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Preface

Many years ago when I was an undergraduate student of  mechanical 
engineering at Indian Institute of Technology, Kharagpur, India, Professor 
Amalendu Mukherjee was our teacher for a course on systems and con-
trols. Probably a year or two before this, he had come across an intrigu-
ing technique for systems modeling called bond graphs. He was very 
excited about it and was quickly becoming an expert in this area. The 
great teacher that he was, he got equally excited about teaching this tech-
nique to as many of his students as possible. Our class was, therefore, one 
of the fi rst in the institute to learn about bond graphs and the joy of bond 
graphing. I cannot say that bond graphing was a joy to everyone in the 
class. There were probably three broad opinions in the class about bond 
graphs. Some did not care; to them this was just another one in a list of 
courses that they had to take. A second group just did not get it! But by 
far the largest group was the one that felt an increased level of excitement 
as they learned something that was logical, easy once you got the basics, 
and powerful. In retrospect, probably the excitement was more because 
of a great teacher’s ability to convey the material than the material itself. 
Nevertheless, many of us were bitten by the bond graphing bug.

In pursuing advanced studies, I was taken away from the systems mod-
eling world because of other academic interests. But many years later, I had 
the opportunity to develop and teach courses in the area of mechatronics. 
Even when I fi rst learned about bond graphs, the unifying nature of the 
topic appealed to me a lot. That was when I fi rst realized that mechanics, 
circuits, and hydraulics are not so far apart from each other as they have 
been thought to be. If one starts looking at the forest rather than the trees, 
a very unifying theme emerges.

Naturally, for the multidisciplinary area of mechatronics, I felt that bond 
graph–based modeling would be an ideal fi t. Once I reviewed what had 
happened in bond graphing since I had fi rst been excited by it, I found 
that I was not the only one making the connection between bond graphs 
and mechatronics. Many established researchers in the fi eld had already 
connected those dots. Karnopp, Rosenberg, and Margolis (2006) modifi ed 
their text and its title to refl ect this connection. Others, such as Hrovat 
et al. (2000), Margolis and Shim (2001), DeSilva (2005), Brown (2001), have 
been making signifi cant contributions to mechatronics research and were 
using bond graphs as the modeling tool.

When we fi rst learned about bond graphs in our course on systems and 
controls, we came away with the idea that the technique was rather excit-
ing, but we were unsure about its practical use. Most of us thought that 
perhaps only about a handful of excited researchers, such as Professor 



xiv Preface

Mukherjee, were going to use it. In the many years that have passed since 
my undergraduate days, several software tools have come to the mar-
ket. 20Sim, CAMP-G, AMESIM, and Professor Mukherjee’s very own 
SYMBOLS 2000 are now all commercial tools, which means people are 
using them to solve real problems.

Why are bond graphs well suited for mechatronic systems? Engineering 
system modeling has always been multidisciplinary in nature. A review of 
any of the classical texts in system modeling, such as Ogata (2003), reveals 
this fact. In the mechatronic systems world, it is more so the case. In tradi-
tional approaches to modeling multidisciplinary systems, the governing 
equations are derived from a combination of Newton’s laws, Kirchoff’s 
laws, Bernaulli’s equations, and other fundamental governing equations 
in different domains of knowledge. I have always seen that students have 
a diffi cult time dealing with the application of these laws in the derivation 
of system equations, especially since they almost always have some level 
of mastery in their own discipline but lack confi dence in disciplines that 
are not theirs. While students struggle with deriving the governing equa-
tions for a variety of systems, texts using this traditional approach quickly 
move to solutions of these equations in time and frequency domains, their 
meanings, different ways the solutions can be plotted, the information 
these plots convey, etc. This leads to a situation where even at the end of 
a course, many students are not confi dent of developing the equations to 
model a new system that they encounter.

Bond graphing has three advantages in comparison to the traditional 
approach. First, it utilizes the similarities that exist between all disciplines 
so that students learn to see the engineering system as a whole and not in 
terms of its separate pieces. This is the characteristic we try to teach in a 
systems course. Second, basic components from different disciplines and 
their behaviors are categorized under a few generalized elements. So, for 
example, students are not thinking of capacitances and springs as two dif-
ferent entities, but as the same generalized entity. Third, the bond graph is 
a visual representation of the system from which derivation of the govern-
ing equations is algorithmic. Therefore, it can be automated. As a result of 
this, students are not struggling with and losing confi dence at the early 
stage of the learning process; they are able to more easily transition to a 
stage where they can learn about behavior of systems, interpretation of 
data, etc.

While users of the bond graph methodology claim that it is the “greatest 
thing since sliced bread,” people who have not used it before fi nd it con-
fusing and formidable. Bond graph users sometimes lament about why 
more people don’t “see it their way.” I believe it should be the job of bond 
graph enthusiasts to educate others and introduce them to this technique. 
Through this text I have attempted to do exactly that. My motivation in writ-
ing this book is to help students, especially the fi rst-time users, get familiar 
with the technique and develop confi dence in using it. If an introductory 
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mechatronics course is a fi rst course in a mechatronics sequence, this text 
is intended to be for a second course in that sequence. It is assumed that 
students have some idea about mechtronics systems, its different compo-
nents, and have had some hands-on experience with some of them prior 
to learning how to model mechatronic systems. The structure of this book 
and the handling of different topics have been done with this goal in mind. 
I have purposely stayed away from elaborate mathematical derivations 
and proofs. There are many texts that address that information. I have 
tried to deal with the method from the perspective of a modeler who is 
seeking results. Key concepts are uncovered slowly with a lot of rudimen-
tary examples at the early stage so that readers can develop some confi -
dence in their ability to use the method. In the second half of the book, 
when readers have potentially learned how to develop bond graph mod-
els, I have included simulation results for most of the examples that are 
part of the text. This ensures that readers can model, simulate, and prac-
tice as they progress through the chapters. Although the models can be 
simulated using any software tool that can handle bond graphs, 20Sim has 
been used for all the simulation work in this text. A free version of 20Sim 
can be downloaded from the software Web site. I would strongly encour-
age readers to model the examples in this text for themselves. There is no 
better way to learn than to try things out for oneself.

This book is not a result of many years of research on this topic. Rather, 
it is a result of several years of teaching this topic. Hence, I have tried to 
focus on the student who is learning this topic for the fi rst time. If stu-
dents benefi t from this work it will be the biggest reward for me. Also, I 
consider this text as a “work in progress.” Already I feel that other topics 
could have been added to make the book more comprehensive. But I will 
be realistic about goals and deadlines and hold those back for some future 
publication.
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1

  1 
Introduction to Mechatronics 
and System Modeling 

                     1.1  What Is Mechatronics? 

 The word mechatronics was coined by Japanese engineers sometime in 
the mid-1960s and is derived from the words mechanical and electronics. 
Mechatronics has now become synonymous with multidisciplinary engi-
neering systems that comprise mechanical, electrical, hydraulic, magnetic, 
and so forth, components working together in a synergistic manner. One 
vital ingredient in a mechatronic system that is not part of the term itself is 
a computer or brain (or decision maker). A Mechatronic system, therefore, 
contains multidisciplinary components integrated through a computer or 
decision maker. 

 The most commonly used defi nition for a mechatronic system is: a syn-
ergistic combination of precision mechanical engineering, electronic con-
trol, and intelligent software in a systems framework, used in the design 
of products and manufacturing processes.  

 It is hard to pinpoint the origin of this defi nition since it is found in 
so many different sources, including the 1997 article in  Mechanical 
Engineering  by Steven Ashley (1997). Giorgio Rizzoni, professor at Ohio 
State University, defi ned it as “the confl uence of traditional design meth-
ods with sensors and instrumentation technology, drive and actuator 
technology, embedded real-time microprocessor systems, and real-time 
software” (Rizzoni 2004). Other similar defi nitions are 

 The design and manufacture of products and systems possessing • 
both a mechanical functionality and an integrated algorithmic 
control 

 The interdisciplinary fi eld of engineering dealing with the design • 
of products whose function relies on the integration of mechanical 
and electronic components coordinated by a control architecture 

 Putting intelligence onto physical systems • 

 Designing intelligent machines • 
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 These are all similar sounding statements and convey the same kind of 
information about mechatronics. Figure 1.1 shows a schematic that repre-
sents this fi eld. It is obvious from all these defi nitions and the schematic 
that mechatronics refers to a multidisciplinary fi eld. What is not obvious 
is that the concept of “synergy” is a vital part of mechatronics. Synergy 
implies a new way of designing these systems. In the past, electromechani-
cal devices were designed in a sequential manner; that is, the mechanical 
device was designed fi rst by mechanical engineers who then handed the 
design over to the electrical engineers to add on the electrical components. 
The electrical engineers then handed the design over to the control engi-
neers who had to come up with a control strategy. Synergy in mechatronics 
implies that engineers from different disciplines are involved in the prod-
uct design together and right from the beginning. This ensures that the 
process is concurrent in nature and the product uses the best technology 
and is the most effi cient. 

 Figure 1.2 shows the fl ow of information within a mechatronic system. 
At the core of the system is a mechanical system, for example, an autono-
mous vehicle such as the one shown in Figure 1.3. The state of the system 
is determined by sensors. For this particular autonomous vehicle, sensors 
such as proximity switches, sonar, and so forth, were used. Information 
gathered by the sensors is passed to an onboard microcomputer. Since 
sensor data is analog and computers only work with digital information, 
analog to digital conversion is necessary prior to sending the data to the 
computer. Once sensor information is received by the computer, it decides a 
course of action as per the programmed algorithm. In the vehicle shown in 
Figure 1.3, a PIC based microprocessor called Basic Stamp II was used for 

System
model 

  Mechatronics

Trans-
ducers

  Micro-
control Simulation

Control
circuitry

Electromechanics

Computer-
aided
design

Digital
control
systems

Mechanics
Electronics

Computers
Control

FIGURE 1.1
Schematic showing the fi eld of mechatronics.



Introduction to Mechatronics and System Modeling 3

this purpose. A signal is sent to the actuators, which takes some action on the 
mechanical system. The actuators used in this autonomous vehicle were two 
servo motors attached to the wheels of the vehicle. Just as the sensor–com-
puter interaction requires analog to digital conversion, computer– actuator 
interaction will require digital to analog conversion of data as well. In a way, 
the behavior of mechatronic devices mirrors the way human bodies work. At 
the core is a mechanical system, the human body. The  sensors—eyes, ears, 
and so forth—gather information about the surroundings and the informa-
tion is sent as signals to the brain, the computer. The brain makes decisions 
that are then transmitted to the muscles (the actuators); the muscles move 
the system in the manner desired. 

FIGURE 1.2
Flowchart showing the fl ow of information in mechatronic devices.

D/A
conversion 

Mechanical
systems 
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Mechatronic system: An autonomous vehicle.
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 Concepts of mechatronics are particularly vital in today’s engineering 
world because boundaries between traditional engineering disciplines 
are breaking down in new products. If we consider a reasonably complex 
machine, such as the automobile, we realize that with the passage of time 
the automobile has changed drastically. The basic functionality of an auto-
mobile, that is, using power derived from an internal combustion engine 
to drive the vehicle along a path as per the desire of the vehicle’s controller 
or the driver, has not changed. However, the way this function is achieved 
in an optimal manner has changed signifi cantly. Over time and with tech-
nological advancement, less effi cient systems have been replaced by more 
effi cient ones. In recent times, this has resulted in many purely mechanical 
devices and subsystems being replaced by mechatronic or electronic ones. 
Fuel injectors are nothing new in modern automobiles; they replaced less 
effi cient carburetors quite sometime ago. Antilock brakes are important 
safety devices and are becoming part of the basic package for all auto-
mobiles. Similarly “by-wire” subsystems such as drive by-wire, brake 
by-wire, steer by-wire, and smart suspensions are systems that are slowly 
becoming adapted for automobiles. In all of these cases, the more effi -
cient mechatronic systems are replacing the less effi cient, purely mechan-
ical ones. It seems that we have reached the effi ciency limits of purely 
mechanical devices. To get any further improvements in effi ciency, multi-
disciplinary or mechatronic devices are necessary.  Mechanical Engineering  
magazine published an article a few years ago titled “The end of ME?” 
(Huber and Mills, 2005). It raised the question as to whether the discipline 
of mechanical engineering as we know it is coming to an end. 

 It is quite clear that mechatronics is a buzzword that has become very 
popular due to a practical necessity derived from technological progress. 
Today’s engineers can no longer confi ne themselves to the safe haven of 
their own familiar disciplines. The technological world will force them to 
venture into multidisciplinary territory. The sooner they can adapt to this 
the better suited will they be for success. 

 During the last few years, many textbooks have been published on the 
topic of mechatronics. Some of them are by authors such as Cetinkunt 
(2007); Alciatore (2005); De Silva (2005); Bolton (2004); Shetty and Kolk 
(1997); Karnopp, Margolis, and Rosenberg (2006); and Brown (2001) (see 
References). All except the last two are introductory texts on the topic of 
Mechatronics and they all do a good job of introducing the topic.   

 1.2  What Is a System and Why Model Systems? 

 We have discussed that at the core of the mechatronic world is a mechanical 
system. We have all come across terms such as engineering systems, trans-
mission system, transportation system, digestive system, fi nancial system, 
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system engineering, and so on. These are terms used in different domains 
with the common theme being the concept of a “system.” A system may 
be defi ned as an entity that is separable from the rest of the universe (the 
environment) through physical and/or conceptual boundaries. The system 
boundary is a logical separation between what is inside the boundary and 
what lies in the outside world. Although a system is separable from the sur-
roundings, it can interact with the surroundings (Karnopp, Margolis, and 
Rosenberg, 2006). Systems can receive information and energy from the 
outside world and also send out information and/or energy (Figure 1.4). 
Systems may be made of interacting parts such as subsystems, and sub-
systems are made of components. For example, an automobile can be 
considered an engineering system that interacts with the surroundings. 
It receives input from the surroundings such as input from the driver, fric-
tion from the road, and wind drag; it releases exhaust and heat, makes 
noise, and so forth. The automobile is made of many subsystems such as 
the drive train, transmission, brakes, and more. These subsystems are in 
turn made of components such as pistons, gears, bearings, and pumps, for 
example. While systems are made of components (or subsystems), a system 
is much more than just the sum of all its parts. Even though the parts that 
make up a system can be well designed and work well independently, it 
does not necessarily mean that the system will function well when these 
components are all put together. Ensuring that the system functions well 
after assembly is not a trivial task and has to be done well. For a successful 
fi nal product, a “systems viewpoint” is therefore very important. 

 Systems are dynamic as nature; that is, with the passing of time their 
behavior changes in response to varying external inputs. So understanding 
any system’s dynamic behavior is much more important than knowing its 
static behavior. An understanding of system behavior is a core requirement 
of taking a “system viewpoint.” Models of systems are very useful tools 
for understanding dynamic behavior of systems. System models may be 

FIGURE 1.4
Schematic showing system, system boundary, and inputs and outputs.
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scaled physical models or mathematical models. Scaled physical  models 
may be physical prototypes and provide a hands-on  understanding of 
 system behavior. For many real-life systems, building physical models may 
often be cost prohibitive or not possible for other reasons. At the conceptual 
design stage, building a physical model is not possible either. Mathematical 
models are much cheaper to construct and are extremely powerful if they 
are constructed properly. Building useful mathematical models requires a 
good understanding of system behavior at the component level, and the 
model builder needs to make realistic assumptions. Just as the name sug-
gests, a model is a representation of a system, but it is not necessarily the 
whole system. Models always involve some simplifi cations that are a result 
of assumptions made by the developer. The actual assumptions may vary 
from one situation to another, but some of common approximations that 
are typically used for system modeling are 

 Neglect small effects: Include the dominant effects but neglect • 
effects that have relatively small infl uence. 

 Independent environment: The environment is not affected by • 
what happens in the system. 

 Lumped characteristics: Physical properties for system compo-• 
nents are assumed to be lumped even though they are, in reality, 
distributed across the geometry. 

 Linear relationships: Constitutive relationships are assumed to be • 
linear over the range of operation of the system even though, in 
reality, they may not be exactly linear. 

 Constant parameters: Parameters defi ning component properties • 
are assumed to be constant. 

 Neglect uncertainty and noise: Any uncertainty or noise in the • 
data are neglected. 

 As a result of making these assumptions, the governing equations 
in the system model turn out to be a set of linear ordinary differential 
equations with constant parameters. The solutions of these ordinary dif-
ferential equations are relatively easier to obtain, and they describe the 
dynamic behavior of the system. If these simplifying assumptions are not 
made, the equations would be a set of nonlinear partial differential equa-
tions with time and space varying parameters. This later set of equations 
would perhaps yield a more accurate mathematical model of the system, 
but would not be very useful because these types of equations are much 
harder to solve. Without good and effi cient solution techniques, the model 
would not yield results that would be useful for engineers. The advan-
tages gained by making the simplifi cations far outweigh the bits of infor-
mation that get lost due to these assumptions. 
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 Mathematical system models and their solutions become powerful tools 
in the hands of system designers. They can be used for answering differ-
ent questions such as: 

 Analysis: For given input and known system (and state variables), • 
what would be the output? 

 Identifi cation: For given input history, the output history is known; • 
What would the model and its state variables be? 

 Synthesis: For given input and a desired output, can a system be • 
designed (along with its state variables) such that the system per-
forms the way desired? 

 Learning how to develop useful system models takes time and experi-
ence. We therefore go about the three listed activities in the order that 
they are stated. Beginning system modelers spend a lot of time learning 
to “analyze” systems. Only after a good bit of experience do they ven-
ture into system “identifi cation.” And “synthesis” requires the maximum 
amount of experience in the fi eld. 

 Because a model is somewhat a simplifi cation of reality, there is a great 
deal of art in the construction of models. An overly complex and detailed 
model may contain parameters virtually impossible to estimate and intro-
duce irrelevant details that may not be necessary. Any system designer 
should have a way to fi nd models of varying complexity so as to fi nd 
the simplest model capable of answering the questions about the system 
under study. A system could be broken into many parts depending on the 
level of complexity one needs. System analysis, through a breakdown into 
its fundamental components, is an art in itself and requires expertise and 
experience.  

 In this book we will go through a systematic methodology of develop-
ing models of engineering systems so that their dynamic behavior may 
be studied. Unless otherwise specifi ed, we will always make the assump-
tions that we have discussed here. Model development and its use will 
be focused mainly towards the process of analyzing system behavior. 
We hope that with some practice in the area of system analysis, students 
would be ready to start tasks in system identifi cation and design.   

 1.3  Mathematical Modeling Techniques Used in Practice 

 Many different approaches have been used in the development of system 
models. One of the most common methods is deriving the state–space 
equations from fi rst principles, specifi cally Newton’s laws for mechanics, 
Kirchoff’s voltage and current laws for electrical circuits, and so forth. These 
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different equations are then numerically solved to obtain  system responses. 
There are several graphical approaches that are popular among different 
technical communities. One approach is linear graphing, where state–
space equations are modeled as block diagrams connected by paths show-
ing the fl ow of information from one block to another. Figure 1.5 shows a 
SIMULINK model of a permanent magnet DC motor built by joining differ-
ent SIMULINK function blocks with proper information fl ow paths. 

 Control engineers also like to use a block diagram approach, but with 
the Laplace transformed form of the governing equation. This can be 
called the transfer function form, and the operations are carried out in the 
s, or frequency, domain rather than the time domain. 

 An important step in all of these methods is the derivation of the gov-
erning relationships. Within a single domain (ME, EE, etc.) deriving the 
governing equations may not be diffi cult because we may be within our 
specifi c area of expertise; but when we work in a multidomain environ-
ment, it becomes somewhat more diffi cult for someone who is not suitably 
trained. The root cause of this diffi culty is in how we have been trained. 
Within each discipline of engineering, system representation and solution 
techniques have evolved along different paths. We are trained to think 
that statics, dynamics, circuit analysis, electromagnetism, hydraulics, and 
so on are different subject areas where different solution techniques are 
used for problem solving. These artifi cial barriers between disciplines 
highlight the differences without providing a hint of the underlying simi-
larities that are much more prevalent than the perceived differences. 

 This concept of similarities among different disciplines has been used 
in the modeling method called bond graphs. Bond graphs represent fl ow 
of power within the system, and the bonds that tie together different 
parts of the model are called power bonds. This method looks similar to 
the signal fl ow graph method but is not quite the same. The biggest dif-
ference is in what the bonds represent. In the signal fl ow approach, the 

FIGURE 1.5
A signal fl ow diagram of a permanent magnet DC motor modeled in SIMULINK.

1 

2 
TL 

1 
s 

1 1 s 
W 

simout1 

To workspace

W 

B 

B 

.K. k_T + +
− −

+ 
−

+ 1/J 
−Va 

ia 

iaRa Ra 

Ra 

ea 
k_E 

k_E 

T_em



Introduction to Mechatronics and System Modeling 9

bonds that connect different blocks in the model transmit information 
about a single variable. In bond graphs the bonds transmit information 
of two variables, the product of which is power. Figure 1.6 shows the 
bond graph representation of the same motor whose signal fl ow model is 
shown in Figure 1.5.  

 In our presentation here we have chosen the bond graph approach to 
model systems. The most important reason for this is that within the 
bond graph method, basic components that make up systems in different 
disciplines may be represented using a few generalized components. The 
similarities that already exist among the different disciplines are used 
very effi ciently by this method. Thus, this method is very well suited 
for modeling mechatronic systems. Bond graph method is based on the 
fl ow of power. Power is a product of two quantities, force and velocity 
or voltage and current (these are called effort and fl ow as generalized 
quantities). Every component in a mechatronic system has to deal with 
these two quantities that make up power. Drawing of the bond graph 
representations is algorithmic and, as a result, the user can become pro-
ductive quite quickly. The derivation of equations from the bond graph 
representation of a system is algorithmic as well, so a computer program 
can easily do it. Even if the user has to derive the mathematical equations, 
the algorithmic approach is a lot more robust and confi dence generating 
for the user than any other method. All these advantages make the bond 
graph method a very powerful tool for modeling mechatronic systems. 

 Figure 1.7 shows a schematic of how the bond graph method works. 
A bond graph model showing power fl ow among different system com-
ponents is drawn. The bonds are assigned causal information to the 
bonds. This leads to the process of deriving the governing equations for 
the system. The equations, also called the state–space equations, are a set 
of coupled ordinary differential equations. These equations are solved 
numerically (usually). And the solution provides information about sys-

tem response.   

FIGURE 1.6
A bond graph representation of a permanent magnet DC motor.
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  1.4  Software 

 Several commercial software tools use bond graphs to model systems 
20Sim, Symbols2000, AMESIM, and CAMP-G are four such tools. Using 
the editing features of these tools the user may build up the bond graph 
model and then perform necessary simulation studies. Most of these tools 
have an object-oriented modeling feature as well. This means, for exam-
ple, that if the user wants to use a motor in a model, an object icon for a 
motor already exists in the software database and the user just needs to 
add it to the model. This feature makes modeling even easier for people 
who do not want to deal with the details of what happens within these 
objects but want to focus entirely on putting together a system model. 
Underneath the object icon, though, the model is still bond graph based 
in these tools. 

  In this text we have used 20Sim for all the simulation models and analy-
ses results that have been reported. This is only because the author is most 
familiar with this particular tool and has had a very pleasant experience 
working with it. 20Sim has a very user-friendly editing capabilities that 
the user can build a bond graph model with quite quickly. The solution 
algorithms are robust as well as fast. The user can quickly visualize the 
result of their work. Users can easily revise the constitutive relationships 
for all the basic components in order to model advanced behavior. One of 
the things I have to tried to do throughout the text is perform simulations 

FIGURE 1.7
Flowchart showing the bond graph based modeling process.
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and demonstrate how the simulation results look for almost every example 
model that has been developed. I feel this is necessary for students learning 
this technique for the fi rst time. In the example simulations included in the 
book, I have not put great effort in using exact representative data. In a few 
cases when such data was readily available, I have made use of it. But in 
many others, I have made it up using engineering judgment. Also, in some 
example  simulations, I have specifi ed units for parameters and in others I 
have not. In cases where units are not specifi ed, parameters used are still in 
consistent units; throughout this text I have used SI units only.  

Problems

  1.1.    Choose a mechatronic system or subsystem. Some possible 
examples are steer-by-wire, autofocus camera, disk drive, scan-
ner, and microwave. Study the physical system (if available) and 
or information about the system carefully to understand the sys-
tem boundaries, what type of input the system receives, and what 
output it provides. If you designed such as system, what would 
possible design specifi cations be? What are some of the design 
constraints? What sensors and actuators would be used in this 
system?  

  1.2.   One of the mechatronic systems that has been in the news a lot 
is the Mars Rover. The Mars Rover has been very successful in a 
harsh environment and at a remote location. Research the Mars 
Rover, and identify the different components that make this a 
mechatronic system. Also research how the designers achieved 
the solution to tough design problems associated with the Mars 
Rover and its mission.  

  1.3.   Many of the systems in today’s automobile have transitioned from 
purely mechanical to mechatronic systems. Pick one such system, 
and identify how the task this system did was done in the old 
design versus how it is done in the newer version. What compo-
nents are replaced and with what have they been replaced?     
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  2  
Bond Graphs: What Are They? 

                       System modeling has evolved along different paths within different 
 disciplines. For mechanical systems, traditional training teaches us to rely 
on Newton’s equations of motion to model system behavior, while for elec-
trical circuits, Kirchoff’s laws determine the basic system behavior. For 
hydraulic systems sometimes the electric circuit analogy is used as well. 
The different disciplines that we mention here, such as mechanical, electri-
cal, hydraulic, and so forth, are artifi cial divisions we have used for many 
ages to study system behavior. These artifi cial divisions were formed a long 
time ago to handle information as well as for the purposes of keeping edu-
cation and training manageable. Real-world systems often contain compo-
nents from many different domains interacting with each other. Although 
the analysis techniques developed by experts in various disciplines have 
been different, the inherent behavior of systems is essentially the same. The 
under lying governing law is the same, that is, conservation of energy (or 
power). Leibnitz alluded to this concept (Mukherjee and Karmakar, 2000) 
when he stated, “The forces are of two kinds, namely dead and live. The 
dead force depends on position and/or confi guration, and the live force is 
proportional to the square of velocity. The sum of the two forces in the uni-
verse remains constant.” If the word force is replaced by the word energy, 
Leibnitz was actually stating the conservation of energy principle. Even 
though the immediate successors of Leibnitz and Newton found that the 
problems of mechanics are more easily solved using the energy approach, 
the Newtonian approach of using actions and reactions became more pop-
ular. Part of the reason may be because the concept proposed by Leibnitz 
and its usefulness was unclear as many other areas of the physical sciences 
(such as electricity and magnetism) were not yet developed at that time. 

 In the study of engineering systems, the diverse methodologies that 
exist within different disciplines, their unique terminology, and names for 
components pose a problem for students and experts whose training is in 
one but not all disciplines. The need for a more unifying approach was felt 
a long time ago. Bond graphs is one method that provides a very logical 
and succinct way of dealing with the variety from different disciplines. 

 In the 1960s Professor H. M. Paynter of MIT proposed a method of sys-
tem  modeling that was both unifying and algorithmic. He called the tech-
nique bond graphs, and it is based on power fl ow diagrams (as opposed 
to signal fl ow) and is independent of physical domain. The approach is 
simple yet very powerful, especially when one is working in areas that 
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are multidisciplinary. Although earlier applications of bond graphs were 
confi ned to mechanical and electrical systems, future developers such as 
Karnopp, Rosenberg, Thoma, Brown, and others, have successfully applied 
the bond graph technique to systems such as hydraulic, thermodynamic, 
magnetic, and even in many social science applications.  

 When it was developed (in the mid-1960s), only a small group of individ-
uals realized its importance. Now, when artifi cial barriers between  different 
disciplines are breaking down and new interdisciplinary areas such as 
mechatronics, biomechanics, MEMS, and NEMS are becoming so  important, 
the need for a modeling technique such as bond graph is paramount. In the 
rest of this chapter, we will discuss more about bond graphs—how they are 
developed, what they represent, and more. Therefore, the overall objectives 
of this chapter will be to 

   Introduce students to bond graphs, its basic concepts and • 
usefulness.  

  Discuss the concepts of energy exchange and relate it to fl ow and • 
effort exchanges.  

  Introduce the generalized variables of power and energy.  • 

  Discuss all the basic elements that could occur in a bond graph • 
model.  

  Highlight many of the conventions used and their meanings.     • 

 2.1  Engineering Systems 

 Real engineering systems are multidisciplinary. Consider any of the many 
engineering systems that we use in our daily lives. For example, the automatic 
car window system is a basic feature of most modern automobiles. The pur-
pose of this system is to move the glass window up or down as per instruc-
tions received from the user in the form of a button push. The power needed 
to move this reasonably heavy piece of glass is provided by an electric motor. 
There is a logic circuit that has to determine the action based on the intention 
of the user, such as holding the window at a desired height,  moving it all the 
way up or down, and so forth. Although it is not yet available in automatic 
window systems, a form of safety device using sensors is being  developed 
as well. The safety system would stop the window if a child’s (or an adult’s) 
hand got caught between the moving window and the door frame. We see, 
therefore, the system consists of components from at least two disciplines. 
The window (and its inertia) is mechanical, the motor is an electrical device, 
and there is a control system, some possible sensor use, and safety features. To 
model the behavior of this system, one needs to consider the behavior of all its 
components, which happen to be from different disciplines of engineering. 
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 In the car window system, at least two domains are involved. In any 
mechatronic system many other domains may be involved as well. 
Examples of physical phenomena (or domains) involved in real engineer-
ing systems are 

  1.    Mechanical translation  

  2.   Mechanical rotation  

  3.   Hydraulic  

  4.   Electrical (static and current) and electronics  

  5.   Magnetic  

  6.   Thermal   

 In a sense all these domains are artifi cial divisions that have been used 
for ease of operation. In the bond graph and other energy-based approaches 
in system modeling, it will be apparent that many components in differ-
ent domains are quite similar in behavior. In the bond graph technique we 
will use this similarity to our advantage. 

 Systems are divided into subsystems, which can be subdivided into com-
ponents. For example, an automobile can be considered a system that con-
sists of many subsystems such as: drive train, steering, braking, exhaust, 
and so on. Subsystems are in turn made of components that behave in a 
predictable manner. Component behavior is determined by its constitu-
tive relationship, that is, every component’s behavior follows some basic 
law of physics. For example, the behavior of a spring (an elastic element) is 
 governed by the simple linear spring equation where the displacement and 
the force are linearly related to each other through the spring constant: 

 Force =  spring constant * displacement =  kx

 Or the voltage drop across an electrical resistance in a circuit is equal 
to the product of the resistance value and the current that is passing 
through it: 

  Voltage =  Resistance * Current =  RI       

 In these examples the spring or the electrical resistance are components. 
These may be part of subsystems that make up more complex systems; 
and the spring equation and the Ohm’s law are constitutive equations for 
these components respectively. Although the examples used here are both 
linear, constitutive equations can be nonlinear as well, such as the drag 
force exerted by the wind on a car driving down the highway is propor-
tional to the square of the velocity of the car. We will discuss the constitu-
tive relationships a little later.   
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 2.2  Ports 

 As was mentioned earlier, different parts (or subsystems) of an engineering 
system exchange power. Places at which subsystems can be interconnected 
are places at which power can fl ow between the subsystems. Such places (or 
points on the subsystem) are called ports and actual subsystems with one 
or more ports are called multiports. Figure 2.1 shows a schematic with two 
ports. Power enters through one of the ports and leaves through the other. 
Sometimes the power may be exchanged along one path, which will mean 
that the subsystem/component has only one port. 

 A system (or component) with a single port is called a 1-port system (or 
component).   A system (or component) with two ports is called a 2-port 
system (or component). 

 Figure 2.2 shows a variety of multiport systems. A motor with electri-
cal input at one port and rotational mechanical output at a second port 
is a 2-port system. Similarly, a pump can be considered a 2-port system 
with mechanical torque and rotation coming in at one port and the pres-
sure difference and fl uid fl ow rate exiting at the other port. A slider crank 
mechanism that converts rotary motion into linear motion (or vice versa) 
is a 2-port system with rotational power associated with one port and lin-
ear power associated with the other. 

 A separately excited DC motor with two electrical ports and a  mechanical 
port has three ports with power for the magnetic fi eld coming in at one 
port, power for the armature coming at a second port, and rotational out-
put at the third. 

 In this context it should be understood that the examples mentioned 
here are relatively simple. In a real system the level of complexity may be 
signifi cantly higher. One of the fundamental skills necessary in analyzing/
modeling/designing systems is the ability to break down a system into 
subsystems and components in a way that is useful or understandable for 
us. This is a skill that has to be acquired through experience, careful obser-
vation, and practice in attempting to breakdown real systems into simpler 
parts. We will offer an example here to illustrate the process. 

 Figure 2.3 shows a schematic of a system consisting of a motor that is 
receiving electrical power. The motor rotates a shaft supported on bear-
ings. The shaft is connected to a drum that rotates along with the shaft 
and raises or lowers a mass that is attached by a cable to the drum. If we 

Subsystem Power out Power in 

FIGURE 2.1
Schematic showing power fl owing in and out of a subsystem.
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observe closely we can see that the system can be subdivided into several 
subsystems. One may list them as: 

   1.   Motor  

  2.   Output shaft and bearings  

  3.   Drum, cable, and mass   

FIGURE 2.2
Examples of subsystems that have one or more ports (compressors, motors, dampers, 

speakers, etc.).
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 In coming up with this division we consider the system to be made of 
three things: the power source (motor), the power transmission (shaft), and 
the power user (mass hoisting device). Further examinations of these sub-
systems indicate that these can be divided into individual components. For 
example, a DC motor can be modeled as a circuit with an electrical source, 
an armature resistance, and an armature inductance. The shaft may be 
treated as a torsional spring, the bearings treated as power dissipative 

FIGURE 2.3
Schematic of a motor driven system.
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devices or rotational resistances, the drum is an inertia element, and the 
cable could be treated as rigid or elastic. If it is assumed to be elastic, then 
it is a linear spring. The mass that is being hoisted is an inertia element as 
well. The list of all the separate elements that are in the system will be 

   1.   Armature resistance  

  2.   Armature inductance  

  3.   Electrical power source  

  4.   Rotational spring (shaft)  

  5.   Rotational damping (bearing resistance)  

  6.   Drum inertia  

  7.   Cable, linear spring  

  8.   Hoisted mass  

  9.   Gravity effects on the mass   

 Apart from these components we also need to recognize that there are 
two locations in the system where power is being transferred from one 
domain to another. In the motor, power goes from the electrical domain 
to rotational domain (via the magnetic domain) and at the drum, power is 
being transferred from rotational motion to linear translation. Figure 2.4 
shows the same system with some more details of the system included. 

FIGURE 2.4
Schematic of the motor driven system with more details of individual subsystems.
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 This example illustrates the process of how one can go about dissecting 
a system to identify all the important subsystems as well as components. 
While doing this, one has to also identify locations where power conver-
sion from one domain to another happens. This is a critical step in system 
analysis and modeling and needs to be practiced by students.   

 2.3  Generalized Variables 

 Before we start modeling systems and components, we will defi ne a few 
generalized quantities that will be useful in our discussion. The method 
that we will use throughout the text is based on power and energy fl ow. 
To introduce this concept we will fi rst defi ne four generalized variables. 
These variables are of two types: 

 1.    Power variables   

 2.   Energy variables    

 2.3.1  Power Variables 

 When power travels through a port, the two variables that are actually 
passing through are called power variables. And the product of these two 
is equal to power. These variables are also the same two variables that 
fl ow from one port to another when two multiports are connected. All 
power variables are either an effort or a fl ow. At every port, therefore, 
there are two power variables: 

   1.   Effort , variable denoted as  e(t)   

   2.  Flow , variable denoted as  f(t)    

 such that, 

  Power = e(t) * f(t)   

 2.3.2  Energy Variables 

 Related to the two power variables are two energy variables. They are 

   1.   Momentum , variable denoted as  p(t)   

  2.  D isplacement , variable denoted as  q(t)    
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 Relationship between the variables are 

 p t( ) = e(t) ⋅dt∫ , is the generalized momentum variable; it can also be 
thought of as accumulation of effort over time. 
 q t( ) = f (t) ⋅dt∫ , is the generalized displacement variable; it can also 
be thought of as accumulation of velocity over time. 

 The energy variables may be used to represent the energy in two 
 possible ways. 

 Since power is the rate of change of energy, we can write: 

   E = (Power)∫ dt = e(t) ⋅ f (t)dt∫ = e(q) ⋅dq(t) = f (p) ⋅dp(t)∫∫  (2.1) 

    This means energy can be written either as a function of displacement 
variables or as a function of momentum variables, as follows: 

   E q( ) = e(q) ⋅dq∫  (2.2) 

    or 

   E p( ) = f (p)dp∫  (2.3) 

    For example, kinetic energy associated with a mass moving at a veloc-
ity may be written as K.E. = ½ (mv 2 ) = ½m (mv) 2  = ½m ( p ) 2 , a function of 
momentum. 

 And potential energy associated with a mass held at a certain height 
may be written as P.E. = mgh = mg ( q ), a function of displacement.   

 2.3.3  Tetrahedron of State 

 A graphical representation of the relationships between the four general-
ized variables just defi ned is through the tetrahedron of state. As Figure 2.5 
shows, the four vertices of the tetrahedron are associated with four differ-
ent generalized variables:  e, f, p, q .              

 The four generalized variables that make up the tetrahedron of state 
have specifi c meanings within different engineering domains. We will 
consider some of them here. In the domain of mechanical translation, the 
effort variable is the force, and the fl ow variable is the velocity of motion. 
The momentum variable is the linear momentum (mass × velocity), 
and the displacement variable is the distance moved. In the electrical 
domain, the effort variable is the voltage drop or potential difference 
and the fl ow variable is the current (fl ow of charges). The displacement 
variable is the accumulation of current, that is, charge. The momen-
tum variable in the electrical domain is a lesser-known quantity called 
fl ux linkage. Table 2.1 lists all the variables and their units within four 
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 engineering domains mechanical translation, mechanical rotation, elec-
trical, and hydraulic. 

 As is clear from the table: even though the effort and fl ow variables 
are known by different names in different domains, the product of these 
two variables is always power. In any system, therefore, when power is 
transmitted from one part of the system to another, there are actually two 
of these generalized variables that are involved, that is, the effort and 
the fl ow variables. Power can be viewed as the common currency that is 
exchanged between different parts of any system such that it is always the 
product of fl ow and effort. 

TABLE 2.1

Generalized Variables in Different Domains 

Generalized 

Variables

Mechanical 

Translation

Mechanical 

Rotation Electrical Hydraulic

e (effort) Force, F(N) Torque, T (N-m) Electric 

  potential, 

  V (Volt)

Pressure, 

  P (N/m2)

f (fl ow) Velocity, 

  v (m/s)

Angular velocity,   

  ω (rad/s)

Current, i 
  (A = C/s)

Volume fl ow 

  rate, Q (m3/s)

p (momentum) Linear 

  momentum, 

  p (N-s)

Angular 

  momentum pT 

  (N-m-s)

Flux linkage 

  variable, 

  λ, (Vs)

Pressure 

  momentum 

  Pp(N-s/m2)

q (displacement) Displacement, 

  d (m)
Angle, θ (rad) Charge, Q, 

  (Columb = As) 

Volume, V (m3)

Power F * v (watts) T * ω (watts) V * i (watts) P * Q (watts)

Energy Fdx∫ , VdP∫   
Tdθ∫ , ωdpT∫ edq∫ , idλ∫   

PdV∫ , QdpP∫

FIGURE 2.5
Tetrahedron of state.
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      2.4  Bond Graphs 

 A bond graph is a mechanism for studying dynamic systems. Bond graphs 
are used to map the fl ow of power from one part of a system to another. In 
the simplest form, a bond graph consists of subsystems linked together by 
lines representing power bonds. 

 Let us consider a generic system shown as a schematic in Figure 2.6. A 
motor is connected to a pump. The motor receives electrical power, and 
the output from the pump is pressurized fl uid at a certain volume fl ow 
rate.                

 This block diagram representation shows the fl ow of power from one 
part of the system to another. In a sense this is the starting point of a bond 
graph representation. This is sometimes called a word bond graph and 
will be discussed in the next section. 

 Bond graphs are not the only graphical means of system representation. 
There are other graphical ways of representing systems. Block diagrams 
and signal fl ow graphs are two such well-known techniques. Although 
they are similar to bond graphs, they are not quite the same. In both block 
diagrams and signal fl ow graphs, the links (arrows) used to link parts of a 
system carry only one type of information. In bond graphs (as discussed a 
little later) the half-arrows, or power bonds, carry power information that 
is made of two variables, effort and fl ow. 

  2.4.1  Word Bond Graphs 

 When modeling a complex system, one has to start with a word bond 
graph. In word bond graphs different parts of the system are represented 
by their names rather than as specifi c components. For example, the 
system just discussed in Figure 2.6 can be represented as a word bond 
graph in a way shown in Figure 2.7. Two types of arrows are used in bond 
graphs.                

FIGURE 2.6
Schematic showing power path for a multidomain system.

Electrical power 
source Motor Pump

HydraulicMechanicalElectrical

FIGURE 2.7
Word bond graph of the schematic in Figure 2.6.

Battery or
another electrical Motor Pump

e e e

fff
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 The half-arrow            is used to represent power bonds; 
power bonds carry information about two variables and the direction of 
power bonds indicate the fl ow of power when it is positive. The full arrow 
           indicates fl ow of information with little or negligible power 
involved. A full arrow will carry information about only one variable and 
is called a signal bond. An example of the use of signal bond is when a 
switch is turned on or a signal is used to control a process. 

 In Figure 2.7 the reader should note that the  e  and  f  symbols written 
above and below the half-arrows represent the fl ow of effort and fl ow 
variables. This is a convention used in bond graphs to reiterate that power 
bonds are made of fl ow and effort. A note of caution regarding this con-
vention: while the power bond shows the direction of positive power fl ow, 
the half-arrow does not show the direction of either effort or fl ow. As 
of now, we do not know their directions. In the next chapter we will be 
 discussing their directions in Section 3.4. 

 While word bond graphs are good initial steps in representing a sys-
tem for better understanding, we need to go a few steps beyond them by 
including individual components in the representation. This is necessary 
in order to develop a fundamental understanding of system behavior. 
System behavior is dependent on the behavior of individual components 
in a system, and we need to incorporate them in the model representation. 
Consider for example an RLC circuit. Figure 2.8 shows such a circuit. In 
this circuit, there are four elements: a source of effort (battery), a resis-
tor, an inductor, and a capacitor. They are all connected in series, which 
means that the current through all of these elements will be the same 
at any point in time. Also, the power supplied by the battery is divided 
amongst the other three elements. The shaded arrows in the circuit indi-
cate the fl ow of power (coming from the battery and being distributed 
amongst all the other components). The bond graph representation of this 
system is shown in the fi gure as well. At this point we are not explaining 
all parts of the bond graph model, but one can see that the power fl ow is 
coming into the system from a source (Se) and is being distributed among 
three elements (I, C, and R). 

                Similarly, Figure 2.9 shows a simple mechanical system. It is a spring 
mass damper system that is being driven by an external force. The shaded 
arrows show how the power is fl owing through the system. The power 
coming into the system is divided into three parts, one each for the mass, 
the spring, and the damper which are all attached at one point and this 
point moves with one velocity. Thus, just as the RLC series circuit has one 
current fl owing through all the elements, the velocity of all the elements 
at this point is the same. As per this logic, the elements in this mechanical 
system will also be connected to each other in “series.” The bond graph 
representation, which is directly derived from the power fl ow in this sys-
tem, is also shown in the fi gure and is identical to the bond graph model 
for the RLC circuit. These examples are presented here to introduce 
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FIGURE 2.8
An RLC circuit and the corresponding bond graph representation.
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Se1

I1

1 Junction

FIGURE 2.9
A spring–mass–damper system and the corresponding bond graph.
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the concept of bond graphs and how they could be drawn. These will 
be  discussed in more detail and in a more formal manner in the next 
 chapter. But before we get there, it is necessary to learn about represent-
ing a system in terms of all its basic components, because the behavior of 
all the basic components will determine the system behavior. In the next 
few sections we will discuss some of the basic components that we would 
come across in all systems.                   

 2.5  Basic Components in Systems  

 In our study of the basic components in engineering systems, we will 
divide them into subcategories as 1-port components, 2-port components, 
and 3- or higher-port components. 

  2.5.1  1-Port Components  

 There are three main 1-port components. These are categorized by the nature 
of their behavior. One way to understand the differences between these is to 
consider what type of energy/power is handled by each of these 1-port com-
ponents. If we consider energy fl ow as a result of work done on a mechanical 
system, we have three possible options, as shown in Equation 2.4: 

   

ΔW = F vdt∫ = F dx∫ = ΔEpotential

ΔW = v Fdt = v dp∫ =∫ ΔEkinetic

ΔW = (Fv)dt∫ = ΔEdissipative  

(2.4)

    

 Similarly, for an electrical system, the energy fl ow as a result of energy 
input to the system has three possible options, as shown in Equation 2.5:  

  

ΔW = V idt = V dq∫ =∫ ΔEelectrical

ΔW = i Vdt∫ = i dλ∫ = ΔEmagnetic

ΔW = (Vi)dt∫ = ΔEdissipative  

(2.5)

    

 A pattern emerges from the nature of the energy distribution among dif-
ferent types of elements. The potential energy in the mechanical domain 
is similar in nature to “electrical” energy in the electrical domain. The 
kinetic energy is similar to the magnetic, and the dissipative energy is 
similar in the two domains. These similarities are more apparent once one 



Bond Graphs: What Are They? 27

starts considering the basic variables that constitute these energy expres-
sions. A close look will reveal that they are all made of some of the four 
generalized variables, and the energy types that are being identifi ed as 
similar are made of the same generalized variables within the respective 
domains (e.g., the potential and electrical energies are made of displace-
ment and effort variables, etc.). Similarities such as these exist among 
these two and other domains, such as hydraulic, thermal, and so forth. 
Using these energy domains as guidelines, there are three types of basic 
1-port elements (that receive energy) and the energy input to a system gets 
distributed among these elements if they are present. These basic element 
types are discussed in detail in the next few sections. 

  2.5.1.1  1-Port Resistor: Energy Dissipating Device 

 The 1-port resistive element is a power dissipating device, that is, the 
power that this element receives is lost from the system in the form of heat 
(most commonly) or in some other form of energy. These elements cannot 
store energy. Figure 2.10 shows some examples of these types of devices in 
different domains. There are three common resistance elements: an elec-
trical resistor, a mechanical damper, and hydraulic fl ow through a tube 
where there is pressure loss due to wall roughness. 

               All these resistance elements from different domains behave the same 
way. These can be represented by a 1-port general resistance element. In 
the bond graph representation, it is shown as: 

  

e
f R

R1

FIGURE 2.10
1-port resistive elements: (a) electrical resistance, (b) mechanical damper, and (c) fl ow 

through a tube.

(b)  (a) 
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F

V

e

i

(c)  

Q Q 

P2P1

Wall roughness
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          The general constitutive relationship for the resistance element is 

   e = Rf  (2.6)    

 For the electrical resistance this relationship is 

      Voltage = R * (current), 

where  R  is the electrical resistance. 

 For linear mechanical damping this relationship is 

      Force = B * (velocity), 

where  B  is the damping coeffi cient. 

 For rotational mechanical damping the relationship is 

   Torque  = B * (angular velocity), 

where B is the rotational damping coeffi cient. 

 For the hydraulic resistance the equation is 

      P = R * (volumeflowrate), 

where  R  is hydraulic resistance. 
 In terms of the generalized variables, the rate of energy dissipated is 

the product of  e  and  f , the effort and fl ow variables. Thus, the power dis-
sipated may be written as: 

   Power(t) = e(t) f (t) (2.7) 

    For the specifi c domain of electrical systems, the power dissipated may 
be written as:  

     Power(t) = Volts(t)Current(t)

 Specifi c relationships for other domains are listed in Table 2.2. 
 Although the examples shown here are all linear relationships, the resis-

tance relationship does not necessarily have to be linear. There are many 
practical situations where the resistance elements could have nonlinear 
relationships. Some of them will be discussed in this text in due course. 

     2.5.1.2  1-Port Capacitor: 1-Port Energy Storage Device 

 The 1-port capacitor is a power storage device that stores and releases 
energy but does not dissipate it. The constitutive relationship for the 
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1-port capacitor relates the displacement variable with the effort variable 
and can be written as: 

   e = q/C  (2.8) 

                The bond graph representation of the 1-port capacitor is 

  

e
f = dq/dt

C
C1  

        While writing the effort and fl ow variables above and below the bond, 
the fl ow is written as a derivative of the displacement (unlike in the case 
of the resistance element). This is because the constitutive equation for 
a capacitive element relates effort and displacement, while the resis-
tive element in the constitutive relationship relates the effort and fl ow 
directly. 

 Figure 2.11 shows some examples of capacitive elements in different 
domains. The electrical capacitor and the mechanical spring are both 
capacitive elements. In the hydraulic domain, the potential energy stored 

FIGURE 2.11
1-port capacitive elements: (a) linear electric capacitor, (b) mechanical spring, (c) fl uid stored 

at some height or accumulator, and (d) torsional spring.
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TABLE 2.2

Examples of R-Elements 

Domain Specifi c 

Relationship 

Units for the 

Resistance Parameter

Power 

Dissipated

Generalized variables e = Rf; f = e/R ef = e2/R = f 2R

Mechanical translation F = B v; v = F/B B = N-s/m Fv = F2/B = v2B

Mechanical rotation T = Bω; ω = T/B B = N-m-s Tω = T2/B = ω2B

Electrical V = RI; I = V/R R = V/A = Ohms (Ω) VI = V2/R = I2R

Hydraulic P = RQ; Q = P/R R = N-s/m5 PQ = P2/R = Q2R
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in a fl uid that is stored in a tank at a height serves as a capacitive element. 
So does an accumulator in a hydraulic circuit. The specifi c relationships in 
each domain can be represented as: 

 For the electrical domain the relationship is 

      V = Q
C

; i.e., voltage = charge/capacitance 

 For the translational mechanical domain the relationship is 

  F = k * x; force = spring constant (displacement) 

 For the rotational mechanical domain the relationship is 

  T = k t  * θ; Torque = rotational spring constant (angular displacement) 

 For the hydraulic domain the relationship is 

  P = V/C; pressure = volume/capacitance 

 Energy stored in these types of devices may be written as an integral of 
instantaneous power. And instantaneous power is equal to the product of 
instantaneous fl ow and effort variables. The derivation below is written 
for the electrical specifi c quantities but is applicable for all domains. 

   

Energy(t) = Power(t)dt = e(t) f (t)dt∫∫ = V(t)I(t)dt = V(t)
dQ(t)

dt∫∫ dt

= V(t)C
dV(t)

dt∫ dt = 1

2
CV 2 = 1

2C
q2  

(2.9)

 

    In terms of generalized variables, the energy stored in a capacitive  element 
can therefore be expressed as:  

   E = 1

2

q2

C
 (2.10) 

    Table 2.3 summarizes pertinent information about capacitive elements 
in different domains. 

     2.5.1.3  1-Port Inductor/Inertia: 1-Port Energy Storage Device 

 The 1-port inductor is a second type of single-port energy storage device. 
Although, like the capacitor element the inductor is an energy storage 
device, we need to consider the inductor separately because the constitu-
tive relationship (i.e., the nature of its behavior) is different from the capaci-
tor elements. For the capacitor elements, the constitutive relationship is a 
relationship between the effort and the displacement variables. For the 
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inductor elements, the constitutive relationship is between the momentum 
and the fl ow variables. The general form of the constitutive relationship is 

   p = If  (2.11) 

    where  p  is the momentum variable,  f  is the fl ow variable and  I  is inertia (or 
inductor) parameter for the component. 

 The bond graph representation for the inductor element is represented as: 

  

e =dq/dt

f
I

I1

          While writing the effort and fl ow variables above and below the bond, 
the effort is written as a derivative of the momentum (unlike the case of 
the resistance element or the capacitive element). This is because the con-
stitutive equation for an inductive element relates momentum and fl ow, 
while for the resistive element, the constitutive relationship relates the 
effort and fl ow directly. The specifi c constitutive relationships in different 
domain are: 

 For the electrical domain: 

      λ = Li ; Flux linkage = (Inductance) (current) 

 For the translational mechanical domain: 

  p = mv; momentum = (mass) (velocity) 

TABLE 2.3

Examples of C-Elements 

Domain Specifi c 

Relationship 

Units for the 

Capacitance Parameter Energy Stored

Generalized 

  variables
E = q/C; q = eC

E = 1

2

q2

C
= 1

2
Ce2

Mechanical 

  translation
F = k x; x = F/k k = N/m

E = 1

2
kx2 = 1

2

F2

k

Mechanical 

  rotation
T = ktθ; θ = T/kt kt = N-m/rad

E = 1

2
kt θ2 = 1

2

T 2

kt

Electrical V = q/C; q = VC C = A-s/V = Farad (F)
E = 1

2

q2

C
= 1

2
CV 2

Hydraulic P = V/C; V = PC C = m5/N
E = 1

2

V 2

C
= 1

2
CP2
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 For the rotational mechanical domain: 

  p = Jω; angular momentum = (Polar momentum of inertia) (angular 
velocity) 

 For the hydraulic domain: 

  P p  = IQ; pressure momentum = (Hydraulic inertia) (volume fl ow rate) 

 Some actual components that behave the same as these types of ele-
ments are mass or inertia in the mechanical domain, electrical inductance 
of a coiled wire that carries a current, and the inertia of a mass of fl uid 
that fl ows through a conduit. Figure 2.12 shows schematics that represent 
these types of elements in the different domains. 

               The energy stored in these devices may be written as an integral of 
instantaneous power. And instantaneous power is equal to the product of 
instantaneous fl ow and effort variables. The derivation below is written 
for the electrical specifi c quantities but is applicable for all domains. 

   

Energy(t) = Power(t)dt = e(t) f (t)dt∫∫ = V(t)I(t)dt = dλ(t)
dt

I(t)∫∫ dt

= 1

L
λ(t)

dλ(t)
dt∫ dt = 1

2L
λ2 = 1

2
LI2

 (2.12) 

    In terms of generalized variables, the energy stored in an inductive ele-
ment can be thus expressed as:  

   E = 1

2L
p2 (2.13) 

FIGURE 2.12
1-port inductive elements: (a) electrical inductor, (b) mechanical mass, (c) rotational inertia, 

and (d) fl uid inertia.
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    Table 2.4 summarizes the inductor variables in different domains, as 
well as the constitutive relationships. 

   Figure 2.13 shows the tetrahedron of state along with the variables that 
form the constitutive relationship between them for each type of the three 
elements discussed so far. 

                 2.5.1.4  Other 1-Port Elements 

 Apart from the three 1-port elements for energy storage and dissipation, 
there are two other 1-port elements. These two elements have to do with 

TABLE 2.4

Examples of I-Elements 

Domain Specifi c 

Relationship 

Units for the Inductance 

Parameter Energy

Generalized variables p = If; f = p/I
E = 1

2
If 2 = 1

2

p2

L

Mechanical translation p = mv; v = p/m m = kg = N-s2/m
E = 1

2
mv2 = 1

2

p2

m

Mechanical rotation pt = Jω; ω = pt/J J = N-m-s2

E = 1

2
Jω2 = 1

2

pt
2

J

Electrical λ = Li; i = λ/L L = V-s/A = Henrys (H) 
E = 1

2
Li2 = 1

2

λ2

L

Hydraulic pp = IQ; Q = pp/I I = N-s2/m5

E = 1

2
IQ2 = 1

2

Pp
2

I

FIGURE 2.13
The tetrahedron of state showing the generalized variables that are in the constitutive rela-

tionship for different 1-port elements.
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Capacitance  



34 Mechatronic Modeling and Simulation Using Bond Graphs

sources that supply either effort or fl ow to any system. Thus, when the 
power fl ow is positive, it always fl ows out of these sources. These two ele-
ments are, therefore, represented with the half-arrow pointing away from 
the element. 

  Source of effort:  These elements supply power to the system such that 
the effort component of the power is constant and the fl ow is determined 
by the load in the system. Some examples of these types of elements are 
batteries or voltage sources, gravitational force, fl uid head, or any known 
external effort that is acting on a system. 

 The source of effort is represented in bond graph models as  Se.  

  

Se
Se1

           Source of fl ow:  These elements supply power to the system such that 
the fl ow component of the power is constant and the effort is determined 
by the load in the system. Some examples of these types of elements are 
constant current sources, fl uid pumps, constant speed of rotation, and 
shaker providing a known motion. 

 The source of fl ow is represented in bond graph models as  Sf.  

  

Sf
Sf1

          Figure 2.14 shows the nature of variation of effort and fl ow for Se and Sf 
elements respectively. In a source of effort, the effort remains constant irre-
spective of the fl ow values. For a source of fl ow element, the fl ow remains 
constant, irrespective of the effort. These are defi nitions of the two ideal 
sources. Most real sources are not ideal and do not remain constant over 
time. These sources can be modeled as modulated sources of effort and 
fl ow. Modulated devices will be discussed a little later in this chapter. 

FIGURE 2.14
Schematic showing the variation of effort and fl ow for (a) constant effort and (b) constant 

fl ow sources.

(b)  (a)  

Ef fort

F low

F low

Ef fort
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               Notice that unlike the fi rst three 1-port elements (resistor, capacitor, 
inductor), for the sources of effort and fl ow, the half-arrow points away 
from the element. In the case of the R, C, and I elements, the half-arrow 
was pointing towards them. 

 One should also realize that even though the power bonds point in one 
direction, the actual power fl ow is not necessarily happening in that direc-
tion at all times. Power fl ow is a time dependent quantity. Hence, it can 
occur in the direction shown by the power bond direction or opposite to 
that. Having the arrow in the given direction means that when the power 
is positive, it fl ows in the direction of the arrow. 

    2.5.2  2-Port Components 

 2-port elements in a system are components that receive power from part 
of the system through one of its ports and supply (or transfer) power to 
another part of the system through the other port. These transfers of power 
through 2-port elements may follow one of two procedures. Hence, there 
are two main 2-port elements. They are referred to as the transformer and 
the gyrator. 

  2.5.2.1  Transformer Element 

 A transformer element is such that the input effort and the output effort 
are related to each other by a factor and the inlet fl ow and the outlet fl ow 
are also related to each other by the same factor. These relationships also 
satisfy the requirement that the total input power is the same as the total 
output power. Figure 2.15 shows a schematic for a transformer element 
with a transformer factor N. 

               A bond graph element to represent a transformer can be shown as: 

  

e1

f1

e2

f2
TF
TF1

FIGURE 2.15
A schematic for the transformer element.

Transformer,
factor = N

Input ef fort, e1 Output ef fort, e2

Input f low,  f 1 Output f low,  f   2
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          The constitutive relationship for a transformer and the power relation-
ship may be written as follows: 

   

e2 (t) = Ne1(t)

f1(t) = Nf2 (t)  (2.14) 

    Since the input power is equal to the output power, the relationships may 
be written as: 

   
  
e1 f1 = (

e2

N
)(Nf2 ) = e2 f2  (2.15) 

    Some examples of transformer elements are: electrical transformer, lever, 
gear trains, hydraulic plunger-cylinder, rack and pinion, and so forth. 
Figure 2.16 shows schematics of some of the transformer elements. In each 

FIGURE 2.16
Schematics showing transformer elements within different domains: (a) electrical trans-

former, (b) mechanical transformer (lever), and (c) hydraulic transformer (plunger).
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case the transformer factor may be obtained from one’s basic understand-
ing of the system behavior. For example, in the electrical transformer, the 
factor would be the ration of the number of coils in both the windings. The 
transformer factor for a lever would be the ratio of the lengths of the lever 
arms. For a gear train it could be the ratio of the gear teeth, for a hydraulic 
ram it would be the area of the plunger (since the pressure multiplied by 
area is equal to the force). 

               Figure 2.17 shows pictures of some actual transformers from different 
domains. 

               If multiple transformers are used in series, the net result is equivalent 
to one transformer with an effective transformer factor that is equal to the 
product of all the transformer factors. Thus, the fi rst representation shown 
below is equivalent to the second one. 

Electrical transformer

Hydraulic jack

FIGURE 2.17
Transformer devices from different domains.
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Gears
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pump

FIGURE 2.17
(Continued)
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e1 e2 e3

f1

e1
f1

e3
f3

f2 f3
TF

TF1

TF

TF
TF2

          

e1 = N1e2 ; e2 = N2e3

⇒ e1 = N1N2e3

N1 f1 = f2 ; N2 f2 = f3

⇒ N1N2 f1 = f3

 (2.16) 

      2.5.2.2  Gyrator Element 

 A gyrator element is such that the input effort and the output fl ow are 
related to each other by a factor, and the inlet fl ow and the outlet effort 
are also related to each other by the same factor. These relationships also 
satisfy the requirement that the total input power is the same as the total 
output power. Figure 2.18 shows a schematic for a gyrator element, with a 
gyrator factor M. 

               The bond graph representation of a gyrator element is written as: 

  

GYe1
f1 GY1

e2
f3

          The constitutive relationship for a gyrator may be expressed as: 

   

e2 t( ) = Mf1 t( )
e1 t( ) = Mf2 t( )  

(2.17)
 

FIGURE 2.18
Schematic of a gyrator element.

Gyrator, Factor = M
Input ef fort, e1 Output ef fort, e2

Input f low, f1 Output f low,  f 2
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    Since the input power is equal to the output power, the relationships may 
be written as: 

   
  
e1 f1 = (Mf2 )(

e2

M
) = e2 f2  (2.18) 

    Some examples of gyrator elements are: centrifugal pumps and turbines. 
One of the most common type of gyrator is the DC motor. The output 
torque (effort) of a DC motor is a linear function of the current (fl ow) in 
the motor armature and the back emf (effort) induced in the motor circuit 
is a function of the rotation in the shaft. Thus, 

    

T = MI

E = Mω.  
(2.19)

 

    The most well-known gyrator element is the gyroscope. 
 Figure 2.19 shows schematics and pictures of actual gyrator elements. In 

each case the gyrator factor may be obtained from one’s basic understand-
ing of the system behavior. For example, in the DC motor the factor would 
be torque constant for the motor that is dependent on several factors 
including the magnetic fl ux density and motor geometry. In a similar man-
ner the gyrator factor may be computed in other cases using fundamental 
physical laws. More will be discussed about these in later chapters. 

               If multiple gyrators are used in series, the net result is equivalent to one 
transformer for every two gyrators with an effective transformer factor 
that is equal to the ratio of the two gyrator factors. Thus, the fi rst represen-
tation shown below is equivalent to the second one. 

  

GY GY

TF

e1
f1

e1
f1

e2
f2GY1 GY2

TF2

e3
f3

e3
f3

                      
  

e1 = M1 f2 ; e3 = M2 f2

⇒ e1 = M1

M2

e3

M1 f1 = e2 ; e2 = M2 f3

⇒ M1

M2

f1 = f3  

(2.20)
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       2.5.3  3-Port (or Higher-Port) Components 

 These ports are used to denote locations where multiple elements are 
joined to each other. There are two main types of joints or junctions. They 
are sometimes called common fl ow junction and common effort junction. 
These are similar to parallel and series connections as seen in electrical or 
hydraulic circuits. For the generalized nature of bond graphs, they are also 
referred to as effort (summing) junction and fl ow (summing) junction. 

 In bond graph nomenclature, parallel and series junctions are some-
times represented as P and S. More commonly these junctions are referred 
to as 1 and 0 junctions. These two types of junction elements are discussed 
below.  

FIGURE 2.19
Examples of gyrator elements.

Mechanical gyrator

V2

F2

V1

F1

ω

Electrical gyrator: DC motor 
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  2.5.3.1  Flow Junction, Parallel Junction, 0 Junction, 
and Common Effort Junction  

 These are junctions where the effort is the same in all arms, but the fl ow 
is different. These behave in a manner similar to parallel paths in electri-
cal circuits where the currents through each path are different, but the 
voltage across all the parallel paths is the same. These junctions are repre-
sented in bond graphs as 0 junctions (zero junction). Efforts are the same 
in all arms, but the fl ow is related through an algebraic sum, that is, sum 
of all fl ows is 0. 

