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1.1 Background and Problem Statement

The difference between a flexible and a rigid manipulator can be explained both

physically and mathematically. In terms of physics, a rigid manipulator has theoretically

only one fundamental frequency of vibration with an infinite value, and thus can move at

any desired speed without significant tip deflection and body deformation, leading to

a large link mass and a correspondingly low energy efficiency; a flexible manipulator, on

the other hand, has many fundamental frequencies of vibration with finite values and thus

can experience significant tip deflection under normal operating conditions. The

oscillation becomes severe when its speed approaches one of its fundamental frequencies,

so it is of low mass but is very difficult to operate. In mathematical terms, a rigid

manipulator can only have a finite number of degrees of freedom (DOF), described by

ordinary differential equations. A flexible manipulator will have an infinite number of

DOF, and thus has to be specified by partial differential equations, so-called distributed

parameter systems.

Compared with rigid robotic manipulators, flexible ones are more efficient and safer to operate

due to their lightness, good damping behavior, and less pronounced interconnections between

different segments of multiple arm links. However, they are much more difficult to control and

operate than their rigid counterparts due to their flexibility. Examples of flexible manipulators

can be found in space exploration, such as the NASA Remote Manipulator System; in mining

operations, such as robotic excavators; in construction applications, such as robotic crane

systems, and so on. In those situations, size, mass, payload, speed, environmental or task

constraint factors make the flexibility of a robotic manipulator an important issue with respect

to its design, modeling, analysis, control, and operation.
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For example, the NASA Remote Manipulator System has very low natural frequencies ranging

from 0.04 to 0.35 Hz and consequently it has to move slowly at a speed of 0.5�/s to avoid

vibrations due to its large mass (450 kg) and heavy payload (27,200 kg) [1]. Other operational

problems in flexible manipulators can be found in the literature [2].

The objective of this book is to provide a unified approach that simultaneously considers all

factors in mechanical, electrical, sensing, and control components to address modeling,

analysis, optimization, and control of flexible manipulators. Specifically, we will investigate

the following problems:

1. Modeling of flexible manipulators

Modeling is the first step in the design, analysis, and control of flexible manipulators. Many

and various models, from linear to nonlinear, from numerical to analytical, have been

proposed in the literature. However, their accuracy, complexity, and overall efficiency have

not been investigated systematically up to now. In this book, we will carry out a systematic

study of these models and compare their pros and cons with respect to specific design and

control problems, especially trade-offs between benefits and costs.

2. Analysis of flexible manipulators

Various model-specific analytical papers have been published, but no thorough comparative

investigation of these analyses has ever been conducted. In addition, very few studies with

quantitative results have been reported in the literature on the effect of size, shape, mass

distribution, tip load, and other factors on the dynamics and operational performance of

flexible manipulators. However, such analyses are critical to the effectiveness of any model

for optimization and control purposes. Here, wewill address these issues with systematic but

specific numerical investigations based on the currently available dynamic models.

3. Optimization of flexible manipulators

Two conventional dual optimal design problems have been well studied in our previous

research: (a) Given a fixed mass for the link, find a shape that maximizes its speed; and

(b) given a fixed speed for the link, find a shape that minimizes its mass. However, the

formulations used for optimization in the previous studies are too simple for real-world

applications. To make those designs useful, we must include complicated constraints that are

encountered in reality. In most of these cases, analytical procedures developed previously

would no longer be applicable. We must look into new methods for optimal design problems

with meaningful constraints.

4. Mechatronic design of flexible manipulators

The complexity of a manipulator system is due to the interrelation and interdependency

of its subsystems, for example its kinematic system (mainly the beam or link structure),

control system, driver system (mainly the actuation mechanism), and measuring or sensing

system. In traditional design, a manipulator’s link structure is designed first, followed by

its driver system, then a measuring system, and finally its control system. This leads to

a sequential design process and a locally optimal solution, and therefore the potential of
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a flexible manipulator is rarely fully realized. To overcome such problems, a concurrent

design procedure that integrates all subsystems must be undertaken, namely a mechatronic

approach must be considered in the design of flexible manipulators.

1.2 Motivations

First of all, this book presents a unified and systematic approach that deals with the modeling,

analysis, optimization, and mechatronic design of flexible manipulators. This approach will

enable us to deal with various issues in the design and operation of flexible manipulators so that

both analytical and numerical procedures, especially new methods in optimization in the field

of computational intelligence, can be applied.

Secondly, with this unified approach we have developed a different methodology for the design

of flexible manipulators that deals with their mechanical, electrical, sensing, and control

components concurrently instead of sequentially from the very beginning of the design

process. Theoretically, this method is capable of finding the global optimal design solution,

resulting in a better design outcome.

Thirdly, our approach has opened a new direction in the research of flexible manipulators.

Currently, most researchers try to simplify beam model complexity by neglecting some less

significant factors, such as shear deformation, rotary inertia, viscous and Coulomb friction, or

linearizing the model at some particular operating points, in their effort to make real-time

control feasible. In the new direction we have proposed here, the focus is to design a better

manipulator system so its control problem and the accuracy of the dynamic model will be less

critical in its performance. In other words, the result from our proposed mechatronic design is

better than that obtained from previous model-intensive or control-intensive designs.

1.3 Organization of the Book

The previous work on related issues of flexible manipulators will be addressed in Chapter 2,

while Chapters 3, 4, 5, and 6 discuss modeling, analysis, optimization, and mechatronic design

of flexible manipulators respectively. Finally, Chapter 7 summarizes this book and looks

into critical efforts that are needed for future research.
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2.1 Earlier Research on Flexible Manipulators

Interest in the utilization of flexible manipulators for space exploration and automation

started in the early 1980s. For example, Nguyen et al. [1] investigated the dynamics and

control of the space shuttle manipulator arm. In 1984, Cannon and Schmitz published one of

the first papers on the control of flexible manipulators [2]. Book [3] investigated the

dynamics of flexible manipulators using a recursive Lagrangian formulation. In 1985,

Sakawa et al. [4] considered the feedback control problem inherent in flexible arms. Yang

and Donath [5] formulated a dynamic model of a flexible arm that also included the

flexibility of the joints.

From the late 1980s to 1990s, there have been a multitude of papers published on control

models for flexible manipulators. In 1990, Belvin and Park [6] were one of the first teams to

attempt a comprehensive optimization scheme that included both structure and control

optimization using cost functions. Khorrami and Özgöner [7] presented a set of integro-partial

equations and used a perturbation method for control purposes. A complete study of different

dynamic equations under various boundary conditions for flexible manipulators was conducted

by Bellezze et al. [8]. Kim and Junkins [9] developed cost functions of total mass, stability, and

eigenvalue sensitivity for optimum flexible structures. Park and Asada [10] developed an

optimal control design based on a variable point of torque transmission to a flexible link. Asada

et al. [11] have addressed the optimal design problem using a finite-element computational

model. As part of their effort toward a control-configured flexible arm, they tried to increase the

fundamental frequency of vibration through optimum tapering of a beam of varying

rectangular cross-section. A theoretical increment of 43% in the fundamental frequency of the

manipulator was obtained. De Luca and Siciliano [12] considered the additional factor of

gravity in their control model.

Flexible Manipulators. DOI: 10.1016/B978-0-12-397036-7.00002-7

Copyright � 2012 Elsevier Inc. All rights reserved. 5



The majority of research up to the early 1990s concentrated on the optimization of flexible

manipulators from a control perspective. Practically no work was being done on the

problem of structural or shape optimization, although some researchers such as Asada, Park,

and Rai included shape design as an integral part of an overall control scheme, but with no

analytical analysis. In 1991, Wang [13] reexamined the earlier work of Karihaloo and

Niordson [14] and found that the Lagrange multiplier in the optimality equations could be

removed completely, thus simplifying the iteration scheme considerably. At around the

same time, Wang et al. [15] also developed an optimization model for a flexible manipulator

and, using the modified iteration scheme, produced the first optimum shapes and

frequencies for flexible manipulators. They found that an increase of over 600% in the

fundamental frequency of vibration was possible for flexible links of geometrically similar

cross-sections.

Wang and Guan [16] in 1994 produced an excellent paper on different models of flexible

manipulators and examined the effect of tip loads on the fundamental frequency of

vibration using modal frequencies and vibration modes. They showed that both rotary

inertia and shear deformation have very little effect upon the fundamental frequency of

vibration. Wang and Russell [17], concentrating on the EulereBernoulli model of flexible

manipulators with tip loads, produced numerous examples for various tip load design

vectors. They then investigated the minimum-weight design of a flexible manipulator with

no tip load [18], and also applied previous work in optimum shape design to a closed-loop

control formulation called the mechatronic approach [19]. Wang and Russell [18] extended

their previous work to include constrained designs by expanding the displacement function

in a base set of modal shape functions derived for uniform links. In 1995, Wang and

Russell [19] presented an innovative new segmentized model of a flexible manipulator that

opened up the problem of optimum design to numerous mathematical programming

techniques.

2.2 Recent Work on Flexible Manipulators

Numerous papers have addressed the control of flexible manipulators. Initial studies

concentrated on the state space model. Cannon and Schmitz [2] first investigated the linear

quadratic Gaussian (LQG) controller assuming that the states were available. However, the

states were not available and they had to be reconstructed by optimal estimators. In 1993, Lin

and Lewis [20] studied the Kalman filter for the estimation of the rigid and flexible modes for

control purposes. Sakawa et al. [4] applied a linear quadratic (LQ) control to track the hub

reference by damping the flexible modes. The states were obtained by means of an observer.

Geniele et al. [21] used an inner loop to stabilize the flexible system and an outer loop to track

the joint angle and one point along the arm respectively, using inputeoutput inversion. The

same approach was used by Madhavan and Singh in their study [22]. They also used a sliding
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mode control to design a controller that could tolerate a wide range of uncertainties, thus

enhancing its robustness [23].

Other studies used the transfer function approach. Wang and Vidyasagar [24] used tip

deflection as output and devised an output feedback based on the passivity of the model’s

transfer function. Siciliano and Book decomposed the flexible manipulator dynamics into two

subsystems, a fast and a slow system, by applying singular perturbation theory. They showed

that the fast system was linear, but that the slow system was nonlinear. Furthermore, a linear

state controller and a nonlinear controller were designed for the two systems respectively to

track the hub angle. Similar research was carried out by Aoustin et al. [25]. Corrected slow and

fast subsystems were used in (1997) by Moallem et al. [26].

A computational intelligence approach has also been used in the control of flexible

manipulators. Gutierrez et al. [27] proposed one scheme based on this approach using a neural

network (NN) tracking controller. The outer NN proportional deviator (PD) tracking loop was

used to stabilize the fast mode, while the inner feedback loop was used to liberalize the slow

mode dynamics. The results were compared between PD and the proportional integral

derivative (PID). Lenz et al. [28] derived the robust control for a flexible beam subjected to

perturbations and delay by using HN theory. In 1997, Tchernychev et al. [29] developed

a constrained HN controller in which time-domain constraints are treated directly without

translation to the frequency domain. In the same year, Zhu et al. [30] investigated

a backstepping approach for tip tracking by lumping the beam to a spring-mass system to

develop a robust controller in the presence of system disturbances/uncertainties. Also in 1997,

Jnifene and Fahim [31] dealt with nonminimum phase characteristics by introducing active

damping into the system, and proposed a computed torque/delayed deflection approach. The

torque was calculated from the joint angle and a delayed deflection, while the delay time

depended on the point where the deflection was measured.

Ghanekar et al. [32] examined the large robotic manipulator scaling laws for linear controllers

by nondimensional groups, thus allowing a small-scale prototype to be used to perform the

design work. Liang et al. [33], in 1998, discussed the problem of a free-floating space

manipulator and mapped it to a conventional, fixed-base manipulator. This allowed well-

understood methods to be used to build the manipulator system. Simulation work was also

presented, for example by Tang and Lu [34] using a video system to estimate model shapes and

vibration states. Strain gages were used by Fukuda [35] and by Hastings and Book [36] to

measure the deflection. Photosensors were also used for detecting the displacement [2,15,37].

Chalhoub et al. [38] used an accelerometer to measure the beam vibration. The state of

vibration could be obtained indirectly by combining some strain gages and/or displacement

Sundararajan et al. [39].

A port-based modeling of a flexible link has also been proposed, which is a simple way to

model flexible robotic links [40]. This is different from classical approaches and from
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EulereBernoulli or Timoshenko theory, in that the proposed model is able to describe large

deflections in 3D space and does not rely on any finite-dimensional approximation (e.g. modal

approximation). The model has been formulated within the port-Hamiltonian formalism

because intuitive considerations of the geometric behavior of the elastic link naturally define

a StokeseDirac structure, the kernel of a port-Hamiltonian system. Moreover, port-

Hamiltonian systems can be easily interconnected, thus allowing the description of complex

systems as a composition of parts in an object-oriented way. By combining rigid bodies,

springs, dampers, joints and, finally, flexible links, it is possible to model and mathematically

describe whatever complex mechanical structure is formed by the beams. In order to

demonstrate the dynamical properties of the model and how complex mechanisms can be

obtained by port interconnection, simulations of one and two degrees of freedom (DOF) serial

manipulators and of a two-DOF flexible closed kinematic chain are presented.

These studies did control-intensive work to improve beam performance, but they ignored the

impact arising from the beam mechanic shape. The couplings between the controller and

structure of flexible manipulators were not considered in the design and optimization.

Therefore, the resulting system and performance was only locally optimal.

Xu and Ritz [41] proposed a vision-based flexible beam tip point control where a two-time-

scale controller has been presented to track a desired tip point signal and at the same time

mitigate the tip point vibration. In their approach, a camera was used to provide visual

feedback in which the delayed vision signal was compensated by the state estimator and

predictor. The controller has been experimentally verified and shown to exceed the

performance of other tested controllers. A similar study on two-time-scale visual serving of

eye-in-hand flexible manipulators [42] has also been reported. In this work, the dynamic effects

of both the rigid and the flexible motion of the manipulator are fully taken into account in

a control solution where the two-time-scale nature of the problem is exploited. The visual

information is used in the “slow” subsystem for a task-space-oriented control law, where

computationally expensive operations, such as the inverse and time derivative of the Jacobian,

are avoided. A constructive proof of the stability of this control scheme, based on Lyapunov

theory, is also presented. The effectiveness of the proposed controller is shown by means of

a numerical simulation concerning a trajectory tracking problem. Some experimental results

finally demonstrate the precision enhancement achieved by the proposed algorithm on a single-

link flexible manipulator.

Becedas et al. [43] constructed an adaptive controller for single-link flexible manipulators.

They designed a fast online closed-loop identification method combined with an output-

feedback controller of the generalized proportional integral (GPI) type for the control of an

uncertain flexible robotic arm with unknown mass at the tip, including a Coulomb friction term

in the motor dynamics. Barczyk and Lynch [44] developed a flatness-based estimated state

feedback control for a rotating flexible beam and verified the design with experimental results,
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where a so-called flat output is introduced in order to parameterize the system’s variables in

power series. These series lead to open- and closed-loop controls, which can solve finite-time

motion planning problems. Vibration control of a flexible arm by a multiple observer structure

is discussed in Ref. [45]. This paper proposes vibration control of the flexible arm by

acceleration feedback, and disturbance rejection by a multiple-observer structure using the

acceleration of the arm. The validity of the proposed method is shown by simulations and

experiments.

Chatterjee et al. [46] proposed an augmented stable fuzzy control for a flexible robotic arm

using an LMI approach and neuro-fuzzy state space modeling. In this method, the controller is

designed on the basis of a neuro-fuzzy state-space model that is successfully trained using the

experimental data acquired from a real robotic arm. The complex problem of solving stability

conditions is taken care of by recasting them in the form of linear matrix inequalities and then

solving them using a popular interior-point-based method. This asymptotically stable fuzzy

controller is further augmented to provide enhanced transient performance along with

maintaining the excellent steady-state performance shown by the stable control strategy. The

controller thus designed has been successfully implemented for a real robotic arm to operate

over a long angular range of 180� with several payload conditions and, for situations where the
system is operated over a long range and with a large variation in payload conditions, it

successfully outperformed the proposed proportional derivative and strain controller.

Dogan and Istefanopulos [47] addressed the issues of optimal nonlinear controller design for

flexible robot manipulators with an adaptive internal model. In this paper, the dynamic state

feedback controller is used to achieve robust regulation of the rigid modes as well as

suppression of elastic vibrations. However, the control of highly nonlinear multilink flexible

arms is subject to uncertainties caused by backlash, payload changes, and external

disturbances. The internal model approach is adaptively tuned up for unknown disturbances, in

parallel with a robust stabilizer. The stabilizer part of the controller is optimized with a new

evolutionary algorithm.

Another new development is the work on tip position control of a lightweight flexible

manipulator using a fractional order controller [48]. One of the interesting features of this

design method is that the overshoot of the controlled system is independent of the tip mass.

This allows a constant safety zone to be delimited for any given placement task of the arm,

independent of the load being carried, thereby making it easier to plan collision avoidance.

Other considerations about noise and motor saturation issues are also presented in that paper.

The overall control scheme proposed consists of three nested control loops. Once the friction

and other nonlinear effects have been compensated for, the inner loop is designed to give a fast

motor response. The middle loop simplifies the dynamics of the system and reduces its transfer

function to a double integrator. A fractional derivative controller is used to shape the outer loop

into the form of a fractional order integrator. The result is a constant phase system with, in the
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time domain, step responses exhibiting constant overshoot, independent of variations in the

load and robust, in a stability sense, to spillover effects. Experimental results are included,

when controlling the flexible manipulator with this fractional order derivator, that prove the

good performance of the system.

Wave-based analysis and control of lump-modeled flexible robots is also very interesting [49].

In that paper, the authors provide a foundation for wave-based control applications by

exploring the validity and nature of wave concepts in lumped flexible robotic systems. A new

wave-based model of uniform mass-spring systems is proposed and verified. The model is

exact but not unique. Useful simplifications and approximations are also presented. The model

leads to control strategies for flexible robotic systems that are simple, powerful, robust, and

generic. The wave approach also provides a new analytical tool and conceptual framework for

lumped dynamic systems.

Output tracking control of a one-link flexible manipulator via causal inversion [50] is a new

design procedure for output tracking control of nonminimum phase systems, where flexible

manipulators are a typical example. This new controller achieves stable tracking of a reference

profile given in real time via a causal inversion approach. In this approach, the nonminimum

phase system is first stably inverted online to obtain both desired (and stable) state and input

trajectories. Then an HN optimal controller is used to stabilize the closed-loop system. In

contrast to stable inversion, the causal inversion approach does not require pre-calculation. In

contrast to nonlinear regulation, the causal inversion approach avoids the numerical

intractability of solving nonlinear PDEs. As an example of the application, a causal inversion-

based controller is designed for tip trajectory tracking of a one-link flexible manipulator.

Simulation results demonstrate its effectiveness in output tracking.

Gomes et al. studied the active control of flexible manipulators [51] using a nonlinear

conventional motor with gear actuators. Due to the existence of a dead zone in the torque

caused by the nonlinear friction inside the actuator, this has been a problem without an

acceptable solution backed up by experimental evidence, until now. The torque needed to

attenuate the vibrations, although calculated by the control law, is consumed by the friction

and does not arrive at the flexible structure. This paper proposes a control strategy with

friction compensation using neural networks to solve this problem. Experimental results

obtained with a flexible manipulator attest to the excellent performance of the proposed

control law.

For optimal structures of flexible manipulators, very little progress has been made after the

extensive initial studies in optimal shape design conducted by Wang’s group

[13,17e19,52e54]. A new computing method for optimum mass and rigidity distributions has

been formulated by Wang et al. [15] for a flexible manipulator with a tip load so that the

robustness with respect to design specification and known constraints can be considered. Based

on this new formulation, other practical issues can also be addressed.
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However, these studies were still focused on open-loop design. They only concerned the

beam’s mechanical construction. From these studies, a proper design of a flexible beam shape

can make it suffer less vibration. But in reality, all manipulators must be in a closed loop to

achieve high performance. How to design a flexible beam shape from the control perspective

still remains a challenge.
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3.1 Introduction

The link flexibility of a robotic manipulator must be considered in modeling and control when

the manipulator is of a large dimension or lightweight. Large manipulators play important

roles in many applications, such as construction automation, environmental applications and

space engineering. Lightweight arms have great potential in the design of high-performance

industrial robotic manipulators since they allow high speed operation and low energy

consumption. However, due to the complexity of the link deformation, which is a distributed

parameter system, accurate modeling and high performance control of flexible manipulators

pose a major challenge in practical design.

The concept of using flexible robotic manipulators was proposed as early as the 1970s byW.J.

Book. Earlier models of arms are based on the simple assumed mode method. Some methods

to improve the accuracy of the assumed mode method can be found in Gu and Tongue [1].

Over the last decade, a significant effort has been made in modeling and control of one-link

flexible manipulators, which are essential for the understanding of general multiple-link

flexible manipulators. The most commonly used deformation model in the current robotic

literature uses the EulereBernoulli beam theory. Based on this theory, various dynamic

equations have been formulated for one-link flexible manipulators [2e7]. The early works

were conducted by Cannon and Schmitz [3] and Sakawa et al. [5]. Khorrami and Ozguner [4]

modeled the link by a set of integral-partial differential equations and used the perturbation

method to design control. Yang and Donath [8] considered the flexibility of the joints as well

as the link flexibility. A comprehensive study on different dynamic equations under various

boundary conditions for flexible manipulators was carried out by Bellezze et al. [2]. Wang

and Wen [6] derived the dynamic equations for flexible manipulators subject to large rotation

during the deformation and clarified some issues related to the specification of boundary

conditions. Several investigations had also been made from the perspective of the mechanism

where model complexity was not considered [9e11]. Issues related to control design have

been studied by De Luca et al. [12,13], Tzes and Yurkovich [14], Wang and Vidyasagar

[15,16], Kelemen and Bagchi [17], and Cetinkunt and Yu [18]. Various problems of optimal

manipulator design based on the EulereBernoulli model have been investigated by Wang and

Russell [19e23].

Most studies on the modeling and control of flexible manipulators have been made on the

understanding of a single flexible link. Due to the complexity involved with link deformation

however, establishing the exact dynamic model even for one link flexible manipulators is

unrealistic, and certain simplifying approximations about the link deformation have to be

made. In addition to small deformation, the most commonly used assumption in the robotic

literature is that it can be satisfactorily modeled by the EulereBernoulli beam theory. Under

such an assumption, the effects of both rotary inertia and shear deformation of a flexible link

are neglected. However, it is well known in mechanics, particularly in beam and plate theory,
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that both of them have significant effects on the dynamic behavior of flexible structures

[24e29]. For example, it has been found that for shorter beams or thicker plates, the effects of

rotary inertia or shear deformation could cause a magnitude of difference in the calculation of

high order vibration frequencies. In Ref. [7] a similar conclusion has also been drawn by

studying the influence of rotary inertia and shear deformation on vibration frequencies of

flexible manipulators.

The purpose of this chapter is to conduct a detailed study of the modeling of one-link flexible

manipulators. Section 3.2 presents basic equations for kinematic analysis and energy

calculation. Based on EulereBernoulli and Timoshenko beam models, nonlinear dynamic

equations and their linearized versions are given in Sections 3.3 and 3.4 respectively. Section

3.5 discusses some finite-dimensional modeling methods of flexible manipulators, including

the assumed modal method, finite difference method and finite element method.

3.2 Problem Description and Energy Calculations

3.2.1 Problem Statement

Consider a flexible manipulator carrying a tip load. It consists of a flexible beam attached to

a rigid hub in the horizontal plane. The coordinate systems are shown in Figure 3.1: (xb,yb) is

a fixed base coordinate system, (x,y) is the local coordinate systemattached to the hub. Figure 3.2

shows (a,b), the local coordinate system attached to the tip load. It is assumed that initially the

neutral longitudinal axis (x-axis) of the beam and a-axis of the tip load coincidewith the xb-axis.

n

m

ϕ

θ
y

θ
x

w(x)
yb

xb

X

Y

Figure 3.1: A Flexible Beam Fixed on a Rigid Hub in the Horizontal Plane.
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The motion of the manipulator system is described by the rotation angle q(t) of the hub, lateral

displacement w(x,t) and rotation 4(x,t) of the cross-section beam from the deformation

position. We will use a prime to indicate the derivative with respect to x, and a dot for the

derivative with respect to time. For example, w0 ¼ vw=vx, _w ¼ vw=vt. Both EulereBernoulli

and Timoshenko beam theories are investigated in this chapter. In the EulereBernoulli

theory, the so-called normal plane assumption is used, i.e. it is assumed that any transverse

section of the beam remains a plane and normal to the longitudinal axis of the beam after

deformation [30]. In this case 4 ¼ vw=vx ¼ w0 and the shear deformation of the beam is

neglected. The Timoshenko theory takes the effect of shear deformation into account,

replacing the normal plane assumption by the more accurate one plane assumption. The plane

assumption states that any transverse section of the beam remains a plane but may not be

perpendicular to the longitudinal axis of the beam after deformation [30]. As a result, beam

rotation 4 remains independent of w.

In the following, the equation of motion for flexible manipulators will be derived using

Hamilton’s principle [31]:

Ztf
t0

ðdT þ dW � dPÞdt ¼ 0

where T, P, andW are the kinetic energy, potential energy of the system, and the work done by

external forces respectively.

The total kinetic energy is calculated as follows:

T ¼ 1

2
IH _q

2 þ Tb þ Tp (3.1)

xpxc

(L)ϕθ +

a

yc

yp

Y

b

θ

X

Figure 3.2: The Relation Between Local and Base Coordinate for Tip.
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where IH is the rotational inertia of the hub, whilst Tb and Tp are the kinetic energies of the

beam and tip load respectively.

3.2.2 Kinetic Energy of the Beam

Tb ¼
ZL
0

ZZ
sb

1=2rv

�
_x2b þ _y2b

�
dsb,dx (3.2)

Let

A ¼ RRsbdsb area of beam section

yc ¼
RR

ydsb ¼ 0 coordinate of center

I ¼ RRsby2dsb moment of inertia

r ¼ rvA mass density per unit length

where sb is the area of the cross-section, L is the length of the beam, and rv is the mass density

per unit volume.

Let a point on the beam have coordinates (x,y) before deformation. Its position in the base

coordinate system is

xb ¼ x cos q� wðxÞsin q� y sin½4ðxÞ þ q�
yb ¼ x sin qþ wðxÞcos q� y cos½4ðxÞ þ q�

Tb ¼ 1

2

ZL
0

r
h�
x _qþ _w

�2þ�w _q
�2þ S

�
_qþ _4

�2i
dx

Let

S ¼ I=A and Dx ¼ x _qþ _wðx; tÞ; Dy ¼ _qwðx; tÞ (3.3)

Then

Tb ¼ 1

2

ZL
0

r
h
D2
x þ D2

y þ S
�
_qþ _42

�i
dx (3.4)

Note that parameter S is the radius of gyration of the cross-section, reflecting the effect of

rotary inertia. Ignoring the rotary inertia (setting S¼ 0) implies that one assumes that the

velocity of every point on the same cross-section is identical and equal to the velocity of the

point at the neutral axis on that cross-section.
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3.2.3 Kinetic Energy of the Tip Load

The base coordinates of the point on the beam with x¼ L after motion are

xc ¼ L cos q� wðLÞsin q

yc ¼ L sin qþ wðLÞcos q
The kinetic energy of the tip mass (which represents the payload) is

Tp ¼ 1

2

ZZ
sp
rp

�
_x2p þ _y2p

�
dsp (3.5)

where dsp¼ da db is the area occupied by the tip load. rp is the mass density per unit area tip

mass.

The base coordinate of a point (a,b) on the tip load is

xp ¼ L cos q� wðLÞsin qþ a cos½qþ 4ðLÞ� � b sin½qþ 4ðLÞ�
yp ¼ L sin qþ wðLÞcos qþ a sin½qþ 4ðLÞ� þ b cos½qþ 4ðLÞ�

where L is the length of the beam.

Let

Mp ¼
ZZ

sp
rpdsp mass of tip

Jp ¼ 1

2

ZZ
sp
rp

�
a2 þ b2

�
dsp moment of inertia of the tip mass w:r:t: the tip of the beam

ac ¼
ZZ

sp
rpadsp=Mp center of mass position in ða; bÞ coordinates

bc ¼
ZZ

sp
rpbdsp=Mp center of mass position in ða; bÞ coordinates

Therefore

Tp ¼ 1

2

ZZ
sp
rp

�
_x2p þ _y2p

�
dsp

¼ Mp

2
½D2

xðLÞ þ D2
yðLÞ� þ

Jp
2
½ _4ðLÞ þ _q�2 þMp½ _4ðLÞ þ _q�

þ f½acDxðLÞ þ bcDyðLÞ�cos 4ðLÞ þ ½acDyðLÞ � bcDxðLÞ�sin 4ðLÞg
Let

Gx ¼ acDxðLÞ þ bcDyðLÞ
Gy ¼ acDyðLÞ � bcDxðLÞ

20 Chapter 3



We obtain the tip kinetic energy as

Tp ¼ 1

2

ZZ
sp
rp

�
_x2p þ _y2p

�
dsp

¼ Mp

2
½D2

xðLÞ þ D2
yðLÞ� þ

Jp
2
½ _4ðLÞ þ _q

�2
þMp½ _4ðLÞ þ _q�ðGx cos 4þ Gy sin 4Þ

(3.6)

If one assumes that the tip load is a point mass Mp, then Jp ¼ 0, Gx¼Gy¼ 0.

3.2.4 Total Potential Energy

The relation between the bending moment and deformation is

Mðx; tÞ ¼ EIðxÞv4ðx; tÞ
vx

and the relation between the shearing force and deformation is given by

Qðx; tÞ ¼ kGAðxÞð4� w0Þ
From beam theory [30], the total potential energy can be found as

P ¼ 1

2

ZL
0

h
D402 þ Cð4� w0Þ2

i
ds (3.7)

where D and C are the bending rigidity and shear rigidity of the beam. For a beam of uniform

cross-section, D¼ EI and C¼ kGA, where E is Young’s modulus, G the shear modulus, and

k the shape factor [30,32].

3.2.5 Work Done by External Forces

The work done by external forces to the manipulator system is

dW ¼ sdq (3.8)

where s is the torque applied at the hub.

3.3 Derivation of Equations of Motion

Substituting Eqs (3.1)e(3.6) into Hamilton’s principle, we can get the equations of motion of

flexible arms. This section presents the nonlinear equations that are obtained without ignoring

any terms during the entire derivation process.
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After a long and tedious process of variational calculation and simplification, the final results

are summarized here.

3.3.1 EulereBernoulli Beam Model Derivation

For the EulereBernoulli model, there are three variables, q, w(x), and 4(x). However, 4 is

related to w:

4 ¼ vw

vx
; _4 ¼ d

dt

�
vw

vx

�
¼ _w0:

Variation with Respect to Variable q

The variation of the kinetic energy w.r.t. variable q can be readily written as

dqT ¼ IH _q
d

dt
dqþ

ZL
0

r½ðx _qþ _w Þxþ w2ðx; tÞ _qþ Sð _qþ _w0Þ� d
dt
dqdx

þMp½ðL _qþ _wðLÞÞLþ w2ðLÞ _q� d
dt
dqþ Jp½ _4ðLÞ þ _q� d

dt
dq

þMp

	�
Gx cos 4þ Gy sin 4Þ þ ½ _4ðLÞ þ _q�½acL cos 4ðLÞ

þ bc cos 4ðLÞwðLÞ þ ac sin 4ðLÞwðLÞ � bcL cos 4ðLÞ�gd
dt
dq

(3.9)

Let

Fx ¼ DxðLÞ þ ðac cos 4� bc sin 4Þð _4þ _qÞ
Fy ¼ DyðLÞ þ ðac sin 4þ bc cos 4Þð _4þ _qÞ
F4q ¼ Jp½ _4ðlÞ þ _q� þMpðGx cos 4þ Gy sin 4Þ

Hq ¼ v

vt
fF4q þMp½LFx þ wðLÞFy�g

Substituting the foregoing equations into Eq. (3.9) and rearranging gives

dqT ¼ IH _q
d

dt
dqþ

ZL
0

r½ðx _qþ _w Þxþ w2ðx; tÞ _qþ Sð _qþ _w0Þ� d
dt
dqdx

þ fF4q þMp½FxLþ FywðLÞ�g d
dt
dq

(3.10)

The potential energy is not a function of q, so that the variation of potential energy is

dPq ¼ 0 (3.11)

The virtual work due to nonconservative force is given by

dWq ¼ sdq (3.12)
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Substituting Eqs (3.10)e(3.12) into Hamilton’s principle, we have

dq ¼
Ztf
t0

ðT þW � PÞdt

¼
Ztf
t0

IH _qd _qdt þ
Ztf
t0

ZL
0

r½ _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxd _qdt

þ
Ztf
t0

fF4q þMp½FxLþ FywðLÞ�gd _qdt þ
Ztf
t0

sdqdt

(3.13)

We perform the following integration by parts with respect to time:

Ztf
t0

IH _qd _qdt ¼ IH _qdq



tf
t0
�
Ztf
t0f

IH€qdqdt ¼ �
Ztf
t0f

IH€qdqdt (3.14)

where we take into account that dq vanishes at t¼ t0 and t¼ tf. In a similar fashion, we obtain

Ztf
t0

ZL
0

r½ _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxd _qdt

¼
ZL
0

r½ _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxdq



tf
t0

�
Ztf
t0

ZL
0

r½ _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxdqdt

(3.15)

and

Ztf
t0

fFfq þMp½FxLþ FywðLÞ�gd _qdt

¼ fFfq þMp½FxLþ FywðLÞ�gdq



tf
t0
�
Ztf
t0

v

vt
fFfq þMp½FxLþ FywðLÞ�gdqdt

¼ �
Ztf
t0

v

vt
fFfq þMp½FxLþ FywðLÞ�gdqdt

(3.16)

Substituting Eqs (3.14)e(3.16) into Eq. (3.13) and rearranging, we obtain

dq

Ztf
t0

ðT þW � PÞdt

¼
�
IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq � s

�
dq ¼ 0
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Since the virtual displacements are arbitrary and independent, we must have

IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq � s ¼ 0

We get one motion equation

IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq ¼ s

Variation with Respect to Variable w

The variation of the kinetic energy w.r.t. variable w is

dwT ¼
ZL
0

r

�
ðx _qþ _wÞ d

dt
dwþ wðx; tÞ _q2dwþ Sð _qþ _w0Þ

�
d

dt

�
v

vx
dw

��
dx

þMp


DxðLÞ d

dt
dwþ DyðLÞ _qdw

�
þ Jp½ _4ðLÞ þ _q� d

dt

�
v

vx
dw

�


x¼L

þMp

��
Gx cos 4þ Gy sin 4Þ d

dt

�
v

vx
dw

�
þ � _4ðLÞ þ _q

�
ac

d

dt
dwþ bc _qdw

�
cos 4




x¼L

�Gx sin 4
v

vx
dwþ


ac _qdw� bc

d

dt
dw

�
sin 4




x¼L

þ Gy cos 4
v

vx
dw

�

¼
ZL
0

r
	��

x _qþ _wÞ _dwþ wðx; tÞ _q2dwþ Sð _qþ _w0Þ�d _w0gdx

þMp

�
Dx

�
L
�
d _wþ Dy

�
L
�
_qdw
�þ Jp

�
_4ðLÞ þ _q

�
d _w0

þMp

�
Gx cos 4þ Gy sin 4

�
d _w0 þMpð _4ðLÞ þ _qÞÞðac sin 4þ bc cos 4Þ _qdw

þ ð _4ðLÞ þ _qÞðac cos 4� bc sin 4Þd _wþ ð _4ðLÞ þ _qÞðGy cos 4� Gx sin 4Þdw0�

¼
ZL
0

rf½ðx _qþ _wÞ _dwþ wðx; tÞ _q2dwþ Sð _qþ _w0Þ�d _w0gdxþMp½DxðLÞ

þ ðac cos 4� bc sin 4Þ�d _wþ fJp½ _4ðLÞ þ _q� þMpðGx cos 4þ Gy sin 4Þgd _w0

þMp½DyðLÞ þ ð _4ðLÞ þ _qÞðac sin 4þ bc cos 4Þ� _qdw
þ ð _4ðLÞ þ _qÞðGy cos 4� Gx sin 4Þdw0
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Let F4 ¼ ð _4þ _qÞðGy cos 4� Gx sin 4Þ. The equation above can be rewritten as

dwT ¼
ZL
0

rfðx _qþ _wÞd _wþ _q
2
wdwþ Sð _4þ _qÞd _w0gdxþMpFxd _w

þMpFy
_qdwþ F4qd _w

0 þMpF4dw
0

(3.17)

The variation of the potential energy is given by

dwP ¼
ZL
0

D40d40dx ¼
ZL
0

D
v2w

vx2
v2dw

vx2
dx

¼ D
v2w

vx2
dw0

L

0
�
ZL
0

Dw000dw0dx

¼ Dw00dw0

L
0
� Dw000dw



L
0
þ
ZL
0

Dw0000dwdx

(3.18)

The work due to force

dwW ¼ 0 (3.19)

Substituting Eqs (3.17)e(3.19) into Hamilton’s principle gives

dw

Ztf
t0

ðT þW � PÞdt

¼
ZL
0

Ztf
t0

rx€qdwdxdt �
ZL
0

Ztf
t0

r€wdwdxdt þ
ZL
0

Ztf
t0

r _q
2
wdwdxdt � Sr

Ztf
t0

½€w0
dw


L
0

�
Ztf
t0

€w00
dwdx�dt � Sr

Ztf
t0

€qdw


L
0
dt þ

Ztf
t0

ðMpFxd _wþMpFy
_qdwþ F4qd _w

0 þMpF4dw
0Þdt

�
Ztf
t0

ðDw00dw0

L
0
� Dw000dw



L
0
þ
ZL
0

Dw0000dwdxÞdt
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After performing the integration by parts with respect to time, we have

dw

Ztf
t0

ðT þW � PÞdt

¼
Ztf
t0

ZL
0

½rð�x€q� €wþ _q
2
wþ S€w00 � Dw0000�dwdxdt

þ
Ztf
t0

ð�rS€w0 � _FxMp þMpFy
_q� rS€qþ Dw000Þ

L

0
dwdt

þ
Ztf
t0

ð�Dw00 � _F4q þMpF4Þ


L
0
dw0dt ¼ 0

The displacement dw is arbitrary. Hence, we must have

½rð�x€q� €wþ _q
2
wþ S€w00 � Dw000� ¼ 0

for the items:

ð�rS€w0 � _FxMp þMpFy
_q� rS€qþ Dw000Þ

L

0
dw ¼ 0

ð�Dw00 � _F4q þMpF4Þ


L
0
dw0 ¼ 0

According to our system, dw and dw0 vanish at the point x ¼ 0, for x¼ L, dw and dw0 s 0.

We obtain boundary conditions:

x ¼ 0; w ¼ 0; w0 ¼ 0
x ¼ L; Dw00 þ H4 ¼ 0; ðDw00Þ0 � rSð€w0 þ €qÞ � Hw ¼ 0

and another equation of motion:

ðDw00Þ00 þ rðx€qþ €w� S€w00 � _q
2
wÞ ¼ 0

where

Hw ¼ Mpð _Fx � _qFyÞ; H4 ¼ _F4q �MpF4

3.3.2 Equations of Motion for EulereBernoulli Beam Model

To summarize, the resulting motion equations are found to be

ðDw00Þ00 þ rðx€qþ €w� S€w00 � _q
2
wÞ ¼ 0 (3.20)
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IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq ¼ s (3.21)

with the corresponding boundary conditions:

x ¼ 0; w ¼ 0; w0 ¼ 0 (3.22)

x ¼ L; Dw00 þ H4 ¼ 0; ðDw00Þ0 � rSð€w0 þ €qÞ � Hw ¼ 0 (3.23)

where

Fx ¼ DxðLÞ þ ðac cos 4� bc sin 4Þð _4þ _qÞ

Fy ¼ DyðLÞ þ ðac sin 4þ bc cos 4Þð _4þ _qÞ

Ffq ¼ Jp½ _4ðlÞ þ _q� þMpðGx cos 4þ Gy sin 4Þ

Hq ¼ v

vt
fF4q þMp½LFx þ wðLÞFy�g

Hw ¼ Mpð _Fx � _qFyÞ; H4 ¼ _F4q �MpF4

3.3.3 Timoshenko Beam Model Derivation

For the Timoshenko model, there are three independent variables, q, w(x), and 4(x).

Variation with Respect to Variable q

The variation of the kinetic energy w.r.t. variable q can be readily written as

dqT ¼ IH _q
d

dt
dqþ

ZL
0

r½ðx _qþ _w Þxþ w2ðx; tÞ _qþ Sð _qþ _w0Þ� d
dt
dqdx

þMp½ðL _qþ _wðLÞÞLþ w2ðLÞ _q� d
dt
dqþ Jp½ _4ðLÞ þ _q� d

dt
dq

þMpfðGx cos 4þ Gy sin 4Þ þ ½ _4ðLÞ þ _q�½acL cos 4ðLÞ

þ bc cos 4ðLÞwðLÞ þ ac sin 4ðLÞwðLÞ � bcL cos 4ðLÞ�g d

dt
dq

(3.24)
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Letting

Fx ¼ DxðLÞ þ ðac cos 4� bc sin k4Þð _4þ _qÞ
Fy ¼ DyðLÞ þ ðac sin 4þ bc cos 4Þð _4þ _qÞ
F4q ¼ Jp½ _4ðlÞ þ _q� þMpðGx cos 4þ Gy sin 4Þ

Hq ¼ v

vt

	
F4q þMp½LFx þ wðLÞFy�

�
substituting the above equations into Eq. (3.24) and rearranging:

dqT ¼ IH _q
d

dt
dqþ

ZL
0

r½ðx _qþ _w Þxþ w2ðx; tÞ _qþ Sð _qþ _w0Þ� d
dt
dqdx

þfFfq þMp½FxLþ FywðLÞ�g d

dt
dq

(3.25)

The potential energy is not a function of q, so that the variation of the potential energy is

simply

dPq ¼ 0 (3.26)

The virtual work due to nonconservative force is given by

dWq ¼ sdq (3.27)

Substituting Eqs (3.25)e(3.27) into Hamilton’s principle, we have

dq

Ztf
t0

ðT þW � PÞdt

¼
Ztf
t0

IH _qd _qdt þ
Ztf
t0

ZL
0

r½ð _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxd _qdt

þ
Ztf
t0

fF4q þMp½FxLþ FywðLÞ�gd _qdt þ
Ztf
t0

sdqdt

(3.28)

We perform the following integration by parts with respect to time:

Ztf
t0

IH _qd _qdt ¼ IH _qdq



tf
t0
�
Ztf
t0f

IH€qdqdt ¼ �
Ztf
t0f

IH€qdqdt (3.29)

28 Chapter 3



where dq vanishes at t¼ t0 and t¼ tf. In a similar fashion, we obtain

Ztf
t0

ZL
0

r½ð _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxd _qdt

¼
ZL
0

r½ð _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxdq



tf
t0

�
Ztf
t0

ZL
0

r½ð _wxþ ðx2 þ w2ðx; tÞÞ _qþ Sð _qþ _w0Þ�dxdqdt

(3.30)

and

Ztf
t0

fF4q þMp½FxLþ FywðLÞ�gd _qdt

¼ fF4q þMp½FxLþ FywðLÞ�gdq



tf
t0
�
Ztf
t0

v

vt
fF4q þMp½FxLþ FywðLÞ�gdqdt

¼ �
Ztf
t0

v

vt
fF4q þMp½FxLþ FywðLÞ�gdqdt

(3.31)

Substituting Eqs (3.29)e(3.31) into Eq. (3.28) and rearranging, we obtain

dq

Ztf
t0

ðT þW � PÞdt

¼
�
IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq � s

�
dq ¼ 0

The virtual displacement dq is arbitrary and independent. We must have

IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq � s ¼ 0 (3.32)
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Therefore, the equation of motion is

IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq ¼ s

Variation with Respect to Variable w

The variation of the potential energy w.r.t. w is

dwT ¼
ZL
0

r½ðx _qþ _wÞd _wþ _q
2
wdw�dxþMpðDxd _wþ DydwÞ

þMpð _4ðLÞ þ _qÞ½ðac cos 4� bc sin 4Þd _wþ ðac sin 4þ bc cos 4Þdw _q�

¼
ZL
0

r½ðx _qþ _wÞd _wþ _q
2
wdw�dxþMpd _wðLÞ½Dx þ ð _4ðLÞ þ _qÞ

ðac cos 4� bc sin 4Þ� þMp
_qdwðLÞf½ _4ðLÞ þ _q�ðac sin 4þ bc cos 4Þ þ Dyg

¼
ZL
0

r½ðx _qþ _wÞd _wþ _q
2
wdw�dxþMpd _wðLÞFx þMp

_qdwðLÞFy

(3.33)

The variation of potential energy is given by

dwP ¼
ZL
0

cð4� w0Þ
�
� v

vx
dw

�
dx ¼ �cð4� w0Þdw

L

0
þ
ZL
0

cð4� w0Þ0dwdx (3.34)

The work due to force is

dWw ¼ 0 (3.35)

Substituting Eqs (3.33)e(3.35) into Hamilton’s principle yields

dw

Ztf
t0

ðT þW � PÞdt

¼
Ztf
t0

ZL
0

r½ðx _qþ _wÞd _wþ _q
2
wdw� cð4� w0Þ0dw�dxdt

þ
Ztf
t0

½Mpd _wðLÞFx þMp
_qdwðLÞFy�dt þ

Ztf
t0

cð4� w0Þdw

L
0
dt

(3.36)
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We perform the following integration by parts with respect to time:

Ztf
t0

ZL
0

r½ðx _qþ _wÞd _wþ _q
2
wdw� cð4� w0Þ0dw�dxdt

¼
ZL
0

dxr

�
x _qdw




tf
t0
�
Ztf
t0

x€qwdwdt þ _wdw



tf
t0
�
Ztf
t0

€wdwdt

þ
Ztf
t0

_q
2
wdwdt �

Ztf
t0

cð4� w0Þ0dwdt
�

¼
ZL
0

Ztf
t0

rfð�x€q� €wþ _q
2
wÞ � cð4� w0Þ0gdwdxdt

(3.37)

where dw vanishes at t¼ t0 and t¼ tf. Similarly:

Ztf
t0

½Mpd _wðLÞFx þMp
_qdwðLÞFy�dt

¼ Mp


Fxdw




tf
t0
�
Ztf
t0

_Fxdwdt

�
þ
Ztf
t0

Mp
_qFydwdt

¼ �Mp

Ztf
t0

_Fxdwdt þ
Ztf
t0

Mp
_qFydwdt

¼
Ztf
t0

�Hwdwdt

(3.38)

Substituting Eqs (3.37) and (3.38) into Eq. (3.36), we obtain

dw

Ztf
t0

ðT þW � PÞdt

¼
ZL
0

Ztf
t0

rfð�x€q� €wþ _q
2
wÞ � cð4� w0Þ0gdwdxdt þ

Ztf
t0

f�Hw þ cð4� w0Þ0gdwðLÞdxdt

The displacement dw is arbitrary. Hence, we must have

Cð4� w0Þ þ rðx€qþ €w� _q
2
wÞ ¼ 0 (3.39)

Modeling of Flexible Manipulators 31



Cð4� w0Þ � Hw ¼ 0 when x ¼ L (3.40)

We get one equation of motion:

Cð4� w0Þ þ rðx€qþ €w� _q
2
wÞ ¼ 0 (3.41)

with boundary conditions

x ¼ 0; w ¼ 0
x ¼ L; Cð4� w0Þ � Hw ¼ 0

(3.42)

Variation with Respect to Variable 4

Now we take the variation for the potential energy w.r.t. 4:

d4T ¼
ZL
0

rSð _4þ _qÞd _4dxþ Jp½ _4ðLÞ þ _q�d _4

þMpðGx cos 4þ Gy sin 4Þd _4þMpð _4ðLÞ þ _qÞ½ðGy cos 4� Gx sin 4Þd _4

¼
ZL
0

rSð _4þ _qÞd _4dxþ F4qd _4þMpF4

(3.43)

The variation of potential energy is given by

dwP ¼
ZL
0

½D40d40 þ cð4� w0Þd4�dx

¼ D40d4


L
0
�
ZL
0

fD400d4dx� cð4� w0Þgd4dx
(3.44)

The work due to force is

dW4 ¼ 0 (3.45)

Substituting Eqs (3.43)e(3.45) into Hamilton’s principle:

d4

Ztf
t0

ðT þW � PÞdt

¼
Ztf
t0

ZL
0

frSð _4þ _qÞd _4þ ½D400d4� cð4� w0Þ�d4gdxdt

þ
Ztf
t0

½�D40dt þMpF4 � _F4q�d4ðLÞdt
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We perform the following integration by parts with respect to time:

Ztf
t0

ZL
0

frSð _4þ _qÞd _4þ ½D400d4� cð4� w0Þ�d4gdxdt

¼
ZL
0

dxrSfð _4þ _qÞd4



tf
t0
�
Ztf
t0

ð€4þ €qÞd4dtg þ
Ztf
t0

ZL
0

fD400 � cð4� w0Þgd4dxdt

¼ �
Ztf
t0

ð€4þ €qÞd4dtg þ
Ztf
t0

ZL
0

fD400 � cð4� w0Þgd4dxdt

where we took into account df vanishing at t¼ t0 and t¼ tf :

d4

Ztf
t0

ðT þW � PÞdt

¼
Ztf
t0

½�D40dt � H4�d4ðLÞdt þ
Ztf
t0

ZL
0

f�rSð€4þ €qÞ þ D400 � cð4� w0Þgd4dxdt

¼ 0

The displacement df is arbitrary. Hence, we must have

ðD40Þ0 � cð4� w0Þ � rSð€4þ €qÞ ¼ 0
D40 þ H4 ¼ 0 when x ¼ L

We get another equation of motion:

ðD40Þ0 � cð4� w0Þ � rSð€4þ €qÞ ¼ 0

with boundary conditions

x ¼ 0; 4 ¼ 0
x ¼ L; D40 þ H4 ¼ 0

3.3.4 Equations of Motion for Timoshenko Beam Model

To summarize, the motion equations are found to be

ðD40Þ0 � cð4� w0Þ � rSð€4þ €qÞ ¼ 0 (3.46)

Cð4� w0Þ þ rðx€qþ €w� _q
2
wÞ ¼ 0; (3.47)
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IH€qþ v

vt

ZL
0

r½x _wþ ðx2 þ w2Þ _qþ Sð _qþ _w0Þ�dxþ Hq ¼ s (3.48)

with boundary conditions

x ¼ 0; w ¼ 0; 4 ¼ 0 (3.49)

x ¼ L; D40 þ H4 ¼ 0; Cð4� w0Þ � Hw ¼ 0 (3.50)

where Hq, H4, and Hw are given by the same equations as in the EulereBernoulli model.

