because there are only
two independent equilibrium equations, the beam is statically indeterminate of degree
two. It follows that two compatibility equations are required for the solution.

Equilibrium From the free-body diagram in Fig. (b), the two independent equili-
brium equations are

SFy ¼ 0 þ" RA þ RB � 540 ¼ 0 (a)

SMB ¼ 0 þ

m

MA � RAð12Þ þ 540ð4:5Þ �MB ¼ 0 (b)

Compatibility The elastic curve of the beam is shown in Fig. (c). Because the slope
at each end is horizontal due to the built-in supports, we conclude that the change in
the slope between A and B is zero. From the bending moment diagram by parts in
Fig. (d), the first moment-area theorem gives us

EIyB=A ¼ area of M-diagram�BA ¼
1

2
ð12Þð12RAÞ � 12MA �

1

3
ð9Þð2430Þ ¼ 0 (c)

A second compatibility equation is obtained by noting that the tangential de-
viation tB=A of B with respect to A is zero (we could also have used the condition
tA=B ¼ 0). Applying the second moment-area theorem using the bending moment di-
agram in Fig. (d), we obtain

EItB=A ¼ area of M-diagram�BA � x=B

¼ 1

2
ð12Þð12RAÞð4Þ � 12MAð6Þ �

1

3
ð9Þð2430Þð2:25Þ ¼ 0 (d)

Solving Eqs. (a)–(d) gives

RA ¼ 189:8 lb RB ¼ 350 lb MA ¼ 532 lb � ft MB ¼ 683 lb � ft Answer

These results agree with the answers obtained by the double-integration method with
bracket functions in Sample Problem 7.4.

1
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Sample Problem 7.7

The beam in Fig. (a) has three supports. Calculate all the support reactions due to the
6000-lb force.

Solution

The free-body diagram in Fig. (b) shows that there are three vertical reactions: RA,
RB, and RC . Because there are only two independent equilibrium equations, the
beam is statically indeterminate of degree one. Therefore, the computation of the
reactions requires one compatibility equation in addition to the two equations of
equilibrium.

Equilibrium Using the free-body diagram in Fig. (b), we obtain the equilibrium
equations

SFy ¼ 0 þ" �RA þ RB þ RC � 6000 ¼ 0 (a)

SMB ¼ 0 þ

m

RAð12Þ þ RCð12Þ � 6000ð6Þ ¼ 0 (b)
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Compatibility From the elastic curve in Fig. (c), we see that the tangential devia-
tions tA=C and tB=C are related by

tA=C ¼ 2tB=C (c)

Using the bending moment diagram drawn by parts in Fig. (d) and the second
moment-area theorem, we obtain

EItA=C ¼ area of M-diagram�AC � x=A

¼ 1

2
ð12Þð12RBÞ 12þ 2

3
ð12Þ

� �
� 1

2
ð24Þð24RAÞ

2

3
ð24Þ

� �

� 1

2
ð6Þð36 000Þ 18þ 2

3
ð6Þ

� �

¼ 1440RB � 4608RA � ð2:376� 106Þ lb � ft3 (d)

and

EItB=C ¼ area of M-diagram�BC � x=B

¼ 1

2
ð12Þð12RBÞ

2

3
ð12Þ

� �
� 12ð12RAÞ

1

2
ð12Þ

� �

� 1

2
ð12Þð12RAÞ

2

3
ð12Þ

� �
� 1

2
ð6Þð36 000Þ 6þ 2

3
ð6Þ

� �

¼ 576RB � 1440RA � ð1:080� 106Þ lb � ft3 (e)

Substituting Eqs. (d) and (e) into Eq. (c) and simplifying yield

RB ¼ 750þ 6RA (f)

Solving Eqs. (a), (b), and (f ) for the reactions, we obtain

RA ¼ 563 lb RB ¼ 4130 lb RC ¼ 2440 lb Answer

1
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Problems

7.19 The propped cantilever beam is a W150� 37:1 steel section. Determine
(a) the reaction at B; and (b) the displacement at A.

7.20 Determine the reaction at the support A of the propped cantilever beam.

7.21 Find the reactive couple acting on the propped cantilever beam at B.

7.22 The beam AB has a built-in support at A. The roller support at B allows
vertical deflection but prevents rotation. Determine all the support reactions.

7.23 The beam ABC rests on three supports. Determine all the support reactions.

7.24 The load acting on the beam ABC has a triangular distribution. Find the re-
actions at all three supports.

7.25 The beam ABC has three supports and carries two equal but opposite cou-
ples. Determine all the support reactions.

7.26 The beam AB has a built-in support at each end. Determine (a) the reactive
couples acting on the beam at A and B; and (b) the value of EId at midspan. (Hint:
Use symmetry.)

18 kN

3 m 3 m

W150 � 37.1

B CA

FIG. P7.19

120 lb/ft

15 ft

300 lb/ft

A B

FIG. P7.20

160

4 4

FIG. P7.21

FIG. P7.22 FIG. P7.23

FIG. P7.24

2000 1b 2000 lb

8 ft 4 ft 4 ft

FIG. P7.25

FIG. P7.26
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7.27 Determine the support reactions at A for the beam with built-in ends.

7.28 The properties of the cantilever beam AB are E ¼ 200 MPa and I ¼
60� 106 mm4. The sti¤ness of the spring supporting end A is k ¼ 660 kN/m. If the
spring is initially undeformed, determine the force in the spring when the 75-kN load
is applied to the beam.

7.29 The midpoint B of the steel cantilever beam ABC is supported by a vertical
aluminum rod. Find the maximum allowable value of the applied force P if the stress
in the rod is not to exceed 120 MPa. Use Est ¼ 200 GPa, I ¼ 50� 106 mm4 for the
beam, Eal ¼ 70 GPa, and A ¼ 40 mm2 for the rod.

7.30 When the cantilever beam ABC is unloaded, there is a gap d0 ¼ 0:2 in. be-
tween the beam and the support at B. Determine the support reaction at B when the
300-lb/ft distributed load is applied. Use E ¼ 29� 106 psi and I ¼ 32 in.4.

7.5 Method of Superposition

We have used the method of superposition to solve problems involving stat-
ically indeterminate bars and shafts. The application of this method to stat-
ically indeterminate beams requires the following steps:

. Determine the degree of static indeterminacy and choose the re-
dundant reactions. This choice is not unique—any support reaction
can be deemed to be redundant provided the remaining reactions can
support the loading.. Release the constraints associated with the redundant reactions so that
the beam becomes statically determinate. Consider the redundant re-
actions as applied loads.. Using superposition, compute the deflections or rotations associated
with the released constraints.. Write the compatibility equations by equating the deflections or rota-
tions found in the previous step to those imposed by the supports on
the original beam.. Solve the compatibility equations for the redundant reactions.

After the redundant reactions have been found, the remaining reac-
tions can be computed from the equilibrium equations, as demonstrated in
the sample problems.

FIG. P7.27 FIG. P7.28 FIG. P7.29

FIG. P7.30
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Sample Problem 7.8

The propped cantilever beam AB in Fig. (a) carries a uniformly distributed load over
its entire length L. Use the method of superposition to determine all the support
reactions. (Note: This beam was analyzed by the method of double integration in
Sample Problem 7.1 on page 252.)

Solution

Compatibility Because there are three support reactions (RA, RB, and MA) but only
two independent equilibrium equations, the beam is statically indeterminate of degree
one. Therefore, any one of the support reactions shown in Fig. (a) can be viewed as
being redundant (you can verify that any two of the reactions can support the load).
Choosing RB as the redundant reaction, we remove the support at B and treat the
reaction RB as an applied force. The result is a cantilever beam loaded as shown in
Fig. (b). The problem is now to find RB for which the deflection of the elastic curve at
B is zero.

From Fig. (c) and Table 6.2, the displacement at B due to the load w0 acting
alone is

d1 ¼
w0L4

8EI
#

and the displacement at B due to RB alone is

d2 ¼
RBL3

3EI
"

The displacement at B of the original beam is obtained by superimposing d1 and d2.
Because the result must be zero, the compatibility equation is

d1 � d2 ¼
w0L4

8EI
� RBL3

3EI
¼ 0

yielding

RB ¼
3w0L

8
Answer

Equilibrium The reactions at A can now be obtained from the equilibrium equa-
tions. The results are (see the solution of Sample Problem 7.1 for details)

RA ¼
5w0L

8
MA ¼

w0L2

8
Answer
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Alternative Solution

As we have mentioned, any one of the reactions can be chosen as being redundant.
As an illustration, let us treat MA as the redundant reaction. We must now release
the rotational constraint at A and treat MA as an applied couple, resulting in the
simply supported beam shown in Fig. (d). The value of MA is determined from the
constraint yA ¼ 0, where yA is the slope of the elastic curve at A.

By superposition, yA ¼ y1 � y2, where y1 and y2 are the slopes caused by the
two loads acting separately, as illustrated in Fig. (e). Using Table 6.3, we obtain

y1 ¼
w0L3

24EI g y2 ¼
MAL

3EI

h

Hence, the compatibility equation is

y1 � y2 ¼
w0L3

24EI
�MAL

3EI
¼ 0

which gives

MA ¼
w0L2

8
Answer

The other reactions could now be computed from the equilibrium equations.

1
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Sample Problem 7.9

The beam in Fig. (a) has built-in supports at both ends and carries a uniformly dis-
tributed load over part of its length. Using the method of superposition, compute all
of the support reactions acting on the beam. (Note: This problem was solved by other
methods in Sample Problems 7.4 and 7.6.)

Solution

Compatibility The beam is statically indeterminate of degree two—there are four
support reactions (RA, RB, MA, and MB) shown in Fig. (a) but only two independent
equilibrium equations. Therefore, two of the reactions are redundant. Choosing RA

and MA as the redundant reactions, we release the deflection and slope constraints at
A and consider RA and MA to be applied loads, resulting in the cantilever beam
shown in Fig. (b). Our task is now to determine RA and MA so that the deflection
and the slope at A are zero.

Figure (c) shows the slopes and deflections at A due to each of the loads. Using
Table 6.2, we have
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EIy1 ¼
w0L3

6
¼ 60ð9Þ3

6
¼ 7290 lb � ft2

EIy2 ¼MAL ¼MAð12Þ ¼ 12MA lb � ft2

EIy3 ¼
RAL2

2
¼ RAð12Þ2

2
¼ 72RA lb � ft2

EId1 ¼
w0a3

24
ð4L� aÞ ¼ 60ð9Þ3

24
½4ð12Þ � 9� ¼ 71 078 lb � ft3

EId2 ¼
MAL2

2
¼MAð12Þ2

2
¼ 72MA lb � ft3

EId3 ¼
RAL3

3
¼ RAð12Þ3

3
¼ 576RA lb � ft3

From Fig. (c), the conditions of zero slope and zero deflection at A become (the
common factor EI cancels out)

y1 þ y2 � y3 ¼ 0 7290þ 12MA � 72RA ¼ 0 (a)

d1 þ d2 � d3 ¼ 0 71 078þ 72MA � 576RA ¼ 0 (b)

Solving Eqs. (a) and (b) for the reactions, we obtain

RA ¼ 189:8 lb MA ¼ 532 lb � ft Answer

Equilibrium From Fig. (a), two independent equilibrium equations are

SFy ¼ 0 þ" RA þ RB � 540 ¼ 0 (c)

SMB ¼ 0 þ

m

MA � RAð12Þ þ 540ð4:5Þ �MB ¼ 0 (d)

Substituting the values of RA and MA into Eqs. (a) and (b) and solving for the re-
actions at B yield

RB ¼ 350 lb MB ¼ 683 lb � ft Answer

1
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Problems

7.31 Solve Sample Problem 7.9 by choosing MA and MB as the redundant reactions.

7.32 Solve Prob. 7.15 by superposition.

7.33 Solve Prob. 7.16 by superposition.

7.34 Solve Prob. 7.18 by superposition.

7.35 Solve Prob. 7.20 by superposition.

7.36 Solve Prob. 7.22 by superposition.

7.37 Solve Prob. 7.23 by superposition.

7.38 Determine the reactions at the supports B and C for the propped cantilever
beam.

7.39 Before the 20-kN �m couple is applied to the beam, there is a gap d0 ¼ 4:25
mm between the beam and the support at B. Determine the support reaction at B

after the couple is applied. The beam is a W200� 22:5 shape with E ¼ 200 GPa.

7.40 When unloaded, the two identical cantilever beams just make contact at B.
Determine the reactive couples acting on the beams at A and C when the uniformly
distributed load is applied to BC.

7.41 The two simply supported timber beams are mounted so that they just make
contact at their midpoints when unloaded. Beam AB is 3 in. wide and 6 in. deep;
beam CD is 2 in. wide and 10 in. deep. Determine the contact force between the
beams when the 3000-lb load is applied at the crossover point.

7.42 When the steel cantilever beams AB and CD are mounted, there is a 4-mm
gap between their free ends A and C. Determine the contact force between A and C

when the 2-N load is applied. Use E ¼ 200 GPa for steel.

7.43 The beam AB has built-in supports at both ends. Find the bending moments
at A and B.

7.44 The beam ABCD has four equally spaced supports. Find all the support
reactions.

12 kip • ft

4 ft 6 ft 6 ft
DCB

A
B

FIG. P7.38

20 22.5

3 m 3 m

FIG. P7.39

6 ft
6 ft

220 lb/ft

FIG. P7.40

3000 lb

8 ft 10 ft

10 ft 8 ft

FIG. P7.41

2 N

4 mm 180 mm
= 5 mm4

= 3 mm4

FIG. P7.42

FIG. P7.43 FIG. P7.44
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7.45 The overhanging beam rests on three supports. Determine the length b of the
overhangs so that the bending moments over all three supports have the same mag-
nitude.

Review Problems

7.46 The beam AB has a sliding support at A that prevents rotation but allows
vertical displacement. The support at B is built in. Determine the reactive couple
acting on the beam at A.

7.47 The tapered beam has a simple support at A and a built-in support at B. The
moment of inertia of the cross sections varies linearly from zero at A to I0 at B. Find
the support reaction at A due to the uniform line load of intensity w0.

7.48 The beam ABC is built into the wall at C and supported by rollers at A and
B. Compute the reactions at A and B when the beam carries the 9.6-kN concentrated
force.

7.49 The cantilever beam AB, with the rectangular cross section shown, is sup-
ported by a 1/8-in.-diameter steel wire at B. Determine the force in the wire knowing
that it was stress-free before the uniformly distributed load was applied. The beam
and the wire are both made of steel with E ¼ 29� 106 psi.

FIG. P7.45

FIG. P7.46
FIG. P7.47

9.6 kN

2.4 m1.6 m4 m
A B C

FIG. P7.48

1.0 in.
2 in.

12 ft

3 ft

24 lb/in.

BA

-in. dia1
8

FIG. P7.49
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7.50 Determine all support reactions for the propped cantilever beam ABC.

7.51 The beam ABC rests on three supports. Find the bending moment over the
support at B.

7.52 The overhanging beam has three supports. Determine all the support re-
actions.

7.53 The end of the cantilever beam BD rests on the simply supported beam ABC.
The two beams have identical cross sections and are made of the same material. Find
the maximum bending moment in each beam when the 1400-lb load is applied.

7.54 When the beam ABC is unloaded, there is a gap of length d0 between the
beam and the support at B. Determine d0 for which all three support reactions are
equal when the uniformly distributed load of intensity w0 is applied.

7.55 The two cantilever beams have the same flexural rigidity EI. When unloaded,
the beams just make contact at B. Find the contact force between the beams at B

when the uniformly distributed load is applied.

7.56 The overhanging beam ABC has a flexural rigidity EI and length L. End C is
attached to a spring of sti¤ness k. Show that the force in the spring due to the applied
couple M0 is

P ¼M0

2L
1þ 12EI

kL3

� ��1

4000

2 ft 4 ft

FIG. P7.50 FIG. P7.51

FIG. P7.52

FIG. P7.53

FIG. P7.54

4 m 2 m

3 kN/m

FIG. P7.55

FIG. P7.56
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Computer Problems

C7.1 The uniform beam AB of length L has built-in ends and carries a distributed
load that varies with x, as shown in Fig. (a). Given L and wðxÞ, write an algorithm
that determines the bending moments at the two ends. Apply the algorithm to the
beams shown in Figs. (b) and (c). (Hint: Use the method of superposition with the
end moments as the redundant reactions.)

C7.2 The uniform propped cantilever beam AB of length L carries the con-
centrated loads P1;P2; . . . ;Pn in addition to the distributed load of constant intensity
w0. The distance of a typical load Pi from the left end is ai. Given L, w0, each Pi, and
ai, construct an algorithm that plots the bending moment diagram of the beam. Run
the algorithm with the following data: L ¼ 8 m, w0 ¼ 5 kN/m, and

i Pi (kN) ai (m)

1 10 2

2 12 4

3 �8 5

4 15 6

(Hint: Use superposition with the reaction at B as the redundant reaction.)

C7.3 The uniform beam of length L rests on five supports. The three middle sup-
ports, denoted by z1 , z2 , and z3 , are located at distances a1, a2, and a3 from the left
end. A uniformly distributed load of intensity w0 acts on the beam. Given L, a1, a2,
a3, and w0, write an algorithm that computes the reactions at the three middle sup-
ports. (a) Run the algorithm with the following data: L ¼ 16 m, a1 ¼ 5 m, a2 ¼ 9 m,
a3 ¼ 12 m, and w0 ¼ 100 kN/m. (b) Determine by trial-and-error the approximate
locations of the middle supports for which their reactions are equal. (Hint: Use the
method of superposition.)

FIG. C7.1
FIG. C7.2

FIG. C7.3
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C7.4 The laminated timber beam AOB of length 2L has built-in ends. It carries a
uniformly distributed load of intensity w0. The cross section of the beam is rec-
tangular with constant width b, but the height h varies as

h ¼ h1 þ ðh2 � h1Þ
x

L

� �2

Given L, b, h1, and h2, write an algorithm to plot the maximum bending stress acting
on a cross section as a function of x from x ¼ 0 to L. Run the algorithm with the
following data: L ¼ 18 ft, w0 ¼ 360 lb/ft, b ¼ 8 in., and (a) h1 ¼ 15 in., h2 ¼ 36 in.;
and (b) h1 ¼ h2 ¼ 22 in. (These two beams have the same volume.) (Hint: First find
the moment at O using the moment-area method and utilizing symmetry.)

C7.5 The uniform beam ABC of length L carries a linearly distributed load of
maximum intensity w0. The distance between A and the simple support at B is a.
Given L, w0, and a, write an algorithm to plot the bending moment of the beam.
(a) Run the algorithm with the following data: L ¼ 4 m, w0 ¼ 6 kN/m, and a ¼ 2 m.
(b) By trial-and error, find the approximate value of a that minimizes the maximum
bending moment in the beam. (Hint: Use the method of superposition.)

C7.6 The loads P1 and P2, a fixed distance b apart, travel across the uniform beam
ABC of length L. Given P1, P2, b, and L, construct an algorithm that plots the re-
action at B versus the distance x from x ¼ �b (when P2 enters the span) to x ¼ L

(when P1 leaves the span). Run the algorithm with the following data: L ¼ 80 ft,
P1 ¼ 40 kips, P2 ¼ 60 kips, and (a) b ¼ 20 ft; and (b) b ¼ 40 ft. (Hint: Use the
method of superposition.)

FIG. C7.4

FIG. C7.5

FIG. C7.6
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8
Stresses Due to Combined Loads

8.1 Introduction

In preceding chapters, we studied stress analysis of various structural mem-
bers carrying fundamental loads: bars with axial loading, torsion of circular
and thin-walled shafts, and bending of beams. This chapter begins by con-
sidering two additional topics. The first deals with stresses in thin-walled
pressure vessels (Sec. 8.2), which introduces us to biaxial loading. The sec-
ond topic is combined axial and lateral loading of bars (Sec. 8.3), which is a
straightforward application of superimposing stresses caused by an axial
force and a bending moment.

Cylindrical gas storage tank. The pressure

of gas inside the tank causes biaxial

tension in the wall of the vessel. Analysis

of cylindrical and spherical pressure vessels

is one of the topics discussed in this

chapter. Courtesy of Thor Jorgen

Udvang/Shutterstock.
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To design a load-carrying member, we must be able to compute the
stress components not only at any point in the member but also on any plane

passing through a point. Being able to determine the stresses acting on an
arbitrary plane at a given point is referred to as knowing the state of stress at
a point. Our discussion of the state of stress at a point begins in Sec. 8.4 and
continues for the next three sections. Section 8.8 brings together all of the
knowledge you have acquired about stress analysis—we analyze the state of
stress at various points in members that carry di¤erent combinations of the
fundamental loads.

This chapter concludes with the study of the state of strain at a point.
Strain is important in experimental studies because it can be measured,
whereas direct determination of stress is not possible. However, as you will
see, the state of stress at a point can be calculated from the state of strain
and the mechanical properties of the material.

8.2 Thin-Walled Pressure Vessels

A pressure vessel is a pressurized container, often cylindrical or spherical.
The pressure acting on the inner surface is resisted by tensile stresses in the
walls of the vessel. If the wall thickness t is su‰ciently small compared to the
radius r of the vessel, these stresses are almost uniform throughout the wall
thickness. It can be shown that if r=t b 10, the stresses between the inner and
outer surfaces of the wall vary by less than 5%. In this section we consider
only vessels for which this inequality applies.

a. Cylindrical vessels

Consider the cylindrical tank of inner radius r and wall thickness t shown in
Fig. 8.1(a). The tank contains a fluid (or gas) under pressure p. In this sim-
plified analysis, we assume that the weights of the fluid and the vessel can be
neglected compared to the other forces that act on the vessel. The tensile
stresses in the wall that resist the internal pressure are the longitudinal stress

sl and the circumferential stress sc (also known as the hoop stress), as shown
in Fig. 8.1(a).

The circumferential stress can be obtained from the free-body diagram
in Fig. 8.1(b). This free body is obtained by taking the slice of infinitesimal
length dx shown in Fig. 8.1(a) and cutting it in half along a diametral plane.

FIG. 8.1 (a) Cylindrical pressure vessel; (b) free-body diagram for computing the
circumferential stress sc; (c) free-body diagram for computing the longitudinal stress sl .

278 CHAPTER 8 Stresses Due to Combined Loads

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The fluid isolated by the cuts is considered to be part of the free-body dia-
gram. The resultant force due to the pressure acting on the diametral plane
is pð2r dxÞ, where 2r dx is the area of the plane. If we assume the circum-
ferential stress sc in the wall of the cylinder is constant throughout the
thickness, then its resultant force is 2ðsct dxÞ. Neglecting the weight of the
fluid and the vessel, we find that the equilibrium of vertical forces becomes

SF ¼ 0 þ" 2ðsct dxÞ � pð2r dxÞ ¼ 0

which yields for the circumferential stress

sc ¼
pr

t
(8.1)

To obtain the longitudinal stress sl, we cut the cylinder into two parts
along a cross-sectional plane. Isolating the cylinder and the fluid to the left
of the cut gives the free-body diagram in Fig. 8.1(c). For thin-walled cylin-
ders, the cross-sectional area of the wall can be approximated by (mean cir-
cumference) � (thickness) ¼ ð2prÞt, where r ¼ rþ t=2 is the mean radius of
the vessel. Therefore, the resultant of the longitudinal stress is slð2prtÞ. The
resultant of the pressure acting on the cross section is pðpr2Þ. From the equi-
librium of axial forces, we get

SF ¼ 0 þ& slð2prtÞ � pðpr2Þ ¼ 0

Therefore, the longitudinal stress is sl ¼ pr2=ð2rtÞ. For thin-walled vessels,
we can use the approximation rAr, which results in

sl ¼
pr

2t
(8.2)

Comparing Eqs. (8.1) and (8.2), we see that the circumferential stress is
twice as large as the longitudinal stress. It follows that if the pressure in a
cylinder is raised to the bursting point, the vessel will split along a longi-
tudinal line. When a cylindrical tank is manufactured from curved sheets
that are riveted together, as in Fig. 8.2, the strength of longitudinal joints
should be twice the strength of girth joints.

FIG. 8.2 Cylindrical pressure vessel made of curved sheets.
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b. Spherical vessels

Using an analysis similar to that used for cylinders, we can derive the
expression for the tensile stress s in the wall of the thin-walled, spherical
pressure vessel in Fig. 8.3(a). Because of symmetry, di¤erent directions on
the surface of the sphere are indistinguishable. Therefore, the stress is con-
stant throughout the vessel. As shown in Fig. 8.3(b), we use half of the vessel
as the free-body diagram. The fluid is included in the free-body diagram, but
its weight is neglected together with the weight of the vessel. The resultant
force due to the pressure acting on the circular surface of the fluid is pðpr2Þ,
where r is the inner radius of the vessel. We use again the approximation
2prt for the cross-sectional area of the wall, where r denotes the mean radius
of the vessel and t is the wall thickness. Therefore, the resultant force due to
s is sð2prtÞ. The equilibrium equation

SF ¼ 0 þ" sð2prtÞ ¼ pðpr2Þ

yields s ¼ pr2=ð2rtÞ. If we again neglect the small di¤erence between r and r,
the stress becomes

s ¼ pr

2t
(8.3)

Note on the Choice of Radius in Eqs. (8.1)–(8.3) As pointed out
before, the di¤erence between the inner radius r and the mean radius r of a
thin-walled vessel (r=t b 10) is insignificant, so that either radius may be sub-
stituted for r in Eqs. (8.1)–(8.3). The stresses computed using r rather than r

would be di¤erent, of course, but the discrepancy is at most a few percent.1

FIG. 8.3 (a) Spherical pressure vessel; (b) free-body diagram for computing the
stress s.

1Some engineers prefer to use the inner radius because it yields stresses that are marginally

closer to the exact theoretical values.
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Sample Problem 8.1

A cylindrical steel pressure vessel has hemispherical end-caps. The inner radius of the
vessel is 24 in. and the wall thickness is constant at 0.25 in. When the vessel is pres-
surized to 125 psi, determine the stresses and the change in the radius of (1) the cyl-
inder; and (2) the end-caps. Use E ¼ 29� 106 psi and n ¼ 0:28 for steel.

Solution

Part 1

The circumferential and longitudinal stresses in the cylinder are

sc ¼
pr

t
¼ ð125Þð24Þ

0:25
¼ 12 000 psi Answer

sl ¼
sc

2
¼ 6000 psi Answer

The circumferential strain is obtained from biaxial Hooke’s law—see Eq. (2.10):

ec ¼
1

E
ðsc � nslÞ ¼

12 000� 0:28ð6000Þ
29� 106

¼ 355:9� 10�6

Because the radius is proportional to the circumference, ec is also the strain of the
radius (change of radius per unit length); that is, ec ¼ Dr=r. Therefore, the change in
the radius of the cylinder is

Dr ¼ ecr ¼ ð355:9� 10�6Þð24Þ ¼ 8:45� 10�3 in: Answer

Part 2

The stress in the spherical end-caps is

s ¼ pr

2t
¼ ð125Þð24Þ

2ð0:25Þ ¼ 6000 psi Answer

Because s acts biaxially, the strain must again be computed from biaxial Hooke’s
law, which yields

e ¼ 1

E
ðs� nsÞ ¼ ð1� nÞs

E
¼ ð1� 0:28Þð6000Þ

29� 106
¼ 148:97� 10�6

Therefore, the change in the radius of an end-cap is

Dr ¼ er ¼ ð148:97� 10�6Þð24Þ ¼ 3:58� 10�3 in: Answer

Note on Incompatibility at the Joints

According to our analysis, the radii of the cylinder and the end-caps change by dif-
ferent amounts. Because this discrepancy is a violation of compatibility (displace-
ments and slopes of the walls must be continuous), we conclude that our solution is
not valid near the joints between the cylinder and the end-caps. Continuity of dis-
placements and slopes requires the presence of bending stresses in the vicinity of the
joints. The analysis of these bending stresses, which are localized in the sense that
they decay rapidly with distance from the joints (Saint Venant’s principle), is beyond
the scope of this text. It can be shown that in this vessel the bending stresses become
insignificant approximately 5 in. from each joint.
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Problems

8.1 A spherical shell with 70-in. outer diameter and 67-in. inner diameter contains
helium at a pressure of 1200 psi. Compute the stress in the shell.

8.2 A spherical pressure vessel has a 1.5-ft inner radius and 3/16-in. wall thickness.
If the working tensile stress of the material is 6000 psi, determine the maximum
allowable internal pressure.

8.3 The cylindrical portion of the propane tank has an outer diameter of 12 in. and
a wall thickness of 0.125 in. Calculate the longitudinal and circumferential stresses in
the wall of the cylinder when the tank is pressurized to 200 psi.

8.4 To determine the strength of the riveted joints in a cylindrical vessel, tensile tests
were performed on the 6-in.-wide specimens, as shown in the figure. The tensile force P

at failure was found to be 32 kips for the longitudinal joint specimen and 16 kips for
the circumferential joint specimen. Determine the largest allowable inner diameter of
the cylinder that can support a pressure of 150 psi with a factor of safety of 2.0.

8.5 The cylindrical tank with a spherical end-cap has an outer radius of 2 m and a
wall thickness of 25 mm. If the tank is pressurized to 1.5 MPa, determine the longi-
tudinal and circumferential stresses in the cylinder, and the stress in the end-cap.

8.6 A spherical weather balloon is made of 0.2-mm-thick fabric that has a tensile
strength of 10 MPa. The balloon is designed to reach an altitude where the interior
pressure is 1500 Pa above the atmospheric pressure. Find the largest allowable
diameter of the balloon, using 1.2 as the factor of safety.

8.7 The scuba tank has a cylindrical body and a spherical end-cap, each of 7.5 in.
outer diameter. The wall thickness of the tank is 0.5 in. The tank is made of an alu-
minum alloy which has an ultimate tensile strength of 56 ksi. Determine the factor of
safety against bursting when the tank is pressurized to 3000 psi.

8.8 The spherical gas tank is made of steel (E ¼ 29� 106 psi; v ¼ 0:3). The inner
radius of the tank is 20 ft and its wall thickness is 1.0 in. (a) If the working stress of
the steel is 9000 psi, determine the maximum safe pressure for the tank. (b) Compute
the corresponding change in the volume of the tank.

8.9 A cylindrical steel pressure vessel has a 400-mm inner radius and 8-mm-thick
walls. Find the change in the inner radius when the vessel is pressurized to 1.2 MPa.
Use E ¼ 200 GPa and n ¼ 0:3 for steel.

12 in.

FIG. P8.3

FIG. P8.4

45°

2 m

FIG. P8.5 7.5 in.

FIG. P8.7 FIG. P8.8

282 CHAPTER 8 Stresses Due to Combined Loads

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.10 The pipe carrying steam at 3.5 MPa has an outer diameter of 450 mm and a
wall thickness of 10 mm. A gasket is inserted between the flange at one end of the
pipe, and a flat plate is used to cap the end. (a) How many 40-mm-diameter bolts
must be used to hold the cap on if the allowable stress in the bolts is 80 MPa, of
which 55 MPa is the initial stress? (b) What circumferential stress is developed in the
pipe?

8.11 The ends of the 3-in. inner diameter bronze tube are attached to rigid walls.
Determine the longitudinal and circumferential stresses when the tube is pressurized
to 400 psi. Use E ¼ 12� 106 psi and n ¼ 1=3 for bronze. Neglect localized bending
at the ends of the tube.

8.12 The cylindrical pressure vessel with hemispherical end-caps is made of steel.
The vessel has a uniform thickness of 18 mm and an outer diameter of 400 mm. When
the vessel is pressurized to 3.6 MPa, determine the change in the overall length of the
vessel. Use E ¼ 200 GPa and n ¼ 0:3 for steel. Neglect localized bending.

8.13 The thin-walled pressure vessel has an elliptical cross section with the
dimensions shown in the figure. Assuming that a > b and that the wall thickness t is
constant, derive the expressions for the maximum and minimum circumferential
stresses in the vessel caused by an internal pressure p.

FIG. P8.10

FIG. P8.11

FIG. P8.12

FIG. P8.13
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8.3 Combined Axial and Lateral Loads

Figure 8.4(a) shows a bar of rectangular cross section that carries lateral
loading and an axial force P acting at the centroid of the cross section. If
P were acting alone, it would cause the uniformly distributed axial stress
sa ¼ P=A on the typical cross section m-n of the bar, as shown in Fig. 8.4(b).
The bending stress that results from the lateral loading acting by itself would
be sb ¼ �My=I , where M is the bending moment acting at section m-n.
This stress is shown in Fig. 8.4(c). When the axial and lateral loads act
simultaneously, the stress s at any point on section m-n is obtained by
superimposing the two separate e¤ects:

s ¼ sa þ sb ¼
P

A
�My

I
(8.4)

which results in the stress distribution shown in Fig. 8.4(d).
The maximum tensile and compressive stresses on a cross section

depend, of course, upon the relative magnitudes of the two terms in Eq.
(8.4). When drawing the stress distribution in Fig. 8.4(d), we assumed that
P=A < jMjc=I . There is a line on the cross section where the stress is zero,
but this line does not pass through the centroid of the cross section. If
P=A > jMjc=I , the entire cross section would be in tension, as shown in Fig.
8.4(e) (if P were a compressive force, then the entire cross section would be
in compression). If the cross section were not symmetric about the neutral
axis, the distances to the top and bottom fibers would, of course, have to be
considered when sketching stress distributions such as those in Figs. 8.4(c)
and (d).

The superposition implied in Eq. (8.4) is valid only when the deforma-
tion of the bar is su‰ciently small so that displacements can be neglected

FIG. 8.4 (a) Rectangular bar carrying axial and lateral loads; (b)–(d) stress
distribution obtained by superimposing stresses due to axial load and bending;
(e) stress distribution if P=A > jMjc=I .

284 CHAPTER 8 Stresses Due to Combined Loads

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



in the computation of M. Referring to Fig. 8.5, we see that if displacement is
not neglected, P contributes to the bending moment at section m-n by the
amount �Pd, where d is the lateral displacement of the bar at that section.
Consequently, we have

s ¼ P

A
� ðM � PdÞy

I

where, as before, M is to be interpreted as the bending moment due to lat-
eral loading acting alone. We now see that Eq. (8.4) is valid only if Pd is
small compared to M. Note that if P is tensile (positive), its moment reduces
the bending stress. The opposite e¤ect occurs when P is compressive
(negative), when its moment increases the bending stress. These e¤ects are
negligible for most structural members, which are usually so sti¤ that the
additional bending stresses caused by P can be ignored. However, in slender
compression members (columns), the e¤ects can be very significant, requir-
ing more exact methods of analysis.

Before Eq. (8.4) can be applied, equilibrium analysis must be used to
determine the axial load P and the bending moment M at the cross section
of interest. When the normal stresses at a particular cross section are needed,
a free-body diagram exposing the force system at that section will su‰ce.
However, if the maximum normal stress is to be found, axial force and
bending moment diagrams will usually be required to locate the critical
section.

FIG. 8.5 When beam deflections are large, the contribution of the axial load to
the bending moment cannot be neglected.
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Sample Problem 8.2

To reduce interference, a link in a machine is designed so that its cross-sectional area
in the center section is reduced by one-half, as shown in Fig. (a). The thickness of the
link is 50 mm. Given that P ¼ 40 kN, (1) determine the maximum and minimum
values of the normal stress acting on section m-n; and (2) sketch the stress dis-
tribution on section m-n.

Solution

Part 1

The free-body diagram in Fig. (b) shows that the internal force system at section m-n
can be represented as the normal force P acting at the centroid of the section and the
bending moment M ¼ Pc. Therefore, the extremum values of the normal stress are

smax

smin

�
¼ P

A
G

Mc

I
¼ P

A
G

Pc2

I

Substituting P ¼ 40 kN and

A ¼ bh ¼ 50ð40Þ ¼ 2000 mm2 ¼ 2:0� 10�3 m2

I ¼ bh3

12
¼ 50ð40Þ3

12
¼ 266:7� 103 mm4 ¼ 266:7� 10�9 m4

c ¼ h

2
¼ 40

2
¼ 20 mm ¼ 0:020 m

gives

P

A
¼ 40� 103

2:0� 10�3
¼ 20� 106 Pa ¼ 20 MPa

Pc2

I
¼ ð40� 103Þð0:020Þ2

266:7� 10�9
¼ 60� 106 Pa ¼ 60 MPa

Therefore, the maximum and minimum normal stresses acting on section m-n are

smax ¼ 20þ 60 ¼ 80 MPa Answer

smin ¼ 20� 60 ¼ �40 MPa Answer

where the positive value indicates tension and the negative value indicates com-
pression.
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Part 2

The stress distribution on section m-n is shown in Fig. (c). The 20-MPa tensile stress
due to P is uniformly distributed over the entire cross section. The bending moment
M causes a linear stress distribution that reaches a magnitude of 60 MPa in the
extreme fibers (compression at the top and tension at the bottom). Superimposing the
stresses due to P and M results in stress that varies linearly between smax ¼ 80 MPa
(at the bottom) and smin ¼ �40 MPa (at the top). The distance between the line
of zero stress and the top of the section can be located from similar triangles:
d=40 ¼ ð40� dÞ=80, which yields d ¼ 13:33 mm.

1
Sample Problem 8.3

The wood beam ABCD in Fig. (a) carries two vertical loads. The beam is supported
by a pin at A and the horizontal cable CE. Determine the magnitude of the largest
stress (tensile or compressive) in the beam and its location. Neglect the weight of the
beam.

Solution

Preliminary Calculations The cross-sectional dimensions of the beam are b ¼ 6 in.
and h ¼ 10 in., which yield the following cross-sectional properties:

A ¼ bh ¼ 6ð10Þ ¼ 60 in:2

I ¼ bh3

12
¼ 6ð10Þ3

12
¼ 500 in:4
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Equilibrium Analysis The free-body diagram of the beam is shown in Fig. (b). From
the equilibrium equation

SMA ¼ 0 þ

m

6T � 6000ð4Þ � 3000ð12Þ ¼ 0

we obtain T ¼ 10 000 lb for the tension in the cable. The reactions at A can now be
computed from SF ¼ 0, which yields Ah ¼ 10 000 lb and Av ¼ 9000 lb.

To determine the axial force and bending moment at any location in the beam,
it is convenient resolve the forces in Fig. (b) in directions that are parallel and per-
pendicular to the beam. The results are shown in Fig. (c). The equilibrium analysis of
the beam is now completed by constructing the axial force and bending moment
diagrams in Figs. (d) and (e), respectively.
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Computation of the Largest Stress Because the axial force is negative (compressive)
everywhere in the beam, the maximum compressive stress in the beam has a larger
magnitude than the maximum tensile stress. Inspection of the axial force and bend-
ing moment diagrams leads us to conclude that the largest compressive stress occurs
either on the cross section immediately below point B or on the cross section imme-
diately below point C. Which stress is larger can be determined by computing the
stresses at both sections.

At the section immediately below B, we have P ¼ �13 400 lb and M ¼ þ6000
lb � ft. The maximum compressive stress sB occurs at the top of the section, where the
compressive stress caused by P adds to the maximum compressive stress caused by
the positive bending moment. If we use y ¼ h=2 ¼ 5 in. in Eq. (8.4), this stress is

sB ¼
P

A
�My

I
¼ � 13 400

60
� ð6000� 12Þð5Þ

500
¼ �943 psi

The axial force and the bending moment that act at the section immediately below C

are P ¼ �9800 lb and M ¼ �12 000 lb � ft. For this case, the maximum compressive
stress sC occurs at the bottom of the section, where the compressive stress caused by
P adds to the maximum compressive stress caused by the negative bending moment.
Using y ¼ �h=2 ¼ �5 in. in Eq. (8.4) yields

sC ¼
P

A
�My

I
¼ � 9800

60
� ð�12 000� 12Þð�5Þ

500
¼ �1603 psi

Comparing the two values, we see that the largest stress in the beam has the magni-
tude

jsjmax ¼ 1603 psi Answer

and it acts at the bottom of the section just below C.

1
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Problems

8.14 The cross section of the machine part is a square, 5 mm on a side. If the
maximum stress at section m-n is limited to 150 MPa, determine the largest allowable
value of the eccentricity e.

8.15 The force P acting on the concrete column has an eccentricity e. Because
concrete is weak in tension, it is desirable to have all parts of the column in com-
pression. Determine the largest value of e for which there is no tensile stress any-
where in the column. (The area that is the locus of points through which P can act
without causing tensile stress is called the kern of the cross section.)

8.16 Find the largest clamping force that can be applied by the cast iron C-clamp
if the allowable normal stresses on section m-n are 15 MPa in tension and 30 MPa in
compression.

8.17 The frame of the bow saw is a bent tube of 3/4-in. outer diameter and
1/16-in. wall thickness. If the sawblade is pre-tensioned to 20 lb, determine the nor-
mal stresses at points A and B.

m

n

e
250 N250 N

FIG. P8.14 FIG. P8.15

FIG. P8.16 FIG. P8.17
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8.18 Calculate the normal stresses at points A and B of the bracket caused by the
30-kN force.

8.19 The circular tube with the cross section shown is subjected to the axial force
P and bending moment M, both directed as shown. Using the readings from the
strain gages at a and b, the corresponding stresses at these locations are calculated to
be sa ¼ 2800 psi and sb ¼ �15100 psi. Compute P and M.

8.20 The steel column is fabricated by welding a 9-in. by 1/2-in. plate to a
W12� 50 section. The axial load P acts at the centroid C of the W-section. If the
normal working stress is 18 ksi, find the maximum allowable value of P. If the plate
were removed, would the allowable P be larger or smaller?

FIG. P8.20

8.21 Determine the largest value of the force P that can be applied to the wood
beam without exceeding the allowable normal stress of 10 MPa.

8.22 The structural member is fabricated by welding two W130� 28:1 sections
together at an angle. Determine the maximum and minimum normal stresses acting
on section m-n.

FIG. P8.18

M

a

b
P

M
P

2 in.

1.75 in.

FIG. P8.19

FIG. P8.21 FIG. P8.22
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8.23 Determine the largest force P that can be exerted at the jaws of the punch
without exceeding a stress of 16 ksi on section m-n of the frame.

8.24 The force P ¼ 100 kN is applied to the bracket as shown in the figure.
Compute the normal stresses developed at points A and B.

FIG. P8.24, P8.25

8.25 Determine the largest force P, directed as shown in the figure, that can be
applied to the bracket if the allowable normal stresses on section A-B are 8 MPa in
tension and 12 MPa in compression.

8.26 Determine the maximum compressive stress in the beam which is subjected to
the 40-kN/m uniformly distributed load over its entire length. Note that the beam is
supported by a pin at A and an inclined roller support at B.

8.27 Member BD of the pin-connected frame has a rectangular cross section
100 mm wide by 400 mm deep. Determine the maximum normal stress in this member.

8.28 The rectangular beam ABC, 100 mm wide by 400 mm deep, is supported by
a pin at A and the cable CD. Determine the largest vertical force P that can be
applied at B if the normal stress in the beam is limited to 120 MPa.

FIG. P8.28

8.29 Find the maximum compressive normal stress in the inclined beam ABC.

FIG. P8.23

2 m

A B
60°

40 kN/m

W200 × 41.7

FIG. P8.26 FIG. P8.27

FIG. P8.29
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8.4 State of Stress at a Point

(Plane Stress)

In this section, we formalize the concept of stress at a point, which requires
the introduction of a sign convention and a subscript notation for stress
components.

a. Reference planes

In Sec. 1.3, we saw that the stresses acting at a point in a body depend on the
orientation of the reference plane. As a review of that discussion, consider the
body in Fig. 8.6(a) that is acted upon by a system of coplanar forces in equili-
brium. Assume that we first introduce the reference plane a-a and compute the
stresses s and t acting on that plane at point O, as illustrated in Fig. 8.6(b).
We then pass the reference plane b-b through O and repeat the computations,
obtaining the stresses s 0 and t 0 shown in Fig. 8.6(c). In general, the two sets of
stresses would not be equal, although they are computed at the same point,
because the resultant forces acting on the two planes are not equal.

It is usually not practical to directly compute stresses acting on arbitrarily
chosen planes because the available formulas give stresses on certain reference
planes only. For example, the flexure formula s ¼ �My=I is restricted to the
normal stress on the cross-sectional plane of the beam. Similarly, the shear
stress formulas, t ¼ VQ=ðIbÞ for beams and t ¼ Tr=J for shafts, apply to only
cross-sectional and longitudinal (complementary) planes. Therefore, if a bar is
subjected to simultaneous bending and twisting, as in Fig. 8.7, we can readily

FIG. 8.6 (a) Body in coplanar equilibrium; (b) stresses acting on plane a-a at
point O; (c) stresses acting on plane b-b at point O.

FIG. 8.7 Stresses acting in a bar caused by bending and twisting. The reference
planes (faces of the element) are the cross-sectional and longitudinal planes.
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calculate the stresses on the sides of the element shown because the sides
coincide with the reference planes used in the formulas.

The stresses s and t shown in Fig. 8.7 are not the maximum normal
and maximum shear stress that act at the location of the element. As we
shall see, the maximum values of these stresses occur on planes that are
inclined to the sides of the element. Because maximum stresses are
important in design, we must examine how the stress components at a point
vary with the orientation of the reference planes, which is the subject of the
next section.

b. State of stress at a point

A basic concept of stress analysis is the state of stress at a point:

The state of stress at a point is defined by the stress components acting

on the sides of a di¤erential volume element that encloses the point.

Knowing the state of stress at a point enables us to calculate the stress
components that act on any plane passing through that point. This, in turn,
enables us to find the maximum stresses in a body. Therefore, a crucial step
in evaluating the strength of a potential design is to compute the states of
stress at the critical points.

c. Sign convention and subscript notation

We next introduce a sign convention and a subscript notation for stresses.
Although we consider only plane (biaxial) stress here, this discussion also
applies to triaxial stress.

Consider the di¤erential element in Fig. 8.8, where the faces of the
element coincide with the coordinate planes. A face takes its name from the
coordinate axis that is normal to it. For example, the x-face of the element is
perpendicular to the x-axis. A face is also considered to be positive or neg-
ative, depending on the direction of its outward normal (directed away from
the element). If the outward normal points in the positive coordinate direc-
tion, the face is positive. Conversely, if the outward normal points in the
negative coordinate direction, the face is negative. The sign convention for
stresses is as follows:

. Positive stresses act in positive coordinate directions on positive faces
of the element, as shown in Fig. 8.8.

The stresses acting on the negative faces are, of course, equal and
opposite to their counterparts on the positive faces. Note that this sign con-
vention considers a tensile normal stress as positive and a compressive stress
as negative. Here are the rules for the subscripts on the stresses:

. The single subscript on the normal stress indicates the face on which it
acts.. The first subscript on the shear stress indicates the face on which it
acts; the second subscript shows the direction of the stress.

Thus, sx denotes the normal stress acting on an x-face; txy is the shear
stress on the x-face acting in the y-direction; and so on. Because the magni-
tudes of the shear stresses on complementary planes are equal (this was
proven in Sec. 5.4), we have txy ¼ tyx.

FIG. 8.8 Biaxial (plane) state of
stress. Stress components are shown
acting in their positive directions.
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In a triaxial state of stress, each face of an element is generally subject
to three stress components—a normal stress and two shear stress compo-
nents, as shown in Fig. 8.9. The stress components acting on the x-face, for
example, are the normal stress sx and the shear stresses txy and txz. These
shear stresses are accompanied by the numerically equal shear stresses acting
on complementary planes (tyx on the y-face and tzx on the z-face).

8.5 Transformation of Plane Stress

As discussed in the previous section, the state of stress at a point is repre-
sented by the stresses that act on the mutually perpendicular faces of a vol-
ume element enclosing the point. Because the stresses at a point depend on
the inclinations of the planes on which they act, the stresses on the faces of
the element vary as the orientation of the element is changed. The mathe-
matical relationships that describe this variation are called the trans-

formation equations for stress. In this article, we derive the transformation
equations for plane stress and then use them to find the maximum and min-
imum stresses at a point.

a. Transformation equations

Figure 8.10(a) shows the state of plane stress at a point, where the reference
planes (faces of the element) are perpendicular to the x- and y-axes. Figure
8.10(b) represents the state of stress at the same point, but now the faces of
the element are perpendicular to the x0- and y0-axes, where the orientation of
the two sets of axes di¤ers by the angle y. Note that positive y is measured in
a counterclockwise direction from the x-axis to the x0-axis. The stress com-
ponents in both figures are drawn in their positive directions in accordance
with the established sign convention. We also use the equality of shear stresses
on complementary planes (tyx ¼ txy and tx 0y 0 ¼ ty 0x 0 ) in labeling the figures.
The stress states in Figs. 8.10(a) and (b) are said to be equivalent because
they represent the same state of stress referred to two di¤erent sets of coor-
dinate axes.

Let us now cut the element in Fig. 8.10(a) into two parts along the
plane a-a and isolate the left portion as shown in Fig. 8.10(c). The inclined
plane a-a coincides with the x0-face of the element in Fig. 8.10(b), so that the
stresses acting on that plane are sx 0 and tx 0y 0 . We can now apply equilibrium
equations to the wedge-shaped element and derive sx 0 and tx 0y 0 in terms of y

and the stresses acting on the x- and y-faces. Letting dA be the area of the
inclined face, we find that the areas of the x- and y-faces are dA cos y and
dA sin y, as shown in Fig. 8.10(c). By multiplying the stresses by the areas
on which they act, we obtain the forces shown on the free-body diagram of
the wedge in Fig. 8.10(d). The equilibrium equations are

SFx ¼ 0 sx 0 dA cos y� tx 0y 0 dA sin y� sx dA cos y� txy dA sin y ¼ 0

SFy ¼ 0 sx 0 dA sin yþ tx 0y 0 dA cos y� sy dA sin y� txy dA cos y ¼ 0

Solving for the stresses on the inclined plane, we get

sx 0 ¼ sx cos2 yþ sy sin2 yþ 2txy sin y cos y (a)

tx 0y 0 ¼ �ðsx � syÞ sin y cos yþ txyðcos2 y� sin2 yÞ (b)

FIG. 8.9 Triaxial state of stress.
Stress components are shown acting
in their positive directions.
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The normal stress acting on the y0-face of the element in Fig. 8.10(b) can be
obtained by replacing y with yþ 90� in Eq. (a). Noting that cosðyþ 90�Þ ¼
�sin y and sinðyþ 90�Þ ¼ cos y, we get

sy 0 ¼ sx sin2 yþ sy cos2 y� 2txy sin y cos y (c)

Equations (a)–(c) are the stress transformation equations. Another form of
these equations is obtained by substituting the trigonometric relationships

cos2 y ¼ 1þ cos 2y

2
sin2 y ¼ 1� cos 2y

2
sin y cos y ¼ 1

2
sin 2y

into Eqs. (a)–(c), which yields the more commonly used form of the stress
transformation equations:

sx 0 ¼
sx þ sy

2
þ sx � sy

2
cos 2yþ txy sin 2y (8.5a)

sy 0 ¼
sx þ sy

2
� sx � sy

2
cos 2y� txy sin 2y (8.5b)

tx 0y 0 ¼ �
sx � sy

2
sin 2yþ txy cos 2y (8.5c)

The stress transformation equations (Eqs. (a)–(c) or equivalently
Eqs. (8.5)) show that if the state of stress (sx, sy, and txy) at a point is
known, we can calculate the stresses that act on any plane passing through
that point. It follows that if the original state of stress in Fig. 8.10(a) is
known, then the stress transformation equations enable us to obtain the
equivalent state of stress in Fig. 8.10(b).

Inspection of Eqs. (8.5a) and (8.5b) reveals that

sx 0 þ sy 0 ¼ sx þ sy (8.6)

In other words, the sum of the normal stresses is an invariant; that is, it does
not depend on the orientation of the element.

b. Principal stresses and principal planes

The maximum and minimum normal stresses at a point are called the prin-

cipal stresses at that point. The planes on which the principal stresses act are
referred to as the principal planes. The directions that are perpendicular
to the principal planes are called the principal directions. The values of the
angle y that define the principal directions are found from the condition
dsx 0=dy ¼ 0. If we use the expression for sx 0 from Eq. (8.5a), this condition
becomes

dsx 0

dy
¼ �ðsx � syÞ sin 2yþ 2txy cos 2y ¼ 0

FIG. 8.10 Transforming the state
of stress from the xy-coordinate
planes to the x 0y 0-coordinate planes.
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which yields

tan 2y ¼ 2txy

sx � sy

(8.7)

Equation (8.7) yields two solutions for 2y that di¤er by 180�. If we denote
one solution by 2y1, the second solution is 2y2 ¼ 2y1 þ 180�. Hence, the two

principal directions di¤er by 90�.
The sines and cosines of 2y1 and 2y2 can be obtained from the right

triangle in Fig. 8.11:

sin 2y1

sin 2y2

�
¼G

txy

R
(8.8a)

cos 2y1

cos 2y2

�
¼G

sx � sy

2R
(8.8b)

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
(8.9)

Substituting Eqs. (8.8) and (8.9) into Eq. (8.5a) and simplifying, we obtain
for the principal stresses s1 ¼ ½ðsx þ syÞ=2� þ R and s2 ¼ ½ðsx þ syÞ=2� � R,
or

s1

s2

�
¼ sx þ sy

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
(8.10)

where s1 and s2 act on the planes defined by y1 and y2, respectively. Note
that Eq. (8.10) defines s1 to be the larger of the principal stresses; that is,
s1 b s2.

The shear stresses acting on the principal planes are obtained by sub-
stituting Eqs. (8.8) into Eq. (8.5c). The result is

t12

t21

�
¼ � sx � sy

2

�
G

txy

R

�
þ txy

�
G

sx � sy

2R

�
¼ 0

which shows that there are no shear stresses on the principal planes.
Figure 8.12(a) shows an original state of stress relative to an arbitrary

xy-coordinate system. The equivalent state of stress referred to the principal
directions is shown in Fig. 8.12(b). Note that the two principal planes di¤er
by 90� and are free of shear stress. We mention, once again, that Figs. 8.12(a)
and (b) display two di¤erent representations of the same state of stress. By
transforming the original state of stress to the principal directions, we obtain
a representation that is more meaningful in design. When illustrating a state
of stress, be sure to show a complete sketch of the element; that is, include
the stresses that act on each of the faces, and indicate the angle that the ele-
ment makes with a reference axis.

FIG. 8.11 Geometric method for
determining the angles y1 and y2 that
define the principal directions.

8.5 Transformation of Plane Stress 297

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



c. Maximum in-plane shear stress

The largest magnitude of tx 0y 0 at a point, denoted by tmax, is called the
maximum in-plane shear stress. The values of y that define the planes of
maximum in-plane shear are found from the equation dtx 0y 0=dy ¼ 0, where
tx 0y 0 is given in Eq. (8.5c). Setting the derivative equal to zero and solving for
the angle y give

tan 2y ¼ � sx � sy

2txy

(8.11)

Equation (8.11) has two solutions for 2y that di¤er by 180�. Hence, there are
two values of y that di¤er by 90�. We also note that Eq. (8.11) is the
negative reciprocal of Eq. (8.7), meaning that the angles 2y defined by these
two equations di¤er by 90�. We thus conclude that the planes of maximum

in-plane shear stress are inclined at 45� to the principal planes.
Using a triangle similar to that in Fig. 8.11, we could find sin 2y and

cos 2y, and substitute the results into Eqs. (8.5). Omitting the details, we
obtain for the maximum in-plane shear stress

tmax ¼ R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
(8.12)

The normal stresses acting on the planes of maximum shear are found to be

s ¼ sx þ sy

2
(8.13)

These results are shown in Fig. 8.12(c). If we compare Eqs. (8.10) and (8.12),
we see that the maximum in-plane shear stress can also be expressed as

tmax ¼
js1 � s2j

2
(8.14)

d. Summary of stress transformation procedures

Identifying Given Stress Components Before applying any of the
equations derived in this article, you must identify the given stress
components sx, sy, and txy using the sign convention introduced in Sec. 8.4:
Positive stress components act in positive coordinate directions on positive

faces of the element.

FIG. 8.12 Equivalent states of
stress at a point.
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Computing Stresses on Inclined Planes The transformation equa-
tions

sx 0

sy 0

�
¼ sx þ sy

2
G

sx � sy

2
cos 2yG txy sin 2y (8.5a, b, repeated)

tx 0y 0 ¼ �
sx � sy

2
sin 2yþ txy cos 2y (8.5c, repeated)

can be used to compute the stress components sx 0 , sy 0 , and tx 0y 0 acting on the
sides of an inclined element. Remember that the angle y that defines the
inclination is measured from the x-axis to the x0-axis in the counterclockwise

direction.