  

e3

e1 e2
f1 f2

f3

0

            

e1(t) = e2 (t) = e3 (t)

f1(t) + f2 (t) + f3 (t) = 0  (2.21) 

    It is worth mentioning here that the direction of power bonds (half-
 arrows) for the junction elements is less well-defi ned than the previously 
discussed elements. So the 0 junction with the three bonds shown above 
may be drawn as: 

  

e3

e1 e2

f1 f2

f3

0

          While it is equally correct to draw the arrow directions in the second rep-
resentation as in the fi rst, the form of the equations changes to accommo-
date the new arrow direction. The effort still remains the same in all the 
branches, but the fl ow relationship alters, as shown in Equation 2.22: 

   

e1 t( ) = e2 t( ) = e3 t( )
f1 t( ) + f2 t( ) = f3 t( )  (2.22) 
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    Examples of situations that will lead to 0 junctions are shown in Figure 2.20. 
These are parallel electrical circuit, a hydraulic line that has three fl ows 
in three paths, and a mechanical system of two masses and a spring and 
damper where the forces on both masses are the same but their velocities 
are different. 

                 2.5.3.2  Effort Junction, Series Junction, 1 Junction, 
and Common Flow Junction 

 These are junctions where the fl ow is the same in all arms, but the effort is 
different. These behave in a manner similar to series circuits in electrical 

FIGURE 2.20
Examples of situations that result in a 0 junction.

Electrical circuit (parallel) 
R

Applied
voltage

C

L

Bifurcated hydraulic f low
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Q2

Q3

M1 M2

F 
V2V1
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circuits where the current through each component is the same but the 
voltage drop across these components is different. These junctions are 
represented in bond graphs as 1 junctions (one junction). Flows are the 
same in all arms, but the effort is related through an algebraic sum, that 
is, sum of all efforts is 0.

The bond graph representation of this junction is  

  1 Junction 4

e3

e1 e2
f1 f2

f3

1

            
  

f1(t) = f2 (t) = f3 (t)

e1(t) + e2 (t) + e3 (t) = 0  (2.23) 

    It is worth repeating here that the direction of power bonds (half- arrows) 
for the junction elements are less well-defi ned than the previously dis-
cussed elements. So the one junction with the three bonds shown above 
may very well be drawn as: 

  1 Junction 4

e3

e1 e2
f 1 f2

f3

1

          While it is equally correct to draw the arrow directions in the second 
representation as in the fi rst, the form of the equations change to accom-
modate the new arrow direction. The effort still remains same in all the 
branches, but the fl ow relationship alters as shown in Equation 2.24: 

   

f1(t) = f2 (t) = f3 (t)

e1(t) + e2 (t) = e3 (t)  (2.24) 

    Examples: Figure 2.21 shows some typical systems where the 1 junction is 
used to model the system behavior. A series circuit, a spring mass damper 
system, and a series hydraulic line are common examples. 
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FIGURE 2.21
Examples of situations that result in a 1 junction.
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                  2.5.4  Modulated Components: Transformers, 
Gyrators, Resistances, and More 

 So far we have talked about components in system whose properties 
remain unchanged with time, for example, the resistance value of a resis-
tive element, the effort value of a source of effort, and so forth. In many 
practical situations, this condition may not be true at all times. For exam-
ple, the supply voltage from a battery drops over a time period, or capaci-
tances may vary during the operational time period of the system, or the 
force acting on a body may be varying with time. In order to capture these 
variable properties modulated components are used. These are compo-
nents whose property varies during the time period under consideration. 
These are separately denoted in the bond graphing world as a MR or a 
MSe or a MTF element where the letter M stands for modulated. These 
components in a modeling environment are designed to receive a signal 
input along with the necessary power bond(s). The signal bond is denoted 
by a full arrow. Following are some examples of how these components 
are represented. In the representation the terms “wave generator” are 
used to represent a known time varying signal that is being used in each 
case. The exact form of that signal is unimportant for this discussion. 

                         

Wave Generator 3

Wave Generator 2

Wave Generator 1 MSf1

MSe1

MR1

MR

MSe

MSf

        In each of the examples shown, a time varying waveform is used to send 
a signal to the modulated element. This signal determines how this ele-
ment behavior varies with time. 

    2.6  A Brief Note about Bond Graph Power Directions 

 In this chapter we have introduced some of the very basic concepts of 
bond graphs. We are yet to learn how to construct bond graphs, how and 
when to use them, the particular advantages, and so forth. In the next few 
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chapters we will be discussing those concepts. As we get into these details, 
we would like to remind the readers/students that the half-arrows used 
in the drawing of bond graphs are used to represent the fl ow of power. In 
this chapter we discussed some of the basic elements, and in each case, the 
half-arrow pointed in particular directions (either towards or away from 
the component). By defi nition, power is positive in the direction of the 
power bond. Power fl ows in the direction of the half-arrow if it is positive 
(i.e., the product of effort and fl ow is positive) and the other way if it is 
negative. This does not mean that power will always fl ow in the direction 
of the arrow. Sometimes it may fl ow opposite to the arrow direction (when 
power is negative). As long as the convention is not violated, the user will 
not be in trouble, but it is important that the user be aware of the reasons 
for doing certain things in a certain way. Also, power directions indicate 
directions of positive power but they convey no information about the 
direction of the components of power, namely fl ow and effort. Often stu-
dents make the mistake of confusing power direction with the direction 
for force and velocity. 

 In the next chapter we will learn several techniques for drawing bond 
graphs. Some of the basic elements will be joined by bonds to 1 and 0 junc-
tions and to each other. Sometimes we will have to choose bond directions 
in an arbitrary direction. While at times these choices may be arbitrary, 
their impact on the fi nal outcome is not. Since governing state space equa-
tions will be derived from the bond graphs, the bond directions will have 
an impact on the exact form of these equations. We will refer to this dis-
cussion again at a later point in the text when the need arises. 

   2.7  Summary of Bond Direction Rules  

    1. R, C, and I elements have an incoming power direction (this results 
in positive parameters when modeling real-life components).  

   2. For source elements Se and Sf, the standard is outgoing as sources 
mostly deliver power to the rest of the system.  

   3. For TF and GY elements, one bond is incoming, another is 
outgoing.   

   4. For 1 and 0 junctions, some bonds could be incoming and oth-
ers outgoing. The modeler has some freedom in choosing bond 
direction. More often than not bond directions are determined 
by the components that are attached to the junctions. The form of 
the resulting equations will change based on directions of bonds 
chosen.  
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    Problems  

     2.1. Figure P2.1 shows a system to pump water. List all the impor-
tant components in this system, identify locations where power 
is changing from one domain to another, and indicate what these 
transformations are. 

                  2.2. Figure P2.2 shows a loudspeaker. The circuit that supplies a cur-
rent through the coil is not shown in the fi gure but is a part of 
the system. Coil resistance and inductances are part of that cir-
cuit. List all the important components in this system, identify 

N

S

S
Coil carrying 
current 

Diaphragm 

FIGURE P2.2
Figure for Problem 2.2, loudspeaker.

Bearing  

Tank  

Pump Motor  

Water in 

Water out 

FIGURE P2.1
Figure for Problem 2.1, motor driven pump used to fi ll an overhead tank.
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locations where power is changing from one domain to another, 
and indicate what these transformations are. 

                  2.3. Consider two mechanical springs (capacitive elements). The fi rst 
spring is linear, so the constitutive equations is F = k1x and the 
second is quadratic so the constitutive relationship is F = k2x2. 

 A test was run to determine the spring constants, and it was 
observed that for a 50 N force both the springs had a displacement 
of 2 cm. Determine: 

 The spring constants of the two springs 

 The displacement in each spring if the force is doubled 

 The energy stored in each spring during the initial extension  

   2.4. A cantilever (Figure P2.3) is a very common feature used in many 
MEMS device (the schematic shows one). This device is used both 
as a sensor and as an actuator in microdevices. If this microscale 
device is to be modeled, what are the different basic components 
that need to be included in the model? 

                  2.5. Consider two electrical conductors of the same material and 
length. One is 0.5 mm in diameter, and the other one is 1 mm. For 
the same potential difference applied across both these conduc-
tors, which will allow higher current?  

Cantilever, mass and elasticity 

Air resistance 

Outer casing 

FIGURE P2.3
Figure for Problem 2.4, schematic of a MEMs device involving a cantilever in a casing.
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   2.6. Figure P2.4 is a broad overview of an automobile with some of the 
main items identifi ed. If a model were to be developed to study the 
dynamic behavior of the vehicle, determine the different subsystems, 
and, within each subsystem, the different components and their 
behaviors for which accounting is needed. 

                  2.7. The velocity function of a moving body is given by v(t) = 5t + 7. 
Compute the distance traveled over a time of 3 seconds starting 
from a 0 initial position. Plot both the velocity and the distance 
traveled as a function of time for this time period. What is the 
acceleration for this time period?  

   2.8. Figure P2.5 shows a simple system with a motor driving a fan. 
Identify all the basic elements that are part of this system so that 
a system model can be developed. 

Bearing  

Motor  

Fan  

FIGURE P2.5
Figure for Problem 2.8, schematic of a motor driven fan.

Steering  

Transmission 

Engine 

Wheels 

Wind  

FIGURE P2.4
Figure for Problem 2.6, schematic of a moving vehicle.
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                  2.9. An electric heater is rated at 1500 W and is connected to a 110 V 
supply. What is the resistance of the heating coil? How much cur-
rent is fl owing through the coil? If the supply is not a constant 
DC source but is a 60 Hz AC source, how does the current change 
with time?  

  2.10. In an electric car, regenerative braking is used to recharge batter-
ies. The principle of regenerative braking involves converting the 
kinetic energy of the vehicle into energy stored in a battery. If a 
car is traveling at a speed of 30 km/h and is stopped completely 
by braking, what would be the energy stored in the battery if the 
mass of the car is 1000 kg and the energy conversion effi ciency is 
assumed to be 100%? If this braking happens at a constant rate for 
5 seconds, what is the average rate of power transfer?   

  2.11. For mechanical translation, rotation, hydraulic, and electric 
domains draw a tetrahedron of state. For each case write the rele-
vant variables for each domain at the four corners and write down 
the relationships between these variables.   

  2.12. Figure P2.6 shows a platform that supports a rotating machine with 
a mass imbalance in the rotor. The platform is supported by springs 
and dampers. The mass imbalance is a source of force that is peri-
odic due to the rotor angular speed. For this system identify all the 
important components necessary to develop a system model.  

F 

m 

B k 

FIGURE P2.6
Figure for Problem 2.12, a motor mounted on suspensions with an unbalanced rotor.
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  2.13. The inductance of a coil is computed from:  

   
L = N 2μA

l  

     where  L  is the inductance in Henrys,  N  is the number of wind-
ings,  A  is the cross-section area of the core, and μ is the perme-
ability of the medium. An inductor of 2 cm core diameter and 200 
turns in the coil is 6 cm long. If the current fl owing through the 
conductor is 0.5  A  and the permeability of the medium is 1.257E-6 
 N /m, compute the energy stored in the coil.  

  2.14. The inductor energy in the previous problem is now used to 
charge a parallel plate capacitor for a terminal voltage of 10 V. The 
capacitor plates have 1 sq cm plate overlap area and the distance 
between the plates is 1 cm. The permittivity of the medium is 
0.885E-11 F/m. Compute the charge developed across the plates. 

(The capacitance of a parallel plate capacitor is given by 
 
C = εA

d
    )  

  2.15. The velocity in a system is expressed in the following 
relationship: 

    

v = 2t2m/ s, 0 ≤ t ≤ 5

v = 50m/ s, 5 < t ≤ 20  

      If the damping coeffi cient B = 10 Ns/m, plot the power dissipated 
through this damper as a function of time. How much is the total 
energy dissipated over the time period of 20 seconds?  

  2.16. The plot in Figure P2.7 shows the voltage across an inductor of 
0.5 mH. Use the data from the plot to determine the current in the 
inductor at t = 15μs.  

  2.17.  The time dependent voltage across a capacitor of 50 μF is shown 
in Figure P2.8. Determine the current through the capacitor as a 
function of time using this data.                                               
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t(μs) 5 10  15  20  

4 

−4

V 

FIGURE P2.7
Figure for Problem 2.16, voltage versus time data for Problem 2.16.

5 10  15  20  

15 

−15

V 

t(μs) 

FIGURE P2.8
Figure for Problem 2.17, voltage versus time data for Problem 2.17.
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  3 
Drawing Bond Graphs for 
Simple Systems: Electrical 
and Mechanical 

                 In the previous chapter we discussed the basic components that frequently 
occur in a bond graph based system model. In this chapter we will discuss 
the methods and techniques used to construct bond graph models for a 
variety of engineering systems. For a start, we will keep our discussion 
confi ned to mechanical and electrical systems, only because it is impor-
tant that students understand the techniques and master the process to 
gain confi dence in building bond graph models. Other systems (and their 
models), such as hydraulic, magnetic, and so forth, will be handled in 
later chapters. Bond graph construction techniques remain quite similar 
within other domains. It is hoped that new users of this technique will 
gain confi dence through repeated use of the methodologies presented in 
this chapter. 

 The overall objectives of this chapter are to 

   Introduce students to algorithms for drawing bond graph models • 
of mechanical and electrical systems.  

  Introduce students to the basic rules of bond graph simplifi cation • 
and their applications.  

  Introduce the concept of causality and highlight its importance.  • 

  Increase the confi dence of students in the area of bond graph • 
modeling so that they are comfortable in modeling a variety of 
basic engineering systems.   

 Before we start going through the techniques of developing bond graph 
representations of different systems, we need to be aware of some of the 
commonly used rules of simplifi cation that help us in drawing simplifi ed 
bond graph representations of systems. In the next section we discuss the 
commonly used six rules of simplifi cation.  
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  3.1  Simplification Rules for Junction Structure 

 The rules of simplifi cation can be used on the basic bond graph struc-
ture to make it more crisp and compact. While the need for simplifi cation 
is not absolute (i.e., the system equations derived from an unsimplifi ed 
model will be the same as a simplifi ed model), simplifi cation makes the 
model more elegant and, sometimes, compact. There are six commonly 
used rules of simplifi cation. They are described below. The fi rst four are 
easy to understand and use. The last two are a little less intuitive. Hence, 
a proof of one of them is included. 

 Figure 3.1 shows two bond graph representations. These two are equiva-
lent, so the fi rst may be replaced by the second. If a zero junction connects 
only two bonds all the effort coming in from the left of the 0 junction is the 
same effort leaving the junction from the right. Similarly, all the fl ow that 
is coming in from the left is the same fl ow leaving from the right. Thus, 
the fi rst representation may be simplifi ed as the second one. (Note: This 
simplifi cation does not work if a third element is connected to the 0 junc-
tion through another bond.) 

 Figure 3.2 shows two bond graph representations. These two are equiva-
lent so the fi rst may be replaced by the second. If a one junction connects 
only two bonds all the effort coming in from the left side of the 1 junction 
is the same effort leaving the junction from the right. Similarly, all the fl ow 
that is coming in from the left is the same fl ow leaving from the right. Thus, 
the fi rst representation may be simplifi ed as the second one. (Note: This 
simplifi cation does not work if third element is connected to the 1 junction 
through a bond.) 

FIGURE 3.1
Simplifi cation rule.
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FIGURE 3.2
Simplifi cation rule.
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 Figure 3.3 shows two bond graph representations. These two are 
 equivalent, so the fi rst may be replaced by the second. A 0 junction is a 
“same effort” junction. Hence, e1 = e2 = e3 = e4 = e5 (in the fi rst representa-
tion). The fl ow, on the other hand, gets separated at 0 junctions. Therefore, 
in the fi rst picture, ƒ1 = ƒ2 + ƒ3 and ƒ3 = ƒ4 + ƒ5. Therefore, ƒ1 = ƒ2 + ƒ4 + 
ƒ5, from the fi rst picture. Now considering the second picture, the same 
two relationships for effort and fl ow are valid, that is, e1 = e2 = e4 = e5 and 
ƒ1 = ƒ2 + ƒ4 + ƒ5. So the fi rst bond graph may be replaced by the simplifi ed 
second version. 

 Figure 3.4 shows two bond graph representations. The two are equiva-
lent, so the fi rst may be replaced by the second. A 1 junction is a “same 
fl ow” junction. Hence, ƒ1 = ƒ2 = ƒ3 = ƒ4 = ƒ5 in the fi rst representation. The 
fl ow, on the other hand, gets separated at 0 junctions. Therefore, in the 
fi rst picture, e1 = e2 + e3 and e3 = e4 + e5. Therefore, e1 = e2 + e4 + e5, from the 
fi rst picture. Now considering the second picture, the same two relation-
ships for effort and fl ow are valid, that is, ƒ1 = ƒ2 = ƒ4 = ƒ5 and e1 = e2 + e4 
+ e5. So the fi rst bond graph may be replaced by the simplifi ed second 
version. 

 Figure 3.5 shows two bond graph representations. These two bond 
graph models are equivalent, so the fi rst may be replaced by the second. 
The equivalence of these two bond graph representations is nontrivial. 
Hence, it needs to be demonstrated. 

FIGURE 3.3
Simplifi cation rule.
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  Proof 

 To show that the two bond graphs in Figure 3.5 are equivalent.  

  First Bond Graph 

 Consider the fi rst bond graph. There are four junctions shown in Figure 3.5. 
We will refer to them as junctions 1, 2, 3, and 4, as marked.  

  At junction 1 

    e1  = ea = eb  (3.1)    

   
f1  = fa + f b

 (3.2)      

  At junction 2 

    ea = e2  + ec  (3.3)    

   
fa = f2  = fc

 (3.4)      

  At junction 3 

    eb = e3  + ed  (3.5)    

  
f b = f3  = fd

  (3.6)     

e4

e3

e2

f 4

f 3

f 2

f 5

e5

f 1

e1 1 1

e4

e2

f 4

f 2

f 5

e5

f 1

e1 1

FIGURE 3.4
Simplifi cation rule.
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   At junction 4 

    ec = e4  = ed  (3.7)    

   fc + fd = f4  (3.8)      

 Combining the fl ow equations for junctions 1 and 2 (i.e., Equations 3.2 
and 3.4), we get: 

   
f

1
 = f

2
 + fb

 (3.9)    

 But, ƒb = ƒ3 from the fl ow Equation 3.6 of junction 3. Therefore: 

   
f1  = f2  + f3  (3.10)    

FIGURE 3.5
Simplifi cation rule.
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 Consider the fl ow Equation 3.8 at junction 4. Since ƒc = ƒ2 and ƒd = ƒ3 we 
can write: 

   f2 + f3  = f4  (3.11)    

 Combining the two fl ow Equations 3.10 and 3.11, we can write: 

   f1  = f2 + f3  = f4  (3.12)    

 Combining the effort Equations 3.1 and 3.3 from junctions 1 and 2, 
we get: 

   e1  = e2  + ec  (3.13)    

 But, ec = e4 from junction 4, Equation 3.7. Hence: 

   e1  = e2  + e4  (3.14)    

 Combining the effort Equations 3.1 and 3.5 from junctions 1 and 3, 
we get: 

   e1  = e3  + ed  (3.15)    

 But, ed = e4 from the junction 4, Equation 3.7. Hence: 

   e1  = e3  + e4  (3.16) 

    Therefore, combining the two relationships for e1 (Equations 3.14 and 
3.16), we can write: 

   e1  = e2  + e4  = e3  + e4  (3.17)     

 Second Bond Graph 

 Now, let’s consider the second representation.  

  At junction 1 

    e1  = e* + e4  (3.18)    

   f1  = f4  = f *  (3.19)      

  At junction 0 

    e* = e2  = e3  (3.20)    

   f * = f2 + f3  (3.21)   
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    Combining the two sets of effort and fl ow equations for the two  junctions 
we get: 

   e1  = e2  + e4  = e3  + e4  (3.22) 

      f1  = f2  + f3  = f4  (3.23) 

    Thus, it has been demonstrated that fi rst and the second representations 
are indeed equivalent since both the effort and the fl ow relationships for 
both the representations are equivalent (i.e., Equation 3.12 is the same as 
Equation 3.23, and Equation 3.17 is the same as Equation 3.22). 

 Figure 3.6 shows two bond graph models that are equivalent, so the fi rst 
may be replaced by the second. The proof for this rule can be obtained 
along the same lines as the previous one. 

FIGURE 3.6
Simplifi cation of rule.
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 Now that we have discussed the different rules of simplifi cation, we 
will go through the process of developing bond graph representations 
for electrical and mechanical systems. There are several techniques for 
doing this. The simplest one is the method of inspection. It works well 
for electrical systems because series and parallel connections can be 
directly represented as 1 and 0 junctions, respectively. Students familiar 
with series and parallel circuit analysis can fi nd the method of inspection 
quite intuitive. The method is somewhat less intuitive for mechanical 
systems. In practice, inspection works well for experienced users, but not 
as well for beginners. In this book we have used the method of inspec-
tion initially to demonstrate bond graph models for simple electrical sys-
tems. However, a conscious decision was made to not teach the method 
of inspection in great detail but, instead, to teach a method that is more 
algorithmic and, therefore, can develop more confi dence for beginning 
users. Using this algorithmic approach, we will fi rst discuss the develop-
ment of bond graph models for electrical systems and then for mechani-
cal systems.  

  3.2  Drawing Bond Graphs for Electrical Systems 

  EXAMPLE 3.1  

 Figure 3.7 shows one of the simplest possible electrical circuits: the RLC circuit 
with R, C, and L elements connected in a series along with a voltage source 
(battery). We know that the current or fl ow in this circuit is the same through 
all elements, whereas the voltage drop across each element is different. The 
sum of all voltage drops across the loop is equal to 0 (Kirchoff’s law). The 
bond graph representation of this system is, therefore, a simple one and can be 
obtained by inspection: all four elements are connected through a series, or a 
1 junction, and are shown in Figure 3.8. (In 1 junctions, the fl ow is the same in 
all the bonds, but the effort is different in each, such that the sum of all efforts 
is equal to 0.) 

 In the bond graph model shown in Figure 3.8, the battery voltage is Se (source 
of effort), R is the resistance, C the capacitance, and I the inductance.  

  EXAMPLE 3.2 

 A second simple example is shown in Figure 3.9 by an ideal current source 
that is connected in parallel to the same three common electrical elements. 
In this case the voltage drop across each is the same (because they are con-
nected in parallel). The current in each element is different, but their sum is 
equal to the total current supplied by the current source. The bond graph 
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FIGURE 3.7 
An RLC circuit.
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FIGURE 3.8
Bond graph model of a RLC series circuit.

Current
source

R C

L

FIGURE 3.9
A parallel RLC circuit.
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representation (obtained by inspection) is shown in Figure 3.10 where the 
 resistance,  capacitance, and the inductance are joined by a 0, or a parallel, 
junction with each other and a source of fl ow. 

  Examples 3.1 and 3.2 are relatively simple ones where, by using experi-
ences, we could determine that the circuit was connected in series or in 
parallel. However, if we encounter cases that are a little more complex, we 
can run into diffi culties with the method of inspection. Some examples 
are shown in Figure 3.11. 

               There is a second method of drawing bond graphs for electrical circuit 
elements that is more useful for both simple and complex circuits because 
it is more algorithmic than the method of inspection. 
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FIGURE 3.10
Bond graph model of the parallel RLC circuit.
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FIGURE 3.11
Examples of electrical circuits.
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  3.2.1  Formal Method of Drawing Bond Graphs for Electrical Systems 

    1. For each location in the circuit with a distinct potential, assign a 
0 junction.  

   2. Insert each “single port” circuit element by connecting it to a 
1 junction with a power bond and inserting it between relevant 
0 junctions.  

   3. Assign power direction to all bonds in the model.  

   4. If the ground potential locations are known, then delete that 
0 junction and all bonds connected with it. (If no explicit ground 
exists, then choose a suitable 0 junction and delete it along with 
all the bonds connected to it.)  

   5. Simplify the bond graphs by using all rules of simplifi cation (dis-
cussed earlier).   

  EXAMPLE 3.3 

 Figure 3.12 shows a circuit with letters a, b, c, and d indicating four unique 
potential locations. To develop the bond graph representation of the system, 
the algorithmic steps are executed one at a time. After the fi rst three steps, we 
arrive at the diagram shown in Figure 3.13. In this diagram junction d represents 
the ground potential, and it has to be removed (as per Step 4). Once junction 
d is removed, the bond graph looks simpler, as shown in Figure 3.14. Further 
simplifi cation is possible by removing some redundant junctions that are con-
nected only to a single element (i.e., by applying relevant simplifi cation rules 
described before). Once these are applied, the bond graph looks even simpler, 
as shown in Figure 3.15.  The vertical lines shown at the end of each bond are 
called a causal stroke. More discussion about causality and causal strokes is 
coming is included later in this chapter.

Current 
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a b
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C R2

FIGURE 3.12
Circuit for Example 3.3.
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FIGURE 3.13
Initial bond graph for Example 3.3.
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Simplifi ed model for Example 3.3.
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Final bond graph for Example 3.3.
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                                                             EXAMPLE 3.4 

 Let us consider the wheatstone bridge circuit shown in Figure 3.16. The  different 
resistors are marked as R1, R2, R3, R4, and R5, and the four different potential 
points are shown as A, B, C, and D. 

                  As in the Example 3.3, the steps are executed one at a time, and after the fi rst 
three steps, we get the model in Figure 3.17. As per rule number 4, the bonds 
associated with the ground potential need to be removed. Once this rule is exe-
cuted, the bond graph representation looks like the one shown in Figure 3.18. 

                             Upon simplifi cation, this bond graph representation looks like the one shown 
in Figure 3.19. 
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FIGURE 3.16
Wheatstone bridge, Example 3.4.
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FIGURE 3.17
Initial bond graph for Example 3.4.
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Simplifi ed model for Example 3.4.
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                  3.3  Drawing Bond Graphs for Mechanical Systems 

 The 1 and 0 junctions in an electrical system are quite intuitive because 
the concepts of series and parallel junctions are well established for elec-
trical systems. The same concepts could be somewhat tricky for mechani-
cal systems. So, before we start drawing bond graph representations for 
mechanical systems, the use and meaning of the 1 and 0 junctions are 
discussed a little more. 

 Consider the 1 junction. The basic governing relationship in one junction 
is that fl ow is the same in all bonds connected to a 1 junction. Consider a 
mass that is being forced by an external force and is moving as a result. 
The velocity of any point on the mass and the point where the force is 
acting are one and the same; that is, the mass, being a rigid body, is mov-
ing with a single velocity. Therefore, to represent something like this, the 
1 junction can be used to join the mass with the source of effort. The bond 
graph representation is shown in Figure 3.20. 

               Now consider the 0 junction. To understand the behavior of the 
0  junction, remember the basic constitutive relationships for 0 junctions. 
The effort remains the same in all the bonds connected to a 0 junction, but 
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FIGURE 3.19
Final bond graph model for Example 3.4.
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the fl ows are additive. Now consider a spring (or a damper) element. The 
velocities (fl ows) at the two ends of this component are different because 
the two ends are connected to different objects. The force, however, is 
one value throughout the component. The effort in the spring shown in 
Figure 3.21 is the same throughout. The fl ows at the two ends are ƒ1 and 
ƒ3, respectively. Therefore, the fl ow in the spring (rate of compression/
extension) is ƒ1 − ƒ3 = ƒ2. The accompanying bond graph shows exactly the 
same thing through the use of the 0 junction. 

                EXAMPLE 3.5 

 Using this basic concept, the bond graph representation of the system shown 
in Figure 3.22 may be obtained through inspection. The velocity v1 is obvi-
ously 0, and v2 is the velocity of the mass M as well as the velocity of the upper 
ends of both the spring and the damper. So a 1 junction connects the mass to 
the source of effort and to the R and C elements through the 0 junctions. Using 
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FIGURE 3.20
Mass and force and their bond graph.
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FIGURE 3.21
A spring and the corresponding bond graph.
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one of the rules of simplifi cation, the 0 junctions can be collapsed to yield a 
bond graph of all the four elements connected through a 1 junction (just as in 
the series RLC circuit). 

                 EXAMPLE 3.6 

 Consider the example shown in Figure 3.23. The bond graph representation 
is obtained by the method of inspection and is shown right next to the system 
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FIGURE 3.22
Schematic and bond graph for Example 3.5.
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FIGURE 3.23
Schematic and bond graph for Example 3.6.
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itself. The velocity of the mass and the upper end of the spring are the same. 
And the force in the damper is the same as the force in the spring. Upon 
 simplifi cation, the two 0 junctions collapse into one, and we get the bond 
graph representation shown in Figure 3.24. 

                  In Examples 3.5 and 3.6 the bond graph representation is obtained by 
inspection. However, it is rather diffi cult for a lot of users of bond graphs 
(especially new ones) to develop complex models using this approach of 
inspection. A more formal algorithmic approach is necessary. 

  3.3.1  Formal Method of Drawing Bond Graphs for 
Mechanical Systems in Translation and Rotation 

    1. For each distinct velocity (angular velocity for rotation), establish 
a 1 junction. Some 1 junctions will represent absolute velocities, 
and some will represent relative velocities.  

   2. Insert the 1-port force (torque for rotation) generating elements 
between pairs of 1 junctions using 0 junctions. Attach capacitive 
and resistive elements to power bonds and connect them between 
two 1 junctions using a 0 junction. Also add inertia elements to 
the respective 1 junctions.  

   3. Assign power direction to all bonds.  

R
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1 I
I2

Se
Se1

C
C1

FIGURE 3.24
Final bond graph representation for Example 3.6.
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   4. Eliminate any 0 velocity 1 junctions (grounds) and all the bonds 
connected to these.  

   5. Simplify using the rules of simplifi cation.   

   3.3.2 A Note about Gravitational Forces on Objects 

 In the examples that will be used to discuss the method of model 
 development for mechanical systems, gravity (or gravitational force) has 
not been specifi cally considered. This is not because it does not play a part. 
It actually does for systems where there is any linear motion involved 
in the vertical direction. The focus here is to teach students how to draw 
bond graph representations, and gravity effect is just another source of 
force on any mass. So once students master the concepts of drawing bond 
graph models, the effect of gravity can be easily added to the model as 
a constant source of effort to every mass that is moving in the vertical 
direction.  

  EXAMPLE 3.7 (3.5 REVISITED) 

 Consider Example 3.5 again. The components are a spring, a mass, and a 
damper. A force is acting on the system as shown in Figure 3.25. We will try 
to draw the bond graph representation of this system again. Defi ne v1 and v2 
as two velocities (one of them is 0). And use 1 junctions for the two velocities. 
Then follow the steps as described before. For the velocity v1, a source of fl ow 
is added to the system. The initial bond graph is also shown in Figure 3.25. 

 Simplifying the model by removing the 0 junctions, we get Figure 3.26, and, 
upon further simplifi cation, it becomes the one shown in Figure 3.27. 

                   EXAMPLE 3.8 

 Consider a spring mass damper system with two masses, springs, and  dampers, 
as shown in Figure 3.28. Using the algorithmic approach, the bond graph 
 representation can be drawn as shown in Figure 3.29. The three distinct 
 velocities shown in the schematic as v1, v2, and v3 are represented on the 
bond graph by three 1 junctions. The corresponding masses (inertia) are 
attached to the respective 1 junction. The plate at the bottom is assumed to 
be massless. In between the 1 junctions, the pairs of springs and dampers are 
included using 0 junctions, and the sources of effort and force are added at 
the  respective  locations. This bond graph representation can be simplifi ed a 
little more (using the fi fth and sixth rules of simplifi cation), but we have not 
done that here. 

                                 EXAMPLE 3.9 

 Please see Figure 3.30 for the schematic for this example. In this representa-
tion, members B1 and B2 represent power loss from frictional resistance from 
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FIGURE 3.25
Initial bond graph representation.
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friction with the ground. There are three distinct velocity points here, the two 
velocities of the two masses and the 0 ground velocity.     

             Using the algorithm described before, the initial bond graph representation 
is shown in Figure 3.31. 

                 Now throwing away the 1 junction associated with the ground and the bonds 
associated with it and simplifying, we get the bond graph shown in Figure 3.32. 
This is simplifi ed as much as possible.  

                   EXAMPLE 3.10 

 Figure 3.33 shows another mechanical system whose bond graph representa-
tion is needed. There are several distinct velocity points. They are shown in the 
picture as V1, V2, V3, V4, and V5. The fl exibility in the cable that is used with 
the pulley is represented as a lumped spring K1. The lever is a transformer ele-
ment and is considered to be massless, and the pulley is  massless and friction-
less. Since the spring on the other end and the damper are not attached to the 
same point, there are two transformers needed, as shown in Figure 3.34. After 
simplifi cation, we get the bond graph shown in Figure 3.35.                                           
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FIGURE 3.26
Bond graph representation of Example 3.7 after some simplifi cation.
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Final form of the bond graph representation.
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FIGURE 3.28
Schematic for Example 3.8.
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FIGURE 3.30
Schematic for Example 3.9.
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Bond graph representation for Example 3.8.
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FIGURE 3.33
Schematic for Example 3.10.

R
B3

0
 0 Junction 3

1
V2

1
V1

C
Spring

0
0 Junction 4

I
M2

Se
Se1

0
0 Junction 2

R
B2

1
V3

0
0 Junction 1

R
B1

I
M1

FIGURE 3.31
Initial bond graph representation for Example 3.9.
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Final simplifi ed bond graph for Example 3.9.
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 3.3.3 Examples of Systems in Rotational Motion

For rotational mechanical  systems, the process will be similar to that of 
translational systems. The algorithmic steps are identical with the linear 
velocity points being replaced by angular velocity points. We have consid-
ered a few systems to illustrate the process.  

  EXAMPLE 3.11 

 The schematic shown in Figure 3.36 is a simple example of a rotational system. 
It has three inertia elements ( J1, J2, and J3) and a torque source, and the two 
shafts can be treated as torsional springs. The shafts are mounted on bearings, 
and the bearing damping factors are shown as B1, B2, and B3. 

FIGURE 3.34
Initial bond graph model for Example 3.10.
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Final simplifi ed model for Example 3.10.
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Using the ground as the fourth velocity point, the initial bond graph model 
can be  developed as shown in Figure 3.37. Note that since the bearing would 
be attached to the static housing on which such a system would be mounted, 
the bearing  elements are initially drawn between the shaft and the ground. 
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FIGURE 3.37
Initial bond graph model for Example 3.11.
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FIGURE 3.36
Schematic for Example 3.11.
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 Removing the ground and then simplifying, we get the version shown in 
Figure 3.38.  

  EXAMPLE 3.12 

 The schematic for Example 3.12 is shown in Figure 3.39. There are four inertia 
elements J1, J2, J3, and J4. JI and J3 are two gears that are meshing. The gears 
are also transformer elements. The four inertia elements are four velocity points 
as well. Along with this, we have a ground velocity point. B1, B2, B3, and B4 
are four damping coeffi cients representing the damping resistance effects of 
the four bearings. 
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FIGURE 3.38
Bond graph model after simplifi cation.
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Schematic for Example 3.12.
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         Once again, using the algorithmic approach that we have been using so far, 
the initial bond graph representation looks like the one shown in Figure 3.40. 

     Once the 1 junction for the ground velocity is removed and the rest of the 
model is simplifi ed, the bond graph looks like the one shown in Figure 3.41.  
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Initial bond graph for Example 3.12.
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 So far in this chapter we have described the bond graph model develop-
ment process and illustrated it through several examples from the fi elds 
of linear and rotational mechanical systems, as well as electrical systems. 
New users of this methodology should take some time and practice devel-
oping their own bond graph models for some typical engineering systems. 
This practice will provide the much needed understanding and confi dence 
in independently working out bond graph representations. 

 We will now move onto a very important topic of bond graphing based 
model development. The topic is causality. A good understanding of the 
concepts of causality is necessary for a complete understanding of bond 
graph methodology.   

  3.4  Causality 

 The term causality is used to describe the concepts of cause and effect. 
This is an important conceptual step that one needs to take to develop 
the mathematical model of a system from its bond graph representation. 
To understand the concept of causality and how it works in bond graph 
representation, it is important for the reader to remember a few concepts 
discussed earlier. They are 

   The half-arrow is used to denote the fl ow of power.   • 

  When power fl ow is positive, it fl ows in the direction of the half-• 
arrow.   

  Although power is a product of effort and the fl ow, the half-arrow • 
does not denote the direction of either the effort or the fl ow (but it 
actually denotes the direction of its product).    

 To develop the model equation, we need to fi nd out a little more about 
fl ow and effort variables. As per convention, the fl ow and the effort asso-
ciated with each bond are denoted with the symbols e and f placed above 
and below the bond, as shown in Figure 3.42. Causality is related to deter-
mining the direction of fl ow and effort variables. 

 For an example, consider a force applied on a mass. To represent this, 
a source of effort is connected to the left end of the bond, and the right 
end is connected to the rest of a system (the mass in this case). Then the 
effort information comes from the effort source to the rest of the system, 

f

e

FIGURE 3.42
Effort and fl ow associated with a bond.
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but the system determines what the fl ow will be and sends the fl ow infor-
mation back to the source of effort. The force (i.e., an effort source) acts 
on the mass to make it move with some velocity (fl ow). The effort infor-
mation travels to the mass. The source of effort controls the effort but 
does not control the fl ow directly. The velocity (fl ow) is determined by 
what the force does to the mass. Hence, it is actually determined by how 
the rest of the system (i.e., the mass in this case) reacts to the force. This 
situation may be interpreted to mean that the force information travels 
from the source of effort to the mass (system), and the fl ow information 
travels back from the mass (system) to the source of effort. This is shown 
on Figure 3.43 with  directional arrows added to the effort and fl ow 
 quantities. The effort  travels from the left to the right, and the fl ow travels 
from the right to the left. 

 If the bond is considered to be a 2-port element (one on the left and 
one on the right), we just showed that each port brings in the information 
about one of the quantities, effort or fl ow. Thus, if the effort information 
travels from the left to the right, the fl ow information will travel from the 
right to the left. This is true in real systems at all times because no basic 
component in a system can control both the effort and the fl ow. It can con-
trol only one of the two. 

 Similarly, for a source of fl ow, the fl ow information is provided to the 
system from the source, and other components in the system determine 
what the effort will be. The effort information comes back to the source, 
as shown in Figure 3.44. 

 For example, if a current source is attached to a couple of electrical 
components, the current source determines the fl ow that is going into the 
system. The voltage difference, or effort, is determined by the rest of the 
system, that is, the other components in the system. This information is 
passed back to the source of fl ow. 

 So, in a sense, for source of effort, it is the effort that comes fi rst and 
causes the fl ow. And for the source of fl ow, the fl ow happens fi rst and 
generates the effort. 
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FIGURE 3.44
Effort and fl ow direction for a fl ow source.
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FIGURE 3.43
Effort and fl ow direction for an effort source.
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 A special symbol is used with the bond graph representation to convey 
this information of cause and effect or causality. A vertical line at the end of 
a bond indicates the port (or end) towards which the effort is fl owing. This 
vertical line is called the causal stroke. The direction of fl ow is always oppo-
site to the effort. Hence, there is no need to show its direction  separately. 
Figure 3.45 shows these vertical lines for the sources of effort and fl ow. 

 What we just discussed may be summarized as two laws of information 
exchange in bond graph theory. 

    1. One energy port (or end of bond) can impart information of only 
one of the factors of power to the interfacing element or junction.  

   2. The two ends (energy ports) at the 2-end of a bond cannot impart 
information of the same factor of power to their corresponding 
interfacing element or junction.   

 We have defi ned the causal structure of the 2-source types. Let us now 
look at the other common elements in a bond graph model. 

 3.4.1  Transformer 

 A transformer neither stores nor dissipates power, but transmits it from 
one side to the other. And the fl ow on one side is related to the fl ow on 
the other side. Similarly, the effort on one side is related to the effort on 
the other side. So the two possible causal structure of a transformer are 
shown in Figure 3.46. For the fi rst case, fl ow information comes into the 
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FIGURE 3.45
Causal strokes for effort and fl ow sources.
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FIGURE 3.46
Causal structure of transformer element.
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transformer from the left, and fl ow information goes out from the right 
(and effort comes from the right and goes towards the left). In the second 
case, the exact opposite happens. 

  3.4.2  Gyrator 

 Like a transformer, a gyrator neither stores nor dissipates power, but trans-
mits it from one side to the other. In the gyrator element, the effort on one 
side determines the fl ow on the other, and the fl ow on one side determines 
the effort on the other. Hence, the causal structure for a gyrator could be 
one of the two forms shown, in Figure 3.47. 

 In the fi rst case, the effort coming from the left determines the fl ow 
going out from the right through the gyrator factor (and, therefore, the 
effort coming from the right determines the fl ow leaving the left side). In 
the second case, the fl ow coming from the left determines the effort going 
out from the right (and the fl ow coming from the right determines the 
effort leaving the left side). Thus, the causal structure of a gyrator will be 
one of the two possible forms shown in Figure 3.47.  

 3.4.3  Junctions 

 A 0 junction equates efforts, that is, effort is same in all bonds while fl ow 
is different. At the 0 junction, the effort information is brought by one of 
the bonds, and every other bond takes away the same effort information. 
That is why only one bond attached to the 0 junction will have the causal 
stroke close to the junction. All the other bonds will have the causal stroke 
away from the junction. The bond that brings in the effort information is 
also called the strong bond. Figure 3.48 indicates this. 

 A 1 junction equates fl ows, that is, fl ow is same in all bonds while effort 
is different. Hence, at the 1 junction, the fl ow information is brought by 
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FIGURE 3.47
Two possible causal arrangements for gyrator elements.



Drawing Bond Graphs for Simple Systems: Electrical and Mechanical 87

one of bonds and every other bond takes away the same fl ow informa-
tion. That is why only one bond attached to the 1 junction will have the 
causal stroke away from the junction. All the other bonds will have the 
causal stroke close to the junction. The bond that brings in the fl ow 
information is also called the strong bond. Figure 3.49 shows this causal 
structure. 

 3.4.4  Storage Elements: I, C 

 Storage elements receive energy from the system, store it, and release 
energy back into the system. Ideal storage elements do not dissipate energy. 
The causal structure discussion of storage elements is not as straightfor-
ward as the discussion for other elements that we have considered so far. 

 There are two terms that we will need to understand in this context. 
They are integral causality and differential causality. In simple terms, 
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FIGURE 3.48
Causal structure for a 0 junction.
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FIGURE 3.49
Causal structure for a 1 junction.
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integral causality means that past “causes” are integrated or accumulated 
to arrive at the “effect” at present. Differential causality means that dif-
ferentiation of the “cause” at present will determine the “effect” of the 
future. Since the future is not usually known as well as the past, differ-
ential causality, which makes the system dependent on the future, is less 
acceptable. The preferred causal structure for storage elements is integral 
causality. However, integral causality is not always achievable, and at 
times, differential causality has to be accepted. Following is a discussion 
of these two types of causality, what they mean, and when and how they 
occur for the two types of storage elements. 

 To understand this in slightly more concrete terms, we need to consider 
the constitutive equations of the storage elements. We start fi rst with the 
I element. 

 3.4.4.1  I, for Mass Elements or Inductances 

 The constitutive equation for the I element may be written as Momentum 
= inertia * velocity (p = m * v, l = L * i, etc.) In terms of generalized vari-
ables this may be written as: 

  
p = m * v

  (3.24)    

 But p, momentum, can be written as: 

  

 e
−∞

t

∫ ⋅dt = p. 

  

(3.25)

    

 Therefore, after minor manipulation: 

  

1

m
e

−∞

t

∫ ⋅ dt = f
  

(3.26)

    

 If one looks at this representation carefully, it relates fl ow to the integral of 
effort (i.e., accumulation of effort). This should be interpreted as accumu-
lated effort over time causes fl ow. This is the meaning of integral causality 
for the I element. 

 The preferred causal structure for the I element should be Integral causal-
ity: receiving effort information and sending out fl ow information. This is 
represented by the vertical causal stroke at the end of the bond that is close 
to the I element, as shown in Figure 3.50. The effort information is received 
by the element and the “accumulation” of effort information generates fl ow 
information, which is sent back to the system. 
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 The same constitutive equation for the I element may be rewritten in the 
following form: 

   
e =

dp
dt

= m ⋅ dv
dt

= m ⋅
df
dt   

(3.27)
    

 This means that the effort is related to the derivative of the fl ow. The 
derivative of the fl ow at the current time determines the future effort. 
This is the derivative form of the constitutive equation for the I element, 
and this representation is called the differential causality. 

 Sometimes, as we will see a little later, integral causality assignment 
will not be possible, and differential causality will be the only possibility, 
that is, receiving fl ow info and giving out effort info. In that case, the rep-
resentation will be as shown in Figure 3.51. The causal stroke will have to 
be put on the bond end opposite to where the I element is. 

 3.4.4.2 C, for Capacitive or Spring Elements 

 The constitutive equation for the I element may be written as effort = 
capacitive constant * displacement (F = k * x, V = 1/C * Q, etc.). In terms of 
generalized variables, this is written as: 

  
e = q/C

  
(3.28)

    

 But q, the displacement, can be written as: 

  

f
−∞

t

∫ ⋅ dt = q,

  

(3.29)
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FIGURE 3.50
Integral causality for I element.
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FIGURE 3.51
Differential causality for I element.
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 Therefore, 

  

1

C
f

−∞

t

∫ ⋅dt = e
  

(3.30)

    

 If one looks at this representation carefully, it relates effort to the  integral 
of fl ow (i.e., accumulation of fl ow). This should mean accumulated fl ow 
over time causes effort. This is integral causality for the C element. 

 The preferred causal structure for the C element should be integral cau-
sality: receiving fl ow information from the rest of the system and sending 
out effort information to the rest of the system. This is represented by the 
vertical line at the end of the bond that is away from the C element, as 
shown in the Figure 3.52. 

 The same constitutive equation for the C element may be written in the 
following form: 

  
f =

dq
dt

= C ⋅ de
dt   

(3.31)
    

 This means that the fl ow is related to the derivative of the effort. The deriv-
ative of the current effort determines the future fl ow. This is the derivative 
form of the constitutive equation for the C element, and this representa-
tion is called the differential causality. 

 Sometimes differential causality will be the only possibility, that is, 
receiving effort information and sending out fl ow information. In that 
case, the causal representation will be as shown in Figure 3.53. The 
causal stroke will be put at the end of the bond that is closest to the C 
element. 
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FIGURE 3.52
Integral causality for the C element.
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FIGURE 3.53
Differential causality for the C element.
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 3.4.5  R, for Resistive Elements 

 The resistance element is not an energy storage device, it dissipates energy. 
The constitutive relationship between effort and fl ow is algebraic. 

  e = Rf   (3.32)    

 Hence, R elements have neither integral nor differential forms, and the causal 
structure could be either type, that is, the causal stroke for an R element 
could be either of the two shown in Figure 3.54. Both are equally accept-
able. This means that if fl ow information comes in from the system, the R 
element can easily determine the effort information by algebraic manipula-
tion. It is just as easy to do the opposite. The causality of R elements is actu-
ally determined by what is happening in the rest of the model. 

 Now that we have discussed the causal structure of all the basic elements, 
it is necessary to have a discussion of how the causal strokes are assigned 
to different bonds in an actual model. While these assignments are carried 
out, sometimes we will encounter diffi culties with seemingly confl icting 
requirements, and the modeler needs to know how these can be resolved. 
We will outline the process through a series of algorithmic steps. But before 
we do, it is important to remind the readers of a few things. They are 

   The causal strokes for the sources of effort and fl ow  • will have to 
be   the way they have been  described earlier.  

  The causal strokes for the 0 and 1 junctions  • will have to be   the 
way they have been  described earlier.  

  The transformer and gyrator causality can be  • one of two types.   

  For the storage elements,  • integral causality is preferred but dif-
ferential is acceptable.   

  For the dissipative elements, there are  • no preferred causal 
directions.    

 These items are listed here to re-emphasize that the fi rst two are very strin-
gent requirements while the last three have varying degrees of fl exi bility. 
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FIGURE 3.54
Causal structure for an R element.
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Keeping this in mind, one can come up with an algorithm for assigning 
causality in a bond graph model. 

  3.4.6  Algorithm for Assigning Causality in a Bond Graph Model 

    1. Choose any source and assign its required causal stroke. Extend 
the causal implications through the bond graphs as far as possible 
using 0, 1, TF, GY, and so forth.   

   2. Repeat this for all sources.   

   3. Choose the storage element (I or C) and assign its preferred causal-
ity (integral causality). As in (1), extend the implications through 
the rest of the bond graphs.   

   4. Repeat step (3) for all storage elements.   

   5. Choose any unassigned R element, assign a causality to it (arbi-
trary), and extend the implications throughout the bond graph. 
(Many R elements would be assigned causal strokes by this time.)   

   6. Repeat (5) for all unassigned Rs.   

   7. Choose any unassigned bond and assign arbitrarily and extend 
through the rest of the bond graph.   

   8. Repeat step (7) until you are done.   

 In most models, the fi rst four steps will result in complete causal struc-
ture determination for the model. In relatively complex models, one needs 
to include steps 6, 7, and 8. While executing these steps, the user should 
keep in mind that every step should try to extend the causal implications 
onto as many bonds as can possibly be done. We will now demonstrate 
the process through Examples 3.13–3.18. 

  EXAMPLE 3.13 

 The bond graph of a simple spring-mass-damper system, or an RLC circuit, 
(Figure 3.55), is shown again in Figure 3.56. 

 Following the steps given above, the causality structure for the bond graph 
model for either of these systems is shown in Figure 3.56 as well. 

 This structure satisfi es the integral causality requirements for I and C ele-
ments, the requirement for Se element, and the requirement for the 1 junction. 
The causal stroke for the R element is applied last to fi t all these requirements 
because there is no particular constraint for the R element.  

 Let’s consider a few more examples. 

  EXAMPLE 3.14 

 Figure 3.57 shows another simple circuit and its corresponding bond graph. 
Following the algorithm, the bond graph representation, after the causal strokes 
are applied, is shown in Figure 3.58. 
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FIGURE 3.55
An RLC circuit and a spring-mass-damper system.
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FIGURE 3.56
Basic bond graph and causalled bond graph for the systems in Figure 3.55.
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 Once again, it is seen that the structure satisfi es the integral causality require-
ments for I and C elements, the requirement for the Sf element, and the require-
ment for the 0 junction. The causal stroke for the R element is applied last to 
fi t all these requirements because there is no particular constraint for the R 
element. Compared with the previous example, one can see that the R element 
has a different causal stroke to satisfy all the requirements.  

 EXAMPLE 3.15 

 Figure 3.59 shows a mechanical system that we encountered earlier and its 
bond graph. 
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FIGURE 3.57
A parallel RLC circuit with its corresponding bond graph.

FIGURE 3.58
Causalled bond graph for the system in Figure 3.57.
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 Using the algorithm given above, the causal structure for this system may 
be shown as in Figure 3.60. One starts with the source of effort and applies 
the causal stroke for it. We cannot proceed any more beyond the 1 junction. 

The C1 element is then assigned an integral causality, but we still cannot proceed 
beyond the 1 junction. C2 is now assigned integral causality, and we can work 
backwards through the transformer TF2 back to the 1 junction. Now, all the bond 
ends at the 1 junction have causal strokes except the one bond connected to the 
transformer element TF1. This bond will have a noncausalled end adjacent to the 
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FIGURE 3.59
A mechanical system and the corresponding bond graph.
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Causalled bond graph for the system shown in Figure 3.59.
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1 junction to satisfy the requirement for the 1 junction causal structure. Now we 
can put the causal strokes on the remaining bonds including the R element. 

 EXAMPLE 3.16 

 Figure 3.61 shows another example that we have considered before. The causalled 
bond graph is shown in Figure 3.62. This was obtained using the same algorithm 
as described before. Notice that all the storage elements have integral causality. 

 Here again we start with the source of effort and assign causal stroke to the 
source. We assign integral causality to the I2 element. This will mean that all 
the other bonds connected to the 1 junction will have causal strokes. This 
automatically determines the causal stroke for the R3 element. Next we come 
to the 0 junction in the middle but cannot assign the causal stroke to the one 
bond that will have the causal stroke since there are two bonds to choose from 
(1.2 and 3.2). We then assign integral causality to the I1 element. This auto-
matically determines the causal strokes for all the other bonds connected to 
the 1 junction adjacent to I1. Now the causality of R1 is also determined. We 
can go back to the 0 junction and assign the causal stroke to bond 3.2, and the 
integral causality for C1 and R2 are now trivial assignment tasks. 
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FIGURE 3.61
A mechanical system and its corresponding bond graph.
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Causalled bond graph for the system shown in Figure 3.61.
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 EXAMPLE 3.17 

 Figure 3.63 shows an electrical circuit along with its bond graph representation. 
 From the bond graph, its fi nal form with the causal structure can be obtained 

using the algorithm described before as shown in Figure 3.64. 
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FIGURE 3.63
An electrical system and its bond graph representation.

FIGURE 3.64
Causalled bond graph for the system shown in Figure 3.63.
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 EXAMPLE 3.18 

 This example consists of a mechanical system, and its corresponding bond graphs 
are shown in Figure 3.65. Analyzing the causality of this system using the approach 
described before, we get the causalled bond graph as shown in Figure 3.66. 

 In all the above cases we obtained integral causality for the energy stor-
age elements I and C. With so many examples shown, one may think that 
integral causality can be taken for granted all of the time. This is not true, 
and, in many cases, one would encounter situations where integral causali-
ties will not be possible. In the next section, some of those possibilities are 
discussed along with what the suitable course of action should be.  
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FIGURE 3.65
A mechanical system and its basic and fi nal simplifi ed bond graph.
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The causalled bond graph for the system in Figure 3.65.
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  3.4.7  Integral Causality versus Differential 
Causality for Storage Elements 

 Examples 3.13–3.18 had storage elements with integral causality. Although 
this is the desirable outcome, this is not always achievable. Sometimes, the 
causal structure of the system is such that one or more of the energy stor-
ing devices end up having differential causality. Before we look at some 
of these examples, it is important to understand the different implications 
(in terms of the fi nal model) of an integral and differential causality. 

 For an energetic system, the state variables must at least uniquely defi ne 
the energy stored in the system. The minimum number of state variables 
required is determined by the number of independent energy storage 
 elements in the system model. Energy storage devices that have been inte-
grally causalled are independent. 

 An energy storage element that has derivative causality is not inde-
pendent. Its stored energy is determined by the variables associated 
with the element from which the causal propagation began. Derivative 
causality on an energy storage element is not an error, but it can have 
undesirable consequences. It leads to implicit ordinary differential 
equations rather than explicit ordinary differential equations. Since 
explicit differential equations are more easily solved, the implicit equa-
tions may lead to extensive algebra in deriving state equations and 
may also lead to numerical diffi culties when simulating system behav-
ior on a computer. If one or more energy storage elements in a model 
have derivative causality, the model developer may want to modify the 
model to eliminate the differential causalities. Although this is neither 
essential nor is it always possible, an attempt to change the causality is 
always recommended. 

 Examples 3.19–3.21 describe where derivative causality may occur. 

  EXAMPLE 3.19 

 The fi rst example is that of a circuit with a voltage source and a capacitor 
(Figure 3.67). The correctly causalled bond graph for this system is shown in 
Figure 3.68. The causal requirement for the 1 junction and the Se element 
are not violated, but the C element attains a derivative causality. If one tries 
to explore the origin/reason for this, it will eventually be clear that this circuit 
is not possible to construct. It is presumed that the circuit is being made to 
charge a capacitor. And charging a capacitor happens if a current starts fl owing 
through this circuit. However, without any resistance in the circuit, the current 
drawn could be infi nite. Thus, the circuit has to have some resistance in it, 
however small. If we add a resistance in the circuit, it looks like Figure 3.69 
and its bond graph representation can be seen in Figure 3.70. Addition of the 
R element makes the actual circuit realistic and its model  accurate. As a result, 
the causal description of the C element becomes integral as well.  
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FIGURE 3.67
A circuit with a voltage source and a capacitor.
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The causalled bond graph for the circuit in Figure 3.67.
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FIGURE 3.69
Capacitor circuit modifi ed with resistance.
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  EXAMPLE 3.20 

 Let us look at another example. Here is a circuit with two inductors in series 
and a voltage source. The circuit and the causalled bond graph are shown in 
Figure 3.71. 

 Note that when we built the bond graph representation of the two Is, one 
will have a differential causality and another will have an integral causal-
ity. This is because both the storage elements cannot have behavior that is 
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FIGURE 3.71
Circuit with two inductances and its corresponding bond graph.
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Bond graph for Figure 3.69.



Drawing Bond Graphs for Simple Systems: Electrical and Mechanical 103

independent of each other. What happens in one will infl uence the other. 
Hence, one is an integral causality and the other is a differential causality. If 
we modify this circuit by a single I equivalent (instead of using two I elements) 
as it is taught in EE circuits classes, the problem of differential causality will 
disappear and we will have a bond graph representation that will look as 
shown in Figure 3.72.  

  EXAMPLE 3.21 

 Consider the mechanical system and its initial bond graph shown in Figure 3.73. 
After removing the ground velocity, the 1 junction labeled fi xed end, and 
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FIGURE 3.72
Modifi ed bond graph for system in Figure 3.71.
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A mechanical system and its corresponding initial bond graph.
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 simplifying, the bond graph representation looks like the fi rst one shown in 
Figure 3.74. 

 Note that after all the causal structure was determined one of the elements 
(the I element called pinion inertia) has a differential causality. Once again, this 
is a result of a modeling assumption that was made. Consider the transformer 
element, the rack and pinion. We are assuming that it is an ideal transformer, 
that is, there is no energy used to do anything other than to rotate the pinion. 
This is possible if the teeth of the rack and pinion are ideally rigid. However, 
they are not and some of the energy is used to bend the teeth elastically. To 
modify the model, this elasticity needs to be accounted for using another C 
element after the transformer (or before), as shown in Figure 3.75. After adding 
this new C element, known as transformer compliance, all the storage elements 
now have integral causality.  
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Modifi ed bond graph and after the causal strokes are added.
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 Through Examples 3.19–3.21 we have demonstrated several ways to 
modify bond graph models to not only refl ect reality more closely but 
also to achieve integral causality for the storage elements in the model. In 
a very informative paper, Jose Granda (1984) offers a very insightful dis-
cussion on this same topic. He summarized the different techniques that 
may be used to avoid differential causality. They are 

    1. Combine  storage element into an equivalent storage element   

   2. Add an energy storage element   

   3. Add a resistive element   

   4. Remove some storage elements    

 Although these are general rules, these cannot be used without any 
 relevance to the actual system. One must have some understanding of the 
system and the system model to determine which technique, if any, could 
be used in a given situation.  

  3.4.8  Final Discussion of Integral and Differential Causality 

 Once the causal structure of a bond graph model is determined and no 
rules of causality are violated, the number of energy storage elements with 
integral causality indicates the order of the system. This means that the 
number of integrally causalled storage elements will be the same as the 
number of independent state variables in the set of differential equations 
that will govern this system. If there is an energy storage element that has 
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FIGURE 3.75
Causal structure after the C element is added.
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differential causality, it means that the state variable for this element is not 
an independent variable, but its behavior is dependent on other energy 
storage elements. As has been demonstrated in the previous section, dif-
ferential causality could be caused by a modeling error or simplifying 
assumption. Many times it can be fi xed (as just shown), but sometimes it 
cannot be fi xed.   

  3.4.9  Causality Summary 

    1. One energy port (end of a bond) can provide only one type of 
“information” (either  f  or  e ) to the adjoining bond.   

   2. The two ends of the bond cannot provide the same information to 
the adjoining bonds.   

   3. Power half-arrows are unrelated to the causal strokes.   

   4. In a bond graph representation one should always attempt to pro-
vide integral causality to all storage elements (I, C).   

   5. Differential causalities are possible at times.   

   6. The number of independent integrally causalled storage elements 
(I, C), determine the order if the system (= number of independent 
ODEs).   

   7. If the system model has only integral causality, the differential 
equations look like: 

 

�x = f (x, y, t)
�y = f (x, y, t)     

 and can be solved by explicit methods.   
 If the system has 1 differentially causalled element, the equations 

look like: 

      

�x = f ( �x, x, y, t)
�y = f ( �y, x, y, t)   

 and will have to be solved by implicit methods. Modifying a bond graph 
that has differential causality to obtain integral causality ensures that 
the differential equations for the model changes from implicit to explicit. 
This item was not specifi cally discussed here, but will be discussed in the 
chapter on equation derivation. 
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  Problems 

     3.1. In Section 3.1, six simplifi cation rules were discussed. A proof 
was shown for the fi fth rule. Using the same approach, show that 
the sixth rule of simplifi cation is also valid.  

   3.2. For the electrical and mechanical systems shown in the Figure P3.1 
a–m, develop a bond graph representation for the system, simplify 
the bond graphs using the rules of simplifi cation, and then add the 
causal strokes using the process discussed in this chapter.            
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FIGURE P3.1(a–m) 
Figures for Problem 3.2, electrical and mechanical systems whose causalled bond graphs 

need to be developed.
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  4 
Drawing Bond Graphs for Hydraulic and 
Electronic Components and Systems 

                       In Chapter 2 we discussed some of the basic components that constitute 
systems in different domains. We had the chance to relate the behavior of 
similar components from different domains. The domains we considered 
were mechanical translation, mechanical rotation, electrical, and hydrau-
lic. Building on the basic concepts discussed in Chapter 2, we explored 
different ways of developing bond graph models for mechanical and 
electrical systems in Chapter 3. In Chapter 4 we will consider two other 
domains, specifi cally, hydraulic and electronic, and try to develop bond 
graph models for systems within these domains. We expect that the exper-
tise we developed in Chapter 3 will be helpful in making quick progress 
in these other domains. Similar discussions on hydraulic components can 
be found in other texts on bond graphs, such as in the works of Brown 
(2001), Gawthrop and Smith (1996), and Mukherjee and Karmakar (2000). 

 In mechanical and electrical domains, behavior of basic components, 
such as springs, resistances, and so forth, remain linear over most behav-
ioral range. This is not true for fl uids. Fluid behavior can quite easily 
change from laminar to turbulent; resistances in fl uid paths are nonlin-
ear whenever there is a valve or an orifi ce. Because of these reasons, this 
domain has been separated for study. Also, before we start talking about 
the process of building models for hydraulic systems, we will devote 
attention to some of the physical laws within this domain, the behavior of 
basic components and their constitutive equations, and the limitation of 
the approach that we are following: that is, treating elements of the fl uid 
fl ow world as lumped components. 

 Electronic components behave somewhat differently from electri-
cal components, primarily because of the properties of semiconductors. 
Hence, electronic devices have been separated from electrical components 
for consideration. Within the section about electronic components, we 
will focus primarily on some of the basic components, such as the opera-
tional amplifi ers and diodes, because these components are “workhorses” 
within the electronic world. In this chapter we will fi nd out how to build 
bond graph models of these systems. In a later chapter on sensors, we will 
devote a section on signal conditioning where electronic components play 
an important part as devices, including amplifi ers, fi lters, and so forth. 
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 The overall objectives of this chapter are to 

   Build on the basic understanding of the bond graph method • 
by extending its application in two other areas: hydraulics and 
electronics.  

  Develop an understanding of how to use the techniques learned • 
so far to build bond graph models of simple hydraulic and elec-
tronic systems.  

  Be able to relate the generalized elements to specifi c ones in the • 
hydraulic and electronic domains.   

    4.1  Some Basic Properties and Concepts for Fluids 

 Fluids are substances that fl ow. Both gases and liquids fall under this 
 category. Fluids can be compressible (i.e., its volume can be signifi cantly 
altered through the application of pressure) or practically incompressible 
(i.e., application of pressure causes little or no change in the fl uid volume). 
Modeling fl uid fl ow can be attempted from a variety of perspectives and 
can be inherently quite complex. Fluid fl ow is governed by a set of partial 
differential equations (Navier-Stokes’) and demonstrates various behav-
iors in different fl ow regimes and as a result of the different fl uid property 
 values such as viscosity, density, temperature, and so forth. For the purpose 
of system modeling, we will not attempt to model from these fundamental 
principles. We will, however, attempt to model fl uid systems as hydraulic 
systems. There are many inherent assumptions in doing this. They are 

   Hydraulic systems are typically high-pressure, low-velocity fl ows.  • 

  Flows are steady, uniform, laminar, isothermal (constant temper-• 
ature), adiabatic (without heat loss).  

  Components of hydraulic circuits, such as pumps, pistons, plung-• 
ers, pipes, tanks, accumulators, restrictions, hydraulic motors, 
and so forth, can be modeled as lumped parameters.  