Note that now we have three, instead of two, coupled motion equations.

3.4 Linearization of the Beam Dynamic Models

3.4.1 Introduction

In order to analyze fundamental vibration behavior and the time response of the manipulator

system, we need to linearize the nonlinear dynamic equations. The dynamic models after

linearization are easier to analyze and easier for control design.

To linearize the dynamic models described in the previous section, we neglect all deformation

terms which are higher than the first order. This is justified due to the small deformation

assumption. All the second or higher order displacement and strain terms are ignored [30] for

both the EulereBernoulli and Timoshenko beam theories. In addition, we ignore all the

second or higher order cross terms. Note that these simplifications have been adopted in

almost all the published works on modeling of flexible manipulators. As we can see later from

the simulation results, nonlinear terms have noticeable effects on dynamic responses of

flexible arms only when motion speeds are extremely high.

After a tedious process of simplification, we arrive at the following relationships:

Hq ¼ H4 þ LHw; Hw ¼ mp _Fx; H4 ¼ _F4q

Fx ¼ DxðxÞ þ acð _4þ _qÞ
F4q ¼ Jpð _4þ _qÞ þ acMpDxðLÞ

Therefore

v

vt

ZL
0

r½sð _wþ s _qÞ þ Sð _qþ _4Þ�dsþ Hq ¼ �D40ð0Þ (3.51)

which enables us to eliminate the integral terms in dynamic equations.
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To make the form of dynamic equations simpler, we further define the total deflection n and

rotation a of the manipulator as

nðx; tÞ ¼ wðx; tÞ þ xqðtÞ; aðx; tÞ ¼ 4ðx; tÞ þ qðtÞ (3.52)

In terms of the total deflection and rotation, the linearized dynamic equations of flexible

manipulators can be summarized as follows.

3.4.2 EulereBernoulli Model after Linearization

Using Eq. (3.51), we have

ðD v00Þ00 þ rð€v� S€v00Þ ¼ 0 (3.53)

IH €q� Dv00ð0Þ ¼ s (3.54)

with boundary conditions

x ¼ 0; v ¼ 0; v0 ¼ q (3.55)

x ¼ L; Dv00 þ Jp€v
0 þ acMp€v ¼ 0; ðDv00Þ0 � rS€v0 ¼ Mpð€vþ ac€v

0Þ (3.56)

Note that in the dynamic models presented in Ref. [2], neither the rotary inertia nor the size of

the tip load had been considered (i.e. S¼ 0 and ac¼ 0 were assumed).

3.4.3 Timoshenko Model after Linearization

Similarly, we have

ðDa0Þ0 � Cða� v0Þ � rS€a ¼ 0; ½Cða� v0Þ�0 þ r€v ¼ 0 (3.57)

IH€q� Da0ð0Þ ¼ s (3.58)

with boundary conditions

x ¼ 0; v ¼ 0; a ¼ q (3.59)

x ¼ L; Da0 þ Jp€aþ acMp€v ¼ 0; Cða� v0Þ ¼ Mpð€vþ ac€aÞ: (3.60)

Note that when no tip load is present, the equations in this case are the same as those given in

Ref. [7].

From boundary conditions (3.55) or (3.56), we find that Eq. (3.56) can be used to calculate

hub rotation q and thus to eliminate q from dynamic equations. To compensate for the lost

boundary condition, Eq. (3.54) or (3.58) can be considered as the new condition. In fact,
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Eq. (3.54) or (3.58) represents the dynamic torque balance equation of the hub according to

the EulereBernoulli or Timoshenko beam model.

3.4.4 Dimensionless Functions, Variables, and Parameters

The linearized equation of motion may be further simplified by introducing the following

dimensionless variables and parameters:

zðxÞ ¼ v

L
; x ¼ x

L
; d ¼ S

L2
; s ¼ CL2

D
; c2 ¼ rL2

D
(3.61)

m ¼ Mp

rL
; h ¼ IH

rL3
; k ¼ Jp

rL3
; z ¼ ac

L
(3.62)

The resulting equations are as follows.

EulereBernoulli Model with Dimensionless Variables

z0000 þ c2€z� dc2€z00 ¼ 0 (3.63)

with boundary conditions

zð0Þ ¼ 0; hc2€z0ð0Þ � z00ð0Þ ¼ sL
D

(3.64)

z00ð1Þ þ c2½k€z0ð1Þ þ zm€zð1Þ� ¼ 0; z000ð1Þ � dc2€z0ð1Þ � mc2½€zð1Þ þ z €z0ð1Þ� ¼ 0 (3.65)

Timoshenko Model with Dimensionless Variables

a00 � sða� z0Þ � dc2a ¼ 0; sða� z0Þ0 þ c2€z ¼ 0 (3.66)

with boundary conditions

zð0Þ ¼ 0; hc2€að0Þ � a0ð0Þ ¼ sL
D

(3.67)

a0ð1Þ þ c2½k€að1Þ þ zm€zð1Þ� ¼ 0; s½að1Þ � z0ð1Þ� � mc2½€zð1Þ þ z€að1Þ� ¼ 0 (3.68)

A prime now indicates the differentiation with respect to the dimensionless coordinate x.

Note that if the shear deformation is very small, smust be very large since the shear modulus

G is large in this case. From Eq. (3.66), amust approach z0 for all x in order to keep s(a� z0)
of finite value. Actually, the first equation of Eq. (3.66) reveals that sða� z0Þ/a00 � dc2€a/
z000 � dc2€z0 as s / N. Substituting this result into the second equation and boundary

conditions, we can easily show that the Timoshenko model reduces to the EulereBernoulli

model when s / N.
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Sometimes it is much easier to deal with a single higher-order decoupled partial differential

equation than several coupled low-order equations. Using the technique developed in

Ref. [33], the two coupled equations in Eq. (3.66) can be decoupled by the following

transformation:

z ¼ f0; a ¼ f00 � c2

s
€f (3.69)

where f is a new function that has to satisfy the equation:

f0000 � ð1
s
þ dÞc2€f00 þ c2€fþ d

s
c4€f ¼ 0 (3.70)

Thus, we have replaced two coupled second-order equations involving two variables by an

equivalent fourth-order equation with one variable.

3.5 Finite-Dimensional Modeling of Flexible Manipulators

The flexible manipulator system is an infinite-dimensional system. Previous sections have

given the infinite-dimensional modeling approach of flexible manipulators.

3.5.1 Natural Frequency and Modal Shapes

Here we [34] focus on determining the natural frequencies and their associated modal shapes

to achieve the state-space equation that will be used for control scheme design. Since modal

shapes provide the basis for a state-space calculating system, these frequencies and their

modal shapes will be extracted from a uniform beam.

Classical analytical techniques can be employed to derive the resonant frequencies and the

modal shapes. The most useful technique is the separability of the modal shape, which is

a function of a spatial variable only, from the time-varying amplitude of themodal shape,which

is a function of time. The admissible modal functions will then satisfy the governing equations,

(3.53) and (3.54). After taking the assumed form of the solution and substituting them for the

beam boundary conditions (3.55) and (3.56) listed in Section 3.4.2, four simultaneous

equations result and are applicable to the natural frequencies and their modal shapes.

Modal Determinant

For uniform flexible manipulators, the governing equation of Eq. (3.53) is

EI v0000 � rS€n00 þ r€v ¼ 0 (3.71)

Assuming that the beam undergoes harmonic vibrations, i.e. v(x,t)¼J(x)q(t), whereJ(x) is

called the modal shape or eigenfunction and q(t) is the time-varying amplitude of the mode

shape, the admissible function is
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qðtÞ ¼ C1 sinðutÞ þ C2 cosðutÞ (3.72)

where u is the resonant frequency of the system.

Applying Eq. (3.72) to Eq. (3.71), we have

EIJ0000 � rSu2J00 � ru2J ¼ 0 (3.73)

It is obvious that the eigenvalues of this equation are

l1;2 ¼ �a; l3;4 ¼ �ib (3.74)

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� rSu2

2EI

s
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� rSu2

2EI

s
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrSu2Þ2 þ 4EIru2

q

The complementary solution of Eq. (3.73) is

JðxÞ ¼ A cosh axþ B sinh a xþ C cos bxþ D sin bx (3.75)

which is the modal shape or eigenfunction. This assumed solution must meet the constraints

of Eqs (3.55) and (3.56), which are, in terms of the above coefficients,

Aþ C ¼ 0 (3.76)

EIa2Aþ Ihu
2aB� EIb2C þ Ihu

2a1D ¼ 0 (3.77)

a1Aþ a2Bþ a3C þ a4D ¼ 0 (3.78)

b1Aþ b2Bþ b3C þ b4D ¼ 0 (3.79)

where

a1 ¼ Mpu
2cosh aLþ ðrSu2 þ acMpu

2Þasinh aLþ EIa3sinh al

a2 ¼ Mpu
2sinh aLþ ðrSu2 þ acMpu

2Þacosh aLþ EIa3cosh bl

a3 ¼ Mpu
2cosh bLþ ðrSu2 þ acMpu

2Þ bcos bLþ EIb3sinh bl

a4 ¼ Mpu
2sinh bLþ ðrSu2 þ acMpu

2Þbcosh bL� EIb3cosh bl

b1 ¼ EIa2cosh aL� Jpu
2asinh aL�Mpacu

2cosh aL

b2 ¼ EIa2sinh aL� Jpu
2acosh aL�Mpacu

2sinh aL

b3 ¼ �EIb2cosh bL� Jpu
2bsinh bL�Mpacu

2cos bL

b4 ¼ �EIb2sinh bL� Jpu
2bcosh bL�Mpacu

2sin bL
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The matrix form of Eqs (3.76)e(3.79) is2
664
1 0 1 0
EIa2 Ihu

2a �EIb2 Ihu
2b

a1 a2 a3 a4
b1 b2 b3 b4

3
775
2
664
A
B
C
D

3
775 ¼ 0 (3.80)

The natural frequencies are obtained by solving the determinant equal to zero.

Modal Frequencies and Modal Shapes

For a given material and parameters of a beam as in Table 3.1, if we set A¼ 1, then C¼�1.

Equation (3.80) is redundant, and for each frequency it becomes
a2 a4
b2 b4

�
B
D

�
¼

a3 � a1
b3 � b1

�
(3.81)

By solving this, B and D are obtained. After normalizing the eigenfunction to meet

ZL
0

JðxÞ2dx ¼ 1 (3.82)

the coefficients are obtained with their frequencies, as shown in Table 3.2.

In fact, the number of modal shapes is infinite, because of the distributed parameter beam

system. Only the first 10 modal shapes and their frequencies are listed in the calculation of

the state-space equation in the next chapter. Generally, the more modal shapes involved in

the system, the more complicated the system model will be. According to Hastings and

Book [35,36] and Hughes [37], the first two modes have a greater influence on the model

accuracy than the higher-order modes. For typical applications, the higher order must be

truncated to meet the computation time. Also, many factors affect the modal shape,

including hub position. Geniele et al. [38] showed that this affects the actual modal shape

since Coulomb friction coefficients are related to hub position. The first 10 modal shapes are

plotted as in Figures 3.3e3.12. Conventionally, the horizontal axis is the spatial coordinator,

while the vertical is the amplitude meter. From these plots, it is clear that if the high-order

modal shapes are not taken into account, the high-frequency terms in the system dynamics

are eliminated. In later chapters, these terms are treated as model uncertainties in the

controller design.

Table 3.1: Parameters of uniform beam

E I L r M Mp Jp ac Ih

1.0 10.0 1.0 1.0 10.0 1.0 0.5 0.1 5.0
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Table 3.2: Modal frequencies and coefficients of modal shapes

Mode Frequency A B C D

1 2.1925 1 �0.7887 �1 0.1316
2 11.7525 1 �0.9543 �1 0.5303
3 52.3515 1 �0.2839 �1 �0.0018
4 114.7315 1 �1.5491 �1 0.2762
5 218.4795 1 �0.1982 �1 �0.0036
6 336.5055 1 �1.5622 �1 0.1500
7 497.3505 1 �0.1828 �1 �0.0025
8 671.0485 1 �1.5549 �1 0.1028
9 888.0655 1 �0.1774 �1 �0.0018
10 1117.5115 1 �1.5504 �1 0.0785
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Figure 3.3: The First Modal Shape.
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Figure 3.4: The Second Modal Shape.
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In theory, the fundamental frequency of a rigid manipulator is infinitely large. Therefore, it

can move quickly without vibration. Due to the beam flexibility, the resonant frequency is

dramatically reduced (the first one is 2.1925 rad/s here). This means that it has to move slowly

to experience small vibrations under normal operation. In later chapters we will design and

control the flexible beam to achieve better results. But first let us derive a state-space model

using these modal shapes.

3.5.2 Finite Modal Model of EulereBernoulli Beam

The dynamics of a flexible manipulator system are described by an infinite-dimensional

mathematical model, since the model consists of partial differential equations. However, to
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Figure 3.5: The Third Modal Shape.
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Figure 3.6: The Fourth Modal Shape.

Modeling of Flexible Manipulators 41



design a finite-dimensional controller, a finite-dimensional system model is needed. To

achieve this goal, a finite-dimensional approximation needs to be used to model the flexible

manipulator, to retain a finite number of modes and to truncate the other, less significant

modes based on the requirements of the controller. The N-mode expansion for the beam

displacement u(x,t) is given by

uðx; tÞ ¼
XN
i¼1

4iðxÞqiðtÞ (3.83)
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Figure 3.8: The Sixth Modal Shape.
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Figure 3.7: The Fifth Modal Shape.
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The separability in this case refers to describing the displacement as a series of terms that are

products of two separate functions, each of which is a function of a single variable, a spatial

variable x and time t respectively. 4i is the ith modal shape, or eigenfunction. qi is the

corresponding generalized modal coordinate describing the flexible deformation.

The scheme in developing a mathematical model is to use the Lagrangian method or

Hamilton’s principle for the total kinetic energy, total potential energy, and virtual work done

by the torque actuated to the joint. This method will not introduce extra errors into the system

and will be used to obtain the state-space model for a flexible manipulator suggested in this

chapter [34].
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Figure 3.9: The Seventh Modal Shape.
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Figure 3.10: The Eighth Modal Shape.
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The hub kinetics is written as

Th ¼ 1

2
Ih½ _q2 þ _u2ð0; tÞ0� (3.84)

where u¼ vu/vx¼u0. After substituting Eq. (3.83) into Eq. (3.84), we have

Th ¼ 1

2
Ih _q

2 þ 1

2
Ih
Xn
i¼1

Xn
j¼1

_qi _qj4
0
ið0Þ40

jð0Þ (3.85)
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Figure 3.11: The Ninth Modal Shape.
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Figure 3.12: The Tenth Modal Shape.

44 Chapter 3



In the same way, the kinetics of the tip load is

Tp ¼ 1

2
Mpð _qLþ _wðL; tÞÞ2 þ 1

2
Jpð _qþ _wðL; t0ÞÞ2 þ acMð _qþ _wðL; t0ÞÞð _qLþ _wðL; tÞÞ (3.86)

which is the same as

Tp ¼ 1

2
G1

_q
2 þ _q

XN
i¼1

_qG2ðiÞ þ 1

2

XN
i¼1

XN
j¼1

_qi _qjG3ði; jÞ (3.87)

where

G1 ¼ ðMpL
2 þ Jp þ 2MpLacÞ

G2ðiÞ ¼ ðJp þMpLacÞJ0
iðLÞ þ ðLþ acÞMpJiðLÞ

G3ði; jÞ ¼ JpJ
0
iðLÞJ0

jðLÞ þMpJiðLÞJjðLÞ þ 2acMpJ
0
iðLÞJjðLÞ

(3.88)

The kinetic energy of the link

TL ¼ 1

2

ZL
0

½ðx _qþ _wÞ2 þ Sð _w0 þ _qÞ2�rdx (3.89)

is equal to

TL ¼ 1

2
L1

_q
2 þ _q

XN
i¼1

_qL2ðiÞ þ 1

2

XN
i¼1

XN
j¼1

_qi _qjL3ði; jÞ (3.90)

where

L1 ¼
ZL
0

ðx2 þ SÞrdx

L2ðiÞ ¼
ZL
0

½xJiðxÞ þ SJ0
iðxÞ�rdx

L3ði; jÞ ¼
ZL
0

½JiðxÞJjðxÞ þ SJ0
iðxÞJ0

jðxÞ�rdx

(3.91)
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S is a function of the cross-sectional area of the link. The total potential energy is

P ¼ 1

2

ZL
0

EIðxÞw2ðxÞ00 dx ¼ 1

2

XN
i¼1

XN
j¼1

qiqjkði; jÞ (3.92)

where kði; jÞ ¼
Z L

0
EIðxÞJ00

i ðxÞJ00
j ðxÞdx.

The generalized virtual work is derived as

W ¼ sv0ð0; tÞ ¼ sqþ sw0ð0; tÞ ¼ sqþ s
XN
i¼1

J0
ið0ÞqiðtÞ (3.93)

In order to apply the Hamiltonian principle, let us substitute Eqs (3.85), (3.87), (3.89), (3.91),

and (3.92) for the following formula and group it in terms of q, dqi, and their derivatives:

X ¼ TL þ Th þ Tp � PþW ¼ 1

2
U1

_q
2 þ _q

XN
i¼1

qiU2ðiÞ

þ 1

2

XN
i¼1

XN
j¼1

qiqjU3ði; jÞ þ sqþ þ s
XN
i¼1

_Jið0Þq� 1

2

XN
i¼1

XN
j¼1

qiqjkði; jÞ
(3.94)

where

U1 ¼ Ih þ G1 þL1

U2 ¼ G2ðiÞ þL2ðiÞ
U3ði; jÞ ¼ IhJ

0
ið0ÞJ0

jð0Þ þ G3ði; jÞ þL3ði; jÞ
(3.95)

After applying the Hamiltonian method, we obtain

dX ¼ U1
_qd _qþ

XN
i¼1

UðiÞ _qd _qþ _q
XN
i¼1

U2ðiÞd _qi

þ
XN
i¼1

XN
j¼1

_qjU3ði; jÞd _qi þ sdqþ s
XN
i¼1

J0
ið0Þdqi �

XN
i¼1

XN
j¼1

qjkði; jÞdqi
(3.96)

Since

Ztf
t0

_qd _qdt ¼ _qdq



 tf
t0

�
Ztf
t0

€qdqdt ¼ �
Ztf
t0

€qdqdt;

Ztf
t0

_qid _qdt ¼ �
Ztf
t0

€qidqdt

Ztf
t0

_qd _qidt ¼ �
Ztf
t0

€qdqidt;

Ztf
t0

_qid _qjdt ¼ �
Ztf
t0

€qidqidt

(3.97)
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the extended Hamilton principle results in

Ztf
t0

dXdt ¼
Ztf
t0

("
� U1

€q�PN
i¼1

€qiU2ðiÞ þ s

#
dq

�
"
€q
PN
i¼1

U2ðiÞ þ
PN
i¼1

PN
j¼1

€qjU3ði; jÞ þ
PN
i¼1

PN
j¼1

qjkði; jÞ � s
PN
i¼1

J0
ið0Þ�

#
dqi

)
dt ¼ 0

(3.98)

These coefficients of dq, dqi, 1� i� N must be zero. That is,

U1
€qþ

XN
i¼1

€qiU2ðiÞ � s ¼ 0 (3.99)

�€qU2ðiÞ �
XN
j¼1

€qjU3ði; jÞ �
XN
j¼1

qjkði; jÞ þ sJ0
ið0Þ ¼ 0; 0 � i � N (3.100)

or in matrix form:

M€xþ Kx ¼ bs (3.101)

where

x ¼ ½q; q1; q2; q3;.; qN �TðNþ1;1Þ; b ¼ ½1;J0
1ð0Þ;J0

2ð0Þ;.;J0
Nð0Þ�TðNþ1;1Þ

M ¼

2
664

U1 U2ð1Þ U2ð2Þ , U2ðNÞ
U2ð1Þ U3ð1; 1Þ U3ð1; 2Þ , U3ð1;NÞ
, , , , ,

U2ðNÞ U3ðN; 1Þ U3ðN; 2Þ , U3ðN;NÞ

3
775

K ¼

2
664
0 0 0 , 0
0 kð1; 1Þ kð1; 2Þ , kð1;NÞ
, , , , ,
0 kðN; 1Þ kðN; 2Þ , kðN;NÞ

3
775

(3.102)

As has been shown, U3(i,j)¼U3(j,i), k(i,j)¼ k(j,i), thus the matrices M and K are symmetric

and are called mass and rigidity matrices respectively.

3.5.3 Finite Difference Model

Consider transverse motions of a single-link flexible beam with tip load mass Mp. It is

modeled as a beam of length L fixed on a rigid hub with rotary inertia IH. When shear
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deformations and rotary inertia of the beam are neglected, the EulereBernoulli dynamic

equations and the corresponding boundary conditions can be expressed in terms of its total

displacement, y(x,t)¼ xq(t)þ w(x,t), as

EIðxÞ
�
v4y

vx4

�
þ rAðxÞv

2y

vt2
¼ 0 (3.103)

IH€q� EIðxÞ
�
v2y

vx2

�
x¼0

¼ sin (3.104)

yx¼0 ¼ 0; y0x¼0 ¼ q (3.105)

EIðxÞ
�
v2y

vx2

�
x¼L

þ Jp

 
v€y

vx

!
x¼L

þ acMp€y ¼ 0 (3.106)

EIðxÞ
�
v3y

vx3

�
x¼L

�Mp

 
€yþ ac

v€y

vx

!
x¼L

¼ 0 (3.107)

where ( )0 ¼ v( )/vx, w denotes the pure flexible beam deflection, q the rigid hub rotation, and

sin the torque applied on the hub. EI(x) is the bending rigidity, which is a function of x for

a non-uniform cross-section beam and a constant for a uniform cross-section beam. Primes

indicate differentiation with respect to coordinate x.

The finite difference method (method of lines) is used to approximate partial differential

equations. According to Refs [39,40], Eqs (3.103)e(3.107) can be transformed into vibration

equations and then to first-order differential equations for convenience of solution.

According to the central difference method [41], the function f(x) can be evaluated at values

that lie to the left and right of x. Then centered formulas of order O(h2) are

f 0ðxÞ ¼ 1

2Dx
½ f ðxþ DxÞ � f ðx� DxÞ� þ Oðh2Þ

f 00ðxÞ ¼ 1

Dx2
½ f ðxþ DxÞ � 2f ðxÞ þ f ðx� DxÞ� þ Oðh2Þ

f 000ðxÞ ¼ 1

2Dx3
½ f ðxþ 2DxÞ � 2f ðxþ DxÞ þ 2f ðx� DxÞ � 2f ðx� 2DxÞ� þ Oðh2Þ

f 4ðxÞ ¼ 1

Dx4
½ f ðxþ 2DxÞ � 4f ðxþ DxÞ þ 6f ðxÞ � 4f ðx� DxÞ þ f ðx� 2DxÞ� þ Oðh2Þ

(3.108)

where Dx is step size and O(h2) is truncation error.
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The flexible beam length L is divided into n segments, Dx¼ L/n, and thereby defines

xi ¼ i,Dx; yi ¼ yðiDx; tÞ; bi ¼ bðiDxÞ ¼ EIði,DxÞ; Ai ¼ AðiDxÞ
i ¼ 0; 1; 2;.; n

According to boundary equation (3.105), we obtain

y�1 ¼ �Dx,q; y00 ¼ q (3.109)

Equation (3.104) can be rewritten as

Ih€q� b0
1

ðDxÞ2 ðy1 � Dx,qÞ ¼ sin (3.110)

Equation (3.103) can be approximated by the following:

for i¼ 1 we have

1

2ðDxÞ4½ðb2 þ 2b1 � b0Þy3 � 4ð3b1 � b0Þy2 � 4ðb2 � 5b1 � b0Þy1 þ 4ðb2 � 3b1Þy0

�ðb2 � 2b1 � b0Þy�1� þ rA1€y1 ¼ 0

(3.111)

for i¼ 2 we have

1

2ðDxÞ4½ðb3 þ 2b2 � b1Þy4 � 4ð3b2 � b1Þy3 � 4ðb3 � 5b2 � b1Þy2 þ 4ðb3 � 3b2Þy1

�ðb3 � 2b2 � b1Þy0� þ rA2€y2 ¼ 0

(3.112)

for i¼ 3,.,n� 2 we have

1

2ðDxÞ4½ðbiþ1þ2bi�bi�1Þyiþ2�4ð3bi�bi�1Þyiþ1�4ðbiþ1�5bi�bi�1Þyiþ4ðbiþ1�3biÞyi�1

�ðbiþ1�2bi�bi�1Þyi�2�þrAi€yi ¼ 0

(3.113)

and for i¼ n� 1

1

ðDxÞ2ðbny
00
n � 2bn�1y

00
n�1 þ bn�2y

00
n�2Þ þ rAn�1€yn�1 ¼ 0 (3.114)
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Equations (3.106) and (3.107) can be approximately expressed as respectively

bny
00
n ¼ Jp

Dx
€yn�1 �

�
Jp
Dx

þ acMp

�
€yn (3.115)

bny
00
n � bn�1y

00
n�1 ¼ Mp½ðDxþ acÞ€yn � ac€yn�1� (3.116)

Substituting Eq. (3.115) into Eqs (3.114) and (3.116), and replacing differential calculus with

a difference quotient, we obtain

�
Jp

ðDxÞ3þrAn�1

�
€yn�1�

1

ðDxÞ2
�
Jp
Dx

þac Mp

�
€yn

� 1

ðDxÞ4
�
2bn�1 yn�

�
4bn�1þbn�2

�
yn�1þ

�
2bn�1þ2bn�2

�
yn�2�bn�2yn�3

�¼ 0

(3.117)

�
Jp
Dx

þ acMp

�
€yn�1 �

�
Jp
Dx

þ ac Mp

�
þMPðDxþ acÞ

�
€yn �

bn�1

ðDxÞ2
�
yn � 2 yn�1 þ yn�2

�
¼ 0

(3.118)

Then, integrating Eq. (3.111) into Eq. (3.113), and using Eqs (3.117) and (3.118), we have

a vibration equation in matrix form:

M €yþ K y ¼ Bsin (3.119)

where y ¼ ½q; y1; y2;.; yn�2; yn�1; yn�Tnþ1, B is the input matrix, B ¼ ½1; 0; 0;.; 0; 0; 0�Tnþ1.

M and K denote the mass and rigidity matrices of the system respectively, and are expressed

as follows:

M ¼

2
666666666664

IH
rS1

1 0
rSi

1

0
Jp
Dx3

þ rSn�1 � 1

Dx2

�
Jp
Dx

þ acMp

�
1

Dx2

�
Jp
Dx

þ acMp

�
� 1

Dx

�
Jp
Dx2

þ 2acMp

Dx
þMp

�

3
777777777775
nþ1;nþ1

K ¼ ½K1;K2;K3;. Ki;. Kn;Knþ1�
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where

K1 ¼ ½k11; k12; k13;.; k1n; k1;nþ1�

K2 ¼ 1

2Dx4
½k21; k22; k23;.; k2n; k2;nþ1�

K3 ¼ 1

2Dx4
½k31; k32; k33;.; k3n; k3;nþ1�

Ki ¼ 1

2Dx4
½ki1; ki2; ki3;.; kin; ki;nþ1�

Kn ¼ 1

Dx4
½kn1; kn2; kn3;.; knn; kn;nþ1�;

Knþ1 ¼ 1

Dx4
½knþ1;1; knþ1;2; knþ1;3;.; knþ1;n; knþ1;nþ1�

and k1;1 ¼ b0

Dx
; k1;2 ¼ � b0

Dx2
; k1;3;.; k1;nþ1 ¼ 0

k2;1 ¼ �Dxðb0 þ 2b1 � b2Þ; k2;2 ¼ �4ðb2 � 5b1 þ b0Þ; k2;3 ¼ �4ð3b1 � b0Þ
k2;4 ¼ ðb2 þ 2b1 � b0Þ; k2;5; k2;nþ1 ¼ 0

k3;1 ¼ 0; k3;2 ¼ 4ðb3 � 3b2Þ; k3;3 ¼ �4ðb3 � 5b2 þ b1Þ; k3;4 ¼ �4ð3b2 � b1Þ
k3;5 ¼ ðb3 þ 2b2 � b1Þ; k3;6; k3;nþ1 ¼ 0

ki;1; ki;i�3 ¼ 0; ki;i�2 ¼ �ðbi�2 þ 2bi�1 � biþ1Þ; ki;i�1 ¼ �4ðbi � 3bi�1Þ
ki;i ¼ �4ðbi � 5bi�1 þ bi�2Þ; ki;iþ1 ¼ �4ð3bi�1 � bi�2Þ; ki;iþ2 ¼ ðbi þ 2bi�1 � bi�1Þ

For the ith, i ˛ð4;.; n� 1Þ), row of matrix K, all the elements are zero, except the (i� 2)th

to (iþ 2)th ones and

kn;n�2 ¼ bn�2; kn;n�1 ¼ �2ðbn�1 þ bn�2Þ; kn;n ¼ ð4bn�1 þ bn�2Þ; kn;nþ1 ¼ �2bn�1

knþ1;n�1 ¼ �bn�1; knþ1;n ¼ 2bn�1; knþ1;nþ1 ¼ �bn�1

On this basis, first-order differential equations and then the state-space equations can be

easily obtained for dynamic analysis and the control scheme design.

3.5.4 Finite Element Model

It has been proved that the finite element method is an effective tool for many structural

analysis problems, and it has been applied in the modeling and analysis of flexible

manipulators [39,42,43]. Reference [42] presents a finite element/Lagrangian approach for
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the mathematical modeling of lightweight flexible manipulators. Furthermore, owing to the

characteristic of the method which uses a finite dimensional model to approximate an infinite

dimensional subject, the finite element model is relatively intuitive and is easy to use in point-

observation and point-control. And here it is also suitable for concurrent design and

optimization of a flexible manipulator system including cross section optimization carried out

in later sections. Early studies on flexible manipulators, both single-link and multi-link ones,

adopting the finite element method, are all towards a uniform cross section flexible beam,

while here we will firstly set up a uniform cross-sectional flexible beam model and then apply

the model to the discussions of a non-uniform cross-sectional flexible beam.

When considering a single-link flexible manipulator mounted in the horizontal plane with

a tip-mass payload, it consists of a beam of length L fixed on a rigid hub as shown in

Figure 3.1, where X0OY0 and X1OY1 denote stationary and moving coordinates respectively.

E, I, r, A, and Mp are Young’s modulus, the moment of inertia of the cross-sectional area,

beam density, cross-sectional area of the beam, and tip mass payload respectively.

The flexible manipulator is viewed as an EulereBernoulli beam and is divided into N

segments. The following are some assumptions:

1. Rotary inertia and shear deformation are ignored.

2. Cross-sectional areas and mass density remain constant in each segment.

3. Perpendicular deformation is neglected since the beam is moving in the horizontal plane.

As for the EulereBernoulli beam, the motion can be described by the rigid rotation angle q of

the hub and flexible displacement w of the beam. Thus, the total displacement y of a point

along the manipulator at a distance x from the hub is

y ¼ xqðtÞ þ wðx; tÞ (3.120)

The length of each segment is l¼ L/N. As for the nth segment, flexible displacement w(x,t)

can be approximately expressed as

wnðx; tÞ ¼ NnðxÞ QnðtÞ (3.121)

where Nn(x) and Qn(t) are the shape function and generalized coordinate respectively. While

using the standard finite element method, the shape function can be defined as [40,43]

NnðxÞ ¼ ½F1ðxÞ F2ðxÞ F3ðxÞ F4ðxÞ� (3.122)

where

F1ðxÞ ¼ 1� 3x2=l2 þ 2x3=l3; F2ðxÞ ¼ x� 2x2=lþ x3=l2; F3ðxÞ ¼ 3x2=l2 � 2x3=l3

F4ðxÞ ¼ x3=l2 � x2=l 0 � x � l

The generalized coordinate of each node is

QnðtÞ ¼ ½wnðtÞ qnðtÞ wnþ1ðtÞ qnþ1ðtÞ� (3.123)
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wherewn(t),wnþ1(t) denote flexible displacements respectively, while qn(t) and qnþ1(t) denote

rotation angles of the corresponding node. Substituting Eq. (3.121) into Eq. (3.120), we

obtain the unified expression:

yðx; tÞ ¼ xqþ
XN
n¼1

NnðxÞ QnðtÞ ¼ N 0
nðxÞ Q0

nðtÞ ¼ ½x NnðsÞ�½qðtÞ QnðtÞ�T (3.124)

where

s ¼ x�
XN�1

i¼1

li

For the undamped free vibration system, the mass matrix reflects the kinetic energy of the

system while the stiffness reflects the potential energy. According to the energy principle and

basic finite elementmethod, themassmatrix and stiffnessmatrix of eachN segment of the beam

can be obtained, and then the motion equations can be established. Here, the kinetic energy of

the moving flexible manipulator, considering tip payload mass Mp, includes three parts:

1. The kinetic energy of the ith element t of the beam

Eki ¼ 1

2
½Qn�Ti ½Mn�i½Qn�i; i ¼ 1; 2;.;N (3.125)

2. The kinetic energy of tip payload mass

Ekp ¼ 1

2
½Qn�TN ½M�p ½Qn�N (3.126)

3. The rotational kinetic energy of the driving end

Ekm ¼ 1

2
IHq

2 ¼ 1

2
½Qn�T1 ½M�m½Qn�1 (3.127)

where

½Mn�i ¼
r Ail

420

2
66664
M11 M12 M13 M14 M15

M22 156 22l 54 �13l
M23 22l 4l2 13l �3l2

M24 54 13l 156 �22l
M25 �13l �3l2 �22l 4l

3
77775

and in the matrix above

M11 ¼ 140 l2ð3i2 � 3iþ 1Þ;M12 ¼ M21 ¼ 21lð10i� 7Þ
M13 ¼ M31 ¼ 7l2ð5i� 3Þ;M14 ¼ M41 ¼ 21lð10i� 3Þ
M15 ¼ M51 ¼ �7l2ð5i� 2Þ

Modeling of Flexible Manipulators 53



Generalized coordinates are

½Qn�i ¼ ½ q qi wi qiþ1 wiþ1� (3.128)

The inertia matrix of tip payload mass Mp is

½Mn�p ¼

2
66664
MpL

2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 Mp 0
0 0 0 0 0

3
77775

Generalized coordinates are

½Qn�N ¼ ½ q qN wN qNþ1 wNþ1� (3.129)

The kinetic energy inertia matrix of the driving end is expressed as

½M�m ¼

2
66664
IH 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
77775

where IH¼ Ihþ rl3/3.

Generalized coordinates are

½Qn�1 ¼ ½ q q1 w1 q2 w2 � (3.130)

The potential energy of the system is

Ep ¼
XN
i¼1

Epi ¼ 1

2

XN
i¼1

½Qn�Ti ½Kn�i½Qn�i (3.131)

The rigidity of the ith element [Kn]i is

½Kn�i ¼
EIi
l3

2
66664
0 0 0 0 0
0 12 6l �12 6l
0 6l 4l2 �6l 2l2

0 �12 �6l 12 �6l
0 6l 2l2 �6l 4l2

3
77775 (3.132)

where Ai and Ii are the cross-sectional area and rotary inertia of the ith segment of the beam.

Integrating all the N segments and the payload mass, the total kinetic energy of the system can

be obtained as

T ¼ Ekm þ
XN
i¼1

½Mn�i þ Ekp ¼ 1

2
Q�T
n M�

nQ
�
n (3.133)
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The total potential energy of the system is

K ¼
XN
i¼1

Epi ¼ 1

2

XN
i¼1

½Qn�Ti ½Kn�i½Qn�i ¼
1

2
Q�T
n K�

nQ
�
n (3.134)

where the local coordinate Q�
n ¼ ½½Qn� ½Qn�2 . ½Qn�N �T .

The general mass matrix is

M�
n ¼

2
4 ½Mn��1 / 0

« 1 «
0 / ½Mn��N

3
5 (3.135)

The general stiffness matrix is

K�
n ¼

2
4 ½Kn��1 / 0

« 1 «
0 / ½Kn��N

3
5 (3.136)

Considering node coordinates overlapping between neighborhood elements when assembled,

the general coordinate is introduced as

Qz ¼ ½ q q1 w1 q2 w2 q3 w3 . qN�1 wN�1 qN wN qNþ1 wNþ1 �
(3.137)

Then there exists the relationship between the local coordinate and the general coordinate

Q�
n ¼ b Qz, where the transformation matrix b is a (5N)� (2Nþ 1) sparse matrix.

Then the mass matrix and stiffness matrix using general coordinates can be expressed as

b ¼

2
666666666666666666666666664

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

3
777777777777777777777777775
ð5NÞ�ð2Nþ1Þ

(3.138)
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Mz ¼ bT M�
n bT (3.139)

Kz ¼ bT K�
n bT (3.140)

While taking boundary conditions into account, the beam is fixed at one end and it holds that

q1¼ w1 h 0. Then q1 and w1 can be removed from the general coordinates, while the

corresponding row and column in the mass matrix and stiffness matrix can also be removed.

Substituting them into the Lagrange equation, the motion equation based on general

coordinates can be obtained:

M0 €Q0 þ D0 _Q0 þ K 0Q0 ¼ b0s (3.141)

where M0, K0, and Q0 are mass matrix, rigidity matrix, and general coordinates when

substituting boundary conditions, respectively. b0 ¼ ½ 1 0 . 0 �. s is input torque. D0 is
the damping matrix and we choose the linear-type Rayleigh damping [44].

As for the flexible manipulator that contains rigid motion and elastic motion, the mass matrix

can be expressed as

M0 ¼

M0

qq M0
qW

M0
qW M0

WW

�
(3.142)

where M0
WW and M0

qq denote the mass matrices relating to elastic motion and rigid motion

respectively, and M0
qW denotes the coupling parts of elastic and rigid motion.

Likewise, the stiffness matrix can be written as

K0 ¼

0 0
0 K 0

WW

�
(3.143)

where K 0
WW denotes the stiffness matrix relating elastic motion, and it has no elastic and rigid

motion coupling.

Then the total damping matrix can be written as

D0 ¼

0 0
0 D0

WW

�
(3.144)

where linear Rayleigh damping [44]

D0
WW ¼ aM0

WW þ bK0
WW (3.145)

and

a ¼ 2u1u2ðx1u2 � x2u1Þ
u2
2 � u2

1

; b ¼ 2ðx2u2 � x1u2Þ
u2
2 � u2

1

(3.146)
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u1 and u2 denote the modal frequency. x1 and x2 are damping coefficients that can be

determined according to engineering experience.
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4.1 Introduction

In EulereBernoulli beam theory, both rotary inertia and shear deformation are completely

neglected. It is well known from beam and plate theories, however, that both of these factors

have significant effects on vibration behavior, especially for the high-order modal frequencies

of beam or plate-like structures [1e5]. For example, it has been found, for high-order modal

frequencies of shorter beams or thicker plates, that there is an order of magnitude difference

between the frequencies calculated without considering rotary inertia or shear and those

determined by taking them into account. From the control perspective, modal frequencies are

poles of plate dynamics, and in order to design controllers with better performance, high

vibration modes have to be included into plant dynamics for control synthesis. Based on these

considerations, it is necessary to investigate the influences of rotary inertia and shear

deformation on the vibration of flexible manipulators.

Another factor that obviously also affects the vibration of flexible manipulators is the load

carried by end-effectors (the tip load). If the influence of the tip load on the vibration of

flexible manipulators is shown to be significant, non-adaptive control approaches should be

considered inappropriate or at least inefficient for the control of flexible manipulators. This is

because the tip load is always changing with tasks and environments, but the design of non-

adaptive controllers is usually based on a fixed nominal dynamic model. This implies, in this

case, that the adaptive control method must be used for control of the flexible manipulator. To

our knowledge, the effect of tip load has not been investigated in detail and no quantitative

analysis has been performed.

4.2 Dynamic Analysis of Vibrations of Flexible Manipulators Considering
Effects of Rotary Inertia, Shear Deformation, and Tip Load

4.2.1 Introduction

As indicated above, the main purpose here is to give a comprehensive study of the influence of

rotary inertia, shear deformation, and tip load on the vibrations of one-link manipulators. First

of all, this will help us to understand more about the dynamics of flexible manipulators as well

as the effect of various factors. On the other hand, it will also provide us with valuable

knowledge that is useful for the design of both non-adaptive and adaptive controllers for

flexible manipulators.

It should be pointed out that in this study we have used the small deformation hypothesis and

ignored longitudinal elongation. This is necessary in order to construct a linear model for

flexible manipulators. Nonlinear models considering large deformation and coupling effects

of a certain degree have been proposed for spinning beams in Refs [6e8]. While these models
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are more accurate, they are too computationally intensive to serve as the dynamic model of

flexible manipulators for real-time control purposes. In particular, our focus here is on the

frequency of vibration, not the amplitude of vibration, for which nonlinear models are simply

not appropriate. Linear theory is not valid for amplitude analysis since it predicts infinite

vibration amplitude (for zero damping), which is physically impossible in reality. However, it

is well known that linear theory is good enough to provide an accurate estimation of vibration

frequencies for most engineering applications. This is the reason why the small deformation

hypothesis is employed and longitudinal elongation is neglected in our study.

4.2.2 Dynamic Models for One-Link Flexible Manipulators

Chapter 3 presented detailed derivations of equations of motion for the EulereBernoulli

beam and Timoshenko beam. Nonlinear dynamic equations and their linearized versions were

given. For the convenience of study, this section considers the EulereBernoulli model, the

EulereBernoulli model with rotary inertia, the Timoshenko model, and motion equations of

the EulereBernoulli model with a tip load.

The flexible manipulator to be considered is a beam of uniform rectangular transverse section

fixed on a hub with rotational inertia IH in the horizontal plane, as shown in Figure 4.1, where

(x0,y0) is the base coordinate frame system and (x,y) the coordinate system attached to the

hub. The coordinate frame AO0B of the tip load is fixed at the end of the flexible beam. It is

assumed that the initial (neutral) longitudinal axis of the beam coincides with the x-axis. For

the sake of convenience, the following differential notations have been used: ( )0 ¼ v( )/vx and

ð�Þ ¼ vð Þ=vt.
The beam is of length L with a transverse section with moment of inertia I and area A.

Young’s modulus, shear modulus, and mass per unit length of the beam are denoted by E,

G, and r respectively. The tip load is of mass Mp and inertia moment Jp, and its center of

mass in AO0B is denoted as (ac,bc). The motion of the manipulator is described by the

Figure 4.1: Coordinate Systems for One-Link Flexible Manipulators.
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angular rotation q(t) due to the hub rotation, the flexible displacement w(x,t), and the pure

bending rotation j(x,t) of the (neutral) longitudinal axis of the beam with respect to the

(x,y) coordinate system, as shown in Figure 4.2. Small deformation and negligible

elongation of the longitudinal axis have been assumed. Two functions, a¼ jþ q and

v¼wþ xq, are introduced to describe the dynamic motion equations of flexible

manipulators. In what follows, we list four different sets of motion equations for one-link

flexible manipulators. These equations have been derived by employing Hamilton’s

principle [9] and their detailed derivation can be found in Refs [10,11].

EulereBernoulli Dynamic Model (Model A)

The normal plane assumption is used in this model; that is, the entire transverse section of

the beam, originally plane, remains plane and normal to the longitudinal axis of the beam

after deformation [12]. Therefore, the pure bending rotation j(x,t) is equal to zero in this

case (Figure 4.2). This model also assumes the velocity of the point at the neutral axis on

that transverse section. This means that the rotation of the transverse section is not

considered, and therefore the rotary inertia is neglected. The governing dynamic equations

of motion based on EulereBernoulli beam theory for one-link flexible manipulators can be

found as

EI v0000 þ r €v ¼ 0 (4.1)

s� IH €qþ EI v00jx¼0 ¼ 0 (4.2)

with the boundary conditions

vðx; tÞ ¼ 0; v0ðx; tÞ ¼ qðtÞ; x ¼ 0; v00ðx; tÞ ¼ 0; v000ðx; tÞ ¼ 0; x ¼ L (4.3)

Transverses section

Section normal axis

Longitudinal axis

Timoshenko beamEuler–Bernoulli beam

Y

XO

β

w´

Figure 4.2: Motion of Transverse Section in Different Beam Theories.
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EulereBernoulli Dynamic Model with Rotary Inertia (Model B)

To take the rotary inertia of the beam into account, velocities at different points on a transverse

section can no longer be considered the same, and will be calculated differently according

to their own coordinates. However, the normal plane assumption is still used, and therefore the

pure bending rotation j(x,t) is still zero. The governing dynamic equations of motion for

one-link flexible manipulators now become

EI v0000 � rS€v00 þ r €v ¼ 0 (4.4)

s� IH €qþ EI v00jx¼0 ¼ 0 (4.5)

with the boundary conditions

vðx; tÞ ¼ 0; v0ðx; tÞ ¼ qðtÞ; x ¼ 0; v00ðx; tÞ ¼ 0; EIv000ðx; tÞ ¼ rS€v0; x ¼ L (4.6)

where S¼ I/A is a parameter that characterizes the effect of rotary inertia. Clearly, when S is

very small, this model reduces to the EulereBernoulli model.

Timoshenko Dynamic Model (Model C)

In Timoshenko beam theory, both rotary inertia and shear deformation are taken into account.

The normal plane assumption is replaced by the more accurate plane assumption; that is,

the entire transverse section of the beam, originally plane, remains plane but may not be

normal to the longitudinal axis of the beam after deformation [13]. Therefore, j is no longer

equal to zero in this case. Based on Timoshenko beam theory, the governing dynamic

equations of motion for one-link flexible manipulators can be obtained as

EI a00 þ kGAðv0 � aÞ � rS€a ¼ 0 (4.7)

kGAðv00 � a0Þ � r€v ¼ 0 (4.8)

s� IH €qþ EI a0jx¼0 ¼ 0 (4.9)

with the boundary conditions

aðx; tÞ ¼ qðtÞ; v0ðx; tÞ ¼ 0; x ¼ 0; a0ðx; tÞ ¼ 0; v0ðx; tÞ ¼ aðx; tÞ; x ¼ L (4.10)

where k is a numerical shape factor (for a rectangular section, k¼ 10(1þ n)/(12þ 11n)) and n

is the Poisson ratio.

Since Eqs (4.7) and (4.8) are coupled and hence are difficult to analyze, it is desirable to

find an equivalent set of decoupled equations for them. It was shown by Wang and Wen [10]

that by introducing a new function f(x,t) and letting

a ¼ f00 � rmS€f=EI; v ¼ f0 (4.11)
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Eqs (4.7) and (4.8) are equivalent to the following single equation for f:

EIf0000 � rSð1þ mÞ€f00 þ r€fþ m
r2S

EA

v4f

vt4
¼ 0 (4.12)

where m¼ E/(kG) is a parameter representing the effect of pure shear deformation.

EulereBernoulli Dynamic Model with Tip Load (Model D)

Only the EulereBernoulli dynamic model is included here for the case where a tip load is

present. After a time-consuming derivation, it is found that the equations of motion can be

described as

EI v000 þ r €v ¼ 0 (4.13)

s� IH €qþ EI v00jx¼0 ¼ 0 (4.14)

with the boundary conditions

vðx; tÞ ¼ 0; v0ðx; tÞ ¼ qðtÞ (4.15)

EIv00ðL; tÞ ¼ �Jp€v
0ðL; tÞ �Mpac€vðL; tÞ (4.16)

EIv000ðL; tÞ ¼ �Mpac€v
0ðL; tÞ þMp€vðL; tÞ (4.17)

As expected, the tip load has an effect only on the boundary conditions at the end x¼ L. Note

that only the x coordinate ac of the center of mass (ac,bc) affects the boundary conditions.

Similar equations have been derived in Ref. [14] in which the tip load has been considered as

a shapeless point with mass Mp and moment of inertia Jp.

The above four dynamic models provide the basis for investigating the influence of

rotary inertia, shear deformation, and tip load on the vibration of one-link flexible

manipulators.

4.2.3 Characteristic Equations for Modal Frequencies and Vibration Modes

The Laplace transformation has been used to derive the characteristic equations for modal

frequencies of one-link flexible manipulators. For this purpose, we have assumed the

existence of the following Laplace transformations:

Jðx; sÞ ¼ L½jðx; tÞ�; Lðx; sÞ ¼ L½aðx; tÞ�; Fðx; sÞ ¼ L½fðx; tÞ�
Vðx; sÞ ¼ L½vðx; tÞ�; Wðx; sÞ ¼ L½wðx; tÞ�

QðsÞ ¼ L½qðtÞ�; ZðsÞ ¼ L½zðtÞ�; TðsÞ ¼ L½sðtÞ�; FðsÞ ¼ L½f ðtÞ�
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It is also assumed that Laplace transformations of derivatives of v(x,t) and f(x,t) with respect

to x exist up to the fourth order. Therefore, we have the following equations:

VðnÞðx; sÞ ¼ L½vðnÞðx; tÞ�; FðnÞðx; sÞ ¼ L½fðnÞðx; tÞ�; n � 4

One should notice that the existence of the Laplace transformations of functions in this

section should not be of any concern. This is because the Laplace analysis to be conducted

here is exactly the same as the classical modeling analysis used in mechanics. One can verify

it simply by replacing s with ju, where j ¼ ffiffiffiffiffiffiffi�1
p

and u is the vibration frequency. The

existence of vibration modal shape functions should be obvious. The reason for using Laplace

analysis instead of standard modal analysis is that the treatment by Laplace transformations is

more uniform and clear from the perspective of control theory.