Computing Principal Stresses The principal stresses s1 and s2 are
given by

s1

s2

�
¼ sx þ sy

2
GR (8.10, repeated)

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
(8.9, repeated)

Recall that the shear stress vanishes on the principal planes (the planes on
which s1 and s2 act).

Computing Principal Directions The principal directions can be
found from

tan 2y ¼ 2txy

sx � sy

(8.7, repeated)

The angle y is measured counterclockwise from the x-axis to a principal axis.
Equation (8.7) yields two values of y that di¤er by 90�. Substituting one of
these angles into Eq. (8.5a) yields the value of either s1 or s2, thereby iden-
tifying the principal stress associated with that angle.

Computing Maximum In-plane Shear Stress The magnitude of the
maximum in-plane shear stress is

tmax ¼
js1 � s2j

2
(8.14, repeated)

and the planes of maximum shear are inclined at 45� to the principal planes.
If the principal stresses are not known, the maximum in-plane shear stress
and the orientation of the shear planes can be obtained from

tmax ¼ R (8.12, repeated)

tan 2y ¼ � sx � sy

2txy

(8.11, repeated)

Equation (8.11) has two solutions for y that di¤er by 90�. Each solution
represents the angle measured from the x-axis to an axis of maximum shear
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(the normal to the plane of maximum shear) in the counterclockwise direc-
tion. The sense of the maximum shear stress can be obtained by substituting
one of these angles into Eq. (8.5c). The result is either þtmax or �tmax, with
the sign determining the direction of the shear stress on the plane defined by
the angle.

The normal stresses acting on the planes of maximum shear are given
by

s ¼ sx þ sy

2
(8.13, repeated)

Because the sum of the normal stresses does not change with transformation
—see Eq. (8.6), we also have s ¼ ðs1 þ s2Þ=2.
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Sample Problem 8.4

The state of plane stress at a point with respect to the xy-axes is shown in Fig. (a).
Determine the equivalent state of stress with respect to the x0y0-axes. Show the results
on a sketch of an element aligned with the x0- and y0-axes.

Solution
According to our sign convention (positive stresses act in the positive coordinate
directions on positive faces of the element), all the stress components in Fig. (a) are
positive: sx ¼ 30 MPa, sy ¼ 60 MPa, and txy ¼ 40 MPa. To transform these stresses
to the x 0y0-coordinate system, we use Eqs. (8.5). The angle 2y used in transformation
equations is twice the angle measured counterclockwise from the x-axis to the x0-axis.
Substituting 2y ¼ 2ð30�Þ ¼ 60� into Eqs. (8.5), we obtain

sx 0 ¼
sx þ sy

2
þ sx � sy

2
cos 2yþ txy sin 2y

¼ 30þ 60

2
þ 30� 60

2
cos 60� þ 40 sin 60�

¼ 72:1 MPa Answer

sy 0 ¼
sx þ sy

2
� sx � sy

2
cos 2y� txy sin 2y

¼ 30þ 60

2
� 30� 60

2
cos 60� � 40 sin 60�

¼ 17:9 MPa Answer

tx 0y 0 ¼ �
sx � sy

2
sin 2yþ txy cos 2y

¼ � 30� 60

2
sin 60� þ 40 cos 60�

¼ 33:0 MPa Answer

The results are shown in Fig. (b). Because all the calculated stress components
are positive, they act in the positive coordinate directions on the positive x 0- and y0-
faces.

1
Sample Problem 8.5

Determine the principal stresses and the principal directions for the state of plane
stress given in Fig. (a). Show the results on a sketch of an element aligned with the
principal directions.

Solution

If we use the established sign convention (positive stresses act in the positive coor-
dinate directions on positive faces of the element), the stress components shown in
Fig. (a) are sx ¼ 8000 psi, sy ¼ 4000 psi, and txy ¼ 3000 psi. Substituting these val-
ues into Eq. (8.9), we get

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8000� 4000

2

� �2

þ ð3000Þ2
s

¼ 3606 psi
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The principal stresses are obtained from Eq. (8.10):

s1

s2

�
¼ sx þ sy

2
GR ¼ 8000þ 4000

2
G 3606

which yields

s1 ¼ 9610 psi s2 ¼ 2390 psi Answer

The principal directions are given by Eq. (8.7):

tan 2y ¼ 2txy

sx � sy

¼ 2ð3000Þ
8000 � 4000

¼ 1:500

The two solutions are

2y ¼ 56:31� and 56:31� þ 180� ¼ 236:31�

y ¼ 28:16� and 118:16�

To determine which of the two angles is y1 (associated with s1) and which is y2

(associated with s2), we use Eq. (8.5a) to compute the normal stress sx 0 that corre-
sponds to one of the angles. The result, which will be equal to either s1 or s2, iden-
tifies the principal stress associated with that angle. With y ¼ 28:16�, Eq. (8.5a) yields

sx 0 ¼
sx þ sy

2
þ sx � sy

2
cos 2yþ txy sin 2y

¼ 8000þ 4000

2
þ 8000� 4000

2
cos½2ð28:16�Þ� þ 3000 sin½2ð28:16�Þ�

¼ 9610 psi

which is equal to s1. Therefore, we conclude that

y1 ¼ 28:2� y2 ¼ 118:2� Answer

The sketch of the di¤erential element in Fig. (b) shows the principal stresses
and the principal planes. Note that there is no shear stress on the principal planes,
which may be verified by substituting the values for y1 and y2 into Eq. (8.5c).

1
Sample Problem 8.6

For the state of plane stress shown in Fig. (a), determine the maximum in-plane shear
stress and the planes on which it acts. Show the results on a sketch of an element
aligned with the planes of maximum shear.
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Solution

With the established sign convention (positive stresses act in the positive coordinate
directions on positive faces of the element), the stress components shown in Fig. (a)
are sx ¼ 40 MPa, sy ¼ �100 MPa, and txy ¼ �50 MPa. Substituting these stresses
into Eq. (8.12), we get for the maximum in-plane shear stress

tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40� ð�100Þ

2

� �2

þ ð�50Þ2
s

¼ 86:0 MPa Answer

The orientation of planes that carry the maximum in-plane shear stress are
found from Eq. (8.11):

tan 2y ¼ � sx � sy

2txy

¼ � 40� ð�100Þ
2ð�50Þ ¼ 1:400

which has the solutions

2y ¼ 54:46� and 54:46� þ 180� ¼ 234:46�

y ¼ 27:23� and 117:23� Answer

To determine the directions of the maximum in-plane shear stresses on the
sides of the element, we must find the sign of the shear stress on one of the planes—
say, on the plane defined by y ¼ 27:23�. Substituting the given stress components and
y ¼ 27:23� into Eq. (8.5c), we obtain

tx 0y 0 ¼ �
sx � sy

2
sin 2yþ txy cos 2y

¼ � 40� ð�100Þ
2

sin½2ð27:23�Þ� þ ð�50Þ cos½2ð27:23�Þ�

¼ �86:0 MPa

The negative sign indicates that the shear stress on the positive x 0-face acts in the
negative y0-direction, as shown in Fig. (b). Once this result has been obtained, the
directions of the remaining shear stresses can be determined by inspection. The nor-
mal stresses acting on the element are computed from Eq. (8.13), which yields

s ¼ sx þ sy

2
¼ 40þ ð�100Þ

2
¼ �30 MPa

As shown in Fig. (b), the normal stresses are equal on all faces of the element.

1
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Problems

8.30–8.32 Given the state of stress shown, determine the stress components act-
ing on the inclined plane a-a. Solve by drawing the free-body diagram of the shaded
wedge and applying the equilibrium equations.

8.33–8.37 The state of stress at a point is shown with respect to the xy-axes.
Determine the equivalent state of stress with respect to the x 0y0-axes. Show the results
on a sketch of an element aligned with the x 0y0-axes.

FIG. P8.30 FIG. P8.31

6 ksi

25°

FIG. P8.32

FIG. P8.33 FIG. P8.34

60 MPa

y

x
x′

y′

80 MPa

100 MPa

35°

FIG. P8.35

FIG. P8.36

y

x

x′

y′

1.5 ksi

11.3 ksi

5.5 ksi
50°

FIG. P8.37

304 CHAPTER 8 Stresses Due to Combined Loads

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.38–8.41 For the state of stress shown, determine the principal stresses and the
principal directions. Show the results on a sketch of an element aligned with the prin-
cipal directions.

8.42–8.45 For the state of stress shown, determine the maximum in-plane shear
stress. Show the results on a sketch of an element aligned with the planes of max-
imum in-plane shear stress.

8.6 Mohr’s Circle for Plane Stress

Mohr’s circle, a graphical representation of the transformation equations,2 is
a popular method of stress transformation for two reasons. First, it allows us
to visualize how the normal and shear stress components vary with the angle

FIG. P8.38 FIG. P8.39

y

x

12 ksi

6 ksi

6 ksi

FIG. P8.40 FIG. P8.41

FIG. P8.42 FIG. P8.43

y

x
70 MPa

30 MPa

50 MPa

FIG. P8.44 FIG. P8.45

2This graphical method was developed in 1882 by Otto Mohr, a German engineer. The method

is also applicable to the transformation of strain and moment of inertia of area.
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of transformation. Second, since all relevant data can be obtained from
Mohr’s circle by trigonometry, it is not necessary to refer to the trans-
formation equations.

To show that the transformation equations represent a circle, we recall
Eqs. (8.5a) and (8.5c):

sx 0 �
sx þ sy

2
¼ sx � sy

2
cos 2yþ txy sin 2y (a)

tx 0y 0 ¼ �
sx � sy

2
sin 2yþ txy cos 2y (b)

where the term (sx þ syÞ=2 in Eq. (a) was moved from the right to the left
side of the equation. We eliminate 2y by squaring both sides of Eqs. (a) and
(b) and then adding the equations, which yields

sx 0 �
sx þ sy

2

� �2

þt2
x 0y 0 ¼

�
sx � sy

2

�2

þ t2
xy (c)

If the state of stress at a point is given with respect to the xy-axes, then sx,
sy, and txy are known constants. Therefore, the only variables in Eq. (c) are
sx 0 and tx 0y 0 .

Equation (c) can be written more compactly as

ðsx 0 � sÞ2 þ t2
x 0y 0 ¼ R2 (d)

where

s ¼ sx þ sy

2
(8.13, repeated)

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
(8.9, repeated)

We recognize Eq. (d) as the equation of a circle in the sx 0tx 0y 0 -plane. The
radius of the circle is R, and its center has the coordinates ðs; 0Þ.

a. Construction of Mohr’s circle

Consider the state of plane stress at a point defined in Fig. 8.13(a) that is
characterized by the stress components sx, sy, and txy. Mohr’s circle for this
stress state, shown in Fig. 8.13(b), is constructed as follows:

1. Draw a set of axes, with the abscissa representing the normal stress s

and the ordinate representing the shear stress t.
2. Plot the point labeled zx with coordinates ðsx;�txyÞ and the point

labeled zy with coordinates ðsy; txyÞ. The coordinates of these points
are the stresses acting on the x- and y-faces on the element, respectively.
It is important to label these points to avoid confusion later on.

3. Join the points zx and zy with a straight line, and draw a circle with
this line as its diameter.

Mohr’s circle is now complete. Note that the radius of the circle is

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s

and its center is located at ðs; 0Þ, where s ¼ ðsx þ syÞ=2.

FIG. 8.13 Construction of Mohr’s
circle from given stress components.
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b. Properties of Mohr’s circle

The properties of Mohr’s circle follow:

. The coordinates of each point on the circle represent the normal and
shear stresses that act on a specific plane that passes through the
selected point in the body. (For this reason, each time you plot a point
on the circle, you should immediately label it to identify the plane that
it represents.). Here is a convenient method for keeping track of the sense of shear
stress: Shear stress that has a clockwise moment about the center of the
element, as shown in Fig. 8.14(a), is plotted up (above the s-axis). If
the moment of the shear stress is counterclockwise, as in Fig. 8.14(b),
the point is plotted down (below the s-axis).3. The angle 2y between two diameters on the circle is twice the trans-
formation angle y, with both angles measured in the same direction

(clockwise or counterclockwise).

The procedure for using Mohr’s circle to transform the stress compo-
nents from the xy-axes in Fig. 8.15(a) to the x0y0-axes in Fig. 8.15(b) is
described below. We use the Mohr’s circle shown in Fig. 8.15(d), which was
drawn by using the points zx and zy as the diameter.

. Note the sense and magnitude of the angle y between the xy- and the
x0y0-axes in Fig. 8.15(b). (The sense of y is the direction in which the
xy-axes must be rotated to coincide with the x0y0-axes.). Rotate the diameter zx -zy of Mohr’s circle through the angle 2y in the
same sense as y. Label the endpoints of this new diameter as zx0 and
zy 0 as shown in Fig. 8.15(d). The coordinates of zx 0 are ðsx 0 ;�tx 0y 0 Þ,
and the coordinates of zy 0 are ðsy 0 ; tx 0y 0 Þ.

3This convention is di¤erent from the standard sign convention for shear stress and applies only

to Mohr’s circle.

FIG. 8.14 Convention for plotting
shear stress on Mohr’s circle.

FIG. 8.15 Using Mohr’s circle to transform stress components from the xy-axes
to the x 0y 0-axes.
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Mohr’s circle can also be used to find the principal stresses and princi-
pal directions. Referring to Fig. 8.15(d), we see that the principal planes
(planes of maximum and minimum normal stress) are labeled z1 and z2 ,
respectively. The normal stress coordinates of these points are s1 ¼ sþ R

and s2 ¼ s� R, and their shear stress coordinates are zero, as expected. The
principal directions di¤er from the xy-coordinate directions by the angle y1

shown in Fig. 8.15(c). The magnitude and sense of y1 are determined by the
angle 2y1 on the Mohr’s circle.

In addition, we see by inspection of the Mohr’s circle that the max-
imum in-plane shear stress tmax equals the radius R of the circle. The planes
on which tmax acts are represented by points za and zb on the circle.
Observe that the s-coordinates of both za and zb are s. The points on the circle
that correspond to the planes of maximum shear stress di¤er by 90� from the
points that represent the principal planes. Therefore, the di¤erence between
the planes of maximum shear and the principal planes is 45�, as expected.

c. Verification of Mohr’s circle

To prove that Mohr’s circle is a valid representation of the transformation
equations, we must show that the coordinates of the point zx 0 agree with
Eqs. (8.5a) and (8.5c). From Fig. 8.15(d), we see that

sx 0 ¼ sþ R cosð2y1 � 2yÞ (e)

Using the identity

cosð2y1 � 2yÞ ¼ cos 2y1 cos 2yþ sin 2y1 sin 2y

and substituting s ¼ ðsx þ syÞ=2, we obtain from Eq. (e)

sx 0 ¼
ðsx þ syÞ

2
þ Rðcos 2y1 cos 2yþ sin 2y1 sin 2yÞ (f )

From Fig. 8.15(d), we see that

sin 2y1 ¼
txy

R
cos 2y1 ¼

ðsx � syÞ
2R

(g)

If we substitute Eqs. (g) into Eq. (f ) and simplify, the expression for sx 0

becomes

sx 0 ¼
sx þ sy

2
þ sx � sy

2
cos 2yþ txy sin 2y (h)

From Fig. 8.15(d), we also obtain

tx 0y 0 ¼ R sinð2y1 � 2yÞ

Substituting the identity

sinð2y1 � 2yÞ ¼ sin 2y1 cos 2y� cos 2y1 sin 2y

and using Eqs. (g), we get

tx 0y 0 ¼ �
sx � sy

2
sin 2yþ txy cos 2y (i)

Because Eqs. (h) and (i) are identical to the transformation equations,
Eqs. (8.5a) and (8.5c), we conclude that Mohr’s circle is a valid representa-
tion of the transformation equations.
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Sample Problem 8.7

The state of plane stress at a point with respect to the xy-axes is shown in Fig. (a).
Using Mohr’s circle, determine (1) the principal stresses and principal planes; (2) the
maximum in-plane shear stress; and (3) the equivalent state of stress with respect to
the x0y0-axes. Show all results on sketches of properly oriented elements.

Solution

Construction of Mohr’s Circle

From the established sign convention (positive stresses act in the positive coordinate
directions on positive faces of the element), the stress components in Fig. (a) are
sx ¼ 40 MPa, sy ¼ 20 MPa, and txy ¼ 16 MPa. Using these stresses and the proce-
dure explained in Art. 8.6, we obtain the Mohr’s circle shown in Fig. (b). The coor-
dinates of point zx on the circle are the stress components acting on the x-face of the
element. Because the shear stress on this face has a counterclockwise moment about
the center of the element, it is plotted below the s-axis. The coordinates of point zy

are the stress components acting on the y-face of the element. The shear stress on this
face has a clockwise moment about the center of the element; thus, it is plotted above
the s-axis.

The characteristics of the circle, computed from Fig. (b), are

s ¼ 40þ 20

2
¼ 30 MPa

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10Þ2 þ ð16Þ2

q
¼ 18:87 MPa

If the circle were drawn to scale, all the requested quantities could be determined by
direct measurements. However, we choose to compute them here using trigonometry.

Part 1

By inspection of Fig. (b), we see that points z1 and z2 represent the principal planes.
The principal stresses are

s1 ¼ sþ R ¼ 30þ 18:87 ¼ 48:9 MPa Answer

s2 ¼ s� R ¼ 30� 18:87 ¼ 11:13 MPa Answer
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The principal directions are determined by the angle y1 where y1 is the angle meas-
ured counterclockwise from the x-face of the element to the plane on which s1 acts
(recall that the angles on Mohr’s circle are twice the angles between the physical
planes, measured in the same direction). From Fig. (b), we see that

tan 2y1 ¼
16

10
2y1 ¼ 58:0�

y1 ¼ 29:0� Answer

Figure (c) shows the principal stresses on an element aligned with the principal
directions, labeled 1 and 2, respectively.

Part 2

The planes of maximum in-plane shear stress correspond to points za and zb on the
Mohr’s circle in Fig. (b). The magnitude of the maximum shear stress equals the
radius of the circle; thus,

tmax ¼ 18:87 MPa Answer

The element aligned with the maximum shear planes is shown in Fig. (d). On the
circle, the angle measured from point z1 to point za is 90�, counterclockwise.
Therefore, the a-axis of the element in Fig. (d) is oriented at 45� in the counter-
clockwise direction relative to the 1-axis, as shown. Because point za on the circle
lies above the s-axis, the moment of tmax acting on the a-face is clockwise about the
center of the element, which determines the sense of tmax shown in Fig. (d). Note that
the normal stresses acting on both the a- and b-planes are s ¼ 30 MPa.

310

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Part 3

Figure (a) shows that if we were to rotate the xy-coordinate axes through 50� in the
counterclockwise direction, they would coincide with the x0y0-axes. This corresponds
to a 100� counterclockwise rotation of the diameter zx -zy of the Mohr’s circle to the
position zx 0 -zy 0 , as shown in Fig. (e). The coordinates of zx 0 and zy 0 are the stress
components acting on the faces of the element that is aligned with the x 0y0-axes.

From the geometry of the Mohr’s circle in Fig. (e), we obtain

sx 0 ¼ 30þ 18:87 cosð100� � 58:0�Þ ¼ 44:0 MPa Answer

sy 0 ¼ 30� 18:87 cosð100� � 58:0�Þ ¼ 15:98 MPa Answer

tx 0y 0 ¼ 18:87 sinð100� � 58:0�Þ ¼ 12:63 MPa Answer

The element showing these stresses is illustrated in Fig. (f ). Again, the sense of the
shear stress was found from the convention: If the shear stress is plotted above the s-
axis, its moment about the center of the element is clockwise, and vice versa. Because
point zx 0 lies above the s-axis, the shear stress on the x 0-face of the element applies a
clockwise moment about the center of the element.

1
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Problems

Solve the following problems using Mohr’s circle.

8.46–8.49 For state of stress shown, (a) draw the Mohr’s circle; and (b) determine
the radius R of the circle and the coordinate s of its center.

8.50–8.56 The state of stress at a point is shown with respect to the xy-axes.
Determine the equivalent state of stress with respect to the x 0y0-axes. Display the re-
sults on a sketch of an element aligned with the x0y0-axes.

FIG. P8.46 FIG. P8.47

FIG. P8.48

y

x
20 MPa

30 MPa

60 MPa

FIG. P8.49

FIG. P8.50 FIG. P8.51 FIG. P8.52

y
y′

x′

x
80 MPa

60°

40 MPa

FIG. P8.53
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8.57–8.61 For the state of stress shown, determine (a) the principal stresses; and
(b) the maximum in-plane shear stress. Show the results on properly oriented ele-
ments.

8.62 The state of stress at a point is the result of two loadings. When acting alone,
the first loading produces the 3-ksi pure shear with respect to the xy-axes. The second
loading alone results in the 4-ksi pure shear with respect to the x 0y0-axes. The angle
between the two sets of axes is y ¼ 30� as shown. If the two loadings act simulta-
neously, determine (a) the state of stress at this point with respect to the xy-axis; and
(b) the principal stresses and the principal planes. Show the results on properly ori-
ented elements.

8.63 Solve Prob. 8.62 if y ¼ 45�.

y y′

x′
x

4 ksi

8 ksi

2 ksi

25°

FIG. P8.54 FIG. P8.55 FIG. P8.56

FIG. P8.57 FIG. P8.58

60 MPa

90 MPa

30 MPa
x

y

FIG. P8.59

FIG. P8.60 FIG. P8.61

FIG. P8.62, P8.63
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8.64 The state of stress at a point is the result of two loadings. When acting sepa-
rately, the loadings produce the two states of stress shown in the figure. If the two
loadings are applied simultaneously, find the principal stresses and the principal
planes. Show the results on properly oriented elements.

40 MPa

(a) (b)

20 MPa

45�

y�
y

x�

x

FIG. P8.64

8.65 The figure shows the state of stress at a point. Knowing that the maximum
in-plane shear stress at this point is 10 MPa, determine the value of sy.

8.66 The figure shows the state of stress at a point. Knowing that the normal
stress acting on the plane a-a is 4 ksi tension, determine the value of sx.

8.7 Absolute Maximum Shear Stress

Up to this point, our discussion has been limited to in-plane transformation
of stress (transformation in the xy-plane). The largest shear stress encoun-
tered in this transformation is called the maximum in-plane shear stress and
is denoted by tmax. However, tmax is not necessarily the largest shear stress at
a point. To find the largest shear stress, called the absolute maximum shear

stress, we must also consider transformations in the other two coordinate
planes.

FIG. P8.65

12 ksi

σx

a
x

a

y

30°

FIG. P8.66
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a. Plane state of stress

Consider the state of plane stress shown in Fig. 8.16, where s1 and s2 are the
principal stresses and the xy-axes coincide with the principal directions.
Mohr’s circle for transformation in the xy-plane is shown in Fig. 8.17(a).
The radius of this circle is the maximum in-plane shear stress tmax ¼
js1 � s2j=2. Figures 8.17(b) and (c) show Mohr’s circles representing stress
transformation in the zx- and yz-planes.4 The absolute maximum shear
stress tabs is the radius of the largest circle; that is,

tabs ¼ max
js1 � s2j

2
;
js1j
2
;
js2j
2

� �
(8.15)

It is standard practice to draw the three Mohr’s circles on a single set of
axes, as shown in Fig. 8.18.

From Eq. (8.15), we can draw the following conclusions:

1. If s1 and s2 have the same sign (both tension or both compression),
the absolute maximum shear stress is js1j=2 or js2j=2, whichever is
larger.

2. If s1 and s2 have opposite signs (one tension and the other com-
pression), the absolute maximum shear stress is js1 � s2j=2, which
equals the maximum in-plane shear stress tmax.

FIG. 8.16 State of plane stress
referred to the principal planes.

4Although the transformation equations in Eqs. (8.5) were derived for plane stress, they remain

valid even if the out-of-plane normal stress is not zero. Because this normal stress does not have

an in-plane component, it does not a¤ect the equilibrium equations from which the trans-

formation equations were derived.

FIG. 8.17 Mohr’s circles for stress transformation in three coordinate planes
(plane stress).

FIG. 8.18 Mohr’s circles for stress
transformation in three coordinate
planes drawn on a single set of axes.
The radius of the largest circle is the
absolute maximum shear stress.
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b. General state of stress

A complete discussion of a general (three-dimensional) state of stress at a
point, as opposed to plane stress, is beyond the scope of this text. It can be
shown that any state of stress can be represented by three principal stresses
(s1, s2, and s3) that act on mutually perpendicular planes, as shown in Fig.
8.19(a). The corresponding Mohr’s circles are shown in Fig. 8.19(b). The
absolute maximum shear stress is again equal to the radius of the largest
circle:

tabs ¼ max
js1 � s2j

2
;
js2 � s3j

2
;
js3 � s1j

2

� �
(8.16)

Comparing the Mohr’s circles in Figs. 8.18 and 8.19, we see that plane stress
is the special case where s3 ¼ 0.

FIG. 8.19 Mohr’s circles for stress transformation in three coordinate planes
(triaxial stress).
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Sample Problem 8.8

For the state of plane stress shown in Fig. (a), determine the maximum in-plane shear
stress and the absolute maximum shear stress.

Solution

The given stresses are s1 ¼ sx ¼ 50 ksi and s2 ¼ sy ¼ 20 ksi. The Mohr’s circles
representing stress transformation in the three coordinate planes are shown in Fig.
(b). The maximum in-plane shear stress tmax is equal to the radius of the circle that
represents transformation in the xy-plane. Thus,

tmax ¼ 15 ksi Answer

The absolute maximum shear stress equals the radius of the largest circle, which
represents the transformation in the zx-plane:

tabs ¼ 25 ksi Answer

1
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Problems

8.67–8.73 For the state of plane stress shown, determine (a) the maximum in-
plane shear stress and (b) the absolute maximum shear stress.

8.74–8.76 For the triaxial state of stress shown, find the absolute maximum
shear stress.

FIG. P8.67 FIG. P8.68

6 kN

10 kN
x

y

FIG. P8.69

FIG. P8.70 FIG. P8.71

FIG. P8.72

32 MPa

24 MPa
18 MPa

x
y

FIG. P8.73

FIG. P8.74

20 MPa

FIG. P8.75 FIG. P8.76
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8.8 Applications of Stress Transformation

to Combined Loads

The most important use of stress transformation is in the analysis and design
of members that are subjected to combined loads (axial load, torsion, and
bending). The general procedure for analysis is as follows:

. Compute the state of stress at the critical point (the most highly
stressed point). Sometimes the location of the critical point is
uncertain, in which case stresses at several points in the member must
be compared to determine which is the critical point.. Draw a Mohr’s circle for the state of stress at the critical point.. Use the Mohr’s circle to calculate the relevant stresses, such as the
principal stresses or maximum shear stress.

The transformation formulas developed in Sec. 8.5 could be used to
analyze the state of stress. However, because Mohr’s circle has the advant-
age of visualization, its use is preferred by many engineers.
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Sample Problem 8.9

The radius of the 15-in.-long bar in Fig. (a) is 3/8 in. Determine the maximum nor-
mal stress in the bar at (1) point A; and (2) point B.

Solution

Preliminary Calculations

The internal force system acting on the cross section at the base of the rod is shown
in Fig. (b). It consists of the torque T ¼ 540 lb � in., the bending moment M ¼ 15P ¼
15ð30Þ ¼ 450 lb � in. (acting about the x-axis), and the transverse shear force
V ¼ P ¼ 30 lb.

The cross-sectional properties of the bar are

I ¼ pr4

4
¼ pð3=8Þ4

4
¼ 15:532� 10�3 in:4

J ¼ 2I ¼ 2ð15:532� 10�3Þ ¼ 31:06� 10�3 in:4

Part 1

Figure (c) shows the state of stress at point A together with the corresponding Mohr’s
circle. The bending stress is

s ¼Mr

I
¼ ð450Þð3=8Þ

15:532� 10�3
¼ 10 865 psi ¼ 10:865 ksi

and the torque causes the shear stress

tT ¼
Tr

J
¼ 540ð3=8Þ

31:06� 10�3
¼ 6520 psi ¼ 6:520 ksi

The shear stress due to transverse shear force V is zero at A.
From the Mohr’s circle for the state of stress at point A in Fig. (c), we see that

the maximum normal stress at point A is

smax ¼ 5:433þ 8:487 ¼ 13:92 ksi Answer
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Part 2

The state of stress at point B is shown in Fig. (d). The shear stress due to torque is
tT ¼ 6:520 ksi, as before. But because the point lies on the neutral axis, the bending
stress is zero. There is, however, an additional shear stress caused by the transverse
shear force V. The magnitude of this shear stress is tV ¼ VQ=ðIbÞ, where b ¼ 2r ¼ 3=4
in. and Q is the first moment of half the cross-sectional area about the neutral axis.
Referring to Fig. (e), we get

Q ¼ A0z 0 ¼ pr2

2

� �
4r

3p

� �
¼ 2r3

3
¼ 2ð3=8Þ3

3
¼ 35:16� 10�3 in:3

Therefore,

tV ¼
VQ

Ib
¼ 30ð35:16� 10�3Þ
ð15:532� 10�3Þð3=4Þ ¼ 90:5 psi ¼ 0:091 ksi

Because tT and tV act on the same planes and have the same sense, they can be
added. Hence, the total shear stress is

t ¼ tT þ tV ¼ 6:520þ 0:091 ¼ 6:611 ksi

The Mohr’s circle for this state of pure shear, shown in Fig. (d), yields for the max-
imum normal stress at B

smax ¼ 6:61 ksi Answer

Note that the shear stress due to V is small compared to the stresses caused by
M and T. As pointed out before, the e¤ect of V on the state of stress in a slender bar
is seldom significant, unless the bar is thin-walled.

1
Sample Problem 8.10

The thin-walled cylindrical pressure vessel with closed ends has a mean radius of 450
mm and a wall thickness of 10 mm. In addition to an internal pressure p ¼ 2 MPa,
the vessel carries the torque T as shown in Fig. (a). Determine the largest allowable
value of T if the working shear stress is tw ¼ 50 MPa.

321

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Solution

The state of stress in the wall of the vessel is shown on the element in Fig. (b). The normal
stresses, which are caused by the pressure, were obtained from Eqs. (8.1) and (8.2):

sx ¼ sl ¼
pr

2t
¼ ð2� 106Þð0:45Þ

2ð0:01Þ ¼ 45:0 MPa

sy ¼ sc ¼
pr

t
¼ 2sl ¼ 90:0 MPa

where we used the mean radius for r. The shear stress txy due to torsion is unknown
at this stage.

In this case, the maximum in-plane shear stress is not the largest shear stress in
the wall of the cylinder. This can be verified by drawing the three Mohr’s circles that
represent stress transformation in the three coordinate planes, as was explained in
Sec. 8.7. The result, shown in Fig. (b), reveals that the largest circle is the one that
represents transformation in the yz-plane.

When drawing the Mohr’s circles in Fig. (b), we set the radius of the largest
circle equal to 50 MPa, which is the prescribed limit of shear stress. The value of txy

that causes this limit to be reached can now be calculated from the circles in Fig. (b).
We have

R ¼ 100� 67:5 ¼ 32:5 MPa

txy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ð90� 67:5Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32:52 � 22:52
p

¼ 23:45 MPa

We now compute the torque that produces this shear stress. Because the vessel
is thin-walled, all parts of its cross-sectional area A are located approximately at a
distance r from the centroid. Therefore, a good approximation of the polar moment
of inertia is J ¼ Ar2. Using AA2prt, we thus obtain

J ¼ 2pr3t ¼ 2pð450Þ3ð10Þ ¼ 5:726� 109 mm4 ¼ 5:726� 10�3 m4

The largest allowable torque is obtained from txy ¼ Tr=J, which yields

T ¼ txyJ

r
¼ ð23:45� 106Þð5:726� 10�3Þ

0:45

¼ 298� 103 N �m ¼ 298 kN �m Answer

1
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Sample Problem 8.11

Find the smallest diameter d of the steel shaft ABCD that is capable of carrying the
loads shown in Fig. (a) if the working stresses are sw ¼ 120 MPa and tw ¼ 70 MPa.
Neglect the weights of the pulleys and the shaft. The pulleys are rigidly attached to
the shaft. Assume that the stress caused by direct shear force is negligible.

Solution
The first step is to construct the bending moment (M ) and torque (T ) diagrams pro-
duced by the loading, as shown in Fig. (b). These diagrams indicate that the largest
bending moment occurs at B, but the largest torque occurs in segment CD. There-
fore, the critical point lies on either section a-a or section b-b, as shown in Fig. (b).

Referring to Fig. (c), we deduce that the most highly stressed points on each
section are located at the top and bottom of the cross section where the magnitude of
the bending stress is largest (compression at the top and tension at the bottom).
Because the given design criterion for normal stress (sw a 120 MPa) does not dis-
tinguish between tensile and compressive stresses, we may choose either the bottom
or top points. Choosing the bottom points, we will now analyze the state of stress at
each section.
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Section a-a At this section, we have M ¼ 3750 N �m and T ¼ 1500 N �m. There-
fore, the stresses at the bottom of the section are

s ¼ 32M

pd 3
¼ 32ð3750Þ

pd 3
¼ 120� 103

pd 3
Pa ¼ 120

pd 3
kPa

t ¼ 16T

pd 3
¼ 16ð1500Þ

pd 3
¼ 24� 103

pd 3
Pa ¼ 24

pd 3
kPa

where the diameter d is in meters. The corresponding Mohr’s circle is shown in Fig.
(d). From the circle, we see that the maximum normal and in-plane shear stresses are

smax ¼
60

pd 3
þ 64:62

pd 3
¼ 124:62

pd 3
kPa

tmax ¼
64:62

pd 3
kPa

Section b-b At this section, M ¼ 3250 N �m and T ¼ 2500 N �m, which result in
the following stresses at the bottom of the section:

s ¼ 32M

pd 3
¼ 32ð3250Þ

pd 3
¼ 104� 103

pd 3
Pa ¼ 104

pd 3
kPa

t ¼ 16T

pd 3
¼ 16ð2500Þ

pd 3
¼ 40� 103

pd 3
Pa ¼ 40

pd 3
kPa
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From the Mohr’s circle in Fig. (e), the maximum normal and in-plane shear stresses
are

smax ¼
52

pd 3
þ 65:60

pd 3
¼ 117:60

pd 3
kPa

tmax ¼
65:60

pd 3
kPa

The above results show that the largest normal stress occurs at section a-a,
whereas the largest shear stress occurs at section b-b. Equating these stresses to their
allowable values (120� 103 kPa for smax and 70� 103 kPa for tmax), we get

124:62

pd 3
¼ 120� 103 d ¼ 0:069 14 m

65:60

pd 3
¼ 70� 103 d ¼ 0:066 82 m

The smallest safe diameter is the larger of these two values:

d ¼ 0:0691 m ¼ 69:1 mm Answer

Note The shear stress design criterion is tabs a tw, where tabs is the absolute max-
imum shear stress. In this problem, the principal stresses have opposite signs at both
points investigated, so that tabs is equal to the maximum in-plane shear stress tmax.

1
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Problems

8.77 The 60-mm-diameter bar carries a compressive axial force P. If the working
stresses are sw ¼ 70 MPa and tw ¼ 20 MPa, determine the largest P that can be
applied safely.

8.78 Two 50-mm by 100-mm wooden joists are glued together along a 40� joint as
shown. Determine (a) the state of stress at point A with respect to the xyz-axis; and
(b) the normal and shear stresses acting on the glued joint.

8.79 A 1/4-in.-thick strip of steel is welded along a 20� spiral to make the thin-
walled tube. Find the magnitudes of the normal and shear stresses acting in the
welded seam due to the 1200-kip � ft torque.

8.80 The solid steel shaft 100 mm in diameter and 8 m long is subjected simulta-
neously to an axial compressive force of 600 kN and a torque T that twists the shaft
through 1:5�. If the shear modulus of steel is 80 GPa, find the maximum normal and
shear stresses in the shaft.

8.81 The solid shaft of a small turbine is 4 in. in diameter and supports an axial
compressive load of 100 kips. Determine the horsepower that the shaft can transmit
at 250 rev/min without exceeding the working stresses sw ¼ 13 ksi and tw ¼ 10 ksi.

8.82 The hollow steel propeller shaft of a motor boat has a 3-in. outer diameter
and a 2.5-in. inner diameter. When running at maximum power, the propeller exerts
a thrust of 18 kips and the shaft is twisted through 0:8� in a length of 10 ft. Using
G ¼ 12� 106 psi, determine the maximum normal and shear stresses in the shaft.

FIG. P8.77 FIG. P8.78

FIG. P8.79 FIG. P8.80

FIG. P8.81 FIG. P8.82
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8.83 The 30-mm-diameter shaft of the wind turbine carries an axial thrust of 50
kN and transmits 2.5 kW of power at 2 Hz. Determine the maximum normal stress
in the shaft.

8.84 The T-bracket is formed by welding together two cylindrical rods AB and
CD. If the allowable shear stress is 80 MPa, what is the smallest allowable diameter
of rod AB? Neglect the stress caused by the transverse shear force.

8.85 The 3-in.-diameter rod carries a bending moment of 2210 lb � ft and the
torque T. Determine the largest T that can be applied if the working stresses are
sw ¼ 18 ksi and tw ¼ 14 ksi.

8.86 The solid 80-mm-diameter bar carries a torque T and a tensile force of 125
kN acting 20 mm from the centerline of the bar. Find the largest safe value of T if the
working stresses are sw ¼ 100 MPa and tw ¼ 80 MPa.

8.87 The shaft 50 mm in diameter carries a 1.0-kN lateral force and a torque T.
Determine the largest T that can be applied if the working stresses are sw ¼ 140 MPa
and tw ¼ 80 MPa. Neglect the stress due to the transverse shear force.

8.88 The working stresses for the circular bar AB are sw ¼ 120 MPa and tw ¼ 60
MPa. Determine the smallest radius of the bar that can carry the 2-kN load. Neglect
the stress due to the transverse shear force.

8.89 A solid 100-mm-diameter shaft carries simultaneously an axial tensile force
of 160 kN, a maximum bending moment of 6 kN �m, and a torque of 9 kN �m.
Compute the maximum tensile, compressive, and shear stresses in the shaft.

30 mm

FIG. P8.83

240 mm

B

DA

C
16 kN

8.4 kN

300 mm

300 mm

FIG. P8.84 FIG. P8.85

FIG. P8.86 FIG. P8.87

FIG. P8.88
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8.90 Determine the maximum shear stress in the thin-walled, square tube at (a)
point A; and (b) point B.

8.91 The cylindrical pressure vessel with closed ends has an external diameter of
16 in. and a wall thickness of 1/2 in. The vessel carries simultaneously an internal
pressure of 600 psi, a torque of 48 kip � ft, and a bending moment of 12 kip � ft. Cal-
culate the maximum normal and shear stresses in the wall of the vessel.

8.92 The closed cylindrical tank fabricated from 1/2-in. plate is subjected to an
internal pressure of 240 psi. Determine the largest permissible diameter of the tank if
the working stresses are sw ¼ 12 ksi and tw ¼ 4:8 ksi.

8.93 The cylindrical tank has an external diameter of 20 in. and a wall thickness
of 1/2 in. The tank is pressurized to 200 psi and carries an axial tensile force of 24
kips. Determine the maximum normal and shear stresses in the wall of the tank.

8.94 Solve Prob. 8.93 if the pressure is 120 psi and the axial force is 40 kips com-
pression.

8.95 The closed cylindrical tank of 12-in. mean diameter is fabricated from 3/8-in.
plate. The tank is subjected to an internal pressure of 500 psi and a torque T. Find
the largest safe value of T if the working stresses are sw ¼ 16 ksi and tw ¼ 8 ksi.

FIG. P8.90 FIG. P8.91

FIG. P8.92

FIG. P8.93, P8.94 FIG. P8.95
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8.96 The steel pipe of 500-mm outer diameter is fabricated by forming an 8-mm-
thick strip into a 30� helix and welding the joints. Compute the normal stress acting
across the weld caused by the axial and torsional loads shown.

8.97 The 18-mm-diameter steel bar is bent into an L-shape. Determine the max-
imum tensile stress in the bar when it is subjected to the two forces shown. Neglect
the transverse shearing stresses.

8.98 A shaft carries the loads shown in the figure. If the working shear stress is
tw ¼ 80 MPa, determine the smallest allowable diameter of the shaft. Neglect the
weights of the pulleys and the shaft as well as the stress due to the transverse shear
force.

8.99 The 50-mm-diameter shaft is subject to the loads shown in the figure. The
belt tensions are horizontal on pulley B and vertical on pulley C. Calculate the max-
imum normal and shear stresses in the shaft. Neglect the weights of the pulleys and
the shaft as well as the stress due to the transverse shear force.

Weld

30 N·m

30°

200 N

FIG. P8.96

200 mm

150 mm

120 N

180 N

FIG. P8.97

FIG. P8.98 FIG. P8.99
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8.100 Determine the smallest allowable diameter of the shaft that carries the three
pulleys. The working stresses are sw ¼ 16 ksi and tw ¼ 6 ksi. Neglect the weights of
the pulleys and the shaft as well as the stress due to the transverse shear force.

8.101 Determine the principal stresses and the maximum in-plane shear stress at
point A of the cantilever beam. The point is located at x ¼ 250 mm. Show the an-
swers on sketches of properly oriented elements.

8.102 Compute the stress components on the 30� plane at point B of the cantilever
beam. Assume that x ¼ 300 mm. Show the results on a properly oriented element.

8.103 The 4-in.-diameter shaft carries a 36-kip axial load and 2.4-kip � ft torque.
Determine the normal and shear stresses acting on the spiral weld that makes a 30�

angle with the axis of the shaft.

8.104 For the cantilever beam in the figure, determine the principal stresses at point
A located just below the flange. Show the results on a properly oriented element.

8.105 Determine the maximum in-plane shear stress at point A located just below
the flange of the cantilever beam. Show the results on a properly oriented element.

8.106 The plastic cylinder, which has a 10-in. inner diameter and a 10.5-in. outer
diameter, is filled with oil. The cylinder is sealed at both ends by gaskets that are
fastened in place by two rigid end-plates held together by four bolts. After the oil has
been pressurized to 200 psi, the bolts are tightened until each carries a tensile force of
7950 lb. Determine the resulting maximum shear stress in the cylinder.

8.107 The plastic cylinder has an inner diameter of 10 in. and an outer diameter 10.5
in. The cylinder is sealed at both ends by gaskets fastened in place by two rigid end-plates
that are held together by four bolts. The allowable stresses for the plastic are 6000 psi in
tension, 4200 psi in compression, and 3200 psi in shear. Find the maximum internal pres-
sure that can be applied if each of the four bolts carries an initial tensile force of 8 kips.

FIG. P8.100

FIG. P8.101, P8.102

FIG. P8.103

FIG. P8.104, P8.105 FIG. P8.106, P8.107
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8.9 Transformation of Strain; Mohr’s Circle

for Strain

Many problems encountered in engineering design involve a combination of
axial, torsional, and bending loads applied to elastic bars. In such cases, the
stresses may be computed as described in the preceding articles and the max-
imum normal or the maximum shear stress used as a design criterion. If the
structure is too complex to be analyzed in this manner, the stresses may have to
be determined experimentally. Because stress is a mathematical abstraction, it
cannot be measured directly. However, the stress-strain relationships defined by
Hooke’s law permit us to calculate stresses from strains, and strains can be

measured. In this article, we derive the transformation equations for plane
strain. If we know the strain components at a point associated with a given set
of axes, these equations enable us to calculate the strain components with
respect to any set of axes at that point. With this information, we are able to
find the principal strains at the point. In this article, we also consider the con-
version of strain measurements into stresses using Hooke’s law.

a. Review of strain

Figure 8.20(a) shows an infinitesimal element of dimensions dx by dy

undergoing the normal strains �x and �y. Recalling that positive normal
strain is the elongation per unit length, we know the element elongates in
the x-direction by �x dx. Similarly, the elongation of the element in the
y-direction is �y dy. Compressive normal strains are considered to be negative.

The shear strain gxy, shown in Fig. 8.20(b), measures the change (in
radians) in the original right angle between the edges of the element. The
subscripts xy indicate that gxy is the angular change between the edges that

FIG. 8.20 (a) Element undergoing normal strains; (b) element undergoing shear
strain; (c) change in the diagonal of the element due to normal and shear strains;
(d) components of displacement vector of corner A.
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coincide with, or are parallel to, the x- and y-axes. Shear strains are consid-
ered to be positive when the angle decreases, and negative when the angle
increases. With this sign convention for strain, positive shear stresses cause
positive shear strains.

b. Transformation equations for plane strain

The state of plane strain at a point O is defined by the strain components �x,
�y, and gxy at that point. If the state of strain at a point is known, the trans-
formation equations for strain can be used to calculate the normal and shear
strains associated with respect to any set of axes at that point.

We now derive the equations that transform the strains from the xy-axes
to the x0y0-axes shown in Fig. 8.20(a). To facilitate the derivation, we choose
the dimensions of the element so that the diagonal OA coincides with the x 0-
axis. It is also convenient to assume that corner O is fixed and the edge
formed by the x-axis does not rotate. These assumptions eliminate arbitrary
rigid-body motions without impeding the deformation of the element.

Transformation Equations for Normal Strain When all three strain
components occur simultaneously, corner A of the element is displaced to
position A0 as shown in Fig. 8.20(c). This displacement is obtained by su-
perimposing the displacements shown in Figs. 8.20(a) and (b). Thus, the
horizontal and vertical components of AA0 are

AC ¼ �x dxþ gxy dy and CA0 ¼ �y dy (a)

We now resolve AA0 into components that are parallel and perpendicular to
the diagonal OA. The parallel component AB represents the change in
length of OA, and the perpendicular component BA0 is caused by a rotation
of OA through the small angle b. From Fig. 8.20(c), we see that BA0 ¼ b ds.

The displacements in Fig. 8.20(c) are shown enlarged in Fig. 8.20(d).
The increase in length of the diagonal OA can be found by adding the
projections of AC and CA0 onto the x0-direction. This yields AB ¼
AC cos yþ CA0 sin y, where y is the angle between OA and the x-axis.
Upon substitution from Eqs. (a), we get

AB ¼ ð�x dxþ gxy dyÞ cos yþ �y dy sin y (b)

Dividing AB by the original length ds of the diagonal OA, we obtain for the
strain in the x0-direction

�x 0 ¼
�x dx cos y

ds
þ

gxy dy cos y

ds
þ �y dy sin y

ds
(c)

We see from Fig. 8.20(a) that dx=ds ¼ cos y and dy=ds ¼ sin y, so that Eq.
(c) becomes

�x 0 ¼ �x cos2 yþ gxy sin y cos yþ �y sin2 y (d)

The standard form of this transformation equation is obtained by sub-
stituting the trigonometric identities

cos2 y ¼ 1þ cos 2y

2
sin2 y ¼ 1� cos 2y

2
sin y cos y ¼ 1

2
sin 2y
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into Eq. (d), which yields

�x 0 ¼
�x þ �y

2
þ �x � �y

2
cos 2yþ 1

2
gxy sin 2y (8.17a)

The expression for �y 0 can be found by replacing y in this equation by
yþ 90�, which results in

�y 0 ¼
�x þ �y

2
� �x � �y

2
sin 2y� 1

2
gxy cos 2y (8.17b)

Transformation Equation for Shear Strain Referring again to Fig.
8.20(d), we see that the displacement component BA0 can be found by pro-
jecting AC and CA0 onto the y0-direction: BA0 ¼ CA0 cos y� AC sin y,
which yields, after substituting from Eq. (a),

BA0 ¼ �y dy cos y� ð�x dxþ gxy dyÞ sin y (e)

Therefore, the angle of rotation of OA is

b ¼ BA0

ds
¼ �y dy cos y

ds
� �x dx sin y

ds
�

gxy dy sin y

ds

¼ �y sin y cos y� �x sin y cos y� gxy sin2 y (f )

The rotation angle b 0 of the line element at right angles to OA

(coincident with the y0-axis) may be found by substituting yþ 90� for y in
Eq. (f ), yielding

b 0 ¼ ��y sin y cos yþ �x sin y cos y� gxy cos2 y (g)

Because the positive direction for both b and b 0 is counterclockwise, the
shear strain gx 0y 0 , which is the decrease in the right angle formed by the
x0- and y0-axes, is the di¤erence in the two angles. Thus, we have

gx 0y 0 ¼ b � b 0 ¼ �yð2 sin y cos yÞ � �xð2 sin y cos yÞ

þ gxyðcos2 y� sin2 yÞ (h)

Substituting 2 sin y cos y ¼ sin 2y and cos2 y� sin2 y ¼ cos 2y, we obtain
the following standard form of the transformation equations for shear strain:

1

2
gx 0y 0 ¼ �

�x � �y

2
sin 2yþ 1

2
gxy cos 2y (8.17c)

c. Mohr’s circle for strain

Comparing Eqs. (8.17) with the stress transformation equations in Eqs. (8.5)
shows that they are identical in form, the association between the stresses
and strains being

ðsx; sy; txyÞ , ð�x; �y; gxy=2Þ
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We conclude that the transformation equations for strain can also be repre-
sented by a Mohr’s circle, constructed in the same manner as the Mohr’s
circle for stress. The notable di¤erence is that half of the shear strain ðg=2Þ is

plotted on the ordinate instead of the shear strain. Thus, for Mohr’s circle for
strain, the end-points of the diameter have the coordinates ð�x, �gxy=2Þ and
ð�y, gxy=2Þ. This is consistent with the convention used for Mohr’s circle for
stress, where the corresponding coordinates are ðsx, �txyÞ and ðsy, txyÞ.

The similarities between stress and strain are further exemplified by the
fact that Mohr’s circle for strain can be transformed into Mohr’s circle for
stress using the scale transformations

Rs ¼ R�
E

1þ n
s ¼ � E

1� n
(8.18)

where E is the modulus of elasticity and n represents Poisson’s ratio. As
shown in Fig. 8.21, Rs and R� are the radii of the stress and strain circles,
respectively, and s ¼ ðsx þ syÞ=2 and � ¼ ð�x þ �yÞ=2 locate the centers of
the circles. (The proof of these relationships is requested in Prob. 8.108.)

FIG. 8.21 Mohr’s circles for (a) stress and (b) strain.
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Sample Problem 8.12

The state of plane strain at a point in a body is given by �x ¼ 800� 10�6, �y ¼
200� 10�6, and gxy ¼ �600� 10�6. Using Mohr’s circle, find (1) the principal
strains and their directions (show the directions on a sketch); and (2) the strain com-
ponents referred to the x 0y0-axes shown in Fig. (a).

Solution
Using the given strain components, we plot the Mohr’s circle shown in Fig. (b). We
start by plotting the points zx with the coordinates ð�x;�gxy=2Þ ¼ ð800; 300Þ � 10�6

and zy with the coordinates ð�y; gxy=2Þ ¼ ð200;�300Þ � 10�6. Joining these two
points with a straight line gives us the diameter of the circle. If the circle were drawn
to scale, all unknown values could be determined from it by direct measurements.
However, we choose to solve the problem using trigonometry.

Referring to Fig. (b), we compute the following parameters of the circle:

� ¼ 800þ 200

2

� �
� 10�6 ¼ 500� 10�6

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð300Þ2 þ ð300Þ2

q� �
� 10�6 ¼ 424:3� 10�6

Part 1

Indicating the principal axes as z1 and z2 on the Mohr’s circle in Fig. (b), we see
that the principal strains are

�1 ¼ �þ R ¼ ð500þ 424:3Þ � 10�6 ¼ 924:3� 10�6 Answer

�2 ¼ �� R ¼ ð500� 424:3Þ � 10�6 ¼ 75:7� 10�6 Answer

We note in Fig. (b) that the angle measured from zx to z1 on the Mohr’s circle is
2y1 ¼ 45� in the clockwise direction. Therefore, the angle between the x-axis and the
1-axis is y1 ¼ 22:5�, also measured clockwise from the x-axis, as shown in Fig. (c).
The principal direction corresponding to �2 is, of course, perpendicular to the direc-
tion of �1.
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Part 2

The Mohr’s circle for the given state of strain is redrawn in Fig. (d). To determine
strains relative to the x 0y0-axes, we must identify the corresponding points zx 0 and zy 0

on the circle. Because the angle from the x-axis to the x 0-axis is 60� in the counter-
clockwise direction, point zx 0 on the circle is 120� counterclockwise from zx , as
shown in Fig. (d). Of course, zy 0 is located at the opposite end of the diameter from
zx 0 . To facilitate our computations, we have introduced the central angle

2a ¼ 180� � 45� � 120� ¼ 15�

between the points zx 0 and z2 . Referring to the circle, we find that the normal strains
in the x 0- and y0-directions are

�x 0 ¼ �� R cos 2a ¼ ð500� 424:3 cos 15�Þ � 10�6

¼ 90:2� 10�6 Answer

�y 0 ¼ �þ R cos 2a ¼ ð500þ 424:3 cos 15�Þ � 10�6

¼ 910� 10�6 Answer

The magnitude of the shear strain is obtained from

jgx 0y 0 j
2
¼ R sin 2a ¼ 424:3 sin 15� ¼ 109:82� 10�6

Noting that point zy 0 lies below the �-axis, we conclude that gx 0y 0 is negative. There-
fore,

gx 0y 0 ¼ �2ð109:82Þ � 10�6 ¼ �220� 10�6 Answer

The positive values for the normal strains indicate elongations, whereas the
negative sign for the shear strain means that the angle between the x0y0-axes is
increased, as indicated in Fig. (e).

1
Sample Problem 8.13

The state of plane strain at a point is �x ¼ 800� 10�6, �y ¼ 200� 10�6, and gxy ¼
�600� 10�6. If the material properties are E ¼ 200 GPa and n ¼ 0:30, (1) use the
Mohr’s circle for strain obtained in the solution of Sample Problem 8.12 to construct
Mohr’s circle for stress; and (2) from the stress circle, determine the principal stresses
and principal directions.
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Solution

Part 1

In Sample Problem 8.12, we found the parameters of the strain circle to be � ¼
500� 10�6 and R� ¼ 424:3� 10�6. The corresponding parameters of the stress circle
are obtained by applying the scale transformations in Eqs. (8.18):

Rs ¼ R�
E

1þ n
¼ ð424:3� 10�6Þ 200� 109

1þ 0:3
¼ 65:27� 106 Pa ¼ 65:27 MPa

s ¼ � E

1� n
¼ ð500� 10�6Þ 200� 109

1� 0:3
¼ 142:86� 106 Pa ¼ 142:86 MPa

The resulting Mohr’s circle is shown in Fig. (a). The points zx and zy on the circle,
the coordinates of which are stresses acting on the x- and y-faces of the element, have
the same angular positions as on the strain circle. We can now use the stress circle to
find the stress components relative to any set of axes in the usual manner.

Part 2

From Fig. (a), we see that the principal stresses are

s1 ¼ sþ Rs ¼ 142:86þ 65:27 ¼ 208 MPa Answer

s2 ¼ sþ Rs ¼ 142:86� 65:27 ¼ 77:6 MPa Answer

The principal directions, also found from the stress circle, are shown in Fig. (b).

Alternative Solution for Stresses

Instead of using the transformed circle for stress, we can calculate the stress compo-
nents from the strains using generalized Hooke’s law for a biaxial state of stress (see
Sec. 2.4):

sx ¼
ð�x þ n�yÞE

1� n2
sy ¼

ð�y þ n�xÞE
1� n2

txy ¼ Ggxy ¼
E

2ð1þ nÞ gxy

When we substitute the principal strains �1 ¼ 924:3� 10�6 and �2 ¼ 75:7� 10�6

found in the solution of Sample Problem 8.12, the principal stresses become

s1 ¼
½924:3þ 0:3ð75:7Þ�ð10�6Þð200� 109Þ

1� ð0:3Þ2
¼ 208 MPa

s2 ¼
½75:7þ 0:3ð924:3Þ�ð10�6Þð200� 109Þ

1� ð0:3Þ2
¼ 77:6 MPa

which agree with the results in Part 2 above.

1
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Problems

8.108 Prove that Eqs. (8.18) transform Mohr’s circle for strain into Mohr’s circle
for stress.

8.109 Given that the state of strain at the point O is �x ¼ �2, �y ¼ �1, and gxy ¼ 0,
show that the angle of rotation of the line OA given by Eq. (f ) of Sec. 8.9 becomes
b ¼ gx 0y 0=2.

8.110 The state of strain at a point is �x ¼ �500� 10�6; �y ¼ 260� 10�6, and
gxy ¼ 720� 10�6. Knowing that E ¼ 200 GPa, and n ¼ 0:3, determine the principal
stresses at that point.