   4.1.1  Mass Density  

 Mass density is an inherent property of a fl uid and is defi ned as: 

  ρ
kg
m3

⎛
⎝⎜

⎞
⎠⎟ = Mass

unit volume
  (4.1) 

    Mass density varies with temperature and (most of the time) with 
pressure.   
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 4.1.2  Force, Pressure, and Head 

 A force applied to a fl uid generates pressure on the fl uid. Pressure is the 
intensity of force, that is, pressure is force per unit area. If force is applied 
on a closed volume of fl uid, pressure is generated in it. Force can be applied 
in either of two ways on a fl uid: 

    1. Through the application of an external force  (F)   

   2. From the weight of the overhead fl uid, also called the head  (H)   

  Thus, mathematically, the relationships can be expressed as: 

  
p

N
m2

⎛
⎝⎜

⎞
⎠⎟ = F

A
=

ρgHA
A

= ρgH
 

 (4.2)
     

  4.1.3  Bulk Modulus 

 The bulk modulus of elasticity is a measure of the compressibility/stiff-
ness of the fl uid. It is defi ned as the ratio of pressure change to volume 
change for a given volume of fl uid. 

  

β N
m2

⎛
⎝⎜

⎞
⎠⎟ = ΔP

ΔV
V

N
m2

m3

m3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 (4.3)     

  4.1.4  Mass Conservation for Steady, Irrotational, 
Nonviscous Flows 

 If a control volume of fl uid (such as in Figure 4.1) is considered, the total 
fl uid fl owing into the control volume is the same that is fl owing out of the 
volume. The mass fl ow rate at the inlet is a product of the density, veloc-
ity, and cross-sectional area. The same is true for the outlet. So for mass 
conservation, one can write the continuity equation as: 

  
ρ1A1v1 = ρ2 A2v2   (4.4)    

 or 

  
ρAv = C

  (4.5)    
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 For incompressible fl uids, the density at the inlet 
and outlet remains unchanged, and, therefore, 
the continuity (or conservation of mass) equation 
can be simplifi ed as: 

  
A1v1 = A2v2   

(4.6)
    

 When dealing with incompressible fl uid, we 
essentially deal with  volume fl ow rate rather than 
the mass fl ow rate (by literally taking density out 
of the equation). 

 Since this is similar to the fl ow of current, the 
continuity equation (or conservation equation) 
is similar to Kirchoff’s current law: that is, it is a 
conservation of fl ow.  

  4.1.5  Energy Conservation for Steady, Irrotational, 
Nonviscous Flows 

 The energy difference between two points in the fl ow is equal to the 
energy that is added to (or lost from) the system. The mathematical repre-
sentation of this statement is called Bernoulli’s equation. For two locations 
in a fl uid, Bernoulli’s equation may be stated as: 

  

P1

ρ1g
+ v1

2

2g
+ H1 + Enet = P2

ρ2 g
+ v2

2

2g
+ H2

 

 (4.7)

    

 where  P  represents the pressure,  v  the velocity, and  H  represents the 
height of the point under consideration with reference to some datum. 
The total energy added minus the energy subtracted is also included as 
 E  net  .  Leaving  E  net    out,   the other terms that appear in Bernoulli’s equation 
can be categorized as dynamic pressure and static pressure. The term that 
includes the square of the velocity is referred to as dynamic pressure, and 
the height effect and the pressure term together is called static pressure, 
that is 

  
P + Hρg = Pstatic  

 (4.8)
    

  

ρv2

2
= Pdynamic

 
 (4.9)

    

 The static pressure and the dynamic pressure together are called the 
 stagnation pressure.   

FIGURE 4.1
Fluid control volume.
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  4.2  Bond Graph Model of Hydraulic Systems 

 When volume fl ow is conserved and the fl uid is nearly incompressible, 
the hydraulic circuits can be modeled in a way similar to the electrical cir-
cuits. Under these conditions, the use of the bond graph based approach 
is particularly useful because the circuit can be assumed to be made of 
lumped components. These components can be represented as one of the 
several generalized elements used in bond graph representations. 

 Before we consider some of the basic components in a hydraulic circuit, 
it will be worthwhile to review the particular meaning of the general-
ized variables within this domain. For this purpose, Table 2.1 is included 
here again as Table 4.1. Here we can see one more time the contextual 
meaning of the effort, fl ow, momentum, and displacement variables in the 
 hydraulic domain. 

  4.2.1  Fluid Compliance, C Element 

 Fluid compliance is similar to the mechanical spring and the electrical 
capacitor. The constitutive relation of the fl uid compliance element needs 
to be similar to the mechanical and electrical element; that is, the pressure 
(the generalized effort) should be proportional to the fl uid displacement 
(integral of generalized fl ow). The most common form of this in fl uid cir-
cuits is a storage tank of constant cross-sectional area. When fl uid enters 
the tank and fi lls it, potential energy is stored. The height of the fl uid in 

TABLE 4.1

Generalized Variables in Different Domains

Generalized 

Variables

Mechanical

Translation

Mechanical 

Rotation
Electrical Hydraulic

E (effort) Force, F(N) Torque, 

T (N–m)

Electric 

potential, 

V (Volt)

Pressure, P 

(N/m2)

f (fl ow) Velocity, 

v (m/s)

Angular 

velocity, ω 

(rad/s)

Current, i 
(A = C/s)

Volume 

fl ow rate, Q
(m3/s)

P (momentum) Linear 

momentum 

(N–s), p

Angular 

momentum 

(N–m–s), pT

Flux linkage 

variable, 

λ, (Vs)

Pressure 

momentum 

Pp(N–s/m2)

Q (displacement) Displacement, 

d (m)
Angle, θ (rad) Charge, Q, 

(Columb = As)

Volume , V 

(m3)

Power F*v (watts) T*ω (watts) V*i (watts) P*Q (watts)

Energy Fdx∫ , VdP∫ Tdθ∫ , ωdpT∫ edq∫ , idλ∫ PdV∫ , Qdp
P

∫
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the tank is given by  H = V/A,  and the pressure in the tank at any level is 
given by  Hρg . Therefore, the constitutive equation can be written as: 

  

C =
q
e

= V
P

= V
Hρg

= V
V
A

ρg
= A

ρg
 

 (4.10)    

 This particular compliance defi nition can be called fl uid compliance due 
to gravity. A second type of fl uid compliance is also to be considered in 
fl uid circuits, especially when fl uids are somewhat compressible. This is 
particularly useful when an accumulator is part of a fl uid circuit. The com-
pressibility of fl uids is captured through the bulk modulus of the fl uid. 

   

β = ΔP
ΔV
V  

 
(4.11)

    

 This representation may rewritten as: 

    

1

C
= β

V
= ΔP

ΔV  
 (4.12)

    

 Another type of compliance can be considered, the one that arises from 
using fl exible tubing through which the fl uid fl ows. This is not being 
 discussed here.  

  4.2.2  Fluid Inertia, I Element 

 To determine the fl uid inertia, we must keep in mind that the inertance is 
the second type of energy storage element. The compliance element stores 
generalized potential energy derived from displacement. The inertance 
stores energy of motion, that is, generalized kinetic energy. To determine 
the inertance of a fl uid element, consider a tube of length L, through which 
some fl uid is fl owing. The pressures at the two ends of the pipe are P 1  
and P 2 . Consider that the tube contains a plug of fl uid moving with one 
 velocity (Figure 4.2). Using P as the generalized effort and Q as the gener-
alized fl ow rate, from Newton’s law:         

P1 P2

FIGURE 4.2
A plug of fl uid in a tube.



Drawing Bond Graphs for Hydraulic and Electronic Components… 119

    

F = ma;

(P2 − P1)A = ρLA
Q
A

⎛
⎝⎜

⎞
⎠⎟ ;

(P2 − P1) = ρL
A

⎛
⎝⎜

⎞
⎠⎟ Q;

I = ρL
A

 

 (4.13)

    
 For tubes with discrete changes in area, the total inertance can be cal-

culated as the sum of the inertances of individual sections (I = I1 + I2). If, 
however, the area of cross-section of the tube varies continuously with 
length, then the inertance can be written as: 

    
I = ρ 1

A(S)
dS

0

L

∫
 

 (4.14)     

  4.2.3  Fluid Resistances, R Element 

 A common linear fl uid resistance results from the assumption of viscous 
laminar fully developed fl ow through a circular tube. The resistance value 
is described in fl uid mechanics texts as: 

    
R = 8μL

πa4
  

(4.15)
    

 where  μ  is the absolute viscosity of the fl uid,  L  is the length of the tube, 
and  a  is the inner radius of the tube. The resistance can be assumed to be 
linear (above relation) when the Reynold’s number is low such that the 
viscous forces are larger than the inertial forces. 

 The more practical contribution in the resistance estimation in hydraulic 
applications is the fl uid resistance associated with the change in area of fl ow 
(also called Bernoulli resistance, see Figure 4.3). If Bernoulli’s equation is used 

FIGURE 4.3
Schematic for a change in area of fl ow due to the presence of an orifi ce in the fl ow path.
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to model the fl ow between an upstream state with 0 velocity and the point in 
the throat where it achieves maximum velocity, the dissipation of the kinetic 
energy happens downstream, and the relationship is expressed as:         

  

ΔP = 1

2
ρv2 = 1

2
ρ Q

Cd A0

⎛
⎝⎜

⎞
⎠⎟

2

= ρ
2Cd

2 A0
2

⎡

⎣
⎢

⎤

⎦
⎥ Q2

 

 (4.16)

    

 In a slightly different formulation, this same equation is written as: 

  

ΔP = 1

2
ρv2 = 1

2
ρ Q

Cd A0

⎛
⎝⎜

⎞
⎠⎟

2

= ρ
2Cd

2 A0
2

⎡

⎣
⎢

⎤

⎦
⎥ Q Q

 

 (4.17)

    

 This second formulation ensures that even if the fl ow rate is negative, 
the pressure differential attains the right sign when it is calculated as a 
function of the fl ow rate. Here  Cd  is a fl ow coeffi cient that represents the 
fact that the fl ow separates from the walls of the orifi ce to form a nar-
rower vena contracta, or effective orifi ce, area of  C d A 0   ( C d   is about 0.611 
for sharp edged orifi ces). The above relation for resistance means that the 
pressure–volume fl ow rate (i.e., effort–fl ow) relationship is nonlinear in 
nature when the Bernoulli resistance term becomes dominant. This type 
of a resistance is quite common in hydraulic applications whenever there 
is a valve,  nozzle, orifi ce, or any other variation of area. 

 Since the causality of the resistance element could be one of two 
 possibilities, it means that depending on the causality, sometimes the pres-
sure drop will be calculated from the fl ow rate using the above form of the 
equation, and at other times, the fl ow rate will be calcu lated from the pres-
sure drop. For that purpose, the above equation can be rewritten as: 

  

Q = Cd A0

2

ρ sgn ΔP( ) ΔP
 

 (4.18)

    

 If, instead of the situation described above, we have a nozzle where the 
fl ow velocity is two non-zero quantities in the upstream and the down-
stream regions (as shown in Figure 4.4), the pressure difference can be 
derived from the Bernoulli’s equation as:         

FIGURE 4.4
Flow through a tube with a nozzle.



Drawing Bond Graphs for Hydraulic and Electronic Components… 121

    
ΔP = − 1

2
ρQ2

1

Au
2

− 1

Ad
2

⎡

⎣
⎢

⎤

⎦
⎥

 

 (4.19)

    

 where  A u   stands for the area of the upstream part of the tube and  A d   stands 
for the area of the downstream section of the tube. This is another version 
of the Bernoulli’s resistance term.  

  4.2.4  Sources (Effort and Flow) 

 Various types of positive displacement pumps (Figure 4.5), such as gear 
pumps, vane pumps, axial fl ow pumps, and so forth, can be represented 
as sources of fl ow. These sources provide hydraulic fl uid to the circuit at 
a rate that can be determined from the speed of rotation and its design 
parameters. Sources of effort need to deliver a steady pressure input. 
A huge source of fl uid, such as a tank with constant level that is connected 
to a hydraulic circuit, can be assumed to be a source of effort.           

 4.2.5  Transformer Elements 

 One may encounter many transformer elements in a hydraulic circuit. 
The most common one is a piston/plunger (Figure 4.6). In ideal situations 
(i.e., neglecting leakage and resistive losses), the transformer relationships 
can be expressed as:         

    

Q = Av;

P = F
A

;
 

 (4.20)

    

FIGURE 4.5
Examples of positive displacement pumps.

Low
pressure
suction 

High
pressure

 discharge 

Positive
displacement

pump

InletOutlet



122 Mechatronic Modeling and Simulation Using Bond Graphs

 where  F  and  v  are the force and velocity, respectively, on the plunger side, 
and  P  and  Q  are the pressure and volume fl ow rate of fl uid on the other 
side. Obviously  A , the area of the plunger, is the transformer factor. 

 If the energy required to drive pumps is included in the model, the posi-
tive displacement pumps can be treated as transformer elements as well 
where the amount of fl uid fl owing is directly proportional to the speed of 
rotation of the pump. Pump capacity (or transformer factor) is expressed 
as volume of fl uid displaced per unit rotation (radian) of the pump rotor. 
So the transformer relationships will be 

    

Q = Vpω ;

T = VpP;
 

 (4.21)

    

 where  V p   is the volume of fl uid displaced per unit radian of rotation.  

  4.2.6  Gyrator Elements 

 Gyrator elements are not very common in hydraulic circuits except for a 
few special cases such as centrifugal pumps and reaction turbines.  

  4.2.7  Bond Graph Models of Hydraulic Systems 

 For fl ows that are almost incompressible, the hydraulic circuits can be 
treated in a manner similar to the electric circuit if volume fl ow is con-
served. The bond graph representation may be achieved algorithmically 
in a way quite similar to mechanical and electrical systems. The steps to 
be followed are 

   1.  For each distinct pressure, establish a 0-junction.  

  2.  Insert the component models between appropriate 0-junction 
pairs using 1-junctions; add pressure and volume fl ow sources.  

  3.  Assign power directions.  

  4.  Defi ne all pressures relative to reference (usually atmospheric) 
pressure, and eliminate the reference 0-junction (atmospheric 
pressure) and its bonds.  

  5.  Simplify the bond graph (using the standard rules of simplifi cation 
that were previously discussed).   

A 

FIGURE 4.6
Schematic of a hydraulic piston.
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 Examples 4.1–4.5 discuss bond graph based models of hydraulic 
systems. 

  EXAMPLE 4.1 

 This example shows a simple system where fl uid is traveling through a pipe 
and fi lling a tank. The fl uid input is treated as a constant effort source. The 
inertia of the fl uid in the pipe, the viscous losses, and the capacitance of the 
tank all play a role. Points a, b, and c show locations with different pressures. 
We start drawing the bond graph by assigning 0 junction to represent each of 
these three points. The other elements are connected to 1 junctions, which are 
connected to two adjacent 0 junctions (as per the algorithm). The bond graph 
representation can, therefore, be written fi rst as shown in Figure 4.7, and the 
simplifi ed bond graph, obtained by removing the 0 junction representing the 
atmospheric pressure (point c), is shown in Figure 4.8. The I and R elements 
are connected using the same 1 junction since the fl ow rate through the tube 
between points a and b is the same. The inertia of the fl uid in this region expe-
riences the resistance from the wall.                      

FIGURE 4.7
Schematic for Example 4.1 and its initial bond graph.
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  EXAMPLE 4.2 

 This example shows fl uid fl owing through a pipe that is used to store fl uid in 
two different tanks (Figure 4.9). The pressure and fl ow rate at the entry point 

FIGURE 4.8
Final simplifi ed bond graph for Example 4.1.
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and exit are shown in the picture. The schematic is followed by the initial 
model that was drawn up using the list of rules listed before and then the fi nal 
simplifi ed model. The inertia elements represent the inertia of the fl uid in the 
three pipe sections. These can be eventually ignored in many situations, e.g. if 
the pipes are short. The R elements represent the pipe resistance for the three 
sections, and the C elements are used to capture the energy stored in the tanks. 
The source of effort represents the pressure at the inlet.            

  EXAMPLE 4.3 

 Figure 4.10 shows a source of steady fl ow that is supplying two tanks. There is a 
pipe that connects the two tanks, and there is a leaky drain through which the 
fl uid is fl owing out of the second tank. The bond graph for the model is shown 
right below. The I and the R1 element represents the inertia of the fl uid in the 
tube and tube resistance respectively. The resistance for the drain is represented 
by the R2 element in the model. The two Cs represent the capacitances of the 
two tanks, and the source of fl ow represents the fl uid input as a fl ow source.            

  EXAMPLE 4.4 

 Figure 4.11 shows a schematic for a needle and a plunger that is used to push the 
fl uid through the needle at a constant rate. The many different pressure points 
in the system are shown. The plunger itself works as a transformer transforming 

I
I2

R
R1

R
R2

C
C1

C
C2

1
1 Junction 2

0
0 Junction 2

Sf
Sf1

0
0 Junction 1

Flow out of a
plug drain 

FIGURE 4.10
Schematic for Example 4.3 and its bond graph representation.
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force and velocity of motion to pressure and volume fl ow rate. The different 
elements in the model are the wall resistance for the section 1–2, the inertia of 
the section 1–2, the resistance and inertia of the section 3–4, and the Bernoulli 
resistance for dimension change in region 2–3. The fi nal simplifi ed bond graph 
is shown in Figure 4.12.                      

  EXAMPLE 4.5 

 Figure 4.13 shows a generic hydraulic system that has most of the basic 
 components in the system. The bond graph representation that accompanies 
the system is a generic bond graph showing how different aspects of the system 
can be accounted for in a bond graph representation. It accounts for two types 
of resistances, the wall resistance for the fl ow-through tubes and Bernoulli 

1

I

TF
Plunger

Se
Force

0

Se
Atmospheric pressure

0 10 1

I

R
Resistance 3 4

R
Bernoulli resistance

R
Resistance 1 2

0

1 2 3 4 

Inertia 1 2 Inertia 3 4

FIGURE 4.11
Schematic for Example 4.4 and its initial bond graph.
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FIGURE 4.12
Simplifi ed bond graph of Example 4.4.
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resistance due to change in fl ow path cross-section, use of valves, bends, and 
so on in the line. The inertias of different fl uid sections are also accounted for. 
The storage tanks are treated as capacitive elements, and the effect of gravity 
due to height differences is taken into account through the effort sources. This 
generic bond graph representation will be useful in developing bond graph 
 representation of specifi c hydraulic circuits because it shows how all the com-
mon features can be accounted for.            

 Several other examples of components in hydraulic systems will be 
 discussed in the context of our discussion on hydraulic actuators in a later 
chapter.   

  4.3  Electronic Systems 

 In the previous chapter, we discussed the basic concepts of bond graphs 
as applied to modeling mechanical and electrical systems. Similarly, 
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FIGURE 4.13
A generic hydraulic circuit and its corresponding bond graph.
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hydraulic systems were discussed in the previous sections of this chapter. 
We will now deal with modeling some of the basic components used in 
electronic circuits that are particularly useful in mechatronic applications. 
Electronic components are often integrated in circuits that behave in a cer-
tain characteristic fashion, and it makes sense to model them as a whole 
rather than as a composite of numerous circuit elements. Also, many 
 electronic components (semiconductors) demonstrate nonlinear behavior, 
and the nonlinearity needs to be accounted for in the component models. 
We are, therefore, devoting a separate section to electronic components 
and circuits. We will not, however, try to model every possible electronic 
component. Instead we will focus on one or two main ones that are typi-
cally used in mechatronic applications, particularly in the area of signal 
conditioning. In the chapter on sensors, some of the common signal condi-
tioning applications and their models are discussed as well. Those models 
use the concepts discussed here. 

  4.3.1  Operational Amplifiers 

 Operational amplifi ers are sometimes called the “work horse” of  electronic 
applications. Operational amplifi ers (op-amps) form the core of many sig-
nal conditioning applications, such as amplifi ers, fi lters, integrators, dif-
ferentiators, and so forth. Using the same basic op-amp and with proper 
combination of resistors, capacitors, and feedback loops, a large number of 
applications of op-amps can be implemented. 

 The op-amp is an integrated circuit (IC) that consists of many electronic 
components. Overall behavior of op-amps is characterized by a very high 
input resistance and a very low output resistance. In the open circuit mode 
(although op-amps are never used in this mode), they can provide voltage 
amplifi cation in the order of millions. By using proper external circuit 
 elements (resistors and/or capacitors), the user can control this amplifi ca-
tion factor to almost any desired value. 

 The operational amplifi er is an IC that is rectangular with eight pins 
used for specifi c connections. Figure 4.14 shows a schematic of it. A tri-
angular symbol is used to represent the op-amp in an electronic circuit. 
Figure 4.15 shows a schematic of what an op-amp actually looks like. 
The specifi c purpose of each pin is shown in the fi gure as well. As was 
mentioned before, the internal circuit of an op-amp is rather complex 
and there is no need to go into the circuit details. Figure 4.16 shows a 
schematic that will capture its basic overall behavior. There are two input 
voltage sources shown in the fi gure as V +  and V − . The resistance on the 
input side is connected to these two source pins, such that the voltage 
across the input resistance is (V + −V − ). This is represented as V in  in the 
fi gure. On the output side of the op-amp is another voltage source con-
nected to the output resistance. The voltage source on the output side 
is given as kV in , where “k” is the open circuit amplifi cation factor of the 
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Positive power
supply, Vs+

Inverting input

Noninverting input

Negative power
supply, Vs−

Output

FIGURE 4.14
Schematic of an op-amp as used in circuits.
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FIGURE 4.16
Schematic showing how an op-amp is modeled.
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op-amp. The output voltage (with respect to the ground) is measured at 
the output pin.                         

 The equivalent bond graph model for the basic op-amp is shown in 
Figure 4.17. The left-hand side of the fi gure until the MSe represents the 
input to the op-amp. The right-hand side represents the output side.         

 The two Se elements represent the two voltage sources. The bond 
 directions are chosen so that the voltage across the resistance on the input 
side is a difference of the two voltage values. The effort sensor shown 
in the model as the e inside a circle uses the effort signal in the bond as 
a signal source to the MSe element. MSe is a modulated source of effort. 
Within Mse, the input effort signal is multiplied with the open circuit gain 
value to compute the output voltage, which is applied across the output 
resistance. A zero fl ow source is used at the output pin so that the effort 
value at that pin can be easily obtained in the model. The MSe model is 
expressed through the following statements: 

  Parameters 

  real open_circuit_amp; // open_circuit_amp is the open 
circuit amplification factor, k.  

  Variables 

 real flow;  

  Equations 

  p.e = effort * open_circuit_amp; // effort information is 
brought in from the effort sensor in the model  
 flow = p.f; 

 where open _ circuit _ amp is the op-amp magnifi cation factor in the 
open circuit mode (designated as k in our earlier discussion). Simulation 

FIGURE 4.17
Bond graph model of an op-amp.
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results will show that the output voltage at Sf is the magnifi cation factor 
times the input voltage difference. 

 In actual applications, op-amps are almost never used in open circuit 
mode. They are used with resistors (and/or capacitors) usually connected in 
a feedback mode. The relative values of these external resistors/capacitors 
control the amplifi cation factors in actual applications. One possible confi gu-
ration is shown in Figure 4.18. This is called an inverting amplifi er. In this 
case, it can be shown that the ratio of the output voltage to the input voltage 
at the negative terminal is equal to the negative ratio of R (feedback)  and R (source) .         

 The bond graph representation of this model is also shown in Figure 4.18. 
Feedback resistance and the supply resistances are shown in the fi gure. 
The parameters used for simulation are shown in Figure 4.19.         

 From the parameters it can be seen that the output voltage will be −5 
(i.e., −10/2) times the input voltage. Plots of the varying input and output 
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FIGURE 4.18
Inverting amplifi er circuit and its bond graph model.
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voltages are shown in Figure 4.20. The plot clearly shows that the input 
voltage is amplifi ed by a factor of −5. A particular advantage of this type 
of circuit is that the actual value of the op-amp application factor does 
not affect the fi nal circuit amplifi cation factor, which can be controlled 
through the ratio of the supply and the feedback resistances.          

FIGURE 4.19
Parameter values used for simulating the inverting amplifi er.
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FIGURE 4.20
Simulation results from the inverting amplifi er model.
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  4.3.2  Diodes 

 Diodes are another vital component in many electronic circuits. Diodes 
are semiconductor devices typically used to control the fl ow of current 
much the same way that one way valves are used to control fl uid fl ow in 
a hydraulic system. Under normal operating conditions, diodes can allow 
large currents when the potential across them is one way (forward bias) 
and little or no current when the potential difference is in the opposite 
direction (reverse bias). Diodes are constructed using a junction of p-type 
and n-type semiconductors in a manner shown in Figure 4.21. The fi gure 
also shows the symbol of a diode that is used in any circuit diagram, with 
the tip or vertex of the triangular symbol pointing toward the forward 
bias direction. For a full explanation of p-n junction behavior and how it 
applies to diode characteristics, one may refer to more fundamental texts 
on electrical circuits and/or electronics such as Rizzoni’s  Principles and 
Applications of Electrical Engineering.  For these junctions, the current fl ow-
ing through the diode is somewhat like the one shown in Figure 4.22. 
A mathematical representation of this is                 

  
I = I0 (e

qV
kT − 1)

 
 (4.22)

    

p

+ −
−+

n p n

FIGURE 4.21
PN junctions with forward and reverse bias and the symbol of a diode.
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FIGURE 4.22
Current profi le in a diode.
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 where  q  is the charge of a single electron, 1.6E-19C, k is the Boltzmann’s 
 constant, 1.381E −23 J/K,  V  is the applied voltage and  T  the absolute temper-
ature (= 298K for normal ambient conditions), and  I  0  is the revere bias leak-
age current of the order of 1E-9 – 1E-15 A. The current grows exponentially 
after a forward bias voltage of about 0.6V is exceeded under forward bias 
condition. The current is small or negligible (1E-9 – 1E-15 A) in reverse bias 
until a breakdown voltage is reached when the current is infi nite. In many 
modeling applications, diodes are treated as ideal devices with infi nite cur-
rent under positive bias and 0 current under negative bias (i.e., short circuit 
under positive bias and open circuit for negative bias) conditions. This is 
one  possible way of modeling the device in the bond graph method as well. 
A more realistic way, perhaps, is to model the device as an actual diode using 
the diode current equation to model it as a resistive element with the cur-
rent equation as the constitutive model. This approach could pose a problem 
with convergence because the current value shoots up to a very high value 
and may cause diffi culties with convergence when this model has to interact 
with other standard circuit elements. So the model recommended here is 
based on the concept of the diode’s behavior as an open circuit/short circuit 
resistive device. A standard resistance model is modifi ed as: 

  Variables 

  real r1; // r1 controls the resistance magnitude  

  Equations 

  if (p.e>0.6) then  // i.e. the forward bias voltage is greater 
than 0.6 V  

  r1 = 0.000000001;  // the r1 value is such that the diode 
works as a short circuit 

  else  
  r1 = 10000000000;  // the r1 value is such that the diode 

works as a open circuit 
  end;  
  p.f = p.e/r1;  //  the current is determined from the voltage 

difference and the diode resistance 

 One of the most common applications of a diode is in a rectifi er circuit, 
where an AC source may be rectifi ed into a DC voltage across a load resis-
tor. The simple rectifi er circuit is shown in Figure 4.23. The bond graph 
representation of this circuit is shown in Figure 4.23 as well, where the 
resistance marked Diode is the diode model. Figure 4.24 shows simula-
tion results from this model where the output across the load resistance 
is a value that is greater than or equal to 0 when a sinusoidal input is 
applied to the circuit. For negative applied voltage the output across the 
load resistance is zero since there is no current through the diode. For 
positive applied voltage the output across the load resistance matches the 
general profi le of the input voltage very closely. 
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In this chapter we have discussed how the various concepts of bond 
graph modeling may be applied to model the dynamic behavior of 
 systems/components that are common in hydraulic applications as well 
as electronic applications.                 
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AC source

FIGURE 4.23
A simple rectifi er circuit and its corresponding bond graph.
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FIGURE 4.24
Simulation results from the rectifi er circuit.
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  Problems 

   4.1.  Develop a bond graph model for the hydraulic circuit shown in 
Figure P4.1.   

  4.2.  Develop a bond graph model of this or the hydraulic circuit shown 
in Figure P4.2.  

25  
10 

d 

FIGURE P4.1
Figure for Problem 4.1, hydraulic circuit.

60 m

100 m

200 m 30 m

FIGURE P4.2
Figure for Problem 4.2, hydraulic circuit.
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  4.3.  Figure P4.3 is a circuit for a noninverting amplifi er. Develop a 
bond graph model for this integrator and then simulate the model. 
Use a periodic signal to demonstrate that the amplifi cation factor 
is (1+R feedback /R source ).  

 4.4.  Figure P4.4 is a circuit for an integrator. Develop a bond graph 
model for this integrator and then simulate the model. Use a 
square wave input to fi nd out what the output of this model is. 
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R (feedback)

V (output)

+

−

−
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FIGURE P4.3
Figure for Problem 4.3, a noninverting amplifi er.
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+V (input)
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V (output)

FIGURE P4.4
Figure for Problem 4.4, an integrator.
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  4.5.  Figure P4.5 shows the circuit for a low-pass fi lter. Using the bond 
graph model for this circuit, simulate its behavior. Typical values 
that may be used for the different components are: R (source) = 220 
Ohms, R (feedback) = 68 kOhm, R (load) = 1 kOhm, C (feedback) 
= 0.47 nF. 

   4.6.  Figure P4.6 shows a circuit for a band pass fi lter. Using the bond 
graph model for this circuit, simulate its behavior. Typical values 
that may be used for the different components are: R (source) = 2.2 
kOhms, R (feedback) = 100 kOhm, R (load) = 1 kOhm, C (feedback) = 
1nF, C1 = 2.2 microF.  
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+
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R (load) V (output)

FIGURE P4.5
Figure for Problem 4.5, a low-pass fi lter.
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FIGURE P4.6
Figure for Problem 4.6, a band-pass fi lter.
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  4.7.  Figure P4.7 shows a circuit for a fi lter. Using the bond graph 
model for this circuit, simulate its behavior. From the results, 
can you decipher whether this is a low-pass or a high-pass  fi lter? 
Typical values that may be used for the different components 
are: R (source) = 9.1 kOhms, R (feedback) = 22 kOhm, R (load) = 
2.2 kOhm, C (feedback) = 0.47microF.  
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R (feedback)

V (input)

C (source)

R (load) V (output)

FIGURE P4.7
Figure for Problem 4.7, circuit for a fi lter.
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  4.8.  Figure P4.8 shows a circuit involving an op-amp. Using the bond 
graph model for this circuit, simulate its behavior. From the results, 
can you decipher whether this is a differentiator or an integrator? 
Typical values that may be used for the different components are: 
C1 = 1 microF, R (feedback) = 10 kOhm, R (load) = 1 kOhm. Using 
the profi le shown in the accompanying plot, determine what the 
output of this circuit is.  
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C (source)
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FIGURE P4.8
Figure for Problem 4.8, circuit involving an op-amp.
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  4.9.  Figure P4.9 shows a rectifi er circuit where four diodes are in a 
circuit in the form of a wheatstone bridge. Develop a bond graph 
model for this circuit and for a sinusoidal voltage input determine 
the output across the load resistance shown in the fi gure.  

 4.10.  Develop a bond graph model for the cramping circuit shown in 
the Figure P4.10. Use a sinusoidal input for the source and develop 
the output results from the simulation.  

FIGURE P4.9
Figure for Problem 4.9, rectifi er circuit.
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FIGURE P4.10
Figure for Problem 4.10, cramping circuit.
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 4.11.  In the diode circuit shown in Figure P4.11, the supply voltage is a 
saw-toothed wave as shown in the accompanying plot. Model this 
circuit using the bond graph method and simulate the model to 
determine the output of this circuit.  

100 V 
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Vin

Diode

50 V

Vout

−
+
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Time 

FIGURE P4.11
Figure for Problem 4.11, circuit and waveform.



Drawing Bond Graphs for Hydraulic and Electronic Components… 143

 4.12.  Develop a bond graph model for the hydraulic circuit shown in 
the Figure P4.12.  

 4.13.  Develop a bond graph model for the hydraulic circuit shown in 
the Figure P4.13.        

Tank 1  
Tank 2  

FIGURE P4.12
Figure for Problem 4.12, hydraulic circuit.

Tank 1  

Tank 2  

FIGURE P4.13
Figure for Problem 4.13, hydraulic circuit.
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  5  
Deriving System Equations 
from Bond Graphs 

   Once the bond graph representation of a system is complete with the causal 
structure well defi ned, it is ready for use. The governing equations for this 
model may be derived from the bond graph representation. The development 
of the equations is quite algorithmic and can be easily automated (software 
tools have actually done it). No decision needs to be made about directions of 
force, action, reaction, positive direction or negative direction, and so forth. 
This makes it very easy for the user. In this chapter we will formalize the pro-
cess of deriving the governing equations for systems from the bond graph 
model. We will also discuss the effect of causal structure in the bond graphs 
(such as differential versus integral) on the specifi c form that the differential 
equation takes. So the primary objectives of this chapter are to 

 Develop an understanding of how the governing system equa-• 
tions may be derived from a bond graph model. 

 Derive the governing equations for some typical systems from the • 
system bond graphs. 

 Develop an understanding of the effect of differentially causalled • 
storage elements on the forms of the system equations. 

   Develop an understanding of algebraic loops and how to tackle • 
them.    

 5.1  System Variables 

 The reader may recall that there are four system variables: the two gener-
alized power variables, effort and fl ow, and the two generalized energy 
variables, momentum and displacement. Relationships between these 
 variables are 

   Effort, e =    p
.
 , p is momentum. 

   Flow, f = q
.
    , q is displacement. 

   p and q are also known as the state variables, and the governing 
 differential equations for the model are derived in terms of the 
state variables. 
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 The system variables in which the equations are derived are the absorbed 
causes in storage elements with integral causality. Spring/capacitive 
 elements receive fl ows, which accumulate into displacement/charges. 

        

q = fdt
−∞

t

∫
 

(5.1) 

 Inertia/inductance receives effort, which accumulates into momentum 
(generalized). 

        

p = edt
−∞

t

∫
 

(5.2)

 

 Therefore, the system variable for bond graph based analysis is 

        

system variable = (cause)dt
−∞

t

∫
 

(5.3)

 

 where cause is the information going into the storage elements with inte-
gral causality.   

 5.2  Deriving System Equations 

 One of the critical steps in completing the development of a bond graph 
model is the derivation of the system equations. These equations are a set 
of ordinary differential equations in terms of the system’s energy vari-
ables. In all the text books on bond graphs, extensive discussions of this 
particular step can be found. They are all quite elaborate and exhaustive. 
The one used here is not the most fundamental one, but is very effective 
from a practical standpoint. This approach is modeled after the one taken 
by Mukherjee and Karmakar (2000). One may recall that each bond in 
any bond graph model carries information about two quantities, effort 
and fl ow, and the directions of fl ow of this information is always opposite 
to each other. So in this derivation approach, the process is started by 
answering two simple questions. They are 

      Question 1:   What do all the elements give to the system?   

     Question 2:   What does the system give back to the storage elements?   
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  The fi rst question helps generate some relationships that are used to 
answer Question 2. The standard joint equations are used as well in 
answering Question 2. The answers to Question 2 provide the system 
equations that are usable. 

 The process is best illustrated through examples. We will consider a few 
examples, but before that, here is a review of a few things that we have 
encountered before that will be relevant to our discussion.  

 5.2.1  Review 

 Figure 5.1 shows the tetrahedron of state that we have discussed before. 
This is a pictorial representation of the relationships between all the gen-
eralized variables. 

 Following are the linear (and common) constitutive relationships for the 
three basic elements: 

  Resistance  
   e = Rf       (5.4) 

  Capacitance   
 
e =

q
C

     (5.5) 

  Inductance 
  
p = If      (5.6)  

  5.2.2  Junction Power Direction and Its Interpretation 

 We have considered here a few cases of junction power directions, and 
we have also explicitly written down the junction equations in each case. 
 Figure 5.2a shows a junction confi guration whose fl ow and effort equations 

FIGURE 5.1
Tetrahedron of state.
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are written as Equation 5.7. Figure 5.2b shows a junction  confi guration 
whose fl ow and effort equations are written as Equation 5.8. Similarly, 
 Figure 5.2c–f shows different junction confi gurations whose equations are 
written as Equations 5.9 through 5.12, respectively. 
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FIGURE 5.2
Some of the different possible joint confi gurations.
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f1 = f2 = f3

e1 + e2 + e3 = 0  
(5.7)

 

        
  

f1 = f2 = f3

e1 + e3 = e2
 (5.8)

 

         

f1 = f2 = f3

e1 = e2 + e3  
(5.9)

 

        

f1 = f2 + f3

e1 = e2 = e3  
(5.10)

 

        

f1 + f2 = f3

e1 = e2 = e3  
(5.11)

 

FIGURE 5.2
(Continued)
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f1 + f2 + f3 = 0

e1 = e2 = e3

 

(5.12)

 

 We will now discuss the process of deriving the governing equations 
from a fully causalled bond graph representation. For the fi rst example 
(Example 5.1), we have chosen the well-known RLC circuit from the elec-
trical domain (which is equivalent to the spring–mass–damper system in 
the mechanical domain).  

 EXAMPLE 5.1: RLC CIRCUIT 

 Figure 5.3 shows an RLC circuit along with its bond graph representation. The 
effort and fl ow associated with each bond are marked up in the fi gure. 

 Answers to Q1 (written in terms of the constitutive equations).  

    Q1.   What do all the elements give to the system?  

  Answers: The answers are written for each bond.  

  Bonds:  

   1.      
e1 = V (t)

      (5.13)  

  Bond 1 gives back effort to the system.  

   2.      e2 = R ⋅ f2      (resistor) (5.14)  

  Bond 2 gives back effort to the system.  

   3.   
   
f3 = p3

L
     (inductor) (5.15)  

  Bond 3 gives back fl ow to the system.  

   4.   
   
e4 = 1

C
q4      (capacitor) (5.16)  

  Bond 4 gives back effort to the system.  
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  Answers to Q2: In writing the answers to this question, we need to use the 
answers from Q1 and the joint equations for effort and fl ow.    

  Q2.   What does the system give back to the storage elements?     

 Bond 4 (for storage element C1) 

    
�q4 = f4 = f1 = f2 = f3 = p3

L       
(5.17)

 

FIGURE 5.3
An RLC circuit and its corresponding bond graph.
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 Flows are equal in 1 junction and  f3  brings the fl ow information to the 
junction. 

 Bond 3 

    

�p3 = e3 = e1 − e2 − e4

�p3 = V (t) − Rf2 −
q4

C

�p3 = V (t) − R
p3

L
−

q4

C      

(5.18) 

 Summing of efforts at the 1 junction. 

 Final form is (by rewriting Equations 5.17 and 5.18): 

    

�p3 = V (t) − R
p3

L
−

q4

C

�q4 =
p3

L      

(5.19)
 

 Note a few important things in the fi nal form of these equations. These 
are important issues to keep in mind when the reader wants to develop 
the governing equations: 

   There are two fi rst order equations, one each for the two storage • 
elements with integral causality.  

  The two equations are coupled, that is, they have to be solved • 
simultaneously. The two state variables that appear in the equa-
tions are the p and q associated with the storage elements that is, 
 p 3   and  q 4  , (and their fi rst derivatives).  

  The fi nal forms of the equations are written in terms of the input • 
to the system, system parameters, and state variables only and no 
other terms.  

  Although intermediate variables, such as effort and fl ow of indi-• 
vidual bonds, are used in the intermediate steps, they vanish from 
the fi nal equations.  

  This is a second order system because there are two equations • 
state space equations.   

 We are more familiar with the second order ordinary differential equa-
tion representing a second order system. It can be shown that the above 
two equations may be combined to give a second order ODE for the 
system. 



Deriving System Equations from Bond Graphs 153

       

�p
3

= V(t) − R
p

3

L
−

q
4

C

�q
4

=
p

3

L
⇒ �p

3
= ��q

4
L

      

(5.19)

 

 Converting it into second order function by taking derivatives of 
Equation 5.19 and combining them, we get: 

       

L ⋅ ��q
4

= V(t) − R ⋅
p

3

L
−

q
4

C

L ⋅ ��q
4

= V(t) − R ⋅L ⋅
�q

4

L
−

q
4

C       

(5.20) or

 

       
V(t) = L ⋅ ��q

4
+ R �q

4
+

q
4

C      
(5.20) 

 Equation 5.20 is the standard form that many are familiar with for an 
RLC circuit. A similar equation written for a mechanical system will be 
the well-known spring–mass–damper equation for a vibrating mass: 

       F(t) = m��x + B �x + kx
     (5.21) 

 where  x  is the displacement,  F  is the external force applied,  B  is the 
damping coeffi cient, and m is the mass. 

 It is thus shown that a set of two state–space equations is equivalent to 
a single second order differential equation, and the two can be used to 
describe the same second order system. To reiterate, the system has two 
energy storage elements. Hence, it is a second order system.   

 EXAMPLE 5.2 

 Figure 5.4 shows the system and the corresponding bond graph. This is a 
mechanical system containing the basic components that make up typical 
mechanical systems. Based on what we learned in the previous example, the 
equations will be for the state variables associated with the energy storage ele-
ments, that is,  q 4 , p 1 , q 8 ,  and  p 10.   

 This example has a transformer element. Before we start deriving the equa-
tions, we need to obtain the transformer parameter. 

 Figure 5.5 shows how the transformer element could move. This means that 
 f 6   and  f 7   are proportional to each other in the following way: 

    

f6
l1

= − f7
l2

⇒ f7 = − l2

l1
f6

     
(5.22) 
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FIGURE 5.4
A generic mechanical system and its corresponding bond graph.
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FIGURE 5.5
A schematic of the lever as a transformer.
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 The negative sign in the above relationship means that the two fl ow directions 
are opposite to one another. Since the transformer conserves power (i.e.,  e 7 f 7   = 
 e 6 f 6  ) a similar relationship will exist between  e 6   and  e 7 .  

    
e6 l1 = −e7 l2 ⇒ e6 = − l2

l1
e7

     
(5.23)

 

 So the transformer factor is 

    TF = − l2

l1
.    

 Now we will attempt to derive the governing equations. 

 Answers to Q1 (written in terms of the constitutive equations).   

   Q1.   What do all the elements give to the system?  

  Answers:  

  Bonds  

   1.      f1 =
p1

m1     
 (5.24)  

   2.      
  e2 = F(t)     

 (5.25)  

   3.        e3 = −m1g      (5.26)  

   4.        e4 = k1q4      (5.27)  

   5.        e5 = bf5      (5.28)  

   8.        e8 = k2q8      (5.29)  

   10.      f10 =
p10

m2     
 (5.30)  

   11.      e11 = −m2g      (5.31)  

  Answers to Q2: Use the answers from Q1 and the joint equations.   

   Q2.   What does the system give back to the storage elements?     
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 Bond 1 

    

�p1 = e1 = e2 + e3 − e4 − e5 − e6

�p1 = F(t) − m1g − k1q4 − bf5 − − l2

l1

⎛
⎝⎜

⎞
⎠⎟

e7

�p1 = F(t) − m1g − k1q4 − b
p1

m1

+ l2

l1
(k2q8 )

       

∵f1 = f2 = f3 = f4 = f5

f1 = f5 = p1

m1

     ∵ e7 = e8 = e9

e6 = (TF)e7 , TF = − l2

l1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥  

(5.32)

 

 Bond 4 

    
�q4 = f4 = f1 =

p1

m1      
(5.33)

 

 Bond 8 

 

∵f6 =  f1
f7 = (TF) f6
f9 =  f10

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    

�q8 = f8 = f7 − f9 = − l2

l1
(f1) − f10

�q8 = − l2

l1

p1

m1

⎛
⎝⎜

⎞
⎠⎟

− p10

m2      

(5.34) 

 Bond 10 

    [∵e9 = e8 ]

       

�p10 = e10 = e9 + e11

�p10 = k2q8 − m2g      
(5.35) 

 All four equations may be represented together as:  

     

�p1

�q4

�q8

�p10

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 = 

− b
m1

−k1

l2k2

l1
0

1
m1

0 0 0

− l2

l1

1
m1

0 0 − 1
m2

0 0 k2 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 ⋅ 

p1

q4

q8

p10

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 + 

F(t)− m1g

0

      0

−m2g

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

(5.36)

 Four fi rst order equations are describing the behavior of this system. Each 
equation represents one of the energy storage devices. The state–space vari-
ables representing the energy storage devices are displacement or momen-
tum—the energy variables. This set of coupled ordinary differential equations 
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(5.36) can be solved simultaneously to obtain the system behavior. In order to 
solve these equations, four initial conditions will also be required.  

  EXAMPLE 5.3: AN ELECTROMECHANICAL SYSTEM, 
A PERMANENT MAGNET DC MOTOR 

 The bond graph shown in Figure 5.6 is that of a permanent magnet DC motor. 
We will discuss the detailed derivation of this bond graph from the actual phys-
ical system in a later chapter. For now we will try to use the method that we just 
learned to develop the governing equations for this model. 

 Before we start deriving the equations, let’s make sure the gyrator factor is 
determined. Let us assume the gyrator factor be  m.  Therefore, from the bond 
graph representation of the system, it is clear that: 

      

e5 = mf4

e4 = mf5      
(5.37)

 

 Now we will attempt to derive the governing equations. 

 Answers to Q1 (written in terms of the constitutive equations).  

    Q1.   What do all the elements give to the system?  

  Answers  

  Bonds  

   1.      e1 = V (t)       (5.38)  

f 7

f 6

f 5f 4

f 3

f 2

f 1

e7

e6

e5e4

e3

e2

e1Se I11

R
Rotational damping

R
Armature resistance

I
Armature inductance

Supply Torque speed constant
Rotational inertia

GY
1 Junction 1 Junction 2

FIGURE 5.6
Bond graph representation of a permanent magnet DC motor.
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   2.      f2 =
p2

L
   (5.39)  

   3.      e3 = Rf3       (5.40)  

   6.        e6 = bf6       (5.41)  

   7.      
  
f7 =

p7

J
     (5.42)   

  Answers to Q2: Use the answers from Q1 and the joint equations.    

  Q2.   What does the system give back to the storage elements?     

 Bond 2 

    

�p2 = e2 = e1 − e3 − e4

�p2 = V (t) − Rf3 − mf5

�p2 = V (t) − R
p2

L
− m

p7

J

          

∵f1 = f2 = f3 = f4

f1 = f2 = p2

L

∵f5 = f6 = f7 = p7

J

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

(5.43)

 

 Bond 7 

    

∵f1 = f2 = f3 = f4

f4 =
p2

L

∵f5 = f6 = f7 =
p7

J

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥  

�p7 = e7 = e5 − e6

�p7 = mf4 − bf6

�p7 = m
p2

L
− b

p7

J      

(5.44)

 

 The two equations may be represented together as:  

  

�p2

�p7

⎡

⎣
⎢

⎤

⎦
⎥ =

−R
L

−m
J

m
L

−b
J

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅
p2

p7

⎡

⎣
⎢

⎤

⎦
⎥ +

V (t)

0
⎡

⎣
⎢

⎤

⎦
⎥

 

(5.45)
    

 In Examples 5.1–5.3, the energy storage devices ended up with integral 
causality. We have, in a previous chapter, talked about both integral and dif-
ferential causality. We also said that although integral causality is desired, 
it is not always possible to have integral causality, and, instead, a differen-
tial causality may result. Example 5.4 in Section 5.3 discusses the governing 
equation derivation process in the presence of a differential causality. 
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  5.3  Tackling Differential Causality 

 Others have written that when one of the storage elements has differential cau-
sality, it cannot behave independent of the other storage elements. The reader 
would probably like to know: What does this mean? Here, through the use of 
Example 5.4, we have attempted to demonstrate what some of the practical 
implications of having differential causality in a bond graph system are. 

  EXAMPLE 5.4 

 Consider the following bond graph in Figure 5.7. For a change, now it has a 
differential causality. We will attempt to derive its governing equations. 

 The transformer relationship is the following: 

      

e8 = (m)e7

f7 = (m)f8       
(5.46) 

 Answers to Q1 (written in terms of the constitutive equations).  

    Q1.   What do all the elements give to the system?  

  Answers  

  Bonds  

   1.      e1 = F(t)      (5.47)  

   2.  
      
f2 =

p2

J1     
 (5.48)  

FIGURE 5.7
A generic bond graph with differential causality.
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   4.      e4 = ktq4       (5.49)  

   6.      f6 =
p6

J2

     (5.50)  

   9.      e9 = k q9      (5.51)  

   10.      e10 = M �f10       (5.52)  

   11.      e11 = Rf11      (5.53)  

  Since the I element associated with bond 10 is the element with differential 
causality, the form of this equation is, therefore, somewhat unnatural and writ-
ten in terms of rate of change of fl ow, for a inertia storage element.  

  Answers to Q2: Use the answers from Q1 and the joint equations.    

  Q2.   What does the system give back to the storage elements?     

 Bond 2  

    

�p2 = e2 = e1 − e3

�p2 = F(t) − ktq4      
(5.54)

 

 Bond 4  

    

�q4 = f4 = f3 − f5

�q4 =
p2

J1
−

p6

J2      

(5.55)

 

 Bond 6  

    

�p6 = e6 = e5 + e7

�p6 = ktq4 + e8

m

�p6 = ktq4 − 1
m

(kq9 + M �f10 + Rf11)

�p6 = ktq4 − 1
m

kq9 + M �f10 + R
p6

mJ2

⎛
⎝⎜

⎞
⎠⎟      

∵ e5 = e4

e8 = −(e9 + e10 + e11)

f11 = f8 = f7
m

= f6
m

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

(5.56)
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 Bond 9  

    

�q9 = f9 = f8 = f7
m

= f6
m

�q9 = f7
m

= f6
m

�q9 =
p6

mJ2      

(5.57)

 

 Bond 10  

    

f10 = f8 =
p6

mJ2

�f10 =
�p6

mJ2       

(5.58)

 

 Substitute the �f10 obtained in Equation 5.58 into Equation 5.56. We get: 

    

�p6 = ktq4 − 1
m

kq9 + M
�p6

mJ2

+ R
p6

mJ2

⎛
⎝⎜

⎞
⎠⎟

     

(5.59)
 

 This can be manipulated by taking �p6  to the left-hand side. The simplifi ed 
equation becomes: 

    

�p6 = 1

1+ M
m2 J2

⎛
⎝⎜

⎞
⎠⎟

ktq4 − 1
m

kq9 + R
p6

mJ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

     

(5.60) 

 The four equations that are coupled (for the four independent energy storage 
devices) are 

    

�p2 = F(t) − ktq4

�q4 = p2

J1
− p6

J2

�p6 = 1

1+ M
m2 J2

⎛
⎝⎜

⎞
⎠⎟

ktq4 − 1
m

kq9 + R
p6

mJ2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

�q9 = p6

mJ2      

(5.61)
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 The four equations in Equation 5.61 have to be solved simultaneously. After 
the solution of the four equations, the equation for Bond 10 may be solved 
using: 

    

�f10 =
�p6

mJ2      
(5.62)

 

  In the matrix form, the fi rst four equations can be written as: 

 

�p2

�q4

�p6

�q9

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

0 −k2 0 0

1
J1

0 − 1
J2

0

0
kt

1+ M
m2 J2

⎛
⎝⎜

⎞
⎠⎟

R

m2 J2 1+ M
m2 J2

⎛
⎝⎜

⎞
⎠⎟

−  
k

m 1+ M
m2 J2

⎛
⎝⎜

⎞
⎠⎟

0 0
1

mJ2

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅
p2

q4

p6

q9

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+
F(t)

0

0

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

(5.63)

 

 The behavior of the four independent energy storage devices is governed by 
the above four equations. The fi fth energy storage device (the one that is dif-
ferentially causalled and, as a result, not independent) is related to the behavior 
of the others and can be represented through the relationship: 

    

�f10 =
�p6

mJ2      
(5.64) 

 From the standpoint of system behavior and its solution, this means that the 
set of differential equations (Equation 5.63) will fi rst have to be solved simul-
taneously and then its solution can be used to solve Equation 5.64. This is 
the mathematical implication of the differential causality and the dependent 
behavior of the device with differential causality.   

  5.4  Algebraic Loops 

 When deriving the governing equations for a system, one may  encounter 
another problem, which is referred to as algebraic loops. Algebraic loops and 
derivative causality received a lot of attention from researchers during the early 
days of bond graph research. For more detailed discussion of this topic, refer to 
the works of Granda (1984), Felez and Vera (2000), Karnopp (1983), and others. 
Figure 5.8 shows an example and a bond graph that illustrates a situation when 
an algebraic loop is encountered and how it could be handled. In Example 5.5, 
we will attempt to derive the governing equations in a manner similar to ear-
lier examples.    
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 EXAMPLE 5.5 

 Answers to Q1 (written in terms of the constitutive equations). 

     Q1.   What do all the elements give to the system?  

  Answers      

 Bonds    

   1.   e1 = F(t)       (5.65)  

   2.   f2 = e2

R1

= e2

3
      (5.66)  

FIGURE 5.8
A circuit and its bond graph representation.
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   4.     e4 = R3f4 = 4f4       (5.67)  

   5.   e5 =
q5

c
= 2q5       (5.68)  

   6.   
  
f6 =

p6

I
=

p6

2
      (5.69)  

   7.   
  
f7 = e7

R2

= e7

2
      (5.70)   

 Answers to Q2: Use the answers from Q1 and the joint equations.    

  Q2.   What does the system give back to the storage elements?     

 Bond 6 

    

�p6 = e6 = e8 = e3 − e5 − e4

�p6 = e3 − 2q5 − 4f4

�p6 = F(t) − 2q5 − 4f8

�p6 = F(t) − 2q5 − 4
p6

2
+ e7

2
⎛
⎝⎜

⎞
⎠⎟

�p6 = F(t) − 2q5 − 2p6 − 2e8

�p6 = F(t) − 2q5 − 2p6 − 2 �p6

3 �p6 = F(t) − 2q5 − 2p6

�p6 = 1
3

(F(t) − 2q5 − 2p6 )
     

∵ f8 = f6 + f7
  e8 = �p6

⎡

⎣
⎢

⎤

⎦
⎥

 

(5.71)

 

 We substituted �p6      in place of   e8   and simplifi ed the equation further to get it 
in terms of  p, q  and  F(t) . 

 Bond 5 

    

�q5 = f5 = f8 = f6 + f7

�q5 =
p6

2
+ e7

2

�q5 =
p6

2
+ e8

2
=

p6

2
+

�p6

2

�q5 =
p6

2
+ 1

(3)
1

(2)
(F(t) − 2q5 − 2p6 )

�q5 =
p6

2
+ F(t)

6
−

q5

3
−

p6

3

�q5 = 1
6

[p6 + F(t) − 2q5 ]
     

∵ f8 = f6 + f7
  e8 = �p6

⎡

⎣
⎢

⎤

⎦
⎥

 

(5.72)
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 In matrix form these two equations become: 

  

�p6

�q5

⎡

⎣
⎢

⎤

⎦
⎥ =

−2
3

−2
3

1
6

−1
3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅
p6

q5

⎡

⎣
⎢

⎤

⎦
⎥ +

F(t)
3

F(t)
6

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥  

(5.73)

  

 Having gone through the process, we observe a signifi cant difference 
between this process and some of the earlier ones. In this case, while 
developing the equations for I elements associated with Bond 6, we fi nd 
that   �p6   is not only related to other quantities but to itself as well. This is 
typical of the situation that is known as an algebraic loop. When an alge-
braic loop exists in a model, the model equation for a particular energy 
variable is not only a function of other quantities but also of energy vari-
able itself. This does not pose a problem when the constitutive equations 
for the basic elements are linear. But if the basic elements have nonlinear 
constitutive equations, the algebraic loops may cause diffi culties in the 
solution of the governing equations. 

 The bond graph model itself can indicate the existence of an algebraic 
loop. If during the causality assignment we end up with more than one 
possible causal structure without violating any rules of causality assign-
ment and assuring integral causality for storage elements, it is a sure 
indication of the existence of an algebraic loop. In this particular case, 
the bond graph shown in Figure 5.8 is a possible causality structure as is 
the causal structure shown in Figure 5.9. The causal strokes of R2 and R3 
can toggle without changing anything else in the model. Whenever we 
encounter something like this, we need to be aware that the algebraic loop 
will make derivation of the equation somewhat diffi cult.  

I
I1 R2

C1

R
R3

0Se
Se1

R
R1

1

R0

C
0 Junction 1

FIGURE 5.9
An alternate causal structure for the model in Figure 5.9.
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 Problems 

    5.1. For all the problems in Figure P3.2a–m (for fi gure see the Problems 
section of Chapter 3) draw the bond graphs, assign causal strokes, 
and derive the governing equations for the systems.  

   5.2. Derive the governing equations for the bond graph models shown 
in Figure P5.1a–e. Use appropriate bond numbers and symbols for 
the elements in the bond graph.  

(a) 

Sf 1
Sf

Se1
Se 

C R 

0 1 

I 

I R 
R1

0 Junction 1 1 Junction

I1

I2

C1 R2

(b) 

Sf 1
Sf 

Se1
Se 

C

0 0 GY 

I 

I R 
R1

0 Junction 1 0 Junction 2

I1

I2

GY1

C1
R

R2

(c)

Sf1
Sf

C

0

1

GY

R
R1

I
I1

GY1

C1
C

0

1

Se
0 Junction 2

R
R2

Se1

I2

0 Junction 1

FIGURE P5.1
Figure for Problem 5.2, bond graph models.
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(d)

Sf1
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Se1
Se

C R

0 0

11

TF

I I

R
R1

0 Junction 1 0 Junction 2

I1 I2

TF1

C1 R2

FIGURE P5.1
(Continued)

(e) 

Sf1
Sf 

Se1
Se 

C R2

0 0 1 

1 

TF 

I R 
R1 

0 Junction 1 0 Junction 2

I 
I1

I 2 

TF1
GY 
GY1

C1 

R
C 2
C

   5.3. Consider the problem shown in Figure P3.1g and j (for the fi gures 
see the Problems section of Chapter 3). The constitutive behavior 
of the resistances B1 and B2 are different from the constitutive 
behavior of the standard R elements. All these resistances are due 
to friction force and the constitutive relationship of the friction 
force is 

   
Ffriction = F0Sgn(V) = F0

V
V

   Using this constitutive behavior model for the resistances, derive 
the set of governing differential equations for the behavior of 
these two systems.  

   5.4. Figure P5.2 shows a system. Derive its governing equations from 
the bond graph model.  
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B 

M 
L1

L2

K1

K2

FIGURE P5.2
Figure for Problem 5.4, mechanical system.

   5.5. Figure P5.3 shows a mechanical system. Derive its governing 
equations from the bond graph model.  

FIGURE P5.3
Figure for Problem 5.5, mechanical system.
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K1
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M 

a 

b
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   5.6. Figure P5.4 shows a bond graph model. Will this have an  algebraic 
loop? Develop the governing equations for this system.  

1

0

0 Junction 1

1 Junction 21 Junction

R
R1

1 R
R2

0

C
C1

I
I1

Se
Se1

0 Junction 2

FIGURE P5.4
Figure for Problem 5.6, bond graph model.

   5.7. For the system shown in Figure P5.5, develop the bond graph 
model of the system and then derive the system governing 
equation(s), fi rst with a velocity input from the right. Do the same 
if the input is not a velocity but a force input.  

FIGURE P5.5
Figure for Problem 5.7, mechanical system.

M 

B1 

B2B3 

V (t)
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   5.8. For the system shown in Figure P5.6, develop the bond graph model 
of the system and then derive the system governing equation.   

M  

J, R  

K  

B  

F(t) 

FIGURE P5.6
Figure for Problem 5.8, mechanical system.
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   5.9. Consider the electrical system shown in Figure P5.7. Derive its 
governing equations from the bond graph model.  

R1

CR2

L

V
I

+

−

FIGURE P5.7
Figure for Problem 5.9, electrical system.
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  5.10. Consider the electrical system shown in Figure P5.8. Derive its 
 governing equation from the bond graph model.  

FIGURE P5.8
Figure for Problem 5.10, electrical system.

R1

C2

R2

L 

C1

I

  5.11. Put together two bond graph models that could have two possible 
causal structures without violating any rules of causal assign-
ments. Then derive the governing equations to demonstrate 
whether algebraic loops are encountered.   
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  6 
Solution of Model Equations 
and Their Interpretation 

                       Solution of dynamic system equations tells us a lot about system  behavior. 
The solution of these equations provides information about the stability 
of the system, the kind of external force that will excite the system and 
could take it out of control, how the system will respond to these external 
disturbances, and so forth. These solutions also enable us to design or 
modify systems so that we can get a desired behavior from the system. 
System behavior is not random, and this means that system parameters  
will determine how the system behaves under different conditions. This 
makes the study of the system behavior a manageable  exercise. To under-
stand system behavior, it is necessary to separate systems by their order. 
Systems can be ordered as zeroth, fi rst, second, third, and so forth. System 
order is determined by the number of independent energy storage com-
ponents that are present in the system. So a very simple system can be 
a zeroth order system, while a very complex system can be of the tenth 
order. Although system behavior varies signifi cantly when it changes from 
zeroth order to fi rst order and from fi rst order to second order, beyond the 
second order, the system behavior can be easily understood if one under-
stands the behavior of the three lower order systems. Therefore, in most 
texts, only the fi rst and second order systems are discussed in detail, and 
the higher order system behavior can be interpreted by understanding the 
behavior of lower order systems. 

   The objectives of this chapter are to  

  Understand the behavior of a typical zeroth order system.  • 

  Understand the behavior of a typical fi rst order system.  • 

  Understand the behavior of a typical second order system.  • 

  Understand the behavior of system under the effect of different • 
types of forcing functions and interpret simulation results.  

  Understand and use time domain and frequency domain solutions.    • 
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  6.1  Zeroth Order Systems 

 Systems that do not have any energy storage element are categorized as a 
zeroth order system. Figure 6.1 shows some examples of zeroth order systems. 
Careful review of these systems reveals that they have generalized elements, 
such as transformers, resistors, and sources, but no energy storage devices. 
Since there are no energy storage elements in zeroth order systems, the order 
of the differential equation that is derived for these systems is zero; that is, 
algebraic equations are suffi cient to describe the behavior of these systems. 

 To understand the behavior of a simple zeroth order system, let us con-
sider a resistive circuit with a single voltage source. A schematic of the 
system and its bond graph representation are shown in Figure 6.2. The 
governing equations for this system may be derived using the approach 
outlined in Chapter 5: 

 By answering Question 1 from Section 5.2: What do all the elements 
give to the system? 

   1. e1 = V
 

(  6.1)
 

 
2. f2 = e2

R  
(   6.2)

 

FIGURE 6.1
Examples of zeroth order systems.
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  The derivation continues now by answering Question 2  from Section 5.2: 
What does the system give back to the storage elements? 

 
1. e1 = e2  (  6.3    )

 
2. f1 = f2 

(  6.4    )

 Combining the results from Questions 1 and 2 we get:  

 
f1 = f2 = f = e2

R
= e1

R
= V

R  
(  6.5    )

 Equation 6.5 is nothing new. It is just a confi rmation of Ohm’s law. Note 
that the result is an algebraic equation (not a differential equation). To 
simulate the system, the following parameters were chosen:  V  = 10,  R  = 2. 
The simulation result shown by the graph in Figure 6.3 shows a fl ow of 
fi ve units through the resistor. 

FIGURE 6.2
A zeroth order system with its bond graph.
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FIGURE 6.3
Zeroth order system response.
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 Since the governing equations are algebraic, the simulation results are 
not time variant when the source input is constant. If the source input is 
time variant, the system behavior will vary with time in exactly the same 
manner as the source.  

  6.2  First Order Systems 

 Figure 6.4 shows some examples of fi rst order systems. First order sys-
tems have a single energy storage element. As the fi gure demonstrates, 
either a C or I element occurs in all of these systems along with other 
types of basic elements. In order to understand the behavior of the fi rst 
order system, let us consider a simple fi rst order system. Figure 6.5 is a 
circuit with a single C element (capacitor, energy storage device) and a 
resistor along with a voltage source. The bond graph representation of 
this system is also shown in the fi gure. The governing equations for 
this system are derived using the approach outlined in Chapter 5 as 
follows: 

 By answering Question 1 from Section 5.2: What do all the  elements 
give to the system? 