For all the dynamic models given in the previous section, by applying the Laplace

transformation to the governing equations of motion and the corresponding boundary

conditions with homogeneous initial conditions, we obtain the following partial differential

equations for Laplace transformations in the frequency domain.

EulereBernoulli Dynamic Model (Model A)

The governing dynamic equations of motion are transformed into

EI V 0000 þ rs2 V ¼ 0 (4.18)

T � s2IH Qþ EIV 00jx¼0 ¼ 0 (4.19)

with the boundary conditions

Vðx; sÞ ¼ 0; V 0ðx; sÞ ¼ QðsÞ; x ¼ 0; V 00ðx; sÞ ¼ 0; V 000ðx; sÞ ¼ 0; x ¼ L (4.20)

Solving equations (4.18)e(4.20), we can obtain transfer functions as

QðsÞ ¼ HqsðsÞTðsÞ; HqsðsÞ ¼ 1=½s2IH þ EIK1ðmÞ� (4.21)

and

Vðx; sÞ ¼ Hvqðx; sÞQðsÞ ¼ Hvsðx; sÞTðsÞ
Wðx; sÞ ¼ Hwqðx; sÞQðsÞ ¼ Hwsðx; sÞTðsÞ (4.22)

where

Hvqðx; sÞ ¼ ½sinðmxÞ þ sinhðmLÞcos mðL� xÞ þ sinðmLÞcosh mðL� xÞ�
þ½sinhðmxÞ � cosðmLÞsinh mðL� xÞ � coshðmLÞsin mðL� xÞ�=2mS1ðmÞ

(4.23)
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Hwqðx; sÞ ¼ Hvqðx; sÞ � x; Hvsðx; sÞ ¼ Hvqðx; sÞHqsðsÞ; Hwsðx; sÞ ¼ Hwqðx; sÞHqsðsÞ
(4.24)

and

K1ðmÞ ¼ m½sinhðmLÞcosðmLÞ � coshðmLÞsinðmLÞ�=S1ðmÞ (4.25)

S1ðmÞ ¼ 1þ cosðmLÞcoshðmLÞ; m4 ¼ �rs2=ðEIÞ (4.26)

The poles of the manipulator system are determined by the transcendental characteristic

equation:

m4ðIH=rÞ � K1ðmÞ ¼ 0 (4.27)

Denoting m as a root of the characteristic equation, the corresponding modal frequency of the

manipulator can be obtained as

u ¼
ffiffiffiffiffiffiffiffiffiffi
EI=r

p
m2 (4.28)

EulereBernoulli Dynamic Model with Rotary Inertia (Model B)

After Laplace transformation, we have in this case:

EIV 0000 � rs2SV 00 þ rs2V ¼ 0 (4.29)

T � s2IHQþ EIV 00��
x¼0

¼ 0 (4.30)

with the boundary conditions

Vð0; sÞ ¼ 0; V 0ð0; sÞ ¼ QðsÞ; V 00ðL; sÞ ¼ 0; EIVmðL; sÞ ¼ rs2SV 0ðL; sÞ (4.31)

Based on these equations, we can obtain transfer functions as

QðsÞ ¼ HqsðsÞTðsÞ; HqsðsÞ ¼ 1=½s2IH þ EIK2ðmÞ� (4.32)

and

Vðx; sÞ ¼ Hvqðx; sÞQðsÞ ¼ Hvsðx; sÞTðsÞ; Wðx; sÞ ¼ Hwqðx; sÞQðsÞ ¼ Hwsðx; sÞTðsÞ
(4.33)

where

Hvqðx; sÞ ¼ sinhðm1 xÞ=m1 � C1½coshðm1xÞ � cosðm2xÞ� � C2½m2 sinhðm1xÞ � m1sinðm2xÞ�
(4.34)

Hwqðx; sÞ ¼ Hvqðx; sÞ � x; Hvsðx; sÞ ¼ Hvqðx; sÞHqsðsÞ; Hwsðx; sÞ ¼ Hwqðx; sÞHqsðsÞ
(4.35)
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and

2mS2ðmÞC1 ¼ b31sinhðm1LÞcosðm2LÞ � b32coshðm1LÞsinðm2LÞ
2m2S2ðmÞC2 ¼ 1þ b21sinhðm1LÞsinðm2LÞ þ b42coshðm1LÞcosðm2LÞ

(4.36)

K2ðmÞ ¼ �C1m
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ S2m4

p
; m1 ¼ mbi

bi ¼
hh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ S2m4
p þ ð�1ÞiSm2

i.
2
i1=2

; m4 ¼ �rs2=ðEIÞ
(4.37)

X
2

ðmÞ ¼ 1þ ð1þ m4S2=2Þcoshðm1LÞcosðm2LÞ � ðm2S=2Þsinhðm1LÞsinðm2LÞ (4.38)

The poles of the manipulator system are determined by

m4ðIH=rÞ � K2ðmÞ ¼ 0 (4.39)

and the corresponding modal frequency is

u ¼
ffiffiffiffiffiffiffiffiffiffi
EI=r

p
m2 (4.40)

Note that when S¼ 0, K2 and S2 become K1 and S1 respectively. Therefore, Eqs (4.27) and

(4.39) give the same modal frequencies in this case.

Timoshenko Dynamic Model (Model C)

Instead of Eqs (4.7) and (4.8), Eqs (4.11) and (4.12) have been used here. We have

EIF0000 � rs2Sð1þ mÞF00 þ rs2Fþ mðr2S=EAÞs4F ¼ 0 (4.41)

L ¼ F00 � rms2SF=EI; V ¼ F0 (4.42)

T � s2IHQþ EIL0��
x¼0

¼ 0 (4.43)

with the boundary conditions

Lðx; sÞ ¼ QðsÞ; Vðx; sÞ ¼ 0; x ¼ 0; L0ðx; sÞ ¼ 0; V 0ðx; sÞ ¼ Lðx; sÞ; x ¼ L

(4.44)

After many tedious manipulations, we arrive at the following equations:

QðsÞ ¼ HqsðsÞTðsÞ; HqsðsÞ ¼ 1=½s2IH þ EIK3ðmÞ� (4.45)

and

Vðx; sÞ ¼ Hvqðx; sÞQðsÞ ¼ Hqsðx; sÞTðsÞ
Wðx; sÞ ¼ Hwqðx; sÞQðsÞ ¼ Hwsðx; sÞTðsÞ (4.46)
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jðx; sÞ ¼ Hjqðx; sÞQðsÞ ¼ Hjsðx; sÞTðsÞ; Lðx; sÞ ¼ Hasðx; sÞQðsÞ ¼ Hasðx; sÞTðsÞ (4.47)

where

Hasðx; sÞ ¼ cosh
�
m1x

�þ C2

�
m2
2 � mSm4

��
cosh

�
m1x

�� cos
�
m2x

��
þ C3

�
m2

�
m2
1 þ mSm4

�
sinh

�
m1x

�þ m1

�
m2
2 � mSm4

�
sin
�
m2x

�� (4.48)

Hvqðx; sÞ ¼ C1m1sinhðm1xÞ � C2m2 sinðm2xÞ � m1m2C3½coshðm1xÞ � cosðm2xÞ� (4.49)

Huqðx; sÞ ¼ Hvqðx; sÞ � x; Hvsðx; sÞ ¼ Hvqðx; sÞHqsðsÞ; Hwsðx; sÞ ¼ Huqðx; sÞHqsðsÞ
(4.50)

Hjqðx; sÞ ¼ Haqðx; sÞ � 1; Hasðx; sÞ ¼ Haqðx; sÞHqsðsÞ; Hjsðx; sÞ ¼ Hjqðx; sÞHqsðsÞ
(4.51)

and

2m6
P

3ðmÞC1 ¼ m2

��
m2
2 � mSm4

��
m1 � m2sinh

�
m1L

�
sin
�
m2L

��
þ m1

�
m2
1 þ mSm4

�
cosh

�
m1L

�
cos
�
m2L

��
2m6

P
3ðmÞC2 ¼ �m1

��
m2
1 þ mSm4

��
m2 þ m1sinh

�
m1L

�
sin
�
m2L

���
� m1m2

�
m2
2 � mSm4

�
cosh

�
m1L

�
cos
�
m2L

�
2m6

P
3ðmÞC3 ¼ m2

�
m2
2 � mSm4

�
cosh

�
m1L

�
sin
�
m2L

�
� m1

�
m2
1 þ mSm4

�
sinh

�
m1L

�
cos
�
m2L

�
K3 ¼ m1m2

�
m2
1 þ m2

2

�
C3; mi ¼ mbi; i ¼ 1; 2

(4.52)

bi ¼
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ S2ð1� mÞ2m4

q
þ ð�1ÞiSð1þ mÞm2

	

2

	1=2
; m4 ¼ �rs2=ðEIÞ (4.53)

P
3ðmÞ ¼ b1b2 þ b1b2

h
1þ ð1� mÞ2m4S2=2

i
coshðm1LÞcosðm2LÞ

�ð1þ mÞðm2S=2Þsinhðm1LÞsinðm2LÞ
(4.54)

The poles are determined by

m4ðIH=rÞ � K3ðmÞ ¼ 0 (4.55)

As before, one can obtain the corresponding resonant frequency of the manipulator once the

roots of the characteristic equation have been found.
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It is easy to check that when m¼ 0, K3 and S3 reduce to K2 and S2 respectively; furthermore,

when both m¼ 0 and S¼ 0, K3 and S3 will reduce to K1 and S1 respectively. In a sense,

this shows the correctness of the characteristic equation.

EulereBernoulli Dynamic Model with Tip Load (Model D)

Finally, when a tip load is present, we have

EIV 0000 þ rs2V ¼ 0 (4.56)

T � s2IHQþ EIV 00��
x¼0

¼ 0 (4.57)

with boundary conditions

Vð0; sÞ ¼ 0; V 0ð0; sÞ ¼ QðsÞ (4.58)

EIV 00ðL; sÞ ¼ �Jps
2V 0ðL; sÞ �Mpacs

2VðL; sÞ (4.59)

EIV 000ðx; sÞ ¼ Mpacs
2V 0ðL; sÞ þMps

2VðL; sÞ (4.60)

Similarly, we have the following equations for transfer functions:

QðsÞ ¼ HqsðsÞTðsÞ; HqsðsÞ ¼ 1=½s2IH þ EIK4ðmÞ� (4.61)

and

Vðx; sÞ ¼ Hvqðx; sÞQðsÞ ¼ Hvsðx; sÞTðsÞ (4.62)

Wðx; sÞ ¼ Hwqðx; sÞQðsÞ ¼ Hwsðx; sÞTðsÞ (4.63)

where

Hvqðx; sÞ ¼ ½ð1þ d1ÞsinðmxÞ þ ð1� d2ÞsinhðmLÞcos mðL� xÞ

þ ð1� d3ÞsinðmLÞcosh mðL� xÞ þ ð1þ d1ÞsinhðmxÞ

� ð1� d2ÞcosðmLÞsinh mðL� xÞ � ð1� d3ÞcoshðmLÞsin mðL� xÞ

� 2x1sinhðmLÞsinðL� xÞ � 2x3coshðmLÞcosðL� xÞ

þ 2x1sinðmLÞsinhðL� xÞ þ 2x3cosðmLÞcoshðL� xÞ�=2mS4ðmÞ:

(4.64)

The dimensionless parameters are defined as

d1 ¼ �x22 þ x1x3; d2 ¼ �x22 þ x1x3 þ 2x2; d3 ¼ �x22 þ x1x3 � 2x2 (4.65)

x1 ¼ Mpm=r; x2 ¼ Mpacm
2=r; x3 ¼ Jpm

3=r (4.66)
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and

K4ðmÞ ¼ mfðx22 � x1x3 þ 1Þ½sinhðmLÞcosðmLÞ � coshðmLÞsinðmLÞ�

� 2x1sinðmLÞsinðmLÞ � 2x2½sinhðmLÞcosðmLÞ

þ coshðmLÞsinðmLÞ� � 2x3coshðmLÞcosðmLÞg=S4ðmÞ

(4.67)

S4ðmÞ ¼ ½1þ cosðmLÞcoshðmLÞ� � x1½coshðmLÞsinðmLÞ � cosðmLÞsinhðmLÞ�

�2x2½sinðmLÞsinhðmLÞ� � x3½sinhðmLÞcosðmLÞ þ sinðmLÞcoshðmLÞ�

þðx22 � x1x3Þ½coshðmLÞcosðmLÞ � 1�

(4.68)

The characteristic equation now becomes

m4ðIH=rÞ � K4ðmÞ ¼ 0 (4.69)

When no tip load is present, all xs and therefore ds vanish and, as expected, K4 and S4 reduce

to K1 and S1 respectively.

As a by-product of the above derivations, we can find vibration modes (or mode shape

functions) from transfer functionsHyq for different models. Specifically, letmn be the nth root

of a characteristic equation. The corresponding vibration mode can then be found as

jd
n ¼ Hd

yq2m
2
n=Kd (4.70)

where d¼ 1, 2, 3, 4 corresponds to the four dynamic models.

Finally, in all four dynamic models, one can identify Sd¼ 0, d¼ 1, 2, 3, 4, as the

corresponding characteristic equation for modal frequencies when a flexible manipulator

is considered as a beam fixed on a hub with an infinitely large moment of inertia.

4.2.4 Asymptotic Behavior of Modal Frequencies and Vibration Modes

Since characteristic equations are transcendental equations, they specify an infinite (but

countable) number of natural modal frequencies and vibration modes for a one-link flexible

manipulator. Therefore, it is very useful analytically to know the properties of high-order (or

large) modal frequencies and the corresponding vibration modes. This is even more important

for the purpose of numerical analysis, because as the order of the vibration modes increases,

the computation of the exponential functions involved in the characteristic equations and

expressions of vibration modes becomes extremely difficult (almost impossible) to

accomplish with reasonable accuracy. In this section, we present results of the asymptotic

behavior for high-order vibrations of one-link flexible manipulators.
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EulereBernoulli Dynamic Model (Model A)

The asymptotic expression for high-order frequencies can be obtained by considering the

characteristic equation (4.27). As m approaches infinity, K1(m) approaches m[cos(mL)�
sin(mL)]/cos(mL). Therefore, in order to satisfy the characteristic equation, for large m, it

must be that cos(mL) / 0, which leads to the asymptotic expression for large modal

frequencies:

u1
n ¼ ½ð2n� 1Þp=ð2LÞ�2

ffiffiffiffiffiffiffiffiffiffi
EI=r

p
; n >> 1 (4.71)

For the corresponding vibration modes, after a similar process, one can find the simple

asymptotic expression:

j1
nðxÞ ¼ �sinðknxÞ þ cosðknxÞ; 0 < x < L; k4n ¼ ru2

n=ðEIÞ (4.72)

Note that the asymptotic expressions for high-order vibration modes are not valid at the

two ends of the manipulators, where the boundary conditions should be used.

EulereBernoulli Dynamic Model with Rotary Inertia (Model B)

Applying the same technique to the characteristic equation in this case, we can see that as

m becomes larger, it must be true that cosðm2
ffiffiffi
S

p
LÞ/ 0. Therefore, the asymptotic expression

for high-order frequencies becomes

u2
n ¼ ðð2n� 1Þp=ð2L

ffiffiffi
S

p
ÞÞ

ffiffiffiffiffiffiffiffiffiffi
EI=r

p
; n >> 1 (4.73)

Similarly, for high-order vibration modes:

j2
nðxÞ ¼ �ðk32=k31Þsinðk2xÞ � cosðk2xÞ; 0 < x < L

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=4þ s=S

pq
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ s

q
; s ¼ rSu2

n=ðEIÞ
(4.74)

Timoshenko Dynamic Model (Model C)

For the Timoshenko dynamic model, the asymptotic expressions for high-order modal

frequencies and vibration modes can be obtained as

u3
n ¼ ðð2n� 1Þp=ð2L ffiffiffiffiffiffi

Sm
p ÞÞ ffiffiffiffiffiffiffiffiffiffi

EI=r
p

; n >> 1

j3
nðxÞ ¼ ððk31 þ s1k1Þ=ðk32 � s1k2ÞÞsinðk2xÞ � cosðk2xÞ; 0 < x < L

(4.75)

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=4þ s1=ðmSÞ � s21=m

qr
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ k21

q
s ¼ rSð1þ mÞu2

n=ðEIÞ; s1 ¼ rmSu2
n=ðEIÞ

(4.76)

u3
n and u2

n have the same magnitude, and have a constant ratio 1=
ffiffiffi
m

p
.
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EulereBernoulli Dynamic Model with Tip Load (Model D)

In this case, the asymptotic expression for high-order frequencies becomes more involved.

After some manipulations, we can show that

u4
n ¼

�
arctanðð1þ x1 � x3 þ x22 � x1x3Þ=ðx1 þ 2x2 þ x3ÞÞ

L
þ ðn� 1Þp=L

	2 ffiffiffiffiffiffiffiffiffiffi
EI=r

p
; n >> 1

(4.77)

The corresponding vibration modes are

j4
nðxÞ ¼ �sinðknxÞ þ cosðknxÞ; 0 < x < L (4.78)

which is the same as the high-order vibration modes of Eq. (4.72). Therefore, the tip load

has no effect on the high-order vibration modes, but it does affect the corresponding

frequencies.

All of these asymptotic expressions have been verified numerically. In most cases, they give

very accurate results for n> 8.

4.2.5 Experimental Verification and Numerical Analysis

The results of experimental verification and numerical analysis for various cases are

presented in this section. A detailed comparison between different dynamic models is made

on the basis of those results.

Experimental Verification

A one-link very flexible manipulator has been built at the NASA Center for Intelligent

Robotic Systems for Space Exploration (CIRSSE) at the Rensselaer Polytechnic Institute.

The parameters of the CIRSSE flexible manipulator are given in Table 4.1, where three tip

load parameters are defined as

l1 ¼ Mp=ðrLÞ; l2 ¼ ac=L; l3 ¼ Jp=I

The experimentally obtained modal frequencies for the first nine vibration modes [5], and the

corresponding frequencies calculated from the characteristic equations of the first three

dynamic models, are listed in Table 4.2. In all the cases, the analytical predictions agree with

the experimental data to within� 5%. Note that for this particular manipulator, all three

models give almost the same results, since both parameter S and the width-to-height ratio

of the beam are very small and, therefore, the effect of rotary inertia and shear deformation

is negligible. Clearly, the experimental results have verified the accuracy of the three

dynamic models.

72 Chapter 4



Influence of Rotary Inertia

The influence of rotary inertia on the vibration frequencies is through the parameter S, which

is equal to B2/12 (B is the width of the beam). Actually, S reflects the ratio of the beam

width to the beam height (H), i.e. B/H. Figure 4.3 shows the influence of rotary inertia on the

Table 4.1: Parameters of the CIRSSE one-link flexible manipulator

Variable Definition Value

L Beam length 1.098 m
B Beam width 1.5875e-3 m
H Beam height 0.103 m
E Young’s modulus for material 60676.0e6 N/m2

g Material density of beam 2.713e3 kg/m3

IH Hub inertia 0.0175 kg m2

n Poisson’s ratio for beam 0.3
A Beam transverse area 1.6351e-4 m2

I Beam transverse inertia 3.4340e-11 kg m2

r Beam mass per unit length 0.4436 kg/m
k Shape factor 0.8497
S ¼ I/A 2.1001e-7 m2

m ¼ 2(1þ n)/k 3.0600
l1
* Tip weight factor 0.150%

l2
* Tip length factor 0.150%

l3
* Tip inertia factor 0.150%

*No tip load was present in the experiments: these parameters are just for the calculation in model D.

Table 4.2: Comparison of experimental and analytical results for modal frequencies

Mode Order

Resonant Frequency

Model A (Hz) Model B (Hz) Model C (Hz) Experiment (Hz)

0 0 0 0 0
1 2.9692 2.9692 2.9692 2.850
2 7.2608 7.2608 7.2608 7.200
3 17.977 17.977 17.977 18.42
4 34.752 34.751 34.751 35.65
5 57.277 57.276 57.273 58.70
6 85.482 85.480 85.472 88.00
7 119.35 119.34 119.33 126.3
8 158.87 158.86 158.84 166.6
9 204.04 204.03 203.98 214.4
10 254.86 254.84 254.77 N/A
11 311.33 311.30 311.20 N/A
12 373.45 373.41 373.27 N/A
13 441.22 441.16 440.97 N/A
14 514.63 514.55 514.29 N/A
15 593.69 593.58 593.24 N/A
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first-, second-, and sixth-order modal frequencies with Poisson’s ratio n¼ 0.3, as B/H

increases from 0 to 1. The results show that the frequencies calculated become smaller

when the effect of rotary inertia is considered. Since the differences are within�10%, the

results also indicate that, for lower vibration modes, the effect of rotary inertia is not very

significant and generally can be ignored. For high-order vibration modes, however, as will be

indicated later in the following subsection, the effect is indeed significant.

Influence of Shear Deformation

Both the beam shape and Poisson’s ratio n play a role in the effect of shear deformation on

the vibration of flexible manipulators. Figure 4.4 shows the influence of shear deformation

on the first-, second-, and sixth-order modal frequencies with Poisson’s ratio n¼ 0.3 as B/H

increases from 0 to 1. Similar to the case of rotary inertia, the results show that the

frequencies calculated become smaller when shear deformation is included. For the sixth-

order frequency, the difference is already more than� 26%, and therefore the effect of

shear deformation generally cannot be ignored. The results also demonstrate that the

effect of shear deformation is much more significant than that of rotary inertia,

a conclusion that should be expected since rotary inertia has already been considered in

shear deformation.

In Figure 4.5, different modal frequencies calculated from EulereBernoulli,

EulereBernoulli with rotary inertia, and Timoshenko models respectively are illustrated,
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Figure 4.3: Influence of Rotary Inertia.
n¼ 0.3; u1¼ frequency of model A; u2¼ frequency of model B. (d) mode 1; (-- - -) mode 2;

($$$$) mode 3.
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in terms of ð4u L=ðn + 1ÞpÞ ffiffiffiffiffiffiffiffiffiffi
r=EI

p
vs. ðn + 1Þ=ð2LÞ. This indicates clearly that the effect

of rotary inertia and shear deformation is profound for high-order vibration modes. This

figure is very similar to the classical results obtained in the theory of elasticity on the

influence of rotary inertia and shear deformation on vibrations of beams and plates [1e5].
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Figure 4.4: Influence of Shear Deformation.
n¼ 0.3; u1¼ frequency of model A; u2¼ frequency of model C. (d) mode 1; (- - - -) mode 2;

($$$$) mode 3.
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Figure 4.5: Influence of Rotary Inertia and Shear Deformation.
(d) EulereBernoulli; (- - -) EulereBernoulli with rotary inertia; (-$$$-) Timoshenko.
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Influence of Tip Load

The influence of the tip load through the three parameters l1, l2, and l3, for the first-, second-,

and sixth-order vibration modes, is shown in Figures 4.6e4.14. In these figures, all

parameters except the varying one take the values specified in Table 4.1. The results indicate

that the mass of the tip load is the most significant factor regarding the effect of tip load on
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Figure 4.6: Influence of Tip Mass: First Order.
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Figure 4.7: Influence of Tip Mass: Second Order.
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vibration. For example, it drives the first-order frequency down by 10% when the mass of the

tip load is 5% of the beam mass, and down by 25% when the mass is 30% of beam mass.

Therefore, when a load with a large mass is grasped by a flexible manipulator, the dynamics

of the manipulator will be changed dramatically. If the controller of the manipulator cannot

predicate this change in dynamics, its performance will degenerate. This observation is

important since, in civil construction and space applications, a flexible manipulator is usually
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Figure 4.8: Influence of Tip Mass: Sixth Order.
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Figure 4.9: Influence of Tip Length: First Order.
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expected to deal with loads of relatively large mass compared to its own. The length of the tip

load affects the modal frequencies in a similar fashion, but the variation of frequencies is

generally less than that induced by the change in the tip mass. To our surprise, the moment of

inertia of the tip load is the least significant factor of the three, and has almost no influence on

the lower order vibration modes (see Figure 4.12).

The most surprising result is the influence of the tip mass and length on the higher order

vibration modes (see Figures 4.8, 4.10, 4.13, and 4.14). First of all, for vibration modes with
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Figure 4.10: Influence of Tip Length: Second Order.
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Figure 4.11: Influence of Tip Length: Sixth Order.
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an order higher than six, the frequencies vary dramatically with change in tip mass and length.

The unexpected result, however, is that when the tip mass or length exceeds certain values

(e.g. for the sixth-order vibration mode, l1> 0.02 or l2> 0.02), modal frequencies increase

with the tip mass or length, instead of decreasing as we would expect intuitively. A careful

inspection of the numerical results indicates that this phenomenon is caused by the increased

distance between the modal frequencies of two vibration modes. In other words, the

distribution of modal frequencies is changed when the tip mass or length becomes large. More

specifically, within a given frequency range, one can find more vibration modes for a very

small tip mass or length, but fewer for a large tip mass or length.
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Figure 4.12: Influence of Tip Inertia: First Order.

Figure 4.13: Sixth-Order Frequency vs. l1 and l2.
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4.2.6 Natural Frequencies and Model Shape Functions

Based on the results in Chapter 3, it is straightforward to obtain the harmonic vibration

equations of one-link flexible manipulators as follows.

EulereBernoulli Model

Mathematically, synchronous motions imply that the solution of Eqs (3.63)e(3.65) is

separable in the spatial variable and time, and hence it has the form:

zðx; tÞ ¼ zðxÞeiwt (4.79)

where z(x) depends on the spatial position alone and eiwt depends on time alone.

Substituting Eq. (4.79) into Eqs (3.63)e(3.65), we can write

z0000 þ dm2z00 � m2z ¼ 0 (4.80)

with boundary conditions

zð0Þ ¼ 0; z00ð0Þ þ hm2z0ð0Þ ¼ 0 (4.81)

z00ð1Þ � m2½kz0ð1Þ þ zmzð1Þ� ¼ 0; z000ð1Þ þ m2½ðdþ mzÞz0ð1Þ þ mzð1Þ� ¼ 0 (4.82)

where m¼ cu is the dimensionless frequency and u is the circular vibration frequency.

The solution of Eq. (4.80) has exponential form:

zðxÞ ¼ Aelx (4.83)

Figure 4.14: Tenth-Order Frequency vs. l1 and l2.
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Introducing Eq. (4.83) into Eq. (4.80) and dividing through by Aelx, we obtain the

characteristic equation:

l4 þ dm2l2 � m2 ¼ 0 (4.84)

and

l1;3 ¼ �m

 
�dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m�2

p
2

!1
2

; l2;4 ¼ �m

 
dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m�2

p
2

!1
2

i (4.85)

Let

b1 ¼
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ 4m�2
p

þ d

2

#1
2

; b2 ¼
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ 4m�2
p

� d

2

#1
2

(4.86)

lj ¼
(�mb1i

�mb2
; j ¼ 1; 2; 3; 4

k ¼ ml1l2

l21 þ l22
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ 4m�2
p

(4.87a)

It follows that the solution of Eq. (4.80) has the harmonic form:

zðxÞ ¼ C1sin l1xþ C2cos l1xþ C3sinh l2xþ C4cosh l2x (4.87b)

C1, C2, C3, and C4 can be determined by using the boundary conditions:

C2 ¼ �C4

C4 ¼ � hm2

l21 þ l22
ðC1l1 þ C3l2Þ;

The general solution (4.87b) can be rewritten as

zðxÞ ¼ C1sin l1xþ C3sinh l2x� hm2

l21 þ l22
ðC1l1 þ C3l2Þðcos l1 � xcosh l2xÞ

¼ C1sin l1xþ l1
hm2

l21 þ l22
ðcos l1x� cosh l2xÞ

þ C3sinh l1xþ l2
hm2

l21 þ l22
ðcos l1x� cosh l2xÞ

¼ A1½b2sin l1xþ hkðcos l1x� cosh l2xÞ�
þ A2½b1sin l2xþ hkðcos l1x� cosh l2xÞ�
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where

A1 ¼ C1=b2; A1 ¼ C3=b1; k ¼ ml1l2

l21 þ l22
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ 4m�2
p

The characteristic equation for determining the natural frequency can be found as

X
dðmÞ ¼

�
z11ðmÞ z12ðmÞ
z21ðmÞ z22ðmÞ

	
¼ 0

where �
z11 z12
z21 z22

	
¼
�

Z 00ð1Þ � m2ðkZ0ð1Þ þ zmZð1ÞÞ
Z000ð1Þ þ m2ððdþ mzÞZ 0ð1Þ þ mZð1Þ

	

in which the function Z¼ (zs,zh) is defined as

zsðxÞ ¼ b2sin l1xþ hkðcos l1x� cosh l2xÞ

zhðxÞ ¼ b1sin l2xþ hkðcos l1x� cosh l2xÞ
Figure 4.15 presents ratios of the first-, second-, and third-order natural frequencies

calculated from the EulereBernoulli model without (d¼ 0) and with (d s 0) the rotary

inertia taken into account respectively. No tip load is assumed in these figures. Clearly, the

effect of rotary inertia on vibration frequency is significant, especially for higher order

vibration modes.

Figure 4.15: Influence of Rotary Inertia.
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In Figure 4.15, H is the beam height and L is the beam length. m2 and m1 are the frequencies

of the models with and without rotary inertia respectively. Curve A is the first mode, B is the

second, and C is the third.

The normalized modal shape functions of the natural vibration can be found as

zðx;mÞ ¼ zsðxÞ � z11ðmÞ
z12ðmÞzhðxÞ

ziðxÞ ¼ zðx;mÞ
hzðx;miÞjzðx;miÞid

; i ¼ 0; 1; 2; .

(4.88)

where h�j�id is the generalized inner product for the EulereBernoulli model:

h f jzidh
Z1
0

ð fzþ df 0z0Þdxþ hf 0ð0Þz0ð0Þ þ mf ð1Þzð1Þ

þmz½ f 0ð1Þzð1Þ þ f ð1Þz0ð1Þ� þ kf 0ð1Þz0ð1Þ

One can show the following orthogonal relationship between modal shape functions:

hzi
��zjid ¼ dij;

Z1
0

z00i z
00
j dx ¼ m2dij; dij ¼

�
0 i 6¼ j
1 i ¼ j

(4.89)

For high vibration modes, the computation of exponential functions involved in cosh and sinh

functions becomes very difficult. Therefore, it is very important to know the asymptotic

behavior of high-order vibrations. For d¼ 0, one can show that

l1/
ffiffiffiffi
m

p
; l2/

ffiffiffiffi
m

p
; as m/N:

However, for d s 0:

l1/
ffiffiffiffiffiffi
dm

p
; l2/1=

ffiffiffi
d

p
; as m/N

Therefore, some cosh and sinh functions of zs and zh will approach a constant value for high

vibration modes, a very useful fact in numerical calculation.

Timoshenko Model

Mathematically, synchronous motions imply that the solution of Eqs (3.66)e(3.68) is

separable in the spatial variable and time, and hence it has the form:

4ðx; tÞ ¼ 4ðxÞeiwt (4.90)

where f(x) depends on the spatial position alone and eiwt depends on time alone.
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Introducing Eq. (4.90) into Eqs (3.66)e(3.68), we can write

f0000 �
�
1

s
þ d


m2f00 þ m2fþ d

s
c2m2f ¼ 0 (4.91a)

with boundary conditions

f0ð0Þ ¼ 0; f000ð0Þ þ m2

s
f0ð0Þ þ hm2

�
f00ð0Þ þ m2

s
fð0Þ

	
¼ 0

f000ð1Þ � m2kfð1Þ þ m2

�
1

s
� zm


f0ð1Þ � km4fð1Þ ¼ 0

(4.91b)

zmf00ð1Þ þ mf0ð1Þ þ
�
1þ z

m

s

�
fð1Þ ¼ 0 (4.92)

The solution of Eq. (4.91a) has exponential form:

fðxÞ ¼ Aelx (4.93)

Introducing Eq. (4.93) into Eq. (4.91a) and dividing through by Aelx, we obtain the

characteristic equation:

l4 þ
�
dþ 1

s


m2l2 �

�
1þ dc2

s


m2 ¼ 0 (4.94)

which has the roots

l1;3 ¼ �m

0
@�ds þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2s þ 4ddm�2

q
2

1
A

1
2

; l2;4 ¼ �m

0
@ds þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2s þ 4ddm�2

q
2

1
A

1
2

i (4.95)

where

ds ¼
�
1

s
þ d


; dd ¼

�
d

s
c2 þ 1



Let

b1 ¼
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d þ 4ddm�2

q
þ ds

2

3
5
1
2

; b2 ¼
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d þ 4ddm�2

q
� ds

2

3
5

1
2

(4.96)
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lj ¼
(�mb1i

�mb2
; j ¼ 1; 2; 3; 4

ki ¼ m3½m2 þ ð�1Þisl2i �
sl1l2ðl21 þ l22Þ

¼ m½1þ ð�1Þisb2i �
sb1b2ðb21 þ b22Þ

(4.97a)

It follows that the solution of Eq. (4.91a) has the harmonic form:

fðxÞ ¼ C1sin l1xþ C2 cos l1xþ C3 sinh l2xþ C4 cosh l2x (4.97b)

C1, C2, C3, and C4 can be determined by using the boundary conditions.

From f0(0)¼ 0 we obtain

C1 ¼ �C3
l2

l1

From

f000ð0Þ þ m2

s
f0ð0Þ þ hm2

�
f00ð0Þ þ m2

s
4ð0Þ

	
¼ 0

we obtain

C3 ¼ � hm2

l2ðl21 þ l22Þ

�
C2

�
m2

s
� l21


þ C4

�
m2

s
þ l22

	

Therefore, the general solution (4.97b) can be rewritten as

fðxÞ ¼ C2cos l1xþ C4cosh l2x� hm2

l2ðl21 þ l22Þ�
C2

�
m2

s
� l21


þ C4

�
m2

s
þ l22

	�
sinh l2x� l2

l1
xsin l1x



¼ C2

(
cos l1x� hm2

l2
�
l21 þ l22

��m2

s
� l21

�
sinh l2x� l2

l1
sin l1x

)

þ C4

(
cosh l2x� hm2

l2ðl21 þ l22Þ

�
m2

s
þ l22

�
sinh l2x� l2

l1
sin l1x

)

¼ C2fcos l1xþ hk1ðb2sinh l1x� b1sin l2xÞg
þ C4fcosh l2xþ hk2ðb2sinh lx� b1sin l2xÞg
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where

ki ¼ m3½m2 þ ð�1Þisl2i �
sl1l2ðl21 þ l22Þ

¼ m½1þ ð�1Þisb2i �
sb1b2ðb21 þ b22Þ

The characteristic equation for determining the natural frequencies is

X
sðmÞ ¼ det

�
f11ðmÞ f12ðmÞ
f21ðmÞ f22ðmÞ

	
¼ 0

where

�
f11 f12

f21 f22

	
¼
�
F000ð1Þ � m2kF00ð1Þ þ m2ð1=s� zmÞF0ð1Þ � km4Fð1Þ=s

zmF00ð1Þ þ mF0ð1Þ þ ð1þ zm=sÞFð1Þ

#

in which F¼ (fs,fh) is defined as

fsðxÞ ¼ cos l1xþ hk1ðb2sin l1x� b1sinh hl2xÞ
fhðxÞ ¼ cosh l2xþ hk2ðb2sin l1x� b1sinh hl2xÞ

Figure 4.16 presents ratios of the first-, second-, and sixth-order frequencies calculated from

the EulereBernoulli model (d¼ 0) and Timoshenko (d¼ 0, s s 0) model respectively. The

tip load is set to zero. Like the rotary inertia, the effect of shear deformation on vibration

frequency is also significant, especially for higher order vibration modes. Figures 4.6 and 4.7

agree with the results given in Ref. [15].

In Figure 4.16, H is the beam height and L is the beam length; m3 and m1 are the frequencies

of the models with shear deformation and without rotary inertia respectively. Curve A is the

first mode, curve B is the second mode, and curve C is the sixth mode.

In Figure 4.17, different modal frequencies calculated from EulereBernoulli with and

without rotary inertia and Timoshenko models respectively are illustrated in terms of

ð4uL=ðn + 1ÞpÞ ffiffiffiffiffiffiffiffiffiffi
r=EI

p
vs. ðn + 1Þ=ð2LÞ. This indicates clearly that the effect of rotary inertia

and shear deformation is profound for high-order vibration modes. In Figure 4.17, u is the

natural frequency, c ¼ L
ffiffiffiffiffiffiffiffiffiffi
r=EI

p
, and n is the order of the vibration mode.

Curve A is the EulereBernoulli model without rotary inertia, curve B is the EulereBernoulli

model with rotary inertia, and curve C is the Timoshenko model.
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Figure 4.16: Influence of Shear Deformation.

Figure 4.17: Influence of Rotary Inertia and Shear Deformation.
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The normalized modal shape functions of natural vibration can be found as

fðx;mÞ ¼ fsðxÞ �
f11ðmÞ
f12ðmÞ

fhðxÞ; zðx;mÞ ¼ f0ðx;mÞ

aðx;mÞ ¼ f00ðx;mÞ þ m2

s
fðx;mÞ

zsiðxÞ ¼ zðx;mÞ
hzðx;miÞ;aðx;miÞjzðx;miÞ;aðx;miÞis

aiðxÞ ¼ aðx;mÞ
hzðx;miÞ;aðx;miÞjzðx;miÞ;aðx;miÞis

i ¼ 0; 1; 2; .

where h�j�id is the generalized inner product for the Timoshenko model:

h f jzish
Z1
0

ð fzþ dgaÞdxþ hgð0Það0Þ þ mf ð1Þzð1Þ

þ mz½gð1Þzð1Þ þ f ð1Það1Þ� þ kgð1Það1Þ ¼ 0

Similar to the EulereBernoulli model, the following orthogonal relationship is true:

hzsi;ai
��zsj;ajis ¼ dij;

Z1
0

a0ia
0
j þ sða� z0iÞða� z0jÞdx ¼ m2dij (4.98)

Note that h f jzis ¼ h f ; f 0jz; z0is.Whenm2> s/d, b2 becomes an imaginary number. In this case:

bi ¼
2
4ds � ð�1Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d þ 4m�2

q
2

3
5

1
2

; ki ¼ m½1� sb2i �
sb1b2ðb21 þ b22Þ

; i ¼ 1; 2

and cosh and sinh functions in fs and fh are replaced by cos and sin functions respectively.

Therefore, for large natural vibration frequencies, the computational problem associated with

the exponential functions is not an issue here.

4.2.7 Step Responses and General Solutions

In this section, we present analytic expressions of step and general responses for flexible

manipulators. The results in Section 4.2.5 are used extensively here. The detailed derivation

of these responses is quite tedious and only the final results are given in this section.
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For step input s¼ constant, one can find step responses of the systems (3.63)e(3.65) and

(3.66)e(3.68) as

zðx; tÞ ¼ zdpðx; tÞ þ s
XN
i¼0

�
cdi1cos uiðt � t0Þ þ cdi2sin uiðt � t0Þ

�
ziðxÞ (4.99)

zsðx; tÞ ¼ zspðx; tÞ þ s
XN
i¼0

�
csi1cos uiðt � t0Þ þ csi2sin uiðt � t0Þ

�
zsiðxÞ (4.100)

aðx; tÞ ¼ aspðx; tÞ þ s
XN
i¼0

�
csi1cos uiðt � t0Þ þ csi2sin uiðt � t0Þ

�
aiðxÞ (4.101)

where z and (zs,a) are for the EulereBernoulli (Timoshenko) and zdp, zsp, and asp are the
corresponding particular solutions of these models:

ðzdp; zspÞ ¼ as

"
xðt � t0Þ2

2
� c2ðAd;AsÞ

#
; aap ¼ as

"
ðt � t0Þ2

2
� c2Aa

#

where

AdðxÞ ¼ x5

5!
� c3

x3

3!
þ c2

x2

2!

AsðxÞ ¼ x5

5!
�
�
c3 þ 1

s


x3

3!
þ c2

x2

2!
þ c1

s
x

AaðxÞ ¼ x4

4!
� c3

x2

2!
þ c2x

and

c1 ¼ 1

2
þ ð1þ zÞm; c2 ¼ 1

3
þ dþ kþ 2zmþ m; c3 ¼ c1 þ d; a ¼ 1

rL3ðhþ c2Þ
To determine the coefficients in Eqs (4.92)e(4.94), we consider the initial conditions:

zðx; t0Þ ¼ Hd0ðxÞ; _zðx; t0Þ ¼ _Hd0ðxÞ

zsðx; t0Þ ¼ Hs0ðxÞ; _zsðx; t0Þ ¼ _Hs0ðxÞ

aðx; t0Þ ¼ As0ðxÞ; _aðx; t0Þ ¼ _As0ðxÞ
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Using the orthogonal relationships Eqs (4.84) and (4.87b) we find:

cdi1 ¼ ac2bd þ hHd0jziid; cdi2 ¼
c

mi
h _Hd0

��ziid
csi1 ¼ ac2bsi þ hHs0;As0jzsi;aiis; csi2 ¼

c

mi
h _Hs0; _As0

��zsi;aiis
where

bdi ¼ hAdjziid; bsi ¼ hAs;Aajzsi;aiis
For zero initial conditions, the step responses become

zðx; tÞ ¼ zdpðx; tÞ þ s
XN
i¼0

bdi cos uiðt � t0ÞziðxÞ

zsðx; tÞ ¼ zspðx; tÞ þ s
XN
i¼0

bsi cos uiðt � t0ÞzsiðxÞ

aðx; tÞ ¼ aspðx; tÞ þ s
XN
i¼0

bsi cos uiðt � t0ÞaiðxÞ

Therefore, after taking derivatives with respect to time, we find the impulse responses of

flexible manipulators as

zhðx; tÞ ¼ axðt � t0Þ �
XN
i¼0

bdiuisin uiðt � t0ÞziðxÞ (4.102)

zhsðx; tÞ ¼ axðt � t0Þ �
XN
i¼0

bsi uisin uiðt � t0ÞzsiðxÞ (4.103)

ahðx; tÞ ¼ aðt � t0Þ �
XN
i¼0

bsi uisin uiðt � t0ÞaiðxÞ (4.104)

Using Duham’s Theorem [9], we can find the response of a flexible manipulator in a general

input s¼ s(t). For the EulereBernoulli model, the response is

zðx; tÞ ¼
Z

zhðx; tÞsðt � sÞds (4.105)

and for the Timoshenko model:

zsðx; tÞ ¼
Z t
t0

zshðx; tÞsðt � sÞds; aðx; tÞ ¼
Z t
t0

ahðx; tÞsðt � sÞds (4.106)

90 Chapter 4



The corresponding transfer functions can be determined easily as

Hd
zsðx; sÞ ¼

Gðzðx; tÞÞ
GðsðtÞÞ ¼ ax

s2
�
XN
i¼1

bdiui

s2 þ u2
i

ziðxÞ (4.107)

Hs
zsðx; sÞ ¼

Gðzsðx; tÞÞ
GðsðtÞÞ ¼ ax

s2
�
XN
i¼1

bsi ui

s2 þ u2
i

zsiðxÞ (4.108)

Hasðx; sÞ ¼ Gðaðx; tÞÞ
GðsðtÞÞ ¼ ax

s2
�
XN
i¼1

bsi ui

s2 þ u2
i

aiðxÞ (4.109)

These results are very useful in control design for flexible manipulators.

4.3 Passivity, Control, and Stability Analysis

Based on the discretization of a nonlinear dynamic model of one-link flexible manipulators,

a Lyapunov energy function method is proposed for the stability analysis in this section [10].

4.3.1 Nonlinear Dynamic Equations of Motion

The flexible manipulator to be considered is a beam of length L fixed on a hub with rotational

inertia IH in the horizontal plane as shown in Figure 4.1. Let (x0,y0) be the inertial coordinate

system and (x,y) be the coordinate system that rotates with the hub. The motion of the

manipulator is described by the angular rotation f due to the hub rotation, and the horizontal

displacement u and the vertical displacement w of the beam with respect to (x,y) coordinates.

Let q be the angle between the tangent of the deflected axis and x-axis.

Using a variational approach, the nonlinear dynamic model [10] for one-link flexible

manipulators undergoing large deformation has been developed by applying Hamilton’s

principle. The governing integro-partial difference equations are given by

EI
v2q

vx2
¼
ZL
x

rf½ _fDyðxÞ � _DxðxÞ�sinqðxÞ þ ½ _fDxðxÞ þ _DyðxÞ�cosqðxÞgdx (4.110)

s ¼ IH€fþ d

dt

ZL
0

r½ðuþ xÞDyðxÞ � wDxðxÞ�dx (4.111)

with the boundary conditions

qð0; tÞ ¼ 0; q0ðL; tÞ ¼ 0 x ¼ L (4.112)

Analysis of Flexible Manipulators 91



4.3.2 Discretization of Nonlinear Model

Equations (4.110)e(4.112) are integro-differential equations that are difficult to work with

directly. We adopt the approach of linearizing the equation of motion and obtain the natural

modes first, and then use the natural modes as a basis of expansion for the general solution of

the nonlinear equation. The eigenfunction expansion (4.113) can be used to discretize the

nonlinear dynamic equation given in Eqs (4.110)e(4.112):

vðx; tÞ ¼
XN
n¼0

qnðtÞjnðxÞ (4.113)

where qn(t) is called the modal amplitude function and jn(x) is called the mode shape q1.

To keep the equations tractable, we assume small bending, i.e. w is small. Specifically, w

and w0 are assumed to be of the same order, say O(ε), where ε is small. All velocities are

assumed to be of order 1. Terms with up to quadratic power of ε are kept in the expansion,

so the equation of motion is valid up to the linear term in ε. This approach is the same as

that in Ref. [16], except we do not assume a small velocity. This results in nonzero

centrifugal and Coriolis forces, which were missing in the equation in Ref. [16]. The

importance of these terms is in the preservation of the conservative property of the open-

loop system after the approximation. We shall see that this has important consequences in

stability analysis. With the stated approximation, the kinetic energy becomes

T ¼ 1

2
r

ZL
0

_y2 dxþ 1

2
IH _f

2 þ 1

2
r

ZL
0

�
_u2 þ w2 _f

2 � 2w _u _fþ 2u _f_y
�

(4.114)

where u and _u are approximated by

uðx; tÞ ¼ �1

2

Zx
0

w0ðx; tÞ2dx (4.115)

_uðx; tÞ ¼ �
Zx
0

w0ðx; tÞ _w0ðx; tÞdx (4.116)

The kinetic energy can be expanded along the natural modes of the linearized system.

Then:

T ¼ 1

2
_qTMðqÞq
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where the mass matrix is

MðqÞ ¼ aI þ
ZL
0

AðxÞqqTAðxÞdxþ qTA1qJ
0ð0ÞJ0Tð0Þ

þ 2qT
� ZL

0

ðJðxÞ � xJ0ð0ÞÞAðxÞdx
	
qJ0Tð0Þ �J0ð0Þ qT

ZL
0

AðxÞqJTðxÞdx
(4.117)

q, J(x), and J0(0) are infinite dimensional vectors for modal amplitudes, eigenfunctions

evaluated at x, and the spatial derivative of the eigenfunction evaluated at 0 respectively, and

AðxÞ ¼
Zx
0

ðJ0ðxÞ �J0ð0ÞÞðJ0ðxÞ �J0ð0ÞÞTdx

A1 ¼
ZL
0

ðJðxÞ � xJ0ð0ÞÞðJðxÞ � xJ0ð0ÞÞTdx

The modal coordinate q is a generalized coordinate and the discretized kinetic energy can be

used to find the Coriolis and centrifugal accelerations from

Cðq; _qÞ _q ¼ d

dt

�
vT

v _q


� vT

vq

After some algebra, the following expression is obtained:

Cðq; _qÞ _q ¼
��ZL

0

�
L2

2
� x2

2


ðJ0ðxÞ �J0ð0ÞÞðJ0ðxÞ �J0ð0ÞÞTdx

�
ZL
0

ðJðxÞ � xJ0ð0ÞÞðJðxÞ � xJ0ð0ÞÞTdx
	
q _qTJ0ð0ÞJ0Tð0Þ

þ 2J0ð0ÞqT
ZL
0

ðJðxÞ � xJ0ð0ÞÞðJðxÞ � xJ0ð0ÞÞTdxJ0Tð0Þ _q

� 2 _qTJ0ð0Þ
ZL
0

�
L2

2
� x2

2


ðJ0ðxÞ �J0ð0ÞÞðJ0ðxÞ �J0ð0ÞÞTdx qJ0Tð0Þ

þ 2ð _qT5IÞ
� ZL

0

��ZL
x

JðxÞdx

5ðJ0ðxÞ �J0ð0ÞÞðJ0ðxÞ �J0ð0Þ

T

dx

	
qJ0Tð0Þ

� 2ð _qT5IÞ
ZL
0

ððJ0ðxÞ �J0ð0ÞÞ5
�ZL

x

JðxÞdxÞ

ðJ0ðxÞ �J0ð0ÞÞTdx qJ0ð0ÞT

�
_q

(4.118)
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The discretized nonlinear dynamic equation accurate up to quadratic terms in w and w0 can
now be stated:

MðqÞ€qþ Cðq; _qÞ _qþ aU2q ¼ r�1J0ð0Þs ¼ Bs (4.119)

This can be shown to correspond to the discretization of the following partial differential

equation:

€wþ x€fþ EI

r

v4w

vx4
þ w _f

2 þ _f
2 d

dx

��
L2

2
� x2

2


w0
	

þ 2 _f

�
d

dx

�
w0
ZL
x

_wdx

	
�
Zx
0

_w0 _w0dx
�
þ
�
d

dx

�
w0
ZL
x

Zx
0

_w02dh dx

	
�
Zx
0

_w02dx w0
� (4.120)

The boundary conditions and the dynamic equation for f are the same as before:

s� IH€fþ EI w00ð0; tÞ ¼ 0 (4.121)

wð0; tÞ ¼ 0; w0ð0; tÞ ¼ 0; w00ðL; tÞ ¼ 0; w000ðL; tÞ ¼ 0 (4.122)

This model generalizes the one in Ref. [17] in which only the nonlinear term

_f
2 d

dx

��
L2

2
� x2

2


w0
	

was included. This model also generalizes the one in Ref. [18], in which some, but not all, of

the nonlinear terms are included, which implies that the conservative nature of the open-loop

system is not preserved in the approximation.