8.111 The state of strain at a point is �x ¼ 800� 10�6, �y ¼ �400� 10�6, and
gxy ¼ �600� 10�6. If E ¼ 30� 106 psi and n ¼ 0:3, determine the principal stresses
at that point.

8.112 The state of strain at the point O is �x ¼ �620� 10�6, �y ¼ 84� 10�6, and
gxy ¼ �540� 10�6. Find the stress components acting on the x 0-plane, where the x 0-
axis is inclined at y ¼ 45� to the x-axis. Use E ¼ 30� 106 psi and n ¼ 0:3. Show your
results on a properly oriented sketch of an element.

8.113 The state of strain at the point O is �x ¼ �800� 10�6, �y ¼ 200� 10�6,
and gxy ¼ �800� 10�6. Determine the stress components acting on the x 0-plane,
where the x0-axis is inclined at y ¼ 20� to the x-axis. Use E ¼ 200 GPa and n ¼ 0:3.
Show your results on a properly oriented sketch of an element.

8.10 The Strain Rosette

a. Strain gages

The electrical-resistance strain gage is a device for measuring normal strain
in a specific direction. Gages of this type operate on the principle that the
change in electrical resistance of wires or foil strips is directly related to a
change in their lengths. The gage is cemented to the object, so that the gage
and the object undergo the same normal strain. The resulting change in the
electrical resistance of the gage element is measured and converted into
strain. Figure 8.22 shows a typical foil strain gage. Commercially available
gages have gage lengths that vary from 0.008 in. to 4 in. A wide variety of
other strain gages are available that depend upon electrical properties
other than resistance, such as capacitance and inductance. However, the
electrical-resistance gages are by far the most widely used because they are
relatively inexpensive while at the same time very accurate and durable.
Electrical-resistance strain gages are useful for measuring both static and
dynamic strains.

FIG. P8.109

FIG. P8.112, P8.113
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b. Strain rosette

Because the state of plane strain at a point is determined by three strain com-
ponents, �x, �y, and gxy, we need three strain readings to determine a state of
strain. For example, one gage in the x-direction and one in the y-direction can
be used to determine �x and �y. Because there is no equipment for direct
measurement of shear strain, we must determine gxy indirectly. This can be
done by using a third gage to measure the normal strain in a direction di¤er-
ent from the x- or y-axis.

We now show how a state of plane strain can be determined from
three normal strain measurements. The strain rosette, shown in Fig. 8.23,
contains three strain gages oriented at angles ya, yb, and yc with respect to a
reference line, such as the x-axis. We denote their strain readings by �a, �b,
and �c. Substituting these strains and angles into Eq. (8.17a), we obtain the
following set of simultaneous equations:

�a ¼
�x þ �y

2
þ �x � �y

2
cos 2ya þ

gxy

2
sin 2ya (a)

�b ¼
�x þ �y

2
þ �x � �y

2
cos 2yb þ

gxy

2
sin 2yb (b)

�c ¼
�x þ �y

2
þ �x � �y

2
cos 2yc þ

gxy

2
sin 2yc (c)

Assuming that �a, �b, �c, ya, yb, and yc are known, Eqs. (a)–(c) represent
three linear algebraic equations that can be solved for the three unknowns
�x, �y, and gxy. After these unknowns have been found, we can construct
Mohr’s circles for strain and stress as explained in the preceding article.

As a matter of practical convenience, the normal strains are usually
obtained by using one of the two strain rosettes described next.

FIG. 8.22 Electrical-resistance strain gage.

FIG. 8.23 Strain rosette with arbitrary orientation of gages.
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c. The 45� strain rosette

The 45� strain rosette is shown in Fig. 8.24. The orientation of the strain
gages are ya ¼ 0, yb ¼ 45�, and yc ¼ 90�. Substituting these angles into Eqs.
(a)–(c) and solving, we obtain

�x ¼ �a �y ¼ �c

gxy

2
¼ �b �

�a þ �c

2
(8.19)

d. The 60� strain rosette

For the 60� strain rosette in Fig. 8.25, the strain gages are oriented at ya ¼ 0,
yb ¼ 60�, and yc ¼ 120�. Using these values in Eqs. (a)–(c), we get for the
solution

�x ¼ �a �y ¼
2�b þ 2�c � �a

3

gxy

2
¼ �b � �cffiffiffi

3
p (8.20)

FIG. 8.24 45� strain rosette.

FIG. 8.25 60� strain rosette.
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Sample Problem 8.14

The readings from a 45� strain rosette are �a ¼ 100� 10�6, �b ¼ 300� 10�6, and
�c ¼ �200� 10�6. If the material properties are E ¼ 180 GPa and n ¼ 0:28, determine
the principal stresses and their directions. Show the results on a sketch of an element.

Solution
From Eqs. (8.19), we get

�x ¼ �a ¼ 100� 10�6 �y ¼ �c ¼ �200� 10�6

gxy

2
¼ �b �

�a þ �c

2
¼ 300� 100þ ð�200Þ

2

� �
� 10�6 ¼ 350� 10�6

These results enable us to draw the Mohr’s circle for strain shown in Fig. (a). The
parameters of the circle are

� ¼ 100� 200

2
� 10�6 ¼ �50� 10�6

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3502 þ 1502

p
� 10�6 ¼ 380:8� 10�6

The corresponding parameters of the Mohr’s circle for stress are obtained from Eqs.
(8.18):

s ¼ E

1� n
� ¼ 180� 109

1� 0:28
ð�50� 10�6Þ ¼ �12:50� 106 Pa ¼ �12:50 MPa

Rs ¼
E

1þ n
R� ¼

180� 109

1þ 0:28
ð380:8� 10�6Þ ¼ 53:55� 106 Pa ¼ 53:55 MPa

Therefore, the principal stresses are

s1 ¼ sþ Rs ¼ �12:50þ 53:55 ¼ 41:1 MPa Answer

s2 ¼ s� Rs ¼ �12:50� 53:55 ¼ �66:1 MPa Answer

Because the principal directions for stress and strain coincide, we can find the
former from the Mohr’s circle for strain. The circle in Fig. (a) yields

2y1 ¼ tan�1 350

150
¼ 66:80� y1 ¼ 33:4� Answer

Figure (b) shows the principal stresses and the principal directions.

1
341

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems

8.114 Prove Eqs. (8.19) are valid for the 45� strain rosette.

8.115 Prove Eqs. (8.20) are valid for the 60� strain rosette.

8.116 If gages a and c of a 45� strain rosette are aligned with the principal strain
directions, what is the relationship among �a, �b, and �c?

8.117 A 60� strain rosette measures the following strains at a point on the alumi-
num skin of an airplane: �a ¼ 160� 10�6, �b ¼ �220� 10�6, and �c ¼ 360� 10�6.
Using E ¼ 10� 106 psi and n ¼ 0:3, determine the principal stresses and the max-
imum in-plane shear stress.

8.118 Solve Prob. 8.117 if the strain readings are �a ¼ 340� 10�6, �b ¼
�550� 10�6, and �c ¼ �180� 10�6.

8.119 The strain readings from a 45� strain rosette are �a ¼ 550� 10�6, �b ¼
�210� 10�6, and �c ¼ �120� 10�6. If E ¼ 200 GPa and n ¼ 0:3, find the principal
stresses and their directions. Show the results on a sketch of a properly oriented
element.

8.120 Solve Prob. 8.119 if the strain readings are �a ¼ 300� 10�6, �b ¼
600� 10�6, and �c ¼ 100� 10�6.

8.121 The strains measured with a 60� strain rosette are �a ¼ 300� 10�6, �b ¼
�400� 10�6, and �c ¼ 100� 10�6. Using E ¼ 200 GPa and n ¼ 0:3, find the princi-
pal stresses and their directions. Show the results on a sketch of a properly oriented
element.

8.11 Relationship Between Shear Modulus

and Modulus of Elasticity

In Sec. 2.4, we stated that the shear modulus G of a material is related to its
modulus of elasticity E and Poisson’s ratio n by

G ¼ E

2ð1þ nÞ (2.14, repeated)

We can now prove this relationship.
Consider the state of pure shear illustrated in Fig. 8.26(a). The Mohr’s

circle for this stress state in Fig. 8.26(b) shows that the principal stresses are

FIG. 8.26 (a) State of pure shear; (b) Mohr’s circle for pure shear; (c) principal
stresses associated with pure shear.
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s1 ¼ txy and s2 ¼ �txy. Furthermore, we note that the principal directions
are inclined at 45� to the xy-axes, as indicated in Fig. 8.26(c). Our proof of
Eq. (2.14) starts by deriving the principal strain �1 in terms of txy by two
di¤erent methods. Equating the two results will complete the proof.

Method 1 If we refer to Fig. 8.26(c), Hooke’s law for biaxial stress, Eq.
(2.10), yields

�1 ¼
1

E
ðs1 � ns2Þ ¼

1

E
½txy � nð�txyÞ� ¼

ð1þ nÞtxy

E
(a)

Method 2 Because the principal directions for stress and strain are the
same, the direction of �1 is inclined at the angle y ¼ 45� to the x-axis. We
can now relate �1 to gxy by using the transformation equation for normal
strain:

�x 0 ¼
�x þ �y

2
þ �x � �y

2
cos 2yþ

gxy

2
sin 2y (8.17a, repeated)

Substituting �x ¼ �y ¼ 0 (this is a consequence of sx ¼ sy ¼ 0) and 2y ¼ 90�

into Eq. (8.17a), we get

�1 ¼
gxy

2
¼ txy

2G
(b)

where in the last step we used Hooke’s law for shear: gxy ¼ txy=G.

Proof Comparing Eqs. (a) and (b), we conclude that ð1þ nÞ=E ¼ 1=ð2GÞ,
or

G ¼ E

2ð1þ nÞ
which completes the proof. Although it is often convenient to analyze the
deformation of an elastic body using three elastic constants (E, G, and n),
you should realize that only two of the constants are independent.
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Review Problems

8.122 The concrete post of radius r carries a concentrated load P that has an
eccentricity e relative to the axis of the post. Find the largest e for which there is no
tensile stress in the post.

8.123 For the wooden beam shown in the figure, determine the maximum tensile
and compressive normal stresses acting at section m-n.

8.124 The state of plane stress at a point is sx ¼ �15 ksi, sy ¼ �5 ksi, and txy. If
no tensile stress is permitted at this point, find the largest allowable magnitude of txy.

8.125 Determine the principal stresses and the principal directions for the state of
stress shown. Show your results on a sketch of a properly oriented element.

8.126 A state of plane stress is the result of two loadings. When acting separately,
the loadings produce the stresses shown. Determine the state of stress with respect
to the xy-axes when the loads act together. Show the results on a properly oriented
element.

8.127 The state of stress at a point is shown with respect to the xy-axes. Compute
the equivalent state of stress with respect to the x0y0-axes. Show your results on a
sketch of a properly oriented element.

8.128 The state of plane stress at a point is sx, sy, and txy ¼ 30 MPa. Knowing
that the principal stresses are s1 ¼ 40 MPa and s2 ¼ �80 MPa, determine (a) the
values of sx and sy; and (b) the principal directions relative to the xy-axes. Show
both results on sketches of properly oriented elements.

FIG. P8.122

4000

9

3

FIG. P8.123

80 MPa

20 MPa

60 MPa

x

y

FIG. P8.125

FIG. P8.126

8 ksi

12 ksi

50�

x

y

x�

y�
y

FIG. P8.127
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8.129 The state of plane strain at a point is �x ¼ 1600� 10�6, �y ¼ �800� 10�6,
and gxy ¼ 1000� 10�6. Determine the principal stresses and the principal directions
at this point. Use E ¼ 10� 106 psi and n ¼ 0:28. Show the results on a sketch of a
properly oriented element.

8.130 The normal strains at a point are �x ¼ 540� 10�6 and �y ¼ 180� 10�6.
Given that the larger of the principal strains at this point is �1 ¼ 660� 10�6, find �2

and the magnitude of gxy.

8.131 The strains measured by the strain rosette are �a ¼ 600� 10�6, �b ¼
�110� 10�6, and �c ¼ 200� 10�6. Determine the principal strains and their
directions.

8.132 The cylindrical pressure vessel has an outer radius of 750 mm and a wall
thickness of 20 mm. The vessel is pressurized to 2 MPa and carries a bending mo-
ment of magnitude M. Determine the largest value of M for which the longitudinal
stress remains tensile throughout the walls of the vessel.

8.133 The bent bar has a uniform, rectangular cross section. Determine the prin-
cipal stresses at (a) point A; and (b) point B.

8.134 The 300-mm-diameter concrete pile is pushed into the soil by the 600-kN
force while being rotated about its axis by the torque T. Find the largest allowable
value of T for which the tensile stress in the pile does not exceed 1.8 MPa.

8.135 The circular rod of diameter d is bent into a quarter circle of radius R. If the
working shear stress is tw, determine the largest allowable force P. Use d ¼ 35 mm;
R ¼ 750 mm, and tw ¼ 100 MPa. Neglect the stress due to the transverse shear force.

8.136 The 20-kN vertical force acts at the end of a cable that is wrapped around
the steel bar. Calculate the principal stresses at (a) point A; and (b) point B.

8.137 The bent pipe has a 1.5-in. outer diameter and a 0.2-in. wall thickness.
Calculate the largest shear stress that occurs in (a) segment BC; and (b) segment AB.
Neglect the stress due to the transverse shear force.

FIG. P8.131

M M

FIG. P8.132

FIG. P8.133 FIG. P8.134
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FIG. P8.135

20 kN

35 mm

A B175 mm

FIG. P8.136

FIG. P8.137
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8.138 The shaft, supported by bearings at A and D, is loaded as shown in the
figure. Determine the smallest allowable radius of the shaft if the normal stress is not
to exceed 18 ksi. Neglect the stress due to the transverse shear force.

8.139 The plastic tube carries the 550-N load in addition to an internal pressure
of 2 MPa. Find the principal stresses in the tube at (a) point A; and (b) point B.

Computer Problems

C8.1 The link shown in the figure carries a tensile force P with an o¤set d. Given
P, d, and the dimensions of the cross section, write an algorithm that computes the
maximum tensile and compressive stresses on section m-n. (a) Run the algorithm with
the following data: P ¼ 4000 lb, d ¼ 2 in., h ¼ 3 in., tw ¼ 0:375 in., t ¼ 0:5 in.,
a ¼ 1:5 in., and b ¼ 1:0 in. (b) If the working normal stress is 10 000 psi, find by
experimentation the optimal values of a and b (the values that minimize aþ b), the
other data being as in part (a).

C8.2 Given the stresses sx, sy, and txy, construct an algorithm that plots the nor-
mal and shear stresses acting on the inclined plane m-n from y ¼ 0 to 180�, and
compute the principal stresses and the corresponding values of y. Run the algorithm
with (a) sx ¼ 60 MPa, sy ¼ �30 MPa, and txy ¼ 80 MPa; and (b) sx ¼ 80 MPa,
sy ¼ 80 MPa, and txy ¼ �30 MPa.

C8.3 Three strain gages are arranged as shown. Given the three angles (ya, yb,
yc), the strain readings (�a, �b, �c), and the material constants (E, n), write an
algorithm that computes the principal stresses and the principal directions (angles y).
Run the algorithm with E ¼ 200 GPa, n ¼ 0:3, and (a) ya ¼ 0, yb ¼ 60�, yc ¼ 120�,
�a ¼ 300� 10�6, �b ¼ �400� 10�6, �c ¼ 100� 10�6; and (b) ya ¼ 30�, yb ¼ 75�,
yc ¼ 120�, �a ¼ 100� 10�6, �b ¼ 300� 10�6, �c ¼ �200� 10�6.

FIG. P8.138
FIG. P8.139

FIG. C8.1

FIG. C8.2 FIG. C8.3
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C8.4 The thin-walled rectangular tube of length L is loaded by the force P that has
an eccentricity e. The circumference of the tube is S ¼ 2ðhþ bÞ, where h and b are
the mean dimensions of the cross section. The wall thickness is t. Given P, L, e, t,
and S, devise an algorithm that plots the maximum normal stress in the tube against
h in the range h ¼ 0:1S to 0:4S. Experiment with the algorithm to determine the
smallest possible S and the corresponding values of h and b if P ¼ 2000 lb, t ¼ 0:125
in., sw ¼ 10 000 psi, and (a) L ¼ e ¼ 1:5 ft; and (b) L ¼ 2 ft, e ¼ 1:0 ft. (Hint: The
maximum normal stress occurs at point A.)

C8.5 The monel alloy bar AB of diameter d and length L is built into a fixed sup-
port at B and rigidly attached to the arm OA. When the couple C is applied to OA,
the arm rotates about O though the angle y as shown, causing bending and torsion of
bar AB. Write an algorithm that plots the absolute maximum shear stress in bar AB

as a function of y from y ¼ 0 to 180�. Assume that the bar remains elastic and
neglect deformation of the arm. Also determine the maximum allowable values of y

and C if the maximum shear stress is not to exceed the yield stress typ of the alloy.
Use the following data: L ¼ 60 in., b ¼ 6 in., d ¼ 0:25 in., E ¼ 26� 106 psi, n ¼ 0:28,
and typ ¼ 50� 103 psi. Neglect the stress due to the transverse shear force.

C8.6 The steel, thin-walled pressure vessel of length L, mean diameter D, and wall
thickness t is simply supported at each end. The vessel is filled with water under
pressure p. There is additional loading due to the weights of the vessel and the water.
Write an algorithm that computes the maximum in-plane shear stress tmax and the
absolute maximum shear stress tabs at any point in the vessel defined by the coor-
dinates x and y. Plot tmax and tabs as functions of y (0 a y a 360�) at x ¼ 0 and
x ¼ L. Use the following data: L ¼ 10 m, D ¼ 2 m, t ¼ 10 mm, and p ¼ 250� 103

Pa. The mass densities are 7850 kg/m3 for steel and 1000 kg/m3 for water. (Hint:
Model the vessel as a simply supported beam carrying a constant internal pressure
p and a uniformly distributed load due to the weights of the vessel and the water.)

FIG. C8.6

FIG. C8.4 FIG. C8.5
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9
Composite Beams

9.1 Introduction

The terms composite beam and reinforced beam are applied to beams that are
made of two or more di¤erent materials. Usually, the material that forms
the bulk of a composite beam is inexpensive but not su‰ciently strong in
bending to carry the loading by itself. The function of the reinforcement is to
increase the flexural strength of the beam.

The flexure formula s ¼ �My=I derived in Sec. 5.2 does not apply to
composite beams because it is based on the assumption that the beam is
homogeneous. However, we can modify the formula by transforming the
composite cross section into an equivalent homogeneous section that has
the same bending sti¤ness. The other assumptions made in the derivation of

Concrete columns with protruding steel

reinforcing rods. The reinforcement

increases the strength of concrete beams

and columns. In particular, reinforcing

steel is essential in resisting tension, since

the tensile strength of concrete is

negligible. This chapter shows how to

analyze beams consisting of two or more

di¤erent materials, including reinforced

concrete beams. Courtesy of Rihardzz/

Shutterstock.
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the flexure formula are retained for composite beams. The most important
of these is that plane cross sections remain plane upon deformation.

9.2 Flexure Formula for Composite Beams

Figure 9.1(a) shows the cross section of a beam composed of two materials
of cross-sectional areas A1 and A2. We denote the corresponding moduli of
elasticity by E1 and E2. The materials are assumed to be bonded together so
that no slip occurs between them during bending. If we retain the assump-
tion that plane cross sections remain plane, the normal strain is, as for ho-
mogeneous beams,

� ¼ � y

r

where y is the distance above the neutral axis and r represents the radius of
curvature of the beam, as illustrated in Fig. 9.1(b). It follows that the bend-
ing stresses in the two materials are

s1 ¼ �
E1

r
y s2 ¼ �

E2

r
y (a)

which result in the stress distribution shown in Fig. 9.1(c) (in drawing the
figure, we assumed that E2 > E1).

To locate the neutral axis, we apply the equilibrium condition that the
axial force acting on the cross section is zero:ð

A1

s1 dAþ
ð

A2

s2 dA ¼ 0

Substituting the stresses from Eq. (a), we getð
A1

E1

r
y dAþ

ð
A2

E2

r
y dA ¼ 0 (b)

When we cancel r and let

E2

E1
¼ n (9.1)

Eq. (b) can be written as ð
A1

y dAþ
ð

A2

yðn dAÞ ¼ 0 (c)

Equation (c) shows that the area of material 2 is weighted by the factor n

when we determine the location of the neutral axis. A convenient way to
account for this weighting is to introduce the equivalent, or transformed,
cross section shown in Fig. 9.2, which is made entirely of material 1. The
weighting factor is taken into account by multiplying the width of area A2

by n. Thus, the neutral axis of the original cross section passes through the

centroid C of the transformed cross-sectional area.

FIG. 9.1 Bending of a composite
beam made of two materials.
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The equilibrium condition that the resultant moment of the stress dis-
tribution equals the bending moment M acting on the cross section isð

A1

s1y dAþ
ð

A2

s2y dA ¼ �M

(the minus sign is due to the sign convention for M—positive M causes
compression in the region y > 0). Substituting the stresses from Eq. (a), we
obtain ð

A1

E1

r
y2 dAþ

ð
A2

E2

r
y2 dA ¼M

which can be written in the form

1

r
¼ M

E1I
(9.2a)

where

I ¼
ð

A1

y2 dAþ
ð

A2

y2ðn dAÞ (9.2b)

is the moment of inertia of the transformed cross-sectional area about the
neutral axis.

Substituting 1=r from Eq. (9.2a) into Eqs. (a) yields the modified flex-
ure formulas

s1 ¼ �
My

I
s2 ¼ �n

My

I
(9.3)

FIG. 9.2 Transforming the cross section to an equivalent section made entirely of
material 1.
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Sample Problem 9.1

The wood beam in Fig. (a) is reinforced on the bottom with a steel strip. Determine
the maximum bending moment that can be carried safely by the beam if the allow-
able bending stresses are 120 MPa for steel and 8 MPa for wood. Use Est=Ewd ¼ 20.

Solution
Although it is not common practice to reinforce only one side of a wood beam, this
sample problem illustrates many of the concepts encountered later in our discussion
of reinforced concrete beams.

In this problem, we have n ¼ Est=Ewd ¼ 20, which results in the transformed
section shown in Fig. (b), which is made of wood. The transformed section consists
of two rectangles with the areas Awd ¼ 150ð300Þ ¼ 45� 103 mm2 and nAst ¼
20ð75� 10Þ ¼ 15� 103 mm2. The centroids of these areas are located at ywd ¼
150þ 10 ¼ 160 mm and yst ¼ 10=2 ¼ 5 mm from the bottom of the section. The
centroidal coordinate y of the entire transformed section is given by (the common
factor 103 has been canceled)

y ¼ Awd ywd þ nAst yst

Awd þ nAst
¼ 45ð160Þ þ 15ð5Þ

45þ 15
¼ 121:25 mm

Recalling that the moment of inertia of a rectangle is I ¼ bh3=12þ Ad 2, we find that
the moment of inertia of the transformed cross section about the neutral axis
becomes

I ¼ 150ð300Þ3

12
þ ð45� 103Þð160� 121:25Þ2

" #

þ 1500ð10Þ3

12
þ ð15� 103Þð121:25� 5Þ2

" #

¼ 607:9� 106 mm4 ¼ 607:9� 10�6 m4

From Fig. (b), the distances from the neutral axis to the top and bottom of the
cross section are

ctop ¼ ð300þ 10Þ � 121:25 ¼ 188:75 mm

cbot ¼ 121:25 mm
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The largest bending stress in each material is obtained from the modified flexure
formula

swd ¼
Mctop

I
(a)

sst ¼ n
Mcbot

I
(b)

Replacing swd in Eq. (a) with the working stress for wood and solving for the bend-
ing moment, we get

M ¼ swdI

ctop
¼ ð8� 106Þð607:9� 10�6Þ

188:75� 10�3
¼ 25:8� 103 N �m

Similarly, replacing sst in Eq. (b) with the working stress for steel gives

M ¼ sstI

ncbot
¼ ð120� 106Þð607:9� 10�6Þ

20ð121:25� 10�3Þ ¼ 30:1� 103 N �m

The smaller of the two values is the maximum bending moment that can be
carried safely by the beam. Thus,

Mmax ¼ 25:8 kN �m Answer

as determined by the stress in wood. In this case, the beam is said to be over-reinforced
because there is an excess of steel.

1
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Problems

9.1 The wood beam is reinforced with steel plates rigidly attached at the top and
bottom. The allowable stresses are 8 MPa for wood and 120 MPa for steel, and the
ratio of the elastic moduli is Est=Ewd ¼ 15. Determine the increase in the allowable
bending moment due to the reinforcement.

9.2 Solve Prob. 9.1 assuming that the reinforcing plates are made of aluminum for
which the working stress is 80 MPa. Use Eal=Ewd ¼ 5.

9.3 A simply supported wood beam, reinforced with steel plates, has the cross
section shown. The beam carries a uniformly distributed load of 16 kN/m over the
middle half of its 4-m span. If Est=Ewd ¼ 15, determine the largest bending stresses in
the wood and the steel.

9.4 The wood beam is reinforced at the bottom by a steel plate of width b ¼ 4 in.
If Est=Ewd ¼ 20, determine the largest vertical concentrated load that can be applied
at the center of an 18-ft simply supported span. The working stresses are 1.2 ksi for
wood and 18 ksi for steel.

9.5 Determine the width b of the steel plate fastened to the bottom of the wood
beam so that the working stresses of 1.2 ksi for wood and 18 ksi for steel are reached
simultaneously. Use Est=Ewd ¼ 20.

9.6 A simply supported wood beam is reinforced with a steel plate of width b as
shown in the figure. The beam carries a uniformly distributed load (including the
weight of the beam) of intensity 300 lb/ft over its 20-ft span. Using b ¼ 4 in. and
Est=Ewd ¼ 20, determine the maximum bending stresses in the wood and the steel.

9.7 The wood beam is reinforced by steel plates of width b at the top and bottom.
Determine the smallest value of b necessary to resist a 40-kN �m bending moment.
Assume that Est=Ewd ¼ 15 and that the allowable bending stresses are 10 MPa for
wood and 120 MPa for steel.

9.8 A Wood beam, 150 mm wide and 200 mm deep, is reinforced at the top and
bottom with 6-mm-thick aluminum plates of width b. The maximum bending mo-
ment in the beam is 14 kN �m. If the working stresses in bending are 10 MPa for
wood and 80 MPa for aluminum, determine the smallest allowable value of b. Use
Eal=Ewd ¼ 5.

200 mm

96 mm 8 mm

240 mm

8 mm96 mm

FIG. P9.1–P9.3

FIG. P9.4–P9.6 FIG. P9.7
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9.9 A pair of C250 � 30 steel channels are secured to the wood beam by two rows
of bolts. The depth of the wood is the same as the 254-mm depth of a channel. If
bending occurs about the z-axis, determine the largest allowable bending moment. Use
Est=Ewd ¼ 20 and the working bending stresses of 8 MPa for wood and 120 MPa for steel.

9.10 For the beam in Prob. 9.9, find the largest allowable bending moment if the
bending occurs about the y-axis.

9.11 The aluminum beam with the dimensions of a W8 � 40 section is reinforced
by bolting steel plates to its flanges. The allowable bending stresses are 18 ksi for steel
and 15 ksi for aluminum. Using Est=Eal ¼ 3, determine (a) the percentage increase in
the allowable bending moment due to the reinforcement; and (b) the percentage in-
crease in the flexural rigidity EI.

9.12 A vinyl cylinder of 50-mm radius is encased in a 3-mm-thick aluminum tube to
form a composite beam with the cross section shown. Determine the maximum bending
stress in each component when the beam is subjected to a bending moment of 6 kN �m.
The elastic moduli for vinyl and aluminum are 3.1 GPa and 73 GPa, respectively.

9.13 A composite beam with the cross section shown consists of a 50-mm-radius
wooden core made of spruce and a 3-mm-thick vinyl cover. The elastic moduli and
working stresses for the materials are:

Material E (GPa) sw (MPa)

Spruce 13:0 40

Vinyl 3:1 30

Determine the maximum safe bending moment that can be applied to the beam.

9.3 Shear Stress and Deflection

in Composite Beams

Section 9.2 discussed the bending stresses in composite beams. Here we
consider the shear stresses and deflections in beams of this type.

a. Shear stress

The equation for shear stress

t ¼ VQ

Ib
(5.8, repeated)

FIG. P9.9, P9.10 FIG. P9.11

3 mm
50 mm

FIG. P9.12, P9.13
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derived in Sec. 5.4 also applies to composite beams, provided that Q and I

are calculated using the transformed section and b is the width of the original

cross section.
To arrive at this conclusion, consider a composite beam with the cross

section shown in Fig. 9.3(a). The shear stress t acting on the horizontal sec-
tion a-a can be obtained from equilibrium by using the free-body diagram in
Fig. 9.3(b). The free body is bounded by two cross sections a distance dx apart
and the section a-a. The equilibrium equation SFx ¼ 0 yields tb dxþ dP ¼ 0,
or

t ¼ � 1

b

dP

dx
(a)

where P is the normal force acting on the cross-sectional area above a-a (the
area below a-a could also be used). From the expressions for the bending
stresses in Eqs. (9.3), this force is

P ¼
ð

A 0
1

s1 dAþ
ð

A 0
2

s2 dA ¼ �
ð

A 0
1

My

I
dA�

ð
A 0

2

n
My

I
dA

where the areas A 01 and A 02 are identified in Fig. 9.3(b), I is the moment of
inertia of the transformed cross section, and n ¼ E2=E1. When we rewrite
this equation as

P ¼ �M

I

ð
A 0

1

y dAþ
ð

A 0
2

yðn dAÞ
" #

¼ �M

I
Q (b)

we see that Q is the first moment of the transformed cross-sectional
area above a-a, taken about the neutral axis. Therefore, dP=dx ¼
�ðdM=dxÞðQ=IÞ ¼ �VQ=I , which, upon substitution into Eq. (a), yields
Eq. (5.8).

b. Deflection

According to Eq. (9.2a), the moment-curvature relationship for a composite
beam is 1=r ¼M=ðE1IÞ. Because 1=r ¼ d 2v=dx2, the di¤erential equation
for the deflection v becomes

d 2v

dx2
¼ M

E1I
(9.4)

Therefore, the deflections of composite beams can be computed by the
methods used for homogeneous beams, provided we use the flexural rigidity
E1I of the transformed cross section.

FIG. 9.3 (a) Cross section of a composite beam; (b) free-body diagram used to
determine the longitudinal shear stress.
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Sample Problem 9.2

The cross section of a simply supported beam in Fig. (a) has a wood core and
aluminum face plates. The beam is 72 in. long and carries a 6000-lb concentrated
load 24 in. from the right end of the beam. Determine (1) the maximum vertical shear
stress in the beam and (2) the displacement at midspan. Use Ewd ¼ 1:5� 106 psi and
Eal ¼ 10� 106 psi.

Solution

The transformed cross section, consisting of wood, is shown in Fig. (b). Note that the
widths of the rectangles originally occupied by the aluminum plates are increased by
the factor Eal=Ewd ¼ 20=3.1 The neutral axis is located by symmetry. The moment of
inertia of the transformed section about the neutral axis is

I ¼
X bh3

12
þ Ad 2

� �
¼ 2ð8Þ3

12
þ 2

ð40=3Þð0:4Þ3

12
þ 40

3
� 0:4

� �
ð4:2Þ2

" #
¼ 273:6 in:4

Part 1

Because the maximum vertical shear stress occurs at the neutral axis, we need the first
moment Q of the upper (or lower) half of the transformed section about the neutral
axis. Referring to Fig. (b), we have

Q ¼
X

A0y 0 ¼ ð2� 4Þð2Þ þ 40

3
� 0:4

� �
ð4:2Þ ¼ 38:40 in:3

From the shear force diagram in Fig. (c), we see that the largest magnitude of the
shear force is Vmax ¼ 4000 lb. Therefore, the maximum vertical shear stress in the
beam becomes

tmax ¼
VmaxQ

Ib
¼ 4000ð38:40Þ

273:6ð2Þ ¼ 281 psi Answer

1We could also use a transformed cross section consisting of aluminum. In that case, the face

plates would retain their original widths, but the original width of the core would be multiplied

by the factor Ewd=Eal ¼ 3=20.
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Part 2

The formula given in Table 6.3 for the midspan displacement of a simply supported
beam carrying a concentrated load is

dmid ¼
Pb

48EI
ð3L2 � 4b2Þ

where, in our case, b ¼ 24 in. Recalling that for a composite beam we must use the
flexural rigidity EwdI of the transformed section, we get

dmid ¼
6000ð24Þ

48ð1:5� 106Þð273:6Þ ½3ð72Þ2 � 4ð24Þ2� ¼ 0:0968 in: Answer

The above displacement does not include the contribution of vertical shear.
Usually the e¤ect of shear on the displacements is negligible, but this is not necessa-
rily true for composite beams. In sandwich construction, where the faces are made of
much sti¤er material than the core, shear stress in the core may cause significant
displacements. The reason is that most of the shear force is resisted by the core,
which is soft, whereas the bending moment is carried mainly by the sti¤er faces.

1
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Problems

9.14 Compute the largest allowable shear force in a beam with a cross section as
described in Prob. 9.4. Use b ¼ 4:5 in., Est=Ewd ¼ 20, and a working shear stress of
140 psi for wood.

9.15 For the beam in Prob. 9.9, assume that the channels are fastened to the wood by
20-mm bolts spaced 300 mm apart along the beam. Assuming Est=Ewd ¼ 20, determine
the average shear stress in the bolts caused by a 40-kN shear force acting along the y-axis.

9.16 Solve Prob. 9.15 if the 40-kN shear force acts along the z-axis.

9.17 The beam in Prob. 9.1 carries a uniformly distributed load of 20 kN/m on its
entire simply supported span of length 4 m. If Est ¼ 200 GPa and Ewd ¼ 10 GPa,
compute the midspan deflection.

9.18 The figure shows the cross section of an experimental beam that is fabricated
by firmly fastening together three materials. Determine the shear stress developed
between the wood and steel, and between the wood and aluminum. Express your results
in terms of the vertical shear force V. Use Est ¼ 30� 106 psi;Ewd ¼ 1:5� 106 psi, and
Eal ¼ 10� 106 psi.

9.19 A composite beam with the cross section shown is made by joining two 4-in.
by 8-in. wood planks with 0.375-in.-thick steel plates. Determine the largest vertical
shear force that the beam can carry if the shear stress in the wood is limited to 500 psi.
Use Est=Ewd ¼ 15.

9.20 The beam described in Prob. 9.4 carries a 2500-lb concentrated force at
the middle of its 18-ft simply supported span. Determine the midspan deflection of
the beam using E ¼ 29� 106 psi for steel.

9.4 Reinforced Concrete Beams

Concrete is a popular building material because it is relatively inexpensive.
Although concrete has approximately the same compressive strength as soft
wood, its tensile strength is practically zero. For this reason, concrete beams
are reinforced with longitudinal steel bars embedded in the tensile side of
the beam. Fortunately, there is a natural bond between concrete and steel,
so that no slipping occurs between them during bending. This allows us to
apply the principles developed in the preceding section.2

It is usually assumed that concrete carries no tensile stress. The tensile
side of the concrete thus serves merely to position the steel that carries the en-
tire tensile load. If there is only one row of steel rods, as shown in Fig. 9.4(a),
the steel can be assumed to be uniformly stressed (the diameters of the rods are
small compared to the depth of the cross section). Consequently, the trans-
formed cross section of the beam is as shown in Fig. 9.4(b). The shaded por-
tions indicate areas that are e¤ective in resisting bending. The ratio n ¼ Est=Eco

is usually between 6 and 10, depending upon the quality of the concrete.

2Su‰cient bond is developed in long beams to permit the steel bars to be laid straight. How-

ever, in short beams, the ends are usually bent over to anchor the steel more securely in the

concrete.

FIG. P9.18
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FIG. P9.19
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a. Elastic Analysis

As shown in Fig. 9.4, we denote the distance between the reinforcement and
the top of the beam by d and the depth of the concrete in the compressive
zone by h. Because h also locates the neutral axis of the cross section, it can
be found from the condition that the first moment of the transformed cross
section about the neutral axis is zero. This yields

ðbhÞ h
2
� nAstðd � hÞ ¼ 0

which can be written as

h

d

� �2

þ 2nAst

bd

h

d
� 2nAst

bd
¼ 0 (9.5)

where b is the width of the original beam and Ast denotes the total area of
the reinforcement.

After solving this quadratic equation for h=d, we could compute the
moment of inertia I of the transformed section and then find the maximum
compressive stress in concrete and the tensile stress in steel from

ðscoÞmax ¼
Mh

I
sst ¼ n

Mðd � hÞ
I

(9.6)

However, for the rectangular cross section in Fig. 9.4(a), it is often easier to
obtain the stresses from the formulas derived below.

From the stress distribution on the cross section in Fig. 9.4(c), we see
that the resultant force of the compressive stress in the concrete is

C ¼ 1

2
bhðscoÞmax

which acts at the centroid of the stress diagram—that is, at the distance h=3
from the top of the section. The tensile force

FIG. 9.4 (a) Cross section of a reinforced concrete beam; (b) equivalent concrete
cross section; (c) normal stresses acting on the cross section.
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T ¼ Astsst

carried by the steel has the same magnitude as C, so that the two forces form
a couple with the moment arm d � h=3. Because this couple is equal to the
bending moment M acting on the cross section, we have the following useful
relationships between the bending moment and the stresses:

M ¼ 1

2
bh d � h

3

� �
ðscoÞmax ¼ d � h

3

� �
Astsst (9.7)

Either Eqs. (9.6) or (9.7) can be used for the computation of stresses.

b. Ultimate moment analysis

Ultimate moment analysis is the basis for reinforced concrete design in most
countries. In the United States, the method for computing the ultimate mo-
ment is prescribed by the American Concrete Institute (ACI) Code 318-08.
The codes of other countries are similar, di¤ering mainly in minor details.
Here we discuss a simplified description of the method of analysis based
upon ACI Code 318-08. For the sake of brevity, we limit our discussion
to beams made of ‘‘moderate’’ strength concrete and ‘‘medium-strength’’
reinforcing bars, materials that are commonly used in construction.

As shown in the stress-strain diagram in Fig. 9.5, moderate-strength
concrete typically has an ultimate compressive strength of about 4000 psi,
which corresponds to a strain of approximately 0.0012. However, experience
shows that the concrete stays intact well beyond this magnitude of strain,
and does not crush until the strain reaches 0.003.

The stress-strain diagram of the steel used in moderate-strength
reinforcement (grade 60 steel bars) is shown in Fig. 9.6. These bars are per-
fectly elastic up to the yield stress of 60 ksi. When deformed beyond the
yield strain of approximately 0.002, some strain hardening takes place,
which is ignored in the analysis. In other words, the reinforcement is ideal-
ized as an elastic, perfectly plastic material, as shown by the horizontal
dashed line in Fig. 9.6.

As mentioned previously, failure of a reinforced concrete beam occurs
when the compressive strain in the concrete reaches the crushing strain of
0.003. The type of failure depends upon the amount of reinforcement. If the

0.0012

σ
σult = 4000 psi

0.003

Failure by crushing

0

FIG. 9.5 Compressive stress-strain diagram for concrete.

9.4 Reinforced Concrete Beams 361

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



beam is over-reinforced, the concrete will crush before the stress in the
reinforcement reaches the yield value. The resulting failure is instantaneous—
there is no warning of impending collapse. If the beam is under-reinforced, the
reinforcement will yield before the concrete crushes. The under-reinforced
mode of failure is preceded by warning signs, such as cracking of concrete on
the tension side of the beam and excessive deflections. Since this type of failure
is clearly the preferred mode, beams are usually designed so that they are
under-reinforced.

Figure 9.7(a) shows the cross section of a rectangular reinforced con-
crete beam of width b. The reinforcement, embedded at a distance d from
the top of the beam, has the total cross-sectional area Ast. The distributions
of strain and stress in Figs. 9.7(b) and (c), respectively, are used to compute
the ultimate bending moment for the beam3. These diagrams assume that
the beam is under-reinforced and on the verge of failure.

Figure 9.7(b) shows the strain distribution at the instant when the
concrete crushes. This distribution is based on the usual hypothesis that
plane cross sections remain plane during bending, which results in the linear
distribution of strain. Note that the maximum compressive strain in the
concrete equals the crushing strain 0.003. Using similar triangles, we get

eco

h
¼ est

d � h

where h is the distance from the top of the beam to the neutral axis, as
shown in Fig. 9.7(b). Solving for est and substituting eco ¼ 0:003, the strain
in the reinforcement at the instant of failure becomes

est ¼ 0:003
d � h

h (9.8)

Although the strain distribution in the concrete is linear, the dis-
tribution of stress, shown in Fig. 9.7(c), is nonlinear because the concrete is
stressed beyond its elastic limit. The ACI Code specifies that the resultant
force C that causes the stress is

C ¼ 0:72bhðscoÞalt (9.9)

0.002

Idealization

Actual

0 0.130

σ
σyp = 60 ksi

FIG. 9.6 Idealized tensile stress-
strain diagram for grade 60 steel.

(a)

b

Ast

T = Ast(σst)yp

C = 0.72bh(σco)ult

(σco)ult

0.425h

 co = 0.003

(σst)yp st

(b) (c)

d

h

FIG. 9.7 (a) Beam cross section; (b) strain distribution when the concrete crushes;
(c) resultant forces in the steel and concrete according to ACI code.

3For design, the ACI Code ‘‘allows the use of an equivalent rectangular compressive stress dis-

tribution (stress block) to replace the more exact concrete stress distribution.’’
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and its line of action is located at the distance 0.425h below the top of the
cross section. These specifications are the result of numerous analytical and
experimental studies performed on reinforced concrete beams.

Because the beam is assumed to be under-reinforced, the reinforcing
steel is yielding prior to and during the failure of the beam. Therefore, the
tensile force T carried by the reinforcement is determined by the yield stress
ðsstÞyp of the steel:

T ¼ AstðsstÞyp (9.10)

The location (distance h) of the neutral axis can be found from the
equilibrium equation:

C ¼ T 0:72bhðscoÞult ¼ AstsstÞyp

which yields

h ¼
AstðsstÞyp

0:72bðscoÞult (9.11)

The bending moment that results in failure is the couple formed by C

and T:

Mnom ¼ ðd � 0:425hÞC ¼ ðd � 0:425hÞT (9.12)

The moment Mnom in Eq. (9.12) is referred to as the nominal ultimate mo-

ment. The ACI Code requires that this moment be reduced by the factor �
for design purposes. In other words, the ultimate moment of the beam is to
be taken as

Mult ¼ fMnom (9.13a)

where

f ¼ 0:9 if est � 0:005
0:483þ 83:3est if 0:002 � est � 0:005

�
(9.13b)

and est is the strain in the reinforcement computed from Eq. (9.8). As seen from
Eq. (9.13b), it is advantageous to have est � 0:005 in order to maximize f. The
factor f is essentially a safety factor that allows for variations in materials and
construction. It also takes into account the fact that under-reinforcement
increases the safety of the beam.

The usual procedure of determining the ultimate moment for a given
design consists of the following steps:

. Compute the distance h from Eq. (9.11).. Calculate the nominal ultimate moment Mnom from Eq. (9.12).. Compute the maximum strain est in the reinforcement from Eq. (9.8).. Determine � using Eq. (9.13b).. Obtain the ultimate moment Mult from Eq. (9.13a).
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Sample Problem 9.3

A reinforced concrete beam with the cross section shown has the properties b ¼ 300
mm, d ¼ 500 mm, Ast ¼ 1500 mm2, and n ¼ Est=Eco ¼ 8. Determine the maximum
stress in the concrete and the stress in the steel produced by a bending moment of
70 kN �m. Use elastic analysis.

Solution
We must first determine the distance h of the neutral axis from the top of the beam
using Eq. (9.5):

h

d

� �2

þ 2nAst

bd

h

d
� 2nAst

bd
¼ 0 (a)

For the given beam, we have

2nAst

bd
¼ 2ð8Þð1500Þ

300ð500Þ ¼ 0:160

so that Eq. (a) becomes

h

500

� �2

þ 0:160
h

500

� �
� 0:160 ¼ 0

The positive root of this equation is h ¼ 163:96 mm ¼ 0:163 96 m.
Using the first expression in Eq. (9.7), we have

M ¼ 1

2
bh d � h

3

� �
ðscoÞmax

70� 103 ¼ 1

2
ð0:3Þð0:163 96Þ 0:5� 0:163 96

3

� �
ðscoÞmax

which yields for the maximum compressive stress in the concrete

ðscoÞmax ¼ 6:39� 106 Pa ¼ 6:39 MPa Answer

The second expression in Eq. (9.7) gives

M ¼ d � h

3

� �
Astsst

70� 103 ¼ 0:5� 0:163 96

3

� �
ð1500� 10�6Þsst

Solving, we get for the tensile stress in the steel reinforcement

sst ¼ 104:8� 106 Pa ¼ 104:8 MPa Answer

1
Sample Problem 9.4

Figure (a) shows a reinforced concrete T-beam, where the cross-sectional area of the
steel reinforcement is 2400 mm2. Using n ¼ Est=Eco ¼ 8 and the working stresses of
12 MPa for concrete and 140 MPa for steel, determine the largest bending moment
that the beam can carry. Use elastic analysis.
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Solution

We first locate the neutral axis of the transformed cross section shown in Fig. (b).
Because the cross section is not rectangular, we cannot use Eq. (9.5). Therefore, we
find the neutral axis from the condition that the first moment of the transformed
cross section about the neutral axis is zero. Letting h be the distance between the
neutral axis and the top of the beam, we see that the transformed section consists of
three rectangles. The areas and the centroidal coordinates of these rectangles are

A1 ¼ 750� 100 ¼ 75� 103 mm2 y1 ¼ ðh� 50Þ mm

A2 ¼ 400ðh� 100Þ mm2 y2 ¼ ðh� 100Þ=2 mm

A3 ¼ 19:20� 103 mm2 y3 ¼ �ð600� hÞ mm

Setting the first moment
P

Ai yi of the transformed section about the neutral axis to
zero yields

ð75� 103Þðh� 50Þ þ 400
ðh� 100Þ2

2
� ð19:20� 103Þð600� hÞ ¼ 0

which has the positive root

h ¼ 155:55 mm
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It is convenient to compute the moment of inertia by considering the area
above the neutral axis to be the di¤erence of the two rectangles shown in Fig. (c).
This yields

I ¼ 750ð155:55Þ3

3
� 350ð55:55Þ3

3
þ ð19:20� 103Þð444:45Þ2

¼ 4714� 106 mm4 ¼ 4714� 10�6 m4

From Eq. (9.6), the largest bending moment that can be supported without
exceeding the working stress in concrete is

M ¼ ðscoÞwI

h
¼ ð12� 106Þð4714� 10�6Þ

155:55� 10�3
¼ 364� 103 N �m

The largest safe bending moment determined by the working stress in steel is

M ¼ ðsstÞwI

nðd � hÞ ¼
ð140� 106Þð4714� 10�6Þ

8ð444:45� 10�3Þ ¼ 185:6� 103 N �m

The maximum allowable bending moment is the smaller of the preceding two values;
namely,

Mmax ¼ 185:6 kN �m Answer

Because the stress in the steel is the limiting condition, the beam is under-reinforced.

1
Sample Problem 9.5

Using the ACI Code, compute the ultimate moment for a reinforced concrete beam
with d ¼ 18 in:; b ¼ 8 in:, and Ast ¼ 1:25 in:2. The material properties are
ðscoÞult ¼ 4000 psi and ðsstÞyp ¼ 60 000 psi.

Solution

We find the location of the neutral axis from Eq. (9.11):

h ¼
AstðsstÞyp

0:72bðscoÞult

¼ 1:25ð60 000Þ
0:72ð8Þð4000Þ ¼ 3:256 in:

Using Eq. (9.12) the nominal ultimate moment is computed as follows:

Mnom ¼ ðd � 0:425hÞT ¼ ðd � 0:425hÞAstðsstÞyp

¼ ð18� 0:425� 3:256Þð1:25Þð60 000Þ
¼ 1:246� 106 lb � in:

The strain in the reinforcement at failure is obtained from Eq. (9.8):

est ¼ 0:003
d � h

h
¼ 0:003

18� 3:256

3:256

¼ 0:01358

Because est > 0:005, we find from Eq. (9.13b) that f ¼ 0:9. Using Eq. (9.13a) the
ultimate moment is found to be

Mult ¼ 0:9Mnom ¼ 0:9 ð1:246� 106Þ
¼ 1:121� 106 lb � in: Answer
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Problems

Solve Probs. 9.21–9.34 using elastic analysis.

9.21 The properties of the reinforced concrete beam are b ¼ 250 mm, d ¼ 450 mm,
and Ast ¼ 1500 mm2. Compute h using (a) Est=Eco ¼ 6; and (b) Est=Eco ¼ 10.

9.22 The properties of the reinforced concrete beam are b ¼ 8 in:; d ¼ 18 in:;
Ast ¼ 1:25 in:2; Est=Eco ¼ 8, and ðsstÞyp ¼ 60 000 psi. (a) Determine the bending
stress that would cause the reinforcement to yield. (b) Compute the corresponding
maximum stress in the concrete.

9.23 Solve Prob. 9.22 if d ¼ 15 in., with all other data remaining unchanged.

9.24 For the reinforced concrete beam, determine the maximum stresses in the
steel and the concrete caused by a 60-kN �m bending moment. Use b ¼ 400 mm,
d ¼ 600 mm, Ast ¼ 1500 mm2, and Est=Eco ¼ 8.

9.25 For the reinforced concrete beam, b ¼ 500 mm, d ¼ 750 mm, Ast ¼ 6000
mm2, and Est=Eco ¼ 10. Find the maximum stresses in the steel and the concrete
caused by a 270-kN �m bending moment.

9.26 The properties of the reinforced concrete beam are b ¼ 300 mm, d ¼ 450
mm, Ast ¼ 1400 mm2, and Est=Eco ¼ 8. If the working stresses are 12 MPa for
concrete and 140 MPa for steel, determine the largest bending moment that may be
applied safely.

9.27 For the reinforced concrete beam, b ¼ 10 in., d ¼ 18 in., Ast ¼ 2 in.2, and
Est=Eco ¼ 10. There is 2 in. of concrete below the reinforcing rods. In addition to its
own weight, the beam carries a uniformly distributed load of intensity w0 on a simply
supported span 12 ft long. Determine the largest allowable value of w0 if the working
stresses are 1.8 ksi for concrete and 20 ksi for steel. The concrete weighs 150 lb/ft3

(the weight of steel may be neglected).

9.28 The reinforced concrete beam has the properties b ¼ 12 in., d ¼ 18 in., and
Est=Eco ¼ 8. When an 80-kip � ft bending moment is applied, the maximum
compressive stress in the concrete is 1400 psi. Determine the stress in the steel and the
cross-sectional area of the steel reinforcement.

9.29 The properties of the reinforced concrete T-beam are b1 ¼ 30 in., h1 ¼ 4 in.,
b2 ¼ 12 in., h2 ¼ 18 in., Ast ¼ 4:5 in.2, and Est=Eco ¼ 8. Find the maximum stresses
in the concrete and the steel produced by a 80-kip � ft bending moment.

9.30 For the reinforced concrete T-beam, b1 ¼ 500 mm, h1 ¼ 150 mm, b2 ¼ 250
mm, h2 ¼ 500 mm, Ast ¼ 3300 mm2, and Est=Eco ¼ 8. Determine the maximum
bending moment that can be applied so that the stresses do not exceed 12 MPa in
concrete and 140 MPa in steel.

FIG. P9.21–P9.28

FIG. P9.29–P9.30
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9.31 The dimensions of the reinforced concrete beam are b ¼ 300 mm, d ¼ 500
mm, and a ¼ 75 mm. The total cross-sectional areas of the steel reinforcing rods are
At ¼ 1200 mm2 on the tension side and Ac ¼ 400 mm2 on the compression side. If
the allowable stresses are 12 MPa for concrete and 140 MPa for steel, determine the
maximum bending moment M that the beam can carry. Use Est=Eco ¼ 10.

9.32 Solve Prob. 9.31 if the sense of the bending moment is reversed (the direction
of M is opposite to that shown in the figure).

9.33 The reinforced concrete beam with dimensions b ¼ 12 in., d ¼ 18 in.,
and a ¼ 3 in. carries a bending moment M ¼ 80 kip � ft as shown in the figure. The
cross-sectional areas of the steel reinforcement are At ¼ 4 in.2 on the tension side and
Ac ¼ 2 in.2 on the compression side. Using Est=Eco ¼ 8, calculate the maximum com-
pressive stress in the concrete and the stresses in the reinforcing rods.

9.34 Solve Prob. 9.33 if Ac ¼ 4 in.2, with all other data remaining unchanged.

Solve Probs. 9.35–9.40 using the ACI Code 318-08. Use ðsstÞyp ¼ 60 ksi ð400 MPaÞ
and ðscoÞult ¼ 4 ksi ð28 MPaÞ.

9.35 Determine the ultimate moment for a reinforced concrete beam with the
dimensions d ¼ 24 in: and b ¼ 12 in:, with the cross-sectional area of the reinforce-
ment being 2:5 in:2.

9.36 Solve Prob. 9.35 if the cross-sectional area of the reinforcement is changed to
5:8: in:2.

9.37 What is the ultimate moment for a reinforced concrete beam with dimensions
d ¼ 360 mm and b ¼ 200 mm? The cross-sectional area of the reinforcement is
1:5� 103 mm2.

9.38 Determine the cross-sectional dimensions and the area of reinforcement for a
beam that satisfies the following specifications: Mult ¼ 2� 106 lb � in:; b=d ¼ 0:5, and
est ¼ 0:010 at failure.

9.39 A reinforced concrete beam with dimensions d ¼ 500 mm and b ¼ 300 mm
is designed to fail when the strain in the reinforcement reaches 0.008. Determine the
cross-sectional area of the reinforcement and the ultimate moment for the beam.

9.40 A reinforced concrete beam of depth d ¼ 420 mm is to have an ultimate
moment of 400 kN �m. In addition, the strain in the reinforcement is to be 0.005 at
failure. Determine the width b of the beam and the cross-sectional area Ast of the
reinforcement.

FIG. P9.31–P9.34
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Computer Problems

C9.1 The sandwich beam of length L is simply supported and carries a uniformly
distributed load of intensity w0. The beam is constructed by gluing the faces z2 , each
of thickness t, to the core z1 , resulting in a rectangular cross section of width b and
height h. The ratio of the moduli of elasticity of the two materials is n ¼ E2=E1.
(a) Given L, w0, t, b, h, and n, write an algorithm that computes the maximum
bending stresses s1 and s2 in the two materials and the shear stress t in the glue.
(b) Use the algorithm to determine by trial-and-error the values of b and h that result
in the minimum cost design, assuming that material z1 costs eight times more than
material z2 . Use L ¼ 18 ft, w0 ¼ 600 lb/ft, t ¼ 0:5 in., and n ¼ 5, and the working
stresses ðs1Þw ¼ 2000 psi, ðs2Þw ¼ 12 000 psi, and tw ¼ 150 psi.

FIG. C9.1

C9.2 The concrete beam shown in Fig. P9.31–P9.34 contains both tensile and
compressive steel reinforcement of cross-sectional areas At and Ac, respectively. The
width of the cross section is b, the distance between the reinforcing bars is d, and the
thickness of the concrete covering the bars is a. (a) Given At, Ac, b, d, a, n ¼ Est=Eco,
and the bending moment M, write an algorithm that computes the maximum com-
pressive stress in concrete and the stresses in the steel bars. (b) Run the program with
the following data: At ¼ 1859 mm2, Ac ¼ 0, b ¼ 267 mm, d ¼ 325 mm, a ¼ 75 mm,
n ¼ 8, and M ¼ 90 kN �m. (c) If M ¼ 100 kN �m, determine by trial-and-error the
smallest possible values of At and Ac for which the stresses do not exceed 12 MPa in
concrete and 140 MPa in steel. Use the same n and the cross-sectional dimensions as
in part (b).
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10
Columns

10.1 Introduction

The term column is applied to a member that carries a compressive axial
load. Columns are generally subdivided into the following three types
according to how they fail:

. Short columns fail by crushing (e.g., yielding). Even if loaded eccentri-
cally, a short column undergoes negligible lateral deflection, so that it
can be analyzed as a member subjected to combined axial loading and
bending, as described in Sec. 8.3.. Long columns fail by buckling. If the axial load is increased to a critical
value, the initially straight shape of a slender column becomes

A building frame made of beams and

columns. A slender column may fail by

buckling well before the stress reaches the

yield point. This chapter discusses the

design of columns and focuses on

buckling. Courtesy of Joe Gough/

Shutterstock.
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unstable, causing the column to deflect laterally, as shown in Fig. 10.1,
and eventually collapse. This phenomenon, which is known as buck-

ling, can occur at stresses that are smaller (often much smaller) than
the yield stress or the proportional limit of the material.. Intermediate columns fail by a combination of crushing and buckling.
Because this mechanism of failure is di‰cult to analyze, intermediate
columns are designed using empirical formulas derived from experi-
ments.