 
1. e1 = V

 (  6.6    )

 
2. f2 = e2

R  
(  6.7    )

FIGURE 6.4
Examples of fi rst order systems.
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3. e3 =

q3

C  
(  6.8    )

 The derivation continues by answering Question 2 from Section 5.2: 
What does the system give back to the storage elements? (Following 
approach in previous chapter):  

 
1. f3 = �q3 = f1 = f2 = e2

R  
(  6.9    )

 
2. e2 = e1 − e3 = V −

q3

C{ } 
(  6.10    )

 
3. �q3 = f3 = e2

R
= 1

R
V − q3 /C{ }  = V

R
−

q3

RC  
(  6.11    )

 So the governing equation for this system is a single fi rst order differen-
tial Equation 6.11 that describes the fl ow into the energy storage device, the 
capacitor.  

FIGURE 6.5
A sample fi rst order system and corresponding bond graph.
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  6.2.1  Solution of the First-Order Differential Equation  

 Equation 6.11 can be rearranged as: 

 
�q3 = −q3

1

RC
+ V

R  
  (6.12)    

 If we substitute a dummy variable q = q3

1

RC
− V

R
    , then �q = �q3

1

RC
     and 

Equation 6.12 may be rewritten as: 

 

RC �q = −q or
dq
q

= − 1

RC
dt

 

  (6.13)    

 Integrating we get: 

 

dq
q

0

q

∫ = − 1

RC
 

0

t

∫ dt ⇒ ln q[ ]0

q

= − t
RC

⎡
⎣⎢

⎤
⎦⎥ 0

t

 

  
(6.14)

    

 

ln
q3

RC
− V

R
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0

q3

= − t
RC

⇒ ln
q3

RC
− V

R
⎛
⎝⎜

⎞
⎠⎟ − ln − V

R
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= − t
RC

⇒ ln

q3

RC
− V

R
⎛
⎝⎜

⎞
⎠⎟

− V
R

= − t
RC

 

  (6.15)    

 Therefore, the fi nal form of the solution (using original variables) 
becomes: 

 

q3

RC
= V

R
1 − e

−t
RC

⎛
⎝⎜

⎞
⎠⎟

 

  (6.16)    

 This is an exponential function. The initial condition was that when time 
t = 0 and the charge in the capacitor was q 3 = 0.  

 The solution of this differential equation describes the behavior of this 
fi rst order system. The system model is now simulated to observe its behav-
ior and for the initial simulation, the following variables were chosen: 

   V  = 10 
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  R  = 1 

  C  = 1 

 Figure 6.6 shows the charging of the capacitor versus time and the current 
versus time in the circuit. By changing the  R  value from 1 to 0.1, the charg-
ing of the capacitor is re-plotted along with the earlier result for charging, 
and this is shown in Figure 6.7. The capacitor now charges faster. 

FIGURE 6.6
Response of the fi rst order system.
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FIGURE 6.7
Response of fi rst order system for two different values of R.
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 All fi rst order system responses have a few common characteristics. The 
system response approaches the steady state value exponentially. The sys-
tem does not overshoot the steady state value, but it approaches asymp-
tomatically from one side (either from below or from above). The speed at 
which the response approaches the steady state is controlled by the time 
constant of the system. 

 The concept of time constant is the most important one for the fi rst order 
system response. Consider the solution in Equation 6.16 again. The time 
constant is the denominator of the fraction that appears as the power of 
the exponential function. In this case, the time constant is  RC . Its unit is 
the same as time. 

   

q3

RC
= V

R
1 − e

−t
RC

⎛
⎝⎜

⎞
⎠⎟

 
(  6.17    )

 The time constant can be calculated in two different ways. One is to fi nd 
the magnitude of  RC  (or the inverse of the quantity that multiplies time 
in the power of the exponential function) in a given system. If the time 
constant is to be determined from graphical data, it is the time required 
to achieve 63.2% of the total rise/drop that the system will eventually 
achieve. Figure 6.7 shows the response at two different values of  R  and 
also shows a horizontal line for 63.2% of the total rise. It is quite clear 
from the fi gure that at  R  = 1 the time required to get to the 63.2% mark 
is much higher than that at the  R  value of 0.1. In other words, the time 
constant for the fi rst case is higher than in the second case. Thus time con-
stant is a measure of how quickly or slowly a system responds to external 
disturbance. 

 For fi rst order systems, time constant is the primary indicator of system 
behavior.  

  6.3  Second Order System 

 Understanding the behavior of the second order system is critical in under-
standing the behavior of all systems. On one hand, the second order sys-
tem behavior is signifi cantly different from that of the fi rst order system. 
On the other hand, all systems that are of orders higher than the second 
order behave in ways that are similar to the second order systems. Hence, 
understanding the second order system well will ensure a good under-
standing of higher order systems. Figure 6.8 shows several  examples of 
second order systems. Second order systems have two energy storage 
devices, most commonly a C and an I element. 
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 In order to study the behavior of second order systems, we will consider 
some of the equations derived in the previous chapter for an RLC circuit. 
As we saw then, the second order system may be described using two fi rst 
order ordinary differential equations known as the state–space equations. 
The primary variables in these equations are the states in the energy stor-
age devices, namely the displacement/charge in the capacitive element 
and the momentum/fl ux linkage in the Inductive element. The equations 
that we had derived for the RLC series circuit (circuit and bond graph 
model shown in Figure 6.9) are 

 

�p3 = V(t) − R
p3

L
−

q4

C

�q4 =
p3

L  

(  6.18    )

 The other way of expressing these equations is to put them together and 
write as a single second order differential equation with the state of one of 
the storage devices as the primary variable (the other one can be computed 
when the solution of the second order equation is obtained). Two forms of 
this second order equation are given below for an electrical  system and a 
mechanical system, respectively. 

 
V(t) = L ⋅ ��q4 + R �q4 +

q4

C  
(  6.19   )

 
F(t) = m��x + B �x + kx

 (   6.20    )

FIGURE 6.8
Examples of second order systems.
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 We will now discuss the response of second order systems using both 
the two state–space equations and the one second order equation. 

 Let’s consider the second order equations shown in Equations 6.19 and 
6.20 fi rst. These are two forms of the equation (for the two domains). The 
left sides of these equations are known as forcing functions. The forcing 
functions may be 0 or non-0 (any arbitrary function).  When the forcing 
function of the equation is 0, the equation is called homogenous.  

    
L ⋅ ��q4 + R �q4 +

q4

C
= 0

 
(  6.21    )

 To solve this differential equation, the fi rst step is to assume the solution 
to be a function of the following form:  

   q4 = Aest
 

(  6.22   )

  where,  A  and  s  are unknown quantities. 
 Substituting this general form in Equation 6.22 gives: 

FIGURE 6.9
Second order system and its bond graph model.
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L ⋅ s2 + Rs + 1

C
⎛
⎝⎜

⎞
⎠⎟ Aest = 0

 
(  6.23    )

 For the product of the three functions in Equation 6.23 to be 0, either     A = 0,

or       e
st = 0, or     L ⋅ s2 + Rs + 1

C
⎛
⎝⎜

⎞
⎠⎟ = 0. The fi rst two options result in a trivial 

solution. Hence, the third option  L ⋅ s2 + Rs + 1

C
⎛
⎝⎜

⎞
⎠⎟ = 0,    is the best acceptable 

choice. This quadratic equation is known as the characteristic equation, and 
the roots of this equation give us the insight into the behavior of second order 
systems. 

 The roots of this equation can be written as: 

s1 =
−R + R2 − 4L

1

C
2L

= − R
2L

+ R2

4L2
− 1

LC
= − R C

2 L
1

LC
+ R2C

4L
1

LC
− 1

LC

s2 =
−R − R2 − 4L

1

C
2L

= − R
2L

− R2

4L2
− 1

LC
= − R C

2 L
1

LC
− R2C

4L
1

LC
− 1

LC

s1 = −ςωn + ς2ωn
2 − ωn

2 = (−ς + ς2 − 1)ωn ;ωn = 1

LC
, ς = R

2

C
L

s2 = −ςωn − ς2ω n
2 −ωn

2 = (−ς − ς2 − 1)ωn ;

 

(  6.24    )

 Equation 6.24 shows the two roots  s  1    and  s  2    of the characteristic equation. 
They are written in terms of two system parameters: ω  n  , the natural fre-
quency, and ς the damping coeffi cient. The fi nal form of the two roots is 
written as: 

 

s1 = (−ς + ς2 − 1)ωn

s2 = (−ς − ς2 − 1)ωn  

(  6.25    )

 The behavior of the system is determined by specifi c values of  s 1   and  s 2  . 
There are four possibilities: 

 1.    R = 0, ς = 0, the roots are imaginary and equal; the system has no 
damping (Case 6.1).  

 2.   ς < 1, when the roots are unequal and imaginary; the system is 
underdamped (Case 6.2).  
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 3.   ς = 1, when the roots are real and equal; the system is critically 
damped (Case 6.3).  

 4.   ς > 1, when the roots are real and unequal; the system is over-
damped (Case 6.4).   

  CASE 6.1: R = 0 

 The system has no damping, and the roots are equal and imaginary. Hence,
the solution for this system is     q4 = A1es1t + A2es2t . In this expression,  s 1   and  s 2

   

are equal and imaginary. So the fi nal form of the total solution becomes a 
sinusoidal function, 

 q4 = A1Sinωnt + A2Cosωnt  (  6.26    )

 The behavior of this solution is pure sinusoidal with no reduction in amplitude. 
The constants  A 1   and  A 2   are determined from the initial conditions of the system. 
Figure 6.10 shows a graphical response of a  system for this condition when 
damping is nonexistent. The system  oscillation, once started, does not die out.  

  CASE 6.2: ζ < 1 

 Since ζ is less than 1, the system is called an underdamped system. The roots 
 s 1   and  s 2   are unequal and imaginary. The fi nal form of the solution eventually 
becomes: 

 q4 = e− ςω nt (A1Sinωdt + A2Cosωdt)  (  6.27    )

 where 

 
ωd = 1 − ς2( )ωn  

(  6.28    )

 ω d  is the damped natural frequency of this system. The solution is a product of 
two functions: a sinusoidal function and an exponentially decaying function. The 
behavior of this solution is thus an exponentially decaying sinusoidal with reduc-
tion in amplitude. Figure 6.11 shows this type of underdamped system response. 
The constants  A 1   and  A 2   are determined from the initial conditions of the system.  

FIGURE 6.10
Response of a second order system with no damping.
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  CASE 6.3: ζ = 1 

 When ζ is equal to 1, the system is called critically damped. The roots  s 1   and  s 2   
are equal and real. The fi nal form of the solution eventually becomes: 

   q4 = (A1t + A2 )e− ω nt

 
(  6.29    )

 The solution is not sinusoidal anymore, but is an exponentially decaying func-
tion. The constants  A 1   and  A 2   are determined from the initial  conditions of the 
system. The system behavior looks something like the one in Figure 6.12.  

  CASE 6.4: ζ > 1 

 When ζ is greater than 1, the system is called overdamped. The roots  s 1   and  s 2   
are unequal and real. The fi nal form of the solution eventually becomes: 

   q4 = A1e− s1t + A2e− s2t  (  6.30    )

 The solution is not sinusoidal anymore and is an exponentially  decaying func-
tion. The constants  A 1   and  A 2   are determined from the initial conditions of the 
system. A graphical representation of system behavior is  similar to that of a 
critically damped system (Figure 6.12). 

FIGURE 6.11
Response of an underdamped system.
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 To explore the natural response of a system, we consider the second 
order system shown in Figure 6.13. There is no forcing function, so the 
system has to be excited through the use of initial conditions. Figure 
6.14 shows the different properties and initial conditions used. With a 
very low  R  value, the damping is nearly 0 and the system response is 

FIGURE 6.13
Generic homogenous second order system (with no forcing function).
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FIGURE 6.14
System parameters and initial conditions used (initial displacement and velocity are zero).
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shown in Figure 6.15. The  R  value is increased to 1 and the system response 
changes to an underdamped system, as shown in Figure 6.16. When  R  is 
increased to 10, the system response changes to an overdamped condition; 

FIGURE 6.15
System response with very low (nearly 0) damping.
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FIGURE 6.16
Underdamped system response.
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the response is shown in Figure 6.17. When  R  is increased 10 times to 100, 
the overdamping in the system increases even more, and the response 
slows down signifi cantly, as shown in Figure 6.18. The system response 
plots show a transition from an almost undamped oscillation, to under-
damped, to overdamped, and fi nally to severely overdamped oscillation.   

FIGURE 6.17
Overdamped system response.
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FIGURE 6.18
Severely overdamped system.
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     6.3.1  System Response for Step Input 

 The behavior of second order systems is often studied for a few stan-
dard forcing functions. The simplest one of these is the step input. Step 
input is a constant that is applied at a certain time and held steady for all 
future time. Thus, the complete equation is as shown in Equation 6.31 with 
 F  being a constant step function. The particular solution for this case will 
be the same form as the forcing function, and that would be a constant. 

 
L ⋅ ��q4 + R �q4 +

q4

C
= F

 
(  6.31 )

    So the particular solution for this equation that will satisfy the given forc-

ing function will be a constant and in this particular case will be     q4 = FC. 
Substituting this in the equation satisfi es differential equation, so the total 
solution for q4     is 

 
q4 = Homogenous_ solution + FC

 
(  6.32 )

    The solution to the homogenous equation is called the complementary 
function, and the particular solution of  FC  is called the particular inte-
gral. We have already discussed the homogenous solution part that will 
be one of the four possible cases. Figure 6.19 shows a second order sys-
tem with a step input. The initial parameters used in the simulation are 
shown in Figure 6.20. The system response for this condition is shown in 
Figure 6.21. The system shows oscillatory behavior because the transients 
don’t go away with time. The  R  value is very low. When the  R  is increased 
to 1, the system response changes and the new response is shown in 
Figure 6.22. 

 Since the  R  value is signifi cantly increased, the initial transients die 
down very quickly and the system response is constant (as expected) in 

FIGURE 6.19
Bond graph of a second order system with step input.
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the long run. If  R  is increased even more to 10, the response is shown 
in Figure 6.23. This value of  R  makes the system overdamped, and the 
response approaches exponentially the steady state value. When the  R  
value is increased even more to 100, the system is severely overdamped 
and the response approaches very slowly to the fi nal steady state value.  

FIGURE 6.20
Initial parameters used for simulation.

FIGURE 6.21
Response of the system and the step forcing function used.

Model
System response
Forcing function1.5

0.5

0

1

10 20 30 40
Time (s)

0



Solution of Model Equations and Their Interpretation 191

  6.3.2  System Response to Sinusoidal Inputs 

 This is the response of a system when the forcing function is varying 
 sinusoidally with time. The governing equation is shown in Figure 6.33, 
with F being a sinusoidal function 9, as in Figure 6.34. These fi gures are in 
Example 6.2. The particular  solution for this case will be the same form as 
the forcing function and that would be a sinusoidal function too. 

    
L ⋅ ��q4 + R �q4 +

q4

C
= F

 
(  6.33 )

FIGURE 6.22
Response to step input with R = 1.
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FIGURE 6.23
System response with even higher R.
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L ⋅ ��q4 + R �q4 +

q4

C
= F0Sinωt

 
(     6.34 )

    So the solution for  q 4   in this case will be       q4 = X0Sin(ωt + φ). Substituting 
this in the equation satisfi es differential equation. So the total solution 
for     q4 is 

   q4 = Homogenous _ solution + X0Sin(ωt + φ)
 (  6.35 )

    The solution to the homogenous equation is called the complementary 
function and the particular solution of   X0Sin(ωt + φ)   is called the particular 
integral in this case. It can be shown that the amplitude of the response 
function and its phase will be 

 

X0 = F0C

1 − ω
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(6.36)

 

    and 

 

φ = − tan−1
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(  6.37    )

 Consider the second order model shown in Figure 6.24. The magnitudes 
of different parameters used in the simulation are shown in Figure 6.25. 
The system response and the forcing function are shown in Figure 6.26. 

FIGURE 6.24
Second order system with sinusoidal forcing function.
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 Although the forcing function is a sinusoidal with a single frequency, 
the output response has more than one frequency of oscillation. This is 
because the  R  value is very small and, as a result, this is an underdamped 
system and the response to the homogenous equation is not disappearing 
in the long run. If the  R  value is increased to 1, the response changes as is 
shown in Figure 6.27. Now that the  R  has increased, it is an overdamped 

FIGURE 6.25
Parameters used in the simulation of the model from Figure 6.25.

FIGURE 6.26
Sinusoidal forcing function and system response.
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system. So, except for the very early stage, the system response has just 
one frequency of oscillation (the same one as the forcing function). The 
transients have died down very quickly. 

   6.3.3  System Response Study Using State–Space Representation 

 In the previous section, the system response was discussed using the 
second order ODE representing a typical second order system. Similar 
conclusions can be drawn by considering the system equations in the 
state–space form as a system of fi rst order ODEs. 

 The system of fi rst order ODEs representing a second order system 
would look like: 

    

�p3

�q4

⎧
⎨
⎩

⎫
⎬
⎭

=

−R
L

−1

C
1

L
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

p3

q4

⎧
⎨
⎩

⎫
⎬
⎭

+
V(t)

0

⎧
⎨
⎩

⎫
⎬
⎭

 

(  6.38 )

  In order to fi nd a solution for this system of equations, fi rst we consider 
the homogenous form, that is, when  V(t)  is 0. We can also assume that 
the general form of the solution for  p 3  and q 4     should be p3 = Pest     and  q4 = 
Qest    where s is a real or complex number and P and Q are the amplitudes 

FIGURE 6.27
System response with higher R.
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of the two variables  p 3  and q 4 .  If these are substituted in the state–space 
 equation, the equation looks like: 

 

sP

sQ
⎧
⎨
⎩

⎫
⎬
⎭

est =

−R
L

−1

C
1

L
0

⎡

⎣
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

P

Q
⎧
⎨
⎩

⎫
⎬
⎭

 

(  6.39 )

  Combining both sides of the equation, we get: 

 

s + R
L

1

C

− 1

L
s

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
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P

Q
⎧
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⎩

⎫
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⎭

est = 0

 

(  6.40 )

  In this set of equations (Equation 6.40),  P  =  Q  = 0 gives the trivial solu-
tion in which we are not interested. For the nontrivial solutions (i.e., the 
eigenvalues in this case), the determinant of the matrix has to be equal 
to 0. Therefore, 

 

s + R
L

1

C

− 1

L
s

= 0

 

(  6.41 )

  This results in: 

 

s s + R
L

⎛
⎝⎜

⎞
⎠⎟ + 1

LC
= 0,   or

s2 + R
L

s + 1

LC
= 0

  
  

(  6.42 )

  This, of course, is the same characteristic equation as we saw before  

  
L ⋅ s2 + Rs + 1

C
= 0

⎛
⎝⎜

⎞
⎠⎟      whose roots are  s 1   and  s 2    , as discussed before are 
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 (    6.43 )

  For the two values of  s 1   and  s 2  , we have two sets of solutions for  p3  and  q4 , 
specifi cally:  

   p31 = Pes1t, q41 = Qes1t
 

(  6.44 )

  and 

   p32 = Pes2t, q42 = Qes2t
 

(  6.45 )

  Therefore, the total solution for p3 and q4 may be written as: 

   p3 = P1es1t + P2es2t
 

(  6.46 )

  and 

   q4 = Q1es1t + Q2es2t
 

(  6.47 )

  To obtain the values for  P 1 , P 2 , Q 1,   and  Q 2   ,    four equations are needed. 
Two of these equations are obtained from the initial conditions, and two 
more are obtained from the homogenous equations shown in Equation 6.40 
by substituting  P 1   and  Q 1,   and  P 2   and  Q 2   for  P  and  Q . The two equations 
obtained by substituting  P 1   and  Q 1   are equivalent, so only one is usable. 
Similarly, the two equations obtained by substituting  P 2   and  Q 2     are equiva-
lent, so only one is usable. Therefore, the two usable equations are: 

 

s1 + R
L

⎛
⎝⎜

⎞
⎠⎟ P1 + 1

C
Q1 = 0

s2 + R
L

⎛
⎝⎜

⎞
⎠⎟ P2 + 1

C
Q2 = 0

 

(  6.48 )
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     6.4  Transfer Functions and Frequency Responses 

 What we have discussed so far is the time domain response of systems. 
There is another way of exploring system behavior that is often more 
 useful. This is known as the frequency response. In order to determine the 
response of the system in the frequency domain, usually the system equa-
tions are transformed from the time domain to the frequency domain. 
One such technique is called the transfer function. The transfer function 
is the ratio of output to the input. 

 To demonstrate the process let us consider a set of state–space equations: 

 

dx
dt{ } = [A] x{ } + [B] u{ }

 
(  6.49 )

  where [ A ] and [ B ] are matrices/vectors that are made of system para meters 
such as  R, C,  and so forth. 

  u  is the input vector or the external input to the system.   If we defi ne   s   

as the derivative operator, then  s  can be written as      s = d
dt

.

 Therefore, the system equations may be re-written as: 

 

s[I] x{ } = [A] x{ } + [B] u{ }
x{ }{s[I] − [A]} = [B] u{ }
x{ }
u{ } = {s[I] − [A]}−1[B] = G(s)

 

(  6.50 )

  where  G  is called the gain or transfer function. We will consider a typical 
example to make things clearer. Let the equations for an arbitrary system be 

   

dp
dt

= −2p + 2q + 24u(t)

dq
dt

= 4p − 9q + 4
du(t)

dt
+ 2u(t)

 

(  6.51 )

  Substituting the derivative operator,  s  :

   sp = −2p + 2q + 24u(t) = (s + 2)p = 2q + 24u(t)
 

(  6.52 )

   
sp = 4p − 9q + 4

du(t)
dt

+ 2u(t) = (s + 9)q = 4p + (4s + 2)u(t)
 

(   6.53 )
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  From Equation 6.52: 

 

p =
2q + 24u(t)

(s + 2)

 

(  6.54 )

  Substituting Equation 6.54 in 6.53, we get:  

 

(s + 9)q = 4
2q + 24u(t)

(s + 2)

⎛
⎝⎜

⎞
⎠⎟

+ (4s + 2)u(t)

[(s + 9)(s + 2) − 8]q = [96 + (4s + 2)(s + 2)]u

q
u

= 4s2 + 10s + 100

s2 + 11s + 10
= G(s)

 

(  6.55 )

  In Equation 6.55,  G (s) is called the transfer function for output q and input 
 u . In a sense, it is a measure of how much and in what way the  output  q  is 
infl uenced by the input  u . 

 Going back to Equation 6.52 and substituting  q : 

 

p(s + 2) = 2
4s2 + 10s + 100

s2 + 11s + 10

⎛
⎝⎜

⎞
⎠⎟ u

⎡
⎣⎢

⎤
⎦⎥

+ 24u

p
u

= 32s2 + 284s + 440

s3 + 13s2 + 32s + 20
= G * (s)

 

(  6.56 )

  Equation 6.56 is for  G*  the transfer function for output  p  with respect to 
input  u . 

 This example shows how the transfer functions can be easily obtained 
from the state–space equations. Another way of obtaining these same 
transfer functions is by taking Laplace transform where  s  is the Laplace 
operator. We are not demonstrating it here, but one can fi nd it in any stan-
dard book on control systems. 

 The transfer functions contain a lot of information about how the system 
will respond to different external inputs. The above discussion illustrates 
one of the many ways transfer functions can be developed. The process 
shown here is identical to assuming that the general forcing function is 
    u(t) = Uest. The system response, as a result of this forcing function, would 
be     p(t) = Pest and     q(t) = Qest. By substituting these in the above state–space 
equations, one can obtain the same expression as the one shown above for 
the transfer functions. 
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  6.4.1  System Response in the Frequency Domain 

 From the transfer function, if we need to obtain the frequency response 
of the system, we can replace the  s  with  jω  and write the transfer function 
as  G(jω).  Then: 

 
G( jω) = G( jω) e jφ(ω )

 
(  6.57 )

  where the function  G  is written as a product of its magnitude and phase. 
If the input to a stable system is a cosine function: 

 
u(t) = UCos(ωt) = Re(Ue jωt ), 

(  6.58 )

  Then its steady state response is a sinusoidal function: 

 

p(t) = Re(G * ( jω)Ue jωt )

q(t) = Re(G( jω)Ue jωt )
 

(  6.59 )

  If we draw curves of     G( jω)  and φ(ω)     versus ω we can see how the 
magnitude and phase angle of the steady-state response of the system 
changes with the frequency. This plot (or at least a version of it) is called 
the Bode plot, where a measure of the magnitude and phase of the system 
transfer function is plotted versus the input frequency. To be precise, the 
Bode plot actually plots     20logG(s). By plotting it on the logarithmic scale, 
a vast range of frequency can be explored through this one plot. Also, 
as expressed above, the Bode plot unit is dB. If the forcing frequency is 
less than the natural frequency of the system, the phase angle is less than 
90 degrees. At the natural frequency, the phase angle shifts to greater than 
90 degrees. If the damping in the system is very low, this change over of 
the phase angle happens almost instantaneously. However, if the damp-
ing in the system is high, this changeover happens at a much slower rate. 

 The Bode plot provides a lot of information about the system response, 
as Example 6.1 will illustrate. 

  EXAMPLE 6.1 

 Consider a simple second order spring–mass–damper system (Figure 6.28). The 
parameters used in the analysis of the system are shown in Figure 6.29. In plot-
ting the Bode Plot (Figure 6.30), the transfer function that is chosen is the ratio 
of the state of the C element and the effort from the source of effort, that is, the 
displacement of the spring divided by the forcing function is the transfer function 
that is plotted. The magnitude plot (by default) plots for a range of frequency from 
(nearly) 0 Hz close to 2 kHz. The magnitude plot is plotting 20log(TF). There are 
three distinct regions in the magnitude plot. At low frequencies, the plot is essen-
tially a straight line close to the 0 value. Then a sharp increase happens at around 
0.085 Hz, and the magnitude reaches the value close to a positive 50. After that 
the magnitude steadily declines, and, at the 1 Hz mark, it is about −50. 
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 To explain this behavior, let’s go back to the fi rst region in the low frequency 
range. Since the logarithmic plot shows a value that is practically 0, it means that 
the TF is very close to 1. This means there is no magnifi cation or attenuation in 
the system response as far as the spring displacement is concerned. The natural 
frequency of this system is 

 

1
5(0.7)

= 0.5345 rad/s = 0.5345
2π

= 0.085  Hz

 

  

   So at 0.085 Hz, the forcing frequency causes resonance in the system. As a 
result, the transfer function becomes very high. Working backwards from the 

dB value of about 50, we get    50
20

= 2.5∴TF = 102.5 = 316.3.  This means that 

the system response is magnifi ed by a huge number, and the displacement is 

FIGURE 6.29
Parameters for the Bode plot.

FIGURE 6.28
Bond graph for the Bode plot example.
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very high at the resonance frequency. At higher frequencies, the magnitude 
goes down to −50. The  TF  value at high frequencies is therefore 

     −
50
20

= −2.5∴TF = 10−2.5 = 0.00316.

This indicates that the system gets severely attenuated at high frequencies 
and thus very little of the external disturbance gets transmitted to the system. 

 To see the effects of changes in the transfer function when some parameters 
are altered, we change I to 0.5 kg. 

 The simulation is re-done by changing the  I  value to 0.5 kg instead of 5 kg. 
The Bode plot (with the old plot superposed on the new one) is shown in Figure 
6.31 indicates that the resonance frequency has changed from 0.85 Hz to 
approximately 0.275 Hz. Computation of the resonance frequency from the 
fi rst principles give: 

  

1
0.5(0.7)

= 1.69 rad/s = 1.69
2π

Hz = 0.269  Hz
 

 This matches very well with the results approximately determined from the plot. 
 Now, with the new value of  I  equal to 0.5 kg, the  R  value is increased fi rst to 

0.1 Ns/m and then to 1 Ns/m. The Bode plot is computed for both cases and is 
shown in Figure 6.32. This shows how the transfer function peak at the system 
natural frequency reduces as the  R  goes up, that is, as the damping increases. 

FIGURE 6.30
Bode plot with initial parameters.
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FIGURE 6.32
Bode plots obtained using different dampings.
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FIGURE 6.31
Bode plot with altered I.
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With increased damping, thus, the amount of disturbance transferred to the 
system is drastically reduced. 

   EXAMPLE 6.2 

 Figure 6.33 shows a Bond graph representation of a permanent magnet DC 
motor that is rotating a drum that is raising a weight. The parameters used for 
the initial analysis are shown in Figure 6.34. 

FIGURE 6.33
Bond graph model of a system.
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FIGURE 6.34
Parameters used in this model.



204 Mechatronic Modeling and Simulation Using Bond Graphs

 Take note that the two resistance values in the model (the electrical resis-
tance as well as the rotational damping) are very low. So we can expect the 
transfer functions in the Bode plot to have sharp peaks. Figure 6.35 shows 
the Bode plot plotting the transfer function between the supply voltage and the 
force on the mass that is being lifted. 

 The two peaks occur at the two natural frequencies of the system, and at 
lower and higher frequencies the system attenuation is quite high. If the elec-
trical resistance is increased by a factor of 1000 (i.e., if it changes from 800 
micro ohms to 800 milli ohms), the Bode plot changes as shown in Figure 6.36. 
Notice that even though the peaks at the natural frequencies reduce quite a bit, 
the high and low frequency attenuations are no longer as good. 

 Now if the bearing resistance is altered to 66 Nms/rad and the Bode plot 
is recomputed, we observe in Figure 6.37 how both peaks are suffi ciently 
removed. 

FIGURE 6.35
Bode plot of second example.
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FIGURE 6.36
Altered Bode plot when electrical resistance is increased.

Supply\p.u -> Mass\p.F

1e-005 0.0001 0.001 0.01 0.1 1 10 100 1000
Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

−100

−50

0

50

1e-005 0.0001 0.001 0.01 0.1 1 10 100 1000
Frequency (Hz)

Ph
as

e (
de

g)

−300

−200

−100

0

100

FIGURE 6.37
Bode plot with high electrical as well as mechanical resistances.
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     6.5  Summary 

 In this chapter we have tried to introduce the system solutions for zeroth, 
fi rst, and second order systems. We have also discussed the interpreta-
tion of the solution of these systems both in the time as well as the fre-
quency domains. System modelers need to understand both the time and 
frequency domain solutions because a lot of information about system 
behavior is conveyed through both these forms. We do not want to give 
the impression that our discussion on this topic is complete. Actually, 
we have just scratched the surface. If the focus of this book was more in
the area of controlled systems, we would need to cover a lot of ground in the 
area of time and frequency domain analysis, such as Fourier and Laplace 
transfer, Nyquist plots, pole-0 analysis, and so forth. However, since our 
focus is on the modeling and simulation of mechatronics systems, we will 
not venture into a discussion of all these other important topics and instead 
focus on several other items that are more relevant to the focus of the book. 

  Problems 

    6.1. Consider a spring–mass–damper system with mass value of 6kg, 
spring constant of 50 N/m, and damping coeffi cient of 0.5 Ns/m. 
Is the system underdamped, overdamped, or critically damped? 
Simulate the system behavior and use a non-0 initial condition to 
simulate the system behavior. Does the observed behavior match 
with your prediction?  

   6.2. Consider the system shown Figure P6.1. What is the order of this 
system? From the bond graph model, derive the system equation. 
Find the solution of this differential equation, and write down 
the expression of the time constant. Simulate the system behavior 
using the following parameters:  L  = 50 mH,  R  = 50 Ohms. At zero 

R

Current
source

L

FIGURE P6.1
Figure for Problem 6.2, electrical system.
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time, the current is 5A and is held constant. Determine the time 
constant from the plots as well as from the derived expression. 
How close are they? If the condition is somewhat different, that is, 
with a initial value of current 0 Amp and a ramp input of current, 
how does the system response change?  

   6.3. Consider the system shown in Figure P6.2. Assume the following 
values for the parameters:  M1  = 20 kg,  M2  = 30 kg,  M3  = 10 kg, 
 K1  = 50 N/m,  K2  = 35 N/m,  K3  = 10 N/m,  K4  = 5N/m,  B1  = 10 Ns/m. 
The applied force is sinusoidal, and its value is 3 Sin 15t. What 
degree of freedom is this system? Simulate the behavior of this sys-
tem, and plot the velocities of all the masses. Is this underdamped, 
overdamped, or critically damped? Plot the transfer functions of 
the effort on  M3  with respect to force applied. What are the critical 
frequencies at which the gains are high? How do these match with 
the critical frequencies in the system? 

FIGURE P6.2
Figure for Problem 6.3, mechanical system.
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    6.4. Figure P6.3 shows the schematic for a vibration absorber. The 
mass  M1  is a large mass and is excited at its own natural fre-
quency due to some external disturbance from the fl oor. In order 
to reduce the vibration of the mass  M1,  a vibration absorber can 
be added to the mass (shown as spring  K2  and small mass  M2 ). 
These are designed in such a way that the natural frequencies 
of the whole system are moved away from the forcing frequency 
and the natural frequency of the main mass and spring system. 
Using the bond graph model of this system and the transfer func-
tion plots, develop the  parameters for the vibration absorber. 
( M1  = 50 kg,  K1  = 200 N/m,  B1  = 20 Ns/m,  V1  = 30 Sin 2t). 

    6.5. Figure P6.4 shows an electrical circuit with several components. 
What is the order of this system? The system parameters are as 
follows:  R1  = 20 Ohm,  R2  = 100 Ohm,  C  = 3 microF, and  L  = 5 mH? 

FIGURE P6.3
Figure for Problem 6.4, schematic for a vibration absorber.
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Using the bond graph model of this system, derive its governing 
equations. Is this system underdamped, overdamped, or critically 
damped? Simulate the system for the following conditions, and 
confi rm your predictions: 

 Current source, I = 0, Voltage = 12 V 

 Voltage V = 0, Current Source I = 15 A 

 Voltage V = 0, Current Source I = 5 Sin3t 

 Voltage V = 12 V, Current Source I = 5 Sin3t  

   6.6. Consider the spring-mass-damper system from Problem 6.1. This 
time, a forcing function of 20 Sin 3t is applied to this system. 
Simulate the behavior of this system. In the output, how many 
frequencies are involved. What are they? Explain what causes 
these frequencies. Can you suppress either of these frequencies? 
If so, which one and how?  

   6.7. For the following systems, derive the transfer functions of  p  and  q  
with respect to the time dependent forcing functions in each case: 

 

�q = 5q + 13p + Q(t)
�p = −3q + p

�q = Aq + Bp
�p = Cq + Dp + F(t)

�q = −13q + 2p
�p = −3q − 9p + V(t)

FIGURE P6.4
Figure for Problem 6.5, electrical circuit with several components.
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  7  
Numerical Solution Fundamentals    

 In Chapters 5 and 6 we discussed the derivation of equations and their 
solutions, respectively. During the discussion of solutions, we have 
used standard analytical solutions of generic fi rst and second order sys-
tems and have talked about the interpretation of the solutions. We also 
talked about the conclusions one might draw about system behavior 
from the nature of the solution, both in the time domain and in the fre-
quency domain. While that vital discussion provides us with a sound 
footing in interpreting the results, the actual simulation problem that 
we encounter every time will involve a new set of differential equations 
and, more often than not, a numerical technique will be necessary for 
its solution. 

 In this chapter we will discuss some of the well-known numerical tech-
niques that are commonly used to solve these types of problems. The focus 
of this discussion is to introduce several well-known techniques and indi-
cate their effectiveness with some examples. With the actual governing 
differential equations for the system, the techniques can be programmed 
using tools such as MATLAB® to generate solutions. Conversely, tools 
such as 20Sim generate the differential equations automatically in the 
background from user-defi ned bond graph models. 20Sim offers a choice 
for users as to which numerical technique is to be used. It will default to 
any one that is pre-set by the user. The user however, has to have some 
idea about the relative effectiveness of each of these techniques. In this 
chapter the focus is on the two aspects just described. It is expected that 
some readers will venture into developing one’s own code, and many oth-
ers will choose one of the existing solvers. In either case, the following 
discussion will be vital.  

 7.1  Techniques for Solving Ordinary Differential Equations 

 In this book we are dealing with system models where system parameters 
are assumed to be lumped. As a result, the mathematical representation 
of the model will always be a system of ordinary differential equations. 
Also, as was demonstrated in Chapter 6, each of the differential equa-
tions in the model will be of the fi rst order. We will, therefore, confi ne our 
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discussion to the solution techniques that are used in solving a set of fi rst 
order algebraic differential equations. If we consider a single equation, it 
may be written as: 

     
dy
dt

= f (y, t) with initial condition y(t = 0) = y0     (7.1) 

 The general form of the solution for this equation may be written as: 

     yi+1 = yi + (slope)Δt    (7.2) 

 This means that the value of the function at a future time step is equal to 
the value at the current time step plus the slope of the function times an 
interval. 

 All the methods that have been developed use this general form of 
 solution. The methods differ in how the quantity identifi ed as “slope” in 
the equation is calculated.   

 7.2  Euler’s Method 

 Euler’s method is the simplest solution method for these types of  equations. 
The  slope  is obtained by computing the derivative of  y  at the current time, 
such that: 

     (slope) = f (yi , ti )  
  (7.3) 

 and 

     yi+1 = yi + f (yi , ti )Δt     (7.4) 

 where the slope necessary in the equation is computed at the current time 
and it is multiplied with the time step to obtain the  y  value at the new 
time. For any nonlinear problem, this method will clearly be problematic 
because the solution at a future time is extrapolated using the slope cal-
culation at the current time. In order to demonstrate that, let us consider 
an example. 

     
dy
dt

= 6yt,  and at t = 0 y = 3     (7.5) 
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 The analytical solution of this equation is 

     ln y + C = 3t2     (7.6) 

 And after applying the boundary conditions, we obtain the complete 
 solution as: 

     

ln y − ln 3 = 3t2

y = 3e3t2

    

(7.7) 

 Table 7.1 shows the comparison of the analytical results with Euler’s 
method results, along with the percentage error for a time step size of 0.1. 
It is clear from the results that the error increases quite signifi cantly after 
a few time steps. 

 If the time step size is reduced to 0.01, the error is a lot less drastic. Table 7.2 
shows a comparison of solutions for the same equation with a time step of 0.01. 
And Figure 7.1 shows a comparison of the results obtained for a time step size 
of 0.01 with analytical results. 

 An estimate of the error in the Euler’s method can be easily obtained 
by writing the Taylor’s series expansion of  y  about the starting point. This 
can be written as: 

     
yi+1 = yi + yi

′Δt +
yi

″

2!
(Δt)2 +

yi
′″

3!
(Δt)3 +�

    
(7.8)

 

 In the Euler representation, the solution is approximated by choosing 
the fi rst two terms on the right-hand side of the Taylor’s series expansion 
to represent the solution. Thus, the truncation error is equivalent to the 

TABLE 7.1 

Comparison of Analytical Results with Euler’s Method (Time Step, 0.1)

Time Analytical Solution Euler Percent Error

0.0 3.0 3.0 0.0

0.1 3.091364 3.0 2.955447

0.2 3.382491 3.18 5.986434

0.3 3.929893 3.5616 9.371586

0.4 4.848223 4.202688 13.31488

0.5 6.351 5.211333 17.94468

0.6 8.834039 6.774733 23.31103

0.7 13.04771 9.213637 29.385

0.8 20.46288 13.08336 36.06292

0.9 34.07665 19.36338 43.17698

1.0 60.25661 29.8196 50.51231
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TABLE 7.2

Comparison of Analytical Results with Euler’s Method (Time Step, 0.01)

Time Analytical Solution Euler Percent Error

0.0 3.0 3.0 0.0

0.01 3.0009 3.0 0.029996

0.02 3.003602 3.0018 0.06

0.03 3.008111 3.005402 0.090049

0.04 3.014435 3.010812 0.120179

0.05 3.022585 3.018038 0.150426

0.06 3.032576 3.027092 0.180825

0.07 3.044426 3.037989 0.211411

0.08 3.058157 3.050749 0.242221

0.09 3.073793 3.065393 0.273289

0.10 3.091364 3.081946 0.30465

0.11 3.110901 3.100437 0.336341

0.12 3.13244 3.1209 0.368397

0.13 3.156022 3.143371 0.400851

0.14 3.181689 3.167889 0.433739

0.15 3.209491 3.194499 0.467097

0.16 3.239478 3.22325 0.500958

0.17 3.271708 3.254193 0.535357

0.18 3.306242 3.287386 0.57033

0.19 3.343146 3.32289 0.60591

0.20 3.382491 3.360771 0.642131

3.4 

3.45 
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3.15 
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FIGURE 7.1
Comparison of analytical and Euler’s method (time step = 0.01).
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terms that were not included. Neglecting the higher order terms, one can 
represent this as: 

     
Error =

yi
″

2!
(Δt)2

    
(7.9)

 

 Or, the error may be represented as being of the order of the square of the 
time step. Hence, the smaller the time step is, the lesser is the error. This 
means that in order to use Euler’s method, one has to keep the step size 
limited to small. There have been several methods developed to improve 
on this basic Euler’s method. In the next few sections, we will talk about 
some of them.   

 7.3  Implicit Euler and Trapezoidal Method 

 Two methods that are improvements over the Euler’s method are related to 
the basic Euler’s method. They are similar and will be discussed together. 
The fundamental reason for the errors in the Euler’s method is the fact 
that the slope is calculated at the current time to calculate the solution at a 
future time. The equation used in Euler’s method is 

     
yi+1 = yi + f (yi , ti )Δt

    (7.10) 

 The equation can be modifi ed to replace the slope term  f(y i ,t i )  with a com-
bination of terms where α is a factor such that 0 ≤ α ≤ 1. 

     
yi+1 = yi + [αf (yi , ti ) + (1 − α) f (yi+1 , ti+1)]Δt

    
(7.11)

 

 α = 1 is the explicit Euler’s method (discussed before) 
 α = ½ is known as the trapezoidal method 
 α = 0 is the backward or implicit Euler’s method 

 An implementation of this general method can be demonstrated using the 
same example as the one we have used before. 

     

dy
dt

= f (y, t) = 6yt,  and at t = 0 y = 3
    

(7.12)
 

 So the solution can be written as: 

     

yi+1 = yi + [αf (yi , ti ) + (1 − α) f (yi+1 , ti+1)]Δt

yi+1 = yi + [α(6yiti ) + (1 − α)(6yi+1ti+1)]Δt     
(7.13)
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 Simplifying the terms, this can be written as: 

     

yi+1 − (1 − α)(6yi+1ti+1)Δt = yi + α(6yiti )Δt

[1 − (1 − α)6ti+1Δt]yi+1 = yi + α(6yiti )Δt

yi+1 =
[yi + α(6yiti )Δt]

[1 − (1 − α)6ti+1Δt]     

(7.14)

 

 If α is chosen to be ½, the solution method is called trapezoidal. If α 
is chosen to be 0, then it is backward Euler. Table 7.3 provides the com-
parison of the solution obtained using all three methods, and Figure 7.2 
shows a graphical comparison of the same results. It is clearly seen that 
the trapezoidal method matches the exact solution very well. In the other 
two methods, there are some errors.   

TABLE 7.3

Comparison of Three Methods (Time Step = 0.01)

Time

Analytical 

Solution

Backward 

Euler Trapezoidal Euler

0.0 3.0 3.0 3.0 3.0

0.01 3.0009 3.001801 3.0009 3.0

0.02 3.003602 3.005408 3.003603 3.0018

0.03 3.008111 3.010827 3.008112 3.005402

0.04 3.014435 3.01807 3.014437 3.010812

0.05 3.022585 3.027152 3.022588 3.018038

0.06 3.032576 3.038089 3.032581 3.027092

0.07 3.044426 3.050903 3.044432 3.037989

0.08 3.058157 3.065618 3.058165 3.050749

0.09 3.073793 3.082262 3.073804 3.065393

0.10 3.091364 3.100867 3.091378 3.081946

0.11 3.110901 3.121469 3.110918 3.100437

0.12 3.13244 3.144106 3.132461 3.1209

0.13 3.156022 3.168823 3.156046 3.143371

0.14 3.181689 3.195667 3.181718 3.167889

0.15 3.209491 3.224689 3.209524 3.194499

0.16 3.239478 3.255946 3.239517 3.22325

0.17 3.271708 3.289499 3.271752 3.254193

0.18 3.306242 3.325414 3.306292 3.287386

0.19 3.343146 3.36376 3.343202 3.32289

0.20 3.382491 3.404616 3.382554 3.360771

0.21 3.424352 3.448061 3.424423 3.4011
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 7.4  Runge–Kutta Method 

 There is a whole class of methods known as Runge–Kutta methods, which 
are very useful in the solution of ordinary differential equations. These R–K 
methods (for short) can achieve higher order accuracy (in the Taylor series 
sense discussed earlier) without having to compute higher order derivative 
terms. There are many variations that exist within the R–K method known 
as second order, third order, fourth order, eighth order, and so forth. 

 In the general sense, the solution for the R–K method is written as: 

      yi+1 = yi + (Φ)Δt
     (7.15) 

 where the term Φ is called the increment function representing the slope 
of the variable over the interval that is being considered. In the most 
 general form, Φ can be written as: 

       Φ = a1k1 + a2k2 + a3k3 +�+ ankn      (7.16) 

 where  a s are constants and  k s are written in the following way: 

      

k1 = f (yi , ti )

k2 = f (yi + q11k1Δt, ti + p1Δt)

k2 = f (yi + q21k1Δt + q22k2Δt, ti + p2Δt)

…

…      

(7.17)

 

FIGURE 7.2
Comparison of Euler, backward Euler, trapezoidal, and analytical methods.
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 Thus, every  k  term is dependent on the previous  k  values. The  p s and the 
 q s are constants. 

 The second order R–K method: 

    
yi+1 = yi + (a1k1 + a2k2 )Δt

     (7.18) 

 where 

    

k1 = f (yi , ti )

k2 = f (yi + q11k1Δt, ti + p1Δt)      
(7.19)

 

 The values of all the constants can be obtained by equating the expression 
to the Taylor’s series expansion. If we do that, we would get: 

    

a1 = 1 − a2

p1 = q11 = 1

2a2      
(7.20) 

 Since there are an infi nite number of possibilities for choosing  a 2,   there 
are an infi nite number of second order R–K methods possible. They 
would all provide the same exact solution as long as the solution is of the 
quadratic order or less. For higher orders the errors may vary, and it is 
then perhaps better to choose a higher order R–K method for solution. For 
some of the more well-known second order R–K methods,  a 2   = ½, 1, and 2⁄3 
have been used. 

 The best known R–K method is the fourth order R–K method, and the 
following representation is the most well-known used form: 

    
yi+1 = yi + 1

6
(k1 + 2k2 + 2k3 + k4 )Δt

     
(7.21)

 

 where 

      

k1 = f (yi , ti )

k2 = f (yi + 1

2
k1Δt, ti + 1

2
Δt)

k3 = f (yi + 1

2
k2Δt, ti + 1

2
Δt)

k4 = f (yi + k3Δt, ti + Δt)
     

(7.22) 

 Table 7.4 shows the calculation for the example discussed earlier using 
the fourth order R–K method. Comparison with analytical results show 



Numerical Solution Fundamentals 219

that there is absolute perfect match between the analytical solution and 
the solution obtained using the R–K method. 

 One can write the Taylor’s series expansion to demonstrate that the R–K 
methods of order n will have truncation error of the order of O(Δt n+1 ). So a 
fourth order R–K method will have truncation error that is of the order of 
the fi fth power of the step size.   

 7.5  Adaptive Methods 

 The techniques discussed so far all use constant time step sizes in the 
solution of differential equations. This works well when there is gradual 
or uniform variation of the solution over time. However, in many real 

TABLE 7.4

Comparison of 4th Order Runge–Kutta with Analytical Solution

Time k1 k2 k3 k4

Fourth 

Order R–K

Analytical 

Solution

0.0 0.0 0.09 0.090014 0.180054 3.0 3.0

0.01 0.180054 0.270162 0.270203 0.360432 3.0009 3.0009

0.02 0.360432 0.450811 0.450878 0.54146 3.003602 3.003602

0.03 0.54146 0.632272 0.632367 0.723464 3.008111 3.008111

0.04 0.723464 0.814874 0.814997 0.906775 3.014435 3.014435

0.05 0.906775 0.998949 0.999101 1.091727 3.022585 3.022585

0.06 1.091727 1.184833 1.185015 1.278659 3.032576 3.032576

0.07 1.278659 1.372869 1.373081 1.467915 3.044426 3.044426

0.08 1.467915 1.563403 1.563647 1.659848 3.058157 3.058157

0.09 1.659848 1.756793 1.757069 1.854818 3.073793 3.073793

0.10 1.854818 1.953402 1.953712 2.053194 3.091364 3.091364

0.11 2.053194 2.153605 2.153951 2.255357 3.110901 3.110901

0.12 2.255357 2.357788 2.358172 2.461697 3.13244 3.13244

0.13 2.461697 2.566347 2.566771 2.672619 3.156022 3.156022

0.14 2.672619 2.779696 2.780161 2.888542 3.181689 3.181689

0.15 2.888542 2.998258 2.998768 3.109899 3.209491 3.209491

0.16 3.109899 3.222477 3.223035 3.337143 3.239478 3.239478

0.17 3.337143 3.452814 3.453421 3.570742 3.271708 3.271708

0.18 3.570742 3.689747 3.690407 3.811187 3.306242 3.306242

0.19 3.811186 3.933776 3.934493 4.058989 3.343146 3.343146

0.20 4.058989 4.185426 4.186204 4.314684 3.382491 3.382491

0.21 4.314684 4.445244 4.446086 4.578833 3.424352 3.424352
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situations, sharp changes occur in system behavior as a result of impulse 
loading or sudden change in input variables and so forth. Figure 7.3 shows 
an example of such a behavior where, over a very short time period, the 
vehicle wheel velocity changes drastically due to braking. To capture the 
effect of these sudden changes, very small step sizes are necessary dur-
ing the time when this change is happening. However, far away from this 
area of interest, the time step needs to be larger so that the simulation 
can be completed as quickly as possible. Any method that uses fi xed step 
size will be problematic for this type of application. With a fi xed step size 
method, the user will need to anticipate ahead of time the smallest time 
step that will work, and then keep the step size fi xed at that same value for 
the whole time. This makes the solution process quite ineffi cient. 

 These inherent problems gave rise to a class of algorithms that are, 
together, known as adaptive methods. The word adaptive refers to the 
ability to change step sizes during the solution process based on some 
 criteria. Many of the adaptive methods are R–K methods with variable 
step sizes and an algorithm to decide what step size to use. 

 The approaches used in these adaptive methods are broadly divided into 
two types. In the fi rst type, the R–K method of the same order is used with 
two different step sizes to compute the new value of  y . The error, which 
is the difference in these two calculated values, is used decide whether 
the step size needs to change in some way or not. For example, in a well-
known adaptive fourth order R–K method, each step is solved twice, once 
with the original step size and once with two steps each equivalent to half 

FIGURE 7.3
Example of a sharp change in system response.
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the size of the original step. The difference between these two  solutions 
provides a measure of the error. In the second approach, two different 
order R–K techniques are used with the same step size, and the error is 
estimated as the difference of these two values. In either case, the error is 
used to decide how to alter the step size. 

 There are several approaches in determining the step size adaptively. 
Press et al. have a discussion on this in the book  Numerical Recipes.  They 
have suggested that: 

    

Δtnew = Δtcurrent
Δnew

Δpresent

α

     

(7.23)

 

 where Δtnew      and Δtcurrent      are the new and current time steps. Δ present  is the 
computed error currently, and Δnew is the new desired level of error. α is 
a constant power that is equal to 0.2 when the step size is increased and 
0.25 when it is decreased. The most important parameter in this equation 
is Δ new  because it is to be used to specify the desired accuracy. This can 
be specifi ed by the user as a relative error level. Δ new  may also be speci-
fi ed as: 

    
Δnew = εyscale      (7.24) 

 where ε is the overall tolerance level and  y scale   determines how the error 
is scaled with respect to the range of solution values in a given problem. 
Some of the adaptive methods used in practice are Runge–Kutta–Fehlberg, 
Vode–Adams, and so forth. We are not going to discuss the details of these 
methods here, but will demonstrate the results from these methods and 
the impact of control parameters on the results. 

 Figure 7.3 shows the result from a simulation where the solution 
changes sharply over a very short time period. The results shown in that 
fi gure was obtained by fi xing the relative error level to 1e-6. If that level 
is changed drastically to 1.0 and the simulation is repeated, we obtain the 
results shown in Figure 7.4. 

 Using a different adaptive method, Vode–Adams, and the relative error of 
1.0, we obtain the results shown in Figure 7.5. Of course, by decreasing the 
relative error level to 1e-4 or 1e-6, we get the same solution as in Figure 7.3. 

 As a comparison, Figure 7.6 shows the results from a fi xed step R–K 
fourth order method with a step size of 0.08. It is clear that this step size is 
giving a grossly inaccurate result, and the step size needs to be reduced. 
However, for someone who has never seen the actual solution before, it is 
rather hard to determine, looking at this result, that it is incorrect and the 
step size needs to be reduced. This is where the adaptive methods are so 
useful.   



222 Mechatronic Modeling and Simulation Using Bond Graphs

FIGURE 7.4
Runge–Kutta–Fehlberg results with relative error level fi xed at 1.0.
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FIGURE 7.5
Vode–Adams result with relative error level fi xed to 1.0.
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 7.6  Summary 

 To summarize the discussion of different solution methodologies, it 
should be said that in general it is best to choose adaptive methods where 
the step sizes are automatically adjusted as the simulation proceeds. Even 
while using a software tool such as 20Sim, the user will have some control 
over the level of accuracy one desires. In order to ensure that the accuracy 
is achieved and maintained, the user should be aware of how to adjust the 
control parameters. Simulation techniques have come a long way since 
the early days. Even as late as the early 1990s, simulation practitioners 
were writing their own codes and optimizing them and trying to use 
every known trick to get the maximum effi ciency out of the computation 
tools. Most texts contain a lot of discussion on effi ciency, error level, and 
accuracy. Things have changed quite drastically since those days. Today’s 
software tools are sleek, menu-driven, optimized, and modular. The com-
putational speed and costs have changed so drastically that no one talks 
about small improvements in algorithms to increase speed or decrease 
memory use. All these positive developments, however, have a negative 
effect on the training of the people who use these tools. There is a ten-
dency to use the software tools as “black boxes” without much effort to 

FIGURE 7.6
Runge–Kutta fourth order method with step size of 0.08.
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understand why certain things are done in a certain way. This needs to be 
avoided by the user. Powerful tools are only as powerful as the expertise 
of the user. While the user may not need to understand simulation meth-
ods to write effi cient codes anymore, she/he still needs to understand 
them to understand and use the power of the tool in their hand.   

 Problems 

      7.1.  Consider the following equation,     
dy
dt

= 6yt2 − 15y, y(0) = 2 . Solve 

  this equation over the range of  t  = 0.0 to  t  = 3.0 using the follow-
ing methods: analytical, Euler, backward Euler, and fourth order 
Runge–Kutta. Choose step sizes of 0.1 and 0.25, and compare your 
results for all the methods for the two different step sizes. Display 
your results graphically, and comment on the accuracy of each 
method. 

  7.2.  Consider the following equation:     
dy
dt

= Sin t + 2Cos t, y(0) = 1. Solve

  this equation over the range of  t  = 0.0 to  t  = 3.0 using the follow-
ing methods: analytical, Euler, backward Euler, fourth order 
Runge–Kutta. Choose step sizes of 0.025 and 0.1, and compare 
your results for all the methods for the two different step sizes. 
Display your results graphically, and comment on the accuracy of 
each method. 

  7.3. In Chapter 4 the model of a diode was discussed. The behavior 
of the diode involves sharp change in the output from 0 to a very 
high value over a short time period. Pick the example circuit of 
a diode given in Chapter 4, and simulate the bond graph model 
using the following methods: Euler, backward Euler, R–K 4, and 
one of the adaptive methods. 

  7.4. Figure P7.1 shows a bond graph. In this model replace the source 
of effort with a modulated source, and simulate the system behav-
ior for an input of a sawtooth wave. Once again, use Euler, back-
ward Euler, R–K 8, and one of the advanced adaptive methods to 
simulate the behavior of the system. Which method gives the best 
result? 
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  7.5. Figure P7.2 shows the model of an integrator. Develop the bond 
graph model of this circuit using the ideas discussed in Chapter 4, 
and simulate its behavior. Use a sawtooth wave input for the 
 voltage. Use Euler, backward Euler, R–K 8, and one of the advanced 
adaptive methods to simulate the behavior. Adjust the time step of 
the Euler’s method until the solution becomes unstable. Discuss 
the accuracy of each method. 
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FIGURE P7.1
Figure for Problem 7.4, bond graph.

V (input)

R (source)

C (feedback)

V (output)

−

+

+

−

FIGURE P7.2
Figure for Problem 7.5, model of an integrator.
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  7.6. Consider the following equation:     
dy
dt

= yCos 5t, y(0) = 1. Solve this 

  equation over the range of  t  = 0.0 to  t  = 3.0 using the following 
 methods: analytical, Euler, backward Euler, fourth order Runge–
Kutta. Choose step sizes of 0.025 and 0.1, and compare your results 
for all the methods for the two different step sizes. Display your 
results graphically, and comment on the accuracy of each method.      
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  8  
Transducers: Sensor Models 

                 Transducers are key elements in any mechatronic system. They act as the eyes 
and ears of the system as well as the muscles. There are numerous transduc-
ers that are available on the market, and new ones are designed every day.  
To model and simulate the behavior of mechatronic systems, it is important 
to understand the behavior of transducers. Transducers have traditionally 
been divided into two broad categories: sensors and actuators. Sensors and 
actuators are similar in behavior because, in both cases, signals are converted 
from one physical form to another. Sensors are used to sense the status of the 
system, and sensor information is provided to the decision maker (usually 
an onboard computer). Computers use sensor data to take decisions as per 
the programmed logic. Computers then instruct the actuators to implement 
any action that needs to be taken within the system. 

 In this book, modeling of sensors and actuators has been divided into 
two chapters. This chapter deals primarily with sensors and the back-
ground necessary to model sensors; the next chapter deals with actuators. 
Sensors are typically designed such that they are minimally intrusive. 
This means that an ideal sensor will not affect system behavior in any way. 
In order to achieve this, sensors need to be physically small and draw a 
minimum amount of power. In real systems this cannot always be true. 
However small, a sensor that measures a system’s response ends up affect-
ing the system behavior as well. With a model of the sensor coupled with 
a system model, it is possible to quantify the level of this infl uence and 
account for it in the system behavior. Also, transducer designers designing 
macro as well as microelectromechanical (MEMS) devices fi nd models to be 
powerful tools for design. Models are used to fi ne-tune MEMS designs so 
that the expected performance can be obtained. Finally, automatic control 
of mechatronic systems is an important aspect of any system design effort. 
Sensors and actuators are key components of this control loop. Hence, their 
models are very useful in developing control algorithms as well. 

 To study the behavior of sensors, they have been categorized in many 
different ways. For example, they can be categorized by application, that is, 
motion measurement, temperature measurement, humidity measurement, 
and so forth. This type of categorizing works well when one is looking for 
sensors for certain applications and has to choose the right one. A differ-
ent way of categorizing them is by the physical phenomena that are used 
in the sensor design. For example, change in capacitance can be used to 
measure motion, forces, humidity, temperature, and so forth. While the 
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specifi c phenomenon used may be the same (i.e., change in capacitance), 
the application could be vastly different. This type of categorization helps 
with fundamental understanding of sensor workings. For our discussion 
here, we will separate sensors by the physical phenomena and not by 
application. This means that we will deal with the means of measurement, 
such as resistive, capacitive, magnetic, and so forth, rather than what we 
are measuring (such as acceleration, humidity, etc.). This helps to keep the 
discussion general and focused on the phenomenon being used in sensing, 
rather than going into the details of individual sensors. This approach also 
implies that once we have understood the modeling method of a capacitive 
sensor, we can model any capacitive sensor irrespective of its application. 
Using the above rationale, we will discuss different types of sensors in the 
next few sections of this chapter. Apart from the more traditional sensors, 
such as resistive, capacitive, and magnetic, we have devoted a small dis-
cussion on MEMS devices and another section on the use of the concepts 
of “activity” to design sensing devices in an optimal manner. In almost 
all texts on mechatronics, such as the ones by Cetinkunt (2007), Alciatore 
(2005), De Silva (2005), Bolton (2004), Shetty and Kolk (1997), Karnopp, 
Margolis, and Rosenberg (2006), and Brown (2001), there is some discus-
sion on sensors and actuators. In many of these cases, the authors have 
tried to discuss sensors categorized by phenomena rather than by appli-
cation. But Busch Vishniac (1999), in her book on sensors and actuators, 
has most consciously attempted this approach of categorization and the 
 current author was most inspired by her. 

   To summarize, the overall objectives of this chapter are to  

  Understand how different phenomena can be used to sense • 
changes in a system.  

  Learn how sensor models can be developed using generalized • 
fi eld elements.  

  Model sensors such that causes and effects can be related to each • 
other accurately through the model.  

  Understand how transducers can be designed using system • 
models.      

  8.1  Resistive Sensors 

 Resistive sensors constitute some of the oldest sensor types. These sensors 
depend on the variation of a resistance caused by some external disturbance, 
such as force, temperature, humidity, and so forth. This change is measured 
using some type of a measurement circuit, and the measurement is related 
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back to the phenomenon causing the change. The most well-known type 
of a resistive sensor is of the potentiometric type where there is a direct 
correlation between the electrical domain and the mechanical domain. 
A simple potentiometric sensor that consists of a voltage source applied 
across a constant total resistance circuit is shown in Figure 8.1. A measure-
ment resistor is attached with a movable contact to the fi xed total resis-
tance. The slider is attached to the external disturbance source. As a result 
of this type of connection, the potential drop across the measurement resis-
tor is directly proportional to the distance moved. The measured voltage

can be shown to be equal to the ratio   
R2

R1+R2
  . If the resistance is uniformly 

varying across the length of the resistor, the ratio can be shown to be the

same as the ratio   
  

L
L0   

. By proper calibration of the circuit, the external source

can be quite accurately sensed. The bond graph model of this simple 
device is shown in Figure 8.2. The two MRs are the modulated resistors. 
They are varied in a way such that the sum of their resistances is always 
a constant shown in the model by the ( R1  +  R2 ), the potentiometer total 
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L0R1
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V

L

+

−

FIGURE 8.1
Schematic for a potentiometer.
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FIGURE 8.2
Bond graph representation of the potentiometer circuit.
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resistance. The input signal moves the slider and hence controls the value 
of a portion of the total potentiometer resistance (shown in the model as 
 R2 , the resistance for signal monitoring). The voltage across the “mea-
surement_resistor” is tracked as the sensor signal. Parameters used in 
the simulation are shown in Figure 8.3. Figure 8.4 shows a comparison of 
the input signal and the sensed signal on the same graph. Since the device 
does not contain any energy storage element (and only energy dissipative 
elements) the response pattern does not have any time lag. The one-to-one 

FIGURE 8.3
Parameter values used to model the potentiometer circuit.
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correspondence between the input signal and the measured output is a 
very useful feature for the sensor device. 

 The other type of well-known resistive sensor is a strain gauge. A strain 
gauge uses changes in electrical resistances to measure strains. These can 
be used to build load cells, torque sensors, pressure sensors, and so forth. 
The basic operation of a strain gauge sensor consists of a wheatstone 
bridge circuit (Figure 8.5), which is particularly useful in measuring small 
changes in resistance. The strain gauge (variable resistance) occupies one 
of the arms of a wheatstone bridge. Known constant resistances are used 
on the other arms. The system is balanced initially at its null position such 
that the voltage difference between points B and D is 0. Subsequent to this, 
when the strain gauge is strained and its resistance is changed, the poten-
tial difference between B and D is non-0, and its magnitude is directly pro-
portional to the change in resistance of the strain gauge and hence to the 
strain itself. The bond graph model of the wheatstone bridge was devel-
oped earlier in Chapter 3. Here is a slightly modifi ed version of the same 
model in Figure 8.6. 

 The variable resistance MR receives the external disturbance signal. The 
magnitudes of R2, R3, and R4 are known constants. The source of effort 
is the voltage applied to the wheatstone bridge circuit. The source of fl ow 
added between the two 0 junctions representing points B and D is a 0 cur-
rent source. This is added to the model for the purpose of simulation since 
the effort in the bond connected to the fl ow source is now automatically 

FIGURE 8.5
Schematic of a wheatstone bridge.
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calculated as part of the simulation process. This calculated effort is the 
voltage difference between points B and D and is the sensed signal.  

 The parameters used in the model are shown in Figure 8.7, and the 
resulting simulation is shown in Figure 8.8. 