4.3.3 Stability Analysis

The centrifugal and Coriolis term Cðq; _qÞ _q is related to the nonlinear mass matrix in an

important way. Defining MD from the following relationship:

_Mðq; _qÞz ¼ MDðq; zÞ _q
then it is easy to show (as in Ref. [19]) that one choice of C (it is not unique) is

Cðq; _qÞ ¼ MDðq; _qÞ � 1

2
MT

Dðq; _qÞ (4.123)

This relationship has been exploited extensively in the rigid robotics literature for stability

analysis and control design; for an example see Refs [13,19]. In fact, we can now show that
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joint angle proportional-derivative (PD) control is a stabilizing control law. Consider the

following Lyapunov function candidate:

Vðq; _qÞ ¼ 1

2
_qTMðqÞ _qþ a

1

2
qTU2qþ 1

2
qTBKpB

Tq (4.124)

The derivative of V along the solution is

_Vðq; _qÞ ¼ _qT
�
� aU2qþ Bs� Cðq; _qÞ _qþ 1

2
M
: ðq; _qÞ þ aU2q


¼ _qTBs

where U is a diagonal matrix with nth diagonal entry un, and B is a column with nth element

j0
nð0Þ=r. Note that the contribution due to Cðq; _qÞ drops out due to the structure given in

(4.123). The above Lyapunov energy analysis confirms the fact that the map from s to BT _q (i.e.

the joint angular velocity) is passive, which is also the well-known sensor/actuator collocation

condition. Note that if nonlinear terms are only retained inM but not in C, as in Ref. [16] (i.e.

setting it to zero, by assuming small _q), there would be an _M term in _V . Thus, the passivity

property would be destroyed. If s is chosen as a simple joint angle PD control law:

s ¼ �KpB
Tðq� qdesÞ � KyB

T _q (4.125)

where qdes is chosen to satisfy

BTqdes ¼ fdes

Uqdes ¼ 0

simultaneously. It is possible to choose such qdes since

�
BT

U

	
is ??? (note that the first

component of B is r�1ðL3=3 + IH=rÞ, which is nonzero).

With the joint angle PD control, the closed-loop system is stable due to the fact that
_V ¼ �KyðBT _qÞ2 � 0. Since _V � 0 implies all trajectories are uniformly bound in t, by

Ref. [20], the joint angular velocity BT _qðtÞ tends to zero as t / N. From the governing

equation (4.119), all higher derivatives q are uniformly bounded. Using Proposition 1 in

Ref. [21], it follows that BT ½dkqðtÞ=dtk� converges to zero in norm for k � 0.

At this point, we revert to a local analysis for the linearized system, i.e. consider

a neighborhood of the zero equilibrium where _q is sufficiently small, in which asymptotic

convergence for first-order vertical form of the linearized partial differential equations:

�
_q
€q

	
¼
�

0 I
�U2 0

	�
q
_q

	
þ
�

0
a�1B

	
s (4.126)
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implies asymptotic convergence for the nonlinear system described by (4.119). If only a finite

number of modes is undamped, and the damping operator D is bounded relative to U2, the

closed-loop infinitesimal generator

A0 ¼
"

0 I

�ðU2 þ BKpB
TÞ �ðDþ BKvB

TÞ

#
(4.127)

has compact resolvent [22], which implies that all bounded trajectories are precompact [23].

Hence the invariance principle can be applied to the closed-loop infinite-dimensional system, i.e.

Q¼D��q; _qÞ : BT _q ¼ 0
�

(4.128)

If BT _q is detectable, then the largest invariant set in Q is just the origin and the zero

equilibrium is asymptotically stable. When does the detectability condition hold? Without

loss of generality, assume the first N modes are undamped. Therefore, to check detectability,

we only need to check the observability of the first N modes. By forming the observability

matrix, it follows that if the N	N matrix is

O¼D

2
66664

BT

BTK2

«

BTK2ðN�1Þ

3
77775

where K¼D U2 + BKpB
T is invertible, then the observability condition holds and the flexible

beam, with N unstable modes, is in a stabilizable condition from joint torque.

The above discussion can also be viewed from a general passivity perspective (this line of

reasoning was originally proposed for flexible joint control [24]). This discussion is best

understood through a number of steps:

First, consider just the joint angular position feedback s ¼ s1 � KpB
TDq. Then the map from

s1 to BT _q is passive by following the above Lyapunov argument.

Let C be any strict passive map that takes BT _q to s1:

s1 ¼ s2 � CðBT _qÞ
The constant gain Kv feedback is a special case.

By the passivity theorem [25], the map that takes s2 to BT _q is L2� input/output stable.

If the closed-loop system is detectable with respect to BT _q and stabilizable with respect to s2,
then the system is internally asymptotically stable.
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If the feedback C is restricted to be linear, then it must be strictly positive real [15,26]. An

open and very interesting problem is choosing a strictly positive real C so that some

performance measure (e.g. HN norm of some input/output pair for the linearized system) is

optimized. Another implication of the above discussion is that any feedback controller from

BT _q to s1, which is self-stable, can be “robustified” by adding in a suitable amount of

constant-gain feedback. A sample data system can be included in this discussion by including

the sampler and zero-order hold in the consideration of passivity for the feedback system.
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5.1 Optimum Design of Flexible Beams with a New Iteration Approach

Optimum design of vibrating cantilevers is a classical problem widely discussed in the

literature and textbooks in structural optimization. The problem, originally formulated and

solved byKarihaloo andNiordson [1], is to find the optimal beam shape that will maximize the

fundamental vibration frequency of a cantilever. Upon reexamination of the problem, it has

been found that the original analysis and solution procedure can be simplified and substantially

improved. Specifically, the time-consuming inner loop devised for solving the Lagrange

multiplier in the original work has been proven to be totally unnecessary and thus should not be

considered in the solution to the problem. This conclusion has led to a new set of simplified

equations for the construction of iteration schemes. In this section new asymptotic expressions

for the optimum design solution have been obtained and verified by numerical results.
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5.1.1 Introduction

Since the pioneering works of Beesack [2], Schwarz [3,4], and especially Niordson [5],

considerable progress has been made in the optimum design of vibrating elastic structures.

Niordson [5] first showed that, for simply supported beams with geometrically similar cross-

sections, an increase of 6.6% in the lowest frequency of vibration can be achieved through

optimum shape design. Later, Karihaloo and Niordson [6] studied the optimum design of

vibrating cantilever beams and found considerably larger increases in the lowest frequency.

For example, the lowest frequency of the optimum cantilever with geometrically similar

cross-sections is 57.8% larger than that of the corresponding one with a uniform cross-

section. Similar work and extensions have also been conducted by many other researchers

[7e10]. Since then, the problem has become a classical one and has been discussed widely in

the literature and textbooks on structural optimization.

Wang [11] investigated the problem of the optimum shape design of flexible manipulators.

The objective is to increase the fundamental vibration frequency of a flexible manipulator so

that a larger bandwidth can be obtained for the manipulator control system. The problem

formulation is almost the same as that in Ref. [6]. However, different boundary conditions

have made the optimization problem for flexible manipulators much more difficult than the

corresponding problem for cantilever beams.

Initially, we attempted to follow the iteration schemes in Ref. [6] in order to solve the

corresponding optimization problem for flexible manipulators. However, for all cases tried,

the iterative schemes of Ref. [6] did not converge. It was also found that the implicit

equation (so-called inner loop) for solving the Lagrange multiplier in those schemes took

a significant amount of computation time. After careful reexamination of the original

problem, we found that the time-consuming inner loop in the original iteration schemes was

redundant and could be removed completely in the solution process. Eliminating this

redundant equation from the iteration process leads to a new formulation for the iterations,

and consequently to substantial simplification of the iteration equations and significant

improvement in convergence rates. For example, three simplified iteration schemes are

needed to solve the optimum design problem completely using this method, whereas five

different sophisticated schemes were required in Ref. [6]. These results have provided

useful information for solving the optimization problem for manipulators [11,12].

As in Ref. [6], we assume throughout this paper the following relationship between the

moment of inertia I and the area A of a cross-section of the beam:

I ¼ cApðxÞ; p � 1 (5.1)

where c is a constant. Three cases (p¼ 1, 2, 3) are especially interesting to us, since they

correspond to beams with rectangular cross-sections of given uniform height, geometrically
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similar cross-sections, and rectangular cross-sections of given uniform width respectively.

The treatment in this section, however, is valid for all cases with p� 1.

5.1.2 Basic Equations

Consider the small harmonic transverse vibrations of a tapered cantilever beam carrying

a mass Q at its tip. If both the rotary inertia and shear deformations are neglected, the

differential equation of motion and the boundary conditions can be written in the following

dimensionless form:

ðapy00Þ00 � lay ¼ 0 (5.2)

yð1Þ ¼ yð1Þ ¼ 0; apy00ð0Þ ¼ 0; ðapy00Þ0ð0Þ ¼ l qyð0Þ (5.3)

Here, y is the amplitude of the lateral displacement in the plane of bending and the prime

indicates differentiation with respect to the dimensionless coordinate x¼ x/l. The

dimensionless area function is denoted as a¼ Al/V, in which l is the length of the beam and V

is the total volume of the beam. The dimensionless eigenvalue l and mass parameter q in the

boundary conditions are defined as

l ¼ u2g lpþ3=cEVp�1; q ¼ Q=gV (5.4)

where u is the natural vibration frequency and g the mass density of the beam. From the

definition, a must be non-negative and satisfy the following constraint:

Z1
0

aðxÞdx ¼ 1 (5.5)

The problem of the optimum design of vibrating cantilevers is to find the optimal area

function that will maximize the fundamental vibration frequency. Using the Rayleigh

quotient and variational calculus, we find the equation for determining the optimum area

function as

pap�1ðy00Þ2 � ly2 ¼ la2 (5.6)

where a2 is the Lagrange multiplier introduced for the constraint (5.5).

Equations (5.2), (5.3), and (5.6) are fundamental for solving the optimum design problem.

Note that in order to be consistent with the original work by Karihaloo and Niordson, all

notation used in Ref. [6] has been kept here. Detailed derivation of these equations is given in

Ref. [6].

The Rayleigh quotient can be obtained by multiplying both sides of Eq. (5.2) by y and

integrating over the interval [0,1]. Integrating by parts and taking the boundary conditions

(5.3) into account, we have
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l ¼
� Z1

0

apy002dx
� � Z1

0

ay2dxþ qy2ð0Þ
�,

(5.7)

Furthermore, by substituting Eq. (5.6) into (5.7), we obtain the following implicit equation for

the Lagrange multiplier:

a2 ¼ ðp� 1Þ
Z1
0

h
lðy2 þ a2Þ=pðy00Þ2

i1=ðp�1Þ
y2dxþ pqy2ð0Þ (5.8)

Expressions (5.7) and (5.8) can be considered as the consequences of Eqs (5.2)e(5.3) and

(5.5)e(5.6). That is, as long as y and a satisfy (5.2)e(5.3) and (5.5)e(5.6), both (5.7) and (5.8)

will be satisfied automatically. Therefore, in order to solve the optimization problem, one only

needs to work with Eqs (5.2)e(5.3) and (5.5)e(5.6). This observation will serve as the basis for

the development of our new formulations of iteration schemes. Note that, except for the case

p¼ 2, the Lagrange multiplier a2 cannot be expressed explicitly in terms of y. For ps 2 the so-

called inner loop has been used in Ref. [6] to find a2 for a given y in their iteration schemes. The

numerical simulation indicates that most of the computation time is spent on this inner-loop

operation. Hence, by removing Eq. (5.8) completely from the solution process, the rate of

convergence of the iteration schemes can be significantly improved.

To this end, we notice that for a given area function and eigenvalue, y and a2 cannot be

determined uniquely from Eqs (5.2)e(5.3) and (5.5)e(5.6). To see this, let (y,a2,a,l) be

a solution of (5.2)e(5.3) and (5.5)e(5.6). Then, (ny,n2a2,a,l) is obviously another solution

for any nonzero constant n. This non-uniqueness offers us a way to remove the Lagrange

multiplier completely from (5.6) by selecting n¼ 1/a. In other words, for the optimization

problem, we only need to find the unknown function u¼ y/a, instead of y and a2 separately.

Another method for solving the non-uniqueness problem is to impose some normalization

scheme on y. This method has been used widely in structural optimization [13,14]; however, it

still requires the Lagrange multiplier to be found.

In terms of the new function u, Eqs (5.2), (5.3), and (5.6) can be rewritten as

ðapu00Þ00 � la u ¼ 0 (5.9)

pap�1ðu00Þ2 � lu2 ¼ l (5.10)

uð1Þ ¼ u0ð1Þ ¼ 0; apu00ð0Þ ¼ 0; ðapu00Þ0ð0Þ ¼ lquð0Þ (5.11)

It follows from these equations that

Z1
0

aðxÞdx ¼ ðp� 1Þ
Z1
0

h
lðu2 þ 1Þ=pðu00Þ2

i1=ðpþ1Þ
u2dxþ pqu2ð0Þ (5.12)
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Note that this identity does not require the constraint (5.5) to hold.

From (5.10), for p> 1, we can find a in terms of u and l:

aðxÞ ¼ fuðxÞ=b; b ¼ ðp=lÞ1=ðp�1Þ (5.13a)

l ¼ p=bp�1; fuðxÞ ¼
��
u2ðxÞ þ 1Þ=u002ðxÞ� 1=ðp�1Þ (5.13b)

When the constraint (5.5) is satisfied, we have

b ¼
Z1
0

fuðxÞdx (5.14)

The following integral formulas are useful in our discussion (see Section 5.2.4):

Zx
0

Zx
0

GðsÞdsdx ¼ x2
Z1
0

ð1� xÞGðxxÞdx (5.15)

Z1
x

Z1
x

GðsÞdsdx ¼ ð1� xÞ2
Z1
0

xG½xþ xð1� xÞ�dx (5.16)

By formal integration of (5.9), after satisfying the boundary conditions at x¼ 0, substituting

a from (5.13) into (5.9) and using (5.15), we find that

u00ðxÞ ¼ ½u2ðxÞ þ 1�p=ðpþ1Þ
n
px
h
bquð0Þ þ x

R1
0

ð1� xÞfuðxxÞuðxxÞdx
ioðp�1Þ=ðpþ1Þ (5.17)

which will be used as the basic formula for the construction of new iteration schemes.

5.1.3 Analysis of Singularity at the Free End

When ps 1, the solutions of Eqs (5.9)e(5.11) are singular at the free end x¼ 0; therefore,

the numerical method cannot be applied to finding the solution directly. To make

numerical solution possible, we first have to determine the behavior of the solution near

the free end. This can be done by assuming that the solutions can be expanded in a power

series of x with a characteristic term xk near the free end. A standard procedure was used

by Karihaloo and Niordson [6] to derive the characteristic equations for determining the

singularity k. Here, however, a direct and much simpler method is employed to find the

singularity.
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Case where qs 0

In this case, since u is finite at x¼ 0, we can see from Eqs (5.9)e(5.11) that at x¼ 0:

apu00 ¼ 0; ðapu00Þ0 ¼ finite; ðapu00Þ00 ¼ finite; ap�1ðu00Þ2 ¼ finite

Therefore, in the neighborhood of x¼ 0:

apu00 ¼ a1xþ a2x
2 þ.; ap�1u002 ¼ b1 þ.

where a1, a2, and b1 are constants. Solving the above equations for a and u00, we get

aðxÞ ¼ c1x
2=ðpþ1Þ þ. (5.18)

u00ðxÞ ¼ d1x
�ðp�1Þ=ðpþ1Þ þ. (5.19)

where c1 and d1 are two new constants. Then the behavior of u near the free end can be found as

uðxÞ ¼ d1x
ðpþ3Þ=ðpþ1Þ þ. (5.20)

Therefore, the singularity of u at x¼ 0 is

k ¼ ðpþ 3Þ=ðpþ 1Þ

Case where q¼ 0

Expanding both u and a in a power series of x at x¼ 0:

uðxÞ ¼ u0x
k þ. (5.21a)

aðxÞ ¼ a0x
m þ. (5.21b)

Substituting these expressions into Eq. (5.10) we get

2k ¼ mðp� 1Þ þ 2ðk � 2Þ; l ¼ pap�1
0 k2ðk � 1Þ2

Similarly, from Eq. (5.9) we get

la0 ¼ ap0kðk � 1Þðmþ k þ 2Þðmþ k þ 1Þ
By eliminating l and a0 from these equations we find that

m ¼ 4=ðp� 1Þ (5.22)

½kðp� 1Þ þ 2ðpþ 1Þ�½kðp� 1Þ þ pþ 3� � pðp� 1Þ2kðk � 1Þ ¼ 0 (5.23)

For p¼ 2, we find k¼�2, and for p¼ 3 we find k¼�1. In both cases, the results are the

same as those obtained in Ref. [6] using the standard procedure.
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5.1.4 Solution by Successive Iterations: New Formulation

In this section, we present a new simplified formulation for solving Eqs (5.9)e(5.11) using

successive iterations. We first discuss in detail the degenerate case in which p¼ 1 and then

investigate the cases where p> 1, q¼ 0 and p> 1, qs 0 respectively.

Case where p¼ 1

For p¼ 1, function a drops out of Eq. (5.10) and we have a degenerate case. Equations

(5.9)e(5.11) now have the form:

ðau00Þ00 � lau ¼ 0 (5.24)

ðu00Þ2 ¼ lðu2 þ 1Þ (5.25)

uð1Þ ¼ u0ð1Þ ¼ 0; au00ð0Þ ¼ 0; ðau00Þ0ð0Þ ¼ lquð0Þ (5.26)

and the identity (5.12) becomes

qu2ð0Þ ¼
Z1
0

aðxÞdx

The above equation indicates that for q¼ 0, the solution to the optimum design problem of

a vibrating cantilever beam does not exist, since the constraint (5.5) cannot be satisfied by any

solution of (5.24)e(5.26). Actually, as pointed out in Ref. [6], the vibration frequency of

a cantilever can be increased indefinitely in this case by selecting a appropriately. For qs 0, if

we choose

q ¼ 1=u2ð0Þ (5.27)

then a obtained by solving Eq. (5.24) with boundary conditions (5.26) will satisfy the

constraint (5.5) automatically. This observation leads to an inverse approach to solve the

problem in this case. In other words, starting with a given l, we determine u by solving (5.25)

with the first two boundary conditions in (5.26) and then calculate the corresponding q using

(5.27). This will establish a relationship between the mass parameter q and the optimum

eigenvalue l, which will enable us to find l for a given q, and hence solve the optimization

problem. Note that this process does not involve the computation of a. Once u and q have

been found for a given l, a can be obtained by solving (5.24) with the last two boundary

conditions in (5.26). It is guaranteed that the resulting a will meet the constraint (5.5).

For very large q, an asymptotic relationship between q and l can be obtained. Since l is very

small in this case, we can use ε ¼ ffiffiffi
l

p
as a small parameter and solve (5.25) by the

perturbation method [15], i.e. expand u in a power series of ε:

uðxÞ ¼ u0ðxÞ þ εu1ðxÞ þ.
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Substituting the above expression into (5.25), we get

u0 ¼ 0; u1 ¼ ð1=2Þð1� xÞ2; . (5.28)

Hence, from Eqs (5.24), (5.26), and (5.27), we have

lqy 4; aðxÞ y 2x (5.29)

when q is very large.

For a cantilever beam of uniform cross-section and the same length and volume as the

optimum beam, a(x)¼ 1 and the characteristic equation for the eigenvalue lc is (see

Ref. [16])

1þ cos q cosh qþ qqðcos q sinh q� sin q cosh qÞ ¼ 0; q ¼ l1=4c (5.30)

From this, we find that for very large q:

lcqy 3 (5.31)

Therefore, for a large tip mass, a relative increase of

u=uc � 1 ¼
ffiffiffiffiffiffiffiffiffi
l=lc

p
� 1 ¼

ffiffiffiffiffiffiffiffi
4=3

p
� 1 ¼ 15:47%

in the lowest natural frequency can be achieved with the optimum tapering of cantilever

beams.

To develop a successive iteration scheme for general qs 0, we formally integrate (5.24) and

(5.25) with boundary conditions (5.26). Application of formulas (5.15) and (5.16) leads to

uðxÞ ¼
ffiffiffi
l

p
ð1� xÞ2

Z1
0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2½xþ xð1� xÞ� þ 1

q
dx (5.32)

aðxÞ ¼
ffiffiffi
l

p
x

1=uð0Þ þ x
R1
0

ð1� xÞaðxxÞuðxxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðxÞ þ 1

p (5.33)

Based on Eqs (5.32) and (5.33), the iteration scheme can now be outlined as follows.

• Step 1. For a given l, select an initial u0(x). Update ui until a specified accuracy is

obtained:

uiþ1ðxÞ ¼
ffiffiffi
l

p
ð1� xÞ2

Z1
0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i ½xþ xð1� xÞ� þ 1

q
dx

• Step 2. For u obtained in Step 1, calculate q according to Eq. (5.27).
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• Step 3. Select an initial a0(x) and update ai until a specified accuracy is obtained:

aiþ1ðxÞ ¼
ffiffiffi
l

p
x

1=uð0Þ þ x
R1
0

ð1� xÞaiðxxÞuðxxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðxÞ þ 1

p

Clearly, compared with the corresponding scheme presented in Ref. [6], the new formulation

in this case is simpler.

Case where p> 1 and q¼ 0

In order to avoid the singularity of u at x¼ 0, we introduce two new functions:

f ðxÞ ¼ xkuðxÞ; zðxÞ ¼ xkþ2u00ðxÞ (5.34)

where k is the singularity of u at x¼ 0 determined from Eq. (5.23). Both f and z are regular

over the entire interval 0� x� 1. It is easy to show that

f ð1Þ ¼ f 0ð1Þ ¼ 0; f ð0Þ ¼ zð0Þ=kðk þ 1Þ (5.35)

In terms of f and z, the function fu and parameter b can be rewritten as

fuðxÞ ¼ x4=ðp�1ÞfðxÞ; b ¼
Z1
0

x4=ðp�1ÞfðxÞdx (5.36a)

fðxÞ ¼ ½ðf 2ðxÞ þ x2kÞ=z2ðxÞ�1=ðp�1Þ (5.36b)

From Eq. (5.34) and Eqs (5.15)e(5.17), we get

f ðxÞ ¼ xkð1� xÞ2
Z1
0

xz½xþ xð1� xÞ�
½xþ xð1� xÞ�kþ2

dx; 0 < x � 1 (5.37)

zðxÞ ¼
�
f 2ðxÞ þ x2k

�p=ðpþ1Þ
"
p
R1
0

ð1� xÞx4=ðp�1Þ�kfðxxÞf ðxxÞdx
#ðp�1Þ=ðpþ1Þ (5.38)

Now, the scheme for successive iterations can be specified as follows:

• Step 1. Select an initial z0(x).

• Step 2. Update fi(x) according to
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fiþ1ðxÞ ¼ xkð1� xÞ2
Z1
0

xzi½xþ xð1� xÞ�
½xþ xð1� xÞ�kþ2

dx; 0 < x � 1

fiþ1ð0Þ ¼ zið0Þ=kðk þ 1Þ

• Step 3. Update fi(x):

fiþ1ðxÞ ¼
��
f 2iþ1ðxÞ þ x2kÞ=z2i ðxÞ

�1=ðp�1Þ

• Step 4. Update zi(x):

ziþ1ðxÞ ¼
�
f 2iþ1ðxÞ þ x2k

�p=ðpþ1Þ
�
p
R1
0

ð1� xÞx4=ðp�1Þ�kfiþ1ðxxÞfiþ1ðxxÞdx
�ðp�1Þ=ðpþ1Þ

• Step 5. If a given accuracy is not obtained, go back to Step 2.

Once f and z have been obtained within the specified accuracy, one can find the parameter b.

Then the optimum eigenvalue l, the function fu, and the optimum a can be determined

according to Eqs (5.36), (5.14), and (5.13) respectively. Clearly, the proposed new procedure

is much simpler than the one developed in Ref. [6].

Case where p> 1 and qs 0

In this case, we need only to consider the singularity of u00 at x¼ 0. To this end, we introduce

the new function:

zðxÞ ¼ x2�ku00ðxÞ (5.39)

where k¼ (pþ 3)/(pþ 1), according to the expression (5.20). The function z is regular over

the entire interval 0� x� 1.

In terms of z, we can find that

uðxÞ ¼ ð1� xÞ2
Z1
0

xz½xþ xð1� xÞ�
½xþ xð1� xÞ�2�k

dx; 0 � x � 1 (5.40)

For the purpose of numerical calculation, we need to specify u(0) explicitly:

uð0Þ ¼
Z1
0

x2=ðpþ1ÞzðxÞdx (5.41)
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Similarly, for fu and b, we have

fuðxÞ ¼ x2=ðpþ1ÞfðxÞ; b ¼
Z1
0

x2=ðpþ1ÞfðxÞ dðxÞ (5.42a)

fðxÞ ¼ ½ðu2ðxÞ þ 1Þ=z2ðxÞ�1=ðp�1Þ (5.42b)

From Eq. (5.17) we get

zðxÞ ¼
�
u2ðxÞ þ 1

�p=ðpþ1Þ
(
p

�
bquð0Þ þ xðpþ3Þ=ðpþ1Þ R1

0

ð1� xÞx2=ðpþ1ÞfðxxÞuðxxÞdx
�)ðp�1Þ=ðpþ1Þ (5.43)

The iteration scheme here is similar to that of the previous case and is given below:

• Step 1. Select an initial z0(x).

• Step 2. Update ui(x) according to

uiþ1ðxÞ ¼ ð1� xÞ2
Z1
0

xzi½xþ xð1� xÞ�
½xþ xð1� xÞ�2�k

dx; 0 � x � 1

uiþ1ð0Þ ¼
Z1
0

x2=ðpþ1ÞziðxÞdx

• Step 3. Update fi(x):

fiþ1ðxÞ ¼
��
u2iþ1ðxÞ þ 1Þ=z2i ðxÞ

�1=ðp�1Þ

• Step 4. Update zi(x):

ziþ1ðxÞ ¼
�
u2iþ1ðxÞ þ 1

�p=ðpþ1Þ
(
p

�
bquiþ1ð0Þ þ xðpþ3Þ=ðpþ1Þ R1

0

ð1� xÞx2=ðpþ1Þfiþ1ðxxÞuiþ1ðxxÞdx
�)ðp�1Þ=ðpþ1Þ

• Step 5. If a given accuracy is not obtained, go back to Step 2.

Again, the new iteration scheme in this case is simpler than the one used in Ref. [6].
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5.1.5 Numerical Examples

To verify the correctness and efficiency of our new formulation, several numerical examples

have been considered. Some results are described in this section.

Case where p¼ 1

The iteration processes in this case are subject to the following accuracy criteria:

kuiþ1 � uik=kuiþ1k < ε; kaiþ1 � aik=kaiþ1k < ε

To simplify the numerical computation, we have approximated both u and a using spline

functions through interpolation over their values at Nþ 1 uniformly distributed discrete points

in 0� x� 1. Throughout this section,N¼ 10 and ε¼ 10�4 have been used in all examples. The

numerical integrations in the iterations are carried out using the recursive Simpson formula.

The iteration for u starts with u0, found by solving Eq. (5.25) using the fifth-order RungeeKutta

formulas. The iteration for a starts with a0(x)¼ 1. For various values of the nondimensional

mass parameter q, Table 5.1 summarizes the percentage increase in the lowest frequency in

comparison with that of the cantilever beam having uniform rectangular cross-sections and

having the same length, volume, and material as the optimum beam. The corresponding results

obtained in Ref. [6] have also been included in the table. As one can see, a large discrepancy

exists between the two results. We believe that our results are more accurate, since they agree

with the prediction from the asymptotic expressions (5.29) and (5.31); i.e. for large q:ffiffiffiffiffiffiffiffiffi
l=lc

p
¼

ffiffiffiffiffiffiffiffi
4=3

p
¼ 1:1547

It is also obvious that, for q¼ 1.1027, the result
ffiffiffiffiffiffiffiffiffi
l=lc

p ¼ 0:28 in Ref. [6] is simply not

logical, since l should always be greater than or equal to lc.

Figure 5.1 illustrates the corresponding variation in width of the rectangular cross-section as

a function of nondimensional coordinate x. Figure 5.2 presents the relationship between the

eigenvalue l and the mass parameter q for the optimum beam. The dashed curve in the figure

is the corresponding result obtained from Eq. (5.30) for a cantilever beam of uniform cross-

section. From these curves, one can find the eigenvalue l, and hence the lowest frequency of

beams for a given mass parameter q. The percentage increase in the lowest frequency

Table 5.1: Values of
ffiffiffiffiffiffiffiffiffiffi
l=lc

p
for various values of q (p[ 1)

q[ 0.0375 q[ 0.2233 q[ 1.1027 q[ 43 104

p¼ 1 2.3235 1.5025 1.2388 1.1547
p¼ 1 28.42* 2.56* 0.28* d

*Results obtained by Karihaloo and Niordson [6].
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achieved through the optimum design is given in Figure 5.3. Clearly, the results here have

verified the asymptotic expressions (5.29) and (5.31).

Cases where p¼ 2 and p¼ 3

The iteration processes are continued until

kfiþ1 � fik=kfiþ1k or kuiþ1 � uik=kuiþ1k < ε

kziþ1 � zik=kziþ1k < ε

(a) q=0.0375

(b) q=0.223

(c) q=1.1027

(d) q=40000

0 0.2 0.4
ξ

0.6 0.8 1

Figure 5.1: Optimum Tapering of Rectangular Cross-Section of Given Height (p[ 1).
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Figure 5.2: Fundamental Frequencies vs. Mass Parameter q (p[ 1).
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As in the previous case, f (or u for qs 0) and a are approximated using spline functions

through interpolation over their values at Nþ 1 uniformly distributed discrete points on

0� x� 1.

The iterations always start with z0(x)¼ 1 for all the cases. For various values of the

nondimensional mass parameter q, Table 5.2 summarizes the increase in the lowest frequency

in comparison with that of the corresponding cantilever beam of uniform cross-section. The

results of Ref. [6] have also been included.

For large q, using the perturbation method, we can find that

lqz½ðpþ 3Þ=ðpþ 1Þ�pþ1; aðxÞz½ðpþ 3Þ=ðpþ 1Þ�x2=ðpþ1Þ (5.44)

Equation (5.29) is a special case of Eq. (5.44). FromEqs (5.31) and (5.44), for large tipmass one

can find by simple calculation that increases of 24.23% and 29.90% in the lowest natural

frequency can be achieved by optimum tapering of the cantilever beams for p¼ 2 and p¼ 3

respectively. From Table 5.2, the results for q¼ 100 using the new iteration scheme are quite

close to these two values, whereas a relatively large discrepancy is found for the results given in

Ref. [6].

0.4          0 0.2 0.6 0.8 1
q

c

7

6

5

4

3

2

λ λ

Figure 5.3: Ratio of
ffiffiffiffiffiffiffiffiffi
l=lc

p
vs. Mass Parameter q (p[ 1).

Table 5.2: Values of
ffiffiffiffiffiffiffiffiffiffi
l=lc

p
for various values of q (p[ 2, 3)

q[ 0 q[ 0.0003 q[ 0.03 Q[ 100

p¼ 2 7.0025 4.5984 2.3450 1.2432
p¼ 2 6.78* 5.48* 3.36* 1.27*

p¼ 3 4.2937 3.3201 2.2868 1.2998
p¼ 3 4.25* 3.71* 2.30* 1.33*

*Results obtained by Karihaloo and Niordson [6].
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Figures 5.4 and 5.5 present the corresponding variation of the linear dimension of the cross-

section as a function of the nondimensional coordinate x. Figure 5.6 describes the changes

of the eigenvalue l versus the mass parameter q for the optimum beam (p¼ 2 only). The

dashed curve in the figure is the corresponding result obtained from (5.30) for a cantilever

0 0.2 0.4 0.6

ξ
0.8 1

(a) q=0

(b) q=0.003 

(c) q=0.03

(d) q=100

Figure 5.4: Optimum Tapering of Geometrically Similar Cross-Section (p[ 2).

0.2 1

(a) q=0

(b) q=0.003

(c) q=0.03 

(d) q=100

0 0.4 0.6
ξ

0.8

Figure 5.5: Optimum Tapering of Rectangular Cross-Section of Given Width (p[ 3).
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beam of uniform cross-section. The percentage increase in the lowest frequency achieved

through optimum design is illustrated in Figure 5.7 (p¼ 2 only).

Numerical computations show that the new successive iteration formulations converge much

faster than those used in Ref. [6]. For example, for the case where p¼ 2 and q¼ 0, it takes

0 0.2 0.4        0.6          0.8          
q

50 

40 

30 

20 

λ

10 

Figure 5.6: Fundamental Frequencies vs. Mass Parameter q (p[ 2).
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Figure 5.7: Ratio of
ffiffiffiffiffiffiffiffiffi
l=lc

p
vs. Mass Parameter q (p[ 2).
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134 iterations to achieve the specified accuracy by using the iteration scheme in Ref. [6],

whereas only 33 iterations are needed with the new scheme.

5.2 Geometrically Constrained and Composite Material Designs

Many applications of flexible manipulators will impose constraints on the geometry of the

link and its material characteristics. First, the simple constraints of minimum and maximum

radius are considered. Since technological advances in link manufacturing capabilities now

permit hollow tunnel cross-sections, these designs will be examined and compared to the

corresponding optimum solid link designs. New composite materials have been introduced in

flexible link design, due to their extremely high bending rigidity to mass ratios. Simple

composite designs have been considered and analyzed [17].

5.2.1 Minimum and Maximum Radius Constraints

Generally, a manipulator arm will have to adhere to at least minimum and maximum radius

constraints. For geometrically similar cross-sections, this is equivalent to minimum and

maximum constraints on the cross-sectional area function. Now, since the IHR algorithm

requires these two constraints as part of the optimal design, it will be used to demonstrate how

convenient it is to generate a constrained link design.

Figure 5.8 shows three shapes for different area constraints, which can be compared with the

unconstrained shape at the top left. We see that the fundamental frequency of vibration is

always lower for the constrained shapes, as expected. The lowest fundamental frequency of

vibration results from the simultaneous constraints of both minimum and maximum area.

5.2.2 Uniform and Variable Tunnel Cross-Section Designs

It has long been known in the field of structural optimization that beams with hollow tunnel

cross-sections are more rigid than the corresponding solid beams. This is because the

bending rigidity is equal to the product of the moment of cross-sectional inertia and Young’s

modulus of elasticity. As the mass is moved away from the beam’s neutral axis, the moment

of inertia increases dramatically. Thus, hollow links should be much less flexible than the

corresponding solid links. The basic DP solution, which was converted into a program called

UniTunnel, will be utilized to examine the gain over the optimized solid link. In Figure 5.9,

the top left plot shows the optimum frequency versus the radius of the uniform tunnel. It

is clear that a larger tunnel gives a much better fundamental frequency of vibration. But most

applications cannot tolerate huge allocations of space for a flexible manipulator, and this

is especially true in space applications where every cubic centimeter must be fully utilized.

So, constraints must be placed at least on the outside radius of the link. Specialized
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applications may require other constraints, such as minimum/maximum inner radius and

minimum wall thickness, to avoid buckling.

Avery important design is that of the variable tunnel cross-section. This design can be used to

model any flexible link with a hollow interior and will have many practical applications due to

the large gain in frequency over the corresponding optimum solid link. Thus, for the same

frequency, the total mass can be greatly reduced. Obviously, this design is most relevant for

space applications. To implement this design, the IHR algorithm presented in the previous

chapter had to be renovated due to the fact that there are two simultaneous design variables of

area A and inside radius Rin. The following constraints on the design variables were required:

1. SN
I¼1AiDi ¼ Constant total volume.

2. RinMin N� Rin(N)� RinMax N for segment N.

3. RinMin� Rin(j)� RinMax for segment j<N.

4. Rin(jþ 1)� Rin(j)� Rout(jþ 1)� 0.1WIDTH(jþ 1) for j<N.
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Unconstrained Design

Omega = 0.5193

Iterations = 107

Maximum Area = 0.85

Omega = 0.5193

Iterations = 107

Minimum Area = 0.45

Omega = 0.4987

Iterations = 164

Minimum Area = 0.45

Maximum Area = 0.85

Omega = 0.4919

Iterations = 91

Figure 5.8: Constrained Optimum Designs.
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Here, WIDTH(j þ 1)¼ Rout( jþ 1)� Rin( jþ 1), RinMin N is the minimum inside radius of

segment N, RinMax N is the maximum inside radius of segment N, RinMin is the overall

minimum inside radius, and Rout is the outside radius.

Constraint 2 is imposed so that end effectors can be attached to the link. Constraint 3 limits

the overall outside diameter of the link, when combined with the area constraints Amin and

Amax. Constraint 4 requires a minimum 10% overlap of segment areas to maintain mechanical

strength at segment interfaces. This constraint also requires the shape to be monotonically

decreasing, which greatly reduces the computation time. The constraints can, of course, be

reformulated to adhere to any particular set of design requirements.

Figure 5.10 gives four shapes computed by the program VarTunnel. The top left shape was

computed using the same design vector as for the uniform tunnel design of Figure 5.9. The

constraints here were Amin¼ 0, Amax¼ 2 m2, RinMin¼ RinMin N¼ 0.002 m, and RinMax ¼
RinMax N¼ 0.2 m. Notice that the shape and frequency are very close to the uniform tunnel

Figure 5.9: Optimum Shapes for Uniform Tunnel Design.
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design. This example is very important in that it points out that the optimum frequency will

always be attained by moving the mass of the link to the constraint limits of RinMax, in the

absence of additional constraints. The shape at the top right is the same designwith the exception

of RinMax N¼ 2.5 cm, which was set to accommodate the shaft of an end effector. The two

lower plots in Figure 5.10 show how changes in m and K affect the shape and frequency.

5.2.3 Composite Material Designs

We have seen that the segmentized formulation lends itself easily to geometrical constraints.

The other possible types of constraints are material characteristics such as density and

Young’s modulus. Since the density and Young’s modulus of each segment can be specified

individually, the IHR program will be adapted for these optimizations. We are interested

in seeing how the optimum frequency and shape are affected when the left half of the link has

a different density or Young’s modulus from the right half of the link. The two top shapes

in Figure 5.11 show the effect of a change in p between the left and right halves of the link.

We see that the denser right side of the link gives a slightly higher fundamental frequency

Figure 5.10: Optimum Shapes for Variable Tunnel Design.
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of vibration. The two lower shapes show the effect of a change in Young’s modulus between

the left and right halves of the link. A larger Young’s modulus in the left half gives

a somewhat higher frequency. Also notice the similarity in shapes between the top and bottom

figures. The right-hand shapes have a smaller segment 4 due to the larger density and

Young’s modulus there, in comparison with the left-hand shapes.

Thus, if an optimum design cannot produce the required frequency within a given maximum

area or radius constraint, a material of higher density or Young’s modulus may be substituted

to generate a higher fundamental frequency of vibration in a shape with a smaller radius.

5.3 Optimum Shape Design of Flexible Manipulators with Tip Loads

5.3.1 Problem Setup

Research on flexible manipulators is most relevant in the design of new-generation industrial

robotic manipulators and in the field of robotic space applications. Many techniques have

been applied to overcome tip oscillations caused by manipulator flexibility. Here, the control

problem is addressed from a design perspective. The goal is to build a high-performance

Figure 5.11: Optimum Shapes for Composite Material Design.
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flexible manipulator such that the effect of its oscillation is reduced during normal operation.

This design should also improve the performance of control algorithms. An important

direction in flexible link research is the search for structural designs that optimize

manipulator mass and speed. The design problems are as follows:

1. Given a fixed mass for the link, find a shape that maximizes its speed.

2. Given a fixed speed for the link, find a shape that minimizes its mass.

How can these objectives be achieved? We need a design variable that relates directly to the

maximum speed of the manipulator and is a function of shape, as well as material properties.

The only design variable that fits these requirements is the fundamental frequency of

vibration. Thus, problem 1 is equivalent to finding a shape that maximizes the fundamental

frequency of vibration of the link. A large fundamental frequency is desired since it generates

a large bandwidth for the flexible manipulator, and this allows for fast motion and stable

endpoint control. Problem 2 is known as the minimumweight problem and is dual to problem 1.

This problem is very important in that a significant reduction in energy costs can be achieved by

using the optimally designed link. Also for space applications, where flexible manipulators

have been generally recognized as an ideal tool for material handling and space-structure

construction, minimum-weight manipulators are of special interest due to the strict weight

constraints imposed by the loading capacity of space vehicles [18].

What is the difference between a flexible and a rigid manipulator? A rigid manipulator, in

theory, has an infinitely large fundamental frequency of vibration and thus can move at any

desired speed without significant tip deflection. The drawbacks to this design are a large link

mass and correspondingly low energy efficiency. A flexible manipulator, on the other hand,

has a much lower mass but experiences significant tip deflection under normal operating

conditions, and the oscillations become severe when the manipulator speed approaches its

fundamental frequency. The amount of deflection depends upon the following factors:

• Rotational velocity of the link

• Total length of the link

• Material properties of the link

• Shape of the link

• Mass, placement, and moment of tip load.

In general, only one of these factors is not a specified design requirement and that is the link’s

shape function. So, the objective is to develop a flexible manipulator that is capable of high-

speed motion with less energy consumption by increasing the fundamental frequency of

vibration through optimum shape design.

It has been shown that the fundamental frequency of a flexible manipulator can be increased

substantially through the optimum tapering of its cross-section. For example, numerical

analysis indicates that, depending on the values of hub inertia and tip load parameters, an
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increase of up to 625% in the fundamental frequency can be achieved for manipulators with

links of geometrically similar cross-sections [11].

The first attempts to optimize a flexible beam using the fundamental frequency of vibration

were made by engineers working in the field of structural optimization. Niordson first showed

that the optimum design of a simply supported beam will have a fundamental frequency of

vibration that is 6.6% larger than that of the corresponding uniform beam [5]. This work was

extended by others to include specific design requirements [7e9]. In the early 1970s,

Karihaloo and Niordson showed that an increase of up to 678% in the fundamental frequency

of vibration was possible for vibrating cantilevers with a tip mass [6]. This research was

concerned with beams that were rigidly attached to an inertial frame, meaning simply

supported beams at both ends and the cantilever supported at only one end. But flexible

robotic links must rotate about an axis at the link’s base. Also, the base of the flexible link

usually must be rigidly attached to a rotating hub for mechanical support. Thus, the results

from structural optimization cannot be carried over into the field of robotics. This is an

important point and one that is often overlooked.

Early work on flexible manipulators was carried out by Cannon and Schmitz [19], Book [20],

Nguyen et al. [21], Sakawa et al. [22], and many others. Khorrami and Ozguner [23]

presented a set of integro-partial equations and used a perturbation method for control

purposes. Yang and Donath [24] considered the flexibility of the joint as well as link

flexibility. A complete study of different dynamic equations under various boundary

conditions for flexible manipulators was conducted by Bellezze et al. [25]. Wang and Wen

[26] derived the dynamic equations for flexible manipulators subject to large angular

deformations and clarified some issues relating to the specification of boundary conditions. A

comprehensive study on the influence of rotary inertia, shear deformation, and tip load on the

vibration behavior of one-link flexible manipulators has been conducted by Wang and Guan

[16]. Asada et al. [27] addressed the optimal design problem using a finite element

computational model. As part of their effort towards a control-configured flexible arm, they

tried to increase the fundamental frequency of vibration of a flexible manipulator through

optimum tapering of a beam of varying rectangular cross-section. A theoretical increase of

43% in the fundamental frequency of the manipulator was obtained.

5.3.2 EulereBernoulli Equations

Design Model

The system model of the flexible manipulator is composed of a hub rigidly attached to

a flexible link of length L with a tip load (see Figure 5.12). The hub has a rotational inertia

given by IH. The tip load is modeled by its mass, MP, and moment of inertia, IP. A constant

torque, s, is applied to the hub, which is located to the left of x1¼ 0. The angular displacement
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of the link axis, x1, is given by q. The transverse displacement of the link’s neutral axis from

the x1-axis is given by u. The tip load center of mass, which also includes the end-effector

mass, is located at (ac,bc) in the (x2,y2) frame. Three coordinate systems are employed in the

subsequent analytical derivation: inertial (x0,y0), link (x1,y1), and tip load (x2,y2).

The dynamics of the flexible link will be modeled using the EulereBernoulli beam theory.

Rotary inertia, as well as shear deformation, will be ignored since these factors have been

shown to have only a negligible effect on the fundamental frequency of vibration [16]. No

rotary inertia implies that the velocity of every point on a given cross-section has the same

velocity as the point of intersection with the neutral axis. The normal plane assumption is also

used, which means that each transverse section remains plane and normal to the neutral axis

after deformation.

According to the derivations in Sections 3.2e3.4, the linearized EulereBernoulli model is

summarized as

IH€q� Dð0Þy00ð0Þ ¼ s (5.45)

IH€q� Dð0Þy00ð0Þ ¼ s (5.46)

with boundary conditions

yð0Þ ¼ 0; y0ð0Þ ¼ q (5.47)

DðLÞy00ðLÞ þ Ip€y
0ðLÞ þMpac€yðLÞ ¼ 0 (5.48)

y2
x2

x1

y1

y0

x0

Neutral Axis of Link 

Tip load close up

τ θ

θ

ω

(ac, bc)

x

x

2

y2
p

0

Figure 5.12: Design Model of Flexible Manipulator.
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½DðLÞy00ðLÞ�0 �Mp½€yðLÞ þ ac€y
0ðLÞ� ¼ 0 (5.49)

where yðx1; tÞ ¼ wðx1; tÞ þ x1qðtÞ is the total displacement of the link.

Equation (5.45) is the well-known dynamics equation, which all flexible links must satisfy.

Equation (5.46) is the torque relationship. Equation (5.47) is the boundary condition at the

hub, while Eqs (5.48) and (5.49) are the boundary conditions at the tip load. These are the

linearized equations of motion for the system, upon which all subsequent derivations will be

based. Note that the endpoint boundary conditions are independent of bc, the transverse

placement of the tip load center of mass. This makes sense mechanically, since small

deformations were assumed in the linearization process.

Vibration Equations

Suppose the link undergoes harmonic vibrations in its plane of motion. Then, the total

displacement can be expressed as

yðx1; tÞ ¼ yðx1Þsin ðutÞ; q ¼ q0sin ðutÞ (5.50)

where u is the frequency of vibration. The governing equations of harmonic vibration can

then be written as

½Dðx1Þy00ðx1; tÞ�00 � ru2Aðx1Þyðx1Þ ¼ 0 (5.51)

IHy
0ð0Þu2 þ Dð0Þyð0Þ00 ¼ 0 (5.52)

with boundary conditions

yð0Þ ¼ 0 (5.53)

DðLÞy00ðLÞ � Ipu
2y0ðLÞ �Mpacu

2yðLÞ ¼ 0 (5.54)

½DðLÞy00ðLÞ�0 þMpu
2yðLÞ þMpacu

2y0ðLÞ ¼ 0 (5.55)

Here, the second boundary condition from Eq. (5.47) has been substituted into the torque

equation. The substitution, lðx1Þ ¼ rAðx1Þ, has been used, where r is the volumetric mass

density and A(x1) is the cross-sectional area function. Now, we change to a variable, x¼ x1/L,

which indicates the position along the link axis in dimensionless coordinates. Then:

v

vx1
¼ 1

L

v

vx
;

v2

vx21
¼ 1

L2
v2

vx2
; 0 � x � 1

The equations of vibration become

½DðxÞy00ðxÞ�00 � rL4u2AðxÞyðxÞ ¼ 0 (5.56)
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IHLu
2y0ð0Þ þ Dð0Þyð0Þ00 ¼ 0 (5.57)

with boundary conditions

yð0Þ ¼ 0 (5.58)

Dð1Þy00ð1Þ � IpLu
2y0ð1Þ �MpacL

2u2yð1Þ ¼ 0 (5.59)

½Dð1Þy00ð1Þ�0 þMpL
3u2yð1Þ þMpacL

2u2y0ð1Þ ¼ 0 (5.60)

Multiplying Eq. (5.56) by y(x), integrating by parts, and applying one boundary condition at

each integration, the following equation can be derived:

�2MpacL
2u2y0ð1Þyð1Þ �MpL

3u2yð1Þ2 � IpLu
2y0ð1Þ2

�IHLu
2y0ð0Þ2 þ

Z1
0

DðxÞy00ðxÞ2dx� rL4u2

Z1
0

AðxÞyðxÞ2dx ¼ 0

Solving this for u2 gives

u2 ¼

R1
0

DðxÞ½y00ðxÞ�2dx

rL4
R1
0

AðxÞy2ðxÞdxþ LIHy0ð0Þ2 þ Gp

(5.61)

where

Gp ¼ MpL
3yð1Þ2 þ 2acMpL

2yð1Þy0ð1Þ þ IpLy
0ð1Þ2

Equation (5.61) is the basic equation of vibration that our system model must satisfy. Note

that Gp is due only to the tip load and, if a tip load is absent, then Gp¼ 0.

5.3.3 Analytical Solutions

Optimality Equations

Now the optimality equations will be derived using variational calculus, similar to that of

Haftka et al. [14]. In order to simplify computations, the following momentearea relationship

will be used:

IðxÞ ¼ gpA
pðxÞ p ¼ 1; 2; 3 (5.62)

where p¼ 10 rectangular cross-sections of uniform height, p¼ 20 geometrically similar

cross-sections, and p¼ 3 0 rectangular cross-sections of uniform width.
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This relation was first used by Brach [7] in the optimization of vibrating cantilevers, and is

very useful in comparing different designs. Here, A is the cross-sectional area of the link and

gp is a constant. It should be noted that for p¼ 2, gp will depend on the shape of the cross-

section. For example, the geometrically similar cross-section can be circular, square, or

rectangular, each having its own unique moment.