This chapter discusses the analysis and design of long and intermediate
columns. In analysis, these columns are treated as beams subject to axial
load and bending, but with one major di¤erence: The e¤ect of lateral de-
flections on equilibrium is no longer ignored. In other words, the free-body
diagrams are drawn using the deformed rather than the undeformed column.

10.2 Critical Load

a. Definition of critical load

Figure 10.2 shows an idealized model of a simply supported column. In this
model, the column is initially straight with the axial load perfectly aligned
with the centroidal axis of the column. We also assume that the stresses re-
main below the proportional limit. When the end moments M0 are applied,
as shown in Fig. 10.2(a), the column deflects laterally, with the maximum
displacement dmax being proportional to M0. Now suppose that we gradu-
ally apply the axial load P while at the same time decreasing the end mo-
ments so that the maximum displacement dmax does not change, as illus-
trated in Fig. 10.2(b). When the end moments become zero, as in Fig.
10.2(c), dmax is maintained by the axial load alone. The axial load required
to hold the column in its deflected position without any lateral loading (such
as the end moments) is called the critical load, or buckling load, and is de-
noted by Pcr.

FIG. 10.1 Buckling of a slender
column under axial loading.

FIG. 10.2 (a) Slender column bent by couples M ¼M0; (b) if M < M0, the
lateral displacement can be maintained by introducing an axial load P of
appropriate magnitude; (c) when P reaches its critical value Pcr, the lateral
displacement is maintained with M ¼ 0.
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Any increase in the axial load beyond Pcr increases the deflection dmax

catastrophically, causing the column to fail. On the other hand, if the axial
load is decreased slightly below the critical value, the opposite e¤ect occurs
—the column becomes straight. The critical load can thus be defined as
the maximum axial load that a column can carry and still remain straight.
However, at the critical load, the straight position of the column is unstable
because the smallest sideways force would cause the column to deflect later-
ally. In other words, the lateral sti¤ness of the column is zero when P ¼ Pcr.

b. Euler’s formula

The formula for the critical load of a column was derived in 1757 by Leon-
hard Euler, the great Swiss mathematician. Euler’s analysis was based on the
di¤erential equation of the elastic curve

d 2v

dx2
¼ M

EI
(a)

which we used in the analysis of beam deflections in Chapter 6.
Figure 10.3(a) shows an ideal simply supported column AB subjected to

the axial load P. We assume that this load is capable of keeping the column
in a laterally displaced position. As in the analysis of beams, we let x be the
distance measured along the column and denote the lateral deflection by v.
The bending moment M acting at an arbitrary section can be obtained from
the free-body diagram in Fig. 10.3(b). (M and v shown on the diagram are
positive according to the sign conventions introduced in Chapter 4.) The
equilibrium equation SMA ¼ 0 gives M ¼ �Pv, which upon substitution
into Eq. (a) yields

d 2v

dx2
þ P

EI
v ¼ 0 (b)

Equation (b) is a homogeneous, linear di¤erential equation with constant
coe‰cients. The solution, which may be verified by direct substitution, is

v ¼ C1 sin

ffiffiffiffiffiffi
P

EI

r
x

 !
þ C2 cos

ffiffiffiffiffiffi
P

EI

r
x

 !
(c)

The constants of integration, C1 and C2, are determined by the constraints
imposed by the supports:

1. vjx¼0 ¼ 0, which yields C2 ¼ 0.
2. vjx¼L ¼ 0, resulting in

0 ¼ C1 sin

ffiffiffiffiffiffiffiffiffi
PL2

EI

r
(d)

Equation (d) can be satisfied with C1 ¼ 0, but this solution is of no
interest because it represents the trivial case P ¼ v ¼ 0. Other solutions areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PL2=ðEIÞ
p

¼ 0; p; 2p; 3p; . . . ; or

P ¼ n2 p2EI

L2
ðn ¼ 0; 1; 2; 3; . . .Þ (e)

FIG. 10.3 (a) Buckling of a
simply supported column; (b) free-
body diagram for determining the
bending moment M.
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The case n ¼ 0 can be discarded because it again yields the trivial case
P ¼ v ¼ 0. The critical load is obtained by setting n ¼ 1, yielding Euler’s

formula:

Pcr ¼
p2EI

L2
(10.1)

This is the smallest value of P that is capable of maintaining the lateral dis-
placement. The corresponding equation of the elastic curve, called the mode

shape, is

v ¼ C1 sin
px

L

as shown in Fig. 10.4(a). The constant C1 is indeterminate, implying that the
magnitude of the displacement is arbitrary.

The elastic curves corresponding to n ¼ 2 and n ¼ 3 are shown in Figs.
10.4(b) and (c). Because these mode shapes require axial loads larger than
Pcr, they can be realized only if the column is braced at its midpoint (for
n ¼ 2) or at its third points (for n ¼ 3).

The critical loads of columns with other end supports can be expressed
in terms of the critical load for a simply supported column. Consider, for
example, the column with built-in ends in Fig. 10.5(a). Its mode shape has
inflection points at the distance L=4 from each support. Because the bending
moment is zero at a point of inflection (due to zero curvature), the free-body
diagram in Fig. 10.5(b) shows that the middle half of the column is equiv-
alent to a simply supported column with an e¤ective length Le ¼ L=2.
Therefore, the critical load for this column is

Pcr ¼
p2EI

L2
e

¼ p2EI

ðL=2Þ2
¼ 4

p2EI

L2
(10.2)

This is four times the critical load for a simply supported column.
The critical load for a cantilever column of length L can be determined

by the same method. This column behaves as the bottom (or top) half of a
simply supported column, as shown in Fig. 10.6. Therefore, its e¤ective
length is Le ¼ 2L, which results in the critical load

Pcr ¼
p2EI

L2
e

¼ 1

4

p2EI

L2
(10.3)

This is one-quarter of the critical load for a simply supported column of the
same length.

The e¤ective length of the propped cantilever column in Fig. 10.7 can
be shown to be approximately Le ¼ 0:7L, which is the distance between the
point of inflection and the simple support. This value yields for the critical
load

Pcr ¼
p2EI

L2
e

¼ p2EI

ð0:7LÞ2
A2

p2EI

L2
(10.4)

which is twice the critical load for a simply supported column.

FIG. 10.4 First three buckling
mode shapes of a simply supported
column.

FIG. 10.5 Buckling of a column
with built-in ends.
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10.3 Discussion of Critical Loads

In the previous section, we discovered that the critical, or buckling, load of a
column is

Pcr ¼
p2EI

L2
e

(10.5)

where the e¤ective length Le of the column is determined by the types of end
supports. For a simply supported column, we have Le ¼ L.

Equation (10.5) shows that Pcr does not depend on the strength of the
material but only on the modulus of elasticity and the dimensions of the
column. Thus, two dimensionally identical slender columns, one of high-
strength steel and the other of ordinary steel, will buckle under the same
critical load because they have the same modulus of elasticity.

The critical load obtained from Eq. (10.5) is physically meaningful
only if the stress at buckling does not exceed the proportional limit. The
stress in the column just before it buckles may be found by substituting
I ¼ Ar2 into Eq. (10.5), where A is the cross-sectional area and r is the least

radius of gyration of the cross section.1 This substitution yields

scr ¼
Pcr

A
¼ p2E

ðLe=rÞ2
(10.6)

1Here, we are using r to denote the radius of gyration to conform to AISC notation. Do not

confuse this r with the radius of a circle.

FIG. 10.6 Buckling of a cantilever
column.

FIG. 10.7 Buckling of a propped
cantilever column.
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where scr is called the critical stress and the ratio Le=r is known as the slen-

derness ratio of the column. Thus, Pcr should be interpreted as the maximum
sustainable load only if scr < spl ; where spl is the proportional limit of the
material.

Long columns are defined as columns for which scr is less than spl .
Therefore, the dividing line between long and intermediate columns is the
slenderness ratio that satisfies Eq. (10.6) when scr ¼ spl . This limiting slen-
derness ratio varies with di¤erent materials and even with di¤erent grades
of the same material. For example, for steel that has a proportional limit of
200 MPa and a modulus of elasticity E ¼ 200 GPa, the limiting slenderness
ratio is

Le

r

� �2

¼ p2E

spl

¼ p2ð200� 109Þ
200� 106

A10 000
Le

r
A100

For slenderness ratios below this value, the critical stress given by Eq. (10.6)
exceeds the proportional limit of the material. Hence, the load-carrying
capacity of a steel column is determined by the critical stress only if Le=r >
100, as illustrated by the plot in Fig. 10.8. The plot also shows that the crit-
ical stress rapidly decreases as the slenderness ratio increases. It must be
pointed out that Fig. 10.8 shows the stress at failure, not the working stress.
Therefore, it is necessary to divide the critical stress by a suitable factor of
safety to obtain the allowable stress. The factor of safety should allow for
unavoidable imperfections always present in a real column, such as manu-
facturing flaws and eccentricity of loading.

A column always tends to buckle in the direction that o¤ers the least
resistance to bending. For this reason, buckling occurs about the axis that
yields the largest slenderness ratio Le=r, which is usually the axis of least
moment of inertia of the cross section.

FIG. 10.8 Critical stress versus slenderness ratio for structural steel columns. For
slenderness ratios less than 100, the critical stress is not meaningful.
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Sample Problem 10.1

Select the lightest W-shape that can be used as a steel column 7 m long to support an
axial load of 450 kN with a factor of safety of 3. Use spl ¼ 200 MPa and E ¼ 200
GPa. Assume that the column is (1) simply supported; and (2) a propped cantilever.

Solution
Multiplying the given design load by the factor of safety, we get Pcr ¼ 450ð3Þ ¼ 1350
kN for the minimum allowable critical load. The selected section must be able to
carry this load without buckling or crushing. The crushing criterion is Pcr=A < spl ,
which yields for the minimum required cross-sectional area

A ¼ Pcr

spl

¼ 1350� 103

200� 106
¼ 6:75� 10�3 m2 ¼ 6750 mm2

Due to the di¤erent support conditions, the buckling criteria for the two columns
must be treated separately.

Part 1

The e¤ective length of the simply supported column is Le ¼ L ¼ 7 m. Solving Eq.
(10.5) for I, we obtain for the smallest allowable moment of inertia

I ¼ PcrL
2
e

p2E
¼ ð1350� 103Þð7Þ2

p2ð200� 109Þ ¼ 33:5� 10�6 m4 ¼ 33:5� 106 mm4

Searching the W-shapes in Table B-2, we find that the lightest section that has the
required moment of inertia is a W250� 73 section. Its properties are Imin ¼ 38:9� 106

mm4 (moment of inertia about the weakest axis) and A ¼ 9290 mm2. Because the
cross-sectional area exceeds the value required to prevent crushing (6750 mm2), the
lightest acceptable choice is the

W250� 73 section Answer

Part 2

Noting that the e¤ective length of the propped cantilever column is Le ¼ 0:7L ¼
0:7ð7Þ ¼ 4:90 m, we find the smallest moment of inertia that would prevent buckling
is

I ¼ PcrL
2
e

p2E
¼ ð1350� 103Þð4:90Þ2

p2ð200� 109Þ ¼ 16:421� 10�6 m4 ¼ 16:42� 106 mm4

The lightest W-shape that meets this requirement is a W200� 52 section, which has
the cross-sectional properties Imin ¼ 17:7� 106 mm4 and A ¼ 6650 mm2. However,
this section is not acceptable because its cross-sectional area does not satisfy the
crushing criterion A > 6750 mm2.

The lightest section that meets both the buckling and the crushing criteria is
the

W200� 59 section Answer

which has Imin ¼ 20:4� 106 mm4 and A ¼ 7550 mm2.

1
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Problems

10.1 A simply supported steel column is 8 ft long and has a square cross section of
side length b. If the column is to support a 22-kip axial load, determine the smallest
value of b that would prevent buckling. Use E ¼ 29� 106 psi for steel.

10.2 Solve Prob. 10.1 if the column is made of wood, for which E ¼ 1:6� 106 psi.

10.3 A 40-mm by 80-mm timber, 2.2 m long, is used as a column with built-in
ends. If E ¼ 10 GPa and spl ¼ 30 MPa, determine the largest axial load that can be
carried with a factor of safety of 2.

10.4 An aluminum tube of length 8 m is used as a simply supported column
carrying a 1.2-kN axial load. If the outer diameter of the tube is 50 mm, compute
the inner diameter that would provide a factor of safety of 2 against buckling. Use
E ¼ 70 GPa for aluminum.

10.5 An aluminum column 6 ft long has a solid rectangular cross section 3/4 in.
by 2 in. The column is secured at each end with a bolt parallel to the 3/4-in. direction
as shown in the figure. Thus, the ends can rotate about the z-axis but not about the
y-axis. Find the largest allowable axial load using E ¼ 10:3� 106 psi, spl ¼ 6000 psi,
and a factor of safety of 2.

10.6 Two C310� 45 channels are laced together as shown to form a section with
equal moments of inertia about the x- and y-axes (the lacing does not contribute to
the bending sti¤ness). If this section is used as a simply supported column, determine
(a) the shortest length for which the column would fail by buckling; and (b) the
largest allowable axial load that can be supported by a 12-m-long column with a
factor of safety of 2:5. Use E ¼ 200 GPa and spl ¼ 240 MPa.

10.7 Both members of the truss are W16� 67 sections. Determine the largest load
W that can be safely carried by the truss. Use E ¼ 29� 106 psi; spl ¼ 36� 103 psi,
and a factor of safety of 1.6. Assume that cross-bracing (not shown in the figure)
prevents deflection of joint B out of the plane of the truss.

10.8 A W-section is used as a simply supported column 8 m long. Select the
lightest shape than can carry an axial load of 270 kN with a factor of safety of 2.5.
Use E ¼ 200 GPa and spl ¼ 200 MPa.

FIG. P10.5

FIG. P10.6

15 ft

C

A B

W

20 ft

FIG. P10.7
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10.9 Select the lightest W-section for a 40-ft-long column with built-in ends that
can carry an axial load of 150 kips with a factor of safety of 2. Assume that
E ¼ 29� 106 psi and spl ¼ 30� 103 psi.

10.10 The two members of the pin-jointed wood structure ABC have identical
square cross sections of dimensions b� b. A 1600-lb vertical load acts at B.
Determine the smallest value of b that would provide a factor of safety of 2.5 against
buckling. Use E ¼ 1:5� 106 psi for wood and assume that joint B is braced so that it
can move only in the plane of the structure.

10.11 The 5-m-long wood column is built in at its base and stayed by two cables
at the top. The turnbuckles in the cables are turned until the tensile force in each
cable is T. Determine the value of T that would cause the column to buckle. Use
E ¼ 10 GPa for wood.

10.12 The L76� 76� 12:7 angle section is used as a cantilever column of length L.
Find the maximum allowable value of L if the column is not to buckle when the 12-kN
axial load is applied. Use E ¼ 200 GPa.

10.13 The 24-ft-long steel column is an S8� 23 section that is built in at both
ends. The midpoint of the column is braced by two cables that prevent displacement
in the x-direction. Determine the critical value of the axial load P. Use E ¼ 29� 106

psi for steel.

2 ft 1.5 ft

3 ft

1600 1b

1.0 ft

FIG. P10.10
FIG. P10.11

FIG. P10.12

FIG. P10.13
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10.14 The solid aluminum bar of circular cross section is fitted snugly between
two immovable walls. Determine the temperature increase that would cause the bar
to buckle. Use E ¼ 10:3� 106 psi and a ¼ 12:8� 10�6=�F for aluminum.

10.4 Design Formulas

for Intermediate Columns

In the previous section, we showed that if a column is su‰ciently slender, as
measured by the slenderness ratio Le=r, buckling occurs at a stress that is
below the proportional limit.

At the other extreme, we have short columns, where the lateral dis-
placements play a negligible role in the failure mechanism. Therefore, these
columns fail when P=A reaches the yield stress of the material.

Various design formulas have been proposed for columns of inter-
mediate length, which bridge the gap between short and long columns.
These formulas are primarily empirical in nature, being derived from the
results of extensive test programs. Material properties play a major role
in the failure of intermediate columns. Hence, di¤erent design formulas
for di¤erent materials can be found in various engineering handbooks and
design codes.

a. Tangent modulus theory

Consider a column made of material that has no distinct yield point (such as
aluminum). Suppose that the compressive stress scr just prior to buckling
exceeds the proportional limit spl , as indicated in the compressive stress-
strain diagram in Fig. 10.9. Any additional increment of strain d� would
result in the stress increment ds ¼ Et d�, where Et is the slope of the diagram
at the point s ¼ scr. Thus, the bending sti¤ness of the column at buckling is
determined by Et, which is smaller than the elastic modulus E. To account
for the reduced sti¤ness, the tangent modulus theory replaces E by Et in
Eq. (10.6), resulting in the following expression for the critical stress:

scr ¼
Pcr

A
¼ p2Et

ðLe=rÞ2
(10.7)

Although Eq. (10.7) accounts for the nonlinearity of the stress-strain dia-
gram beyond the proportional limit, its theoretical basis is somewhat
weak. Therefore, this equation should be viewed as an empirical formula.
However, the results obtained from Eq. (10.7) are in satisfactory agreement
with experimental results.

Because the slope of the stress-strain diagram, called the tangent mod-

ulus, is not constant beyond the proportional limit, the evaluation of the
critical load from Eq. (10.7) is not straightforward. The di‰culty is that the
slope Et at the critical stress is not known beforehand (after all, its value

FIG. 10.9 If scr > spl , the tangent
modulus theory replaces E in Euler’s
formula with Et, the slope of the
stress-strain curve at the point
s ¼ scr.

FIG. P10.14
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depends on the critical stress). Therefore, Eq. (10.7) must be solved for scr

and Et simultaneously by trial-and-error.
Figure 10.10 shows the plot of the critical stress obtained from tangent

modulus theory against the slenderness ratio for aluminum columns. As can
be seen, the tangent modulus theory smoothly connects the curves for short
and long columns.

b. AISC specifications for steel columns

The American Institute of Steel Construction AISC specifies what is known
as the Load and Resistance Factor Design (LRFD) method for computing
the compressive strengths of steel columns.2

The LRFD method di¤erentiates between slender and nonslender sec-
tions. The walls of nonslender sections are thick enough to allow the stress
to become fully plastic without buckling locally (no wrinkling of the flanges
or the web). On the other hand, slender sections may develop localized
buckling in the inelastic zone, which has an adverse e¤ect on the buckling
strength of the column. Slender sections have special design procedures that
result in columns that are not as economical as nonslender designs. There-
fore, the use of slender sections is discouraged.

A structural section is defined to be nonslender if it meets the criteria
shown in Fig. 10.11. Most of standard structural sections listed in Appendix B
fall into the nonslender category.

According to the LRFD specifications, the nominal buckling stress of a
column with a nonslender section is given by the following:

snom ¼
ð0:658syp=scrÞsyp if Le=r � 4:71

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E=syp

p
0:877scr if Le=r > 4:71

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E=syp

p�
(10.8)

(Tangent modulus
theory)

FIG. 10.10 Critical stress versus slenderness ratio for aluminum columns.

2AISC also allows the use of an older method, known as allowable strength design (ASD).
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where scr is the critical stress determined from Eulers formula, Eq. (10.6).
The variation of the nominal buckling stress with the slenderness ratio is
plotted in Fig. 10.12 for two grades of steel. The A363, with a yield stress of
36 ksi (250 MPa), is the most commonly used steel for channel and angle
sections. The A992 is a high-strength steel with a yield stress of 50 ksi
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b

b

b

b

h − 2t

h − 3t
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h
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h ≥ b

t

t

t

t

t
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tw

2t

t

< 1.40
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t
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t
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< 1.49

< 1.49

σyp

E

σyp

E

σypσyp

E E
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E

σyp

Rolled:

Welded:

FIG. 10.11 Criteria for nonslender sections.

3A36 and A992 are designations of the American Society for Testing and Materials (ASTM).
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Euler�s formula
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A36

FIG. 10.12 Nominal buckling stress versus slenderness ratio for two grades of steel.
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(350 MPa), which is the standard grade steel for W-sections. Note that for
long columns ðLe=r > 4:71

ffiffiffiffiffiffiffiffiffiffiffiffi
E=syp

p
Þ the nominal stress is simply Eulers critical

stress multiplied by 0.877. This multiplier compensates for manufacturing
imperfections, such as initial curvature of the column. Also, observe that in
Fig. 10.11 snom ¼ syp when Le=g ¼ 0, reflecting the fact that very short col-
umns fail by yielding rather than buckling.

The design strength Pdes of a column is obtained by multiplying the
nominal strength snomA by the resistance factor �:

Pdes ¼ fsnomA (10.9)

where A is the cross-sectional area of the column and f ¼ 0:9. The factor �
compensates for statistical variations of loads and construction. Note that
Pdes is the load at which the column is expected to fail; it is not the allowable
load. In the LRFD design procedure, Pdes must be equal to or greater than
the expected service loads multiplied by factors of safety. The service loads
and factors of safety are specified in the LRFD code. (These specifications,
which are somewhat complicated, are beyond the scope of this text.)
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Sample Problem 10.2

Using AISC specifications, determine the design strength of a W360� 122 section
that is used as a 9-m-long column. Assume that the column has (1) simple supports
at both ends; and (2) a simple support at one end, with the other end being built-in.
Use E ¼ 200 GPa and syp ¼ 350 MPa (A992 steel).

Solution
According to Table B-2 in Appendix B, the properties of the W360� 122 section are:

A ¼ 15:5� 103mm2 ðcross-sectional areaÞ
r ¼ 63:0 mm ðradius of gyration about the weakest axisÞ
b ¼ 257 mm ðwidth of flangeÞ
t ¼ 21:7 mm ðthickness of flangeÞ
h ¼ 363 mm ðdepth of sectionÞ

tw ¼ 13:0 mm ðthickness of webÞ

Referring to Fig. 10.11, we have

b

2t
¼ 257

2ð21:7Þ ¼ 5:92

0:56

ffiffiffiffiffiffiffi
E

syp

s
¼ 0:56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200� 109

350� 106

r
¼ 13:39

h� 2t

tw

¼ 363� 2ð21:7Þ
13:0

¼ 24:6

1:49

ffiffiffiffiffiffiffi
E

syp

s
¼ 1:49

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200� 109

350� 106

r
¼ 35:62

which satisfy the inequalities in the figure. We see that the section falls into the
nonslender category.

Part 1

Because the column is simply supported, its e¤ective length is Le ¼ L ¼ 9 m. Therefore,
the slenderness ratio is

Le

r
¼ 9000

63
¼ 142:86

and the critical (Euler) stress in Eq. (10.6) becomes

scr ¼
p2E

ðLe=rÞ2
¼ p2ð200� 109Þ

142:862
¼ 96:72� 106 Pa

Comparing the slenderness ratio to

4:71

ffiffiffiffiffiffiffi
E

syp

s
¼ 4:71

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200� 109

350� 106

r
¼ 112:59

we find that the nominal buckling stress is given by the second equation of
Eqs. (10.8):

snom ¼ 0:877scr ¼ 0:877ð96:72� 106Þ ¼ 84:82� 106 Pa
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The design strength is determined by Eq. (10.9):

Pdes ¼ fsnomA ¼ 0:9ð84:82� 106Þð15:5� 10�3Þ
¼ 1:183� 106 N ¼ 1:183 MN Answer

Part 2

The e¤ective length of a propped cantilever column is Le ¼ 0:7L, so that the slen-
derness ratio becomes

Le

r
¼ 0:7ð9000Þ

63
¼ 100:0

The corresponding critical stress is

scr ¼
p2E

ðLe=rÞ2
¼ p2ð200� 109Þ

1002
¼ 197:39� 106 Pa

Since Le=r < 112:59, the first of Eqs. (10.8) applies:

snom ¼ ð0:658syp=scrÞsyp

¼ ð0:658350=197:39Þ ð350� 106Þ ¼ 166:63� 106 Pa

Therefore, the design strength is

Pdes ¼ fsnomA ¼ 0:9ð166:63� 106Þð15:5� 10�3Þ
¼ 2:32� 106 N ¼ 2:32 MN Answer

Note

The results illustrate that the design strength of a column is very sensitive to the
support conditions. Because perfect rigidity at a built-in support is seldom achieved
in practice, it is advisable to use an e¤ective length somewhat larger than theoretical
value of 0.7L. In this case, Le ¼ 0:8L would probably be a more prudent choice.

1
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Problems

10.15 Determine the slenderness ratio of a 5-ft-long column with built-in ends if
the cross section is (a) circular with a radius of 40 mm; and (b) 50 mm square.

10.16 Find the slenderness ratio of a 12-ft propped cantilever column if the cross
section is (a) circular with a radius of 2 in.; and (b) a 2-in.� 3-in. rectangle.

Use AISC specifications when solving the following problems. The yield strength for

A36 steel is 36 ksi (250 MPa) and 50 ksi (350 MPa) for A992 steel.

10.17 Which of the following A36 steel sections are nonslender: (a) W460� 74;
(b) W460� 82; and (c) W460� 89?

10.18 The figure shows the cross sections of two columns made of A36 steel.
Determine the minimum allowable thickness t for which each cross section will be
nonslender.

(a)

Welds

6 in.

6 in.

6 in.

(b)

t

t

6 in.

FIG. P10.18

10.19 A W14� 82 section made of A992 steel is used as a column with an e¤ec-
tive length of 30 ft. Determine the design strength of the column assuming the section
is nonslender.

10.20 Determine the design strength of a simply supported column made of a
W310� 52 section. The material is A36 steel and the column is 4 m long. Assume the
section is nonslender.

10.21 A W250� 167 section made of A36 steel is used as a simply supported
column of length L. If the required design strength is 1600 kN, determine the max-
imum allowable value of L. Assume the section is nonslender.

10.22 Solve Prob. 10.21 if the required design strength is 3200 N.

10.23 A solid circular A36 steel rod is used as a column with an e¤ective length of
18 ft. Determine the smallest allowable diameter of the rod if the required design
strength is 40 kips.

10.24 Solve Prob. 10.23 if the required design strength is 600 kips.

10.25 Four L4� 4� 1=2 angle sections are latticed together to form a 35-ft-long
simply supported column with the cross section shown. Assuming the section is
nonslender, determine the design strength of the column. The material is A36 steel.

10.26 Two C9� 20 channels, made of A36 steel and laced together as shown, are
used as a 36-ft-long simply supported column. The cross section of the column has
equal moments of inertia about both axes of symmetry (the lacing does not contrib-
ute significantly to the sti¤ness of the column). Determine the design strength of the
column. Assume the section is nonslender.

10.27 Solve Prob. 10.26 if the channel sections are made of a high strength steel
that has a yield strength of 60 ksi.

FIG. P10.25

C9 � 20

FIG. P10.26, P10.27
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10.28 A simply supported 450-in.-long column is to have a design strength of 240
kips. Select the lightest W12 section that can be used. The material is high-strength
steel with a yield strength of 50 ksi.

10.29 A rolled square tube with the cross section shown is used as a column with
an e¤ective length of 16 ft. The required design strength of the column is 22.5 kips.
Determine the dimensions h and t that result in the lightest acceptable column with a
nonslender section. The material is A992 steel.

10.30 A square 2024-T3 aluminum alloy tube with 2-in. by 2-in. exterior di-
mensions and 1/4-in. wall thickness is used as a simply supported column. The alloy
has the compressive stress-strain diagram shown. Use the tangent modulus theory
to determine the length of the column for which the critical stress is (a) 35 ksi; and
(b) 25 ksi.

10.31 The figure shows the compressive stress-strain diagram for 2024-T3
aluminum alloy. Use the tangent modulus theory to estimate the critical stress for a
column of slenderness ratio Le=r ¼ 40 that is made of this alloy.

10.5 Eccentric Loading: Secant Formula

Most columns are designed to support purely axial loads. Designers usually
take great care in arranging the structural details so that the loads act
along the centroidal axes of columns. Small eccentricities of loading are of
course unavoidable, but they are accidental. We now consider columns with
definite and deliberate load eccentricities. For example, in building frames
where beams are connected to the flanges of a column, the point of loading
is on the flange, not the centroid of the column. The results of this study
are also useful for accidental eccentricities with magnitudes that can be
estimated.

h

h t

FIG. P10.29

FIG. P10.30, P10.31
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a. Derivation of the secant formula

Consider the simply supported column of length L shown in Fig. 10.13(a),
where the load P has an eccentricity e with respect to the centroid of the
cross section. The eccentricity gives rise to end moments of magnitude Pe,
which cause the column to bend. If the column is slender, the displacements
accompanying bending can be quite large so that their e¤ect on equilibrium
cannot be ignored. Therefore, the bending moment in the column must be
computed from a free-body diagram of the deformed column, as shown in
Fig. 10.13(b). This figure yields for the bending moment

M ¼ �Pðvþ eÞ

where v is the lateral deflection. Substituting M into the di¤erential equation
of the elastic curve, d 2v=dx2 ¼M=ðEIÞ, and rearranging terms, we get

d 2v

dx2
þ P

EI
v ¼ �Pe

EI
(a)

Because this is a nonhomogeneous di¤erential equation, its solution is the
sum of the complementary and particular solutions. The complementary sol-
ution is identical to Eq. (c) of Sec. 10.2. It can be readily verified by sub-
stitution that a particular solution is v ¼ �e. Therefore, the general solution
of Eq. (a) is

v ¼ C1 sin

ffiffiffiffiffiffi
P

EI

r
x

 !
þ C2 cos

ffiffiffiffiffiffi
P

EI

r
x

 !
� e (b)

The constants of integration, C1 and C2, are determined from the zero
displacement requirements at the supports:

FIG. 10.13 (a) Deformation of a column due to eccentric loading; (b) free-body
diagram for determining the bending moment M.
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vjx¼�L=2 ¼ 0 �C1 sin

ffiffiffiffiffiffiffiffiffi
PL2

4EI

r
þ C2 cos

ffiffiffiffiffiffiffiffiffi
PL2

4EI

r
� e ¼ 0 (c)

vjx¼L=2 ¼ 0 C1 sin

ffiffiffiffiffiffiffiffiffi
PL2

4EI

r
þ C2 cos

ffiffiffiffiffiffiffiffiffi
PL2

4EI

r
� e ¼ 0 (d)

The solution of Eqs. (c) and (d) is

C1 ¼ 0 C2 ¼ e sec

ffiffiffiffiffiffiffiffiffi
PL2

4EI

r

Substituting these constants into Eq. (b), we get the equation of the elastic
curve

v ¼ e sec

ffiffiffiffiffiffiffiffiffi
PL2

4EI

r
cos

ffiffiffiffiffiffi
P

EI

r
x

 !
� 1

" #
(e)

The maximum deflection is

vmax ¼ vjx¼0 ¼ e sec

ffiffiffiffiffiffiffiffiffi
PL2

4EI

r
� 1

 !
¼ e sec

L

2r

ffiffiffiffiffiffiffi
P

EA

r !
� 1

" #
(10.10)

where r ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
is the smallest radius of gyration of the cross section.

Observe that when P! Pcr ¼ p2EI=L2, we have vmax ! e½secðp=2Þ � 1� ¼y.
The maximum bending moment in the column occurs at midspan. Its

magnitude is Mmax ¼ Pðvmax þ eÞ. Therefore, the highest compressive stress

in the column is given by

smax ¼
P

A
þMmaxc

I
¼ P

A
þ Pðvmax þ eÞc

Ar2

where c is the distance from the centroidal axis to the outermost compression
fiber. Substituting vmax from Eq. (10.10), we obtain the secant formula

smax ¼
P

A
1þ ec

r2
sec

L

2r

ffiffiffiffiffiffiffi
P

EA

r !" #
(10.11)

The term ec=r2 is known as the eccentricity ratio, and ½L=ð2rÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=ðEAÞ

p
is

called the Euler angle. Although the secant formula was derived for a simply
supported column, it can be shown to be valid for other support conditions
if we replace L by the e¤ective length Le.

b. Application of the secant formula

Let us assume for the present that the material properties, the dimensions of
the column, and the eccentricity e are known. That leaves two variables in the
secant formula: P and smax. If P is also given, smax can be computed from
the formula without di‰culty. On the other hand, if smax is specified, the
determination of P is considerably more complicated because Eq. (10.11), being
nonlinear in P, must be solved by trial-and-error. The selection of a structural
section that can safely carry a given load P is similarly a trial-and-error
procedure.
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Determining the Working Load A common problem in column de-
sign is to determine the working load (the largest allowable load) Pw that a
given column can carry with a factor of safety N against yielding. Substitut-
ing smax ¼ syp into Eq. (10.11), we get

syp ¼
P

A
1þ ec

r2
sec

Le

2r

ffiffiffiffiffiffiffi
P

EA

r !" #
(10.12)

which can be solved by trial-and error for P=A. Because P in the solution
represents the load that initiates yielding, the working load that provides a
factor of safety N against yielding is Pw ¼ P=N.

Figure 10.14 shows plots of the solutions P=A in Eq. (10.12) versus
Le=r for standard-grade (A36) steel columns (E ¼ 200 GPa and syp ¼ 250
MPa) for various values of the eccentricity ratios. These plots provide a rough
estimate of P, which can be used as the starting value in the trial-and-error
solution of Eq. (10.12).

Selecting a Standard Structural Section Equation (10.11) can also
be used to find a standard section that can safely carry a given working load Pw.
The procedure is to choose a trial section and substitute its cross-sectional
properties together with P ¼ NPw into Eq. (10.11). If the resulting smax exceeds
syp, a larger section must be chosen and the procedure repeated. On the other
hand, if smax is much less than syp, a lighter section should be tried. When we
work with standard sections, it is more convenient to perform the calculations
by rewriting Eq. (10.11) in the form

smax ¼
P

A
þ Pe

S
sec

Le

2

ffiffiffiffiffiffi
P

EI

r !
(10.13a)

where S is the section modulus. Another useful form of this equation is

smax ¼
P

A
þ Pe

S
sec

p

2

ffiffiffiffiffiffi
P

Pcr

r� �
(10.13b)

FIG. 10.14 Average stress at yielding versus slenderness ratio for eccentrically
loaded structural steel columns (obtained by equating the maximum stress given by
the secant formula to the yield stress).
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where Pcr ¼ p2EI=L2
e is the critical load of the column (Euler’s formula).

Equation (10.13b) shows that smax !y as P! Pcr. This result again shows
that a column loses its lateral sti¤ness when the axial load approaches the
critical load.

Factor of Safety Because the factor of safety N reflects primarily un-
certainties in loading, it should applied to P, not to syp. In cases where stress
is proportional to the loading, this distinction is irrelevant—applying N to P

(Pw ¼ P=NÞ produces the same result as applying N to syp ðsw ¼ syp=NÞ.
But this is not true for the secant formula, where the load-stress relationship
is nonlinear.

Maximum Tensile Stress The foregoing discussion assumed that the
largest stress occurs on the compression side of the column. This assumption
may be invalid if the distances between the centroidal axis and the outermost
fibers of the cross section are much di¤erent on the tension and compression
sides. Take, for example, the channel section shown in Fig. 10.15. Here the
maximum distance ct from the centroid C to the outermost tension fibers is
much larger that its counterpart cc on the compression side. Therefore, the
maximum tensile stress Mct=I due to bending is considerably larger than the
maximum compressive bending stress Mcc=I . Consequently, the net max-
imum stress in tension ðstÞmax ¼Mct=I � P=A may exceed the maximum
compressive stress ðscÞmax ¼Mcc=I þ P=A.

Equations (10.11)–(10.13) can also be used to compute the maximum
tensile stress, provided we subtract the direct stress P=A from the bending
stress represented by the secant term; that is, we must reverse the sign of the
first term on the right-hand side of each equation. Of course, we must also
use ct for the maximum fiber distance.

FIG. 10.15 If ct is much larger than cc, the maximum tensile stress may exceed the maximum
compressive stress.
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Sample Problem 10.3

A W14� 61 section is used as a simply supported column 25 ft long. When the
150-kip load is applied with the 4-in. eccentricity shown, determine (1) the maximum
compressive stress in the column; (2) the factor of safety against yielding; and (3) the
maximum lateral deflection. Assume that the column does not buckle about the
y-axis. Use E ¼ 29� 106 psi and syp ¼ 36� 103 psi.

Solution

From Table B-6 in Appendix B, we find that the properties of the section are
A ¼ 17:9 in.2, Iz ¼ 640 in.4, and Sz ¼ 92:1 in.3. Since the column is simply sup-
ported, its e¤ective length is Le ¼ L ¼ 25 ft.

Part 1

Using Eq. (10.13a), we obtain for the maximum compressive stress

smax ¼
P

A
þ Pe

Sz

sec
Le

2

ffiffiffiffiffiffiffi
P

EIz

r� �

¼ 150� 103

17:9
þ ð150� 103Þð4Þ

92:1
sec

25� 12

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150� 103

ð29� 106Þð640Þ

s !

¼ 15:535� 103 psi Answer

Part 2

It is tempting to compute the factor of safety against yielding as N ¼ syp=smax ¼
36=15:535 ¼ 2:32, but this is incorrect. The factor of safety must be applied to the
loading, not to the stress. Thus, N is determined by the solution of the equation

syp ¼
NP

A
þNPe

Sz

sec
L

2

ffiffiffiffiffiffiffi
NP

EIz

r� �

When we substitute the known data, this equation becomes

36� 103 ¼ Nð150� 103Þ
17:9

þNð150� 103Þð4Þ
92:1

sec
25� 12

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð150� 103Þ
ð29� 106Þð640Þ

s" #

36� 103 ¼ N½8380þ 6515 secð0:4264
ffiffiffiffiffi
N
p
Þ�

By trial-and-error, the solution is

N ¼ 2:19 Answer

which is smaller than the ‘‘factor of safety’’ of 2.32 based on the maximum stress.

Part 3

According to Eq. (10.10), the maximum lateral deflection is

vmax ¼ e sec

ffiffiffiffiffiffiffiffiffi
PL2

e

4EI

r
� 1

 !

¼ 4 sec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð150� 103Þð25� 12Þ2

4ð29� 106Þð640Þ

s
� 1

2
4

3
5 ¼ 0:393 in: Answer

1
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Sample Problem 10.4

The lower column in Fig. (a), which has an e¤ective length Le ¼ 7 m, is to carry the
two loads with a factor of safety of 2 against yielding. Due to space limitations,
the depth h of the section must be kept under 400 mm. (1) Considering bending about
the z-axis of the section, find the lightest suitable W-shape for the lower column. (2)
What factor of safety does the chosen section have against buckling about the y-axis?
Use E ¼ 200 GPa and syp ¼ 250 MPa.

Solution
The two loads are statically equivalent to the force Pw ¼ 1300 kN shown in Fig. (b).
The eccentricity e is obtained by equating the moments of the forces in Figs. (a) and
(b) about the centroid C of the section. This yields

125ð900Þ � 75ð400Þ ¼ 1300e e ¼ 63:46 mm

When we apply the factor of safety, the load to be used in Eq. (10.13a) is P ¼ NPw ¼
2ð1300Þ ¼ 2600 kN.

Part 1

The lightest W-shape that satisfies the space limitation must have a depth slightly less
than 400 mm. Inspection of Table B-2 in Appendix B reveals that the lightest sections
with depths just below the 400-mm limit are the W360 shapes. Therefore, we try a
succession of W360 shapes by computing smax from Eq. (10.13a) and comparing the
result with syp. The results of the trials are summarized in the table.

Section A (mm2) I (mm4) S (mm3) smax (MPa)

W360� 110 14:1� 103 331� 106 1840� 103 301

W360� 122 15:5� 103 367� 106 2020� 103 271

W360� 134 17:1� 103 416� 106 2340� 103 239

We see that the lightest acceptable section—that is, the section for which
smax a syp ¼ 250 MPa—is

W360� 134 Answer

Its depth is 356 mm.

Part 2

The moment of inertia of a W360� 134 section about the y-axis is I ¼ 416� 106

mm4, giving for the critical load (note that the load has no eccentricity about the
y-axis)

Pcr ¼
p2EI

L2
e

¼ p2ð200� 109Þð416� 10�6Þ
ð7Þ2

¼ 16:76� 106 N ¼ 16 760 kN

Thus, the factor of safety against buckling about the y-axis is

N ¼ Pcr

Pw

¼ 16 760

1300
¼ 12:9 Answer

1
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Problems

10.32 A W12� 72 section acts as a simply supported column of length 24 ft. If
two loads are applied as shown in the figure, determine (a) the maximum com-
pressive stress in the column; and (b) the factor of safety against yielding. Use
E ¼ 29� 103 ksi and syp ¼ 40 ksi.

10.33 For the column shown in the figure, find the lightest W-shape, no more
than 15 in. deep, that can carry the loading shown with a factor of safety of 2 against
yielding. Use E ¼ 29� 103 ksi and syp ¼ 40 ksi.

10.34 The aluminum T-section is used as a simply supported column 6 m long.
Compute the maximum compressive and tensile stresses in the column caused by the
load P ¼ 40 kN. Use E ¼ 70 GPa for aluminum.

10.35 Determine the maximum allowable load P for the column described in
Prob. 10.34 if the working stress is sw ¼ 130 MPa.

10.36 The 6-ft cantilever column is made of a steel tube with a 4.5-in. outer di-
ameter and the cross-sectional properties A ¼ 3:17 in.2 and I ¼ 7:23 in.4. Determine
the eccentricity e of the 6200-lb load that provides a factor of safety of 2.5 against
yielding. Use E ¼ 29� 106 psi and syp ¼ 50� 103 psi.

10.37 Solve Prob. 10.36 if the tube is made of 2014-T6 aluminum alloy with the
properties E ¼ 10:6� 106 psi and syp ¼ 50� 103 psi.

10.38 The simply supported column is a W360� 122 section 10 m long. If
P ¼ 500 kN, find (a) the maximum compressive stress in the column; and (b) the
factor of safety against yielding. Use E ¼ 200 GPa and syp ¼ 250 MPa.

10.39 Find the largest allowable P that the column in Prob. 10.38 can carry if the
bottom is built in and the top is simply supported. Use a factor of safety of 2 against
yielding and neglect the possibility of buckling about the y-axis.

FIG. P10.32, P10.33

FIG. P10.34, P10.35

6200 lb

6 ft

FIG. P10.36, P10.37
FIG. P10.38, P10.39
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10.40 A W shape is used as a column with an e¤ective length of 30 ft. The 155-kip
load has an eccentricity of 9 in. as shown in the figure. Find the lightest section that can
carry the load with a factor of safety of 2.5 against yielding. Due to space limitations,
the depth of the section must not exceed 20 in. Use E ¼ 29� 103 ksi and syp ¼ 50 ksi.

10.41 The load P acting on the steel cantilever column has an eccentricity e ¼ 0:5 in.
with respect to the z-axis. Determine the maximum allowable value of P using a factor
of safety of 2.5 against yielding and buckling. Which failure mode governs the solution?
The material properties are E ¼ 29� 106 psi and syp ¼ 36� 103 psi.

10.42 Solve Prob. 10.41 if e ¼ 5 in.

10.43 The C150� 19:3 channel is used as a column with an e¤ective length of
3 m. Determine the largest eccentricity e of the 14.5-kN load for which the maximum
tensile stress does not exceed the maximum compressive stress. Use E ¼ 200 GPa.

10.44 The simply supported column is a C310� 45 channel, 2.2 m long. Find
the largest value of the load P that can be carried with a factor of safety of 2.5 against
yielding. Use E ¼ 200 GPa and syp ¼ 380 MPa. Does tension or compression govern?

10.45 The tube with a 5-in. outer diameter and a 4-in. inner diameter is used as a
column with an e¤ective length of 16 ft. The magnitude of the load P, which has
an eccentricity e, is one-half the critical load of the column. If the working stress is
20 ksi, determine the maximum allowable value of e. Use E ¼ 29� 106 psi.

10.46 The W18� 46 section is used as a 24-ft-long simply supported column. The
column carries the axial load P with an eccentricity e. Determine the value of e if
yielding of the column is initiated by the load P ¼ 0:85Pcr, where Pcr is the critical
load given by Eulers formula. Use E ¼ 29� 106 psi and syp ¼ 36� 103 psi.

10.47 The square tube is used as a column with an e¤ective length of 18 ft. The
axial load P has an eccentricity of e ¼ 0:2 in. Determine the value of P that would
initiate yielding of the column. Use E ¼ 29� 106 psi and syp ¼ 36� 103 psi.

FIG. P10.40 FIG. P10.41, P10.42

C150 � 19.3

FIG. P10.43

FIG. P10.44

FIG. P10.45

P
e

c

W18 � 46

e

c

W18 � 46

FIG. P10.46

0.5 in.

P

6 in. 6 in.

e

FIG. P10.47
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Computer Problems

C10.1 A circular steel tube with outer diameter D and inner diameter d is used as
a column with an e¤ective length Le. The modulus of elasticity of steel is E and the
yield stress is syp. Given b ¼ d=D, Le, E, and syp, write an algorithm that uses the
AISC specifications to plot the design strength Pdes versus D from D ¼ 0 to Dmax. Run
the algorithm with the following data: Le ¼ 18 ft, E ¼ 29� 106 psi, syp ¼ 36� 103 psi,
and (a) b ¼ 0 (solid rod), Dmax ¼ 9 in.; and (b) b ¼ 0:9, Dmax ¼ 16 in. If P ¼ 600 kips,
use the plots to estimate the smallest allowable D in each case.

C10.2 The column consisting of a W-section has an e¤ective length Le and carries
an axial load P with an eccentricity e. Given Le, e, E, syp, and the cross-sectional
properties A, S, and I, write an algorithm that uses the secant formula to (1) calculate
Pyp, the value of P that initiates yielding; and (2) plot the maximum compressive
normal stress smax versus P from P ¼ 0 to Pyp. Run the algorithm for a W360� 122
section with e ¼ 300 mm, E ¼ 200 GPa, syp ¼ 250 MPa, A ¼ 15 500 mm2,
S ¼ 2010� 103 mm3, I ¼ 365� 106 mm4; and (a) Le ¼ 10 m; and (b) Le ¼ 20 m. In
each case, use the plots to estimate the value of P that results in smax ¼ 150 MPa.

C10.3 The outer and inner diameters of a hollow tube are D and d, respectively.
The tube is used as a column with an e¤ective length Le to carry an axial load P.
The relationship between the stress s and the strain � of the material may be
approximated by

s ¼ 68:8�� ð2:36� 103Þ�2 � ð2:06� 106Þ�3 GPa

Given D, d, and Le, write an algorithm that computes the critical value of P using the
tangent modulus theory of buckling. Run the algorithm with the following data:
D ¼ 80 mm, d ¼ 60 mm, and (a) Le ¼ 1:2 m; and (b) Le ¼ 2 m.

FIG. C10.2
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11
Additional Beam Topics

11.1 Introduction

The theory of bending in Chapter 5 was based on several assumptions that
placed restrictions on its use. Here are two of these assumptions:

. The beam has a plane of symmetry and the applied loads act in this
plane.. The beam is straight, or its initial radius of curvature is large com-
pared to the depth of the beam.

If the loads do not act in a plane of symmetry of the beam, the shear
stresses may cause the beam to twist, unless the plane of loading passes
through a certain point in the cross section known as the shear center. This

Segment of a curved beam. If a beam is

highly curved, the formulas developed for

straight beams are not applicable. One of

the topics presented in this chapter is the

stress analysis of curved beams. Courtesy

of Kate Fredriksen/Shutterstock.
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problem is analyzed in Secs. 11.2 and 11.3, where we also learn how to
locate the shear center of a given cross section.

The topic of Sec. 11.4 is unsymmetrical bending, where the bending
moment acts about an axis that is not a principal axis of the cross section.
As a consequence, the neutral axis of the cross section does not generally
coincide with the axis of bending, so that the flexure formula s ¼ �My=I is
not directly applicable. Section 11.4 shows how to modify the analysis so
that the flexure formula can be used for unsymmetrical bending.

Section 11.5 discusses stresses in beams with significant initial curva-
ture. In straight beams, the assumption that plane sections remain plane
gave rise to linear stress distribution over a cross section, as seen in the
flexure formula. If the beam is curved, the same assumption results in a
nonlinear distribution of stress, which is described by the curved beam
formula derived in the article.

11.2 Shear Flow in Thin-Walled Beams

In Sec. 5.4, we derived the equation t ¼ VQ=ðIbÞ for calculating the vertical
shear stresses induced by the transverse shear force in symmetric beams. A
similar formula can be obtained for the shear stress in the flanges of struc-
tural shapes, such as wide-flange and channel sections. Deriving this shear
stress is essentially an extension of the arguments that were used in Sec. 5.4.

Figures 11.1(a) and (b) show an infinitesimal segment of a wide-flange
beam. The segment is bounded by the sections z1 and z2 , a distance dx

apart. The bending moments acting on the two sections are denoted by
M and M þ dM. In Fig. 11.1(c), we have isolated the shaded portion of
the flange by a vertical cutting plane. The normal forces P and Pþ dP

are the resultants of the bending stresses acting over the area A0 of the
flange. In Sec. 5.4, we showed that

P ¼ �MQ

I
(5.6, repeated)

where Q is the first moment of area A0 about the neutral axis, and I repre-
sents the moment of inertia of the cross-sectional area of the beam about the
neutral axis. Therefore,

dP ¼ � dM

dx

Q

I
dx ¼ �VQ

I
dx

where we have substituted V ¼ dM=dx.
Equilibrium of the free-body diagram in Fig. 11.1(c) (only forces act-

ing in the x-direction are shown) requires the presence of a longitudinal
shear force dF on the vertical cutting plane. Assuming that the shear stress t

is uniformly distributed over the thickness t of the flange, we have
dF ¼ tt dx. Therefore, the equilibrium equation

SFx ¼ 0: ðPþ dPÞ � Pþ dF ¼ 0

becomes

�VQ

I
dxþ tt dx ¼ 0

FIG. 11.1 (a)–(b) Infinitesimal
segment of a W-section; (c) free-body
diagram used in determining the
shear stress in the flange.
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yielding

t ¼ VQ

It
(11.1)

Longitudinal shear stress in a flange is accompanied by shear stress of
equal magnitude on the cross-sectional plane, as illustrated in Fig. 11.2. Be-
cause Q in Eq. (11.1) becomes negative when A0 is below the neutral axis,
the shear stresses in the top and bottom flanges have opposite directions as
shown.

For thin-walled members, it is convenient to introduce the concept of
shear flow. Whereas shear stress represents the force per unit area, shear flow
q refers to the force per unit length. In terms of the shear stress t and wall
thickness t, the shear flow is

q ¼ tt ¼ VQ

I
(11.2)

Using Eq. (11.2), we can find the shear flow distribution in the flanges
of wide-flange and channel sections. Referring to Fig. 11.3(a), we have

q ¼ VQ

I
¼ VðtzÞy

I
¼ Vht

2I
z (a)

This equation shows that the shear flow q varies linearly with the distance
from the free edge of the flange. The variation and direction of the shear
flow on the cross sections are illustrated by the shear flow diagrams in
Fig. 11.3(b). (The shear force V acting on each cross section is assumed to
act downward.)

FIG. 11.2 Shear stresses in the
flanges of a W-section.

FIG. 11.3 (a) Computation of shear flow in wide-flange and channel sections;
(b) distribution of shear flow.
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Similarly, for the split tube in Fig. 11.4(a), the shear flow at the loca-
tion defined by the angle f is

q ¼ VQ

I
¼ V

I

ð f

0

ðr sin fÞðtr dfÞ ¼ Vtr2

I
ð1� cos fÞ (b)

which gives the shear flow diagram in Fig. 11.4(b). (The shear force V is
again assumed to act downward on the cross section.)

11.3 Shear Center

We now consider the bending of thin-walled sections that have only one axis
of symmetry. In previous chapters, we always assumed that this axis of
symmetry was in the plane of loading. In this article, we examine the con-
ditions under which bending theory can be applied to sections for which the
axis of symmetry is the neutral axis.

An example of a section with a single axis of symmetry is the channel
section in Fig. 11.5. We assume the loading is vertical, so that the axis of
symmetry is the neutral axis of the cross section. Figure 11.5(a) shows the
shear flow induced by a vertical shear force V acting on the cross section.
The maximum shear flow q1 ¼ Vhtb=ð2IÞ in the flanges is obtained from
Eq. (a) of Sec. 11.2 by substituting z ¼ b, where the dimensions h, t, and b

are defined in the figure. The resultant force H of the shear flow in a flange,
shown in Fig. 11.5(b), is the area of the shear flow diagram:

H ¼ 1

2
q1b ¼ Vhtb2

4I
(c)

The shear flow resultant in the web is equal to the vertical shear force V

acting on the section. Noting that the forces H in the flanges form a couple
of magnitude Hh, we can replace the force system in Fig. 11.5(b) by a
statically equivalent force V acting through the point O, as shown in
Fig. 11.5(c). The location of O is determined from the requirement that the
moments of the two force systems about any point must be equal. Choosing
B as the moment center, we get Hh ¼ Ve, which yields

FIG. 11.4 (a) Computation of
shear flow in a split tube;
(b) distribution of shear flow.

Fig 11.5 (a) Shear flow distribution in a channel section; (b) resultants of the
shear flows; (c) statically equivalent force system consisting of the shear force V

acting at the shear center O.

400 CHAPTER 11 Additional Beam Topics

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



e ¼ Hh

V
¼ h2b2t

4I
(11.3)

The point O is known as the shear center, or the flexural center, of the cross
section.

The foregoing results show that for the bending theory developed in
Chapters 5 and 6 to be applicable, the shear force must act through the shear
center. To satisfy this requirement, the plane of external loading must pass

through the shear center. If the loading does not comply with this condition,
bending will be accompanied by twisting. The cantilever beam in Fig.
11.6(a), for example, will not twist because the load P acts through the shear
center of the end section. On the other hand, if P is placed at any other
point, such as the centroid C of the section, the deformation of the beam will
consist of twisting as well as bending, as illustrated in Fig. 11.6(b).

The shear centers of other thin-walled sections can be determined by
similar analyses. In some cases, the location of the shear center can be de-
termined by inspection. The T-section in Fig. 11.7(a) carries practically all
the vertical shear in its flange (because the web lies along the neutral axis,
its contribution is negligible). Therefore, the shear center of the section is
located on the centerline of the flange. The shear center of the equal angle
section in Fig. 11.7(b) is clearly at the corner of the section, where the shear
flows in the legs intersect.

If the axis of symmetry is vertical (in the plane of loading), the shear
center always lies on that axis. As illustrated in Fig. 11.7(c), the horizontal
shear flows are symmetric about the axis of symmetry. Therefore, they have
no resultant. The vertical shear flow, on the other hand, has the resultant V

that lies on the axis of symmetry.

FIG. 11.6 (a) A channel section
bends without twisting when the load
acts at the shear center O; (b) if the
load is not at the shear center,
bending is accompanied by twisting.

FIG. 11.7 Sections for which the shear center O can be located by inspection.
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Sample Problem 11.1

The thin-walled section in Fig. (a) has a uniform wall thickness of 0:5 in. If the shear
force acting on the section is V ¼ 1000 lb directed in the negative y-direction, draw
the shear flow diagram for the cross section.

Solution
We compute the cross-sectional properties from the idealized cross section shown in
Fig. (b). This approximation, which is commonly used for thin-walled sections,
ignores the wall thickness in comparison to the other cross-sectional dimensions.

Referring to Fig. (b), we see that the location of the neutral axis is given by

y ¼
P

AiyiP
Ai

¼ 4ð0Þ þ 4ð4Þ þ 6ð8Þ
4þ 4þ 6

¼ 4:571 in:

as shown in Fig. (c).
The moment of inertia of the cross-sectional area about the neutral axis can be

calculated from

I ¼ Iweb þ
X

flanges

Aiðyi � yÞ2

¼ 0:5ð8Þ3

12
þ 4ð4:571� 4Þ2

" #
þ 4ð4:571Þ2 þ 6ð3:429Þ2

¼ 176:76 in:4

The shear flow diagram is shown in Fig. (c). The computational details are
explained below.