 The simulation result clearly shows that the measured voltage differ-
ence is directly proportional to the external signal that was used. This 
establishes that the strain gauge output can be easily related to the signal 
source through proper scaling.  

FIGURE 8.7
Parameters used for the strain gauge simulation.
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FIGURE 8.6
Bond graph model of the wheatstone bridge.
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  8.2  Capacitive Sensors 

 Capacitive sensors have been used in many different applications, such 
as mechanical movement (linear and rotational) measurement, humidity 
measurement, crash sensing, material composition, proximity, and so forth. 
Capacitive sensors are found in a soft-touch wall switch, a laptop sense 
pad, a washroom faucet hand sensor, a digital construction level, a digi-
tal caliper, an airbag accelerometer, or in a superaccurate laser positioner. 
Capacitive sensors are extremely rugged and simple to build. They are 
highly linear and immune to mechanical and electronic noise. However, 
because they rely on capacitance, they are sensitive to liquids. Any liquid 
that bridges the capacitive plates increases the capacitance. A drop of oil 
can increase the capacitance by a factor of 80! 

 The basic principle of operation is to monitor the change in capaci-
tance of a parallel plate capacitor as a result of some external disturbance. 
The sensing of the disturbance is achieved through the measurement of 
the change in the capacitance via a simple circuit to measure the voltage 
across the capacitor. Some of the basic relationships that are useful here 
are given below. By defi nition capacitance is given as: 

    q = CV
 

(8.1)
    

FIGURE 8.8
Simulation results from the wheatstone bridge simulation.
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 where  q  is the charge,  C  is the capacitance, and  V  is the induced voltage 
across the capacitor. From the geometry of a parallel plate capacitor, the 
capacitance can be expressed as: 

   
C = εA

d  
(8.2)

 

    where  A  is the overlap area of the plates,  d  is the distance between them, 
and ε is the permittivity of the material. Table 8.1 shows the permittivity 
of some common materials. 

 From the above two equations we get: 

   
q = εA

d
V

 
(8.3)

    

 This equation applies to a specifi c geometry of a capacitor. However, in 
a capacitive sensor design, some of the parameters in the equation could 
change as a result of external disturbances. The change alters the value 
of capacitance, and, when attached to a circuit, the change in capacitance 
alters the voltage across it. This change in the electrical signal (voltage) 
provides a measure of the changed capacitance and thus the external 
disturbance. 

 While capacitors in typical electrical circuits could be modeled using the 
1-port capacitor elements, capacitive sensor behavior is slightly different 
and needs to be modeled in a different manner. In a capacitive sensor, the 
capacitance will dynamically change due to an external disturbance. Hence, 
the capacitance is not fi xed but is a function of the external disturbance 
along with other parameters. 

 To model this type of a behavior, we will introduce a new type of 
element here. These are called fi eld elements. In this particular case, a 
capacitive fi eld element is necessary. Before we explore the different con-
fi gurations for capacitive sensors, we need to devote some attention to 
these  capacitive fi eld elements. 

TABLE 8.1

Permitivity Values of Typical Materials Used in Capacitors

Material ε(× 10−12)

Air 8.854

Beeswax 25.67

Nylon 30.98

Polyvinyl chloride 40.27

Salt 53.1

Water 694.72
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  8.2.1  Multiport Storage Fields: C-Field 

 Multiport fi eld elements are elements that have more than one port 
 associated with them. Thus, the bond graph representation of a 4-port 
C-fi eld element may be represented as: 

Flow 4
Ef fort 4

Flow 3
Ef fort 3Flow 2

Ef fort 2

F low 1
Ef fort 1

C 
CC2

0

0
0

0

 The constitutive relation of this C-fi eld element is a function of the effort 
and displacement in all the ports and can be most generally expressed as: 

     C = f (e, q)
 

(8.4)
    

 and the total energy stored in the energy storage fi eld: 

     

E = (ei fi )dt
i=1

n

∑
to

t

∫
 

(8.5)

    

 where n is the number of bonds/ports. 
 The causal structure for a C-fi eld element is determined the same way 

as the 1-port C element. In 1-port C elements, the constitutive equation is 
expressed as: 

     e = F(q)
 

(8.6)
 

    for integral causality, and 

     q = F−1(e)
 

(8.7)
 

    for differential causality. 
 Along similar lines, for C-fi eld elements, when all the ports are inte-

grally causalled the way it is shown in Figure 8.9, the constitutive equa-
tions become: 

 
  

ei = f (qi ) or
ei = f (q1 , q2 , q3 , q4 …)  

 
(8.8)
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     If all the bonds end up having differential causality and the bond graph 
representation looks like the one shown in Figure 8.10, the constitutive 
equation is 

   

fi = �qi = f −1(e) or
�qi = f −1(e1 , e2 , e3 , e4 …)

 

(8.9)

    

 Instead of being purely integral or purely differentially causalled, the 
C-fi eld could have mixed causal structure as shown in Figure 8.11. In that 
case, the constitutive relationship is in the mixed form as: 

      

�qi = f −1(ei )

�ei = f (qi )  
(8.10)

    

 It is important for the reader to understand that while the exact form of 
the constitutive equation in a linear 1-port C element is standard, the consti-
tutive equation for a C-fi eld element is not standard. So for every application 
where this element is used, the modeler will need to derive the constitutive 
relationship for the C-fi eld. In the next few examples of typical capacitive 
sensor models, this implementation of the C-fi eld is discussed in detail. 

FIGURE 8.10
C-fi eld element with differential causality.
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FIGURE 8.9
C-fi eld element with integral causality.
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  EXAMPLE 8.1 

 The simplest example is shown in Figure 8.12, where a parallel plate  capacitor 
is used as the sensor with the initial distance between the plates  d,  and one 
of the plates will move away from the other as a result of some external dis-
turbance. This will change the capacitance of the sensor, and this change in 
capacitance can be related to the movement of the plate. 

 The bond graph representation of such a component may be done through a 
C-fi eld element. A C-fi eld element may have multiple ports, and the fl ow and 
effort variables for the different ports are different but interrelated. Figure 8.13 
shows a C-fi eld element with two ports. The causality strokes as shown repre-
sent integral causality. This means that fl ow information is being received by 
the fi eld element from both sides and this fl ow information is being used to 
calculate the effort information for both sides. The constitutive relationship of a 
C-fi eld element is similar to a C element in the sense that the fl ow is integrated 
to generate the displacements, and the displacements are used to calculate the 
effort. On one side of the C-fi eld is the electrical domain, and on the other 
side is the mechanical domain, and the constitutive relationship is a function of 
what happens in both these domains. 

FIGURE 8.11
C-fi eld element with mixed causality.
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FIGURE 8.12
Schematic of capacitive sensor where one plate moves away from the other.
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FIGURE 8.13
C-fi eld element with two ports.
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 For the integrally causalled C-fi eld, the general form of the constitutive 
 equation will be 

    

effort1= f1(displacement1, displacement2)

effort2 = f 2(displacement1, displacement2)
 (8.11)

     

 The constitutive relationship in the case of the parallel plate capacitor with a mov-
ing plate can be derived by considering the total energy stored in the capacitor: 

    
Energy = q2

2C  
(8.12)

     

 Replacing the basic defi nition for C (but with a moving plate, instead of fi xed), 
the energy expression may be written as: 

    
Energy = q2(d + x)

2Aε  
(8.13)

     

 where  d  is the initial fi xed distance between the plates and  x  is the change in  d . 
The time derivative of energy is power. Hence, using chain rule of differentia-
tion we get: 

    

d(Energy)
dt

= Power =
∂(Energy)

∂q
dq
dt

+
∂(Energy)

∂x
dx
dt  

(8.14)
     

 Since  dx / dt  is the mechanical fl ow (velocity) and  dq / dt  is the electrical fl ow 

(current), the   ∂(Energy)
∂q

   must be the electrical effort (voltage) and   ∂(Energy)
∂x

   

must be the mechanical effort (force). Therefore, the two constitutive equations 
may be written as: 

      
V = q(d + x)

Aε  
(8.15)

     

  V  is the effort on the electrical side as a function of displacement on both the 
electrical and mechanical side. 

      
F = q2

2Aε  
(8.16)

     

  F  is the effort on the mechanical side as a function of the displacements. 
 Here is how it can be implemented in an actual system model. The circuit 

shown in Figure 8.14 is used to measure the change in the capacitance (in a 
capacitive sensor). One plate of the capacitive sensor is fi xed, and another one 
moves as shown by the direction of motion. 

 As a result of this movement, there is a change in capacitance and the circuit 
current, voltage drop, and so forth change as well. These changes in the circuit 
are measurable and can be linked back to the disturbance measured by the 
sensor. The bond graph model of this system is shown in Figure 8.15. 
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 The constitutive equations for the capacitor were derived earlier, and they are 

   
V = q(d + x)

Aε   
(8.17)

 

        
F = q2

2Aε  
(8.18)

     

 The C-fi eld constitutive equation needs to be modeled by modifying the 
C-fi eld codes in the following fashion. 

 // this model represents a 2-port C element: p.e = 
(1/C)*p.f written here as p.e = A*p.f 

FIGURE 8.14
Circuit to measure the changing capacitance.
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  Parameters 

 real A = 1; // area of overlap between capacitor plates 
     real a21 = 0.0; // unused parameterreal a12 = 0.0; 
 // unused parameter  
    real eps = 1.0; // epsilon, permitivity  

  Equations 

 // You can change these equations into any (nonlinear) 
version by adding your own functions. // Use f(x) button 
at the left of the window to see all available functions.  
    state1 = int (p1.f); //  integral of flow on the first arm, 

this is the charge in the capacitor  
    state2 = int (p2.f); //  integral of flow in the second 

arm, this is the displacement of the 
movable plate  

    p1.e = state1*state2/(A*eps); //  p1.e is the voltage induced 
on the first arm of the C-field  

    p2.e = state1*state1/(2*A*eps); //  p2.e is the force on the 
second arm of the C-field  

 The parameters used in the simulation are shown in Figure 8.16. 
 It is important to also use proper initial conditions for the two states that are 

obtained through integration of fl ows. To decide about this, recall that state 1 
is the charge in the capacitor and state 2 is the mechanical displacement. So 
the initial conditions represent the initial charge in the capacitor and the 
 initial distance between the plates. Since the capacitor is already in a mea-
surement circuit, at steady state (i.e., prior to the displacement disturbance) 
there will be a non-0 charge on the capacitor. Also, before any movement of 
the movable plate, there will be an initial separation between plates. The 
initial values used in this simulation are shown in Figure 8.17. It is worth  noting 
that none of the parameters chosen in this simulation exercise are realistic.
They have been arbitrarily chosen to demonstrate how the model can be set 

FIGURE 8.16
Parameters used in the simulation.
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up and what the simulation results look like. Figure 8.18 shows the simulation 
results. The impulse input to the sensor is refl ected in the change in the  voltage 
induced on the capacitor. This can be measured and used to determine the nature 
of the input function. In reality the actual magnitude of the voltage induced may 
be much smaller, and an amplifi cation circuit will be necessary to read these 
changes in the response. 

   EXAMPLE 8.2 

 Figure 8.19 shows another simple example where the distance between the 
plates is held constant, but one of the plates move horizontally in a fashion 
such that the overlap area between the plates changes. 

Model

Time (s) 

−10

0 

10 

20 

30 

0 10 15 20 25 30 35 40 5 

Voltage across the capacitor (V) 
Velocity source (m/s)

FIGURE 8.18
Simulation results.

FIGURE 8.17
Initial conditions used.
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 To derive the constitutive equations, we can write the equations: 

      

A = w(l − x)

C = εA
d

= εw(l − x)
d

E = 1
2

CV = 1
2

q2

C
= 1

2
q2d

εw(l − x)
⎛
⎝⎜

⎞
⎠⎟  

(8.19)

 

     where  w  is the width (depth) and l is the initial overlap length of the plate, and 
 (l − x)  is the overlap length between the plates after one of the plates has moved 
by x. Hence,  w*(l − x)  is the overlap area between the plates. Following the 
same approach as outlined before: 

 Effort on the electrical side =  ∂
∂q

q2d
2εw(l − x)

⎛
⎝⎜

⎞
⎠⎟

= 2qd
2εw(l − x)

 
= qd

εw(l − x)
= e1

    

(8.20)

 

     Effort in ME = 
  

∂
∂x

q2d
2εw(l − x)

⎛
⎝⎜

⎞
⎠⎟

= (−1)(−1)q2d
2εw(l − x)2

= q2d
2εw(l − x)2

= e2     ( 8.21)     

 These are, therefore, the constitutive equations for the two sides of the C-fi eld 
element. One can use these equations to easily modify the C-fi eld model to 
simulate the behavior of this type of a sensor just like in the previous example.    

  8.3  Magnetic Sensors   

  8.3.1  Magnetic Circuits and Fields 

 Magnetic and electromagnetic phenomena are used extensively in a 
variety of sensor designs. These designs are all based primarily on the 
 variation of the energy stored in magnetic fi elds. Before we start looking 
at the different phenomena that are typically used, we will go over some 
of the basic concepts of magnetic fi elds and the energy associated with 
them. There are several well-known laws of electricity and magnetism 
that need to be mentioned here. 

FIGURE 8.19
Schematic for Example 8.2.
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 8.3.1.1   Faraday’s Law of Electromagnetic Induction  

 There are many ways of expressing Faraday’s law. Here are some of the 
implications. 

   Coils of wire and magnets interact to create electric and magnetic • 
fi eld.  

  A force  • F  is required to move a conductor of length  L  carrying a 
current  i  through a magnetic fi eld of strength  B  ( F = BLi ).  

  A magnet that moves in a coil causes a potential difference at the • 
terminals of the coil.  

  Current that fl ows through a coil creates a magnetic fi eld.  • 

  The time varying change in a magnetic fi eld • φ induces an electro-
motive force  E.    

 8.3.1.2   Ampere’s Law  

 The implication of Ampere’s law can be listed as the following 
statements. 

   An “electromotive force,” such as created by current passing • 
through a coil of wire,  forces  a magnetic fi eld through a magnetic 
circuit.  

  The product of the magnetic fi eld intensity  • H  and length in a 
 circuit equals the magnetomotive force.   

  8.3.1.3  Gauss’s Law for Magnetism  

 Gauss’s law implies the following statements. 

   Magnetic fi elds have north and south poles between which the • 
fi eld fl ows.  

  The total magnetic fl ux (• φ = B*area) across a closed boundary is 0 
(there are no magnetic monopoles).   

 The basic concepts of electromagnetism can be summarized in math-
ematical forms using the basic laws mentioned above. In machines that do 
not use permanent magnets, the magnetic fi eld is produced by a current 
that fl ows through a coil that is wound around a ferromagnetic material. 

  H  is the symbol used for magnetic fi eld intensity. Figure 8.20 is a schematic 
for the magnetic fi eld around a current carrying conductor such that:         

  
H = i

2πr   
(8.22)
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 for a straight wire. Its unit =   
ampere

m    

 Wherever there is a magnetic fi eld, magnetic fl uxes are produced. The 
symbol  B  is used to represent magnetic fl ux density. While  B  is dependent 
on the medium the magnetic fi eld passes through,  H  is independent of 
the medium. 

  B  = Magnetic fl ux density. Unit =   
Wb
m2

   or Tesla (Weber per square meter), 
and 

  
B = μH

 
 (8.23)

    

 where,  μ  = Permeability of the medium. It can be expressed as: 

  
μ = μrμ0   (8.24)    

 where 

 …  μ 0   is the permeability of the free space =   

  
4π × 10−7

Wb
Amp − m

   

 …  μ  r    is the relative permeability of the medium and is equal to 1 for free 
space. The relative permeability is ~2000–6000 for ferromagnetic materi-
als such as iron, copper, nickel, and so forth. This means that for materials 
that have a higher relative permeability, a small current will produce a 
large fl ux density in the material. 

 In air or in vacuum, the  B  and  H  are linearly related, and the relation-
ship may be expressed as: 

  
B = μ0H

 
 (8.25)

    

 In ferromagnetic material, the relationship is not exactly linear. Beyond 
a certain level of magnetization, saturation is reached. Also, there are 

FIGURE 8.20
Magnetic fi eld around a current carrying conductor.
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hystersis effects associated with the  B-H  relationship. Standard  B-H  
plots are available for most magnetic materials that accurately represent 
the actual nonlinear relationship between the two variables. As these 
plots show, however, for a certain range of the  B-H  relationship, a linear 
approxima tion is perfectly valid. For our discussion here, we will assume 
that we are operating in the linear range of the  B-H  relationship. Hence, 
 B = μH  for ferromagnetic materials is an acceptable relationship.  

  8.3.2  Simple Magnetic Circuit 

 Consider a simple magnetic circuit where a current fl ows through the coil 
that is wound on a ferromagnetic core. When the current fl ows through 
the coil magnetic fl ux is mostly confi ned to the core. 

 If  N  = number of coils, it can be shown that: 

  
Hl = Ni ⇒ H = Ni

l  
 (8.26)

    

 where,  l  is the length of the medium or the magnetic path. 
 Since 

  
B = μH,  B = μ Ni

l
⇒ BA = μ Ni

l
⎛
⎝⎜

⎞
⎠⎟ A

 
 (8.27)

    

 where  A  is the area of cross-section of the magnetic path or the area through 
which the fl ux is traveling. The product of  BA  gives us the total fl ux. 

  

BA = φ = Ni
l

μA   

(8.28)

    

 Using the analogy of electrical circuits, Equation 8.28 may be viewed as 

Flux = (magnetomotive force)/reluctance. 
Magnetomotive force =  Ni  is similar to electromotive force = e (voltage). 
 Flux =  φ  is similar to charge. 

 Reluctance =   
l

μA
  , and permeance = 1/(reluctance); permeance may be 

considered similar to capacitance. 

 In traditional electromagnetic texts, reluctance is considered to be similar 
to resistance, fl ux is considered to be similar to current, and the magneto-
motive force is considered similar to the electromotive force. 

 Although resistance is a power dissipative element, reluctance is not. 
Energy is stored in the magnetic circuit with reluctance in it. Also, current 
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is a fl ow rate of charge; however, magnetic fl ux is not a fl ow rate so mag-
netic fl ux should rather be treated as something similar to charge and 
not as something similar to current. Hence, a magnetic circuit, in real-
ity, should be more like a capacitive circuit rather than a resistive circuit 

where 1/reluctance = permeance =   
μA
l

  ; and permeance is similar to electri-
cal capacitance. 

 Also, λ =  Nφ , is the fl ux linkage variable, and the rate of change of the 
fl ux linkage variable is equal to the voltage applied in the electrical circuit 

(effort), that is, �λ = N�φ    .
 Thus, the electromagnetic circuits can be modeled in the following  fashion. 

Figure 8.21 shows a schematic where an electrical coil on a core is energized 
using an applied emf  e . The current fl owing in the electrical circuit is i, and 
it determines the magnetomotive force induced on the magnetic side as  Ni , 
i.e. the effort on the magnetic side is related to the fl ow on the electrical 
side. The fl ow on the magnetic side is fl ux fl ow rate and the back emf on 

the electrical side is the �λ = N�φ   , i.e. the effort induced on the electrical 
side is related to the fl ow on the magnetic side. 
Therefore, this device works as a gyrator, and 
the bond graph representation of this system 
may be shown as in Figure 8.22.     

 This gyrator element is an important building 
block in modeling magnetic circuits. The ele-
ment links the electrical domain with the mag-
netic domain. The gyrator factor is the number 
of turns (windings) in the electrical coil,  N . 

 There is another way of expressing this rela-
tionship in terms of the well-known electrical 
quantity called inductance. Since λ =  Nφ  and 
L = λ/i; but the current i can be expressed as 
mmf/N and mmf is fl ux times reluctance. 
Therefore: 

  
L = L =λ/i = Nφ/(φR)/N  = (N*N)/R

  
(8.29)

    

mmf = Ni

i
GY

GY1

e 
N 

λ = N φ
..

φ
.

FIGURE 8.22
An electromagnet circuit and the corresponding bond graph representation.

e 

FIGURE 8.21
Current fl owing through a 

conductor wound around 

a core.
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 Therefore, 

  
L = (N 2μA)/l

  
(8.30)

    

 Table 8.2 summarizes all the variables we have used so far in this 
 discussion and identifi es the nature of these variables in the context of 
generalized quantities. 

 In the next few sections, some magnetic circuits are discussed in the 
context of representing them in the form of bond graph models. This leads 
to a discussion of sensors using magnetic effects in this chapter and actu-
ators in the next chapter. 

  8.3.2.1  Magnetic Circuit with Air Gap 

 Consider the magnetic circuit in Figure 8.23 and its bond graph 
development. 

 Development of the bond graph for the magnetic circuit can be accom-
plished in the same way as an electrical circuit. The locations 1, 2, 3, 
and 4 represent different locations in the magnetic circuit that indicate 
different mmf points (just like potential points on an electrical circuit). 
Therefore, they can be represented on the magnetic circuit as 0 junctions 
and each 0 junction is connected with the next 0 junction with a 1 junc-
tion that is connecting a C element representing the permeance of that 
region. So the initial bond graph representation is shown in Figure 8.24. 
The items on the left side of the GY are items in the electrical circuit and 
the terms on the right of GY are the terms in the magnetic circuit. The I 
and the R represent the inductance and resistance of the electrical circuit 
respectively.         

TABLE 8.2

Generalized Quantities and Their Magnetic Equivalents

Generalized Quantity Magnetic Equivalent

Effort Magnetimotive force, Ni

Flow Flux rate, dφ/dt

Disp Flux, φ
Capacitance Permeance, P

Stiffness parameter Reluctance, R

Magnetic fl ux density, B

Magnetic fi eld strength, H

Momentum Flux linkage, λ = Nφ
Inertia Inductance, L = Flux linkage/i = Nφ/I = (N2μA)/l
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 The 0 junction at point 4 can be treated as a reference and removed, and 
the circuit may be simplifi ed as shown in Figure 8.25. Here I1 and R1 are the 
inductance and resistance of the electrical circuit, respectively. C1 and C3 rep-
resent the Cs (permeance) of the iron and C2 represents the C (permeance) 
for the air. The circuit equations for the magnetic circuit are written as:         

  

φ = Ni
RCore + RGap

φ = Ni

1

p1

+ 1

p3

⎛
⎝⎜

⎞
⎠⎟

+ 1

p2

φ = Ni
liron

μAiron

+ lair

μ0Aair  

 

(8.31)     

FIGURE 8.24
Initial bond graph representation of the magnetic circuit.
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FIGURE 8.23
A generic magnetic circuit.



Transducers: Sensor Models 249

  8.3.2.2  Magnetic Bond Graph Elements 

The Magnetic bond graph elements are

  1. Effort,  Ni  = Ampere turns 

 2.  Flow,   �φ   = Flux rate i.e.,   wb
s

   

 3.  Displacement, φ = Flux 

 4.  Capacitance or Permeance,   P = μA
l

   

 5.  Flux linkage, λ (momentum) =  Nφ  

 Let’s consider a slight variation of the above magnetic circuit and assume 
that instead of an electrical coil generating the magnetic C-fi eld, there is 
a permanent magnet that is used to generate the magnetomotive force. 
Figure 8.26 shows such an arrangement. The shaded portion in the fi gure 
represents a permanent magnet with B as the magnetic fl ux density. We 
saw earlier that for the electrical coils generating a magnetomotive force.         

R 
R1

I 
I1

Se
Se1

C
C3

C
C2

C
C1

GY
GY1

1 1 

FIGURE 8.25
Final bond graph of the magnetic circuit.

B L

1 2  

3  4 

FIGURE 8.26
Schematic of a magnetic circuit with a permanent magnet providing the mmf.
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B = μ Ni

l
⇒ Ni = Bl

μ
= Bl

μ0   
(in air)

 
 (8.32)

    

 Therefore, the magnetomotive force that is induced by a permanent 

 magnet is given by   BL
μ

0

,   where  B  is the magnetic strength,  L  is the length

of the magnet. The bond graph model of this arrangement can be easily 
shown to be Figure 8.27 using the same approach as the previous  example. 
The magnetic fl ux through this circuit may be computed in a manner 
 similar to the previous example.          

  EXAMPLE 8.3: VARIABLE RELUCTANCE SENSOR 

 Figure 8.28 shows a variable reluctance sensor that may be used to measure 
displacement, velocity, or acceleration. This type of a sensor may be available 
in many confi gurations, and the fi gure shows the simplest possible confi gu-
ration. The permanent magnet has an air gap, and a ferromagnetic piece is 
able to move in and out of the gap driven by some external source of fl ow. 
When the tab passes through the air gap, the reluctance/permeance of this 
set up changes. This induces an emf across the coil of wire wound around the 
magnet. The emf induced is proportional to the speed of movement. Also, the 
frequency with which this induced emf occurs is a measure of the speed.         

 A magnifi ed view of the area of interest is shown in Figure 8.29 where the 
tab is partially in the slot representing the air gap. To develop the model, we 
can assume that when the magnetic tab is inside the slot, the reluctance is 
equivalent to that of twice the air gap (since the permeability of the tab and the 
magnetic material may be assumed to be very high in comparison to that of air) 
when the tab is in between the poles and the reluctance. When the tab is not 
inbetween the poles, the reluctance is very high (~infi nite) because the air gap 
now is large. Permeance, the inverse of reluctance, varies accordingly. When 

C 
Air gap permeance

1 
1 Junction

C 
Iron permeance

Se 
Magnetomotive force

FIGURE 8.27
Bond graph representation of a magnetic circuit with a permanent magnet.
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the tab is partially in the air gap, the reluctance (permeance) may be computed 
based on the overlap area as shown in the fi gure. The variable reluctance 
(permeance) in the magnetic circuit needs has to be modeled using a fi eld ele-
ment, specifi cally a C-fi eld because the energy stored is dependent on both 
the magnetic displacement (fl ux) as well as the mechanical displacement. The 
bond graph model of the whole set up will look like Figure 8.30.         

 In the bond graph model, the source of effort is the mmf supplied by the 
 permanent magnet. The C element in the model is used to model the per-
meance of the iron path in the circuit. The C-fi eld element is used to model the 
variable permeance due to the tab that moves in and out of the gap between 
the two poles. The source of fl ow models the external velocity source that 
causes the movement (and this is what the sensor will be measuring). The GY 
element is used to model the magnetic to electric transformation in the elec-
trical coil that is wound around the permanent magnet. As the tab moves in 
and out of the air gap in the poles, the reluctance in the circuit changes. This 
rate of change in the fl ux in the magnetic circuit induces a voltage across the 
winding. The GY element is used to capture this behavior. The GY factor here 

e

FIGURE 8.28
Schematic showing an arrangement for a variable reluctance sensor.

FIGURE 8.29
Magnifi ed view of the area of interest.

lgap 
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x d
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is the number of turns of the coil. The resistance element is the resistance in 
the electrical circuit. The voltage measured across this is the voltage output of 
this variable reluctance sensor. 

 The C-fi eld equations need to be derived in the same fashion as we did for 
capacitive sensors: 

 One expression of energy stored in a magnetic C-fi eld is =   
φ2

2
  . Reluctance 

 Inside C-Field 
   �φ, �x   are received information. 
 Integration of   �φ    to get   φ, φ = int ( �φ)   
 Integration of   �x    to get     x, x = int ( �x)    
 Differentiate energy w.r.t time 

  

d
dt

(Energy) = Power
 

 (8.33)
    

  

d
dt

(Energy) = ∂
∂φ

φ2 ⋅R
2

⎛
⎝⎜

⎞
⎠⎟ ⋅ dφ

dt
+ ∂

∂x
φ2 ⋅R

2
⎛
⎝⎜

⎞
⎠⎟ ⋅ dx

dt  
 (8.34)

    

 Power on magnetic side 

  
= ∂

∂φ
φ2 ⋅R

2
⎛
⎝⎜

⎞
⎠⎟ ⋅ dφ

dt
= effort * flow

  
(8.35)

    

 Hence, effort on the magnetic side 

  

= ∂
∂φ

φ2 ⋅R
2

⎛
⎝⎜

⎞
⎠⎟

= 2φR
2

= φ ⋅R  

 (8.36)

    

FIGURE 8.30
Bond graph representing the variable reluctance sensor.
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 Power on mechanical side 

  
= ∂

∂x
φ2 ⋅R

2
⎛
⎝⎜

⎞
⎠⎟ ⋅ dx

dt  
 (8.37)

    

 Effort on the magnetic side 

 

= ∂
∂x

φ2 ⋅R
2
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 (8.38)

    

 The constitutive equation for the C-fi eld is 

 
Effortleft = φ ⋅R = φ

2lgap

μ0dx
+ liron

μdx
⎛
⎝⎜

⎞
⎠⎟

… x is the movement of the tab
  

(8.39)
    

  
Effortright = −

φ2lgap

2dx2

2lgap

μ0

+ liron

μ
⎛
⎝⎜

⎞
⎠⎟   

(8.40)
    

 These two expressions may be simplifi ed by dropping the second term inside 
the parentheses because μ is a few thousand times larger than μ0. When the fl ow 
on the mechanical side is integrated, we get the displacement  x  of the mechani-
cal side. We need to be careful that there is an initial position of  x , that is,  x0 . 

  The constitutive equations for the C-fi eld element as outlined above are pro-
grammed in a fashion as follows.  

 // This model represents a 2-port C-element: p.e = (1/C)*p.f 
written here as p.e = A*p.f 

 Parameters 

 real lgap = 0.002; //gap length 
 real muo = 0.000001256;//permeability of air 
 real d = 0.1; //depth of the circuit 
 real a22 = 1.0;//unused variable 

 Equations 

 // You can change these equations into any (nonlinear) 
version by adding your own functions. 
 // Use f(x) button at the left of the window to see all 
available functions 
 state1 = int (p1.f); 
 state2 = int (p2.f); 
 p1.e = state1*(2*lgap/(muo*d*state2)); 
 p2.e = –state1*state1*lgap*lgap/(d*state2*state2*muo); 
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 Figure 8.31 shows the parameters used in the simulation. Along with these 
parameters the initial value of the displacement is assigned to a very small but 
non-0 value to avoid the division by 0 problem. The simulation results are 
shown in Figure 8.32. This example provides a very general idea of how the 
sensor behavior may be simulated. The actual values of the parameters were 
mostly chosen to be representative but arbitrary. While viewing the simulation 
results, the user should be aware of that.                  

Model
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Input velocity

FIGURE 8.32
Simulation results from a variable reluctance sensor.

FIGURE 8.31
The parameters used in the simulation.
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  EXAMPLE 8.4: VARIABLE DIFFERENTIAL TRANSFORMERS 

 Linear variable differential transformers (LVDTs) and rotational variable 
 differential transformers (RVDTs) are very commonly used sensors that  measure 
displacements and rotations. These sensors are noncontact type sensors and, 
therefore, hold a distinct advantage over contact type sensors such as the 
potentiometer. These sensors are sometimes called variable-inductance sen-
sors, mutual induction sensors, or a differential transformer. 

 Figure 8.33 shows two views of a schematic of the LVDT. This sensor consists 
of a primary coil that is energized by an AC source. There are two secondary 
coils that are connected to each other in a way such that the net output is the 
difference in the induced voltages in each (i.e., in series opposition). There is 
a movable iron core inside these coils providing the fl ux linkage between the 
coils. In the null position, the voltage induced in both the secondary coils are 
the same, and, thus, the difference would be 0. As the iron core is moved, the 
reluctance in the path of the magnetic fl uxes change; for one of the second-
ary coils, it is a function of +x while that of the other will be a function of –x. 
The voltage induced in each coil will correspondingly be functions of +x and –x, 
and, therefore, the difference in the voltage will be additive. Because the input 
applied on the primary coil is sinusoidal, the outputs in the secondaries will be 
sinusoidal as well. But the amplitude of this output will be proportional to the dis-
placement of the core. For transient displacements, the frequency of the reference 
source (i.e., the supply to the primary coil) should have a frequency that is at least 
10 times as large as the largest signifi cant  frequency in the measured motion.         

AC

Armature (iron core)
Secondary coils

Secondary B

Primary

Ferrite core

Secondary A

Primary coil

V V out

FIGURE 8.33
Schematic and circuit for LVDT.
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 In order to model this sensor, we need to remind ourselves of a few things we 
learned earlier. First, there are three locations where a domain transformation 
is happening; in the primary coil, there is a transformation from electrical to the 
magnetic domain, and in each of the secondary coils, there is a transformation 
from magnetic to electrical domain. This means that there need to be three 
gyrator elements to capture all of these. The movement of the iron core adds a 
different variation in the system. As in previous cases, the movement of the iron 
core changes the effective reluctance and is modeled using a C-fi eld element. 
Thus, the model for the whole sensor looks like the one shown in Figure 8.34.         

 The bond graph model consists of three GY elements representing the three 
coils all attached to a C-fi eld element that is used to model the variable reluc-
tance due to the moving core. The external input to the C-fi eld is a velocity of 
motion of the iron core. The gyrator factors are the number of turns in each coil. 
The output efforts from the two secondary gyrators are captured by means of 
the effort sensor and are subtracted so that the net output can be found. This last 
part of the bond graph is not modeling the actual series circuit on the secondary 
side because that circuit will have two inductances (outlet from GY elements) 
and will result in a differential causality in the model. To avoid that effort,  signals 
are explicitly separated and subtracted to achieve the same result. 

 The exact model for the C-fi eld element is derived below. Figure 8.35 shows 
a schematic that is used to derive the necessary relationships.          

FIGURE 8.34
Bond graph model for the LVDT.
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FIGURE 8.35
A schematic of LVDT used for deriving the C-fi eld model.
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  8.3.2.3  Inside C-Field 

 We are making the assumption here that the magnetic effects are con-
trolled primarily by the air gap and the reluctance of the air gap. The other 
reluctances of the magnetic materials are ignored here. 2*Xbar is the total 
length of the overlap of the core. At the null position this is equally dis-
tributed between the top and the bottom. We also assume that the mag-
netic fl ux induced is the same in all parts of the magnetic circuit. 

 Following the same approach as before: 

   �φ, �x    are received information. 

 Integration of   �φ   to get φ,   φ = int ( �φ)    

 Integration of   �x   to get  x ,   x = int ( �x)    

 Differentiate energy w.r.t time: 

    

d
dt

(Energy) = Power
  

(8.41)
    

    

d
dt

(Energy) = ∂
∂φ

φ2 ⋅R
2

⎛
⎝⎜

⎞
⎠⎟ ⋅ dφ

dt
+ ∂

∂x
φ2 ⋅R

2

⎛
⎝⎜

⎞
⎠⎟ ⋅ dx

dt   
(8.42)

    

 Power on magnetic side: 

    
= ∂

∂φ
φ2 ⋅R

2

⎛
⎝⎜

⎞
⎠⎟ ⋅ dφ

dt
= effort * flow

  
(8.43)

    

 Hence, effort on the magnetic side: 

     

= ∂
∂φ

φ2 ⋅R
2

⎛
⎝⎜

⎞
⎠⎟

= 2φR
2

= φ ⋅R

= φ
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⎞
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(8.44)

    

 For the two secondary coils, the mmf induced will be 

     
= φ

lgap

μ
0
πd(Xbar − x)

⎛
⎝⎜

⎞
⎠⎟

 and = φ
lgap

μ
0
πd(Xbar + x)

⎛
⎝⎜

⎞
⎠⎟

  

(8.45)
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 Power on mechanical side: 

  
= ∂

∂x
φ2 ⋅R

2

⎛
⎝⎜

⎞
⎠⎟ ⋅ dx

dt   
(8.46)

    

 Effort on the magnetic side for one of the secondary coils: 

  

= ∂
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(8.47)

    

 For the other secondary coil, the effort is 

  

= φ2

2πd

lgap

μ
0
(Xbar − x)2

⎛
⎝⎜

⎞
⎠⎟

  

(8.48)

    

 and the net effort is the sum of the two efforts. 
 This model is implemented in the software through the use of a C-fi eld 

element. 

  Parameters 

  real d = 0.01;    
     real mu0 = 0.0000012566;      

  real lgap = 0.002;      
  real xbar = 0.01;   
     real pi = 3.14159;   

  Equations 

  // You can change these equations into any (nonlinear) 

version by adding your own functions.      
  // Use f(x) button at the left of the window to see all 

available functions.      
  state1 = int (p1.f); // magnetic flux associated with 

primary coil      
  state2 = int (p2.f);//mechanical displacement of the core   
     state3 = int (p3.f);// magnetic flux associated with the 

first secondary coil   
     state4 = int (p4.f);// magnetic flux associated with the 

second secondary coil   
     p1.e = (state1)*lgap/(mu0*pi*d*(2*xbar)); 
//mmf for the primary coilp2.e = (state1*state1)*lgap/
(2*mu0*pi*d*(xbar-state2)^2)   
     – (state1*state1)*lgap/(2*mu0*pi*d*(xbar+state2)^2);
//force on the core insertp
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3.e =(state1*lgap)/(pi*mu0*d*(xbar-state2));
//mmf induced on the first secondary coil   
  p4.e = (state1*lgap)/(pi*mu0*d*(xbar+state2));
//mmf induced on the second  secondary coil  

 For the purposes of simulation, the parameters used are shown in 
Figure 8.36. The results obtained from the simulation are shown in Figures 
8.37 and 8.38.     

FIGURE 8.36 
Parameter values used in the simulation.

FIGURE 8.37
Output voltage obtained from simulation.
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 The two plots shown here (Figures 8.37 and 8.38) indicate the raw volt-
age output as well as the actual displacement of the core. It is clear that 
the way the amplitude of the voltage increases is directly related to the 
actual displacement. The oscillation in the output is due to the oscillating 
input in the primary coil and will eventually be removed through proper 
signal conditioning. Thus, the output signal can be used to determine the 
distance moved.                  

 EXAMPLE 8.5: A MAGNETIC SENSOR WITH A PERMANENT MAGNET 

 Figure 8.39 shows a seismic sensor that can be used to measure displacement, 
velocity, or acceleration of a body. The fi gure shows a permanent magnet of 
mass M that is supported by a spring, and there is some viscous damping 
between the magnet a nd the cover. The electric coil is fi xed to the outer cover. 
The coil is assumed to have a length of l and a resistance of R coil  and induc-
tance of L coil , respectively; the permanent magnet exerts a fi eld of B Tesla. The 
system is activated by the base motion, which results in the movement of the 
coil in the magnetic C-fi eld, thus cutting the lines of force. This induces a volt-
age in the coil, and the voltage measured across the R out  (output resistance) 
works as the sensor output. The bond graph representation of this system is 
shown in Figure 8.40.                 

FIGURE 8.38
The displacement of the core used as input to the model.
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 Most of the components in this model are self explanatory. One item that 
needs some discussion is the gyrator factor. The GY member in the model 
represents the transformation from the mechanical domain to the electrical 
domain (via magnetics). In this particular case, there is a permanent magnet 
of strength B and the length of the coil in the magnetic C-fi eld is l. The rate of 
change of displacement (velocity) on the mechanical side is directly respon-
sible for the voltage induced on the electrical side in the coil; that is, electrical 
effort = Bl(dx/dt), and the force induced on the mechanical side due to the 
movement of the coil in the magnetic C-fi eld is directly proportional to the 
current in the coil; that is, mechanical effort = Bl (i). Thus, the GY factor will 
have to be Bl. 

I
Coil inductance

R

1
External disturbance 

MSf
Flow source from base

0

1

0 0 C
Spring

R
Damper

I
Sensor magnet mass

R

Mechanical electro magnetic domain
1 GY

Coil resistance Output resistance

1 Junction 3

FIGURE 8.40
Bond graph model of the sensor.

FIGURE 8.39
Schematic of the sensor.

Rcoil 

Lcoil 

Rout

k b 

Cover

M 



262 Mechatronic Modeling and Simulation Using Bond Graphs

 The above system is simulated using the bond graph representation. For the 
purpose of this demonstration arbitrary values for the different parameters are 
assumed. The assumed values are shown in Figure 8.41.         

 The output results can be seen from the simulation plots shown in Figure 8.42. 
To simulate a more realistic seismic sensor, the input is modifi ed by adding some 
random noise and the simulation is performed again. Graphs similar to the ones 
shown in Figure 8.42 are generated, and they are shown in Figure 8.43. This 

FIGURE 8.41
Parameters used to simulate system shown in Figure 8.41.

FIGURE 8.42
Base motion and induced voltage measured for the system in Figure 8.41.
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example demonstrates how this sensor would be working. In reality, when the 
sensor is designed, the sensor design parameters will be optimized so that the 
response function is cleaner. Signal conditioning circuits will also be used to 
clean out the noise in the signals, and so forth.           

  EXAMPLE 8.6: VARIABLE RELUCTANCE SENSOR—ROTATIONAL MOTION 

 Figure 8.44 shows two views of a variable reluctance sensor that may be used 
to measure displacement, velocity, or acceleration during rotational motion. 
This type of a sensor may be available in many confi gurations, and the fi gure 
shows only one possible confi guration. An earlier example discussed a different 
confi guration. The permanent magnet has an air gap, and a tabbed ring is able 
to rotate in a way such that the tab passes through the air gap. When the tab 
passes through the air gap, the reluctance/permeance of this set up changes. 
This induces an emf across the coil of wire wound around the magnet. The 
emf induced is proportional to the speed of rotation. Also, the frequency with 
which this induced emf occurs is a measure of the speed.         

 A different view of the schematic is shown in Figure 8.44, where the tab is 
about to approach the slot between the magnetic poles. To develop the gov-
erning equations, we can assume that the reluctance is equivalent to that of 
twice the air gap (because the permeability of the tab and the magnetic mate-
rial may be assumed to be very high in comparison to that of air) when the tab 
is in between the poles and the reluctance. When the tab is not in between the 
poles, the reluctance is infi nite. Permeance, the inverse of reluctance, varies 
accordingly. In the fi gure, some angular measures are shown to indicate when 
and how much of the tab lies in between the poles. 

FIGURE 8.43
Simulation results with added noise in the input.
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 The reluctance for this situation may be calculated as: 

  
R =

2lgap

μ0 A
=

2lgap

μ0ar | (θ1 − θ )|
  for  −θ1 < θ < θ1

  
(8.49)

 

    when θ is 0, the tab is perfectly aligned in the gap, and the reluctance is 
the minimum. As θ increases, the reluctance decreases until it shoots up to 
 infi nity when the angle moves beyond θ 1 . The absolute value is used to take 

FIGURE 8.44
Two views of a variable reluctance sensor.
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into account the situation when the tab is moving into the gap, as well as when 
it is leaving the gap. 

 Now, in order to develop a suitable bond graph model for this system, we 
consider the energy representation. 

 The energy in the magnetic C-fi eld is 
  φ2

2
  . Reluctance 

   Inside C-Field 

     �φ, �x are received 

 Integration of   �φ    to get φ, φ = int ( �φ)      

 Integration of �x      to get  x , x = int ( �x)      

 Differentiate energy w.r.t time: 

   

d
dt

(Energy) = Power
 

(8.50)
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⎞
⎠⎟ ⋅ dx

dt
 (8.51) 

    Power on magnetic side: 

  = ∂
∂φ

φ2 ⋅R
2

⎛
⎝⎜

⎞
⎠⎟ ⋅ dφ

dt
= effort * flow   (8.52) 

    Effort on the magnetic side: 
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⎛
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= 2φR
2

= φ ⋅R

 (8.53) 

        
= φR =

φ2lgap

μ0 A
=

φ2lgap

μ0ar | (θ1 − θ )|
  for  − θ1 < θ < θ1

 
(8.54)

 

    Outside the above range, the effort on the magnetic side will be infi nite. 

 Power on mechanical side: 
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    Effort on the magnetic side: 

   

= ∂
∂θ
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⎞
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(8.55)

 

    In this particular set up, since it is a permanent magnet, φ can be considered 
to be nearly constant. So the mmf is essentially controlled by the variation of 
the reluctance. And for a coil wound around the permanent magnet. the mmf 
divided by the number of turns provides the current. The bond graph represen-
tation will be very similar to the bond graph of the linear variable reluctance 
sensor described earlier, and the development of the bond graph model and its 
simulation is left as an exercise for the reader.    

  8.4  Hall Effect Sensors 

 Hall effect sensors are another class of sensors that uses the interaction of 
electric and magnetic fi eld to monitor various different physical quantities 
such as force, motion, velocity, and so forth. The Hall effect sensors use two 
transduction mechanisms, electromechanical coupling based on the motion 
of charges in a magnetic fi eld, and magnetoelectric coupling based on the 
Hall effect. This results in a coupling of voltage to the position of a magnet. 

 The Hall effect is named after Dr. Edwin Hall, who fi rst noted this effect 
in 1879. When a magnetic fi eld is applied in a direction perpendicular to 
a current carrying conductor (originally with uniform current density), 
not only is there a force on the conductor (F =  Bli , Lorentz effect), it also 
tends to bend the current in a nonuniform way (Figure 8.45). Edwin Hall 
observed that this distortion in the current path tends to induce a voltage 
in a direction that is perpendicular to both the current path as well as the 
magnetic fi eld. Measurement of this induced voltage can be used to link it 
to the effect that produced the distorted current path. One way to express 
this in a mathematical form is 

   
e = RH Bi

t  
(8.56)

 

    where  i  is the current,  B  is the magnetic fl ux density,  t  is the thickness of 
the conductor and  R H   is the Hall coeffi cient of the material. Since  Bli  is 
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the force induced on the conductor the above relationship may also be 
expressed as: 

   
e = RH Bli

lt
= RH

lt
F

 
(8.57)

 

    This shows that there is a linear relationship between the voltage and 
the force. This could be represented in a bond graph model as a trans-
former element. This would also mean that an identical relationship exists 
between the fl ow parameters on both the sides of a transformer, that is, 
the velocity and the orthogonal current: 

   
v = RH

lt
i
 

(8.58)
 

    Although Hall effect sensors can be modeled as a transformer, it is not 
very practical to relate the force on a conductor with the voltage induced. 
These sensors are more practically used by varying the magnetic fi eld by 
moving the magnet closer or farther away from the conductor. This way 
the magnetic fl ux density  B  becomes a function of  x , the distance, and is 
not a constant anymore. Considering the original governing equation, we 
can modify it now as: 

   e = RH Bi
t

= RH B(x)

t
i  

(8.59)
 

FIGURE 8.45
Schematic to demonstrate the Hall effect.
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    Now the Hall effect relationship is expressed as a gyrator relationship 
where the current in the conductor is related to the Hall voltage induced. 
The gyrator coeffi cient is not a constant but a variable related to the vari-
able  B . Thus a more practical way of modeling a Hall effect sensor is 
through the use of a modulated gyrator. 

 Hall effect sensors are constructed in many different confi gurations 
depending on the particular application for which they are to be used. 
Most of these take advantage of the variation in the magnetic fl ux density 
by varying the distance between the sensor and the magnet. Figure 8.46 
shows one confi guration of the sensor application in velocity measure-
ment. In this particular application, the gear ring is attached to the rotat-
ing device whose speed needs to be measured. The teeth pass in front of 
the sensor magnet (not shown in the fi gure) altering the magnetic fi eld 
intensity. The Hall voltage varies proportional to the speed at which these 
teeth are passing in front of the sensor, and the output is measured to be 
a wave signal whose frequency determines the speed of rotati on to be 
measured. The actual value of the voltage pulse may be irrelevant in this 
application since the frequency is what we need. 

 The variation of magnetic fl ux density with distance is obtainable 
from magnet specifi cation data sheet. Typically, this decay is somewhat 
 similar to e− x2 functions, where  x  is the distance from the magnetic pole 
(Figure 8.47). 

 A relatively straightforward bond graph representation of this sen-
sor is shown in Figure 8.48. The gear ring is rotated at an input velocity 
represented by the source of fl ow “speed of rotation of ring,” and the 
damping resistance to rotation is represented by the resistive element 
attached to it. In more elaborate models, one can include the inertia 
term as well. The rotational speed is provided to the modulated  gyrator 
as a signal. The input to the modulated gyrator is a current input to 
the Hall sensor. The output is supplied to an electrical resistor so that 

FIGURE 8.46
Hall effect sensor in a particular confi guration.
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the voltage across that can be plotted. This approach is taken more 
for the modeling purpose than anything else so that the voltage output 
from the sensor can be easily tracked. For this model, the variation of  B  
for the different distances have been taken as two discrete values, that 
is, when the tooth is nearest the sensor and when it is not. These two 
are called fl ux density when the distance is minimum and fl ux density 
when the distance is maximum, respectively. The other properties used 
in the simulation are shown in Figure 8.49, and the gyrator model is also 
shown below. The GY model essentially varies the GY factor similar to 
a square wave to model the passing of the gear teeth and root in front 
of the sensor. 

FIGURE 8.47
Variation of fl ux density with distance.
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FIGURE 8.48
Bond graph representation of the confi guration in Figure 8.47.
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  EXAMPLE 8.7: GY MODEL 

  Parameters  

  real RH = 0.8; //Hall coefficient  
  real t = 0.002; //conductor thickness  
  real Bzero = 0.012; //  Flux density when the distance is 

minimum  
  real B1 = 0.002; //  Flux density when the distance is maximum  

  Variables  

  real B; // Flux density at any point in time during rotation  
  real fact; // Gyrator factor  
  real hidden s, half; //  variables needed to generate the half 

wave form  
  boolean hidden change; // variable needed to generate the half 

wave form  

  Equations  

  “calculate at least 2 points per period   
   (just after the change in sign)”  
  half = pi / r;  

  change = frequencyevent (half, 1e-15);  
  “calculate the square wave”  
  s = sign (sin (r * time));  
  B = if( s == 0 ) then //computation of the B value  
  Bzero   
  else  

FIGURE 8.49
Parameters used for the simulation.
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   ((Bzero-B1) / 2) * (s + 1) + B1  
  end; // half wave form generation complete  

  fact = (B*RH)/t; //computation of gyrator factor  
  p1.e = fact* p2.f; //output calculation  
  p2.e = fact * p1.f; //output calculation  

 The voltage output of the sensor, as shown in Figure 8.50, is, thus, in the 
form of a square wave whose frequency is the same as the rotational speed of 
the rotating body. 

    8.5  Piezo-Electric Sensors 

 Piezo-electric behavior, which is observable in some naturally occurring 
materials and some artifi cial materials, is a behavior where an electric 
potential may be induced in the material through the application of a force 
and vice versa. Examples of naturally occurring materials that exhibit this 
type of behavior are quartz crystals and Rochelle salt. There are many 
 artifi cial piezo-electric materials such as polyvinylidene fl uoride (PVDF), 
barium titanate (BaTiO 3 ), lithium sulphate (LS), and lead zirconium 
 titanate (PZT). 
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Output or measured voltage.
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 The conversion of electrical pulses to mechanical movement and the 
conversion of mechanical movement back into electrical energy is the 
basis for piezo-electric crystals. The active element is the heart of the trans-
ducer as it converts the electrical energy to mechanical energy and vice 
versa. The active element is basically a piece of polarized material (i.e., 
some parts of the molecule are positively charged, while other parts of 
the molecule are negatively charged) with electrodes attached to two of 
its opposite faces. When an electric fi eld is applied across the material, the 
polarized molecules will align themselves with the electric fi eld, resulting 
in induced dipoles within the molecular or crystal structure of the mate-
rial. This alignment of molecules cause the material to change dimensions. 
This phenomenon is known as electrostriction. In addition, a permanently 
polarized material, such as quartz (SiO2) or barium titanate (BaTiO3), 
will produce an electric fi eld when the material changes dimensions as a 
result of an imposed mechanical force. This phenomenon is known as the 
 piezo-electric effect. 

 In order to utilize this physical principle to make a sensor to measure 
force, we must be able to measure the surface charge on the crystal. A com-
mon method of using a piezo-electric crystal to make a sensor is to use two 
metal plates to sandwich the crystal, thus making a capacitor. As men-
tioned previously, an external force causes a deformation of the crystal 
and results in a charge that is a function of the applied force. In its operat-
ing region, a greater force will result in more surface charge. This charge 

results in a voltage   V =
Q f

C
  , where   Q f    is the charge resulting from a force  f , 

and  C  is the capacitance of the device. 
 In the manner described above, piezo-electric crystals act as transduc-

ers that turn force or mechanical stress into electrical charge, which, 
in turn, can be converted into a voltage. Alternatively, if one were to 
apply a voltage to the plates of the system described above, the resultant 
electric fi eld would cause the internal electric dipoles to realign, which 
would cause a deformation of the material. An example of this, piezo-
electric transducers fi nd use both as speakers (voltage to mechanical) 
and microphones (mechanical to electrical). Figure 8.51 shows two pos-
sible confi gurations in which the piezo-electric sensor can be operated. 
In the fi rst case, the force axis and the voltage difference that is being 
measured are both longitudinal, whereas in the second case, they are 
transverse. 

 To model the piezo-electric sensors, one can take into account the 
 following sets of relationships. 

 The charge induced in the crystal is directly proportional to the 
 deformation in the crystal and the voltage induced is similarly propor-
tional to the force applied. So the relationships can be written as   Q = ntr Δx   
and  F = n tr V  where  n tr   is the transformer modulus (or the proportionality 
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factor). Relating force to stress and subsequently to strain and displace-
ment this same equation can be modifi ed such that: 

   
ntr = d33AE

x  
(8.60)

 

    where  d 33   is the piezo-electric charge constant, also know as piezo-electric 
coeffi cient, along the 3-3 direction or the longitudinal direction. If the 
force were perpendicular to the direction of voltage measurement, the 
constant would be different and we would represent it using the symbol 
 d31 . Finally, on the electrical side, the voltage and the charge are related 
through the capacitance in the piezo crystal in a similar manner. If there 
are multiple layers of sensors, the transformer factor becomes: 

   
ntr = nd33AE

x  
(8.61)

 

    where  n  is the number of layers. 
 Consider a situation where the piezo sensor is to be used to measure 

pressure inside a chamber. The schematic for the system is shown in the 
Figure 8.52. This example is taken from the work of Cui et al. (2005) 

 Figure 8.52 shows a stack of “n” piezo crystals that have a mass of M, and 
the mount stiffness and damping coeffi cient is indicated in the fi gure. On 
the electrical side, the voltage generated from the piezo crystal is shown as 
a voltage source that is connected to the capacitance for the crystals and  R  
represents leakage resistance across the piezo capacitance. The voltage is 

FIGURE 8.51
Two possible confi gurations of piezo crystals.
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measured across the capacitance. The bond graph model of this system is 
as shown in Figure 8.53. 

 The data used in simulating this system are as follows (Cui et al, 2005): 

FIGURE 8.52
Schematic of the piezo sensor and the corresponding circuit.
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Parameters Values

Piezo crystal mass 4.5E-3 kg

Mount stiffness 3E8 N/m

Mount damping 150 Ns/m

Outer diameter of ring 0.01 m

Inner diameter of ring 0.005 m

Piezo capacitance 9.12 pF

Leakage resistance 1000 Ohm (varied, 

see discussion)

Number of piezo rings 10

Young’s Modulus 5.4E10 N/m2

Piezo ring thickness 0.001 m

Area 5.853E-5 m2

Charge constant 400E-12 m/V

Transformer mechanical to electrical 12.72
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 The transformer factor is calculated as: 

 ntr = nd33AE
x

=
10 * 400E − 12 * 5.4E10 *

π
4

(0.012 − 0.0052 )

0.001
= 12.72   (8.62) 

    The leakage resistance in the circuit plays an important role here. Once 
the charge develops across the piezo sensor, the leakage resistance and the 
resistance in the measuring device starts discharging the capacitor right 
away. The rate of this discharge is dependent on the time constant of this 
effective RC circuit (i.e., it is dependent on the value of RC). The charge 
developed at time zero directly correlates to the signal to be measured. 
Thus, in reality, signal conditioning circuits are needed to modify the out-
put of this sensor so that accurate voltage may be measured. This can be 
achieved by a charge amplifi er circuit, for example. 

 In the results shown, this effect is demonstrated by varying the leakage 
resistance value. Initially the leakage resistance is chosen to be an unreal-
istic value of 1000 ohms; the simulation results are shown in Figure 8.54. 
Then the leakage resistance value is increased to 1E9 ohms (once again, 
arbitrarily), and the result is shown in Figure 8.55. In both cases, we are 
plotting the voltage across the resistance (as the measurable output from 
the sensor for a 1000 N of applied force.) 

 Here, the solution is not only being affected by the very low value of 
leakage resistance, but it is also being affected by the simulation algo-
rithm because it is not able to capture the proper peak because the step 
size needed is very small as a result of the discharge happening almost 
instantaneously. 

FIGURE 8.53
Bond graph model of the piezo sensor.
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 When the resistance is increased to 1 Gohms, the simulation shows the 
output voltage value of a little higher than 80 volts that is reached and 
is discharging very slowly because time constant is artifi cially increased 
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FIGURE 8.55
Measured voltage with 1 Gohm leakage resistance.

FIGURE 8.54
Measured voltage with 1000 ohm leakage resistance.
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to a very high value by artifi cially increasing the leakage resistance. In 
reality, the leakage resistance is not easily controllable, but a signal con-
ditioning circuit can be used to modify the output so that it can be easily 
discernable. 

 While the transformer based bond graph model is a commonly used 
approach for modeling a piezo sensor, the more consistent approach would 
be to use a C-fi eld element. The rationale for this is that the piezo sensor 
stores energy that is made of multiple components, specifi cally, the energy 
due to the electric capacitive action, the energy from the elastic action, and 
the polarization energy. Thus, the total energy can be written as: 

   Energy =
q2 (d + x)

2εA
+ Ep + kx2

2  (8.63) 

      

d
dt

(Energy) = ∂
∂q

q2 (d + x)

2εA
⎛
⎝⎜

⎞
⎠⎟

dq
dt

+ ∂
∂x

q2 (d + x)

2εA
+ kx2

2

⎛
⎝⎜

⎞
⎠⎟

dx
dt

 
(8.64)

 

      Electrical effort =
q(d + x)

εA
; Mechanical effort =

q2

2εA
+ kx  (8.65) 

    So a C-fi eld element may be used for modeling the piezo sensor as well 
with the above relationships as constitutive equations. 

   8.6  MEMS Devices 

 MEMS sensors and actuators have an important role in the modern 
 engineering world. MEMS is an acronym for micro-electro-mechanical 
systems. Dimensions of MEMS devices are of the order of micrometers. 
Size is a particular advantage of these devices. Due to the advancement of 
miniaturization technology, sensors and actuators can be made that are 
light and occupy very little space. Yet they can perform the same types of 
tasks that are typically performed by macrosensors and actuators. Small 
sizes of MEMS devices also make it possible for users to implement sensors 
and actuators in applications that were hitherto impossible. Signifi cant 
advancement in the fi eld of integrated circuit manufacturing has been 
instrumental in the development of MEMS manufacturing as well. Several 
manufacturing techniques that have roots in IC manufacturing have turned 
out to be effi cient techniques in making cost-effective and mass-produced 
MEMS devices. MEMS manufacturing techniques consist of lithography, 
chemical and optical etching, vapor deposition, and so forth. 
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 MEMS sensors are now being used in a variety of different applications, 
such as in the measurement of pressure, force, vibration, angular rotation, 
temperature, tilt, and so forth. Behavior of microdevices is sometimes quite 
different from those of similar macrodevices because the relative impor-
tance of the different phenomena in the small scale is quite different from 
those in macrodevices. For example, in a macrosystem, gravitational force 
is a lot more important than surface forces such as surface tension. This is 
due to the difference in the orders of magnitude of the two. However, at 
microscale, this may not be true because the mass is signifi cantly reduced, 
and the orders of magnitude of these two forces could be comparable. 

 MEMS sensors and actuators are a part of the emerging systems that are 
key components of the mechatronics world. There are many MEMS sen-
sors and actuators that are currently used in engineering products, such as 
automobiles and aircraft as well as household appliances. Common trans-
duction modes used in MEMS devices are: electrostatic, electromagnetic, 
thermal, piezo-electric, piezomagnetic, and so forth. 

 There are numerous books in the market on the subject of MEMS. 
A very comprehensive discussion of microtransduction may be found in 
the book by Lobontiu and Garcia (2005).  Modeling of MEMS and NEMS,  by 
Pelesko and Bernsstein (2003), is another text that addresses the modeling 
of MEMS devices. A good introductory text on MEMS and microsystems 
is by Hsu (2001). In this text, we are not going to attempt to model every 
possible MEMS device. Other texts have already done a very good job of 
it. We will, instead, provide a taste of how the bond graph methodology 
may be used in modeling MEMS devices. 

 MEMS devices can be modeled in much the same way as their macro-
scopic counterparts. The aspects that need some attention are identifying 
the relative importance of different phenomena in determining system 
behavior. Two of the very critical aspects of MEMS modeling are microsus-
pensions and microactuation. Microsuspension deals with specifi c design 
and construction of different means to suspend/support the micromass or 
other parts of the device. From the modeling perspective, a closer under-
standing of microsuspensions helps the modeler determine the stiffness 
and damping characteristics of the device itself. Microactuation deals 
with energy conversion, for example, energy conversion of fl uid fl ow to a 
voltage, pressure to displacement, magnetic to electric, and so forth. 

 In their book on the mechanics of microelectromechanical devices, 
Lobontiu and Garcia (2005) have devoted a long section on the discussion 
of the microsuspensions. They have discussed in detail how the suspen-
sion models for a variety of geometric confi gurations ranging from simple 
cantilevers to serpentine springs may be developed from fi rst principles. 
In a bond graph model for such a device, all one has to do is incorporate the 
specifi c suspension model in the bond graph. Lobontiu and Garcia have 
also devoted a long section on microactuation where many of the basic 
actuation methods and their mathematical relationships are discussed. 
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  8.6.1  MEMS Examples 

 8.6.1.1  Microcantilever-Based Capacitive Sensors

Microcantilevers are one of the most important components of many 
MEMS devices because they provide a simple mechanism where the 
elasticity of the structure can be effectively used to relate the source that 
causes the defl ection and the measurement of that defl ection using one 
of the many ways such as capacitive, resistive, or magnetic methods. 
Microcantilevers are used in accelerometers, pressure sensors, fl ow sen-
sors, and in many other confi gurations. Figure 8.56 shows a schematic of 
a microcantilever that is defl ected due to a external force acting at the end 
point of the cantilever. 

 The transduction mechanism for this sensor could be capacitive. A por-
tion of the free end of the cantilever is part of a parallel plate capacitor. The 
capacitor response changes as a result of the bending of the cantilever and 
associated change in the distance between the plates, and this is measur-
able through the measurement of the voltage drop across the plates. 

 From basic mechanics of materials, it can be shown that the equation for 
a defl ected beam due to an end load may be written as: 

   y = P
6EI

x3 − 3Lx2( )  (8.66) 

    where  E  and  I  are the Young’s modulus and the second moment of area of 
the beam cross-section respectively,  x  is the distance measured from the 
fi xed end, and  L  is the length of the whole beam. 

FIGURE 8.56
Schematic of a microcantilever.
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 As shown in the fi gure, the variable gap over the length  L-lc  through  L  
can be expressed as  G0-y  where  G0  is the gap between the undeformed 
cantilever and the fi xed plate and  y  is the defl ection at any point. 

 When the cantilever is undeformed, the capacitance of the parallel plate 
capacitor is given by: 

   C = εA
G0

= εlcw
G0

 (8.67) 

    where the  lc  is the length of the capacitor, and  w  is the depth.  G0  is the 
constant gap between the plates. 

 When the beam is deformed, the gap between the plates is not uni-
form. At this point, the capacitance for a small overlap length  dx  may be 
written as: 

   
dC = εwdx

G0 − P
6EI

x3 − 3Lx2( )⎛
⎝⎜

⎞
⎠⎟

 (8.68) 

    An expression for the capacitance of the whole capacitor will be 

   
C = εw

G0 − P
6EI

x3 − 3Lx2( )⎛
⎝⎜

⎞
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dx
L−lc

L

∫  (8.69) 

    The integration of this expression is nontrivial but could be performed 
either analytically or numerically. 

 The energy stored in the capacitor is given by: 

     
Energy =

q2

2C  
(8.70)

 

    and the derivative of the energy with respect to  q  and  x  provides us with 
the voltage induced on the electrical side and the force on the mechanical 
side, respectively. 

   
d(Energy)

dt
= Power =

∂(Energy)

∂q
dq
dt

+
∂(Energy)

∂x
dx
dt  (8.71) 

    This approach has been discussed before for macrocapacitive sensors, 
and the same procedure may be applied to develop the model in this case 
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as well with a capacitive fi eld element from the bond graph library much 
the same way as we have modeled other capacitive sensors. 