Now, the nondimensional shape function is defined as

aðxÞ ¼ rL

M
AðxÞ

where M is the total link mass. The frequency equation, Eq. (5.61), then becomes

u2 ¼ gpEM
p�1

rpL pþ3

R1
0

apðxÞ½y00ðxÞ�2dx
R1
0

aðxÞy2ðxÞdxþM�1L�3½LIHy0ð0Þ2 þ Gp�

8>>><
>>>:

9>>>=
>>>;

(5.63)

Converting parameters into their dimensionless form:

l ¼
"
rpL pþ3

gpEM
p�1

#
u2 dimensionless eigenvalue

h ¼ IH
ML2

relative hub moment

m ¼ Mp

M
relative tip load mass

z ¼ ac
L

relative tip load placement

k ¼ Ip
ML2

relative tip load moment

Eq. (5.63) now becomes

l ¼

R1
0

apðxÞ½y00ðxÞ�2dx
R1
0

aðxÞy2ðxÞdxþ hy0ð0Þ2 þ Hð1Þ
(5.64)
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where

Hð1Þ ¼ 2zm yð1Þy0ð1Þ þ ky0ð1Þ2 þ m yð1Þ2

The fundamental frequency eigenvalue, lf, is obtained by minimizing Eq. (5.64) over all

admissible displacements:

lf ¼ min
yðxÞ

l (5.65)

The maximum fundamental frequency eigenvalue, lf(max), is obtained by maximizing

Eq. (5.65) over all admissible shape functions:

lf ðmaxÞ ¼ max
aðxÞ

lf (5.66)

where the shape function must satisfy

Z1
0

aðxÞdx ¼ 1 constant-volume constraint (5.67)

Without this constraint, optimization would be meaningless since the volume, and likewise

the mass, could be increased indefinitely making lf(max) as large as desired. The optimum

shape design problem now becomes:

Find a shape function aopt that satisfies the above constraint and maximizes the fundamental

frequency eigenvalue, lf(max).

In order to derive the optimization equations, we convert to an unconstrained problem by

defining

Ly ¼ lf ðmaxÞ � s

(R1
0

aðxÞdx�1

)
(5.68)

which is a function of a and y. Here, s is a Lagrange multiplier. Setting the total variation of

Ly to zero generates the following equations:

½apy00�00 � lay ¼ 0 Dynamics equation (5.69)

pap�1y002 � ly2 ¼ ls Optimality equation (5.70)

with boundary conditions

yð0Þ ¼ 0; apð0Þy00ð0Þ þ lhy0ð0Þ ¼ 0 (5.71)
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apð1Þy00ð1Þ � kly0ð1Þ � zmlyð1Þ ¼ 0 (5.72)

½apð1Þy00ð1Þð1Þ�0 þ zmly0ð1Þ þ mlyð1Þ ¼ 0 (5.73)

It is easy to see that this solution is not unique. If (y,s,a,l) is a valid solution, then (cy,c2s,a,l)

is also a valid solution for any nonzero constant c. We can utilize this non-uniqueness in

a constructive way by choosing c¼ 1/
ffiffiffi
s

p
. Then, the solution can be expressed as

ðy= ffiffiffi
s

p
; 1;a; lÞ. Thus, we only need to find y= ffiffiffi

s
p

instead of y and s separately. And since the

displacement function y is not unique, we can set s¼ 1, thereby simplifying the problem

considerably.

Now, the optimality condition, Eq. (5.70), becomes

pap�1y002 � ly2 ¼ l (5.74)

Equation (5.74), along with Eqs (5.69) and (5.71)e(5.73), constitute the optimality equations

upon which the following iterative solution will be based. Note that for p¼ 1, the shape

function a disappears, and special techniques must be employed to find the solution [17].

The most important case is p¼ 2, as it gives the greatest increase in frequency in comparison

to the other possible cross-sectional shapes [11]. Thus, only geometrically similar cross-

sections will be considered in the following solutions for the above reason and the fact that the

p¼ 1 and p¼ 3 shapes and frequencies are mostly a rescaling of the p¼ 2 case.

Iterative Solution

The optimality equations derived above constitute a nonlinear eigenvalue problem, which in

general has no closed form solution. Thus, an iterative scheme is developed to find the numerical

solution for a specified design vector, D¼ [h,m,z,k]. Formal integration of the dynamics

equation, Eq. (5.69), yields, upon applying one boundary condition at each integration:

y00ðxÞ ¼ s½y2ðxÞ þ 1� p
pþ1����pbgðxÞ þ pð1� xÞ2 R1

0

Qðx; xÞdx
����
p�1
pþ1

(5.75)

where s is the sign of the denominator and

Qðx; xÞ ¼ xfy½xþ xð1� xÞ�y½xþ xð1� xÞ� (5.76)

gðxÞ ¼ ky0ð1Þ þ zmyð1Þ þ mð1� xÞðzy0ð1Þ þ yð1ÞÞ (5.77)

aðxÞ ¼ fy

b
; fyðxÞ ¼

�
y2ðxÞ þ 1

y002ðxÞ
� 1

p�1

; b ¼
	p
l


 1
p�1¼

Z1
0

fyðxÞdx (5.78)
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with boundary conditions, Eq. (5.71), expressed as

yð0Þ ¼ 0; y0ð0Þ ¼ � y00ð0Þ
phbjy00ð0Þj 2p

p�1

(5.79)

Standard integration gives y as

yðxÞ ¼ y0ð0Þxþ x2
Z1
0

ð1� xÞy00ðxxÞdx (5.80)

Here, the integral relations given below have been utilized, since single integration is much

less computationally intensive than double integration:

Zx
0

Zx
0

GðsÞdsdx ¼ x2
Z1
0

ð1� xÞGðxxÞdx (5.81)

Z1
x

Z1
x

GðsÞdsdx ¼ ð1� xÞ2
Z1
0

xG½xþ xð1� xÞ�dx (5.82)

The successive iteration scheme shown below is a variation of the one developed by

Karihaloo and Niordson [6] for cantilever optimization:

1. Specify a design vector D¼ [h,m,z,k].

2. Select an initial b0 and y000ðxÞ.
3. Update yiðxÞby using y00i ðxÞand bi.

4. Update y00i ðxÞ by using yiþ1ðxÞ and y00i ðxÞ.
5. Update bi by using yiþ1ðxÞ and y00iþ1ðxÞ.
6. If a specified tolerance is not met, go to Step 3. Here:

Tolerance ¼ jbiþ1 � bij
jbiþ1j

þ kyiþ1 � yik
kyiþ1k þ ky00iþ1 � y00i k

ky00iþ1k

7. Using Eq. (5.78), lf ðmaxÞ ¼ p=bp�1 and aopt ¼ fy=b.

When the specified accuracy is met (typically 0.001), the shape function aopt and the

fundamental frequency eigenvalue lf(max) are computed. The actual optimum cross-sectional

area of the link can then be computed using Eq. (5.63). The optimum fundamental frequency

of vibration uopt is found from the eigenvalue relation below Eq. (5.64). Cubic splines were
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used to approximate all functions and a recursive Simpson formula was used for numerical

integration.

In the introduction, the basic dual problems were given as:

1. Given a link mass M0, find aopt that gives umax.

2. Given a frequency u0, find aopt that gives Mmin.

Problem 1 is based on finding a shape aopt that gives lf(max) under the constraint of constant

volume, V0. Suppose there is a smaller mass M1 and a smaller volume V1 that generates the

frequency l1. Now, the density, r, is given by M1/V1. Thus, M1¼ rV1. Substitution of V1 ¼R L
0 Aðx1Þ dx1 gives M1 ¼ r

R L
0 Aðx1Þdx1. Thus, if M0 decreases to M1, then A(x1) must also

decrease. Now, the bending rigidity, EI, is a function of A by Eq. (5.62). So a decrease in A

will cause a decrease in the bending rigidity, which will have the unavoidable effect of

decreasing lf. Thus, it should be obvious that a smaller mass means a smaller fundamental

frequency of vibration for links of the same length and density. All of this leads to the fact that

M0 must necessarily be the minimum mass,Mmin. This implies that each optimum shape aopt
and frequency lopt¼ lf(max) correspond to one unique mass Mopt that is minimum for that

particular frequency. And since lf(max) is directly proportional to u
2
max, via the relation below

in Eq. (5.64):

umax ¼ u0 5 M0 ¼ Mmin

Note that this is true even if the optimum shape aopt is not unique for that particular
lopt. To date, the mathematical proof of the uniqueness of aopt for each lopt has not
been successfully demonstrated, although all of the numerical results point to this
conclusion.

Utilizing this knowledge, the above relationship can be combined with the above iterative

solution to problem 1 in a simple algorithm that solves problem 2. Here, lopt is computed

using the above iterative solution. The algorithm is:

1. Set u, r, L, E, and X ¼ ½IH ;Mp; ac; Ip�.
2. Initialize link mass, Mk.

3. Compute design vector D ¼ ½h;m; z; k�, where h, m, and k are functions of Mk.

4. Get lk, where lk¼ CM/Mk and CM¼ r2L5u2/g2E using the relation below Eq. (5.64).

5. Using D, find lopt.

6. Set error¼ jlopt � lkj.
7. If tolerance is not met, change mass and go to Step 3.

The minimum mass design is found at the intersection of the lopt and lk plots versus mass.

For a separate solution to problem 2 based upon the optimality equations, see Wang and

Russell [28].
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Numerical Results and Discussion

Again, we have only considered the p¼ 2 case and, in particular, links with circular cross-

sections. The advantage of circular cross-sections is that the frequency of vibration will be the

same, regardless of the direction ofmovement in a three-dimensional space frame. For example,

a rectangular link will have different dynamical characteristics if the motion of the link is

diagonal to a side as opposed to being perpendicular. Circular cross-sections also give a larger

increment in the fundamental frequency of vibration compared with other possible shapes.

First, a general overview of the dynamic relations between lf(max) and the four design

parameters, h, m, z, and k, will be given. It is easy to see that an increase in tip load mass m

will generate a larger bending moment in the link that manifests as a larger tip deflection

during motion. Similarly, when the tip load moment k is increased, a larger bending moment

will be induced in the link, particularly towards the end of the link near the tip load. This

should also increase the tip deflection during motion. Now, an increase in tip deflection

implies a corresponding decrease in the fundamental frequency of vibration. So, increasing m

or k should cause lf(max) to decrease. From mechanics, it should be obvious that the further

away the tip load center of mass from the endpoint of the link, the larger the induced bending

moment will be, especially near the end of the link. As with the other parameters, we should

expect a larger z to generate a smaller lf(max), although if z is small (of the order of 0.05), the

effect should only be slight.

Now, consider the effect of a change in hub inertia, h, on lf(max). Large hub inertia will give

the link a very stable platform. On first examination, this stability might seem to reduce

vibrations and tip deflection, but in fact it has just the opposite effect. The reason for this is

that large hub inertia means that the base of the link is very stable. This stability exacerbates

tip deflection since the vibrations cannot be damped out by hub rotational vibrations.

Conversely, when the hub is small and easy to rotate, it effectively damps out much of the

link’s vibrational modes. Thus, we should expect a smaller hub inertia to give a larger

fundamental frequency of vibration. The numerical results given in Figure 5.13 reflect the

validity of these intuitive observations.

The following analysis is the result of extensive numerical simulations of different design

vectors, D, using the above successive iteration scheme. The convergence of this method is

very quick for large hub inertias (h > 4). Usually, only 5e8 iterations at 10 seconds per

iteration on Matlab are required. For small hub inertias (h< 1), the required number of

iterations increases dramatically, and if a large tip load is also present it may not converge at

all. These facts, along with the dynamics analysis given above, serve to point out that the hub

inertia is very important for the optimum shape design. This is substantiated in the numerical

results, as evidenced in Figure 5.13. We also see that lopt is relatively insensitive to variations

in normal tip load placements (z< 0.1). A thorough sensitivity analysis of each design

parameter will be presented in Section 5.4.6.
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In general, as the fundamental frequency of vibration decreases due to an increase in one or

more of the parameters, the optimum frequency approaches that of a uniform link. This does

not necessarily mean that the optimum shape becomes uniform. An example of this is m,

which generates a large amount of tapering near the tip load of the optimum shape for large

parameter values (see Figure 5.14). Also, note the almost uniform shape generated by k¼ 1.0.

The reason for this can be explained from dynamics principles. When the manipulator slows

down or speeds up, the large tip load moment will generate a large bending force near the end

of the link. This would increase flexibility and thus lower the frequency. To compensate, the

optimization scheme puts more mass here.

In Table 5.3, the gain in lf of the optimized link versus the uniform link is given. Note that

although lopt decreases with h, the gain in lf actually increases. Thus, a smaller hub will give

a smaller advantage in frequency to the optimized link.When k¼ 0.5, there is very little gain in

frequency since the shape becomes practically uniform. This serves to point out an important

Figure 5.13: lopt vs. D[ [h,m,z,k].
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fact of optimum shape design, and that is if the manipulator will be handling tip loads with

relatively large moments, then it will most likely be more economical to use a less expensive

uniform link. The largest gain, both here and in general, will be realized when the tip load

parameters are small (m¼ k� 0.05). As this is the case with many robotic applications, there

will be many possibilities for optimum shape design in commercial and industrial situations.

For example, when m¼ z¼ k¼ 0.001, the gain in u over that of the corresponding uniform

link is 625% (see Figure 5.15).

5.3.4 Segmentized Optimization Approach

Segmentized Formulation

Much of the work being done on the design of optimum controllers for flexible manipulators

is also based upon the fundamental frequency of vibration. Currently, this frequency has to be

approximated using modal shape functions developed for uniform links. But since the links

are non-uniform, there is an inherent inaccuracy in the design.

Figure 5.14: Optimum Shapes for Small Tip Load.

Table 5.3: Ratio of lopt=lu

(m,z,k)[
(0.10,0.1,0.05)

(m,z,k)[
(0.05,0.1,0.05)

(m,z,k)[
(0.10,0.1,0.50)

(m,z,k)[
(0.50,0.1,0.10)

h¼ 1.2 3.6704 3.8694 1.0843 1.8172
h¼ 2 4.0219 4.5408 1.1602 1.9821
h¼ 4 4.4335 5.0578 1.1959 2.0775
h¼ 8 4.6478 5.335 1.2066 2.0961
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An efficient method to find the fundamental frequency of vibration to any required degree of

accuracy would result in a considerable improvement in optimum controllers. The analytical

solution of Section 5.3.3 is for an unconstrained design. But we would like a model to which

any practical constraint could be applied. Also, we would like to have a more formal

optimization method that allows the utilization of mathematical programming techniques.

For these reasons, an innovative design method has been developed based on a segmentized

solution of the vibration equations.

The flexible link is approximated by N discrete segments, each having a constant cross-

sectional area. A model of this design is shown in Figure 5.16. The link, of length L, is rigidly

attached to a hub of inertia IH. Here, x is the link axis and w is the transverse displacement of

the link’s neutral axis from the x-axis.

We define local coordinates by

xi ¼
x� xi�1

Di
; Di ¼ xi � xi�1; xi�1 � x � xi (5.83)

Figure 5.15: Optimum Shapes for large h, m, z, and k.
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where

v

vx
¼ 1

Di

v

vxi
;

v

vx2
¼ 1

D2
i

v2

vx2i
;

XN
i¼1

Di ¼ L (5.84)

The bending rigidity and linear mass density of segment i are defined, respectively,

as bi¼ (EI)i and gi¼ (rA)i. Now each segment must satisfy the following four

boundary conditions [29]:

1. Displacement must be continuous at xi�1¼ 1 and xi¼ 0:

yi�1ðxi�1Þ ¼ yiðxiÞ (5.85)

2. The first derivative must be continuous at xi�1¼ 1 and xi¼ 0:

1

Di�1

vyi�1ðxi�1Þ
vxi�1

¼ 1

Di

vyiðxiÞ
vxi

(5.86)

3. Bending moments must be equal at xi�1¼ 1 and xi¼ 0:

bi�1

D2
i�1

v2yi�1ðxi�1Þ
vx2i�1

¼ bi

D2
i

v2yiðxiÞ
vx2i

(5.87)

4. Shearing forces must be equal at xi�1¼ 1 and xi¼ 0:

bi�1

D3
i�1

v3yi�1ðxi�1Þ
vx3i�1

¼ bi

D3
i

v3yiðxiÞ
vx3i

(5.88)

Hub

Tip Load

0 1 xxx 2 x x3 N xN-1

Figure 5.16: Design Model of Segmentized Link.
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Using the dynamics equation of vibration, Eq. (5.56):

v4yiðxiÞ
vx4i

� k4i yiðxiÞ ¼ 0; where k4i ¼ giD
4
i

bi
u2 (5.89)

The solution is given by

y
ð jÞ
i ðxiÞ ¼ fijCi (5.90)

where

Ci ¼ ½C0i C1i C2i C3i �T ðCmn ¼ constantÞ

fi0 ¼ ½ sinðkixiÞ sinhðkixiÞ cosðkixiÞ coshðkixiÞ�
fi1 ¼ f0

i0 fi2 ¼ f0
i1 fi3 ¼ f0

i2 fi4 ¼ k4i f
0
i0

The torque equation and boundary conditions, Eqs (5.57)e(5.60), become

½IHu2D1f11ð0Þ þ b1k1f12ð0Þ�C1 ¼ 0; f10ð0ÞC1 ¼ 0 (5.91)

½bNk2NfN2ðkNÞ � Ipu
2DNkNfN1ðkNÞ � acMpu

2D2
NfN0ðkNÞ�CN ¼ 0 (5.92)

½bNk3NfN3ðkNÞ þ acMpu
2kND

2
NfN1ðkNÞ þMpu

2D3
NfN0ðkNÞ�CN ¼ 0 (5.93)

Reformulating the interfacial relations, Eqs (5.85)e(5.88), into transfer matrices:

Ci ¼ j�1Mi�1Ci�1 (5.94)

where

j ¼

2
666664

0 0 1 1

1 1 0 0

0 0 �1 1

�1 1 0 0

3
777775; Mj ¼

2
666664

snj shj csj chj

sjcsj sjchj �sjsnj sjshj

�gjsnj gjshj �gjcsj gjchj

�qjcsj qjchj qjsnj qjshj

3
777775

snj ¼ sinðkjxjÞ; shj ¼ sinh ðkjxjÞ; csj ¼ cos ðkjxjÞ; chj ¼ cosh ðkjxjÞ

sj ¼ kj
kjþ1

; dj ¼ Dj�1

Dj
; Tj ¼

bj

bj�1
; gj ¼

s2j
sjþ1d

2
jþ1

; qj ¼
s3j

sjþ1d
3
jþ1

(5.95)

Relating the interior coefficient vectors, Eq. (5.94):

Ci ¼ fi�1Ci�1; fi ¼ j�1Mi (5.96)
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and the endpoint coefficient vector relation can now be expressed as

CN ¼ fC1; where f ¼
Y1
N�1

fi (5.97)

Substitution of CN into the boundary equations, Eqs (5.92) and (5.93), gives

QC1 ¼ 0 (5.98)

where

Q ¼

2
664

0 0 1 1
IHD1u

2 IHD1u
2 �b1k1 b1k1

R1f

R2f

3
775 (5.99)

Here, R1 and R2 are the matrix coefficients of CN in Eqs (5.92) and (5.93) respectively.

Requiring the determinant of Q to be zero gives the frequency of the link. The maximum

speed design problem becomes

maxuðXb;Xg;XÞ subject to

DXT
g ¼ MT ; XL

g � Xg � XU
g ; XL

b � Xb � XU
b

(5.100)

where Xb¼ [b1, b2,., bN], Xg¼ [g1,g2,., gN], X¼ [IH,Mp,ac, Ip], D¼ [D1,D2,.,DN], and

MT is the total link mass.

Segmentized Optimization Solutions

The solution to the segmentized formulation can be achieved through the use of

a number of mathematical programming methods. Here, two particular methods are

presented: a dynamic programming (DP) algorithm and an adaptive random search

algorithm (IHR).

Dynamic Programming Solution

The DP algorithm has been developed explicitly for this problem, considering the previous

optimum results in Section 5.4.3. Knowledge of the optimum shapes generated by the

iterative solution can simplify the algorithm considerably. Perhaps the most useful

observation is that the optimum shape is monotonically decreasing towards the tip load.

Of course, the constant-volume constraint must always be satisfied.

These heuristics have been successfully integrated into a DP algorithm where the stages are

represented by the number of segments in the current design, and the states at each stage are
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all admissible combinations of segment areas [30]. The general algorithm is presented

below:

1. Set the tolerance of uopt.

2. Set the link parameters to the desired values.

3. Set the number of links, N, to 1.

4. Find uopt(1).

5. Set N¼ 2N.

6. Find uopt(N).

7. If tolerance is met, stop. Else, go to Step 5.

Here, Step 4 finds the uniform link frequency corresponding to the prescribed parameter

values using equal segment lengths. Step 6 is obviously the crucial element in the

algorithm. First, consider a two-segment link. Since we know that in the optimum design,

the area of segment 1 must be greater than or equal to that of segment 2, we begin by

incrementing the area of segment 1 and decrementing the area of segment 2 by the same

amount. This way the total volume will stay constant as required. So the areas are changed

slowly until a peak in u is reached. For a two-segment design, this will be optimal. If the

tolerance of uopt has not been reached, the link will be divided into four segments. Then

segments 3 and 4 are optimized, after which segments 1 and 2 are optimized. One of the

drawbacks to the above algorithm is that the number of links must double on each iteration

of Steps 5e7, since an even number of equal segments cannot be split into an odd number

of equal segments.

Here, a constant r and E are assumed. Also, the momentearea relation, Eq. (5.62), for

circular cross-sections has been used. In Step 4, area A¼MT/(rL). In successive steps, A is

kept constant by the balanced increments described above. This will ensure a constant

volume. The above algorithm works very well because the fundamental frequency of

vibration u is a smooth function of area increments, as can be seen in Figure 5.17. The figure

on the left results from splitting a two-segment link, while the figure on the right is due to the

splitting of segments 7 and 8 in an eight-segment design.

Adaptive Random Search Solution

The IHR algorithm will now be considered. This algorithm is a slight modification of the

Improving Hit and Run algorithm recently developed by Zabinsky et al. [31]. The

modification of the algorithm was necessary to ensure a constant volume during the

optimization process. The modified IHR algorithm is:

1. Set design vector X¼ [IH,Mp,ac, Ip] and number of segments, N. Set step multiplier

MUL to 1 and FACTOR to 8.

2. Calculate u0 (frequency for uniform link).

3. Set minimum and maximum area constraints, Amin and Amax. Set j¼ 1.
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4. Randomly select N/2 of the N segments and mark them with a 1 in vector Dj of length N.

Mark the remaining N/2 segments with a� 1. If N is odd, one randomly selected area

will remain constant and will be marked by a 0.

5. Get N/2 samples from an N(0,1) normal distribution and place them in each position of

Dj where there is a 1. Place the negatives of this same sample in each position of Dj

where there is a �1. This arrangement will ensure a constant volume during optimization.

Here, Dj is called the direction vector.

6. Generate a step size, Sj, uniformly from Lj, the set of feasible step sizes in the direction Dj,

where

Lj ¼ fSj˛< : Amin < Aj þ SjDj < Amaxg
If Lj ¼ 0; go to Step 4:

7. Set Sj ¼ Sj �MUL while jMULj < 1.

8. Update the area vector, A; if the frequency is improving:

Ajþ1 ¼
�

Aj þ SjDj if uðAj þ SjDjÞ > uj

Aj otherwise

�
Set ujþ1 ¼ uðAjþ1Þ:

9. If ujþ1/uj, set TRIM ¼ jujþ1 � ujj
uj

� FACTOR and MUL ¼ MUL�MUL � TRIM.

10. If the stopping criteria are met, stop. Otherwise, increment j and go to Step 4.

Notice that the area function Aj is not updated unless the frequency is improving. Also, the

step size Sj is adapted to the proportional increase in frequency when u is improving through

Figure 5.17: u vs. Segment Increments.
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the use of MUL, which is set in Step 9. Thus, as the segmentized shape approaches its

optimum, the segment areas will change less and less. This is highly desirable since it

eliminates the high fluctuations in the random direction vector Dj as the design approaches

optimality.

Numerical Results and Discussion

In Figure 5.19, the optimum shapes and frequencies are given for one-, two-, four-, and eight-

segment designs. The segmentized shapes were produced by the above DP algorithm with

design vectorX¼ [10,10,0.05,0.1]. The corresponding optimum shape from Section 5.4.3 has

been overlaid for comparison purposes. This particular example was chosen because of its

highly nonlinear shape. Here, with only eight segments, the segmentized frequency is within

1% of optimum! Generally, most designs can be approximated very closely with only a few

segments (N< 10).

One obvious goal is to have the analytic design of Section 5.4.3 and the optimization design

presented above agree with each other, i.e. the same shape should produce a similar frequency.

To accomplish this comparison, the optimum shape aopt and frequency lopt were computed

using the iterative solution of Section 5.3.3 for two different designs as specified in Figure 5.7.

Then, aopt was converted to an area function using Eq. (5.63), which was then used to

approximate the area of each segment at its midpoint. The segmentized frequency was then

computed for N¼ 1 to 25. The results can be seen in Figure 5.18. Here, the first frequency,

N¼ 1, is for the uniform link corresponding to the chosen design parameters. It is also

apparent here that the segmentized frequency rapidly approaches that of the analytic optimum.

The IHR results are also very impressive. Obviously, the number of required iterations will be

somewhat higher than that of the DP algorithm, depending on the number of segments in the

design. One advantage of the IHR algorithm is that it is a truly impartial optimization process.

Figure 5.18: uopt vs. N.
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That is, the segment area increments are chosen randomly in each iteration. Thus, this gives

us yet one more valuable tool in comparing the merit of the other optimization processes.

The IHR algorithm has been tested on two-, four-, and eight-segment designs, and the results

are very good. The average number of iterations needed to achieve 1% accuracy compared

with the DP solution of Figure 5.19 is only 6 for a two-segment design. For a four-segment

design the required number of iterations is 27 and for an eight-segment design the required

number of iterations is 138. Figure 5.20 gives the results of the IHR solution using the same

design vector as the DP solution shown in Figure 5.19.

Both the DP and IHR algorithms lend themselves readily to the incorporation of constraints

into the design. Two common constraints are maximum and minimum area. Indeed, these are

required in the IHR algorithm to compute the step size. One important constrained design is

that of the circular tunnel cross-section. This shape gives a very high rigidity factor with

a smaller total mass. An added bonus is that the arm is hollow so that control cables and even

Figure 5.19: DP Optimum Shapes for N[ 1, 2, 4, and 8.
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mechanical drives can be located here inside the link. This is also the most commonly

used design in the new composite links, which promise to be exceptionally useful. For

optimization results of the circular tunnel cross-section and composite design

implementations, see Russell [17].

5.3.5 Multiple Tip Load and Multiple Link Optimum Designs

Most manipulators must be multifunctional, which usually translates to handling multiple-

sized tip loads. An optimum design model for this case is presented along with numerical

results and discussions. A two-link optimum model is then given and implemented using the

single-link analytic model.

Minimax Optimum Design

In most cases, a flexible manipulator has to perform tasks in different situations, particularly

with different tip loads. This is reflected by different values of vector X. Results from

Figure 5.20: IHR Optimum Shapes for N[ 1, 2, 4, and 8.
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Section 5.4.3 indicate that the fundamental frequency of vibration varies dramatically with

a change in tip load parameters. This naturally leads to the question of what is an “optimum”

design for a manipulator dealing with multiple task situations? Consider the case of a finite

number of task situations, i.e. X˛fX1;.;Xng. X is defined in Eq. (5.100).

Using the segmentized formulation of Section 5.4.4, the maximum speed design problem for

multiple tip loads can be formulated as

max
z

Pn
k¼1

uk f ðXg;Xb;XkÞ

subject to DXT
g ¼ gs; ZL � Xb � XU

b

(5.101)

XL
g � Xg � XU

g ; XL
b � Xb � XU

b (5.102)

where Sn
k¼1uk ¼ 1, and ui¼ 1 represents the weight assigned to situation i. For circular

cross-sections, Xg and Xb can be expressed as functions of an independent design vector Z.

In particular, if we choose ui¼ 1 when f ðXa;Xb;XkÞ ¼ min1�k�n f ðXa;Xb;XkÞ ui¼ 0 when

ks i, then Eqs (5.101) and (5.102) constitute the minimax design formulation [32], i.e. the

objective is to maximize the worst-case fundamental frequency.

To illustrate the minimax design procedure, an example will be solved where

X ¼ ½X1;X2;X3�, X1 ¼ ½10; 0:1; 0:1; 0:1�, X2 ¼½10; 0:01; 0:1; 0:15�,
X3 ¼ ½10; 0:27; 0:2; 0:05�. The optimal shapes for the two-segment design corresponding to

X1, X2, X3 are Shape 1, Shape 2, and Shape 3. These are shown in Figure 5.21. ShapeM is the

minimax design shape. This example is particularly illustrative because the three shape

frequencies can be plotted versus the segment increment (see Figure 5.22). The minimax

design is specified by the intersection of the u2 and u3 plots.

Note that the frequency of the minimax design will always be less than or equal to the

maximumof the shapewith theminimum frequency. Equality only holds when the frequencies

of the other shapes lie above this lowest frequency.When using theminimax design in practice,

the average tip load will be specified along with upper and lower bounds in the usable range.

These values will be used to select theweightsui, with theweight corresponding to the average

expected tip load being the largest. Once the minimax design vectors and weights have been

specified, either the DP or IHR algorithm can be used to find the solution to Eqs (5.101) and

(5.102) by searching all combinations of shapes and design vectors.

Two-link Optimum Design

Since a single-link manipulator has few practical applications, a two-link flexible manipulator

will now be considered. The optimization model will be based on the single-link solutions

presented in Section 5.4.3. Figure 5.23 gives a view of the design model, which is composed
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Figure 5.22: Omega vs. Increment.
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Figure 5.21: Optimum Shapes for Minimax Design.
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of two flexible links, Link 1 and Link 2, having respective masses M1 and M2. Link 1 has

length L1, while Link 2 has length L2. Link 1 is rigidly attached to a hub H1 at its base. Link 2

is also rigidly attached to a hub H2 at its base, and this same hub is attached to an axis at the

endpoint of Link 1. The working tip load is positioned at the endpoint of Link 2 with the

normal tip load parameters given previously.

The general specifications for a two-link manipulator are its total mass MT and its working

range, which must satisfy the following requirements:

L1 þ L2 ¼ MaxRange

jL1 � L2j � MinRange

M1 þM2 ¼ MT

Note that although the total mass and working range are given as specifications, there is

a choice of mass and length distribution between the two links. Thus, both the mass and

length distribution become design variables in the optimization process. It is straightforward

to place constraints on these variables in this optimization process.

The tip load and hub parameters for Link 1 are specified by

h1 ¼
IH1

M1L
2
1

; m1 ¼
M2 þMP þMH2

M1
; z1 ¼

L2
2L1

(5.103)

k1 ¼ 1

12
M2L

2
2 þ


L2
2

�2

MP þ

L2
2

�2

MH2 (5.104)

whereMH2 is the mass of Hub 2. The moment k1 is approximated by the moment of inertia of

Link 2, including Hub 2 and the tip load about its center of mass, which was assumed to be at

y0

Tip Load

Link 2 

Hub 2 

Link 1 

Min Range         

Max Range 

Figure 5.23: Two-Link Design Model of Flexible Manipulator.
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L2/2. The center of mass could be more accurately calculated numerically by usingM2 and the

current shape function a for Link 2. But this would drastically increase the computation time,

which is already large. The tip load and hub parameters for Link 2 are specified by

h2 ¼
IH2

M1L
2
2

; m2 ¼
MP

M2
; z2 ¼

ac
L2
; k2 ¼ IP

M2L
2
2

(5.105)

The optimization scheme is:

1. Initialize L1¼ L2 and M1¼M2.

2. Optimize Link 2 using its tip load and Hub 2.

3. Optimize Link 1 using Hub 1 and Link 2 as its tip load.

4. Error ¼ jFreq1� Freq2j.
5. Change mass distribution and go to Step 2 if tolerance is not met.

6. Change length distribution and reset M1¼M2. Go to Step 2 if tolerance is not met.

Since the speed of the manipulator will be limited by the lowest fundamental frequency

of vibration of either Link 1 or 2, the best possible system frequency occurs when u1¼u2.

As can be expected from the previous analysis in Section 5.4.3, the large values of m1, z1, and

k1 will require more mass to be placed in Link 1 when L1¼ L2. We could also expect Link 1

to be shorter in length than Link 2. Both a shorter length and a higher mass would increase

the fundamental frequency of vibration of Link 1.

In the following results, it should be remembered that the analytical optimum of Section 5.4.3

is based on small deformations. Thus, this optimization scheme yields only an approximation

of the actual governing system fundamental frequency of vibration. The amount of variation

will depend upon material characteristics, as well as the average relative angular position

of Link 2 relative to Link 1. Figure 5.24 gives the optimum design for a specified total mass

and working range. The following values were used in the optimization process:

MaxRange ¼ 1 m; MinRange ¼ 0:3 m; MT ¼ 10 kg; IH1 ¼ 20 kgm2; IH2 ¼ 4 kgm2;
E ¼ 6:06e10 N=m2; density ¼ 70 kg=m3; and X ¼ ½20; 0:5; 0:02; 0:5�

5.3.6 Sensitivity Analysis

A variation in the hub inertia, or more likely in the tip load, will induce a corresponding

change in the frequency of the link. For the purpose of link design, it is extremely important to

know how sensitive the optimal frequency is with respect to changes in the design vector, D.

For the optimal fundamental frequency lopt, from Eq. (5.66), a variation of lopt due to small

changes in h, m, z, and k can expressed as

dlopt

lopt
¼ �Sh

dh

h
� Sm

dm

m
� Smz

dðmzÞ
mz

� Sk
dk

k
(5.106)
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where sensitivity indices can be calculated according to

ðSh; Sm; Smz; SkÞ ¼ ðhy0ð0Þ2;myð1Þ2; 2zmyð1Þy0ð1Þ; ky0ð1Þ2ÞR1
0

ay2dxþ hy0ð0Þ2 þ myð1Þ2 þ 2zmyð1Þy0ð1Þ þ ky0ð1Þ2
(5.107)

Note that although dh, dm, dz, and dk generate corresponding variations dy and da, these

variations will not affect the value of lf when small terms of order 2 or higher are ignored,

since lf arrives at one of its stationary values at yopt and aopt. This is why we do not need to

consider the variations of y and a. It should be pointed out that sensitivity indices can also be

formally defined as follows:

Sx ¼ �%change in l

%change in x
¼ �dl=l

dx=x
¼ �x

l

dl

dx
; x ¼ h; m; mz; k (5.108)

Clearly, from Eq. (5.107), 0� Sx� 1; therefore, the vibration frequency always decreases as

system parameters increase in value, a conclusion that has been verified by numerical

analysis (see Figure 5.13). Using Eqs (5.106) and (5.107), one can find the actual numerical

values of sensitivity indices for any particular optimum shape design. In this section,

numerical analysis is used to investigate the sensitivity of an optimum design to variations in

D¼ [h,m,z,k].

In Figure 5.25, the frequency response to variations in particular design parameters is given.

The optimum design vector is D¼ [4,0.1,0.1,0.05], which generates an optimum frequency,

lout¼ 9.4331. Note that the frequency is particularly sensitive to h and k. It is somewhat less

sensitive to m and almost completely insensitive to z.
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Figure 5.24: Optimum Shapes for Two-Link Design.
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5.4 Optimum Shape Construction with Total Weight Constraint

In this section we consider the optimum shape design problem of flexible manipulators

carrying tip loads [33]. A tip load is characterized by its mass, moment of inertia, and position

of the center of mass. Furthermore, to avoid the design of optimum shapes that are not

acceptable for some real applications, we also investigate the constrained optimum shape

design problem by imposing both upper and lower bounds on the shape of flexible

manipulators. Nonlinear programming methods are used to solve the constrained design

problem. The preliminary results with these considerations have been reported in Wang and

Russell [28].

5.4.1 Basic Equations and the Variation Formulation

The flexible manipulator is modeled as a flexible beam fixed on a rigid hub with rotational

inertia IH in the horizontal plane. Based on different beam bending theories, different dynamic
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Figure 5.25: dl/lout vs. dX/Xout.
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models can be established for the flexible manipulator. A comprehensive study of the

influence of rotary inertia, shear deformation, and tip load on vibration behavior of flexible

manipulators has been conducted by Wang and Guan [16] using the results derived from three

different dynamic models, i.e. the EulereBernoulli model, the EulereBernoulli model with

rotary inertia, and the Timoshenko model. The first model neglects the effect of both rotary

inertia and shear deformation, the second considers only rotary inertia, while the third takes

both into account. Asymptotic analysis and numerical computations indicate that the effect of

shear deformation cannot be ignored for high-order vibration frequencies. However, for the

fundamental vibration frequency, the study has shown that both rotary inertia and shear

deformation have very little influence and thus can be neglected. Since we only need the

fundamental frequency in optimum shape design, here wewill use the EulereBernoulli model

to describe the vibration of the flexible manipulator. Accordingly, the governing equation of

harmonic vibration and the boundary conditions can be written as follows [16,25]:

ðEIv00Þ00 � rAu2v ¼ 0 (5.109)

vð0Þ ¼ 0; IHu
2v0ð0Þ þ EIv00ð0Þ ¼ 0 (5.110)

EIv00ðLÞ � Jpu
2v0ðLÞ � acMpu

2vðLÞ ¼ 0 (5.111)

ðEIv00Þ0ðLÞ þ acMpu
2v0ðLÞ þMpu

2vðLÞ ¼ 0 (5.112)

where v is the total displacement of the beam (v¼w(x)þ xq), w is beam deflection, q is hub

rotation, u is the natural vibration frequency, EI is the bending rigidity, A is the area of cross-

section, r is the mass density per unit volume, L is the length, and Mp, Jp, ac are the mass,

moment of inertia and x-coordinate (with respect to the beam tip) of the center of mass of the

tip load respectively. A prime indicates differentiation with respect to the coordinate x along

the longitudinal axis of the beam. Note that ac represents the position effect of the tip load.

When ac is set to zero, Eqs (5.109)e(5.112) are the same as the corresponding equations

developed in Ref. [25].

To find the optimal shape, which for a given total weight will maximize the fundamental

frequency of the flexible manipulator, we need to have an explicit expression for w from

Eqs (5.109)e(5.112). To this end, we multiply both sides of (5.109) by v and integrate it over

0� x� L. After several steps of integrating by parts and taking the boundary conditions

(5.111) and (5.112) into account, we find

u2 ¼

RL
0

Elv002dx

RL
0

rAv2dxþ IHv0ð0Þ2 þ GðLÞ
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where

GðLÞ ¼ MpvðLÞ2 þ 2acMpvðLÞv0ðLÞ þ Jpv
0ðLÞ2 (5.113)

Since the fundamental frequency is the smallest frequency among all the natural vibration

frequencies, the following must be true for the fundamental frequency:

u ¼ min
v

RL
0

Elv002dx

RL
0

rAvdxþ Iv0ð0Þ þ GðLÞ
(5.114)

where v is any admissible displacement function.

On the other hand, by variational calculus it is straightforward to show that if y satisfies

only the geometric boundary condition y(0)¼ 0 and is the solution of the variational

problem (5.114), then it must satisfy all equations in (5.109)e(5.112). Therefore, the

variational problem (5.114) and Eqs (5.109)e(5.112) are equivalent. The variational form

(5.114) will serve as the basis for the problem of optimum shape design of the flexible

manipulator.

To facilitate our discussion, we will assume the following relationship between the moment I

and the area A of the cross-section of the beam:

IðxÞ ¼ gApðxÞ; p � 1 (5.115)

where g is a shape constant. Three cases, namely p¼ 1, 2, and 3, are of special interest since

they correspond to beams with rectangular cross-sections of given uniform height,

geometrically similar cross-sections, and rectangular cross-sections of given uniform width

respectively. Many similar sections can be classified as geometrically similar sections, for

example hollow circular or rectangular sections when all their inner and outer radii or widths

and heights vary proportionally to a single variable. Note that this includes the case of

solid circular or rectangular sections, which should emphasize the relationship (5.115). This

is not essential in our treatment. As we will see in Section 5.5.3, the optimization method

proposed there can handle any relationship between I and A.

Using (5.115), the problem of optimum shape design can now be formulated as a variational

problem in the following dimensionless form:

l ¼ max
a

min
v

R1
0

apv002dx

R1
0

av2dxþ hvð0Þ2 þ Hð1Þ
(5.116)
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Hð1Þ ¼ mvð1Þ2 þ 2zmvð1Þv0ð1Þ þ kv0ð1Þ2 (5.117)

where a prime indicates differentiation with respect to the dimensionless coordinate x¼ x/L.

The dimensionless eigenvalue l, shape function a, hub inertia parameter h, and tip load

parameters m, z, k are defined respectively by

l ¼ rpL3þp

gEWp�1
u2; a ¼ rLA

W
; h ¼ IH

WL2
(5.118)

m ¼ Mp

W
; 2 ¼ ac

L
; k ¼ Jp

WL2
(5.119)

in whichW is the given total weight (mass) of the beam of the flexible manipulator. From the

definition, a must be non-negative and satisfy the following constraint:

Z1
0

aðxÞdx ¼ 1 (5.120)

Equations (5.116)e(5.120) complete the mathematical specification for the optimum shape

design problem of flexible manipulators, i.e.

Find the shape function a that satisfies constraint (5.120) along with other possible addi-

tional constraints and maximizes eigenvalue l defined by (5.116).

In the following we will divide our discussion into two parts: the unconstrained and

constrained optimum shape design problems.

5.4.2 Analytical Approach of Unconstrained Shape Design

Here we will try to solve the optimum shape design problem analytically without considering

additional constraints on shape function a other than the total weight constraint of (5.120). In

order to obtain the set of differential equations and boundary conditions for solving the

optimum shape design problem, we have to reformulate the optimization problem (5.116)

into a completely unconstrained form. This can be achieved by utilizing the Lagrange

multiplier technique, i.e. by incorporating constraint (5.116) into variational (5.114) via the

following generalized variational equation:

l� ¼ max
a

min
y

R1
0

apv002dx

R1
0

av2dxþ hv0ð0Þ2 þ Hð1Þ þ s

R1
0

adx� 1

� (5.121)

where v(0)¼ 0 and s is the Lagrange multiplier, which can easily be shown to be a positive

number.
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The variational problem for optimum design is now unconstrained with respect to variational

expression (5.121). After tedious variational calculus, we find that the generalized variational

formulation leads to the following Euler equations, along with the corresponding natural

boundary conditions:

ðapv00Þ00 � lav ¼ 0 (5.122)

pap�1ðv00Þ2 � lv2 ¼ ls (5.123)

vð0Þ ¼ 0; apv00ð0Þ þ lhv0ð0Þ ¼ 0 (5.124)

apv00ð1Þ � klv0ð1Þ � 2mlvð1Þ ¼ 0 (5.125)

ðapv00Þ0ð1Þ þ 2mlv0ð1Þ þ mlvð1Þ ¼ 0 (5.126)

These equations, together with constraint (5.120), form the complete set of basic equations

for solving the optimum shape design problem for a one-link flexible manipulator.

Clearly, the solution of Eq. (5.121) and Eqs (5.122)e(5.126) is not unique, since if (v,s,a,l) is

a solution, then (cv,c2s,a,l) is also a solution for any nonzero constant c. At first glance, the

non-uniqueness of a solution may seem to create problems in numerical computation, but it

actually offers us a way to completely remove the Lagrange multiplier from (5.123) by

selecting c ¼ 1=
ffiffiffi
s

p
. In other words, we only need to find the unknown function v=

ffiffiffi
s

p
instead

of v and s individually. Therefore, we can assume s¼ 1 in (5.123). As has been found for the

optimum design of vibrating cantilever beams [23], this observation eliminates the necessity

of finding s and therefore simplifies the problem substantially.

An important identity can be obtained by multiplying both sides of Eq. (5.122) by v and

integrating over 0� x� 1. Integrating by parts and taking the boundary conditions

(5.124)e(5.126) into account, we have after applying (5.123):

Z1
0

aðxÞdx ¼ ðp� 1Þ
Z1
0

aðxÞvðxÞ2dxþ p½hv0ð0Þ2 þ Hð1Þ� (5.127)

Note that this identity does not require constraint (5.120) to be satisfied. This identify is used
for construction of iteration equations in the next section.

Equations (5.120) and (5.122)e(5.126) constitute a nonlinear eigenvalue problem for the

frequency parameter l. Obtaining the optimum shape a of a flexible manipulator is equivalent

to finding an a that maximizes the smallest eigenvalue of the problem. Since, in general, the

solution of this eigenvalue problem cannot be obtained in closed form, successive iteration

schemes are developed to find the solution numerically.
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The iteration schemes are based upon formal integration, with the introduction of one of the

boundary conditions at each integration. The following two integral formulas are very useful

in the construction of the iteration schemes:

Zx
0

Zx
0

GðsÞdsdx ¼ x2
Z1
0

ð1� xÞGðxxÞdx (5.128)

Z1
x

Z1
x

GðsÞdsdx ¼ ð1� xÞ2
Z1
0

xG½xþ xð1� xÞ�dx (5.129)

Note that compared with double integration, single integration saves computation time and

hence is preferred numerically.

Scheme: Case where p¼ 1

For p¼ 1, the function a drops out of (5.123) and we have a degenerate case. Equation

(5.127) now becomes

hv0ð0Þ2 ¼
Z1
0

aðxÞdx� mvð1Þ2 � 22mvð1Þv0ð1Þ � kv0ð1Þ2

Therefore, if we choose

h ¼ 1� mvð1Þ2 � 22mvð1Þv0ð1Þ � kv0ð1Þ2
v0ð0Þ2 (5.130)

then a obtained by solving (5.122) with boundary conditions in Eqs (5.124)e(5.126) must

satisfy constraint (5.120) automatically. This observation leads to an inverse approach to

solving the optimization problem for p¼ 1. In other words, for a given l, we determine v and

a by solving Eqs (5.122)e(5.126) with h calculated by (5.130). This will establish

a relationship between the hub inertia parameter h and the optimum eigenvalue l, which in

turn will enable us to find l for a given h and tip load parameters, and hence solve the real

optimization problem.

To develop a successive iteration scheme, we formally integrate Eqs (5.122) and (5.123)

with boundary conditions (5.124)e(5.126). Application of formulas (5.128) and (5.129)

leads to

vðxÞ ¼ xv0ð0Þ þ
ffiffiffi
l

p
x2

Z1
0

ð1� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðxxÞ þ 1

q
dx (5.131)
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aðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

v2ðxÞ þ 1

s �
gðxÞ þ ð1� xÞ2 R1

0

xavðxþxð1�xÞÞdx
i

(5.132)

where gðxÞ ¼ kv0ð1Þ þ zmvð1Þ þ mð1� xÞðzv0ð1Þ þ vð1ÞÞ.
After application of (5.130), the second equation of boundary conditions (5.124) can be

replaced by

v0ð0Þ ¼ mvð1Þ2 þ 2zmvð1Þv0ð1Þ þ kv0ð1Þ2 � 1

Hð1Þ þ R1
0

xaðxÞvðxÞdx
(5.133)

Based on Eqs (5.131)e(5.133), the iteration scheme can be outlined as follows:

1. For a given l, select initial v00ð0Þ, v0(x), and a0(x).

2. Update vi according to

viþ1ðxÞ ¼ xv0ið0Þ þ
ffiffiffi
l

p
x2

Z1
0

ð1� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i ðxxÞ þ 1

q
dx

3. Update ai according to

aiþ1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

v2iþ1ðxÞ þ 1

s �
gðxÞ þ ð1� xÞ2 R2

0

Ziþ1ðx; xÞdx
�

Ziþ1ðx; xÞ ¼ xaiviþ1ðxþ xð1� xÞÞ

(5.134)

where gi is obtained by replacing v in g by vi.

4. Update v0ið0Þ according to

v0iþ1ð0Þ ¼
mvið1Þ2 þ 2zmvið1Þv0ið1Þ þ kv0ið1Þ2

Yi þ kv0ið1Þ2 þ
R1
0

xaiþ1ðxÞviþ1ðxÞdx

Yi ¼ mvið1Þ2 þ 2zmvið1Þv0ið1Þ

(5.135)

5. If a given accuracy is not satisfied, go back to Step 2.
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Iteration Scheme: Case where p > 1

In this case, formal integration of (5.122) yields, after satisfying the boundary conditions at

x¼ 1 and using (5.123):

v00ðxÞ ¼ s½v2ðxÞ þ 1�ðp=pþ1Þ�
pbgðxÞ þ pð1� xÞ2 R1

0

Qðx; xÞdx
�ðp�1=pþ1Þ (5.136)

where s is the sign of the denominator and

Qðx; xÞ ¼ xfv½xþ xð1� xÞ�v½xþ xð1� xÞ� (5.137)

aðxÞ ¼ fv

b
; fvðxÞ ¼

�
v2ðxÞ þ 1

v002ðxÞ
�ð1=p�1Þ

(5.138)

b ¼
	p
l


ð1=p�1Þ¼
Z1
0

fvðxÞdx (5.139)

Furthermore, boundary conditions (5.124) can be rewritten as

vð0Þ ¼ 0; v0ð0Þ ¼ � v00ð0Þ
phb

���v00ð0Þ���ð2p=p�1Þ (5.140)

The expression for v(x) is obtained by using standard integration and then applying

Eq. (5.128):

vðxÞ ¼ v0ð0Þxþ x2
Z1
0

ð1� xÞv00ðxxÞdx (5.141)

Based on Eqs (5.136)e(5.141) and experience from a previous study [11], an iteration

scheme for this case can be suggested as follows:

1. Select an initial b0 and an initial v000ðxÞ.
2. Update vi(x) according to Eqs (5.140)e(5.141) by using v00i ðxÞ and bi.

3. Update v00i ðxÞ according to (5.136) by using viþ1ðxÞ and v00i ðxÞ.
4. Update bi according to (5.139) by using viþ1ðxÞ and v00iþ1ðxÞ.
5. If a specified accuracy is not satisfied, go to Step 2.