(c)

Top Flange The shear flow in the top flange varies linearly from zero at A to q1 at B,
where

q1 ¼
VQAB

I
¼ 1000ð0:5� 6Þð3:429Þ

176:76
¼ 58:2 lb=in:

402

(b)

A = 4 in2.

A = 4 in2.

A = 6 in2.
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The shear flow in the other half of the flange has the same distribution but it acts in
the opposite direction.

Bottom Flange In the bottom flange, the shear flow is zero at E and increases lin-
early to

q2 ¼
VQEF

I
¼ 1000ð0:5� 4Þð4:571Þ

176:76
¼ 51:7 lb=in:

at point F. Again, the shear flow is symmetric in the two halves of the flange.

Web The shear flow at B in the web is

qB ¼
VQAD

I
¼ Vð2QABÞ

I
¼ 2q1 ¼ 2ð58:2Þ ¼ 116:4 lb=in:

Similarly, we get for the shear flow at F

qF ¼
VQEG

I
¼ Vð2QEF Þ

I
¼ 2q2 ¼ 2ð51:7Þ ¼ 103:4 lb=in:

The maximum shear flow, which occurs at the centroid C of the cross section, is

qmax ¼
VðQAD þQBCÞ

I
¼ 116:4þ 1000ð0:5� 3:429Þð3:429=2Þ

176:76
¼ 133:0 lb=in:

1
Sample Problem 11.2

The section in Sample Problem 11.1 is rotated 90�, with the shear force V ¼ 1000 lb
still acting vertically downward. Determine (1) the shear force carried by each flange;
and (2) the distance between the shear center and the left flange.

Solution

From Fig. (a), the moment of inertia of the cross section about the neutral axis is (we
neglect the small contribution of the web)

I ¼ 0:5ð12Þ3

12
þ 0:5ð8Þ3

12
¼ 93:33 in:4
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Part 1

The entire vertical shear force V is carried by the flanges, where the shear flow dis-
tribution is parabolic, as illustrated in Fig. (a). The maximum values of the shear
flow are obtained from

q1 ¼
VQBD

I
¼ 1000ð0:5� 6Þð3Þ

93:33
¼ 96:43 lb=in:

q2 ¼
VQFG

I
¼ 1000ð0:5� 4Þð2Þ

93:33
¼ 42:86 lb=in:

The shear forces in the flanges, shown in Fig. (b), are equal to areas of the respective
shear flow diagrams. Thus,

V1 ¼
2

3
q1AD ¼ 2

3
ð96:43Þð12Þ ¼ 771:4 lb Answer

V2 ¼
2

3
q2EG ¼ 2

3
ð42:86Þð8Þ ¼ 228:6 lb Answer

As a check, we note that V1 þ V2 ¼ 771:4þ 228:6 ¼ 1000:0 lb, which is equal to the
vertical shear force V acting on the cross section.

Part 2

The forces V1 and V2 are statically equivalent to the shear force V acting at the shear
center O as indicated in Fig. (c). The distance e between the left flange and point O is
obtained by equating the moments of the forces in Figs. (b) and (c) about B, which
yields 8V2 ¼ eV or

e ¼ 8V2

V
¼ 8ð228:6Þ

1000
¼ 1:829 in: Answer

Note The shear flows were calculated using the assumption that the beam bends but
does not twist. Therefore, the results are valid only if the loading is such that the
shear force V does act through the shear center. Otherwise, the bending theory from
which the shear flow was obtained is not applicable.

1

404

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems

11.1–11.4 The vertical shear force V acts on the thin-walled section shown.
Draw the shear flow diagram for the cross section. Assume that the thickness of the
section is constant.

11.5–11.8 For the cross section shown, (a) draw the shear flow diagram due to
the vertical shear force V; and (b) calculate the distance e locating the shear center O.
Assume that the thickness of the section is constant.

FIG. P11.1 FIG. P11.2

4200 lb

3 in.
12 in.

3 in.

6 in.

FIG. P11.3

NA

V

b b

t

FIG. P11.4

80 mm

200 mm

V = 1.5 kN

FIG. P11.5
FIG. P11.6

FIG. P11.7 FIG. P11.8
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11.9–11.18 The cross section of the beam has a uniform wall thickness. Determine
the location of the shear center relative to point B.

FIG. P11.9 FIG. P11.10 FIG. P11.11

FIG. P11.12 FIG. P11.13

18

3
6

FIG. P11.14

FIG. P11.15 FIG. P11.16
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11.19 The figure shows an idealized cross section of a C10� 25 section.
Determine the horizontal distance e between point B and the shear center.

11.4 Unsymmetrical Bending

a. Review of symmetrical bending

The theory of bending developed in Chapter 5 was restricted to loads lying in a
plane that contains an axis of symmetry of the cross section. The derivation of
the equations that govern symmetrical bending was based on Fig. 5.3, which is
repeated here as Fig. 11.8. The assumption that plane cross sections remain
plane, combined with Hooke’s law, led to the normal stress distribution

s ¼ �E

r
y (5.1, repeated)

where r is the radius of curvature of the beam. The following equilibrium
conditions had to be satisfied:

. Resultant axial force must vanish:
Ð
A

s dA ¼ 0. Substituting s from
Eq. (5.1), we obtained ð

A

y dA ¼ 0 (a)

FIG. P11.17

6 in.

6 in.

4 in.

3 in.

3 in.

6 in.

FIG. P11.18

2.89 in.

0.436 in.

0.526 in.

B

5 in.

FIG. P11.19

FIG. 11.8 Symmetrical bending, where the plane of loading (the xy-plane) is also
a plane of symmetry of the beam.
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which showed that the neutral axis coincided with the centroidal axis
of the cross section.

. Resultant moment about the y-axis must vanish:
Ð
A

sz dA ¼ 0. After
substitution of the expression for s, this condition became

Iyz ¼
ð

A

yz dA ¼ 0 (b)

where the integral is the product of inertia of the cross-sectional area
with respect to the yz-axes. Because the y-axis was previously assumed
to be an axis of symmetry of the cross section, the product of inertia
was identically zero, and this condition was trivially satisfied.

. Resultant moment about the neutral axis must equal the bending mo-

ment M:
Ð
A

sy dA ¼ �M (the negative sign results from our sign con-
vention: positive M causes negative s when y > 0). This condition
yielded M ¼ EI=r, which upon substitution in Eq. (5.1) resulted in the
flexure formula

s ¼ �My

I
(c)

We can now see that the requirement that the y-axis must be an axis of
symmetry of the cross section is overly restrictive. According to Eq. (b), the
flexure formula is valid as long as Iyz ¼ 0, which is the case when the yz-axes
are the principal axes of inertia of the cross section.1 Therefore, the flexure
formula is applicable if M acts about one of the principal axes of the cross
section. The planes that are parallel to the principal axes and pass through
the shear center are called the principal planes of bending. For the flexure
formula to be valid, the external loads must lie in the principal planes of
bending.

b. Symmetrical sections

We are now ready to discuss unsymmetrical bending. Unsymmetrical bend-
ing is caused by loads that pass through the shear center but do not lie in a
principal plane of bending. Consider the symmetric cross section that carries
the bending moment M as shown in Fig. 11.9 (we use a double-headed
arrow to represent the bending moment as a vector). The yz-axes are the
principal axes of inertia, and y is the angle between M and the z-axis. Be-
cause M is inclined to the principal axes, the flexure formula is not directly
applicable. However, if we resolve M into the components

My ¼M sin y Mz ¼M cos y (d)

the flexure formula can be applied to each component separately and the
results superimposed, as illustrated in Fig. 11.10. The stress due to My is
Myz=Iy, with the y-axis being the neutral axis. The neutral axis for Mz is the
z-axis, and the corresponding stress is �Mzy=Iz. Using superposition, we
obtain for the stress caused by M

1See Appendix A for a discussion of the inertial properties of areas, including products of

inertia and principal moments of inertia.

FIG. 11.9 Unsymmetrical bending
of a symmetrical section.
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s ¼Myz

Iy

�Mzy

Iz

(11.4)

c. Inclination of the neutral axis

In general, the neutral axis for unsymmetrical bending is not parallel to the
bending moment M. Because the neutral axis is the line where the bending
stress is zero, its equation can be determined by setting s ¼ 0 in Eq. (11.4),
which yields

Myz

Iy

�Mzy

Iz

¼ 0

Substituting the components of the bending moment from Eq. (d) gives

M
z sin y

Iy

� y cos y

Iz

� �
¼ 0

which, after we cancel M, can be rearranged in the form

y

z
¼ Iz

Iy

tan y (e)

Referring to Fig. 11.11, we see that y=z is the slope of the neutral axis.
Therefore, Eq. (e) can be written as

tan a ¼ Iz

Iy

tan y (11.5)

where a is the slope angle of the neutral axis (the angle between the neutral
axis and the z-axis). Equation (11.5) shows that unless we have symmetrical
bending (y ¼ 0 or 90�), the neutral axis will be parallel to the moment vector
M only if Iy ¼ Iz.

FIG. 11.10 Normal stress distribution caused by unsymmetrical bending.

FIG. 11.11 In unsymmetrical
bending the neutral axis is not
necessarily parallel to the bending
moment vector.
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Because the bending stress is proportional to the distance from the
neutral axis, the maximum stress occurs at the point that is farthest from the
neutral axis. Therefore, locating the neutral axis can be useful in determining
the location of the maximum bending stress on a cross section.

d. Unsymmetrical sections

If the cross section does not have an axis of symmetry, such as the Z-shape
in Fig. 11.12, we must first determine the angle y that defines the orientation
of the principal axes of inertia (the yz-axes). The bending moment M can
then be resolved into the components My and Mz as shown, after which the
bending stress at any point on the cross section can be determined from Eq.
(11.4).

Before we can use Eq. (11.4), the yz-coordinates of the point must
be determined. This often involves the following coordinate transformation

problem: Knowing the y 0z 0-coordinates of an arbitrary point B and the an-
gle y, compute the yz-coordinates of B. Referring to the two shaded triangles
in Fig. 11.12, we see that the relationships between the two sets of coor-
dinates are

yB ¼ y 0B cos yþ z 0B sin y zB ¼ z 0B cos y� y 0B sin y (11.6)

FIG. 11.12 Bending of an unsymmetrical section. The yz-axes are the principal
axes of inertia of the cross section. The shaded triangles are used to derive
coordinate transformations for points on the cross section.
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Sample Problem 11.3

The W250� 32:7 section carries a 32-kN �m bending moment inclined at 16:2� to the
z-axis, as shown in Fig. (a). Determine (1) the angle between the neutral axis and the
z-axis; and (2) the largest bending stress acting on the section.

Solution
From Table B-2 in Appendix B, we obtain the following properties of the section:

Iy ¼ 4:75� 106 mm4 Iz ¼ 49:1� 106 mm4

Sy ¼ 65:1� 103 mm3 Sz ¼ 380� 103 mm3

Part 1

The angle a between the neutral axis and the z-axis can be computed from Eq. (11.5):

tan a ¼ Iz

Iy

tan y ¼ 49:1

4:75
tan 16:2� ¼ 3:003

a ¼ 71:6� Answer

The neutral axis is shown in Fig. (b).

Part 2

Resolving the bending moment in Fig. (a) into components parallel to the principal
axes, we get

My ¼ �32 sin 16:2� ¼ �8:928 kN �m

Mz ¼ �32 cos 16:2� ¼ �30:73 kN �m

By inspection of Fig. (b), we see that the largest bending stress occurs at A and B

because these points are farthest from the neutral axis. We also note that both com-
ponents of the bending moment cause tension at A and compression at B. Therefore,
the largest bending stress acting on the section is

smax ¼ sA ¼ jsBj ¼
jMyj
Sy

þ jMzj
Sz

¼ 8:928� 103

65:1� 10�6
þ 30:73� 103

380� 10�6

¼ 218� 106 Pa ¼ 218 MPa Answer

1
Sample Problem 11.4

An L6� 4� 1=2 angle is used as a simply supported beam, 48 in. long. The beam
carries a 1.0-kip load at its midspan as shown in Fig. (a). Determine (1) the angle
between the neutral axis and the horizontal; and (2) the maximum bending stress in
the beam.
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Solution

Preliminary Computations

The cross section is shown in Fig. (b), where the yz-axes are the principal axes of in-
ertia. The relevant dimensions shown in the figure were obtained from the data in
Table B-9 in Appendix B. The table also lists the following geometric properties of
the cross section: A ¼ 4:75 in.2, Iy 0 ¼ 6:22 in.4, Iz 0 ¼ 17:3 in.4, ry ¼ 0:864 in. (radius
of gyration about the y-axis), and tan y ¼ 0:440.

From the given data, we obtain

y ¼ tan�1 0:440 ¼ 23:8�

and

Iy ¼ Ar2
y ¼ 4:75ð0:864Þ2 ¼ 3:546 in:4

The moment of inertia about the z-axis can be calculated from the property
Iy þ Iz ¼ Iy 0 þ Iz 0 (the sum of the moments of inertia does not vary with coordinate
transformation). Thus,

Iz ¼ Iy 0 þ Iz 0 � Iy ¼ 6:22þ 17:3� 3:546 ¼ 19:974 in:4

The bending moment M acts about the z 0-axis as shown in Fig. (b).

Part 1

The angle of inclination of the neutral axis with respect to the z-axis is given by Eq.
(11.5):

tan a ¼ Iz

Iy

tan y ¼ 19:974

3:546
ð0:440Þ ¼ 2:478 a ¼ 68:0�

Thus, the angle between the neutral axis and the horizontal is—see Fig. (c):

b ¼ a� y ¼ 68:0� � 23:8� ¼ 44:2� Answer

Part 2

The maximum bending moment is located at the midspan of the beam. Its magnitude is

M ¼ PL

4
¼ 1:0ð48Þ

4
¼ 12 kip � in:

From Fig. (b), the components of this moment along the principal axes of inertia are

My ¼M sin y ¼ 12 sin 23:8� ¼ 4:843 kip � in:

Mz ¼M cos y ¼ 12 cos 23:8� ¼ 10:980 kip � in:

From Fig. (c), we see that the maximum bending stress occurs at point B be-
cause B is the most distant point from the neutral axis. From Fig. (b), the coordinates
of B are

y 0B ¼ �4:02 in: z 0B ¼ �ð0:981� 0:5Þ ¼ �0:481 in:

Transforming these coordinates to the principal axes using Eqs. (11.6), we get

yB ¼ y 0B cos yþ z 0B sin y ¼ �4:02 cos 23:8� þ ð�0:481Þ sin 23:8� ¼ �3:872 in:

zB ¼ z 0B cos y� y 0B sin y ¼ �0:481 cos 23:8� � ð�4:02Þ sin 23:8� ¼ 1:1822 in:

The maximum bending stress can now be computed from Eq. (11.4):

smax ¼ sB ¼
MyzB

Iy

�MzyB

Iz

¼ 4:843ð1:1822Þ
3:546

� 10:980ð�3:872Þ
19:974

¼ 3:74 ksi Answer

1

9 1

8

2
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Problems

11.20 The cross section of a wood beam carries a bending moment M of magni-
tude 18 kip � in. acting at 10� to the horizontal. Determine (a) the angle between the
neutral axis and the horizontal; and (b) the maximum bending stress acting on the
cross section.

11.21 The magnitude of the bending moment M acting on the C10� 20 section is
60 kip � in. Calculate (a) the angle between the neutral axis and the horizontal; and
(b) the largest bending stress acting on the section.

11.22 The simply supported beam is loaded by a force P that is inclined at 40� to
the vertical and passes through the centroid C of the cross section. If the working
bending stress is 18 ksi, determine the largest allowable value of P.

8 ft 4 ft

1.5 in.

12 in.

1.5 in. 12 in.

1.5 in.

FIG. P11.22

FIG. P11.20 FIG. P11.21
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11.23 The L203� 102� 19 section is used as a cantilever beam supporting the
6-kN load. Determine (a) the angle between the neutral axis and the vertical; and
(b) the maximum bending stress in the beam.

L203 × 102 × 19

FIG. P11.23

11.24 The cross section of the simply supported T-beam has the inertial properties
Iy ¼ 18:7 in.4 and Iz ¼ 112:6 in.4. The load P is applied at midspan, inclined at 30�

to the vertical and passing through the centroid C of the cross section. (a) Find the
angle between the neutral axis and the horizontal. (b) If the working bending stress is
12 ksi, find the largest allowable value of the load P.

FIG. P11.24

11.25 The cantilever beam, which has the same cross section as the beam in Prob.
11.24, carries two concentrated loads as shown in the figure. Compute (a) the angle
between the neutral axis and the horizontal at the support; and (b) the maximum
tensile and compressive stresses in the beam.

FIG. P11.25
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11.26 The Z-section is used as a cantilever beam that carries the force P ¼ 200 lb
at its free end. The principal moments of inertia of the cross section are Iy ¼ 2:95 in.4

and Iz ¼ 25:25 in.4. Compute the bending stress at point B.

11.27 The Z-section described in Prob. 11.26 is used as a simply supported roof
purlin, 12 ft long, carrying a distributed vertical load of 200 lb/ft. The slope of the
roof is 1:4, as indicated in the figure. Determine the maximum bending stress at cor-
ner A of the purlin for the orientations (a) and (b).

11.28 The masonry column carries an eccentric load P ¼ 12 kN as shown in
the figure. (a) Locate the points on the cross section where the neutral axis crosses the
y- and the z-axes. (b) Determine the maximum tensile and compressive normal stresses.

11.29 The short column is made of a thin-walled equal-angle section. The principal
moments of inertia of the section are Iy ¼ tb3=3 and Iz ¼ tb3=24. If the load P acts at
the tip of a leg as shown, determine the compressive stress at point B on a cross section.

11.30 The principal moments of inertia of the thin-walled equal-angle section are
Iy ¼ b3t=3 and Iz ¼ b3t=12. The bending moment M acts on the cross section, in-
clined at the angle to the y-axis. Determine the value of for which the bending stress
at point B is zero.

11.5 Curved Beams

a. Background

When deriving the flexure formula s ¼ �My=I in Chapter 5, we assumed that
the beam was initially straight. If a beam is curved, as shown in Fig. 11.13, the
bending stress distribution is no longer linear. Therefore, we must derive another

FIG. P11.26
FIG. P11.27

80 mm

P = 12 kN

8 mm

16 mm

12
0 

m
m

FIG. P11.28
FIG. P11.29
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θ

B
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M

b
2

b
2

FIG. P11.30

11.5 Curved Beams 415

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



formula for computing the bending stress. The di¤erence between the two
formulas will be negligible if the curvature of the beam is small. As a general
rule, the flexure formula gives acceptable results for curved beams if R=h > 5,
where R is the radius of curvature of the neutral surface and h is the depth of
the beam. For more sharply curved beams, the flexure formula should not
be used.

b. Compatibility

Consider the deformation of the infinitesimal segment of a curved beam
shown in Fig. 11.14. We denote the radius of curvature of the neutral sur-
face by R and the angle between the two cross sections by dy before de-
formation. We assume, as we did for straight beams, that plane cross sec-
tions remain plane after bending. Although this assumption is not strictly
accurate, it gives results that agree closely with strain measurements. When
the bending moment M is applied, the cross sections rotate relative to each
other, increasing the angle between them to dy 0 and decreasing the radius of
curvature of the neutral surface to R 0. Because the length ds of a fiber on the
neutral surface does not change, we have

R dy ¼ R 0 dy 0 (a)

Let us now investigate the strain of a typical fiber ab, located initially
at the distance r from the center of curvature O. The length of this fiber
before deformation is ab ¼ r dy. After deformation, the length becomes

FIG. 11.13 Curved beam carrying a constant bending moment M.

FIG. 11.14 Deformation of an infinitesimal segment of a curved beam.
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a 0b 0 ¼ ½R 0 þ ðr� RÞ� dy 0 ¼ R dyþ ðr� RÞ dy 0

where in the last step we used Eq. (a). Thus, the normal strain of the fiber is

� ¼ a 0b 0 � ab

ab
¼ ½R dyþ ðr� RÞ dy 0� � r dy

r dy

¼ rðdy 0 � dyÞ � Rðdy 0 � dyÞ
r dy

¼ dy 0 � dy

dy
1� R

r

� �

If we let f ¼ ðdy 0 � dyÞ=dy, the strain of the fiber ab becomes

� ¼ f 1� R

r

� �

The normal stress in the fiber is

s ¼ E� ¼ Ef 1� R

r

� �
(b)

The resulting stress distribution is shown in Fig. 11.15. Because the stress
distribution is nonlinear, the tensile and compressive forces over a cross sec-
tion cannot be balanced if the neutral surface passes through the centroid of
the cross section. Therefore, the neutral surface must shift from the centroid
of the section toward the center of curvature O. Comparing the stress in
Eq. (b) with the linear stress distribution obtained from the flexure formula
(dashed line) shows not only this shift but also the increased stress at the in-
ner fibers and the decreased stress in the outer fibers.

c. Equilibrium

We next locate the neutral axis and derive the relationship between the stress
and the applied bending moment. Because we consider only the e¤ects of
bending (no axial force), the normal stress acting on a cross section must
satisfy the two equilibrium conditions stated next.

FIG. 11.15 Normal stress distribution in a curved beam.
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The Resultant Axial Force Must Vanish. From Eq. (b), this con-
dition becomes ð

A

s dA ¼ Ef

ð
A

1� R

r

� �
dA ¼ 0 (c)

where dA is an element of the cross-sectional area, as shown in Fig. 11.14,
and the integral is taken over the entire cross-sectional area A. Unless there
is no deformation, f cannot be zero, so that the condition for zero axial
force becomes ð

A

1� R

r

� �
dA ¼ A� R

ð
A

dA

r
¼ 0

Thus, the distance from the center of curvature O to the neutral axis is

R ¼ AÐ
A
ð1=rÞ dA

(11.7)

Evaluation of the integral
Ð
A
ð1=rÞ dA by analytical means is possible only if

the cross section has a simple shape. For complex cross sections, the integral
must be computed by numerical methods.

The Resultant of the Stress Distribution Must Equal M. Because
the resultant of the stress distribution is a couple (there is no axial force),
we can use any convenient moment center for computing its magnitude.
Choosing the center of curvature O in Fig. 11.14 as the moment center, we getð

A

rs dA ¼M

which becomes, after substituting the stress from Eq. (b),

Ef

ð
A

ðr� RÞ dA ¼M

We recognize that
Ð
A

R dA ¼ RA and
Ð
A

r dA ¼ Ar, where r is the distance
from O to the centroid C of the cross section, as shown in Fig. 11.14.
Therefore, the relationship between f and M is

EAfðr� RÞ ¼M (11.8)

d. Curved beam formula

Solving Eq. (11.8) for Ef and substituting the result into Eq. (b) yields the
curved beam formula:

s ¼ M

Aðr� RÞ 1� R

r

� �
(11.9)

Equations (11.7) and (11.9) are su‰cient for determining bending stresses in
curved beams. As mentioned before, a potential di‰culty is the computation
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of the integral
Ð
A
ð1=rÞ dA. However, the integrals for some cross-sectional

shapes are known; several of these are listed in Fig. 11.16.
Finally, we must point out that the di¤erence between r and R is often

very small, so that the subtraction r� R in the denominator of Eq. (11.9)
can introduce a significant roundo¤ error. For this reason, r and R should
be computed with two or three additional significant figures.

Cross section
Ð

A

dA

r

b ln
r2

r1

b2 � b1 þ
r2b1 � r1b2

r2 � r1
ln

r2

r1

2pðr�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2
p

Þ

FIG. 11.16 Values of
Ð

A
ð1=rÞ dA for several cross sections of curved beams.
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Sample Problem 11.5

The T-section in Fig. (a) is formed into a ring of 7.8-in. inner radius. Determine the
largest force P that may be applied to the ring if the working normal stress is sw ¼
18 ksi.

Solution
The critical section is a-a, where both the bending moment and the normal force
reach their maximum values. The free-body diagram of the upper half of the ring in
Fig. (b) shows the internal force system acting on section a-a. The compressive force
P is placed at the centroid C of the cross section so that its contribution to normal
stress is simply �P=A. The bending moment is M ¼ Pr, where r is the radius of the
centroidal axis of the ring. The bending stress due to M must be computed from the
curved beam formula. The normal stress acting on a-a is obtained by superimposing
the contributions of P and M. Because we do not know beforehand whether the
highest stress occurs at the inner or outer radius of the ring, we must investigate the
stresses at both locations.

Cross-sectional Properties We consider the cross-sectional area as a composite of
two rectangles of areas A1 ¼ 4 in.2 and A2 ¼ 6 in.2, as shown in Fig. (a). Thus, the
area of the section is

A ¼ A1 þ A2 ¼ 4þ 6 ¼ 10 in:2

From Fig. (a), the inner and outer radii of the ring are

r1 ¼ 7:8 in: r2 ¼ 7:8þ 7 ¼ 14:8 in:
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The radius of the centroidal axis is given by

r ¼ A1 r1 þ A2 r2

A1 þ A2
¼ 4ð7:8þ 0:5Þ þ 6ð7:8þ 4Þ

10
¼ 10:40 in:

To calculate the radius R of the neutral surface for bending from Eq. (11.7), we need
the integral

Ð
A
ð1=rÞ dA. Applying the formula in Fig. 11.16 for each rectangle, we getð

A

dA

r
¼
ð

A1

dA

r
þ
ð

A2

dA

r
¼ 4 ln

7:8þ 1

7:8
þ 1:0 ln

7:8þ 7

7:8þ 1
¼ 1:002 39 in:

Equation (11.7) now yields

R ¼ AÐ
A
ð1=rÞ dA

¼ 10

1:002 39
¼ 9:9762 in:

Note that we used an extra significant figure in the computation of R.

Maximum Stress The bending stresses at the inner and outer radii are computed
from Eq. (11.9). This equation contains the constant

M

Aðr� RÞ ¼
Pr

Aðr� RÞ ¼
Pð10:40Þ

10ð10:40� 9:9762Þ ¼ 2:454P

If we superimpose the uniform stress �P=A and the bending stress, the normal
stresses at points on the inner radius r1 and the outer radius r2 are

sinner ¼ �
P

A
þ M

Aðr� RÞ 1� R

r1

� �
¼ � P

10
þ 2:454P 1� 9:9762

7:8

� �

¼ �0:7847P ksi

souter ¼ �
P

A
þ M

Aðr� RÞ 1� R

r2

� �
¼ � P

10
þ 2:454P 1� 9:9762

14:8

� �

¼ 0:6998P ksi

The stress distribution on section a-a is shown in Fig. (c). We see that the largest
stress occurs at the inner radius.

The maximum allowable load is given by

jsinnerj ¼ sw 0:7847P ¼ 18 ksi

which yields

P ¼ 22:9 kips Answer

1
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Problems

11.31 Derive the expression for
Ð
A
ð1=rÞ dA in Fig. 11.16 for a rectangle.

11.32 The bending moment acting on the curved beam with a rectangular cross
section is M ¼ 8 kN �m. Calculate the bending stress at point B.

100 mm
170 mm

40 mm

70 mm
20 mm

FIG. P11.32

11.33 The cross section A-B of the hook is the trapezoid shown. Determine the
largest load P that the hook can carry if the maximum stress on section A-B must not
exceed 18 ksi.

11.34 The hook has a circular cross section of diameter d ¼ 100 mm. Determine
the maximum allowable value of load P if the working normal stress is 120 MPa.

11.35 Solve Prob. 11.34 if d ¼ 75 mm.

11.36 A circular rod of diameter d is bent into a semicircle of mean radius r ¼ 2d.
If the working normal stress is 20 ksi, find the smallest value of d if the rod is to carry
the 1800-lb load safely.

3 in.
2 in. 3 in.

A B

Section A-B

4 in.

FIG. P11.33

FIG. P11.34, P11.35

FIG. P11.36
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11.37–11.41 Determine the maximum tensile and compressive stresses acting on
section a-a of the curved beam shown.

FIG. P11.37 FIG. P11.38

FIG. P11.39

32
9

50

5

5

5

5

FIG. P11.40

FIG. P11.41
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Computer Problems

C11.1 The symmetric cross section of a thin-walled beam consists of straight seg-
ments of uniform thickness t, arranged end to end. The layout of the n segments
making up the upper half of the cross section (the figure shows n ¼ 3) is specified by
the coordinates xi and yi ði ¼ 1; 2; . . . ; nþ 1Þ of the nodes at the ends of the seg-
ments. Given n, t, the coordinates of the nodes, and the shear force V acting on the
cross section, write an algorithm that computes the coordinate e of the shear center
and the shear stresses at nodes z1 to zn . Apply the algorithm to the cross section in
Fig. (a) with V ¼ 3600 lb; and to the cross section in Fig. (b) with V ¼ 5000 lb.

C11.2 The bending moment M acting on the T-section is inclined at the angle y to
the horizontal. Given M and the dimensions b, h, and t of the cross section, write an
algorithm that plots the largest bending stress (absolute value) acting on the cross
section versus y from y ¼ �90� to 90�. Run the algorithm with the following data:
M ¼ 8 kip � ft, b ¼ 6 in., h ¼ 8 in., and t ¼ 1:0 in. (Hint: Consider stresses at points
A, B, and C.)

C11.3 The cross section of the curved beam is a trapezoid of depth h and average
width bav. By varying the bottom width b1 of the cross section while keeping h and
bav constant, we can change the stress distribution in the beam without altering the
cross-sectional area. Given h, bav, the bending moment M, and the radius r1, write an
algorithm that plots the magnitudes of the maximum tensile and compressive bend-
ing stresses in the beam versus b1 from b1 ¼ 0 to 2bav. Run the algorithm with the
following data: h ¼ 2:5 in., bav ¼ 2 in., M ¼ 1000 lb � ft, and r1 ¼ 6 in. Use the plot
to determine the value of b1 that results in the smallest bending stress.

FIG. C11.1

FIG. C11.2

FIG. C11.3
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12
Special Topics

12.1 Introduction

The preceding chapters covered the material that forms the core of a typical
undergraduate course in mechanics of materials. Here we discuss briefly
several topics that serve as bases for more advanced studies. Because each
topic constitutes an extensive field of study, the sections in this chapter
should be considered as brief introductions to complex subjects. The sections
are independent of one another, so that any one of them may be studied
without reference to the others.

Section of a concrete wall being lowered

by a crane. If the speed at which the

section is descending is reduced suddenly,

the tension in the supporting cable may

become much larger than the value

predicted by static analysis. Analysis of

dynamic loading is one of the topics of this

chapter. Courtesy of Mikael Damkier/

Shutterstock.

425

M
ik

a
el

D
a
m

k
ie

r/
S

h
u

tt
er

st
o

ck

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12.2 Energy Methods

a. Work and strain energy

When a force F is gradually applied to an elastic body that is adequately
supported (no rigid-body displacements permitted), the force does work as
the body deforms. This work can be calculated from U ¼

Ð d

0 F dd, where d is
the work-absorbing displacement of the point of application of F—that is, the
displacement component in the direction of F. If the stress is below the pro-
portional limit, then F is proportional to d, as shown in Fig. 12.1, and the
work becomes

U ¼ 1

2
Fd (12.1)

Note that U is the area under the force-displacement diagram. The work of
a couple C has the same form as Eq. (12.1): U ¼ Cy=2, where y is the angle
of rotation (in radians) in the plane of the couple. Therefore, we view Eq.
(12.1) as a generalized expression for work, where F can represent a force or
a couple and d is the work-absorbing displacement or rotation.

The work of several loads (forces and couples) F1;F2;F3; . . . acting on
an elastic body is independent of the order in which the loads are applied. It
is often convenient to compute the work by assuming that all the loads are
applied simultaneously, which results in

U ¼ 1

2

X
Fi di (12.2)

where di is the work-absorbing displacement of Fi caused by all the loads.
If the body is elastic, the work of external loads is stored in the body as

mechanical energy, called strain energy. If the loads are removed, the strain
energy is released as the body returns to its original shape. Using the con-
cepts of work and strain energy, we can develop powerful procedures for
computing the displacements of elastic bodies. We begin by deriving expres-
sions for the strain energy stored in bars and beams under various loadings.

b. Strain energy of bars and beams

Axial Loading Consider the bar of constant cross-sectional area A,
length L, and modulus of elasticity E in Fig. 12.2. If the axial load P is ap-
plied gradually, the work-absorbing displacement of its point of application
is the elongation d ¼ PL=ðEAÞ of the bar. Therefore, the strain energy of the
bar is

U ¼ 1

2
Pd ¼ 1

2

P2L

EA
(12.3)

FIG. 12.1 Force-displacement
diagram for an elastic body. The
area U is the work done by the force.

FIG. 12.2 Elongation of a bar due
to an axial load P.
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If P2=ðEAÞ is not constant along the length of the bar, Eq. (12.3) can be
applied only to a segment of length dx. The strain energy of the bar can then
be obtained by adding the strain energies of the segments—that is, by in-
tegration. The result is

U ¼ 1

2

ðL

0

P2 dx

EA
(12.4)

Torsion Figure 12.3 shows a circular bar of length L and constant cross sec-
tion. If the torque T is applied gradually, the free end of the bar rotates through
the angle y ¼ TL=ðGJÞ, where J is the polar moment of inertia of the cross-
sectional area and G is the modulus of rigidity. Because the work-absorbing
displacement of the couple T is the rotation y, the strain energy of the bar is

U ¼ 1

2
Ty ¼ 1

2

T 2L

GJ
(12.5)

When T 2=ðGJÞ varies along the bar, Eq. (12.5) can be applied to a segment
of length dx and the result integrated, yielding

U ¼ 1

2

ðL

0

T 2 dx

GJ
(12.6)

Bending When the couple M is applied to the beam of length L in Fig.
12.4, the beam is deformed into an arc of radius r. As a result, the free end
of the beam rotates through the angle y ¼ L=r, which is the work-absorbing
displacement of M. Thus, the strain energy of the beam is

U ¼ 1

2
My ¼ 1

2

ML

r

Substituting 1=r ¼M=ðEIÞ from Eq. (5.2b), where I is the moment of
inertia of the cross-sectional area about the neutral axis, we get

U ¼ 1

2

M 2L

EI
(12.7)

In general, M is not constant along the beam, so the strain energy of the
beam must be obtained by applying Eq. (12.7) to a segment of length dx and
integrating. Therefore,

U ¼ 1

2

ðL

0

M 2 dx

EI
(12.8)

FIG. 12.3 Twisting of a bar due
to a torque T.

FIG. 12.4 Bending of a bar due to
a couple M.
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c. Deflections by Castigliano’s theorem

Castigliano’s Theorem Castigliano’s theorem states that if an elastic
body is in equilibrium under the external loads F1;F2;F3; . . . ; then

di ¼
qU

qFi

(12.9)

where di is the work-absorbing displacement associated with Fi and U is the
strain energy of the body (expressed in terms of the external loads).

In Eq. (12.9), Fi can be a force or a couple. If Fi is a force acting at a
point A, then di is the displacement of A in the direction of the force. If Fi

represents a couple applied at a point A, then di is the rotation of the body at
A in the direction of the couple.

Proof Let the body in Fig. 12.5 be elastic and su‰ciently supported so
that it can maintain equilibrium after the loads F1;F2;F3; . . . are applied
(only three of the loads are shown). The strain energy U of the body is equal
to the work done by these loads during the deformation of the body. Thus,
the strain energy can be expressed as a function of the applied loads:
U ¼ UðF1;F2;F3; . . .Þ. Note that the reactions do no work because there are
no corresponding work-absorbing displacements (the displacement of the
roller support is perpendicular to the reaction). Assume now that after all
the loads are applied, one of the loads, say Fi, is increased by an infinitesimal
amount dFi. The corresponding change in U is

dU ¼ qU

qFi

dFi (a)

Consider next the case where the order of the loading is reversed. We
apply dFi first, followed by F1;F2;F3; . . . : The contribution of dFi to the
strain energy is now

dU ¼ dFi di (b)

where di is the work-absorbing displacement of dFi caused by all the loads.
Note that the factor 1=2 is absent because dFi remains constant as the dis-
placement di occurs. Since the order of loading does not a¤ect the strain en-
ergy, Eqs. (a) and (b) must give the same result; that is,

dU ¼ qU

qFi

dFi ¼ dFi di

which yields di ¼ qU=qFi, thereby completing the proof of Castigliano’s
theorem.

Application of Castigliano’s Theorem In general, the strain energy
of a bar subjected to combined loading is obtained by superimposing the
contributions of axial loading, torsion, and bending:

U ¼
ðL

0

P2

2EA
dxþ

ðL

0

T 2

2GJ
dxþ

ðL

0

M 2

2EI
dx

FIG. 12.5 Elastic body carrying
several loads.
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The deflection di ¼ qU=qFi is best evaluated by di¤erentiating inside the in-
tegral signs before integrating. This procedure is permissible because Fi is
not a function of x. With this simplification, we obtain

di ¼
qU

qFi

¼
ðL

0

P

EA

qP

qFi

dxþ
ðL

0

T

GJ

qT

qFi

dxþ
ðL

0

M

EI

qM

qFi

dx (12.10a)

If no load acts at the point where the deflection is desired, a dummy

load in the direction of the desired deflection must be added at that point.
Then, after di¤erentiating but before integrating, we set the dummy load
equal to zero (this avoids integration of terms that will eventually be set
equal to zero). If we denote the dummy load by Q, the displacement in the
direction of Q thus is

dQ ¼
qU

qQ

����
Q¼0

¼
ðL

0

P

EA

qP

qQ

� �
Q¼0

dxþ
ðL

0

T

GJ

qT

qQ

� �
Q¼0

dx

þ
ðL

0

M

EI

qM

qQ

� �
Q¼0

dx (12.10b)

Castigliano’s theorem can also be used to find redundant reactions in
statically indeterminate problems. If we let Q be a redundant reaction that
imposes the displacement constraint dQ ¼ D in the direction of Q, the equa-
tion for computing Q is D ¼ qU=qQ, or

D ¼
ðL

0

P

EA

qP

qQ
dxþ

ðL

0

T

GJ

qT

qQ
dxþ

ðL

0

M

EI

qM

qQ
dx (12.10c)
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Sample Problem 12.1

For the steel truss in Fig. (a), find the horizontal displacement of point A due to the
applied load W ¼ 24 kips. Use E ¼ 29� 106 psi and the cross-sectional areas shown
in the figure.

Solution
The lengths of the members are

LAB ¼
72

sin 30�
¼ 144 in: LAC ¼

72

sin 60�
¼ 83:14 in:

The free-body diagram of joint A of the truss is shown in Fig. (b). In addition
to the applied load W, the diagram contains the horizontal dummy load Q, which is
required for the computation of the horizontal displacement. Using the free-body
diagram, we obtain the equilibrium equations

SFx ¼ 0 PAB cos 60� þ PAC cos 30� þQ ¼ 0

SFy ¼ 0 PAB sin 60� þ PAC sin 30� �W ¼ 0

the solution of which is

PAB ¼ 1:7321W þQ PAC ¼ �W � 1:7321Q

The strain energy of the truss is the sum of the strain energies of its members:

U ¼
X P2L

2EA

According to Castigliano’s theorem, Eq. (12.10b), the horizontal displacement of A is

dA ¼
qU

qQ

����
Q¼0

¼
X PL

EA

qP

qQ

� �
Q¼0

(a)

The computations are facilitated by the following table:

Member P L (in.) A (in.2)
qP

qQ

PL

A

� �
Q¼0

AB 1.7321W þQ 144 4 1 62.36W

AC �W � 1:7321Q 83.14 5 �1.7321 �16.628W

Substituting the data from the last two columns of this table into Eq. (a), we get

dA ¼
1

E
½ð62:36WÞð1Þ þ ð�16:628W Þð�1:7321Þ�

¼ 91:16
W

E
¼ 91:16

24� 103

29� 106

� �
¼ 0:0754 in: Answer

Because the answer is positive, the horizontal displacement of point A has the same
direction as Q—that is, to the right.

1
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Sample Problem 12.2

The round bar AB in Fig. (a) is formed into a quarter-circular arc of radius R that
lies in the horizontal plane. The bar is built in at B and carries the vertical force P at
end A. Find the vertical deflection at A.

Solution
Because the vertical deflection at A is the work-absorbing displacement of P, its
computation is a straightforward application of Castigliano’s theorem: dA ¼ qU=qP.
We begin by deriving the expressions for the bending moment and torque in the bar.
Examination of the free-body diagram in Fig. (b) shows that the moment arm of P is
Rð1� cos yÞ about the torque axis and R sin y about the bending axis. Therefore,

T ¼ PRð1� cos yÞ M ¼ PR sin y

qT

qP
¼ Rð1� cos yÞ qM

qP
¼ R sin y

Substituting the above expressions and dx ¼ R dy into Eq. (12.10a), we get

dA ¼
1

GJ

ð p=2

0

T
qT

qP
R dyþ 1

EI

ð p=2

0

M
qM

qP
R dy

¼ 1

GJ

ð p=2

0

½PRð1� cos yÞ�½Rð1� cos yÞ�R dyþ 1

EI

ð p=2

0

ðPR sin yÞðR sin yÞR dy

¼ PR3

GJ

ð p=2

0

ð1� cos yÞ2 dyþ PR3

EI

ð p=2

0

sin2 y dy

When we evaluate the integrals, the vertical deflection at A is found to be

dA ¼
PR3

GJ

3p� 8

4

� �
þ PR3

EI

p

4

� �
Answer

1
Sample Problem 12.3

The rigid frame in Fig. (a) is supported by a pin at A and a roller at D. (1) Find the
value of EIdD, where dD is the horizontal deflection at D due to the 800-N/m uni-
formly distributed load. (2) If the roller at D were replaced by a pin, determine the
horizontal reaction at D. Assume that EI is constant throughout the frame, and
consider only bending deformation.

431

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Solution

Part 1

The free-body diagram of the frame is shown in Fig. (b). Because there is no hori-
zontal force at D, we introduce the horizontal dummy load Q at that point. Accord-
ing to Castigliano’s theorem, Eq. (12.10b), the horizontal deflection of D is

dD ¼
qU

qQ

����
Q¼0

¼
ð

L

M

EI

qM

qQ

� �
Q¼0

dx (a)

where the integral extends over all members of the frame.
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Figure (c) shows the free-body diagrams that can be used to derive the internal
force system in each member of the frame. Our analysis requires only the bending
moments, which are given in the table below. The table also lists the components of
the integrand in Eq. (a). The origin of the x-coordinate used for each member is
shown in Fig. (c).

AB BC CD

M (N �m) Qx 4Qþ ð800� 0:5QÞx� 400x2 Qx

qM

qQ
(m) x 4� 0:5x x

MjQ¼0 (N �m) 0 800x� 400x2 0

Note that MjQ¼0 ¼ 0 for members AB and CD, so that only member BC contributes
to the integral in Eq. (a). Therefore, the horizontal displacement of D is obtained
from

EIdD ¼
ð

LBC

M
qM

qQ

� �
Q¼0

dx ¼
ð 2 m

0

ð800x� 400x2Þð4� 0:5xÞ dx

¼ 1867 N �m3 ! Answer

Because the result is positive, the deflection at D is in the same direction as the
dummy load Q—that is, to the right.

Part 2

The free-body diagram in Fig. (b) is still applicable, but now Q must be viewed as the
horizontal (redundant) reaction at D. Because the displacement constraint at D is
dQ ¼ 0 (dQ is the displacement in the direction of Q), Castigliano’s theorem in Eq.
(12.10c) becomes

0 ¼ qU

qQ
¼
ð

L

M

EI

qM

qQ
dx

Substituting the data listed in the table and integrating along all three members, we
get

0 ¼
ð 4 m

0

ðQxÞx dxþ
ð 2 m

0

½4Qþð800� 0:5QÞx� 400x2�ð4� 0:5xÞ dxþ
ð3 m

0

ðQxÞx dx

¼ 21:33Qþ ð1866:7þ 24:67QÞ þ 9Q

which yields for the horizontal reaction at D

Q ¼ �33:9 N Answer

The negative sign means that the direction of Q is opposite to that shown in Fig. (b).

1
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Problems

12.1 The aluminum truss carries the vertical load W ¼ 8000 lb. Each member has
a cross-sectional area of 0.5 in.2 and E ¼ 10� 106 psi. Compute the horizontal and
vertical displacements of joint B assuming a ¼ 30�.

12.2 Each member of the truss has a cross-sectional area of 0.4 in.2. Member AB

is made of steel, whereas member BC is made of aluminum. Assuming that W ¼
8500 lb and a ¼ 45�, determine the horizontal and vertical displacements of joint B.
Use Est ¼ 29� 106 psi and Eal ¼ 10� 106 psi.

12.3 The steel truss supports the load F ¼ 30 kN. Determine the horizontal and
vertical displacements of joint B. Use E ¼ 200 GPa and the cross-sectional areas
AAB ¼ 300 mm2 and ABC ¼ 500 mm2.

12.4 The members of the truss are made of the same material and have identical
cross-sectional areas. Determine the vertical displacement of point A due to the
applied load W.

12.5 The steel cantilever beam was fabricated by welding together the two
6-ft-long di¤erent W-sections. Compute the displacement at the free end of the beam.
Use E ¼ 29� 103 ksi for steel.

12.6 For the simply supported beam, calculate the slope at point A due to the load
P. (Hint: Introduce a dummy couple at A.)

3 ft

5 ft

FIG. P12.1, P12.2

FIG. P12.3 FIG. P12.4

W16 × 40

6 ft 6 ft

8 kips

W16 × 26

FIG. P12.5 FIG. P12.6
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12.7 Determine the support reactions for the continuous steel beam.

12.8 Compute the slope of the overhanging beam at point C due to the load P.
(Hint: Introduce a dummy couple at C.)

12.9 The bent circular rod ABC is built in at A and carries the vertical load P at
C. Determine the vertical displacement of point C.

12.10 The circular rod AB is bent into a semicircular arc of radius R. The rod
is built in at A and carries the twisting moment T0 at B. Determine the angle of twist
at B.

12.11 For the bent rod described in Prob. 12.10, compute the vertical displace-
ment of end B.

12.12 A vertical load P is applied to the cantilever frame. Assuming constant EI

and considering only bending deformation, find the horizontal and vertical displace-
ments of point C.

12.13 A circular rod is bent into a semicircular arc of radius R. When the hori-
zontal load P is applied, determine the horizontal displacement of point C and the
vertical displacement of point B. Consider only bending deformation.

12.14 Solve Prob. 12.13 assuming that the load P is applied vertically downward
at C.

12.15 The frame shown in the figure, which has a constant bending rigidity EI,
carries a 600-lb horizontal load at B. Considering only bending deformation,
determine the value of EIdD, where dD is the horizontal displacement of the roller
support at D.

L L

FIG. P12.7 FIG. P12.8 FIG. P12.9

FIG. P12.10, P12.11

FIG. P12.12 FIG. P12.13, P12.14 FIG. P12.15
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12.16 Find the vertical displacement at joint C of the steel truss. Assume that all
members of the truss have the same cross-sectional area. (Hint: Use symmetry.)

12.17 Each member of the aluminum truss has a cross-sectional area of 500 mm2.
Determine the horizontal displacement of joint D caused by the force F ¼ 25 kN
acting in the negative x-direction. Use E ¼ 70 GPa for aluminum.

12.18 The steel cantilever beam, made of a S200� 27:4 section, is supported at B

by a steel wire with a cross-sectional area of 50 mm2. Determine the force in the wire
caused by the vertical load W. Neglect the axial deformation of the beam. Use
E ¼ 200 GPa for steel.

12.19 The cross-sectional area of each member of the steel truss is 4.5 in.2. Find
the force in member AD due to the 3.2-kip load.

12.20 Find the force in each member of the steel truss when the 3000-lb vertical
load is applied to joint A. The area of each member is shown in the figure. Use
E ¼ 29� 106 psi for steel.

FIG. P12.16 FIG. P12.17

4 m

S200 × 27.4

C

A B

W

A = 50 mm 2

4 m

FIG. P12.18 FIG. P12.19 FIG. P12.20
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12.21 The bending rigidity EI is the same for each member of the frame.
Determine the horizontal component of the support reaction at E when the 6-kip
vertical load is applied. Consider only bending deformations.

12.22 The bent steel rod ABC of diameter d is built into a rigid wall at C and rests
on a support at A. Segment AB carries a uniformly distributed load w0 ¼ 80 lb/ft.
Using E ¼ 30� 106 psi and G ¼ 12� 106 psi for steel, find the support reaction at A.

12.23 The uniform bar ABC is bent into a semicircular arc of radius R. The arc is
supported by pins at A and C. Determine the magnitude of the horizontal component
of the reaction at A when the vertical load P is applied at B. Consider only bending
deformation.

12.24 Find the horizontal and vertical components of the reactions at A and D

when the 800-N horizontal force is applied to the frame. The bending rigidity is EI

for members AB and BC, and 2EI for member CD. Consider only deformation due
to bending.

12.3 Dynamic Loading

Static analysis implicitly assumes that the loads are applied so slowly that
dynamic e¤ects are negligible. Suddenly applied loading results in
momentary displacements and stresses that can be much higher than those
predicted by static analysis. In this section, we consider the e¤ects of dynamic
loading caused by a rigid mass colliding with a stationary, elastic body.

a. Assumptions

Our analysis of dynamic loading is based on the following simplifying as-
sumptions:

. The stresses in the body remain below the proportional limit.. The body and the impacting mass remain in contact during the colli-
sion (no rebound).. No energy is lost during collision.

These assumptions lead to a highly idealized model of impact loading
that gives only rough estimates for stresses and deformations. Because the
loss of some energy to stress waves and heat is inevitable, the energy avail-
able to deform the body is less than what is predicted by the simplified
theory. In other words, the actual stresses and displacements are less than
the calculated values.

FIG. P12.21 FIG. P12.22
FIG. P12.23

8

FIG. P12.24
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b. Mass-spring model

As a simple model of impact, consider the case in which a mass m is dropped
onto a spring of sti¤ness k and negligible mass. As indicated in Fig. 12.6(a),
the mass is released from rest and drops a distance h before making contact
with the spring. Following the collision, the spring deforms, reaching its
maximum deflection dmax in Fig. 12.6(b) before rebounding. The displace-
ment dmax is known as the maximum dynamic deflection. The work-energy
principle states that

U ¼ DT (12.11)

where U is the work done on the mass and DT represents the change in the
kinetic energy of the mass. Applying this principle to the mass in Fig. 12.6(a), we
conclude that the work done on the mass between the two positions shown is
zero because there is no change in the kinetic energy (T ¼ 0 in both positions).

The work done on the mass is

U ¼ mgðhþ dmaxÞ �
1

2
kd2

max

where the first term is the work done by gravity and the second term is the
work done by the spring force (dmax and the spring force have opposite
directions, so the second term is negative). Because the total work is zero,
we have

mgðhþ dmaxÞ �
1

2
kd2

max ¼ 0 (a)

Substituting mg=k ¼ ds, where ds is the static deformation that would be
produced by a gradual application of the weight mg, we can rearrange Eq.
(a) in the form

d2
max � 2dsdmax � 2dsh ¼ 0

which has the solution

dmax ¼ ds þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

s þ 2dsh

q
(b)

Equation (b) can be written as

dmax ¼ nds (12.12a)

where

n ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h

ds

s
(12.12b)

is called the impact factor. Note that the impact factor is a multiplier that
converts the static deflection into the corresponding maximum dynamic
deflection. Because the force in the spring is proportional to its deformation,
the impact factor also applies to the spring force: Fmax ¼ nFs ¼ nðmgÞ,
where Fs ¼ mg is the static load.

FIG. 12.6 Mass-spring model for
dynamic loading: (a) before mass m

is released; and (b) in the position of
maximum deflection.
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Two special cases are of interest. If h is much larger than ds, we need
keep only the term 2h=ds in Eq. (12.12b), which then reduces to

n ¼

ffiffiffiffiffi
2h

ds

s
ðhg dsÞ (12.13)

The other case is h ¼ 0 (the load is released when just touching the spring),
for which Eq. (12.12b) yields n ¼ 2. This result shows that the deflection
caused by the sudden release of the load is twice as large as the deflection
due to the same load when it is gradually applied.

c. Elastic bodies

The results obtained above for the mass-spring system remain valid if the
spring is replaced by an elastic body of negligible mass because in both cases
the load-displacement relationship is linear. As an example, consider the sys-
tem shown in Fig. 12.7, where the mass m drops through the height h before
striking a stop at the end of the rod. The static elongation of the rod would
be ds ¼ mgL=ðEAÞ. Assuming that hg ds, we can use the impact factor Eq.
(12.13), which gives for the maximum dynamic elongation of the rod

dmax ¼ nds ¼

ffiffiffiffiffi
2h

ds

s
ds ¼

ffiffiffiffiffiffiffiffiffi
2hds

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hL

EA
mg

r
(c)

Because the impact factor also applies to forces and stresses, the maximum
dynamic stress in the rod can be obtained from

smax ¼ nss ¼

ffiffiffiffiffi
2h

ds

s
mg

A
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

EA

mgL

� �
mg

A

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eh

AL
mg

r
(d)

where ss is the static stress (stress caused by gradually applied loading).
Equation (d) shows that the stress due to impact can be reduced by using a
material with a smaller modulus of elasticity, or by increasing the area or the
length of the rod. This is quite di¤erent from static tension, where the stress
is independent of both E and L.

d. Modulus of resilience; modulus of toughness

The modulus of resilience and the modulus of toughness are measures of the
impact resistance of a material. These moduli are determined from the stress-
strain diagram obtained from a simple tension test.

In simple tension, the work done by the stresses in deforming a unit

volume of material is U ¼
Ð �

0 s d�, which equals the area under the stress-
strain diagram. The modulus of resilience Ur is defined as the maximum
energy that the material can absorb per unit volume before it becomes per-
manently deformed. Therefore, Ur equals the area under the stress-strain
diagram up to the yield point syp. Referring to Fig. 12.8, we see that the
modulus of resilience is given by

Ur ¼
1

2
syp�yp ¼

1

2
syp

syp

E

� �
¼

s2
yp

2E
(12.14)

The modulus of toughness, denoted by Ut, is the energy absorbed by the
material per unit volume up to rupture. Thus, Ut is equal to the area under
the entire stress-strain diagram, as indicated in Fig. 12.8. It is evident that

FIG. 12.7 The spring in the
mass-spring model can be replaced
by an elastic body, such as the
vertical rod shown here.

FIG. 12.8 The shaded areas equal
the modulus of resilience ðUrÞ and
the modulus of toughness ðUtÞ.
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the impact resistance of a material depends largely upon its ductility. Figure
12.9 shows the stress-strain diagrams for two materials. One material is a
high-strength steel of low ductility; the other is a steel of lower strength but
high ductility. In this case, the shaded area ðUtÞ1 for the low-strength steel
is larger than the area ðUtÞ2 for the high-strength material. Thus, a ductile
material can absorb more energy before rupture than can a stronger, but less
ductile material. For this reason, ductile materials are usually selected for
members subject to impact or shock loading.

FIG. 12.9 Stress-strain diagrams for two grades of steel. The ductile, low-
strength steel has greater toughness.
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Sample Problem 12.4

An elevator that has a mass of 2000 kg is being lowered at the rate of 2 m/s.
The hoisting drum is stopped suddenly when 30 m of cable has been unwound. If the
cross-sectional area of the cable is 600 mm2 and E ¼ 100 GPa, compute the
maximum force in the cable. Neglect the weight of the cable.

Solution
Figure (a) shows the elevator just before the hoisting drum is stopped. Because the
acceleration of the elevator is zero at that instant, the force P in the cable equals the
weight mg of the elevator. In the position of maximum dynamic elongation shown in
Fig. (b), the speed of the elevator is zero and the cable force is kdmax þmg, where k is
the e¤ective spring sti¤ness of the cable. Between these two positions, P varies lin-
early with the elongation d as shown in Fig. (c). Note that d represents the dynamic
elongation of the cable—that is, the elongation in addition to the static elongation
ds ¼ mg=k.

Noting that P and d have opposite directions, we see that the work of the cable
force on the elevator is the negative of the area under the diagram in Fig. (c)—
namely, �ðmgdmax þ kd2

max=2Þ. Adding the work mgdmax of the gravitational force,
we obtain for the net work done on the elevator

U ¼ � 1

2
kd2

max

The elongation of the cable due to a static tensile force P is ds ¼ PL=ðEAÞ, which
yields for the e¤ective spring sti¤ness of the cable

k ¼ P

ds
¼ EA

L
¼ ð100� 109Þð600� 10�6Þ

30
¼ 2:0� 106 N=m

Therefore,

U ¼ � 1

2
ð2:0� 106Þ d2

max ¼ �ð1:0� 106Þ d2
max

The change in the kinetic energy of the elevator between the positions shown in
Figs. (a) and (b) is

DT ¼ Tfinal � Tinitial ¼ 0� 1

2
mv2 ¼ � 1

2
ð2000Þð2Þ2 ¼ �4:0� 103 J

Applying the work-energy principle U ¼ DT , we get

�ð1:0� 106Þ d2
max ¼ �4:0� 103

which gives

dmax ¼ 63:25� 10�3 m

The maximum force in the cable is

Pmax ¼ kdmax þmg ¼ ð2:0� 106Þð63:25� 10�3Þ þ 2000ð9:81Þ

¼ 146:1� 103 N ¼ 146:1 kN Answer

Note that Pmax is more than seven times the 19.62-kN weight of the elevator.