  8.6.1.2  Comb Drives 

 Figure 8.57 shows schematic of a comb drive. As is the microcantilever, 
the comb drive is also a very commonly used component in many MEMS 
devices. It can be used both as a sensor and as an actuator. The basic oper-
ational principle in this case is also through the alteration of the capaci-
tance as there is relative motion between the two sides of this drive. The 
device can be designed to work with linear motion, angular motion, and 
so forth. The advantage of the comb drive over the more traditional paral-
lel plate capacitor is that the capacitance obtained is N times that between 
a pair of plates where N is the total number of pairs of surfaces that are 
in use. This confi guration enables the designer to get higher capacitance 
(and hence, better response) in a very small space. Bond graph modeling 
of this device follows the exact same process as the previous examples of 
capacitive sensors where the C-fi eld element was used. 

   8.6.1.3  MEMS Gyroscopic Sensors 

 Gyroscope sensors are used to measure tilts or angular rotations in roll, 
yaw, or pitch directions. These sensors are key components in vehicle 
stability systems. Traditional gyroscopes are usually large and bulky. But 

FIGURE 8.57
Schematic of a comb drive.
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MEMS technology has enabled designers to design and fabricate micro-
size gyro sensors. The schematic shown in the Figure 8.58 shows a view 
of the design used for these types of gyroscopes. The design consists of a 
mass that is mounted inside a casing and is free to vibrate in two mutually 
perpendicular directions, shown as X and Y directions in the fi gure. The 
casing in turn is mounted on a body that can tilt about the Z (axis perpen-
dicular to the X and Y directions) and hence the casing tilts with the body 
as well. This angular rotation of the casing interacts with the velocities in 
the X and Y directions and produces an additional force on the mass in the 
X and Y directions. These forces are called Coriolis forces. Equation 8.72 
shown are the equations of motion of the mass in the X and Y directions. 

   

m��x + B1
�x + k1x = F1 + 2m�θ �y

m��y + B2
�y + k2y = F2 − 2m�θ �x  

(8.72)
 

    In the two equations, not only are the elastic springs included but a term 
due to damping is included as well. Published work shows that designs of 
these types of gyros have been developed both with and without damp-
ing (Piyabongkarn and Rajamani [2002], Kim and Chun [2002]). The exci-
tation force is applied in one of the two directions (usually X), and the 
motion of the mass is sensed in the other direction (usually Y). As Kim 
and Chun (2002) have described, in order to minimize damping, the sys-
tem is usually operated in a vacuum. If we do not consider the damping 

k1 
Applied

force 

Rotation of casing about the
axis perpendicular the plane 

X 

Sensing Y 
k2 

m 

FIGURE 8.58
Schematic of the gyroscopic sensor.
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and the external force acts only in one direction, the equations of motion 
will be slightly different (Equation 8.73) 

   

m��x + k1x = F1 + 2m�θ �y

m��y + k2y = −2m�θ �x  
(8.73)

 

    In this model, the motion in the sensing direction can be shown to be 

  
 Δy =

FcorQy

mωy

1

(ωx
2 − ωy

2 )2 +
(ωxωy )2

Qy

 (8.74) 

    where Δ y  is the measurement in the y direction,  ω y   and  ω x   are the natural 
frequencies in the two directions respectively,  m  is the mass, and Qy is the 
quality factor for the motion in the  y  direction.  F cor   is the Coriolis force 
that is acting for the motion in the  y  direction and is equal to 2m�θ �x. Thus, 
from the displacement measurement in the  y  direction, the angular rate 
can be computed. The quality factor for the motion in the  y  direction can 
be written as: 

   
Qy =

mky

B2  

(8.75)

 

    where  B2  is the damping coeffi cient. 
 Figure 8.59 shows the bond graph representation of this system. The 

bond graph representation models the spring–mass–damper system with 
a degree of freedom in both X and Y directions. The rotation about the 
Z axis is modeled through the modulated source of fl ow that in turn gen-
erates the Coriolis forces for both X and Y direction motion. 

 Initially the simulation was performed using parameter values shown 
in Figure 8.60. As discussed earlier, external excitation is provided in one 
direction (X in this case), and the motion of the mass is tracked in the 
second direction (Y in this case). This is why the forcing function on X is 
taken to be a non-0 value and that on Y is 0. There is an additional forcing 
function on both X and Y directions due to the Coriolis force, as described 
in the equations. The sensing is done in the Y direction, and from both 
the amplitude and the frequency measurements, one can determine the 
velocity of rotation in the Z direction. The y displacement obtained from 
the simulation is shown in Figure 8.61 (it is obtained by integrating the 
output velocity). This result combined with Equation 8.74 can be used to 
determine the angular rotation velocity. 
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FIGURE 8.60
Parameters used for the gyro simulation.

FIGURE 8.59
Bond graph model of the MEMS gyroscope.
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 The FFT analysis of the y displacement (Figure 8.62) shows that there 
are two dominant frequency contents in the output spectrum. They are 
495 rad/sec and 535 rad/sec. These two frequency values are the sum and 
difference of the two forcing frequencies in the model, that is, 515 rad/sec 
and 20 rad/sec. If we look closely at the second equation in Equation 8.72, 
the forcing function is a product of velocity in  y  direction and velocity in 
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FIGURE 8.61
y displacement of the mass.

FIGURE 8.62
FFT of y displacement.
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 z  direction, both of which are sinusoidal and these can be expressed as a 
sum of two sinusoidal functions whose frequencies are the sum and dif-
ference of the original forcing functions in the product. 

 The simulation was redone using a ramp input for angular displace-
ment, and its slope as the angular velocity as shown by Figure 8.63. This 
replicates a constant velocity input. And the simulation was performed 
twice by keeping every other parameter the same except the slope of the 
angular displacement (i.e., angular velocity) about the Z axis. The slope 
was chosen a particular value fi rst and then doubled for the second simu-
lation. The two plots in Figure 8.64 show the Y response for the two cases, 
and it is clear that the amplitude of one response is twice that of the other. 
This confi rms how the y displacement can be used to calculate the angular 
velocity about the z direction. 
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Y-displacement for the two different angular velocity inputs (one double the other).

FIGURE 8.63
Alternate Input function (constant velocity).
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     8.7  Sensor Design for Desired Performance—

Mechanical Transducers 

 As we have seen, different basic physical phenomena may be used to sense 
a whole variety of things, including physical movement, forces and torques, 
humidity, temperature, and so forth. Although the physical phenomena 
used may be the same, sensor design for different applications needs to be 
done in a way such that the sensor is able to provide high level of sensitiv-
ity for the physical quantity being measured. In order for this to  happen, 
the components that make up a sensor need to be properly designed. 
Sensitivity analysis has been used in traditional design techniques to deter-
mine suitable design parameters for these types of applications. The bond 
graph technique offers a different and perhaps more powerful approach 
towards achieving the same goal. Since the bond graph methodology auto-
matically tracks the power (and therefore, the energy) that is being stored/
dissipated in each component, the relative power “use” in each component 
can be used to design the components for desired behavior. Due to the 
specifi c formulation of the bond graph method, no additional simulation/
calculation needs to be done in order to use this approach. This makes the 
bond graph technique a very powerful design tool as well. In this section, 
such a design problem is discussed in some detail to illustrate how bond 
graphs may be used for the stated purpose. 

 For our discussion, we will consider sensors that use motion of a 
mechanical device, for example, a spring–mass–damper arrangement to 
sense the signal that needs to be tracked (Figure 8.65). Some very com-
mon examples of sensors that fall in this category are accelerometers, 
 seismometers,  geophone, and so forth. These and other sensors may use 
motion to measure quantities such as force, velocity, displacement, pres-
sure, fl ow rate, temperature, and so forth. The basic construction of these 
sensors is simple; it consists of a spring–mass–damper system as shown in 
the fi gure. The corresponding bond graph is also shown. 

 The base motion is the disturbance that has to be measured. But by 
modifying the relative importance of the mass, spring, and the damper in 
this system, the sensor can be used to measure the various quantities such 
as displacement, acceleration, and velocity. 

 For a system such as this, the well-known equation of motion can be 
written as: 

   m��r + C�r + kr = −m��u  (8.76) 

    where  m  is the mass,  C  is the damping coeffi cient,  k  is the spring constant, ü is 
the input displacement from external source (i.e., the signal to be measured), 
and  r  is the relative displacement between the base and the mass itself. 
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 By altering the relative magnitude of the three quantities, mass, spring 
constant, and the damping coeffi cient, the system can be used for a dis-
placement measuring device, acceleration measuring device, or a velocity 
measuring device. The concept works in the following fashion: 

 In the above equation, if: 

   |m��r|>>|C�r + kr|  then  m��r ≈ −m��u ⇒ r ≈ −u  (8.77) 

    and this arrangement then works as a displacement sensor because the 
measured relative displacement is directly equivalent to the applied dis-
placement. The seismometer is one such sensor. 

 As an alternate situation, if: 

   |kr|>>|m��r + C�r|  then  kr ≈ −m��u ⇒ r ≈ − m
k

��u  (8.78) 

    Since  r  is the quantity being measured, in this case, it is directly relat-
able to the acceleration of the external source and therefore it works as an 
accelerometer. 

 The third possibility is if: 

   |C�r|>>|m��r + kr|  then  C�r ≈ −m��u ⇒ r ≈ − m
C

�u  (8.79) 

FIGURE 8.65
Schematic for the sensor.
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    Once again, because  r  will be measured, it is relatable directly to the 
 velocity of the input disturbance and, therefore, for this special condition, 
the sensor works as a velocity measuring sensor. 

 In designing these types of sensors, one has to decide what kind of 
parameter values need to be used in order to achieve one of the above 
three special cases, and that decision is not easy because relative compari-
son of the magnitudes of  m ,  k , and  C  are not enough to provide the right 
answer. In order to help us with an answer for this, we will introduce a 
new quantity here. It is called “activity.” Activity is a term used to indicate 
energy associated with each of the components that make up the system. 
By measuring the activity associated with each component in the model, 
we can determine how much of the total energy in the system goes into 
each component in the system. The relative activity of each system will in 
turn tell us the relative importance of each component in the system. In 
other modeling approaches, it could be hard to keep track of the energy, 
but in the bond graph method, that is very easy since the product of effort 
and fl ow is the power and the time integral of the absolute value of power 
can be tracked as the activity associated with each component. To calculate 
the activity in a model a very simple statement or two of code is necessary 
as shown next. 

 Variables 

 real power; 
 real activity; 

 Equations 

  state = int(p.e);  
  p.f = state / i;  
  power = p.e*p.f;  
  activity = int (abs(power)); //  integral of the absolute 

value of power  

 As these few lines of code that can be used for the I element illustrate, 
power in each element is easily calculated from the product of effort and 
fl ow and is integral to activity. 

 To explore how this concept works, we can consider the bond graph in 
Figure 8.66 (same as the bond graph for the spring–mass–damper system 
seen before  with a few integral elements to calculate the displacements). 
A derivative box is added to calculate the acceleration. 

 The I, C, and R elements represent the mass, compliance (inverse of 
stiffness), and the damping coeffi cients, respectively. All three of these 
 elements have been modifi ed to calculate the activity. The input to the Msf 
is a cosine function. The properties used for the initial analysis are shown 
in Figure 8.67. 
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 For this set of parameters, the activity plots for the three components 
are as shown in Figure 8.68. As the plot shows, the damping effect is neg-
ligible, but the spring and mass activities are comparable. 

 To see the relative importance of parameters now, the mass is changed to 
50 kg and the plot changes as shown in Figure 8.69. Clearly, now the activ-
ity in the spring is far more than the other two components. Under these 

FIGURE 8.67
Parameters u sed.

FIGURE 8.66
Modifi ed bond graph to calculate the activities.
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Relative activity values for the three components.
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conditions, the sensor is going to work as an accelerometer (as discussed 
before). The next plot (Figure 8.70) shows the acceleration associated with 
the input and the displacement for the spring element, and we can see that 
one is clearly a negative of the other, so a measurement of the spring dis-
placement will show how much the acceleration is, just as the equations 
before indicated. 

 If we change the input parameters such that the mass is back to 0.005 kg 
and the compliance is 70 mm/N (inverse of stiffness) and plot the activity 
plots, we get Figure 8.71. This shows that the mass–activity is signifi cantly 
higher than the activity in the spring and the damper. In this case, the 
displacement associated with the mass should be indicative of the overall 
displacement. The next plot (Figure 8.72) shows that, indeed, it is true. 
Now the sensor works as a seismometer. 

 If we alter the parameter values so that mass is 50 kg, damping coef-
fi cient is 1 Ns/m and compliance is 700 m/N. The activity plot is shown 
in Figure 8.73. 

 Clearly, in this case, the activity in the damper is far higher than in the 
mass and the spring. So this sensor should be dominated by the damper 
and will work as a velocimeter. Figure 8.74 compares the input velocity and 
the damper displacement (same as mass displacement). The plot shows 
the two quantities to be essentially the same with only a small phase shift. 
So this arrangement can be used to measure velocity. 
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System response when activity for the spring is dominant.
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System response when activity of the damper dominates.

FIGURE 8.73
Relative activity values when damper activity dominates.
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   8.8  Signal Conditioning 

 Signal conditioning is a necessary, vital step in the use of sensors in any 
mechatronic application. The raw signals received from a sensor may have 
different problems, such as the magnitude may be very small, noisy, or 
may contain unwanted frequency content, and so forth. Thus, cleaning up 
signals so that the fi nal output to be received by the user is a good clean 
signal is a very important step in the use of sensors. This cleanup process 
may contain steps such as amplifi cation, fi ltering, addition, integration, 
and so forth. These tasks are performed by signal conditioning circuits 
and devices through which the data signals are fed. The outputs of these 
devices are the good clean signals that the user desires. In this section, 
we will consider a few of the signal conditioning circuits, develop their 
models, and demonstrate how the signal conditioning function works in 
one case. The others will be left as exercises for the reader. A more detailed 
discussion of such circuits can be found in texts on electronic circuits and 
signals. Our goal here is to demonstrate how bond graph modeling may 
be used to develop models of signal conditioning devises. 

 Figure 8.75 shows the standard circuit for a low-pass fi lter that is sup-
posed to allow low frequencies to pass through and block high frequen-
cies. The bond graph model of the low-pass fi lter is shown in Figure 8.76. 
The basic representation of the operational amplifi er is the same as that 
discussed in an earlier chapter. The capacitor is added, as shown in the 
fi gure. The source of effort “inputvoltage2” represents the ground and 
supplies 0 volts. Similarly, the 0 fl ow source added at the output is used 

Input 
Output C

R2

R1

FIGURE 8.75
Circuit for a low-pass fi lter.
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so that we can easily get the output voltage information. Since this is sup-
posed to be a low-pass fi lter circuit, the frequencies that are above a critical 
frequency value will be fi ltered. It can be shown that the critical frequency 
in this arrangement is the inverse of the time constant of the circuit. And 
the time constant is a product of the “supply resistance” and the capaci-
tance C1. The source signal is made of two sinusoidal inputs so that we can 
test the capability of the fi lter circuit to fi lter out the higher frequencies. 
Figure 8.77 shows the comparison of the input wave form and the output 

FIGURE 8.77
The input and the output waveform for a low-pass fi lter.
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FIGURE 8.76
Bond graph model of a low-pass fi lter.
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wave form. It is clear that the low frequency is passed through by the fi lter 
and the high frequency is blocked. In the exercise section, circuits of sev-
eral signal conditioning devices are given. Modeling and simulating the 
behavior of these devices are left for the readers to carry out. 

   8.9  Summary 

 In this chapter we have discussed the fi rst part of modeling transduc-
ers by concentrating on modeling different types of sensors. The sensors 
were separated according to the physical phenomena used in the sensor 
design. This is the logical way to discuss sensors, especially in the con-
text of  modeling them. We have touched on different types of sensors 
and established the methodology for modeling each one of them. One of 
the important components in the modeling of sensors is the use of fi eld 
elements in bond graphs, especially C-fi eld elements. Also, we have dis-
cussed the concept of activity and its use in designing sensors by choosing 
sensor parameters such that they behave in a desired fashion. This is a 
powerful technique similar to sensitivity analysis. The beauty of this tech-
nique in the context of bond graph modeling is that no new calculations 
need to be done in order to calculate this quantity, because both fl ow and 
effort quantities are already being calculated as part of the bond graph 
methodology. 

  Problems 

  8.1.   Figure P8.1 shows a schematic representation of a capacitive sen-
sor that is made of two parallel plates with a dielectric material 
of known εr inbetween the plates. The sensor is used to measure 
motion of a moving object that is linked to the dielectric material. 
So, when the dielectric core material moves, it results in a dynamic 
change in capacitance. This is registered as a voltage change in 
the recording circuit and the actual motion (i.e., displacement or 
speed) can be determined from the changing voltage signal. Using 
the approach shown in class, derive the constitutive equations 
for this C-fi eld element and develop a simple bond graph model 
of this sensor along with a recording circuit as an instrument to 
record movement. If needed, you may use the plate areas to be 
0.002 sq. m, the distance between the plates as 0.01 m, ε0 (dielectric 
constant for air) = 8.854 × 10 (−12)  F/m and ε r , (relative dielectric 
constant for the material) = 2000. Therefore, the ε for the medium 
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is written as ε 0  ε r . And the ε for air is equal to ε 0 .  L  can be taken 
as 0.1 m.           

   The total capacitance C in a dynamic situation is C1 + C2 where 
C1 is the capacitance of the portion with the dielectric, and C2 is 
the capacitance of the portion with air as dielectric. Report the der-
ivation of the constitutive equations for the C-fi eld element and the 
bond graph model of the sensor and associated recording circuit.  

  8.2.  Consider a cylindrical capacitive sensor that is made of an outer 
shell of radius  Ro  and an inner core of radius  Ri  (Figure P8.2). For 
this type of capacitors, the capacitance is given by: 

  

C = 2πεL

ln
Ro

Ri                   

   where  L  is the length of the overlapping section as shown in the 
fi gure. If this capacitive sensor is to be used to measure horizon-
tal movement, derive the constitutive equations for this sensor 
and draw the bond graph representation of the circuit that will be 
used to implement the sensing activity.  

FIGURE P8.2
Figure for Problem 8.2, cylindrical capacitive sensor.

L 

2Ri

2Ro 

FIGURE P8.1
Figure for Problem 8.1, schematic representation of a capacitive sensor.
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x 
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 8.3.  Figure P8.3 shows the circuit of a voltage amplifi er. Using the 
bond graph method, model this device and simulate its behavior. 

 8.4.  Figure P8.4 shows the circuit of a current amplifi er. Using the 
bond graph method, model this device and simulate its behavior. 

R1

R2

Output Input 

FIGURE P8.3
Figure for Problem 8.3, circuit of a voltage amplifi er.

R1

R2

Output 

R loadInput
current

FIGURE P8.4
Figure for Problem 8.4, circuit of a current amplifi er.
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 8.5.  Figure P8.5 shows the circuit of a differential amplifi er where the 
output is the amplifi cation of the voltage difference between V1 
and V2 inputs. Using the bond graph method, model this device 
and simulate its behavior. 

 8.6.  Figure P8.6 shows the circuit of a high-pass fi lter. Using the bond 
graph method, model this device and simulate its behavior. 

R1

R1 R2

R2

Output 

V2

V1

FIGURE P8.5
Figure for Problem 8.5, circuit of a differential amplifi er.

R1

R2

C

Input 
Output 

FIGURE P8.6
Figure for Problem 8.6, circuit of a high-pass fi lter.
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 8.7.  Figure P8.7 shows the schematic of a microscopic comb drive 
where the piece on the left remains fi xed and the shaded piece on 
the right moves in the horizontal direction. Using a variable N as 
the number of parallel surfaces that work as capacitors and other 
representative variables, develop the complete bond graph model 
of this device along with all the constitutive equations. 

 8.8.  Figure P8.8 shows a schematic of a seismometer that involves a 
 spring–mass–damper system along with a magnet that moves in an 
electrical coil as a result of the base motion. Develop a bond graph 
model of this system, and develop system parameters that will enable 
us to easily determine the velocity of base motion from the measure-
ment of the voltage induced in the coil. You may use the approach 
using the activity calculations, as discussed in this chapter. 

FIGURE P8.7
Figure for Problem 8.7, schematic of a microscopic comb drive.
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  8.9.  In strain gauge applications, the voltage change in the bridge is 
usually very small in magnitude, and it is necessary that it be 
amplifi ed. Combine the bridge circuit with an amplifi er circuit, 
and develop the bond graph model of the whole system. Simulate 
its behavior using typical values for all parameters. Usually strain 
gauges are 120 ohm nominally and the applied voltage is 12 V.  

 8.10.  Figure 8.45 in the text describes a variable reluctance sensor to be 
used to determine the speed of rotation. Develop a bond graph 
model of this sensor, simulate its behavior using the information 
provided in the text, and discuss from the output graphs how 
speed may be measured using this sensor.       

V(t)

FIGURE P8.8
Figure for Problem 8.8, schematic of a seismometer. 
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  9  
Modeling Transducers: Actuators 

                       In Chapter 8 modeling of transducers was introduced, but we confi ned 
our discussion primarily to sensors. The second half of that discussion 
related to actuators is taken up in this chapter. Actuators are an important 
component in a mechatronic system. They are sometimes called the mus-
cles of the system. The decision taken by the algorithm that drives the sys-
tem instructs the actuator to take specifi c action, and the actuator needs to 
take that action. Actuators may be broadly divided into several categories 
based on the means of actuation, such as electrical actuators, mechanical 
actuators, hydraulic actuators, and even chemical and biological actua-
tors. Many of the actuators that were once macro-actuators (i.e., larger 
sized ones) are now available as micro-actuators or MEMS actuators. As 
in the chapter on sensors, we will categorize and discuss actuators by the 
means of actuation (rather than by application) for our study here. Thus, 
we will study the modeling approaches used for electrical actuators, elec-
tromagnetic actuators, hydraulic actuators, and so forth. 

 The overall objectives of this chapter are to 

   Understand how different phenomena can be used to actuate a • 
mechatronic system.  

  Learn how actuator models can be developed using bond graph • 
elements.  

  Model actuators such that causes and effects can be related to • 
each other accurately through the model.  

  Understand how transducers can be designed using system • 
models.  

    9.1  Electromagnetic Actuators 

  9.1.1  Linear 

 Figure 9.1 shows a magnetic circuit that is energized by electric current. 
The electromagnet then attracts the moveable piece until it moves and 
gets stuck to the electromagnet. Hrovat (2000) and others have reported 
on this example. The movable piece is attached to a spring and a damper 
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that helps in controlling the motion. Before the bond graph is drawn, let 
us consider the magnetic circuit with the air gap that changes as the cir-
cuit is energized. A magnetic circuit, we know, can be represented by a 
set of capacitive elements. The electromagnet is modeled as a GY element. 
The details of this process were discussed in the previous chapter. Here, 
one capacitive element represents the iron core section, and the other rep-
resents the air gap. Since the air gap changes with time, the capacitance 
changes with motion. So, to represent the air gap portion of the capacitive 
element, we need to use a capacitive fi eld element. The left side of the 
C-fi eld element is the magnetic side, and the right side is the mechanical 
side. On the mechanical side, there are two C elements, an R and an I ele-
ment. The I element represents the mass of the moving piece, the R ele-
ment is used to model the damper, and one of the C elements models the 
spring. The second C element is used to model the mechanical stop when 
the moveable piece comes into contact with the electromagnet. Figure 9.2 
shows the bond graph representation of this system. 

                             The C-fi eld equations need to be derived in the same fashion as before 
(in Chapter 8). 

 One expression of energy in a magnetic C-fi eld is = ϕ 2

2
.     Reluctance 

 Inside C-Field 
     �ϕ , �x are received 
 Integration of �ϕ     to get ϕ,  ϕ = int ( �ϕ)        
 Integration of  �ϕ , �x  to get  x ,  x  = int ( �ϕ , �x   ) 

Spring and
damper

N coils, with
resistance

Mass, m 

+

−

FIGURE 9.1
Schematic of a linear electromagnetic actuator.
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 Differentiate energy w.r.t time: 

   

d
dt
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    Power on mechanical side: 
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FIGURE 9.2
Bond graph model of the linear electromagnetic actuator.



306 Mechatronic Modeling and Simulation Using Bond Graphs

    Effort on the magnetic side: 

   

= ∂
∂x

ϕ 2 ⋅R
2

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂x

ϕ 2 ⋅ x
2μA

⎛
⎝⎜

⎞
⎠⎟

= ∂
∂x

ϕ 2 ⋅ x
2μA

⎛
⎝⎜

⎞
⎠⎟

= ϕ 2

2μA  

(9.6)

 

    The constitutive equation for the C-fi eld is 

     
Effort

left
= ϕ ⋅R = ϕ ⋅ x

μ ⋅ A
… x is the air gap

 
(9.7)

 

        
Effort

right
= ϕ 2

2μA  
(9.8)

 

    The model of the C-fi eld element as programmed is 

 // this model represents a 2-port C element: p.e = 
(1/C)*p.f written here as p.e = A*p.f 
 // A = [a11, a12; a21, a22] 

  Parameters 

 real a11 = 1.0;/μ  
 real a12 = 0.0; 
 real a21 = 1.0; 
 real a22 = 2.0;/Area 

  Equations 

 // You can change these equations into any (nonlinear) 
version by adding your own functions.  
 // Use f(x) button at the left of the window to see all 
available functions. 
 state1 = int (p1.f); 
 state2 = int (p2.f); 
 p1.e = state1*state2/(a11*a22); 
 p2.e = state1*state1/(2*a22*a11); 

 The parameters used in the simulation are shown in Figure 9.3.  
              As mentioned before, in the model, the capacitive element C3 is used 

as a mechanical stop to simulate the behavior of the system when the 
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 moving iron piece eventually comes into contact with the electromagnet 
and comes to a stop. In this case, that situation is modeled by a C element 
that is a mechanical spring with a spring constant that is close to 0 as 
long as the gap is not fi lled up and is very high (i.e., close to infi nite, a 
perfectly rigid surface) when the two surfaces eventually come in contact. 
This behavior is modeled through the following spring model: 

  Variables 

 real u; 

   Equations 

 state = int(p.f);  
 if (state >- 0.1) then 
 u = 0.0000000001; // this means that as long as the gap 
not filled up the u value //(u = 1/k) is insignificant 
 else 
 u = 350000; //when the gap is filled the u value goes to a 
very high number. 
 end; 
 p.e = state*u; 

 The simulation results obtained from the analysis are shown in Figure 9.4. 
This fi gure shows how the mass that is attracted by the electromagnet moves 
toward the magnet when the electromagnet is energized, its movement is 

FIGURE 9.3
Simulation parameters for the linear electromagnetic actuator.



308 Mechatronic Modeling and Simulation Using Bond Graphs

stopped when it comes into contact with the magnet, and then moves back 
to its initial position when the magnet is de-energized. The fi gure also shows 
how the voltage applied to the electromagnet varies with time.                

 EXAMPLE 9.1: SOLENOID 

 Solenoids are a group of linear actuators that are used in many applications. 
Solenoids work in the following manner: with a current passing through a 
coil, a magnetic fi eld is created around the core of the solenoid. By design, 
air gaps are left in the magnetic path. The plunger, which is made of a fer-
romagnetic material, is able to move such that the air gap (and, thus, the 
 reluctance of the path) is minimized. This movement in the plunger can be 
used to open or close hydraulic valves used for control applications or per-
haps hit a surface to work as a doorbell, and so forth. The plunger is mounted 
with a return spring so that when the coils are de-energized, the plunger can 
move back to its initial position, thus maintaining the designed gap in the 
magnetic path. Usually, solenoid valves are quite fast acting, but the stroke 
lengths are short. Figure 9.5 shows a schematic of a solenoid cross-section. 
The coils around the inner core, the plunger, and the magnetic path are 
shown in the picture. Figures 9.6 and 9.7 show two possible magnetic cir-
cuits for modeling the solenoid. One or the other can be used based on the 
solenoid construction.                                                 

 Let us consider a device such as a doorbell that uses a solenoid as an actua-
tor and the confi guration in Figure 9.6 as the possible design. The moving 
plunger hits the chime to make the doorbell ring. The bond graph in Figure 9.8 
shows how the system needs to be modeled. The critical component of the sys-
tem is the modeling of the solenoid and plunger movement. The other parts of 
the model include the mechanical stop and damping, the mass of the solenoid 
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FIGURE 9.4
Simulation results for the linear magnetic actuator.
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plunger, and the return spring. The action of the solenoid is a result of the 
tendency of the plunger to move to an orientation of minimum reluctance. To 
begin with (before energizing the solenoid), the plunger is at a position that is 
not the equilibrium position. When the solenoid is energized, the plunger tends 
to move to the equilibrium position.               

 The electromagnetic circuit and the mechanical movement of the solenoid 
are being modeled as in Figure 9.6. In the fi gure, D represents the diameter of 

Coils

Plunger, ferromagnetic
material

Magnetic
path

FIGURE 9.5
Schematic of the solenoid cross-section.
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x0

Magnetic 
path 
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D 

FIGURE 9.6
One possible magnetic circuit for the solenoid.
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y, Ay

x, Ax

Magnetic
path

FIGURE 9.7
A second possible magnetic circuit for the solenoid.
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the plunger, x is the movement of the plunger, x 0  is the initial overlap of the 
plunger with the outer casing, and l is the air gap between the plunger and the 
outer bobbin where the windings are mounted. The GY factor in this case is N, 
the number of windings there are on the solenoid coil. The C-fi eld equations 
need to be derived in the same fashion as before: 

 The expression of energy in a magnetic C-fi eld is = ϕ
2

2
    . Reluctance 

 Inside C-Field 
     �ϕ , �x are received 
 Integration of �ϕ     to get ϕ,  ϕ = int ( �ϕ)        
 Integration of  �ϕ , �x  to get  x ,  x  = int ( �ϕ , �x ) 

 Differentiate energy w.r.t time: 
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Bond graph model of the solenoid doorbell.
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     Power on mechanical side: 
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     The constitutive equation for the C-fi eld is 

   
Effortleft = ϕ ⋅R = ϕ ⋅ l

μ ⋅πDx
…x is themovement of theplunger

  
(9.15)

 

       
Effortright = − ϕ 2l

2μπDx2
  

(9.16)
 

      When the fl ow on the mechanical side is integrated, we get the displace-
ment  x  of the mechanical side. We need to be careful that there is an initial 
position of  x , that is,  x 0  . 

 The C-fi eld model can be shown as follows: 

  Parameters 

 real D = 0.01;  
 real mu = 1e-7; 
 real l = 0.001;  

 Equations 

 // You can change these equations into any (nonlinear) 
version by adding your own functions.  
 // Use f(x) button at the left of the window to see all 
available functions. 
 state1 = int (p1.f); 
 state2 = int (p2.f); 
 p1.e = state1*l/(mu*3.14159*D*state2); 
 p2.e = - state1*state1*l/(2*mu*3.14159*D*state2*state2); 

 The parameters used for the simulation are shown in Figure 9.9, and the 
simulation results, that is, the movement of the plunger are shown in Figure 
9.10. The results show that while the solenoid circuit is energized, the plunger 
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moves until it hits the mechanical stop and then moves back to its original 
position when the voltage is cut off.                       

 A more realistic solenoid schematic is shown in Figure 9.7. These are exten-
sively used in controlling fl ow of hydraulic fl uid through a valve that is con-
trolled by the movement of the plunger. The components that make up such an 

FIGURE 9.9
Parameters used in the simulation.
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FIGURE 9.10
Plunger movement and applied voltage.
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arrangement are the windings around a nonferromagnetic material, a housing, 
an end stop, the plunger, and the return spring that is attached to the plunger so 
that the plunger can move back to its original position when the electric current 
is turned off. In the fi gure, the fl ux path is also shown. The fl ux in the circuit is 
essentially controlled by the two air gaps, the constant gap in the y direction 
and the variable gap in the x direction. 

 The governing equations may be derived in the following fashion as: 

 Inside C-Field 
     �ϕ , �x are received 
 Integration of �ϕ     to get ϕ, ϕ = int ( �ϕ)     
 Integration of �x to get  x ,   x  = int ( �ϕ , �x)     

 Differentiate energy w.r.t time: 
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 Power on magnetic side: 
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 Power on mechanical side: 
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 The constitutive equation for the C-fi eld is 

    
Effortleft = ϕ ⋅R = ϕ ⋅ l
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Effortright = − ϕ 2

2μ0 Ax   
(9.24)

    

 We have not included the simulation of this variation of the design here since 
it would be quite similar.   

 9.1.2  Rotational Actuators: Motors 

 The most common type of electrical rotational actuator is the electrical 
motor. Figure 9.11 is an incomplete diagram summarizing the differ-
ent types of motors that have been used in practice. The broad division 
is between AC and DC motors. Within each type, there are many sub-
types. A more complete view of this can be found in the text by Alcia-
tore and Histand (2005). Obviously, we will not be able to discuss all of 
these in detail, but we will look at a few that are relevant to mechatronic 
applications.           

 The output of all motors is torque and rotation. Torque is produced by 
an electric motor through the interaction of either stator and armature 
currents (by conduction), as in DC motors and synchronous motors, or 
through interaction between stator fi elds and armature fi elds (by induc-
tion), as in induction motors. The by-conduction method is based on 
Lorentz’s law and applying the right-hand rule. The by-induction method 
is based on like fi eld poles repelling and unlike poles attracting. 

Motors   

DC motors AC motors

Permanent magnet
Series wound
Shunt wound
Compound

Single phase Poly phase

Induction 

Synchronous 

Induction 

Synchronous 

FIGURE 9.11
Motor types.
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 DC motors are more commonly used in many mechatronic applications 
because torque speed characteristics can be controlled smoothly and due 
to the high ratio of torque to rotor inertia (i.e., the higher torque generated 
per unit rotor weight), which responds quickly. In our discussion here, we 
will only discuss the DC motors. 

 The operation of DC motors is based on two principles. The fi rst one is 
called the Lorentz effect. It states that a current carrying conductor in mag-
netic fi eld experiences a force. The second principle is based on  Faraday’s/
Lenz’s law. It states that a conductor moved in a magnetic fi eld generates 
a (back) emf that opposes the change that produces it. This back emf is 
proportional to the rate of change of fl ux. The current due to back emf in 
closed circuit will create a fl ux opposite the magnetic fl ux. 

 Figure 9.12 shows a schematic that can be used to explain the motor action. 
The three directions B, I, and F, show the directions of the magnetic C-fi eld, 
current direction, and the resulting direction of the force. If you consider 
sketch (a), the direction of the current in section A and B are opposite to each 
other. Hence, the forces in the conductors are in opposite directions resulting 
in a net torque or turning moment. However, during the next half of the cycle, 
when A and B have moved and switched positions (as shown in sketch [b]), 
the current directions in A and B need to switch. If they don’t, the force direc-
tion will switch and the coil will tend to oscillate and move in one direction. 
To ensure that the direction of the current is switched, the coil is attached to 
the voltage source through a split ring called a commutator. This ensures that 
as the coil rotates, the contact of its arms with the voltage terminals switch as 
well. Following are some of the characteristics of a DC motor. 

FIGURE 9.12
Schematic for motor action.
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   Armature coil is free to rotate in the magnetic C-fi eld.  • 

  Loop of wire is connected through the commutator to the brushes • 
(brushes stationary, commutator rotates).  

  Current fl ows when power is supplied to brushes; opposite forces • 
on opposite sides generates a torque.  

  Commutator changes current direction when the plane of wire is • 
vertical.  

  Torque direction remains unchanged.  • 

  Multiple wires are wound in a distributed fashion over cylindri-• 
cal rotor of ferromagnetic material.  

  Multiple loops increases and also evens out the torque.  • 

  Motor direction is reversed by reversing the polarity of voltage.   • 

 Construction of an electric motor consists of the following components: 

  Stator:  The outer housing supports radial magnetized poles (either per-
manent magnet or fi eld coils that provide the magnetic C-fi eld). 
  Rotor:  Rotating shaft supported by bearings, conducting coils (arma-
ture), and an iron core. 
  Air gap:  Between the stator and the rotor where the two magnetic 
C-fi elds interact. 
  Commutator:  In DC motors only, to control direction of current through 
armature windings. 
  Brushes:  For motors with commutators. Provide stationary electrical 
contact to the moving commutators conducting segments. 

 Figures 9.13 through 9.16 illustrate some of these components in a motor.  

 9.1.2.1  Permanent Magnet DC Motor 

 This is the simplest DC motor where the magnetic fi eld is created by a 
set of permanent magnets that act as the stator, and the armature wind-
ings are the rotor. A permanent magnet provides a constant value of fl ux 
density. For an armature conductor of length  L  and carrying a current  I,  
the force resulting from a magnetic fl ux density  B  at right angles to the 
conductor is  B I L . With N conductors, the force is  F = N B I L . The forces 
result in a torque of  Fc  about the coil axis, if  c  is the width of the coil. So 
the torque may be written as  T = (NBLc)I  . Torque is thus written as  T = K  T I ; 
 I  = armature current,  K T   is a constant based on motor construction. Since 
the armature coil is rotating in a magnetic fi eld, electromagnetic induction 
will occur, and a back emf will be induced. The back emf  E  is related to the 
rate at which the fl ux linked by the coil changes. For a constant magnetic 
fi eld, this is proportional to the angular velocity of rotation. Hence, back 
emf is related to fl ux and angular rotation (in rpm) E =  K E  ω;  where ω = 
motor speed in rpm. 
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  K T   and K  E   depend on motor construction, and they are of the same mag-
nitude (but of different units). Armature current, at steady state (because 
the armature inductance behaves like a connecting wire at steady state) 
 I = (V − E)/R .  R  is the armature resistance and  E  is back emf. The torque, 

FIGURE 9.13
Armature.

FIGURE 9.14
Field coils.
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FIGURE 9.16
Commutator.

FIGURE 9.15
Brushes.
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therefore, is  T = T = K T  I = K T  (V − E)/R = K T  (V – K E ω)/R . At start-up, back 
emf is minimum, therefore,  I  is maximum and torque is maximum. The 
faster it runs, the smaller the current and, hence, the torque. The motor 
circuit is shown in Figure 9.17. The current in the circuit is  I = (V − E)/R  at 
steady state.  

 When one considers the unsteady state situation, the rate of change of 
current at the initial state needs to be considered (due to the presence of 
the inductor). This results in a system of two coupled fi rst order equations 
(one each for the storage element on the electrical and mechanical side). 
All the motor equations together are 

  

dI
dt

= 1

L
(V − E − IR)

dω
dt

= 1

J
(T − TL − Bω)

E = KEω
T = KT I   

(9.25)

    

 The fi rst two equations are the governing differential equations, and the 
next two are the gyrator relationships. The system parameters are:  L, J, R, 
B, and K T  = K E.   

 The bond graph representation of the permanent magnet DC motor can 
therefore be represented as in Figure 9.18. 

 The GY element models the relationship between the rotation and back 
emf (mechanical fl ow and electrical effort) and the current and torque 
(electrical fl ow and mechanical effort). The GY factor is the same as the 
 K T   and  K E   .  

 The bond graph representation has two sides. The electrical side con-
sists of the applied voltage, armature resistance, and armature inductance. 

V E

RL

FIGURE 9.17
A circuit representing the PM DC motor.
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The GY element works as the link between the electrical side and the 
mechanical side. On the mechanical side, the loads are the rotor inertia 
and the rotational damping, if any. This model does not have any external 
load mounted on it. The table in Figure 9.19 shows the parameter values 
used in simulating the system and subsequent plots (Figures 9.20, 9.21, and 
9.22) show how the system responds. 

 Figure 9.20 shows how the armature current and the output torque 
change with time and eventually reach a steady state value. Figure 9.21 
shows the variation of rotational speed and the back emf induced. 

 Figure 9.22 shows three curves: the total output torque, the portion of 
torque used to drive the inertia load, and the portion needed to  overcome 

Se
Supply

I
Rotational inertia

1
1 Junction 2

1
1 Junction

R
Rotational damping

R
Armature resistance

I
Armature inductance

GY
Torque speed constant

FIGURE 9.18
Bond graph representation of a permanent magnet DC motor.

FIGURE 9.19
Parameters used for simulation.
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damping. It is clear from the plots that, initially, almost all the torque 
is needed to accelerate the inertia, but once it reaches the steady speed, 
the torque necessary is only the portion that is overcoming friction/
damping. 
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FIGURE 9.20
Armature current and output torque versus time.
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FIGURE 9.21
Back emf and rotational speed versus time.
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   9.1.2.2  Motor Load 

 There are usually two types of torque loads that are commonly observed 
in practice. They are 

   1.  Constant load torque—Mostly generated from a constant amount 
of friction to drive a system. 

   Example—Conveyor.  

  2.  Torque (T)—Directly proportional to the square of velocity ( ω  2 ). 

   Example—Centrifugal pumps, fans, and so forth.   

 There are several ways to model a load parameter in a bond graph 
model. One way is using a source of effort with a negative magnitude 
(then it acts as a sink or load rather than source). This can work as a 
constant load on the system. The other way to handle this would be to 
use a resistance element and modify the constitutive equation for the 
resistance. By default, the constitutive equation for the resistance is pro-
grammed as follows: 

  Equations 

 p.e = r*p.f; Here the effort is proportional to the flow. 

  This can be modifi ed in the following way:  
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FIGURE 9.22
Distribution of the total torque among the inertia and the damping elements.
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 Equations 

 p.e = r*p.f*p.f;    Now the effort becomes a function of the 
square of the flow, that is, the velocity. 

 This way most common types of motor loads may be easily modeled for 
simulation studies. 

   9.1.2.3  Parallel Wound Motor (Shunt) 

 The schematic shown in Figure 9.23 shows the electrical circuit for a motor 
that is shunt wound or parallel wound. The same supply voltage is applied 
on two parallel paths, one for the fi eld coils that generate the electro-
 magnetic fi eld and the other for the armature coil that will rotate in this 
fi eld. Both these coils will have inductances and resistances, as shown in 
the schematic. The mechanical power output of the motor is in the form 
of a torque and angular rotation. When no external load is applied, the 
torque generated still needs to rotate the rotor inertia, and there may be 
some frictional losses at the bearings. If there is an external load, most of 
the output power is used to drive this external load. 

 The corresponding bond graph model for this motor is shown in 
 Figure 9.24. In this case, a modulated gyrator is used to represent the 
motor action since the magnetic fi eld is not constant but is dependent on 
the fi eld current. The following analysis discusses the behavior of a shunt 

Armature
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Armature
resistance

Field
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Field
inductance

Supply
voltage−

+

FIGURE 9.23
Schematic for a shunt wound DC motor.
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wound motor at steady state, that is, by treating the inductances as con-
necting wires, and, thus, the currents have become steady. 

  ω  is the angular speed 
  k  is a motor constant 
 Φ is the magnetic fl ux 
  E b   is the back emf 
  T  is the torque 
  R a   and  i a   are the armature resistance and armature current 

respectively. 

   

ω = Eb

kΦ

ω = V − Raia

kΦ

ω =
V − Ra (

T
kΦ

)

kΦ
∵ω = Eb

kΦ
∵T = kΦia   

(9.26)

          

  
ω = V

kΦ
− RaT

(kΦ)2

  
(9.27)

    

 To obtain the torque speed characteristics of a shunt motor, consider 
Equation 9.27. ω is the angular speed is practically independent of load 
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FIGURE 9.24
Bond graph model of a shunt wound DC motor.
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torque since the denominator of the torque term is so much larger than 
the denominator of the fi rst term. Speed can be kept constant over a large 
range of load. Φ is the magnetic fl ux and is directly proportional to fi eld 
current  i f  . Therefore: 

    

kΦ = ksi f

ω = V
ksi f

− RaT
(ksi f )2

  

(9.28)

    

 The bond graph model for the whole system is shown in Figure 9.24. 
The MGY element is the element that transforms electrical to mechani-
cal power. The fl ow from the electrical side determines the effort on the 
mechanical side. And the fl ow on the mechanical side determines the 
effort on the electrical side. 

    

∵Eb = kΦω = ksi f ω
∵T = kΦia = ksi f ia   

(9.29)

    

 In the bond graph, the factor for MGY is computed by taking the prod-
uct of torque speed constant ( k s   from the above formula) and the fl ow 
information from the fi eld coil ( i f   in the above formula). 

 The parameter values shown in the Figure 9.25 are the system para-
meters used to simulate the system. Figures 9.26, 9.27, and 9.28 show the 

FIGURE 9.25
Parameter values used in simulation.
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system response. The fi rst one (Figure 9.26) shows how the current in the 
circuit varies. The plot shows the total current, the current through the 
armature circuit, and the fi eld current. The fi eld current is small because 
the fi eld resistance is high. 

 Figure 9.27 shows the variation of torque output with time. Total torque 
output is used to drive the load, rotate the rotor inertia, and overcome the 
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FIGURE 9.26
Field, armature, and total currents.
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FIGURE 9.27
Distribution of the total torque output.
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bearing resistance. Figure 9.28 compares the output torque and the speed 
of rotation as a function of time. 

 Shunt motors are sometimes referred to as the constant speed motor, 
since at steady state the motor speed remains practically constant for a 
large range of motor load. Some of the applications of this motor are cen-
trifugal pump, machine tools, blowers, fans, reciprocating pumps, and so 
forth. 

   9.1.2.4  Series Wound Motor 

 Figure 9.29 shows the schematic for a series wound motor. In a series 
wound motor, the armature and fi eld currents are the same. 

  
ia = i f   

(9.30)
    

 At steady state, the inductors work as connecting wires. So if the relation-
ships at steady state are written, the equations look like the following: 

  ω  is the angular speed 
  k  is a motor constant 
 Φ is the magnetic fl ux 
  E b   is the back emf 
  T  is the torque 
  R a   and  i a   are the armature resistance and armature current, respectively,   
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FIGURE 9.28
Output torque and rotation speed versus time.
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kΦ = ksia

V = Eb + (Ra + R f )ia

Eb = V − (Ra + R f )ia

∵kΦ = ksia

Eb = kΦω

ω = Eb

kΦ
= Eb

ksia   

(9.31)

          

    

T = kΦia

T = ksia ⋅ ia

T = ksia
2

  

(9.32)

    

   

ia = T
ks

  

(9.33)
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FIGURE 9.29
Circuit for series wound motors.
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ω ⋅ ksia = V − (Ra + R f )ia

ω = V

ks
T
ks

−
(Ra + R f )ia

ksia

ω = V
ks ⋅T

−
(Ra + R f )

ks   

(9.34)

    

 The bond graph model for the whole system is shown in Figure 9.30. 
The MGY element is the element that transforms electrical to mechani-
cal power. The fl ow from the electrical side determines the effort on the 
mechanical side. And the fl ow on the mechanical side determines the 
effort on the electrical side. 

    

∵kΦ = ksia

Eb = kΦω

ω = Eb

kΦ
= Eb

ksia   

(9.35)

    

    

T = kΦia

T = ksia ⋅ ia

T = ksia
2

  

(9.36)
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FIGURE 9.30
Bond graph model for a series wound motor.
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 The bond graph model is simulated using the parameters shown 
in Figure 9.31. The graphs shown in Figures 9.32, 9.33, and 9.34 
show the response of the system as obtained by simulating using the 
parameters. 

FIGURE 9.31
Parameters used in the simulation of the series wound motor.

Model

0 0.02 0.04 0.06 0.08 0.1
Time (s)

−1

0

1

2

3

4

5

6

7

8

9
Field/armature current (A)

FIGURE 9.32
Armature and fi eld current versus time.
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FIGURE 9.33
Different torque components versus time.
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 Some of the typical characteristics of the series wound motors are that 
they change speed drastically as the load condition changes. Also, the 
starting torque is very high. Typical applications of these types of motors 
are hoists, electric trains, conveyers, elevators, electric cars, and so forth. 
Series wound motors should not be started with no load on them since the 
speed could get very high. 

 There are compound motors that are also used in some applications. 
For compound motors, the fi eld circuit is made of two parts: a series and 
a shunt part. The model for such a motor would be a simple extension of 
the concepts discussed here. The compound motors typically have a high 
starting torque, and the no load speed is more controllable than the series 
motors. 

   9.1.2.5   Separately Excited DC Motors 

 Separately excited DC motors have a fi eld winding circuit that is separate 
from the armature circuit. The model for the separately excited DC motor 
is shown in Figure 9.35. It is not discussed in any detail, and it is left to the 
reader to go through this as an exercise. 

    9.1.3  Example of a Motor That Is Driving a Load 

 Here is an example of a permanent magnet DC motor that is driving a 
load. As Figure 9.36 shows, it consists of a PM DC motor, the output of 
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FIGURE 9.35
Separately excited DC motor.
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which is a shaft’s rotation. There is drum that rotates on the shaft and a 
cable that is hoisting a load on that drum. There are three regions of this 
system. The fi rst region is the electrical circuit for the motor. The second 
region is the mechanical rotation, and the third region is the translation 
motion of the cable and the mass that is being hoisted. 

 The system has three distinct regions: electrical, rotational, and transla-
tion. The GY element is the link between the electrical domain and the 
rotational domain. And the TF element is the link between the rotational 
domain and the translation domain. The bond graph model of the system 
is shown in Figure 9.37. 

 This system was simulated using the parameters shown in Figure 9.38. 
The system response in terms of the mass velocity and force on the mass 
are shown in Figure 9.39. A close-up of the initial stages of the response is 
shown in Figure 9.40. Careful review of the plots indicates a few interest-
ing aspects. At the initial stages, the force on the mass oscillates since the 
torque at the start is high until the back emf builds up. Subsequently, the 
force reduces as the velocity increases and reaches a steady state. When 
the velocity is fi nally steady, the net force on the mass becomes 0, and it 
moves at a steady rate. 
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FIGURE 9.36
Schematic of a system where a motor is driving a load.
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FIGURE 9.37
Bond graph model of a motor hoist system.

FIGURE 9.38
Parameters used in the simulation.
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FIGURE 9.39
System response in terms of force on mass and mass velocity.
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FIGURE 9.40
A close-up of the initial stages of the response.
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    9.2  Hydraulic Actuators 

 In Chapter 4, we discussed the basic components in a hydraulic system, 
their constitutive relationships, and how they are modeled using bond 
graph methodology. In this section, we will build on some of the con-
cepts described earlier to specifi cally discuss the modeling of hydraulic 
 actuators. As in the other domains discussed here, hydraulic actuators can 
be in many different forms. Hydraulic cylinders are well known as linear 
actuators and have a large variety of applications. Various types of pumps 
fall under the category of hydraulic actuators as well. There is a large class 
of components called valves that play a signifi cant role in hydraulic actu-
ation by controlling the direction and magnitude of fl ow in a hydraulic 
circuit. No discussion of hydraulic actuators will be complete without a 
discussion of some of the valve models. 

  9.2.1  Hydraulic Cylinders 

 Hydraulic cylinders, or power cylinders, are used to transform the power 
from the hydraulic domain to the mechanical domain, that is, pressure* 
fl ow rate to force*velocity. So at the core of the model for the hydraulic 
cylinder, one needs to include a transformer. On the hydraulic side, the 
capacitive effect of the compressible hydraulic fl uid may be included. On 
the mechanical side, the friction in the piston and the inertia of the ram 
are two components that can be part of the model. 

 Figure 9.41 shows a schematic of the hydraulic cylinder and the corre-
sponding bond graph model. The bond graph model shows a representa-
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FIGURE 9.41
Hydraulic cylinder and its bond graph model.
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tion of the hydraulic ram. The Sf (fl ow source) used in the model could 
be replaced by an appropriate source of power in a given situation. This 
model can be simplifi ed by ignoring the friction losses and piston inertia if 
their effects are negligible. The capacitive (compliant) effect of the hydrau-
lic fl uid is captured through the C element in the model. Bulk modulus 
of the hydraulic fl uid is the property that determines the compliance of 
fl uids. The most commonly used hydraulic fl uid is mineral oil with bulk 
modulus of the order of 1750 Mpa. The compliance characteristic of the 
fl uid can be determined by the equation: 

  
ΔP = − β

V
ΔV

  
(9.37)

    

 where,  β  is the bulk modulus,  V  is the initial volume of the fl uid, and 
Δ V  is the change in the volume. From this it can be seen that the capaci-
tance will be  V/β . In a linear actuator, the volume  V  is not a constant but 
changes linearly with the movement of the piston. Volume at any time can 
be expressed as: 

  
V = Vinitial + XA

  
(9.38)

    

 where  X  is the linear movement of the piston and  A  is the effective piston 
area. 

   9.2.2  Pumps 

 A pump can be treated as simple source of fl ow if it is continuously 
 running and the purpose of the model is to explore the dynamic behavior 
of the system that is driven by the pump. For fi xed displacement pumps, 
pump inertia and internal friction can be neglected and the pump can 
be treated as a transformer that receives rotational input and provides 
hydraulic fl ow as the output. If hydraulic leakage losses are included, the 
bond graph representation looks like the one shown in Figure 9.42. 

 The rotational power source supplies power that is transformed into 
hydraulic power. Note that the outlet is a volume fl ow rate. The pressure 
at the outlet will be determined by the pump load that is being driven. For 
variable TF, a MTF element may also be used, and if the inertia of the rota-
tional components and frictional losses are to be included, they may be 
added on the mechanical side as shown in Figure 9.42. If the pump inertia 
is included in the model, the input to the pump will not be a constant fl ow 
input but will have to be a constant effort input. The pump inertia will 
determine the rotational speed. 
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   9.2.3  Hydraulic Valves 

 Hydraulic valves are a very important part of hydraulic systems. They play 
an important role in controlling both the direction as well as the quantity of 
fl ow. Careful modeling of control valves is necessary in order to successfully 
model any hydraulic system. Valves and their behavior play an important 
role in the dynamic behavior of the system that is controlled by the valves. 

 Figure 9.43 shows the schematic of a control valve that is well known as 
a four-way control valve. The spool can be actuated to move left or right 
and can open up or cover one or two of the control lines Y and Z. The 
supply is provided through the supply port, and the exhaust ports lead to 
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FIGURE 9.42
Bond graph representation of a pump (without and with additional components).
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FIGURE 9.43
Schematic for a four-way control valve.



Modeling Transducers: Actuators 339

storage tank. When the spool is in the position shown in the Figure 9.43, 
the high pressure supply is provided to feed through the control line Y 
and fl uid fl ows through the valve into the exhaust from the control line Z. 
When the spool moves toward the right, the opposite happens; that is, 
the supply is passed through the control line Z, and the control line Y is 
directly linked to the exhaust. 

 The fl ow through a control valve is determined by the fl ow through 
orifi ces that are opened or closed to different degrees. The orifi ce equation 
may be written as in Equation 9.39: 

  

Q = Cd A
2ΔP

ρ
  

(9.39)

    

 where  Q  is the volume fl ow rate through the valve,  C d   is the orifi ce fl ow 
coeffi cient (most of the time this is taken to be ∼0.6 but a variable value 
could be used as well),  A  is the fl ow area and is directly proportional to 
the linear movement of the spool,  ρ  is the density of the fl uid, and Δ P  is 
the pressure difference. For the sake of convenience, this equation may be 
rewritten as: 

  
Q = CX ΔP

  
(9.40)

    

 where  X  is the movement of the spool and  C  is a constant that captures all 
other terms in Equation 9.39. 

 The fl ow through an orifi ce can be modeled as a fl ow through a resistor 
(i.e., the orifi ce needs to be modeled as a resistive element). However, the 
governing equation for this resistor is nonlinear. If we write the orifi ce 
equation in a form that is standard for a resistance element, the equation 
will be written as: 

  

ΔP = RQ

Q = 1

R
ΔP

  

(9.41)

    

 where 

  
R = ΔP

CX   
(9.42)

    

 This representation for  R  clearly shows that  R  is not a constant. It is also 
nonlinear because it is proportional to the square root of the pressure differ-
ence and also because it is dependent on the spool movement  X . Although 
the above equations are representations for the fl ow rate through the orifi ce, 
the actual resistance model needs to contain more information about the 
limits of this representation. More on that will be discussed a little later. 
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 The bond graph model for this valve is shown in Figure 9.44. The fl uid 
input from the supply comes from a source of pressure. The exhaust, or 
sink, is also linked to a source of effort (with a value of 0) so that the fl ow 
to the exhaust/sink can be calculated. The four modulated resistances are 
the resistances in the four possible fl ow paths, that is, source to controls 
Y or Z and controls Y or Z to the exhaust/sink. The 0 and the 1 junctions are 
used in locations where the fl ow and the pressures are getting  separated, 
respectively. For example, the 0 junction marked source receives the fl ow 
from the source and separates it into two paths, one towards the Y control 
path and one towards the Z control path. 

 We will now describe how the modulated resistances are modeled. 
 Figure 9.45 shows the schematic of the valve used to develop the model 
equations (same view as Figure 9.43). 
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FIGURE 9.44
Bond graph model of the four-way valve.
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Modeling Transducers: Actuators 341

  between supply and control Y  

    Q  = 0, if X is 0 

      Q = CX ΔP ,  if X is positive and X <= D 

  Q = CD ΔP, if X is positiveand X > D   
(9.43)

    

   Q  = 0, if X is negative 

  between supply and control Z  

   Q  = 0, if X is 0 

   Q  = 0, if X is positive 

  
Q = C X ΔP, if X is negative but X <= D

  
(9.44)

    

      Q = CD ΔP, if X is negative and X > D 

  between control Y and exhaust  

   Q  = 0, if X is 0 

   Q  = 0, if X is positive 

  
Q C X P= Δ , if X is negativeand X <= D

  (9.45)    

      Q = CD ΔP ,  if X is negative and X > D 

  between control Z and exhaust  

   Q  = 0, if X is 0 

      Q = CX ΔP ,  if X is positive and X < = D 

  Q = CD ΔP, if X is negativeand X >D   
(9.46)

    

   Q  = 0, if X is negative 
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 These set of equations modeling a valve is now used to model a system 
containing this same hydraulic valve. 

  EXAMPLE 9.2: HYDRAULIC SYSTEM 

 Figure 9.46 shows a schematic of a hydraulic system that has an actuator involv-
ing a four-way hydraulic valve. Using all the background on hydraulic devices 
discussed thus far, we will try to model this system. The bond graph model 
(Figure 9.47) is patterned after a similar example in the text by Peter Dransfi eld 
(1981). The model consists of three zones. Most of the bonds on the left side 
of the model are for the behavior of the valve (similar to the valve model 
discussed earlier). The right side of the model is for the mass–spring–damper 
combination that needs to be actuated. The valve resistances are actuated by a 
mechanical lever that is not explicitly modeled but is incorporated through a 
displacement input. This displacement input is supplied to all four resistances. 
The resistances are modeled as per the resistance equations described earlier. 
The middle region is called the actuator region where the fl uid pressure is 
converted to a force on the mass via a piston. The piston area acts as the trans-
former factor in the model for both the transformers in the region. 

 The model for the variable resistance for the valve is coded in the following 
way: 
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FIGURE 9.46
Schematic of a system driven by hydraulic actuation.
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 Constants 

 real D = 1; 

 Equations 

 if (r == 0.0) then 
 p.f = 0.0; 
 else 
 if (r < 0.0) then 
 p.f = 0.0; 
 else 
 if (abs(r) <= D) then 
 p.f = 0.1*abs(r)*sqrt (abs(p.e)); 
 else 
 if (abs(r) > D) then 
 p.f = 0.1*D*sqrt (abs(p.e)); 
 end; 
 end; 
 end; 
 end;  

 The values of different variables used in the model are shown in Figure 9.48. 
The system inputs are chosen arbitrarily. In an actual system, these have to 
be chosen as per system properties. The system response for this set of input 
variables is shown in Figure 9.49. This fi gure shows the fl ow through the valve 
as the displacement changes with time. The fl ow is shut off on either side as 
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the displacement changes from positive to negative. Also, the maximum fl ow is 
determined by the orifi ce size and will not be altered beyond a certain amount 
of displacement input.   

  9.3  Summary 

 There are many types of actuators used in practice. In this chapter we have 
touched on the two most common types of actuators, specifi cally, electro-
magnetic actuators and hydraulic actuators. Within the electromagnetic 
actuators, we have discussed linear actuators and different types of DC 
motors. These are commonly used actuators for mechatronic applications. 
There are some other motors, such as stepper motors and AC motors, that 
we have not touched on for now. Within the hydraulic actuators, we have 
paid most attention to the modeling of the behavior of hydraulic valves 
that are the most critical components in any hydraulic actuator circuit. The 
behavior of the valves is the most challenging component in the modeling 
of such devices. 

  Problems  

   9.1. Figure P9.1 shows a schematic for a solenoid valve where the 
opening and closing of a hydraulic circuit is controlled by the 
movement of the plunger of a solenoid. Using the concepts cov-
ered in this chapter, develop a bond graph model of such a valve 
and list all the important valve parameters necessary to model 
the behavior of this valve.  
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FIGURE P9.1
Figure for Problem 9.1, schematic for a solenoid value.
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   9.2. Figure P9.2 shows the schematic of a PM DC motor driven tape 
winding device. The different parameters for this system are as 
follows: J1 = 5E-5 kgm 2 , B1 = 1E-2 Nms, r1 = r2 = 0.002 m, Kt (motor 
torque constant) = 3E-2 Nm/A, K = 2E4 N/m, B = 20 Ns/m, B2 = 
2E -2 Nms, F = 10 N. Develop a bond graph model of this system, 
and simulate its behavior for the given system parameters. What 
is the steady state rotational speed of the pulleys? Do you get any 
oscillation in the rotation of the pulleys?  

   9.3. Figures P9.1 and P9.2 show a system and its bond graph model 
respectively. Derive the governing equations for the system shown 
in these fi gures.  

   9.4. Figure P9.3 shows the schematic of a system where the hydraulic 
valve is used to control the force on the roller and thus control the 
thickness of a rolled sheet. Using the schematic shown, develop 
a bond graph model of this system and simulate it with suitable 
system parmeters.  

KJ1, B1, r1 

J2, B2, r2

F

Motor

B

FIGURE P9.2
Figure for Problem 9.2, schematic of a PM DC motor driven tape winding device.
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   9.5. Figure P9.4 shows the schematic of a solenoid switch. Develop 
the bond graph model of this at demonstrate its working through 
simulation.  

Supply

Drain

Drain

Set-screw to adjust the
desired sheet height

Rollers sense the
actual height

Rigid horizontal
member pinned at
three locations

FIGURE P9.3
Figure for Problem 9.4, system involving hydraulic valve to control the thickness of a rolled 

plate.
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   9.6. Figure P9.5 shows how the load to be driven by a motor varies 
with time. Use the PM DC motor and the shunt wound DC motor 
models to simulate their behavior for this load. How does the 
motor speed vary as the load is applied as per this function?  

   9.7.  A series wound DC motor is used to rotate an intertial load. The 
speed of rotation is to be measured with a Hall effect sensor for 
the purpose of motor speed control. Using the Hall effect sensor 
model from the previous chapter as well as the relevant motor 
model in this chapter, develop the complete bond graph model 
to measure the speed of rotation of the inertial load. What is the 
speed profi le if a series wound motor is used to drive this load?  

Load
torque

Time 

200 Nm 

50 sec.

FIGURE P9.5
Figure for Problem 9.6, motor load profi le.

FIGURE P9.4
Figure for Problem 9.5, schematic for a solenoid switch.
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   9.8. Here are some typical values for shunt motor parameters. Supply 
voltage = 120 V, Armature Resistance = 0.6 Ohms, Field Resistance = 
400 Ohms, Armature inductance = 0.0175 H, Field Inductance = 
0.175 H, Mechanical friction (in rotating shaft) = 0.000066 Ns/m 
Rotational moment of inertia = 0.08 kg m 2 , torque constant = 1.53 
(in consistent units). For the exercise below, you should use these 
values. Develop a bond graph representation of a motor where 
the fi eld winding is parallel to the armature winding (also called 
shunt wound motors). For the shunt motors, the fi eld resistance is 
usually made very high so that a small current is drawn by it. Use 
the bond graph model to develop simulations of the behavior of 
this motor.  

    To model a constant torque load, use a • MSe element attached 
to a constant negative input. Change the value of this constant 
torque load from −1 to −5 to −10. Plot the speed of rotation ver-
sus time, armature current versus time, and power output of 
the motor versus time for the  above three conditions . Modify the 
equations of MGY so that you can generate power data at the 
gyrator output.  