After b, v, and v00 have been determined within the specified accuracy, one can find the

optimum eigenvalue l, the function fv and then the optimum a respectively, according to

Eqs (5.138) and (5.139). The linear dimension of the cross-section of the beam is a(1/p)(x).
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5.4.3 Optimization Approach of Constrained Shape Design

Unconstrained shape design may create some optimal shape functions that are not acceptable

for some real applications. For example, the cross-section of the optimal shape may become

too small or too large in certain parts of the beam. In practice, this may cause some problems.

Small cross-sections may make the beam too weak to support the required load, while large

ones may not be allowed by task environments. Therefore, additional constraints such as

upper and lower bounds on the shape function may have to be imposed in order to generate

a realistic shape design. Introduction of any meaningful constraints, however, would make it

impossible to follow the analytical approach described in the previous section. Hence, in this

section we will use nonlinear programming methods to solve the constrained shape design

problem directly based on the variational form (5.116).

For this purpose, we will approximate v by

vðxÞ ¼
XNv

k¼1

vkfkðxÞ ¼ fðxÞU (5.142)

where vk are real numbers and {fk(x)} is a set of base functions, k¼ 1, ., Nv. Row base

function vector f and column coefficient vector U are defined as

fðxÞ ¼ ðf1ðxÞ;.;fNv
ðxÞÞ; U ¼ ðv1;.; vNv

ÞT˛RNv

respectively. Each of the base functions can be taken as some modal shape function of

vibration, e.g. modal shape functions of flexible manipulators with beams of uniform cross-

sections [34]. Obviously, the finite element method can also be used here.

It is clear from (5.116) that l does not change if we multiply v by an arbitrary nonzero

scalar. Therefore, in order to guarantee a unique solution in numerical computation, we will

impose the normalization condition. We will impose the normalization condition kUk ¼ 1 on

U. Note that other conditions may also be used and may actually produce a better result.

We will approximate the shape function as a piecewise uniform cross-sectional shape, i.e.

aðxÞ ¼
XNa

k¼1

akεkðxÞ ¼ εðxÞL (5.143)

where ak; k ¼ 1;.;Na are positive real numbers and the function εk is defined as

εkðxÞ ¼
�
1 for xk�1 � x � xk
0 otherwise

where 0¼ x0< x1<.< xNa
¼ 1 is a division of [0,1]. Row shape function vector ε and

column coefficient vector L are defined as
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εðxÞ ¼ ðε1ðxÞ;.; εNv
ðxÞÞ; L ¼ ða1;.;aNv

ÞT˛RNa

respectively. Of course, other functions such as spline functions can also be used for a.

Let D¼ (x1� x0,., xNa
� xNa�1)

T, then constraint (5.120) can be written as LTD¼ 1. The

lower and upper bounds can be imposed on the shape function as

LL � L � LU (5.144)

where LL and LU are two positive vectors in RNa .

Nonlinear Programming Method: Single Tip Load

We now consider the case where the manipulator is subject to a single tip load.

Substituting approximations (5.142) and (5.143) into Eq. (5.116), we find that the problem

of optimum shape design can be reformulated as a constrained nonlinear programming

problem:

l ¼ min
L

min
U

UTFðLÞU
UTUðL; dÞU (5.145)

subject to

kUk ¼ 1; LTD ¼ 1; LL � L � LU (5.146)

where d¼ (m,z,k)T is the vector of tip load parameters. L and U are two matrices that can be

found from (5.116) as

FðLÞ ¼
Z1
0

1ðεLÞpf00ðxÞdx (5.147)

UðL; dÞ ¼
Z1
0

fðxÞTfðxÞεðxÞLdxþ hf0ð0ÞTf0ð0Þ

þ mfð1ÞTfð1Þ þ 22mfð1ÞTf0ð1Þ þ kf0ð1ÞTf0ð1Þ

(5.148)

Note that both F and U are positive definitive matrices.

Obviously, Eqs (5.145) and (5.146) do not constitute a standard programming problem

(see Ref. [35]), since they involve first a minimization problem with respect to U for given

L and then a maximization problem with respect to L. It is also clear that the standard

minimax algorithm in mathematical programming cannot be applied directly (see, e.g.,

Ref. [36]). But the problem is certainly solvable since we can simply divide it into two

optimization problems, though this division may not be an efficient way to solve the

problem.
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To solve the minimization problem with respect to U, it is not difficult to see that for given L

and d the result of minimization is equal to the minimum eigenvalue of the following

generalized eigenvalue problem:

det½FðLÞ � lUðL; dÞ� ¼ 0 (5.149)

Since U is a nonsingular matrix, it can easily be reduced to an ordinary eigenvalue problem.

Minimax Design Method: Multiple Tip Loads

In most cases, a flexible manipulator has to perform tasks in different situations, particularly

with different values of tip loads. This is reflected by different values of tip load parameter

vector d. As we will see later from the numerical results presented in Section 5.5.4, the

optimum frequency of a manipulator changes dramatically with the variation in tip load

parameters. This naturally leads to the question of what is an “optimal” shape for

a manipulator handling multiple tip loads. A reasonable criterion of optimum shape design

in this case is to maximize the worst-case fundamental frequency of the flexible manipulator.

We will consider only the case of a finite number of task situations. Specifically, let D¼
{d1,.,dn} be a set of possible values of parameter vector d. Then the problem of optimum

shape design in this case can be formulated as a standard minimax problem:

max
L

min
1�i�n

fliðLÞg; liðLÞ ¼ min
U

lðL;U; diÞ; i ¼ 1;.; n (5.150)

subject to

kUk ¼ 1; LTD ¼ 1; LL � L � LU (5.151)

where li is actually the minimum eigenvalue of Eq. (5.149) for a given shapeL and tip load di.

Several minimax algorithms may be used to solve this problem. In this paper the

PshenichnyiePironneauePolak algorithm with exact line search (PPP-ELS) [37] has been

utilized. This algorithm requires the gradient information of li with respect to L, i.e.

vli

vL
¼ ðli;1;.; li;Na

Þ; li;k ¼ vli

vak
; i ¼ 1;.;Na

From Eq. (5.149) it is not difficult to see that the gradient li,k is the minimum eigenvalue of

the generalized eigenvalue problem:

det½F,kðLÞ � liU,kðL; diÞ �Li;kUðL; diÞ� ¼ 0 (5.152)

where

F;k ¼ vF

vak
; U;k ¼ vU

vak
; i ¼ 1;.;Na
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Again, since U is nonsingular, it can be reduced to an ordinary eigenvalue problem.

Although the optimization approach is an approximate method for solving the optimum shape

design problem, it offers several advantages, especially the following:

1. Sophisticated constraints, such as maximum stress restraint, can be included in the

optimization formulation.

2. The general relationship between EI and rA can be considered in straightforward fashion.

Equation (5.115) may be important for the analytical approach, but is certainly not so

for the optimization approach.

3. The coefficient vector U found during optimization may be useful for modeling the

dynamics of the optimum flexible manipulator for control purposes, since this vector

represents the modal shape of vibration corresponding to the fundamental frequency.

The result of the analytical approach, in which no approximation is made with respect to the

basic equations, can be used to verify the result of the optimization approach since, we can

also apply the latter approach to the case of unconstrained shape design.

5.4.4 Numerical Examples and Discussion

Many numerical examples have been conducted based on the previous iteration schemes. In

this section we only present the results for p¼ 2, i.e. manipulators having beams of

geometrically similar cross-sections. Specifically, we have chosen a circular cross-section

with varying radius in all our numerical investigations.

Unconstrained Design

The successive iteration processes of the analytical approach are controlled by the following

accuracy criterion:

jbiþ1 � bij
jbiþ1j

þ kviþ1 � vik
kviþ1k þ kv00iþ1 � v00i k

kv00i¼1k
< ε

To simplify numerical computations, we have approximated all functions using spline

functions through interpolation over their values at Nþ 1 uniformly distributed discrete

points in 0� x� 1. Throughout this section, N¼ 10 and ε¼ 10�2 have been used in all

computations. In all cases for which convergence is achieved we can find a solution for any

ε> 0, but for values of ε below 10�2 the number of required iterations increases dramatically

while the optimal frequencies and shapes obtained show very little change (less than 5%). For

the purpose of comparison, ε is quite sufficient. All numerical integrations are carried out

using the recursive Simpson formula.

The iteration process begins with b0(0)¼ 1 and v000ðxÞ ¼ �1. For large hub inertias (h� 4)

and small tip loads (m¼ z¼ k� 0.1), convergence is usually achieved in five to six iterations.
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For a small hub inertia (h� 1) the speed of convergence is very slow and, if a large tip load is

also present, the process does not converge at all. From a physical standpoint the reason for

this is obvious. Remember that we are dealing with a system composed of three parts: the hub,

the beam, and the tip load. The flexibility of this system is increased by decreasing the hub

inertia or by increasing the tip load (k, z, or m). Thus, we should expect rapid convergence for

a rigid or stable system and slow or even nonconvergence for a highly flexible or unstable

system. This is exactly what the numerical computation processes show.

For various values of hub inertia parameter h and tip load parameters m, z, and k, Table 5.4

summarizes the increment for the unconstrained shape design in the fundamental frequency

in comparison with that of a flexible manipulator with a beam of uniform cross-section

and the same length, volume, and material as the optimum flexible manipulator. The

dimensionless fundamental frequency of the uniform flexible manipulator is denoted by lc.

Results from Table 5.4 show that the gain in the optimum shape design is substantial

(increases range from 149.76% to 642.31%).

From this table, it is also very clear that the optimal frequency varies dramatically with the

change in tip load parameters. For example, given z¼ 0.1 and k¼ 0.05, when mass parameter

m is reduced from 0.10 to 0.05, the corresponding increase in frequency is reduced from

296.22% to 149.76%. Note that even for flexible manipulators with beams of uniform

rectangular cross-sections, their vibration frequencies change dramatically with variations in

tip load [11].

Another interesting point can be found by observing the values in the last two columns of

Table 5.4. These show that by exchanging the values of m and k, the results of optimum

design can be quite different. This shows that the effect of tip load mass and tip load moment

is not symmetrical. Finally, as one can clearly see in Table 5.4, the frequency increase is

larger as the hub inertia increases. This conclusion has also been confirmed by our previous

results [11].

For small m and k, the optimum shape is approximately a linearly tapered beam (Figure 5.27).

For large values of m, the beam tapers dramatically near the tip (Figure 5.28). If k is large, the

beam becomes almost uniform (Figure 5.29). This is most likely due to the large bending

Table 5.4: Ratio of
ffiffiffiffiffiffiffiffiffiffi
l=lc

p
for unconstrained shape design (p[ 2)

(m,z,k)[
(0.10,0.10,0.05)

(m,z,k)[
(0.10,0.10,0.05)

(m,z,k)[
(0.10,0.10,0.05)

(m,z,k)[
(0.10,0.10,0.05)

h¼ 1 3.9622 2.4976 4.7175 3.6207
h¼ 2 4.3725 3.1135 5.3285 4.3241
h¼ 3 5.8935 3.7837 6.0134 6.9039
h¼ 4 7.0013 4.3752 7.4231 5.8128
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moment that is induced towards the end of the beam by the large moment of inertia of the

tip load. In order to counteract this, the beam assumes a uniform shape with no tapering.

Also, the frequency and optimum shape seem to be relatively insensitive to the placement of

the tip load relative to the end of the beam.
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Constrained Design

To evaluate the effect of lower and upper constraints imposed on the shape function,

numerical analysis has been conducted by introducing a lower bound and an upper bound.

The lower bound is 5% larger than the actual smallest value of a obtained in the

Figure 5.28: Uniform Beam vs. Optimum Design: p[ 2.

Figure 5.29: Uniform Beam vs. Optimum Design: p[ 3.
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corresponding unconstrained shape design, whereas the upper bound is 5% smaller than the

largest value of a obtained in the unconstrained design. The optimization approach discussed

in Section 5.3.4 has been used in the numerical computations. The nonlinear programming

algorithm used is the BroydeneFletchereGoldfarbeShanno (BFGS) method with

constraints.

Corresponding to Table 5.4, Table 5.5 presents the results of the constrained shape design of

single tip loads for the same combinations of hub inertia and tip load parameters. It is very

clear that the increases in the fundamental frequency have been reduced due to the further

constraints on the shape functions. However, the numerical results indicate that the profiles of

the optimal beam shapes are very similar in the cases of unconstrained and constrained

designs (see Figure 5.30).

Figure 5.30: Weight Ratio of Optimum and Uniform Arms: p[ 2.

Table 5.5: Ratio of
ffiffiffiffiffiffiffiffiffiffi
l=lc

p
for constrained shape design (p[ 2)

(m,z,k)[
(0.10,0.10,0.05)

(m,z,k)[
(0.10,0.10,0.05)

(m,z,k)[
(0.10,0.10,0.05)

(m,z,k)[
(0.10,0.10,0.05)

h¼ 1 3.2938 2.1162 3.9149 3.2414
h¼ 2 3.6777 2.7735 4.3105 3.5734
h¼ 3 4.7557 3.1579 4.9537 5.9869
h¼ 4 5.7087 3.7556 6.4859 4.8637
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Minimax Design

To illustrate the minimax design procedure in the case of multiple tip loads, three tip load

situations (labeled as A, B, and C respectively) have been studied. The tip load parameters for

three cases are (mA,mB,mC)¼ (0.10,0.05,0.10), (zA,zB,zC)¼ (0.10,0.10,0.10), and

(kA,kB,kC)¼ (0.05,0.05,0.50). The hub inertia parameter is fixed at h¼ 4. No lower or upper

bound is imposed on the shape function in this case. The corresponding optimal shapes

designed for each of the individual cases are called ShapeA, ShapeB, and ShapeC respectively.

The optimal shape obtained by the minimax method is called ShapeM.

Table 5.6 summarizes the result of the minimax design. As one can see from the table,

the performance of the optimal shape degrades when the tip load is not the one given

in its design specification. However, we have found that the optimal shapes always

obtain higher frequencies than the uniform shapes. It is clear from the table that the

optimal shape constructed by the minimax design gives a fundamental frequency that is

always higher than the lowest frequency produced by the other three optimal shapes in

all three tip load cases, as would be expected. Figure 5.31 shows the profiles of four

shapes:

ðSh; Sm; Smz; SkÞ ¼ ðhv0ð0Þ2; mvð1Þ2; 2zmvð1Þv0ð1Þ; kv0ð1Þ2ÞR1
0

ay2dxþ hv0ð0Þ2 þ mvð1Þ2 þ 2zmvð1Þv0ð1Þ þ kv0ð1Þ2
(5.153)

5.4.5 Sensitivity Analysis of the Optimal Frequency

A variation in hub inertia, or more likely in tip load, will induce a corresponding change

in the frequency of flexible arms. For the purpose of arm design, it is extremely

important to know how sensitive the optimal frequency is with respect to changes in

system parameters. The sensitivity information can be used to specify the accuracy of the

machining operation during the real construction of the optimal shapes. This section

investigates the problem of sensitivity analysis for the unconstrained optimum shape

design only.

Table 5.6: Ratio of
ffiffiffiffiffiffiffiffiffiffi
l=lc

p
for minimax shape design (p[ 2, h[ 4)

(m,z,k)A[ (0.10,0.10,0.05) (m,z,k)B[ (0.10,0.10,0.05) (m,z,k)C[ (0.10,0.10,0.05)

ShapeA 4.3725 2.3412 4.2134
ShapeB 2.9112 3.1135 4.0211
ShapeC 3.0119 2.5143 5.6285
ShapeM 3.8125 2.3571 4.4653
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For optimal fundamental frequency l, from Eqs (5.116) and (5.117), variation of l due to

small changes in h, m, z, and k can expressed as

dl

l
¼ �Sh

dh

h
� Sm

dm

m
� Smz

dðmzÞ
mz

� Sk
dk

k
(5.154)

where sensitivity indices are calculated accordingly (see (5.153) above).

Note that although dh, dm, dz, and dk cause the corresponding variations dv and da in v

and a respectively, these variations will not affect the value of l when small terms of order

2 or higher are ignored, since l reaches one of its stationary values at v and a. This is

why we do not need to consider the variations of v and a in the above sensitivity analysis.

It should be pointed out that sensitivity indices can also be formally defined as follows:

Sc ¼ �% change in l

% change in c

c ¼ h; m; mz; k

¼ �dl=l

dc=c
¼ �c

l

dl

dc
(5.155)

Clearly, 0� Sc� 1. Therefore, the vibration frequency always decreases as system

parameters increase in value, a conclusion that agrees with intuition and that has been

verified by numerical analysis [16].

Using Eqs (5.153) and (5.154), one can find the actual numerical values of sensitivity indices

for any particular optimum shape design.

Figure 5.31: Weight Ratio of Optimum and Uniform Arms: p[ 3.
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5.5 Minimum-Weight Design of Flexible Manipulators for a Specified
Fundamental Frequency

The focus of this section is on the problem of designing a minimum-weight flexible

manipulator for a given fundamental vibration frequency. As indicated in Figure 5.26,

the fundamental vibration frequency of a flexible manipulator defines the range of

operational speeds of the manipulators, since as the operational speed approaches the

fundamental frequency, it may cause resonant vibration of the manipulator system.

Therefore, to increase the operational speed of the manipulator, i.e. the productivity, one

has to ensure that the manipulator has a large fundamental frequency. However, as we

can see from Figure 5.27, a large fundamental frequency means that a manipulator must

be heavier.

As pointed out by Asada et al. [27], the majority of flexible manipulators that have been

studied in the literature have a simple structure consisting of beams with uniform mass and

stiffness distribution. While the simplified beams permit analytical modeling and theoretical

treatment, the arm construction is unrealistically primitive and its dynamic performance is

severely limited. In our previous work [11,12,28,33], the problem of optimum mass and

stiffness distribution of flexible manipulators under a given total weight constraint has been

investigated using the variational formulation.

Under the constraint that a flexible arm must have a specified fundamental frequency, we will

show here that the same method can be used to find an optimum mass and stiffness

distribution such that the arm will have a minimum weight. For space applications, where

flexible manipulators have been generally recognized as an ideal tool for material handling

and space-structure construction, minimum-weight manipulators are of special interest due to

the strict weight constraint imposed by the loading capacity of landers [18].

5.5.1 Basic Equations

A one-link flexible manipulator is modeled as a beam mounted on a hub with rotational

inertia IH in the horizontal plane. The minimum weight design of flexible manipulators will

involve only the fundamental frequencies. Although rotary inertia and shear deformation of

the beam are very important for higher order vibration frequencies, a previous study [11] has

shown that their influence on the fundamental frequency is very small and can be neglected.

Accordingly, the simple EulereBernoulli beam model without rotary inertia and shear

deformation is valid for the study here and thus, for a specified fundamental frequency us, the

governing equation of harmonic vibration and the boundary conditions can be written as

follows:

ðEIv00Þ00 � rAu2
s v ¼ 0 (5.156)
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vð0Þ ¼ 0; IHu
2
s v

0ð0Þ þ EIv00ð0Þ ¼ 0 (5.157)

EIv00ðLÞ ¼ 0;
�
EIv00Þ0ðLÞ ¼ 0 (5.158)

where v is the total displacement of the beam, EI is the bending rigidity, A the cross-sectional

area, r the mass density per unit volume, and L the length of the beam. A prime indicates

differentiation with respect to the coordinate x along the longitudinal axis of the beam.

For a flexible manipulator with a beam of uniform cross-section, it can be shown that the

following relationship must be satisfied by the specified fundamental vibration frequencyWs,

the total beam weight W¼ rAL, and the hub inertia IH:
W

Ws

�1=4

¼ qsðhÞ; Ws ¼ EI

u2
s L

3
; h ¼ IH

WL2
(5.159)

where qs is the minimum eigenvalue of the characteristic equation:

sinq coshq� cosq sinhqþ hq3ð1þ coshq cosqÞ ¼ 0

It is straightforward to show that qs increases monotonically as the hub inertia parameter

decreases. The lower and upper bounds of qs can be found to be 1.8751� qs� 3.9266, which

are achieved at h¼N and h¼ 0 respectively. Similarly, 12.3623� (W/Ws)� 237.7205. Note

that when h¼N, Eq. (5.158) is reduced to the characteristic equation of a clamped

cantilever, whereas when h¼N, Eq. (5.158) is reduced to that of a hinged cantilever. Hence,

for manipulators with beams of uniform cross-section, one can see from Eq. (5.158) that hub

inertia can cause the total weight to vary over a wide range. For fixed hub inertia, Figure 5.27

shows that the total beam weight increases as the specified fundamental frequency increases.

For manipulators with beams of varying cross-section, however, simple equations such as

Eq. (5.158) for the relationship between the fundamental frequency and the beam weight are

no longer possible. In this case, the fundamental frequency is a nonlinear function of the

shape function (or, equivalently, mass and stiffness distribution) of the cross-section. The

objective of this work is to find the best possible tapering of a beam for a flexible manipulator,

which for a specified fundamental frequency would generate the minimum beam weight.

Throughout this work we will assume the following relationship between the moment I and

the area A of the beam’s cross-section:

IðxÞ ¼ gApðxÞ; p � 1 (5.160)

where g is a constant.We are especially interested in three cases, namely p¼ 1, 2, 3, since

they correspond to beams with rectangular cross-sections of given uniform height,

geometrically similar cross-sections, and rectangular cross-sections of given uniform width

respectively. The treatment in this section, however, is valid for all cases with p� 1.
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5.5.2 Problem Formulation

In this section we use the variational method to establish the basic equations for solving the

minimum-weight design problem. For this purpose, we transfer Eqs (5.156) and (5.157) into

the following variational form using Rayleigh’s principle:

u2
s ¼ min

v

RL
0

EIv002dx

RL
0

rAv2dxþ IHv0ð0Þ2
(5.161)

where v only needs to satisfy the geometric boundary condition v(0)¼ 0. The equivalence of

(5.161) and Eqs (5.156) and (5.157) can be easily proved. The above equation can be

rewritten in dimensionless form as follows:

ls ¼ min
v

R1
0

apv002dε

R1
0

av2dεþ hv0ð0Þ2
(5.162)

where a prime indicates differentiation with respect to the dimensionless coordinate x¼ x/L.

The dimensionless eigenvalue ls, shape function a, and hub inertia parameter h are defined

respectively as

ls ¼ rpL3þp

gEWp�1
0

u2
s ; a ¼ rLA

W0
; h ¼ IH

W0L2
(5.163)

in which W0 is a nominal weight.

To minimize the total weight of the beam, a(x) must be designed such that

min
a

Z1
0

adx (5.164)

subject to constraint (5.162).

Using the Lagrange multiplier method, it can be found from variational calculus that the

minimum-weight design problem leads to the following set of differential equations:

ðapv00Þ00 � lsav ¼ 0 (5.165)

pap�1ðv00Þ2 � lsv
2 ¼ lss

2 (5.166)

and the boundary conditions

vð0Þ ¼ 0; apv00ð0Þ þ lshv
0ð0Þ ¼ 0; apv00ð1Þ ¼ 0; ðapv00Þ0ð1Þ ¼ 0 (5.167)
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where s is a Lagrange multiplier. These equations, together with constraint (5.162), form the

complete set of basic equations of minimum-weight design for the one-link flexible

manipulator.

Clearly, solution of Eqs (5.165)e(5.167) is not unique, since if (v,s2,a,ls) is a solution of

(5.165)e(5.167), then (cv,c2s2,a,ls) is another solution for any nonzero constant c. At

first glance, the non-uniqueness of a solution may seem to create problems in numerical

computation, but it actually offers us a way to completely remove the Lagrangian

multiplier from Eq. (5.166) by selecting c¼ 1/s. In other words, we only need to find the

unknown function v/s, instead of v and s2 individually, in order to solve the optimization

problem. Therefore, we will assume Lagrange multiplier s¼ 1. As for the optimum

design of vibrating cantilevers [5,7], this observation has simplified the problem

substantially.

It follows from Eq. (5.166) that for p > 1:

aðxÞ ¼ fvðxÞ
b

(5.168)

where

fnðxÞ ¼
�
v2ðxÞ þ 1

v002ðxÞ
� 1

p�1

; b ¼

p

ls

� 1
p�1

(5.169)

An important identity can be obtained by multiplying both sides of Eq. (5.165) by v and

integrating over 0� x� 1. After integrating by parts and taking the boundary conditions

(5.167) into account, we have, after applying Eq. (5.166):

Z1
0

aðxÞdx ¼ ðp� 1Þ
Z1
0

aðxÞvðxÞ2dxþ phv0ð0Þ2 (5.170)

5.5.3 Solution by Iterations

Since, in general, the solution of the nonlinear equations Eqs (5.165)e(5.167) cannot be

obtained in closed form, a set of successive iteration schemes is developed to find the

solutions numerically. The iteration schemes are based upon formal integration, with

the introduction of one boundary condition at each integration. Care is taken to remove the

singularity of solutions at singular points and to separate the differential operator of the

highest order on the left-hand side at each step. This has been found necessary in order to

make the numerical computation feasible and to obtain convergence by successive

iteration.
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The following two integral formulas are very useful in the formulation of iteration schemes:

Zx
0

Zx
0

GðsÞdsdx ¼ x2
Z1
0

ð1� xÞGðxxÞdx (5.171)

Z1
x

Z1
x

GðsÞdsdx ¼ ð1� xÞ2
Z1
0

xG½xþ xð1� xÞ�dx (5.172)

Note that compared with double integration, single integration saves computation time and

hence is preferred numerically.

Next we will present iteration schemes for the cases of p¼ 1 and p> 1.

Case where p¼ 1

For p¼ 1, function a drops out of Eq. (5.166) and we have a degenerate case. Then identity

(5.170) becomes

h v0ð0Þ2 ¼
Z1
0

aðxÞdx

To develop a successive iteration scheme, we formally integrate (5.165) and (5.166) with

boundary conditions (5.167). Application of formulas in Eqs (5.170) and (5.171) leads to

vðxÞ ¼ xv0ð0Þ þ
ffiffiffiffi
ls

p
x2

Z1
0

ð1� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðxxÞ þ 1

q
dx (5.173)

aðxÞ ¼
ffiffiffiffi
ls

p ð1� xÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðxÞ þ 1

p Z1
0

xav½xþ xð1� xÞ�dx (5.174)

v0ð0Þ ¼ �1

h

Z1
0

xaðxÞuðxÞdx (5.175)

Based on these equations, the iteration scheme can be outlined as follows:

1. For a given l, select initial v00ð0Þ, v0(x), and a0(x).

2. Update vi according to

viþ1ðxÞ ¼ xv0ið0Þ þ
ffiffiffi
l

p
x2

Z1
0

ð1� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2i ðxxÞ þ 1

q
dx
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3. Update ai according to

aiþ1ðxÞ ¼
ffiffiffiffi
ls

p ð1� xÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2iþ1ðxÞ þ 1

q Z1
0

xaiviþ1½xþ xð1� xÞ�dx

4. Update v0ið0Þ according to

v0iþ1ð0Þ ¼ �1

h

Z1
0

xaiþ1ðxÞviþ1ðxÞdx

5. If a given accuracy is not satisfied, go back to Step 2.

Case where p> 1

For p> 1, by formal integration of (5.165) we find, after satisfying the boundary conditions at

x¼ 1, substituting a from (5.168) into (5.165), and using (5.171) that

v00ðxÞ ¼ s½v2ðxÞ þ 1� p
pþ1

MðvÞp�1
pþ1

(5.176)

where M(v) and s are defined as

MðvÞ ¼ pð1� xÞ2
Z1
0

xfv½xþ xð1� xÞ�v½xþ xð1� xÞ�dx

s ¼ sign

� R1
0

xfv½xþ xð1� xÞ�v½xþ xð1� xÞ�dx
�

It is easy to show that

vðxÞ ¼ xv0ð0Þ þ x2
Z1
0

ð1� xÞv00ðxxÞdx (5.177)

v0ð0Þ ¼ � v00ð0Þ
lshb

���v00ð0Þ��� 2p
p�1

(5.178)

Now the scheme for successive iterations can be specified as follows:

1. Select an initial v000ðxÞ.
2. Update vi(x) according to (5.176) and (5.177).

3. Update fvi(x) according to (5.168).
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4. Update v00i ðxÞ according to (5.175).

5. If a given accuracy is not satisfied, go back to Step 2.

5.5.4 Numerical Examples

Several numerical examples have been considered based upon the successive iteration

schemes described in the previous section. In this section we present some of the results for

p¼ 2 and p¼ 3.

The successive iteration processes are controlled by the following accuracy criteria:

jjviþ1 � vijj
jjviþ1jj þ jjaiþ1 � aijj

jjaiþ1jj < ε

To simplify the numerical computation, we have approximated all functions using spline

functions through interpolation over their values at Nþ 1 uniformly distributed discrete

points in 0� x� 1. Throughout this section, N¼ 10 and ε¼ 10�4 have been used in all

computations. All numerical integrations in iterations are carried out by using the recursive

Simpson formula.

The iteration for v00(x) starts with v000ðxÞ ¼ 1. In this case, for large h¼ 50, convergence is

achieved after 54 iterations for p¼ 2 and 39 for p¼ 3. For small h, say 0.5� h� 1, the speed

of convergence becomes very slow (close to 1000 iterations are required for convergence),

and for h� 0.5 the iterations do not converge at all with the initial guess v000ðxÞ ¼ 1. This

problem can be overcome by using the converged v00(x) of the previous value of h as the initial

guess v000ðxÞ of the new h value, but the speed of convergence is still very slow and becomes

extremely slow for h� 1.

For various values of specified fundamental frequencies fs(us¼ 2pfs), Table 5.1 summarizes

the ratio of the weights of the uniform beam and the optimum beam. More results are

illustrated in Figures 5.28e5.31. Figure 5.32 illustrates the corresponding variation of linear

dimension (i.e. radius of the cross-section) of the geometrically similar cross-section (p¼ 2)

as a function of nondimensional coordinate x. Figure 5.33 gives the corresponding results for

the rectangular cross-section of given uniform width (p¼ 3, i.e. linear dimension is the height

of the cross-section).

5.6 Optimum Design of Flexible Manipulators: The Segmentized Solution

Our objective in this section is to address the control problem from a design perspective. The

goal is to build a high-performance flexible manipulator such that the effect of its oscillation

is reduced during normal operations. The finite rigidity of a flexible manipulator results in

a finite fundamental frequency of vibration, while the infinite stiffness of a rigid arm implies
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an infinite value for the fundamental frequency. For any system with finite fundamental

frequency, oscillation is unavoidable and becomes severe when the system operates near its

fundamental frequency. Thus, to reduce the oscillation, one has to either operate the

manipulator at low speeds or somehow increase its fundamental frequency. Since one of the

major reasons for developing flexible manipulators is to obtain high-speed motion with less

energy consumption, increasing the fundamental frequency is the only appropriate solution.

Figure 5.32: Optimum Tapering of Beam: p[ 2.

Figure 5.33: Optimum Tapering of Beam: p[ 3.
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In previous work, we have solved the unconstrained design problems for both maximum

speed and minimum mass formulations analytically using the variational method [11,33,38].

Theoretical and numerical analyses have indicated that the unconstrained formulations could

result in unrealistic link designs such as zero-area cross-sections, which are not allowed in

real applications. To overcome these situations, more constraints have been introduced in the

design specification and nonlinear optimization techniques have been used to find the

optimum solutions [28,33]. The major problem in these constrained design formulations is

that the fundamental frequency is calculated approximately using the modal shape functions

derived for manipulators with uniform cross-sections. This makes the task of verifying the

results of optimum designs very difficult, and numerical examples have also indicated that the

results are sensitive to the number of modal shape functions used.

To overcome these problems, an innovative design method based on the segmentized

solution of vibration equations for flexible manipulators is developed here. The main

advantage of this new method is that the design process is closely related to the actual

process of manipulator construction, i.e. using many different, uniform segments to

approximate a non-uniform link.

5.6.1 Basic Equations

This section presents the basic dynamic equations for a non-uniform flexible manipulator

carrying a load at its end. We then solve these equations by approximating the link of

the manipulator with a number of segments of uniform mass and bending rigidity

distributions.

Our model consists of a flexible link of length L fixed on a rigid hub of inertia IH. The

harmonic vibration of this manipulator system is described by the amplitude of its pure

link deflection u and rigid hub rotation q. Based on the EulereBernoulli bending theory [16],

the vibration equation and the corresponding boundary conditions can be expressed in terms

of the amplitude of its total link displacement, u(x)¼u(x)þ xq, as

ðEIu00Þ00 � rAu2u ¼ 0 (5.179)

uð0Þ ¼ 0; IHu
2u0ð0Þ þ EIu00ð0Þ ¼ 0 (5.180)

EIu00ðLÞ � Jpu
2u0ðLÞ � acMpu

2u0ðLÞ ¼ 0 (5.181)

ðEIu00Þ0ðLÞ þ acMpu
2u0ðLÞ þMpu

2uðLÞ ¼ 0 (5.182)

where ()0 ¼ v()/vx, u is the natural vibration frequency, EI is the bending rigidity, and rA

is the linear mass density. A tip load is characterized by its mass Mp, inertia Jp, and local

x-coordinate ac, of the center of mass. When a tip load is considered as a point, ac¼ 0,

Eqs (5.179)e(5.182) reduce to the form developed by Bellezze et al. [25].
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For the purpose of optimum design, we will treat u in Eqs (5.179)e(5.182) as the

fundamental vibration frequency. Then, Eqs (5.179)e(5.182) can be reformulated into the

following equivalent variational problem [28,33]:

u2 ¼ min
uðxÞ

RL
0

EIu002dx

RL
0

rAu2dxþ IHu0ð0Þ2 þ GL

where GL ¼ MpuðLÞ2 þ 2acMpuðLÞu0ðLÞ þ Jpu
0ðLÞ2.

To reduce the number of symbols, we introduce the following dimensionless form of the

above equation:

l ¼ min
yðxÞ

R1
0

by002dx

R1
0

ay2dxþ hy0ð0Þ2 þ R1

(5.183)

where R1 ¼ myð1Þ2 þ 2cmyð1Þy0ð1Þ þ ky0ð1Þ2, x¼ x/L, y(x)¼ u(x)/L, and ()0 ¼ v()/vx.

Dimensionless frequency l, linear mass distribution a(x), bending rigidity distribution b(x),

hub inertia parameter h, and tip load parameters m, c, k are given by

l ¼ L3M0

D0
u2; a ¼ rAL

M0
; b ¼ EI

D0
; h ¼ IH

M0L2
(5.184)

m ¼ Mp

M0
; c ¼ ac

L
; k ¼ Jp

M0L2
(5.185)

where M0 and D0 are two arbitrary constants of mass and rigidity.

The total mass and its dimensionless form are

M ¼
ZL
0

rAðxÞdx ; g ¼ M

M0
¼

Z1
0

aðxÞdx (5.186)

5.6.2 Segmentized Solutions

To optimize mass and rigidity distributions, one needs to find the relationship between y(x)

and these distributions. This will lead to a set of equations similar to Eqs (5.179)e (5.182).

Since Eq. (5.179) is a differential equation of varying coefficients, it cannot be solved easily.

From the perspective of practical design, however, we can always approximate a non-uniform

link with a link consisting of many uniform segments, each having a constant mass and
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rigidity distribution. By increasing the number of segments, we can represent any link of

practical interest as closely as we want.

Specifically, we divide the whole link 0� x� 1 into N segments, i.e. 0¼ x0<.< xN¼ 1.

Segment i is of length Di¼ xi� xi�1 and is considered to be uniform with constant linear

mass and bending rigidity ai and bi. For each segment, its total displacement can be found as

yiðxÞ ¼ SiðzÞCi (5.187)

where Si ¼ ½sinliz sinhliz cosliz coshliz�, l4i ¼ aiD
4
i l=bi,Ci˛R4is a coefficient vector, and

0� z ¼ ðx� xi�1Þ=Di � 1 is the local coordinate. Based on the considerations of deformation

continuity and force balance at the interfacial cross-sectionof two segments,wecan expressCiþ1

as a function of Ci by Ciþ1¼ fiCi, and eventually every Ci as a function of C¼ C1 by Ci¼
fi�1 . f1C, where fi is a matrix whose elements are functions of mass and rigidity constants:

fi ¼

2
664
cis1icsi cis2ich �cis1isi cis2ishi
cis2icsi cis1ichi �cis2isi cis1ishi
s1isi s2ishi s1icsi s2ichi
s2isi s1ishi s2icsi s1ichi

3
775 (5.188)

ai ¼ ai

aiþ1
; bi ¼ bi

biþ1
; ci ¼


ai
bi

�1=4

(5.189)

di ¼ Di

Diþ1
; s1i ¼ 1þ bic

2
i ; s2i ¼ 1� bic

2
i (5.190)

where csi¼ cos li, si¼ sin li, chi¼ cosh li, and shi¼ sinh li. In other words, we are able to

describe y(x) over the whole link by a coefficient vector of four unknowns:

yðxÞ ¼ SðxÞC; S ¼
XN
i¼1

yiðxÞεðx; xi�1; xiÞFi (5.191)

F1 ¼ I4�4; Fiþ1 ¼ fiFi; i � N � 1 (5.192)

where εðx; xi�1; xiÞ ¼ 1 for xi�1 � x < xi and εðx; xi�1; xiÞ ¼ 0 otherwise.

By substituting Eq. (5.191) into the boundary conditions at the two ends, we obtain

a homogeneous equation QC¼ 0 for C. Since C must be a nonzero vector, its coefficient

matrix must be singular. Therefore, the characteristic equation for determining the natural

vibration frequency can be specified as

det Q ¼
X

ðl;Xa;Xb;XÞ ¼ 0 (5.193)

where Xa¼ (a1,.,aN) and Xb¼ (b1,.,bN) are mass and rigidity distribution vectors, and

X¼ (h,m,c,k) represents hub inertia and tip load parameters. The fundamental frequency is
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the smallest nonzero eigenvalue of the transcendental equation (5.193). Thus, Eq. (5.193)

leads to the following expression for the fundamental frequency:

l ¼ f ðXa;Xb;XÞ (5.194)

where both Xa and Xb are considered as design variables, while X is treated as a design

parameter vector.

The total mass of the flexible manipulator can be obtained by adding up the individual mass of

each uniform segment:

g ¼ a1D1 þ.þ aNDN ¼ XaD
T (5.195)

Equations (5.194) and (5.195), as well as Eq. (5.183), provide the basic expressions for the

optimum design formulations discussed in the next section.

In Figure 5.34, it can be seen that the segmentized frequency rapidly approaches the

optimum frequency, which is obtained using the analytical solution given in an earlier

work [28].

Figure 5.35 compares the optimum analytical design to the four-segment optimum design.

Note that with four segments the segmentized frequency is just 4% less than the analytical

optimum. Other similar results have indicated that the optimum link can be approximated

very accurately with only a few segments (usually eight or less for 5% accuracy).
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Figure 5.34: Frequency vs. Number of Segments.
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5.6.3 Optimization Formulations for Linear Mass and Bending Rigidity Distributions

In this section, we investigate two optimum design problems for a flexible manipulator. The

basic forms of these two problems can be stated as:

1. Maximum speed design problem (MaxSDP). For a given cross-section specification

and a given total mass Ms, determine the optimum mass distribution (rA) and rigidity

distribution (EI) of a flexible manipulator with respect to a specified set of design

constraints such that its fundamental vibration frequency u is maximized.

2. Minimum mass design problem (MinMDP). For a given cross-section specification

and a given fundamental vibration frequency us, determine the optimum mass distribution

(rA) and rigidity distribution (EI) of a flexible manipulator with respect to a specified set

of design constraints such that its total mass M is minimized.

The selection of direct design variables for optimization depends on the cross-section

specification. For example, if a rectangular cross-section is specified then the direct design

variables will be the thickness and width of the section. Here we only consider simple

constraints such as the upper and lower bounds imposed on designvariables, as well as onmass

and rigidity distributions. This is sufficient in order to eliminate the possibility of generating

unrealistic optimum designs, such as manipulators with zero-area cross-sections or with their

mass/rigidity concentrated only at certain segments. More sophisticated constraints, such as

maximum bending stress, strain, tip deflection, or feasibility of link construction, can also be

included in design specifications. See Section 5.6.4 for a detailed discussion.
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Figure 5.35: Analytic Optimum vs. Four-Segment Optimum.
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Maximum Speed Design Problem

For certain specific cross-sections, such as a solid circular cross-section, mass and rigidity

distributions are not independent. In these cases, we can easily express both Xa and Xb as

functions of some independent design variables, denoted as a vector Z. Therefore, we

consider Xa¼ Xa(Z) and Xb¼ Xb(Z) in our optimization formulations.

Based on Eqs (5.194) and (5.195), the maximum speed design problem can be formulated as

max
Z

f ðXa;Xb;XÞ (5.196)

subject to XaD
T ¼ gs; ZL � Z � ZU (5.197)

XL
a � Xa � XU

a ; XL
b � Xb � XU

b (5.198)

where gs¼Ms/M0.

An adaptive random search algorithm has been developed to solve this problem.

Minimum Mass Design Problem

For the minimum mass design problem, we use Eqs (5.183) and (5.191) to calculate the

fundamental frequency, instead of Eq. (5.194). This is because the fundamental frequency

is given as a design constraint in this case. Therefore, the procedure for solving Eq. (5.194)

will be invoked many times if Eq. (5.194) is to be used. Since Eq. (5.193) is transcendental,

this will require significant computational time in optimization.

To avoid this computational problem, we substitute Eq. (5.191) into Eq. (5.183). It follows

that

ls ¼ min
C

CTjðls;Xa;Xb;XÞC
CTUðls;Xa;Xb;XÞC (5.199)

where ls ¼ L3M0u
2
s=D0, and j and U are obtained by

j ¼
XN
i¼1

bi

Z1
0

S00ðxÞTS00ðxÞdz

U ¼
XN
i¼1

ai

Z1
0

SðxÞTSðxÞdzþ Ys

where Ys ¼ hS0ð0ÞTS0ð0Þ þ mSð1ÞTSð1Þ þ 2xmSð1ÞTS0ð1Þ þ kS0ð1ÞTS0ð1Þ, and l¼ ls is used

in calculating displacement function S(x¼ xi�1þ zDi). Note that both j and U are positive

definite matrices.
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It is not difficult to see that, given Xa, Xb, and X, the result of minimization in (5.199) is equal

to the minimum eigenvalue of the generalized eigenvalue problem:

det½jðls;Xa;Xb;XÞ � lUðls;Xa;Xb;XÞ� ¼ 0 (5.200)

Since U is nonsingular, this eigenvalue problem can be reduced to an ordinary eigenvalue

problem, which can be easily solved. Thus, Eq. (5.200) provides a very efficient way to verify

frequency constraint (5.199).

Based on Eqs (5.195) and (5.199), the minimum mass design problem can be formulated as

min
Z

XaD
T (5.201)

subject to ZL � Z � ZU ; XL
a � Xa � XU

a ; X
L
b � Xb � XU

b ; and frequency constraint (5.199).

Design Formulations for Multiple Loads

In most cases, a flexible manipulator has to perform tasks in different situations, particularly

with different tip loads. This is reflected by different values of vector X. Results of numerical

analyses have indicated that the fundamental vibration frequency [16] varies dramatically

with tip load parameters. This naturally leads to the question of what is an “optimum” design

for a manipulator dealing with multiple task situations. We consider the case of a finite

number of task situations, i.e. X˛fX1;.;Xng.
The maximum speed design problem for multiple loads can be formulated as

max
Z

Xn
k¼1

wkf ðXa;Xb;XkÞ (5.202)

subject to XaD
T ¼ gs; ZL � Z � ZU ; XL

a � Xa � XU
a ; XL

b � Xb � XU
b (5.203)

where Sn
k¼1wk ¼ 1; wk � 0; represents the weight assigned to situation i. In particular, if we

choose wl¼ 1 when f ðXa;Xb;XlÞ ¼ min1�k�n f ðXa;Xb;XkÞand wk¼ 0 when ks l, then

Eqs (5.202) and (5.203) constitute the minimax design formulation, i.e. the objective is to

maximize the worst-case fundamental frequency. This problem has been investigated in Refs

[28,33], where the PshenichnyiePironneauePolak minimax algorithm with exact line search

(PPP-ELS) [36,37] was used. The gradient information required by this algorithm, ldi ¼ vl=vxi;

where xi¼ ai or bi, can be obtained by using Eq. (5.200) since l, which must be the smallest

eigenvalue of (5.200), has already been found using Eq. (5.193). The result can be described as

det
�
jd
i � lUd

i � ldiU
� ¼ 0 (5.204)

where ldi is the smallest eigenvalue, jd
i ¼ vj=v > xi, and U

d
i ¼ vU=vxi. Equation (5.204) can

easily be reduced to an ordinary eigenvalue problem because U is positive definite.
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Similarly, the minimum mass design problem for multiple loads can be stated as

min
Z

XnD
T (5.205)

subject to ls �
Xn
k¼1

wk f ðXa;Xb;XkÞ; ZL � Z � ZU ; XL
a � Xa � XU

a ; XL
b � Xb � XU

b

(5.206)

where wk has the same interpretation as in Eqs (5.202) and (5.203).

5.6.4 Practical Issues in Link Construction

In the previous section, simple design constraints were considered. However, the advantages

of the optimum design would be nullified if the stress/strain distributions or displacement of

the optimum manipulator were unacceptably large. To ensure the practicality of optimum

designs, we investigate more complicated constraints related to the maximum strain/stress

and deflection of a flexible manipulator.

Strain/Stress and Deflection Constraints

At each link cross-section the maximum strain εmax and stress smax occur in the outermost

fibers and are given by

εmaxðxÞ ¼ hðxÞv00ðxÞ ¼ hðxÞS00ðxÞC
smaxðxÞ ¼ EεmaxðxÞ (5.207)

where h(x)¼ dmax/L; dmax is themaximumdistance between the neutral axis and the outermost

fibers of the cross-section. In many cases, dmax is half of the cross-section thickness, but it

generally depends on the specific shape of the cross-section selected for a link.

From harmonic vibration, however, the exact value of εmax or smax cannot be specified since

vector C can only be determined up to an arbitrary constant. The simplest way to fix this

problem is to normalize C, i.e. impose condition kCk ¼ 1. In this case, strain/stress and

deflection constraints can be specified as

max
l�lp;0�x�1

hðxÞkS00ðxÞCk � εU ; max
l�lp;0�x�1

kSðxÞCk � vU (5.208)

where lp, which must be less than the fundamental frequency, is the upper bound of

operational frequency, εU and vU are upper bounds imposed on link strain and displacement.

Note that the value of εU is usually determined by the stress constraint. In actual computation,

we only check strain and displacement at certain points, since the procedure to find the

maximum strain or deflection is computationally intensive. For a uniform beam, we know

from mechanics that the maximum strain occurs at the hub end (x¼ 0), while the maximum

deflection occurs at the tip (x¼ 1).
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Link Construction Constraints

Construction of an optimum link can be achieved by either using composite materials or

structural design. Using composite materials, we can consider both Young’s modulus E and

mass density r as construction variables. With the structural design method, we can build

a link segment using, say, trusses, to obtain the specific segment mass and rigidity required by

the optimum design. But a simple method is to select the shape of cross-sections.

For certain cross-sectional shapes, however, we must impose additional constraints on design

variables to ensure that an optimum link can be constructed.

For example, using a circular tunnel cross-section where design variables are z¼ (r, t), and

A ¼ ptð2r þ tÞ=2; I ¼ p½ðr þ tÞ4 � r4�=8� y2cA; dmax ¼ r þ ð1� 4=pÞt; yc ¼ 4t=3p

the construction feasibility can be guaranteed by imposing the following constraints:

ri þ ð1� v1iÞti � riþ1; ri þ v0iti � riþ1 þ tiþ1

where 0 � v0i; v1i � 1. In other words, for any two adjacent segments, the inner radius of one

segment must not exceed (1� v1i) thickness of another segment, and the outer radius must

pass the inner radius by v0i, the thickness of another segment.

Similarly, for a rectangular tunnel cross-section, we have z¼ (a,b,t) and

I ¼ ½ðbþ 2tÞðaþ tÞ3 � ba3�=24� y2cA

A ¼ tð2aþ bþ 2tÞ; dmax ¼ aþ t=2; yc ¼ t=2

The unfeasible situation can be prevented by adding the following constraints:

bi þ 2ð1� v1iÞti � biþ1; ai þ ð1� v1iÞti � aiþ1

bi þ 2v0iti � biþ1 þ 2tiþ1; ai þ v0iti � aiþ1 þ tiþ1

for 1 � i � N � 1
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6.1 Introduction

A manipulator becomes flexible when its link deformation cannot be ignored in the analysis

of its performance. A manipulator that has large dimensions is lightweight, fast, or handles

a heavy load with flexibility. Flexible manipulators utilize less energy due to their light weight

and higher productivity achieved through fast motion. They are safer to operate due to good

damping behavior and less pronounced interconnections between the different segments for

multiple-link manipulators. These manipulators are found in space exploration (NASA Mars

Exploration Mission STS95, 1998) because of the constraints on arm length, weight, and

“gravity loss”; in mining applications (robotic excavators) because of their heavy payload; in

construction applications (robotic crane systems) because of the length and heavy tip load;

and where dexterous manipulators are required, such as in medical operations or chip

placement pick-and-place manipulators in electronic assembly manufacture. The NASA

Remote Manipulator System has very low natural frequencies and consequently has to move

slowly (0.5�/s) in order to avoid vibrations because of its beam mass (450 kg) and its heavy

payload (27,200 kg).

In the last decades, research on flexible manipulators has increased dramatically. From the

perspective of control, recent research has been carried out by Doyle and Glover [1,2],

Francis [3], Gutierrez et al. [4], Jnifene [5], Zabinsky et al. [6] and references therein [7e9].

These studies performed control-intensive work to improve beam performance, but they
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ignored the impact of the beam’s mechanical properties. The resulting system was only

locally optimal. At the same time, another goal was to find a better beam shape so as to move

faster but with less vibration. One of the first papers on an optimal shape for flexible

manipulators was by Karihaloo and Niordson [10]. Extensive studies on optimal shape design

have been conducted by Wang [11], who simplified the scheme substantially. In 1991, this

group examined the external fundamental frequencies and developed an iterative scheme,

producing the first one-link optimum manipulator shape. It was shown that, by proper

selection of the hub, the optimal link could improve the first natural frequency by 600%.