1
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Sample Problem 12.5

The 80-kg block hits the simply supported beam at its midspan after a drop of 10 mm
as shown in Fig. (a). Determine (1) the impact factor; and (2) the maximum dynamic
bending stress in the beam. Use E ¼ 200 GPa for the beam. Assume that the block
and the beam stay in contact after the collision. Neglect the mass of the beam.

Solution

Part 1

The moment of inertia of the cross section of the beam about the neutral axis is

I ¼ bh3

12
¼ 60ð30Þ3

12
¼ 135:0� 103 mm4 ¼ 135:0� 10�9 m4

According to Table 6.3 the static midspan deflection of the beam under the weight of
the 80-kg mass is

dst ¼
ðmgÞL3

48EI
¼ ð80� 9:81Þð1:2Þ3

48ð200� 109Þð135:0� 10�9Þ ¼ 1:0464� 10�3 m

From Eq. (12.12b), the impact factor is

n ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h

dst

s
¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ð0:010Þ

1:0464� 10�3

r
¼ 5:485 Answer

Part 2

The maximum dynamic load Pmax at the midspan of the beam is obtained by multi-
plying the static load by the impact factor:

Pmax ¼ nðmgÞ ¼ 5:485ð80� 9:81Þ ¼ 4305 N

The maximum bending moment caused by this load occurs at the midspan, as shown
in Fig. (b). Its value is

Mmax ¼
4305

2
ð0:6Þ ¼ 1291:5 N �m

which results in the maximum dynamic bending stress

smax ¼
Mmaxc

I
¼ 1291:5ð0:015Þ

135:0� 10�9
¼ 143:5� 106 Pa ¼ 143:5 MPa Answer

1
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Problems

12.25 Calculate the modulus of resilience for the following three materials:

(a) Steel alloy E ¼ 29� 103 ksi syp ¼ 50 ksi

(b) Brass E ¼ 15� 103 ksi syp ¼ 30 ksi

(c) Aluminum alloy E ¼ 10� 103 ksi syp ¼ 40 ksi

Which of the materials is best suited for absorbing impact without permanent de-
formation?

12.26 The 20-lb pendulum is released from rest in the position shown in the figure
and strikes an aluminum bar 6 in. long. If the modulus of resilience of aluminum is
170 lb � in./in.3, determine the smallest diameter d of the bar for which the impact can
be absorbed without permanent deformation. Assume that the pendulam does not
rebound.

12.27 The 400-kg mass rests on a platform and is attached to the steel cable ABC.
The platform is then gradually lowered until the slack in the cable is removed but
all the weight of the mass is still supported by the platform. If the platform then
suddenly collapses, find the maximum dynamic force in the cable.

12.28 An 80-lb weight falls through 5 ft and is then caught at the end of a wire
rope 90 ft long having a cross-sectional area of 0.5 in.2. Find the maximum dynamic
stress in the rope, assuming E ¼ 15� 106 psi.

12.29 The mass m attached to the end of a rope is lowered at the constant velocity v

when the pulley at A suddenly jams. Show that the impact factor is

n ¼ 1þ

ffiffiffiffiffiffiffiffiffi
kv2

mg2

s

where k is the e¤ective spring sti¤ness of the rope.

FIG. P12.26
FIG. P12.27

FIG. P12.29
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12.30 The 12-lb weight falls 30 in. and strikes the head of a steel bolt 1.0 in. in
diameter. Determine the smallest allowable thickness t of the head if the shear stress
is limited to 12 ksi. Use E ¼ 29� 103 ksi for the bolt.

12.31 The free end of the W250� 67 steel cantilever beam is supported by a
spring of sti¤ness k ¼ 180 kN=m. The 3.6-kg mass is dropped on the end of the beam
from a height of 1.0 m. Determine the maximum dynamic stress in the beam. Use
E ¼ 200 GPa for steel.

12.32 The S8� 18:4 steel beam is used as a cantilever 6 ft long. The 100-lb weight
falls through 6 in. before striking the free end of the beam. Determine the maximum
dynamic stress and deflection caused by the impact. Use E ¼ 29� 106 psi for steel.

12.33 The simply supported steel beam of rectangular cross section is hit by the
800-kg mass that is dropped from a height of 1.2 m. Using E ¼ 200 GPa for the
beam, compute the impact factor.

12.34 The mass m slides into the stepped elastic bar with the velocity v. Derive the
expression for the maximum dynamic stress in the bar.

12.35 The 2-lb weight falls through the height h before striking the head of the
stepped bolt. Calculate the largest value of h for which the maximum dynamic nor-
mal stress in the bolt does not exceed 40 ksi. Use E ¼ 29� 103 ksi for the bolt.

12.4 Theories of Failure

Theories of failure, also called failure criteria, attempt to answer the question:
Can data obtained from a uniaxial tension or compression test be used to
predict failure under more complex loadings? By ‘‘failure’’ we mean yielding

FIG. P12.30

W250 × 67

2.5 m k = 180 kN/m

3.6 kg

1.0 m

FIG. P12.31

S8 18.4

FIG. P12.32

FIG. P12.33 FIG. P12.34

4

4

FIG. P12.35
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or rupture. So far, no universal method has been established that correlates
failure in a uniaxial test with failure due to multiaxial loading. There are,
however, several failure theories that work well enough for certain materials
to be incorporated in design codes.

In general, there are two groups of failure criteria: one for brittle ma-
terials that fail by rupture, and the other for ductile materials that exhibit
yielding. We limit our discussion to four simple, but popular, failure theories:
two for brittle materials and two for ductile materials. Because all of these
theories are expressed in terms of principal stresses, they presuppose that the
three principal stresses at the critical points of the material have been de-
termined. In this section, we consider only failure criteria for plane stress;
that is, we assume that s3 ¼ 0.

a. Brittle materials

Maximum Normal Stress Theory The maximum normal stress theory

proposed by W. Rankine is the oldest, as well as the simplest, of all the the-
ories of failure. This theory assumes that failure occurs when the largest
principal stress in the material equals the ultimate stress sult of the material
in the uniaxial test. Obviously, this theory disregards the e¤ect of the other
two principal stresses. Nevertheless, the maximum normal stress theory does
give results that agree well with test results on brittle materials that have
about the same strength in tension and compression.

For plane stress, the maximum normal stress theory predicts failure
when js1j ¼ sult or js2j ¼ sult, where s1 and s2 are the principal stresses. In
normalized form, the failure criterion is

s1

sult
¼G1 or

s2

sult
¼G1 (12.15)

The plots of Eqs. (12.15) are shown in Fig. 12.10. The outline of the square
formed by the plots represents the failure criterion. If the points correspond-
ing to the principal stresses in a material fall within the shaded area, the
material will not fail. Points lying on or outside the shaded area represent
stress states that will cause failure.

Mohr’s Theory Mohr’s theory of failure is used for materials that have
di¤erent properties in tension and compression. To apply the theory, we
must know the ultimate tensile stress ðsultÞt and the ultimate compressive
stress ðsultÞc of the material, which are determined from uniaxial load tests.
The Mohr’s circles for these two states of stress are drawn on a single dia-
gram, as shown in Fig. 12.11(a). The failure envelope for Mohr’s theory is
obtained by drawing two lines that are tangent to the circles. A given state
of stress is considered safe if its Mohr’s circle lies entirely within the failure
envelope, which is the shaded area in Fig. 12.11(a). If any part of the circle
is tangent to, or extends beyond the failure envelope, the theory predicts
failure.

Mohr’s theory can be refined if the ultimate shear stress tult, obtainable
from torsion tests, is also known. The Mohr’s circle corresponding to this
test can be added to the diagram, as shown in Fig. 12.11(b). The failure

ult

ult

FIG. 12.10 Maximum normal
stress failure criterion. States of stress
represented by points inside the
square are safe against rupture.

ult ult

ult ult

ult

FIG. 12.11 Mohr’s failure
criterion. States of stress represented
by points inside the shaded region
are safe against failure.
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envelope is now obtained by drawing curves that are tangent to each of the
three circles.

b. Ductile materials

Maximum Shear Stress Theory The maximum shear stress theory,
also known as Tresca’s yield criterion, assumes that yielding occurs when the
absolute maximum shear stress equals the maximum shear stress at yielding
in the uniaxial tension test.

In Chapter 8, we found that for a plane state of stress the absolute
maximum shear stress is the larger of js1j=2, js2j=2, or js1 � s2j=2. In a
uniaxial tension test, the maximum shear stress at yielding is syp=2, so that
Tresca’s yield criterion can be written as

s1

syp

¼G1 or
s2

syp

¼G1 or
s1

syp

� s2

syp

¼G1 (12.16)

The plot of Eqs. (12.16) in Fig. 12.12 forms a hexagon, called Tresca’s hex-

agon. A state of stress is considered safe if its principal stresses are repre-
sented by a point within the hexagon. Points falling on or outside the hexagon
represent stress states that will cause yielding.

Maximum Distortion Energy Theory The maximum distortion energy
theory1 is the most popular theory for predicting yielding in ductile mate-
rials. As pointed out previously, the work done by the forces that deform an
elastic body is stored in the body as strain energy. A useful concept is the
strain energy density, which is defined as the strain energy per unit volume at
a point. The strain energy density can be divided into two parts: the volu-

metric strain energy density that is associated with a change in the volume of
a material element, and the distortion strain energy density that changes the
shape of the element without changing its volume. For an elastic body sub-
jected to plane stress, the distortion strain energy density can be shown to be

Ud ¼
1

6G
ðs2

1 þ s2
2 � s1s2Þ (a)

where G is the shear modulus.
The maximum distortion energy theory states that a material begins

yielding when

Ud ¼ ðUdÞyp (b)

where ðUdÞyp is the distortion strain energy density of the same material at
the yield point in the uniaxial tension test. In uniaxial tension, the stresses
at yielding are s1 ¼ syp and s2 ¼ 0, which upon substitution into Eq. (a)
yield ðUdÞyp ¼ s2

yp=ð6GÞ. Substituting this result and Eq. (a) into Eq. (b), we
obtain

1The maximum distortion enegy theory is also known as the Huber-Hencky-von Mises yield

criterion, or the octahedral shear theory.

FIG. 12.12 Maximum shear stress
yield criterion. States of stress
represented by points inside the
shaded region are safe against
yielding.
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s2
1 þ s2

2 � s1s2 ¼ s2
yp

The normalized form of this yield criterion is

s1

syp

� �2

þ s2

syp

� �2

� s1

syp

� �
s2

syp

� �
¼ 1 (12.17)

which is the equation of the ellipse shown in Fig. 12.13. A state of stress is
considered safe if its principal stresses are represented by a point within the
ellipse. Points falling on or outside the ellipse represent stress states that will
cause yielding. Because the ellipse encloses Tresca’s hexagon (shown with
dashed lines), the maximum distortion energy theory is less conservative than
the maximum shear stress theory.

FIG. 12.13 Maximum distortion energy yield criterion. States of stress
represented by points inside the elliptical region are safe against yielding.
(Tresca’s hexagon is shown with dashed lines.)
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Sample Problem 12.6

The ultimate strength of a brittle material is 40 MPa in tension and 50 MPa in com-
pression. Use Mohr’s failure criterion to determine whether the plane state of stress
in Fig. (a) would result in failure of this material.

Solution
We first draw the Mohr’s circles representing the states of stress at failure for uniaxial
tension and for uniaxial compression, as shown in Fig. (b). We complete the failure
envelope by drawing tangent lines to the two circles. Any state of stress with a
Mohr’s circle that lies entirely within the failure envelope (the shaded area in the fig-
ure) is deemed to be safe against failure. Otherwise, failure is predicted.

The Mohr’s circle representing the given state of stress is also shown in Fig.
(b). Because the circle lies within the failure envelope, this state of stress would not

cause failure.

1
Sample Problem 12.7

The 3-in.-diameter steel bar in Fig. (a) carries the bending moment M ¼ 2:21 kip � ft
and a torque T. If the yield strength of steel is 40 ksi, determine the largest torque T

that can be applied without causing yielding. Use (1) the maximum shear stress
theory; and (2) the maximum distortion energy theory.
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Solution

The maximum bending stress in the bar is

s ¼ 32M

pd 3
¼ 32ð2:21� 12Þ

pð3Þ3
¼ 10:00 ksi

and the maximum shear stress due to torsion is given by

t ¼ 16T

pd 3
¼ 16T

pð3Þ3
¼ 0:188 63T ksi

where T is in kip � in. These stresses and the corresponding Mohr’s circle are shown in
Fig. (b). The radius of the circle is

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5Þ2 þ ð0:188 63TÞ2

q
ksi (a)

Part 1

Because the principal stresses have opposite signs, the absolute maximum shear stress
is the radius R of the Mohr’s circle. Therefore, the governing yield criterion, from
Eq. (12.16), is s1 � s2 ¼ syp. Because s1 � s2 ¼ 2R, the yield criterion becomes
2R ¼ syp. Substituting R from Eq. (a), we get

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5Þ2 þ ð0:188 63TÞ2

q
¼ 40

which yields for the maximum safe torque

T ¼ 102:67 kip � in: ¼ 8:56 kip � ft Answer

Part 2

Substituting s1 ¼ 5þ R ksi and s2 ¼ 5� R ksi into the yield criterion s2
1 þ s2

2 �
s1s2 ¼ s2

yp, we get

ð5þ RÞ2 þ ð5� RÞ2 � ð5þ RÞð5� RÞ ¼ 402

which yields

R ¼ 22:91 ksi

Therefore, Eq. (a) becomes

22:91 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5Þ2 þ ð0:188 63TÞ2

q
from which the largest safe torque is

T ¼ 118:5 kip � in: ¼ 9:88 kip � ft Answer

1
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Problems

12.36 The ultimate strength of a brittle material is 30 MPa in tension and 40 MPa
in compression. Using Mohr’s failure criterion, determine whether the state of stress
shown in the figure is safe against rupture.

12.37 The 2-in.-diameter bar is made of a brittle material with the ultimate
strengths of 20 ksi in tension and 30 ksi in compression. The bar carries a bending
moment and a torque, both of magnitude M. (a) Use the maximum normal stress
theory to find the largest value of M that does not cause rupture. (b) Is the value of
M found in Part (a) safe according to Mohr’s theory of failure?

12.38 The ultimate strength of a brittle material is 3000 psi in tension and 5000
psi in compression. Use these data to compute the ultimate shear stress of the mate-
rial from Mohr’s theory of failure.

12.39 The principal stresses at a point in a ductile material are s1 ¼ s0,
s2 ¼ 0:75s0, and s3 ¼ 0. If the yield strength of the material is 200 MPa, determine
the value of s0 that initiates yielding using (a) the maximum shear stress theory; and
(b) the maximum distortion energy theory.

12.40 Solve Prob. 12.39 if s2 ¼ �0:75s0, all other data being unchanged.

12.41 The state of stress shown is known to produce yielding of a ductile material.
Determine the yield stress of the material using (a) the maximum shear stress theory;
and (b) the maximum distortion energy theory.

12.42 It is known that the state of stress shown produces yielding of a ductile
material. Determine the yield stress of the material using (a) the maximum shear
stress theory; and (b) the maximum distortion energy theory.

12.43 A solid shaft of diameter d transmits 80 kW of power at 60 Hz. Given that
the yield strength of the material is 250 MPa, determine the value of d that provides a
factor of safety of 3 against yielding. Use the maximum distortion energy theory.

FIG. P12.36
FIG. P12.37

60

FIG. P12.41 FIG. P12.42
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12.44 The bent circular bar is made of steel with a yield stress of 30 ksi.
Determine the value of the vertical load P that would initiate yielding. Use (a) the
maximum shear stress theory; and (b) the maximum distortion energy theory.

12.45 The thin-walled cylindrical vessel of 320-mm mean diameter and 18-mm
wall thickness is pressurized internally to 24 MPa. The yield strength of the material
is 300 MPa. Use the maximum shear stress theory to find the largest axial load P that
can be applied in addition to the pressure without causing yielding.

12.46 Solve Prob. 12.45 using the maximum distortion energy theory.

12.47 A thin-walled cylindrical pressure vessel has a mean diameter of 11.75 in.
and a wall thickness of 0.25 in. If the wall of the vessel yields at an internal pressure
of 1750 psi, determine the yield strength of the material using the maximum dis-
tortion energy theory.

12.48 The cylindrical vessel with 11.75-in. mean diameter and 0.25-in. wall
thickness carries an internal pressure of 750 psi and a torque of 650 kip � in. If the
yield strength of the material is 36 ksi, compute the factor of safety against yielding
using the maximum distortion energy theory.

12.49 The solid steel shaft 100 mm in diameter and 8 m long is subjected simul-
taneously to an axial compressive force P and the torque T ¼ 35 kN �m. Determine
the maximum safe value of P according to the maximum shear stress theory. Use
syp ¼ 200 MPa.

12.50 The 8-m shaft, 100 mm in diameter, is made of a brittle material for which
the ultimate stress in tension or compression is 40 MPa. The shaft carries simulta-
neously the axial compressive load P ¼ 200 kN and the torque T. Calculate the
maximum allowable value of T using the maximum normal stress theory.

12.51 The 3-in.-diameter rod carries the 4000-lb � ft bending moment and a torque
T. The yield stress of the material is 60 ksi. Determine the largest allowable value of
T using the maximum distortion energy theory and a factor of safety of 2.

12.52 Solve Prob. 12.51 using the maximum shear stress theory.

0.75 in.
18 in

15 in
.

P

FIG. P12.44

FIG. P12.45, P12.46

FIG. P12.48

FIG. P12.49, P12.50 FIG. P12.51, P12.52
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12.53 The steel shaft carries simultaneously the 4-kN lateral force and the
4-kN �m torque. Find the smallest safe diameter d of the shaft by the maximum shear
stress theory. Use syp ¼ 240 MPa and a factor of safety of 2.

12.54 The cylindrical pressure vessel with closed ends has a diameter of 16 in. and
a wall thickness of 3=4 in. The vessel carries simultaneously an internal pressure of
1200 psi, a torque of 90 kip � ft, and a bending moment of 30 kip � ft. The yield
strength of the material is 40 ksi. What is the factor of safety against yielding ac-
cording to the maximum shear stress theory?

12.55 The cylindrical tank of 10-in. diameter is fabricated from 1=4-in. plate. The
tank is subjected to an internal pressure of 400 psi and a torque T. Find the largest
allowable value of T according to the maximum distortion energy theory. Use
syp ¼ 32 ksi and a factor of safety of 2.

12.5 Stress Concentration

The elementary formulas for the computation of stresses that we have been
using in previous chapters assumed that the cross sections of the members
are either constant or change gradually. We now consider the e¤ect of
abrupt changes in cross section on the stress distribution. These changes
produce localized regions of high stress known as stress concentrations.
Stress concentrations are, in general, of more concern in brittle materials
than in ductile materials. Ductile materials are able to yield locally, which
redistributes the stress more evenly across the cross section. On the other
hand, brittle materials, which cannot yield, are susceptible to abrupt failure
caused by stress concentrations.

As an example of stress concentration, consider the plate with a small
circular hole in Fig. 12.14. Although the plate is subjected to the uniform
tensile stress s0, the stress distribution across the section through the center
of the hole is nonuniform. From the theory of elasticity, this stress dis-
tribution is known to be2

s ¼ s0

2
2þ d 2

4r2
þ 3

16

d 4

r4

� �
(a)

FIG. P12.53 FIG. P12.54

4

FIG. P12.55

FIG. 12.14 Normal stress
distribution in a uniformly stretched
plate with a small round hole.

2See S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed. (New York: McGraw-Hill,

1970).
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where d is the diameter of the hole and r is the distance from the center of
the hole. From Eq. (a), we find that the stresses at points B and C are 3s0,
which is three times the average stress.

A similar stress concentration is caused by the small elliptical hole
shown in Fig. 12.15. The maximum stress at the ends of the horizontal axis
of the hole is given by3

smax ¼ s0 1þ 2
b

a

� �
(b)

Because this stress increases with the ratio b=a, a very high stress concen-
tration is produced at the ends of a narrow crack (b=ag 1) that is perpen-
dicular to the direction of the tensile stress. Therefore, such cracks tend to
grow and may lead to catastrophic failure. The spreading of a crack may be
stopped by drilling small holes at the ends of the crack, thus replacing a very
large stress concentration by a smaller one. In ductile materials, localized
yielding occurs at the crack tip, which has the same e¤ect as a hole.

The stress concentration factor k is defined as

k ¼ smax

snom
(12.18)

where smax is the maximum stress and snom denotes the nominal stress (the
stress calculated from an elementary formula). Thus, the maximum stresses
for axial, torsional, and flexural loads on bars and beams are given by

smax ¼ k
P

A
tmax ¼ k

Tr

J
smax ¼ k

Mc

I
(12.19)

Exact solutions for stresses, such as Eqs. (a) and (b) above, exist in only a
few cases. However, various handbooks contain large numbers of stress con-
centration factors that have been determined either experimentally or by
numerical solutions of the equations of elasticity theory.4 A sample of
available data is shown in Fig. 12.16.5 The equations for the stress concen-
tration factors were obtained by fitting cubic polynomials to data points
computed for various values of r=D from elasticity theory. The graphs of
these equations are shown in Fig. 12.17. The stress concentration factors in
Fig. 12.16 assume that the nominal stress snom is calculated using the net

cross-sectional area passing through the point of maximum stress (the
shaded areas in Fig. 12.16).

3 Ibid.

4See, for example, Walter D. Pilkey, Peterson’s Stress Concentration Factors, 2d ed. (New

York: John Wiley & Sons, 1977).

5The expressions in Fig. 12.16 were adapted from Warren C. Young, Roark’s Formulas for

Stress and Strain, 7th ed. (New York: McGraw-Hill, 2001).

FIG. 12.15 Uniformly stretched
plate with a small elliptical hole.
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(a) Circular hole in rectangular bar

Axial tension

k ¼ 3:00� 3:13
2r

D

� �
þ 3:66

2r

D

� �2

� 1:53
2r

D

� �3

In-plane bending

k ¼ 2 (independent of r=D)

(b) Shoulder with circular fillet in rectangular bar

Axial tension

k ¼ 1:976� 0:385
2r

D

� �
� 1:022

2r

D

� �2

þ 0:431
2r

D

� �3

In-plane bending

k ¼ 1:976� 1:925
2r

D

� �
þ 0:906

2r

D

� �2

þ 0:0430
2r

D

� �3

(c) Semicircular notches in rectangular bar

Axial tension

k ¼ 3:065� 3:370
2r

D

� �
þ 0:647

2r

D

� �2

þ 0:658
2r

D

� �3

In-plane bending

k ¼ 3:065� 6:269
2r

D

� �
þ 7:015

2r

D

� �2

� 2:812
2r

D

� �3

(d) Shoulder with circular fillet in circular shaft

Axial tension

k ¼ 1:990� 2:070
2r

D

� �
þ 1:938

2r

D

� �2

� 0:857
2r

D

� �3

Bending

k ¼ 1:990� 2:429
2r

D

� �
þ 2:057

2r

D

� �2

� 0:619
2r

D

� �3

Torsion

k ¼ 1:580� 1:796
2r

D

� �
þ 2:000

2r

D

� �2

� 0:784
2r

D

� �3

(e) Semicircular groove in circular shaft

Axial tension

k ¼ 3:04� 5:42
2r

D

� �
þ 6:27

2r

D

� �2

� 2:89
2r

D

� �3

Bending

k ¼ 3:04� 7:236
2r

D

� �
þ 9:375

2r

D

� �2

� 4:179
2r

D

� �3

Torsion

k ¼ 2:000� 3:394
2r

D

� �
þ 4:231

2r

D

� �2

� 1:837
2r

D

� �3

FIG. 12.16 Stress concentration factors for rectangular and circular bars.
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FIG. 12.17 Plots of stress concentration factors for rectangular and circular bars.
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Sample Problem 12.8

The rectangular bar of cross-sectional dimensions D ¼ 250 mm and b ¼ 20 mm
contains a central hole of radius r ¼ 50 mm. The bar carries a longitudinal tensile
load P of eccentricity e ¼ 50 mm as shown in Fig. (a). Determine the largest value
of P for which the maximum normal stress at the edge of the hole does not exceed
150 MPa.

Solution

The loading is equivalent to the axial load P and the in-plane bending moment
M ¼ Pe, as shown in Fig. (b). The maximum normal stress smax at the edge of the
hole occurs at point B; its magnitude is

smax ¼ kt
P

A
þ kb

ðPeÞr
I

(a)

where kt and kb are the stress concentration factors in tension and bending,
respectively. The geometric properties of the net cross-sectional area shown in Fig.
(a), are

A ¼ bðD� 2rÞ ¼ 20½250� 2ð50Þ� ¼ 3:0� 103 mm2 ¼ 3:0� 10�3 m2

I ¼ bD3

12
� bð2rÞ3

12
¼ 20ð250Þ3

12
� 20ð2� 50Þ3

12

¼ 24:38� 106 mm4 ¼ 24:38� 10�6 m4

From Fig. 12.6(a), the stress concentration factors are kb ¼ 2 and

kt ¼ 3:00� 3:13
2r

D

� �
þ 3:66

2r

D

� �2

� 1:53
2r

D

� �3

¼ 3:00� 3:13ð0:4Þ þ 3:66ð0:4Þ2 � 1:53ð0:4Þ3 ¼ 2:236

Therefore, Eq. (a) becomes

smax ¼ ð2:236Þ P

3:0� 10�3
þ ð2ÞPð0:05Þð0:05Þ

24:38� 10�6
¼ 950:4P

Substituting smax ¼ 150� 106 Pa and solving for P yields

P ¼ 150� 106

950:4
¼ 157:8� 103 N ¼ 157:8 kN Answer

1
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Problems

12.56 The bar with a hole is subjected to the axial load P. Determine the max-
imum normal stress in the bar in terms of P, D, and b for (a) r ¼ 0:05D; (b) r ¼ 0:1D;
and (c) r ¼ 0:2D.

12.57 Determine the largest in-plane bending moment M that can be applied to
the bar with a hole if the maximum normal stress at the edge of the hole is not
to exceed 20 ksi.

12.58–12.61 Determine the maximum normal stress in the bar shown.

12.62 Determine the maximum shear stress in the stepped shaft due to the
7.5-kip � in. torque.

12.63 Find the largest axial load P that can be applied to the shaft if the max-
imum normal stress is limited to 220 MPa.

FIG. P12.56 FIG. P12.57

FIG. P12.58

30

80

480480

100

FIG. P12.59

FIG. P12.60 FIG. P12.61

FIG. P12.62

4

FIG. P12.63
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12.64 The 0.75-in.-diameter grooved bar is supported by a self-aligning bearing at
each end. Determine the maximum normal stress in the bar caused by the two 10-lb
loads.

*12.65 The stepped shaft carries a torque of 500 N �m. Determine the smallest
allowable diameter d if the maximum shear stress is not to exceed 100 MPa.

12.6 Fatigue Under Repeated Loading

Many machine parts and structures are subjected to cyclic stresses caused by
repeated loading and unloading. Such loading may result in failure at a
stress that is much lower than the ultimate strength determined from a static
tensile test. The process that leads to this type of failure is called fatigue. To
design members that carry cyclic loads, we must know the number of stress
cycles expected over the life of the member as well as the safe stress that can
be applied that number of times. Experiments that determine these values
are called fatigue tests.

A fatigue test that involves reversed bending is illustrated in Fig. 12.18.
In this test, a round specimen is mounted in four bearings. The two outer-
most bearings support the specimen, while the middle bearings carry a weight
W. This arrangement applies a constant bending moment to the specimen
between the inner bearings. As a motor rotates the specimen, the material
undergoes complete stress reversal during each revolution so that the max-
imum stress varies between þsa and �sa as shown in Fig. 12.19, where sa is
called the stress amplitude. When the specimen breaks, the motor stops
automatically and the revolution counter shows the number of stress cycles
that produced the failure. A test program on a given material involves many
identical specimens that are rotated under di¤erent values of W until they
either fail or reach several million load cycles. The results are presented in the
form of S-N diagrams, where the stress amplitude sa is plotted against

15 in. 12 in. 15 in.

10 lb 10 lb0.15 in.

0.75 in.

Detail of groove

FIG. P12.64

FIG. P12.65

FIG. 12.18 Fatigue testing machine that applies reversed bending to the specimen.
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N, the number of cycles at failure. It is customary to use a logarithmic scale
for the N-axis. Similar fatigue tests are used for axial loading and torsion.

A typical S-N diagram for a steel alloy is shown in Fig. 12.20. The
stress at which the diagram becomes horizontal is called the endurance limit,
or fatigue limit, and denoted by se. Although no definite relationship exists
between the endurance limit and the ultimate strength sult, tests show that se

is usually between 0:4sult and 0:5sult. Some metals, notably aluminum alloys
and copper alloys, have no detectable endurance limit, in which case se is
taken to be the fatigue strength at a specific value of N, usually N ¼ 107 or
106.

Many aspects of fatigue can be analyzed by fracture mechanics, which
is a theory concerned with the propagation of cracks. Microscopic cracks
either are initially present in a material or develop after a small number of
load cycles due to stress concentrations near inclusions, grain boundaries,
and other inhomogeneities. Under repeated loading, a crack tends to prop-
agate until it reaches a critical size, at which time failure occurs. The task of
fracture mechanics is to predict the rate of crack propagation under a
given stress amplitude, which in turn determines the fatigue life of the
component. In many critical applications, such as nuclear reactors, space-
craft, and submarines, fracture mechanics is a mandatory component of
analysis. The detailed steps of such analyses are prescribed in the relevant
design codes.

The major problem in fatigue analysis is to account for all the factors
that contribute to the fatigue life. It is known that fatigue strength is
dependent not only on the metallurgical and structural aspects of the material,
but also on the surface finish and the environmental conditions. Polishing

FIG. 12.19 Maximum normal stress versus time for the reversed bending test.

FIG. 12.20 S-N diagram for a steel alloy that has a finite endurance limit. (Some
metals do not have endurance limits.)
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the surface of a specimen after it has been milled can increase the fatigue
strength by 30% or more. Moisture in the environment is another important
factor that influences the rate at which cracks grow. Typically, the fatigue
strength of metals is reduced by 5% to 15% by a high moisture content of the
atmosphere.

Fatigue failures are catastrophic in the sense that they occur without
warning. If a ductile material is subjected to static loading, extensive yielding
of the material takes place before rupture takes place. Because fatigue occurs
with very little yielding, even ductile materials fail by sudden fracture; that
is, they fail in a brittle mode. For this reason, stress concentrations, which
do not seriously a¤ect the strength of a ductile material under static loading,
are important in fatigue. As shown in the previous section, the stress around
a small hole in a flat bar under axial loading is three times the nominal stress
on the cross section. If the load on such a bar is gradually increased, yielding
first takes place at the hole, but the yield zone is small compared to the cross
section. Extensive deformation does not occur until the load is tripled, when
yielding spreads over the entire cross section. Hence, the e¤ect of the hole is
insignificant in determining the strength of the bar under static loading.
However, the fatigue strength of the bar with the hole would be almost
one-third that of the solid bar.6

6The actual fatigue strength is usually somewhat higher than predicted from the stress concen-

tration factor, an e¤ect known as the notch sensitivity.
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Computer Problems

C12.1 The truss in Fig. (a) consists of two members, denoted by z1 and z2 . The
cross-sectional areas of the members are A1 and A2, and the modulus of elasticity E

is the same for both members. If the junction O of the members is taken as the origin,
the layout of the truss is specified by coordinates ðx1; y1Þ and ðx2; y2Þ of the support
points. Given the coordinates of the support points, A1, A2, E, and the vertical load
W, write an algorithm that uses Castigliano’s theorem to compute the horizontal and
vertical deflections of O. Apply the algorithm to the steel trusses (b) and (c). Use
E ¼ 29� 106 psi for steel.

C12.2 The uniform beam of length L in Fig. (a) caries a uniformly distributed
load of intensity w0. The beam has a built-in support at its right end and n roller
supports located at distances x1; x2; . . . ; xn from the left end. Given L, w0, n, and the
coordinates of the roller supports, write an algorithm that computes the reactions at
the roller supports using Castigliano’s theorem. Apply the algorithm to the beams (b)
and (c). (Hint: Consider the roller reactions R1;R2; . . . ;Rn as redundant reactions
and apply the displacement constraints di ¼ qU=qRi ¼ 0, i ¼ 1; 2; . . . ; n.)

FIG. C12.1

(a)

(c)

FIG. C12.2
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C12.3 The stepped shaft carrying a torque T has two segments of diameters D and
d. The radius of the circular fillet between the segments is r ¼ ðD� dÞ=2. No yielding
is allowed anywhere in the shaft. Given T, D, and the yield stress syp of the material,
write an algorithm that computes the smallest allowable diameter d. Use the max-
imum distortion energy theory as the yield criterion. Run the algorithm with the fol-
lowing data: T ¼ 4 kN �m, D ¼ 75 mm, and syp ¼ 480 MPa.

FIG. C12.3
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13
Inelastic Action

13.1 Introduction

The analyses in the preceding chapters dealt almost exclusively with stresses
that were below the proportional limit of the material. In other words,
Hooke’s law was assumed to apply. Analyses based on Hooke’s law are
entirely justified in most applications. Under normal service conditions, we
want to prevent yielding because the resulting permanent deformation is
generally undesirable. For this reason, the factor of safety for ductile mate-
rials was defined as N ¼ syp=sw, where sw is the maximum allowable stress
due to the anticipated loading under normal service conditions. However,
permanent deformation does not necessarily lead to catastrophic failure; it
may only make the structure unusable. The implication here is that there are

Corrugated sheet metal showing permanent

deformation caused by inelastic buckling.

Permanent deformation of a structure

occurs when the stresses exceed their

elastic limits. This chapter introduces the

analysis of inelastic deformation of steel

structures. Courtesy of Fedorov Oleksiy/

Shutterstock.
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two levels of safety: safety against permanent deformation and safety against
catastrophic failure. The latter is very important in structures that may ex-
perience forces that greatly exceed the normal service loads, such as those
imposed by earthquakes.

In this chapter, we consider the maximum loading that may be applied
to a structure before it collapses. This loading is known as limit loading.
With a ductile material, collapse does not occur until yielding has spread
throughout the most highly stressed section in a statically determinate
structure. The application of limit loads to indeterminate structures, called
limit analysis, is discussed in Sec. 13.5. We must emphasize that none of the
concepts discussed in this chapter is applicable to brittle materials; we
always assume that the material can undergo considerable plastic deforma-
tion before breaking.

The stress-strain relationship for ductile materials may be approxi-
mated by the idealized diagram shown in Fig. 13.1(a). The elastic portion of
the diagram is a straight line with slope E, the modulus of elasticity of the
material. The plastic portion is also a straight line beginning at the yield
stress, syp, and having a slope C. Because slope C is smaller than slope E,
the increment of stress required to produce a specified increment of strain in
the plastic range is less than it is in the elastic range. Such a material is said
to be strain-hardening; it does not permit an increase in strain without an
increase in stress. Figure 13.1(b) shows the idealized stress-strain diagram
for an elastic-perfectly plastic material for which C ¼ 0. The diagram is
assumed to be valid for both tension and compression. For materials of
this type, flow can occur with no increase in stress beyond the proportional
limit. Elastic-perfectly plastic behavior, which is a satisfactory model for
low-carbon steels commonly used in building frames, is the only material
model that we consider in this chapter.

13.2 Limit Torque

Torsion analysis of circular bars stressed into the plastic range is very similar
to what we used in Sec. 3.2 for elastic bars. As before, we assume that cir-
cular cross sections remain plane (do not warp) and perpendicular to the
axis of the shaft. Consequently, the shear strain g remains proportional to
the radial distance from the center of the bar, but g is now allowed to exceed
the yield strain in shear.

Consider the response of a circular bar made of an elastic-perfectly
plastic material that is twisted progressively through the elastic range into
the fully plastic range. Until the yield stress typ in shear is reached, the bar
is elastic and has the stress distribution shown in Fig. 13.2(a). From the tor-
sion formula tmax ¼ Tr=J, the torque at the beginning of yielding (when
tmax ¼ typ) is

Typ ¼
J

r
typ ¼

pr4

2

� �
typ

r
¼ pr3

2
typ (a)

where Typ is called the yield torque.
If we twist the bar beyond this point, the shear strains continue to

increase but the shear stress is limited to the yield stress. Therefore, there is
an intermediate radius ri that forms the boundary between the elastic and
plastic regions, as shown in Fig. 13.2(b). The stress in the outer, plastic

FIG. 13.1 Idealized stress-strain
diagrams for strain-hardening and
elastic-perfectly plastic materials.
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portion equals the yield stress typ, while the inner core remains elastic. The
torque carried by the elastic (inner) region is

Ti ¼
Ji

ri

typ ¼
pr4

i

2

� �
typ

ri

¼ pr3
i

2
typ

If we let r be the radial coordinate of an area element dA of the cross sec-
tion, the torque carried by the plastic (outer) portion is

To ¼
ð r

ri

rðtyp dAÞ ¼ typ

ð r

ri

rð2pr drÞ ¼ 2p

3
ðr3 � r3

i Þtyp

Therefore, the total torque carried by the cross section is

T ¼ Ti þ To ¼
pr3

i

2
typ þ

2p

3
ðr3 � r3

i Þtyp

which reduces to

T ¼ pr3

6

 
4� r3

i

r3

!
typ (13.1)

The torque required to produce the fully plastic state in Fig. 13.2(c) is
called the limit torque, denoted by TL. The limit torque can be found by set-
ting ri ¼ 0 in Eq. (13.1), which gives

TL ¼
2

3
pr3typ (13.2a)

Note that the limit torque is one-third larger than the yield torque; that is,

TL ¼
4

3
Typ (13.2b)

FIG. 13.2 Progression of the shear stress distribution in a shaft made of elastic,
perfectly plastic material as the shaft is twisted into the fully plastic state.
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13.3 Limit Moment

When considering inelastic bending, we use the simplifying assumptions
made in Sec. 5.2, except that the stress need not be proportional to the
strain. Plane sections of the beam are still assumed to remain plane (no
warping) and perpendicular to the deformed axis of the beam. It follows that
the strain at a point is again proportional to its distance from the neutral
axis. However, if the beam is made of an elastic, perfectly plastic material,
the stresses remain constant at the yield stress syp wherever the strain ex-
ceeds the yield strain. Throughout this chapter, we assume that the plane of
loading is also the plane of symmetry of the beam.

Consider the cantilever beam of rectangular cross section in Fig. 13.3(a)
that carries a load P at its free end. We assume that P is large enough to
cause yielding in the gray portion of the beam. At section a-a, the stresses on
the outer fibers have just reached the yield stress, but the stress distribution is
still elastic, as shown in Fig. 13.3(b). Applying the flexure formula
Mmax ¼ smaxS ¼ smaxðbh2=6Þ, we find that the magnitude of the bending
moment at this section is

Myp ¼ syp

bh2

6
(a)

Because this moment initiates yielding, it is known as the yield moment.
At section b-b, the cross section is elastic over the depth 2yi but plastic

outside this depth, as shown by the stress distribution in Fig. 13.3(c). The
stress is constant at syp over the plastic portion and varies linearly over
the elastic region. The bending moment carried by the elastic region, as
determined by the flexure formula, is

Mi ¼ syp
Ii

yi

FIG. 13.3 Normal stress distribution in a rectangular beam when section c-c has
become fully plastic.
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where Ii is the moment of inertia of the elastic region of the cross section
about the neutral axis. For the plastic region, which here is symmetrical
about the neutral axis, the bending moment is

Mo ¼ 2

ð h=2

yi

yðsyp dAÞ ¼ 2syp

ð h=2

yi

y dA ¼ 2sypQo

where Qo is the first moment of the area of the plastic region that lies above
(or below) the neutral axis. The total bending moment carried by the partly
plastic cross section is

M ¼Mi þMo ¼ syp

Ii

yi

þ 2Qo

� �
(13.3)

At section c-c, the beam is fully plastic. As shown in Fig. 13.3(d), the
stress is constant at syp over the tensile and compressive portions of the cross
section. The bending moment that causes this stress distribution, called the
limit moment ML, is given by

ML ¼ 2sypQ (13.4a)

where Q is the first moment of the cross-sectional area above (or below) the
neutral axis. The limit moment is the largest bending moment that the cross

section can carry. Once a section has become fully plastic, it can bend fur-
ther, but there will be no increase in the resisting moment. For this reason,
fully plastic sections are known as plastic hinges.

For the rectangular cross section, the limit moment in Eq. (13.4a)
becomes

ML ¼ 2syp

bh

2

� �
h

4

� �
¼ syp

bh2

4
(b)

Comparing Eqs. (a) and (b), we find that

ML ¼
3

2
Myp (13.4b)

It can be seen that Eqs. (13.3) and (13.4a) are valid for any section where
the bending axis is also an axis of symmetry. However, the ratio ML=Myp,
which equals 3/2 for a rectangular section in Eq. (13.4b), varies with the
shape of the cross section. Values of this ratio for several simple shapes are
listed in Table 13.1. These ratios indicate that the limit moments for rec-
tangular and circular sections are considerably larger than the yield
moments, whereas the di¤erence is much smaller for standard structural
sections.
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If the bending axis is not an axis of symmetry, as is the case for the
T-section shown in Fig. 13.4, the neutral axis changes its location as the
section enters the plastic range. In the fully plastic case, the equilibrium
condition of zero axial force is sypAT ¼ sypAC , where AT is the tension area
of the cross section and AC is the compression area, as indicated in the fig-
ure. Thus, the location of the plastic neutral axis is determined from

AT ¼ AC (13.5)

Once the plastic neutral axis has been located, the limit moment can be
computed from

ML ¼ sypðQT þQCÞ (13.6)

where QT and QC are the first moments of the tension and compression
areas, respectively, both computed about the plastic neutral axis. Note that
because the plastic neutral axis does not pass through the centroid of the
cross section, QT is not equal to QC .

FIG. 13.4 If the bending axis is
not an axis of symmetry of the cross
section, the plastic neutral axis does
not coincide with the elastic neutral
axis.

Cross section ML=Myp

Solid rectangle 1.5

Solid circle 1.7

Thin-walled circular tube 1.27

Typical wide-flange beam 1.1

TABLE 13.1
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Sample Problem 13.1

Determine the ratio ML=Myp for the T-section shown in Fig. (a).

Solution

Yield Moment From Fig. (b), the location of the elastic neutral axis (which coincides
with the centroidal axis) is given by

y ¼
P

AiyiP
Ai

¼ ð100� 20Þð160Þ þ ð20� 150Þð75Þ
ð100� 20Þ þ ð20� 150Þ ¼ 109:0 mm ¼ 0:1090 m

The moment of inertia of the cross-sectional area about the neutral axis is

I ¼
X bih

3
i

12
þ Aiðyi � yÞ2

� �

¼ 100ð20Þ3

12
þ ð100� 20Þð160� 109:0Þ2 þ 20ð150Þ3

12
þ ð20� 150Þð75� 109:0Þ2

¼ 14:362� 106 mm4 ¼ 14:362� 10�6 m4

Yielding will start at the bottom of the cross section when the bending moment
reaches

Myp ¼
sypI

y
¼ 14:362� 10�6

0:1090
syp ¼ ð131:76� 10�6Þsyp N �m

Limit Moment The plastic neutral axis divides the cross section into the equal areas
AT and AC , as indicated in Fig. (c). Denoting the distance of this axis from the bot-
tom of the section by yp, we get

20yp ¼ 100ð20Þ þ 20ð150� ypÞ

yp ¼ 125:0 mm

The limit moment can be computed from Eq. (13.6):

ML ¼ sypðQT þQCÞ

The sum of the first moments of the areas AT and AC about the plastic neutral axis is

QT þQC ¼ ð20� 125Þ 125

2
þ ð100� 20Þð35Þ þ ð20� 25Þ 25

2

� �

¼ 232:5� 103 mm3 ¼ 232:5� 10�6 m3

Therefore, the limit moment is

ML ¼ ð232:5� 10�6Þsyp N �m

The ratio of the limit moment to the yield moment is

ML

Myp

¼ ð232:5� 106Þsyp

ð131:76� 106Þsyp

¼ 1:765 Answer

1
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Problems

13.1 A solid circular shaft 3.5 in. in diameter is subjected to a torque T. If the
yield stress in shear is typ ¼ 20 ksi, determine (a) the yield torque Typ; and (b) the
limit torque TL. (c) If T ¼ 200 kip � in., to what radius does the elastic action extend?

13.2 Determine the ratio TL=Typ for a hollow circular shaft with an outer radius
that is 1.5 times its inner radius.

13.3 When a torque T acts on a solid circular shaft, the elastic region extends to
80% of the outer radius. Determine the ratio T=Typ.

13.4 Verify the ratio ML=Myp given in Table 13.1 for (a) a solid circle; and (b) a
thin-walled circular tube.

13.5 Compute the ratio ML=Myp for a W200� 52 beam.

13.6 Compute the ratio ML=Myp for a W8� 40 beam.

13.7 For the inverted T-section shown in the figure, determine the ratio ML=Myp.

13.8 The centroidal axis of the section shown is located at y ¼ 5:7 in., and the
cross-sectional moment of inertia about this axis is I ¼ 855 in.4. Determine the ratio
ML=Myp for a beam having this cross section.

13.9 A rectangular beam 50 mm wide and 140 mm deep is made of an
elastic-perfectly plastic material for which syp ¼ 220 MPa. Compute the bending
moment that causes one-half of the section to be in the plastic range.

13.10 Compute the limit moment for the equal-angle section. The bending moment
acts about the centroidal axis that is (a) horizontal; and (b) vertical. Use syp ¼ 36 ksi.

13.11 If syp ¼ 40 ksi, compute the limit moment for a beam with the cross section
shown in the figure.

13.12 If syp ¼ 40 ksi, determine the bending moment that causes the elastic region
to extend 1.5 in. from the neutral axis for a beam with the cross section shown.

13.13 Compute the ratio ML=Myp for the triangular cross section.

1.0 in.

1.0 in.

6 in.

6 in.

FIG. P13.7

1.0 in.

1.0 in.

1.0 in.

FIG. P13.8

6 in. 6 i
n.

 in.5
16

FIG. P13.10

FIG. P13.11, P13.12 FIG. P13.13
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13.4 Residual Stresses

a. Loading-unloading cycle

Experiments indicate that if a ductile material is loaded into the plastic
range, as shown by curve OAB in Fig. 13.5(a), it unloads elastically follow-
ing the path BC that is approximately parallel to the initial elastic path OA.
Upon reloading, the material remains elastic up to the previously strained
point B, after which it again becomes plastic (curve CBD). For an idealized
elastic-perfectly plastic material, to which our analysis is limited, this load-
ing, unloading, and reloading cycle is shown in Fig. 13.5(b).

The principal e¤ect of unloading a material strained into the plastic
range is to create a permanent set, such as the strain corresponding to OC in
Fig. 13.5. This permanent set creates a system of self-balancing internal
stresses, known as residual stresses. The magnitude and distribution of the
residual stresses may be determined by superimposing the following two
stress distributions: (1) the stress distribution (partly or fully plastic) caused
by the given loading; and (2) the elastic stress distribution created by the
unloading. However, this method of superposition cannot be used if the re-
sidual stresses thereby obtained would exceed the yield stress (an impossi-
bility for an elastic-perfectly plastic material). It can be shown that this is
indeed the case whenever the axis of bending is not an axis of symmetry of
the cross section. Hence, the theory of elastic unloading is applicable only to
bending about an axis of symmetry.

b. Torsion

As a first example of residual stress, we consider a circular bar strained into
the fully plastic state by the limit torque TL. As we saw in Art. 13.2, the limit
torque is 4/3 times the yield torque, and the stress distribution is as shown in
Fig. 13.6(a). To unload the bar, we now apply an opposite torque of mag-
nitude TL. We recall that the unloading is assumed to be elastic, so the result
is the stress distribution shown in Fig. 13.6(b). Superimposing the loadings
and the stress distributions of parts (a) and (b), we obtain an unloaded bar
with the residual stress distribution shown in part (c).

FIG. 13.5 (a) Stress-strain
diagram for a ductile material
showing loading-unloading; (b) the
idealized diagram for an elastic,
perfectly plastic material.

FIG. 13.6 Determining the residual shear stress distribution in an elastic,
perfectly plastic shaft after loading into the fully plastic state and then unloading.
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An interesting phenomenon of residual stresses is that the bar now be-
haves elastically if the original limit torque is reapplied, as shown in Fig.
13.7. Combining parts (a) and (b) of Fig. 13.7, we obtain the original plastic
state shown in part (c). On the other hand, as shown in Fig. 13.8, no more
than 2/3 of the yield torque can be reapplied in the opposite sense before
additional yielding takes place.

c. Bending

As a second example of residual stress, we consider a beam of rectangular
cross section that is strained into the fully plastic state by the limit moment.
For the rectangular cross section, we know from Sec. 13.3 that the limit
moment is ML ¼ ð3=2ÞMyp, causing the stress distribution shown in
Fig. 13.9(a). Releasing the load is equivalent to adding an equal but oppo-
site moment to the section, which results in the stress distribution in Fig.
13.9(b). The residual stress distribution in the unloaded beam, shown in part
(c), is obtained by superimposing parts (a) and (b). Again, the residual
stresses are self-balancing, but if some of the material is removed, an un-
balance is created. This explains why members that are cold-formed distort
after machining.

FIG. 13.7 If the limit torque is applied a second time, the fully plastic state is
recovered.

FIG. 13.8 A torque T ¼ ð2=3ÞTyp applied to a shaft that was previously twisted
into the fully plastic range in the opposite direction will initiate additional yielding.
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As we saw in the case of torsion, a beam that has been unloaded from
the fully plastic state may be reloaded in the same sense, with the beam re-
maining elastic until the limit moment is reached. For reversed loading, the
beam also remains elastic as long as the reversed moment does not exceed
ð1=2ÞMyp. If this condition is not satisfied, further yielding will occur.

d. Elastic spring-back

As a final example of residual stress, we consider the inelastic bending of a
straight rectangular bar around a 90� circular die, as shown in Fig. 13.10(a).
When the bar is released, it springs back through the angle ys as shown in
Fig. 13.10(b). This elastic spring-back is of great importance in metal-form-
ing operations. The relationship between the radius R0 of the die and the fi-
nal radius of curvature Rf of the bar can be found by combining the plastic
strain caused by loading with the elastic strain caused by unloading. The
computations shown below are similar to those used to determine residual
stresses.

Recalling from Sec. 5.2 that the magnitude of the strain in bending is
� ¼ y=r, we see that the maximum strain in the rectangular bar in Fig. 13.10(a) is

�0 ¼
h=2

R0

where h is the thickness of the bar. After spring-back in Fig. 13.10(b), the
maximum strain is

FIG. 13.9 Determining the residual normal stress distribution in an elastic,
perfectly plastic beam after loading into the fully plastic state and then unloading.

FIG. 13.10 (a) Rectangular bar bent around a circular die; (b) elastic spring-back
after unloading.
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�f ¼
h=2

Rf

Unloading the bar is equivalent to applying a bending moment to the
deformed bar in part (a) that is equal and opposite to the limit moment. As
we saw in Fig. 13.9(b), the maximum stress in this unloading is ð3=2Þsyp,
and hence the corresponding elastic strain is

�e ¼
s

E
¼ ð3=2Þsyp

E

Superimposing these strains, we obtain for the residual strain �f ¼ �0 � �e; or

h=2

Rf

¼ h=2

R0
� ð3=2Þsyp

E

which can be rearranged in the form

1� R0

Rf

¼ 3sypR0

Eh
(13.7)

Letting s be the length of the bend, the angle yf associated with the
final radius of Rf is found from s ¼ R0y0 ¼ Rf yf , or

yf ¼
R0

Rf

y0

The spring-back angle may now be evaluated from

ys ¼ y0 � yf ¼ y0 1� R0

Rf

� �

Substituting from Eq. (13.7), we finally obtain

ys ¼ y0R0
3syp

Eh

� �
(13.8)

This result indicates that the relative amount of spring-back may be
reduced by using (a) a smaller forming radius, (b) thicker bars, or (c) mate-
rial with a low yield strain �yp ¼ syp=E. It also indicates the amount by
which the forming angle y0 must be modified to produce a final bend of a
specified radius.

In circular bars twisted into the plastic range, spring-back also occurs
after the torque is removed. In that case, the elastic spring-back is equal to
the angle of twist caused by elastic unloading.
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Sample Problem 13.2

The three equally spaced vertical rods in Fig. (a) are securely attached to a rigid
horizontal bar. The two outer rods are made of an aluminum alloy, and the middle
rod is steel. The cross-sectional areas of the rods are shown in the figure. Determine
the residual stresses in the rods after the load P has been increased from zero to the
limit load and then removed. The material properties are E ¼ 70 GPa, syp ¼ 330
MPa for aluminum, and E ¼ 200 GPa, syp ¼ 290 MPa for steel. Neglect the weight
of the bar.

Solution

Limit Load The limit load PL is the value of P at which all three rods yield. The
axial forces in the bars at yielding are

Pst ¼ ðsypAÞst ¼ ð290� 106Þð900� 10�6Þ ¼ 261:0� 103 N ¼ 261:0 kN

Pal ¼ ðsypAÞal ¼ ð330� 106Þð600� 10�6Þ ¼ 198:0� 103 N ¼ 198:0 kN

Referring to the free-body diagram in Fig. (b), we obtain for the limit load

PL ¼ 261:0þ 2ð198:0Þ ¼ 657:0 kN

Elastic Unloading Applying an upward load equal to PL is equivalent to removing
the limit load. Assuming the unloading is elastic, we apply the procedure discussed in
Sec. 2.5 for statically indeterminate problems. From the free-body diagram in Fig. (c),
we obtain the equilibrium equation

Pst þ 2Pal ¼ 657:0 kN (a)

Because the rigid bar imposes equal elongations on the three bars, the compatibility
equation is

PL

EA

� �
st

¼ PL

EA

� �
al

Pstð350Þ
ð200Þð900Þ ¼

Palð250Þ
ð70Þð600Þ

which yields

Pst ¼ 3:061Pal (b)

Solving Eqs. (a) and (b), we find that the unloading forces in the bars are

Pst ¼ 397:4 kN and Pal ¼ 129:8 kN

Residual Stresses The residual forces are obtained by superimposing the tensile
forces caused by unloading and the compressive forces caused by loading. Consider-
ing tension as positive and compression as negative, we get

Pst ¼ 397:4� 261:0 ¼ 137:4 kN

Pal ¼ 129:8� 198:0 ¼ �68:2 kN

Thus, the residual stresses are

sst ¼
Pst

Ast
¼ 137:4� 103

900� 10�6
¼ 152:7� 106 Pa ¼ 152:7 MPa ðTÞ Answer

sal ¼ �
Pal

Aal
¼ � 68:2� 103

600� 10�6
¼ �113:7� 106 Pa ¼ 113:7 MPa ðCÞ Answer

1
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Problems

13.14 In Sample Problem 13.2, change the area of the steel bar to 1200 mm2. If
the load P ¼ 700 kN is applied and then removed, determine the residual force in
each bar.

13.15 The compound bar is firmly attached between rigid supports. The yield
strengths for steel and the aluminum alloy are 42 ksi and 48 ksi, respectively.
Determine the residual stresses if the limit load P ¼ PL is applied and then removed.

13.16 Solve Prob. 13.15 if a load P ¼ 132 kips is applied and then removed.

13.17 Three steel bars are welded together to form a beam with the cross section
shown. The two outer bars are A36 steel (syp ¼ 36 ksi), and the inner bar is A992
steel (syp ¼ 50 ksi). The limit moment is applied to the beam and then removed. Plot
the distribution of the residual bending stress on the cross section.

13.18 A torque applied to a solid rod of radius r causes the elastic region to
extend a distance r=2 from the center of the rod. If the torque is then removed,
determine the residual shear stress distribution.

13.19 The outer diameter of a hollow shaft is twice its inner diameter. Determine
the residual stress pattern after the limit torque has been applied and removed.