    To model a load where the torque is proportional to the square • 
of the speed of rotation, modify the equation for the mechani-
cal friction element to model effort as a function of the square 
of the velocity. Remove the MSe that you were using in the pre-
vious case to simulate the constant torque load. Change the 
R factor from 0.000066 to 0.00066 and then to 0.0066. Plot the 
speed of rotation versus time, armature current versus time, 
and power output of the motor versus time for the above three 
conditions.      
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  10 
Modeling Vehicle Systems 

                       Automobiles have evolved a lot over the last century. While the fi rst 
cars made were modeled after horse-drawn carriages and were purely 
mechanical devices, the modern-day automobile is a marvel of complex 
interdisciplinary engineering. As customers have demanded more from 
vehicles, designers have used newer and newer technology to meet the 
needs in the most effi cient manner possible. As a result, many systems 
and subsystems in today’s car are mechatronic in nature. While the core 
of the automobile is still a mechanical device consisting of a power source 
connected to a drive train that helps take the vehicle down the road, most 
controls and so-called “smart” features are achieved through the use of 
microcontrollers, smart algorithms, and sensors and actuators. The num-
ber of sensors used in a modern vehicles has increased exponentially over 
the last 20 years. Many of the subsystems, such as steering, braking, and 
so forth, are being replaced by “by-wire” systems. Even the power source, 
the traditional internal combustion engine, is being replaced by hybrid 
architectures consisting of a combination of electric motors, fuel cells, and 
engines. Power sharing among these sources is dynamically controlled 
for optimal performance through highly refi ned algorithms residing on 
microchips that are implanted on subsystems within the automobile. 
The automobile of today is a quickly evolving system, but its evolution 
is clearly moving from a purely mechanical device to an intricate mecha-
tronic device. 

 Mechatronic or multidomain systems and subsystems in an automobile 
are too numerous to be tackled in a single chapter within this book. Our 
goal in this chapter is, therefore, to touch on only some of them. More 
modeling examples can be found in a variety of other publications, some 
of which are mentioned here. Researchers and modelers have used the 
bond graph methodology to model the automobile at a variety of dif-
ferent levels. There are full vehicle models, such as the ones discussed 
by Horovat et al. (2000), and component or subsystem models, such as 
the ones found in publications by Thoma (2000); Karnopp (1974, 1984); 
Margolis (1982, 2001); Louca, Stein, and Rideout (2001), and others. 

 There are three broad areas to consider. These can be shown in a block 
diagram as: power generation (or engine), power transmission (or power 
train), and vehicle dynamics (Figure 10.1). 

 Figure 10.1 only shows a high-level description of a vehicle, but there 
are many details; and to model features in detail, a lot more needs to be 
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considered. In this chapter we will not attempt to model all aspects in 
detail but will make an attempt to model some of the systems and subsys-
tems in a vehicle. The chapter will be divided into sections that will focus 
on different aspects of a vehicle, such as overall vehicle model, vehicle 
dynamics and ride, power train, and vehicle subsystems. 

 The objective of this discussion is not necessarily to be comprehensive, 
but rather to provide an exposure to the reader about how the modeling 
and simulation of vehicle systems and subsystems are achieved.  

 10.1  Vehicle Systems 

 In order to put things in perspective, an automobile/ground vehicle 
 system can be broadly represented as in Figure 10.2. The power generated 
from the engine combustion is supplied to the drive train as a torque pro-
fi le. The drive train transfers power through the transmission, the power 
transformation mechanism, to the front and the rear axels, which in turn 
transfer power to the front and rear wheels. The vehicle dynamic charac-
teristics (dynamic behavior of the vehicle under different driving condi-
tions) dictate vehicle behavior. 

 Even though this big picture captures the essentials of an automobile, 
a modern automobile has many other subsystems, such as the braking 
 system, steering system, and so forth. These subsystems are not explicitly 
addressed in this schematic but are still very vital. 

Engine model Drive train Vehicle
dynamics

Driver input

FIGURE 10.1
Major areas of a vehicle to be considered.
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 Figure 10.3 shows a representation of Figure 10.2 (vehicle drive line) 
using subsystems to represent the blocks in Figure 10.2. A bond graph 
representation of the vehicle drive line schematic is shown in Figure 10.4.  

 This is one of the simplest bond graph representations of a rear wheel 
drive vehicle system with gross approximations of most of the subsys-
tems. The source of power is the engine that is represented as a source of 
effort (or torque). The engine inertia is represented as an I element and the 
clutch resistance as a variable resistance signifying the approach to model 
the engaging and disengaging of clutch through a signal to the MR ele-
ment. The gear box has several inertia elements associated with it, and all 
of them are represented as a single lumped inertia. The variable gear ratio 
is represented as the MTF element. The C element represents the compli-
ance of the shaft that transfers power from the gear box to the differen-
tial, which is in turn connected to the rear wheels by a TF element. The 
outlet from the differential is supplied to the two driving wheels through 
a 0 junction. As a result, the fl ow on the two sides (left and right) could 
be different, resulting in different speeds of rotation of the wheels. When 
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dynamics
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FIGURE 10.2
Schematic of vehicle power fl ow.
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the vehicle is moving in a straight line, both wheels will be rotating at 
the same speed, and the output from the differential to both the wheels 
will be identical. When taking a turn, the outer wheel needs to turn more 
than the inner wheel, and, hence, the velocity output from the differential 
would be different to the two wheels. In the model, this fl exibility of the 
differential is achieved through the use of a 0 junction, which equates the 
effort in all bonds, but the fl ows are different. This enables the incoming 
torque to be equal, but the velocities can be different. 

 Wheel inertias are included in the model as well as the road resistance 
in the form of R elements connected through rotation-to-linear motion 
transformers. Finally, a 1 junction brings the efforts from both wheels 
together and is connected to an R element to capture the effects of wind 
resistance, (drag), and an I element that represents the vehicle mass. 
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Frictional
resistance 

Wind
resistance  

FIGURE 10.3
Subsystems that make up a vehicle drive line.

FIGURE 10.4
Bond graph model of vehicle drive line.
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 Although this model (or variations of this model) is found in many 
 publications as the basic vehicle model, others can be found that account for 
different complexities in a vehicle. For example, Hrovat et al. (2000) reported 
on a model that accounted for losses in the engine and gearbox through 
additional R elements. They also accounted for tire elasticity and resistance 
of tires through MR and C elements to capture specifi c tire models. Complex 
vehicle dynamics, steering input, throttle positions, and so forth, can be 
added as well by introducing additional complexities in the model. 

 Using the simple example of the vehicle drive train shown here, we can 
still obtain very good estimates of many aspects of vehicle behavior. For 
example, a comparative analysis of fuel use/power requirement can be 
done at different speed levels for vehicles. It is well known that at low 
speeds, most of the power spent in driving vehicles is used to overcome 
friction at the wheels (especially at stop-and-go type of traffi c situations). 
In these situations, the vehicle weight is a key factor in infl uencing the 
power requirements. However, at high speed, the effort needed to over-
come wind resistance plays the most important role in fuel consumption 
because the drag on vehicles is proportional to the square of the relative 
velocity of the wind with respect to the car. The vehicle’s projected sur-
face area and the drag factor play a very important part at high vehicle 
speeds. So, in this model, the wind resistance is modeled such that the 
resistance value is proportional to the square of the vehicle velocity and 
the resistance at the wheels is modeled as equivalent representations of 
rolling resistances that are proportional to vehicle weight that is sup-
ported at each wheel. Figure 10.5 shows some representative parameters 

FIGURE 10.5
Vehicle parameters used for the vehicle drive train model.
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for different components of the model that is used (in consistent units) in 
the simulation. Figure 10.6 shows a set of plots that show how the power 
expended changes at the wheels due to the wind resistance as the veloc-
ity of the vehicle increases. At low speeds, the wheel resistances are more 
important than the wind drag, but as the vehicle speed increases, the 
wind drag quickly becomes the more important factor. It is, thus, very 
important to try and keep wind drag effect to as small a value as possible. 
Wind drag force is equal to the product of the drag coeffi cient, the pro-
jected area, and the square of the vehicle velocity. 

  Fd = Cd Av2  (10.1)   

 This explains why so much effort is placed on vehicle aerodynamics, 
which helps in reducing the drag coeffi cients. 

 We can use this model to study other aspects of a vehicle. For example, to 
replicate the process of turning, we can alter the resistance at the left and 
the right wheels. When the vehicle is being driven along a straight line, the 
friction forces at the two wheels are identical, and, as a result, the wheel 
speeds are identical as well. When the vehicle is turning, the ground reac-
tion forces at the inner and outer wheels are different, and, therefore, the 
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Simulation results for the vehicle drive train model.
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friction forces are different as well. In the model, if the  friction forces (or 
resistances) at the two wheels are altered, the wheel speeds turn out to be 
different at the two wheels. This indicates a turning situation. Figure 10.7 
shows such a plot depicting a turning situation. 

 Throughout the years, many researchers have used bond graphs to 
model several aspects of the power train as well as other parts of the 
vehicle. We will not be able to discuss all of them in any detail here 
but will mention some of them for the benefi t of the reader. Cichy and 
Konczakowski (2001) developed a model for internal combustion engines. 
Several signifi cant studies have been done in the modeling of transmis-
sions. Horovat et al. (2000) reported extensively on the model of manual 
transmissions, Coudert et al. (1993) and Wehrein et al. (2006) have pub-
lished models of automatic transmissions. A key building block of the 
transmission model is the model of a planetary gear train. Figure 10.8 
shows this “building block” bond graph model. In the area of hybrid 
electric vehicles, several publications report the use of bond graph as a 
modeling tool. Of particular note among these are the works of Gao et al. 
(2007), Filippa et al. (2005), and Hubbard et al. (1997). One of the important 
aspects of modeling hybrid power trains is modeling of the algorithm that 
is used to dynamically alter the power consumption from the engine and 

FIGURE 10.7
Comparison of different wheel speeds during turning.
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the battery. For optimum performance, this has to be tightly controlled, 
and bond graph based modeling provides a very good tool to work out 
the necessary algorithms. 

10.2  Vehicle Dynamics

 10.2.1  Ride: Heave and Pitch Motion 

 The study of dynamics of vehicles is a study of the dynamics of a 3-D rigid 
body. Some of the pioneering works using bond graph methodology in this 
area were done by Karnopp (1976), Margolis (1982), and Granda et al. (2003). 
The use of active suspension in the model has been reported by Hrovat 
et al. (2000), Khemliche et al. (2004), and others. 

 In a 3-D model, there are six degrees of freedom: translations in three 
mutually perpendicular directions  x ,  y ,  z ; and Φ,  θ ,  ψ , the rotations about 
the three axes. The three rotations are also called pitch, yaw, and roll 
(Figure 10.9). A complete vehicle dynamics model needs to consider all 
these motions since they are coupled to each other. Directly trying 3-D 
modeling with all six degrees of freedom (DOF) intact will be a compli-
cated exercise. So, fi rst we will look at some of the simplifi ed versions 
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because a lot can still be learned about vehicle behavior from these. Some 
of the common simplifi cations are 

1-D Model: A single spring–mass–damper model. This model is 
called the quarter car model. Here the single mass represents the 
mass of the vehicle, and the spring and the damper represent the 
vehicle suspension system. The road input can be modeled using a 
simple source of fl ow. Using this model, the only thing that can be 
studied is the vertical motion of the vehicle in response to the road 
input. Figure 10.10 shows a schematic of the model and the corre-
sponding bond graph. 

  2-D Model:  This model is a little more complex and takes into account 
not only the mass but also the inertia, and at least one translation 
and one rotation of the vehicle can be modeled. This model is called 
the half car model. If the model is for the front and the rear wheel 
and the view presented is the view of the vehicle from the side, the 
two motions that can be modeled are the vertical motion (also called 
heave) and the rotation about the y axis (also known as the pitch). 
Figures 10.11 through 10.13 show the vehicle schematic and the cor-
responding bond graph. The level of details to be included in the 
bond graph model could be determined by the user. The simpler 

FIGURE 10.9
Pitch, yaw, and roll motion directions of a vehicle.
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approach is to include the vehicle mass along with the suspension at 
the front and rear represented through a pair of spring and damper 
elements. If more complexity is desired, the tire masses and the cor-
responding tire stiffness could be included as well. 

FIGURE 10.10
A quarter car and its bond graph model.
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 There are two DOFs in the 2-D model (see Figure 10.12). 

   1. Heave   
   2. Pitch  

 Bond graph development procedure (refer to Figure 10.13) is 

   1. There are six velocity points (the two velocity inputs from the 
road, the two velocity points where the suspension is attached to 
the vehicle mass, the heave motion of the vehicle center of mass, 
and the pitch motion of the vehicle center of mass). Each point is 
represented by a 1 junction on the fi gure.  

   2. In the front and back wheels, we have spring and damper sys-
tems, which are connected through the 0 junctions.  

FIGURE 10.13
Bond graph representation of the half car model.
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   3. The heave and the pitch motions of the vehicle center of mass are 
related to the velocities at the locations where suspensions are 
attached through some geometrical parameters. These  parameters 
are accounted through the three transformers in the bond graph 
representations.   

 10.2.1.1  Transformer Parameter Calculation  

 To determine the transformer parameters, the vehicle is approximated as 
a rectangular piece, and two of its positions, shown in Figure 10.14, illus-
trate the movement of three different locations of the vehicle, specifi cally 
the point of attachment of the front and the rear suspensions and the cen-
ter of mass.  

   L1 + L2 is the total distance between the front and back wheel. 

  θ  is the rotational angle. 

  y  is the vertical displacement of the center of the mass.  

  

θ =
y2 − y1

L1 + L2

�θ =
�y2

L1 + L2

−
�y1

L1 + L2

�θ =
�y2 − �y1

L1 + L2  

(10.2)

      

 Therefore:  

  
TF3 =  1/ L1 + L2( )  

(10.3)
    

 This transformer relates linear velocities to angular velocities. 

FIGURE 10.14
Transformer parameter calculations.
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 The vertical displacement of the center of mass can be written as:  

  

�y = �y1 +
�y2 − �y1

L1 + L2

⋅L1

�y =
�y1(L1 + L2 ) + �y2L1 − �y1L1

L1 + L2

�y =
�y1L2 + �y2L1

L1 + L2

�y = �y1(
L2

L1 + L2

) + �y2 (
L1

L1 + L2

)

 

(10.4)

    

 Since the two  y  dots on the right-hand side are the velocities at the two 
junctions on front and back, the  

  
TF1 = L2/ L1 + L2( )  

(10.5)
    

 and   

  
TF2 = L1/ L1 + L2( )  

(10.6)
    

 the simplifi ed BG representation would be as shown in Figure 10.15. 

FIGURE 10.15
Bond graph after simplifi cation.
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 To model additional complexity, such as tire mass and tire elasticity, 
the above bond graph model may be modifi ed by including an additional 
I element and a C element for the front and the rear. The bond graph for 
the (modifi ed) front part would be as shown in Figure 10.16. The elements 
inside the oval are the new additions. The bond graph for the (modifi ed) 
rear part would be as in Figure 10.17. 

 Once again, the elements inside the oval are the new additions. In an 
actual vehicle, the response of the vehicle mass in terms of the heave 
motion and the response of its inertia in terms of its pitch motion can be 
investigated through the use of the Bode plot for the system that has been 
described here. 

FIGURE 10.16
Modifi ed front part bond graph to incorporate tire stiffness and damping.
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FIGURE 10.17
Bond graph of the modifi ed rear.
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 Consider the following parameters for a vehicle: 

  Vehicle mass (sprung mass) = 1500 kg 

  Moment of inertia about the CG for pitch motion = 2160 kgm 2  

  K1 (suspension, front) = 35,000 N/m 

  K2 (suspension, rear) = 38,000 N/m  

  B1 (damping coeffi cient, Front) = 1000 Ns/m 

  B2 (damping coeffi cient, Rear) = 1100 Ns/m 

  Distance between front axel and center of gravity, L1 = 1.4 m 

  Distance between rear axel and center of gravity, L2 = 1.7 m 

 The bond graph representation of the model is shown in Figure 10.18. 
At both the wheels, a pulse input is used to simulate the behavior of the 
system running over a bump. The pulse generator on the front wheel has 
a magnitude of 1 unit at the front wheel and the pulse generator has a 
magnitude of 0.0 unit at the rear wheel. These inputs are used to develop 
the frequency response of the system through the use of the Bode plot. 
Also, for this initial analysis, the damping coeffi cient at both wheels is 

FIGURE 10.18
Bond graph of the half car example.
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reduced to a very small value of 1 Ns/m. As a result of this simulation, 
the pitch and the heave velocity at the vehicle center of mass is shown in 
Figure 10.19. The transfer function between the heave and pitch velocity 
with respect to the input disturbance velocity is then plotted in the form 
of two Bode plots. This fi rst plot is for the heave motion (Figure 10.20), and 
the next is for the pitch motion (Figure 10.21). 

In both these plots, the two peaks of resonance are at the two natural 
frequencies for the heave and the pitch motion. The system has very little 
damping, hence, the resonance peaks are very sharp. In order to reduce 
this high magnifi cation of the motion at resonance, the damping can be 
set back to the original values. The Bode plots (Figures 10.22 and 10.23) 
show that at the resonance frequencies, the peaks are reduced. However, 
while the peaks were reduced at the resonance frequencies, the attenua-
tion at the high frequencies got worse.

 For suspension design, the two primary goals are to reduce the gain 
at resonance frequency and to keep the attenuation as high as possible 
at high frequencies. This set of Bode plots demonstrates that if passive 
dampers are used in automotive suspensions, when their magnitudes 
are adjusted to get the desired response at resonance frequencies, the 
attenuation at high frequencies gets worse and vice versa. Suspension 
designers have to fi ne tune the suspension parameters for optimized ride 
or optimized handling or some acceptable (not optimized) performance 
level for both aspects.  

FIGURE 10.19
Heave and pitch velocity from simulation.
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FIGURE 10.21
Transfer function (Bode plot) of pitch motion w.r.t. input velocity.
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FIGURE 10.20
Transfer function (Bode plot) of heave motion w.r.t. input velocity.
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FIGURE 10.23
Transfer function (Bode plot) of pitch motion w.r.t. input velocity and with increased damp-

ing (superposed on Figure 10.21).
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FIGURE 10.22
Transfer function (Bode plot) of heave motion w.r.t. input velocity and with increased 
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 10.2.1.2  Active Dampers  

 Dampers that are designed to address the problems  encountered by pas-
sive dampers. These are semi-active dampers or active dampers. Many of 
these active dampers use the concept called “skyhook damping,” passive 
dampers use is proportional to the difference in the velocity of the two 
end points to which the damper is attached (i.e., to the relative velocity). 
In active dampers, such as the skyhook dampers, the damping force is 
 proportional to the absolute velocity of the mass that is being damped. 

  Damping force in passive damper = R * (mass velocity – road velocity) 

  Damping force in active damper = −R * mass velocity 

 The force in an actively damped system needs to be a negative value so 
that it works as intended, that is, as a dissipater of forces. 

 To implement active damping in vehicles, the absolute velocity of the 
point where the damper would be attached is used to generate a source of 
effort, and it is fed back at the same location. Hence, the bond graph model 
looks like Figure 10.24. 

 For this analysis the constant value that multiplies the absolute velocity 
is made equal to −1000 on both sides, the passive resistor value is reduced 
to a bare minimum of 1 unit, and the system is reanalyzed. The Bode plots 
for both heave and pitch motion are shown in Figures 10.25 and 10.26. It 
is now clear from the plot that by using these active dampers, not only is 
the response at resonance frequency controlled but also the attenuation at 
high frequencies is very good. 

FIGURE 10.24
Modifi ed bond graph with active damping.
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FIGURE 10.25
Transfer function (Bode plot) of heave motion w.r.t. input velocity with active damping.
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FIGURE 10.26
Transfer function (Bode plot) of pitch motion w.r.t. input velocity with active damping.
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 10.2.2  Handling: Bicycle Model 

 The cornering behavior of a motor vehicle is an important performance 
measure that relates to handling. Steady state handling performance is 
concerned with the directional behavior of a vehicle during a turn under 
non-time varying conditions. An example of a steady state turn is a  vehicle 
negotiating a curve with constant radius at a constant forward speed. It is 
important to note that in the analysis of steady state behavior, the inertia 
properties of the vehicle are not involved. 

 A 2 DOF bicycle model is useful for handling dynamics studies. The 
model can be used to study the lateral/yaw dynamics of vehicles subject 
to front steering inputs. When a vehicle is negotiating a turn at moderate 
or high speeds, the effect of the centrifugal force acting at the center of 
gravity cannot be neglected (Gillespie, 1992). 

 Typically on a broad area, cornering can be classifi ed into two classes.  

 1.   Low speed cornering  

 2.   High speed cornering   

 At low speed (e.g., parking lot maneuvers), the tires need not develop 
lateral forces. Thus, they roll with no slip angle (Gillespie, 1992) and the 
analysis of the vehicle behavior is quite simple. We will not consider the 
low speed behavior here anymore. 

 At high speed, the turning equations differ because lateral acceleration 
will be present. To counteract the lateral acceleration, the tires must develop 
lateral forces, and slip angles will be present at each wheel. Under corner-
ing conditions, in which the tire must develop a lateral force, the tire will 
also experience a lateral slip as it rolls. The angle between its direction of 
heading and its direction of travel is known as slip angle, α (Wong, 2001) 
(Figure 10.27). 

FIGURE 10.27
Tire motion and slip angle.
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 The lateral force, denoted by  F y   , is called the cornering force when the 
camber angle is 0. At a given tire load, the cornering force grows with the 
slip angle. At low slip angles (5 degrees or less), the relationship is linear; 
hence, the cornering force is described by:  

  Fy = Cαα  (10.7)    

 The proportionality constant  C α   is known as the cornering stiffness and 
is defi ned as the slope of the curve for  F y   versus  α . The cornering stiffness 
is dependent on many variables, such as tire size and type, number of 
plies, cord angles, wheel pressure, and so forth. But for a limited range 
for all practical purposes, cornering stiffness can be assumed constant, 
especially since it does get affected by speed (Wong, 2001). 

 At high speeds, the radius of the turn is much larger than the wheel-
base of the vehicle. Then small angles can be assumed, and the difference 
between the steer angles on the outside and the inside front wheels is 
negligible. Thus, for convenience, the two front wheels can be represented 
by one wheel at a steer angle  δ , with a cornering force equivalent to both 
wheels. The same assumption is made for the rear wheels. The pictorial 
representation of the bicycle model is as shown in Figure 10.28. 

 The velocity relations for the two wheels can be written as:  

  
V1n = (V + ωa)Cosδ − USinδ

 
(10.8)

     

  
V1t = (V + ωa)Sinδ + UCosδ ≈ U(for small δ)

 
(10.9)

     

FIGURE 10.28
A schematic of the bicycle model.
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V2n = V − ωb

 
(10.10)

     

    
V2t = U

 
(10.11)

    

 Using the description of the velocities, the cornering force on the front 
wheel may be written as:  

    
F1 = C1α = C1

V1n

V1t

⎛
⎝⎜

⎞
⎠⎟

= C1
(V + ωa)Cosδ − USinδ
(V + ωa)Sinδ + UCosδ

⎛
⎝⎜

⎞
⎠⎟

 
(10.12)

    

 In a similar manner, the F2 on the rear wheel may be written as:  

    
F2 = C2α = C2

V2n

V2t

⎛
⎝⎜

⎞
⎠⎟

= C2
V − ωb

U
⎛
⎝⎜

⎞
⎠⎟

 
(10.13)

    

 Acceleration of the vehicle in inertial frame of reference can be written 
as (Mukherjee and Karmakar [2000]):  

    

�VXYZ = �vxyz + ω × �vxyz

m �uXYZ = m �u − mωv = Fx

m �vXYZ = m �v + mωu = Fy  

(10.14)

     

    

m �u = mωv + Fx

m �v = −mωu + Fy  
(10.15)

    

  Fx  and  Fy  are the external forces in the axial transverse directions, and the 
cornering forces are the only external forces. The contributions due to the 
cross-product term can be modeled using a gyrator element. 

 The bond graph representation of this system is shown in Figure 10.29. 
The bond graph demonstrates all the aspects discussed here. This is just 
a simpler version of the model. The model can become more and more 
complex as we add on things, such as force at the wheels in the direction 
of roll, or if we add calculations in displacement in the  x  and  y  direc-
tions, including the complex tire models available in literature. Some 
of these complexities have been included in a more detailed model by 
Kramer (2001). The reader may refer to that paper for more information 
on this model. 
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10.3  Vehicle Systems

 In this section we will discuss some vehicle systems for which the bond 
graph methodology has been applied for simulating the system behav-
ior. Of the several systems discussed here, there are some that are now 
available in vehicles as a standard feature, and there are others that are 
relatively new, such as the type of systems that fall under the category of 
by-wire systems.  

 10.3.1  Electric Braking 

 The fi rst system presented here is an electric braking system. The model 
of this system is presented in a paper by Margolis and Shim (2001).  

 Figure 10.30 shows a schematic of the brake system, and Figure 10.31 
shows the bond graph representation of this system. The electric motor 
is modeled using a source of fl ow (or current). It could have been mod-
eled as source of effort and an inductance element in the circuit (just as a 
motor was modeled in the actuators chapter). The motor is connected to 
a transformer element that would transform rotational to linear motion. 
This could be a ball-and-screw system that is used to apply force on the 
brake pad. The brake pad–disk contact is modeled as a modulated resis-
tance. The wheel/tire inertia is modeled as well as a transformer element 

FIGURE 10.29
Bond graph representation of the bicycle vehicle handling model.
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FIGURE 10.30
Schematic for an electric braking system.
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to transfer rolling velocity to linear velocity at the wheel/ground interface. 
For wheels that receive direct power from the engine, an engine input is 
included in the model as well. The road resistance needs to be modeled 
using the constitutive behavior of the tire. These models are relatively com-
plex but can be found in literature and can be incorporated in the overall 
model. The resistance is a function of the relative velocity between the 
longitudinal velocity of the wheel center and the wheel rolling velocity. 

FIGURE 10.31
Bond graph representation of the electric braking system.
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 The behavior of the model is demonstrated in Figure 10.32. The plots 
show the rotational velocity of the tire as motor current comes on and is 
then turned off. The velocity is brought down to 0 and then rises as the 
current is removed. The simulation is only a sample representation based 
on arbitrarily chosen parameters shown in Figure 10.33. 

FIGURE 10.33
Parameters used for simulating the electric brake.

FIGURE 10.32
Electric brake behavior simulation.
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 The description and discussion of this system is kept at a generic level. 
This model can be easily modifi ed to model a hydraulic braking system as 
well, where the force input is provided by hydraulic pressure rather than 
electric motors.   

 10.3.2  Power Steering Model 

 The hydraulic power steering of an automobile consists of interaction of 
two energy domains. The steering wheel is used to provide the intended 
input from the driver. The steering mechanism is connected to a hydraulic 
booster circuit that adds to the effort from the driver and helps in turn-
ing the wheel in a fashion desired by the driver. Figure 10.34 shows a 
schematic of the hydraulic power steering consisting of the steering wheel 
that is connected to the upper column. The upper column is connected 
to the lower column through a torsion bar. The torsion bar has a spool 
valve attached to it. The spool valve is also part of a hydraulic circuit. 
When the steering wheel is turned in one direction, the rack and pinion 
 arrangement transforms rotary motion into translation so that the wheels 
can be turned in the same direction as the rotation of the steering wheel. 
As the steering wheel turns, the spool valve also opens in a way such that 
the hydraulic pressure helps in augmenting the force necessary to turn 

FIGURE 10.34
Power steering system schematic.
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the wheel in the direction desired. If the steering wheel is turned in the 
opposite direction, all the above actions are reversed. 

 Figure 10.35 shows a bond graph model of the hydraulic steering sys-
tem. The different components of the model are marked on the fi gure. 
The model can be written in some other ways as well. For example, driver 
input can be in the form of a fl ow rather than an effort. It is noticeable that 
since two inertias, those of the pinion and the rack, are connected on two 
sides of the transformer, one of the masses will automatically have differ-
ential causality. This issue was discussed in an earlier chapter. The model 
can be modifi ed to include additional “contact spring” elements to avoid 
the differential causality in one of the masses. 

 The modulated resistance in the bond graph represents the spool 
valve. The modulation signal is the angle of rotation. Figure 10.36 shows 
a schematic representing the spool valve. This is similar to the hydrau-
lic four-way valve discussed in the chapter on actuators. Although the 
actual spool valve involves angular movement, the schematic shows the 
same type of behavior on a linear scale. The hydraulic circuit consists of 
a pump that is pumping the power steering fl uid continuously through 
the hydraulic circuit. When the steering wheel is at the neutral position 
(neither turned left nor right), the pressure on both sides of the hydraulic 
ram is the same, and there is no movement of the ram in either direc-
tion. When the steering wheel is turned in one direction, the valve piece 
shown in the fi gure turns to close some of the orifi ces and opens the oth-
ers wider. This alters the path of the fl uid in a way such that the pressure 

FIGURE 10.35

Bond graph representation of the power steering system.
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on one side of the ram is increased, and fl uid from the other side of the 
ram is pushed out to the sink. This enables the hydraulic ram to move 
in the desired direction, thus augmenting the human effort provided to 
turn the vehicle wheel. In this bond graph model, the variable resistance 
for the valve is shown using a single MR element. This is not necessar-
ily a complete model, but rather an approximate representation. A better 
way to model is to use part of the model used in the hydraulic actuator in 
Chapter 9. The valve model from that example can be used to replace the 
single MR element used here. 

 Experimental results from the work of Diet et al. (1998) and Bogdan 
Proca (1998) show that the area of the orifi ce varies as a function of the 
angle of rotation. It increases almost linearly with angle of rotation and 
remains constant when the maximum area is reached. The orifi ce behaves 
like a resistive element whose fl ow is not proportional to the effort but 
to the square root of effort. This particular behavior was discussed in 
Chapter 9 during the discussion of orifi ce valves. This behavior needs to 
be part of the MR model. One of the factors in the equation is the drag 
coeffi cient, Cd. The variation of Cd as a function of the angle of rotation is 
also available in the publication by Birching (1999). Since the data reported 
by Birching indicate that the Cd value varies between 0.5 and 0.7, a con-
stant value of about 0.6 is may also be assumed for Cd.  

FIGURE 10.36
Schematic of a spool valve and the cylinder.
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 10.3.3  Steer-by-Wire System (SBW) 

 The function of a steering system is to steer the front wheel in response to 
the driver’s input. The development of electric power-assisted steering is 
driven by factors like driver comfort and active safety. The SBW is a part 
of X by wire technology, in which X stands for safety related applications 
such as steering, braking, or suspension. 

 SBW eliminated the mechanical link between steering wheel and front 
wheel, which is a steering column and a hydraulic system. The driver’s 
command is transferred via control unit and processed to send a signal 
to a DC motor, which steers the wheel. This reduces the overall cost and 
weight and provides more safety as the control unit assists the driver. 
The most meritorious features of SBW are the improvement in the driver’s 
steering feel and better handling of the vehicle. 

 At present, there are few high-end vehicles using such systems. SBW is 
more popular in aviation industry because pilots prefer getting the same 
reaction from the system for large as well as small aircraft. There have 
been constant discussions about taking control from a driver in case of an 
emergency, because sometimes the driver’s decision might not be the best 
option. For instance, trying to avoid a huge collision might involve high 
steering input, which might be tough in case of SBW. 

 Figure 10.37 shows a simple layout of the steer-by-wire (SBW)  system. 
The SBW can be divided into three major subsystems: a steering wheel 
subsystem, a controller subsystem, and front wheel subsystem. Figure 10.38 
shows a detailed system-level model of SBW. Each subsystem is again 

FIGURE 10.37
Schematic for a steer-by-wire (SBW) system.
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broken down into main components. The component-level modeling 
helps achieve the aim of preparing a bond graph modeling. Each of the 
subsystems is now explained in detail. 

 The steering subsystem consists of a steering wheel, torque sensor, angle 
sensor, and steering motor. A controller subsystem receives a signal from 
the torque sensor and an angle sensor, along with the vehicle speed sensor. 
The torque sensor senses driver torque input, and the angle sensor senses 
steering angle. These sensor inputs are used by the control algorithm to a 
calculated output that goes to the steering motor. The steering motor acts 
as a steering column functionally and provides resistance to the driver. 

 As there is no steering column, the driver wouldn’t feel anything back 
from the road, which is quite misleading and dangerous. To bridge this 
gap, a steering motor is used and provides feedback torque to the driver. 
The feedback torque generated from the motor depends on vehicle speed 
and steering wheel angle. The controller subsystem is discussed in detail 
under the section of SBW controls. 

 The controller subsystem is an electronic control unit that takes input 
data from all the sensors and runs an algorithm to drive the steer-
ing motor and front wheel motor (discussed in the next section). Most 
important feature of the controller subsystem is that it not only imitates 
the  manual steering system, but it also goes a step beyond to make steer-
ing more comfortable than manual systems. So, for instance, the torque 
required in parking lot conditions is quite high for a manual steering 

FIGURE 10.38
System level model including components.
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system. Using SBW controls, the reaction torque generated is much less as 
compared to manual steering. Also, controllers help improving handling 
characteristics and maneuverability by accounting for understeer gradi-
ent (Oh, 2003). 

 The main components of the front wheel subsystem are a steering actu-
ator, rack/pinion gear, tie rod, position sensor, steering arm, and tires 
Qiang and Ren (2005). 

 The steering actuator is a permanent magnet (PM) DC motor that 
receives a signal from the electronic control unit (ECU). The motor trans-
mits power to the steering wheel via rack/pinion and tie rod. The steering 
arm is responsible for converting the linear movement of the tie rod into 
angular movement, which rotates the tires to steer the vehicle.  

 The position sensor is used to track the steering angle of wheel and 
provides data to the ECU. 

 In order to make a bond graph model of SBW, each component is 
assumed to be a combination of lumped parameters of resistance, capaci-
tance, and inertial elements. The DC motor is broken down into electrical 
and mechanical domains, as shown in Figure 10.39. 

 The electrical part consists of armature resistance, armature induc-
tance, and an input voltage. The mechanical part is the shaft with motor 
inertia, rotational resistance, and motor shaft compliance. The energy 
transformation from electrical to mechanical domain is represented by a 
gyrator  element with a gyrator ratio of the motor constant. The power 

FIGURE 10.39
Layout of DC motor.
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is transmitted to the pinion with a set of gears represented by transformer 
ratio.  

  The steering wheel is represented by the wheel moment of • 
inertia. The driver torque is represented through signal generator 
fed to the steering wheel (at 1 junction) via modulated source of 
effort.  

  The steering column bearing provides resistance and shaft • 
compliance.  

  The rack and pinion assembly is represented by gear ratio (trans-• 
former) and mass of rack (inertia element).  

  The tie rod is lumped into compliance of rod and bearing • 
resistance.  

  The translation motion of tie rod is transformed into angular • 
motion by the steering arm. This is represented by a transformer. 
The steering arm’s mass has been neglected here.  

  The tires are represented by moment of inertia.  • 

  When a lateral force acts on tires, the tires generate self-aligning • 
torque. This is represented by the resistance element because this 
torque opposes the steering torque.   

 Figure 10.40 shows a bond graph model with all lumped parameters, 
though this particular model doesn’t use any feedback or control mecha-
nism. Figure 10.41 shows the values used for all the parameters. 

FIGURE 10.40
Bond graph model of the steer-by-wire system.
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 The design of the controller has not been attempted here since it is an 
advanced control exercise. However, with a good understanding of the 
algorithm for control as outlined in the work of Oh (2003), it can be mod-
eled with some decent effort on the part of the bond graph modeler. The 
bond graph model was simulated using 20-Sim. Some results are shown 
in Figure 10.42. 

 Figure 10.42 shows the plot of steering wheel angle and front wheel 
angle against time. The driver torque used was 2 Nm. The plot shows that 
there is a small lag in the system (∼0.05 seconds). But the system response 
is very steady and linear otherwise.  

 Figure 10.43 shows the plot from a publication by Qiang and Ren (2005). 
The plot shows the front wheel angle at a different torque input. The simu-
lation data gives similar characteristic as in the above plot used for valida-
tion. Hence, the simulated data is quite close to validation data. 

 Figure 10.44 shows the plot of the front wheel angle versus the steer-
ing wheel angle. The plot suggests a linear relation that is quite obvious 
and, hence, proves the validity of the results. Also, the steering gear ratio 
comes out to be approximately 22, which seem close to real world data. 

FIGURE 10.41
Data used for the steer-by-wire model in Figure 10.40.
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FIGURE 10.42
Steering wheel angle and front wheel angle plots versus time.
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 10.4  Energy Regeneration in Vehicles 

 With the advent of hybrid technology and signifi cant efforts in improv-
ing energy effi ciency of vehicles, effort has been under way to make sure 
that energy can be recovered and used from different aspects of vehicle 
motion. It is quite well known that only a small percentage of the energy 
generated by the internal combustion engine is used productively. A large 
portion of the energy is lost as heat. Also, during braking, all the kinetic 
energy that was generated from the combustion is lost as heat as well. 

 In hybrid vehicles using the general approach of “regeneration,” part 
of the braking energy is used to drive a motor/generator in a reverse 
direction to generate electrical energy that is then used to charge the bat-
tery. Another similar approach has been tried to recover energy from the 
damping effects of a suspension. Whenever an automobile in motion hits a 
bump on the road, undesirable vertical motions are introduced in the sys-
tem. Conventional shock absorbers in vehicles dampen this motion, and 
energy is thus dissipated to the surroundings. The possibility of generat-
ing electrical power from the above-mentioned energy has been explored 
experimentally by researchers (Goldner et al., 2001). The electric power 
can then be used to recharge the battery of an electric car.  

 One of the two experiments in Goldner’s (2001) work was the electrical 
generator experiment. Figure 10.45 shows a schematic of the setup. It was 

FIGURE 10.44
Front wheel angle versus steering wheel angle (in degrees).
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used to simulate a periodic road bump. This was in the form of a grinder 
that had one of its grinding wheels replaced by an aluminum disk that had 
a rounded, adjustable height, bump. This is clear from Figure 10.45, which 
is a schematic of the test stand. A neodymium(Nd)–iron(Fe)–boron(B) 
magnet was concentric with a Tefl on tube with a copper wire coil wound 
on it. Also contained in the copper tube were two Tefl on push rods—one 
above and one below the magnet—as well as a stiff spring at the top of the 
piston, and the spring was restrained from moving above a restrainer. The 
bottom Tefl on push rod was rounded at its lower end, and the rounded 

nose loosely fi t into a concave cutout in a fl exible 
1
8

-inch thick Tefl on plate 
that was cantilevered at one end. This allowed the plate, and therefore 
the piston, to be pushed up by a rotating bump and pushed down by the 
upper constrained spring. The output voltage from the coil was measured 
with an oscilloscope. 

 The magnetic fl ux density of the magnet was 0.23 Tesla and the length 
of the coil was 5.2 m. The bump height was chosen to be 2 mm. The rota-
tional frequency of the disk was 20 Hz and the disk radius was 80 mm. 
Using these magnitudes of the various elements of the system, the output 
voltage that was generated was 1.3 volts. 

FIGURE 10.45
Schematic of the electric generator experiment.
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 The schematic diagram in Figure 10.45 helps us in preparing a bond graph 
of the experiment. Figure 10.46 shows the bond graph model. The input 
signal to the modulated source of fl ow has not been shown in this  fi gure. 
It will be discussed later in detail. The gyrator element was chosen for the 
conversion of the mechanical disturbances due to the vertical motions 
induced by the road bump into electric power. The gyrator factor (1.196) 
was calculated by multiplying the magnetic fl ux density (0.23T) with the 
length of the coil (5.2 m), that is,  Bl . The road bump signal consists of two 
square wave generators, a delay element, and a +/− element. The equation 
of one square wave generator was modifi ed, and the delay element was 
connected to it to obtain a wave output, as shown in Figure 10.47. 

 It should be noted that this waveform and magnitude of the signal 
was generated with a magnitude of 2 mm, frequency of 125 rad/sec, and 
a delay of 50 milliseconds. The parameters used in the simulation are 
shown in Figure 10.48. Two square wave generators were used along with 
an offset to generate the effective pulse that is created from the small 
bump on the rotating wheel. The equations of the two generators are 
shown in Sections 10.4.1 and 10.4.2. 

 10.4.1  First Square Wave Generator 

 Variables 

 real hidden s, half; 
 boolean hidden change; 

FIGURE 10.46
Bond graph model of the electric generation experiment.
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 Equations 

 “calculate at least 2 points per period  
 (just after the change in sign)” 
 half = pi/omega; 
 change = frequencyevent (half, 1e-15); 

FIGURE 10.48
Parameters used for the experiment.

FIGURE 10.47
Output voltage and input velocities.
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 “calculate the square wave” 
 s = sign (sin (omega * time)); 
 output = if( s == 0 ) then 
 amplitude 
 else 
 (amplitude/2)*(s + 1) 
 end; 

10.4.2  Second Square Wave Generator 

 Variables 

 -real hidden s, half; 
 -boolean hidden change; 

 Equations 

 “calculate at least 2 points per period  
 (just after the change in sign)” 
 half = pi/omega; 
 change = frequencyevent (half, 1e-15); 
 “calculate the square wave” 
 s = sign (sin (omega * time)); 
 output = if( s == 0 ) then 
 -amplitude 
 else 
 -(amplitude/2)*(s + 1) 
 end; 

 In order to validate the results of the simulation, it is required to prove 
that a voltage of 1.3 volts maximum output can be obtained in the electri-
cal part of the system. The voltage measured across the resistor is shown 
in the fi gure as output voltage, and the maximum value is 1.3 V. In the 
experimental results, a single wave of output from the oscilloscope was 
reported and the maximum value obtained was 1.3 V [Goldner (2001)]. 

 10.5  Planar Rigid Body Motion 

 We would like to discuss possible ways to model the transfer of power that 
is generated in the engine chambers to the crank shaft via the connect-
ing rod. This involves modeling the movement of rigid bodies in a plane. 
In order to explore the motion of planar rigid bodies, we need to consider 
a generic body that is capable of moving in a plane, that is, it has three 
degrees of freedom, movement in the horizontal and vertical directions 
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and rotation about an axis perpendicular to the plane. These degrees of 
freedom may also be referred as freedom to move in the x or y directions 
and ability to rotate about the z axis. For planar bodies, it is easier if we use 
global coordinate systems (rather than body fi tted coordinate systems) for 
analysis. Figure 10.49 shows an arbitrary body in a two-dimensional plane 
with its center of mass shown in the fi gure. The horizontal and the vertical 
axes shown at the CG are fi xed to the body and at the current instant of 
time they happen to be inline with horizontal and vertical directions. The 
three degrees of freedom of the center of mass are also shown in the fi gure 
in the form of linear velocities about the x and y directions and angular 
velocities about the axis perpendicular to the plane. The directions shown 
in the fi gure are the accepted positive directions of the above quantities. 
Inertia quantity mass, m, is associated with the motion of the center of 
mass in the x and y directions. Inertia quantity moment of inertia about 
the z axis, J, is associated with the rotational motion about the z axis (axis 
perpendicular to the plane shown). 

 The fi gure also shows two points that are located away from the center 
of mass on opposite sides at distances R1 and R2, respectively from the 
center of mass. The R1 and R2 vectors make an angle of θ and (180 + θ), 
respectively, to the positive x direction. For this arrangement, the x and y 
velocities of these points are shown on the fi gure as V1x and V1y and V2x 
and V2y for the second point. Therefore, from the geometry of the system 
it can be shown that:  

  

V1x = Vx − ωR1Sinθ
V1y = Vy + ωR1Cosθ

 
(10.16)

    

ωR2

ω
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FIGURE 10.49
Movement of an arbitrary rigid body in a plane.
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 and  

  

V2x = Vx + ωR2Sinθ
V2y = Vy − ωR2Cosθ

 
(10.17)

    

 Although θ is shown in the fi gure as a particular angle, it changes with 
time as the body rotates. So theta can be obtained by integrating ω. 

 In order to model any rigid body motion, it is important to understand 
the bond graph model of this basic rigid body representation. The veloci-
ties at three points (the center of mass and the other two points) can be 
related to each other through the above equations. 

 The bond graph representation of the movement of this generic rigid 
body is shown in Figure 10.50. 

 In the bond graph model, there are seven 1 junctions, which represent the 
seven velocity points that we are discussing. Three are associated with the 
three velocities at the CG, and the other four are associated with the x and 
y velocities at the two points that are chosen on the rigid body. Inertia ele-
ments associated with the three 1 junctions representing the center of grav-
ity are mass X = Mass, Y = mass of rigid body, and J = rotational  inertia. The 
transformer elements are used to multiply the radius and angular velocity 
to get the two components in the x and y directions at the two non-CG 
point. Since the coordinates are fi xed to the ground and gravity acts verti-
cally downwards, a source of effort is included with the Y component of 
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the center of gravity. This source of effort represents the gravitational force. 
The model for one of the MTF element is shown below. The others are simi-
lar to this one with slight variations of the actual expressions.  

 Parameters 

 real R1 = 0.25;   

 Equations 

 p1.e = –R1*sin(r)*p2.e;  
 p2.f = –R1*sin(r)*p1.f; 

 On the right and the left-hand sides of the model, the two 0 junctions add 
the velocity components as shown in the earlier equations. The bond direc-
tions for the two 0 junctions representing the x and y velocities of the point 
are chosen such that the two velocity equations shown earlier are modeled 
correctly (i.e., addition and subtraction are properly taken care of). The x 
and y velocity components of points 1 and 2 are represented by 0 junctions. 
Now that the basic structure of a rigid body is developed, we will explore 
some of its applications. Figure 10.51 shows a rigid rectangular pendulum 
that oscillates in a plane.  

 The point of attachment of the pendulum is at the top, and its center of 
gravity around the midpoint is also shown. The two ground-fi tted axes 
at the point where the pendulum is hinged are shown in the fi gure as 
well. The bond graph representation of this system (Figure 10.52) is built 

FIGURE 10.51
Rigid pendulum swinging in a plane.
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based on the earlier general model of a rigid body with the addition of two 
sources of fl ow added to the 1 junctions representing point 1. The fl ow 
sources provide 0 fl ow at this point, and this approach is taken to model 
the pinned joint at point 1. Once the pendulum end is pinned, the number 
of degrees of freedom of the pendulum is reduced to 1. This is refl ected 
in the causal structure of the three I elements. Two of the I elements, the 
ones representing the two mass elements, have differential causality. The 
I element representing the inertia has integral causality indicating that it 
behaves as an independent energy storage device. 

 The arbitrarily chosen property values are shown in Figure 10.53. 
Along with this, the initial value of the angle is chosen to be 0.2 radians 

FIGURE 10.52
Bond graph representation of the pendulum.
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for the integrator. Without the non-0 initial conditions, there will not be 
any  movement. The resulting system behavior is shown in the plot of the 
angular velocity of the pendulum with respect to time (Figure 10.54). As 
expected, it is sinusoidal in nature. Other parameters calculated in the 
simulation may be similarly obtained. Figure 10.55 shows how the x and y 
components of forces vary at the point where the pendulum is attached by 

FIGURE 10.54
Angular velocity of the pendulum.
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a pin joint. Note that the y direction force oscillates around the weight of 
the component and the x direction force oscillates about 0. This also con-
fi rms expected behavior. 

 We will use the concept developed about the movement of rigid bodies 
to develop a model for the slider–crank mechanism that is the basis of an 
internal combustion engine. 

 Figure 10.56 shows a schematic of the slider–crank mechanism. The 
bond graph model of this is built by using two of the basic models for the 
rigid links. The joint 1–2 is the location where the two links are joined. At 
the ground, x and y velocities are 0 at all times. This is achieved by adding 

FIGURE 10.56
Schematic for the slider–crank mechanism.
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two fl ow sources to this element with 0 fl ow. At the location where link 
one is attached to the piston, no fl ow is allowed in the x direction, and a 
source of effort is added to the y direction to indicate the force as a result 
of the pressure from combustion. The bond graph representation of this 
model is shown in Figure 10.57. 

 The slider–crank mechanism is also a single degree of freedom mecha-
nism. Thus, when the bond graph model is created, four of the six I ele-
ments have differential causality. Of the two Is that represent the inertia 
of the two links, one should have a differential causality. However, when 
that was created in 20Sim, the simulation software reported diffi culty 
in inverting the constitutive equations for the I elements. The model is 
slightly modifi ed by adding an R element with a very small value so that 
the causal structure of the system is consistent and the simulation works. 
The kinetic behavior of this model is rather complex and  nonlinear because 

FIGURE 10.57
Bond graph of the slider–crank mechanism.
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the behavior is dependent on the sine and cosines of angles, which are 
nonlinear functions of the angles. 

 Figure 10.58 shows the plots from a simulation using this model. The 
data used in this simulation are shown in Figure 10.59. The actual results 

FIGURE 10.59
Parameters used.

FIGURE 10.58
Response of the slider–crank system.
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will vary both in nature and magnitude as the relative dimensions of the 
links change, the frequency of the forcing function changes, and other 
factors in the model change. This plot is included here just as a sample of 
some of the results one could expect from this simulation. 

10.6  Simple Engine Model: A Different Approach

 For this simulation exercise, a six-cylinder internal combustion engine 
was chosen. The objective was to use real-life cylinder pressure data as 
an input to a power cylinder model (all six), and then observe the torque 
generated. Figure 10.60 is a generic power cylinder. 

 Dynamometer test data for a 4.0L V6 commercial engine was obtained. 
The data was broken up by cylinder and converted from crank angle per 
cylinder to overall engine crank angle. This data was converted to an 
input versus time so that the data can be used to apply to each cylinder 
as a source of effort. Since the data was steady state at 3000 rpm, this was 
relatively easy. A .txt fi le for each of the six cylinders was created contain-
ing the time and cylinder pressure data. 

 The foundation of a successful simulation is obviously a sound and 
accurate bond graph. As mentioned above, the cylinder pressure data 
feed into the MSe using a fi le input element linked to the appropriate 
.txt fi le. The MSe element feeds the fi rst TF, which converts the cylinder 
 pressure data in psi to force in lbf. This was done by multiplying the cyl-
inder pressure by the piston area (12.54 in 2 ). The force data then feeds into 
the MTF, where it is converted from translational force to torque. Six of 
these lines of elements feed into a single 1 junction, which simulates the 
crankshaft. This 1 junction does feed back the crank angle to each cyl-
inder thru six feed back lines. Each line takes the angular velocity from 
the 1 junction, integrates it, then feeds the crank angle back into the MTF 

FIGURE 10.60
Schematic showing a generic cylinder.
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(depending on the cylinder number, an initial value was added to get 
the proper fi ring phase). The formula in each MTF uses the translational 
force and the angle to calculate the previously mentioned torque using 
the below formula:  

  
T = F −aSinθ − (b2 − a2Sinθ)−1/2 a2SinθCosθ[ ] (10.18)    

 where  a  = stroke length and  b  = connecting rod length. 
 Also connected to the 1 junction is an R element. This serves as a both 

a lump sum loss and also a means to draw out the total torque for the 
system. See Figure 10.61 for the model of the setup. It is important to note 
that the data fi le input is correctly phased and the integrators are properly 
phased. 

 As can be seen in the graphs (Figures 10.62 and 10.63), both the input 
cylinder pressure (psi) and translational force (lbf) look reasonable. 
Using an R value of 1.55 in-lb-s/radian, reasonable torque values were 
obtained. The graph in Figure 10.64 is in in-lb. (3000 in-lb is roughly 250 
ft-lb). Max torque (obtained experimentally) for this engine was 243 ft-lb 
@ 3000 rpm. 

FIGURE 10.61
Bond graph model of the engine.
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FIGURE 10.62
The pressure (psi) input at the six cylinders.
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FIGURE 10.63
The force (lbf) at the six cylinders.
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 10.7  Summary 

 In this chapter we have discussed different aspects of modeling systems 
that are related to the automobile. We feel that even with this discussion, 
we have just scratched the surface and have just introduced the topic. For 
about 30 years, many researchers have been working on modeling auto-
motive systems using the bond graphs. One of the aspects of modeling 
automotive systems is that on many occasions, to avoid complexities in 
the model, one has to rely on experimental data. For example, in model-
ing the drive train, one can opt to model the exact thermodynamics of the 
engine or use experimental data to represent the engine effort generated. 
These are the types of decisions that need to be taken and are aspects new 
modelers need to learn about, through practice. One needs to focus on 
getting solutions the best way rather than getting every little aspect of the 
situation modeled from fi rst principles.  

FIGURE 10.64
Torque output at the crank shaft (in-lb).
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 Problems  

  10.1. The power steering model described in this chapter is a simpli-
fi ed one. One gross simplifi cation is the use of a single MR ele-
ment to denote the hydraulic valve behavior. Using the bond 
graph model given in the text as a starting point and using the 
hydraulic valve model from the previous chapter, modify the 
power steering model so that the complete behavior of the valve 
can be incorporated. Once the full model is developed, make a list 
of all the parameter values necessary to simulate the behavior of 
this device. Simulate the behavior of the model using representa-
tive parameter values.  

 10.2. Figure P10.1 shows a schematic of a hydraulic braking system. 
Develop the bond graph model of this system, and demonstrate 
its behavior through simulation. 

  10.3. Develop a quarter car model with a sprung and an unsprung mass 
(sprung mass representing the quarter car model vehicle body 
and unsprung mass representing the tire). Include the suspension 
and also the tire stiffness. Develop the bond graph model and the 
transfer function for both the force on the vehicle body and the 

FIGURE P10.1
Figure for Problem 10.2, schematic of a hydraulic braking system.
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tire defl ection. The force on the vehicle (in turn the acceleration) 
is a measure of ride quality, and the tire defl ection is a measure 
of the handling. Alter the suspension stiffness, suspension damp-
ing and tire stiffness (only one at a time) by orders of magnitude, 
and develop a chart to summarize your fi ndings at low, resonant, 
and high frequencies. What conclusions can you draw from this 
activity?  

  10.4. Figure P10.2 shows a schematic of a bicycle model along with a 
trailer that is attached using a ball joint at the trailer hitch. On the 
side of the fi gure is shown the picture of the joint with the veloci-
ties of both the points parked. The velocity relationships at the 
joint are:       

  

U2 = U1Cosϕ − V1Sinϕ
V2 = U1Sinϕ + V1Cosϕ

  Using these relationships and the similar set of variables for the 
trailer as the main vehicle develop the bond graph representation 
for this system.      

FIGURE P10.2 
Figure for Problem 10.4, bicycle model for a car–trailer combination.
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  11  
Control System Modeling 

                      Controlling system behavior is an important necessity for practical 
 systems. No matter how well a system is designed, its response (or system 
output) is not always exactly what was desired or expected. Also, exter-
nal disturbances can affect the system; and its behavior, as a result, may 
change from what was desired. Hence, it is necessary to have a control 
system that will adjust system behavior by altering the input so that the 
desired output is achieved. There are some simple control techniques, 
such as a “bang-bang” (on/off) control, which are of limited use. The most 
well-known and useful technique is feedback control, where the response 
of the system is monitored and compared with the expected response, 
and the error in the response is used to alter the input dynamically to 
achieve the desired result. The block diagram in Figure 11.1 shows a sche-
matic of the feedback control system. The system’s (or plant’s) response is 
subtracted from the set point to obtain the error. The error signal is used 
in a control algorithm to determine the system input that is fed into the 
system, and the response is adjusted, as a result, to achieve the desired 
output. 

 Similar in concept to the feedback control, there is also a control tech-
nique known as feed-forward control. This technique is used (many times 
in combination with feedback techniques) to account for disturbances in 
the system that are not measurable in the form of an output. These types 
of disturbances are usually unanticipated inputs to the system, and in 
the feed-forward methodology, the disturbance inputs are themselves 

Control
algorithm System+

−

Set point 

Response feedback

Error

FIGURE 11.1
Schematic showing a feedback control loop.
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 measured and a signal is added to the controller to account for the effects 
of these disturbances. 

 Figure 11.2 shows a schematic of the feedback and feed-forward control 
system. Control system designers use several different measures of sys-
tem performance. These measures include: 

  Stability:  Initial condition disturbances should die off quickly. 

  Speed:  The system needs to react quickly. 

  Sensitivity:  System sensitivity to noise should be low and to control 
inputs should be high. 

  Accuracy:  Error should be low. 

  Dynamic coupling:  Reduced coupling among system variables. 

 When designing control systems, one has to judge effectiveness using 
some of these criteria. 

 In this chapter we have discussed some of the very basic and most 
 commonly used concepts related to control algorithm. Our discussion is 
by no means exhaustive. We have focused on controls within the context 
of modeling mechatronic systems. Thus, in the next few sections, we will 
discuss ways to model some of the common control algorithms and how 
they are implemented in bond graph models. For more discussion on con-
trols, the reader should refer to some of the texts on control systems. 

 The objectives of this discussion, therefore, are to  

  Understand how to implement proportional, integral, and deriva-• 
tive controls.  

  Understand how to tune control systems to design control • 
parameters.  

  Apply control algorithms to linear systems and nonlinear • 
systems.     

Control
algorithm System

Set point 

Response feedback

Error

Input
measurement

Unknown
input

+

−

FIGURE 11.2
Feedback and feed-forward control.
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 11.1  PID Control 

 In all feedback control algorithms, the actual output is fed back into the con-
trol system so that an error measure (the difference between expected and 
actual output) is computed, and the error measure is used to set the change 
in the input needed to minimize the error. More than 90% of all control strat-
egies revolve around the use of PID controls in some form. PID stands for 
proportional, integral, and derivative control. PID control is made of three 
different control strategies that are a function of the error, the rate at which 
this error changes (derivative), and the accumulation of error (integral). 

 11.1.1  Proportional Control 

 This is a control strategy where the control signal is proportional to the 
error. 

 We could write the control signal as:  

 Control Signal = Kp (error)   (11.1)    

 where error = (expected output – actual output) 
 The parameter that needs to be adjusted in this case is the multiplier 

parameter Kp. As an example, consider a permanent magnet DC motor 
whose speed needs to be controlled. If we use a proportional controller, 
the bond graph can be modifi ed as shown in Figure 11.3. 

P

P control

Set point

MSe
Controlled input

I
Rotational inertia

1
          1 Junction 2

1
1 Junction

R
Rotational damping

R
Armature resistance

I
Armature inductance

GY
Torque speed constant

+ −

FIGURE 11.3
Motor bond graph with proportional control.
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 The P control module shown in the fi gure receives the error information 
(the difference between set point output and actual output). The model for 
the P control module is expressed through the following statements: 

 Equations 
 output = kp*error; 

 So, the difference between the expected speed and the actual speed is 
multiplied by the Kp factor to determine the source of effort that will be 
used for the system. The proportional control method is simple and works 
relatively fast. However, it has poor stability characteristics and may end 
up giving offset errors. Through this example, we will demonstrate these 
characteristic behaviors. 

 Figure 11.4 shows the initial parameters used in this exercise. The set 
point (i.e., the expected velocity) is fi xed at 10 and the Kp value is set to 1 
(because we do not know any better). The plot in Figure 11.5 shows the 
response of the system. 

 The plots show one of the diffi culties of using a proportional control. There 
is a steady state or offset error that remains. We can try increasing the Kp fac-
tor. If we increase Kp to 10, the response changes as shown in Figure 11.6. 

 The response is signifi cantly better, but a smaller offset error between 
the set point and the actual output still persists. We can try and correct 
this by increasing Kp even more, say to 100. The plot we get this time is 
shown in Figure 11.7. As can be seen, the error has been reduced even 
more, but the system response has now become oscillatory. 

 This example illustrates some of the important behavioral characteris-
tics of a proportionally controlled system, specifi cally, a steady state error 
usually persists; its magnitude can be reduced by increasing the Kp value, 
but beyond a certain limit, the higher Kp will make the system behavior 
oscillatory or less stable. If Kp is made 1000, the plot looks like the one 
shown in Figure 11.8, with an even more oscillatory behavior. 

FIGURE 11.4
Initial parameters used for the proportional motor speed control.
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FIGURE 11.5
P controlled speed with initial parameters.
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FIGURE 11.6
New response with Kp = 10.
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FIGURE 11.7
New response with Kp = 100.
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FIGURE 11.8
Modifi ed response with Kp = 1000.
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 11.1.2  Proportional Integral Control 

 PI control stands for proportional integral control where the control signal 
can be written as:  

 Control Signal = Kp (error + 1

Ti

(error)dt∫ )   (11.2)    

 This means that the control signal is dependent not only on the actual 
error but also on how much error is accumulating over time (i.e., the inte-
gral of error). Two parameters in this control algorithm are to be adjusted 
in order to tune the control signal: the  Kp  factor and the   T i    factor. While  Kp  
factor is the same error multiplier as before,   T i    is the integral time constant 
of the error, and its reciprocal is sometimes referred as integral rate. The 
special characteristics of the integral controller are that it is good at elimi-
nating offset errors and reducing noise. However, response is slow and 
may have stability issues. But in general, it  complements the P  controller 
very well and is often used in conjunction with the P controller. 

 We use the same example as before to demonstrate the behavior of this 
control algorithm. Consider the same permanent magnet DC motor as 
before. Its speed is to be controlled again, but we are using a PI controller 
this time. The bond graph model is shown in Figure 11.9. 

 The PI model code looks like the following: 

 Variables 

 real uP,uI; 

MSe
MSe1

PI

Proportional integral

Set point

I
Rotational inertia

R

R

I

GY
Torque speed constant

+ −

1
1 Junction 2

1
1 Junction

Armature resistance

Armature inductance Rotational damping

FIGURE 11.9
Bond graph model with PI controller.
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 Equations 

 uP = kp*error; 
 uI = (kp / tauI)*int (error); 
 output = uP + uI; // the output is the control signal. 

 The parameters used for the initial simulation are shown in Figure 11.10. 
The simulation results are shown in Figure 11.11. A close observation 

FIGURE 11.10
Initial parameters used for the PI controller.
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FIGURE 11.11
Simulation result with Kp = 1.
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indicates that this behaves much better than just the proportional con-
troller. If the Kp factor is now increased to 10, we observe that the sys-
tem behavior rises more sharply to reach the set point value, as shown in 
Figure 11.12.  

 11.1.3  Proportional Derivative Control 

 There is another mode of feedback control that is called the PD control. 
PD stands for proportional and derivative control. In this case, the control 
signal or control input may be written as:  

 

  
Control Signal = Kp (error + Td

d(error)

dt
);   (11.3)    

 We can see that for the PD control, the control signal is a function of 
both the error itself as well as the derivative of the error or the rate at 
which the error is changing. The two user-defi ned factors that control the 
behavior of this algorithm are  Kp  and  Td . The parameter  Td  is known as the 
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FIGURE 11.12
New results with Kp = 10 versus Kp = 1.
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derivative time constant. The response of a derivative controller is very 
fast and this generally improves stability of the controller. But this con-
troller also tends to amplify noise. 

 The bond graph model that can be used to implement this is shown in 
Figure 11.13. The model equations are: 

 Variables 

 real state, rate;  

 Equations 

 rate = ddt (error);  
 output = kp*(error + (tauD*rate)); 

 The model for the PD control is essentially a code to include the PD equa-
tions in the model. The parameters used initially for the simulation are 
shown in Figure 11.14. With these initial values, the response of the system 
is shown in Figure 11.15. By increasing  Kp  to 10 and then 100 we signifi -
cantly speed up the process. The plots in Figure 11.16 show the effect on 
increasing the  Kp  from 1 to 10 to 100. The offset error can be reduced, and 
the speed of the controller is improved without it becoming oscillatory. 
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FIGURE 11.13
Bond graph model with PD controller.
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FIGURE 11.14
Parameters used for initial PD control.
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 11.1.4  Proportional Integral Derivative Control 

 The last and most frequently used control algorithm is the PID control, 
which stands for proportional, derivative, and integral control all together. 
Obviously, all three control algorithms that make up the PID control have 
some advantages and some disadvantages. With this approach of com-
bining all three, the control system designers attempt to maximize the 
advantages and minimize the disadvantages. This process is carried out 
in reality by adjusting the three parameters in the PID controller, namely 
 K p   ,  T i   , and  T d  . The process of adjusting these parameters is also known as 
tuning. 

 The control signal in this case can be written as a sum of three compo-
nents, the proportional, integral, and the derivative. The control signal in 
this case is represented as:  

 Control Signal = Kp (error + 1

Ti

(error)dt +∫ Td
d(error)

dt
)   (11.4)    
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FIGURE 11.16
System responses with Kp values of 1, 10 and 100 (solution approaching the desired speed 

as the factor increases).
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 The bond graph model for this situation is shown in Figure 11.17. 