A minimum weight design of flexible manipulators was developed by Wang and Russell

[12,13]. In 1995, they also investigated a new approach, the segmentized scheme of optimal

design, which treats the flexible beam as a collection of small lengths of rigid beam

constrained by each other’s interfacial conditions [14]. The new technique converts the

optimal shape design problem into a matrix determinant problem. In 1996, a new computing

method for optimum mass and rigidity distribution was formulated by Wang et al. [15] and

Zhou [16] for a flexible manipulator with a tip load. The robustness with respect to design

specification and appropriate constraints was considered. Practical issues were also

addressed. These studies focused on open-loop design. They only concerned the beam’s

mechanical construction; that is, a proper design of the flexible beam shape that can make it

suffer less vibration. However, in reality, all manipulators must be in a closed loop to obtain

high performance. The couplings between the controller and the construction were not largely

considered in these designs.

6.2 Overview of Mechatronics Design

6.2.1 Why Mechatronic Design?

Modeling Accuracy and Control Efficiency of Flexible Manipulators

Flexible manipulators are distributed systems described by partial differential equations.

Therefore, their dynamic behavior has infinite degrees of freedom. From the perspective

of control theory, it is impossible to design an infinite dimensional controller. The

controlled plant must have a finite dimension, thereby requiring less significant

constituents of the model to be omitted. This causes model uncertainties, since those

constituents are generally time variable and system dependent. The boundary conditions

set by tip load, hub inertia, friction, rotary inertia, and shear force also affect beam

dynamics, which makes model implementation more complicated for the purpose of

real-time control. However, the model must be accurate enough to take control into

account. The efficiency of modeling and the precision of the control of flexible

manipulators are contradictory factors and a compromise between the two for real-time

implementation is inevitable.
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Interrelation and Interdependency of Subsystems of Manipulator Systems

The complexity of manipulator systems is also due to the interrelation and interdependency of

their subsystems. A manipulator system consists of different subsystems:

• A kinematic system, mainly related to the beam structure

• A control system

• A driver system, or actuator

• A measuring system, or sensors.

Some subsystems exert influence over others, whereas some subsystems are only influenced

by others. In traditional design, a manipulator link is designed first, followed by a driver

system, measuring system, and then a control system, as shown in Figure 6.1. As a result, this

traditional design scheme leads to a locally optimal solution, since these coupling effects have

not been considered in the design process.

If a flexible manipulator system can be designed taking the interrelationships between

subsystems into account while avoiding control-intensive or model-intensive work, the

control and modeling problems will no longer be critical, thus improving productivity and

reducing energy consumption. The mechatronic design method (MDM) fits these

requirements exactly.

6.2.2 What is Mechatronic Design?

For applications in manipulator systems, the MDM is a system optimization through the

integration of actuator, controller, system dynamics, and sensor specifications, as shown in

Figure 6.2. Compared with traditional design, the following features can be identified for

mechatronic design:

• Different methodology. MDM treats the mechanical, electrical, and control components

of a flexible manipulator concurrently, instead of sequentially, from the very start of the

design process. The coupling effects are automatically taken into account. This in turn

results in global optimal objective functions in the system.

Traditional Design Local Optimum

Mechanical
System 

Actuator
Sensor 

Control
  Design  

Figure 6.1: Traditional Design Procedure.
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• Different direction. MDM focuses on the system’s overall design instead of modeling or

control. That is, the objective is to design a better manipulator system so its control

problems and dynamic accuracy will not be critical to its performance. In other words, the

result of this mechatronic design is better than what is obtained from model-intensive work

or control-intensive work.

6.2.3 How Does Mechatronic Design Work?

Let (A,B,C) represent a flexible manipulator system, which is comprised of beam shape,

sensor specification, actuator selection, and u the controller. J is the performance index.

Assume that U is the space of all feasible manipulator systems and L is the feasible control

space from the actuator. In traditional design

J ¼ inf
u˛L

Jðu;A;B;CÞ (6.1)

and the objective is to find the optimal control for a system given by (A,B,C) only. But the

mechatronic design goes further to find J� by choosing different (A,B,C) values, by choosing
a different beam shape, different sensor and actuator. Then the objective is to minimize the

performance index Jwith respect to link construction, actuator selection, sensor specification,

and control design, i.e.

Mechanical
System 

Concurrent Design

Electrical
Electronic 

Control
Design

Global Optimum 

Mechatronic
Design 

Figure 6.2: Mechatronic Design Procedure.
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J� ¼ inf
ðA;B;CÞ˛U;u˛L

Jðu;A;B;CÞ ¼ inf
ðA;B;CÞ˛U;u˛L

½infJðu;A;B;CÞ� (6.2)

Accordingly, the global optimization can be carried out in two steps. The first step (the inner

infu˛L loop) is to find the optimal control structure and its associated optimal value of the

performance index based on a given plant (A,B,C), which is exactly the traditional optimal

control design problem. The second step (the outer infðA;B;CÞ˛U loop) is to find the

optimal feasible plant that will further minimize the performance index obtained by the

optimal controller. In this chapter, assuming that the DC motor and sensors are given, the

outer loop is only searching the beam shape distribution.

6.3 Mechatronic Design of Flexible Manipulators Based on LQR
with IHR Programming

6.3.1 Dynamics of Flexible Manipulator Systems

The dynamics of a flexible manipulator system are described by an infinite-dimensional

mathematical model, since the model consists of partial differential equations. But to design

a finite-dimensional controller, a finite-dimensional system model is needed. To achieve this

goal, a finite-dimensional approximation needs to be used to model a flexible manipulator,

retaining a finite number of modes and eliminating the other less significant modes based on

the requirements of the controller. The N-mode expansion for the beam displacement u(x,t) is

given by

uðx; tÞ ¼
XN
i¼1

4iðxÞqiðtÞ (6.3)

The separability in this case refers to describing the displacement as a series of terms that are

products of two separate functions, each of which is a function of a single variable, a spatial

variable x and time t respectively. 4i is the ith modal shape, or eigenfunction. qi is the

corresponding generalized modal coordinate describing the flexible deformation.

The scheme for developing amathematicalmodel is to use the Lagrangianmethod orHamilton’s

principle for the total kinetic energy, total potential energy, and virtual work done by the torque

actuated to the joint. This method will not introduce extra errors into the system andwill be used

to obtain the state-space model for a flexible manipulator suggested in this chapter [16].

State-space Equations of Flexible Manipulators

In Section 3.5.2, dynamic equations of a one-link flexible manipulator in matrix form were

obtained as

M€xþ Kx ¼ bs (6.4)
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where

x ¼ ½q; q1; q2; q3;.; qN �TðNþ1;1Þ; b ¼ ½1;j0
1ð0Þ;j0

2ð0Þ;.;j0
Nð0Þ�TðNþ1;1Þ

M ¼
U1 U2ð1Þ U2ð2Þ , U2ðNÞ

U2ð1Þ U3ð1; 1Þ U3ð1; 2Þ , U3ð1;NÞ
, , , , ,

U2ðNÞ U3ðN; 1Þ U3ðN; 2Þ , U3ðN;NÞ

2
664

3
775

K ¼

2
664
0 0 0 , 0
0 kð1; 1Þ kð1; 2Þ , kð1;NÞ
, , , , ,
0 kðN; 1Þ kðN; 2Þ , kðN;NÞ

3
775

(6.5)

As has been shown,U3(i,j)¼U3( j,i), k(i,j)¼ k( j,i), and thus the matricesM, K are symmetric

and are called the mass and rigidity matrices respectively.

Next, the actuator dynamics need to be incorporated into the link system. It is assumed that

the arm is driven by a permanent magnet DC motor. Therefore, the actuator dynamics can be

described as

�Jm€q�
�
Bm þ KbKm

R

�
_qþ Km

R
vc ¼ s (6.6)

where Jm is the actuator inertia, Bm the friction coefficient, Km the torque constant, Kb the

back e.m.f. constant, R the armature resistance, and q, vc the hub rotation and armature

voltage respectively. In general, all motor circuit parameters can be considered as design

variables. The overall state variable is defined as

q ¼
�
x
_x

�
(6.7)

Combining Eq. (6.4) with Eq. (6.5), we present the overall system state-space equations as

_q ¼ Aqþ Bu; u ¼ vc (6.8)

where

A ¼
�

0

�M�1
K

I

�M�1
B

�
; B ¼

�
0

M�1
D

�

M ¼ ðM þ Jmbe1Þ�1; B ¼
�
Bm þ KbKm

R

�
be1;

D ¼ b
Km

R
; e1 ¼ ½ 1 0 . 0 �1�n

(6.9)
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A is the function of beam construction. Thus, any changes in the beam’s mechanical shape

will result in a different A, which provides the basis for simultaneous optimal construction

and control based on the mechatronic formulation discussed earlier.

Output Specifications

As can be seen from the system state-space equations, the state vector consists of q, the

generalized modal coordinates qi and their first-order derivatives. So all controllers based

on the state feedback are indirect, which means that the states need to be predicted. This

will mean a trade-off with computation time and introduces a further inaccuracy into

closed-loop, cutoff bandwidth. This presents hindrances to real-time processing and high

motion speed. Output feedback takes precedence over state-space feedback as far as the

mechatronic approach and the objectives of this chapter are concerned.

Tip deflection output is

y ¼ wðL; tÞ ¼
XN
i¼1

jiðLÞqi ¼ ½ 0 j1ðLÞ j2ðLÞ . jNðLÞ 0 �q (6.10)

where ji is the ith eigenfunction and 01�ðnþ1Þ is the zero vector. A CCD camera clipped on

the hub can be used to measure the output.

The tip position output is

y ¼ vðL; tÞ ¼ Lqþ
XN
i¼1

jiðLÞqi ¼ ½L j1ðLÞ j2ðLÞ . jNðLÞ 0 �q (6.11)

and the hub tangent angle output is

y ¼ Q ¼ qþ
XN
i¼1

j0
ið0Þqi ¼ ½L j0

1ð0Þ j0
2ð0Þ . j0

Nð0Þ 0 �q (6.12)

A potentiometer may be used to measure Q.

In this mechatronic design, output feedback may be one of the above outputs or a mixture,

such as

y ¼ Cq ¼
�
wðL; tÞ
v0ðL; tÞ

�
q

C ¼
�
0 j1ðLÞ j2ðLÞ . jNðLÞ 0

1 j0
1ð0Þ j0

2ð0Þ . j0
Nð0Þ 0

� (6.13)

The corresponding state-variable equations are

_q ¼ Aqþ bu; y ¼ Cq (6.14)
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These output feedbacks will be used in control design in the later sections to show the

improvement in the suggested mechatronic approach and to make a comparison between

them.

As stated, mechatronic design is a global optimization of the overall system. For a flexible

manipulator, the overall system consists of the integration of link dynamics, DC motor

equation, measuring sensors, and the selected controller. The optimization process will result

in an optimal link geometric distribution, an optimal controller structure subject to the

performance requirement. To demonstrate this approach and also due to the computational

complexity, the following restrictions are applied here. A rectangular beam is considered and

divided into N equal segments along with the beam spatial coordinate. Each segment is

uniform. In each segment, the width is the only variable to be optimized for the link geometry.

It was pointed out that output feedback instead of state-space feedback is a feasible choice. It

is also possible that the optimum system performance index may not matter in the selection of

the controller to a large degree, since the resulting index is the result of the overall system

optimization. Due to this factor, the linear quadratic regulator (LQR) is admissible as the

selected controller.

Mechatronic design based on the LQR formula is discussed here. The LQR feedback is

outlined in Ref. [17] as an inner loop followed by an adaptive iterative algorithm (IHR) as an

outer loop searching for the beam width distribution. The mechatronic design procedure is

addressed by detailing the integration of the inner loop with the outer loop.

6.3.2 LQR Formula: Inner Loop Optimizations

For the flexible manipulator system given by Eq. (6.14), the LQR controller will be a linear

output feedback of the form:

u ¼ <y (6.15)

where < is a matrix of constant feedback coefficients to be determined. If the quadratic

performance index (PI) is

JðuÞ ¼ 1

2

ZN
t0

ðqTðtÞQqðtÞ þ uTðtÞRuðtÞÞdt (6.16)

where theQ, R are symmetric positive semi-definite weighting matrices, and after substituting

the feedback controller Eq. (6.15) into Eq. (6.16), also assuming that the system is

asymptotically stable so the q(t) vanishes with time:

lim
t/N

qTðtÞPqðtÞ ¼ 0 (6.17)

Mechatronic Design of Flexible Manipulators 193



where P can be solved by the Lyapunov equation:

AT
c Pþ PAc þ CT<TR<C þ Q ¼ 0; ðA� B<CÞ ¼ Ac (6.18)

Then:

J ¼ 1

2
qTð0ÞPqð0Þ ¼ 1

2
trðPXÞ (6.19)

where the n� n symmetric matrix X is defined by q(0)qT(0).

Following the substitution process in Ref. [17], two additional equations are described as

AcSþ SAT
c þ X ¼ 0

< ¼ R�1BTPSCTðCSCTÞ�1
(6.20)

where X¼ q(0)qT(0) and S is a symmetric matrix of Lagrange multipliers.

It is now clear that the problem of selecting < to minimize J subject to the dynamic constraint

of Eq. (6.14) on the states is equivalent to the algebraic problem of selecting < to minimize

Eq. (6.20) subject to the constraint of Eq. (6.18) on the auxiliary matrix P. To solve this

modified problem, we use the Lagrange multiplier method.

The equations for P, S, and< are coupled among these nonlinear matrix equations. Therefore,

some trial-and-error iterative design methods have to be used to find <. The process to find

the feedback matrix < is described as follows for a given set of A, B, C.

LQR: Inner Loop Optimization

1. Initialize:

i¼ 0, select an initial <0 so that Ac is asymptotically stable; set system initial state

values X¼ q(0)qT(0) and the Stop criterion §.

2. ith iteration:

Set Ai ¼ A� B<iC.

Use lyap.m in the Control Toolbox of Matlab to solve the equations

AT
i Pþ PAi þ C1 ¼ 0, where C1 ¼ CT<R<iC þ Q and AiSþ SAT

i ¼ 0 for Pi and Si.

Set J¼½tr(PiX).

3. Updating:

Gain updating direction: D< ¼ R�1BTPiSiC
TðCSiCTÞ�1 �<i.

Update gain: <iþ1 ¼ <i þ aD<
where a is chosen so that A� B<iþ1C is asymptotically stable.

Check the eigenvalues of the new A; if unstable go to Step 5.

4. Criteria:

Jiþ1 ¼ 1

2
trðPiþ1XÞ � Ji
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If ðJiþ1 � JiÞ �§, the given criterion, go to 5. Otherwise set i¼ iþ 1 and go to Step 2.

5. Stop:

Set < ¼ <iþ1, J¼ Jiþ1.

If index¼ 0, go to Step 2.

This process will converge to J, the minimum performance index for the set of A, B, C, by

searching proper feedback matrix <. In the next section, the outer loop searching the optimal

beam shape will be discussed.

6.3.3 IHR Algorithm: Outer Loop Optimization

It was established that the components in thematrices of the state equations are related to a given

link shape,meaning thatmatricesA,B,C are functions of the beamgeometric distribution. Here,

a procedure to find the link geometrics based on the adaptive Iterative Hit and Run (IHR)

algorithm [9] is outlined. Some restrictions should be made clear from the perspective of the

mechatronic design. Firstly, the beamweight remains constant, which, in terms of beamvolume,

means that thewholevolume is constant. The only variable for the beamgeometric is thewidth of

the cross-section for each segment. However, the sum of these width variables must remain

constant in order to keep the total volume constant based on an N segment solution. Another

consideration, realistically, is that minimum stress on the beam is required, which, in terms of

beam width, is its minimum width. These restrictions are applied to modify the IHR algorithm.

The iterative procedure of the modified IHR can be specified as follows.

IHR: Outer Loop Optimization

1. Set uniform area A0, minimum and maximum area constraints, Amin and Amax, according to

the beam strength requirement. Set j¼ 1. Set beam material parameters.

2. Calculate the uniform beam PI as the starting value.

3. Initialize loop vectors, loop factors, direction vector D, and stop criteria.

4. Select changing positions: randomly select N/2 of theN segments and mark them with 1s in

vector Dj of length N. Mark the remaining N/2 segments with �1s. If N is odd, one

randomly selected area will remain constant and will be marked by a 0.

5. Set direction vector: get N/2 samples from an N(0,1) normal distribution and place them in

each position of Dj where there is a 1. Place the negatives of this same sample in each

position of Dj where there is a �1. This arrangement will ensure a constant volume during

optimization. Here, Dj is called the direction vector.

6. Implement direction: generate a step size, S, uniformly from Lj the set of feasible step sizes

in the direction Dj, where Lj ¼ fS˛< : Amin < Aj þ SDj < Amaxg. If Lj¼ 0, go to Step 4.

7. Set S ¼ S �MUL, while 0 < MUL < 1.

8. Update the area vector Aj:

Ajþ1 ¼ Aj þ SDj
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6.3.4 Integrated Optimization Process

Mechatronic design is about choosing the best plant and finding the associated controller for

the performance requirement. It is an overall optimization process. This can be done by the

integration of the inner loop optimization with the outer loop optimization as follows.

Integrated Optimization

1. Set design vector X¼ [IH,Mp,ac,Jp,L,B,E] and number of segments N. Set step multiplier

MUL to 1 and FACTOR to an appropriate constant.

2. Set weighting matrices Q and R.

3. Load precalculated coefficients for modal shapes.

4. Calculate A0 (uniform shape radius or width), set initial index ¼ 0 and call LQR to get the

corresponding J0.

5. Update the area vector Aj.

a. Call IHR to find Aj.

b. Based on mode shape coefficients and current link geometry, calculate mass matrixM,

potential matrix K, vectors B, C, and state equations after integration with motor

dynamics.

c. Call LQR to find J. If J is improving, set JJþ1¼ J(AJþ1). If J is improved, store it in an

array and save this Aj. Update all loop variables and factors.

6. If all the differences between two J values in the array are smaller than the stopping

criteria, stop. Otherwise, go to Step 5.

7. Stop. Output optimal feedback matrix <�, optimal performance index J�, and optimal

flexible link structure A�.

6.3.5 Results and Discussion

In order to verify the mechatronic method presented in this chapter, a rectangular aluminum

flexible link is used for simulation. The mechatronic algorithm is intended to find the beam’s

geometric shape, or the width distribution, so that the PI reaches a minimum.

To meet the minimum stress requirement pointed out earlier, the maximum width Hmax and

the minimum width Hmin are set at twice, and a quarter of, the uniform width separately. For

the IHR algorithm, all other criteria were set to 0.000001.

To fully test this mechatronic design algorithm, the different output feedback combined with

various state weighting matrix Q and the number of segments N, but with R¼ I (identity),

were used. Three sets of feedback were considered. They were the hub tangent angle {Q(0,t)}

feedback (Eq. (6.12)), the hub tangent angle with tip deflection {Q(0,t),u(L,t)} (Eqs (6.10)

and (6.12)), and the hub tangent angle with tip position {Q(0,t),v(L,t)} (Eqs (6.8) and (6.10)).

These sets of feedback have very clear physical meanings and are detectable. The initial state
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set is q1ð0Þ ¼ ½ ffiffiffiffiffi10p
; 0;.; 0�T . The scenario ({feedback list},number of segments,Q) was

used, meaning that the feedback strategy is as {feedback list}, that the beam is divided into

a number of segments, and that the value Q in LQR is Q. These notations are applied in the

following figures and tables.

Note that it was necessary to show the PIs with a different number of segments. To do that,

a performance index was set with q¼ q1(0), Q¼ 100� I, and with various n¼ 4, 6, 12, and

one of these three sets of feedback. For uniform and associated optimal shapes, performance

indices were obtained with different feedback and a different number of segments, as in

Table 6.1. Column 1 is the type of feedback, while columns 2, 3, and 4 are for the different

numbers of segments respectively. The performance indices of the optimal shape are

improved over that of the associated uniform shape. For example, when n¼ 4 and

{Q(0,t),u)} feedback is applied, the PI for uniform shape is 3789.143, while the result for

the mechatronic design is smaller, 3591.341. However, the performance indices show only

a slight dependence on the number of segments. The associated feedback constants are

listed in Table 6.2.

The related optimal shapes are illustrated as follows. In all figures, the solid outline is the

optimal shape and the dotted one is for the uniform shape. The horizontal axis is the link

spatial coordinate, the vertical axis is the beam width.

Table 6.1: Performance index with Q[ 1003 I

Feedback List n[ 4 n[ 6 n[ 12

{Q(0,t)} feedbackduniform shape 4665.504 4665.504 4665.504
{Q(0,t)} feedbackdoptimal shape 4647.230 4646.571 4643.038
{Q(0,t),w} feedbackduniform shape 3789.143 3789.143 3789.143
{Q(0,t),w} feedbackdoptimal shape 3591.341 3585.945 3580.064
{Q(0,t),v} feedbackduniform shape 4342.569 4342.569 4342.569
{Q(0,t),v} feedbackdoptimal shape 4180.548 4178.569 4176.437

Table 6.2: Optimal feedback constants with Q[ 1003 I

Feedback List n[ 4 n[ 6 n[ 12

{Q(0,t)} feedbackduniform 3.674 3.674 3.674
{Q(0,t)} feedbackdoptimal 3.686 3.677 3.675
{Q(0,t),w} feedbackduniform (2.7599e422.398) (2.7599e422.398) (2.7599e422.398)
{Q(0,t),w} feedbackdoptimal (2.498e337.071) (2.539e380.396) (2.423e378.554)
{Q(0,t),v} feedbackduniform (2502.705e2499.521) (2502.705e2499.521) (2502.705 e2499.521)
{Q(0,t),v} feedbackdoptimal (1768.423e1765.672) (1732.346e1747.358) (1746.276e1764.428)
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Figures 6.3e6.5 showQ(0,t) feedback (hub tangent angle) with Q¼ 100� I and n¼ 4, 6, 12

respectively. All three optimal shapes have one common feature, with a large size at the hub

end and a small size at the tip end.

Figures 6.6e6.8 illustrate (Q(0,t)u(L,t)) feedback (hub tangent angle, tip deflection) with

Q¼ 100� I and n¼ 4, 6, 12 respectively. In the same way, the best performance indices are
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Figure 6.3: Optimal Shape for ({Q(0,t)},4,100).
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Figure 6.4: Optimal Shape for ({Q(0,t)},6,100).
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almost the same for a different number of segments. A common feature of these three optimal

shapes is a large beam size in the middle and a relatively small size at both ends.

Figures 6.9e6.11 show (Q(0,t)v(L,t)) feedback (hub tangent angle, tip position) with

Q¼ 100� I and n¼ 4, 6, 12 respectively. As before, the best performance indices are

almost the same for different numbers of segments. A common feature of these three

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 6.6: Optimal Shape for ({Q(0,t),w},4,100).
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Figure 6.5: Optimal Shape for ({Q(0,t)},12,100).
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optimal shapes is a relatively small beam dimension in the middle and a large dimension at

the ends.

As shown in these figures, the geometric shapes of these optimal shapes are influenced

significantly by the type of feedback, and not very much by the number of segments. Next,

this mechatronic approach was applied to different weighting matrix Q with these types of

feedback. The number of segments was fixed as 4 since the number of segments play a less
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Figure 6.7: Optimal Shape for ({Q(0,t),w},6,100).
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Figure 6.8: Optimal Shape for ({Q(0,t),w},12,100).
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important role here. Q was taken as 50� I and 10� I. The performance indices are listed in

Table 6.3, where the columns denote different types of feedback, and the rows different values

of Q. The associated feedback constants are listed in Table 6.4.

Figures 6.12 and 6.13 show Q(0,t) feedback (hub tangent angle) with different

weighting matrix Q. As before, the optimal shapes have relatively large dimensions on

the hub side.
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Figure 6.9: Optimal Shape for ({Q(0,t),v},4,100).
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Figure 6.10: Optimal Shape for ({Q(0,t),v},6,100).
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Figure 6.11: Optimal Shape for ({Q(0,t),v},12,100).

Table 6.3: Performance index with different Q[ 1003 I, 503 I, 103 I

Beam Shape {Q(0,t)} {Q(0,t),w} {Q(0,t),v}

Q¼ 100� Iduniform shape 4665.504 3781.547 4342.763
Q¼ 100� Idoptimal shape 4647.230 3591.538 4180.546
Q¼ 50� Iduniform shape 2611.373 2174.499 2421.595
Q¼ 50� Idoptimal shape 2540.470 2098.374 2388.850
Q¼ 10� Iduniform shape 679.856 630.266 670.482
Q¼ 10� Idoptimal shape 663.834 621.442 638.356

Table 6.4: Optimal feedback constants with different Q[ 1003 I, 503 I, 103 I

Beam Shape {Q(0,t)} {Q(0,t),w} {Q(0,t),v}

Q¼ 100� Iduniform shape 3.674 (2.7599e422.398) (2502.705e2499.521)
Q¼ 100� Idoptimal shape 3.686 (2.498e337.071) (1768.423e1765.672)
Q¼ 50� Iduniform shape (2.7599e422.398) (2.279e395.458) (2.7599e422.398)
Q¼ 50� Idoptimal shape (2.759e422.398) (2.096e335.370) (2.423e378.554)
Q¼ 10� Iduniform shape 1.659 (1.604e167.576) (1138.098e1194.508)
Q¼ 10� Idoptimal shape 1.653 (1.386e166.142) (1045.568e1065.754)

202 Chapter 6



Figures 6.14 and 6.15 illustrate (Q(0,t)u(L,t)) feedback (hub tangent angle, tip deflection)

with a different weighting matrix Q. The optimal shapes have a relatively large dimension in

the middle.

Figures 6.16 and 6.17 show (Q(0,t)v(L,t)) feedback (hub tangent angle, tip position) with

differentweightingmatrixQ. The optimal shapes have relatively small dimensions in themiddle.
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Figure 6.12: Optimal Shape for ({Q(0,t)},4,50).
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Figure 6.13: Optimal Shape for ({Q(0,t)},4,10).
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Figures 6.18 and 6.19 illustrate hub tangent angle responses to initial state q1(0) forQ(0,t) (hub

tangent angle) and (Q(0,t)w(L,t)) (hub tangent angle, tip deflection) feedback respectively.

Figures 6.20 and 6.21 show the hub tangent angle responses to step input for Q(0,t)

(hub tangent angle) and (Q(0,t)w(L,t)) (hub tangent angle, tip deflection) feedback

respectively.
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Figure 6.14: Optimal Shape for ({Q(0,t),w},4,50).
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Figure 6.15: Optimal Shape for ({Q(0,t),w},4,10).
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Figures 6.22 and 6.23 illustrate the tip deflection responses to initial q1(0) for Q(0,t)

(hub tangent angle) and (Q(0,t)w(L,t)) (hub tangent angle, tip deflection) feedback

respectively.

Figures 6.24 and 6.25 show the tip deflection step input responses for Q(0,t) (hub tangent

angle) and (Q(0,t)w(L,t)) (hub tangent angle, tip deflection) feedback respectively.
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Figure 6.16: Optimal Shape for ({Q(0,t),v},4,50).
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Figure 6.17: Optimal Shape for ({Q(0,t),v},4,10).
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These results show that the performance index shows only a slight dependence on the number

of segments, because according to this mechatronic algorithm, the final shape converges

to its optimal shape. A system with two output feedbacks has a relatively lower performance

index than one with only one output feedback, since the former has a higher degree of

freedom to work with. The optimal shape forQ(0,t) feedback is always larger on the hub side
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Figure 6.19: Hub Tangent Angle Initial Response for ({Q(0,t),w(L,t)},4,100).
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Figure 6.18: Hub Tangent Angle Initial Response for ({Q(0,t)},4,100).
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and smaller at the tip end. The optimal shape for (Q(0,t)w(L,t)) has smaller dimensions at the

ends, while the optimal shape for {Q(0,t)v(L,t)} is smaller in the middle. For optimal shapes,

the initial responses have less vibration and fast convergence. The step input response of the

hub tangent angle for the optimal shape has a smaller rising time and the tip deflection

converges much faster than those of uniform shapes.
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Figure 6.21: Hub Tangent Angle Step Input Response for ({Q(0,t),w(L,t)},4,100).
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Figure 6.20: Hub Tangent Angle Step Input Response for ({Q(0,t)},4,100).
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Figure 6.22: Tip Deflection Initial Response for ({Q(0,t)},4,100).
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Figure 6.23: Tip Deflection Initial Response for ({Q(0,t),w(L,t)},4,100).
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Figure 6.24: Tip Deflection Step Input Response for ({Q(0,t)},4,100).
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Figure 6.25: Tip Deflection Step Input Response for ({Q(0,t),w(L,t)},4,100).
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6.4 Mechatronic Design of Flexible Manipulators-Based on HN

with IHR Algorithm

6.4.1 State-Space Formulas for HN Control Problems

A basic block diagram used in the state-space HN controller [18,19] is where G(s) is

a generalized plant that includes what is usually called plant and all weighting functions, and

K is the controller. They are all real, rational, and proper. All external inputs such as

disturbances, measurement noise, model uncertainties, and unmodeled high-order vibrational

dynamics are characterized as d. Signal z is the error output, u is the control input, and y is the

measured variable (see Figure 6.26).

If the state-space equations in Ref. [20] are referred to, the linear system

_xðtÞ ¼ A xðtÞ þ B1 dðtÞ þ B2 uðtÞ (6.21a)

zðtÞ ¼ C1 xðtÞ þ D11 dðtÞ þ D12 uðtÞ (6.21b)

yðtÞ ¼ C2 xðtÞ þ D21 dðtÞ þ D22 uðtÞ (6.21c)

is obtained. Then the transfer function G(s) is denoted as

GðsÞ ¼
�
G11ðsÞ G12ðsÞ
G21ðsÞ G22ðsÞ

�

¼
�
C1

C2

��
sI � AÞ�1½B1 B2� þ

�
D11 D12

D21 D22

�
¼
2
4 A B1 B2

C1 D11 D12

C2 D21 D22

3
5 ¼

�
A B
C D

�

The transfer function from d to z is

TdzðG; kÞ ¼ G11 þ G12KðI � G22Þ�1G21

G 

d 

y u 

z 

K 

Figure 6.26: HN Control Problem Configuration.
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Then the HN control problem is to design the controller K(s) so that:

1. The system is internally stable, meaning the states of G(s) and K(s) tend to zero from

all initial values when d¼ 0.

2. min kTdzkN ¼ min supuDðTdzð juÞÞ, where DðÞ denotes the maximum singular value.

If A, R, Q are n� n matrices and with symmetric R, Q, the Hamiltonian matrix is defined as

H ¼
�

A R
�Q �A0

�
Then there exists a symmetric x :¼ RicðHÞ, which satisfies the Riccati equation:

A _xþ xA0 þ xRxþ Q ¼ 0

Two Hamiltonian matrices are involved in the HN control problem:

HN ¼
�

A r�2B1B
0
1 � B2B

0
2

�C0
1C1 �A0

�

JN ¼
�

A0 r�2C1C
0
1 � C2C

0
2

�B0
1B1 �A

�
For kTdzkN � r, a performance index for noise attenuation from input d to output z, an

admissible HN controller [18] exists if:

1. XN ¼ RicðHNÞ � 0.

2. YN ¼ RicðJNÞ � 0.

3. rðXNYNÞ � r2, where r( ) is the maximum singular value.

One such controller is

KðsÞ ¼
�
AN �ZNLN
FN 0

�
where

AN ¼ Aþ r�2B1B
0
1XN þ B2FN þ ZNLNC2

FN ¼ �B0
2XN

LN ¼ �YNC0
2

ZN ¼ ðI � r�2YNXNÞ�1

As seen from the above formulas, K(s) is coupled with r. In this case, an attempt is made to

find a minimum r to which the above three conditions still hold and K(s) exits, so that the

attenuation from error input d to error output z reaches the maximum degree.
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6.4.2 Generalized Plant of a Flexible Beam System

In Eq. (3.86), the omitted high-order terms in the kinetics of the tip load are considered to be

½ Mp
_q
2
wðL; tÞ2 þMpð _qþ _wðL; tÞÞwðL; tÞ _qbc, then Eq. (3.87) becomes

Tpnew ¼ Tp þ 1

2
Mp

_q
2XN
i¼1

XN
j¼1

qiqjjiðLÞjjðLÞ

þMpbc _q
2XN
i¼1

qijiðLÞ þMpbc _q
2XN
i¼1

XN
j¼1

qi _qjjiðLÞjjðLÞ
(6.21)

In the same way, if the term ½
R L
0 ðw _qÞ2rdx in Eq. (3.88) is considered, then the link kinetics is

Tbnew ¼ Tb þ 1

2
_q
XN
i¼1

XN
j¼1

qiqj

ZL
0

jijjrdx (6.22)

After going through all the derivative processes,

M€xþ Kx ¼ bnew (6.23)

is obtained, where

bnew ¼ bsþ b0 (6.24)

b0 ¼

2
66666666666666664

�PN
i¼1

PN
j¼1

ð _qqiqjÞU4ði; jÞ � 2
PN
i¼1

ð _qqiÞU5ðiÞ �
PN
i¼1

PN
j¼1

ðqi _qjÞU6ði; jÞ

_q
2
U5ð1Þ þ _q

2PN
i¼1

qiU4ð1; iÞ þ U6ð1; iÞ

_q
2
U5ð jÞ þ _q

2PN
i¼1

qiU4ðj; iÞ þ U6ðj; iÞ

_q
2
U5ðNÞ þ _q

2PN
i¼1

qiU4ðN; iÞ þ U6ðN; iÞ

3
777777777777777775

U4ði; jÞ ¼ MpjiðLÞjjðLÞ þ
ZL
0

jijjrdx

U5ðiÞ ¼ MpbcjiðLÞ

U6ði; jÞ ¼ MpbcjiðLÞjjðLÞ

(6.25)
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Then Eq. (6.14) becomes

_q ¼ Aqþ Buþ v0 (6.26)

where

v0 ¼
�

0
M

�1
b0

�
(6.27)

In this model, v0 is a time-varying term, acting like a system disturbance but originating from

model uncertainties. To describe these uncertainties, a frequency weighting function in the

form of

v0ðsÞ ¼ w1ðsÞvðsÞ (6.28)

is introduced, where

w1ðsÞ ¼ Cw1ðsI � Aw1
Þ�1Bw1

þ Dw1
(6.29)

w1(s) will be specified later.

If the fact that measured output y is affected by measurement noise and higher frequency

model uncertainties are considered, then the system state-space model in Eq. (6.8) becomes

_q ¼ Agqþ Buþ Dgv0 (6.30)

y ¼ Cqþ w0 (6.31)

where q ¼ ½ q q1 q2 . _q1 _q1 .�0 n�n and Dg is an identity matrix with the same

dimension of q.

Following the same pattern, to describe w0

w0ðsÞ ¼ W2ðsÞwðsÞ (6.32)

is introduced, where w2(s)¼Cw2(sI� Aw2)
�1Bw2þDw2. These coefficients will be specified

in the next section.

Naturally, beam system stability is the main concern and therefore the regulated variables are

chosen as
zg ¼ q ¼ Hgx (6.33)

where Hg is an identity matrix. The error vector is

z ¼
�
z1
z2

�
¼
�
Qzg
ru

�
(6.34)

where Q ¼ diagðQ1 Q2 . QnÞ is the weighting matrix on variable zg, and r is the

scalar factor. All states and the control variables are in the “error vector”, and the states are
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expected to be eliminated to stabilize the closed loop under the regulation of K, while the

control variable will also become zero, thus saving energy consumption.

Let the state variable vector be

x ¼
2
4 q
xw1
xw2

3
5; d ¼

�
v
w

�
(6.35)

where xw1
and xw2

are the states of the frequency weighting functions w1(s) and w2(s)

respectively.

After some manipulations, Fujita et al [17] is referred the state-space representations in Eqs

(6.21a)e(6.21c) are

A ¼
2
4Ag DgCw1 0

0 Aw1 0
0 0 Aw2

3
5; B1 ¼

2
4DgDw1 0

Bw1 0
0 Bw2

3
5; B2 ¼

2
4B
0
0

3
5

C1 ¼
�
QHg 0 0
0 0 0

�
; D11 ¼

�
0 0
0 0

�
; D12 ¼

�
0
rI

�

C2 ¼ ½C 0 Cw2 �; D21 ¼ ½ 0 Dw2 �; D22 ¼ ½0�

(6.36)

After substituting u(s)¼�F(s)y(s), the transfer functions

Tz1v ¼ QHgfðI þ BFCfÞ�1DgW1 (6.37)

Tz2v ¼ �rFCfðI þ BFCfÞ�1DgW1 (6.38)

Tz1w ¼ �QHgfBFðI þ GgFÞ�1W2 (6.39)

Tz2w ¼ �rFðI þ GgFÞ�1W2 (6.40)

are obtained, where

f ¼ ðsI � AgÞ�1; Gg ¼ CðsI � AgÞ�1B (6.41)

From the above equations, the HN control problem now is to design F(s) to internally

stabilize the system but satisfy ���� Tz1v Tz1w
Tz2v Tz12

����
N

� r (6.42)
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One such controller is

kðsÞ :¼
�
AN �ZNLN
FN 0

�
(6.43)

where

AN ¼ Aþ r�2B1B
0
1XN þ B2FN þ ZNLNG2

FN ¼ B0
2XN

LN ¼ �YNC0
2

ZN ¼ ðT � r�2YNXNÞ�1

(6.44)

and XN, YN are the solutions of two Hamiltonian matrices involved in the HN control

problem:

HN ¼
�
A r�2B1B

0
1 � B2B

0
2�C1C

0
1 �A0

�
(6.45)

JN ¼
�
A0 r�2C1C

0
1 � C2C

0
2�B1B

0
1 �A

�
(6.46)

The purpose of the HN controller here is to find the minimum r, thus attenuating z to the

maximum degree while still holding the necessary and sufficient stable conditions discussed

in section 6.4.1. The implementation algorithm is presented in the next section.

6.4.3 HN Controller Design

To design the HN controller discussed in the previous section, the weighting functions and

factors need to be specified. Because v0 is in a relatively low frequency range for

low-frequency model uncertainties, w1(s) with a “cutting frequency” around 250 Hz is

chosen. So w1(s) is given as

w1ðsÞ ¼ 9:79� 103

ð1þ s=ð1:72pÞÞð1þ s=ð2:0pÞÞ (6.47)

w2(s) assures robustness for high-frequency noise:

w2ðsÞ ¼ 5:21� 10�7ð1þ s=ð0:02pÞÞð1þ s=ð0:1pÞÞð1þ s=ð200:0pÞÞ
ð1þ s=ð6:0pÞÞð1þ s=ð20:0pÞÞð1þ s=ð160:0pÞÞ (6.48)

The parameters Q and r are adjusted by the cost:

Jðu; ðv;wÞÞ ¼
ZN

�N

½zTgQzg þ uTRu� ðvTvþ wTwÞ�dt (6.49)
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where Q¼QTQ and R¼ r2. HN can be interpreted to reduce this cost. Based on the

observations in Fujita et al. [17] and our simulations, the weighting matrix Q for our beam

system with 10 states is

Q ¼ diagð60:0 80:36 15:91 10:7 5:1 15:1 2:1 6:2 5:2 5:1Þ (6.50)

and the scalar factor r¼ 5� 10�5. The output feedback used here is as in Eq. (6.12).

In order to search the minimum value r, and since it is not known in which region such an

index r constitutes a controller, an adequate number of random r values (usually r � 1)

are tested. All the r values for which such a controller exists are saved, and the

minimum r represents the cost function for its beam shape. The loop in the HN

controller is

1. For a given beam construction distribution, calculate beam system dynamics Ag, B, C.

2. Calculate generalized plant matrices:

a. Get the state-space matrices for frequency weighting functions.

b. Aw1
;Bw1

;Cw1
;Dw1

;Aw2
;Bw2

;Cw2
;Dw2

.

c. Get weighting factor Q and scalar factor r.

d. Generate A;B1;B2;C1;C2;D11;D12;D21;D22.

3. Search for minimum index r loop for a beam shape distribution:

a. Randomly pick an r value.

b. Check XN, YN, r conditions.

c. Decide to save this r in a vector or discard it.

d. Choose the next r, which is smaller than the last valid r, then go to Step b.

e. After a certain number of iterations, single out the minimum r from the vector

to represent this shape. Save this r and its shape.

4. Check stop criteria. If the differences between the three smallest r values in this r vector

meet the criteria, stop here. Otherwise, go back to Step 3 for another routine.

5. Calculate FN, LN, ZN, AN to get the controller K(s) based on the minimum r and

Ag, B, C.

6.4.4 Simulation Results

There are two blocks in the searching loop, the HN controller block and the IHR algorithm

block. The former is used to find the best controller that has a minimum index r based on the

input of beam geometric shape as specified in the previous chapter. The latter is used to

generate a feasible beam shape distribution. This loop stops until the index vector meets the

criteria described in the previous chapter.

For a given beam shape, one such admissible HN controller associated with an index r is

shown in Eq. (6.33), which conforms to all the required conditions. The beam consists of four
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segments, and the number of degrees of its mechanical dynamics is set to 10 (the first four

modal shapes are used here).

For a Q feedback controller as in Eq. (6.6), Figure 6.27 is one of the best shapes, having

a minimum index of r¼ 0.832.

The admissible HN controller associated with the shape and this r is

�FðsÞ ¼ 2:158� 103
ðsþ 50:2655Þðsþ 31:4159Þðsþ 6:1133þ 18:8706iÞ
ðsþ 50:2577Þðsþ 31:4219Þðsþ 5:7432þ 18:5868iÞ

ðsþ 6:1133� 18:8706iÞðsþ 18:8496Þðsþ 17:4371Þðsþ 13:1358þ 11:0675iÞ
ðsþ 5:7432� 18:5868iÞðsþ 13:2079þ 11:0351iÞðsþ 13:2079� 11:0351iÞðsþ 17:1713Þ

ðsþ 13:1358� 11:0675iÞðsþ 0:2660þ 9:2176iÞðsþ 0:2660� 9:2176iÞ
ðsþ 0:4437þ 9:9505iÞðsþ 0:4437� 9:9505iÞðsþ 3:9752Þðsþ 0:0376þ 5:0332iÞ

ðsþ 0:4664þ 3:9814iÞðsþ 0:4664� 3:9814iÞðsþ 0:1299Þðsþ 3:9720Þ
ðsþ 0:0376� 5:0332iÞðsþ 0:0658þ 2:4910iÞðsþ 0:0658� 2:4910iÞðsþ 018:8489Þ

This controller has 15 degrees of freedom, 10 of them having been contributed by the beam

dynamics, two from the frequency weighting function w1(s), and the rest originating from

frequency weighting function w2(s).

This controller is tested with the same initial state as in Section 6.3, q1ð0Þ ¼ ½ ffiffiffiffiffi10p
; 0;.; 0�T .

As before, the dashed curve is for the uniform beam and the solid one is the response of the

optimal beam shape. For Q feedback, the initial response of the hub tangent angle is shown
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Figure 6.27: Optimal Shapes for HN Controller.
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in Figure 6.28. It has a small overshoot, but nevertheless steadily converges to the

equilibrium point with several pulses. The optimal shape has faster convergence than the

uniform shape. Figure 6.29 shows the associated initial responses of the tip deflection. It has

a significant first deflective pulse and is larger than that of the uniform beam, but this

decreases quickly, almost at the same speed as that of the hub tangent angle.

Figure 6.30 shows the step response of the hub tangent angle for the uniform and associated

optimal beams respectively. They both have an overshoot after crossing the given input
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Figure 6.29: Tip Deflection Initial Response for Q(HN) Feedback.
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Figure 6.28: Hub Tangent Angle Initial Response for Q(HN) Feedback.
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reference, but this fades away gradually. Figure 6.31 illustrates the step response of tip

deflection. Both responses progress through several cyclic oscillations and each transition

lasts slightly longer than that of the hub tangent angle. The deflection of the optimal beam is

smaller and converges faster. The step-type disturbance is added as disturbance v for the

stable test. As derived earlier, v is assumed to describe the system uncertainties. The results

are shown in Figures 6.32 and 6.33. A notable deflective pulse is seen, but this quickly

recovers to the equilibrium point.
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Figure 6.31: Step Response of Tip Deflection for Q(HN) Feedback.

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
ub

 A
ng

le
 (r

ad
ia

n)

Time (s)

Figure 6.30: Step Response of Hub Angle for Q(HN) Feedback.
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For tip deflection w feedback,M€xþ Kx ¼ bs, the optimal shape is shown in Figure 6.34 with

r¼ 0.952. The initial responses of the hub tangent angle are illustrated in Figure 6.35. The

response of the optimal beam has a smaller vibration then the uniform beam, but both have

higher frequency vibration than the responses of Q feedback. Figure 6.36 shows the

associated initial responses of the tip deflection. The optimal shape has a bigger first pulse,

but decays faster for the whole transient.
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Figure 6.32: Step-Type Disturbance Response of Hub Angle for Q(HN) Feedback.
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Figure 6.33: Step-Type Disturbance Response of Tip Deflection for Q(HN) Feedback.
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Figure 6.37 shows the w feedback step response of the hub tangent angle for the uniform and

associated optimal beams respectively. Figure 6.38 illustrates the step response of tip

deflection.

For the tip position v feedback as in Eq. (6.5):

x ¼ ½q; q1;q2; q3;.; qn�TðNþ1;1Þ
b ¼ ½1;j0ð0Þ1;j0

2ð0Þ;.;j0
Nð0Þ�TðNþ1;1Þ
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Figure 6.35: Hub Tangent Angle Initial Response for w(HN) Feedback.
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Figure 6.34: Optimal Shapes for w(HN) Feedback.
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The optimal shape is shown in Figure 6.39 with r¼ 0.8162. The initial response of the hub

tangent angle is illustrated in Figure 6.40. Figure 6.41 presents the associated initial responses

of the tip deflection. Figure 6.42 shows tip position feedback step responses of the hub tangent

angle for uniform and associated optimal beams respectively. Figure 6.43 shows the step

responses of tip deflection.
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Figure 6.37: Step Response of Hub Angle for w(HN) Feedback.
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Figure 6.36: Tip Deflection Initial Response for w(HN) Feedback.
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The optimal shape has faster responses and less vibration cycles than a uniform beam under the

Q feedback. In this chapter, both the generalized state-spacemodel andmodel uncertainties are

developed for the HN controller to completely avoid the complexity of frequency-domain

implementation. The design goal is to internally stabilize the closed loop,whileminimizing the

maximum singular value of the transfer function from characterized error inputs to error

outputs, so that the effects of disturbances and system uncertainties are removed. All the results

show that the HN controller here is stable against system uncertainty and works robustly.
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Figure 6.39: Optimal Shapes for v(HN) Feedback.
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Figure 6.38: Step Response of Tip Deflection for w(HN) Feedback.
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Figure 6.41: Tip Deflection Initial Response for v(HN) Feedback.
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Figure 6.40: Hub Tangent Angle Initial Response for v(HN) Feedback.
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6.4.5 System Robustness Analysis

Sensitivity Analysis

In Chapter 3, less significant terms of the dynamic model were truncated to give the

EulereBernoulli dynamic model with rotary inertia, but this generated a modeling error. It is

critical to design a controller that has the ability to provide stability in spite of modeling
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Figure 6.42: Step Response of Hub Angle for v(HN) Feedback.

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2

3

4

5

6

T
ip

 D
ef

le
ct

io
n 

(c
m

)

Time (s)

Figure 6.43: Step Response of Tip Deflection for v(HN) Feedback.
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errors. Many papers have been published that address these problems. This section focuses on

beam parameter variations due to beam manufacture accuracy and DC motor dynamics

variations. After the DCmotor equation and the beam dynamics are integrated into the system

state equation, these two kinds of variations are treated as system disturbance d(t). This is

illustrated as the system configuration in Figure 6.44. The plant is G(s) and the feedback

compensator is K(s), which can be designed by various techniques. The system output is y(t),

the system control input is u(t). The sensitivity of the overall system depends on the technique

employed in the design of the controller. In this case LQR and HN were chosen to

demonstrate the mechatronic methodology, since a system’s robustness depends on the

characteristics of these controllers. For systems with LQR, the classical analysis of robustness

is measured in the frequency domain. The notions of singular value, multivariable loop gain,

and Bode magnitude plot are either evaluated for the sensitivity analysis, or they are used

directly as design tools. These methods are not addressed here. Instead, numerical results with

these two kinds of parameter variations are presented to show the system’s robustness.

Numerical Results of System Robustness

First the beam shape variations were tested. For a beam with one segment, the performance

index differences with the three feedbacks are carried out for 	0.1 width variations of the ith

segment. The optimal LQR controller is unchanged at Q¼ 50. Ai is the width of the ith

segment from the hub end. The results are given in Table 6.5. All data in the following tables

show the PI difference due to the variation of the segment width or motor parameter.

z(t)

K(s) G(s)
+

+ n(t)

d(t)

u(t)

Figure 6.44: Standard LQR Feedback Configuration.

Table 6.5: Robustness analysis with (q1(0),4,5)

{Q} {Q,u} {Q,v}

Optimal shape
(A1 A2 A3 A4)

(11.2031 10.7338
9.2351 8.8080)

(5.9555 12.4597
12.027 9.5578)

(9.8623 6.1054
11.4927 12.5595)

Optimal PI 2540.470 2098.374 2388.850
A1 	 0.1 	9.7 	3.3 	3.0
A2 	 0.1 	9.3 	3.4 	8.0
A3 	 0.1 	9.7 	3.4 	7.7
A4 	 0.1 	9.7 	3.5 	6.5
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In order to explore the PI with different variations of each segment separately, a beam with

four-segment feedback {Q,u}, Q¼ 50 is chosen. Table 6.6 summarizes the results.

From a beam with 12 segments, feedback {Q,u}, Q¼ 50 is chosen. Table 6.7 illustrates

analyses with only one segment variation at a time.

For motor parameter uncertainties, Jm with �0.1 variation was attempted. The results are

listed in Table 6.8.

The results in the above tables show that small beam geometric variation changes the

associated PI slightly when compared with the original optimal PI. Note, however, that the

larger the variation in the beam dimension, the larger the offset of the PI. Motor parameter Jm
is shown to have a larger impact than PI.