13.20 The bent rod is 8 mm in diameter. A torque causes arm CD to rotate through
the angle y relative to arm AB. Determine the value of y if the two arms are to be 90�

apart after the torque has been removed. Assume that typ ¼ 120 MPa and G ¼ 80 GPa.

13.21 A rectangular steel bar 50 mm wide by 90 mm deep is subjected to a bend-
ing moment that makes 80% of the bar plastic. Using syp ¼ 260 MPa, determine the
residual stress distribution after the bending moment is removed.

13.22 A rectangular steel bar 30 mm wide by 60 mm deep is loaded by a bending
moment of 6 kN �m, which is then removed. If syp ¼ 280 MPa, what is the residual
stress at a point 20 mm from the neutral axis?

13.23 The three members of the truss are made of ductile steel and have identical
cross-sectional areas. Determine the residual stresses in each member after the load P

has been increased from zero to the limit load and then removed.

L L

L

B C D

A

P

FIG. P13.23

FIG. P13.15, P13.16

1.0 in.

1.0 in.

2 in.

2 in.

A36

A36

A992

FIG. P13.17

500 mm8 mm
8 mm

FIG. P13.20
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13.24 A beam with the cross section shown in the figure carries a bending moment
that causes the elastic region to extend 1.5 in. from the neutral axis. Determine
the residual stress distribution after the bending moment has been removed. Use
syp ¼ 40 ksi.

13.25 A strip of steel 3/8 in. thick is bent over a circular die of radius 4 in. Given
that syp ¼ 40 ksi and E ¼ 29� 106 psi, what will be the residual radius of curvature?

13.26 Referring to Prob. 13.25, determine the angle of contact with the circular
die during bending so that the strip will have a permanent bend angle of 90�.

13.27 A circular die with radius 250 mm is used to bend a 2024-T4 aluminum
alloy strip 10 mm thick. What is the required angle of contact if the strip is to have
a permanent bend angle of 180�? Assume that syp ¼ 330 MPa and E ¼ 70 GPa.

13.5 Limit Analysis

Limit analysis is a method of determining the loading that causes a statically
indeterminate structure to collapse. This method applies only to ductile ma-
terials, which in this simplified discussion are assumed to be elastic, perfectly
plastic. The method is straightforward, consisting of two steps. The first step
is a kinematic study of the structure to determine which parts must become
fully plastic to permit the structure as a whole to undergo large deforma-
tions. The second step is an equilibrium analysis to determine the external
loading that creates these fully plastic parts. We present limit analysis in the
form of examples involving axial loading, torsion, and bending.1

a. Axial loading

Consider the rigid beam in Fig. 13.11, which is supported by a pin at O and
the steel rods A and B of di¤erent lengths. In the elastic solution, the elon-
gations of the rods are proportional to the distances of the rods from the pin.
From Hooke’s law, this condition gives us one relationship between axial
forces PA and PB (compatibility equation). The second relationship is ob-
tained from the equation of equilibrium SMO ¼ 0. The elastic analysis is
valid as long as W a Wyp, where Wyp is the yield load (the magnitude of W

at which one of the rods begins to yield).
When the load W is increased beyond Wyp, the rod that yielded first

will keep yielding while maintaining its fully plastic axial load P ¼ sypA.
The other rod, which is still elastic, will carry an increasing proportion of the
loading until it also starts to yield. At that point, we will have reached the
limit load WL at which the structure collapses by rotation about the pin
support.

Let us now find the limit load for the structure in Fig. 13.11 using the
following properties of the rods:

Rod A (mm2) syp (MPa) E (GPa)

A 300 330 200

B 400 290 200

1One example of limit analysis involving axial loading was presented in Sample Problem 13.2.

FIG. P13.24

FIG. 13.11 Example of limit
analysis. Both bars (A and B) are
plastic at the limit value of the
load W.
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Because both rods are in the plastic range at the limit load, the axial forces
are given by

PA ¼ ðsypAÞA ¼ ð330� 106Þð300� 10�6Þ ¼ 99:0� 103 N ¼ 99:0 kN

PB ¼ ðsypAÞB ¼ ð290� 106Þð400� 10�6Þ ¼ 116:0� 103 N ¼ 116:0 kN

The limit load can now be obtained from the equilibrium equation
SMO ¼ 0, which yields

5WL ¼ 2PA þ 4PB ¼ 2ð99:0Þ þ 4ð116:0Þ

WL ¼ 132:4 kN

For comparison, the yield load for this structure can be shown to be
Wyp ¼ 118:9 kN, with bar A yielding.

b. Torsion

As an example of limit analysis in torsion, consider the compound shaft
shown in Fig. 13.12. The ends of the shaft are attached to rigid supports.
The problem is to determine the limit torque TL (the largest torque that the
shaft can carry at the junction of the steel and aluminum segments).

If we assume the materials are elastic, perfectly plastic, the limit torque
of the shaft occurs when both segments have reached their limit torques.
From Eq. (b) in Sec. 13.2, the limit torques in the segments are

ðTLÞal ¼
2

3
pðr3typÞal ¼

2

3
pð0:035Þ3ð160� 106Þ ¼ 14:368� 103 N �m

ðTLÞst ¼
2

3
pðr3typÞst ¼

2

3
pð0:025Þ3ð140� 106Þ ¼ 4:581� 103 N �m

FIG. 13.12 Example of limit analysis. Both segments of the shaft are fully plastic
at the limit value of the applied torque T.
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The limit torque of the shaft is obtained from the equilibrium of moments
about the axis of the shaft, which yields

TL ¼ ðTLÞal þ ðTLÞst ¼ ð14:368þ 4:581Þ � 103

¼ 18:95� 103 N �m ¼ 18:95 kN �m

In contrast, the yield torque can be shown to be Typ ¼ 9:60 kN �m, which
occurs when the maximum shear stress in steel reaches its yield value.

c. Bending

Let us return to the cantilever beam shown in Fig. 13.3. As the load P is
increased, section c-c at the support goes successively through elastic and
partly plastic states until it becomes fully plastic. Sections between a-a and
b-b are then partly plastic, whereas the rest of the beam remains elastic. The
fully plastic section is called a plastic hinge because it allows the beam to
rotate about the support without an increase in the bending moment. The
bending moment at the plastic hinge is, of course, the limit moment ML.
Once the plastic hinge has formed, the beam in Fig. 13.3 would collapse.

The collapse of a statically determinate beam is synonymous with the
formation of a plastic hinge. Statically indeterminate beams do not collapse
until enough plastic hinges have formed to make the collapse kinematically
possible. The kinematic representation of the collapse is called the collapse

mechanism. Three examples of collapse mechanisms are shown in Fig. 13.13.
Note that the number of plastic hinges (shown by solid circles) required in
the collapse mechanism increases with the number of support redundancies.
Thus, the simply supported beam requires only one plastic hinge, whereas
three plastic hinges are required for the beam with built-in ends.

In general, plastic hinges form where the bending moment is a max-
imum, which includes built-in supports and sections with zero shear force
(since V ¼ dM=dx is an equilibrium equation, its validity is not limited to
elastic beams). Thus, the location of plastic hinges is usually obvious for
beams subjected to concentrated loads. The task is more di‰cult for stat-
ically indeterminate beams carrying distributed loads. Sometimes more than
one collapse mechanism is possible, in which case we must compute the col-
lapse load for each mechanism and choose the smallest collapse load as the
actual limit load. These concepts are discussed in the sample problems that
follow.

FIG. 13.13 The collapse
mechanism of a beam depends on
the supports. Each extra support
constraint requires an additional
plastic hinge in the collapse
mechanism.
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Sample Problem 13.3

The beam in Fig. (a) has a built-in support at each end and carries a uniformly dis-
tributed load of intensity w. Knowing that moments at the supports in the elastic
state are

MA ¼MB ¼
wL2

12
(a)

determine the ratio of the limit load (the value of w at collapse) to the yield load (the
value of w when yielding begins).

Solution

The collapse mechanism requires the formation of three plastic hinges. Due to sym-
metry of the beam and the loading, these hinges are located at A, B, and C, giving
rise to the collapse mechanism shown in Fig. (b). The bending moments at the plastic
hinges are equal to the limit moment ML. The relationship between wL (the limit
value of w) and ML can now be determined from equilibrium using the free-body
diagrams of the two beam segments shown in Fig. (c). Note that due to symmetry,
the shear force at C is zero. Applying the equilibrium equation SMA ¼ 0 to the left
half of the beam, we get

2ML ¼
wLL

2

L

4

� �
ML ¼

wLL2

16
(b)

Substituting MA ¼MB ¼Myp and w ¼ wyp into Eq. (a), we obtain for the
relationship between the yield moment and the yield load

Myp ¼
wypL2

12
(c)
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Dividing Eq. (b) by Eq. (c) gives us the ratio of the limit load to the yield load:

wL

wyp

¼ 4

3

ML

Myp

Answer

The ratios ML=Myp listed in Table 13.1 are appreciable for rectangular or cir-
cular cross sections, but for standard structural shapes they are so close to unity that
ML can be taken to be equal to Myp without appreciable error.

1
Sample Problem 13.4

The propped cantilever beam in Fig. (a) carries a uniformly distributed load of in-
tensity w. Determine the limit moment ML in terms of the limit load wL.

Solution
The collapse mechanism, which requires two plastic hinges, is shown in Fig. (b). The
distance x locating the plastic hinge at C is unknown, but it may be found from the
condition that the vertical shear force is zero where the maximum bending moment
occurs (V ¼ dM=dx is an equilibrium equation that is valid whether or not the
stresses are in the elastic range). The free-body diagrams of the beam segments on
either side of C are shown in Fig. (c). Note that the moments at B and C are equal to
the limit moment ML. The equilibrium condition SMA ¼ 0 applied to segment AC

yields

ML ¼
wLx2

2
(a)

and the equation SMB ¼ 0 for segment CB becomes

2ML ¼
wLðL� xÞ2

2
(b)

The solution of Eqs. (a) and (b) is x ¼ 0:414L, which locates the plastic hinge C, and

ML ¼ 0:0858wLL2 Answer

1
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Sample Problem 13.5

The two cantilever beams in Fig. (a), separated by a roller at B, jointly support the
uniformly distributed load of intensity w. Determine the limit load wL in terms of the
limit moment ML. Assume that the beams have identical cross sections.

Solution

In this variation of Sample Problem 13.4, the prop support is replaced by a cantilever
beam. This modification introduces the possibility of a plastic hinge forming at A. If
that hinge does not form, we have the situation discussed in Sample Problem 13.4 in
which ML ¼ 0:0858wLL2. If the hinge forms at A, then collapse is possible by rota-
tion about plastic hinges at A and D as shown in Fig. (b).

To determine the limit load for the collapse mechanism in Fig. (b), we draw
the free-body diagrams for the two beams, as shown in Fig. (c). Note that the mo-
ments at A and D have been set equal to the limit moment ML. The equilibrium
equations for the two beams are

SMA ¼ 0 ML ¼ P
L

2

� �

SMD ¼ 0 ML ¼ wLL
L

2

� �
� PðLÞ
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Eliminating the contact force P from these two equations, we obtain

ML ¼
wLL2

6
¼ 0:1667wLL2

Because this expression gives a smaller wL than the one found in Sample Problem
13.4, the collapse mechanism is as shown in Fig. (b), the limit load being

wL ¼
6ML

L2
Answer

1
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Problems

13.28 The bracket is fastened to a rigid wall by three identical bolts, each having
a cross-sectional area of 120 mm2. The bracket may be assumed to be rigid, so that
the elongations of the bolts are caused by rotation of the bracket about corner O.
Determine (a) the limit value of the moment M applied to the bracket, and (b) the
ratio of the limit moment to the yield moment. Use syp ¼ 280 MPa for the bolts.

13.29 The three steel rods, each 0.5 in.2 in cross-sectional area, jointly support the
load W. Assuming that there is no slack or stress in the rods before the load is
applied, determine the ratio of the limit load to the yield load. Use syp ¼ 35 ksi for
steel.

13.30 Determine the limit value of the torque T in Fig. 13.12 if the torque acts at
1.0 m from the right support.

13.31 Referring to Sample Problem 13.5, let the length of beam AB be L1. Show
that Fig. (b) represents the collapse mechanism only if L1 > 0:207L.

13.32 Determine the limit load PL for the propped cantilever beam in terms of the
limit moment ML.

13.33 The restrained steel beam is a W250� 28:4 section of length L ¼ 6 m with
a yield stress of 350 MPa. Assuming ML ¼ 1:1Myp, determine the limit value of the
applied load P.

13.34 The two cantilever beams have rectangular cross sections with the
dimensions shown in the figure. Determine the limit value of the load P if syp ¼ 40 ksi.

40 mm

40 mm

40 mm

FIG. P13.28 FIG. P13.29

FIG. P13.32

P

A
B

L
3

C

2L
3

FIG. P13.33

8 ft 8 ft 8 ft

6 in.

Section
through BD

4 in.

8 in.

Section
through AB

4 in.

FIG. P13.34

484 CHAPTER 13 Inelastic Action

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



13.35 The load P is supported by a cantilever beam resting on a simply supported
beam. If the limit moments are ML for the cantilever beam and 0:75ML for the sim-
ply supported beam, determine the limit value of P.

13.36 The two simply supported, wide-flange beams are mounted at right angles
and are in contact with each other at their midpoints. At the crossover point, the
beams jointly support a load P. Determine the limit value of P. Use syp ¼ 280 MPa
and assume ML ¼Myp.

13.37 The restrained beam carries two loads of magnitude P. Denoting the ratio
of the limit moment to the yield moment by K, determine the ratio PL=Pyp in terms
of K. (Note: If the beam is elastic, the magnitude of the bending moment at each
support is 2Pa=3.)

13.38 Calculate the limit value of the load intensity w0 in terms of the limit mo-
ment ML for the propped cantilever beam.

13.39 Determine the limit value of P in terms of the limit moment ML for the
restrained beam in the figure.

13.40 The continuous beam carries a uniformly distributed load of intensity w

over its entire length. Determine the limit value of w in terms of the limit moment
ML.

13.41 Repeat Prob. 13.40 assuming that both ends of the beam are built into rigid
walls.

13.42 Determine the limit value of P in terms of the limit moment ML for the
beam shown in the figure.

FIG. P13.35

W250 � 28.4

W200 � 46.1

FIG. P13.36

FIG. P13.37

A B

w0

L

FIG. P13.38

FIG. P13.39

FIG. P13.40, P13.41 FIG. P13.42
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Computer Problems

C13.1 A bending moment M acting on the steel bar of radius r is gradually in-
creased until it reaches the limit moment ML. Given r and the yield stress syp of the
material, write an algorithm that plots M from M ¼Myp to M ¼ML versus yi,
where yi is the distance between the neutral axis and the top of the elastic region.
Run the algorithm with r ¼ 40 mm and syp ¼ 240 MPa.

C13.2 The steel shaft AB of length L and radius r carries a torque T that is grad-
ually increased until it reaches the limit torque TL. Given L, r, and the material
properties G and typ, write an algorithm that plots the angle of rotation of end B

versus T from T ¼ Typ to T ¼ 0:99TL. Run the algorithm with the data L ¼ 1:0 m,
r ¼ 50 mm, G ¼ 80 GPa, and typ ¼ 150 MPa.

FIG. C13.1

FIG. C13.2
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Appendix A
Review of Properties

of Plane Areas

A.1 First Moments of Area; Centroid

The first moments of a plane area A about the x- and y-axes are defined as

Qx ¼
ð

A

y dA Qy ¼
ð

A

x dA (A.1)

where dA is an infinitesimal element of A located at ðx; yÞ, as shown in Fig.
A.1. The values of Qx and Qy may be positive, negative, or zero, depending
on the location of the origin O of the coordinate axes. The dimension of the
first moment of area is ½L3�; hence, its units are mm3, in.3, and so on.

The centroid C of the area is defined as the point in the xy-plane that
has the coordinates (see Fig. A.1)

x ¼ Qy

A
y ¼ Qx

A
(A.2)

It follows that if A and ðx; yÞ are known, the first moments of the area can
be computed from Qx ¼ Ay and Qy ¼ Ax. The following are useful prop-
erties of the first moments of area:

. If the origin of the xy-coordinate system is the centroid of the area
(in which case x ¼ y ¼ 0), then Qx ¼ Qy ¼ 0.. Whenever the area has an axis of symmetry, the centroid of the area
will lie on that axis.
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If the area can be subdivided into simple geometric shapes (rectangles,
circles, etc.) of areas A1;A2;A2; . . . ; it is convenient to use Eqs. (A.1) in the
form

Qx ¼
X ð

Ai

y dA

� �
¼
X
ðQxÞi ¼

X
Aiyi (A.3a)

Qy ¼
X ð

Ai

x dA

� �
¼
X
ðQyÞi ¼

X
Aixi (A.3b)

where ðxi; yiÞ are the coordinates of the centroid of area Ai. Because the
centroidal coordinates of simple shapes are known, Eqs. (A.3) allow us to
compute the first moments without using integration.

A.2 Second Moments of Area

a. Moments and product of inertia

Referring again to Fig. A.1, we define the second moments of a plane area A

with respect to the xy-axes by

Ix ¼
ð

A

y2 dA Iy ¼
ð

A

x2 dA Ixy ¼
ð

A

xy dA (A.4)

The integrals Ix and Iy are commonly called the moments of inertia,1
whereas Ixy is known as the product of inertia. The moments of inertia are
always positive, but the product of inertia can be positive, negative, or zero.
The dimension of the second moment of area is ½L4�. Therefore, the units are
mm4, in.4, and so forth.

Caution Recall that the first moment of an area about the x-axis can be

evaluated from Qx ¼ Ay, where y is the centroidal coordinate of the

area. A common mistake is to extrapolate this formula to the moment of

inertia by wrongly assuming that Ix ¼ Ay2.

If either the x- or y-axis is an axis of symmetry of the area, then
Ixy ¼ 0. This result can be deduced by inspection of the area shown in
Fig. A.2. Because the y-axis is an axis of symmetry, for every dA with co-
ordinates ðx; yÞ, there is a dA with coordinates ð�x; yÞ. It follows that
Ixy ¼

Ð
A

xy dA ¼ 0 when the integration is performed over the entire region.
Referring again to Fig. A.1, we define the polar moment of inertia of an

area about point O (strictly speaking, about an axis through O, perpendicu-
lar to the plane of the area) by

1The term moment of inertia of an area must not be confused with moment of inertia of a body.

The latter, which occurs in the study of dynamics, refers to the ability of a body to resist a

change in rotation and is a property of mass. Because an area does not have mass, it does not

possess inertia. However, the term moment of inertia is used because the integrals in Eqs. (A.4)

are similar to the expression
Ð

r2 dm that defines the moment of inertia of a body.
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JO ¼
ð

A

r2 dA (A.5)

where r is the distance from O to the area element dA. Substituting
r2 ¼ y2 þ x2, we obtain

JO ¼
ð

A

r2 dA ¼
ð

A

ðy2 þ x2Þ dA ¼
ð

A

y2 dAþ
ð

A

x2 dA

or

JO ¼ Ix þ Iy (A.6)

This relationship states that the polar moment of inertia of an area about a
point O equals the sum of the moments of inertia of the area about two
perpendicular axes that intersect at O.

b. Parallel-axis theorems

In Fig. A.3, let C be the centroid of the area A, and let the x 0-axis be the
centroidal x-axis (the axis passing through C that is parallel to the x-axis).
We denote the moment of inertia about the x 0-axis by Ix. The y-coordinate
of the area element dA can be written as y ¼ yþ y 0, where y is the distance
between the two axes. From Eq. (A.4), the moment of inertia of the area

FIG. A.2

FIG. A.3
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about the x-axis (y is constant) becomes

Ix ¼
ð

A

y2 dA ¼
ð

A

ðyþ y 0Þ2 dA ¼ y2

ð
A

dAþ 2y

ð
A

y 0 dAþ
ð

A

ðy 0Þ2 dA (a)

We note that
Ð
A

dA ¼ A,
Ð
A

y 0 dA ¼ 0 (the first moment of the area about a
centroidal axis is zero), and

Ð
A
ðy 0Þ2 dA ¼ Ix (definition of the moment of

inertia about the x 0-axis). Therefore, Eq. (a) simplifies to

Ix ¼ Ix þ Ay2 (A.7a)

which is known as the parallel-axis theorem for the moment of inertia of an
area. The distance x is sometimes called the transfer distance (the distance
through which the moment of inertia is to be ‘‘transferred’’).

Caution The parallel-axis theorem is valid only if Ix is the moment of

inertia about the centroidal x-axis. If this is not the case, the integralÐ
A

y 0 dA in Eq. (a) does not vanish, giving rise to an additional term in

Eq. (A.7a).

Because the direction of the x-axis can be chosen arbitrarily, the par-
allel-axis theorem applies to axes that have any orientation. For example,
applying the theorem to the y-axis yields

Iy ¼ Iy þ Ax2 (A.7b)

where Iy is the moment of inertia about the centroidal y-axis (that is, the
y 0-axis in Fig. A.3) and x is the x-coordinate of the centroid.

By substituting x ¼ x 0 þ x and y ¼ y 0 þ y into the expression for Ixy in
Eq. (A.4), we obtain the parallel-axis theorem for the product of inertia:

Ixy ¼
ð

A

xy dA ¼
ð

A

ðx 0 þ xÞðy 0 þ yÞ dA

¼
ð

A

x 0y 0 dAþ x

ð
A

y 0 dAþ y

ð
A

x 0 dAþ xy

ð
A

dA

We note that
Ð
A

x 0y 0 dA ¼ Ixy is the product of inertia with respect to the
centroidal axes. Also,

Ð
A

y 0 dA ¼
Ð
A

x 0 dA ¼ 0 because they represent the first
moments of the area about the centroidal axes, and

Ð
A

dA ¼ A. Therefore,
the parallel-axis theorem for products of inertia becomes

Ixy ¼ Ixy þ Axy (A.8)

A parallel-axis theorem also exists for the polar moment of inertia.
Denoting the polar moment of inertia of the area about the origin O by JO

and about the centroid C by JC , we obtain from Eqs. (A.6) and (A.7)

JO ¼ Ix þ Iy ¼ ðIx þ Ay2Þ þ ðIy þ Ax2Þ

Because Ix þ Iy ¼ JC , this equation becomes
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JO ¼ JC þ Ar2 (A.9)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance between O and C, as shown in Fig. A.3.

c. Radii of gyration

In some structural engineering applications, it is common practice to in-
troduce the radius of gyration of an area. The radii of gyration about the x-
axis, the y-axis, and the point O are defined as

kx ¼
ffiffiffiffi
Ix

A

r
ky ¼

ffiffiffiffi
Iy

A

r
kO ¼

ffiffiffiffiffi
JO

A

r
(A.10)

The dimension of the radius of gyration is ½L�. However, the radius of gyra-
tion is not a distance that has a clear-cut physical meaning, nor can it be
determined by direct measurement. It can be determined only by computa-
tion using Eq. (A.10).

The radii of gyration are related by

k2
O ¼ k 2

x þ k2
y (A.11)

which can be obtained by substituting Eqs. (A.10) into Eq. (A.6).

d. Method of composite areas

Consider a plane area A that has been divided into the subareas
A1;A2;A3; . . . : The moment of inertia of the area A about an axis can be
computed by summing the moments of inertia of the subareas about the same
axis. This technique, known as the method of composite areas, follows directly
from the property of definite integrals: The integral of a sum equals the sum
of the integrals. For example, the moment of inertia Ix about the x-axis is

Ix ¼
ð

A

y2 dA ¼
ð

A1

y2 dAþ
ð

A2

y2 dAþ
ð

A3

y2 dAþ � � �

which can be written as

Ix ¼ ðIxÞ1 þ ðIxÞ2 þ ðIxÞ3 þ � � � (A.12a)

where ðIxÞi is the moment of inertia of subarea Ai about the x-axis. The
method of composite areas also applies to the computation of the polar
moment of inertia:

JO ¼ ðJOÞ1 þ ðJOÞ2 þ ðJOÞ3 þ � � � (A.12b)

where ðJOÞi is the polar moment of inertia of subarea Ai with respect to
point O.

Before the moments or products of inertia can be summed, they must
be transferred to common axes using the parallel-axis theorems. The table in
Fig. A.4 lists the area properties of simple shapes that can be used for the
method of composite areas.
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Rectangle Circle Half parabolic complement

Ix ¼
bh3

12
Iy ¼

b3h

12
Ixy ¼ 0

Ix ¼
bh3

3
Iy ¼

b3h

3
Ixy ¼

b2h2

4

Ix ¼ Iy ¼
pR4

4
Ixy ¼ 0

Ix ¼
37bh3

2100
Ix ¼

bh3

21

Iy ¼
b3h

80
Iy ¼

b3h

5

Ixy ¼
b2h2

120
Ixy ¼

b2h2

12

Right triangle Semicircle Half parabola

Ix ¼
bh3

36
Iy ¼

b3h

36
Ixy ¼ �

b2h2

72

Ix ¼
bh3

12
Iy ¼

b3h

12
Ixy ¼

b2h2

24

Ix ¼ 0:1098R4 Ixy ¼ 0

Ix ¼ Iy ¼
pR4

8
Ixy ¼ 0 Ix ¼

8bh3

175
Ix ¼

2bh3

7

Iy ¼
19b3h

480
Iy ¼

2b3h

15

Ixy ¼
b2h2

60
Ixy ¼

b2h2

6

Isosceles triangle Quarter circle Circular sector

Ix ¼
bh3

36
Iy ¼

b3h

48
Ixy ¼ 0

Ix ¼
bh3

12
Ixy ¼ 0

Ix ¼ Iy ¼ 0:054 88R4 Ix ¼ Iy ¼
pR4

16

Ixy ¼ �0:016 47R4 Ixy ¼
pR4

8

Ix ¼
R4

8
ð2a� sin 2aÞ

Iy ¼
R4

8
ð2aþ sin 2aÞ

Ixy ¼ 0

FIG. A.4
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Triangle Quarter ellipse

Ix ¼
bh3

36
Ix ¼

bh3

12

Iy ¼
bh

36
ða2 � abþ b2Þ Iy ¼

bh

12
ða2 þ abþ b2Þ

Ixy ¼
bh2

72
ð2a� bÞ Ixy ¼

bh2

24
ð2aþ bÞ

Ix ¼ 0:054 88ab3 Ix ¼
pab3

16

Iy ¼ 0:054 88a3b Iy ¼
pa3b

16

Ixy ¼ �0:016 47a2b2 Ixy ¼
a2b2

8

FIG. A.4 (continued)
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Sample Problem A.1

The area of the region shown in the figure is 2000 mm2, and its centroid is located at
C. Given that the moment of inertia about the x-axis is Ix ¼ 40� 106 mm4, de-
termine Iu, the moment of inertia about the u-axis.

Solution
Note that we are required to transfer the moment of inertia from the x-axis to the
u-axis, neither of which is a centroidal axis. Therefore, we must first calculate Ix,
the moment of inertia about the centroidal axis that is parallel to the x-axis. Using
the parallel-axis theorem, we have Ix ¼ Ix þ Ad 2

1 , which gives

Ix ¼ Ix � Ad 2
1 ¼ ð40� 106Þ � 2000ð90Þ2 ¼ 23:80� 106 mm4

After Ix has been found, the parallel-axis theorem enables us to compute the moment
of inertia about any axis that is parallel to the centroidal axis. For Iu, we have

Iu ¼ Ix þ Ad 2
2 ¼ ð23:80� 106Þ þ 2000ð70Þ2 ¼ 33:6� 106 mm4 Answer

A common error is to use the parallel-axis theorem to transfer the moment of
inertia between two axes, neither of which is a centroidal axis. In this problem, for
example, it is tempting to write Iu ¼ Ix þ Aðd1 þ d2Þ2, which would result in an in-
correct answer for Iu.

1
Sample Problem A.2

For the plane area shown in Fig. (a), calculate the moment of inertia about (1) the
x-axis; and (2) the centroidal x-axis.

Solution

Part 1

We consider the area to be composed of the three parts shown in Figs. (b)–(d): a tri-
angle, plus a semicircle, minus a circle. The moment of inertia for each part is ob-
tained in three steps. First, we compute the moment of inertia of each part about its
own centroidal axes using the table in Fig. A.4. Each of the moments of inertia is
then transferred to the x-axis using the parallel-axis theorem. Finally, we obtain the
moment of inertia of the composite area by combining the moments of inertia of the
parts.
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Triangle

A ¼ bh

2
¼ 90ð100Þ

2
¼ 4500 mm2

Ix ¼
bh3

36
¼ 90ð100Þ3

36
¼ 2:500� 106 mm4

Ix ¼ Ix þ Ay2 ¼ ð2:500� 106Þ þ 4500ð66:67Þ2 ¼ 22:50� 106 mm4

Semicircle

A ¼ pR2

2
¼ pð45Þ2

2
¼ 3181 mm2

Ix ¼ 0:1098R4 ¼ 0:1098ð45Þ4 ¼ 0:4503� 106 mm4

Ix ¼ Ix þ Ay2 ¼ ð0:4503� 106Þ þ 3181ð119:1Þ2 ¼ 45:57� 106 mm4

Circle (to be removed)

A ¼ pR2 ¼ pð20Þ2 ¼ 1257 mm2

Ix ¼
pR4

4
¼ pð20Þ4

4
¼ 0:1257� 106 mm4

Ix ¼ Ix þ Ay2 ¼ ð0:1257� 106Þ þ 1257ð100Þ2 ¼ 12:70� 106 mm4

Composite Area

A ¼ SAi ¼ 4500þ 3181� 1257 ¼ 6424 mm2

Ix ¼ SðIxÞi ¼ ð22:50þ 45:57� 12:70Þ � 106 ¼ 55:37� 106 mm4 Answer

Part 2

Before we can transfer the moment of inertia computed in Part 1 to the centroidal
x-axis, we must find y, the y-coordinate of the centroid of the composite area. Com-
bining Eqs. (A.2) and (A.3a), we get

y ¼ Qx

A
¼
P

Aiyi

A
¼ 4500ð66:7Þ þ 3181ð119:1Þ � 1257ð100Þ

6424
¼ 86:13 mm

From the parallel-axis theorem, the moment of inertia about the centroidal x-axis is

Ix ¼ Ix � Ay2 ¼ ð55:37� 106Þ � 6424ð86:13Þ2 ¼ 7:71� 106 mm4 Answer

1
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Sample Problem A.3

Calculate the product of inertia Ixy for the area shown in Fig. (a).

Solution
We may view the area as the composite of the two rectangles shown in Fig. (b). We
can compute Ixy of each rectangle using the parallel-axis theorem for the product of
inertia, and then add the results. Noting that due to symmetry Ixy ¼ 0 for each rec-
tangle, we make the following calculations.

20-mm by 140-mm Rectangle

Ixy ¼ Ixy þ Axy ¼ 0þ ð140� 20Þð10Þð70Þ ¼ 1:960� 106 mm4

160-mm by 20-mm Rectangle

Ixy ¼ Ixy þ Axy ¼ 0þ ð160� 20Þð100Þð10Þ ¼ 3:200� 106 mm4

Composite Area

Ixy ¼ SðIxyÞi ¼ ð1:960þ 3:200Þ � 106 ¼ 5:16� 106 mm4 Answer

1
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Problems

A.1 The properties of the area shown in the figure are JC ¼ 50� 103 mm4,
Ix ¼ 600� 103 mm4, and Iy ¼ 350� 103 mm4. Calculate the area A, Ix, and Iy.

A.2 The moments of inertia of the trapezoid about the x- and u-axes are
Ix ¼ 14� 109 mm4 and Iu ¼ 38� 109 mm4, respectively. Given that h ¼ 200 mm,
determine the area A and the radius of gyration about the centroidal x-axis.

A.3 Find the distance h for which the moment of inertia of the trapezoid about the
u-axis is Iu ¼ 120� 109 mm4, given that A ¼ 90� 103 mm2 and Ix ¼ 14� 109 mm4.

A.4 Calculate y and the moment of inertia of the T-section about the centroidal
x-axis.

A.5 Find y and the moments of inertia about the centroidal x- and y-axes for the
area shown in the figure.

A.6 Calculate Ix for the shaded area given that y ¼ 68:54 mm.

A.7 Compute Iy for the shaded area given that x ¼ 25:86 mm.

A.8 Calculate Ix for the Z-section.

A.9 The section shown is formed by lacing together two C200� 27:9 channel sec-
tions. Determine the distance d for which the moments of inertia of the section about
the x- and y-axes are equal. Neglect the moment of inertia of the lattice bars that are
indicated by the dashed lines.

FIG. PA.1

FIG. PA.2, PA.3 FIG. PA.4 FIG. PA.5

FIG. PA.6, PA.7 FIG. PA.8

27.9 27.9

FIG. PA.9
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A.10 Compute the polar moment of inertia of the shaded area about point O.

A.11 Calculate the moment of inertia about the x-axis for the shaded area.

A.12 For the shaded area, (a) compute Ix; and (b) calculate Ix using the result of
part (a) and the parallel-axis theorem.

A.13 Compute Ix for the triangular area.

A.14 The shaded area consists of a circle of radius R from which a circle of radius
R=2 has been removed. For what distance d will kx for the shaded area be the same
as kx for the larger circle before the removal of the smaller circle?

A.15 The short legs of four L6� 4� 1=2 angle sections are connected to a 23 1
2 in.

by 5/16-in. web plate to form the plate and angle girder. Compute the radius of gy-
ration of the section about the centroidal x-axis.

A.16 A plate and angle column is made of four L203� 102� 12:7 angle sections
with the shorter legs connected to a web plate and two flange plates. The web plate is
350 mm by 20 mm and each flange plate is 460 mm by 60 mm. Determine the radius
of gyration about the centroidal x-axis.

FIG. PA.10 FIG. PA.11 FIG. PA.12

FIG. PA.13 FIG. PA.14

FIG. PA.15

2.7

FIG. PA.16
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A.17 Calculate Ix and Iy for the built-up column section that is composed of two
400-mm by 20-mm plates connected to two C310� 30:8 channels.

A.18 A C10� 15:3 channel is welded to the top of a W14� 34 as shown.
Determine y and the moment of inertia of the composite section about the centroidal
x-axis.

A.19 Compute the product of inertia of the area shown with respect to the
xy-axes.

A.20 Calculate the product of inertia of the area shown with respect to the
xy-axes.

A.21 Find Ixy for the area shown in the figure.

A.22 The figure shows the cross section of a standard L89� 64� 9:5 angle sec-
tion. Compute Ixy of the cross-sectional area.

A.23 Calculate Ixy for the area shown given that x ¼ 25:86 mm and y ¼ 68:54
mm.

A.24 Compute Ixy for the area shown in the figure.

30.8

FIG. PA.17 FIG. PA.18 FIG. PA.19

FIG. PA.20

FIG. PA.219.5

9.5

64
16.6

89

89

29.2

64 9.5

FIG. PA.22

30

FIG. PA.23 FIG. PA.24
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A.3 Transformation of Second Moments

of Area

a. Transformation equations for moments

and products of inertia

In general, the values of Ix, Iy, and Ixy for a plane area depend on the
location of the origin of the coordinate system and the orientation of
the xy-axes. In the previous section, we reviewed the e¤ect of translating the
coordinate axes (parallel-axis theorem). Here we investigate the changes
caused by rotating the coordinate axes.

Consider the plane area A and the two coordinate systems shown in
Fig. A.5. The coordinate systems have the same origin O, but the uv-axes are
inclined at the angle y to the xy-axes. We now derive the transformation

equations that enable us to compute Iu, Iv, and Iuv for the area in terms of Ix,
Iy, Ixy, and y. We start with the transformation equations for the position
coordinates, which can be obtained from Fig. A.5:

u ¼ y sin yþ x cos y v ¼ y cos y� x sin y (A.13)

By definition, the moment of inertia about the u-axis is Iu ¼
Ð
A

v2 dA.
Substituting v from Eq. (A.13), we get

Iu ¼
ð

A

ðy cos y� x sin yÞ2 dA

¼ cos2 y

ð
A

y2 dA� 2 sin y cos y

ð
A

xy dAþ sin2 y

ð
A

x2 dA

Because the integrals represent the second moments of the area with respect
to the xy-axes, we have

Iu ¼ Ix cos2 y� 2Ixy sin y cos yþ Iy sin2 y (A.14a)

The equations for Iv and Iuv may be derived in a similar manner; the results
are

Iv ¼ Ix sin2 yþ 2Ixy sin y cos yþ Iy cos2 y (A.14b)

Iuv ¼ ðIx � IyÞ sin y cos yþ Ixyðcos2 y� sin2 yÞ (A.14c)

The equation for Iv could also be derived by replacing y by (yþ 90�) in Eq.
(A.14a).

FIG. A.5
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Using the trigonometric identities

sin 2y ¼ 2 sin y cos y cos 2y ¼ cos2 y� sin2 y

cos2 y ¼ 1

2
ð1þ cos 2yÞ sin2 y ¼ 1

2
ð1� cos 2yÞ

we can write Eqs. (A.14) in the form

Iu ¼
Ix þ Iy

2
þ Ix � Iy

2
cos 2y� Ixy sin 2y (A.15a)

Iv ¼
Ix þ Iy

2
� Ix � Iy

2
cos 2yþ Ixy sin 2y (A.15b)

Iuv ¼
Ix � Iy

2
sin 2yþ Ixy cos 2y (A.15c)

b. Comparison with stress transformation equations

If we replace x 0 by u and y 0 by v, the transformation equations for plane
stress derived in Chapter 8 are

su ¼
sx þ sy

2
þ sx � sy

2
cos 2yþ txy sin 2y (8.5a, repeated)

sv ¼
sx þ sy

2
� sx � sy

2
cos 2y� txy sin 2y (8.5b, repeated)

tuv ¼ �
sx � sy

2
sin 2yþ txy cos 2y (8.5c, repeated)

Comparing Eqs. (8.5) with Eqs. (A.15), we see that the transformation
equations for plane stress and for second moments of area are identical if we
make the following associations:

Plane stress sx sy su sv txy tuv

Second moments of area Ix Iy Iu Iv �Ixy �Iuv

(A.16)

Therefore, we can use the plane stress equations for second moments of area
by simply switching the symbols as indicated in Eq. (A.16).

c. Principal moments of inertia and principal axes

The expression for the principal stresses derived in Sec. 8.5 is

s1

s2

�
¼ sx þ sy

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sx � sy

2

�2

þ t2
xy

s
(8.10, repeated)

Changing the symbols according to the associations in Eq. (A.16), we obtain
the expression for the principal moments of inertia:
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I1

I2

�
¼ Ix þ Iy

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ix � Iy

2

� �2

þI 2
xy

s
(A.17)

Similar modification of Eq. (8.7): tan 2y ¼ 2txy=ðsx � syÞ yields

tan 2y ¼ � 2Ixy

Ix � Iy

(A.18)

where y defines the orientation of the principal axes. As in the case of stress,
Eq. (A.18) yields two solutions for 2y that di¤er by 180�. If we denote one
solution by 2y1, the second solution is 2y2 ¼ 2y1 þ 180�. Hence, the two
principal directions di¤er by 90�.

In Chapter 8, we showed that there are no shear stresses on the prin-
cipal planes. By analogy, we conclude that the product of inertia is zero with
respect to the principal axes.

d. Mohr’s circle for second moments of area

We saw in Chapter 8 that the transformation equations for plane stress can
be represented by the Mohr’s circle shown in Fig. A.6(a). The coordinates of
each point on the circle correspond to the normal and shear stresses acting
on a specific set of perpendicular planes. Mohr’s circle also applies to second
moments of area, where the coordinates of each point represent the moment
and the product of inertia with respect to a specific set of perpendicular axes.
Because txy is associated with �Ixy, the circle for the second moments of
area is ‘‘flipped’’ about the horizontal axis, as shown in Fig. A.6(b). That is,
the point ðIx; IxyÞ is plotted above the horizontal axis if Ixy is positive. In
contrast, ðsx; txyÞ is plotted below the axis for positive txy. Otherwise, the
properties of the two circles are identical.

FIG. A.6
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Sample Problem A.4

For the area shown in Fig. (a), use the transformation equations to calculate (1) the
principal moments of inertia at the centroid C of the area and the corresponding
principal directions; and (2) the moments and products of inertia with respect to the
uv-axes.

Solution

Preliminary Calculations

We consider the area to be a composite of the two rectangles shown in Fig. (b). The
coordinates of C are obtained from

x ¼ SAixi

SAi

¼ 6000ð15Þ þ 3900ð30þ 65Þ
6000þ 3900

¼ 46:52 mm

y ¼ SAiyi

SAi

¼ 6000ð100Þ þ 3900ð15Þ
6000þ 3900

¼ 66:52 mm

The second moments of the composite area with respect to the centroidal xy-axes are

Ix ¼
X bi h

3
i

12
þ Aiðyi � yÞ2

� �

¼ 30ð200Þ3

12
þ 6000ð100� 66:52Þ2 þ 130ð30Þ3

12
þ 3900ð15� 66:52Þ2

¼ 37:37� 106 mm4

Iy ¼
X bi h

3
i

12
þ Aiðxi � xÞ2

� �

¼ 200ð30Þ3

12
þ 6000ð15� 46:52Þ2 þ 30ð130Þ3

12
þ 3900ð95� 46:52Þ2

¼ 21:07� 106 mm4

Ixy ¼
X

Aiðxi � xÞðyi � yÞ

¼ 6000ð15� 46:52Þð100� 66:52Þ þ 3900ð15� 66:52Þð95� 46:52Þ

¼ �16:073� 106 mm4
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Part 1

Substituting the values for Ix; Iy, and Ixy into Eq. (A.17) yields

I1

I2

�
¼ Ix þ Iy

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ix � Iy

2

� �2

þI 2
xy

s

¼ 37:37þ 21:07

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37:37� 21:07

2

� �2

þð�16:073Þ2
s2

4
3
5� 106

¼ ð29:22G 18:02Þ � 106 mm4

Therefore, the principal moments of inertia at the centroid are

I1 ¼ 47:2� 106 mm4 I2 ¼ 11:20� 106 mm4 Answer

For the principal directions, Eq. (A.18) yields

tan 2y ¼ � 2Ixy

Ix � Iy

¼ � 2ð�16:073Þ
37:37� 21:07

¼ 1:9722

which gives 2y ¼ 63:11� and 243:11�. To determine which of these angles corre-
sponds to I1, we substitute 2y ¼ 63:11� into Eq. (A.15a):

Iu ¼
Ix þ Iy

2
þ Ix � Iy

2
cos 2y� Ixy sin 2y

¼ 37:37þ 21:07

2

� �
þ 37:37� 21:07

2

� �
cos 63:11� � ð�16:073Þ sin 63:11�

� �
� 10�6

¼ 47:2� 10�6 mm4

Because this value equals I1, we conclude that 2y ¼ 63:11� corresponds to I1 and
2y ¼ 243:11� corresponds to I2: Therefore, the principal directions are

y1 ¼ 31:6� y2 ¼ 121:6� Answer

The principal axes, labeled 1 and 2, are shown in Fig. (c).

Part 2

To compute the moments and product of inertia relative to the uv-axes shown in Fig.
(a), we substitute y ¼ 50� into the transformation equations, Eqs. (A.15):

Iu ¼
37:37þ 21:07

2
þ 37:37� 21:07

2
cos 100� � ð�16:073Þ sin 100�

� �
� 10�6

¼ 43:6� 106 mm4 Answer

Iv ¼
37:37þ 21:07

2
� 37:37� 21:07

2
cos 100� þ ð�16:073Þ sin 100�

� �
� 10�6

¼ 14:81� 106 mm4 Answer

Iuv ¼
37:37� 21:07

2
sin 100� þ ð�16:073Þ cos 100�

� �
� 10�6

¼ 10:82� 106 mm4 Answer

1
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Sample Problem A.5

Solve Sample Problem A.4 using Mohr’s circle instead of the transformation equa-
tions.

Solution

From the solution of Sample Problem A.4, we have Ix ¼ 37:37� 106 mm4, Iy ¼
21:07� 106 mm4, and Ixy ¼ �16:073� 106 mm4. Using these values, we plot the
Mohr’s circle shown in the figure. The points on the circle that correspond to the
second moments of area about the centroidal xy-axes are labeled zx and zy , re-
spectively. Because Ixy is negative, zx is plotted below the abscissa. The parameters
of the circle, which can be obtained from geometry, are

b ¼ 37:37þ 21:07

2
� 106 ¼ 29:22� 106 mm4

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37:37� 21:07

2

� �2

þð16:073Þ2
s

� 106 ¼ 18:021� 106 mm4

Part 1

The points labeled z1 and z2 on the Mohr’s circle correspond to the principal mo-
ments of inertia. From the figure, we see that

I1 ¼ bþ R ¼ ð29:22þ 18:021Þ � 106 ¼ 47:2� 106 mm4 Answer

I2 ¼ b� R ¼ ð29:22� 18:021Þ � 106 ¼ 11:20� 106 mm4 Answer

The principal directions are found by calculating the angles y1 and y2 shown
on the circle. Using trigonometry, we get

2y1 ¼ sin�1 16:073

R
¼ sin�1 16:073

18:021
¼ 63:11�

Therefore,

y1 ¼ 31:6� y2 ¼ 31:6� þ 90� ¼ 121:6� Answer

Note that on the circle the central angle from point zx to point z1 is 2y1 in the
counterclockwise direction. Therefore, the principal direction corresponding to I1 is
y1 ¼ 31:6�, measured counterclockwise from the centroidal x-axis. (Recall that the
angles on Mohr’s circle are twice the angles between axes, measured in the same di-
rection.) This leads to the same result as shown in Fig. (c) of Sample Problem A.4.
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Part 2

The coordinates of zu and zv on the Mohr’s circle are the second moments of area
with respect to the uv-axes. Because the angle measured from the x-axis to the u-axis
is 50� counterclockwise, the angle from zx to zu is 100�, also counterclockwise. Of
course, zv is located at the opposite end of the diameter from zu . To facilitate our
computations, we have introduced the central angle 2a between z1 and zu , where
2a ¼ 100� � 2y1 ¼ 100� � 63:11� ¼ 36:89�. Referring to the circle, we find that

Iu ¼ bþ R cos 2a ¼ ð29:22þ 18:021 cos 36:89�Þ � 106

¼ 43:6� 106 mm4 Answer

Iv ¼ b� R cos 2a ¼ ð29:22� 18:021 cos 36:89�Þ � 106

¼ 14:81� 106 mm4 Answer

Iuv ¼ R sin 2a ¼ ð18:021 sin 36:89�Þ � 106

¼ 10:82� 106 mm4 Answer

Note that because zu is above the abscissa, Iuv is positive.

1
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Problems

Solve Problems A.25–A.29 using the transformation equations for moments and prod-

ucts of inertia.

A.25 The properties of the area shown in the figure are Ix ¼ 4000 in.4, Iy ¼ 1000
in.4, and Ixy ¼ �800 in.4. Determine Iu, Iv, and Iuv for y ¼ 120�:

A.26 The properties of the area shown are Ix ¼ 10� 106 mm4, Iy ¼ 20� 106

mm4, and Ixy ¼ 12� 106 mm4: Compute Iu, Iv, and Iuv for y ¼ 33:7�:

A.27 For the area shown, determine the principal moments of inertia at point O

and the corresponding principal directions.

A.28 The L89� 64� 9:5 angle section has the cross-sectional properties Ix ¼
1:07� 106 mm4, Iy ¼ 0:454� 106 mm4, and I2 ¼ 0:252� 106 mm4, where I2 is a
principal centroidal moment of inertia. Assuming Ixy is negative, use the trans-
formation equations to compute (a) I1, the other principal centroidal moment of in-
ertia; and (b) the principal directions.

A.29 Compute the principal centroidal moments of inertia and the corresponding
principal directions for the area shown in the figure.

Solve Problems A.30–A.39 using Mohr’s circle.

A.30 See Prob. A.25.

A.31 See Prob. A.26.

A.32 See Prob. A.27.

FIG. PA.25, PA.26 FIG. PA.27

9.5

9.5

64
16.6

89

89

29.2

64 9.5

FIG. PA.28 FIG. PA.29
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A.33 See Prob. A.28.

A.34 See Prob. A.29.

A.35 Find the moments and the product of inertia of the rectangle shown about
the uv-axes at the centroid C.

A.36 Calculate Iu, Iv, and Iuv for the area shown in the figure.

A.37 Determine the moments and product of inertia for the triangle about the
uv-axes.

A.38 Calculate the principal moments of inertia and the principal directions at
point O for the area shown.

A.39 The properties of the area shown in the figure are Ix ¼ 140 in.4, Iy ¼ 264
in.4, and Ixy ¼ �116 in.4. Determine Iu, Iv, and Iuv. Note that the u-axis passes
through point B.

FIG. PA.35 FIG. PA.36 FIG. PA.37

FIG. PA.38 FIG. PA.39
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Appendix B
Tables

B-1 Average Physical Properties of Common Metals
B-2 Properties of Wide-Flange Sections (W-Shapes): SI Units
B-3 Properties of I-Beam Sections (S-Shapes): SI Units
B-4 Properties of Channel Sections: SI Units
B-5 Properties of Equal and Unequal Angle Sections: SI Units
B-6 Properties of Wide-Flange Sections (W-Shapes): U.S. Customary

Units
B-7 Properties of I-Beam Sections (S-Shapes): U.S. Customary Units
B-8 Properties of Channel Sections: U.S. Customary Units
B-9 Properties of Equal and Unequal Angle Sections: U.S. Customary

Units

Acknowledgment

Data for Tables B-6 through B-9 are taken from the AISC Manual of

Steel Construction, 13th ed., 2005, American Institute of Steel Construction,
Inc.
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Answers to Even-Numbered Problems

CHAPTER 1

1.2 58.3 MPa

1.4 sbr ¼ 50 MPa (C), sal ¼ 33:3 MPa (T),

sst ¼ 100 MPa (T)

1.6 5.70 in.

1.8 24.0 kN

1.10 0.050 in.2

1.12 9220 lb

1.14 8280 psi

1.16 P ¼ 50:2 kN, x ¼ 602 mm

1.18 ACD ¼ 1476 mm2, AGD ¼ 841 mm2,

AGF ¼ 1500 mm2

1.20 ACE ¼ 2:14 in2., ABE ¼ 1:25 in2., AEF ¼ 5:36 in2.

1.22 4060 lb

1.24 s ¼ 11:91 psi, t ¼ 44:4 psi

1.26 550 kN

1.28 29.1 mm

1.30 (a) 53.1 MPa; (b) 33.3 MPa; (c) 18.18 MPa

1.32 17.46 mm

1.34 3190 lb

1.36 (a) 19.92 mm; (b) 84.3 MPa

1.38 19770 lb

1.40 b ¼ 12:25 in., t ¼ 0:510 in.

1.42 51500 lb � in.

1.44 70.8 mm

1.46 (a) 6 rivets; (b) 4 rivets

1.48 9.77 mm

1.50 58 800 lb

1.52 14.72 km

1.54 (a) 166.7 MPa; (b) 101.9 MPa; (c) 166.7 MPa

1.56 2250 lb

1.58 sBC ¼ 4000 psi (C), sBE ¼ 3110 psi (T)

CHAPTER 2

2.2 (a) 58 ksi; (b) 10:5� 106 psi; (c) 69 ksi; (d) 74 ksi;

(e) 68 ksi

2.4 (No answer)

2.6 0.354 mm

2.8 3140 N

2.10 sst ¼ 14 500 psi, scu ¼ 8500 psi, P ¼ 7020 lb

2.12 2.50 mm

2.14 4000 lb

2.16 18.0 kN

2.18 2.5 ft

2.20 1.921 mm

2.22 59:9 kN

2.24 25:5� 10�3 in.#
2.26 1:164 mm!
2.28 (No answer)

2.30 sx ¼ 63:3 MPa (T), sy ¼ 55:2 MPa (T)

2.32 PLðn2 � 1Þ=ðEAÞ
2.34 (No answer)

2.36 0.326

2.38 g ¼ 9:98� 10�3 rad, �AC ¼ 7:50� 10�3,

�BD ¼ �2:50� 10�3

2.40 �AC ¼ g=2, �BD ¼ �g=2

2.42 (No answer)

2.44 sst ¼ 24:0 ksi (C), sco ¼ 2900 psi (C)

2.46 0.365 in.

2.48 1.075 MN

2.50 16.30 MPa (C)

2.52 9970 lb

2.54 3.90 mm

2.56 25.9 MPa (T)

2.58 42.2 kips

2.60 RB ¼ 0:415 P, RD ¼ 0:585 P

2.62 sst ¼ 18:26 ksi (T), sbr ¼ 9:13 ksi (C)

2.64 136:8� 10�3 in.

2.66 PA ¼ 239 kN, PB ¼ 184:2 kN, PC ¼ 177:2 kN

2.68 PAB ¼ PAD ¼ 2:48 kN, PAC ¼ 3:01 kN

2.70 Pst ¼ 6370 lb, Pal ¼ 5130 lb

2.72 755 lb

2.74 (a) 18.0 ksi (T); (b) 95.5�F

2.76 (a) 40.6�C; (b) 60:0 MPa (C)

2.78 41.6�C

2.80 (No answer)

2.82 scu ¼ 6:71 MPa (T), sal ¼ 16:77 MPa (C)

2.84 22.7�C (decrease)

2.86 sst ¼ 20:4 ksi (C), sal ¼ 5:59 ksi (C)

2.88 sAD ¼ sCD ¼ 112:3 MPa (C), sBD ¼ 112:3 MPa (T)

2.90 sst ¼ 79:0 MPa (T), sal ¼ 45:1 MPa (T),

sbr ¼ 31:6 MPa (T)
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2.92 4680 psi (T)

2.94 (No answer)

2.96 Aal=Ast ¼ 3:87

2.98 (a) 7:12 in.2; (b) 75:7� 10�3 in.

2.100 15:16� 10�3 mm

2.102 (a) 6130 psi (T); (b) 6930 psi (T)

2.104 PC ¼ 0:923 P, PD ¼ 1; 615 P

2.106 sA ¼ 21:8 ksi (T), sC ¼ 14:55 ksi (T)

2.108 56.0�C (decrease)

CHAPTER 3

3.2 (a) 114.0 mm; (b) 41.3 MPa

3.4 (No answer)

3.6 231 N

3.8 4.00 kN �m
3.10 509 N �m
3.12 (a) tst ¼ tbr ¼ 18:11 MPa, tal ¼ 28:0 MPa; (b) 5.29�

3.14 6.34�, clockwise when viewed from D toward A

3.16 T0L=ð2GJÞ
3.18 5.11 kN �m
3.20 dst ¼ 2:06 in:; dbr ¼ 4:41 in:

3.22 tbr ¼ 23 400 psi, tal ¼ 898 psi, tst ¼ 22 500 psi

3.24 Tst ¼ Tal ¼ 251 N �m
3.26 tst ¼ 5040 psi, tbr ¼ 3780 psi

3.28 TA ¼ 4T=13;TC ¼ 6T=13

3.30 2.20 in.

3.32 (a) 4180 psi, (b) 0.616�

3.34 (a) 42.6 MPa, (b) 6.00�

3.36 (No answer)

3.38 (a) ð1:509� 10�3ÞT=t3; (b) ð1:444� 10�3ÞT=t3, 4.31%

3.40 1697 lb � ft
3.42 (a) 0.785; (b) 0.617

3.44 (a) 6730 lb � in.; (b) 2.38�

3.46 (a) 23 000 lb � in.; (b) 1.833�

3.48 (No answer)

3.50 4290 lb � in.

3.52 Bar (a): 11 630 psi, 2.76�; Bar (b): 19 230 psi, 8.81�

3.54 835

3.56 (a) 1.107 in.; (b) 23.3�

3.58 (a) 128.9 mm.; (b) 3.33 MW

3.60 71.8 hp

3.62 (a) 69.6 mm; (b) 0.448� (gear A lags gear D)

3.64 (a) (No answer); (b) No change

3.66 TC ¼ T0=4; TA ¼ 3T0=4

3.68 874 lb � in.