 The PID algorithm is implemented in the following way: 

 Variables 

 real pdout, pdrate, pdstate; 
 real pirate, pistate; 

 Equations 

 pdrate = ddt (error); 
 pirate = int(error); 
 output = kp*(error + pirate/tauI + tauD*pdrate); 

 The different parameter values used in the simulation are shown in 
Figure 11.18. The response we get by simulating the system using these 
parameters is shown in Figure 11.19. Just by increasing Kp to 10 the plot 
changes to look like the one shown in Figure 11.20. This is not the desired 
output. The output can be modifi ed by suitably adjusting all the control 
variables. For Kp = 10,  T i    = 1, and  T d   = 0.001, the response we get is shown 
in Figure 11.21. 

 The simulation model changes slightly if the parameter to be con-
trolled is the displacement of the rotor and not the velocity. We change 
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FIGURE 11.17
Bond graph model with the PID controller.



418 Mechatronic Modeling and Simulation Using Bond Graphs

Model

Time (s)
109876543210

0

5

10

15 Actual rotational speed (rad/s)
Desired speed (rad/s)

FIGURE 11.19
System response with the initially chosen control parameters.

FIGURE 11.18
Initial parameter values used in the PID controller.
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FIGURE 11.20
System response when Kp = 10 is used.
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FIGURE 11.21
System response obtained with all the parameters tuned.



420 Mechatronic Modeling and Simulation Using Bond Graphs

the model slightly so that we are now monitoring the integral of the veloc-
ity,  displacement, and comparing that with the desired displacement. 
Also, the desired displacement is altered and made into something a little 
more complex than a steady state output. The bond graph is shown in 
Figure 11.22. 

 The system is simulated with the following PID parameters: Kp = 10, 
 T i   = 1, and  T d   = 0.1. The results are shown in Figure 11.23. There is some 
oscillation seen in the results. The values are further modifi ed as for Kp = 
10, Ti = 1, and Td = 1. The results obtained are shown in Figure 11.24. And 
we can  easily see how the system response improves as the parameters 
are adjusted. 

 This shows that the control algorithm works very well once the adjust-
able parameters are properly set. In this case, the parameters were 
obtained by trial and error. It is believed that obtaining the right control 
parameters requires some experience and practice working with the par-
ticular system. Control experts have come up with different algorithms of 
tuning these control parameters. The most well known among these is the 
Ziegler–Nichols criteria for PID control.  
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FIGURE 11.22
Bond graph model with PID control of displacement.
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FIGURE 11.23
Displacement control with Kp = 10, Ti = 1, and Td = 0.1.
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Displacement control with Kp = 10, Ti = 1, and Td = 1.
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 11.1.5  Ziegler–Nichols Closed Loop Method 

 This technique provides a systematic approach to tuning the three para-
meters for the PID control. First, the controller is set to proportional 
mode. Next, the gain of the controller (Kp) is set to a small value. The 
load or set point is changed a little, and the response of the controlled 
variable is tracked. If Kp is low, the response will be quite slow. Now Kp is 
increased by a factor of 2 and the set point or the load is changed a little. 
At every trial, Kp is increased by a factor of 2 until the response becomes 
oscillatory. Finally, Kp is adjusted until the response is completely oscil-
latory. This particular value of Kp is called the ultimate gain (Ku). For this 
value of Kp, the period of oscillation is also recorded as Tu. The control 
law  settings are then obtained in terms of Ku and Tu and are listed in 
Table 11.1. 

 It is unwise to force the system into a situation where there are continu-
ous oscillations because this represents the limit at which the feedback 
system is stable. Generally, it is a good idea to stop at the point where some 
oscillation has been obtained. It is then possible to approximate the period 
(Tu), and if the gain at this point is taken as the ultimate gain (Ku), it will 
provide a more conservative tuning regime.   

 11.2  Control Examples 

 It is possible to add a large variety of examples with control systems in 
action. We will not repeat the same types, but will add one or two to illus-
trate a few issues. The fi rst example is speed control of a motor using 
varying current rather than varying voltage. The bond graph model 
of this setup is shown in Figure 11.25. The variable current is achieved 
by varying the armature resistance, MR. The parameters used for this 
simulation are shown in Figure 11.26. And the simulation results are 
shown in Figure 11.27. The parameters used for the PID controller are the 
same as those used in the previous example and they are quite optimum 
in this case as well. Figure 11.28 shows the control parameter and the 
armature current as the system starts up and stabilizes. 

TABLE 11.1

Parameters for Tuning the PID Controller

Kp Ti TD

P Ku/2

PI Ku/2.2 Tu/1.2

PID Ku/1.7 Tu/2 Tu/8
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 The next example is a simple-looking control problem (shown in 
Figure 11.29) where the speed of mass M2 has to be controlled by control-
ling the force that is applied on mass M1. The control results will show this 
problem is inherently very diffi cult to control since the problem becomes 
unstable. 

 The bond graph model, along with the control loop, is shown in 
Figure 11.30, and the properties used for the simulation (in consistent 
units ) are shown in Figure 11.31. The spring constant is 1E5 so the C (1/k) 
is written as 1E-5. The plots in Figure 11.32 show how the speed of the 
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FIGURE 11.25
Motor speed control by varying armature current.

FIGURE 11.26
Parameters used for speed control by current control.
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FIGURE 11.28
Variation of armature current during the control process.
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FIGURE 11.29
Speed control of M2.
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FIGURE 11.30
Bond graph of the system in Figure 11.29.

FIGURE 11.31
Parameters used for simulation.
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second mass becomes unstable. In this particular instance, no matter how 
the control parameters are adjusted, this system cannot be stabilized. This 
system needs to have a damping along with the spring to make it stable 
and controllable. When a damper (with a value of 3 units) is added along 
with the spring inbetween the two masses, the bond graph representation 
changes (Figure 11.33) and system response (Figure 11.34) shows how the 
system has stabilized. 
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System response, speed of mass M2.
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 11.3  Nonlinear Control Examples 

 This next example is a well-known nonlinear control 
problem of the inverted pendulum. 

 An inverted pendulum consists of a thin rod attached 
at its bottom to a moving cart. The cart is capable of 
moving on a horizontal rail (or some other surface) by 
the use of motors to control the wheel. The system has 
to maintain the rod in a vertical position as the cart 
moves. A simple demonstration of this system can be 
carried out by trying to balance a long stick (e.g., a 
ruler) on one’s palm. One can then easily see that the 
palm needs to move horizontally, back and forth, to 
keep the ruler balanced. 

 The dynamics of an inverted pendulum are used 
in many technologies. This concept is used to stabi-
lize the behavior of a rocket during launch. One new 
technology which has these dynamics and is becom-
ing popular in airports and tourist areas is a Segway 
(Figure 11.35). A Segway is a self-balancing personal 
transportation device. It uses a LeanSteer technology, 
which is basically controlling the 2-wheel device in 

Model

0 2 4
Time (s)

0

2

4

6

8

10

12

14
Actual speed
Desired speed

FIGURE 11.34
System response with modifi ed model.

FIGURE 11.35
Segway scooter 
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response to the body’s natural inclination to lean in the direction the user 
wants to travel. Microcontrollers and motors in the base keep the Segway 
upright at all times. Users lean forward to go forward, backward to move 
backwards, and turn by leaning left and right.  

 The overall model of an inverted pendulum setup consists of three main 
components/systems, as shown in Figure 11.36. The fi rst component is the 
actual cart with the pendulum. The second is a DC motor to control the 
wheel of the cart. And the third is a controller to maintain the rod in a 
vertical position by controlling the speed of the cart. 

 11.3.1  Inverted Pendulum 

 Figure 11.37 is a diagram of the inverted pendulum that will aid in the 
explanation of the system and its model derivation. The fi gure shows 
two important locations of interest, the pendulum’s center of mass and 
the point where the pendulum is attached to the cart. Their coordinates 
are shown on the fi gure as well, measured from a ground-fi xed Cartesian 
system. 

 The relationship between the velocities at different points in the system 
can be used to develop the bond graph representation of the system. Let 
us fi rst consider the movement of the cart. The cart moves horizontally 
within the plane and is driven by input from the motor. Hence, the cart 
only has a velocity in the horizontal direction. As a result, the point of 
attachment between the cart and the vertical bar has the same horizontal 

Controller θ

Supply
voltage

FIGURE 11.36
Inverted pendulum with motor and controls.
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velocity as the cart. But the vertical rod (the pendulum) will have an 
angular motion about the point where it is pinned to the cart. Therefore, 
the center of gravity of the pendulum has both a horizontal and vertical 
velocity. The horizontal component is a sum of the horizontal velocity at 
the pinned end as well as a trigonometric function of the angular rota-
tion. The vertical component is a function of only the angular rotation. 
Equation 11.5 shows these relationships.  

 
�Ycg = −l�θ Sin θ
�Xcg = �Xp + l�θCosθ

  (11.5)    

 According to these equations of motion and analyzing the inverted pen-
dulum, the bond graph of the system is produced as shown in Figure 11.38. 
Following the approach taken by Gawthrop and Balance (web document), 
the bond graph for the inverted pendulum is developed. The different 
velocity parameters associated with each bond are shown on the bond 
graph. 

X

P (Xp, Yp)
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l

CG (Xcg, Ycg)V

θ

Y

FIGURE 11.37
Equation of motion diagram.
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 The integral of the output from the fi rst 1 junction produces X, which 
is the cart position. The mass of the pendulum is included twice, once for 
the horizontal direction motion and once for the vertical direction motion. 
The SE shown in the graph is gravity, and it is represented as a negative 
number in the parameter. The equations of the modulated transformers 
were modifi ed as: 

 MTF1  

 
p1.e =  l *Cos r( ) * p2.e;

p2.f =  l * Cos r( ) * p1.f ;
  (11.6)

    

 MTF2  

 
p1.e = −l * Sin r( ) * p2.e;

p2.f = −l * Sin r( ) * p1.f ;
 

 
(11.7)

    

 Therefore, with all these combinations, the integral of the output of the 
second 1 junction comes out to be the angle of the rod. Note that 0° rep-
resents the rod at exactly a vertical position, while 90° (or 1.57 radians) 
represents the rod exactly in the horizontal position. 

 The relevant equations for this dynamic problem are discussed as fol-
lows. The variables and parameters in the system are 

   Xcg  = X coordinate of center of gravity 

    
�Xcg = First derivative of Xcg    

    ��Xcg = Second derivative of 
 
Xcg     

I

Xp Xcg Ycg1 cos θ −1 sin τθ

I I I

0
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∫ ∫
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FIGURE 11.38
Bond graph, inverted pendulum only.
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     Ycg = Y coordinates of center of gravity 

    �Ycg  = First derivative of Ycg    

    ��Ycg  = Second derivative of 
 
Ycg    

     Xp  = X coordinate of pivot point 

    �Xp  = First derivative of Xp    

    
��Xp = Second derivative of Xp    

     Yp  = Y coordinates of pivot point 

    
�Yp  = First derivative of Yp    

    
��Yp  = Second derivative of Yp    

  H = Force in Horizontal direction 

  V = Force in Vertical direction 

  l = 1/2 length of pendulum 

 Summing the forces in the free body diagram of the cart in the horizon-
tal ( x  direction), and neglecting any friction, Equation 11.8 is retrieved. 
Note that the friction of the cart is neglected.  

 M ��X + H = F   (11.8)    

 Summing of the pendulum in the horizontal ( x  direction), Equation 11.9 
is derived (Carnegie Mellon site, Deley site).  

    H = m ��Xp + ml��θCosθ − ml�θ2 Sin θ   (11.9)    

 Summing the forces in the vertical ( y  direction), Equation 11.10 is 
derived.  

 V = −ml��θ Sin θ − ml�θ2 Cosθ + mg   (11.10)    
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 Note that the equations of motion could also be derived using the 
Lagrangian method, where the classical mechanics is taken to be the 
 difference between the kinetic energy and the potential energy. The fol-
lowing equation is derived:  

 L = 1

2
(M + m) �x2 + ml �x �θ Cosθ + 1

2
ml2 �θ2 − mgl Cosθ  (11.11)    

 The equations of motions are  

 

   

d

dt
∂L
∂ �x

− ∂L
∂x

= F

d

dt
∂L
∂�θ

− ∂L
∂θ

= 0

  (11.12)    

 In either case, the two equations of motion for the inverted pendulum 
are as follows:  

 (M + m) ��Xp + ml��θCosθ − ml�θ2 Sinθ = F   (11.13)     

 (I + ml2 )��θ − mglSinθ = −ml ��Xp Cosθ   (11.14)    

 These equations of motion are nonlinear. In the simulation, we will use 
a PID controller to control the system, making the angle be around 0°. 

 11.3.2  Motor 

 A DC motor is simulated to control the wheels of the cart. Figure 11.39 
shows a motor circuit, which consists of armature inductance and resis-
tance connected to a motor powered by a voltage source (as discussed in 
the chapter on actuators). The motor output is connected to a rotational 

V E

L
R

FIGURE 11.39
DC motor circuit.
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moment of inertia and may have a rotational bearing resistance. The bond 
graph is shown in Figure 11.40.  

 11.3.3  Controller 

 The type of controller used for controlling the inverted pendulum is a PID 
controller. 

 The control equation as discussed earlier is  

 
  
Control Signal = Kp (error + 1

Ti

(error)dt +∫ Td
d(error)

dt
);  (11.15)    

 In the current simulation exercise after some initial trials and tuning, 
the parameters for the PID controller are 

  Kp Proportional 100,000

 Ti Integral 100

 Td Derivative  0.001 

 Following are some of the parameters used for the simulation: 

  M  mass of the cart  0.5 kg

 m Mass of the pendulum  0.2 kg

 l length to pendulum 0.3 m

 i Inertia  0.006 kg*m2

 mg Source of gravity −9.8 *0.2 = −1.96 

Se
Supply

I
Rotational inertia

1
1 Junction 2

1

R
Rotational damping

R
Armature resistance

I
Armature inductance

GY
Torque speed constant1 Junction

FIGURE 11.40
DC motor bond graph.
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 The parameters chosen for the DC Motor are 

  V  Voltage Source  modulated

 Ra Armature Resistance  0.8 Ω

 Ia Armature Inductance  0.001 H

 B Rotational Damping 0.0066 N.m.s

 J Rotational Inertia 0.01 kg*m2

 T Torque Constant 0.3 

 Figure 11.41 illustrates the open loop bond graph, which consists of the 
DC motor and the inverted pendulum. The source of effort here is not 
modulated; a value of 120v was chosen. Note there are two transformers 
that were not discussed earlier and that represent the gear ratio and the 
driven wheel, respectively. These values were assumed.

 TF1 Gear ratio N1/N2 0.5

 TF Driven Wheel  1/r 10 

 As shown from the results of the open loop system simulating the out-
put angle of the pendulum in Figure 11.42, the system is not balanced, so 
the pendulum drops 90°, which is shown in the plot in radians. 

 Figure 11.43 illustrates the model of the system, which includes the PID 
controller. The controller consists of a desired angle input (0° for this case) 
subtracted from the actual output angle. The difference of the two is fed 
into a PID controller, which is fed back to the input of the system as a 
modulated source. 
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Open loop system.
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 Initially, following values for the control parameters were chosen:

 Kp 10,000

 Ti  100

 Td 0.001 

 Figure 11.44 shows the results of the output angle compared to the 
desired angle according to different values for Kp. The pendulum starts 
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FIGURE 11.42
Simulation of the open loop system.
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unstable and eventually stabilizes in about 3sec, which is too long for the 
angle to stabilize. With Kp increased to 100,000, the angle reaches 0 in less 
than 0.4sec (Figure 11.45). This is good: however, it can get better. 

 Increasing Kp to 1,000,000, the angle reaches 0 in less than 0.05sec 
(Figure 11.46). This is an even better result. As you can see, the angle does 
not even fl uctuate much. Now that we have looked at the output angle, 
let’s look at the cart position. It is expected that the cart position maintains 
stability when the desired angle is reached. 

 Looking at the results of Figures 11.47 and 11.48, after the angle becomes 
stable at around 0, the cart still has a small velocity, and, therefore, the x 
distance keeps slowly changing around 0.33 m.  

 As shown in Figures 11.49 and 11.50, velocity increases and then decreases 
until the fi nal position is reached. The higher the Kp, the less fl uctuation 
in velocity. The time at which velocity reaches 0 is exactly the time when 
the position is stabilized. Note that the initial disturbance in the output 
angle is done by inputting initial value to the parameter. Initially, the dis-
turbance, which was being simulated, was 0.1 rad = 5.7° (Figure 11.51). 
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FIGURE 11.45
Closed loop output angle, Kp = 100,000.

0.1

0.05

−0.05

0

0 1 2 3 4 5
Time (s)

Model

Actual output angle
Desired output angle

FIGURE 11.44
Closed loop output angle, Kp = 10,000.
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Closed loop cart position, Kp = 100,000.
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FIGURE 11.46
Closed loop output angle, Kp = 1,000,000.
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Closed loop cart position, Kp = 1,000,000.
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Closed loop cart velocity, Kp = 1,000,000.
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Closed loop cart velocity, Kp = 100,000.
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Closed loop angle output, angle = 5.7°.
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As this initial value was increased got closer to 90°, it appears the sys-
tem became harder to stabilize and took longer to stabilize, as shown in 
Figure 11.52, where the initial disturbance was 1.57 rad = 89.95°. Obviously, 
as expected, once this angle crosses 90°, the system no longer works, as 
proven in Figure 11.53. 

 Those who are familiar with the inverted pendulum problem know that 
vertical balancing of the pendulum becomes harder and harder as the 
length of the pendulum decreases. (One can try this out easily by balancing 
a long versus a short stick on the palm.) To demonstrate this, the simula-
tion exercise was carried out again by decreasing the length of the pen-
dulum from 0.3 units to 0.01 units, and Figures 11.54 and 11.55 show how 
the system responds. In both, the cases compare the magnitudes of time, 
velocity, and distance traveled by the cart with previous results shown to 
realize the effect of reduction in length on system performance. 
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Closed loop angle output, angle = 90.52°.
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 11.4  Summary 

 In this chapter we have discussed the modeling of control loops and 
 control algorithms, along with bond graph models to simulate the behav-
ior of controlled systems. As far as the discussion of control theory is con-
cerned, we have only discussed the basics. Our goal was to introduce the 
PID control, the control algorithm used 95% of the time, in the context of 
bond graph based system modeling. Along with linear system control, we 
have also introduced nonlinear control through the example of balancing 
an inverted pendulum. 

Problems  

 11.1  Figure 10.51 in Chapter 10 shows a rigid pendulum swinging 
in a plane. Its bond graph model was discussed in that chapter. 
Consider this to be a representation of a robot arm that is to be 
moved by a motor. Using the motor input as the source of effort to 
drive this device, develop a control model for this system so that 
the angle of rotation can be controlled. Use a PID controller, and 
tune the parameters to the best performance possible. 

 11.2  Figure P11.1 shows a simple setup to control the height in a tank. 
Develop a bond graph model for this system. 

 11.3  Figure P11.2 shows a mechanism to lift a weight using the 
hydraulic plunger. Develop a bond graph model of this system, 

Fluid in

Signal to pump
power supply

Control box

Water
tank

Water level
probe

FIGURE P11.1
Figure for Problem 11.2, setup to control the height in a tank.
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along with a control loop that will control the distance the weight 
moves (model the plunger as a component). 

 11.4  Figure P11.3 is a schematic that shows a very basic representation 
of an elevator. Using the bond graph representation of the system 
(which was discussed in a prior chapter), develop a control system 
model for this system as an elevator. Remember how the elevator 
has to work: it will travel between fl oors rather fast, but it will slow 
down as it approaches a fl oor and will not overshoot the fl oor so 
that the passengers can get off comfortably. Use simulation results 
to demonstrate how all of these requirements could be achieved. 

FIGURE P11.2
Figure for Problem 11.3, mechanism to lift a weight.

FIGURE P11.3
Figure for Problem 11.4, schematic of an elevator.
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  12  
Other Applications 

                       In the previous chapters we touched on many aspects of bond graph mod-
eling as it applies to the modeling of mechatronic systems. The capability 
and use of this technique reaches far beyond the topics we have discussed 
so far. It is not possible to cover everything in one volume, and we did not 
even dare to do so. Not only has this technique been used in domains that 
we have not talked about, but it has been combined with other techniques 
to solve diffi cult problems. In this chapter we will briefl y touch on some 
of the material that we have not been able to address in any of the earlier 
discussions. Mostly what we will do is refer to work that is underway in 
research groups across the world and is being presented in conferences 
and published in journals. Also, we will discuss a couple of case studies 
that this author has worked on. 

 Since the early days of bond graph modeling, researchers have found use 
of the technique in the domain of thermodynamics and heat transfer. The 
works of Thoma (1974, 2000), Schnakenberg (1981), Thoma and Bouamam 
(1999), and Thoma and Mocellin (2006) are of note in this particular area. 
Anyone seeking to apply this technique in the thermal sciences domain 
should start with one of these texts. 

 In more recent times, bond graph based modeling has found a lot of 
applications in biological sciences, including biomechanics and biofl u-
idics. Pop et al. (2003), Wojcik (2003), Mukherjee et al. (2003), and others 
have used the technique successfully and modeled the walking motion 
and musculoskeletal interactions in humans and have also extended that 
technique to the modeling of walking robots. Modeling of walking is a 
nontrivial problem involving inverse dynamics. The concepts of inverse 
dynamics have been studied by many researchers both in the context of 
human gait or otherwise, and the bond graph methodology in inverse 
dynamics has been used by Gawthrop (2000) and others. 

 Bond graph methodology has found applications in the modeling of 
hand prosthesis (Vaz and Shinichi, 2004, 2007) and outer hair cell active 
force generation (Wangcharoenrung and Longoria, 1999). Fakri et al. (2005) 
used it in the modeling of the behavior of cardiac muscles. A search of rel-
evant publications will reveal many more applications of the bond graph 
methodology in the fi eld of biological sciences and bioengineering. 

 Other areas in which bond graph based modeling has been applied 
(along with other techniques, such as genetic algorithm-based optimiza-
tion) are system identifi cation, fault diagnosis in engineering systems, 
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and optimal design and layout of systems. A quick search will reveal a 
large number of recent publications in this area. There is a large group at 
Michigan State University working in this area under the leadership of 
professors Rosenberg and Goodman (Fan et al., 2003, 2007), some French 
research groups (Samantaray et al., 2008), and others (Mukherjee et al., 
2006, Lo et al., 2004). These are truly cutting-edge applications of the tech-
nique of bond graph modeling, and a separate volume will be necessary 
to accommodate some detailed discussion of these topics. 

 In the next few pages, we have discussed two cases that comprise the 
use of bond graph methodology to solve specifi c system modeling prob-
lems. These discussions may give the reader some idea of how this tech-
nique may be adapted for problems of practical importance.  

  12.1  Case Study 1: Modeling CNC Feed-Drive System 

 The feed-drive system (Abdul-Baqui et al., 2005) of a CNC machine is a 
combination of various electrical and mechanical units. These units can 
be modeled by dividing them into subunits consisting of a spring (C ele-
ment), damper (R element), source of effort (Se/MSe element), and source 
of fl ow (Sf/MSf element) connected through appropriate bonds. Schematic 
diagrams of open and closed loop feed-drive systems of a CNC are shown 
in Figures 12.1 and 12.2. 

 All the essential components of this system are listed below. 

  ω L   = angular velocity of the lead screw 
  ω m   = angular velocity of the motor shaft 
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FIGURE 12.1
Schematic diagram of open loop feed drive.
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 A p  = cross-section area of the lead screw 
 B L  = coeffi cient of viscous friction of the lead screw 
 b s  = coeffi cient of viscous damping of the slide ways 
 T c  = torque of the couple 
 K e  = lead screw stiffness 
 F L  = axial force of the lead screw 
 E p  = modulus of elasticity of the lead screw 
 f(t) = axial component of cutting force 
 h = lead of the lead screw 
 I L  = moment of inertia of a lead screw 
 I m  = moment of inertia of a motor 
 i m  = armature current 
 K E  = gain of position transducer 
 K c  = coupling stiffness 
 K p  = position loop gain 
 K v  = velocity loop gain 
 K m  = voltage constant of motor 
 L = inductance of the motor armature 
 L i  =  length of the portion of lead screw between the support and the 

tool table 
 M = mass of the table 
 m e  = equivalent mass of the lead screw 
 m p  = total mass of the lead screw 
 R = resistance of the motor armature 
 E m  = back emf 

FIGURE 12.2
Schematic diagram of closed loop feed drive.
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 V t  = velocity of the table 
 P R (t) = reference input pulse train 
 X = position of the tool table 
 V a  = voltage supply 

 In this model, the coupling is modeled as a torsional spring where as the 
bearings and slide ways are modeled as dampers. 

  12.1.1  Bond Graph Modeling of an Open and Closed Loop System 

 The drive system of a CNC can be considered as either in open or in closed 
loop form. In the open loop form, the CNC system sends out the signals for 
movement but does not check whether actual movement is taking place or 
not. Since system controllers have no access to any real-time information 
about the system performance, they cannot counteract the disturbances 
appearing in the system. The closed loop system can be characterized by 
the presence of feedback. The bond graph modeling of a CNC feed-drive 
system is explained in steps described below. We have fi rst described the 
basic open loop system and then described the additional components for 
the closed loop system. 

 The electric motor (Figure 12.3), modeled as shown in Figure 12.4, has 
been traditionally modeled as an RL circuit for the armature properties 
along with a torque/velocity output port. 

 In the bond graph model (Figure 12.5), the I and R elements represent 
the inductance and resistance of the motor armature, respectively. The 
gyrator (GY) element models the electric to mechanical transformation 
and also accounts for the back emf. Any source of signal, such as sinu-
soidal, constant, step, and so forth, can be used as a modulated source of 
effort (MSe). Here a step signal is used to model the source of effort given 
to the motor. 

FIGURE 12.3
CNC system schematic; motor circled.
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 Shaft, coupling, and lead screw (Figure 12.6) are connected to the motor 
to transfer the motion to the work table and can be modeled as shown in 
Figure 12.7. 

 Here I2 is the moment of inertia of motor; R2 and R6 are used to model 
coeffi cient of viscous friction of lead screws, R5 is the coeffi cient of viscous 
friction of the motor, I4 is the moment of inertia of the lead screw, and C2 
is used to model the torsional dynamics of the lead screw. In this study 

FIGURE 12.4
Electric circuit of a motor.
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FIGURE 12.5
Bond graph model of electric motor.
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FIGURE 12.6
CNC system schematic; shaft, coupling, and lead screw circled.
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(as in many previous ones), torsional dynamics (C2) has been neglected 
due to its small effect. 

 The next step is to model the transformation of the rotational motion in 
the lead screw to the linear motion of the work table (Figure 12.8). 

 Figure 12.9 shows the bond graph model. Here C2 represents the lead 
screw stiffness, R4 is coeffi cient of viscous damping of the slide ways, 
whereas I3 and I5 are the mass of the table and the equivalent mass of the 
lead screw, respectively. TF1 and TF2 are transformer factors to transform 
the rotational motion of the lead screw into linear motion of the table and 
bearings, respectively. 

 The fi rst three steps just described in modeling a CNC are same in both 
open and closed loop systems. The control system in close loop consists of 
an amplifi er, a numerical controller, and position and velocity transducers 
(Figure 12.10), which can be modeled as shown in Figure 12.11. 
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FIGURE 12.7
Bond graph model for shaft, coupling, and lead screw.

FIGURE 12.8
CNC system schematic; screw, table encircled.
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 In Figure 12.11, the position transducer and velocity transducer are 
modeled as controllers 1 and 2, respectively. The integral function is used 
to integrate the fl ow/velocity of table w.r.t. time to obtain the actual dis-
placement of the table. Constant 1 denotes the desired value for position, 
whereas constant 2 denotes the desired value of the velocity of the table. 
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FIGURE 12.9
Bond graph representation of transformation of rotational motion into linear motion.

FIGURE 12.10
CNC system schematic; feedback loop encircled.
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The output signals from both of the controllers are added together and fed 
as input signal to the MSe 1, that is, the source of effort to the motor. Once 
all the submodels are assembled, the complete bond graph of an open loop 
and closed loop feed-drive system can be illustrated as in Figures 12.12 
and 12.13, respectively.  
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P

Constant 1
(Desired distance)

(Output signal to motor)
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(Desired speed)
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FIGURE 12.11
Bond graph representation of control system of a closed loop feed-drive system.
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FIGURE 12.12
Bond graph of an open loop system.
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  12.1.2  Backlash, Stick–Slip, and Cutting Force 

  12.1.2.1  Backlash 

 Backlash (Younkin, 1991) plays an important role in the accuracy of the part 
machined. It can be described as the amount of lost motion due to clear-
ance or slackness when movement is reversed and contact is reestablished. 
Backlash can be modeled in open and closed loop systems by adding an 
extra C element connected to the 0 junction between the transformer factor 
and the slide way. The backlash is modeled in such a way that, during the 
backlash period, the lead screw stiffness will behave as a very soft spring, 
and, as soon as this distance is overcome, the stiffness will behave as a 
hard spring. This behavior of the lead screw is incorporated in the model 
by writing the appropriate code for the state space equation of the C3 ele-
ment (extra element added to both bond graphs to model backlash). The 
backlash behavior is illustrated in Figure 12.14. The extra part added for 
backlash in the bond graph model is illustrated in Figure 12.15. 

 Here, the extra C element, that is, C3, is connected to the 0 junction to 
model backlash between the transformer factor and the lead screw. The 
expected behavior of backlash in the machine is incorporated through the 
following lines of codes shown in the following 20Sim model. 

 // 0.001 is backlash distance// 
 //  c1= 1/k1: k1 is soft spring constant & similarly c2 = 1/

k2: k2 is hard spring constant// 

FIGURE 12.13
 Bond graph of closed loop system.
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  Parameters 

 real c1; 
  real c2; 

  Equations 

 state = int (p.f); 
  if (abs (state) <= 0.001) then 
 p.e = state / c1; 
 else 
 p.e = state/c2; 
 end; 

Backlash

Ks ΔX

Kh

Fk

FIGURE 12.14
Behavior of velocity due to backlash. 

FIGURE 12.15
Backlash model.
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   12.1.2.2  Stick–Slip Friction 

 When a machine tool slide is moving, its motion will be jerky and 
 intermittent as the objects slow down during shear and start accelerating 
after that. The process will continue throughout the operation. When the 
machine tool slide is not moving, the friction is static friction F s . As soon as 
tool slide starts to move, the friction is coulomb friction F c . These friction 
forces are not dependent on velocity but are sign dependent (Figure 12.16) 
on the direction of motion (Karnopp, 1984). The stick–slip friction effect 
can be modeled in the bond graph by adding an extra damping element, 
that is, R with the table. The stick–slip friction models for CNC are shown 
in Figure 12.17. 

 In Figure 12.17, the R4 element is added to model the stick–slip friction 
between the slide ways and the table. Stick–slip effect can be modeled 
through the following lines of code: 

  Parameters 

 real fact; // coulomb frictional force 
  real r; // ratio of static to coulomb 

  Equations 

 if (abs (p.f)<= 0.01) then 
  p.e = fact*r*sign (p.f); // equations for static friction 
 else 
 p.e = fact*sign (p.f); // equations for coulomb friction 
 end; 

FIGURE 12.16
Behavior of velocity due to stick–slip effect.
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   12.1.2.3  Cutting Force Model 

 Cutting force is an important factor when machining a part. It is generated 
when material fl ows against the cutting tool. It applies an extra load or 
source of effort to the servo system and also contributes unwanted oscilla-
tions to the CNC machine. The cutting force can be modeled as a sinusoi-
dal (Ebrahimi et al., 2000) sawtooth wave (Erkorkmaz et al., 2001), and so 
forth. The cutting force can be added, as shown in Figure 12.18. 

 According to results in published literature (Erkorkmaz et al., 2001), 
cutting force signal is a sawtooth wave. A real-time sawtooth signal is 
generated for cutting force to simulate the feed drive to know the exact 
behavior of the system. An example of a sawtooth wave is demonstrated 
in (Erkorkmaz et al., 2001). A sawtooth signal is generated by multiplica-
tion of a square wave signal and a saw wave signal, then adding a square 
wave signal to the result of the multiplication knot at +/− knot to form a 
sawtooth signal. 

 In this work, the cutting force signal is fed into the bond graph as an 
extra source of effort MSe directly to the work table. Cutting force, or Mse, 
can feed into the model through a 0 junction to which the work table can 
be connected. This way of modeling will ensure that the cutting force is 
directly acting on the work table. But, according to the rules of bond graph 
modeling, this 0 junction can be collapsed into 1 junction because effort 
will remain the same on both sides of the junction. Hence, the fi nal bond 
graph model for cutting force is shown in Figure 12.19, and the cutting 
tool signal is shown in Figure 12.20. Bond graph models of the closed loop 
feed-drive system with all nonlinear models are shown in Figure 12.21. 
The model with the feedback control loop was simulated using the feed-
drive parameters shown in Figure 12.22. The controller has two parts and 
controls the speed and distance traveled by the work table. For the sake 
of simplicity, we used only a P controller. The results from the simulation 

FIGURE 12.17
Stick–slip friction model.
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FIGURE 12.18
Cutting force model.
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FIGURE 12.19
Bond graph model of sawtooth cutting force in the main bond graph model.

FIGURE 12.20
Sawtooth signal generated in 20Sim.
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are shown in Figures 12.23 and 12.24. The velocity of the table is supposed 
to go down to 0 when it has moved by a distance of 0.1 m, and the two 
plots show that this desired outcome is achieved quite easily. Some jag-
ged changes in velocity are due to the effect of cutting forces. Also, both 
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FIGURE 12.22
Parameters used for feed-drive system.
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the velocity and distance traveled take some time to change from 0 initial 
value because of the backlash in the system. With the use of a PID control-
ler, the oscillation of the velocity plot may be better controlled.    

  12.2  Case Study 2: Developing a System Model 

for a MEMS Electrothermal Actuator 

 The most common modes of actuation in MEMS devices are electrostatic, 
magnetostatic, piezo-electric, and thermal expansion. But the forces pro-
duced by electrostatic and magnetostatic tend to be small, and, to achieve 
large displacements, it is necessary to either apply a large voltage or oper-
ate the devices in a resonant mode. On the other hand, piezo-electric and 
thermal expansion actuators can be confi gured to produce large forces and 
large displacements. Unfortunately, piezo-electric materials are not rou-
tinely supported in the fabrication processes offered by commercial MEMS 
foundries. As a result, these limitations many have focused attention on 
thermally actuated devices for generating large forces and displacements. 

 Electro-thermo-mechanical (ETM) actuators play an important role in 
the rapidly growing MEMS area, particularly as a part of more complex 
MEMS assemblies. An electrothermal MEMS actuator device consists of a 

FIGURE 12.24
Comparison of actual speed and desired speed.

Model

Time (s)

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Actual speed (m/s)
Desired final speed (m/s)

0.150.10.050 0.2 0.25 0.3



Other Applications 459

hot arm and a cold arm. The hot arm is narrower than the cold arm, and, 
thus, the electrical resistance of the hot arm is greater. When the electrical 
current passes through the device (both hot and cold arms), the hot arm is 
heated to a higher temperature than the cold arm. This temperature differ-
ential causes the hot arm to expand along its length, thus forcing the tip of 
the device to rotate about the fl exure. In this case study, a simple thermal 
actuator was modeled using 20Sim such that when voltage is given as 
input, we get defl ection as the output. The gyrator factor that is necessary 
to achieve this is determined through fi nite element based simulation of a 
single actuator. Then the same procedure was followed to model a 3 × 2 
actuator array. The voltage input was varied and the defl ection output 
was plotted for varying voltage. The 20Sim results were validated with 
the results published in the reference papers. 

 This case study focuses on the defl ection on the tip of the actuator with 
varying voltage input. As depicted in Figure 12.25, the conventional MEMS 
polysilicon electrothermal microactuator uses resistive (Joule) heating 
to generate thermal expansion and movement. When current is passed 
through the actuator from anchor-to-anchor, the larger current density 
in the narrower hot arm causes it to heat and expand along its length 
more than the cold arm. Since both arms are joined at their free (released) 
ends, the difference in length of the two arms causes the microactuator 

FIGURE 12.25
Double ‘hot’ arm polysilicon electrothermal microactuator design with an adjacent simple 

cantilever used to measure defl ection force. (Based on Kolesar et al. 2003. Thin Solid Films 

447/448: 481–488.) 
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tip to move in an arc-like pattern about the fl exure element incorporated 
at the anchor end of the cold arm. Removing the current from the devices 
allows it to return it to its equilibrium state. 

  12.2.1  FEA Analysis 

 A fi nite element analysis was done using Abaqus 6.4. The FEA analysis 
was planned to obtain the exact thermomechanical behavior of the micro-
actuator so that the data from the FEA analysis can be used to build a 
lumped model using bond graphs. The data used in the FEA analysis for 
designing and analyzing the actuator is given in Tables 12.1 and 12.2. 

 Using the geometry and material data, the MEMS actuator was designed 
and meshed as shown in Figure 12.26. 

  12.2.1.1  Steps Involved in the FEA Analysis 

   1.  The actuator is designed and properties of the material are given 
as input.  

  2.  A coupled thermoelectric analysis is fi rst done on the model to get 
the electric potential and nodal temperature output.  

  3.  After the thermoelectric analysis is done, the output data acquired 
from this analysis is used to run another analysis, specifi cally the 
heat transfer analysis.  

  4.  The temperature output in the previous analysis is put in as an 
input data during the heat transfer analysis.  

TABLE 12.1

Geometrical Dimensions of the Double Hot Arm Thermal Actuator 

Geometrical Data Double Hot Arm Actuator (μm)

Length of outer hot arm   321

Width of outer hot arm   2.0

Length of inner hot arm   306

Width of inner hot arm   2.0

Length of the cold arm   241

Width of the cold arm   15

Length of the fl exure   62.6

Width or fl exure   1.2

Length of gap   2

Thickness of polysilicon   2

Thickness of air   2

Thickness of nitride   0.6

Source: Based on Borovic et al. 2004. In Ninth Intersociety Conference on Thermal and Thermomechanical 
Phenomena in Electronic Systems, Vol. 2, 541–548. New York: IEEE.
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  5.  The electrical voltage is the input, and the temperature data is 
used to get the defl ection or deviation of the tip of the actuator as 
the output.  

  6.  This is repeated for every change in voltage and different defl ec-
tion outputs.   

TABLE 12.2

Properties for Used Materials at Room Temperature

Material Properties Value Unit

Polysilicon Material Properties

Young’s modulus 160E3 MPa

Poisson’s ratio 0.22

Thermal expansion coeffi cient 2.9E-6 K−1

Thermal conductivity 150E6 Wμm−1K−1

Resistivity 1.21E-11 TΩμm

Nitride Material Properties

Young’s modulus 300E3 MPa

Poisson’s ratio 0.27

Thermal expansion coeffi cient 1.6E-6 K−1

Thermal conductivity 15E6 Wμm−1K−1

Source: Based on Borovic et al. 2004. In Ninth Intersociety Conference on Thermal and Thermomechanical 
Phenomena in Electronic Systems, Vol. 2, 541–548. New York: IEEE.

FIGURE 12.26
Abaqus model of a double hot arm ETM MEMS actuator.
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 These defl ection outputs are used in the 20Sim model to develop lumped 
parameters of the model.   

  12.2.2  Simulation of ETM Actuator Using 20Sim 

 The simulation of the electro–thermo–mechanical MEMS actuator in 
20Sim is the core of the project. First, a simple actuator (single ETM actua-
tor) was modeled (using bond graphs) in 20Sim. The results were obtained 
and then a 3 × 2 actuator array was modeled. The graphs were plotted for 
every change in voltage. 

 A single actuator was modeled using bond graphs in 20Sim as shown in 
Figure 12.27, and a test run was done to obtain a standard gyrator modu-
lus r by varying the stiffness C and damping R. After the required stan-
dard results were obtained, simulation test runs were done for different 
varying input voltages. 

 The various elements and the data used in the bond graph are 

 A constant wave generator for the voltage input sends the con-• 
stant data to the modulated source of effort. Voltage varies from 
0 to 9 volts. 

 MSe, the modulated source of effort, is set to the constant input • 
signal source. 

 GY, gyrator to transform the effort coming in (voltage) into fl ow • 
going out. 

 r, gyrator modulus (or the multiplying factor to get the defl ection)  • 

r = 0.275 × 106.

   • R, damping = 0.0018
Ns
m

.    

FIGURE 12.27
Bond graph model of a single ETM MEMS actuator modeled in 20Sim.
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   • 
  
C, stiffness = 1.176

N
m

   (for a single actuator) .

   • 
  I, Moving mass of the element = 1.50 × 10−12 kg    (single actuator) .

 Integrator to get the defl ection output in  • μm . 

 These parameters were adjusted based on fi tting the bond graph result 
with the FEA results. 

 Simulation tests were run on the bond graph model shown in Figure 
12.27, and the results were obtained. The graphs were plotted for defl ec-
tion on the y axis with respect to time on x axis. The defl ection value at 
each voltage was noted from the plot, which is the point where the value 
becomes constant. 

 The plots obtained from the bond graph model of a single ETM actuator 
are as shown in Figures 12.28, 12.29, and 12.30 for three different voltage 
conditions. 

 Then the same process was repeated for the bond graph model of an array 
of actuators, which is a combination of a number of actuators arranged in 
different patterns. An array of actuators representing the 3 × 2 array is 
shown in Figure 12.31. 

 The actuator array in Figure 12.31 is modeled in 20Sim similar to the 
procedure followed for the single actuator. The array is modeled by add-
ing MSe and GY to the existing model for the single actuator bond graph 
model. The bond graph model of the 3 × 2 actuator array is shown in 
Figure 12.32. 
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FIGURE 12.28
For input of 2v, defl ection is 0.5605 μm.
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 Sample results from simulation of the actuator array are shown in 
Figures 12.33 and 12.34, and all the results are shown in Table 12.3. 

 It can observed from the above tabulated results that the values obtained 
from the 20Sim are in good agreement with the results obtained from the 
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FIGURE 12.29
For input of 6v, defl ection is 3.66 μm.
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FIGURE 12.30
For input of 8v, defl ection is 7.03 μm.
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FIGURE 12.32
Bond graph model of a integrated 3 × 2 ETM actuator array modeled in 20Sim.
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FIGURE 12.31
An integrated ETM device with 3 × 2 array. (Based on Mankane, N. and Ananthasuresh, G.K. 

2000. In Technical Proceedings of the 2000 International Conference on Modeling and Simulation of 
Microsystems. Danville, CA: Nano Science and Technology Institute.)
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published work. To understand the validation even better, the numbers 
from Table 12.3 are plotted in Figure 12.35. 

 The procedure of modeling and extracting the defl ection value by con-
ducting simulation test of the ETM actuator in 20Sim was presented. The 
procedure has been illustrated by fi rst modeling the actuator separately 

FIGURE 12.33
For input of 2v, defl ection is 0.5537 μm.
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FIGURE 12.34
For input of 9v, defl ection is 8.9619 μm.
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and conducting to obtain the defl ection results and then modeling it for 
a array in a 3 × 2 pattern. From the validation results, we can conclude 
that the bond graph model produces good results that were similar to the 
results published and were used for validation.    

TABLE 12.3

Validation of Simulated Data and Experimental Data 

Voltage Input (in Volts) 20Sim Results (in μm) Experimental Results (in μm)

0   0   0

1   0.2338 –

2   0.5537   0.55

3   1.0401   1.1

4   1.7345   1.76

5   2.5079   2.53

6   3.7476   3.74

7   5.1355   5.17

8   7.033   6.93

9   8.9619   8.8

Source: Based on Mankane, N. and Ananthasuresh, G.K. 2000. In Technical Proceedings of the 2000 
International Conference on Modeling and Simulation of Microsystems. Danville, CA: Nano Science and 

Technology Institute.  
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FIGURE 12.35
Defl ection at different voltages, simulation, and experiment.
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1-port components, 26, 33–35
1-port capacitor, 28–30
1-port inductor/inertia, 30–33
1-port resistor, 27–28

2-port components
gyrator element, 39–41
transformer element, 35–39

3-port components, 41
0 junction, 42–43
1 junction, 43–45

20Sim model, 10, 211, 451, 462–467

A

Abaqus model, see Electro-thermo-
mechanical (ETM) actuators

Active dampers, 369–371
Actuators

categories of, 303
electrical rotational, 314
electromagnetic, 303–334
electro-thermo-mechanical, 458–467
hydraulic, 336–345
linear, 336
linear electromagnetic, see Linear 

electromagnetic actuator
MEMS, 278
rotational, 314–332

Adaptive methods, 220–221
Algebraic loops, 162–165
AMESIM, 10
Ampere’s law, 243

B

Backlash
modeling of, 451
velocity behavior due to, 452

Backward Euler’s method, 215–217
Basic Stamp II, 2
Bernoulli’s equation, 116, 119
B-H relationship, 245
Bicycle model, 371–374

Black boxes, 223
Bode plot, 199–205, 365–366

bond graph for, 200
parameters for, 200

Bond graph, 23–26
closed loop, 435
differential causality in, 

159–162
elements in, 85–105
full-arrow, 24
half-arrow, 24
open loop, 434
power directions, 46–47
simplifi cation rules for, 56–62

Bulk modulus, 115
By-conduction method, 314
By-induction method, 315

C

CAMP-G, 10
Capacitance, 233–234
Capacitive (C) elements, 89–90, 117

differential causality for, 90
examples of, 31
integral causality for, 90

Capacitive fi eld elements, 234, 
304, 306

bond graph of, 235
with differential causality, 236
with integral causality, 236
LVDT used for deriving, 256
with mixed causality, 236–237
multiport storage fi elds, 235

Capacitive fi eld model, 311
Capacitive sensors, 233–242

bond graph of, 239
examples, 237–242
parameter used in 

simulation, 240
simulation results, 241

Causality, 83–106
algorithm for assigning, 92–99

Index
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differential, see Differential 
causality

integral, see Integral causality
Causal stroke, 65, 85, 90, 104
Center of mass

pitch and heave velocity at, 366
vertical displacement of, 363

Closed loop system, 422, 435, 
446–451, 454

CNC feed-drive system, 444–446
closed loop, 444
open loop, 445
parameters used for, 457

Comb drives, 281
Common effort junction, 42
Common fl ow junction, 43
Commutator, 315
Constant load torque, 322
Controller subsystem, 381
Control systems

in close loop, 448
examples, 422–427
feedback, 405–406
feed-forward, 405–406

Coriolis forces, 282
Cutting force model, 454–458
Cylinder pressure data, 399

D

Damping coeffi cient, 365
Damping force in active and passive 

damper, 369
DC motors, 382; see also Motors

bond graph of, 433
circuit, 432
parameters for, 434
separately excited, 332

Degrees of freedom 
(DOF), 358, 361

Differential causality, 89, 105–106
in bond graph system, 159–162
for C element, 90
for I element, 89
vs. integral causality, 100–105

Diodes
applications of, 134–135
current profi le in, 133

DOF, see Degrees of freedom

Doorbell solenoid, 308, 310
Double hot arm thermal actuator, 460
Dynamic pressure, 116

E

Effort junction, 43
Electrical rotational actuator, 314
Electrical systems, drawing bond 

graphs for, 62–69
Electrical transformer, 37
Electric braking, 374–377

bond graph of, 375
parameters used for simulation, 376
simulation of, 376

Electric generator 
experiment, 387–388

Electric motor
bond graph model of, 447
electric circuit of, 447

Electromagnetic actuators, 303–334
Electromagnetic circuits, 246
Electromotive force, 243
Electronic components, 113, 128
Electronic control unit (ECU), 382
Electronic systems, 127

diodes, 133–135
operational amplifi ers, 128–132

Electrostriction, 272
Electro-thermo-mechanical (ETM) 

actuators
Abaqus model of double hot 

arm, 461
bond graph model of single, 465
simulation using 20Sim, 462–467
system model for, 458–467

Energy dissipating device, 1-port 
resistor, 27–28

Energy storage device
1-port capacitor, 28–30
1-port inductor/inertia, 30–33

Energy variables, 20–21
Engineering systems, 14–15

components in, 26–46
subsystems of, 15

ETM actuators, see Electro-thermo-
mechanical actuators

Euler’s method, 212
backward, 215–217
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comparison of analytical results 
with, 213–214

implicit, 215–217

F

Faraday’s law, 243, 315
Ferromagnetic materials, 244
Field elements, see Capacitive fi eld 

elements
Finite element analysis (FEA), 460
First-order differential equation, 

178–180
First order systems, 176–180

bond graph of, 177
example, 176

Flow junction, 42
Flow sources, 121
Fluid compliance, 117–118
Fluid inertia, 118
Fluid resistance, 119
Fluids

behavior, 113
bulk modulus, 115
energy conservation, 116
force, pressure, and head, 115
mass conservation, 115
mass density, 114
properties and concepts, 114

Flux density, 268
bond graph of, 269
parameters for simulation, 270

Flux linkage, 21
Formal method

for electrical systems, 65–69
for mechanical systems, 72–73

Four-way control valve, 338, 340
Frequency response, 197, 199
Front wheel subsystem, 380, 382

G

Gauss’s law, 243–245
Gear ring, 268
Generalized variables, 20–22
Gravitational forces, 73
Gyrator coeffi cient, 268
Gyrator elements, 122, 319–320, 446

bond graph of, 39

causal structure of, 246
examples of, 40–41
in hydraulic circuits, 122
in magnetic circuits, 86

Gyrator factors, 40, 256, 261
Gyrator model, 270
Gyroscope, 40
Gyroscopic sensors, MEMS, 281–286

bond graph model of, 284
parameters used for, 284

H

Half car model, 360
bond graph representation of, 361
heave and pitch direction 

motion, 361
Hall, Edwin, 266
Hall effect sensors, 266–271
Homogenous equation, 182, 189
Hydraulic actuators, 336–345
Hydraulic circuits, 114

gyrator elements in, 122
transformer elements in, 121

Hydraulic cylinders, 336–337
Hydraulic power steering, 377–378
Hydraulic systems, 45, 342–345

bond graph model of, 117, 122, 343
examples, 123–127
fl uid compliance, 117–118

Hydraulic valves, 338–342

I

Inductor (I) element, 118
causal structure for, 88
differential causality for, 89
examples of, 33

Integral causality, 88, 105–106
for C element, 90
for I element, 89
vs. differential causality, 100–105

Integrated ETM actuator array
bond graph model of, 463, 465
simulation of, 464

Inverted pendulum, 427–432
bond graph, 430
controller, 433–440

Inverting amplifi er, 131–132
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J

Junction power directions, 147
Junction structure, simplifi cation rules 

for, 56–62

K

Kirchoff’s law, 62

L

Linear actuators, 336
Linear electromagnetic actuator, 

303–314
bond graph model of, 305
parameters for, 307

Linear variable differential 
transformers (LVDTs), 255

bond graph of, 256
C-fi eld, 256–258
circuit for, 255
parameter used in simulation, 259

Lorentz’s law, 315
Low-pass fi lter

bond graph model of, 296
circuit for, 295

LVDTs, see Linear variable differential 
transformers

M

Magnetic bond graph elements, 249
Magnetic circuit, 242–247

with air gap, 247–249
bond graph of, 247–249
circuit equations for, 248
gyrator elements in, 86
with permanent magnet, 249–250

Magnetic fl uxes, 244
Magnetic sensors

magnetic circuits and fi elds, 
242–245

with permanent magnet, 260–263
simple magnetic circuit, 245–247

Magnetomotive force, 243, 245, 249
Mass conservation, 115–116
Mass density, 114
Mass elements, 88–89

Mathematical modeling techniques, 
7–10

MATLAB®, 211
Mechatronic system

autonomous vehicle, 2–3
fi eld of, 2
fl ow of information within, 2

MEMS devices, 227, 277–286
actuators, 278
comb drives, 281
gyroscopic sensors, 281–286
microcantilever-based capacitive 

sensors, 279–281
sensors, 277–278

Microactuation, 278
Microcantilever-based capacitive 

sensors, 279–281
Micro-electro-mechanical system 

devices, see MEMS devices
Microsuspension, 278
Modulated source of effort (MSe), 

446, 454
Motor driven system, 18–19
Motor hoist system, 334
Motor load, 322–323
Motors, 314–332

parallel wound motor, 323–327
permanent magnet DC 

motor, 316–322
separately excited DC 

motors, 332
series wound motor, 327–332
shunt wound motor, 323–327

Motor speed control, 423
Multiport systems, 16

N

Natural frequency, 199
Nonlinear control examples, 427–440

O

Ohm’s law, 15
One junction, 43–44
Open loop bond graph system, 434, 

446–451
Operational amplifi ers (op-amps), 

128–132
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Ordinary differential equations, 
techniques for solving, 
211–212

P

Parallel junction, 42
Parallel plate capacitor, 233–234
Parallel wound motor, 323–327
Passive dampers, 369
Permanent magnet (PM), 249–250, 

260–263, 382
Permanent magnet DC motor, 8, 157, 

316–322
bond graph of, 320
example of, 332–335

Permeability, 244
Permittivity, 234
PID control, 407, 416–421, 433
Piezo-electric coeffi cient, 273
Piezo-electric crystals, 272–273
Piezo-electric materials, 271
Piezo-electric sensors, 271–277
Planar rigid body motion, 390, 392
Polysilicon electrothermal 

microactuator, 459
Ports

1-port system, 16
2-port system, 16
in subsystems, 17–18

Position transducer, 449
Positive displacement pumps, 121
Potentiometric sensor, 229

bond graph of, 229
parameter used in 

simulation, 230
Power bonds, 24
Power cylinders, 336–337
Power steering model, 377
Power variables, 20
Proportional, integral, and derivative 

control, see PID control
Proportional control, 407–410
Proportional derivative (PD) control, 

413–416
Proportional integral (PI) control, 

411–413
Proportional motor speed control, 408
Pumps, 337–338

Q

Quarter car model, 359

R

Real-time sawtooth signal, 454
Resistive (R) elements, 29, 91–92, 119
Resistive sensors, 228–233
Reynold’s number, 119
RLC circuit, 24, 62–64, 93–94, 150
Rotational actuators, 314–332
Rotational motion, examples of 

systems in, 79–83
Rotational variable differential 

transformers (RVDTs), 255
Runge–Kutta–Fehlberg method, 

221–222
Runge–Kutta (R–K) methods, 217–219

fourth order, 218–221, 223
second order, 218

RVDTs, see Rotational variable 
differential transformers

S

SBW, see Steer-by-wire system
Second order system, 180

and bond graph model, 182
generic homogenous, 186
response to sinusoidal inputs, 

191–194
response to step input, 189–191
using state–space representation, 

194–196
Segway scooter, 427
Seismic sensor, 260

bond graph of, 261
parameters used in 

simulation, 262
simulation results, 263

Seismometer, 288
Sensors

capacitive, 233–242
Hall effect, 266–271
magnetic, 242–247, 260–263
MEMS gyroscopic, 281–286
microcantilever-based capacitive, 

279–281
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potentiometric, 229–230
resistive, 228–233
seismic, 260–263
variable reluctance, 250–254, 

263–266
Series junction, 43
Series wound motor, 327–332
Shunt wound motor, 323–327
Signal bond, 24
Signal conditioning, 295–297
Simplifi cation rules for bond 

graphs, 56–62
SIMULINK, 8
Single spring–mass–damper model, 

see Quarter car model
Skyhook damping, 369
Slider–crank mechanism, 396

bond graph representation, 397
response, 398

Solenoids, 308, 310
Source of effort, 34
Source of fl ow, 34–35
Speed control

bond graph of, 425
parameters used for, 423

Spring elements, see Capacitive (C) 
elements

Spring–mass–damper equation, 153
Spring–mass–damper system, 24, 73, 

76–77, 93, 283, 359–360
Square wave generator, 388–390
Stagnation pressure, 116
State–space equations, 7, 9, 181–182, 198
Static pressure, 116
Steady state handling 

performance, 371
Steer-by-wire system (SBW), 380

bond graph model of, 382–383
controller subsystem, 381
features, 380
front wheel subsystem, 382
system-level model of, 380–381

Steering subsystem, 381
Steering wheel, 377
Stick–slip friction

behavior of velocity due to, 453
modeling, 453–454

Storage elements, 87–90
Strain gauge, 231–232

Strong bond, 86–87
Subsystems, 15, 17
Surface tension, 278
Symbols2000, 10
Synergy, 2
System boundary, 5
System equations, derivation of, 

146–158
System models, 5–7
Systems viewpoint, 5
System variables, 145

T

Tetrahedron of state, 21–22, 33
Thermoelectric analysis, 460
Time constant, 180
Torque (T), 314–316
Torque loads, 322
Transduction mechanisms, 266
Transfer function, 197

with active damping, 370
heave motion with respect to input 

velocity, 366–368, 370
with increased damping, 368
pitch motion with respect to input 

velocity, 367–368, 370
Transformer compliance, 104
Transformer elements, 35–39, 

85–86, 121
bond graph, 35
within different domains, 36
examples of, 36
in hydraulic circuits, 121

Transformer factor, 122
Transformer parameter calculation, 

362–368
Trapezoidal method, 215–217

V

Variable differential transformers, see 
Linear variable differential 
transformers; Rotational 
variable differential 
transformers

Variable reluctance sensor, 250–254
bond graph of, 251–252
parameters used in simulation, 254
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rotational motion, 263–266
simulation results from, 254

Vehicle drive line
bond graph representation of, 353
simulation results for, 356
vehicle parameters used for, 355

Vehicle dynamics, 358–374
1-D model, 359
2-D model, 359–362
3-D model, 358

Vehicles, energy regeneration in, 
386–390

Vehicle systems
modeling of, 352–358
power fl ow of, 352–353

Velocity transducer, 449
Vode–Adams method, 221–222

W

Wave generator, 46
Wheatstone bridge, 67, 231

bond graph for, 68–69, 232
simplifi ed model for, 68
simulation results, 233

Wind resistance, 355–356
Word bond graphs, 23–26; see also 

Bond graph

Z

Zero junction, 42
Zeroth order system, 173–176
Ziegler–Nichols closed loop 

method, 422


	Cover
	Title Page
	Copyright
	Contents
	Preface
	Acknowledgments
	Author
	Chapter 1 Introduction to Mechatronics and System Modeling
	1.1 What Is Mechatronics?
	1.2 What Is a System and Why Model Systems?
	1.3 Mathematical Modeling Techniques Used in Practice
	1.4 Software
	Problems

	Chapter 2 Bond Graphs: What Are They?
	2.1 Engineering Systems
	2.2 Ports
	2.3 Generalized Variables
	2.3.1 Power Variables
	2.3.2 Energy Variables
	2.3.3 Tetrahedron of State

	2.4 Bond Graphs
	2.4.1 Word Bond Graphs

	2.5 Basic Components in Systems
	2.5.1 1-Port Components
	2.5.2 2-Port Components
	2.5.3 3-Port (or Higher-Port) Components
	2.5.4 Modulated Components: Transformers, Gyrators, Resistances, and More

	2.6 A Brief Note about Bond Graph Power Directions
	2.7 Summary of Bond Direction Rules
	Problems

	Chapter 3 Drawing Bond Graphs for Simple Systems: Electrical and Mechanical
	3.1 Simplifi cation Rules for Junction Structure
	3.2 Drawing Bond Graphs for Electrical Systems
	3.2.1 Formal Method of Drawing Bond Graphs for Electrical Systems

	3.3 Drawing Bond Graphs for Mechanical Systems
	3.3.1 Formal Method of Drawing Bond Graphs for Mechanical Systems in Translation and Rotation
	3.3.2 A Note about Gravitational Forces on Objects
	3.3.3 Examples of Systems in Rotational Motion

	3.4 Causality
	3.4.1 Transformer
	3.4.2 Gyrator
	3.4.3 Junctions
	3.4.4 Storage Elements: I, C
	3.4.5 R, for Resistive Elements
	3.4.6 Algorithm for Assigning Causality in a Bond Graph Model
	3.4.7 Integral Causality versus Differential Causality for Storage Elements
	3.4.8 Final Discussion of Integral and Differential Causality
	3.4.9 Causality Summary

	Problems

	Chapter 4 Drawing Bond Graphs for Hydraulic and Electronic Components and Systems
	4.1 Some Basic Properties and Concepts for Fluids
	4.1.1 Mass Density
	4.1.2 Force, Pressure, and Head
	4.1.3 Bulk Modulus
	4.1.4 Mass Conservation for Steady, Irrotational, Nonviscous Flows
	4.1.5 Energy Conservation for Steady, Irrotational, Nonviscous Flows

	4.2 Bond Graph Model of Hydraulic Systems
	4.2.1 Fluid Compliance, C Element
	4.2.2 Fluid Inertia, I Element
	4.2.3 Fluid Resistances, R Element
	4.2.4 Sources (Effort and Flow)
	4.2.5 Transformer Elements
	4.2.6 Gyrator Elements
	4.2.7 Bond Graph Models of Hydraulic Systems

	4.3 Electronic Systems
	4.3.1 Operational Amplifiers
	4.3.2 Diodes

	Problems

	Chapter 5 Deriving System Equations from Bond Graphs
	5.1 System Variables
	5.2 Deriving System Equations
	5.2.1 Review
	5.2.2 Junction Power Direction and Its Interpretation

	5.3 Tackling Differential Causality
	5.4 Algebraic Loops
	Problems

	Chapter 6 Solution of Model Equations and Their Interpretation
	6.1 Zeroth Order Systems
	6.2 First Order Systems
	6.2.1 Solution of the First-Order Differential Equation

	6.3 Second Order System
	6.3.1 System Response for Step Input
	6.3.2 System Response to Sinusoidal Inputs
	6.3.3 System Response Study Using State–Space Representation

	6.4 Transfer Functions and Frequency Responses
	6.4.1 System Response in the Frequency Domain

	6.5 Summary
	Problems

	Chapter 7 Numerical Solution Fundamentals
	7.1 Techniques for Solving Ordinary Differential Equations
	7.2 Euler’s Method
	7.3 Implicit Euler and Trapezoidal Method
	7.4 Runge–Kutta Method
	7.5 Adaptive Methods
	7.6 Summary
	Problems

	Chapter 8 Transducers: Sensor Models
	8.1 Resistive Sensors
	8.2 Capacitive Sensors
	8.2.1 Multiport Storage Fields: C-Field

	8.3 Magnetic Sensors
	8.3.1 Magnetic Circuits and Fields
	8.3.2 Simple Magnetic Circuit

	8.4 Hall Effect Sensors
	8.5 Piezo-Electric Sensors
	8.6 MEMS Devices
	8.6.1 MEMS Examples

	8.7 Sensor Design for Desired Performance—Mechanical Transducers
	8.8 Signal Conditioning
	8.9 Summary
	Problems

	Chapter 9 Modeling Transducers: Actuators
	9.1 Electromagnetic Actuators
	9.1.1 Linear
	9.1.2 Rotational Actuators: Motors
	9.1.3 Example of a Motor That Is Driving a Load

	9.2 Hydraulic Actuators
	9.2.1 Hydraulic Cylinders
	9.2.2 Pumps
	9.2.3 Hydraulic Valves

	9.3 Summary
	Problems

	Chapter 10 Modeling Vehicle Systems
	10.1 Vehicle Systems
	10.2 Vehicle Dynamics
	10.2.1 Ride: Heave and Pitch Motion
	10.2.2 Handling: Bicycle Model

	10.3 Vehicle Systems
	10.3.1 Electric Braking
	10.3.2 Power Steering Model
	10.3.3 Steer-by-Wire System (SBW)

	10.4 Energy Regeneration in Vehicles
	10.4.1 First Square Wave Generator
	10.4.2 Second Square Wave Generator

	10.5 Planar Rigid Body Motion
	10.6 Simple Engine Model: A Different Approach
	10.7 Summary
	Problems

	Chapter 11 Control System Modeling
	11.1 PID Control
	11.1.1 Proportional Control
	11.1.2 Proportional Integral Control
	11.1.3 Proportional Derivative Control
	11.1.4 Proportional Integral Derivative Control
	11.1.5 Ziegler–Nichols Closed Loop Method

	11.2 Control Examples
	11.3 Nonlinear Control Examples
	11.3.1 Inverted Pendulum
	11.3.2 Motor
	11.3.3 Controller

	11.4 Summary
	Problems

	Chapter 12 Other Applications
	12.1 Case Study 1: Modeling CNC Feed-Drive System
	12.1.1 Bond Graph Modeling of an Open and Closed Loop System
	12.1.2 Backlash, Stick–Slip, and Cutting Force

	12.2 Case Study 2: Developing a System Model for a MEMS Electrothermal Actuator
	12.2.1 FEA Analysis
	12.2.2 Simulation of ETM Actuator Using 20Sim


	References
	Bibliography
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on '2006_T&F_Printer'] T&F 2006 Printer settings)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