For the HN controller, the beam shape (13.8813, 12.6027, 8.4932, 4.5228) instead of the

optimal shape (13.8813, 12.6027, 8.4932, 5.0228) was tested. Compared with the uniform

beam with the first segment near the tip, the value was 9 instead of 10. The tip deflection

response for the initial condition, step input, and step-type disturbance respectively is shown

Table 6.6: Robustness analysis with (q1(0),{Q,u},4,50)

Ai� 0.3 Ai� 0.2 Ai� 0.1 AiD 0.1 AiD 0.2 AiD 0.3

A1 �8.1 �2.8 �2.5 �3.3 9.9 16.5
A2 9.7 �2.6 3.4 �2.5 �6.2 10.9
A3 �10.0 6.8 �3.4 2.5 6.5 �10.6
A4 10.1 �6.7 3.4 3.5 6.4 10.5

Table 6.7: Robustness analysis with (q1(0),{Q,u},12,50)

A1D 0.1 A2D 0.1 A3D 0.1 A4D 0.1 A5D 0.1 A6D 0.1

�3.8 2.8 �5.3 �3.7 �1.1 0.5

A7� 0.1 A8� 0.1 A9� 0.1 A10� 0.1 A11� 0.1 A12� 0.1

1.1 �0.7 0.8 1.2 �1.7 1.9

Table 6.8: Robustness analysis with motor coefficient Jm variations

(q1(0),Q[ 1003 I,503 I,103 I)

{Q} {Q,u} {Q,v}

Q¼ 100� I �23.0453 �54.3013 �15.1548
Q¼ 50� I �5.4908 �14.3455 �5.7012
Q¼ 10� I �2.3543 �9.6067 �5.4134
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in Figures 6.45e6.47. There is not much difference between the optimal shape and the

uniform beam.

As these results show, both LQR and HN controllers for flexible manipulators have very good

robustness in terms of parameter variation and disturbance. HN has stronger stability against

system uncertainties.
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Figure 6.45: Initial Input Response (Tip Deflection) for HN.
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Figure 6.46: Step Input Response (Tip Deflection) for HN.
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6.5 Closed-Loop Design of Flexible Robotic Links

In this section, the problem of the optimal design of a flexible manipulator link

based on its closed-loop transfer function is formulated through the integration of

actuator dynamics, control algorithm, sensor location, and the mechanics of arm

construction.

The objective is to conduct a thorough investigation of the problem of optimal design of

a flexible robotic link from the perspective of mechatronics. In other words, the focus of

this section is on optimal design through the integration of actuator dynamics, control

algorithm, sensor model, and link mechanics of flexible arm systems. Traditionally, these

four areas have been analyzed and/or designed independently for a flexible arm system

but, as we will see later in this section, these aspects are closely related in determining the

dynamic performance of the flexible arm system and their integration in the design phase

might lead to substantial improvement in dynamic response and energy consumption of

the arm system. It is important to point out that our intention is to use flexible arms as

a case study for the general methodology of integrated design based on mechatronic

formulations.

By approximating a flexible link with N small uniform segments, we obtain analytical

segmentized solutions for transfer functions for integrated arm systems. This enables us to

formulate various optimization problems with explicit objective functions. Several

optimization criteria are discussed in this section.
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Figure 6.47: Step-Type Disturbance Response (Tip Deflection) for HN.
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6.5.1 Dynamics of Single-Link Flexible Manipulator Systems

A single flexible robotic link is modeled as a beam fixed on a rigid hub driven by a DC motor.

This section presents equations of link mechanics, actuator dynamics, and a control

algorithm for a flexible link.

Link Mechanics

Let us consider transverse motions of a single-link flexible robotic arm carrying a load at

its tip. The arm is modeled as a beam of length L fixed on a rigid hub with rotary

inertia IH. Shear deformations and rotary inertia of the beam are neglected. The

EulereBernoulli dynamic equation and the boundary conditions of the arm can be written

in the following form:

ðDv00Þ00 þ r€v ¼ 0; IH€q� Dv00ð0; tÞ ¼ s (6.51)

vð0; tÞ ¼ 0; v0ð0; tÞ ¼ q (6.52)

Dv00ðL; tÞ þ Jp€vðL; tÞ þ acMp€vðL; tÞ ¼ 0 (6.53)

ðDv00Þ0ðL; tÞ � acMp€v
0ðL; tÞ �Mp€vðL; tÞ ¼ 0 (6.54)

where v¼ w(z, t)þ xq(t) is the total deflection of the beam, w the pure flexible beam

deflection, q the rigid hub rotation, s the torque applied on the hub, D the bending rigidity

(product of Young’s modulus and the moment of inertia of the cross-section), r the mass

density per unit length (product of the mass density per unit volume and the area of the

cross-section), Mp, Jp, and ac the mass, moment of inertia, and x-coordinate of the center of

mass of the tip load respectively. Primes indicate differentiation with respect to coordinate x.

Here design variables from the link construction are rigidity and mass distributions along the

length of the beam, as well as the hub inertia. Note that usually distributions D and r are

coupled and are not independent of each other.

Actuator Dynamics

Let the arm be driven by a permanent magnet DC motor, then the actuator dynamics can be

described as

Jm€qm þ
�
Bm þ KbKm

R

�
_qm ¼ Km

R
vc � rs; q ¼ rqm (6.55)

where Jm is the actuator inertia, Bm the friction coefficient, Km the torque constant, Kb the

back e.m.f. constant, R the armature resistance, r the gear ratio, and qm, q, and vc are the rotor

rotation, hub rotation and armature voltage respectively. In general, all motor circuit

parameters can be considered as design variables.
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Control Algorithm

The general form of linear control laws based on the feedback of the hub rotation and beam

deformation can be represented as

vc ¼ u� hcqðqÞ �
Xnv
i¼1

½hiv0ðvðli; tÞ þ hiv1ðv0ðli; tÞÞ þ hiv2ðv00ðli; tÞÞ� (6.56)

where u is input command, hcq, h
i
v0, h

i
v1, and hiv2 are linear time differential or

integral operators that specify the feedback control law and li locations on the link

where deformation information (displacements, rotations, and strains) is collected.

Design variables are gain parameters associated with the linear operators. For example, a PD

control law using hub rotation, tip deflection, and strain at the hub end can be specified as

vc ¼ u� Kqmqm � K _qm
_qm ��K1

v v
00ð0; tÞ � K _v

1 _v00ð0; tÞ � K2
v vðL; tÞ � K _v

2 _v00ðL; tÞ (6.57)

Here u gives the desired final hub position. More sophisticated control laws may also be

considered in integrated design formulations.

6.5.2 Transfer Functions of the Integrated Systems

Procedures for optimum design of the integrated flexible arm system will be carried out in the

frequency domain. To this end we have to find the closed-loop transfer functions from the

input command to the hub rotation and the beam deflection by combining the link mechanics,

actuator dynamics, and control algorithm. Applying the Laplace transform to

Eqs (6.51)e(6.56), we obtain the following equations for the frequency domain:

ðDV 00Þ00 þ rs2V ¼ 0 (6.58)

Vð0; sÞ ¼ 0; s2IHV
0ð0; sÞ � DV 00ð0; sÞ ¼ T (6.59)

DV 00ðL; sÞ þ s2½JpV 0ðL; sÞ þ acMpVðL; sÞ� ¼ 0 (6.60)

ðDV 00Þ0ðL; sÞ � s2Mp½acV 0ðL; sÞ þ vðL; sÞ� ¼ 0 (6.61)

TðsÞ ¼ �HasðsÞV 0ð0; sÞ þ KVcðsÞ (6.62)

VcðsÞ ¼ UðsÞ � HcqðsÞV 0ð0; sÞ �
Xnv
i¼1

½Hi
v0ðsÞVðli; sÞ þ Hi

v1ðsÞV 0ðli; sÞ þ Hi
v2ðsÞV 00ðli; sÞ�

(6.63)
where

HasðsÞ ¼ Jm
r2
s2 þ

�
Bm

r2
þ KbKm

r2R

�
s; K ¼ Km

r2R
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and transfer functions Hcq, H
i
v0, H

i
v1, and Hi

v2 are obtained from the corresponding time-

domain operators by replacing differential and integral operations with s and l/s respectively.

Note that we have eliminated the Laplace transform of hub rotation q from these equations

using the relationship

QðsÞ ¼ V 0ð0; sÞ (6.64)

Using Eqs (6.62) and (6.63), the second boundary condition in Eq. (6.59) can be reformulated

as

ðs2IH þ Has þ KHcqÞV 0ð0; sÞ þ K
Xnv
i¼1

½Hi
v0ðsÞVðli; sÞ þ Hi

v1ðsÞV 0ðli; sÞ þ Hi
v2ðsÞV 00ðli; sÞ�

�DV 00ð0; sÞ ¼ KUðsÞ
(6.65)

which involves only deflection terms. Now the combination of Eqs (6.58), (6.61), (6.65), and

V(0,s)¼ 0 gives a complete set of equations for solving the Laplace transform of the

deflection function.

The three transfer functions to be used in optimum design are defined as

Hðx; sÞ ¼ Vðx; sÞ
UðsÞ ; HqðsÞ ¼ QðsÞ

UðsÞ ¼ H0ð0; sÞ (6.66)

Hwðx; sÞ ¼ Wðx; sÞ
UðsÞ ¼ Hðx; sÞ � xHqðsÞ (6.67)

Clearly, H(x,s) can be found by choosing U(s)¼ l.

Transfer functions H(x,s) and Hq(s) are related to mass and rigidity distributions r and D and

other design variables implicitly through differential equations. The major remaining task

to achieve analytical optimization formulations is to find the explicit relationship between the

transfer functions and the design variables. A piecewise-uniform-link approximation has

been used in the next section to solve this problem.

6.5.3 Segmentized Solution for Transfer Functions

Forgeneral unknownvaryingmass and rigidity distributions, it is very difficult, if not impossible,

to solve differential Eq. (6.58) and its boundary conditions. In order to obtain the relationship

between the transfer functions and the design variables, some approximation must be made. For

numerical solutions, one may use the finite element or finite difference equation methods.

However, numerical solutions are not efficient for our purpose of optimum design. Thus, in this

section we present an analytical solution using the piecewise-uniform-link approximation.
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Let us consider that the flexible link can be approximated by N small uniform segments. Each

segment has uniform mass and rigidity distributions. In other words,

rðxÞ ¼
XN
i¼1

ridðx; xi�1; xiÞ; DðxÞ ¼
XN
i¼1

Didðx; xi�1; xiÞ (6.68)

where ri and Di are positive numbers and

dðx; xi�1; xiÞ ¼
	
1 for xi�1 � x < xi
0 otherwise

Accordingly, the deflection function can be expressed as

Vðx; sÞ ¼
XN
i¼1

Viðx; sÞdðx; xi�1; xiÞ (6.69)

where Vi is the deflection on the ith segment.

Substituting Eqs (6.67) and (6.68) into Eq. (6.58) and applying the conditions of continuity

of deflection, rotation, bending moment, and shear force at both ends of each segment, we

can arrive at the following equations after quite long and tedious calculations:

Vi ¼ Siðx; sÞFiC
Fi ¼ I4�4; Fiþ1 ¼ Fifi; 1 � i � N � 1

(6.70)

where

Si ¼ ½ sin lix sinh lix cos lix cosh lix �
x ¼ x� xi�1

Di
; Di ¼ xi � xi�1

fi ¼
2
4gi

di
j1i �gi

di
j2i

j2i j1i

3
5

j1i ¼
"
S1i cos li S2i cosh li

S2i cos li S1i cosh li

#

j2i ¼
"
S1i sin li S2i sinh li

S2i sin li S1i sinh li

#

S1i ¼ 1þ digi

di
; S2i ¼ 1� digi

di

l4i ¼ �riD
4
i

Di
s2

(6.71)
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di ¼ Di

Diþ1
; di ¼ Di

Diþ1
; gi ¼

li

liþ1
¼ di

�
ri

riþ1

Diþ1

Di

�1=4

(6.72)

and C is determined by

BC ¼ KD1½ 0 UðsÞ 0 0 �T
B ¼ ½BT

1 BT
2 BT

3 BT
4 �T

(6.73)

Here Bi is found from the boundary conditions

B1 ¼ S1ð0Þ

B2 ¼ ðs2IH þ KHcq þ HasÞS01ð0Þ �
D1

D1
S001ð0Þ þ D1

Xnv
i¼1

½Hi
v0Skðxi; sÞ þ Hi

v1S
0
kðxi; sÞ� Fk

xki�1 � li � xki ; xi ¼
li � xki�1

Dki

(6.74)

B3 ¼ S00Nð1Þ
l2N

� l2N

rND
2
N

�
Jp
S0Nð1Þ
DN

þ acMpSNð1Þ
�

(6.75)

B4 ¼ S000N ð1Þ
l3N

þ lNMp

rNDN

�
ac
S0Nð1Þ
DN

þ SNð1Þ
�

(6.76)

Let

B�1 ¼ ½B1 GðsÞ B3 B4�
Then the deflection transfer function can be found as

Hðx; sÞ ¼ KD1

XN
i¼1

Siðx; sÞdðx; xi�1; xiÞFiGðsÞ (6.77)

Thus, we obtain an explicit expression for the deflection transfer function in terms of mass

and rigidity distribution. The poles of the integrated arm system can be obtained from

det BðsÞ ¼ 0 (6.78)

which is a transcendental equation.

6.5.4 Optimization Formulations for Mechatronic Design

Traditionally, mechanical, electrical, and control systems for a robotic manipulator have

been designed individually and, as a consequence, the coupling effects of these systems
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with each other as well as their influence on performance have been largely ignored. For

example, a link of a flexible arm is usually constructed without considering its effects on the

arm control system, and the control algorithm is developed after the link has already been

built. However, as indicated by the analysis in the previous section, the mass and rigidity

distributions of the link have a strong influence on transfer functions and, therefore, on

control performance of the integrated arm system. The idea of combining mechanical,

electrical, and control aspects in the design phase for better system performance is the major

motivation for mechatronic research. In this section we present several optimization

formulations for flexible arm design through the integration of link mechanics, actuator

dynamics, and the control algorithm.

Frequency responses of hub rotation error and pure beam deflection are found as

Eq ¼ Qð jwÞ �Qdð jwÞ
Uð jwÞ ¼ 1� H0ð0; jwÞ

Hwðx; jwÞ ¼ Wðx; jwÞ
Uð jwÞ ¼ Vðx; jwÞ � xQð jwÞ

Uð jwÞ ¼ Hðx; jwÞ � xH0ð0; jwÞ
(6.79)

In order to suppress the overall beam deflection, we introduce the following weighted

measure:

EwðwÞ ¼
ZL
0

pðxÞkEwðx; jwÞkdx (6.80)

where p(x) is a non-negative weight function. To consider the deflection at a particular

location, e.g. at tip x¼ L, one can set p(x) to be a d function. For normal operations, stresses

produced along the beam must be under the elastic stress limit of the beam material.

The maximum bending stress along the beam and the corresponding transfer function are

given by [3]

sxðx; tÞ ¼ hðxÞ
2

E00
wðx; tÞ; Sxðx; tÞ ¼ hðxÞ

2
EH00

wðx; tÞ (6.81)

where E is Young’s modulus and h is the height of the beam.

For certain specific cross-sections, such as a solid circular cross-section, mass and

rigidity distributions are not independent. In these cases, we can easily express both ri and

Di as functions of some independent design variables, denoted as a vector Xb, i.e. we

consider r¼ r(Xb) and D¼D(Xb) in our optimization formulations. We also introduce

two vectors Xa and Xc to represent design variables of the actuator and controller

respectively.
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Pole Location Optimization

For a given set of constraints, let us find the optimal mass and stiffness distributions, actuator,

control and sensor parameters, such that the firstM poles of the transfer functionH are located

as closely as possible to a set of specified positions. This can be expressed as

min
X

ðPnðx; dÞ � PdÞHWnðPnðx; dÞ � PdÞ
X ¼ ðXa;Xb;XcÞ

(6.82)

subject to

XaL � Xa � XaU ; XbL � Xb � XbU ; XcL � Xc � XcUPN
i¼1

riðXbÞ ¼ Wb; max
0�u�u0

EwðuÞ � dw
(6.83)

max
0�u�u0

kSxð juÞk � ds (6.84)

max
0�u�u0

kEqð juÞk � dq (6.85)

where Pd is the set of specified pole positions, d¼ (IH, Mp, ac, Jp), (XaL, XaU, Xbt, XbU, XcL,

XcU) are the lower and upper bounds for design vectors, Wb is the specified total mass of the

beam, and (dw,ds,dq) are the corresponding upper bounds of tip deflection, beam stress, and

rotation error over the frequency range [0,w0].

Tracking Error Optimization

For a given set of constraints, Eqs (6.83)e(6.85), we find the optimal mass and stiffness

distributions, actuator, control, and sensor parameters, such that

min
X

Zu0

0

f ðuÞkEqð juÞkdu (6.86)

where u0 is a cut-off frequency and f(u) a weight function.

Reference Model Optimization

For a given set of constraints, Eq. (6.83)e(6.85), we find the optimal mass and stiffness

distributions, actuator, control, and sensor parameters, such that

min
X

Zu0

0

f ðuÞkHdð juÞ � Hð juÞkdu (6.87)
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where Hd is a desired transfer function, e.g. the transfer function of a rigid arm,

HdðsÞ ¼ u2
n

s2 þ 2zun þ u2
n

Minmax Optimization

Generally, an arm has to perform tasks under different situations, e.g. moving with different

tip loads or driven by different control algorithms. This is reflected by different values of

design parameter vector d. A reasonable criterion for optimum design in this case is to

maximize the worst-case bandwidth of the flexible arm. Specifically, let D¼ {d1,.,dn} be

a set of possible values of parameter vector d, then the problem of optimum design in this case

can be formulated as a standard minimax problem:

max
X

min
1�i�d

ff ðX; diÞg

subject to the same constraints as in (6.83)e(6.85). Several minimax algorithms can be used

for this problem.

6.6 Concurrent Design

Great progress has been made in aspects of modeling, optimal design, and control of flexible

manipulators over the past few decades [21]. Various approaches have been developed for

modeling of flexible manipulators and a variety of control strategies for the control of flexible

manipulator systems can be found in recent research papers. These studies paid more

attention to control-intensive work but ignored the impact when applied to flexible beams’

mechanical shape. On the other hand, studies of optimal beam shape design to improve the

properties of flexible manipulators have been carried out by some researchers and further

studies were performed by Wang and his research group, who developed an iterative scheme

that produced the first single-link optimum manipulator shape, a minimum-weight design of

a flexible manipulator, and a new computing method for optimal mass and rigidity

distributions for a flexible manipulator with a tip payload [13,22,23]. However, these studies

focused either on control strategies or proper shape design of a flexible beam, and coupling

effects between controllers and construction were less considered. Asada et al. [24] studied

the methodology of structure and control integrated design (SCID), which focused on the

fusion of an object’s structure and control, and applied SCID in the design of a robotic system,

flexible arm system, and even an intelligent air-conditioning system.

Wang and colleagues [15,25e27] proposed the mechatronic design method (MDM) for

global optimization of an overall mechatronic system, such as a flexible manipulator system

that takes the interrelationships between the subsystems into account while avoiding control-

intensive or model-intensive work.
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6.6.1 General Concepts

Concurrent design is an integrated design methodology. As for tasks involving engineering

systems design, it may contain many subsystems, several design process stages, constraints,

and requirements, involving multiple disciplines. The designer should use various methods,

technologies, and strategies to meet these requirements. Traditional sequential design follows

a serial, subsystem-independent route, which leads to a locally optimal solution at best.

However, in concurrent design, the designer concurrently considers the interactions and

coupling effects among different subsystems and takes the interactions and trade-offs among

different or even conflicting requirements into account in the design process. It therefore

tends to lead to a global optimal design result that must simultaneously meet requirements

such as quality, cost, performance or even market requirements, as well as meeting

constraints such as manufacturing, etc.

In a broad sense, concurrent design is a cross-domain design methodology that provides

guidance in engineering design and project implementation. From this point of view,

concurrent design is similar to the theories of multidisciplinary design optimization (MDO)

and concurrent engineering (CE). They all focus on the optimization and distribution of the

resources in the design and development process, and explore and exploit synergistic effects

of coupling between various interacting disciplines/phenomena, to ensure an effective and

efficient product development process and balance product performance considerations with

manufacturing, economics, and life-cycle issues.

In a narrow sense, we can take a mechatronic system as an example. It is generally composed of

several subsystems: a mechanical system, driving, sensor, and control system, etc. In traditional

sequential design, each subsystem is always designed sequentially, locally, and separately, with

few interactions between each of these subsystems, while in concurrent design the subsystems

are treated concurrently rather than sequentially, so any coupling effects are automatically

taken into account. The primary goal is to construct a global optimal mechatronic system at the

system level instead of an optimal mechanical system or an optimal control system. From this

viewpoint, concurrent design is equivalent to MDM, SCID, etc. to some degree.

In fact, a multidisciplinary system made up of all the local-optimal-designed subsystems is

not always a global optimal system. According to the function and scope of application,

concurrent design can be classified into broad-sense and narrow-sense concurrent design

[28e30], as shown in Figure 6.48.

In an engineering design, broad-sense concurrent design deals with both top-level issues,

such as conceptual design, architecture, organization and management of the development

process, etc., and lower level issues such as materials, technology, mechanical structure,

controllers, optimization, etc. However, it attaches heavier weight to the former. From the

viewpoint of knowledge, broad-sense concurrent design involves nontechnical disciplines
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like manufacturing, marketing, cost, life cycle, etc.; technical disciplines such as controls

and sensors, mechanical structures, optimization strategies and algorithms, materials, etc.;

and the coupling between them. In general, broad-sense concurrent design tends to integrate

all the subsystems and disciplines, to manage the whole process of design with optimization

strategies, considering the coupling effects among the subsystems and disciplines. As

a result, it leads to a global optimal design solution that meets both technical and

nontechnical requirements. As Finger et al. [20] pointed out, in creating a concurrent design

system, the goal is to infuse knowledge of downstream activities into the design process so

that designs can be generated rapidly and correctly. Therefore, the ultimate goal is to

effectively and concurrently design a complex system and make the product more

competitive.

6.6.2 Existing Representation of Special Concurrent Designs

When applied to a specific system (a mechatronic system in this context), concurrent design

can be viewed as narrow-sense concurrent design, without considering those top-level issues or

nontechnical disciplines. As mentioned in a previous section, a mechatronic system generally

contains various subsystems: mechanical and structural systems, sensor and control systems,

materials, etc. Thus, the design variable set contains the variables from these subsystems.

According to design requirements and the constraints that need to be satisfied, the design

objective is transformed into an optimization objective function (or functions) and constraint

equations. The optimal design problem is thus transformed into a simultaneous optimization

problemwith multiple variables from each subsystem. Although it may be a complicated multi-

objective optimization problem subject to multiple constraints, this design method guarantees

Concept

Market

Manufacturing

Cost

Material

Processing

Mechanical structure

Sensor Controller

Optimization Strategy

Broad sense

Narrow sense

Algorithm

Figure 6.48: Broad-Sense and Narrow-Sense Concurrent Design.
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attainment of a globally optimal design solution or a suboptimal solution with a higher

probability, if the optimization problem is properly solved by mathematics.

In narrow-sense concurrent design, globally simultaneous optimization can be expressed in

the following mathematical form:

X ¼ ½XS; XM; XC; XO�
Min f ðXÞ ¼ f ð½XS; XM; XC; XO�Þ
S:t: hiðXÞ ¼ 0 ði ¼ 1; 2;.; nÞ

gjðXÞ � 0 ði ¼ 1; 2;.;mÞ
(6.88)

where X is a set of design variables; XS, XM, XC, XO represent sets of mechanical and structural

variables, material variables, control and sensor variables, and other variables respectively.

f denotes optimization objective functions, and hi(X), gj(X) represent equality constraints

and inequality constraints.

Narrow-sense concurrent design shares a similar concept with the methodology of structure and

control integrated design (SCID), control structural design, and the mechatronic design

method (MDM) proposed by Wang et al. [22,25]. They all focus on the coupling, fusion, and

simultaneous optimization of the subsystems of the mechanical structure, control, material, etc.,

and attempt to overcome the conflicts and waste of resources in the sequential design of

those subsystems.

6.6.3 Problems

There are some problems to be faced due to the complexity involved.

System Analysis

Since a mechatronic system generally involves multiple disciplines that may have coupling

effects, the complexity of searching for a global optimal solution increases dramatically with the

growth in design variables and constraints. Properly constructing objective optimization

functions, the selection of design variables and definition of their scope are important and are

subject not only to design requirements and constraints, but also to the mathematical solvability

of the optimization problem. Reducing complexity (especially computational complexity) by

properly and skillfully dealing with constraints is also important. Measures to plan and simplify

how to deal with constraints can be taken, such as using an algorithm for finding coupled

constraints and for creating a solution plan that minimizes the need for simultaneous solution,

and using algorithms like that proposed by Navinchandra and Rinderle [31], for example.

Global Optimization

Global optimization of a multi-objective function subject to nonlinear constraints is very

difficult, or even unsolvable, especially for a nonlinear and nonconvex objective function. The

situation varies from case to case, so there is no universal method to guarantee a global optimal
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solution. In multidisciplinary design optimization (MDO), an effective strategy is to divide the

design system into a hierarchical system and a nonhierarchical system according to the

relationships between subsystems, and then use different optimization strategies and algorithms

[32]. Constraint deletion and searching for a tighter limit for the design space can be considered.

Interval methods [33] have been used to solve the global optimization problem, which subdivide

the constraint-based design space to a part of the serial space that gradually satisfies all the

constraints. Smith et al. [34] proposed a step and iterative method to optimize structures and

controllers. Wang and colleagues [22,25] proposed LQR output feedback-based global

optimization strategies for optimal construction and control of flexible manipulator systems.

The choice of algorithm is also critical in global optimization. Most traditional nonlinear

programming techniques or gradient-based algorithms are local methods that are prone to

become bogged down with local processes. Some intelligent optimization algorithms are

good choices in tackling this problem, such as evolutionary computation algorithms (a

genetic algorithm, simulated annealing algorithm and taboo search algorithm), evolutionary

programming and strategies, etc.

6.7 Concurrent Design of a Single-Link Flexible Manipulator Based
on PID Controller

In this section, a narrow-sense concurrent design method is introduced in the optimization

control and design of a single-link flexible manipulator system to achieve good performance

at high speed, good vibration suppression, etc. The system includes a single-link flexible arm,

driving motor, sensor, controller, etc.

6.7.1 Dynamics of Single-Link Flexible Manipulator Systems

The flexible manipulator considered here is a single-link flexible arm mounted in the

horizontal plane with a tip-mass payload. It consists of a beam of length L fixed on a rigid hub

as shown in Figure 6.49, where X0OY0 and X1OY1 represent the stationary and moving

θ

L

ρ
X1

Y1

O X0

Mp

Y0

A0

EI

w(x,t)

ac

IH

Figure 6.49: A Single-Link Flexible Manipulator.
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coordinates respectively. E, I, r, A0,Mp, ac, and IH are Young’s modulus, the rotary inertia of

the cross-sectional area, beam density, cross-sectional area of the beam, payload mass, the

distance of the tip center of mass to the end of the beam along the X0 axis, and hub rotary

inertia respectively.

The motion of the flexible manipulator is described by the rigid rotation angle q of the hub

and the flexible displacement w of the beam. Thus, the total displacement y of a point along

the manipulator at a distance x from the hub is

y ¼ x qðtÞ þ wðx; tÞ (6.89)

We use the EulereBernoulli model, where rotary and shear deformation of the beam are

neglected, to describe the dynamic behavior of the flexible manipulator [28]. Then the

governing equations of beam deformation and hub rotation are

EIðxÞ
�
v4y

vx4

�
þ rA0ðxÞv

2y

vt2
¼ 0 (6.90)

IH€q� EIðxÞ
�
v2y

vx2

�
x¼0

¼ sin (6.91)

yx¼0 ¼ 0; y0x¼0 ¼ q (6.92)

EIðxÞ
�
v2y

vx2

�
x¼L

þ Jp

 
v€y

vx

!
x¼L

þ acMp€y ¼ 0 (6.93)

where a prime (y0) donates spatial derivative vy/vx, and a dot ( _y) donates time derivative vy/vt.

For a non-uniform beam, bending rigidity EI(x) and cross-sectional area A0(x) are functions

of x, while for a uniform beam they are constant.

Suppose the arm is equally divided into n segments each with a length of Dx¼ L/n.

We define

xi ¼ i,Dx; yi ¼ yðiDx; tÞ (6.94)

Using the finite difference method (see Section 3.5.3), the desired dynamic equations of

motion of the system can be written as

½M�€yþ ½K�y ¼ ½B�sin (6.95)

where M, K, and B are mass, stiffness, and input matrices of the flexible manipulator

respectively [28]. sin represents control torque at the hub.

The manipulator is driven by a DC motor connected to the hub through a speed reducer,

where a velocity-measuring dynamo is used for speed negative feedback of the motor output

shaft. Dynamics of the DC motor and reducer are
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ðJm þ JLÞ€qþ
�
Bm þ Ks ðKe þ KW,K1Þ

R

�
_q ¼ KsKq

R
Vc � r sin (6.96)

where Jm, JL, Bm, Kr, Ke, Kw, K1, R, and r are rotary inertia of motor rotors, rotary inertia on

the speed reducer side, damping ratio, torque constant, back e.m.f. constant, feedback factor,

feedback gain, armature resistance, reduction ratio, and angular displacement of the motor

respectively.

We define

q0 ¼ ½q y1 y2. yn�T (6.97)

The overall state variable is defined as

q ¼
�
q0
_q0

�
(6.98)

Combination of Eqs (6.95) and (6.96) yields the state-space equations of the system, which

include flexible manipulator, driving motor, and speed reducer. Special decoupling treatments

are taken to avoid round-up errors of matrixM inversion in the transformation from Eq. (6.95)

to first-order differential equations [28]. The state-space equations are

_q ¼ Aqþ Bu
Z ¼ Cq

(6.99)

where

A ¼
�
A11 A12

A21 A22

�
; B ¼

2
4 rKsKq

R
0 / 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2nþ2

3
5T ; C ¼

2
4 0 / 0 1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

nþ1

; 0 / 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
nþ1

3
5

A11 ¼ ½0�ðnþ1Þ�ðnþ1Þ; A12 ¼ Iðnþ1Þ�ðnþ1Þ; A22 ¼ ½0�ðnþ1Þ�ðnþ1Þ

A21 refers to the literature [28,29].

6.7.2 Implementation of Concurrent Design

Narrow-sense concurrent design of a mechatronic system is a globally simultaneous

optimization process of the overall system, including the subsystems of mechanical structure,

sensor and controls, materials, etc. As a study example, the overall system of a single-link

flexible manipulator is the integration of flexible manipulator, driving motor and reducer,

measuring sensors, controller, etc. The optimization is very complex unless some

simplifications are made, so the following restrictions are applied here. The flexible beam is

equally divided into n segments. Each segment is uniform and the width (bi, i¼ 1,2,.,n) of
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each segment is the only variable to be optimized for link geometrics. With an increase in

segment number n, the number of state variables increases greatly to 2nþ 2, which

consequently increases the burden of optimization. In this section, a PID controller is chosen

as a case study. In fact, any admissible controllers proposed in the literature can be used in the

optimization if computational complexity and feasibility are not considered. According to

Wang and Gao [22], the system optimum performance index may not be of utmost importance

in the selection of the controller. It is preferable to attain an optimal result with a simple

controller and an optimally designed structure through concurrent consideration and

optimization of the subsystems.

For simulation, a conventional PID controller after Laplace transformation is expressed as

HðsÞ ¼ Kp

�
1þ 1

Tis
þ sTd
1þ sTd=N

�
EðsÞ (6.100)

where Kp, Ti, and Td represent proportional gain, integral time constant, and derivative time

constant. E(s) is the transfer function of tip position error between reference and actual

output. N is a large number.

The overall system model that includes mechanical variables of flexible manipulator

structure, sensor and controller variables can be written asX
T

¼
X
0

ðA;B;CÞ
X
1

ðKp; Ti; TdÞ (6.101)

where S0(A,B,C) andS1(Kp,Ti,Td) represent the manipulator systemmodel and PID controller

respectively.

Then the design variables are chosen as

X ¼ ½ b1; b2;.; bn; Kp; Ti; Td;K1� (6.102)

Some criteria for evaluating PID tuning, such as IAE, ISE, ITAE and ITSE, can be chosen as

the optimum performance index for the global optimization, which can be transformed into

the optimization objective function. One of the evolutionary algorithms, the genetic algorithm

(GA), is employed in the design optimization, which has been proven to provide a robust

search in complex spaces to find nearly global optima. Thus, the optimization approach will

lead to an optimal shaped beam (link geometric distribution) and an optimal controller subject

to the performance requirements.

An example of the framework of concurrent design of a single-link flexible manipulator

system with PID controller is illustrated in Figure 6.50.

Three constraints need to be satisfied in the optimization problem, including beam rigidity,

control system stability, and keeping the total mass of the flexible beam constant. They are

treated as follows [28,29].
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According to rigidity checks before the optimization process, beam width bi is simply

restricted to a conservative range, [bmin,bmax], which is then brought within the design

variable range during GA optimization.

Control system stability is an implicit constraint condition, which is treated as the method of

discarding infeasible solutions. Stability is verified after each set of solutions is generated in

the GA operations and then the infeasible solutions are discarded.

Keeping the total mass of the flexible beam constant, we have Sn
i¼1bi ¼ n,b. We define

gðbiÞ ¼ jSn
i¼1bi � n,bj. The penalty function method is adopted to transform the equality

constrained optimization problem into an unconstrained one.

6.7.3 Simulation Results

In this section, some results from computer-based simulation are presented. The simulation

has been developed using the Mathworks Inc. MATLAB� software. The main physical

parameters of the flexible manipulator system are as follows:

beam average width

b ¼ 0:0064 m; L ¼ 0:947 m; E ¼ 7:0� 1010 N=m2;

IH ¼ 2:3� 10�4 kgm2; Mp ¼ 0:033kg; ac ¼ 0:035m;

Jp ¼ 1:5� 10�4 kgm; Jm ¼ 0:01384� 10�4 kgm;

Kw ¼ 0:0669 V=ðrad=sÞ; Ke ¼ 0:24 Nm=A; r ¼ 1=50;

R ¼ 1:38U; bi ˛ ½0:8b; 1:2b�; n ¼ 5w8

An improved real-code GA is adopted in the optimization. The ISE criterion is chosen as

optimum performance index, then the fitness function is constructed as f¼ fmax�F(X), where

F(X) is a penalty function including quality constraint and ISE criterion equation, and fmax is

PID
q=Aq+Bu

Z=Cq

Optimization
algorithm

(GA)

Oputimum
performance index

(ISE)

-

u yReference
input

Flexible Manipulator
System

Controller

0Σ1Σ

Figure 6.50: Framework of Concurrent Design.
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a large number to keep f positive. A number of simulation exercises have been carried out.

Figure 6.51 shows the optimal shape (width distribution) of the flexible beam with segment

number n¼ 5. Figure 6.52 illustrates the GA optimization progress. Figure 6.53 shows the unit

step response of the optimally designed manipulator system with PID controller.

The step response curve (dotted) of a common uniform shape flexible manipulator control

system and the step response curve (solid) of an optimized flexible manipulator control

system using this method are illustrated in Figure 6.53. This figure shows that the tip vibration

of the flexible beam is suppressed to some degree.

Figure 6.52: GA Optimization Progress for n[ 5.

Figure 6.51: Optimal Shape (Beam Width Distribution) for n[ 5.
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Figure 6.54 shows the optimal shape (width distribution) of the flexible beam with segment

number n¼ 8. As illustrated in the figures, the optimal shapes of the beam are not much

affected by the segment numbers.

In this chapter, the mechatronic design of flexible manipulators is presented. This design

approach emphasizes a global optimal system design by taking coupling effects into

account automatically, including concurrent optimization of the geometric shape of the

Figure 6.54: Optimal Shape (Beam Width Distribution) for n[ 8.

Figure 6.53: Step Responses of Common and Optimized Flexible Manipulator System
with PID Controller.
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flexible link and selection of parameters for the controller. Using this method, the flexible

link can improve the performance index compared to its uniform shape. This approach can

theoretically be applied to other systems’ control problems by choosing different objective

functions as required. This chapter presents some investigations of concurrent design

methodology, especially in the optimal design of a mechatronic system. In the application

considered, an optimization design of a single-link flexible manipulator system is

achieved, simultaneously integrating the design variables from mechanical, driving, sensor,

and control subsystems. The desired performance has been demonstrated by simulation

results. The use of a simple PID controller is based on two considerations: reducing the

complexity of the optimization, and evaluating the efficiency of the methodology with

control reduction. The concurrent design of a flexible manipulator system with other

control strategies, such as a robust controller and a different optimum performance index,

has been carried out, and this research will meet the higher requirements of optimal

systems design.
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CHAPTER 7

Conclusions and Future Research

We have presented a unified and systematic approach to deal with the modeling, analysis,

optimization, and mechatronic design of flexible manipulators. This approach will enable us

to deal with various issues in the design and operation of flexible manipulators so that both

analytical and numerical procedures, especially new methods in optimization in the field of

computational intelligence, can be applied. Based on this approach, we have developed

a mechatronic methodology for the design of flexible manipulators that combines their

mechanical, electrical, sensing, and control components concurrently instead of sequentially,

from the very beginning of the design process. Theoretically, this method is capable of finding

global optimal design solutions and results in a better design outcome.

The mechatronic approach as a significant and valid design for the global optimization of

a flexible manipulator is the highlight of this research. The critical point of this design is

global integration and optimization, which treats all the subsystems in a system as a whole

and covers the full searching space for system parameters, including the beam parameters

(material and geometric), coefficients in motor dynamics and controller parameters, and

controller structure. Compared to traditional optimal design, which relies on a local

optimization by assigning a controller to a given plant, the mechatronic mechanism achieves

a better solution by regarding the plant and the controller concurrently. Each parameter in the

system equation or their combination can be the optimized variable. From this perspective,

the boundaries of mechatronic design expansion into other fields are limited only by the

imagination. The LQR standard output feedback is the only option considered here to

illustrate this basic idea. HN control is used to obtain a more robust system resistant to

disturbances.

In this research, the search space is limited only with regard to the beam’s physical

dimension; all other parameters are considered to be constant. There are two options for

mechatronic simulation, the first being that addressed in this book. From a uniform link, the

most significant modes and associated natural frequencies were calculated and these modes

were used as the universal space base. Thus, all elements in those coefficients of the state-

space equation are the only functions of the geometric link. Since the mechatronic method as

outlined in Chapter 6 searches the beam’s geometric distribution through the whole space to

find an optimal solution, this “base” approach can save a considerable amount of computation

time.

Flexible Manipulators. DOI: 10.1016/B978-0-12-397036-7.00007-6
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The other option for mechatronic simulation is what is called the “segmentized method”.

Based on segmentized beams, and their interfacial conditions, a set of constraints is

established. To solve these equations with beam boundary conditions, the most significant

natural frequencies from the determinant equal to zero were obtained. Furthermore, a series

of eigenfunctions for each segment was found. In this approach, even if one segment of

the beam shape changes, all these frequencies and eigenfunctions will be changed. Because of

the searching process in the mechatronic design, this approach will take longer to reach the

optimal point. So the first option is prefereable for mechatronic design, which is why it was

employed in this research.

The simulation results show that in all cases the performance index (PI) improved to various

degrees. It was found that the PI does not change very much with varying numbers of

segments. The results are better for two-output feedback than that for single feedback. If the

motor parameters are added into the search space, better performance is obtained.

The results obtained here show that the HN controller gives better performance, but this is

a tradeoff for slower computation time because the HN controller is much more complicated

than the LQR controller and needs more calculation. The robustness analysis was also

conducted numerically. As was pointed out, the controller provides robust features for

parameter uncertainties or variations, as well as disturbance. The numerical responses to

different kinds of parameter variations were illustrated, showing that the system designed by

the mechatronic method displays good robustness against parameter variations.

Based on the results obtained in this book, we believe that computational intelligence

methods, in particular evolutionary computing, such as genetic algorithms, should be

investigated in the ongoing research on flexible manipulators.
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Preface

Flexible robotic manipulators, consisting of mainly lightweight or large dimension robotic

manipulators, exhibit many advantages over conventional rigid robotic manipulators. For

example, flexible manipulators require less material and smaller actuators, consume less power

and cost less, and provide fast motion, high force to mass ratio, more maneuverability and

transportability,. Therefore, the use of flexible manipulators could lead to reduced energy

consumption, increased productivity, and enhanced payload capacity. Over the past few

decades, flexible manipulators have been deployed widely in many fields, such as space

exploration, manufacturing automation, construction, mining, and hazardous operations.

However, the flexible nature of flexible manipulators has brought up many challenging problems

in their construction and operation for design, modeling, analysis, and control. For example, due

to link deformation, the dynamics of manipulators is significantly complicated and distributed

parametermodel should be applied for precise description. Themodel complexity also leads to the

non-minimum phase characteristics of flexible manipulators that prevent the direct use of many

conventional and effective control algorithms for the operation of flexible manipulators. Finding

an effective control mechanism that would account for the need of both accurate positioning and

elastic motion has motivated a great deal of research effort over the past two decades.

Although significant progresses have been made in many aspects over the last two decades,

many issues are not resolved yet, simple and effective, as well as reliable controls of flexible

manipulators still remain an open quest. Clearly, further efforts and results in this area would

contribute significantly to robotics, and in particular, automation, as well as its application and

education in general control engineering. To accelerate this process, this book summaries the

main results of our studies in design, modeling, control and applications of flexible

manipulators over the past two decades.

In the past, research work has been focused on modeling of link deformation, dynamics, and

development of independent motion control algorithms and systems. Very few studies with

quantitative results have been reported in the literature on the effect of size, shape, mass

distribution, tip load, sensing location, coupling of control algorithms and link construction, and

other factors on the dynamics and operational performance of flexible manipulators. However,

such analyses are critical to the effectiveness of any model for optimization and control
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purposes. The objective of this book is to provide a unified approach that will consider all factors

in mechanical simultaneously, electrical, sensing, and control components to address design,

modeling, analysis, optimization, and control of flexible manipulators. To this end, a systematic

study of various models and comparison between pros and cons with respect to specific design

and control problems are developed here. Many critical factors in construction and operation of

flexible manipulators are addressed with systematic but specific numerical investigations based

on the current available dynamic models. In many cases, analytical procedures developed for

flexible manipulators in previous studies seem no longer applicable in our investigation. New

methods for optimal design problems with meaningful constraints are explored and established.

The complexity of a manipulator system is due to the interrelation and interdependency of its

subsystems, for example, its kinematic units, control units, driver units, and measuring or

sensing units. In traditional design, a manipulator’s link structure is designed first, followed by

its driver system, then a measuring system, and finally its control system. This leads to

a sequential design process and a local optimal solution at the best, and therefore the potential

of the flexible manipulator, that is, the global optimality of the manipulator, is rarely realized in

full. To overcome this problem, a concurrent design procedure that integrates all subsystems

must be under taken. In other words, a mechatronic approach must be considered in the design,

construction, and operation of flexible manipulators. The establishment of a computational

framework and related methods, and procedures for mechatronic design, construction, and

operation of flexible manipulators is the main objective and the unique feature of our book.
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Timoshenko dynamic model
with rotary inertia, 63e64

with shear deformation, 63e64
Optimization, of flexible manipulator,

2, 99e184
composite material designs, 103,

119e120
geometrically constrained

optimum designs, 116e119,
117f

maximum radius constraints,
116

minimum radius constraints, 116
uniform tunnel cross-sectional

designs, 116e118, 118f
variable tunnel cross-sectional

designs, 118e119, 119f
mechatronic design, 234e237

minimax, 237
pole location, 236

reference model, 236e237
tracking error, 236

minimum-weight design,
166e172

basic equations, 166e167
numerical examples, 172

problem formulation, 168e169

solution by iterations,
169e172

new iteration approach
basic equations, 102e104

p ¼ 1, 106e108, 111, 111t,
112fe113f

p ¼ 2, 112e116, 113t,
114fe115f

p ¼ 3, 112e116, 113t, 114f
p > 1 and q ¼ 0, 108e109

p > 1 and q s 0, 109e110
q ¼ 0, 105

q s 0, 105
segmentized solutions, 172e182

basic equations, 174e175
design formulation with multiple

loads, 180e181
link construction constraints, 182

maximum speed design
problem, 178e179

minimum mass design problem,

178e180
stress/strain and deflection

constraints, 181
shape construction with tip weight

constraint, 148e165
basic equations, 148e151
constrained shape design,
156e159

numerical examples, 159e164
sensitivity analysis, 164e165
unconstrained shape design,
analytical approach to,

151e155
variation formulation,

150e151
shape design with tip loads,

120e147
analytical solutions, 125e133
EulereBernoulli equations,
122e125

minimax optimum design,
142e143, 144f

problem setup, 120e122
segmentized optimization

approach, 133e142
sensitivity analysis, 146e147,
148f

two-link optimum design,

143e146, 145f, 147f
Output feedback, 7, 192e194,

196e197, 206e207,

215e216, 240e241, 251
see also Feedback

Output specification, 192e193

P
Passivity analysis, 91e97
Payload, tip-mass, 20, 52e54, 237,

241e242

Perturbation method, 5, 7, 16,
106e107, 113, 122

Photosensors, 7
PID controller, single-link flexible

manipulator systems based
on, 241e248

dynamics of, 241e243, 241f
framework of, 245f

implementation of, 243e245
simulation results, 245e248,

246fe247f
see also Controller

Pole location optimization, for

mechatronic design, 236
Port-based modeling, 7e8
Potential energy

of beam, 22e32, 45e46, 53e55
of tip load, 18
total, 21, 45e46, 55

PshenichnyiePironneauePolak
minimax algorithm with exact

line search (PPP-ELS), 180

R
Rayleigh damping, 56e57

see also Damping
Recursive Lagrangian formulation, 5

Reference model optimization, for
mechatronic design, 236e237

Rigid manipulator(s)
distinguished from flexible

manipulator, 1
robotic, comparison with flexible

manipulators, 1
Rigidity matrix, 56

Robotic crane systems, 1
Robotic excavators, 1

Robotic manipulators
flexible, 16

rigid, comparison with flexible
manipulators, 1

Rotary inertia
EulereBernoulli dynamic model

with, 63
asymptotic behavior of, 71

characteristic equations for,
65e66

influence on vibration frequencies,

73e74, 74fe75f
Timoshenko dynamic model with,

63e64

S
Segmentized optimization approach,

133e142

formulation, 133e137, 135f
numerical results, 140e142
solutions, 137e140, 172e182,

252

basic equations, 174e175
design formulation with multiple

loads, 180e181
link construction constraints,
182
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maximum speed design

problem, 178e179
minimum mass design problem,

178e180
stress/strain and deflection

constraints, 181
Sensitivity analysis

of flexible manipulators-based on
HN with IHR algorithm,

225e226
of optimum shape design

with tip loads, 146e147, 148f
with tip weight constraint,

164e165
Shear deformation

influence on vibration frequencies,
74e75, 75f

Timoshenko dynamic model with,
63e64

Single-link flexible manipulators
see One-link flexible

manipulators
Stability analysis, of nonlinear

dynamic model, 94e97
State-space equations, of flexible

manipulators, 190e192
HN control problems, 190e192

Stiffness matrix, 53, 55e56
StokeseDirac structure, 7e8

Structure and control integrated
design (SCID), 237, 240

System robustness analysis,

225e228
numerical results of, 226e228,

226te227t, 228fe229f

T
Timoshenko beam model, 18

derivation of, 27e33
with dimensionless variables,

36e37
dynamic

asymptotic behavior of, 71
characteristic equations for,

67e69
natural frequencies, 83e88

transverse section, motion of,
62f, 63e64

equations of motion for, 33e34
after linearization, 35

with rotary inertia, 87f

one-link flexible manipulators,
63e64

with shear deformation, 87f
Tip deflection, 7, 121, 131, 192,

228fe229f, 231
hub tangent angle with, 198,

199fe200f, 203e205, 204f,
206fe209f, 218fe220f,
222fe225f

output, 192

Tip inertia, influence on vibration
frequencies, 79f

Tip length, influence on vibration
frequencies, 77fe78f

Tip load, 17e19, 17fe18f,
186e187

EulereBernoulli dynamic model
with, 64

asymptotic behavior of, 72
characteristic equations for,

69e70
influence on vibration frequencies,

76e79, 76fe77f
kinetic energy of, 18e21
optimum shape design with,

120e147
analytical solutions, 125e133
EulereBernoulli equations,

122e125
minimax optimum design,

142e143, 144f

problem setup, 120e122
segmentized optimization

approach, 133e142
sensitivity analysis, 146e147,

148f
two-link optimum design,

143e146, 145f, 147f
Tip position, 9e10
hub tangent angle with, 199e200,

201fe202f, 203, 205f
output, 192

Tip weight constraint, optimum shape

construction with, 148e165
basic equations, 148e151

constrained shape design,
156e159

numerical examples, 159e164
sensitivity analysis, 164e165

unconstrained shape design,

analytical approach to,
151e155

variation formulation, 150e151
Torque transmission, 5

Tracking error optimization, for
mechatronic design, 236

Transfer function(s), 7
closed-loop

of integrated systems,
231e232

segmentized solution for,
232e234

Two-link optimum design model,
143e146, 145f, 147f

U
Unconstrained optimum shape

design, analytical approach to,

151e155
numerical examples, 159e161

Uniform tunnel cross-sectional
designs, 116e118, 118f
see also Cross-sectional
designs

V
Variable tunnel cross-sectional

designs, 118e119, 119f
see also Cross-sectional
designs

Vibration equations, 124e125
Vibrations of flexible manipulators,

dynamic analysis of
asymptotic behavior, 70e72
characteristic equations, 64e70
experimental verification and

numerical analysis, 72e79
natural frequencies and modal

shape functions, 80e88

one-link flexible manipulators,
61e64

step responses and general
solutions, 88e91

Vision-based flexible tip point
control, 8

W
Wave-based control analysis, 10
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