3.70 (a) 16.67 MPa, (b) 2.05�

CHAPTER 4

4.2 V ¼ C0=L;M ¼ �C0 þ C0X=L

4.4 V ¼ �w0xþ w0x2= 2Lð Þ;M ¼ �w0x2=2þ w0x3= 6Lð Þ
4.6 AB : V ¼ Pb= aþ bð Þ;M ¼ Pbx= aþ bð Þ;

BC : V ¼ �Pa= aþ bð Þ;M ¼ Pa½1� x= aþ bð Þ�

4.8 AB : V ¼ �120x lb;M ¼ �60x2 lb � ft;
BC : V ¼ �960 lb;M ¼ �960xþ 3840 lb � ft

4.10 AB: V ¼ �120x lb, M ¼ �60x2 lb � ft;
BC: V ¼ �120xþ 810 lb,

M ¼ �60x2 þ 810x� 2430 lb � ft
4.12 AB: V ¼ �8xþ 29 kN, M ¼ �4x2 þ 29x kN �m;

BC: V ¼ �11 kN, M ¼ �11xþ 88 kN �m
4.14 AB: V ¼ P=3, M ¼ Px=3;

BC: V ¼ �2P=3, M ¼ PðL� 2xÞ=3;

CD: V ¼ P=3, M ¼ �PðL� xÞ=3

4.16 AB: V ¼ 12 kips, M ¼ 12x kip � ft;
BC: V ¼ 0, M ¼ 48 kip � ft;
CD: V ¼ 0, M ¼ 0

4.18 AB: V ¼ �60xþ 670 lb, M ¼ �30x2 þ 670x lb � ft;
BC: V ¼ �60x� 230 lb,

M ¼ �30x2 � 230xþ 3600 lb � ft;
CD: V ¼ �60xþ 1480 lb,

M ¼ �30x2 þ 1480x� 16 920 lb � ft
4.20 AB : V ¼ 540 N;M ¼ 540x N �m;

BC : V ¼ 940� 100x2 N;M ¼ �100x3=3þ 940x

�1600=3 N �m
4.22 AB : V ¼ M0=2Rð Þ sin �;M ¼ M0=2ð Þ 1� cos �ð Þ;

BC : V ¼ M0=2Rð Þ sin �;M ¼ � M0=2ð Þ 1þ cos �ð Þ
4.24 Vmax ¼ 7000 lb;Mmax ¼ 32 000 lb � ft
4.26 Vmax ¼ �68:9 kN;Mmax ¼ �100 kN �m
4.28 Vmax ¼ �2000 lb;Mmax ¼ �16 000 lb � ft
4.30 Vmax ¼ �1320 lb;Mmax ¼ 4320 lb � ft
4.32 Vmax ¼ 240 lb;Mmax ¼ �240 lb � ft
4.34 Vmax ¼ �49 kN;Mmax ¼ 54:3 kN �m
4.36 Vmax ¼ 30 kN;Mmax ¼ �108 kN �m
4.38 Vmax ¼ 60 kN;Mmax ¼ 90 kN �m
4.40 Vmax ¼ �2100 lb;Mmax ¼ �8200 lb � ft
4.42 Vmax ¼ 2400 lb;Mmax ¼ �4000 lb � ft
4.44 Vmax ¼ �w0L=4; Mmax ¼ �w0L2=12

4.46 Vmax ¼ �86 kN;Mmax ¼ 137:5 kN �m
4.48 Vmax ¼ �8000 lb;Mmax ¼ 24 000 lb � ft
4.50 Vmax ¼ �780 lb;Mmax ¼ �1800 lb � ft
4.52 Vmax ¼ 10 kN; Mmax ¼ 18:3 kN �m
4.54 Vmax ¼ �1500 lb;Mmax ¼ 8000 lb � ft
4.56 Vmax ¼ 4100 lb;Mmax ¼ 8810 lb � ft
4.58 Vmax ¼ �2w0L;Mmax ¼ �5w0L2=6

4.60 Vmax ¼ 1300 lb;Mmax ¼ 2670 lb � ft
4.62 Vmax ¼ �1500 lb;Mmax ¼ �4500 lb � ft
4.64 Vmax ¼ �2:25 kN;Mmax ¼ �1:0 kN �m
4.66 Vmax ¼ 3:60 kN;Mmax ¼ �3:8 kN �m
4.68 Mmax ¼ 3200 lb � ft

CHAPTER 5

5.2 (a) 10.48 ksi (T); (b) 7.86 ksi (C); (c) 9.07 ksi (T)

5.4 ðsT Þmax ¼ 50:0 MPa, ðsCÞmax ¼ 100:0 MPa

5.6 (a): 2670 psi, (b): 3770 psi

5.8 (a) 10.12 ksi; (b) 5.06 ksi (C)
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5.10 1.774 kN/m

5.12 75.0 MPa ( just to the right of B)

5.14 32.5 kN

5.16 6680 lb

5.18 75.0 mm

5.20 22.0 kN/m

5.22 166.7 lb/ft

5.24 11.55 ft

5.26 (a) 4850 N/m; (b) 178:6 N/m

5.28 21.5 kN/m

5.30 3.44 kN/m

5.32 w0 ¼ 800 lb/ft, P ¼ 7200 lb

5.34 ðsT Þmax ¼ 48:0 MPa, ðsCÞmax ¼ 120:0 MPa

5.36 ðsT Þmax ¼ 21:6 ksi, ðsCÞmax ¼ 12:60 ksi

5.38 ðsT Þmax ¼ 8:35 MPa, ðsCÞmax ¼ 10:26 MPa

5.40 26.8 kN

5.42 320 lb/ft

5.44 0.707

5.46 W460� 52, 106.0 MPa

5.48 W24� 68, 19.79 ksi

5.50 W24� 68, 15.64 ksi

5.52 AB: W360 � 32.9, 148.7 MPa;

BC: W310 � 28.3, 127.8 MPa

5.54 W310� 28:3, 109.9 MPa

5.56 (No answer)

5.58 (a) 114.0 psi; (b) 78.9 psi

5.60 1.732 mm

5.62 (a) 30.52 MPa; (b) 90.2%

5.64 1482 lb

5.66 345 kPa

5.68 13.68 kN

5.70 6.37 ksi

5.72 161.9 MPa

5.74 (b) 3V=ah

5.76 833 lb/ft

5.78 4950 lb

5.80 28.7 kN

5.82 9510 lb

5.84 (b) 4010 lb

5.86 11.73 kN

5.88 144.2 mm square

5.90 (b) 6.38 kN

5.92 (a): 1.233 in., (b): 0.740 in.

5.94 237 lb

5.96 166.1 mm

5.98 (a) 4.91 in.; (b) 5880 psi

5.100 sT ¼ 3:38 MPa, sC ¼ 1:688 MPa

5.102 17.12 kips

5.104 15.50 kN

5.106 5250 psi

5.108 25.0 kips

5.110 48.1 kN

5.112 889 N/m

5.114 W610� 125, 113.8 MPa

5.116 (a) 3.28 MPa; (b) 31.8 MPa

5.118 86.6 mm

5.120 3670 lb

5.122 (a) 68.1 psi; (b) 2.29 in.

5.124 (a) 8910 N/m; (b) 95.0 mm.

CHAPTER 6

6.2 (a) EIv ¼ w0

24
ð2Lx3 � x4 � L3xÞ; (b)

5w0L4

384EI
#

6.4
M0L2

8EI
# at x ¼ L

2

6.6 For left half:
ffiffiffi
3
p

M0L2=216 " at x ¼
ffiffiffi
3
p

L=6

6.8 12.71 mm (at x ¼ 1:042 m)

6.10
3w0L4

640EI
#

6.12
Pa2ð3L� aÞ

6EI
#

6.14 (a) 16 � 103 N �m3 #; (b) 7:20� 10�6 m4

6.16 v 0 ¼ �0:01167, v ¼ 20:0 mm

6.18 26:8 kN �m3 #

6.20
61w0a4

36EI
#

6.22 619 mm

6.24 1981 lb � ft3 #
6.26 (a) EIv ¼M0

�
� x3=6Lþ hx� L=3i2=2� Lx=18

�
;

(b) 2M0L2=81 #
6.28 (a) EIv ¼ �50x3 þ 1350hx� 3i2 � 12:5hx� 6i4 þ

350hx� 9i3 � 1238 x N �m3; (b) 7090 N �m3 #
6.30 (a) EIv ¼ ð4=3Þx3 � ð2=3Þhx� 3i3 � hx� 6i3�

ð4=3Þhx� 9i3-130.5x kip�ft3; (b) 513 kip � ft3 #

6.32
Pa2

12EI
ð4a� 3bÞ #

6.34 (a) 54.0 kN �m3 #; (b) 54.8 kN �m3 #
6.36 176.5 lb

6.38 3570 kip � ft3 #
6.40 29.4 N �m3 #

6.42 0:0630
w0L4

EI
#

6.44 1.397 in.

6.46 251 kip � ft3 "
6.48 0.0998 in. #
6.50 (a) w0L=10; (b) w0L3=120 g

6.52 853 lb � ft3 #

6.54

ffiffiffi
3
p

M0L2

216EI
"

6.56 ð16:00� 10�3Þ M0 L2 #
6.58 64 000 lb � ft3 #
6.60 62.0 mm #
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6.62 1440 lb � ft3 #
6.64 428 N �m3 #

6.66
M0L2

128EI0
"

6.68 EIdB ¼ 1330 lb � ft3 #, EIdC ¼ 1716 lb � ft3 #
6.70 55.5 mm #
6.72 4390 N �m3 #
6.74 5.45 kips

6.76 135.4 mm

6.78 236 lb

6.80 1438 kip � ft3 #
6.82 8:91 mm, 0:557�

6.84 21:2� 103 kN �m3 #
6.86 49.0 kN�m3 #
6.88 1.070 in., 0.319�

6.90 M0 ¼ PL=8

6.92
M0a

2EI
ð2bþ aÞ #

6.94
5w0a4

8EI0
#

6.96 EIv ¼ w0x

24
ð�x3 þ 4Lx2 � 8L3Þ

6.98 EIv ¼ w0x

360L
ð�3x4 � 15Lx3 þ 40L2x2 � 22L4Þ

6.100 EIvAB ¼
w0x

24
ð�x3 þ 4ax2 � 20a3Þ,

EIvBC ¼
w0a2

24
ð6x2 � 24axþ a2Þ

6.102 3240 lb � ft3 "
6.104 41w0L4=384 #

6.106
w0b3

24
ð3bþ 4aÞ #

6.108 15.40 kip � ft3 #

6.110 2.19 in.

CHAPTER 7

7.2 w0 L=10

7.4 (a) RA ¼ RB ¼ P=2, MA ¼MB ¼ PL=8

7.6 (a) RA ¼ RB ¼ w0L=2, MA ¼MB ¼ w0L2=12

7.8 RA ¼ 3w0L=20, RB ¼ 7w0L=20, MA ¼ w0L2=30,

MB ¼ w0L2=20

7.10 (a) RA ¼ RB ¼ P, MA ¼MB ¼ 2Pa=3;

(b) 5Pa3=ð24EIÞ #
7.12 RA ¼ RB ¼ 34:6 kN, MA ¼ 14:40 kN �m,

MB ¼ 38:4 kN �m
7.14 RA ¼ 17:78 kN, RB ¼ 6:22 kN, MA ¼ 21:3 kN �m,

MB ¼ 10:65 kN �m
7.16 RA ¼ 334 lb, RB ¼ 823 lb, RC ¼ 283 lb,

MA ¼ 309 lb � ft

7.18 RA ¼ 84:8 kN, RB ¼ 115:2 kN, MB ¼ 60:9 kN �m
7.20 945 lb

7.22 RA ¼ P, MA ¼ 3PL=8, MB ¼ PL=8

7.24 RA ¼ 42 lb, RB ¼ 1250 lb, RC ¼ 708 lb

7.26 (a) MA ¼MB ¼
w0a2

6L
ð3L� 2aÞ; (b)

w0a3

24
ðL� aÞ #

7.28 12.88 kN

7.30 308 lb

7.32 RA ¼12.19 kips "; RB ¼ 20:6 kips ";RC ¼ 2:82 kips #
7.34 RA ¼ 84:8 kN, RB ¼ 115:2 kN, MB ¼ 60:9 kN �m
7.36 RA ¼ P, MA ¼ 3PL=8, MB ¼ PL=8

7.38 RB ¼2.57 kN "; RC ¼ 3:43 kN #
7.40 MA ¼ 1485 lb�ft, MC ¼ 2480 lb�ft
7.42 0.478 N

7.44 RA ¼ RD ¼ 2w0L=5, RB ¼ RC ¼ 11w0L=10

7.46 w0L2=6

7.48 RA ¼593 N #; RB ¼ 5630 N "
7.50 RB ¼ 1500 lb ", RC ¼ 1500 lb #, MC ¼ 2000 lb � ft
7.52 RA ¼ RC ¼ P 1þ 3b=2að Þ ", RB ¼ 3Pb=a #

7.54
7w0L4

1152EI

7.56 (No answer)

CHAPTER 8

8.2 125.0 psi

8.4 17.78 in.

8.6 4.44 m

8.8 (a) 75.0 psi; (b) 21.8 ft3

8.10 (a) 17 bolts; (b) 75.3 MPa

8.12 0.0450 mm

8.14 11:66 mm

8.16 162.5 N

8.18 sA ¼ 18:89 MPa (T), sB ¼ 14:44 MPa (C)

8.20 244 kips, larger (263 kips) with no plate

8.22 smax ¼ 2:66 MPa, smin ¼ �17:70 MPa

8.24 sA ¼ 10:08 MPa (C), sB ¼ 55:9 MPa (T)

8.26 63.3 MPa

8.28 457 kN

8.30 s ¼ �35 MPa, t ¼ 43:3 MPa

8.32 s ¼ 4:26 ksi, t ¼ 10:01 ksi

8.34 sx 0 ¼ �6:93 ksi, sy 0 ¼ 6:93 ksi, tx 0y 0 ¼ 4:0 ksi

8.36 sx 0 ¼ �16:66 ksi, sy 0 ¼ 0:66 ksi, tx 0y 0 ¼ 5:0 ksi

8.38 s1 ¼ 72:4 MPa, s2 ¼ �12:4 MPa, y1 ¼ 67:5�

8.40 s1 ¼ 18 ksi, sy ¼ �6 ksi, y1 ¼ 45�

8.42 tmax ¼ 11:18 ksi, y ¼ �13:28�

8.44 tmax ¼ 31:6 MPa, y1 ¼ �9:22�

8.46 R ¼ 14:14 ksi, s ¼ 0

8.48 R ¼ 0, s ¼ �p

8.50 sx 0 ¼ �6:93 ksi, sy 0 ¼ 6:93 ksi, tx 0y 0 ¼ 4:0 ksi

8.52 sx 0 ¼ �16:66 ksi, sy 0 ¼ 0:66 ksi, tx 0y 0 ¼ 5:0 ksi

8.54 sx 0 ¼ �0:33 ksi; sy 0 ¼ 4:33 ksi, tx 0y 0 ¼ 5:88 ksi
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8.56 sx 0 ¼ �81:8 MPa, sy 0 ¼ 31:8 MPa,

tx 0y 0 ¼ 61:7 MPa

8.58 (a) s1 ¼ 6:49 ksi, s2 ¼ �10:49 ksi, y1 ¼ 22:5�;

(b) tmax ¼ 8:49 ksi

8.60 (a) s1 ¼ �4:79 ksi, s2 ¼ �19:21 ksi, y2 ¼ 73:2�;

(b) tmax ¼ 7:21 ksi

8.62 (a) sx ¼ 3:46 ksi, sy ¼ �3:46 ksi, txy ¼ 5 ksi;

(b) s1 ¼ 6:08 ksi, s2 ¼ �6:80 ksi, y1 ¼ 27:6�

8.64 s1 ¼ 38:3 MPa, s2 ¼ �18:3 MPa, y1 ¼ 22:5�

8.66 �20ksi

8.68 (a) 20 MPa; (b) 40 MPa

8.70 (a) 54.1 MPa; (b) 54.1 MPa

8.72 (a) 29.2 MPa; (b) 42.1 MPa

8.74 10 MPa

8.76 17.5 ksi

8.78 sx 0 ¼ 16:53 MPa , tx 0y 0 ¼ 19:70 MPa

8.80 jsjmax ¼ 78:6 MPa, tmax ¼ 40:4 MPa

8.82 jsjmax ¼ 8830 psi, tmax ¼ 4660 psi

8.84 91.3 mm

8.86 5070 N �m
8.88 32.1 mm

8.90 At A : 8:97 MPa; At B : 8:06 MPa

8.92 40 in. (inner diameter)

8.94 smax ¼ 2280 psi, tmax ¼ 1223 psi

8.96 20.8 kPa

8.98 46 mm

8.100 2.64 in.

8.102 s ¼ 2:98 MPa, t ¼ 11:51 MPa

8.104 s1 ¼ 29:1 MPa, s2 ¼ �1:24 MPa, y1 ¼ 11:7�

8.106 3000 psi

8.108 (No answer)

8.110 s1 ¼ 46:3 MPa, s2 ¼ �114:8 MPa

8.112 s ¼ �17720 psi, t ¼ 9120 psi

8.114 (No answer)

8.116 �b ¼ ð�a þ �cÞ=2

8.118 s1 ¼ 2110 psi, s2 ¼ �5830 psi, tmax ¼ 3970 psi

8.120 s1 ¼ 120:6 MPa, s2 ¼ �6:3 MPa, y1 ¼ 38:0�

8.122 r=4

8.124 8:66 ksi

8.126 sx ¼ �27:5 MPa, sy ¼ 57:5 MPa, txy ¼ 56:3 MPa

8.128 (a) sx ¼ �72:0 MPa, sy ¼ 32:0 MPa; (b) y1 ¼ 75�

8.130 �2 ¼ 60� 10�6, jgxyj ¼ 480� 10�6

8.132 1239 N �m
8.134 22.8 kN �m
8.136 Point A : s1 ¼ 105:0 MPa, s2 ¼ �1:029 MPa;

Point B : s1 ¼ 14:90 MPa, s2 ¼ �14:90 MPa

8.138 1.144 in.

CHAPTER 9

9.2 7.87 kN �m
9.4 3640 lb

9.6 swd ¼ 1100 psi, sst ¼ 10530 psi

9.8 62.8 mm

9.10 79.1 kN �m
9.12 svi ¼ 8:51 MPa, sal ¼ 212 MPa

9.14 6440 lb

9.16 74.7 MPa

9.18 Wood/steel: 0:0431V psi, wood/aluminum:

0:0414V psi

9.20 0.311 in.

9.22 (a) 1.211�106 lb � in.;

(b) 3360 psi

9.24 sst ¼ 73:3 MPa, sco ¼ 3:39 MPa

9.26 78.4 kN �m
9.28 sst ¼ 16 230 psi, Ast ¼ 3:80 in.2

9.30 269 kN �m
9.32 29.9 kN �m
9.34 sco ¼ 845 psi, ðsstÞT ¼ 13 020 psi, ðsstÞC ¼ 3930 psi

9.36 5.69�106 lb � in.

9.38 b = 9.75 in., d = 19.50 in., A = 2.11 in.2

9.40 b ¼ 397mm; Ast = 3.15 � 103 mm2

CHAPTER 10

10.2 3.52 in.

10.4 36.2 mm

10.6 (a) 9.88 m; (b) 739 kN

10.8 W250� 67

10.10 1.407 in.

10.12 3.97 m

10.14 67.8�F

10.16 (a) 100:8; (b) 174:6

10.18 (a) 0:1438 in.; (b) 0:470 in.

10.20 859 kN

10.22 5.91 m

10.24 7.14 in.

10.26 197.0 kips

10.28 W12� 79

10.30 (a) 22 in.; (b) 39 in.

10.32 (a) 18.54 ksi; (b) 2.01

10.34 ðsCÞmax ¼ 28:6 MPa, ðsT Þmax ¼ 28:6 MPa

10.36 7.62 in.

10.38 (a) 113.3 MPa; (b) 2.05

10.40 W18� 76

10.42 5.84 kips (bending about z-axis)

10.44 45.5 kN (tension governs)

10.46 0.428 in.

CHAPTER 11

11.2 qmax ¼ V=ðprÞ
11.4 qmax ¼ 3V=ð2

ffiffiffi
2
p

bÞ
11.6 (a) qmax ¼ 2V=ðprÞ; (b) r
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11.8 (a) qmax ¼ 17:43 N/mm; (b) 44.7 mm

11.10 0:273 r to the left of B

11.12 1:048 in. to the left of B

11.14 1:125 in. to the left of B

11.16 0.375b to the left of B

11.18 1.778 in. to the left of B

11.20 (a) 74.4�; (b) 1:178 ksi

11.22 47.1 kips

11.24 (a) 73.95�; (b) 2:41 kips

11.26 1406 psi (C)

11.28 (a) ðy¼ 0, z¼ 66:7 mmÞ and ðy¼�75:0 mm,

z¼ 0Þ; (b) ðstÞmax¼ 0:500 MPa, ðscÞmax¼ 3:00 MPa

11.30 26:6�

11.32 72.9 MPa

11.34 46.2 kN

11.36 1.540 in.

11.38 ðstÞmax ¼ 84:0 MPa, ðscÞmax ¼ 98:2 MPa

11.40 ðstÞmax ¼ 4:03 ksi, ðscÞmax ¼ 3:52 ksi

CHAPTER 12

12.2 dV ¼ 0:0764 in. #, dH ¼ 0:0206 in.!
12.4 5:83 WL=ðEAÞ #
12.6 7PL2=ð24 EIÞ h

12.8 Pb2=ðEIÞ g

12.10
p

2
T0R

1

EI
þ 1

GJ

� �

12.12 dH ¼
Pba2

2EI
!, dV ¼

Pb2ð3aþ bÞ
3EI

#

12.14 dC ¼
2PR3

EI
 , dB ¼

PR3

EI

p

4
þ 1

� �
#

12.16
Wb

EA

ffiffiffi
2
p
þ 3

2

� �
#

12.18 1.128 W

12.20 PAB ¼ PAD ¼ 1046 lb (T), PAC ¼ 1259 lb (T)

12.22 150.4 lb

12.24 At A: 349 N , 1000 N #; at D: 451 N , 1000 N "
12.26 0.547 in.

12.28 16 490 psi

12.30 0.491 in.

12.32 smax ¼ 20600 psi, dmax ¼ 0:307 in.

12.34 2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mE=3AL

p
12.36 Unsafe

12.38 1875 psi

12.40 (a) 114:3 MPa; (b) 131:5 MPa

12.42 (a) 84.9 ksi; (b) 73.5 ksi

12.44 (a) 63.6 lb; (b) 68.9 lb

12.46 4.28 MN

12.48 1.397

12.50 4.74 kN �m

12.52 5280 lb � ft
12.54 2.69

12.56 (a) 3:02
P

Db
; (b) 3:14

P

Db
; (c) 3:73

P

Db

12.58 111.7 MPa

12.60 32.2 ksi

12.62 14.08 ksi

12.64 23 100 psi

CHAPTER 13

13.2 1.169

13.4 (a) 1.698; (b) 1.273

13.6 1.108

13.8 1.398

13.10 (a) 11.93 kip � ft; (b) 23.9 kip � ft
13.12 540 kip � in.

13.14 Pst ¼ 121:8 kN (T), Pal ¼ 60:9 kN (C)

13.16 sal ¼ 7:40 ksi (T), sst ¼ 5:56 ksi (T)

13.18 tjr¼r ¼ 7typ=24, tjr¼r=2 ¼ �17typ=48

13.20 104.3�

13.22 15:1 MPa

13.24 sjy¼2:5 in: ¼ �10:47 ksi, sjy¼1:5 in: ¼ 9:72 ksi

13.26 94.4�

13.28 (a) 8.06 kN �m; (b) 1:285

13.30 9.16 kN �m
13.32 ML ð2aþ bÞ=ðabÞ
13.34 39:4 kips

13.36 241 kN

13.38 24 ML=L2

13.40 11:66 ML=L2

13.42 5ML=ð2aÞ

APPENDIX A

A.2 A ¼ 150� 103 mm2, kx ¼ 57:7 mm

A.4 y ¼ 3:50 in., Ix ¼ 291 in.4

A.6 12:96� 106 mm4

A.8 42:1 in.4

A.10 17:31� 106 mm4

A.12 (a) 616� 103 mm4; (b) 576� 103 mm4

A.14 0:433R

A.16 kx ¼ 194:2 mm

A.18 y ¼ 9:04 in., Ix ¼ 477 in.4

A.20 3:07R4

A.22 �408� 103 mm4

A.24 792 in.4

A.26 Iu ¼ 2:00� 106 mm4, Iv ¼ 28:0� 106 mm4,

Iuv ¼ 0

A.28 (a) 1:272� 106 mm4; (b) y1 ¼ 26:4�, y2 ¼ 116:4�

A.30 Iu ¼ 1057 in.4, Iv ¼ 3943 in.4, Iuv ¼ �899 in.4
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A.32 I1 ¼ 59:04� 106 mm4, I2 ¼ 5:88� 106 mm4,

y1 ¼ �32:4�, y2 ¼ 57:6�

A.34 I1 ¼ 143:6� 106 mm4, I2 ¼ 19:8� 106 mm4,

y1 ¼ 41:4�, y2 ¼ 131:4�

A.36 Iu ¼ Iv ¼ 16:95 in.4, Iuv ¼ 0

A.38 I1 ¼ 913 in.4, I2 ¼ 132:1 in.4, y1 ¼ �27:5�,

y2 ¼ 62:5�
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Index

A
Absolute maximum shear stress, 314–316
Allowable stress. see Working stress
American Concrete Institute (ACI), 361
American Institute of Steel Construction (AISC), 381
Angle of twist

in circular bars, 77–78
in rectangular bars, 100
in thin-walled tubes, 93–94
per unit length, 77

Area method, 122–126
concentrated forces and couples, 124–126
distributed loading, 122–124

Axial force
defined, 2
diagrams, 9

Axial loading combined with lateral loading, 284–285
Axially loaded bars

centroidal loading in, 4–5
Saint Venant’s principle for, 5
strain, 32–33
strain energy in, 426–427
stresses on inclined planes for, 6–7

B
Beams

defined, 107
deflection of. see Deflection of beams
design

fasteners in built-up beams, 184–185
for flexure and shear, 177

shear and bending moment. see Shear and bending
moment, beams

stresses. see Stresses, beams
types of, 108–109

Beams, composite. see Composite beams
Beams, curved. see Curved beams
Beams, statically indeterminate. see Statically indeterminate

beams
Beams, thin-walled. see Thin-walled beams
Bearing stress, defined, 19
Bending moment. see Shear and bending moment, beams
Bending moment diagrams

area method, 122–126
by parts, 222–225

Bending stress. see also Unsymmetrical bending

assumptions in analysis of, 140–141
economic sections

procedure for selecting, 160
standard structural shapes and, 159–160

flexure formula, 140–145
section modulus, 143–144
units in, 145

limit analysis and, 479
maximum bending stress

symmetric cross sections, 144–145
unsymmetric cross sections, 145

residual stresses and, 472–473
strain energy and, 427

Biaxial loading, 47–49
Biaxial state of stress. see also state of stress

Hooke’s Law for, 47
Bracket functions. see Macaulay bracket functions
Brittle materials,

maximum normal stress theory of failure, 445
Mohr’s theory of failure, 445–446
stress concentrations, 452–453

Buckling load. see Critical load
Built-up (fabricated) beams, fasteners, 184–185

C
Cantilever beams, 108
Cantilever columns, critical load, 374–375
Castigliano’s theorem, deflections by, 428–429
Centroids of areas, 487–488
Centroidal (axial) loading. see Axially loaded bars
Channel sections

properties, in SI units, 519
properties, in U.S. Customary units, 534

Circular shafts, 76–85
assumptions in analysis of, 76
equilibrium of, 77–78
power transmission, 79–80
statically indeterminate problems, 80
torsion formulas for, 78–79

Circumferential stress (hoop stress), 278–279
Coe‰cient of thermal expansion, 63, 510–511
Collapse mechanism, 479
Columns, 371–396

critical load, 372–376
defined, 372–373
discussion of, 375–376 547
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Columns (continued)
Euler’s formula, 373–375

defined, 371
intermediate columns

AISC specifications, 381–383
design strength for, 383
nominal buckling stress, 381–382
slender columns, 381
tangent modulus theory, 380–381

resistance factor, 383
secant formula for eccentric loading, 387–391

application of, 389–391
derivation, 388–389

types of, 371–372
Compatibility equations

static indeterminacy and, 54
thermal stresses and, 64

Complementary planes and stresses, 7
Composite areas, method of, 491–493
Composite beams, 349–369

deflection of, 356
flexure formula for, 350–351
reinforced concrete, 359–363
shear stress in, 355–356

Concentrated loads on beams, 108, 124–126
Concrete beams, reinforced, 359–363

elastic analysis, 360–361
ultimate moment analysis, 361–363

Constraints, support reactions and, 250
Continuous beams, 108–109
Coordinate transformation, 410
Critical load

defined, 372–373
discussion of, 375–376
Euler’s formula, 373–375

Critical stress
for columns, 375–376, 380
vs. slenderness ratio, 381

Cross sections
least radius of gyration of, 375
neutral axis of, 140–141
principal axes of inertia, 501–502
shear center of, 398–400
standard structural shapes, 158–160

Curved beams, 415–419
formula for, 418–419

Cylindrical thin-walled pressure vessels, 278–279

D
Dead loads, 36
Deflection, dynamic, 438
Deflection formulas

cantilever beams, 236
simply supported beams, 237

Deflection of beams, 195–247

Castigliano’s theorem for, 428–429
composite beams, 356
double-integration method for, 196–199

di¤erential equation of elastic curve, 196–198
procedure, 199
using bracket functions, 209–212

method of superposition for, 235–237
moment-area method for, 196, 219–226

bending moment diagrams by parts, 222–225
theorems, 220–222

Degree of indeterminacy, 249
Design

axial loading, 36–37
beams

fasteners, 184–186
for flexure and shear, 177–180
reinforced concrete, 359–363

intermediate columns
AISC specifications, 381–383
formulas for, 380–383
tangent modulus theory, 380–381

Di¤erential equation of elastic curve, 196–199
Di¤erential equations of equilibrium for

beams, 122–126
Direct shear, 18–19
Discontinuity functions, 196, 209–216. See also Macaulay

bracket functions
Displacement, as magnitude of deflection, 199
Distortion strain energy, 446–447
Distributed loading on beams, 108, 122–124
Double-integration method, 196–206, 250–254

di¤erential equation of elastic curve by, 196–199
procedure for, 199
using bracket functions, 209–216, 256–258

Double shear, 18
Ductile materials

impact resistance of, 440
stress concentration, 452–453
yield criteria:

maximum distortion energy theory, 446–447
maximum shear stress theory, 446

Ductility, as mechanical property, 34
Dynamic deflection, 438
Dynamic loading, 437–440

assumptions in analysis of, 437
elastic bodies, 439
impact factor, 438–439
mass-spring model, 438–439
modulus of resilience, modulus of

toughness, 439–440

E
Eccentric load. see Secant formula for

eccentric loading
Eccentricity ratio, 389
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Elastic curve, of beams
defined, 196
di¤erential equation of, 196–198

Elastic limit, 35
Elastic-perfectly plastic material, 464–468, 471–474
Elastic spring-back, 473–474
Elastic unloading, 471–474
Elasticity, modulus of. see Modulus of elasticity
Electrical-resistance strain gages, 338–340
Elongation

axially loaded bars, 32–37
per unit length (normal strain), 32

Endurance limit, S-N diagrams, 459
Energy methods, 426–429

Castigliano’s theorem, 428–429
work and strain energy, 426–427

Engineering mechanics, 1
Equal and unequal angle sections

properties, in SI units, 520–523
properties, in U.S. Customary units, 535–538

Equation of the elastic curve, 198–199
Euler, Leonhard, 373
Euler angle, 389
Euler’s formula, 373–375

F
Fabricated (built-up) beams, 184–185
Factor of safety, see Safety, factor of
Failure criteria, see Theories of failure
Fasteners, designing, 184–185
Fatigue limit, S-N diagrams, 458–459
Fatigue tests, 458
Fatigue under repeated loading, 458–460
First Moment-Area Theorem, 220–221
First moments of area

defined, 487
locating centroid of area, 487–488

Fixed beams, 108–109
Flange of a beam, defined, 158
Flexural rigidity of beams, 197
Flexure formula. See also Bending stress

assumptions, 140–141
composite beams, 349–353
curved beams, 415–419
derived, 140–145
section modulus, 143–144
unsymmetrical bending, 408–410

Force, axial. see Axial force
Force, shear. see Shear force
Forces

bearing force, 19
calculating work done by, 426
concentrated on beams, 124–126
external, 2–4
internal, 2–4
normal, 3

Fracture mechanics, 459
Free-body diagrams

determining internal forces with, 2
Fully plastic state, 464–465

G
Gage length, 33–34, 338
General (three-dimensional) state of stress, 316
Generalized Hooke’s Law, 47–48
Global bending moment equations, 211–212
Gyration, radius of, 375, 491

H
Hooke’s Law

axial loading, 34–35
biaxial loading, 47–48
generalized, 47–48
proportional limit and, 34–37
shear loading, 48, 50–51
torsion of circular shafts, 77
triaxial loading, 48
uniaxial loading, 47

Hoop stress (circumferential stress), 278–279
Horizontal shear stress, 165–167
Huber-Hencky-von Mises yield criterion, 446

I
I-beams. see also S-shapes, 159–160

properties of, in SI units, 518
properties of, in U.S. Customary units, 532–533

Impact factor, 438–439
Inclination of the neutral axis, 409–410
Indeterminancy, degree of, 249, 260
Induced shear, 18
Inelastic action, 463–486

limit analysis, 477–479
axial loading, 477–478
bending, 479
torsion, 478–479

limit moment, 466–468
limit torque, 464–465
residual stresses, 471–474

bending, 472–473
elastic spring-back, 473–474
loading-unloading cycle, 471
torsion, 471–472

Intermediate columns
AISC specifications, 381–383
defined, 372
design formulas for, 380–383
tangent modulus theory for, 380–381

Internal couples, 3
Internal forces

components of, 2–4
using equilibrium analysis in

computation of, 2
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L
Lateral bucking, 159
Lateral and axial loading, 284–289
Least radius of gyration, 375
Limit analysis, 464, 477–479

axial loading, 477–478
bending, 479
torsion, 478–479

Limit load, 464
Limit moment, 466–468
Limit torque, 464–465

limit analysis and, 478–479
residual stresses and, 471–472

Line loads, 108
Load, axial. see Axial (centroidal) loading
Load, critical. see Critical load
Load, eccentric. see Secant formula for

eccentric loading
Load, limit. see Limit load
Load and Resistance Factor Design (LRFD), 381
Loading-unloading cycle, 471
Loads

combined. see Stresses, combined loads
concentrated vs. distributed, 108
relationship to shear force and bending

moment, 123–124
Long columns, 371–372

compared with intermediate columns, 380
critical stress for, 376

Longitudinal stress in cylindrical pressure
vessels, 278–279

M
Macaulay bracket functions, 209–212

definition of, 211
integration of, 209, 212

Mass-spring model, dynamic loading, 438–439
Maximum distortion energy theory, 446–447
Maximum in-plane shear stress, 298–300

compared with absolute maximum
shear stress, 314

computing, 299–300
Maximum normal stress theory of yielding, 445
Maximum shear stress theory of yielding, 446
Mechanical properties in tension, 33–35
Median line, thin-walled tubes, 93
Metals, properties of, 510–511
Method of composite area, 491–493
Method of double integration. see Double-integration

method
Method of superposition, 235–237, 266

deflection formulas for, 236–237
principle of superposition and, 235
statically indeterminate beams, 266

Middle surface, thin-walled tubes, 92–93
Modulus of elasticity, 34

Hooke’s Law and, 34
for metals, 510–511
relationship to shear modulus, 342–343

Modulus of resilience, 439–440
Modulus of rigidity. see Shear modulus
Modulus of toughness, 439–440
Mohr’s circle

plane stress, 305–308
construction of, 306
properties of, 307–308
verification of, 308

second moments of area, 502
strain, 333–334

Mohr’s theory of failure, 445–446
Moment-area method, 196, 219–226

bending moment diagrams by parts for, 222–225
cantilever beams, 225
simply supported beams, 225–226
statically indeterminate beams, 260
theorems, 220–222

Moment-curvature relationship, 143, 197
Moments of inertia. see Second moments of area
Multiaxial loading

biaxial loading, 47–48
triaxial loading, 48

N
Necking, 35
Neutral axis, 140–141

inclination of, 409–410
symmetric cross sections, 144–145

Neutral surface, 140–141
Nominal strain, 34
Nominal stress, 34
Nomslende sections, 381
Normal force, 3
Normal strain, 32–33

transformation equations for, 332–333
Normal stress

concentrated loading and, 4–5
definition of, 3
Saint Venant’s principle, 5–6
stress concentrations for, 452–455

Notch sensitivity, 460

O
Octahedral shear theory, 446
O¤set method for yield point, 35
Outward normal of a plane, defined, 294
Overhanging beams, 108
Over-reinforced concrete beams, 362

P
Parallel-axis theorems

second moments of area, 489–493
polar moment of inertia, 488–489
products of inertia, 490
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Perfectly plastic material. see Elastic-perfectly
plastic material

Permanent set
elastic limit and, 35
residual stresses and, 471

Plane areas
first moments, 487–488
second moments, 488–493

method of composite areas, 491–493
moments and product of inertia, 488–489
parallel-axis theorems, 489–491
radius of gyration, 491

transformation of second moments
compared with stress transformation, 501
Mohr’s circle, 502
moments and products of inertia, 500–501
principal moments of inertia and principal

axes, 501–502
Plane stress. see State of Stress (plane stress)
Planes, complementary, 7
Plastic hinges, 467, 479
Poisson’s ratio, 47
Polar moment of inertia

parallel-axis theorems for, 490–491
torsion of circular shafts and, 77–78

Power transmission, circular shafts, 79–80
Principal axes of inertia, 501–502
Principal directions for stress, 296–297
Principal moments of inertia, 501–502
Principal planes for stress, 296–297
Principal stresses, 296–297
Principle of superposition, 235
Products of inertia for area

defined, 488
parallel-axis theorem for, 490
transformation equation for, 500–501

Properties
channel sections

in SI units, 519
in U.S. Customary units, 534

equal and unequal angle sections
in SI units, 520–523
in U.S. Customary units, 535–538

I-beams (S shapes)
in SI units, 518
in U.S. Customary units, 532–533

metals, 510–511
W-shapes (wide flange sections)

in SI units, 512–517
in U.S. Customary units, 524–531

Proportional limit
Hooke’s Law and, 34–35
metals, 510–511

Propped cantilever beam, 108–109
Propped cantilever columns, 374–375

R
Radius of gyration, 491
Radius, of thin-walled pressure vessels, 280
Rankine, W., 445
Rectangular bars

stress concentration factors for, 453–455
torsion of, 99–101

Rectangular cross sections, shear stress, 168–169, 399
Redundant reactions, 250–251, 429
Reference planes for stress, 293–295
Reinforced concrete beams. See also Composite beams

elastic analysis of, 360–361
ultimate moment analysis of, 361–363

Residual stresses, 471–475
bending, 472–473
defined, 471
elastic spring-back, 473–474
loading-unloading cycle and, 471
torsion, 471–472

Resilience, modulus of, 439–440
Rigidity, modulus of, see Shear modulus
Rivets

bearing stress in, 19
shear stress in, 19

Roller supports, 108
Rupture stress, 35

S
S-N diagrams, 458–459
S-shape beams. see also I-beams, 159–160
Safety, factor of

for columns, 376
secant formula and, 391
working stress and, 36

Saint Venant’s principle, 5–6
Secant formula for eccentric loading, 387–391
Second Moment-Area Theorem, 221–222
Second moments of area

definitions, 488–489
method of composite areas, 491–493
moments and product of inertia, definitions, 488–489
parallel-axis theorems for, 489–491
radius of gyration of an area, 491

Section modulus, 143–150
Shafts, circular. see Circular shafts
Shear, deformation and,3, 331
Shear and bending moment in beams, 109–110, 122–126

area method, 122–126
concentrated forces and couples, 124–126
distributed loading, 122–124
procedure, 126

equations and diagrams
procedures for determining, 110
sign conventions, 109–110

supports and loads, 108–109
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Shear center, 397–404
Shear flow

in thin-walled beams, 398–400
in thin-walled tubes, 92–93

Shear flow diagrams, 399–400
Shear force

defined, 3
diagrams, 109–119
relationship to load and bending moment, 122–126

Shear modulus, 48
relationship to modulus of elasticity, 342–343

Shear strain
defined, 48
relationship to shear stress, 48
torsion of circular shafts and, 77
torsion of rectangular bars, 99
transformation equations for, 333

Shear stress
absolute maximum shear stress, 314–316
composite beams and, 355–356
direct shear, 18
horizontal shear stress, 165–167
inclined planes, 6–7
maximum in-plane shear stress, 298–300
procedure for analysis in beams, 169
rectangular bars, 99–101
rectangular and wide-flange sections, 168–169, 399
relationship to shear strain, 48
torsion formulas, 77–79, 100
vertical shear stress in beams, 167

Short columns, 371, 380, 383
Sign conventions

axial forces, 4
moment-area theorems and, 222
shear force and bending moment, 109–110
stress at a point (plane stress), 294–295
torque and angle of twist, 78

Simply supported beams
defined, 108
deflection formulas for, 233

Simply supported columns, 373–375
Singularity functions, 211
Slender columns, 371–372
Slenderness ratio, 376
Spherical thin-walled pressure vessels, 280
Spring-back, 473–474
Standard structural shapes, 159–160
State of strain

strain gages, 338–339
strain rosette, 339–341
transformation of strain, 331–337

equations, 332–333
Mohr’s circle, 333–334

State of stress (plane stress)
absolute maximum shear stress, 314–317
general, 316
defined, 294

Mohr’s circle, 305–308
construction of, 306
properties of, 307–308
verification of, 308

reference planes, 293–294
sign conventions and subscript notation, 294–295
transformation, 295–300

equations, 295–296
maximum in-plane shear stress, 298–300
principal stresses and principal

planes, 296–297, 299
procedures for computing, 298–300

Static deformation of a spring, 438
Statically indeterminate beams, 249–275

double-integration method, 250–251
double integration method using bracket functions, 256
method of superposition, 266
moment-area method, 260

Statically indeterminate problems
axial load problems, 54–58
beam problems, 249–275
solving by Castigliano’s theorem, 428–429
torsion problems, 80

Sti¤ness, as mechanical property, 32
Strain, 31–74

axially loaded bars, 36–46
generalized Hooke’s Law, 47–48
normal strain, 32–33
tension tests and, 33–34
thermal stresses, 63–67
transformation. see Transformation of strain

Strain at a point, see State of strain
Strain energy, 426–429

bars and beams, 426–427
Castigliano’s theorem and, 428–429
defined, 426
density, 446–447

Strain gages, 338–340
Strain-hardening, 464
Strain rosette, 339–341
Stress. see also State of stress (plane stress)

amplitude, 458
axial, 1–29
beam stresses, see Stresses, beams

bearing stresses, 19
combined loads, see Stresses due to combined loads

direct shear, 18
as force intensity at a point, 3
reference planes for, 293–294
transformation, see Transformation of stress

Stress at a point (plane stress), see State of stress
(plane stress)

Stress concentration, 452–456
Stress concentration factor

defined, 453
fatigue strength and, 460
for rectangular and circular bars, 454–455
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Stress-strain diagrams
comparing grades of steel, 440
ductile materials, 34, 464, 471
elastic limit, 35
elastic-perfectly plastic material, 464, 471
proportional limit, 34–35
rupture stress, 35
slope (tangent modulus) of, 380–381
ultimate stress, 35
yield point, 35

Stress transformation. see Transformation
of stress

Stress vector, 3
Stresses, beams, 139–193

bending stress
economic sections, 158–160
flexure formulas, 140–145
at a given point, 144
maximums, 144–145

shear stress
horizontal shear stress in beams, 165–167
procedure for analyzing in beams, 169
rectangular and wide-flange sections, 168–169, 399
vertical shear stress in beams, 167

Stresses due to combined loads, 277–347
axial and lateral loads, 284–285
state of stress at a point, 293–295
stress transformation, 295–300, 319
thin-walled pressure vessels

cylindrical, 278–279
spherical, 280

Structural shapes, standard, 159–160
Subscript notation, 294–295
Superposition, see Method of superposition
Superposition, principle of, 235
Support constraints, 250
Supports, redundant, 108–109

T
Tangent modulus theory, 380–381
Tangential deviation, 221–222
Tension tests, 33–35

stress-strain diagrams from, 33–34
using to determine modulus of resilience and

modulus of toughness, 439
Theories of failure, 444–447

maximum distortion energy theory, 446–447
maximum normal stress theory, 445
Mohr’s theory, 445–446
maximum shear stress theory, 446

Thermal expansion, coe‰cient of, 63, 510–511
Thermal strain, 63–67
Thermal stress, 63–67
Thin-walled beams, 398–401

shear center for, 400–401
shear flow in, 398–400

Thin-walled tubes, torsion of, 91–96

Thin-walled pressure vessels, 278–280
cylindrical, 278–279
spherical, 280

Torque-twist relationship, 78
Torsion

circular shafts, 76–80
limit analysis and, 478–479
limit torque, 465
rectangular bars, 99–101
residual stresses and, 471–472
strain energy for, 427
thin-walled tubes, 91–96
yield torque, 464

Torsional modulus of rupture, 79
Toughness

modulus of, 439–440
Transfer distance, parallel-axis theorem, 490
Transformation equations

for moments and products of inertia, 500–501
for strain, 332–333
for stress, 295–296, 501
principal moments of inertia and principal

axes, 501–502
Mohrs circle for, 502

Transformation of strain, 331–334
equations, 332–333
Mohr’s circle, 333–334

Transformation of stress, 295–300
equations, 295–296, 501
maximum in-plane shear stress, 298–300
Mohr’s circle for plane stress, 305–308
principal stresses and principal

planes, 296–297
procedures for computing, 298–300

Transverse strain, 47
Tresca’s hexagon, 446
Tresca’s yield criterion, 446
Triaxial loading, 48
Triaxial stress, 294–295
True strain, 34
True stress, 34
Trusses, assumptions in analysis of, 8
Twist, angle of, see Angle of twist
Twisting, deformation from, 3
Twisting moment (torque). see Torsion

U
Ultimate moment analysis, 361–363
Ultimate stress, 35
Under-reinforced concrete beams, 362
Unequal angle sections

properties, in SI units, 520–523
properties, in U.S. Customary units, 535–538

Uniaxial loading, 47
Unsymmetrical bending of beams, 398, 407–410

inclination of the neutral axis and, 409–410
symmetrical sections, 408–409
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V
Vertical shear stress in beams, 167
Volumetric strain energy, 446

W
W-shapes, 159–160

properties, in SI units, 512–517
properties, in U.S. Customary units, 524–531
shear stress in, 168–169, 399

Web of a beam, defined, 158
Wide flanges, see W-shape
Work of a force, 426
Work-absorbing displacement, 426
Work-energy principle, 438
Working load for a column, 390

Working (allowable) stress, 36
vs. slenderness ratio for columns, 376

Y
Yield criteria for ductile materials

maximum distortion energy theory, 446–447
maximum shear stress theory, 446

Yield moment, 466
Yield point, 35
Yield torque, 464
Young’s modulus. see Modulus

of elasticity

Z
0.2% o¤set method for yield point, 35
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SI Units (Système international d’unités)

Selected SI units Commonly used SI prefixes

Quantity Name SI symbol Factor Prefix SI Symbol

Energy joule J (1 J ¼ 1 N �m) 109 giga G
Force newton N (1 N ¼ 1 kg �m/s2Þ 106 mega M
Length meter* m 103 kilo k
Mass kilogram* kg 10�3 milli m
Moment (torque) newton meter N �m 10�6 micro m

Rotational frequency revolution per second
hertz

r/s
Hz (1 Hz ¼ 1 r/s)

10�9 nano n

Stress (pressure) pascal Pa (1 Pa ¼ 1 N/m2)
Time second* s
Power watt W (1 W ¼ 1 J/s)

* SI base unit

Selected Rules and Suggestions for SI Usage

1. Be careful in the use of capital and lowercase for symbols, units, and prefixes (e.g., m for meter or milli, M for mega).
2. For numbers having five or more digits, the digits should be placed in groups of three separated by a small space,

counting both to the left and to the right of the decimal point (e.g., 61 354.982 03). The space is not required for four-
digit numbers. Spaces are used instead of commas to avoid confusion—many countries use the comma as the deci-
mal marker.

3. In compound units formed by multiplication, use the product dot (e.g., N �m).
4. Division may be indicated by a slash (m/s), or a negative exponent with a product dot (m � s�1).
5. Avoid the use of prefixes in the denominator (e.g., km/s is preferred over m/ms). The exception to this rule is the

prefix k in the base unit kg (kilogram).

Equivalence of U.S. Customary and SI Units (Asterisks indicate exact values; others are approximations.)

U.S. Customary to SI SI to U.S. Customary

1. Length 1 in. ¼ 25.4* mm ¼ 0.0254* m
1 ft ¼ 304.8* mm ¼ 0.3048* m

1 mm ¼ 0.039 370 in.
1 m ¼ 39.370 in.
¼ 3.281 ft

2. Area 1 in.2 ¼ 645.16* mm2

1 ft2 ¼ 0.092 903 04* m2
1 mm2 ¼ 0.001 550 in.2

1 m2 ¼ 1550.0 in.2

¼ 10.764 ft2

3. Volume 1 in.3 ¼ 16 387.064* mm3

1 ft3 ¼ 0.028 317 m3
1 mm3 ¼ 0.000 061 024 in.3

1 m3 ¼ 61 023.7 in.3

¼ 35.315 ft3

4. Force 1 lb ¼ 4.448 N
1 lb/ft ¼ 14.594 N/m

1 N ¼ 0.2248 lb
1 N/m ¼ 0.068 522 lb/ft

5. Mass 1 lbm ¼ 0.453 59 kg
1 slug ¼ 14.593 kg

1 kg ¼ 2.205 lbm
1 kg ¼ 0.068 53 slugs

6. Moment of a force 1 lb � in. ¼ 0.112 985 N �m
1 lb � ft ¼ 1.355 82 N �m

1 N �m ¼ 8.850 75 lb � in.
1 N �m ¼ 0.737 56 lb � ft

7. Power 1 hp (550 lb � ft/s) ¼ 0.7457 kW 1 kW ¼ 1.3410 hp

8. Stress 1 lb/in.2 (psi) ¼ 6895 N/m2 (Pa) 1 Pa ¼ 145.0 � 10�6 psi
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Area Moments of Inertia

Rectangle Circle Half parabolic complement

Ix ¼
bh3

12
Iy ¼

b3h

12
Ixy ¼ 0

Ix ¼
bh3

3
Iy ¼

b3h

3
Ixy ¼

b2h2

4

Ix ¼ Iy ¼
pR4

4
Ixy ¼ 0

Ix ¼
37bh3

2100
Ix ¼

bh3

21

Iy ¼
b3h

80
Iy ¼

b3h

5

Ixy ¼
b2h2

120
Ixy ¼

b2h2

12

Right triangle Semicircle Half parabola

Ix ¼
bh3

36
Iy ¼

b3h

36
Ixy ¼ �

b2h2

72

Ix ¼
bh3

12
Iy ¼

b3h

12
Ixy ¼

b2h2

24

Ix ¼ 0:1098R4 Ixy ¼ 0

Ix ¼ Iy ¼
pR4

8
Ixy ¼ 0

Ix ¼
8bh3

175
Ix ¼

2bh3

7

Iy ¼
19b3h

480
Iy ¼

2b3h

15

Ixy ¼
b2h2

60
Ixy ¼

b2h2

6

Isosceles triangle Quarter circle Circular sector

Ix ¼
bh3

36
Iy ¼

b3h

48
Ixy ¼ 0

Ix ¼
bh3

12
Ixy ¼ 0

Ix ¼ Iy ¼ 0:054 88R4 Ix ¼ Iy ¼
pR4

16

Ixy ¼ �0:016 47R4 Ixy ¼
pR4

8

Ix ¼
R4

8
ð2a� sin 2aÞ

Iy ¼
R4

8
ð2aþ sin 2aÞ

Ixy ¼ 0

Triangle Quarter ellipse

Ix ¼
bh3

36
Ix ¼

bh3

12

Iy ¼
bh

36
ða2 � abþ b2Þ Iy ¼

bh

12
ða2 þ abþ b2Þ

Ixy ¼
bh2

72
ð2a� bÞ Ixy ¼

bh2

24
ð2aþ bÞ

Ix ¼ 0:054 88ab3 Ix ¼
pab3

16

Iy ¼ 0:054 88a3b Iy ¼
pa3b

16

Ixy ¼ �0:016 47a2b2 Ixy ¼
a2b2

8
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Basic Equations

Axial loading

Stress

s ¼ P

A

Elongation

d ¼ PL

EA
or

ðL

0

P

EA
dx

dT ¼ aðDTÞL

Torsion of circular shafts

Shear stress

t ¼ Tr

J

where

J ¼ pr4

2
¼ pd 4

32
solid shaft

J ¼ pðR4 � r4Þ
2

¼ pðD4 � d 4Þ
32

hollow shaft

Angle of twist

y ¼ TL

GJ
or

ðL

0

T

GJ
dx

Power transmission

T ¼ P

o
¼ P

2pf

Torsion of thin-walled shafts

Shear stress

t ¼ T

2A0t

Angle of twist

y ¼ TLS

4GA2
0 t

or
TL

4GA2
0

þ
S

ds

t

Bending of beams

Load-shear-moment relations

w ¼ � dV

dx
V ¼ dM

dx

Bending stress

s ¼ �My

I

Transverse shear stress

t ¼ VQ

Ib

Di¤erential equation of the elastic curve

d 2v

dx2
¼ M

EI

Moment-area theorems

yB=A ¼ area of
M

EI
diagram

�B

A

tB=A ¼ area of
M

EI
diagram

�B

A

� x=B

Columns

Critical load

Pcr ¼
p2EI

L2
e

Secant formula

smax ¼
P

A
1þ ec

r2
sec

L

2r

ffiffiffiffiffiffiffi
P

EA

r !" #

Thin-walled pressure vessels

Stresses in cylinder

sc ¼
pr

t
sl ¼

pr

2t

Stress in sphere

s ¼ pr

2t

Hooke’s law

�x ¼
1

E
½sx � nðsy þ szÞ�

�y ¼
1

E
½sy � nðsz þ sxÞ�

�z ¼
1

E
½sz � nðsx þ syÞ�

gxy ¼
1

G
txy

where

G ¼ E

2ð1þ nÞ
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Stress transformation equations

sx 0

sy 0

�
¼ sx þ sy

2
G

sx � sy

2
cos 2yG txy sin 2y

tx 0y 0 ¼ �
sx � sy

2
sin 2yþ txy cos 2y

Principal stresses and directions

s1

s2

�
¼ sx þ sy

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2

þ t2
xy

s

tan 2y ¼ 2txy

sx � sy

Maximum in-plane shear stress

tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2

þ t2
xy

s
¼ js1 � s2j

2

Absolute maximum shear stress (plane stress)

tabs ¼ max
js1 � s2j

2
;
js1j
2
;
js2j
2

� �

Yield criteria

Maximum shear stress theory

tabs ¼
syp

2

Maximum distortion energy theory

s2
1 þ s2

2 � s1s2 ¼ s2
yp

Reinforced concrete beams

n ¼ Est

Eco

Equation for determining neutral axis

h

d

� �2

þ 2nAst

bd

h

d
� 2nAst

bd
¼ 0

Stress-moment relations

ðscoÞmax ¼
Mh

I
sst ¼ n

Mðd � hÞ
I

or

M ¼ 1

2
bh d � h

3

� �
ðscoÞmax ¼ d � h

3

� �
Astsst

Bending stress in curved beams

s ¼ M

Aðr� RÞ 1� R

r

� �

where

R ¼ AÐ
A
ð1=rÞ dA

Energy methods

Strain energy

U ¼ P2L

2EA
or

ðL

0

P2

2EA
dx axial loading

U ¼ T 2L

2GJ
or

ðL

0

T 2

2GJ
dx torsion

U ¼M 2L

2EI
or

ðL

0

M 2

2EI
dx bending

Castigliano’s theorem

di ¼
qU

qFi

Dynamic loading

Impact factor

n ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h

ds

s

Maximum dynamic displacement and stress

dmax ¼ nds smax ¼ nss

Inelastic torsion of solid shafts

T ¼ pr3

6
4� r3

i

r3

� �
typ

Limit torque

TL ¼
2

3
pr3typ ¼

4

3
Typ

Inelastic bending of beams

M ¼ syp

Ii

yi

þ 2Qo

� �
symmetric cross section

Limit moment

ML ¼ sypðQT þQCÞ

ML ¼
3

2
Myp rectangular cross section

Equation for detemining plastic neutral axis

AT ¼ AC
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